T. Delattre, C. Feuillet-palma, L. G. Herrmann, P. Morfin, J. Berroir et al., Noisy Kondo impurities, Nature Physics, vol.5, issue.3, p.208, 2009.
DOI : 10.1103/PhysRevB.69.235305

URL : https://hal.archives-ouvertes.fr/hal-00485355

R. , H. Brown, and R. Q. Twiss, A new type of interferometer for use in astronomy, Phil. mag, vol.45, p.663, 1954.

R. , H. Brown, and R. Q. Twiss, Correlation between photons in two coherent beams of light, Nature, vol.177, pp.27-29, 1956.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

M. Bockrath, D. H. Cobden, P. L. Mceuen, N. G. Chopra, A. Zettl et al., Single-Electron Transport in Ropes of Carbon Nanotubes, Science, vol.275, issue.5308, pp.1922-1925, 1997.
DOI : 10.1126/science.275.5308.1922

S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley et al., Individual single-wall carbon nanotubes as quantum wires, Nature, vol.386, issue.6624, p.474, 1997.
DOI : 10.1038/386474a0

URL : http://repository.tudelft.nl/islandora/object/uuid%3A4e58e2bc-5f69-4dbe-9942-aabcc9eaad35/datastream/OBJ/view

J. Sander, A. R. Tans, C. Verschueren, and . Dekker, Room-temperature transistor based on a single carbon nanotube, Nature, vol.393, pp.49-52, 1998.

W. Henk, . Ch, T. Postma, Z. Teepen, M. Yao et al., Carbon nanotube single-electron transistors at room temperature, Science, vol.293, p.76, 2001.

A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Logic Circuits with Carbon Nanotube Transistors, Science, vol.294, issue.5545, pp.1317-1320, 2001.
DOI : 10.1126/science.1065824

J. Y. Huang, S. Chen, Z. Wang, K. Kempa, Y. M. Wang et al., Superplastic carbon nanotubes, Nature, vol.297, issue.7074, p.439, 2006.
DOI : 10.1038/439281a

P. Jian and . Lu, Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett, vol.79, issue.7, pp.1297-1300, 1997.

B. I. Yakobson, C. J. Brabec, and J. Bernholc, Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response, Physical Review Letters, vol.76, issue.14, pp.2511-2514, 1996.
DOI : 10.1103/PhysRevLett.76.2511

A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. Treacy, Young???s modulus of single-walled nanotubes, Physical Review B, vol.58, issue.20, pp.14013-14019, 1998.
DOI : 10.1103/PhysRevB.58.14013

M. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties, Physical Review Letters, vol.84, issue.24, pp.5552-5555, 2000.
DOI : 10.1103/PhysRevLett.84.5552

J. Y. Huang, S. Chen, Z. Wang, K. Kempa, Y. M. Wang et al., The emerging field of nanotube biotechnology, Nature Reviews Drug Discovery, vol.2, 2003.

M. Devoret, Cours aucolì ege de France : Chaire de physique mésoscopique : Leçon Inaugurale. 31 mai, 2007.

B. Gao, A. Komnik, R. Egger, D. C. Glattli, and A. Bachtold, Evidence for luttingerliquid behavior in crossed metallic single-wall nanotubes, Physical Review Letters, issue.21, p.92216804, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00018125

B. Gao, Y. F. Chen, M. S. Fuhrer, D. C. Glattli, and A. Bachtold, Four-Point Resistance of Individual Single-Wall Carbon Nanotubes, Physical Review Letters, vol.95, issue.19, p.95196802, 2005.
DOI : 10.1103/PhysRevLett.95.196802

URL : https://hal.archives-ouvertes.fr/hal-00018002

J. Kim, H. M. So, J. Kim, and J. Kim, Spin-dependent transport properties in a single-walled carbon nanotube with mesoscopic Co contacts, Physical Review B, vol.66, issue.23, p.233401, 2002.
DOI : 10.1103/PhysRevB.66.233401

S. Sahoo, T. Kontos, J. Furer, C. Hoffman, M. Gräber et al., Electric field control of spin transport, Nature Physics, vol.424, issue.2, p.99, 2005.
DOI : 10.1103/PhysRevLett.87.106801

M. Kociak, A. Yu, S. Kasumov, B. Guéron, I. I. Reulet et al., Superconductivity in ropes of singlewalled carbon nanotubes, Phys. Rev. Lett, issue.11, pp.862416-2419, 2001.

