
HAL Id: tel-00527491
https://theses.hal.science/tel-00527491

Submitted on 19 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Component-based Modeling of Heterogeneous Real-time
Systems in BIP

Ananda Basu

To cite this version:
Ananda Basu. Component-based Modeling of Heterogeneous Real-time Systems in BIP. Computer
Science [cs]. Université Joseph-Fourier - Grenoble I, 2008. English. �NNT : �. �tel-00527491�

https://theses.hal.science/tel-00527491
https://hal.archives-ouvertes.fr

Université Joseph Fourier – Grenoble 1

T H È S E

pour obtenir le grade de

Docteur de l’Université Joseph Fourier

Spécialité : Informatique

préparée au laboratoire Verimag

dans le cadre de l’École Doctorale (Mathématiques et Informatique)

présentée et soutenue publiquement par

Ananda Shankar Basu

le 15 December 2008

Modélisation à base de Composants de Systèmes

Temps réel Hétérogènes en BIP

(Component-based Modeling of Heterogeneous

Real-time Systems in BIP)

JURY

Président Jean Bernard Stefani INRIA
Rapporteurs Janos Sztipanovits University of Vanderbuilt, USA

Mathai Joseph Tata Consultancy Services, India
Examinateurs Lothar Thiele, ETH, Zurich

Marc Pouzet LRI, Paris Sud
Marius Bozga, Verimag

Directeur de thése Joseph Sifakis, Verimag

2

Contents

Preface v

I Concepts and Methodology 1

1 Introduction 3

1.1 State of the Art . 4

1.2 Shortcomings . 6

1.2.1 Encompassing Heterogeneity 7

1.2.2 Achieving Constructivity 8

1.3 Key Issues of Component-Based Construction 9

1.4 Our Contribution . 10

1.5 Organization of the Report 11

2 Component Composition in BIP 13

2.1 Basic Ideas . 13

2.1.1 Incrementality . 16

2.1.2 Compositionality . 17

2.1.3 Composability . 17

2.2 Abstract Model of BIP . 17

2.2.1 The 3-Tier Architecture 18

2.2.2 Abstract Semantics . 18

2.3 Concrete Model of BIP . 23

2.3.1 Modeling Behavior . 23

2.3.2 Modeling Interactions 24

2.3.3 Modeling Priority . 30

2.4 Classification of Systems . 37

2.4.1 Timed Systems . 37

2.4.2 Synchronous Systems 45

2.5 The System Construction Space 47

2.6 Distributed Model of BIP . 49

2.6.1 Basic Concepts . 50

2.6.2 Partial State Semantics 53

i

ii CONTENTS

2.6.3 Comparing Global and Partial State Semantics 54

2.6.4 Partial State Semantics with Oracles 55

II Implementation: Language and Tool-chain 59

3 The BIP Language 61

3.1 Basic Language Elements . 62

3.2 Modeling Atoms . 63

3.2.1 Port Type . 63

3.2.2 Atomic Type . 63

3.3 Modeling Connectors . 67

3.3.1 Connector Type . 67

3.4 Modeling Compounds . 70

3.4.1 Compound Type . 70

3.5 Modeling Priority . 72

3.6 Modeling Timed Systems: Timed Guards 73

3.7 Arrays . 74

3.8 Package and System . 75

3.9 Expression and Statement . 77

4 The BIP Tool-Chain 79

4.1 Overview of the Tool-Chain 79

4.2 The Frontend . 80

4.2.1 BIP Meta Model . 81

4.2.2 Code Generator . 82

4.3 The Backend . 82

4.3.1 Centralized Enumerative Engine 83

4.3.2 Centralized Symbolic Engine 85

4.3.3 Distributed engine . 92

III Applications 101

5 Case Studies 103

5.1 Modeling Mixed HW/SW Systems 103

5.1.1 Modeling and Verification of Networked Systems – A
Case Study on TinyOS-based Networks 103

5.2 Software Componentization 115

5.2.1 MPEG encoder . 115

CONTENTS iii

IV Conclusions and Perspectives 121

6 Conclusion 123
6.1 Objectives of the thesis . 123
6.2 Tasks Accomplished . 124
6.3 Future Work . 125

6.3.1 Language Factory . 125
6.3.2 Implementation for real platforms 126

BIP Grammar 129

BIP Meta Model 133

iv CONTENTS

Preface

“Saraswati Mahabhaage Vidye Kamalalochane Vishwaroope Vishaalaakshi
Vidyam dehi namosthuthe” (O, the great Goddess Saraswati, thou shower
us with all the powers and glories of all knowledge that exist).

v

vi CONTENTS

Part I

Concepts and Methodology

1

Chapter 1

Introduction

A central idea in systems engineering is that complex systems are built
by assembling components. Components are building blocks, and the con-
cept of component-based modeling is common to all engineering disciplines.
Components are usually characterized by abstractions that ignore imple-
mentation details and describe properties relevant to their composition, e,g.,
transfer functions, interfaces. It is possible to get larger components by ”glu-
ing” together simpler ones. Gluing or composition can be formalized as an
operation that takes in components and their integration constraints. From
these, it provides a description of a new, more complex composite compo-
nent.

System designers deal with a large variety of components, each having
different characteristics, from a large variety of viewpoints, each highlight-
ing different dimensions of a system. A central problem is the meaning-
ful composition of heterogeneous components to ensure their correct inter-
operation [HS06].

One fundamental source of heterogeneity is the composition of subsys-
tems with different execution and interaction semantics. At one extreme of
the semantic spectrum are fully synchronized components, which proceed
in lockstep with a global clock and interact in atomic transactions. Such a
tight coupling of components is the standard model for most synthesizable
hardware and for synchronous real-time software. At the other extreme
are completely asynchronous components, which proceed at independent
speeds and interact non-atomically. Such a loose coupling of components
is the standard model for most multi-threaded software. Between the two
extremes, a variety of intermediate and hybrid models can be defined (e.g.,
globally-asynchronous locally-synchronous models).

Another fundamental source of heterogeneity is the use of models that
represent a system at varying degrees of detail and are related to each other
in an abstraction (or equivalently, refinement) hierarchy. A key abstraction
in system design is the one relating application software to its implemen-

3

4 CHAPTER 1. INTRODUCTION

tation on a given platform. Application software is largely untimed, in the
sense that it abstracts away from physical time. The application code run-
ning on a given platform, however, is a dynamic system that can be modeled
as a timed or hybrid automaton [ACH+95]. The runtime state includes not
only the variables of the application software, but also all variables that
are needed to characterize its dynamic behavior, such as time variables and
other quantities used to model resources. We need tractable theories to re-
late component-based models at application and implementation levels. In
particular, such theories must provide means for preserving, in the imple-
mentation, all essential properties of the application software.

Unified frameworks encompassing heterogeneity in systems design have
been developed through tools like Ptolemy [EJL+03] and Metropolis [BWH+03].
Other modeling paradigms for unifying interaction in heterogeneous systems
have been proposed in [BGK+06, Arb05]. Nevertheless, in these works uni-
fication is achieved by reduction to a common low-level semantic model.
Interaction mechanisms and their properties are not studied independently
of behavior. We need a framework which is not just a disjoint union of
sub-models, but one which preserves properties during model composition
and supports meaningful analysis and transformations across heterogeneous
model boundaries.

1.1 State of the Art

In this section, we provide a brief description of the current state of the
art of component-based technology. We analyze the existing technology for
different domains encompassing hardware, software and middleware. We
see that component-based engineering is widely used in VLSI circuit de-
sign methodologies, and is supported by a large number of tools. Software
component-based techniques have seen significant development, especially
through the use of object technologies supported by languages such as C++,
Java, and standards such as UML and CORBA. However, these techniques
have not yet achieved the same level of maturity as has been the case for
hardware. There exists a large body of literature dealing with components
and their use for different purposes and in different context.

The following deal, one way or another, with issues related to component-
based engineering:

• Software Design Description Languages [GS04, BFLL04], and Archi-
tecture Description Languages focusing on non-functional aspects [VPL99,
AVCL02].

• System modeling languages such as UML [Sel04], as well as languages
and notations specific to tools such as Simulink/Stateflow, SystemC

1.1. STATE OF THE ART 5

[RHG+01], Statecharts, Metropolis [BWH+03], Ptolemy [Lee03, BHLM02,
EJL+03], IF-toolset [BGO+04] and Prometheus tool [Gößl01].

The component framework proposed in this thesis extends and improves the
ideas of the IF-toolset and Prometheus tool.

The IF toolset [BGO+04], developed at Verimag, is one amongst the
well known platforms for component modeling and validation. The IF
toolset uses techniques such as partial order reduction and on-the-fly model-
checking to explore the state space of the IF specification, giving access at
the semantic level, to the corresponding labeled transition system (LTS).
The latter can be analyzed using the tool suite Cadp [JHA+96], including
the minimization and comparison tool Aldebaran based on bisimulation,
and the alternating-free µ-calculus model-checker Evaluator.

The Prometheus tool [Gößl01], a prototype of a compositional model-
ing tool for real-time systems, was also developed at Verimag. It is based
on priority functions as a model for coordination between processes. It also
provides a high-level modeling language for specifying real-time processes
as well as a scheduler. The language is sufficiently general to specify most
frequently used scheduling policies. The possibility of defining and instanti-
ating scheduler templates allow to establish a library of schedulers. Process
templates simplify the specification of multiple occurrences of a process type
with the same untimed transition structure, but different timing constraints.
It uses IF as an intermediate format for timed asynchronous systems and
integrates tools operating on different levels of abstraction.

Other developments in component-based modeling and programming
technology are:

• Component models based on classical concepts of Component-Based
Software Engineering (CBSE) like FRACTAL [Fra] and its implemen-
tations, e.g., THINK [FSLM02].

• Coordination language extension of programming languages such as
Linda, Javaspaces, TSpaces, Concurrent Fortran, nesC [GLvB+03] and
Polyphonic C♯ [BCF02].

• Middleware standards such as IDL, Corba, Javabeans, .NET, RMI.

• Software development environments such as PCTE. SWbus, Softbench,
Eclipse.

• Theoretical frameworks based on process algebras e.g., the Pi-Calculus
[Mil98] or based on automata e.g., [RC03].

There is a difference between the notion of component in software en-
gineering and the notion of component in hardware engineering. In the
former, communication between the components are point to point, by func-
tion calls. Conventional function calls are blocking, in the sense that the

6 CHAPTER 1. INTRODUCTION

caller makes no progress until the callee completes. In addition, languages
like NesC allows joint function calls, and Polyphonic C♯ offers declaration of
asynchronous methods and synchronization patterns, allowing two or more
methods to synchronize. However, in software models, the interconnect be-
tween the components is not always easy to determine due to polymorphism.
The execution of the behavior of the components is made in the context of
the threads, and components do not have any proper activity. The inabil-
ity to statically determine the component interconnections and the thread
module of execution leads to reduced analyzability of software models.

In hardware models, components are concurrent, have their own activ-
ity, and communication is through dedicated channels. The execution is
inherently synchronous.

One of the requirements is to have a platform that encompasses the
heterogeneous features of both paradigms, with clear separation between
component behavior and interconnect.

1.2 Shortcomings

There are different requirements for a component-based construction method-
ology. Firstly, it has to be founded on rigorous semantics and provide con-
cepts supporting separation of concerns, e.g., decoupling behavior from in-
teraction. This is particularly absent in the case of modeling, as well as for
middleware and software development standards, like CORBA. They use
ad hoc mechanisms for building systems from components and offer syntax
level concepts only.

Secondly, it needs to encompass heterogeneous descriptions, as most of
the platforms and languages previously mentioned, support specific inter-
action mechanisms and computation models. For instance, software design
frameworks are based on interaction by method call and do not allow direct
modeling of atomic interaction mechanisms. On the contrary, other frame-
works such as SystemC and Matlab/Simulink have built in mechanisms for
synchronous execution, and are not adequate for describing asynchronous
systems.

Thirdly, it also needs to encompass the description of timing and resource
management, which are essential for non functional properties. Standards
such as UML and AADL offer only syntactic sugar for time and scheduling
policies. The lack of adequate semantic frameworks does not allow checking
for inconsistency in timing requirements, or in the meaningful composition
of scheduling policies.

And finally, a component-based construction framework should consider
architectures as first class entities. The existing theoretical frameworks are
too low level, since they only emphasize on behavioral aspects.

To meet the above requirements, we need component frameworks encom-

1.2. SHORTCOMINGS 7

passing heterogeneity and allowing constructivity along the design process.
We explain these concepts below.

1.2.1 Encompassing Heterogeneity

Heterogeneity is the property of systems built from components with differ-
ent characteristics. Heterogeneity has several sources and manifestations,
and the existing body of knowledge is largely fragmented into unrelated
models and corresponding results.

System designers deal with a large variety of components, each having
different characteristics. Two central problems are the meaningful compo-
sition of heterogeneous components to ensure their correct inter-operation,
and the meaningful refinement and integration of heterogeneous viewpoints
during the design process. For this, we need semantic frameworks encom-
passing heterogeneous composition. Superficial classifications may distin-
guish between hardware and software components, or between continuous-
time (analog) and discrete-time (digital) components, but heterogeneity has
two more fundamental sources: the composition of subsystems with differ-
ent execution and interaction semantics; and the abstract view of a system
from different perspectives.

Heterogeneity of Interaction Interactions are combinations of actions
performed by system components in order to achieve a desired global be-
havior. Interactions can be atomic or non-atomic. For atomic interactions,
the state change induced in the participating components cannot be al-
tered through interference with other interactions. As a rule, synchronous
programming languages and hardware description languages use atomic in-
teractions. By contrast, languages with buffered communication (e.g., SDL)
and multi-threaded languages (e.g., Java) generally use non-atomic interac-
tions.

Both atomic and non atomic interaction may involve strong or weak
synchronization. Strongly synchronizing interactions can occur only if all
participating components agree (e.g., CSP rendezvous). Weakly synchro-
nizing interactions are asymmetric; they require only the participation of
an initiating action, which may or may not synchronize with other actions
(e.g., outputs in Esterel [BC85]).

Heterogeneity in interactions may also arise due to the different num-
ber of participants. Interactions can be binary (point to point) or n-ary for
n ≥ 3. Interactions in CCS and SDL, function calls in most programing lan-
guages and message passing through channels are typical examples of binary
interactions, while some high level modeling languages/platforms allow for
n-ary synchronizations,e.g., Polyphonic C♯ [BCF02]. The implementation
of n-ary interactions by using binary interaction primitives is a non-trivial
problem.

8 CHAPTER 1. INTRODUCTION

Clearly, there exists no formalism supporting directly all these types of
interaction.

Heterogeneity of Execution Presently, there is a lack of formalisms
encompassing both synchronous and asynchronous execution. Synchronous
execution is typically used in hardware, in synchronous programming lan-
guages, and in time-triggered systems. It considers that a system’s execution
is a sequence of global steps. It assumes synchrony, meaning that the envi-
ronment does not change during a step, or equivalently, that the system is
infinitely faster than its environment. In each execution step, all the system
components contribute by executing some quantum of computation. The
synchronous execution paradigm, therefore, has a built in strong assump-
tion of fairness: in each step all components can move forward.

Asynchronous execution, by contrast, does not use any notion of global
computation step. It is adopted in most distributed systems description
languages such as SDL [IT00] and UML [Sel04], and in multi threaded pro-
gramming languages such as ADA [ADA] and Java [Jav]. The lack of built
in mechanisms for sharing computation between components can be com-
pensated through scheduling mechanisms, e.g., priorities.

Heterogeneity of Abstraction System development involves the use
of languages, models and physical implementations, representing a system
and its components at different abstraction levels. For heterogeneity, a key
abstraction is the one relating an application software to its implementation
on a given platform.

Application software is untimed in the sense that it abstracts out phys-
ical time. The only references to physical time are time parameters of real
time statements, such as timeouts and watchdogs. The expiration of watch-
dogs or timeouts is treated at the semantic level as an external event. The
application code running on a given platform, however, is a dynamic system
that can be modeled as a timed or hybrid automaton [Hen96]. The runtime
state includes not only the variables of the application software, but also
all variables that are needed to characterize its dynamic behavior such as
time, quantity of resources e.g., memory and power. We need abstractions
and theory relating application software to its implementations. In par-
ticular, such abstractions should guarantee the preservation of all essential
properties of the application software.

1.2.2 Achieving Constructivity

Constructivity is the possibility to build complex systems that meet given
requirements, from building blocks and glue components with known proper-
ties. Constructivity can be achieved by algorithms (compilation and synthe-
sis), and also by architectures and design disciplines. In principle, component-

1.3. KEY ISSUES OF COMPONENT-BASED CONSTRUCTION 9

based frameworks should allow inferring system properties from properties
of their structure. Currently, most of the existing validation techniques e.g,
model-checking, need the construction of global models. We need theory,
methods and tools for establishing, by construction, overall system correct-
ness from component properties.

For dealing with heterogeneous systems, we need results in two com-
plementary directions. First, we need construction methods for specific,
restricted application contexts characterized by particular types of require-
ments and constraints, and/or by particular types of components and com-
position mechanisms. Clearly, hardware synthesis techniques, software com-
pilation techniques, algorithms (e.g., for scheduling, mutual exclusion, clock
synchronization), architectures (such as time-triggered; publish-subscribe),
as well as protocols (e.g.,for multimedia synchronization) contribute solu-
tions for specific contexts.

Second, we need theories that allow the incremental combination of the
above results in a systematic process for system construction. Such theories
would be particularly useful for the integration of heterogeneous models,
because the objectives for individual subsystems are most efficiently accom-
plished within those models which most naturally capture each of these
subsystems. As explained in this section, we need theory allowing construc-
tivity and meeting the following requirements:

Incrementality This means that composite systems can be considered as
the composition of smaller parts. Incrementality is necessary for progressive
analysis and the application of compositionality rules.

Compositionality Compositionality rules allow inferring global system
properties from the local properties of the components. An example is in-
ferring global deadlock-freedom from the deadlock freedom of the individual
components.

Composability Composability rules guarantee that a component’s essen-
tial properties are not affected during the system construction process, i.e.,
even after gluing together the components, their essential individual proper-
ties are preserved. Composability means stability of component properties
across integration, e.g., establishing noninterference for two scheduling al-
gorithms used to manage two system resources.

1.3 Key Issues of Component-Based Construction

On exploring the current state of the art, and analyzing their shortcomings,
it becomes clear that a component-based framework needs the following:

10 CHAPTER 1. INTRODUCTION

• Rigorous and general basis for real-time system design and implemen-
tation.

• Concept of component and associated composition operators for in-
cremental description and correctness by construction.

• Upliftment from frameworks based on single composition operator to
those with families of composition operators.

• Enhanced expressiveness for modeling co-ordination mechanism such
as protocols, schedulers, buses.

• Concept for real-time architecture encompassing heterogeneous paradigms
and styles of computation e.g., synchronous vs. asynchronous execu-
tion; event driven vs. data driven computation; distributed vs. cen-
tralized execution.

• Automated support for component integration and generation of glue
code meeting given requirements.

1.4 Our Contribution

We present in this thesis, the BIP component framework. The name BIP
is derived from Behavior, Interaction and Priority, the three main founda-
tions of this framework. BIP serves for modeling heterogeneous real-time
components, and integrates results developed at Verimag over the past five
years.

Its main characteristics are the following:

• It supports a component construction methodology based on the the-
sis that components are obtained as the superposition of three layers.
The lower layer contains atomic components described by their behav-
ior. The intermediate layer includes a set of connectors describing the
interactions between transitions of the behavior. The upper layer is
a set of priority rules describing scheduling policies for interactions.
Layering implies a clear separation between behavior and structure
(connectors and priority rules).

• It uses a parameterized composition operator on components. The
product of two components consists in composing their corresponding
layers separately. Parameters are used to define new interactions as
well as new priority rules between the composed components [GS05,
Sif05]. The use of such a composition operator allows incremental
construction. That is, any compound component can be obtained by
successive composition of its constituents. This is a generalization of
the associativity/commutativity property for composition operators
whose parameters depend on the order of composition.

1.5. ORGANIZATION OF THE REPORT 11

• It encompasses heterogeneity. It provides a powerful mechanism for
structuring interactions involving strong synchronization (rendezvous)
or weak synchronization (broadcast). Synchronous execution is char-
acterized as a combination of properties of the three layers. Finally,
timed components can be obtained from untimed components by ap-
plying a structure preserving transformation of the three layers.

• It allows considering the system construction process as a sequence of
transformations in a three-dimensional space: Behavior×Interaction×
Priority. A transformation is the result of the superposition of ele-
mentary transformations for each dimension. This provides a basis
for the study of property preserving transformations or transforma-
tions between subclasses of systems such as untimed/timed, asyn-
chronous/synchronous and event-triggered/data-triggered.

1.5 Organization of the Report

The document is split into four parts, the first presenting the Concepts
and Methodologies (Chapter 2), the second describing the Implementations
(Chapter 3 and 4), the third presenting Case studies applying the method-
ology (Chapter 5), and the last part (Chapter 6) drawing the conclusions.

Chapter 2 presents the basic notions about components, their composi-
tion using glues, and the necessary properties for component-based construc-
tion of systems. It introduces the BIP component framework, describing its
architecture and abstract semantics. A concrete model for BIP is then pre-
sented. We then provide a classification of systems, showing heterogeneous
domains that can be modeled in the BIP framework. Later a distributed
semantics for BIP is presented, relevant for its implementation on real dis-
tributed platforms.

The second part of this thesis, which describes the implementation, is
presented in two chapters. Chapter 3 introduces the language developed
for modeling systems in the BIP methodology. It presents in detail, the
language constructs, illustrated with abstract grammar and lucid examples.

Chapter 4 presents the tool-chain that we have developed in Verimag,
supporting the presented methodology. It also describes the other tools
that can be associated with our tool-chain for specific purposes. It provides
vivid description for different types of implementations, e.g., centralized
and distributed, with benchmarks for comparing performance of different
implementations.

In the third part (Chapter 5), we present two real applications that were
modeled and executed in BIP. We describe modeling of two categories of
systems. The first is a mixed HW/SW system, where we model and analyze
wireless sensor network systems, with motes running NesC applications on
TinyOS. The second is an example of componentization techniques for big

12 CHAPTER 1. INTRODUCTION

software systems. We model an MPEG4 encoder and analyze the pros and
cons of componentization.

We conclude the document in Chapter 6, with an overview of the work
and its future perspectives.

Chapter 2

Component Composition in
BIP

We describe in this chapter, the basic notions about components and their
composition. We introduce the BIP component framework and its formal se-
mantics. We present an abstract model, followed by a concrete model of the
methodology, with examples of modeling simple systems. We then present
a distributed semantics of BIP. We give a classification of systems that can
be modeled in BIP with examples of timed and synchronous systems. We
conclude the chapter with a discussion on the system modeling space.

2.1 Basic Ideas

A component is a behavioral entity, having a well defined interface. It de-
notes an executable description whose runs can be modeled as sequences of
actions. Tasks, processes, threads, functions, blocks of code can be consid-
ered as components.

A basic component, representing only behavior is called an atomic com-
ponent. We denote atomic components graphically as boxes containing be-
havior inside. Behavior is represented by a labeled transition system (LTS).

Definition 2.1.1 (Labeled Transition System) A labeled transition sys-
tem is a triple B = (Q,P,→), where Q is a set of states, P is a set of actions,
and →⊆ Q × P × Q is a set of transitions, each labeled by an action.

For any pair of states q, q′ ∈ Q and an action p ∈ P , we write q
p
→ q′, iff

(q, p, q′) ∈→. If such q′ does not exist, we write q 6
p
→.

A set of atomic components can be glued together producing a larger
component, called a compound component. A glue combines a set of com-
ponents. It is a set of operators mapping tuples of behavior into behavior.

13

14 CHAPTER 2. COMPONENT COMPOSITION IN BIP

It restricts the combined behavior of the components by memoryless co-
ordination in order to meet some global properties. Given B1, B2, . . . Bn a
set of atomic components, their composition with the glue GL produces a
transformed behavior B, as shown in figure 2.1, where

B = GL(B1, B2, . . . Bn)

The glue is a separate layer, composing the underlying layer of behaviors.
The behavior B is the product of the behaviors of B1, B2, . . . Bn, with some
restrictions implied by the meaning of the glue. The new component B can
be further used for composition with other components.

B1 Bn

B
B2 . . .

GL

Figure 2.1: Component Composition.

Component-based design consists in building a component satisfying a
given property from:

• a set of components B1, B2, . . . Bn, described by their behavior, and

• a set of glue operators GL = {gl1, gl2, . . . gln}

The meaning of a glue is defined by operational semantics. We pro-
vide below a definition for glue based on Structural Operational Semantic
(SOS) [Plo81, AFV01] rules. The definition is adopted from [BS08b].

Definition 2.1.2 (Glue Operator) A glue operator is any behavior trans-
former defined by derivation rules of the form

{qi
ai→i q′i}i∈I {qk 6

ak→k}k∈K

(q1, . . . , qn)
a
→ (q′1, . . . , q

′
n)

where

• I,K ⊆ {1, . . . n}

• I 6= ∅, I ∩ K = ∅

• a =
⋃

i∈I ai is a transition of the composed component, and

• q′i = qi for i 6∈ I.

Premises of the form q
a
→ q′ are called positive, and those of the form q 6

a
→

are called negative. That is:

2.1. BASIC IDEAS 15

1. a derivation rule has at most one positive premise for each component.

2. there is at least one positive premise.

3. a label can appear either in positive or in negative premises, but not
in both, i.e., no contradictory premises.

A glue is a set of glue operators. The definition of a glue operator considers
the transition of a compound component (→) as a result of the transitions
of its constituents (→i).

Notice that glue is defined by stratified rules. The transition relations
involved in the premises (→i) and the transition relation of the conclusion
(→) are different. For example, non-deterministic choice and sequential
composition are not glue operators.

The composition of a set of behaviors by a glue gives a restricted be-
havior, contained in the product of their behaviors. This is illustrated with
an example (figure 2.2). We have two behaviors, B1 and B2, specified as
labeled transition systems.

a c

ac

bc

a

b

b

c

c

b

a
c

B2B1

GL

Figure 2.2: Composition with Glue.

The glue GL is the set of the following operators

q1
a
→1 q′1

q1q2
a
→ q′1q2

q1
a
→1 q′1 q2

c
→2 q′2

q1q2
ac
→ q′1q

′
2

q1
b
→1 q′1 q2 6

c
→2

q1q2
b
→ q′1q2

The composed behavior obtained after the application of the glue GL is
shown in the right. It shows the product of the two behaviors, where the only
allowed transitions are the ones with a solid arrow. The dotted transitions
are not legal and shows the maximal behavior allowed by the glues.

Our goal is to provide a methodology for component description and
integration in a meaningful manner. The methodology must be incremental,
i.e., components can be composed through a meaningful hierarchy of glues.
For example, as shown in figure 2.3, components B1 and B′

1 are composed
with glue GL1, and the resulting component is integrated with B2 by GL12

to produce the global system.
Constructivity is expressed by the following requirements:

16 CHAPTER 2. COMPONENT COMPOSITION IN BIP

B2

B1 B′

1

GL1

GL12

Figure 2.3: Components and Glues.

2.1.1 Incrementality

Incrementality of construction means the following requirements:

2.1.1.1 Decomposition

An n-ary glue operator could be obtained by successive application of a
binary glue operator, as shown on figure 2.4. In general, we should be able
to write

GL (B1, . . . , Bn) = GL1 (B1,GL2 (B2, . . . , Bn))

That is, any compound component can be obtained by successive composi-
tion of its atomic components.

B1 B2 Bn

B1

BnB2.

GL GL2

GL1

Figure 2.4: Decomposition.

2.1.1.2 Flattening

It is the dual of the decomposition operation. Any given structure can be
flattened to a component which is the composition of its atomic components
by using a single glue operator.

GL1 (B1,GL2 (B2, . . .)) = GL (B1, . . . , Bn)

An example is shown in figure 2.5.

The combination of decomposition and flattening leads to incrementality.
By the above two mechanisms, a given system of behavior can be partitioned
into any required structure.

2.2. ABSTRACT MODEL OF BIP 17

B1 B2

B3 B4

B2B1 B3 B4

GL2

GL1 GL

Figure 2.5: Flattening.

2.1.2 Compositionality

Compositionality means inferring global system properties from the prop-
erties of the individual system. It can be formally defined by rules of the
form

{Bi |= fi}
n
i=1

GL(B1, . . . Bn) |= G̃L(f1, . . . fn)

where fi is a property of the component Bi; GL is a glue composing the
components; and G̃L is an operator on properties depending on the glue
GL.

2.1.3 Composability

Composability guarantees that during the component construction process,
all essential properties of subcomponents are preserved. It is defined by the
following rule.

{GLi{Bj}j⊆[1,n] |= fi}
m
i=1

GL(B1, . . . Bn) |=
m∧

i=1

fi

where GLi is a glue satisfying a property fi on the set of components
{Bj}j∈[1,n]; and GL =

⊙m
i=1 GLi is a composition of the glues.

