P. The, 72 4.2.1 The Vlasov-Poisson model 72 4.2.2 Existence, uniqueness and regularity of the solution of the continuous problem, p.74

P. The-discrete, 74 4.3.1 Definitions and notations, p.79

P. The, 107 5.2.1 The Vlasov-Ampère and Vlasov-Poisson models, 107 5.2.2 The quasi-relativistic Vlasov-Maxwell model . . . . . . . . . . . . . . . . . 108

P. The-discrete, 110 5.3.1 Deposition step, p.111

P. The-charge and .. Vs-poisson, 114 5.4.1 Solving the electric field Ampère, p.115

L. Landau and D. , 118 5.5.3 Two stream instability, Numerical Synthesis, p.133

A. Arsen-'ev, Global existence of a weak solution of vlasov's system of equations, USSR Computational Mathematics and Mathematical Physics, vol.15, issue.1, pp.131-143, 1975.
DOI : 10.1016/0041-5553(75)90141-X

C. Bardos and P. Degond, Global existence for the Vlasov-Poisson equation in three variables with small initial data Ann, Inst. Henri Poincaré, Analyse non linéaire, pp.101-118, 1985.

J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, Journal of Differential Equations, vol.25, issue.3, pp.342-364, 1977.
DOI : 10.1016/0022-0396(77)90049-3

F. Bouchut, G. Golse, and C. Pallard, Classical Solutions and the Glassey-Strauss Theorem for the 3D Vlasov-Maxwell System, Archive for Rational Mechanics and Analysis, vol.170, issue.1, pp.1-15, 2003.
DOI : 10.1007/s00205-003-0265-6

F. Bouchut, G. Golse, and M. Pulvirenti, Kinetic equations and asymptotic theory, Series in Apllied Mathematics, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00538692

J. Cooper and A. Klimas, Boundary value problems for the Vlasov-Maxwell equation in one dimension, Journal of Mathematical Analysis and Applications, vol.75, issue.2, pp.306-329, 1980.
DOI : 10.1016/0022-247X(80)90082-7

R. Diperna and P. L. Lions, Global weak solutions of Vlasov-Maxwell systems, Communications on Pure and Applied Mathematics, vol.2, issue.6, pp.729-757, 1989.
DOI : 10.1002/cpa.3160420603

R. Glassey, The Cauchy problem in kinetic theory, SIAM, 1996.
DOI : 10.1137/1.9781611971477

R. Glassey and J. , On symmetric solutions of the relativistic Vlasov-Poisson system, Communications in Mathematical Physics, vol.33, issue.4, pp.459-473, 1985.
DOI : 10.1007/BF01210740

R. Glassey and J. , Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data, Communications In Mathematical Physics, vol.69, issue.3, pp.353-384, 1988.
DOI : 10.1007/BF01218078

R. Glassey and J. , On the ???one and one-half dimensional??? relativistic Vlasov-Maxwell system, Mathematical Methods in the Applied Sciences, vol.33, issue.2, pp.169-179, 1990.
DOI : 10.1002/mma.1670130207

R. Glassey and J. , The "Two and One-Half Dimensional" Relativistic Vlasov Maxwell System, Communications in Mathematical Physics, vol.185, issue.2, pp.257-284, 1997.
DOI : 10.1007/s002200050090

R. Glassey and J. , Schaeffer The relativistic Vlasov-Maxwell system in two space dimensions: Part I and II, Arch. Rational. mech. Anal. 141, pp.331-354, 1998.

R. Glassey and W. , Strauss Singularity formation in a collisionless plasma could only occur at high velocities, Arch. Rational. mech. Anal, vol.92, pp.56-90, 1986.

R. Glassey and W. , Absence of shocks in an initially dilute collisionless plasma, Communications in Mathematical Physics, vol.28, issue.2, pp.191-208, 1987.
DOI : 10.1007/BF01223511

Y. Guo, Global weak solutions of the Vlasov-Maxwell system with boundary conditions, Communications in Mathematical Physics, vol.42, issue.2, pp.245-263, 1993.
DOI : 10.1007/BF02096997

E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear vlasov equation II special cases, Mathematical Methods in the Applied Sciences, vol.35, issue.1, pp.19-32, 1982.
DOI : 10.1002/mma.1670040104

E. Horst, On the asymptotic growth of the solutions of the vlasov-poisson system, Mathematical Methods in the Applied Sciences, vol.30, issue.2, pp.75-82, 1993.
DOI : 10.1002/mma.1670160202

S. Klainerman and G. Staffilani, A new approach to study the Vlasov-Maxwell system Comm, Pure Appl Anal, vol.1, issue.1, pp.103-125, 2002.

P. L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Inventiones Mathematicae, vol.33, issue.no 1, pp.415-430, 1991.
DOI : 10.1007/BF01232273

H. Neunzert and K. H. Petry, Ein Existenzsatz f??r die Vlasov-Gleichung mit selbstkonsistentem Magnetfeld, Mathematical Methods in the Applied Sciences, vol.9, issue.4, pp.429-444, 1980.
DOI : 10.1002/mma.1670020406

T. Ukai and S. Okabe, On classical solutions in the large in time of two-dimensional Vlasov's equation, Osaka J. Math, vol.15, pp.245-261, 1978.

K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, Journal of Differential Equations, vol.95, issue.2, pp.281-303, 1992.
DOI : 10.1016/0022-0396(92)90033-J

G. Rein, Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics, Communications in Mathematical Physics, vol.37, issue.1, pp.41-78, 1990.
DOI : 10.1007/BF02097656

G. Rein, Global Weak Solutions to the Relativistic Vlasov-Maxwell System Revisited, Communications in Mathematical Sciences, vol.2, issue.2, pp.145-158, 2004.
DOI : 10.4310/CMS.2004.v2.n2.a1

J. Schaeffer, Global existence for the Poisson-Vlasov system with nearly symmetric data, Journal of Differential Equations, vol.69, issue.1, pp.111-148, 1987.
DOI : 10.1016/0022-0396(87)90105-7

J. Schaeffer, Global existence of smooth solutions to the vlasov poisson system in three dimensions, Communications in Partial Differential Equations, vol.15, issue.8-9, pp.1313-1335, 1991.
DOI : 10.1002/mma.1670040104

S. Wollman, An existence and uniqueness theorem for the Vlasov-Maxwell system, Communications on Pure and Applied Mathematics, vol.2, issue.4, pp.457-462, 1984.
DOI : 10.1002/cpa.3160370404

M. Ainsworth and J. Coyle, Hierarchic hp-edge element families for Maxwell's equations on hybrid quadrilateral/triangular meshes, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.49-50, pp.6709-6733, 2001.
DOI : 10.1016/S0045-7825(01)00259-6

R. Barthelmé, Leprobì eme de conservation de la charge dans le couplage deséquationsdeséquations de Vlasov et de Maxwell, 2005.