S. Washburn and R. A. Webb, Aharonov-Bohm effect in normal metal quantum coherence and transport, Advances in Physics, vol.42, issue.4, pp.375-422, 1986.
DOI : 10.1103/PhysRevLett.57.2760

B. J. Van-wees, H. Van-houten, C. W. Beenakker, J. G. Williamson, L. P. Kouwenhoven et al., Quantized conductance of point contacts in a two-dimensional electron gas, Physical Review Letters, vol.60, issue.9, pp.848-850, 1988.
DOI : 10.1103/PhysRevLett.60.848

D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed et al., One-dimensional transport and the quantisation of the ballistic resistance, C : Solid State Phy, pp.209-214, 1988.

. M. Ya, M. Blanter, and . Büttiker, Shot noise in mesoscopic conductors, Phys. Rep, vol.336, issue.1, 2000.

]. W. Schottky, ¨ uber spontane stromschwankungen in verschiedenen elektrizitätsleitern (regarding spontaneous current fluctuation in different electricity conductors), Annalen der Physik (Leipzig), vol.57, issue.23, p.541, 1918.

L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Fractionally Charged Laughlin Quasiparticle, Physical Review Letters, vol.79, issue.13, pp.2526-2529, 1997.
DOI : 10.1103/PhysRevLett.79.2526

R. De-picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin et al., Direct observation of a fractional charge, Physica B: Condensed Matter, vol.249, issue.251, p.162, 1997.
DOI : 10.1016/S0921-4526(98)00139-2

R. B. Laughlin, Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations, Physical Review Letters, vol.50, issue.18, pp.1395-1398, 1983.
DOI : 10.1103/PhysRevLett.50.1395

R. H. Baughman, A. A. Zakhidov, and W. A. De-heer, Carbon Nanotubes--the Route Toward Applications, Science, vol.297, issue.5582, pp.787-792, 2002.
DOI : 10.1126/science.1060928

A. Fert, Origin, Development, and Future of Spintronics (Nobel Lecture), Angewandte Chemie International Edition, vol.445, issue.32, pp.5956-5967, 2008.
DOI : 10.1002/anie.200801093

A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Ballistic carbon nanotube field-effect transistors, Nature, vol.424, issue.6949, pp.654-657, 2003.
DOI : 10.1038/nature01797

J. Chaste, L. Lechner, P. Morfin, T. Gwendal-f-`-eve, J. Kontos et al., Single Carbon Nanotube Transistor at GHz Frequency, Nano Letters, vol.8, issue.2, p.525, 2008.
DOI : 10.1021/nl0727361

URL : https://hal.archives-ouvertes.fr/hal-00811187

R. Egger, A. Bachtold, M. Fuhrer, M. Bockrath, D. Cobden et al., Luttinger liquid behavior in metallic carbon nanotubes (interacting electrons in nanostructures, edited by r. haug, h. schoeller, lecture notes in physics, p.125, 2000.

J. Nygard, D. H. Cobden, and P. E. Lindelof, Kondo physics in carbon nanotubes, Physical Review Letter, vol.408, p.342, 2000.