2.2 Abstract Model of BIP

The BIP component framework presents the composition of behaviors using
two kinds of glue, interactions and priorities. It is shown in [BS08b] that
these encompass the universal glue presented in definition 2.1.2. The frame-
work is based on a 3-tier architecture, the layers being Behavior, Interaction
and Priority.It defines a mechanism for composition of behavior using the
interaction and priority glues.

18 CHAPTER 2. COMPONENT COMPOSITION IN BIP

2.2.1 The 3-Tier Architecture

The BIP component framework uses an abstract layered model of compo-
nents. A component consist of the superposition of three layers: behavior,
interaction and priority, as shown in figure 2.6, where:

1. Behavior describes the dynamic behavior of a component. It consists
of a set of labeled transition system. Each transition has a port, a
guard and a function. Guards are conditions depending on local state.
Ports characterize the component’s ability to interact with a given
environment.

2. Interactions describe architectural constraints on behavior. They are
joint state changes of composed components used to coordinate their
execution.

3. Priorities provide a mechanism for restricting the global behavior of
the layers underneath by filtering amongst possible interactions. They
help reducing non-determinism in the execution of the interactions
between the components. They are useful for enforcing state invariant
properties such as mutual exclusion and scheduling policies.

The interaction and priority layers are the glue operators for BIP. In the fol-

B E H A V I O R

Interactions (collaborations)

Priorities (conflict resolution)

Figure 2.6: BIP Architecture.

lowing section, we give a formal description of each of the layers, introduced
here.

2.2.2 Abstract Semantics

We provide a formalization of the BIP component model focusing on the
individual layers of behavior, interaction and priority glue, and provide the
operational semantics for composition of behavior with respect to interaction
and priority layers.

Definition 2.2.1 (Behavior) A behavior B is a labeled transition system
represented by a triple (Q,P,→), where Q is a set of control states, P is a
set of communication ports, →⊆ Q × P × Q is a set of transitions, each
labeled by a port.

2.2. ABSTRACT MODEL OF BIP 19

For any pair of control states q, q′ ∈ Q and a port p ∈ P , we write q
p
→ q′, iff

(q, p, q′) ∈→. When the port is irrelevant, we simply write q → q′. Similarly,

q
p
→ means that there exists q′ ∈ Q such that q

p
→ q′.

A port p of B is enabled iff B is at a state q and q
p
→. Otherwise, p is

disabled.

We compose a set of n atomic components {Bi = (Qi, Pi,→i)}
n
i=1, by

using interactions and priorities. We assume that their respective sets of
ports are pairwise disjoint, i.e., for any two i 6= j from 1..n we have Pi∩Pj =
∅. We define the set P =

⋃n
i=1 Pi of all ports in the system.

Definition 2.2.2 (Interaction) For a set of ports P , an interaction is a
non-empty subset a ⊆ P of ports.

When we write a = {pi}i∈I , I ∈ 1 . . . n, we suppose that for each i ∈ I,
pi ∈ Pi. The interaction model is specified by a set of interactions γ ⊆ 2P .

Interactions of γ can be enabled and disabled. An interaction a is enabled
iff, for all i ∈ [1, n], the port a ∩ Pi is enabled in Bi. It is disabled if, there
is an i ∈ [1, n], the port a ∩ Pi is disabled in Bi.

The enabledness of an interaction does not necessarily entails its execu-
tion, as it might be inhibited by another enabled interaction, in the priority
model. We now provide the operational semantics for the composition of a
system of behavior with respect to an interaction model. The composition is
derived from the universal glue (2.1.2), consisting of only positive premises.

Definition 2.2.3 (Composition for Interactions) The composition of a
set of components {Bi}

n
i=1, parameterized by a set of interactions γ ⊆ 2P ,

is a transition system B = (Q, γ,→γ), where Q =
⊗n

i=1 Qi and →γ is the
least set of transitions defined by the rule

a = {pi}i∈I ∈ γ {qi
pi→i q′i}i∈I q′i = qi, ∀i 6∈ I

(q1, . . . , qn)
a
→γ (q′1, . . . , q

′
n)

We write B = γ(B1, . . . , Bn). The inference rule says that the obtained
behavior γ(B1, . . . , Bn) can execute a transition a ∈ γ, iff for each i ∈ I, the
action a ∩ Pi is enabled in Bi; the states of the transition system, that do
not participate in the interaction a remain unchanged.

Observe that, it is possible for a composed behavior to further commu-
nicate on the ports initially provided by its constituent behaviors.

Notice that interactions are glue operators with positive premises only.
Hence, in a behavior, more than one interactions can be enabled at the
same time, introducing a degree of non-determinism. This can be restricted
by priorities, which constitute the third layer in the proposed 3-tier BIP
architecture.

20 CHAPTER 2. COMPONENT COMPOSITION IN BIP

Priorities are a powerful tool for restricting nondeterminism, and al-
lows straightforward modeling of urgency and scheduling policies for real
time systems. For example, execution constraints like run to completion
and synchronous execution can be modeled by priority models on threads.
Moreover, as the priority model is dynamic, it can advantageously overcome
the static restrictions of other execution models, like process algebra.

A priority model is a memoryless controller. It filters the possible in-
teractions from the interaction model, based on the current global state
of the system. We provide below a definition of priority, followed by the
composition of behavior using the priority glue.

Definition 2.2.4 (Priority) A priority is a relation ≺⊆ γ×Q×γ, where γ
is the set of interactions, and Q is the global set of states. We write a ≺q a′

for (a, q, a′) ∈≺. Furthermore, we require that for all q ∈ Q, ≺q is a strict
partial order on γ. a ≺q a′ means that interaction a has less priority than
a′ at state q.

A priority model π is a set of priorities. The composition using the priority
glue is derived from the universal glue definition(2.1.2).

Definition 2.2.5 (Restriction w.r.t Priority Model) Given a behavior
B = (Q,P,→γ), its restriction by the priority model π is the behavior
B′ = (Q,P,→π) defined by the rule

q
a
→γ q′ {q 6

a′

→γ}a≺qa′

q
a
→π q′

Notice that priorities are glue operators with only one positive premise and
an arbitrary number of negative premises. The interaction and the priority
glue encompass the universal glue.

Given a set of components B1, . . . , Bn, an interaction model γ, and a
priority model π, the compound component is obtained by application of γ
and π, i.e., πγ(B). An interaction is enabled in πγ(B) only if it is enabled
in γ and maximal according to π among the enabled interactions in B.

=‖

π1

γ1

π2

γ2

π1 ⊕ π2 ⊕ π12

γ1 ⊕ γ2 ⊕ γ12

Figure 2.7: Composition.

Given two components π1γ1(B1) and π2γ2(B2), we can define a binary
composition operator ‖ parameterized by the interaction model γ12, and
priority model π12 (figure 2.7). The layers of the composed component are

2.2. ABSTRACT MODEL OF BIP 21

obtained by composing separately the individual layers of the composed
components, and with the corresponding parameters of the composition op-
erator. That is,

π1γ1(B1)‖π2γ2(B2) = π1 ⊕ π2 ⊕ π12(γ1 ∪ γ2 ∪ γ12(B1, B2))

The meaning of the priority composition operator ⊕ will be defined later in
section 2.3.3.

We now provide simple examples, illustrating the layered architecture of
BIP and demonstrating component composition through the use of interac-
tion and priority layers.

Example 2.2.6 (Rendezvous) Figure 2.8(a) shows three components, a
sender (S) and two receivers (R1, R2). The sender has a port s for sending
messages, and each receiver has a port ri (i = 1, 2) for receiving messages.
Additionally, the sender has a port i and the receivers have ports ik (k =
1, 2) respectively, representing independent (internal) events. Rendezvous is
modeled by specifying the interaction sr1r2 in the interaction model of the
composed system. This interaction synchronizes the s event of the sender
with the ri (i = 1, 2) events of the receivers, and hence a rendezvous. Note
that the interaction model also contains the independent events of the sender
and receivers. No priorities are necessary, hence the priority model is empty.

s i r1 i1

s i2i1i

r2 i2

isr1r2 i1 i2

r1 r2

S R1 R2

γ : sr1r2, i, i1, i2

(b)(a)

π : ∅
i i2

i1

i i2i2 i i1i1

i2 ii1

sr1r2

Figure 2.8: Rendezvous.

The equivalent behavior of the composition is shown in figure 2.8(b).

Example 2.2.7 (Broadcast) Figure 2.9(a) models a broadcast from the
sender to the receivers. The interaction model contains the set of all in-
teractions which synchronizes the send event of the sender with the receive
event of the receivers, i.e., s, sr1, sr2, and sr1r2. However, amongst the
possible interactions, the one with the maximum number of receivers should
be selected in a broadcast. To ensure this selection policy, a priority model

22 CHAPTER 2. COMPONENT COMPOSITION IN BIP

is specified, describing the (static) rule that an interaction (xy) containing
another one (x) has higher priority over it.

i1 r2

r1 i1s i

is i2

i1isr1s

S R1 R2

r1

r2 i2

π : x ≺ xy

γ : s, sr1, sr2, sr1r2, i, i1, i2

i
i1

i1i1 i

sr2

sr1

i2

i2

s sr2

i2 i

sr1

s

i

s
i1i2

sr1r2

(a) (b)

i2sr1r2sr2

s

Figure 2.9: Broadcast.

The behavior after the composition with interaction and priority model is
shown in figure 2.9(b). The transitions inhibited by the priority model are
shown by dotted arrows.

Example 2.2.8 (Atomic Broadcast) Figure 2.10(a) models an atomic
broadcast. It is a specific type of a broadcast, where either all or none of the
receivers synchronize with the sender. The synchronizing interactions are s
and sr1r2. The priority model is required to enable the maximal interaction.
The composed behavior is presented in figure 2.10(b).

i1 r2 i2s i

s i i2i1

R1 R2S

r1

r2 i2r1 i1i

(b)(a)

s

π : x ≺ xy

γ : s, sr1r2, i, i1, i2

i i2
i1

i i2i2 i i1i1

sr1r2

s

s s

s
i1

ii2

sr1r2

Figure 2.10: Atomic Broadcast.

2.3. CONCRETE MODEL OF BIP 23

2.3 Concrete Model of BIP

2.3.1 Modeling Behavior

In the concrete model, an atomic component represents behavior B as a
transition system, extended with variables and functions, represented by
(X, P, S,→), where:

• P is a set of ports, P = {p1 . . . pn}.

• S is a set of control states S = {s1 . . . sk}. Control states denote places
at which the components await for synchronization.

• X is a set of variables used to store (local) data. Variables may be
associated to one or more ports. A variable associated to a port can
be modified as a result of an interaction involving that port.

• → is a set of transitions modeling computation steps of components.
Each transition is a tuple of the form (s1, p, gp, fp, s2), representing a

step from control state s1 to s2, denoted as s1
p,gp,fp
−→ s2 .

Here p is a port through which an interaction is sought, gp a pre-condition
for interaction through p, and fp is a computation step consisting of local
state transformations. gp, also known as the guard of the transition, is a
boolean condition on X. The transition can be executed if the guard is true.

The semantics of execution of a transition is an atomic sequence of two
micro-steps: 1) an interaction including p which involves synchronization
between components with possible exchange of data, followed by 2) an in-
ternal computation specified by the function fp on X. That is, if x is a
valuation of X after the interaction, then fp(x) is the new valuation when
the transition is completed.

Formally, the behavior is a labeled transition system with moves of the
form (s1, x)

α
→ (s2, x

′), where s1 is a control state of the automaton and x is
a valuation of its variables. The move (s1, x)

α
→ (s2, x

′) is possible if there
exists a transition (s1, p, gp, fp, s2), such that gp(x) = true. As a result of
the move, the set of variables are modified to x′ = fp(x).

in out

y = f(x)
x > 0

in
s1

s2

x out y

Figure 2.11: Component behavior

Figure 2.11 shows an atomic reactive component with two ports in, out,
control states s1, s2, and variables x, y. x and y are associated with the

24 CHAPTER 2. COMPONENT COMPOSITION IN BIP

ports in and out respectively. At s1, the transition labeled in is possible
if x > 0. When an interaction through in takes place, the variable x is
eventually modified and a new value for y is computed by the action f(x).
From control state s2, the transition labeled out can occur. The omission
of guard and function for this transition means that the associated guard is
true and the internal computation micro-step is empty.

2.3.2 Modeling Interactions

Composition operators allow to build a system as a set of components that
interact by respecting constraints of an interaction model. We propose a
means for structuring interactions by using connectors.

A Connector is a set of ports of components which can be involved in
an interaction. The number of interactions of a connector can grow ex-
ponentially to the number of ports. A connector is a macro notation for
representing sets of related interactions in a compact manner. Graphically,
connectors are represented as trees with ports at their leaves.

Based on the structure of interactions represented by connectors, they
are classified as Simple Connector and Structured Connector.

2.3.2.1 Simple Connector

A simple connector is defined by a set of ports. An interaction of a simple
connector is any non empty subset of its set of ports. For example, a simple
connector consisting of the ports p1, p2 and p3 has seven possible interac-
tions: p1, p2, p3, p1p2, p2p3, p1p3 and p1p2p3. Each non trivial interaction,
i.e., interaction with more than one port, represents a synchronization be-
tween transitions labeled with its ports. We use the term connector to mean
simple connectors.

Following results in [GS05], we introduce a typing mechanism for the
ports of a connector, in order to specify the feasible interactions of a con-
nector, and in particular to express the following two basic modes of syn-
chronization:

• Strong synchronization or rendezvous, when the only feasible interac-
tion of a connector is the maximal one, i.e., containing all the ports.

• Weak synchronization or broadcast, when feasible interactions are all
those containing a particular port which initiates the broadcast.

It is possible to represent any arbitrary interaction through a connector by
structured combination of the above two basic synchronization protocols.

To characterize these protocols, we associate types with ports: trigger
and synchron. A trigger is an active port, and can initiate an interaction
without synchronizing with other ports. It is represented graphically by a
triangle. A synchron port is passive, hence needs synchronization with other

2.3. CONCRETE MODEL OF BIP 25

ports, and is denoted by a circle. A feasible interaction of a connector is a
set of its ports such that either it contains some trigger, or it is maximal,
i.e., consisting of all the synchron ports. Example of sets of connectors and

(f)(e)

(b)(a)

(d)(c)

p1 p2

p1

p2

p3

p2p1

p2

p1p2

p1

p2p1

p1p2

p1p3

p2 p1 p3

p2p3p1p2

p1p2p3

Figure 2.12: Connectors and their interactions.

their feasible interactions are shown in figure 2.12. By convention, triangles
represent trigger and circles represent synchron ports. In the partially or-
dered set of interactions, the shaded nodes denote feasible interactions. In
(a), the connector consists of the ports p1 and p2, both are of type synchron.
In this connector, the only feasible interaction is p1p2, as shown in (b). It
represents a rendezvous, meaning that both actions are necessary for the
synchronization. In (c), the interaction between p1 and p2 is asymmetric as
p1 is a trigger and can occur alone, even if p2 is not possible. Nevertheless,
the occurrence of p2 requires the occurrence of p1. The feasible interactions
are p1 and p1p2, shown in (d). In (e), the interactions between p1, p2 and
p3 are also asymmetric. The interactions p1 can occur alone or synchronize
with either or both p2 and p3, as shown in (f).

Example 2.3.1 (Connectors) Figure 2.13(a) shows an example of graph-
ical representation of connectors in BIP. The corresponding layered notation
is shown in figure 2.13(b). Connector C1 contains the ports tick1, tick2 and
tick3. It assigns to each port the attribute synchron. Thus C1 represents
the interaction describing a rendezvous between the ports tick1, tick2 and
tick3. The only possible interaction in this case is tick1tick2tick3.

The other connector C2 consists of the ports out, in1 and in2, where the
port out is assigned the attribute type trigger. The other ports are synchrons.
C2 describes a broadcast from the port out to the ports in1 and in2. The
set of possible interactions are out, outin1, outin2, and outin1in2 (i.e., any

26 CHAPTER 2. COMPONENT COMPOSITION IN BIP

interaction containing the trigger port out). The complete set of interactions
are included in the interaction model of figure 2.13(b).

C2

(a) (b)

tick2

in1

tick1

out

tick3

in2
tick2

in1

tick1

out

tick3

in2

C1
γ : tick1tick2tick3, out,

outin1, outin2, outin1in2

Figure 2.13: Connector.

2.3.2.2 Structured Connector

So far we have seen a notation for connectors, which are essentially flat,
i.e., having types (triggers and synchrons) associated to the individual ports
only. However, connectors sometimes need to be structured, i.e., having
types associated to groups of ports. This is necessary to represent some
interactions, which otherwise cannot be represented by a flat connector.
Consider for example the atomic broadcast (Example 2.2.8), where we need
to restrict the feasible interactions to s and sr1r2r3. It is impossible to
represent this set of interactions through a simple connector as presented in
the previous section.

The representation of structured connectors require connectors to be
treated as expressions with typing and other operations on groups of con-
nectors. This led to the formalization of the algebra of connectors defined
in [BS07b], as described below.

Algebra of Connectors

The Algebra of Connectors is a compact notation for algebraic representa-
tion and manipulation of connectors. The Algebra of Connectors AC(P),
introduced in [BS07b], formalizes the concept of connectors supported by
the BIP component model. It extends the notion of connectors to terms
built from a set of ports by using a n-ary fusion operator and a unary typ-
ing operator for triggers and synchrons. Given two connectors involving sets
of ports s1 and s2, it is possible to obtain by fusion a new connector involv-
ing the set of ports s1

⋃
s2, as shown in figure 2.14(a). It is also possible to

structure connectors hierarchically, as shown in figure 2.14(b) where terms
p1p2 and p3p4 are typed and then fused to obtains a new connector. The
semantics of the algebra of connectors associates with a connector (a term)

2.3. CONCRETE MODEL OF BIP 27

(a) (b)

p1 p2 p3 p4

p1 p2 p3 p4{ {

s1 s2

Figure 2.14: Fusion (a) and structuring (b) of connectors.

the set of its feasible interactions. The algebra and its laws can be used to
represent and handle symbolically, complex interaction patterns.

The Algebra of Connectors, as presented in [BS07b], has two operations:
union and fusion. Union operation allows to combine several connectors
into a single expression. Fusion represents synchronization of connectors by
merging their interactions. We briefly introduce the syntax and semantics
of the algebra of connectors as follows.

Syntax

Let P be a set of ports, such that 0, 1 6∈ P . The syntax of AC(P) is defined
by

s ::= [0] | [1] | [p] | [x] (synchrons)

t ::= [0]′ | [1]′ | [p]′ | [x]′ (triggers)

x ::= s | t | x · x | (x) ,

(2.1)

for p ∈ P , and where · is a binary operator called fusion, and [·] and [·]′ are
unary typing operators.

Fusion is used to merge two connectors, whereas typing is used to form
hierarchically structured connectors: [·]′ defines triggers (which can initiate
an interaction), and [·] defines synchrons (which need synchronization with
other ports). In order to simplify notation, we often omit brackets on 0, 1,
and ports p ∈ P , as well as ‘·’ for the fusion operator.

Semantics

The semantics of AC(P) is given in terms of sets of interactions. Intuitively
it consists in recursively applying the following rule: For a connector of the
form [x1]

′ . . . [xn]′[y1] . . . [ym], a possible interaction is a union of interac-
tions from the sub-connectors x1, . . . , xn, y1, . . . , ym, comprising an interac-
tion from at least one of the triggers x1, . . . , xn. When there are no triggers
(n = 0), an interaction from every synchron sub-connector y1, . . . , ym is re-
quired to form an interaction of the complete connector. A formal definition

28 CHAPTER 2. COMPONENT COMPOSITION IN BIP

is given by the function ‖ · ‖ : AC(P) → 22P
, defined by

‖0‖ = ∅ , ‖1‖ = {∅} , ‖p‖ =
{
{p}

}
,

∥∥∥∥∥

n∏

i=1

[xi]

∥∥∥∥∥ =

{
n⋃

i=1

ai

∣∣∣∣∣ ai ∈ ‖xi‖

}
,

(2.2)
∥∥∥∥∥∥

n∏

i=1

[xi]
′

m∏

j=1

[yj]

∥∥∥∥∥∥
=

⋃

i∈[1,n];J,K

∥∥∥∥∥∥
[xi]

∏

j∈J

[xj]
∏

k∈K

[yk]

∥∥∥∥∥∥
, (2.3)

where for p ∈ P , x1, . . . , xn, y1, . . . , ym ∈ AC(P), and the union in 2.3 is
taken over all (potentially empty) subsets J ⊆ [1, n] and K ⊆ [1,m].

AC(P) allows compact and intuitive representation of interactions, and
captures explicitly the difference between broadcast and rendezvous. A full
presentation of the properties of AC(P) is given in [BS07b]. Figure 2.15
shows the AC(P) notation for the connectors of examples 2.2.6, 2.2.7 and
2.2.8. Note the application of the typing operator to groups of ports, repre-

s r1 r2 r3 s r1 r2 r3 r2 r3r1

s

r3

r1

s

r2

sr1r2r3

Rendezvous

s′r1r2r3

Broadcast

s′[r1r2r3]

Atomic broadcast

s′[r′1[r
′

2r3]]

Causal chain

Figure 2.15: AC(P) notation of connectors.

senting structured connectors. For atomic broadcast, the type synchron is
attributed to the group of ports r1r2r3, which can be seen as a sub-connector.
The causal chain is another example of a structured connector.

Incremental Construction of Connectors

The fusion and typing operators on connector allow for their incremental
construction. Consider the broadcast from a sender port s to two receiver
ports r1 and r2, as shown in figure 2.16(a). The same set of interactions can
be obtained incrementally by an equivalent structured connector, as shown
in figure 2.16(b). It is constructed by first creating a broadcast from s to
r1, specified by s′r1, and then by the adding the second receiver r2 through
the structured connector [s′r1]

′r2. Notice that both represents the same set
of interactions,γ = {s, sr1, sr2, sr1r2}.

2.3. CONCRETE MODEL OF BIP 29

s r1 r2 s r1 r2

s′r1r2

[s′r1]′r2

(a) (b)

Figure 2.16: Incremental construction of connectors.

2.3.2.3 Semantics of Composition by Connectors

Connector Guards and Transfer Functions

In BIP the execution of interactions may involve transfer of data between
the synchronizing components. If α is the interaction of a connector, we use
a guard Gα (boolean condition) and data transfer function Fα to specify
data transfer. Guard is a global condition, spanning over the variables
of the interacting components. An enabled interaction is executable if its
guard is true. The execution of the interaction leads to execution of the data
transfer Fα associated with it. As a result, the variables of the synchronizing
components are updated. The mechanism for execution of guard and data
transfer of a connector is formally presented below.

Consider the composition of n concrete components {Bi}
n
i=1 parameter-

ized by a set of connectors γ. The composed system is a concrete component
B = (X, P, S,→γ) with:

• A set of variables X, which is the union of the sets of variables of the
composed components X =

⋃n
i Xi,

• A set of interactions P defined by γ, P = {α— α is an interaction in
γ},

• A set of control states S, which is the Cartesian product of the sets of
control states of the composed components S =

⊗n
i Si,

• A set of transitions →γ of the form (s, α, g, f, s′), where:

– s = (s1, . . . , sn), si being a control state of the ith component.

– α is a feasible interaction in γ associated with a guarded command
(Gα, Fα), such that there exists a subset J ⊆ {1, . . . , n} of com-
ponents with transitions {(sj , pj , gj , fj , s

′
j)}j∈J and α = {pj}j∈J .

– g = (
∧

j∈J gj) ∧ Gα.

– f = Fα; [fj]j∈J . That is, the computation starts with the exe-
cution of Fα followed by the execution of all the functions fj in
some arbitrary order. The result is independent of this order as
components have disjoint sets of variables.

30 CHAPTER 2. COMPONENT COMPOSITION IN BIP

– s′(j) = s′j if j ∈ J ; otherwise s′(j) = sj . That is, the states from
which there are no transitions labeled with ports in α, remain
unchanged.

The composition of the concrete system is shown in figure 2.17.

p1 p2 pk

p1

g1

f1

p2

g2

f2

pk

gk

fk

α1

g1

f1

αm

gm

fm

αmα1 · · ·...

γ : α1 = p1p2 . . . pk; Gα1
; Fα1

· · ·· · ·
...

Figure 2.17: Composition of concrete components.

2.3.3 Modeling Priority

For the concrete mode, a priority order ≺ is represented by a priority rule.
It is a tuple (C,≺), where C is a state predicate (boolean condition) char-
acterizing the states where the priority applies. C also plays the role of a
dynamic guard for the priority ≺.

A priority rule is textually expressed as C →≺. It means that when the
state predicate is true and both the interactions specified in the priority are
enabled, the higher order interaction is selected for execution. For static
priorities, C is true and is omitted from the priority rule.

A priority model π consists of a set of priority rules, {Ci →≺i)}
m
i=1, with

a disjoint set of state predicates, i.e., for any two i 6= j, we have Ci∩Cj = ∅.
Consider the behavior given by an automaton, as shown in the left of figure

π : C → p1 ≺ p2

p1

g1

p2

g2p2

g2

p1

g′
1

S
S

Figure 2.18: Priority restriction.

2.18, with a non deterministic choice between two interactions p1 and p2,
from the control-state S. The corresponding guards are respectively g1 and
g2. Non-determinism is resolved by a priority rule C → p1 ≺ p2, which

2.3. CONCRETE MODEL OF BIP 31

selects the interaction p2 to be taken, when C holds, by disabling p1. This
is implemented by modifying the guard g1, of the interaction with the lower
priority, to g′1, given by g′1 = g1 ∧ (C ⇒ ¬g2). The restricted behavior
is shown in the right of the same figure. If the predicate C is true, the
interaction p1 can occur only if p2 is disabled. However if C is false, the
priority holds no more, and we have a non-deterministic choice between p1

and p2.
The transformation of the underlying behavior through restriction is

imposed by modifying the guards of all the interactions which are dominated
by priority rules. For an interaction pk dominated by priority rules from π,
its modified guard is given as

g′k = gk ∧
∧

C→≺∈π

(C ⇒
∧

pk≺pi

¬gi)

2.3.3.1 Composition of Priorities

The restriction of a behavior B by the successive application of priorities π1

and π2 may not be the same. It can depend on the order of application of
π1 and π2. That is, in general

π2(π1(B)) 6= π1(π2(B))

Consider for example, the behavior in the left of figure 2.19, showing a
transition system with interactions p1, p2 and p3, possible from a control
state. Consider the two priorities, π1 : true → p1 ≺ p2 and π2 : true → p2 ≺
p3. The order of their application leads to different behavior, as evident
from the figure. It is shown in [GS03] that non commutativity of priorities
is due to the fact that the union of the priority orders is not a priority order.

p1 p3

p3

p1 p3
p2

p3p1

π2

π1

π1 : p1 ≺ p2

π2 : p2 ≺ p3

π
2

p3

π1

p2

Figure 2.19: Priority Composition is non-commutative.

To avoid this anomaly, we define for two priorities π1, π2, their composi-
tion π1⊕π2 as the least priority contained in π1∪π2 (if it exists). Computing
π1 ⊕ π2 amounts to computing the transitive closure of π1 ∪ π2. The op-
eration is partial. It is defined only if this is a strict partial order, i.e., no
cycles.

32 CHAPTER 2. COMPONENT COMPOSITION IN BIP

Priorities restrict the component behavior and do not add behavior.
Components that are deadlock free, on restriction by the priority model
continues to preserve the deadlock freedom. However, composition of prior-
ity models that leads to cyclic priority dependencies may result in deadlock
situations. This is explained by the example in figure 2.20. The problem
models two identical tasks T1 and T2, using shared resources W1 and W2.
On arrival (a1) the task T1 first acquires the resource W1 by the action b1,
and then W2 by the action b′1. It releases both the resources upon finishing
(f1). T2 has a similar behavior, except that it first acquires W2 (by b′2) and
then W1 (by b2). We use priorities for mutual exclusion in the use of W1 and

γ : a1, b1, b′
1
, f1, a2, b2, b′

2
, f2

π1 : b1 ≺ f2, b2 ≺ f1, b2 ≺ b′
1

(Mutex on W1)
π2 : b′

2
≺ f1, b′

1
≺ f2, b′

1
≺ b2 (Mutex on W2)

a2

b2

b′
2

f2

f2 b′
2

b2

a2

I2

R2

E2

E
′

2

a1

b1

b′
1

f1

f1

b′
1

a1

b1

I1

R1

E1

E
′

1

T2T1

Figure 2.20: Priority Composition leading to deadlock.

W2 between T1 and T2. The rules of the priority model π1 ensures exclusive
use of W1, and that of W2 by the priority model π2.

We would now like to ensure the mutual exclusion of both resources by
the combination of the two given priority models. However, the composition
of the rule b2 ≺ b′1 of π1 and b′1 ≺ b2 of π2 is undefined (as it leads to a cycle).
This reflects the existence of a possible deadlock when b′1 and b′2 are enabled.