F. Assous, P. Degond, E. Heintze, P. Raviart, and J. Segré, On a Finite-Element Method for Solving the Three-Dimensional Maxwell Equations, Journal of Computational Physics, vol.109, issue.2, pp.222-237, 1993.
DOI : 10.1006/jcph.1993.1214

H. Barucq, Etude asymptotique du système de Maxwell avec conditions aux limites absorbantes, Thèse de l'université de Bordeaux I, 1993.

R. Bermejo, Analysis of an algorithm for the Galerkin-characteristic method, Numerische Mathematik, vol.31, issue.1, pp.163-194, 1991.
DOI : 10.1007/BF01385720

R. Bermejo, Analysis of a class of quasi-monotone and conservative semi-Lagrangian advection schemes, Numerische Mathematik, vol.87, issue.4, pp.597-623, 2001.
DOI : 10.1007/PL00005425

N. Besse, Etude mathématique et numérique de l'´ equation de Vlasov non linéaire sur des maillages non structurés de l'espace des phases, 2003.

. Besse, Convergence of a semi-Lagrangian scheme for the one-dimensional Vlasov- Poisson system SIAM J. Numer. Anal, 42 no1, pp.350-382, 2004.

. Besse, Convergence of a High-Order Semi-Lagrangian Scheme with Propagation of Gradients for the One-Dimensional Vlasov???Poisson System, SIAM Journal on Numerical Analysis, vol.46, issue.2, pp.639-670, 2009.
DOI : 10.1137/050635171

N. Besse and M. Mehrenberger, Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov--Poisson system, Mathematics of Computation, vol.77, issue.261, pp.93-123, 2008.
DOI : 10.1090/S0025-5718-07-01912-6

URL : https://hal.archives-ouvertes.fr/hal-00594785

C. K. Birdsall and A. B. Langdon, Plasma physics via computer simulation, Institute of Physics, 1991.

B. Bidégarray and J. M. Ghidaglia, Multidimensional corrections to cell-centered finite volume methods for Maxwell equations, Applied Numerical Mathematics, vol.44, issue.3, pp.281-298, 2003.
DOI : 10.1016/S0168-9274(02)00171-X

J. Boris and D. L. Book, Solution of Continuity Equations by the Method of Flux-Corrected Transport, J. Comput. Phys, vol.20, pp.397-431, 1976.
DOI : 10.1016/B978-0-12-460816-0.50008-7

J. P. Boris, Relativistic plasma simulations -Optimization of a hybrid code, Proc. 4th Conf. Num. Sim. of Plasmas, pp.3-67, 1970.

M. Bostan and N. Crouseilles, Convergence of a semi-Lagrangian scheme for the reduced Vlasov???Maxwell system for laser???plasma interaction, Numerische Mathematik, vol.149, issue.2, pp.169-195, 2009.
DOI : 10.1007/s00211-009-0216-8

URL : https://hal.archives-ouvertes.fr/inria-00221359

M. Bostan, Mild solutions for the relativistic Vlasov-Maxwell system for laser-plasma interaction, Quarterly of Applied Mathematics, vol.65, issue.1, pp.163-187, 2007.
DOI : 10.1090/S0033-569X-07-01047-4

M. Campos-pinto and M. , Convergence of an adaptive semi-Lagrangian scheme for the Vlasov-Poisson system, Numerische Mathematik, vol.149, issue.2, pp.407-444, 2008.
DOI : 10.1007/s00211-007-0120-z

URL : https://hal.archives-ouvertes.fr/hal-00320364

S. Carillo and . Labrunie, GLOBAL SOLUTIONS FOR THE ONE-DIMENSIONAL VLASOV???MAXWELL SYSTEM FOR LASER-PLASMA INTERACTION, Mathematical Models and Methods in Applied Sciences, vol.16, issue.01, pp.19-57, 2006.
DOI : 10.1142/S0218202506001042

C. Z. Cheng and G. Knorr, The integration of the vlasov equation in configuration space, Journal of Computational Physics, vol.22, issue.3, pp.330-3351, 1976.
DOI : 10.1016/0021-9991(76)90053-X

G. Cohen, X. Ferrì-eres, and S. Pernet, A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell???s equations in time domain, Journal of Computational Physics, vol.217, issue.2, pp.340-363, 2006.
DOI : 10.1016/j.jcp.2006.01.004

G. Cohen and P. Joly, Construction Analysis of Fourth-Order Finite Difference Schemes for the Acoustic Wave Equation in Nonhomogeneous Media, SIAM Journal on Numerical Analysis, vol.33, issue.4, pp.1266-1302, 1996.
DOI : 10.1137/S0036142993246445

P. Colella and P. R. Woodward, The Piecewise Parabolic Method (PPM) for gas-dynamical simulations, Journal of Computational Physics, vol.54, issue.1, pp.174-201, 1984.
DOI : 10.1016/0021-9991(84)90143-8

P. Colella and M. D. Sekora, A limiter for PPM that preserves accuracy at smooth extrema, Journal of Computational Physics, vol.227, issue.15, pp.7069-7076, 2008.
DOI : 10.1016/j.jcp.2008.03.034

C. J. Cotter, J. Frank, and S. , The remapped particle-mesh semi-Lagrangian advection scheme, Quarterly Journal of the Royal Meteorological Society, vol.51, issue.622, pp.251-260, 2007.
DOI : 10.1002/qj.11

G. Cohen and B. Perthame, Optimal Approximations of Transport Equations by Particle and Pseudoparticle Methods, SIAM Journal on Mathematical Analysis, vol.32, issue.3, pp.616-636, 2000.
DOI : 10.1137/S0036141099350353