W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham et al., Fabry-perot interference in a nanotube electron waveguide, Nature, vol.411, issue.6838, p.665, 2001.
DOI : 10.1038/35079517

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of Carbon Nanotubes, 1998.
DOI : 10.1142/p080

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, issue.5696, p.666, 2004.
DOI : 10.1126/science.1102896

P. R. Wallace, The Band Theory of Graphite, Physical Review, vol.71, issue.9, pp.622-634, 1947.
DOI : 10.1103/PhysRev.71.622

M. J. Biercuk, S. Ilanie, C. M. Marcus, and P. L. Mceuen, Electrical Transport in Single-Wall Carbon Nanotubes, Carbon Nanotubes Topic Appl. physics, vol.111, pp.455-493, 2008.
DOI : 10.1007/978-3-540-72865-8_15

E. Akkermans and G. Montambaux, Physique mésoscopique desélectronsdesélectrons et des photons, EDP Sciences, 2004.

C. Liesbeth, . Venema, W. G. Jeroen, J. W. Wildöer, S. J. Janssen et al., Imaging electron wave functions of quantized energy levels in carbon nanotubes, Science, vol.283, p.5398, 1999.

S. Datta, Electronic Transport in Mesoscopic Systems, 1995.

B. Bourlon, Thèse de Doctorat de l'Université Paris VI, Physique interfeuillet dans les nanotubes de carbone multifeuillets, 2005.

S. Sapmaz, P. Jarillo-herrero, J. Kong, C. Dekker, L. P. Kouwenhoven et al., Electronic excitation spectrum of metallic carbon nanotubes, Physical Review B, vol.71, issue.15, p.71153402, 2005.
DOI : 10.1103/PhysRevB.71.153402

H. Van-houten, C. W. Beenakker, and A. A. Staring, Coulomb-blockade oscillations in semiconductor nanostructures Single Charge Tunneling, p.166, 1992.

S. Tomonaga, Remarks on bloch's method of sound waves applied to many-fermion problems, Progress in Theoretical Physics, 1950.

J. M. Luttinger, An exactly soluble model of a many-fermion system, Progress in Theoretical Physics, 1963.

M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley et al., Luttinger-liquid behaviour in carbon nanotubes, Nature, vol.397, 1999.

N. Y. Kim, P. Recher, W. D. Oliver, Y. Yamamoto, J. Kong et al., Tomonaga-Luttinger Liquid Features in Ballistic Single-Walled Carbon Nanotubes: Conductance and Shot Noise, Physical Review Letters, vol.99, issue.3, p.99036802, 2007.
DOI : 10.1103/PhysRevLett.99.036802

I. Safi and H. Saleur, One-Channel Conductor in an Ohmic Environment: Mapping to a Tomonaga-Luttinger Liquid and Full Counting Statistics, Physical Review Letters, vol.93, issue.12, p.93126602, 2004.
DOI : 10.1103/PhysRevLett.93.126602

C. W. Beenakker, Theory of Coulomb-blockade oscillations in the conductance of a quantum dot, Physical Review B, vol.44, issue.4, pp.1646-1656, 1991.
DOI : 10.1103/PhysRevB.44.1646

Y. Oreg, K. Byczuk, and B. I. Halperin, Spin Configurations of a Carbon Nanotube in a Nonuniform External Potential, Physical Review Letters, vol.85, issue.2, pp.365-368, 2000.
DOI : 10.1103/PhysRevLett.85.365

F. Kuemmeth, S. Ilani, D. C. Ralph, and P. L. Mceuen, Coupling of spin and orbital motion of electrons in carbon nanotubes, Nature, vol.85, issue.7186, pp.448-452, 2008.
DOI : 10.1038/nature06822

S. Datta, Exclusion principle and the Landauer-B??ttiker formalism, Physical Review B, vol.45, issue.3, p.1347, 1992.
DOI : 10.1103/PhysRevB.45.1347

Y. Meir and N. S. Wingreen, Landauer formula for the current through an interacting electron region, Physical Review Letters, vol.68, issue.16, pp.2512-2515, 1992.
DOI : 10.1103/PhysRevLett.68.2512

M. Cahay, M. Mclennan, and S. Datta, Conductance of an array of elastic scatterers: A scattering-matrix approach, Physical Review B, vol.37, issue.17, pp.10125-10136, 1988.
DOI : 10.1103/PhysRevB.37.10125

S. Pugnetti, F. Dolcini, D. Bercioux, and H. Grabert, Electron tunneling into a quantum wire in the Fabry-P??rot regime, Physical Review B, vol.79, issue.3, p.35121, 2009.
DOI : 10.1103/PhysRevB.79.035121

. Louie, Disorder, pseudospins, and backscattering in carbon nanotubes, Phys. Rev. Lett, vol.83, issue.24, pp.5098-5101, 1999.