We now demonstrate through an example how an execution policy, e.g.,
synchronous execution, can be expressed with the help of priorities. As de-
scribed in 1.2.1, synchronous execution adopts a strong fairness assumption,
as in a computation step, all the components are offered the possibility to ex-
ecute some quantum of computation. We show that synchronous execution
can be obtained by appropriately restricting the behavior and interaction
layers.

Example 2.3.2 (Synchronous Execution)

Consider the example of figure 2.21, a system which is a serial composition
of three strongly synchronized components Rk, with port ik (denoting an
input action) and port ok (denoting an output action), k = 1, 2, 3. Assume

2.3. CONCRETE MODEL OF BIP 33

i2

i2 o2 i3i1

i1 o1 i3o2 o3

o3

R1 R2 R3

o1

Interactions: i1, o1i2, o2i3, o3

Priority: i1 ≺ o1i2 ≺ o2i3 ≺ o3

Figure 2.21: Enforcing synchronous execution.

the components are reactive in the sense that they are triggered from some
idle state when an input arrives, and eventually produces an output before
reaching some idle state, from where a new input can be accepted. For
the sake of simplicity, the components have simple cyclic behaviors with
alternating inputs and outputs.

The interaction model consists of the interactions i1, o1i2, o2i3 and o3.
We assume that the system is closed, so the interactions i1 and o3 are au-
tonomous. In the product of the behaviors restricted by the interaction
model, each component can perform computation independently of the oth-
ers, provided the constraints resulting from the interaction model are met.
This corresponds to asynchronous execution.

The behavior can be constrained by the priority model in order to enforce
synchronous execution, in the sense that a run of the system is a sequence
of steps, each step corresponding to the treatment of an input i1 until an
output o3 is produced. This can be enforced by the priority order i1 ≺ o1i2
≺ o2i3 ≺ o3. This order reflects the causality between the interactions of
the system. In fact, if all the components are at some idle state, then all
are awaiting for an input. Clearly, only i1 can occur to make R1 evolve to
a state from which o1i2 can occur. This will trigger successively o2i3 and
finally o3. Notice that i1 cannot be executed as long as a computation takes
place in some component.

We now provide a set of examples showing the application of priorities to
enforce execution constraints on a system. We also provide generic models
of task (both preemptable and non-preemptable), which are frequently used
in a wide variety of applications.

Example 2.3.3 (Mutual Exclusion)

In this example, we show the enforcement of mutual exclusion, a very com-
mon execution constraint, needed when we have multiple components (tasks)
sharing a single resource. In the example shown in figure 2.22, we have two
identical tasks, T1 and T2, modeled as BIP components. The control states
of the i-th task are Ii (Idle), Ri (Ready) and Ei (Executing). The actions

34 CHAPTER 2. COMPONENT COMPOSITION IN BIP

(ports) are ai (activate), bi (begin) and fi (finish). Each task is initialized
to state Ii, from where it can voluntarily activate through the action ai and
become ready (Ri) for execution. The start of execution is marked by the
action bi, by which the task acquires the resource and moves to the execution
state (Ei). The interaction model does not enforce any restriction and con-

a2 b2

f1 f2

Interactions: a1, b1, f1, a2, b2, f2

Prioritiess: b1 ≺ f2, b2 ≺ f1

T1 T2

a1 b1

a1

b1

R1

E1

b2

a2

R2

E2

I1 I2

f1 f2

Figure 2.22: Enforcing Mutual Exclusion.

sists of all the independent actions of the tasks. Under mutual exclusion, a
task cannot acquire the resource if the other task is already in the execution
state. This is enforced by the priority model, which assigns the actions to
obtain the resource, lower priority than the actions to release the resource,
i.e., b1 ≺ f2 and b2 ≺ f1. For T1, the priority b1 ≺ f2 prevents it from
obtaining the resource, unless T2 releases it (by the action f2). Similarly, T2

is restricted by b2 ≺ f1.

When both tasks are at state Ri, either of them can acquire the resource
in a non-deterministic fashion. However, static priority rules can be used to
prioritize the tasks in any desired order. For example, b2 ≺ b1 sets a higher
priority for T1 to acquire the resource, compared to T2.

Note that mutual exclusion can also be expressed by a restricted inter-
action model. The interactions: a1, b′1f2, f1, a2, b′2f1, f2, would by maximal
progress, enforce mutual exclusion. The interaction b′ifj lets task i to obtain
the resource, either by executing bi alone, when task j is not in Ej , or by
executing the synchronization bifj , where task j releases the resource to task
i.

In this example we have shown the use of static priorities. The following
examples illustrate the use of dynamic priorities.

Example 2.3.4 (A FIFO Scheduler)

We provide another example showing the enforcement of a scheduling policy
using the priority model. In particular, it shows the application of dynamic
priorities. Figure 2.23 shows the model of scheduling two tasks under FIFO.

2.3. CONCRETE MODEL OF BIP 35

The tasks share a common resource, so we enforce mutual exclusion between
the tasks, similar to the previous model (example 2.3.3). The behavior model

a2 b2

f1 f2

Interactions: a1, b1, f1, a2, b2, f2

t1 ≤ t2 → b1 ≺ b2, t2 < t1 → b2 ≺ b1

Prioritiess: b1 ≺ f2, b2 ≺ f1

T1 T2

a1 b1

b1

R1

E1

b2

R2

E2

I1 I2

f1 f2

a1

start(t1)
a2

start(t2)

Figure 2.23: FIFO.

of a tasks is the same as in example 2.3.3. Except that each task has an
additional clock variable ti, used to measure the duration of its waiting
time in the Ready state (Ri). Moreover, on the action ai, it executes the
statement start(ti), which starts a timer on its clock variable ti, to measures
the time it has been waiting in Ri.

The FIFO constraints resolve the conflict between the processes compet-
ing for the acquisition of the common resource. Unlike a non-deterministic
choice of the previous example, when both the tasks are ready, the task
which has waited longer is allowed to get the resource. This is represented
in the priority model by the following dynamic priority rules: b1 ≺ b2 if
(t1 ≤ t2), and b2 ≺ b1 if (t2 ≤ t1).

The models of tasks we have seen so far are non-preemptable. We now
propose models of preemptable tasks, needed for preemptive scheduling poli-
cies.

Example 2.3.5 (Fixed priority preemptive scheduling.)

We model fixed priority scheduling with preemption for n tasks sharing a
common resource (figure 2.24). The scheduler gives preference to low index
tasks.

The behavior model of a preemptable task (Ti) is a simple extension of
a non-preemptable tasks, with an additional control state Si (suspended),
and actions pi (preempt) and ri (resume).

Mutual exclusion between execution states Ei is guaranteed by the con-
nectors in the model, which are b′ipj and f ′

irj . As bi is a trigger and pj

is a synchron, the possible interactions in the connector b′ipj are either bi

or bipj . Now the interaction bi alone cannot take place if bipj is possible
(by maximal progress rule within a connector). Hence mutual exclusion is

36 CHAPTER 2. COMPONENT COMPOSITION IN BIP

guaranteed by preemption. Similarly, the connector f ′
irj guarantees that a

preempted task can resume (by executing the action rj) only if a task ter-
minates by executing fi. However, as fi is a trigger, the executing task can
terminate also when no tasks are preempted.

Scheduling constraints resolve conflicts between processes (bi and ri ac-
tions) competing for the acquisition of the common resource. They are
implemented by adding a third layer with the following priority rules. The
priorities bi ≺ bj , bipk ≺ bjpk and fkri ≺ fkrj for all k and i > j enforces
the static priority for accessing the resources, with the lower index process
(j) getting higher preference. The rules bipj ≺ fj for i > j ensures that a
high priority task (index j) is not preempted by a low priority task (index
i), i.e., the interaction bipj is suppressed by fj . This ensures termination
of the high priority task than preemption. The same scheduling policy can

f1

a1 b1

p1

r1

R1

I1
a2

r2

b2

p2

f1 f2 fn

· · ·

Prioritiess: bi ≺ bj , b′ipk ≺ b′jpk, f ′

k
ri ≺ f ′

k
rj , b′ipj ≺ fj∀i > j

a1

b1

a2

b2

R2

I2

f2

an bn

pn

rn

an

fn

In

Rn

r1
E1 E2 EnS2 SnS1

T1 TnT2

r2 rn

bn pnp2p1

Interactions: ai, b
′

ipj , f ′

irj∀i, j

Figure 2.24: Fixed-priority preemptive scheduling.

also be implemented by a different set of glues, as shown in figure 2.25.

f1

a1 b1

p1

r1

R1

I1
a2

r2

b2

p2

f1 f2 fn

Interactions: ai, bi, pi, fi, ri∀i

· · ·

a1

b1

a2

b2

R2

I2

f2

an bn

pn

rn

an

fn

In

Rn

r1
E1 E2 EnS2 SnS1

T1 TnT2

r2 rn

bn pnp2p1

Prioritiess: {bi, ri} ≺ {bj , rj}, i > j

{bj , rj} ≺ pi, i > j; {bi, ri} ≺ fj , ∀i, j; pj ≺ fjif ∃i|Ri ∨ Si, i > j

Figure 2.25: Fixed-priority preemptive scheduling (with a different glue).

2.4. CLASSIFICATION OF SYSTEMS 37

Maximal Progress Priority in Connectors

A particular priority rule, that favors, among the enabled interactions of a
connector, the maximal one, i.e., the one with maximum number of ports,
is known as maximal progress priority. This can be explicitly represented
through priority rules amongst the interactions, of the form x ≺ xy, where x
and xy are interactions of the connector. As an example, maximal progress
is necessary to model a broadcast. Maximal progress is implicitly assumed
in connectors for their compact and natural representation.

2.4 Classification of Systems

In this section, we show that timed and synchronous systems can be repre-
sented as BIP components.

2.4.1 Timed Systems

Timed systems are modeled as timed automata with urgency [BS00, BST98],
where the execution of a transition is an action defining a change in control
state, whereas time progresses at control states. Urgency is expressed by
means of an urgency attribute on transitions. This attribute can take the
values eager, lazy or delayable. The latter is a composite type very useful in
practice. It means that the transition is considered to be lazy at some state
if it remains enabled at the next time unit; otherwise, it is eager. Eager
transitions are executed at a point of time at which they become enabled,
if they are not disabled by another transition. Delayable transitions cannot
be disabled by time progress. Lazy transitions may be disabled by time
progress.

In the graphical notation, urgency types are associated with ports (tran-
sition labels). We use the notation pτ , where p is a port and τ can be either
ǫ (eager), λ (lazy), or δ (delayable).

Like in timed automata, time distances between actions are measured by
clock variables, declared in atoms. They can be set to some value or reset
in transitions. They can be used in timed guards to restrict the time points
at which transitions can be taken.

Local clock variables allow the specification of timing constraints, such
as duration of tasks (modeled by time passing in a control state associated
with the task), and deadlines for actions in a process. This is illustrated
later in the chapter through examples.

We define t imed components and provide a structure preserving mapping
from timed components to BIP components defined in section 2.3. Timed
components are built from atomic timed components. The definition of
atomic timed components for discrete time is inspired from [AGS02]. They
have:

38 CHAPTER 2. COMPONENT COMPOSITION IN BIP

• A set of ports P = {p1 . . . pn}.

• A set of control states S = {s1 . . . sk}.

• A set of variables V , partitioned into two sets U and X, respectively
the set of untimed and t imed variables.

• A set of transitions of the form (s1, p
τ , gu

p ∧ gt
p, fp, s2), representing a

step from control state s1 to s2. The urgency type τ which can be
either eager or lazy is used to characterize the urgency of the transi-
tion. As for ordinary transitions, gp = gu

p ∧ gt
p is a guard, conjunction

of conditions on untimed and timed variables respectively and fp is a
function on V .

• A set of evolution functions {φi}1≤i≤k in bijection with control states.
The function φi gives for a given valuation x of X at control state si

and a given value of a discrete time parameter t, the valuation φi(x, t)
reached when time progresses by t. Further, it satisfies the following
properties:

– φi(x, 0) = x, and

– φi(x, t1 + t2) = φi(φi(x, t1), t2).

An atomic timed component C represents a transition system [AGS02] in
the following manner.

Let si be a control state of C and (u, x) be a valuation of (U,X). From
the state (si, u, x),

• Either an enabled transition can be executed independently of its ur-
gency type - the semantics is the same as for transitions of BIP com-
ponents.

• Or time can progress by one time unit ∆, leading to state (si, u, φi(x,∆)),
if all eager transitions are disabled.

p r· · ·

Si

Sm Sn Sr

gu
p ∧ gt

p

p

fp
fr

gr
r

· · ·

p r

Sm Sn Sr

gu
p ∧ gt

p

p

fp
fr

gr
r

x = φi(x, ∆)
tick

Si

· · ·

· · ·

tick

φi(x, t)

Figure 2.26: From Timed Component to BIP Component.

We provide a translation from timed to BIP atomic components. The princi-
ple of the translation is explained in figure 2.26. It consists in implementing

2.4. CLASSIFICATION OF SYSTEMS 39

for each atomic component, time progress from si and subsequent state
changes, by a loop transition with guard true and function φi(x,∆). This
transition is labeled by a special port called tick, for synchronization with
other timed components. The translation is parameterized by ∆, which
must be the same for all the atoms in the system.

p1 p2 pntick1 tick2 tickn· · · · · · · · ·

tick1

S2 Sn

tick2 tickn

S1

· · ·

x3 = φn(x3, ∆)x2 = φ2(x2, ∆)x1 = φ1(x1, ∆)

π

γ : T ick = tick1tick2 · · · tickm, . . .

Figure 2.27: Composition of Timed Components.

In the composition of the resulting BIP components from the timed
components, strong synchronization is necessary between all the tick ports
as shown in the architecture of figure 2.27. That is, a connector called Tick,
relating all the tick ports is used. It is defined as a rendezvous between the
tick ports.

Furthermore, to take into account urgency of the transitions, we use
priorities.

{(at Si ∧ gp) → Tick ≺ α | ∃p . Si
pǫgpfp
−→ S′

i ∧ p ∈ α}

The meaning of the priority rule is that, if there is an eager transition enabled
from in a component, time has lower priority than this transition. Hence
time can progress only if there are no enabled eager transitions.

If a port p has a unique occurrence in the behavior, then the predicate
(at Si ∧ gp) in the priority rules can be removed, as its will be already
included in the guard by the enabledness of α.

Example 2.4.1 (Billiard Balls) We provide an example of a timed sys-
tem by modeling the movement of two billiard balls, colliding on a billiards
table and with each other. Each ball moves independently, starting from an
initial position with given velocities and direction. We assume zero friction
between the balls and the board. The balls are reflected at the edges of the
billiards table, and may collide with each other. On collision, they get their
velocities and directions exchanged, assuming perfectly elastic collision.

A ball moves in the plane of the board, its motion being the product of
its movement in two dimensions, the X and the Y co-ordinate respectively.
We identified a co-ordinate to be the basic atomic component of the model.

40 CHAPTER 2. COMPONENT COMPOSITION IN BIP

SHOCK

flip shock pos neg

POS NEG
dx=−dx;

dx=−dx;

posǫ

[gpos] [gneg]
negǫsh

oc
k

ǫ

flipǫ[x==0]

flipǫ[x==MAX]

sh
ock ǫ

φNEG({x,y},t)

φSHOCK({x,y},t)

φPOS({x,y},t)

Figure 2.28: Architecture of a co-ordinate.

A timed model for the co-ordinate atom is shown in figure 2.28. It has
three control states, POS, NEG and SHOCK, and is parameterized by
an integer MAX denoting the maximum distance it can travel before being
re-bounced. It has a timed variable x representing its current position, and
dx representing its velocity. There is also a clock variable y. The port flip
denotes a re-bounce event, while shock represents a collision. It can remain
at the state POS until its has reached the MAX displacement, whence it is
reflected, resulting in the reversal of its displacement (modeled by changing
the sign of dx). Similarly, it can stay at NEG until it has reached the origin.
From either of these states, it can suffer a collision (shock), whence it moves
to the control state SHOCK. From here, the two actions pos and neg with
exclusive guards determine whether to move it to POS or NEG. The guard
for the action pos (gpos) is ((dx > 0)∧ (x < MAX))∨ ((dx < 0)∧ (x == 0)),
and that for neg (gneg) is ((dx > 0)∧ (x == MAX))∨ ((dx < 0)∧ (x > 0)).
All the actions, flip, shock, pos and neg are eager. The evolution functions
specifying the updation of x and y with time, are the same for all the control
states, and defined as:

φs({x, y}, t) =

{
x + t.dx
y + t

where s = POS,NEG,SHOCK. The shock transition has a guard consist-
ing the clock variable y, in order to prevent zero-delay collisions. This may
happen because after the shock interaction, the co-ordinates of the balls
remain the same. Hence, in order to force the time to progress, we provide
the guard, y > 0 to the shock transition, and reset y (y = 0;) as the action.

A ball is a compound component, consisting of two co-ordinates, X and
Y . The interaction model specifies the synchronizing between the shock
ports of X and Y . The architecture of the Ball is shown in figure 2.29.
It shows the model after the timed transformation of the co-ordinate com-
ponents. Note that, after the timed transformations, the co-ordinates have

2.4. CLASSIFICATION OF SYSTEMS 41

tick shock

POS NEG

SHOCK

tick shock

POS NEG

SHOCK

tick shock

X Y

Figure 2.29: Architecture of a Ball.

additionally the tick ports, and all of them are synchronized through a global
tick connector.

The system Billiard contains two Ball’s, ball1 and ball2, as shown
in 2.30. The interaction model specifies a synchronization between all the

shocktick shocktick

π : T ick ≺ posi, negi, f lipi, Shock, i = 1, 2
flipi ≺ Shock, i = 1, 2

ball1 ball2

Figure 2.30: Architecture of the system with two balls.

shock connectors. It is a rendezvous of all the shocks, with a guard which
checks the condition that the co-ordinate position (X and Y) of the balls are
the same, i.e., the condition necessary for a collision are met. It is associated
with a transfer function, which interchanges the velocities (dx) of the balls
in both the dimensions, X and Y . Structured connectors are also created
to synchronize the Tick connectors of the balls. The system also contains
the connectors modeling the individual interactions for flip, pos and neg
for each co-ordinate, not shown in the figure.

The urgency criteria for the timed transitions leads to assigning the Tick
interaction the lowest priority. Also, we need the shock interaction to have
higher priority than the flip interactions for correct behavior.

Example 2.4.2 (Scheduling of Timed Tasks)

This example taken from [WDE05], is a performance evaluation problem

42 CHAPTER 2. COMPONENT COMPOSITION IN BIP

with timed tasks processing events from a bursty event generator. There
are three tasks T1, T2 and T3, connected serially to the event generator. A
task is activated by an event from its predecessor, and executes on dedicated
CPU’s. On completion, the task passes the event to its successor. The block
diagram of the System is shown in figure 2.31(a). We design a model to
measure the total delay of an event, starting from its creation from the event
generator till it is processed by T3. The basic components for the model are

Event
Generator

CPU1 CPU2

CPU3

Event
Generator

CPU2

CPU1

(a) (b)

T1 T2

T3

T2T1

T3

Figure 2.31: Scheduling of timed tasks.

Task and EventGenerator. A generic timed model of Task is shown in
figure 2.32, which can be used either as a simple task, or as a preemptable
task. It has a timed variable d to keep track of the execution time. The
evolution functions specifying the updation of d with time is given as:

φRdy(d, t) = d

φSusp(d, t) = d

φExe(d, t) = d + t

The urgency on the transition labeled by finishδ in figure 2.32 means that
the transition is lazy when d < WCET and eager when d = WCET .

Rdy

Exe Susp
getǫ

c=c+1;

finish

startǫ, [c > 0]
c=c-1;d=0;

start preempt resumeget

[d ≤ WCET]
preemptλ

resumeλ

φExe(d, t)

φSusp(d, t)

φRdy(d, t)c=c+1;
getǫ

finishδ

c=c+1;
getǫ

Figure 2.32: Task Component.

The ports and behavior of EventGenerator are shown in figure 2.33. It
has a period T , a jitter J with J > T , and a minimum inter-arrival time

2.4. CLASSIFICATION OF SYSTEMS 43

D between successive events being generated. The compound component

Run

goδ

[k ≥ 0 ∧ x + k ≤ J ∧ y ≥ D]
y=0;k- -;

[x = T]
x=0;k++;

periodǫ

periodgo

φRun({x, y}, t)

Figure 2.33: EventGenerator Component.

System is a serial connection of the EventGenerator instance EvntGen,
and three instances of Task, T1, T2 and T3, as shown in figure 2.34. Com-
ponent instances are parameterized: EventGenerator instance by the time-
period T , jitter J and minimum inter-arrival time D; Task instances by
their worst case execution time WCET . The transmission of the events,
i.e., synchronization between the EvntGen and Tasks are modeled by con-
nectors. We use the notation T1.tick to mean the tick port of T1. With this
notation for ports, the connectors are as follows:

γ =





EvntGen.tick T1.tick T2.tick T3.tick (C0)
EvntGen.period′ (C1)
EvntGen.go T1.get (C2)
T1.finish T2.get (C3)
T2.finish T3.get (C4)
T2.start′ (C5)
T1.start′ (C6)
T3.start′ (C7)
T3.finish′ (C8)

C0 is a rendezvous between the tick ports of all the components. C2 is a
rendezvous between port go of EvntGen and port get of T1. Synchroniza-
tion on this connector represents an event generated by EvntGen and its
transmission to T1. Similarly C3 represents an event flow from T1 to T2.
The connectors C1, C5, C6, C7 and C8 represents trivial interactions, each
with only one trigger port. In this model, the tasks are non-preemptable,
so the ports preempt and resume are not associated to connectors. They are
not involved in any interaction. Priorities are used to enforce the urgency
criteria of the transitions (not shown in the figure). For example, to enforce
the urgency for the period interaction in EvntGen, we have the rule

(x == T) → EvntGen.tick T1.tick T2.tick T3.tick ≺ EvntGen.period

44 CHAPTER 2. COMPONENT COMPOSITION IN BIP

preempt start

f
in

is
htickget

resume

preempt start

f
in

is
htickget

resume

tick go

period

start preempt

resume

getf
in

is
h

tick

C2 C3

C1

C5

T1 T2

T3C8

C7

C4

C0

C6

EvntGen

Figure 2.34: Timed task architecture.

The second part of the the problem is to model the System where tasks
T1 and T3 share CPU1 and T1 can preempt T3, whereas T2 runs on CPU2,
as shown in figure 2.31(b). The BIP architecture of the model (without the
priorities enforcing urgency) is shown in figure 2.35.

preempt start

f
in

is
htickget

resume

preempt start

f
in

is
htickget

resume

tick go

period

start preempt

resume

getf
in

is
h

tick

C2 C3

C1

C5

T1 T2

T3

C0

C6C7C8

C4

EvntGen

Figure 2.35: Timed task architecture (with mutual exclusion).

2.4. CLASSIFICATION OF SYSTEMS 45

The connectors in this architecture are

γ =





EvntGen.tick T1.tick T2.tick T3.tick (C0)
EvntGen.period′ (C1)
EvntGen.go T1.get (C2)
[T1.finish T2.get]′ T3.resume (C3)
T2.finish T3.get (C4)
T2.start′ (C5)
T1.start′ T3.preempt (C6)
T3.start′ T1.preempt (C7)
T3.finish′ T1.resume (C8)

Mutual exclusion between T1 and T3 is enforced by the connectors C3, C6,
C7 and C8. They guarantee that a task will preempt if the other has to
start, and similarly a task can resume only when the executing task fin-
ishes. Note that C3 is a structured connector, representing the interactions
T1.finish T2.get and T1.finish T2.get T3.resume. In the first case T1 fin-
ishes and transmits an event to T2, in the second case it additionally releases
the resource to T3 by resuming its execution.

Static priority between T1 and T3 is enforced by the rule

true → T3.start ≺ T1.start

and non-preemption of T1 by T3 is realized by the rule

true → T3.start T1.preempt ≺ EvntGen.tick T1.tick T2.tick T3.tick

Note that for the urgency of the finish transition, we have the rule

(d == WCET) → EvntGen.tick T1.tick T2.tick T3.tick ≺ T1.finish

and the composition of the above two rules produce

(d == WCET) → T3.start T1.preempt ≺ T1.finish

This ensures that T1 will finish instead of releasing the CPU1 to T3.

2.4.2 Synchronous Systems

Synchronous components are a subclass of components built from synchronous
atomic components which have:

• A set of control states S, partitioned into three sets Sst 6= ∅, Sun,
Ssyn 6= ∅, respectively the sets of stable, unstable and synchronization
states.

• A particular class of transitions, synchronization transitions. These
have a special port syn, their guards are true and functions are empty.
From synchronization states only synchronization transitions are pos-
sible and lead to stable states.

46 CHAPTER 2. COMPONENT COMPOSITION IN BIP

• Transitions from unstable states leading either to unstable states or to
synchronization states.

• Stable states with synchronization transition loops. All other tran-
sitions from these states lead to unstable or synchronization states.
There is a finite number of transitions in a path between two succes-
sive distinct stable states in the transition graph. This guarantees that
for deadlock free execution, stable states are visited infinitely often.

syn

syn

syn

syn

. . .

Figure 2.36: Synchronous Atomic Component.

The general form of a synchronous atomic component is shown in figure 2.36.
Composition of synchronous components is characterized by the following
requirements:

• Ports of transitions from unstable states must belong to triggers, that
is, their execution cannot be blocked due to synchronization con-
straints.

• All the syn ports are strongly synchronized via a connector Syn with
empty set of complete interactions.

• Any interaction has higher priority than the syn interaction. This
enforces progress from stable states and prevents live-lock by looping
on syn transitions.

syn1 syn2 synn

π : syn1syn2 · · · synn ≺ all interactions

γ : syn1syn2 · · · synn, . . .

. . .

Figure 2.37: Composition of Synchronous Components.

The general form of a synchronous architecture is shown in figure 2.37. The
above requirements ensure lockstep execution. For such an execution, a run

2.4. CLASSIFICATION OF SYSTEMS 47

is a sequence of steps leading from one global stable state to another. If all
the components are at stable states, then each component can execute a se-
quence of transitions leading to a synchronization state. From synchroniza-
tion states, strong synchronization through syn is enforced. This interaction
cannot occur as long as other interactions are possible, as it has the lowest
priority. It may happen that during a synchronous step some components
stay at the same stable state, if the transitions leaving this state are not
enabled. The synchronization transition loops from stable states allow tran-
sitions from synchronization states of the other components to be executed.

Example 2.4.3 (Synchronous Counter)

We model synchronous modulo-n counter as a composition of n single bit
counters. The ith bit is represented by an atomic component modeling a
modulo-2 counter 2.38. We show the construction of a modulo-8 counter by
composing three modulo-2 counters, shown in figure 2.39. The behavior of

Zero

One’ One

Zero’

flip
x = 1
y := 0

flip
x = 1
y := 1

x y

syni

syni

syni

syni

syni

Figure 2.38: A Modulo-2 Counter.

the atomic component mod2 is depicted in figure 2.38. Zero′ and One′ are
stable states whereas Zero and One are synchronization states respectively.
The port flip denotes an internal action. The variable x is the input and
y is the output. The compound component mod8 consists of 3 instances of

syn2 syn1 syn0

γ : syn2syn1syn0, f lip2, f lip1, f lip0

bit2 bit1 bit0

π : syn2syn1syn0 ≺ flipi, i = 1, 2, 3

Figure 2.39: A Modulo-8 Counter.

mod2 namely bit0, bit1, and bit2, where bit0 is the least significant bit. The
interaction model consists of the interaction synchronizing the syni ports
of all the bits. The architecture of the composition is shown in figure 2.39.

48 CHAPTER 2. COMPONENT COMPOSITION IN BIP

The interaction is associated with a data transfer relation, which modifies
the variables of the respective components on every synchronization step as
follows: bit0.x := 1; bit1.x := bit0.y; bit2.x := bit1.y ∧ bit1.y;

Priority rules enforce that the synchronization interaction has lower pri-
ority than the internal actions of the components.The y values constitute
the output of the system, and varies from 000 to 111.

2.5 The System Construction Space

The BIP framework shares features with existing ones for heterogeneous
components, such as [BWH+03, EJL+03, BGK+06, Arb05]. A common
key idea is to encompass high-level structuring concepts and mechanisms.
Ptolemy was the first tool to support this by distinguishing between be-
havior, channels, and directors. Similar distinctions are also adopted in
Metropolis and BIP, which offer interaction-based and control-based mech-
anisms for component integration. The two types of mechanisms correspond
to cooperation and competition, two complementary fundamental concepts
for system organization.

