]. M. Ashfold, P. W. May, C. A. Rego, and N. M. Everitt, Thin film diamond by chemical vapour deposition methods, Chemical Society Reviews, vol.23, issue.1, pp.21-30, 1994.
DOI : 10.1039/cs9942300021

T. Kociniewski, J. Barjon, M. A. Pinault, F. Jomard, A. Lusson et al., n-type cvd diamond doped with phosphorus using the mocvd technology for dopant incorporation Historical survey of diamond electrodes Cvd diamond films: from growth to applications, Physica Status Solidi A-Applications And Materials Science Current Applied Physics, vol.203, issue.1, pp.80-114, 2001.

M. Iwaki, S. Sato, K. Takahashi, and H. Sakairi, Electrical conductivity of nitrogen and argon implanted diamond " Nuclear Instruments and Methods in Physics Research, no. Part, pp.210-1129, 1983.

]. Y. Pleskov, A. Y. Sakharova, M. D. Krotova, L. L. Bouilov, and B. V. Spitsyn, Photoelectrochemical properties of semiconductor diamond, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.228, issue.1-2, pp.19-27, 1987.
DOI : 10.1016/0022-0728(87)80093-1

J. S. Xu, M. C. Granger, Q. Y. Chen, J. W. Strojek, T. E. Lister et al., Peer Reviewed: Boron-Doped Diamond Thin-Film Electrodes, Analytical Chemistry, vol.69, issue.19, pp.591-597, 1997.
DOI : 10.1021/ac971791z

J. S. Xu, Q. Y. Chen, and G. M. Swain, Anthraquinonedisulfonate Electrochemistry:?? A Comparison of Glassy Carbon, Hydrogenated Glassy Carbon, Highly Oriented Pyrolytic Graphite, and Diamond Electrodes, Analytical Chemistry, vol.70, issue.15, pp.3146-3154, 1998.
DOI : 10.1021/ac9800661

T. N. Rao, I. Yagi, T. Miwa, D. A. Tryk, and A. Fujishima, Electrochemical Oxidation of NADH at Highly Boron-Doped Diamond Electrodes, Analytical Chemistry, vol.71, issue.13, pp.2506-2511, 1999.
DOI : 10.1021/ac981376m

]. E. Popa, H. Notsu, T. Miwa, D. A. Tryk, and A. Fujishima, Selective Electrochemical Detection of Dopamine in the Presence of Ascorbic Acid at Anodized Diamond Thin Film Electrodes, Electrochemical and Solid-State Letters, vol.2, issue.1, pp.49-51, 1999.
DOI : 10.1149/1.1390730

M. D. Koppang, M. Witek, J. Blau, and G. M. Swain, Electrochemical Oxidation of Polyamines at Diamond Thin-Film Electrodes, Analytical Chemistry, vol.71, issue.6, pp.1188-1195, 1999.
DOI : 10.1021/ac980697v

T. N. Rao and A. Fujishima, Recent advances in electrochemistry of diamond, Diamond and Related Materials, vol.9, issue.3-6, pp.3-6, 2000.
DOI : 10.1016/S0925-9635(99)00234-4

P. Michaud, C. Comninellis, W. Haenn, A. Perret, J. Iniesta et al., Electrochemical synthesis of inorganic and organic compounds with boron-doped diamond electrodes, Proceedings -Electrochemical Society, pp.23-87, 2001.

]. J. Carey, C. Christ, and S. Lowery, Us patent 5399

]. B. Marselli, J. Garcia-gomez, P. Michaud, M. A. Rodrigo, and C. Comninellis, Electrogeneration of Hydroxyl Radicals on Boron-Doped Diamond Electrodes, Journal of The Electrochemical Society, vol.150, issue.3, pp.79-83, 2003.
DOI : 10.1149/1.1553790

]. P. Rychen, L. Pupunat, W. Haenni, and A. Perret, Electrochemical water treatment potential with boron doped diamond electrodes " Preprints of Extended Abstracts presented at the ACS National Meeting, Division of Environmental Chemistry, vol.42, pp.488-492, 2002.

M. Panizza, P. A. Michaud, G. Cerisola, and C. Comninellis, Anodic oxidation of 2-naphthol at boron-doped diamond electrodes, Journal of Electroanalytical Chemistry, vol.507, issue.1-2, pp.206-214, 2001.
DOI : 10.1016/S0022-0728(01)00398-9

]. M. Fryda, T. Matthee, S. Mulcahy, A. Hampel, L. Schaefer et al., Fabrication and application of Diachem?? electrodes, Diamond and Related Materials, vol.12, issue.10-11, pp.39-225, 2003.
DOI : 10.1016/S0925-9635(03)00261-9

M. Fryda, D. Herrmann, L. Schafer, C. P. Klages, A. Perret et al., Properties of diamond electrodes for wastewater treatment, New Diamond And Frontier Carbon Technology, vol.9, issue.3, pp.229-240, 1999.