P. W. Anderson, Localized Magnetic States in Metals, Physical Review, vol.124, issue.1, pp.41-53, 1961.
DOI : 10.1103/PhysRev.124.41

S. Hershfield, J. H. Davies, and J. W. Wilkins, Probing the Kondo resonance by resonant tunneling through an Anderson impurity, Physical Review Letters, vol.67, issue.26, pp.3720-3723, 1991.
DOI : 10.1103/PhysRevLett.67.3720

G. D. Mahan, Many-Particle Physics, 1990.

Y. Chen, T. Dirks, G. Al-zoubi, N. O. Birge, and N. Mason, Nonequilibrium Tunneling Spectroscopy in Carbon Nanotubes, Physical Review Letters, vol.102, issue.3, p.36804, 2009.
DOI : 10.1103/PhysRevLett.102.036804

T. Christen and M. Büttiker, Admittance and nonlinear transport in quantum wires, point contacts, and resonant tunneling barriers, Mesoscopic Electron Transport NATO ASI Series E, Kluwer Academic, p.259, 1997.

. Sh and . Kogan, Electronic noise and fluctuations in solids, 1996.

J. B. Johnson, Thermal Agitation of Electricity in Conductors, Physical Review, vol.32, issue.1, p.97, 1928.
DOI : 10.1103/PhysRev.32.97

H. Nyquist, Thermal Agitation of Electric Charge in Conductors, Physical Review, vol.32, issue.1, pp.110-113, 1928.
DOI : 10.1103/PhysRev.32.110

B. Herbert, T. A. Callen, and . Welton, Irreversibility and generalized noise, Phys. Rev, vol.83, issue.1, pp.34-40, 1951.

H. Kiesel, A. Renz, and F. Hasselbach, Observation of Hanbury Brown???Twiss anticorrelations for free electrons, Nature, vol.97, issue.6896, pp.392-394, 2002.
DOI : 10.1016/0375-9601(86)90502-5

R. C. Liu, B. Odom, Y. Yamamoto, and S. Tarucha, Quantum interference in electron collision, Nature, vol.391, pp.263-265, 1998.

A. Kumar, L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Experimental Test of the Quantum Shot Noise Reduction Theory, Physical Review Letters, vol.76, issue.15, pp.2778-2781, 1996.
DOI : 10.1103/PhysRevLett.76.2778

M. Reznikov, M. Heiblum, H. Shtrikman, and D. Mahalu, Temporal Correlation of Electrons: Suppression of Shot Noise in a Ballistic Quantum Point Contact, Physical Review Letters, vol.75, issue.18, pp.3340-3343, 1995.
DOI : 10.1103/PhysRevLett.75.3340

M. Henny, S. Oberholzer, C. Strunk, T. Heinzel, K. Ensslin et al., The Fermionic Hanbury Brown and Twiss Experiment, Science, vol.284, issue.5412, pp.284296-298, 1999.
DOI : 10.1126/science.284.5412.296

W. D. Oliver, J. Kim, R. C. Liu, and Y. Yamamoto, Hanbury Brown and Twiss-Type Experiment with Electrons, Science, vol.284, issue.5412, pp.299-301, 1999.
DOI : 10.1126/science.284.5412.299

A. Crépieux, R. Guyon, P. Devillard, and T. Martin, Electron injection in a nanotube:???Noise correlations and entanglement, Physical Review B, vol.67, issue.20, p.205408, 2003.
DOI : 10.1103/PhysRevB.67.205408

C. Schönenberger, S. Oberholzer, E. V. Sukhorukov, and H. Grabert, Shot noise in schottky's vacuum tube, 2001.

G. B. Lesovik, Excess quantum noise in 2d ballistic point contacts. Pis'ma Zh

B. Yurke and G. P. Kochanski, Momentum noise in vacuum tunneling transducers, Physical Review B, vol.41, issue.12, pp.8184-8194, 1990.
DOI : 10.1103/PhysRevB.41.8184

V. A. Khlus, Current and voltage fluctuations in microjunctions between normal metals and superconductors, Zh. ´ Eksp. Teor. Fiz.Sov. Phys. JETP, vol.93, issue.66, p.21791243, 1987.