This is a significant progress with respect to languages directly support-
ing only interaction-based mechanisms of such as CSP, Lotos, Java. There is
evidence through numerous examples treated in BIP, that the combination
of interactions and priorities allow enhanced modularity and direct mod-
eling of schedulers, quality controllers and quantity managers. Of course,
one could advocate that ease of description for rich languages without an
adequate methodology may be at the detriment of simplicity and insight
gained through the use of a smaller number constructs and concepts. The
comparison of languages based on a set of rigorous and pertinent criteria is
an issue that deserves further investigation.

BIP characterizes systems as points in a three-dimensional space: Behavior×
Interaction × Priority, as represented in figure 2.40. Elements of the
Interaction × Priority space characterize the overall architecture. Each
dimension, can be equipped with an adequate partial order, e.g., refinement
for behavior, inclusion of interactions, inclusion of priorities. Some interest-
ing features of this representation are the following:

Separation of concerns: Any combination of behavior, interaction and
priority models meaningfully defines a component. This is not the
case for other formalisms e.g., in Ptolemy [EJL+03], for a given model
of computation, only particular types of channels can be used. Sepa-
ration of concerns is essential for defining a component’s construction
process as the superposition of elementary transformations along each
dimension.

Unification: Different subclasses of components e.g.,untimed/timed, asyn-

2.6. DISTRIBUTED MODEL OF BIP 49

(+interaction)

System

architecture

B (+ refinement)

P (+ restriction)

I

Figure 2.40: The Construction Space.

chronous/synchronous, event-triggered/data-triggered, can be unified
through transformations in the construction space. These transfor-
mations often involve displacement along the three coordinates. They
allow a deeper understanding of the relations between existing seman-
tic frameworks in terms of elementary behavioral and architectural
transformations. For instance, as explained in section 2.4.1, timed
system can be obtained from an untimed system by 1)refinement of
its untimed behavior (adding timers and tick transitions); 2) by adding
a synchronous interaction between ticks; 3) by adding priorities to ex-
press urgency of timed transitions with respect to ticks.

Correctness by construction: The component construction space pro-
vides a basis for the study of architecture transformations allowing
preservation of properties of the underlying behavior. The character-
ization of such transformations can provide (sufficient) conditions for
correctness by constructions such as compositionality and composabil-
ity results for deadlock-freedom [GS05]. In an ongoing work, we try to
determine regions of the system construction space where properties
are preserved, in particular deadlock-freeedom and state invariance.

2.6 Distributed Model of BIP

The semantic model of BIP presented in section 2.2.2 is based on the notion
of global states of the system, i.e., complete state information of all the
components are available, and the system moves from one global state to
another. This is known as the global state semantics. In this section, we
provide a distributed implementation method for systems in BIP, based on
partial information about the individual component states [BBBS08]. The
implementation method is a translation from BIP models into distributed
models involving two steps. The first translates BIP models into partial
state models where are known only the states of the components which are

50 CHAPTER 2. COMPONENT COMPOSITION IN BIP

ready to communicate. The second implements interactions in the partial
state model by using message passing primitives.

The main objectives of this work has been to identify the conditions
for which the three models are observationally equivalent. We show that
in general, the translation from global state to partial state models does
not preserve observational equivalence. Preservation can be achieved by
strengthening the premises of the operational semantics rules by an oracle.
This is a predicate depending on the priorities of the BIP model. We show
that there are many possible choices for oracles. Maximal parallelism is
achieved for dynamic oracles allowing interaction as soon as possible.

2.6.1 Basic Concepts

A distributed system is a collection of loosely coupled independent com-
ponents, communicating by explicit message passing. The components are
intrinsically concurrent and their states may be known only through com-
munication. We cannot determine the exact global state of a distributed
system, we can only approximate it [CL85].

We study a distributed implementation method for the BIP (Behavior,
Interaction, Priority) component framework for modeling heterogeneous sys-
tems [BBS06]. The method allows to get a distributed implementation for
a given BIP model, in there steps:

• It starts from a global state model of the system to be implemented
described in BIP. The model represents the system behavior as a transi-
tion system where transitions are atomic. The BIP execution platform uses
an Engine which coordinates the execution of the components. Atomicity
of transitions implies a strict alternation between the execution of compo-
nents and the Engine: no interaction is possible when some component is
performing a computation.

• From the global state model, a partial state model is derived where
we distinguish between states from which components are ready for inter-
action and states where components are busy by executing some internal
computation. For this model partial state knowledge may suffice for exe-
cuting interactions. We study conditions for the partial state model to be
equivalent to the global state model. The conditions are in the form of an
oracle used by the BIP Engine to safely execute interactions in the presence
of uncertainty about the global state.

• From the partial state model, a distributed model is obtained where
atomic multiparty interactions of the partial state models are replaced by
communication protocols. In this model, components exchange messages to
communicate with the Engine represented by an additional component.

The main results are conditions for which the three models are obser-
vationally equivalent by considering as silent the actions corresponding to
internal computations of the initial global state model. They are described

2.6. DISTRIBUTED MODEL OF BIP 51

in more details below.

BIP combines two powerful mechanisms for describing multiparty inter-
actions between components: interactions and priorities. A system model
is layered. The lowest layer contains atomic components whose behavior
is described by state machines with data and functions described in C. As
in process algebras, atomic components can communicate by using ports.
The second layer contains interactions which are relations between com-
munication ports of individual components. Priorities are used to express
scheduling policies by selecting amongst the enabled interactions of the layer
underneath.

The current implementation of BIP is based on global state semantics.
From a BIP model, a compiler is used to generate C++ code for a dedi-
cated platform. The platform uses an Engine that directly interprets the
operational semantics rules. For a given global state, the Engine computes
from the set of the communication ports offered by individual components
and the set of interactions, the set of the enabled interactions. Amongst
these, the Engine chooses a maximal one, according to the priorities of the
third layer, and notifies the involved components which can continue their
computation.

We define partial state semantics for BIP where the assumption of atomic
execution of transitions does not hold. This is a straightforward generaliza-
tion of global state semantics where interactions are separated from internal
computation in the components. A component may be either in a busy
state or in a ready state. A busy state corresponds to the execution of some
internal computation. When the computation terminates, some ready state
is reached. From this state the component can participate in interactions
and move again to some busy state.

The implementation problem for a partial state model is to find an En-
gine that may execute interactions even for partially known states, while
preserving (observational) equivalence with the corresponding global state
model. The following example shows that in general, the two models are
not equivalent.

Example 2.6.1 (Broadcast) Consider a BIP model consisting of four com-
ponents A,B, C, D each one offering cyclically an interaction through ports
a, b, c, d followed respectively by the execution of functions fa, fb, fc, fd (Fig-
ure 2.41(a)). We assume that A is a sender and B,C,D are receivers. A
can broadcast a message through a and the set of the possible interactions
is γ = {a, ab, ac, ad, abc, abd, acd, abcd}. Priority rules are used to ensure
that amongst all the possible interactions from a state only a maximal one is
possible. This is expressed by using a priority order on interactions π with
rules of the form x ≺ xy where x and xy are interactions. These rules say
that whenever both interactions x and xy are enabled, only interaction xy

52 CHAPTER 2. COMPONENT COMPOSITION IN BIP

✐☛ ✐☛ ✐☛ ✐☛
a, fa

a

b, fb

b

c, fc

c

d, fd

d

Interactions: γ

Priorities: π

(a) Global State Model

✐

✐

✕ ☛ ✐

✐

✕ ☛ ✐

✐

✕ ☛ ✐

✐

✕ ☛
a

a

fa b

b

fb c

c

fc d

d

fd

Interactions: γ

Priorities: π

(b) Partial State Model

Figure 2.41: A System with Four Components

can be executed. That is, maximal progress is enforced. For this example,
the only possible interaction is abcd and thus the functions fa, fb, fc, fd are
executed synchronously.

The partial state model for this system is shown in Figure 2.41(b). It is
possible, due to the separation between interaction and internal computation,
to reach a configuration where the receivers are in a busy state. In that
case, only the ready components will be synchronized. Thus an arbitrary
desynchronization of the receivers with respect to the sender is possible.

Example 2.6.2 (Rendezvous) Consider again the previous example where
broadcast is replaced by three rendezvous: γ = {ab, bc, cd} and π is such that
ab ≺ bc, cd ≺ bc in the global state system. This system executes forever
the interaction bc. Consider the corresponding partial state system where
interactions are separated from functions. For this system, it is possible to
execute the sequence ab.(fa.cd.fc.fb.ab.fd)

ω which goes through states never
enabling the interaction bc.

The above examples motivate the definition of partial state semantics
where the premises of the operational semantics rules include an oracle,
a predicate parameterized by a dependency relation between interactions.
The dependency relation is an abstraction of the priorities of the initial BIP
model. The oracle characterizes the partial states from which an interaction
can be safely executed: if an interaction a1 depends on an interaction a2,
then a1 cannot be executed if the system has some internal evolution leading
to a state enabling a2. We show that there are many possible choices for
oracles. If the time for computing them is negligible, best performance is
achieved for oracles allowing interaction as soon as possible in order to reduce
waiting times of ready components. The worst performing oracle is the one
allowing interaction only when all the components are at ready states. For
this oracle partial and global state semantics coincide.

We study a transformation from the partial state model to a distributed
one. This consists in replacing atomic interactions by protocols using mes-
sage passing. For distributed semantics, the Engine becomes an additional

2.6. DISTRIBUTED MODEL OF BIP 53

component. The results are applied to obtain a multi-threaded implemen-
tation for BIP. We analyze performance of this implementation for different
types of oracles as well as with respect to the global state semantics model.

The method presented is not specific to BIP and can be applied for the
implementation of systems in particular in two cases. First, for concurrent
systems with fairness constraints which at implementation level, become
scheduling policies expressed by dynamic priorities. Second, for systems
involving communication by broadcast. This requires mechanisms for iden-
tifying the maximal set of interacting components that can be specified by
using priorities. Consequently, the proposed method can be used for correct
implementation.

The chapter is organized as follows. In section 2.6.2, we present the
partial state semantics for BIP. In section 2.6.4, we study oracles and their
properties. We show correctness of partial state semantics enforced by an
oracle with respect to global state semantics.

2.6.2 Partial State Semantics

The model with global state semantics presented in section 2.2.2 is based
on the fact that transitions are atomic and a global state is always defined.
To obtain the partial state model corresponding to a global state model, we
1) replace atomic components by their partial state models; 2) extend the
operational semantics rules for interactions and priorities.

Atomic Components To model concurrent behavior, we associate with
each atomic component, its corresponding partial state model. Atomic com-
ponents with partial states behave as atomic components with the difference
that each transition is decomposed into a sequence of two transitions: an
interaction (visible transition) followed by an internal computation or busy
transition. Between these two transitions, a new busy state is added. Busy
states are transient states considered by the Engine as undefined states of
the component.

Definition 2.6.3 (Atomic Component with Partial States) Given an
atomic component B = (Q,P,→), we define the associated partial state
model as the transition system B⊥ = (Q ∪ Q⊥, P ∪ {β},) where

• Q⊥ = {qt | t ∈→} such that Q⊥ ∩ Q = ∅. Q⊥ is a set of busy states
in bijection with the set of transitions →.

• β is a port name not in P

• ⊆ (Q ∪ Q⊥) × P ∪ {β} × (Q ∪ Q⊥) where if t = (q1, p, q2) ∈→, then

q1
p
 qt and qt

β
 q2.

Interaction We define below interactions for partial state models.

54 CHAPTER 2. COMPONENT COMPOSITION IN BIP

Definition 2.6.4 Given a BIP model built from a set of atomic components
{Bi = (Qi, Pi,→i)}

n
i=1, of the form γ(B1, . . . , Bn), we define the correspond-

ing partial state model γ⊥(B⊥
1 , . . . , B⊥

n) such that

• B⊥
i is the partial state model B⊥

i = (Qi ∪ Q⊥
i , Pi ∪ {βi}, i)

• γ⊥ = γ ∪ {βi}
n
i=1

Notice that γ⊥(B⊥
1 , . . . , B⊥

n) = (
⊗n

i=1(Qi ∪Q⊥
i), γ⊥,). The transition

relation can be equivalently defined by the rules:

a = {pi}i∈I ∈ γ ∀i ∈ I. qi
pi
 i q′i ∀i 6∈ I. qi = q′i

(q1, . . . , qn)
a
 (q′1, . . . , q

′
n)

qi
βi
 q′i

(q1, . . . , qi, . . . , qn)
βi
 (q1, . . . , q

′
i, . . . , qn)

The first rule is the same as the composition rule for the global state seman-
tics. The second rule defines the busy transitions of the composite system.

The state space can be split into two disjoint sets
⊗n

i=1(Qi ∪ Q⊥
i) =

Qg ∪Qp. The set of global states Qg =
⊗n

i=1 Qi which is the set of states of
γ(B1, . . . , Bn). The set of partial states Qp where at least one component is
busy.

Definition 2.6.5 For q, q′ ∈ Qp ∪Qg, we write q
β
 q′ if q

βi
 q′ for some i.

Property The relation
β
 is terminating and confluent. Thus, from any

partial state, a unique global state is eventually reached by executing β-
transitions.

Priority The above property is used to define priorities for partial state
models. The priority relation at some partial state should agree with the
priority relation at the global state reached by executing β-transitions.

Definition 2.6.6 Given a BIP model πγ(B1, . . . , Bn), the corresponding
partial state model is π⊥γ⊥(B⊥

1 , . . . , B⊥
n) where π⊥ ⊆ γ×(Qg ∪Qp)×γ such

that a1π
⊥
q a2 if ∃q′ ∈ Qg. q

β∗

 q′ ∧ a1πq′a2.

Note that π⊥ is a priority and it coincides with π on Qg.

Example 2.6.7 (Broadcast/Rendezvous with partial states) The par-
tial state model for the system in example 2.6.1 has the atomic components
A⊥, B⊥, C⊥ and D⊥ with two states and two transitions defined by

X⊥ = ({qX , q⊥X}, {x, βX}, {(qX , x, q⊥X), (q⊥X , βX , qX)})

2.6. DISTRIBUTED MODEL OF BIP 55

where (X, x) ∈ {(A, a), (B, b), (C, c), (D, d)}. For the broadcast, γ⊥ = {a, ab, ac, ad, abc, abd, abcd}∪
{βA, βB, βC , βD} and π⊥ is such that for all states q in γ⊥(A⊥, B⊥, C⊥, D⊥),
we have π⊥

q = {(x, xy) | (x, xy) ∈ γ2}. For the rendezvous (example 2.6.2),

we have γ⊥ = {ab, bc, cd} ∪ {βA, βB, βC , βD} and π⊥ is such that for all
states q in γ⊥(A⊥, B⊥, C⊥, D⊥), we have π⊥

q = {(ab, bc), (cd, bc)}.

2.6.3 Comparing Global and Partial State Semantics

We study sufficient conditions for partial state models to be behaviorally
equivalent to global state models. We use observational equivalence [Mil95]
for this comparison by considering that β-transitions are not observable.
As noticed in the introduction (Example 2.6.1), observational equivalence
is not preserved. The systems πγ(A,B, C, D) and π⊥γ⊥(A⊥, B⊥, C⊥, D⊥)
are not observationally equivalent. The global state model can perform only
the maximal interaction abcd while in the partial state model, non maximal
synchronization is possible. For instance, we have the transitions:

(qA, qB, qC , qD)
abcd
 (q⊥A , q⊥B , q⊥C , q⊥D)

β
 (qA, q⊥B , q⊥C , q⊥D)

a
 (q⊥A , q⊥B , q⊥C , q⊥D)

Thus, in general, a BIP model is not observationally equivalent to its
partial state model. Nonetheless, the following theorem shows that if π = ∅,
γ(B1, . . . , Bn) and γ⊥(B⊥

1 , . . . , B⊥
n) are observationally equivalent.

We define observational equivalence of two transition systems A = (QA, L∪
{β},→A) and B = (QB, L∪{β},→B). It is based on the usual definition of
weak bisimilarity where β-transitions are considered unobservable.

Definition 2.6.8 (Weak Simulation) A weak simulation over A and B
is a relation R ⊆ QA × QB such that we have ∀(q, r) ∈ R, a ∈ L. q

a
→A

q′ =⇒ ∃r′. (q′, r′) ∈ R ∧ r
β∗aβ∗

→ B r′ and ∀(q, r) ∈ R. q
β
→A q′ =⇒

∃r′. (q′, r′) ∈ R ∧ r
β∗

→B r′

A weak bisimulation over A and B is a relation R such that R and R−1

are simulations. We say that A and B are observationally equivalent and
we write A ∼ B if for each state of A there is a weakly bisimilar state of B
and conversely.

We use this definition to compare partial state and complete state se-
mantics.

Theorem 2.6.9 γ(B1, . . . , Bn) ∼ γ⊥(B⊥
1 , . . . , B⊥

n)

2.6.4 Partial State Semantics with Oracles

Let γ(B1, . . . , Bn) be a system obtained as the composition of atomic com-
ponents Bi = (Qi, Pi,→i) by using a set of interactions γ ⊆ 2P where

56 CHAPTER 2. COMPONENT COMPOSITION IN BIP

P =
⋃n

i=1 Pi. The corresponding partial state system γ⊥(B⊥
1 , . . . , B⊥

n) con-
sists of the components B⊥

i = (Qi ∪ Q⊥
i , Pi ∪ {βi}, i) composed by using

interactions in γ⊥. As above, we take
⊗n

i=1(Qi ∪ Q⊥
i) = Qg ∪ Qp. We also

suppose that π is a priority for γ(B1, . . . , Bn), and π⊥ is its extension to
partial states.

2.6.4.1 Basic Definitions and Properties

For a system γ⊥(B⊥
1 , . . . , B⊥

n), a state q ∈ Qg ∪Qp and an interaction a ∈ γ,
we say that a is enabled at state q and we write Act(q, a), if the transition

a is possible from state q. That is, q
a
 q′ for some state q′. We say that

a is disabled at state q and we write disabled(q, a), if there is an atomic
component in a ready state that prevents synchronization on a. That is, if
a = {pi}i∈I there is i ∈ I, qi ∈ Qi such that qi 6

pi
 .

For global states, disabled(q, a) is equivalent to q 6
a
 and in particular

we always have either disabled(q, a) or Act(q, a). However, for partial
states the status (disabled or enabled) of an interaction a at a given state
may be unknown if some components involved in a are in busy states.

To compare partialness of states, we define a partial order relation over
the states of composite components.

Definition 2.6.10 (State Ordering) For q, r ∈ Qg ∪ Qp, q ≤ r ⇐⇒
∀i ∈ {1..n}. (ri = qi ∨ qi ∈ Q⊥

i).

For a given relation π⊥, an oracle is a predicate O on (Qp ∪ Qg) × γ
used to strengthen the premises of the semantic rule for γ⊥(B⊥

1 , . . . , B⊥
n).

Oracles are defined so that π⊥γ⊥
O(B⊥

1 , . . . , B⊥
n) is observationally equivalent

to πγ(B1, . . . , Bn) where γ⊥
O(B⊥

1 , . . . , B⊥
n) is the behavior restricted by the

oracle. We introduce first a notion of composition with an oracle and in
Subsection 2.6.4.2, we introduce oracles.

Definition 2.6.11 (Composite Components with Oracle) Given an or-

acle O on (Qp ∪Qg)× γ, we define B
def
= γ⊥

O(B⊥
1 , . . . , B⊥

n) as the transition
system (Qp ∪ Qg, γ⊥,) where is the least set of transitions satisfying
the rules

a = {pi}i∈I ∈ γ ∀i ∈ I. qi
pi
 i q′i ∀i 6∈ I. qi = q′i O(q1, . . . , qn, a)

(q1, . . . , qn)
a
 (q′1, . . . , q

′
n)

qi
βi
 i q′i

(q1, . . . , qi, . . . , qn)
βi
 (q1, . . . , q

′
i, . . . , qn)

The following proposition says that a system with an oracle O strongly
simulates ([Mil95]) a system with oracle O′ such that O =⇒ O′.

2.6. DISTRIBUTED MODEL OF BIP 57

Proposition Let O and O′ be two oracles for the system γ⊥(B⊥
1 , . . . , B⊥

n),
such that O =⇒ O′. They define two systems B = γ⊥

O(B⊥
1 , . . . , B⊥

n) =
(Qg ∪Qp, γ⊥,→O) and B′ = γ⊥

O′(B⊥
1 , . . . , B⊥

n) = (Qg ∪Qp, γ⊥,→O′). Every
state of B is strongly similar to some state of B′.

2.6.4.2 Oracles

We defines oracles parameterized by a dependency relation ⊑ on interac-
tions. This relation contains π⊥ but it need not be an order as shown
below.

Definition 2.6.12 (Oracle) A ⊑-oracle for a system γ⊥(B⊥
1 , . . . , B⊥

n) and
a dependency relation ⊑⊆ γ×(Qg∪Qp)×γ, is a predicate O on (Qg∪Qp)×γ
such that:
•(Dependency Enforcement)

O(q, a) =⇒
(
∀a′. a ⊑q a′ =⇒ disabled(q, a′) ∨ Act(q, a′)

)

•(Soundness) q ∈ Qg =⇒ ∀a ∈ γ. O(q, a)

The dependency enforcement condition means that the oracle allows exe-
cution of a from state q if the status (enabled or disabled) of the interactions
a′ that dominate a (i.e., a ⊑q a′) is known.

Property If ⊑1⊆⊑2 and if O is a ⊑2-oracle, then it is a ⊑1-oracle.
We will now define several π⊥-oracles for the system γ⊥(B⊥

1 , . . . , B⊥
n)

providing various degrees of parallelism and cost of implementation. There
is a compromise to make between the degree of parallelism allowed by an
oracle, and the cost for its implementation.
Ideal Oracle The best possible oracle is defined by

Oideal(q, a) ⇐⇒
(
∀a′. aπ⊥

q a′ =⇒ disabled(q, a′) ∨ Act(q, a′)
)

However, such an oracle is difficult to implement. It requires that at a
given partial state q, the Engine is able to compute the relation π⊥

q which

according to the definition of π⊥ (Definition 2.6.6) boils down to computing
the global state q′ reachable from q. For this, in the general case, the Engine
has to know the transition relation of the global state system.
Dynamic Oracle We use now a dynamic approximation ⊑dyn of π⊥. The

reachability condition q
β∗

 q′ in the definition of π⊥ is replaced by a com-
parison q ≤ q′, i.e., a ⊑dyn

q a′ ⇐⇒ ∃q′ ∈ Qg. q ≤ q′ ∧ aπq′a
′. The dynamic

oracle is defined by:

Odyn(q, a) ⇐⇒ (∀a′. a ⊑dyn
q a′ =⇒ Act(q, a′) ∨ disabled(q, a′))

For the dynamic oracle, the Engine does not need a complete knowledge of
the state of the system in order to compute ⊑dyn

q for a given partial state q.

58 CHAPTER 2. COMPONENT COMPOSITION IN BIP

Static Oracle The static oracle Ostatic is defined via a static approximation
⊑st of π⊥: a ⊑st

q a′ ⇐⇒ ∃q′ ∈ Qg. aπq′a
′. We write ⊑st instead of ⊑st

q as
the relation does not depend on q. The static oracle is defined by:

Ostatic(q, a) ⇐⇒ (∀a′. a ⊑st a′ =⇒ Act(q, a′) ∨ disabled(q, a′))

Lazy Oracle The lazy oracle forbids all interactions from partial states. It
waits for all the atomic components to finish their computation in order to
know all the possible interactions. It is defined by Olazy(q, a) ⇐⇒ q ∈ Qg.
Proposition Oideal, Odyn, Ostatic and Olazy are π⊥-oracles and we have,
Olazy =⇒ Ostatic =⇒ Odyn =⇒ Oideal.

The above result with Proposition 2.6.4.1 shows that these oracles pro-
vide an increasing degree of parallelism.

2.6.4.3 Correctness with Respect to Global State Semantics

The systems πγ(B1, . . . , Bn) and π⊥γ⊥
O(B⊥

1 , . . . , B⊥
n) are observationally

equivalent when O is a π⊥-oracle.

Theorem 2.6.13 Let π be a priority relation for the system γ(B1, . . . , Bn)
and O a π⊥-oracle for the system γ⊥(B⊥

1 , . . . , B⊥
n). The systems πγ(B1, . . . , Bn)

and π⊥γ⊥
O(B⊥

1 , . . . , B⊥
n) are observationally equivalent.

Part II

Implementation: Language
and Tool-chain

59

Chapter 3

The BIP Language

For representing system models in the BIP framework, we propose, in this
chapter, the BIP language. The BIP language provides syntactic constructs
for describing systems conforming to the formal framework presented in
Section 2.3. It is a co-ordination language, and is an extension of the C pro-
gramming language. It leverages on C style variables and data type declara-
tions, expressions and statements, and provides additional structural syntac-
tic constructs for defining component behavior, specifying the co-ordination
through connectors, and describing the priorities. The language enables us
to express the concurrent and sequential behavior of systems, as an inter-
connection of components. A system can be described hierarchically, and
timing information can also be expressed in the same description.

The principal constructs are:

1. atom: to specify behavior, with an interface consisting of ports. Be-
havior is described as a set of transitions. Transitions are labeled by
ports.

2. connector : to specify the co-ordinations between the ports of compo-
nents, and the associated guarded actions.

3. priority : to restrict the possible interactions, based on conditions de-
pending on the state of the integrated components.

4. compound : to specify systems hierarchically, from other atoms or com-
pounds, with connectors and priorities.

5. model : to specify the entire system, encapsulating the definition of the
components, and specify the top level instance of the system.

The language allows defining types for port, atom, connector, and com-
pound, defining priorities, and instantiating objects of the defined types.
Every instantiated object has a scope. The scope in a BIP description are:

61

62 CHAPTER 3. THE BIP LANGUAGE

1. atom

2. compound

3. model

4. package

3.1 Basic Language Elements

Identifiers

An identifier is composed of a sequence of one or more characters. A legal
character is an upper case letter (A . . . Z), a lower-case letter (a . . . z), a digit
(0 . . . 9) or the underscore () character. The first character of an identifier
may be a letter or underscore. Identifiers are case sensitive.

Reserved Words

The following identifiers are reserved words in the language (also called key-
words), and therefore cannot be used as basic identifiers in a BIP description.

atomic component compound connector data
define delayable do down eager
else end export extern from
header if in is initial
lazy model multishot package place
on port priority provided singleshot
timed to type use up

Comments

The language supports C style comments. Single line comments begin with
two consecutive front slashes (//) and extends until the end of the line.
Multi-line comments can be enclosed between a pair of /* and */. Examples
are:

// This is a single line comment

/* This is a

multi line

comment */

Special Pragma

A description enclosed within the character pairs {# and #} is treated
specially for code generation purpose. It acts as a special directive for the
BIP compiler to pass the description as it is to the code generator. This is

3.2. MODELING ATOMS 63

useful for enclosing standard C header files, arbitrary C type and function
definition, or to specify any arbitrary C code. For example:

{# #include<stdarg.h>

typedef char* String; #}

Data Objects and Types

A data object holds a value of a specified type. Objects are created by
object declaration. Basic C data types and C style declaration is adopted
in the BIP language. The keyword data is used to specify a data object
declaration. An example is:

data String name

which defines name as an instance of the type String.

3.2 Modeling Atoms

3.2.1 Port Type

Ports in BIP are typed. The language allows the definition of typed ports,
i.e., ports associated with typed variables. A port type definition is charac-
terized by the number and type of its associated variables. The syntax for
a port type definition is:

port type port-type-name [(typed-variable-list)]

An example of a port type definition, named intPort is the following:

port type intPort(int i)

It defines a port which can be associated with an integer variable. The
variable can be referred by the name i.

3.2.2 Atomic Type

An atomic type defines an atom. Atoms are the leafs in the component
hierarchy. An atomic type is characterized by its ports, and an optional list
of parameters. The syntax is:

atomic type atom-type-name [(parameter-list)]
variable-definition
port-definition
place-definition
[initial-block]
transition-definition
[priority-definition]
[export-definition]

end

64 CHAPTER 3. THE BIP LANGUAGE

Variable

Variables used in an atom are declared as data objects. They are typed,
as in the C language. They may have initial values. A variable may be
qualified as extern if its definition is in an opaque C code. A variable may
be qualified as timed, when it is supposed to evolve with time. The syntax
is:

[extern] [timed] data data-type-name data-instance-name
[= initial-value]

Port

Ports are instances of port-types, and may be associated with atom variables.
A port may refer to multiple variables, and a variable may be referenced by
multiple ports. The syntax is:

port port-type-name port-name [(atom-variable-list)]

The variables in the port instantiation are positionally mapped to the vari-
ables in the corresponding port type definition. For example, to instantiate
a port named p of type intPort, associated with an integer variable x, one
would write,

port intPort p(x)

Implicitly, a port is internal, i.e., representing an internal action which does
not need explicit synchronization for its triggering. However, a port may
be exported by the keyword export to make it visible in the component
interface. Exporting a port has an option to specify the exported name of
the port, i.e., a name by which a port is known in the component interface.
The syntax is the following:

export port port-type-name port-name
[(atom-variable-list)] [= port-export-name]

For example, the port p can be exported with a name out as:

export port intPort p(x) = out

Port can be used in the scope of atoms, in defining connectors and in
compounds.