P. Michaud, M. Panizza, L. Ouattara, T. Diaco, G. Foti et al., Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes, Journal of Applied Electrochemistry, vol.33, issue.2, pp.151-154, 2003.
DOI : 10.1023/A:1024084924058

]. S. Ferro, A. De-battisti, I. Duo, C. Comninellis, W. Haenni et al., Chlorine Evolution at Highly Boron-Doped Diamond Electrodes, Journal of The Electrochemical Society, vol.147, issue.7, pp.2614-2619, 2000.
DOI : 10.1149/1.1393578

R. G. Compton, F. Marken, C. H. Goeting, R. A. Mckeown, J. S. Foord et al., Sonoelectrochemical production of hydrogen peroxide at polished boron-doped diamond electrodes, Chemical Communications, issue.18, pp.1961-1962, 1998.
DOI : 10.1039/a805418e

F. L. Qiu, R. G. Compton, F. Marken, S. J. Wilkins, C. H. Goeting et al., Laser Activation Voltammetry:?? Selective Removal of Reduced Forms of Methyl Viologen Deposited on Glassy Carbon and Boron-Doped Diamond Electrodes, Analytical Chemistry, vol.72, issue.11, pp.2362-2370, 2000.
DOI : 10.1021/ac991392z

P. Koidl and C. Klages, Optical applications of polycrystalline diamond, Diamond and Related Materials, vol.1, issue.10-11, pp.1065-1074, 1992.
DOI : 10.1016/0925-9635(92)90076-Z

R. S. Sussmann, G. A. Scarsbrook, C. J. Wort, and R. M. Wood, Laser damage testing of CVD-grown diamond windows, Diamond and Related Materials, vol.3, issue.9, pp.1173-1177, 1994.
DOI : 10.1016/0925-9635(94)90164-3

L. Y. Pang, S. S. Chan, C. Johnston, P. R. Chalker, and R. B. Jackman, High temperature polycrystalline diamond metal-insulator-semiconductor field-effect-transistor, Diamond and Related Materials, vol.6, issue.2-4, pp.333-338, 1997.
DOI : 10.1016/S0925-9635(96)00756-X

H. Kiyota, E. Matsushima, K. Sato, H. Okushi, T. Ando et al., Electrical properties of Schottky barrier formed on as???grown and oxidized surface of homoepitaxially grown diamond (001) film, Applied Physics Letters, vol.67, issue.24, pp.3596-3598, 1995.
DOI : 10.1063/1.115329

C. E. Nebel, Electronic properties of CVD diamond, Semiconductor Science and Technology, vol.18, issue.3, pp.1-11, 2003.
DOI : 10.1088/0268-1242/18/3/301

]. F. Maier, M. Riedel, B. Mantel, J. Ristein, and L. Ley, Origin of Surface Conductivity in Diamond, Physical Review Letters, vol.85, issue.16, pp.3472-3475, 2000.
DOI : 10.1103/PhysRevLett.85.3472

]. K. Hayashi, S. Yamanaka, H. Watanabe, T. Sekiguchi, H. Okushi et al., Investigation of the effect of hydrogen on electrical and optical properties in chemical vapor deposited on homoepitaxial diamond films, Journal of Applied Physics, vol.81, issue.2, pp.744-753, 1997.
DOI : 10.1063/1.364299

M. I. Landstrass and K. V. Ravi, Resistivity of chemical vapor deposited diamond films, Applied Physics Letters, vol.55, issue.10, pp.975-977, 1989.
DOI : 10.1063/1.101694

M. I. Landstrass and K. V. Ravi, Hydrogen passivation of electrically active defects in diamond, Applied Physics Letters, vol.55, issue.14, pp.1391-1393, 1989.
DOI : 10.1063/1.101604

J. Shirafuji and T. Sugino, Electrical properties of diamond surfaces, Diamond and Related Materials, vol.5, issue.6-8, pp.706-713, 1996.
DOI : 10.1016/0925-9635(95)00415-7

]. K. Hayashi, S. Yamanaka, H. Okushi, and K. Kajimura, Study of the effect of hydrogen on transport properties in chemical vapor deposited diamond films by Hall measurements, Applied Physics Letters, vol.68, issue.3, pp.376-378, 1996.
DOI : 10.1063/1.116690

]. A. Bergmaier, G. Dollinger, A. Aleksov, P. Gluche, and E. Kohn, Deuterium depth profiles at CVD diamond surfaces, Surface Science, vol.481, issue.1-3, pp.433-436, 2001.
DOI : 10.1016/S0039-6028(01)01030-5

]. J. Ristein, Electronic properties of diamond surfaces ??? blessing or curse for devices?, Diamond and Related Materials, vol.9, issue.3-6, pp.3-6, 2000.
DOI : 10.1016/S0925-9635(99)00316-7

]. S. Ri, K. Tashiro, S. Tanaka, T. Fujisawa, H. Kimura et al., Hall effect measurements of surface conductive layer on undoped diamond films in no2 and nh3 atmospheres, Jpn. J. Appl. Phys, vol.3492, p.38, 1999.