. Th, R. Martin, and . Landauer, Wave-packet approach to noise in multichannel mesoscopic systems, Phys. Rev. B, vol.45, issue.4, pp.1742-1755, 1992.

C. L. Kane and M. P. Fisher, Nonequilibrium noise and fractional charge in the quantum Hall effect, Physical Review Letters, vol.72, issue.5, pp.724-727, 1994.
DOI : 10.1103/PhysRevLett.72.724

R. B. Laughlin, Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations, Physical Review Letters, vol.50, issue.18, pp.1395-1398, 1983.
DOI : 10.1103/PhysRevLett.50.1395

R. Landauer, . Th, and . Martin, Equilibrium and shot noise in mesoscopic systems, Physica B: Condensed Matter, vol.175, issue.1-3, p.167288, 1991.
DOI : 10.1016/0921-4526(91)90710-V

J. Kong, E. Yenilmez, T. W. Tombler, W. Kim, H. Dai et al., Quantum Interference and Ballistic Transmission in Nanotube Electron Waveguides, Physical Review Letters, vol.87, issue.10, p.106801, 2001.
DOI : 10.1103/PhysRevLett.87.106801

H. R. Shea, R. Martel, and P. Avouris, Electrical Transport in Rings of Single-Wall Nanotubes: One-Dimensional Localization, Physical Review Letters, vol.84, issue.19, pp.4441-4444, 2000.
DOI : 10.1103/PhysRevLett.84.4441

M. Büttiker, Y. Imry, and M. Ya, Quantum oscillations in one-dimensional normal-metal rings, Physical Review A, vol.30, issue.4, pp.1982-1989, 1984.
DOI : 10.1103/PhysRevA.30.1982

D. Kowal, U. Sivan, O. Entin-wohlman, and Y. Imry, Transmission through multiply-connected wire systems, Physical Review B, vol.42, issue.14, pp.9009-9018, 1990.
DOI : 10.1103/PhysRevB.42.9009

J. Cao, Q. Wang, and H. Dai, Electron transport in very clean, as-grown suspended carbon nanotubes, Nature Materials, vol.69, issue.10, pp.745-749, 2005.
DOI : 10.1126/science.291.5502.283

L. G. Herrmann, T. Delattre, P. Morfin, J. Berroir, B. Plaçais et al., Shot Noise in Fabry-Perot Interferometers Based on Carbon Nanotubes, Physical Review Letters, vol.99, issue.15, p.99156804, 2007.
DOI : 10.1103/PhysRevLett.99.156804

S. T. Liu and A. Van, Noise in thin film Al-Al2O3-Al diodes, Physica, vol.37, issue.2, p.241, 1967.
DOI : 10.1016/0031-8914(67)90155-3

H. Birk, M. J. De-jong, and C. Schönenberger, Shot-Noise Suppression in the Single-Electron Tunneling Regime, Physical Review Letters, vol.75, issue.8, pp.1610-1613, 1995.
DOI : 10.1103/PhysRevLett.75.1610

H. E. Van-den-brom and J. M. Van-ruitenbeek, Quantum Suppression of Shot Noise in Atom-Size Metallic Contacts, Physical Review Letters, vol.82, issue.7, pp.1526-1529, 1999.
DOI : 10.1103/PhysRevLett.82.1526

V. V. Ponomarenko and N. Nagaosa, Features of renormalization induced by interaction in one-dimensional transport, Physical Review B, vol.60, issue.24, pp.16865-16873, 1999.
DOI : 10.1103/PhysRevB.60.16865