Place

The behavior of an atomic component may be represented either as an au-
tomata or as a petri-net. The places represents the control-states for the
automata, or places for the petri-net. They are identifiers, preceded by the
keyword place. As an example, to describe three places idle, empty and
full, we write the following,

place idle, empty, full

3.2. MODELING ATOMS 65

Initial Block

The initial statement is used for initializing the control-states and compo-
nent variables. The syntax is:

initial to initial-place-list [do statement-list]

As an example, we can specify idle as the initial place, and initialize an
integer variable as follows:

initial to idle do x=0;

Transition

The behavior is given by a set of transitions modeling atomic computation
steps. The syntax is given below:

on port-name from place-list to place-list
[provided guard-expression]
[timed-guard-expression]
[do statement-list]

A transition is specified by a label (a port name) following the keyword on.
The source(s) of a transition follow the keyword from, while the destina-
tion(s) follows to. The guard of the transition is specified after the provided
keyword. The guard has two parts, an untimed guard and a timed guard.
The untimed guard is a boolean expression of the atomic variables. Timed
guards are useful for modeling timed systems. A timed guard is an expres-
sion of the timed variables of the atom. Timed guards are elaborated in
section 3.6. The guard of a transition is optional, and if not provided, it is
assumed to be true. The action statements of the transition are specified
following the do. The action statements are C statements. An example of
a transition from the place empty to full is

on in

from empty to full provided 0<x do y=f(x);

We assume that the C expressions and statements used in the provided
and do sections are adequately restricted, e.g., they do not have side ef-
fects, and respect the atomicity assumption for transitions i.e., guaranteed
termination.

Priority in Atom

The language offers the option for specifying priority between the ports of
an atom. The syntax is:

priority priority-name port-name < port-name
[provided expression]

66 CHAPTER 3. THE BIP LANGUAGE

Full

Empty Idle

outin

x y

awake

in
[0 < x]

y = f(x)

out

Figure 3.1: An atomic type.

Figure 3.1 shows an atomic reactive component with three ports in,
out, awake, variables x, y, and control states Idle, Empty and Full. The
automaton is initialized to control state Idle, from which it can move to
Empty by the internal transition awake. At Empty, the transition labeled
in is possible if 0<x. When an interaction through in takes place, the
variable x is eventually modified and a new value for y is computed. From
Full, the transition out can occur. The omission of guard and function
for this transition means that the associated guard is true and the internal
computation step is empty.

The BIP description of the reactive component of figure 3.1 is:

atomic type Reactive

data int x, y

export port intPort in(x) = in

export port intPort out(y) = out

port ePort awake

place Idle, Full, Empty

initial to Idle do x=0;

on awake

from Idle to Empty

on in

from Empty to Full provided 0<x do y=f(x);

on out

from Full to Idle

end

The variables associated with a port may be modified on executing the
the transfer function of an interaction, in which the port participates.

A pure event port does not have any associated variables, and provides
the mechanism for event synchronization only (i.e., without any data trans-
fer). The port type ePort used in the code-sample above is an example of
a pure event port.

In the above example, the ports in and out are instances of a predefined
port type intPort, which associates an integer variable with a port. The
variable x is associated with the port in, and y with out respectively. On
the other hand, the internal port awake is of type ePort, which is an event
port, and is not associated with any variable.

3.3. MODELING CONNECTORS 67

Note that a port of an atom is not visible to its environment unless
it is exported explicitly. In the above example, the ports in and out are
exported, whereas the port awake acts as an internal port. It is necessary
to export a port if it has to be used in some connector for synchronization
purpose, as will be evident in the following section.

3.3 Modeling Connectors

A connector defines the set of possible interaction between ports of compo-
nents and the corresponding data-transfer between the variables associated
with the ports. The BIP language allows the definition of connector types.

3.3.1 Connector Type

A connector type defines a connector template, parameterized by a list of
ports. The syntax is as follows:

connector type connector-type-name (port-list) [(parameter-list)]
define port-expression
variable-definition
on interaction1 provided guard1 up { up-statement-list1 }

down { dn-statement-list1 }
on interaction2 provided guard2 up { up-statement-list2 }

down { dn-statement-list2 }
· · ·

end

The keyword define is followed by an expression of its ports in AC(P),
(2.3.2, Algebra of Connectors) specifying the possible set of interactions.

A connector may contain local variables. It also specifies a list of guarded
interactions, with the associated data transfers. The guard follows the key-
word provided, and is restricted to boolean expressions on the variables
associated with the ports.

For every interaction, the data transfer is specified by an up and a down

action. The action up is supposed to update the local variables of the connec-
tor, from the values of variables associated with the ports. Conversely, the
action down is supposed to update the variables associated with the ports,
from the values of the connector variables. The guards are C expression and
the up and down actions consist of C statements.

Additionally, a connector type definition may contain C type parameters.

Simple Connector

Figure 3.2 shows graphically, examples of simple connector types. The con-
nector type named Rendezvous (figure 3.2(a)) is parameterized by three

68 CHAPTER 3. THE BIP LANGUAGE

(b) Broadcast

(with exported port)

(a) Rendezvous (b) Broadcast

i i i i

i

i1

i2

i i

p1 p2 p1 p2 p1 p2p3

p

Figure 3.2: Connector Types.

ports, p1, p2, and p3. p1 and p2 are of type intPort, whereas p3 is of type
int2Port, which associates a port with two integer variables. The connector
type defines a rendezvous between the ports, specified by the AC(P) ex-
pression p1p2p3, with associated guard and transfer functions as described
below:

connector type Rendezvous (intPort p1, intPort p2, int2Port p3)

define [p1 p2 p3]

data int x

on p1 p2 p3 provided (p1.i + p2.i != p3.i1 + p3.i2)

up {x = MAX(p1.i, p2.i, p3.i1, p3.i2);}
down {p1.i = p2.i = p3.i1 = p3.i2 = x;}

end

The connector declares a local integer variable x. The interaction involving
the three ports can occur only when the guard expression (p1.i + p2.i !=

p3.i1 + p3.i2) is true. The data transfer consists of the combined effect
of the up and down actions. In the up action, the MAX of the variables
associated with the ports is calculated and stored in the connector variable
x. In the down action, the value of x is assigned to each port variable. As
a result of the data transfer, the variables associated with the ports are set
to the maximum of their values.

The second example (figure 3.2(b)) defines a connector type named
Broadcast, between two intPorts, p1 and p2. p1 is the trigger of the
broadcast, defined by the AC(P) expression p1′p2. The BIP description is:

connector type Broadcast (intPort p1, intPort p2)

define [p1′ p2]

data int x

on p1

up {x = p1.i;}
down {}

on p1 p2

3.3. MODELING CONNECTORS 69

up {x = p1.i;}
down {p2.i = x;}

end

The data transfer methods describe transfer of value from the variable asso-
ciated with the trigger p1 to the variable associated with the synchron p2.
Also in this example, as no guards are provided with the interactions, they
are, by default, taken as true.

Notice that contrary to other formalisms, BIP does not allow explicit
distinction between input and output ports. For simple data flow relation,
variables can be interpreted as inputs or outputs. For instance, in the con-
nector type Broadcast, p1 can be thought as an output port and p2 as an
input port.

3.3.1.1 Exporting port from Connector

A connector has an option to define a port and export it. This allows a
connector to be used as a port in other connectors, and create structured
connectors. The port export statement can be provided in the connector
type definition, the syntax is:

export port-type-name port-name port-instance-name
[(port-data-list)]

Local variables of the connector can be associated with its exported port.
This allows to manage hierarchical data transfer mechanism. As an example,
consider the connector type definition of Broadcast, which consists of two
intPort and exports an intPort.

connector type Broadcast (intPort p1, intPort p2)

define [p1′ p2]

data int x

on p1

up {x = p1.i;}
down {}

on p1 p2

up {x = p1.i;}
down {p2.i = x;}

export intPort p(x)

end

The export statement creates a port p of type intPort, and associates the
connector variable x with it. This leads to two possibilities: 1) a connector
of type Broadcast can be used as an intPort in another connector, leading
to a structured connector, 2) it can be exported as a port of type intPort

in a compound type (ports of compounds are described later).

70 CHAPTER 3. THE BIP LANGUAGE

For a connector type definition, the type of its exported port forms an
integral part of its signature, in addition to the list of its ports along with
their types, and the C parameters.

3.4 Modeling Compounds

3.4.1 Compound Type

A compound type defines a new component type from existing components
(atom or compound) by creating their instances, instantiating connectors
between them and specifying the priorities. Hence it defines a structural
model from existing components. A compound offers the same interface as
an atom, hence externally, there is no difference between a compound and
an atom.

The syntax for compound type is:

compound type compound-type-name [(parameter-list)]
component-instantiation
connector-instantiation
priority-definition

end

Instantiating Component

A component to be instantiated must be first defined, either as an atomic
type or a compound type. The syntax for instantiating a component is:

component component-type-name component-instance-name
[(component-parameter-list)]

To instantiate a component of type Reactive, we would write:

component Reactive R1

which creates an instance of Reactive named R1.

Instantiating Connector

A connector instance associates the ports of instantiated components through
the interactions defined by the connector type. The ports specified in the
connector instantiation are mapped positionally to the port parameters in
the connector type definition. The syntax is:

connector connector-type-name connector-name
(port-list) [(connector-parameter-list)]

3.4. MODELING COMPOUNDS 71

As an example, an instance C0 of connector type Broadcast, parameterized
by the ports out and in of the components R1 and R2 respectively, is written
as:

connector Broadcast C0(R1.out, R2.in)

Structured Connector

Structured connectors are created by the combined mechanism of exporting
port from a connector and instantiating connectors, where a port of the
connector is an exported port of another instantiated connector. Figure 3.3
shows an example of a structured connector. The connector C0 relates the

i i

i

p
x

p
x

s r1

r2

Sender Receiver1

Receiver2

C1

C0

Figure 3.3: Structured Connector

port s (trigger) of the Sender component with the port r1 (synchron) of
the Receiver1 component, and exports the port p. It represents the AC(p)
interaction sr1′. C1 is a structured connector joining the port p (trigger) of
connector C0 with the port r2 (synchron) of theReceiver2 component. It
represents the AC(p) interaction [sr1′]′r2. The BIP code is:

connector Broadcast C0 (Sender.s, Receiver1.r1)

connector Broadcast C1 (C0.p, Receiver2.r2)

Exporting Connectors: Ports of a Compound

The language allows a compound to export a connector as a port, similar
to exporting ports from atoms. Exporting makes the port (and hence the
connector) visible in the compound interface, and hence allows for its further
synchronization with other components. This also provides a homogeneous
interface for both atoms and compounds, facilitating their seamless usage.

In order to export a connector as a port, the connector itself must have
an exported port. The type of the exported port of the compound is then
the same as the type of the exported port of the connector. The connector
export statement is provided in the body of the compound type definition.
The syntax is:

72 CHAPTER 3. THE BIP LANGUAGE

export port-type-name export-port-name is connector-name

We provide an example (figure 3.4) of exporting a connector as a port from
a compound component. The connector C0 in the compound SendRecv is
exported as a port named sr1, of type intPort. The BIP description is:

compound type SendRecv

component Reactive Sender

component Reactive Receiver1

connector Broadcast C0 (Sender.s, Receiver1.r1)

export intPort sr1 is C0

end

i i

r2

i

Receiver2

px

px

s r1

Sender Receiver1

C1

C0

SendRecv

sr1

Figure 3.4: Exporting Connector as Compound Port

3.5 Modeling Priority

Priorities are expressed by a set of rules, each specifying an order between
a pair of interactions or connectors. The syntax, similar to that of priorities
in atoms, is as follows:

priority priority-name interaction-or-connector-name <

interaction-or-connector-name
[provided expression]

The keyword provided is followed by an expression (boolean expression in
C) representing the global guard for dynamic priorities. The expression can
only refer to variables associated to the ports of the interactions specified
in the priority, or exported variables. The provided statement is optional,
and if omitted, the guard is considered to be true. This is the case for static
priorities.

3.6. MODELING TIMED SYSTEMS: TIMED GUARDS 73

When a priority is expressed between connectors, the rule apply between
all pairs of possible interactions between the connectors.

The maximal progress priority is enforced implicitly by the BIP engine:
if an interaction is contained in another one, the latter has higher priority
to the former.

Shown below is an example of priority specification in BIP.

priority P1 C1:R1.in < C2:R1.out, R2.in

priority P2 C2 < C4 provided (R2.x > 0)

The priority labeled P1 is a static priority between the interaction R1.in

and R1.out, R2.in. Note that the syntax requires also to specify the label
of the connector with the interaction. The priority P2 is dynamic, and is
specified between the connectors C2 and C4.

Note that an interaction corresponding to an internal port has a higher
priority over other interactions.

Compound types can also contain C type parameters, similar to atomic
types. The language provides a homogeneous interface for both atomic and
compound types. Similar to atomic types, a compound type is characterized
by its type name, list of parameter, and the ports of its interface.

An example of a compound type, named System, is shown in figure 3.5.
It is the serial connection of three Reactive components R1, R2 and R3, with
connectors and priorities. The BIP description is:

compound type System

component Reactive R1, R2, R3

connector Singleton C1(R1.in)

connector Broadcast C2(R1.out, R2.in)

connector Broadcast C3(R2.out, R3.in)

connector Singleton C4(R3.out)

priority P1 C1 < C3

priority P2 C1 < C4

priority P3 C2 < C4

end

3.6 Modeling Timed Systems: Timed Guards

The BIP language allows modeling of timed systems by using timed variables
and associating deadlines with the atomic transitions. They are conditions
on the timed variables that determine when a transition must be triggered by
having priority over time progress. This is achieved by associating urgency
type with the transitions, namely eager, delayable and lazy, as described
in 2.4.1.

The syntax for representing timed guards in BIP is the following:

74 CHAPTER 3. THE BIP LANGUAGE

Idle

Full

Empty Idle

Full

Empty Idle

Full

Empty

R1 R3R2

C1
C2 C3

C4

System

outin outin outin

π : C1 ≺ C3, C1 ≺ C4, C2 ≺ C4

Figure 3.5: A compound type.

eager | delayable | lazy
timed-var in (lower-bound, upper-bound)

where lower-bound and upper-bound are the bounds of the deadline. They
are expressions in C, which evaluates to real values. An example of a timed
component is:

atom type Worker

timed data clock

export port intPort work

· · ·
place working, idle

initial to working

on work from working to idle delayable clock in (2,5)

· · ·
end

3.7 Arrays

The language allows to create static arrays of components and connectors.
This is similar to defining arrays, as in the C language, by specifying a static
dimension. Individual elements of the array can be accessed by indexing.

Array of Components

The syntax for creating an array of component instance is:

component component-type-name component-instance-name [dimension]
[(component-parameter-list)]

Below we define a compound type named System that instantiates an array
of Reactive components.

3.8. PACKAGE AND SYSTEM 75

compound type System (int length)

component Reactive R[length]

· · ·
export port intPort input is R[0].in

export port intPort output is R[length-1].out

end

It also exports port in and out of the 0th and length− 1th instance respec-
tively as ports of the compound, named input and output.

Array of Connectors

connector connector-type-name connector-instance-name [dimension]
(component-port-list) [(connector-parameter-list)]

We also introduce a macro notation, denoted as $ which refers to all the
instances of the array obtained by substituting $ by indices of the array
dimension. This is useful to specify the component port instances for the
connectors. An example of an array of Broadcast connectors is:

compound type System (int length)

component Reactive R[length]

connector Broadcast Cnx[length-1] (R[$].out, R[$+1].in)

· · ·
end

Here Cnx is an array of Broadcast connector, where the ith connector asso-
ciates the ports R[i].out and R[i+1].in.

3.8 Package and System

The package declaration allows to create a library of BIP component and
connector types to be used in different designs. In addition, common C data-
stuctures and functions can also be defined inside a package. A package is
identified by a name, and may use other defined packages. The syntax is:

package package-name
[use other-package-name]
C-data-structure-function-list
component-definition-list
connector-definition-list

end

The use statement imports the definition of a package. A package is com-
piled to a library by the BIP compiler, which can be imported in the design
of a system. Hence packages support for separate compilation. An example
package definition is shown below:

76 CHAPTER 3. THE BIP LANGUAGE

package my pack

{# typedef char* String; #}
port type IntPort(int x)

port type ePort

connector type SendRec(IntPort s, IntPort r)

define [s r]

data int val

on s r up {val = s.x;} down {r.x = val;}
export IntPort p(val)

end
atomic type Producer

data int i

export port IntPort comm(i)

port ePort work(i)

place idle

place working

initial to idle do i=0;

on work

from working to idle

do i=i+1;

on comm

from idle to working

end
end

It defines a package named my pack. The package defines a C typedef, a
port type and a connector type.

The design of an entire system is enclosed in a model. The model may
include packages, and define components, connectors, and C data-strucures
and functions, as in a package. It also specifies the top level instance of the
design, known as the root component. The syntax of model is:

model model-name
[use package-name]
C-data-structure-function-list
component-definition-list
connector-definition-list
root-component-instantiation

end

We provide the description of an entire system below. It models a Producer
and Consumer component. They work independently, and synchronize by
a rendezvous which transfers data (integer) from the Producer to the Con-
sumer.

model ProdCons

3.9. EXPRESSION AND STATEMENT 77

use my pack

atomic type Consumer

data int j

export port IntPort comm(j)

port ePort work

place idle

place working

initial to idle

on work

from working to idle

do printf("j=%d\n", j);

on comm

from idle to working

end
compound type System

component my pack.Producer P

component Consumer C

connector my pack.SendRec cnx (P.comm, C.comm)

end
component System S

end

The model ProdCons uses the package my pack. It defines an atom Consumer,
and a compound System. In System, P is an instance of the Producer com-
ponent which is defined in the package my pack, while C is an instance of
Consumer, defined in the model itself. The connector cnx is of type SendRec,
which is also defined in my pack. The root component S is an instance of
the top level component System.

3.9 Expression and Statement

The expressions in BIP are essentially C expressions, with the same set
of operators, arithmetic and logical. The language has also some limited
support for array indexing and pointer dereferencing. However, arbitrary
expressions may also be specified, enclosed within {# · · · #}. The only
restriction in this case is that the expressions are not parsed by the BIP
compiler, and directly embedded in the generated application code.

The statements are a subset of C statements. The compiler currently
supports assignment and conditional statements. However, arbitrary state-
ments can be specified within {# · · · #}. C style function call statements
are supported, but the validation of the function parameters is delayed until
the compilation of the application code.

The complete grammar of the BIP language is provided in the ap-
pendix 6.3.2.3.

78 CHAPTER 3. THE BIP LANGUAGE

Chapter 4

The BIP Tool-Chain

This chapter presents the implementation of the BIP framework, formally in-
troduced in chapter 2, in the form a tool-chain called the BIP tool-chain [BIP].
The framework has been partially implemented in the IF toolset [BGO+04]
and the Prometheus tool [Gößl01]. The BIP tool-chain provides a com-
plete implementation, with a rich set of tools for modeling, execution, anal-
ysis (both static and on-the-fly) and static transformations. The tools can
be broadly classified into:

• a frontend for editing and parsing BIP programs, and generating an
intermediate model. The model can be used to generate code for
execution and analysis on a backend platform, as well as for other
source level transformations and static analysis.

• a backend platform consisting of an engine and the infrastructure for
executing the generated code.

• connections to external analysis tools.

4.1 Overview of the Tool-Chain

The BIP tool-chain developed at Verimag is shown in figure 4.1. It includes:

• An editor, for textual description of a system in the BIP language.

• A parser, to analyze a BIP program, and to generate the model con-
forming to the BIP meta-model.

• A deparser, to produce BIP description source, back from the model.

• A code generator, for generating C++ code executable on the BIP
engine.

• Other source level transformation tools, at the model level, for opti-
mization and static analysis.

79

80 CHAPTER 4. THE BIP TOOL-CHAIN

The code generator provides, in addition, option to generate THINK spec-
ification [FSLM02], from which the Think tool-chain can generate code to
be executed over a choice of target platforms. The source level tools being

parser

BIP Engine

C++

BIP text

THINK

ModelModel

Code
Generator

Target Platform

Kernel

THINK
Tool Chain

Model-2-Model
Transformation

D-Finder

deparser

Verimag tools External tools

Figure 4.1: The BIP tool-chain.

developed at Verimag to enrich the BIP tool-chain includes the following:

• D-Finder tool [SBS08, BBSN08], to detect deadlocks in BIP models
by static analysis of the model.

• Model-2-model transformation tools, in order to perform useful trans-
formations, like timed BIP model to a basic BIP model, and transfor-
mations for run-time optimizations, such as flattening the hierarchy
and transforming structured connectors to flat connectors.

The editor, parser, deparser and code generator forms the frontend of the
tool-chain. The backend consists of the software infrastructure for executing
the BIP models. They are explained in the following sections.

4.2 The Frontend

The frontend compilation chain transforms BIP programs into an intermedi-
ate model. It consists of a parser and code generator. The parser performs
syntactic analysis of the input program and reports the programming er-
rors. It creates an intermediate representation of the program in the form a
model that conforms to a full-fledged meta-model for BIP, developed using
EMF1 [EMF]. The code generator takes the model generated by the parser,
and produces an application code, which can be executed on the backend.
We provide below a succinct description of the BIP meta-model.

1Eclipse Meta-modeling Framework

4.2. THE FRONTEND 81

4.2.1 BIP Meta Model

The meta-model represents a template of the structure of the intermediate
model to be generated from a BIP program. All the modeling elements,
presented in the BIP language, have a representation in the BIP model
in the form of a data structure. Class diagrams are used to define the
relations between the different modeling elements, through inheritance and
containment. The meta-model has been designed in a manner so that it
is intuitively close to the BIP grammar, and efficient in terms of compact
representation and re-use.

An example of the meta-mode class diagram for a BIP connector type
is shown below in figure 4.2.

Figure 4.2: Meta model representing a Connector Type.

It is defined by a class ConnectorType derived from a base class BipType.
It consists of a list of PortParameter objects, which represents the list
of ports for the connector type. Note that the list has a multiplicity of
at least one, meaning that there must be at least one port parameter for
the connector. Moreover, the list is attributed as ordered to enforce the
positional association of the list elements with the actual arguments.

The class PortExpression defines the AC(P) expression of the connec-
tor, and Variable is a list of the declared connector variables. The interac-
tions specified in the connector are stored as a list of InteractionSpecification
objects, and the exported port of the connector is stored as a PortDefinition.

A detailed description of the individual meta-model classes mentioned
here and the complete meta model of the BIP intermediate representation
is provided in the appendix 6.3.2.3.

82 CHAPTER 4. THE BIP TOOL-CHAIN

4.2.2 Code Generator

The code generator takes as input a model, generated by the parser, and
transforms it to a C++ application code. The application is an executable
model of the original BIP program. Code is generated for each atomic
component, connectors and priorities, i.e., the code is modular and preserves
the structure of the initial model.

The code generator has options for generating application code for two
types of platforms:

• single-threaded

• multi-threaded

For single-threaded platform, the code generator has further options for
generating code for two types of execution:

• running an execution

• performing exhaustive exploration

In the second case, the generated code is instrumented with additional data-
structures and routines which enables to store the states of the components,
and monitor the global state space, needed for exhaustive simulation.

The frontend heavily relies on tools and model-based technologies avail-
able for Java [Jav] under the Eclipse platform. The parser has been devel-
oped using the parser generator ANTLR [ANT], and the meta model has
been developed using the UML tool PAPYRUS [PAP], both of which are
integrated in Eclipse. The code generator bas been implemented in Java.
The parser consists of 4000 lines of code, and the code generator has 5,000
lines of Java code, excluding the auto generated files.

4.3 The Backend

The backend of the BIP tool chain provides a platform for executing and
analyzing the C++ application code, generated by the frontend. It includes
an engine and the associated software infrastructure.

The engine directly implements the BIP operational semantics. It plays
the role of the co-coordinator in selecting and executing interactions be-
tween the components, taking into account the glue specified in the input
component model. It monitors the state of the components and considering
the interaction model, finds all the enabled interactions. It then applies the
priority rules to eliminate the interactions with low priority, and selects one
amongst the maximal enabled, for execution.

We have three different implementations for the BIP engine:

4.3. THE BACKEND 83

1. A centralized enumerative engine, which decides the selection and exe-
cution of the system interactions based on the complete knowledge of
the state of the system. It represents interactions by enumeration.

2. A centralized symbolic engine, where the previous enumerative repre-
sentation of interaction is replaced by a symbolic representation using
BDDs. This implementation allows for efficient execution for some
specific classes of systems.

3. A distributed engine, which computes the possible interactions based
on partial information about the system state. This version is relevant
for the deployment of the system in real distributed platforms.

The engine is entirely implemented in C++ on Linux. This choice has been
made mainly to allow a smooth integration of components with behavior
expressed using plain C/C++ code. For the distributed implementation,
POSIX threads are used.

4.3.1 Centralized Enumerative Engine

In the centralized implementation, the engine works based upon the com-
plete state information of the components. The execution follows a two
phase protocol, marked by the execution of the engine, and the execution of
the atomic components.

In the execution phase of the engine, it computes the interactions possible
from the current state of the atomic components, and guards of the connec-
tors. Then, between the enabled interactions, priority rules are applied to
eliminate the ones with low priority. During this phase, the components
are blocked, and await to be triggered by the engine. The engine selects
a maximal enabled interaction, executes its data transfer, and triggers the
execution of the atomic components associated with this interaction.

The second phase is the execution of the local transitions of the notified
atomic components. They continue their local computation independently
and eventually reach new control states. Here, the atomic components their
enabled transitions to the engine and get blocked. The two phases are
repeated, unless a deadlock is reached or the user wants to terminate the
simulation. The scheme of the protocol is shown in figure 4.3. The execution
of the engine has the following algorithm:

1. initialize the atomic components [init()
2. wait for all atoms to be blocked [sync()]
3. compute the enabled interactions from γ [evaluate()]
4. filter interactions by priority rules from π [filter()]
5. if no enabled interaction, then deadlock, exit.
6. select one out of the maximal interactions
7. perform it’s data transfer [execute()]

84 CHAPTER 4. THE BIP TOOL-CHAIN

Engine

BnB1 B2 . . .

init()/notify()

sync()

filt
er()

π

γ
execute()

evaluate()

Figure 4.3: Centralized engine architecture.

8. trigger the involved atoms [notify()]
9. goto step 2.

where the routine names provided in square brackets are the ones called at
the corresponding step of the algorithm.

Figure 4.3 also shows the communication scheme between the engine
and the components, taking into account the interaction and priority mod-
els. The communication is initiated by the engine by calling init(), which
initializes the components and executes them for the first time. Further
communication from the engine to the components are by calling notify(),
which triggers the atoms concerned in the execution of the selected interac-
tion. The atoms communicate to the engine, specifying their eagerness to
communicate through their enabled ports by calling sync(), and eventually
getting blocked.

The BIP Engine has run-time options for:

• execution

• enumerative state-space exploration

For the execution, the engine offers the possibilities of running either a
random trace (by randomly selecting an enabled interaction for execution),
or an interactive trace, where the user is offered to choose an interaction
out of the enabled ones. When a trace is executed, the engine displays the
sequence of interactions.

The state space exploration mode generates state graphs in the form
of labeled transition systems, as shown in figure 4.4. The state graphs
can be analyzed by model checking [QS82, CE81] and by Observers [Tre94,
Pha94]. The state graph can also be minimized and compared with tools
like Aldebaran [BFKL97].

4.3. THE BACKEND 85

Figure 4.4: LTS generated by exploration.

4.3.1.1 Model checking

We can used the model-checker tool Evaluator [MS00] to perform on-the-fly
verification of temporal properties on the state-space generated by the BIP
engine on exploration of a system. For example, properties like specific order
of execution of interactions in a system can be efficiently verified, as has been
applied in the verification of a robotic controller modeled in BIP [BBG+08].

4.3.1.2 Verification using Observers

For a given system S and a safety property P , we construct first an observer
for P , i.e. an automaton which monitors the behavior of S and reports
an error on violation of P . The verification consists of exploring the state-
space of the product system. Observers can be modeled in BIP itself. They
consists of control states with special labels, like ERROR and PRUNE. Dur-
ing exploration, if a global system state containing the ERROR state of the
observer is reached, an error is reported. This technique has been used in
the verification of timing properties of modules in the BIP model of a robot
controller [BBG+08].

The PRUNE state is used to skip exploration of some specific branch of the
state graph, and is useful in reducing the exploration time for big systems.

4.3.2 Centralized Symbolic Engine

In the enumerative BIP engine, for each connector, the engine needs to
compute all the possible interactions, check which are enabled by evaluating

86 CHAPTER 4. THE BIP TOOL-CHAIN

the guards, and select the maximal enabled one to be executed. As the
number of interactions is exponential in the number of ports in the connector
in the worst case, the performance of this engine degrades for examples
where the topology of the connectors and the typing of their ports produces
exponential number of interactions.

