Skip to Main content Skip to Navigation

Carbon Nanotubes as Cooper Pair Beam Splitters

Abstract : We report on conductance measurements in carbon nanotube based double quantum dots connected to two normal electrodes and a central superconducting finger. By operating our devices as Cooper pair beam splitters, we provide evidence for Crossed Andreev Reflection (CAR). We inject Cooper pairs in the superconducting electrode and measure the differential conductance at both left and right arm. The contacts split the device into two coupled quantum dots. Each of the quantum dots can be tuned by a lateral sidegate. If the two sidegates are tuned such that both quantum dots are at a transmission resonance, a considerable part of the injected Cooper pairs splits into different normal contacts. On the contrary, if only one of the two dots is at resonance, nearly all pairs tunnel to the same normal contact. By comparing different triple points in the double dot stability diagram, we demonstrate the contribution of split Cooper pairs to the total current. In this manner, we are able to extract a splitting efficiency of up to 50% in the resonant case. Carbon Nanotubes ensure ballistic transport and long spin-flip scattering lengths. Due to these properties they are promising candidates to investigate EPR-type correlations in solid state systems.
Complete list of metadatas

Cited literature [108 references]  Display  Hide  Download
Contributor : Takis Kontos <>
Submitted on : Friday, October 22, 2010 - 9:50:03 PM
Last modification on : Thursday, December 10, 2020 - 12:37:02 PM
Long-term archiving on: : Friday, December 2, 2016 - 6:03:48 AM


  • HAL Id : tel-00528938, version 1


Lorentz Herrmann. Carbon Nanotubes as Cooper Pair Beam Splitters. Condensed Matter [cond-mat]. Université Pierre et Marie Curie - Paris VI, 2010. English. ⟨tel-00528938⟩



Record views


Files downloads