B. Trauzettel, R. Egger, and H. Grabert, Coulomb Drag Shot Noise in Coupled Luttinger Liquids, Physical Review Letters, vol.88, issue.11, p.116401, 2002.
DOI : 10.1103/PhysRevLett.88.116401

J. P. Franck, F. D. Manchester, and D. L. Martin, The Specific Heat of Pure Copper and of Some Dilute Copper+Iron Alloys Showing a Minimum in the Electrical Resistance at Low Temperatures, Proc. R. Soc. Lond. A, p.494, 1961.
DOI : 10.1098/rspa.1961.0176

W. J. De-haas, J. De-boer, G. J. Van-den, and . Berg, The electrical resistance of gold, copper and lead at low temperatures, Physica, vol.1, issue.7-12, p.1115, 1933.
DOI : 10.1016/S0031-8914(34)80310-2

G. J. Van-den, J. Berg, and . De-nobel, Les propri??t??s ?? basses temp??ratures des alliages des m??taux ?? normaux ?? avec des solut??s de transition, Journal de Physique et le Radium, vol.23, issue.10, pp.665-671, 1962.
DOI : 10.1051/jphysrad:019620023010066500

J. Kondo, Resistance minimum in dilute magnetic alloys. Progress of Theoretical Physics, p.37, 1964.

G. Kenneth and . Wilson, Renormalization group and critical phenomena. i. renormalization group and the kadanoff scaling picture, Phys. Rev. B, vol.4, issue.9, pp.3174-3183, 1971.

G. Kenneth and . Wilson, Renormalization group and critical phenomena. ii. phase-space cell analysis of critical behavior, Phys. Rev. B, vol.4, issue.9, pp.3184-3205, 1971.

V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and W. N. , Tunneling into a Single Magnetic Atom: Spectroscopic Evidence of the Kondo Resonance, Science, vol.280, issue.5363, p.567, 1998.
DOI : 10.1126/science.280.5363.567

J. Li, W. Schneider, R. Berndt, and B. Delley, Kondo Scattering Observed at a Single Magnetic Impurity, Physical Review Letters, vol.80, issue.13, p.2893, 1998.
DOI : 10.1103/PhysRevLett.80.2893

D. Goldhaber-gordon, H. Shtrikman, D. Mahalu, D. Abusch-magder, U. Meirav et al., Kondo effect in a single-electron transistor, Nature, vol.156, p.391, 1998.

S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, A Tunable Kondo Effect in Quantum Dots, Science, vol.281, issue.5376, pp.540-544, 1998.
DOI : 10.1126/science.281.5376.540

J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish et al., Coulomb blockade and the Kondo effect in single-atom transistors, Nature, vol.27, issue.6890, p.722, 2002.
DOI : 10.1038/34373

W. Liang, M. P. Shores, M. Bockrath, J. R. Long, and H. Park, Kondo resonance in a single-molecule transistor, Nature, vol.47, issue.6890, p.725, 2002.
DOI : 10.1103/PhysRevLett.86.878

N. Roch, S. Florens, V. Bouchiat, W. Wernsdorfer, and F. Balestro, Quantum phase transition in a single-molecule quantum dot, Nature, vol.131, issue.7195, p.633, 2008.
DOI : 10.1038/nature06930

URL : https://hal.archives-ouvertes.fr/hal-00700040

S. De-franceschi, R. Hanson, W. G. Van-der-wiel, J. M. Elzerman, J. J. Wijpkema et al., Out-of-Equilibrium Kondo Effect in a Mesoscopic Device, Physical Review Letters, vol.89, issue.15, p.89156801, 2002.
DOI : 10.1103/PhysRevLett.89.156801

J. Paaske, A. Rosch, and P. Wölfle, Non-equilibrium singlet???triplet Kondo effect in carbon nanotubes, Nature Physics, vol.70, issue.7, p.460, 2006.
DOI : 10.1038/nphys340