G. Cottet and P. Raviart, Particle Methods for the One-Dimensional Vlasov???Poisson Equations, SIAM Journal on Numerical Analysis, vol.21, issue.1, pp.52-75, 1984.
DOI : 10.1137/0721003

N. Crouseilles, M. Mehrenberger, and E. Sonnedrücker, Conservative semi-Lagrangian schemes for Vlasov equations, Journal of Computational Physics, vol.229, issue.6, pp.1927-1953, 2010.
DOI : 10.1016/j.jcp.2009.11.007

URL : https://hal.archives-ouvertes.fr/hal-00363643

L. Demkowicz and L. Vardapetyan, Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements, Computer Methods in Applied Mechanics and Engineering, vol.152, issue.1-2, pp.103-124, 1998.
DOI : 10.1016/S0045-7825(97)00184-9

A. Ditkowski, K. Dridi, and J. S. Hesthaven, Convergent Cartesian Grid Methods for Maxwell's Equations in Complex Geometries, Journal of Computational Physics, vol.170, issue.1, pp.39-80, 2001.
DOI : 10.1006/jcph.2001.6719

J. W. Eastwood, The virtual particle electromagnetic particle-mesh method, Computer Physics Communications, vol.64, issue.2, pp.252-266, 1991.
DOI : 10.1016/0010-4655(91)90036-K

T. Zh, Esirkepov, Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor, Comp. Phys. Comm, vol.135, pp.144-153, 2001.

M. Falcone and R. Ferretti, Convergence Analysis for a Class of High-Order Semi-Lagrangian Advection Schemes, SIAM Journal on Numerical Analysis, vol.35, issue.3, pp.909-940, 1998.
DOI : 10.1137/S0036142994273513

M. R. Feix, P. Bertrand, and A. Ghizzo, EULERIAN CODES FOR THE VLASOV EQUATION, Series on Advances in Math. for Appl. Sci. 22. Kinetic Theory and Computing, 1994.
DOI : 10.1142/9789814354165_0002

F. Filbet, E. Sonnendrücker, and P. Bertrand, Conservative Numerical Schemes for the Vlasov Equation, Journal of Computational Physics, vol.172, issue.1, pp.166-187, 2001.
DOI : 10.1006/jcph.2001.6818

F. Filbet and E. Sonnendrücker, Comparison of Eulerian Vlasov solvers, Computer Physics Communications, vol.150, issue.3, pp.247-266, 2003.
DOI : 10.1016/S0010-4655(02)00694-X

URL : https://hal.archives-ouvertes.fr/hal-00129663

F. Filbet, Convergence of a Finite Volume Scheme for the Vlasov--Poisson System, SIAM Journal on Numerical Analysis, vol.39, issue.4, pp.1146-1169, 2001.
DOI : 10.1137/S003614290037321X

URL : https://hal.archives-ouvertes.fr/inria-00072796

K. Ganguly and H. D. Victory-jr, On the Convergence of Particle Methods for Multidimensional Vlasov???Poisson Systems, SIAM Journal on Numerical Analysis, vol.26, issue.2, pp.249-288, 1989.
DOI : 10.1137/0726015

K. Ganguly, J. T. Lee, and H. D. Victory-jr, On Simulation Methods for Vlasov???Poisson Systems with Particles Initially Asymptotically Distributed, SIAM Journal on Numerical Analysis, vol.28, issue.6, pp.1574-1609, 1991.
DOI : 10.1137/0728080

A. Ghizzo, P. Bertrand, M. Shoucri, T. W. Johnston, E. Filjakow et al., A Vlasov code for the numerical simulation of stimulated raman scattering, Journal of Computational Physics, vol.90, issue.2, p.431, 1990.
DOI : 10.1016/0021-9991(90)90174-Y

A. Ghizzo, P. Bertrand, M. L. Begue, T. W. Johnston, and M. Shoucri, A Hilbert-Vlasov code for the study of high-frequency plasma beatwave accelerator, IEEE Transactions on Plasma Science, vol.24, issue.2, p.370, 1996.
DOI : 10.1109/27.510001

R. Glassey and J. Schaeffer, Convergence of a Particle Method for the Relativistic Vlasov???Maxwell System, SIAM Journal on Numerical Analysis, vol.28, issue.1, pp.1-25, 1991.
DOI : 10.1137/0728001

F. Hermeline, Two Coupled Particle-Finite Volume Methods Using Delaunay-Vorono???? Meshes for the Approximation of Vlasov-Poisson and Vlasov-Maxwell Equations, Journal of Computational Physics, vol.106, issue.1, pp.1-18, 1993.
DOI : 10.1006/jcph.1993.1086

A. B. Langdon, On enforcing Gauss' law in electromagnetic particle-in-cell codes, Computer Physics Communications, vol.70, issue.3, pp.447-450, 1992.
DOI : 10.1016/0010-4655(92)90105-8

B. Marder, A method for incorporating Gauss' law into electromagnetic PIC codes, Journal of Computational Physics, vol.68, issue.1, pp.48-55, 1987.
DOI : 10.1016/0021-9991(87)90043-X

G. Cohen and P. Monk, Mur-n??d??lec finite element schemes for Maxwell's equations, Computer Methods in Applied Mechanics and Engineering, vol.169, issue.3-4, pp.197-217, 1999.
DOI : 10.1016/S0045-7825(98)00154-6

C. Munz, P. Omnes, and R. Schneider, A three-dimensional finite-volume solver for the Maxwell equations with divergence cleaning on unstructured meshes, Computer Physics Communications, vol.130, issue.1-2, pp.83-117, 2000.
DOI : 10.1016/S0010-4655(00)00045-X

C. Munz, P. Omnes, R. Schneider, E. Sonnendrücker, and U. Voss, Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model, Journal of Computational Physics, vol.161, issue.2, pp.484-511, 2000.
DOI : 10.1006/jcph.2000.6507

C. Munz, R. Schneider, E. Sonnendrücker, and U. Voss, Maxwell's equations when the charge conservation is not satisfied, Comptes Rendus de l'Académie des Sciences -Series I -Mathematics 328, pp.431-436, 1999.