In the boolean BIP engine, component behavior and connectors are rep-
resented as boolean functions. The implementation of the boolean functions
is made using the BDD package CUDD [Som].

For an atomic component, all ports, control states, and guards are rep-
resented by boolean variables. This allows to encode behavior as a boolean
expression of these variables. Similarly, each connector is represented by
the boolean expression of its ports and guards. The global behavior is ob-
tained as a boolean operation on the expressions representing atoms and
connectors.

The choice of an interaction to be executed boils down to evaluating
the guards and control states, substituting their respective boolean vari-
ables, and picking a valuation of the port variables satisfying the boolean
expression that represents the global behavior.

The boolean representation of connectors replaces the costly iteration
step by efficient BDD manipulations. In comparison to the potentially ex-
ponential cost of the enumerative engine, this renders a more efficient engine
with evaluation that, in general, remains linear. The following sections de-
scribe in details the boolean representation of the individual BIP elements
(atoms, connectors, priorities) and its evaluation by the engine.

4.3.2.1 Boolean representation of Atomic Components

For each atomic component Bi = (Qi, Pi,→) and each state q ∈ Qi, we
define boolean functions fq, fBi

∈ B[Qi, Pi] as follows

fq = q ∧
∧

q′ 6=q

q′ ∧
∨

q
a
→


a ∧

∧

p∈Pi\a

i p


 , fBi

=
∨

q∈Qi

fq ∨
∧

p∈Pi

p .

Assuming that the value of a state variable q ∈ Qi is set to true, valua-
tions of port variables in Pi satisfying fBi

correspond to possible transitions
of Bi from the state q. Notice that the constant false valuation means
that the component does not change its state. The boolean function, rep-
resenting all the possible transitions of the product automaton, is then the
conjunction fB =

∧n
i=1 fBi

.

Example 4.3.1 Consider the example of a causality chain, shown in fig-
ure 4.5. It has a sender (S) and two receivers (R1, R2). For a message to
be received by R2, it has to be received at the same time by R1 also. This
co-ordination scheme is common in reactive systems. To avoid confusion

4.3. THE BACKEND 87

i1 r2 i2s i

R1S

r1

r2 i2r1 i1is

π : x ≺ xy

R2

γ : s, sr1, sr1r2, i, i1, i2

l1

l2

l3

l4

l5

l6

Figure 4.5: Causality Chain.

in notations, we denote the control states of S by l1 and l2. The boolean
function representing S is then fS = l1s i∨ l2 si∨ s i, and the functions rep-
resenting the two receivers are computed similarly. Taking the conjunction,
we obtain the boolean function representing the product of the three atomic
components:

fB = (l1 l2 s i ∨ l1 l2 s i ∨ s i) ∧ (l3 l4 r1 i1 ∨ l3 l4 r1 i1 ∨ r1 i1) ∧

(l5 l6 r2 i2 ∨ l5 l6 r2 i2 ∨ r2 i2) .

4.3.2.2 Boolean representation of Connectors

Let P be the set of all ports in the system. In order to obtain a boolean
representation for connectors, we compute, for each connector x, the causal
tree t = τ(x) ([BS08a]). The boolean function fC ∈ B[P] representing a
connector is obtained from the causal tree essentially by inverting the arrows
in order to obtain, for each p ∈ P , the causal rule of the form p ⇒

∨n
i=1 ai

(cf. [BS08a]).
The meaning of such a causal rule is that, for the port p to participate

in an interaction, at least one of ai must be part of it. Finally, observe that
at least one of the nodes forming the roots of causal trees must participate
in the interaction. Therefore, to the conjunction of the above causal rules,
we add the disjunction of roots of t.

Example 4.3.2 In the model of example , the causal order is realized by
the connector s′[r′1r2]. The boolean function representing this connector (as
described in [BS07b]) is

fx = s ∧ (r1 ⇒ s) ∧ (r2 ⇒ r1) .

When several connectors C1, . . . , Cm are used to describe the interactions
in a system, boolean functions are individually computed as above for each

of the Ci and combined by taking fC =
∨m

i=1

(
fCi

∧
∧

p6∈Ci
p
)
, where p 6∈ Ci

means that the port p is not used in Ci.

88 CHAPTER 4. THE BIP TOOL-CHAIN

4.3.2.3 The Engine Protocol

The following protocol is used at each step of the execution to choose an
interaction to be fired. It starts with an initialization phase, where the
following boolean functions are computed: fB ∈ B[

⋃n
i=1 Qi, P], representing

the atomic behaviors; and fC ∈ B[P], representing the connectors. The
conjunction fS = fB ∧ fC is also computed at this stage. The main loop of
the engine consists of the following steps:

1. Each atomic component Bi sends to the engine current its state qi ∈
Qi.

2. The engine picks any valuation a on P , such that (a, q) |= fS ∧
∧n

i=1 qi,
where q is the valuation on

⋃n
i=1 Qi representing the global state of

the system.

3. The engine notifies components of their respective transitions to take,
by communicating to each component Bi the label a∩Pi of the trans-
action to take.

(a, q) |= fS implies a |= fC , which means that a ∈ γ, i.e., the interaction
a is authorized by the interaction model. Similarly, (a, q) |= fB means that
a is active in the current global state q of the system. Thus, any such
interaction a represents an enabled interaction.

The computation in the engine is limited to taking the conjunction of fS

with state variables representing current states of atomic components. The
BDD for fS is only computed once and remains constant throughout the
execution of the BIP model. Thus, this computation is proportional to the
number of atomic components in the system.

4.3.2.4 Benchmarks

We compare the engine execution times of the enumerative and boolean
engines for two benchmark examples. The BIP models for both examples
are limited to synchronization, i.e., do not have any data transfer. Below
we present the two examples and the simulation results.

4.3.2.4.1 Bus Consider a system of N independent clusters of compo-
nents communicating through a “bus”, i.e., a single common connector (see
fig 4.6). Each cluster consists of four components that alternate compu-
tation (transitions labeled ci, for i ∈ [1, 4]) and communication (si, for
i ∈ [1, 4]). Computations of the four components in a cluster are completely
independent and cannot be synchronized. Thus, for each i ∈ [1, 4], there is
a singleton connector ci. On the other hand, communications si are weakly
synchronized by the connector s′1s

′
2s

′
3s4. In this connector, the ports s1, s2,

4.3. THE BACKEND 89

✐ ✐
✲
✛

H

✐ ✐
✲
✛

H

✐ ✐
✲
✛

H

✐ ✐
✲
✛

H

✉N N N

s
1

c
1

s
2

c
2

s
3

c
3

s
4

c
4

s1

c1

s2

c2

s3

c3

s4

c4

Figure 4.6: A unit cluster for the Bus example

✐s

✐c1

✐w1

✐c4 ✐w4
✐c2✐w2

✐c3

✐w3

b1 f1p1r1

b4

f4

p4

r4

b3 f3p3r3

b2

f2

p2

r2

✻
b
1❄f

1

✻p1
❄r

1

✻f3

❄b
3

✻r3
❄p

3

✲b
4

✛
f
4

✲p
4

✛
r
4

✲f2

✛
b
2

✲r2

✛
p
2

✐l0

✐l1 ✐l2
✻

e ❄s
✲s

✛
e

s

e

✉

✉

✉

✉

✉

✉

T1

b
r

f

p P

s

e

T2

p

b
r

f

N

H

(a) (b) (c)

Figure 4.7: BIP models of a task (a) and a processor (b); connectors (c)

and s3 are triggers, whereas s4 is a synchron. This means that communica-
tion is only possible through s4 when at least one other component is ready
to communicate—the fourth component is an observer.

In a system of N clusters (i.e., 4N components), there are 5N connectors.
We say that connectors are sparse in this system, which favors the enumer-
ative engine: execution times of both enumerative and boolean engines are
linear in the number of components.

4.3.2.4.2 Preemptable Tasks This example originates from [WDE05],
where a performance evaluation problem is considered with timed tasks run-
ning concurrently on shared processors. Here, we disregard the timed as-
pects of this example and only consider the aspect of the task behavior
concerned with processor sharing.

Consider M processors and N tasks that can be executed on any pro-
cessor. A processor can have at most two tasks assigned to it at a time:
one running and one preempted. On arrival of a new task, the running
one is preempted. A task is resumed, when the one that has preempted it,
terminates.

The BIP model of the task component type is shown in figure 4.7(a). It
has an “idle” state s, and, for each processor i ∈ [1,M], a “compute” state
ci and a “wait” state wi. An idle task (in state s) can begin execution on
the processor i by taking the transition labeled bi from the state s to the
state ci. It can finish execution by taking the transition labeled fi from the
state ci back to the state s.

90 CHAPTER 4. THE BIP TOOL-CHAIN

A task running on the processor i can be preempted (transition labeled
pi from the state ci to the state wi) and, subsequently, resumed (transition
labeled ri from the state wi to the state ci).

The BIP model of the processor component type is shown in figure 4.7(b).
A processor k is free in the control state l0, and can start executing a new
task by taking a transition labeled s to the state l1. To do so, it must
synchronize with the “begin” port bk of the task to be allocated.

From the state l1, the processor can move back to state l0, if the running
task finishes (transition labeled by e). Otherwise, it can preempt the running
task and start a newly arriving task by taking a transition to l2, labeled by
the port s. To do so, it must synchronize with the “begin” port bk of the
newly arrived task and “preempt” port pk of the currently running task.
Similarly, for a processor with two tasks (state l2) an interaction efkrk ends
the running task and resumes the preempted one.

Each task is connected with every processor and every other task. Fig-
ure 4.7(c) shows the corresponding connectors [bs]′p and [fe]′r between a
task T1, a processor P , and another task T2. For the sake clarity, we show
only the relevant ports.

Thus, in a system of N tasks and M processors, there are 2N(N − 1)M
connectors. We say that connectors are dense in this system, which favors
the boolean engine: execution time of the boolean engine is linear in the
number of components, whereas that of the enumerative engine is linear in
the number of connectors and quadratic in the number N of tasks.

Observe that e.g., connector [bs]′p has two interactions bs and bsp.
Whenever a task is already running on a processor, it has to be preempted
before a new one can be started. This is realized by the maximal progress
rule, i.e., giving priority to bsp over bs. Both enumerative and boolean en-
gines automatically pick the maximal interaction, which does not increase
computational complexity of the underlying algorithms (contrary to arbi-
trary priorities).

4.3.2.4.3 Simulation results We measured the engine execution times
for both examples for 106 iterations of the engine loop. Figure 4.8 shows the
engine execution times, obtained with both the enumerative and boolean
engines, related to the number of components in the system.

As expected, for the Bus example, the execution times of both engines
are close and linear in the number of components (dashed lines in figure 4.8).
The enumerative engine outperforms the boolean one. This is due to the
fact that the basic operation of the boolean engine (BDD conjunction with
the state variable) is more expensive than that of the enumerative engine
(connector evaluation). However, one can reasonably expect that, even if
the number of connectors is linear in the number of components, when this
proportion increases, execution time of the enumerative engine will increase

4.3. THE BACKEND 91

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25

M
ea

su
re

d
T

im
e

(S
ec

on
ds

)

Number of Components

Tasks: boolean
enumerative

Bus: boolean
enumerative

Figure 4.8: Engine execution times.

accordingly, whereas that of the boolean one should stay the same.

In the Preemptable Tasks example, we fixed the number of processors
to M = 4. The execution time of the enumerative engine is linear in the
number of connectors, i.e., quadratic in the number of components (solid
lines in figure 4.8). The execution time of the boolean engine is linear in the
number of components. Thus boolean engine considerably outperforms the
enumerative one.

4.3.2.4.4 Remarks We presented the symbolic implementation of the
BIP execution framework. This implementation is based on computing
boolean representation for components and connectors by using an exist-
ing BDD package. The boolean representation is used by the engine at run
time to compute the interaction to be executed at each iteration of the en-
gine loop. The aim of the symbolic implementation is to reduce the overhead
observed in the original enumerative engine due to this computation.

The main goal of this work is to demonstrate the feasibility of this ap-
proach. Therefore the focus is on the boolean representation of connectors,
i.e., disregarding priorities and guards.

We have compared the execution times of the two engines. For the sym-
bolic implementation, the engine execution time is proportional to the num-
ber of components, whereas, for the enumerative engine, it is proportional
to the number of connectors.

The engine execution times were evaluated for two examples favoring
respectively the two engines. For systems with dense connectors (as in the
Preemptable Tasks example), the execution time of the enumerative engine
explodes, whereas that of the boolean engine remains small. For systems
where connectors are sparse (as in the Bus example), the execution times of
both engines are close, with the enumerative one potentially outperforming

92 CHAPTER 4. THE BIP TOOL-CHAIN

the symbolic one.

As we have mentioned above, the execution time of the boolean engine
depends on the number of components and not on the number of connectors.
Therefore, even when the number of connectors is linear in the number
of components, the boolean engine can outperform the enumerative one,
provided that the average number of connectors per component is sufficiently
high.

The computation of the boolean representation must only be performed
once for each model (e.g., at code generation), and consequently is irrelevant
for the performance comparison. This, together with the above observa-
tions, allows us to conclude that, in general, the symbolic implementation
of the BIP execution model considerably reduces the engine overhead. Fur-
thermore, performance degradation for systems with sparse connectors is
relatively small. It should also be observed that, for systems with dedicated
engine, the choice of the enumerative or symbolic implementation can be
made at code generation phase, in order to optimize the engine performance.

Future work includes extending symbolic implementation to all BIP el-
ements, i.e., priorities and guards. Boolean representation of the latter is
straightforward, but remains to be fully formalized.

4.3.3 Distributed engine

In this section, we present an implementation for the distributed semantics
of BIP, introduced in section 2.6. The model of BIP components with par-
tial states is a first step towards a distributed implementation of BIP by
separating internal computations from interactions. However, this model
uses strong synchronization and therefore is still not directly implementable
on arbitrary platforms where rendezvous is usually not available as a com-
munication primitive.

We present here, a distributed implementation of BIP components with
partial states, where multiparty interactions are replaced by asynchronous
communication protocols (see figure 4.9). The target model is input-output

e?p3p1

ββ

p2

p3

β β

e?...e?...

e!{p1, p2, p3} e!{p1, p2, p3}

e?p2

e?p1

e!... e!... e!...β

p2

p3p1

Figure 4.9: Transformation from atomic BIP components (left) towards
atomic components with partial states (middle) and io-machines (right)

systems (io-systems) that are collections of parallel input-output machines

4.3. THE BACKEND 93

(io-machines) communicating asynchronously by message passing through
FIFO channels. This model is conceptually simple and directly encompasses
primitives offered by languages used for modeling of distributed systems
(such as SDL[IT99] or IO-automata[GL98]) or primitives usually available
on distributed execution platforms (e.g. asynchronous execution of threads
or processes, inter-process and inter-thread communication through FIFO
queues, network protocols).

The principle of implementation is sketched in figure 4.10. Given π⊥γ⊥(B⊥
1 , B⊥

2 , ..., B⊥
n)

and a π⊥-oracle O, the implementation is an io-system consisting of io-
machines Bio

i emulating the behavior of B⊥
i and an additional io-machine,

the Engine E(γ⊥, π⊥,O) realizing the coordination between them. Commu-
nication takes place only between the atomic components and the Engine,
and never directly between different atomic components – this leads to an
io-system with a centralized architecture.

B⊥

1
B⊥

2
B⊥

n

interactions : γ⊥

priorities : ≺⊥

Bio
1

Bio
2

Bio
n

E(γ⊥,≺⊥,O)

Figure 4.10: Implementation: The Overall Structure

Formally, an io-system is a tuple S = (M, Act, {Ai = (Qi, →֒i)}i∈I)
where

• M is a set of messages,

• Act is a set of actions α including outputs j!m – output of the message
m ∈ M to machine j ∈ I, inputs j?m – input of message m ∈ M sent
by machine j ∈ I or uninterpreted actions a,

• {Ai = (Qi, →֒i)}i∈I is a finite set of io-machines, where

– Qi is a finite set of states,

– →֒i⊆ Qi × Act × Qi is a finite set of transitions labeled with
actions.

States of io-systems are represented by configurations {(qi, wi)}i∈I where
qi ∈ Qi is a local state and wi ∈ (I × M)∗ is the FIFO-queue content of
io-machine i. The semantics of io-systems is given as a labeled transition

system on configurations. For each transition qi
α
→֒i q′i of the io-machine

i, we consider the following transitions on configurations corresponding re-
spectively to input, output and uninterpreted actions:

• {..., (qi, (j, m) • w′
i), ...}

τ
→֒ {..., (q′i, w

′
i), ...} when α = j?m,

94 CHAPTER 4. THE BIP TOOL-CHAIN

• {..., (qi, wi), (qj , wj), ...}
τ
→֒ {..., (q′i, wi), (qj , wj • (i,m)), ...} when α =

j!m

• {..., (qi, wi), ...}
a
→֒ {..., (q′i, wi), ...} when α = a,

The implementations of atomic components are io-machines obtained as
follows. Whenever a ready state is reached, they output a message to the
Engine containing (1) the sets of ports on which they are willing to interact
and (2) their local ready state. Then, they wait for a notification from the
Engine indicating the port selected for interaction. Depending on this port,
they continue their execution. Formally, given B⊥

i = (Qi∪Q⊥
i , Pi∪{βi}, i),

its corresponding io-machine Bio
i = (Qi∪Q⊥

i , →֒i) has the same set of states
as B⊥

i and transitions defined by the following rules (see Figure 4.9):

• qi

e!(X,q′i)
→֒i q′i interaction request whenever qi

βi

 i q′i and X = {p | q′i
p

 i}

• qi

e?p
→֒i q′i interaction notification whenever qi

p

 i q′i

qi

e!(X, q′i)

q′i

e?p

q′′i

(a)

i?(Xi, qi)

i!pi

(b)

a

τ

a, ...

⊥, ...

request

interaction

interaction

notification

interaction

notification

resume

interaction

selection

interaction

request

Figure 4.11: Principle of Implementation: (a) io-machines for atomic com-
ponents and (b) io-machine for the Engine

The Engine E(γ⊥, π⊥,O) is an io-machine (see Figure 4.11) realizing the
coordination between atomic io-machines for a given set of interactions γ⊥,
priorities π⊥ and a π⊥-oracle O. Iteratively, the Engine receives and stores
the sets of ports and the local states of components ready to interact. De-
pending on this information, it seeks a feasible interaction, which is maximal
with respect to priorities and allowed by the oracle O. If such an interaction
exists, the Engine executes it by notifying sequentially, in some arbitrary
order, all the involved components. Formally, given π⊥γ⊥(B⊥

1 , B⊥
2 , ..., B⊥

n)
and an oracle O, the Engine is the io-machine (Qe, →֒e) where

• Qe = (γ ∪ {⊥}) ×
⊗n

i=1 2Pi ×
⊗n

i=1(Qi ∪ {⊥}) is the set of states of
the form (a⊥,X,q⊥) with X = (X1, ..., Xn) and q⊥ = (q⊥1 , ..., q⊥n) where

4.3. THE BACKEND 95

• a⊥ ∈ γ ∪ {⊥} is the interaction being currently executed, ⊥ if none;

• Xi ∈ 2Pi , is the set of ports on which component i is able to interact,
empty if still busy;

• q⊥i ∈ Qi ∪ {⊥} is the state qi if component i is ready to interact, ⊥ if
still busy.

• →֒e contains the following transitions

• (⊥,X,q⊥)
i?Xi,qi
→֒e (⊥,X[Xi/i],q⊥[qi/i]) interaction request, stores in-

formation received from component i ready to interact.

• (⊥,X,q⊥)
a
→֒e (a,X,q⊥) interaction selection, whenever an interac-

tion a exists such that a ⊆ ∪n
i=1Xi, a is maximal with respect to

priorities π⊥ and a is allowed by the oracle O at state q⊥. It consists
in executing the interaction and moving to a state from which all the
components involved will be notified.

• (a,X,q⊥)
i!pi
→֒e (a,X[∅/i],q⊥[⊥/i]) interaction notification and cleanup

of the i component involved in the interaction a, that is when a∩Xi =
{pi} 6= ∅,

• (a,X,q⊥)
τ
→֒e (⊥,X,q⊥) resume, when all atomic components have

been notified, that is a ∩ ∪n
i=1Xi = ∅. It consists in moving back to a

state where requests are handled.

The correctness of the implementation is formally established by the
following theorem.

Distributed Execution Platform The distributed semantics is driven by
the engine, for multi-threaded execution of the generated code of the BIP
model. Each atomic component is assigned to a thread, the engine being
a thread itself. The engine is parameterized by a dynamic or lazy ora-
cle. Iteratively, the engine computes feasible interactions available on ready
components. Then, if such interactions exist and the oracle allows them,
the engine selects one for execution and notifies the involved components.

4.3.3.1 Benchmarks

We present two examples illustrating the application of the results on a
prototype implementation. We evaluate for two different types of oracles, the
degree of parallelism over time, measured as the number of simultaneously
executing atomic components. Before providing experimental results, we
analyze the relationship between degree of parallelism and parameters of
the system.

96 CHAPTER 4. THE BIP TOOL-CHAIN

To simplify the analysis, consider a system consisting of n atomic com-
ponents always able to interact through their ports. We distinguish the
following cases, illustrated in Figure 4.12:

b

d
e
g
re

e
o
f
p
a
ra

ll
e
li
sm

b
⋆

d

time

dynamic oracle

lazy oracle

no oracle
n

Figure 4.12: Performance analysis

• For an implementation without oracle, the degree of parallelism is re-
lated to the minimal cardinality b of blocking subsets of atomic components.
A subset of atomic components is blocking iff every interaction in the sys-
tem requires at least one component of the subset to participate. Now, the
degree of parallelism l is such that b ≤ l ≤ n. In fact, whenever less than
b components are running some interaction is possible and the Engine can
eventually launch it;

• For an implementation with the lazy oracle, the maximal degree of
parallelism is related to the maximal degree of interaction d, that is the
maximal number d of components involved in a single interaction. In this
case, the degree of parallelism l is such that 0 ≤ l ≤ d. Interactions can
be executed only from global states so there is no possibility of concurrency
between interactions - the Engine is not able to keep running more than d
atomic components at time;

• Finally, for dynamic oracles, the degree of parallelism is related again
to the minimal cardinality b⋆ of some particular blocking sets of atomic
components, the ones which block all the maximal interactions. We have
b⋆ ≤ b and the degree of parallelism l achieved in this case is such that b⋆ ≤
l ≤ n. Using a similar reasoning as in the case without oracle, whenever less
than b⋆ components are running, there should exist a maximal interaction
ready and the Engine can eventually launch it.

As a first benchmark, we consider a linear chain consisting of a set of
identical components connected serially as shown in Figure 4.13. A com-
ponent Ci has two ports, li and ri. It has a single control state Si, and
two transitions labeled by li and ri. The transition ri is always enabled,
its guard being true, whereas the transition li has a non-trivial guard gi.
We model broadcast from each component to its right neighbor by consider-
ing two types of interactions, 1) a set of singleton interactions consisting of

4.3. THE BACKEND 97

the ports ri; 2) a set of binary interactions rili+1 between the neighboring
components, and 3) the priority riπrili+1 for the above interaction pair.

ri-1
true

li-1 ri-1

li-1
gi-1

Si-1 ri
true

li ri

li
gi

Si ri+1
true

li+1 ri+1

li+1
gi+1

Si+1

Interactions: {ri , ri li+1}i∈ I

Priorities: {ri ππππ ri li+1 }i∈ I

Ci-1 Ci Ci+1

Figure 4.13: The Linear Chain

0 2

31

5

4 6

7

8 10

119

13

12 14

15

(a) (b)

in

out
ph:=ph+1

in

out

Priorities: {outiinj ππππoutkini, if(phi=phk)}

Interactions: {outjini if(phj=phi); i∈ [0,N], j∈ {i+2k}k∈∈∈ ∈ [i, ln(N)-1]}

0 2

31

5

4 6

7

8 10

119

13

12 14

15

(a) (b)

in

out
ph:=ph+1

in

out

in

out
ph:=ph+1

in

out

Priorities: {outiinj ππππoutkini, if(phi=phk)}

Interactions: {outjini if(phj=phi); i∈ [0,N], j∈ {i+2k}k∈∈∈ ∈ [i, ln(N)-1]}

Figure 4.14: The Parallel Adder

Our experiment considers a system with 25 such components. Each com-
ponent executes 100 steps (transitions), getting busy for 50-60 milliseconds
on an l transition and 5-6 milliseconds on an r transition respectively. We
performed the experiment on a single-processor PC running linux. The busy
times of the atomic components were simulated by sleep system calls. We
measured the degree of parallelism in the system with respect to the exe-
cution time. Figure 4.15 shows the results obtained for dynamic and lazy
oracles.

Without oracle, the degree of parallelism is 25 continuously. In fact,
whenever a component is ready, it can continue alone on the r interaction
and the Engine notifies it immediately. For the lazy oracle, the maximal
degree of parallelism equals the maximal degree of an interaction, which
is 2. Whenever an interaction takes place, the two participating atomic
components are active simultaneously for the first 5-6 ms, after which only
the atomic component performing the l transition remains busy for 50-60
ms. Therefore, the degree of parallelism stays at an average close to 1.
Finally, for dynamic oracle, the minimal blocking set has cardinality 12 (as
for a linear chain with n atoms, the minimal cardinality is n/2, when every
alternate atoms are busy blocking all the maximal interactions). Hence, we
have at least 12 atomic components executing at any time. The measured
degree of parallelism in this case, remains in average higher than 15.

The second benchmark treats a parallel adder originally presented in [Qui86],
which adds 2m values in a hypercube multi-processor machine. When the
algorithm begins, the nodes hold the values to be added. On termination,
the node labeled 0 contains their sum. Figure 4.14 presents the BIP model
of a pipelined parallel-adder in a 4-dimensional hypercube with 24 nodes.
Each node is modeled as a BIP component with ports in and out, labeling
two transitions from a single control state, as shown in Figure 4.14(b). It
also contains an array of values to be added (not shown on the figure) and
the variable ph which records the index of current running addition on that

98 CHAPTER 4. THE BIP TOOL-CHAIN

 0

 5

 10

 15

 20

 25

 0 0.5 1 1.5 2

D
eg

re
e

of
 p

ar
al

le
lis

m

Execution time (seconds)

Dynamic Oracle
Lazy Oracle

Figure 4.15: Degree of Parallelism for Linear Chain

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

D
eg

re
e

of
 p

ar
al

le
lis

m

Execution time (seconds)

No Oracle
Dynamic Oracle
Lazy Oracle

Figure 4.16: Degree of Parallelism for Parallel Adder

4.3. THE BACKEND 99

node.

For each addition, every node receives partial addition results from its
predecessors, adds them to its own value, sends the resulting sum to its
unique successor and increments its ph variable. Communications between
nodes are modeled as interactions between the out port of a node and the in
port of its successor, with a transfer of value from the node to the successor.
Priorities are used to enforce correct order of the computation, i.e., a node
cannot perform an out unless it has synchronized through its in port with
all its predecessors. The final result of every addition is generated by the
root node labeled 0.

The degrees of parallelism achieved, respectively without oracle and with
lazy and dynamic oracles, are shown in Figure 4.16. Without oracle, the
degree of parallelism is in average equal to 10. Let us notice that, without
oracle, the functional behavior is completely wrong as priorities are used to
enforce the right order of computation between nodes. With the lazy oracle,
the maximal degree of parallelism equals the maximal degree of interaction
which is 2. However, due to specific timing constraints on the execution of
in and out transitions, the degree of parallelism stays in average close to
1. Finally, the dynamic oracle achieves a much better performance with an
average degree of parallelism equal to 7.

4.3.3.2 Remarks

We study a distributed implementation method for BIP, a framework for the
description of component-based heterogeneous systems. BIP offers two pow-
erful mechanisms for composing components by using interactions and prior-
ities. The combination of interactions and priorities is expressive enough to
express usual composition operators of other languages as shown in [BS07a].
In particular to model broadcast, interactions do not suffice and other op-
erators such as restrictions or priorities are needed. Furthermore, priorities
are essential for describing scheduling policies, run-to-completion execution,
urgency in real-time systems [GS03]. The proposed implementation method
is quite general and can be easily adapted to other languages.

A key innovative idea is the translation of languages based on global
state semantics to observationally equivalent distributed models from which
implementation is straightforward. The decomposition of the translation in
two steps allows separation of concerns in solving two main problems: the
definition of partial state semantics and the expression of composition in
terms of message passing primitives. Operational semantics provide an ad-
equate framework for formalizing the translation. The models are obtained
by successive refinements that preserve observational equivalence.