M. Grobis, I. G. Rau, R. M. Potok, H. Shtrikman, and D. Goldhaber-gordon, Universal Scaling in Nonequilibrium Transport through a Single Channel Kondo Dot, Physical Review Letters, vol.100, issue.24, p.246601, 2008.
DOI : 10.1103/PhysRevLett.100.246601

L. I. Glazman and M. Pustilnik, Coulomb blockade and Kondo effect in quantum dots, New Directions in Mesoscopic Physics (Towards Nanoscience)
DOI : 10.1007/978-94-007-1021-4_4

G. D. Scott, Z. K. Keane, J. W. Ciszek, J. M. Tour, and D. Natelson, Universal scaling of nonequilibrium transport in the Kondo regime of single molecule devices, Physical Review B, vol.79, issue.16, p.79165413, 2009.
DOI : 10.1103/PhysRevB.79.165413

D. Goldhaber-gordon, J. Göres, M. A. Kastner, H. Shtrikman, D. Mahalu et al., From the Kondo Regime to the Mixed-Valence Regime in a Single-Electron Transistor, Physical Review Letters, vol.81, issue.23, pp.5225-5228, 1998.
DOI : 10.1103/PhysRevLett.81.5225

P. Jarillo-herrero, J. Kong, S. J. Herre, C. Van-der-zant, L. P. Dekker et al., Orbital Kondo effect in carbon nanotubes, Nature, vol.256, issue.7032, pp.484-488, 2005.
DOI : 10.1103/PhysRevB.65.045317

S. Sasaki, S. Amaha, N. Asakawa, M. Eto, and S. Tarucha, Artificial Atom, Physical Review Letters, vol.93, issue.1, p.17205, 2004.
DOI : 10.1103/PhysRevLett.93.017205

Y. Meir and A. Golub, Shot Noise through a Quantum Dot in the Kondo Regime, Physical Review Letters, vol.88, issue.11, p.116802, 2002.
DOI : 10.1103/PhysRevLett.88.116802

A. O. Gogolin and A. Komnik, Full Counting Statistics for the Kondo Dot in the Unitary Limit, Physical Review Letters, vol.97, issue.1, p.16602, 2006.
DOI : 10.1103/PhysRevLett.97.016602

E. Sela, Y. Oreg, J. Felix-von-oppen, and . Koch, Fractional Shot Noise in the Kondo Regime, Physical Review Letters, vol.97, issue.8, p.86601, 2006.
DOI : 10.1103/PhysRevLett.97.086601

P. Vitushinsky, A. A. Clerk, and K. L. Hur, Kondo Quantum Dot, Physical Review Letters, vol.100, issue.3, p.36603, 2008.
DOI : 10.1103/PhysRevLett.100.036603

C. Mora, X. Leyronas, and N. Regnault, Fermi Liquid State, Physical Review Letters, vol.100, issue.3, p.36604, 2008.
DOI : 10.1103/PhysRevLett.100.036604

URL : https://hal.archives-ouvertes.fr/hal-00272436

C. David and . Langreth, Friedel sum rule for anderson's model of localized impurity states, Phys. Rev, vol.150, issue.2, pp.516-518, 1966.

K. , L. Hur, P. Simon, and D. Loss, Transport through a quantum dot with su(4) kondo entanglement, Physical Review B (Condensed Matter and Materials Physics), vol.75, issue.3, p.35332, 2007.

P. Coleman, New approach to the mixed-valence problem, Physical Review B, vol.29, issue.6, pp.3035-3044, 1984.
DOI : 10.1103/PhysRevB.29.3035

J. Soo-lim, M. Choi, M. Y. Choi, R. Lopez, and R. Aguado, Kondo effects in carbon nanotubes : From su(4) to su(2) symmetry, Physical Review B (Condensed Matter and Materials Physics, issue.20, p.74205119, 2006.

R. López, R. Aguado, and G. Platero, Shot noise in strongly correlated double quantum dots, Physical Review B, vol.69, issue.23, p.235305, 2004.
DOI : 10.1103/PhysRevB.69.235305

H. Kiesel, A. Renz, and F. Hasselbach, Local gate control of a carbon nanotube double quantum dot, Science, vol.303, pp.655-658, 2004.