T. Nakamura, R. Tanaka, T. Yabe, and K. Takizawa, Exactly Conservative Semi-Lagrangian Scheme for Multi-dimensional Hyperbolic Equations with Directional Splitting Technique, Journal of Computational Physics, vol.174, issue.1, pp.171-207, 2001.
DOI : 10.1006/jcph.2001.6888

T. Nakamura and T. Yabe, Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov???Poisson equation in phase space, Computer Physics Communications, vol.120, issue.2-3, pp.122-154, 1999.
DOI : 10.1016/S0010-4655(99)00247-7

J. Nédelec, Mixed finite elements in ?3, Numerische Mathematik, vol.12, issue.3, pp.315-341, 1980.
DOI : 10.1007/BF01396415

H. Neunzert and J. Wick, Theoretische und numerische Ergebnisse zur nicht linearen Vlasov-Gleichung, in Numerische Lösung nichtlinearen partiellen Differential -unr Integro differential gleichungen, Leture Notes in Math, vol.267, 1972.

H. Neunzert and J. Wick, The theory of asymptotic distribution and the numerical solution of integrodifferential equations, Numerische Mathematik, vol.77, issue.3, pp.234-243, 1973.
DOI : 10.1007/BF01436627

N. Canouet, L. Fezoui, and S. Piperno, 3D Maxwell's equations and orthogonal nonconforming meshes: a hp-type Discontinuous Galerkin method, 2003.

W. Rachowicz and L. Demkowicz, An hp-adaptive finite element method for electromagnetics, Computer Methods in Applied Mechanics and Engineering, vol.187, issue.1-2, pp.307-335, 2000.
DOI : 10.1016/S0045-7825(99)00137-1

P. A. Raviart, An analysis of particle methods, Lecture Notes in Math, vol.1127, pp.243-324, 1985.
DOI : 10.1007/BFb0074532

S. Reich, An explicit and conservative remapping strategy for semi-Lagrangian advection, Atmospheric Science Letters, vol.130, issue.2, pp.58-63, 2007.
DOI : 10.1002/asl.151

M. Remaki, Méthodes numériques pour leséquationsleséquations de Maxwell instationnaires en milieu hétérogène, Thèse Mathématiques Appliquées, CERMICS, Ponts et Chaussées, p.178, 1999.

J. Schaeffer, Discrete approximation of the Poisson-Vlasov system, Quarterly of Applied Mathematics, vol.45, issue.1, pp.59-73, 1987.
DOI : 10.1090/qam/885168

J. Schoberl and S. Zaglmayr, High order N??d??lec elements with local complete sequence properties, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol.24, issue.2, 2005.
DOI : 10.1108/03321640510586015

N. J. Sircombe and T. D. Arber, VALIS: A split-conservative scheme for the relativistic 2D Vlasov???Maxwell system, Journal of Computational Physics, vol.228, issue.13, pp.4773-4788
DOI : 10.1016/j.jcp.2009.03.029

E. Sonnendrücker, J. Roche, P. Bertrand, and A. , The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation, Journal of Computational Physics, vol.149, issue.2, pp.201-220, 1999.
DOI : 10.1006/jcph.1998.6148

E. Sonnendrücker and P. Navaro, Développement du code Maxwell-Vlasov PICparalì ele Brennus: Mise en oeuvre d'un solveur Maxwell 2D par la méthode de Galerkin Discontinu, rapport CEA, 2006.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 1995.

T. Umeda, Y. Omura, T. Tominaga, and H. Matsumoto, A new charge conservation method in electromagnetic particle-in-cell simulations, Computer Physics Communications, vol.156, issue.1, pp.73-85, 2003.
DOI : 10.1016/S0010-4655(03)00437-5

T. Umeda, M. Ashour-abdalla, and D. Schriver, Comparison of numerical interpolation schemes for one-dimensional electrostatic Vlasov code, Journal of Plasma Physics, vol.72, issue.06, pp.1057-1060, 2006.
DOI : 10.1017/S0022377806005228

H. D. Victory-jr and E. J. Allen, The Convergence Theory of Particle-In-Cell Methods for Multidimensional Vlasov???Poisson Systems, SIAM Journal on Numerical Analysis, vol.28, issue.5, pp.1207-1241, 1991.
DOI : 10.1137/0728065

H. D. Victory-jr and E. J. Allen, The Convergence Analysis of Fully Discretized Particle Methods for Solving Vlasov???Poisson Systems, SIAM Journal on Numerical Analysis, vol.28, issue.4, pp.955-989, 1991.
DOI : 10.1137/0728051

J. Villasenor and O. Buneman, Rigorous charge conservation for local electromagnetic field solvers, Computer Physics Communications, vol.69, issue.2-3, pp.306-316, 1992.
DOI : 10.1016/0010-4655(92)90169-Y

S. Wollman and E. Ozizmir, Numerical Approximation of the One-Dimensional Vlasov???Poisson System with Periodic Boundary Conditions, SIAM Journal on Numerical Analysis, vol.33, issue.4, pp.1377-1409, 1996.
DOI : 10.1137/S0036142993233585

S. Wollman, On the Approximation of the Vlasov--Poisson System by Particle Methods, SIAM Journal on Numerical Analysis, vol.37, issue.4, pp.1369-1398, 2000.
DOI : 10.1137/S0036142999298528

K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propag, vol.14, pp.302-307, 1966.

M. Zerroukat, N. Wood, and A. Staniforth, A monotonic and positive???definite filter for a Semi-Lagrangian Inherently Conserving and Efficient (SLICE) scheme, Quarterly Journal of the Royal Meteorological Society, vol.130, issue.611, pp.2923-2936, 2005.
DOI : 10.1256/qj.04.97

M. Zerroukat, N. Wood, and A. Staniforth, The Parabolic Spline Method (PSM) for conservative transport problems, International Journal for Numerical Methods in Fluids, vol.1, issue.11, pp.1297-1318, 2006.
DOI : 10.1002/fld.1154

R. Barthelmé, Conservation de la charge dans les codes PIC, Comptes Rendus Mathematique, vol.341, issue.11, pp.689-694, 2005.
DOI : 10.1016/j.crma.2005.09.008

O. V. Batishchev, A. A. Batischeva, and J. Zhang, Hybrid Vlasov/Fokker-Planck-PIC method, Proc. 18th Conf. Num. Simul. Plasmas, Cape Cod, 2003.