The main results show that whenever priorities are needed to express
coordination between components, the operational semantics rules should be
strengthened to take into account dependency between interactions. Oracles

100 CHAPTER 4. THE BIP TOOL-CHAIN

are very simple controllers enforcing preservation of semantics. Maximal
parallelism is achieved for dynamic oracles allowing interaction as soon as
possible. Nonetheless, these oracles may entail considerable computational
overhead. As illustrated by experimental results the degree of parallelism
depends on the type of the oracle and topology of the interactions.

There are many open problems to be investigated in the proposed frame-
work for distributed implementation. These include the preservation of
specific classes of properties, and less centralized implementations for the
Engine.

Part III

Applications

101

Chapter 5

Case Studies

This chapter provides some case studies and real applications modeled and
analyzed in the BIP framework. The first example shows the modeling
of a mixed hardware/software system, strengthening the utility of BIP for
heterogeneous systems modeling. We provide two other real applications
showing the usefulness of software componentization in BIP for the design
and analysis of big control intensive software systems.

5.1 Modeling Mixed HW/SW Systems

5.1.1 Modeling and Verification of Networked Systems – A
Case Study on TinyOS-based Networks

Complex heterogeneous systems such as networked systems, composed of
hardware and software, are validated by simulation of physical or virtual
prototypes. The main obstacle for the application of verification techniques,
which are successfully applied to complex software or hardware, is the lack
of methods for building global models faithfully representing their behav-
ior. We apply a model construction methodology using the BIP component
framework, to TinyOS [Tin] based networks. The methodology consists in
building the model of a node as the composition of a model extracted from a
nesC [GLvB+03] program describing the application, and models of TinyOS
components. Models for networks are obtained by composition of models for
nodes by using connectors implementing different types of radio channels.
This opens the way for enhanced analysis and early error detection by using
verification techniques.

The work has been done in collaboration with Marc Poulhiès, Laurent
Mounier, Jacques Pulou and Joseph Sifakis [BMP+07b].

103

104 CHAPTER 5. CASE STUDIES

5.1.1.1 Introduction

Modeling and verification techniques have been successfully applied to com-
plex software or hardware. Currently, validation of complex heterogeneous
systems such as networked systems, is carried out by simulation or testing
of prototype implementations. Existing verification techniques could be ap-
plied to heterogeneous systems, provided that we have methods for building
executable models faithfully representing their behavior. The construction
of such models by composition of models of the application software and of
the underlying execution platform is a scientific and technical challenge.

A main difficulty for jointly modeling an application software and its
execution infrastructure, is that they adopt very different execution mod-
els and views. In component-based software, components are mainly used
for structuring functions and associated data. Interactions between com-
ponents are point-to-point (e.g. function calls) through binding interface
specifications. This view is far from a system-oriented view needed to model
execution mechanisms and their interaction with the external environment.
For instance, programs in the nesC language used for programming TinyOS-
based applications [GLvB+03], are sets of components and relations between
provided and used interfaces. This programmer’s view is not sufficient for
determining the interactions between the application software and TinyOS
which manages entities such as tasks, commands and events by applying
specific scheduling rules.

Wireless sensor networks are complex component-based systems with
rich dynamics subject to strong extra-functional requirements. Their design
involves the composition of a variety of hardware and software components
developed with different methodologies and tools. We have a limited un-
derstanding on how specific component features impact the global behavior.
To cope with complexity and enhance understanding, it is important to
consider wireless sensor networks as the composition of a relatively small
set of functions, services and components by using incremental structuring
principles. The main obstacle for this is the lack of modeling frameworks
encompassing heterogeneity. Most simulation environments use simulation
software built in a more or less ad hoc manner, by integrating the application
code in specific platforms [LLWC03, GSR+04, TLP05, PBM+04, ECZ06].
They can be useful for debugging purposes but they are not adequate for a
more thorough exploration of a network’s non-deterministic dynamics.

We apply to TinyOS-based networks, a model construction methodology
for building heterogeneous real-time systems. This opens the way for en-
hanced analysis and early error detection by using verifications techniques.
The methodology is not specific to TinyOS, and we believe, can be adapted
to networked systems, in general.

For a given sensor node, a global BIP model is built by composing BIP
models for its application software and for TinyOS. The latter is obtained by

5.1. MODELING MIXED HW/SW SYSTEMS 105

composing controllers for the execution of tasks, events, radio and hardware
devices. The models for application software are generated automatically
from nesC programs by a translator (shown in figure 5.1) which takes anno-
tated nesC code as input and generates the corresponding BIP components
and connectors. BIP models can be analyzed by using state space explo-
ration techniques offered by the toolset.

Translator

BIP Engine

C++ code

nesC

BIP compiler

BIP Model
(Appln+TinyOS)

Library of
TinyOS

components
in BIP

IF Platform

IF

Figure 5.1: The modeling flow.

The methodology presented is characterized as follows:

• A global model for the network is built by composition of BIP com-
ponents modeling the application software as well as operating system
and radio features. This is a main difference with existing simulation
approaches, directly using TinyOS and C code generated by the nesC
compiler. The BIP model for the TinyOS is an abstract machine driv-
ing the execution of the BIP model, obtained by translation of the
application software written in nesC.

• A significant difference with existing simulation approaches, is that the
obtained BIP models are non-deterministic and fully characterize the
behavior of the wireless sensor network. Furthermore, these models
have a well-defined notion of state. They can be verified by using
state space exploration techniques e.g., model-checking. Even if due
to inherent limitations, complete verification of complex networks is
intractable, verification is very useful for systematic debugging and
early error detection.

• Another important difference is incremental model construction of BIP
models [Sif05]. Incrementality means that the global model is obtained
by progressively composing its atomic components 2.1.1. This system
construction methodology allows defining an architecture hierarchy,
with the glue specifying the composition at an architectural level from
its subordinate levels. Figure 5.2 shows the architecture of a sensor
node (mote) consisting of NesC applications and TinyOS, with their
internal contents. This methodology allows preservation of the struc-
ture through translation into BIP. That is, it is possible to identify in

106 CHAPTER 5. CASE STUDIES

the global model all its atomic components and their interactions. This
allows in particular, to study the impact of changes of a component’s
behavior or structure on the global behavior and its properties.

Task*

Command
Handler*

Event
Handler*

Event Scheduler

Task Scheduler

NesC program

Mote

TinyOS

Radio* Timer* Sensor*

Figure 5.2: Architecture of a Mote.

This work makes the following three main contributions.

• It provides a methodology for building global and faithful models for
heterogeneous networked systems.

• It allows a better understanding of the interplay between platform-
dependent and platform-independent features. The model of a node
is the composition of an abstract machine modeling TinyOS, and a
system-oriented model of its application software.

• It provides a single framework supporting both behavioral verifica-
tion and simulation of networked systems. A comparison on common
benchmarks with state-of-the-art simulation environments, shows that
this is possible without significant performance degradation.

The presentation of the results is structured as follows. An informal pre-
sentation of nesC and its semantics is given in section 5.1.1.2. Section 5.1.1.3
describes the modeling principle for nesC programs. Section 5.1.1.4 de-
scribes the modeling principle for TinyOS. The global model construction
is explained in section 5.1.1.5, as the composition between application and
TinyOS components. We present experimental results for three examples in
section 5.1.1.6 and conclude in section 5.1.1.7.

5.1.1.2 The nesC programming model – informal semantics

We briefly present nesC, an extension of C used to develop TinyOS appli-
cations [GLvB+03].

nesC applications are built by writing and assembling components, rep-
resenting either software (e.g., a protocol layer) or hardware (e.g., radio

5.1. MODELING MIXED HW/SW SYSTEMS 107

devices, timers, sensors). Components provide and use interfaces, which are
groups of services. Interfaces contain commands and events.

The providers of an interface implement the commands (by means of
command handlers), while the users implement the events (by means of event
handlers). This distinction between commands and events within the same
interface, allows to properly implement the so-called split phase mechanism:
the execution of a non atomic operation (e.g., sending a packet) is split into
two distinct phases, a command call to request the operation, and an event
reception indicating its termination.

It is also possible to use deferred computation mechanisms called tasks.
A nesC application is therefore written in C code, extended with a few extra
primitives, i.e., call a command, signal an event, and post a task.

There are two types of components in nesC: modules and configurations.
Modules provide application code, implementing one or more interfaces.
Configurations are used to wire components together. Note that the wiring
relation between components is not point to point. In particular, a com-
mand call performed by a component can be bound to several Command
handlers provided by other components. After a call, the caller waits for
completion of all the activated callees. Return values are then merged by
using a combination function. Event signaling by software components is
handled in a similar manner.

Execution of nesC applications is handled by a two-level TinyOS sched-
uler.

The first level manages task execution, for background computations.
The TinyOS scheduler follows a strict FIFO policy for tasks: pending tasks
are stored in a FIFO queue, and a task cannot be preempted by another
task. Posting a task is a non-blocking operation that returns immediately.
A return value indicates either a successful or an unsuccessful post operation
(e.g., when the task queue is full).

The second scheduling level is used for event execution. Events represent
either hardware interrupts, or indicate the completion of a given requested
service. Execution of an event handler is preemptive: when an event is
received, its corresponding event handler(s) is/are immediately activated,
interrupting the current computation (which could be either a task, or an-
other event handler). The suspended execution will resume at the end of
event handler execution. Note that this policy may lead to code re-entrance
(e.g., when an instance of an event handler preempts another instance of
the same event handler).

Sections 5.1.1.3, 5.1.1.4, 5.1.1.5 present three steps for the construction
of a global sensor network model in BIP: 1) generation of BIP components
from user-defined nesC components, 2) instantiation of predefined BIP com-
ponents modeling TinyOS, radio and sensors and 3) composition of these
components by using connectors modeling communication links.

108 CHAPTER 5. CASE STUDIES

5.1.1.3 Modeling user-defined nesC components

We use a translator that takes annotated non re-entrant nesC code as input
and generates the corresponding BIP components and connectors. Annota-
tions are used to extract the structure characterized by the set of atomic
components and the connectors between them. The modeling of the behav-
ior of the atomic components is left to the user.

The method consists in transforming implementations of the Commands,
Events and Tasks in a nesC program into atomic BIP components represent-
ing Command handlers, Event handlers, and Task handlers, respectively.
The non re-entrancy limitation can be overcome by using richer models in
BIP. It is possible to detect re-entrance in BIP models by using verification
tools.

SUSP

ret post

IDLE

call acksig

fin pre resbeg

begfin

pre

res

ret

call

post

ack sig

EXE

Figure 5.3: A nesC module in BIP.

A generic BIP model for atomic components is shown in figure 5.3. The
interface consists of a set of ports with associated types. The behavior
is specified by the control states IDLE, SUSP and EXE with transitions
between them labeled by ports corresponding to respective actions. EXE is a
macro state and is further decomposed into states and transitions depending
on the specific behavior of the particular component.

The ports are classified in two groups:

• The first consists of the ports beg, fin, pre and res labeling the tran-
sitions for beginning, finishing, preempting and resuming execution of
a component. These ports may be used in interactions between the
component and TinyOS or in interactions implementing call/return
mechanisms for Command handlers. They are incomplete as they re-
quire triggering from other components.

• The second consists of the ports call, ret, sig, ack, post labeling the
transitions for call and return of commands, signaling and acknowl-

5.1. MODELING MIXED HW/SW SYSTEMS 109

edgment of events and posting of tasks. The ports call and sig are of
type complete as they are triggers of broadcast connectors.

A generated component also contains, in addition to specific local vari-
ables, generic variables representing its unique identifier (ID), the identifier
of a callee (id) and the identifier of a posted Task (t).

5.1.1.4 Modeling TinyOS in BIP

Our TinyOS model is the composition of two sets of components: 1) sched-
ulers for Events and Tasks, 2) models for hardware components representing
Timers, Sensors and Radio.

5.1.1.4.1 Scheduler modeling We use two schedulers to model the
two-level scheduling mechanism of TinyOS.

The Event Scheduler (figure 5.4(a)) is responsible for the management
of events generated by hardware components. When a hardware-generated
event e is received through the port sig, the scheduler first preempts any
running component by synchronizing through the port pre and stacks the
id’s of the preempted components received . Then, it triggers the execution
of the Event handlers identified by e by broadcasting e through the port
beg. From state BUSY1, the Event Scheduler can either be triggered by a
new hardware generated signal (port sig), or by a finish notification (port
fin). In the first case, it preempts the currently running component, in the
second case, depending on the state of the stack (empty or not), it goes to
IDLE or to BUSY2 from which it resumes the last preempted component.

BUSY FREE

post
fifo.push(t) fin

beg
[fifo≠φ]
fifo.pop

beg postfin

t

post
fifo.push(t)

fifo
IDLE ACCEPT

sig

fin
[stack≠φ]

id:=stack.pop

eCount--

beg sigfin

e

BUSY1
PREEM

PT
beg

eCount++

sig
pre

stack.push(id)

pre res

id

BUSY2

res
[eCount=0]

fin
[stack=φ]
eCount--

res
[eCount>0]

eCount

stack

id

(a) (b)

Figure 5.4: Event(a) and Task(b) Schedulers.

The Task Scheduler (figure 5.4(b)) is responsible for the scheduling of
tasks. It treats the tasks in FIFO order and waits for a task to finish before
starting a new one. It has two states: FREE and BUSY, depending on

110 CHAPTER 5. CASE STUDIES

whether a task is executing or not. In any of these states, it can synchronize
through its port post to receive new task postings. In the BUSY state, it
waits for the currently executing task to finish and goes back to the FREE
state. It can start a new task only if the Event Scheduler is IDLE.

5.1.1.4.2 Radio Controller Each node has a radio controller composed
of a Radio Sender (figure 5.5(a)) and a Radio Receiver (figure 5.5(b)). We
consider a packet level radio model where packet sending is an atomic opera-
tion. Sending a packet is a split-phase mechanism modeled by the Command
handler send and the Event handler sendDone. The send Command han-
dler is called from the application, and is a request to send a packet through
the radio. It synchronizes with the Radio Sender through the sync send
port which passes the packet to the Radio Sender. Then, the Radio Sender
broadcasts the packet. This is followed by triggering the Event handler
sendDone.

The Radio Receiver receives a packet through the listen port, and then,
it triggers the Event handler receive.

IDLE

FIN SEND

broadcast

syn_sendsig

IDLE

RECV

packet

sig

listen

packet

broadcast

(a) (b)

sig listen

sig syn_send

Figure 5.5: Radio controller components.

5.1.1.4.3 Timers and sensors A Timer component is a simple BIP
component with a single state and two transitions. One transition is labeled
by port sig to signal an expiration event. The other is labeled by a special
port tick and is used to count time steps. To ensure time consistency, the
tick ports of all the Timers are incomplete and strongly synchronized by
using a single connector.

In nesC, Sensors are hardware modules offering interfaces for split-phase
operation. The BIP description consists of a model for the Sensor itself,
along with the models for the Command handler getData and Event handler
dataReady. The actual value read by the Sensor component can be either
a random value or a value provided by a model of the environment. The
latter can also be explicitly modeled in BIP.

5.1. MODELING MIXED HW/SW SYSTEMS 111

5.1.1.5 Modeling interaction between the components - the global
architecture

In this section we describe the composition of the BIP components using
connectors, to build the model of a node as well as the model of the network
by specifying interactions between the nodes.

5.1.1.5.1 Interactions in a node We explain the principles of con-
struction of BIP model for nodes by using two sets of connectors.

The first set models interactions for call statements and signal statements
issued by software. A typical call statement will generate a Call connector
and a set of Returni connectors as shown in figure 5.6.

The Call connector is a broadcast connecting the call port of the caller
(c) to the beg ports of the possible callees (p, q, r). The component c may call
either p and q jointly leading to the interaction (c.call, p.beg, q.beg),
or call r leading to the interaction (c.call, r.beg).

The selection of interactions is by using activation conditions involving
comparisons between callee identifiers (ID) and the calling identifier (id).

beg fin

beg fin

beg fin

ret

call
c

p

q

r

Return1

Return2

Call

Figure 5.6: BIP connectors for a nesC call command.

The Returni connectors synchronize the fin ports of the callees to the
ret port of the caller.

The signal statements representing software event signalling are handled
exactly in the same manner as the call statements explained above. How-
ever, signals representing hardware events are treated separately and are
processed by the event scheduler.

The second set of connectors deal with interactions between BIP compo-
nents for the application and BIP components for TinyOS (see figure 5.7).

The connectors TBegin and EBegin deal respectively with interactions
between Tasks handlers/Task Scheduler and Event handlers/Event Sched-
uler. The connectors TFinishi and EFinishi are used by Tasks and Event
handlers to notify their completion. The Preempt connector triggers pre-
emption of the application components. The Resume connector is used to

112 CHAPTER 5. CASE STUDIES

prei resi fini begibegi fini prei resi

beg1 fin1 pre1 res1

Tasks handler

begfinpre res

Event Scheduler

beg fin
Task

Scheduler

pre1 res1

Command
handler

sig1
Signal1

sig

TB
egin

E
B

eg
in

Preempt

Resume

TF
inish

i E
F

in
is

h 1

Timer/
Sensor

TF
inish

1

pre1 res1 fin1 beg1

Event handler

prei resi

sigi Signal i

E
F

in
is

h i

Figure 5.7: The global architecture in BIP.

resume execution of the last suspended component. The connectors Signali
are used to signal any hardware-generated events.

Task posting is through connectors between the port post of the Task
Scheduler and the ports post of software components (not shown in the
figure).

5.1.1.5.2 Interactions between nodes - Radio Links Radio links
are modelled as BIP connectors linking the ports broadcast and listen of the
radio controller. We consider networks with static topology and use only one
connector per broadcast port. This connector links the broadcast port with
all the receivers, through their listen port. For each connector, activation
conditions depending on the distance between sender and receiver are used
to define the feasible interactions. More complex activation conditions allow
modelling lossy links.

5.1.1.6 Experimental results

We consider 3 examples: BlinkTask, SenseToLeds and SenderReceiver.

The first example illustrates the utilization of verification techniques.
The two others compare our method to specific state-of-the-art simulation
methods. One would expect that the use of a general purpose modeling
technique instead of a specific one, well-tuned for a particular execution
platform, would have a strongly negative impact on performance. Further-
more, the use of rich (non-deterministic) models instead of deterministic
ones, could also have a similar effect. Experimental results show no signifi-
cant performance degradation.

BlinkTask [Tin] describes a node with a variable state representing the
state of its LED. This variable is shared between the Task processing, which
reads it, and the Event handler Timer.fired(), which modifies it. For Blink-
Task we generated a timed BIP model with 4 user-defined atomic compo-

5.1. MODELING MIXED HW/SW SYSTEMS 113

nents, 3 TinyOS components (2 schedulers and 1 Timer) and 11 connectors.
Exhaustive state space exploration allows detecting error states where a
new timer interrupt arrives while the Task processing is still being executed.
Traces leading to such error states can be obtained by modeling an Ob-
server component in BIP, keeping track of the sequence of interactions of
the node. As an example, the analyzed state graph has 28,701 states and
46,197 transitions for the following execution time intervals: Timer period
[50, 50], Timer.fired() [2, 9], Leds.redOn() [2, 7], Leds.redOff() [2, 7], process-
ing() [20, 32]. The selected values ensure a correct behavior of the example.
However, changing the timer period to values less than [48, 48] leads to error
states as detected by the observer.

The second example is SenseToLeds[Tin] which is a node sampling data
from a photo Sensor and displaying them in the LEDs. Its nesC code consists
of 4 components. The translation to BIP produces 8 user-defined compo-
nents, 4 TinyOS components (2 schedulers, 1 Timer and 1 Sensor), and 21
connectors.

We consider a network of SenseToLeds nodes without radio links. We
show in figure 5.8, simulation times as a function of the number of nodes for
a virtual run time of 300 seconds, considering a 4 Hz timer on each node. We
performed the tests on an AMD Athlon XP 2800+, 1Gb of RAM running
GNU/Linux. The execution time for the network increased linearly with the
number of nodes, as expected.

Figure 5.8: SenseToLeds example.

The third example SenderReceiver is a network of senders and receivers,
with lossless channels and static topology. Each sender is connected to a
fixed number of receivers y. Each receiver has a unique sender (no collision).
The sender nodes execute the CntToLedsAndRfm[Tin] nesC program, and

114 CHAPTER 5. CASE STUDIES

the receiver nodes execute the RfmToLeds[Tin] program. Figure 5.9 shows
real execution times for 300 virtual seconds considering a 4 Hz timer on each
node, as a function of the number of senders x and the number of receivers
per sender y.

Figure 5.9: SenderReceiver example.

5.1.1.7 Remarks

Currently, validation of complex heterogeneous systems: such as networked
i systems, is carried out by simulation or testing of prototype implementa-
tions. Verification techniques such as model-checking and static analysis are
already successfully used for software or hardware. They could be extended
to heterogeneous systems, provided that we have methods for building exe-
cutable models for these systems.

We have applied to TinyOS, a methodology for modeling and verification
of networked systems. The methodology is based on the use of the BIP
component framework which encompasses description of heterogeneous real-
time systems. It allows the construction of global models obtained as the
composition of models of nodes. These are obtained by composition of
models of the application software and of the execution platform.

The methodology is general and can be applied to building global models
of heterogeneous systems. It consists in modeling the execution platform as
an abstract machine driving the execution of the application software. For
this, a formalization of the language in which application software is writ-
ten must be provided, in terms of the primitives offered by the platform.
This is certainly not an easy task. The formalization should be made at
the right abstraction level. Computation granularity should be chosen so as
to include in the model all the events which are relevant for the properties
to be verified. Furthermore, to keep model complexity low, it should ig-
nore computation sequences not involving such events. For instance, for the

5.2. SOFTWARE COMPONENTIZATION 115

verification of synchronization and resource properties, it should assemble
atomic sequences of code. The model generation methodology applied to
nesC, can be adapted to any language used for programming applications.
Its parser can be adequately engineered to identify in the source code, con-
structs generating relevant events and determine computation granularity.
This can be used for (compositionally) generating BIP code.

We spent two man×months for developing the methodology for TinyOS.
For other platforms, much more effort would be needed for feature compo-
nentization at the right abstraction level. Such an investment seems to be
the only way for overcoming current limitations of model-based design and
for designing systems of guaranteed quality.

5.2 Software Componentization

5.2.1 MPEG encoder

We present the description of a target application, an MPEG4 video en-
coder, adopted from [CFSS08]. The video encoder architecture is shown in
figure 5.10. The considered application corresponds to a video-phone ap-
plication. It captures a sequence of frames with a camera, transmits the
sequence, and then displays the frames on a screen. From a captured frame,
the video encoder produces a corresponding bit-stream. The latter is trans-
mitted to a video decoder which decodes the bit-stream and displays decoded
frame on a screen. This architecture uses input and output buffers of the

...
encoder

video
0 1 1 0 1 0 0 1 1

...
decoder

video

camera input frames input buffer

output frames

bitstream

output buffer

tran
sm

issio
n

screen

Figure 5.10: Video encoder architecture.

same size K, to cope with changes of load and avoid as much as possible
frame skips. These may happen when the input buffer is full.

The initial monolithic MPEG4 encoder is written in C, containing 12000
lines of code. The encoder treats frames cyclically. A frame is captured
by the block GrabPicture, encoded by the encoder core, and the encoded
frame is produced by OutputPicture.

In the encoder core, a frame is split into macro-blocks, each of size 256
pixels. Given the height (H pixel) and width (W pixel) of a frame, the

116 CHAPTER 5. CASE STUDIES

generated number of macro-blocks (N) is (HxW)/256. The generation of
macro-block is done by the module GrabMacroBlock. The macro-blocks
then pass through a number of modules, and finally get integrated back to
a frame by the Reconstruct block. The final encoded frame is generated
by the OutputPicture block. The precedence graph corresponding to the

GrabMacroBlock

Quant

MotionEstimate

DCT

1

N

GrabPicture

IQuant

IDCT

IntraPrediction

Coding

Reconstruct

Figure 5.11: Precedence graph of the video encoder.

treatment of a frame is shown in figure 5.11. It is composed of the first
action GrabPicture – followed by N iterations of the same precedence graph.
We have a precedence constraint between two consecutive iterations of the
same node of this precedence graph. For instance, the ith iteration of DCT

must be scheduled before its i + 1th iteration. However, all iterations of
MotionEstimate can be scheduled before the first iteration of DCT.

The goal of this exercise is to faithfully model the encoder in BIP. The
fist step is to identifying the functional blocks from the monolithic C code,
and determine the BIP components. We do a top-down approach to iden-
tify the encoder blocks. As shown in figure 5.12, we identified three main
components, GrabPicture to grab the frames; Encode, the encoder core
which operates on frames and encodes them; and the OutputPicture com-
ponent to output the encoded frames. As the encoding is done one frame
at a time, the components are connected serially with connectors. The data

5.2. SOFTWARE COMPONENTIZATION 117

in out in out in out

in outin out

GrabPicture OutputPicture

Encode

grabPicture() outputPicture()
work work

Figure 5.12: Encoder Core.

transfer associated with these connectors perform the transfer of a frame
between the respective components. The connector from the output (out)
of OutputPicture to the input (in) of GrabPicture denotes the event of
completion of encoding of a frame, allowing GrabPicture to process the
next frame.

The block Encode performs the core operation of encoding a frame.
By analyzing the C code, we obtains the functional blocks and their data
dependencies, as already specified in the precedence graph of figure 5.11.
The corresponding BIP architecture is shown in figure 5.13. It consists of
nine functional blocks, each modeled as an atom. In addition, there are
buffer components (not shown in the figure). The GrabMacroBlock and
Reconstruct acts as the source and the sink respectively, in processing the
macro-blocks. The behavior of GrabMacroBlock is depicted in figure 5.14.
It has a counter c, and a parameter MAX set to the number of macro-blocks
(N). Upon receiving a frame, it splits it into MAX number of macro-blocks,
achieved by calling the method GrabMacroBlock() iteratively N times. The
other functional blocks of Encode, namely MotionEstimate, DCT, Quant etc.,
have a similar behavior. The BIP model for MotionEstimate is shown in
figure 5.15. It has three control states, and transitions labeled by ports in,
work and out. in and out are ports of the interface, while work is a inter-
nal action. It gets a macro-block by an interaction through in, processes it
internally by the action work, when it calls the routine MotionEstimate().
The processed macro-block is despatched to the successor functional block
on synchronizing through the port out. The behavior of the other functional
blocks are the same, each calling their respective routines on executing the
work action.

The Reconstruct block acts as the sink, gathering the macro-blocks and
re-generating the frame. The BIP model is shown in figure 5.16. The method
Reconstruct() is called iteratively upon receiving each macro-block. Upon
integrating N macro-blocks, the reconstructed frame is passed to the output
of the Encode compound. The data-path is implemented by connectors
between the atoms, as shown in the architecture of figure 5.13. We tried
two different implementations for modeling the data-path:

118 CHAPTER 5. CASE STUDIES

in

out

IntraPrediction

in

out

Coding

out

in

in

out

GrabMacroBlock

in

out

DCT

in

out

Quant

out

in1 in2

IQuant

in

out

IDCT

in

out

Reconstruct

in

out

MotionEstimate

Figure 5.13: Encoder Architecture.

• components connected with buffers in between, with the buffer size
large enough to hold N macro-blocks. A component reads a macro-
block from its input buffer, performs the computation, and puts the
resulting macro-block in the output buffer. The buffers offer interface
for writing and reading in an exclusive manner. The complete descrip-
tion contains 20 atomic components (11 functional blocks, 9 buffers)

5.2. SOFTWARE COMPONENTIZATION 119

in out

out

in

exit

c=0;
c==MAX

c<MAX
work

GrabMacroBlock();c++;

Figure 5.14: Grab-Macroblock Component.

in out

in out

MotionEstimate()
work

Figure 5.15: Motion-Estimation Component.

in out

out

c=0;
c==MAX

c++
c<MAX

in

work
Reconstruct()

Figure 5.16: Reconstruction Component.

and 11 connectors. This model characterizes the set of all possible
scheduling of the computations.

• components connected directly by connectors without using buffer,
and using priorities to resolve the non-determinism and correct schedul-
ing. The connectors in Encode, which are closer to the final output are
assigned higher priority compared to those which lay ahead of them.
This enforces a run-to-completion order of execution of the connectors
in the Encode block. This model contains 11 atomic components, 11
connectors and 27 priority rules.

Performance Results

The BIP description is about 500 lines of code. The computation in the
components are done by calling the respective functions, provided by the
initial encoder library. The code generated from the BIP description is linked
with the library of encoder functions to obtain the executable. The memory
foot-print of the BIP executable is 288 Kilo Bytes, as compared to 172 Kilo

120 CHAPTER 5. CASE STUDIES

Bytes of the monolithic encoder binary. Note that the BIP executable also
contains the execution engine integrated with it. The comparison of the
run-time of the BIP executable with respect to the original encoder binary
showed an overhead of 50% for the BIP executable. The overheads can be
broadly classified in the following two category:

• Communication overhead: due to the two-phase execution of the atoms
and the engine, with the atoms communicating to the engine by func-
tion calls, in order to synchronize with each other. This overhead can
me minimized by flattening the componentized model by source level
transformations, resulting in a single atomic component.