D. T. Mcclure, L. Dicarlo, Y. Zhang, H. Engel, C. M. Marcus et al., Tunable Noise Cross Correlations in a Double Quantum Dot, Physical Review Letters, vol.98, issue.5, p.98056801, 2007.
DOI : 10.1103/PhysRevLett.98.056801

N. Y. Kim, W. D. Oliver, Y. Yamamoto, J. Kong, and H. Dai, Quantum shot noise suppression in single-walled carbon nanotubes, 2003.

.. Transportàtransportà-travers-un-diffuseur, En haut : Remplissage desélectrodesdesélectrodes L et R et convention pour le sens du courantélectriquecourantélectrique (sens positif du courant dans l'´ electrode de gauche) En bas : Illustration de l'effet d'un diffuseur sur le transport, p.17

D. La-transmission and . Dans-le-cas-dégénéré........., Détermination numériquè a partir du modèle (1.10) et des matrices de diffusion (1.9) (trait plein) et Correspondances lorentziennes (Pointillé) centrées en hv F, p.22

.. Bruit-en-fonction-de-la-fréquence, Nous nous plaçons dans un régime de bruit blanc (i.e. o` u le bruit dépend pas de la fréquence et plus exactement dans la zone hachurée) La courbe est trait continu correspondàcorrespond`correspondà la fonction f ? 0, p.57

?. =. Bruit-en-excès, en fonction de la tension. La courbe rouge correspondàcorrespondà (coth(eV /2k B T ) ? 2k B T ? V ?0 )2eI. Nos expériences sont effectuées dans un régime de faibles excitations (i.e dans la zone hachurée), p.58

S. Bruit, V. Sd-=-0v, and T. , 4K pour des tensions de grille allant de V G = 10.8 ` a V G = 11.5 ` a une fréquence de f c = 1.221M Hz (etàetà f c = 2.221M Hz pour l'encart) (a.) et S of f représenté pour ces deux fréquences (b.), p.60

S. Bruit, V SD = 0) mesuré pour l'´ echantillon LC2V N T 1 pour des tensions de grille

V. De and V. Sd, unités arbitraires) obtenue avec la matrice s définié equation (1.9) dans la limite de faible température et dans la situation symétrique dans les cas de deux canaux : (a.) parfaitement dégénérés : r L = 0, Conductance différentielle (en unité de 4e 2 h ) en fonction légèrement déphasés : ? L/R = ±1 et (c.) couplés : ? L/R = 0.2 . . . . . . . . . . . . . . . . . . . . . . 64

?. =. Bruit-en-excès, en fonction de la tension V SD, p.67

C. Et-bruit-(-s-)-pour and V. , 65V (bleu) et V G = 0.8V (rouge) en fonction de V SDàSDà T = 1.5K. Les courbes correspondent aux fits avec ?D = 0 pour les traits pleins et ?D = 0.2 pour la courbe en pontillé, p.68

T. Bruit-de-l-'´-echantillon, (V M = 0), en fonction de V M pour les tensions de grille V G = ?1, 4V (noir), V G = 0.54V (bleu) et V G = 1V (rouge), p.109

=. Température-de-bruit-(-?t-ef-f and . ??s, LR ) de l'´ echantillon T 5IIIN T 1 ` a T = 1.45K en fonction de V M pour les tensions de grille V G = ?1.4V (noir), V G = 0.54V (bleu) et V G = 1V (bleu) La courbe représente la fonction, mesure pour V G = 1V et pour V M ? [?100mV, 100mV ] . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

. Ce-qui-est-inférieur-au-résultat-présenté-dans-la-partie, 4) ou dans l'article [1], cela se présentant comme un meilleur ajustement de la conductance différentielle et du bruit. Cependant, cela ne change pour ainsi dire rien dans l'´ etude de ?S en fonction de ?I, c'est pourquoi nous avons conservé dans le corps du texte 2D0 = 0, p.99