I. B. Bernstein, J. M. Greene, and M. D. , Exact Nonlinear Plasma Oscillations, Physical Review, vol.108, issue.3, p.546, 1957.
DOI : 10.1103/PhysRev.108.546

N. Besse and M. Mehrenberger, Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov--Poisson system, Mathematics of Computation, vol.77, issue.261, pp.93-123, 2008.
DOI : 10.1090/S0025-5718-07-01912-6

URL : https://hal.archives-ouvertes.fr/hal-00594785

M. Buchanan and J. Dorning, Nonlinear electrostatic waves in collisionless plasmas, Physical Review E, vol.52, issue.3, p.3015, 1995.
DOI : 10.1103/PhysRevE.52.3015

J. Carillo and F. Vecil, Nonoscillatory Interpolation Methods Applied to Vlasov-Based Models, SIAM Journal on Scientific Computing, vol.29, issue.3, pp.1179-1206, 2007.
DOI : 10.1137/050644549

C. Z. Cheng and G. Knorr, The integration of the vlasov equation in configuration space, Journal of Computational Physics, vol.22, issue.3, pp.330-3351, 1976.
DOI : 10.1016/0021-9991(76)90053-X

C. J. Cotter, J. Frank, and S. , The remapped particle-mesh semi-Lagrangian advection scheme, Quarterly Journal of the Royal Meteorological Society, vol.51, issue.622, pp.251-260, 2007.
DOI : 10.1002/qj.11

J. Denavit, Numerical simulation of plasmas with periodic smoothing in phase space, Journal of Computational Physics, vol.9, issue.1, pp.75-98, 1972.
DOI : 10.1016/0021-9991(72)90037-X

J. W. Eastwood, The stability and accuracy of EPIC algorithms, Computer Physics Communications, vol.44, issue.1-2, pp.73-82, 1987.
DOI : 10.1016/0010-4655(87)90018-X

F. Filbet, E. Sonnendrücker, and P. Bertrand, Conservative Numerical Schemes for the Vlasov Equation, Journal of Computational Physics, vol.172, issue.1, pp.166-187, 2001.
DOI : 10.1006/jcph.2001.6818

F. Filbet and E. Sonnendrücker, Comparison of Eulerian Vlasov solvers, Computer Physics Communications, vol.150, issue.3, pp.247-266, 2003.
DOI : 10.1016/S0010-4655(02)00694-X

URL : https://hal.archives-ouvertes.fr/hal-00129663

B. D. Fried and S. D. Comte, The plasma dispersion function, 1961.

A. Ghizzo, P. Bertrand, M. L. Begue, T. W. Johnston, and M. Shoucri, A Hilbert-Vlasov code for the study of high-frequency plasma beatwave accelerator, IEEE Transactions on Plasma Science, vol.24, issue.2, p.370, 1996.
DOI : 10.1109/27.510001

V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet et al., A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation, Journal of Computational Physics, vol.217, issue.2, pp.395-423, 2006.
DOI : 10.1016/j.jcp.2006.01.023

URL : https://hal.archives-ouvertes.fr/hal-00594856

G. Knorr, A. Joyce, and J. Marcus, Fourth-order poisson solver for the simulation of bounded plasmas, Journal of Computational Physics, vol.38, issue.2, p.227, 1980.
DOI : 10.1016/0021-9991(80)90054-6

W. Magnus and S. Winkler, Hill's equation, 1966.

G. Manfredi, Long-Time Behavior of Nonlinear Landau Damping, Physical Review Letters, vol.79, issue.15, p.2815, 1997.
DOI : 10.1103/PhysRevLett.79.2815

R. D. Nair, J. S. Scroggs, and F. H. Semazzi, A forward-trajectory global semi-Lagrangian transport scheme, Journal of Computational Physics, vol.190, issue.1, pp.275-294, 2003.
DOI : 10.1016/S0021-9991(03)00274-2

T. Nakamura and T. Yabe, Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov???Poisson equation in phase space, Computer Physics Communications, vol.120, issue.2-3, pp.122-154, 1999.
DOI : 10.1016/S0010-4655(99)00247-7

S. Reich, An explicit and conservative remapping strategy for semi-Lagrangian advection, Atmospheric Science Letters, vol.130, issue.2, pp.58-63, 2007.
DOI : 10.1002/asl.151

P. H. Sakanaka, C. K. Chu, and T. C. , Formation of Ion-Acoustic Collisionless Shocks, Physics of Fluids, vol.14, issue.3, p.611, 1971.
DOI : 10.1063/1.1693480

M. Shoucri, Nonlinear evolution of the bump-on-tail instability, Physics of Fluids, vol.22, issue.10, 1979.
DOI : 10.1063/1.862470

M. Shoucri, A two-level implicit scheme for the numerical solution of the linearized vorticity equation, International Journal for Numerical Methods in Engineering, vol.18, issue.10, p.1525, 1981.
DOI : 10.1002/nme.1620171007

M. Shoucri and R. Gagné, Nonlinear behavior of a monochromatic wave in a one-dimensional Vlasov plasma, Physics of Fluids, vol.21, issue.7, p.1168, 1978.
DOI : 10.1063/1.862355

M. Shoucri, H. Gerhauser, and K. Finken, Integration of the Vlasov equation along characteristics in one and two dimensions, Comput; Phys, Comm, vol.154, pp.65-75, 2003.