• Resolving non-determinism: this is due to the fact that the engine
needs to evaluate all the feasible interactions, before selecting to exe-
cute one. An optimization for this overhead has been tried by selecting
feasible connectors based on a given priority order.
The problem of reducing overheads due to componentization is still an
open one, and is currently being studied in the framework of a Ph.D
thesis at Verimag.

Part IV

Conclusions and Perspectives

121

Chapter 6

Conclusion

In this chapter, we conclude the manuscript describing the main objectives
of the work, the goals we have achieved, and future work directions and its
perspectives.

6.1 Objectives of the thesis

We have presented the BIP component framework, that shares features with
existing ones for heterogeneous components, such as [BWH+03, EJL+03,
BGK+06, Arb05]. A common key idea is to encompass high-level structuring
concepts and mechanisms. BIP offers interaction-based and control-based
mechanisms for component integration. The two types of mechanisms cor-
respond to cooperation and competition, two complementary fundamental
concepts for system organization.

BIP is based on the notions that a system can be obtained as the com-
position of three fundamental layers, behavior, interaction and priority. Be-
havior is represented by atomic components. Interactions are a combination
of two protocols, namely rendezvous and broadcast, and we have shown that
this is sufficient for expressing any kind of interaction mechanism. Finally,
priorities represent elementary controllers, necessary for scheduling.

The presented methodology encompass heterogeneity, a key issue for
building systems from components with different characteristics. We have
discussed the sources of heterogeneity, arising due to differences in inter-
action and execution mechanisms. We have provided a classification of
heterogeneous systems e.g.,untimed/timed, asynchronous/synchronous, and
shown that they can be unified through transformations in the construction
space. They allow a deeper understanding of the relations between existing
semantic frameworks in terms of elementary behavioral and architectural
transformations.

We have discussed that constructivity is necessary for building com-
plex systems from components and glue with known properties, and have

123

124 CHAPTER 6. CONCLUSION

provided formalization for its requirements, namely incrementality, compo-
sitionality and composability.

We have also shown that the BIP glue, consisting of the interactions
and priority rules, is as expressive as the universal glue. BIP is based on a
minimal set of primitives for the representation of any kind of system. It
provides a mechanism of clear separation of concern regarding behavior and
interaction. Global system properties can be achieved by adding separately
behavior (as atomic components), creating interaction, specifying restriction
between them, and any combination of the above three choices.

BIP characterizes systems as points in a three-dimensional space: Behavior
× Interaction × Priority. Elements of the Interaction × Priority space
characterize the overall architecture. Each dimension, can be equipped with
an adequate partial order, e.g., refinement for behavior, inclusion of interac-
tions, inclusion of priorities. Separation of concerns is essential for defining a
component’s construction process as the superposition of elementary trans-
formations along each dimension.

We have provided a system construction methodology, leading to com-
ponentization of non trivial systems [CFSS08, BBG+08]. It consists of
first identifying the atomic components, determining the basic functional-
ity, defining an architecture hierarchy of composite components and their
inclusion relations, and finally defining the glue for building the compos-
ite components from the lower level. This has been described in a case
study [BMP+07a, BMP+07b]. We have described how a global model of a
mote can be obtained after identifying the atomic components of the system,
i.e., components for the nesC and those for TinyOS. It considers modeling
the execution platform as an abstract machine driving the execution of the
application software. The model generation methodology applied to nesC
can be adapted for any language used for programming applications.

However, componentization has its costs. As we have shown in some ex-
amples, having an explicit engine for driving the semantics has its overheads.
We gain analyzability at the cost of increased execution times. However, we
now understand that source to source transformations can be performed for
generation of efficient implementation for execution purposes.

6.2 Tasks Accomplished

We have came up with a tool-chain and the associated software infrastruc-
ture realizing the BIP component framework. A language has been proposed
for describing systems in BIP. The tool provides a frontend parser for anal-
ysis, generation of an intermediate model, and code generation facilities for
execution or enumerative exploration. A full-fledged meta-model for BIP
based on EMF [EMF] has been developed. This leads to its seamless in-
tegration with tools and model-based technologies available for Java [Jav]

6.3. FUTURE WORK 125

under the Eclipse platform. The execution is driven by an engine, which
directly implements the operational semantics of BIP. Provisions have been
made for connecting the engine with analysis and model-checking tools.
We have provided three different implementations for the BIP engine:1) A
centralized enumerative engine, 2) A centralized symbolic engine, and 3) A
distributed engine.

We have provided evidence through examples treated in BIP, that the
combination of interactions and priorities allow enhanced modularity and
direct modeling of schedulers. The first set of examples that were modeled
and analyzed using the BIP tool-set are presented in section 2.4.1 [BBS06].
We treated some performance evaluation problems consisting of timed tasks,
processing events from bursty event generator. The analyzable models gen-
erated from the BIP description by the tool-set allows for estimating end
to end delays of the events. We modeled different cases with tasks running
on dedicated resources as well as on shared resources with preemption. The
examples show that different sets of BIP glue can be applied in enforcing
protocols and scheduling policies.

In section 5.1.1 [BMP+07a, BMP+07b], the BIP tool-set has been used
for the modeling and analysis of TinyOS based wireless sensor network ap-
plications. The methodology consists in building the model of a mote as
a composition of a model extracted from a nesC program describing the
application, and models of TinyOS components. Models of networks are ob-
tained by composition of models for nodes by using connectors implementing
different types of radio channels.

Another practical application of the BIP framework is in the construction
and verification of a robotic system [BBG+08]. Here we present a method-
ology for modeling the functional level of an autonomous robot in BIP. The
code generated by the tool-set along with the BIP engine provides an au-
tomatic synthesis of the execution controller for the robot. The BIP model
also offers validation techniques for checking essential ”safety” properties.

6.3 Future Work

In this section, we discuss about prospective work directions which are either
currently being undertaken, or will be planned for future integration into
BIP.

6.3.1 Language Factory

We have described the system construction methodology in BIP, leading to
componentization of non trivial systems. This technique has been tested for
modeling wireless sensor network applications in nesC [BMP+07a, BMP+07b].
Similar translations have also been made from AADL to BIP [CRBS08],

126 CHAPTER 6. CONCLUSION

and FXML to BIP [IR07]. We are currently working on translators for
BPEL [BPE] and Lustre [Lus].

The translation principle can be generalized for different programming
applications meant for different domains. The goal would be to have a library
of translators from different domains to BIP. For each domain, we have a
language for describing applications, and some underlying platform driving
the operational semantics of the language. We need to identify the basic
atomic components necessary for the application and provide frontend tools
for translating the applications into their corresponding BIP components.
We would also need to faithfully integrate the semantics of the underlying
platform in the BIP model using specific BIP glues. The obtained global
BIP model of the system leads to enhanced analyzability.

6.3.2 Implementation for real platforms

6.3.2.1 Fully Distributed Implementation

We have proposed a distributed implementation for BIP, but it still has a
single centralized engine. We plan to have distributed implementation with
several engines, where each engine co-ordinates the execution of a group
of connectors. For this, we need to understand how to deal with priorities
between the interactions, in addition to handling conflicts arising due to
local choices offered by the components.

Interesting problems to study would be to identify the number of engines
needed for the most efficient implementation, partitioning of the connectors
and their deployment into the engines, and optimizations for minimizing the
number of exchanged messages. The distributed implementation can suit-
ably take advantage of the current multi-core architectures, for execution.

6.3.2.2 Implementation with Real-time

Another interesting work direction currently being pursued is to allow BIP
models to interact with the environment, i.e., to have open systems, with
real-time facilities. In the existing system, the environment and the execu-
tion platform can be modeled, leading to simulations with logical time. The
goal of this work is to allow the engine to directly handle external events
and communicate with the platform, without modifying the BIP application
of the system.

6.3.2.3 Static Transformations

For efficient execution, static transformation techniques are being integrated
into the BIP tool-chain. Currently, we have a source-to-source transformer
for converting a hierarchical system to flat system, with static composition
of components producing a single atomic component, its behavior being a

6.3. FUTURE WORK 127

petri-net. The transformation reduces the overhead due to communication
between the components and the engine. Other transformations include
flattening of the hierarchical connectors.

Similarly, for efficient execution by the engine, static compilation of the
priorities could be made to reduce the non-deterministic choices within an
atomic component. Moreover, a similar technique that could be interesting
includes providing meta information at model level by specifying sequences
of interactions, so that non-determinism can be reduced statically by the
engine.

128 CHAPTER 6. CONCLUSION

BIP Grammar

BIP program:

bip-definition ::=
c-definition |
port-type-definition |
component-type-definition |
connector-type-definition

Definition of new port-types allow associating arbitrary data with ports.
For pure event ports (i.e., without any data), a predefined port type named
Port may be used.

port-type-definition ::=
port type port-type-name

[(c-type-name var-name { , c-type-name var-name }∗)]

Components are classified into Atomic and Compound components. Atomic
component defines the basic behavioral unit, with behavior specified either
as an automata or a petri-net.

Atom:

atomic-type-definition ::=
atomic type atomic-type-name

[(c-type-name fpar-name { , c-type-name fpar-name }∗)]
{ data-definition }∗

{ port-definition }∗

{ place-definition }∗

{ transition-definition }∗

{ export port-type-name port-name = port-reference }∗

end

data-definition ::=
[extern] c-type-name var-name [= initializer]

129

130 BIP GRAMMAR

port-definition ::=
port-type-name port-name ([var-name { , var-name }∗])

place-definition ::=
place place-name [= initial]

transition-definition ::=
on port-name1

from place-name { , place-name }∗ to place-name { , place-name }∗

provided untimed-guard when timed-guard do action

port-reference ::=
port-name |
(sub)component-name . port-name |
(sub)connector-name

Compound:

compound-type-definition ::=
compound type compound-type-name

[(c-type-name fpar-name { , c-type-name fpar-name }∗)]
{ component-definition }∗

{ connector-definition }∗

{ priority-definition }∗

{ export port-type-name port-name = port-reference }∗

end

component-definition ::=
component-type component-name (actual-arg { , actual-arg }∗)

connector-definition ::=
connector-type connector-name [port-reference { , port-reference }∗]

(actual-arg { , actual-arg }∗)

Connector:

connector-type-definition ::=
connector type connector-type-name

131

(port-type-name port-name { , port-type-name port-name }∗)
[(c-type-name fpar-name { , c-type-name fpar-name }∗)]

define port-expression
{ var-definition }∗

{ on port-interaction provided guard up action down action }∗

[export port-definition]
end

port-expression ::=
any-valid-AC(P)-expression-on-ports

port-interaction ::=
port-name { , port-name }∗

Priority:

priority-definition ::=
priority priority-name

interaction < interaction [(provided expression)]

Expressions and Actions

...

not yet defined, but similar to v1

...

Packages and Models

one package per file, with appropiate naming conventions e.g., Java-like

(to be extended to components, connectors and port types...)

package-definition ::=
package package-name

{ use package-name }∗

{ bip-definition }∗

one model per file

model-definition ::=
model model-name

{ use package-name }∗

{ bip-definition }∗

132 BIP GRAMMAR

root-component-definition

root-component-definition ::=
component-definition

Genericity

Multiple instantiation

A first extension, allows to instantiate arrays of components and of con-

nectors in compounds...

subcomponent-array-definition ::=
component-type (sub)component-name [dimension { , dimension }∗]

(actual-arg { , actual-arg }∗)

subconnector-array-definition ::=
connector-type (sub)connector-name [dimension { , dimension }∗]

[port-reference { , port-reference }∗]
(actual-arg { , actual-arg }∗)

here the actual args and port references may use predefined variables

$1, $2, ... and so on up to the number of dimensions to refer to the

position in the array. see the Task example below.

Ports with multiplicities

1) Allow to instantiate arrays of ports in components (including the

exported ones), using a mechanism as the previous shown... Again, var-

references and port-references may use some predefined variables...

port-array-definition ::=
port-type-name port-name [dimension { , dimension }∗]

[var-reference { , var-reference }∗]

2) Allow for ports with multiplicities in connectors - this will increase
a lot the complexity for describing interactions allowed on the connec-
tors, up/down functions, algebra of interactions, etc... Generalization
seems quite difficult at this point.

Nevertheless, we can imagine some predefined connectors which strongly

synchronize all ports of some type, e.g. tick – these connectors should

not be given explicitely but through some annotations, e.g, timed

BIP Meta Model

xxx

Figure 1: ...

133

134 BIP META MODEL

Figure 2: ...

Figure 3: ...

135

Figure 4: ...

136 BIP META MODEL

Bibliography

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-
H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, The
algorithmic analysis of hybrid systems, Theoretical Computer
Science 138 (1995), no. 1, 3–34.

[ADA] ADA, http://www.adahome.com/

[AFV01] Luca Aceto, Wan Fokkink, and Chris Verhoef, Chapter 3.
Structural Operational Semantics, Handbook of Process Alge-
bra, Elsevier, 2001, pp. 197–292.

[AGS02] Karine Altisen, Gregor Gößler, and Joseph Sifakis, Scheduler
modeling based on the controller synthesis paradigm., Real-
Time Systems 23 (2002), no. 1-2, 55–84.

[ANT] ANTLR, http://www.antlr.org/

[Arb05] Farhad Arbab, Abstract behavior types: a foundation model for
components and their composition., Sci. Comput. Program. 55
(2005), no. 1-3, 3–52.

[AVCL02] Robert Allen, Steve Vestal, Dennis Cornhill, and Bruce Lewis,
Using an architecture description language for quantitative
analysis of real-time systems, WOSP ’02: Proceedings of the
3rd international workshop on Software and performance (New
York, NY, USA), ACM, 2002, pp. 203–210.

[BBBS08] Ananda Basu, Philippe Bidinger, Marius Bozga, and Joseph
Sifakis, Distributed semantics and implementation for systems
with interaction and priority, FORTE, 2008, pp. 116–133.

[BBG+08] Ananda Basu, Saddek Bensalem, Matthieu Gallien, Felix
Ingrand, Charles Lesire, Thanh-Hung Nguyen, and Joseph
Sifakis, Incremental component-based construction and verifi-
cation of a robotic system, ECAI, Patras, Greece, 2008.

137

138 BIBLIOGRAPHY

[BBS06] Ananda Basu, Marius Bozga, and Joseph Sifakis, Modeling
heterogeneous real-time components in BIP, 4th IEEE Interna-
tional Conference on Software Engineering and Formal Meth-
ods (SEFM06), September 2006, Invited talk, pp. 3–12.

[BBSN08] Saddek Bensalem, Marius Bozga, Joseph Sifakis, and Thanh-
Hung Nguyen, Compositional verification for component-based
systems and application, 6th International Symposium on Au-
tomated Technology for Verification and Analysis (Seoul, South
Korea), 2008.

[BC85] Gérard Berry and Laurent Cosserat, The esterel synchronous
programming language and its mathematical semantics, Sem-
inar on Concurrency, Carnegie-Mellon University (London,
UK), Springer-Verlag, 1985, pp. 389–448.

[BCF02] Nick Benton, Luca Cardelli, and Cédric Fournet, Modern con-
currency abstractions for c#, ECOOP ’02: Proceedings of the
16th European Conference on Object-Oriented Programming
(London, UK), Springer-Verlag, 2002, pp. 415–440.

[BFKL97] M. Bozga, J-C. Fernandez, A. Kerbrat, and L.Mounier, Pro-
tocol verification with the aldebaran toolset, Software Tools for
Technology Transfer 1, 1997, pp. 166–183.

[BFLL04] Roberto Bruni, Jos Luiz Fiadeiro, Ivan Lanese, and Antnia
Lopes, New insights on architectural connectors, Proceedings of
IFIP TCS 2004, 3rd IFIP International Conference on Theoret-
ical Computer Science, IFIP Conference Proceedings, Kluwer
Academics, 2004, pp. 367–379.

[BGK+06] K. Balasubramanian, A.S. Gokhale, G. Karsai, J. Sztipanovits,
and S. Neema, Developing applications using model-driven de-
sign environments, IEEE Computer 39 (2006), no. 2, 33–40.

[BGO+04] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and
Joseph Sifakis, The if toolset., SFM, 2004, pp. 237–267.

[BHLM02] Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G.
Messerschmitt, Ptolemy: A framework for simulating and pro-
totyping heterogenous systems, Readings in hardware/software
co-design (2002), 527–543.

[BIP] BIP, http://www-verimag.imag.fr/~async/ BIP/bip.html

[BMP+07a] Ananda Basu, Laurent Mounier, Marc Poulhiès, Jacques
Pulou, and Joseph Sifakis, Using BIP for modeling and verifi-
cation of networked systems — A case study on TinyOS-based

BIBLIOGRAPHY 139

networks, Tech. Report TR-2007-5, VERIMAG, 2007,
http://www-verimag.imag.fr/index.php?

page=techrep-list.

[BMP+07b] , Using bip for modeling and verification of networked
systems – a case study on tinyos-based networks., NCA, 2007,
pp. 257–260.

[BPE] Business Process Execution Language,
http://www.service-architecture.com

[BS00] Sébastein Bornot and Joseph Sifakis, An algebraic framework
for urgency, Inf. Comput. 163 (2000), no. 1, 172–202.

[BS07a] Simon Bliudze and J. Sifakis, The algebra of connectors – struc-
turing interaction in BIP, EmSoft, 2007, pp. 11–20.

[BS07b] Simon Bliudze and Joseph Sifakis, The algebra of connectors —
Structuring interaction in BIP, Proceeding of the EMSOFT’07
(Salzburg, Austria), ACM SigBED, October 2007, pp. 11–20.

[BS08a] , Causal semantics for the algebra of connectors (ex-
tended abstract), FMCO 2007 (Frank de Boer and Marcello
Bonsangue, eds.), LNCS, Springer, 2008, (To appear).

[BS08b] , A notion of glue expressiveness for component-based
systems, CONCUR 2008 (Franck van Breugel and Marsha
Chechik, eds.), LNCS, vol. 5201, Springer, 2008, pp. 508–522.

[BST98] Sébastien Bornot, Joseph Sifakis, and Stavros Tripakis, Model-
ing urgency in timed systems, COMPOS’97: Revised Lectures
from the International Symposium on Compositionality: The
Significant Difference (London, UK), Springer-Verlag, 1998,
pp. 103–129.

[BWH+03] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone,
and A.L. Sangiovanni-Vincentelli, Metropolis: An integrated
electronic system design environment, IEEE Computer 36
(2003), no. 4, 45–52.

[CE81] E. M. Clarke and E. A. Emerson, Synthesis of synchronization
skeletons for branching time temporal logic, Workshop on Logic
of Programs (Yorktown Heights, NY, USA), 1981.

[CFSS08] Jacques Combaz, Jean-Claude Fernandez, Joseph Sifakis, and
Löıc Strus, Symbolic quality control for multimedia applications,
Real-Time Syst. 40 (2008), no. 1, 1–43.

140 BIBLIOGRAPHY

[CL85] K. Mani Chandy and Leslie Lamport, Distributed snapshots:
Determining global states of distributed systems, ACM Trans.
Comput. Syst. 3 (1985), no. 1, 63–75.

[CRBS08] Mohamed Yassin Chkouri, Anne Robert, Marius Bozga, and
Joseph Sifakis, Translating AADL into BIP - Application to the
Verification of Real-time Systems, Model Based Architecting
and Construction of Embedded Systems, 2008.

[ECZ06] Edward A. Lee Elaine Cheong and Yang Zhao, Joint modeling
and design of wireless networks and sensor node software, Tech.
Report UCB/EECS-2006-150, EECS Department, University
of California, Berkeley, November 2006.

[EJL+03] J. Eker, J.W. Janneck, E.A. Lee, J. Liu, X. Liu, J. Ludvig,
S. Neuendorffer, S. Sachs, and Y. Xiong, Taming heterogeneity:
The Ptolemy approach, Proceedings of the IEEE 91 (2003),
no. 1, 127–144.

[EMF] Eclipse Modeling Framework Project,
http://www.eclipse.org/modeling/emf

[Fra] Fractal, http://fractal.objectweb.org/

[FSLM02] J.-Ph. Fassino, J.-B. Stefani, J. Lawall, and G. Muller, THINK:
A Software Framework for Component-based Operating System
Kernels, Proceedings of the Usenix Annual Technical Confer-
ence, June 2002.

[GL98] Stephen J. Garland and Nancy A. Lynch, The ioa language
and toolset: Support for designing, analyzing, and building dis-
tributed systems, Tech. Report MIT/LCS/TR-762, Laboratory
for Computer Science, Massachusetts Institute of Technology,
Cambridge, MA, August 1998.

[GLvB+03] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler, The NesC language: A holistic approach to net-
worked embedded systems, SIGPLAN Conference on Program-
ming Language Design and Implementation, 2003.

[Gößl01] G. Gößler, Prometheus — a compositional modeling tool for
real-time systems, Proc. Workshop RT-TOOLS 2001 (P. Pet-
tersson and S. Yovine, eds.), Technical report 2001-014, Upp-
sala University, Department of Information Technology, 2001.

[GS03] Gregor Gößler and Joseph Sifakis, Priority systems, FMCO,
2003, pp. 314–329.

BIBLIOGRAPHY 141

[GS04] David Garlan and Bradley R. Schmerl, Using architectural mod-
els at runtime: Research challenges, EWSA, 2004, pp. 200–205.

[GS05] Gregor Gößler and Joseph Sifakis, Composition for component-
based modeling., Sci. Comput. Program. 55 (2005), no. 1-3,
161–183.

[GSR+04] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin,
E. Osterweil, and T. Schoellhammer, A system for simulation,
emulation and deployement of heterogeneous sensor networks,
2nd International Conference on Embedded Networked Sensor
Systems, ACM Press, 2004.

[Hen96] T. A. Henzinger, The theory of hybrid automata, LICS ’96:
Proceedings of the 11th Annual IEEE Symposium on Logic in
Computer Science (Washington, DC, USA), IEEE Computer
Society, 1996, p. 278.

[HS06] T. Henzinger and J. Sifakis, The embedded systems design chal-
lenge, Proceedings FM 2006, LNCS (2006).

[IR07] Radu Iosif and Adam Rogalewicz, An approach to derivation
of component-based implementations from data-oriented speci-
fications, October 2007.

[IT99] ITU-T, Recommendation Z.100. Specification and Description
Language (SDL), Tech. Report Z-100, International Telecom-
munication Union – Standardization Sector, Genève, November
1999.

[IT00] , Recommendation Z-100 Annex F1(11/00): Specifica-
tion and Description Language (SDL) Formal Definition, In-
ternational Telecommunication Union, Geneva, 2000.

[Jav] Java, http://www.java.com/

[JHA+96] J. -C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R.
Mateescu, and M. Sighireanu, CADP: a protocol validation
and verification toolbox, Proceedings of the Eighth Interna-
tional Conference on Computer Aided Verification CAV (New
Brunswick, NJ, USA) (Rajeev Alur and Thomas A. Henzinger,
eds.), vol. 1102, Springer Verlag, 1996, pp. 437–440.

[Lee03] E. A. Lee, Overview of the ptolemy project, Tech. report, 2003.

142 BIBLIOGRAPHY

[LLWC03] Philip Levis, Nelson Lee, Matt Welsh, and David Culler,
Tossim: accurate and scalable simulation of entire TinyOS ap-
plications, SenSys ’03: 1st International Conference on Embed-
ded networked sensor systems (New York, NY, USA), ACM
Press, 2003, pp. 126–137.

[Lus] Lustre, http://www-verimag.imag.fr/~synchron/index.php?page=lang-design

[Mil95] Robin Milner, Communication and concurrency, Prentice Hall
International (UK) Ltd., Hertfordshire, UK, UK, 1995.

[Mil98] , The pi calculus and its applications, JICSLP’98: Pro-
ceedings of the 1998 joint international conference and sym-
posium on Logic programming (Cambridge, MA, USA), MIT
Press, 1998, pp. 3–4.

[MS00] R. Mateescu and M. Sighireanu, Efficient on-the-fly model-
checking for regular alternation-free mu-calculus, Tech. Report
3899, INRIA Rhône-Alpes, France, 2000.

[PAP] PAPYRUS, http://www.papyrusuml.org/

[PBM+04] Jonathan Polley, Dionysys Blazakis, Jonathan McGee, Dan
Rusk, and John S. Baras, ATEMU: A Fine-grained Sensor Net-
work Simulator, Proceedings of SECON, 2004.

[Pha94] M. Phalippou, Executable testers, IWPTS (Tokyo, Japan),
1994.

[Plo81] Gordon D. Plotkin, A structural approach to operational se-
mantics, Tech. Report DAIMI FN-19, University of Aarhus,
1981.

[QS82] J-P. Queille and J. Sifakis, Specification and verification of
concurrent systems, Int. Symposium on Programming (Torino,
Italy), 1982.

[Qui86] M J Quinn, Designing efficient algorithms for parallel comput-
ers, McGraw-Hill, Inc., New York, NY, USA, 1986.

[RC03] Arnab Ray and Rance Cleaveland, Architectural interaction
diagrams: Aids for system modeling, ICSE ’03: Proceedings
of the 25th International Conference on Software Engineer-
ing (Washington, DC, USA), IEEE Computer Society, 2003,
pp. 396–406.

[RHG+01] J. Ruf, D. Hoffmann, J. Gerlach, T. Kropf, W. Rosenstiehl, and
W. Mueller, The simulation semantics of systemc, DATE ’01:

BIBLIOGRAPHY 143

Proceedings of the conference on Design, automation and test
in Europe (Piscataway, NJ, USA), IEEE Press, 2001, pp. 64–70.

[SBS08] Thanh-Hung Nguyen Saddek Bensalem, Marius Bozga and
Joseph Sifakis, Compositional deadlock-detection and verifica-
tion for component-based systems, Tech. report, Verimag, Cen-
tre Équation, 38610 Gières, April 2008.

[Sel04] Bran Selic, Tutorial: An overview of uml 2.0, ICSE ’04: Pro-
ceedings of the 26th International Conference on Software En-
gineering (Washington, DC, USA), IEEE Computer Society,
2004, pp. 741–742.

[Sif05] J. Sifakis, A framework for component-based construction, Pro-
ceedings of the Third International Conference on Software En-
gineering and Formal Methods (SEFM), IEEE Computer Soci-
ety, 2005, pp. 293–300.

[Som] Fabio Somenzi, CUDD: CU decision diagram package,
http://vlsi.colorado.edu/ fabio/CUDD/, (Release 2.4.1).

[Tin] http://www.tinyos.net/.

[TLP05] Ben L Titzer, Daniel K Lee, and Jens Palsberg, Avrora: Scal-
able Sensor Network Simulation with Precise Timing, IPSN 05,
2005.

[Tre94] J. Tretmans, A formal approach to conformance testing, IW-
PTS (Tokyo, Japan), 1994.

[VPL99] James Vera, Louis Perrochon, and David C. Luckham, Event-
based execution architectures for dynamic software systems,
WICSA1: Proceedings of the TC2 First Working IFIP Con-
ference on Software Architecture (WICSA1) (Deventer, The
Netherlands, The Netherlands), Kluwer, B.V., 1999, pp. 303–
318.

[WDE05] Workshop on distributed embedded systems, lorentz center, lei-
den, 2005, http://www.tik.ee.ethz.ch/ leiden05.

	Preface
	I Concepts and Methodology
	Introduction
	State of the Art
	Shortcomings
	Encompassing Heterogeneity
	Achieving Constructivity

	Key Issues of Component-Based Construction
	Our Contribution
	Organization of the Report

	Component Composition in BIP
	Basic Ideas
	Incrementality
	Compositionality
	Composability

	Abstract Model of BIP
	The 3-Tier Architecture
	Abstract Semantics

	Concrete Model of BIP
	Modeling Behavior
	Modeling Interactions
	Modeling Priority

	Classification of Systems
	Timed Systems
	Synchronous Systems

	The System Construction Space
	Distributed Model of BIP
	Basic Concepts
	Partial State Semantics
	Comparing Global and Partial State Semantics
	Partial State Semantics with Oracles

	II Implementation: Language and Tool-chain
	The BIP Language
	Basic Language Elements
	Modeling Atoms
	Port Type
	Atomic Type

	Modeling Connectors
	Connector Type

	Modeling Compounds
	Compound Type

	Modeling Priority
	Modeling Timed Systems: Timed Guards
	Arrays
	Package and System
	Expression and Statement

	The BIP Tool-Chain
	Overview of the Tool-Chain
	The Frontend
	BIP Meta Model
	Code Generator

	The Backend
	Centralized Enumerative Engine
	Centralized Symbolic Engine
	Distributed engine

	III Applications
	Case Studies
	Modeling Mixed HW/SW Systems
	Modeling and Verification of Networked Systems -- A Case Study on TinyOS-based Networks

	Software Componentization
	MPEG encoder

	IV Conclusions and Perspectives
	Conclusion
	Objectives of the thesis
	Tasks Accomplished
	Future Work
	Language Factory
	Implementation for real platforms

	BIP Grammar
	BIP Meta Model