N. Singh, Computer experiments on the formation and dynamics of electric double layers (in plasma), Plasma Phys, 1980.

A. Staniforth and J. Coté, Semi-Lagrangian Integration Schemes for Atmospheric Models???A Review, Monthly Weather Review, vol.119, issue.9, pp.2206-2223, 1991.
DOI : 10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2

E. Sonnendrücker, J. Roche, P. Bertrand, and A. , The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation, Journal of Computational Physics, vol.149, issue.2, pp.201-220, 1999.
DOI : 10.1006/jcph.1998.6148

S. Vadlamani, S. E. Parker, Y. Chen, and C. Kim, The particle-continuum method: an algorithmic unification of particle-in-cell and continuum methods, Computer Physics Communications, vol.164, issue.1-3, pp.209-213, 2004.
DOI : 10.1016/j.cpc.2004.06.031

J. Villasenor and O. Buneman, Rigorous charge conservation for local electromagnetic field solvers, Computer Physics Communications, vol.69, issue.2-3, pp.306-316, 1992.
DOI : 10.1016/0010-4655(92)90169-Y

M. Zerroukat, N. Wood, and A. Staniforth, A monotonic and positive???definite filter for a Semi-Lagrangian Inherently Conserving and Efficient (SLICE) scheme, Quarterly Journal of the Royal Meteorological Society, vol.130, issue.611, pp.2923-2936, 2005.
DOI : 10.1256/qj.04.97

M. Zerroukat, N. Wood, and A. Staniforth, The Parabolic Spline Method (PSM) for conservative transport problems, International Journal for Numerical Methods in Fluids, vol.1, issue.11, pp.1297-1318, 2006.
DOI : 10.1002/fld.1154

N. Besse and M. Mehrenberger, Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov--Poisson system, Mathematics of Computation, vol.77, issue.261, pp.93-123, 2008.
DOI : 10.1090/S0025-5718-07-01912-6

URL : https://hal.archives-ouvertes.fr/hal-00594785

M. Bostan and N. Crouseilles, Convergence of a semi-Lagrangian scheme for the reduced Vlasov-Maxwell sytem for laser-plasma interaction, Numer. Math, 2009.

F. Bouchut, F. Golse, and M. Pulvirenti, Kinetic equations and asymptotic theory, Series in applied Math. P.G Ciarlet and P.L Lions (Eds) Gauthier Villars, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00538692

J. Carillo and F. Vecil, Nonoscillatory Interpolation Methods Applied to Vlasov-Based Models, SIAM Journal on Scientific Computing, vol.29, issue.3, pp.1179-1206, 2007.
DOI : 10.1137/050644549

C. Z. Cheng and G. Knorr, The integration of the vlasov equation in configuration space, Journal of Computational Physics, vol.22, issue.3, pp.330-3351, 1976.
DOI : 10.1016/0021-9991(76)90053-X

N. Crouseilles, T. Respaud, and E. Sonnendrucker, A forward semi-Lagrangian method for the numerical solution of the Vlasov equation, Computer Physics Communications, vol.180, issue.10, pp.1730-1745, 2009.
DOI : 10.1016/j.cpc.2009.04.024

URL : https://hal.archives-ouvertes.fr/inria-00339543

C. J. Cotter, J. Frank, and S. , The remapped particle-mesh semi-Lagrangian advection scheme, Quarterly Journal of the Royal Meteorological Society, vol.51, issue.622, pp.251-260, 2007.
DOI : 10.1002/qj.11

G. Cottet and P. Raviart, Particle Methods for the One-Dimensional Vlasov???Poisson Equations, SIAM Journal on Numerical Analysis, vol.21, issue.1, pp.52-75, 1984.
DOI : 10.1137/0721003

B. Després, Finite volume transport schemes, Numerische Mathematik, vol.12, issue.1, pp.529-556, 2008.
DOI : 10.1007/s00211-007-0128-4

F. Filbet, E. Sonnendrücker, and P. Bertrand, Conservative Numerical Schemes for the Vlasov Equation, Journal of Computational Physics, vol.172, issue.1, pp.166-187, 2001.
DOI : 10.1006/jcph.2001.6818

F. Filbet and E. Sonnendrücker, Comparison of Eulerian Vlasov solvers, Computer Physics Communications, vol.150, issue.3, pp.247-266, 2003.
DOI : 10.1016/S0010-4655(02)00694-X

URL : https://hal.archives-ouvertes.fr/hal-00129663

R. Glassey, The Cauchy problem in kinetic theory SIAM, 1996.

V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet et al., A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation, Journal of Computational Physics, vol.217, issue.2, pp.395-423, 2006.
DOI : 10.1016/j.jcp.2006.01.023

URL : https://hal.archives-ouvertes.fr/hal-00594856

S. Reich, An explicit and conservative remapping strategy for semi-Lagrangian advection, Atmospheric Science Letters, vol.130, issue.2, pp.58-63, 2007.
DOI : 10.1002/asl.151

A. Staniforth and J. Coté, Semi-Lagrangian Integration Schemes for Atmospheric Models???A Review, Monthly Weather Review, vol.119, issue.9, pp.2206-2223, 1991.
DOI : 10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2

E. Sonnendrücker, J. Roche, P. Bertrand, and A. , The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation, Journal of Computational Physics, vol.149, issue.2, pp.201-220, 1999.
DOI : 10.1006/jcph.1998.6148

M. Zerroukat, N. Wood, and A. Staniforth, A monotonic and positive???definite filter for a Semi-Lagrangian Inherently Conserving and Efficient (SLICE) scheme, Quarterly Journal of the Royal Meteorological Society, vol.130, issue.611, pp.2923-2936, 2005.
DOI : 10.1256/qj.04.97

M. Zerroukat, N. Wood, and A. Staniforth, The Parabolic Spline Method (PSM) for conservative transport problems, International Journal for Numerical Methods in Fluids, vol.1, issue.11, pp.1297-1318, 2006.
DOI : 10.1002/fld.1154

R. Barthelmé, Leprobì eme de conservation de la charge dans le couplage deséquationsdeséquations de Vlasov et de Maxwell, 2005.

M. Bostan and N. Crouseilles, Convergence of a semi-Lagrangian scheme for the reduced Vlasov-Maxwell sytem for laser-plasma interaction, Numer. Math, vol.112, pp.2-169, 2009.

M. Bostan, Mild solutions for the relativistic Vlasov-Maxwell system for laser-plasma interaction, Quarterly of Applied Mathematics, vol.65, issue.1, pp.163-187, 2007.
DOI : 10.1090/S0033-569X-07-01047-4

F. Bouchut, F. Golse, and M. Pulvirenti, Kinetic equations and asymptotic theory, Series in applied Math. P.G Ciarlet and P.L Lions (Eds) Gauthier Villars, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00538692

J. A. Carrillo and S. Labrunie, GLOBAL SOLUTIONS FOR THE ONE-DIMENSIONAL VLASOV???MAXWELL SYSTEM FOR LASER-PLASMA INTERACTION, Mathematical Models and Methods in Applied Sciences, vol.16, issue.01, pp.19-57, 2006.
DOI : 10.1142/S0218202506001042

URL : https://hal.archives-ouvertes.fr/hal-00094327

J. Carrillo and F. Vecil, Nonoscillatory Interpolation Methods Applied to Vlasov-Based Models, SIAM Journal on Scientific Computing, vol.29, issue.3, pp.1179-1206, 2007.
DOI : 10.1137/050644549

C. Z. Cheng and G. Knorr, The integration of the vlasov equation in configuration space, Journal of Computational Physics, vol.22, issue.3, pp.330-3351, 1976.
DOI : 10.1016/0021-9991(76)90053-X

P. Colella and P. R. Woodward, The Piecewise Parabolic Method (PPM) for gas-dynamical simulations, Journal of Computational Physics, vol.54, issue.1, pp.174-201, 1984.
DOI : 10.1016/0021-9991(84)90143-8

N. Crouseilles, M. Mehrenberger, and E. Sonnendrücker, Conservative semi-Lagrangian schemes for Vlasov equations, Journal of Computational Physics, vol.229, issue.6, pp.1927-1953, 2010.
DOI : 10.1016/j.jcp.2009.11.007

URL : https://hal.archives-ouvertes.fr/hal-00363643

N. Crouseilles, T. Respaud, and E. Sonnendrucker, A forward semi-Lagrangian method for the numerical solution of the Vlasov equation, Computer Physics Communications, vol.180, issue.10, pp.1730-1745, 2009.
DOI : 10.1016/j.cpc.2009.04.024

URL : https://hal.archives-ouvertes.fr/inria-00339543

N. Crouseilles, A. Ghizzo, and S. Salmon, Vlasov laser-plasma interaction simulations with a moving grid, INRIA Research Report number, p.6109, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00127747

C. J. Cotter, J. Frank, and S. , The remapped particle-mesh semi-Lagrangian advection scheme, Quarterly Journal of the Royal Meteorological Society, vol.51, issue.622, pp.251-260, 2007.
DOI : 10.1002/qj.11

J. W. Eastwood, The virtual particle electromagnetic particle-mesh method, Computer Physics Communications, vol.64, issue.2, pp.252-266, 1991.
DOI : 10.1016/0010-4655(91)90036-K

N. V. Elkina and J. Büchner, A new conservative unsplit method for the solution of the Vlasov equation, Journal of Computational Physics, vol.213, issue.2, p.862, 2006.
DOI : 10.1016/j.jcp.2005.09.023

T. Zh, Esirkepov, Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor, Comp. Phys. Comm, vol.135, pp.144-153, 2001.

F. Filbet, E. Sonnendrücker, and P. Bertrand, Conservative Numerical Schemes for the Vlasov Equation, Journal of Computational Physics, vol.172, issue.1, pp.166-187, 2001.
DOI : 10.1006/jcph.2001.6818

F. Filbet and E. Sonnendrücker, Comparison of Eulerian Vlasov solvers, Computer Physics Communications, vol.150, issue.3, pp.247-266, 2003.
DOI : 10.1016/S0010-4655(02)00694-X

URL : https://hal.archives-ouvertes.fr/hal-00129663

A. Ghizzo, P. Bertrand, M. L. Begue, T. W. Johnston, and M. Shoucri, A Hilbert-Vlasov code for the study of high-frequency plasma beatwave accelerator, IEEE Transactions on Plasma Science, vol.24, issue.2, p.370, 1996.
DOI : 10.1109/27.510001

A. Ghizzo, P. Bertrand, M. Shoucri, T. W. Johnston, E. Fijalkow et al., A Vlasov code for the numerical simulation of stimulated raman scattering, Journal of Computational Physics, vol.90, issue.2, pp.431-457, 1990.
DOI : 10.1016/0021-9991(90)90174-Y

V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet et al., A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation, Journal of Computational Physics, vol.217, issue.2, pp.395-423, 2006.
DOI : 10.1016/j.jcp.2006.01.023

URL : https://hal.archives-ouvertes.fr/hal-00594856

F. Huot, A. Ghizzo, P. Bertrand, E. Sonnendrücker, and O. , Instability of the time splitting scheme for the one-dimensional and relativistic Vlasov???Maxwell system, Journal of Computational Physics, vol.185, issue.2, pp.512-531, 2003.
DOI : 10.1016/S0021-9991(02)00079-7

F. Huot, A. Ghizzo, P. Bertrand, E. Sonnendrücker, and O. , Coulaud Study of a propagation of ultraintense electromagnetic wave through plasma using semi-Lagrangian Vlasov codes, IEEE Trans. on Plasma SC, p.28, 2000.

T. W. Johnston, P. Bertrand, A. Ghizzo, M. Shoucri, E. Fijalkow et al., Simulated Raman scattering: Action evolution and particle trapping via Euler-Vlasov, fluid simulation, Phys. Fluids B4, pp.2523-2537, 1992.
DOI : 10.1063/1.860168

B. Marder, A method for incorporating Gauss' law into electromagnetic PIC codes, Journal of Computational Physics, vol.68, issue.1, pp.48-55, 1987.
DOI : 10.1016/0021-9991(87)90043-X

C. Munz, P. Omnes, R. Schneider, E. Sonnendrücker, and U. Voss, Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model, Journal of Computational Physics, vol.161, issue.2, pp.484-511, 2000.
DOI : 10.1006/jcph.2000.6507

T. Nakamura and T. Yabe, Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov???Poisson equation in phase space, Computer Physics Communications, vol.120, issue.2-3, pp.122-154, 1999.
DOI : 10.1016/S0010-4655(99)00247-7

S. Reich, An explicit and conservative remapping strategy for semi-Lagrangian advection, Atmospheric Science Letters, pp.58-63, 2007.

T. Respaud and E. , Sonnendrücker Analysis of a new class of Forward semi-Lagrangian schemes for the 1D Vlasov Poisson Equations, p.442957

N. J. Sircombe and T. D. Arber, VALIS: A split-conservative scheme for the relativistic 2D Vlasov???Maxwell system, Journal of Computational Physics, vol.228, issue.13, pp.4773-4788, 2009.
DOI : 10.1016/j.jcp.2009.03.029

M. Shoucri, A two-level implicit scheme for the numerical solution of the linearized vorticity equation, International Journal for Numerical Methods in Engineering, vol.18, issue.10, p.1525, 1981.
DOI : 10.1002/nme.1620171007

M. Shoucri, Nonlinear evolution of the bump-on-tail instability, Physics of Fluids, vol.22, issue.10, pp.2038-2039, 1979.
DOI : 10.1063/1.862470

H. Schmitz and R. Grauer, Comparison of time splitting and backsubstitution methods for integrating Vlasov's equation with magnetic fields, Computer Physics Communications, vol.175, issue.2, p.86, 2006.
DOI : 10.1016/j.cpc.2006.02.007

E. Sonnendrücker, J. Roche, P. Bertrand, and A. Ghizzo, The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation, Journal of Computational Physics, vol.149, issue.2, pp.201-220, 1999.
DOI : 10.1006/jcph.1998.6148

T. Umeda, Y. Omura, T. Tominaga, and H. Matsumoto, A new charge conservation method in electromagnetic particle-in-cell simulations, Computer Physics Communications, vol.156, issue.1, pp.73-85, 2003.
DOI : 10.1016/S0010-4655(03)00437-5

J. Villasenor and O. Buneman, Rigorous charge conservation for local electromagnetic field solvers, Computer Physics Communications, vol.69, issue.2-3, pp.306-316, 1992.
DOI : 10.1016/0010-4655(92)90169-Y

M. Zerroukat, N. Wood, and A. Staniforth, A monotonic and positive???definite filter for a Semi-Lagrangian Inherently Conserving and Efficient (SLICE) scheme, Quarterly Journal of the Royal Meteorological Society, vol.130, issue.611, pp.2923-2936, 2005.
DOI : 10.1256/qj.04.97

M. Zerroukat, N. Wood, and A. Staniforth, The Parabolic Spline Method (PSM) for conservative transport problems, International Journal for Numerical Methods in Fluids, vol.1, issue.11, pp.1297-1318, 2006.
DOI : 10.1002/fld.1154

R. Barthelmé, Leprobì eme de conservation de la charge dans le couplage deséquationsdeséquations de Vlasov et de Maxwell, 2005.

C. Z. Cheng and G. Knorr, The integration of the vlasov equation in configuration space, Journal of Computational Physics, vol.22, issue.3, pp.330-3351, 1976.
DOI : 10.1016/0021-9991(76)90053-X

P. Colella and P. R. Woodward, The Piecewise Parabolic Method (PPM) for gas-dynamical simulations, Journal of Computational Physics, vol.54, issue.1, pp.174-201, 1984.
DOI : 10.1016/0021-9991(84)90143-8

P. Colella and M. D. Sekora, A limiter for PPM that preserves accuracy at smooth extrema, Journal of Computational Physics, vol.227, issue.15, pp.7069-7076, 2008.
DOI : 10.1016/j.jcp.2008.03.034

N. Crouseilles, M. Mehrenberger, and E. Sonnendrücker, Conservative semi-Lagrangian schemes for Vlasov equations, Journal of Computational Physics, vol.229, issue.6, pp.1927-1953, 2010.
DOI : 10.1016/j.jcp.2009.11.007

URL : https://hal.archives-ouvertes.fr/hal-00363643

F. Filbet, E. Sonnendrücker, and P. Bertrand, Conservative Numerical Schemes for the Vlasov Equation, Journal of Computational Physics, vol.172, issue.1, pp.166-187, 2001.
DOI : 10.1006/jcph.2001.6818

F. Filbet and E. Sonnendrücker, Comparison of Eulerian Vlasov solvers, Computer Physics Communications, vol.150, issue.3, pp.247-266, 2003.
DOI : 10.1016/S0010-4655(02)00694-X

URL : https://hal.archives-ouvertes.fr/hal-00129663

A. Ghizzo, P. Bertrand, M. L. Begue, T. W. Johnston, and M. Shoucri, A Hilbert-Vlasov code for the study of high-frequency plasma beatwave accelerator, IEEE Transactions on Plasma Science, vol.24, issue.2, p.370, 1996.
DOI : 10.1109/27.510001

V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet et al., A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation, Journal of Computational Physics, vol.217, issue.2, pp.395-423, 2006.
DOI : 10.1016/j.jcp.2006.01.023

URL : https://hal.archives-ouvertes.fr/hal-00594856

J. Laprise and A. Plante, A Class of Semi-Lagrangian Integrated-Mass (SLM) Numerical Transport Algorithms, Monthly Weather Review, vol.123, issue.2, pp.553-565, 1995.
DOI : 10.1175/1520-0493(1995)123<0553:ACOSLI>2.0.CO;2

P. H. Lauritzen, An inherently mass-conservative semi-implicit semi-Lagrangian model, 2005.

C. Munz, R. Schneider, E. Sonnendrücker, and U. Voss, Maxwell's equations when the charge conservation is not satisfied, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.328, issue.5, pp.431-436, 1999.
DOI : 10.1016/S0764-4442(99)80185-2

N. J. Sircombe and T. D. Arber, VALIS: A split-conservative scheme for the relativistic 2D Vlasov???Maxwell system, Journal of Computational Physics, vol.228, issue.13, pp.4773-4788, 2009.
DOI : 10.1016/j.jcp.2009.03.029

E. Sonnendrücker, J. Roche, P. Bertrand, and A. Ghizzo, The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation, Journal of Computational Physics, vol.149, issue.2, pp.201-220, 1999.
DOI : 10.1006/jcph.1998.6148

T. Umeda, M. Ashour-abdalla, and D. Schriver, Comparison of numerical interpolation schemes for one-dimensional electrostatic Vlasov code, Journal of Plasma Physics, vol.72, issue.06, pp.1057-1060, 2006.
DOI : 10.1017/S0022377806005228

J. Villasenor and O. Buneman, Rigorous charge conservation for local electromagnetic field solvers, Computer Physics Communications, vol.69, issue.2-3, pp.306-316, 1992.
DOI : 10.1016/0010-4655(92)90169-Y

M. Zerroukat, N. Wood, and A. Staniforth, A monotonic and positive???definite filter for a Semi-Lagrangian Inherently Conserving and Efficient (SLICE) scheme, Quarterly Journal of the Royal Meteorological Society, vol.130, issue.611, pp.2923-2936, 2005.
DOI : 10.1256/qj.04.97