]. L. Ley, J. Ristein, F. Meier, M. Riedel, and P. Strobel, Surface conductivity of the diamond: A novel transfer doping mechanism, Physica B: Condensed Matter, vol.376, issue.377, pp.376-377, 2006.
DOI : 10.1016/j.physb.2005.12.068

]. J. Ristein, M. Riedel, and L. Ley, Electrochemical Surface Transfer Doping, Journal of The Electrochemical Society, vol.151, issue.10, pp.315-321, 2004.
DOI : 10.1149/1.1785797

C. E. Nebel, B. Rezek, D. Shin, H. Watanabe, and T. Yamamoto, Electronic properties of H-terminated diamond in electrolyte solutions, Journal of Applied Physics, vol.99, issue.3, p.33711, 2006.
DOI : 10.1063/1.2171805

]. D. Shin, H. Watanabe, and C. E. Nebel, Electrochemical characterization of intrinsic hydrogen terminated single crystalline CVD diamond, physica status solidi (a), vol.181, issue.239, pp.2104-2109, 2005.
DOI : 10.1002/pssa.200561928

R. Williams and . Jackman, Hydrogen-induced transport properties of holes in diamond surface layers, Applied Physics Letters, vol.79, pp.4541-4543, 2001.

]. J. Ristein, Surface science of diamond: Familiar and amazing, Surface Science, vol.600, issue.18, pp.3677-3689, 2006.
DOI : 10.1016/j.susc.2006.01.087

]. S. Kono, M. Shiraishi, T. Goto, T. Abukawa, M. Tachiki et al., An electron-spectroscopic view of CVD diamond surface conductivity, Diamond and Related Materials, vol.14, issue.3-7, pp.3-7, 2005.
DOI : 10.1016/j.diamond.2004.11.011

]. D. Takeuchi, H. Kato, G. S. Ri, T. Yamada, P. R. Vinod et al., Direct observation of negative electron affinity in hydrogen-terminated diamond surfaces Surface transfer doping of diamond, Applied Physics Letters Journal of physics, vol.86, issue.15, pp.39-71, 2005.

]. F. Maier, J. Ristein, and L. Ley, Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces, Physical Review B, vol.64, issue.16, 2001.
DOI : 10.1103/PhysRevB.64.165411

J. A. Garrido, C. E. Nebel, M. Stutzmann, E. Snidero, and P. Bergonzo, Capacitance???voltage studies of Al-Schottky contacts on hydrogen-terminated diamond, Applied Physics Letters, vol.81, issue.4, pp.637-639, 2002.
DOI : 10.1063/1.1496495

C. E. Nebel, B. Rezek, D. Shin, and H. Watanabe, Surface electronic properties of H-terminated diamond in contact with adsorbates and electrolytes, physica status solidi (a), vol.151, issue.1, pp.3273-3298, 2006.
DOI : 10.1002/pssa.200671401

H. Gerischer, M. Riedel, J. Ristein, and L. Ley, Physical chemistry The impact of ozone on the surface conductivity of single crystal diamond, Diamond and Related Materials, vol.13, pp.463-746, 1970.

M. Riedel, J. Ristein, and L. Ley, Recovery of surface conductivity of H-terminated diamond after thermal annealing in vacuum, Physical Review B, vol.69, issue.12, 2004.
DOI : 10.1103/PhysRevB.69.125338

J. Alvarez, J. P. Kleider, E. Snidero, P. Bergonzo, D. Tromson et al., On the metastability of the surface conductivity in hydrogen-terminated polycrystalline CVD diamond, Diamond and Related Materials, vol.13, issue.4-8, pp.751-754, 2004.
DOI : 10.1016/j.diamond.2003.12.030

URL : https://hal.archives-ouvertes.fr/hal-00321021

S. Ri, D. Takeuchi, H. Kato, M. Ogura, T. Makino et al., Surface conductive layers on oxidized (111) diamonds, Applied Physics Letters, vol.87, issue.26, pp.262107-262108, 2005.
DOI : 10.1063/1.2158020

S. Ri, C. E. Nebel, D. Takeuchi, B. Rezek, N. Tokuda et al., Surface conductive layers on (111) diamonds after oxygen treatments, Diamond and Related Materials, vol.15, issue.4-8, pp.692-697, 2006.
DOI : 10.1016/j.diamond.2005.12.013

S. G. Ri, D. Takeuchi, C. E. Nebel, N. Tokuda, Y. Yamazaki et al., Surface electronic properties on boron doped (111) CVD homoepitaxial diamond films after oxidation treatments, Diamond and Related Materials, vol.16, issue.4-7, pp.831-835, 2007.
DOI : 10.1016/j.diamond.2007.01.018

]. S. Sque, R. Jones, and P. Briddon, Hydrogenation and oxygenation of the (100) diamond surface and the consequences for transfer doping, physica status solidi (a), vol.17, issue.11, pp.2091-2097, 2005.
DOI : 10.1002/pssa.200561911

Y. V. Pleskov, Y. E. Evstefeeva, V. P. Varnin, and I. G. Teremetskaya, Synthetic Semiconductor Diamond Electrodes: Electrochemical Characteristics of Homoepitaxial Boron-doped Films Grown at the (111), (110), and (100) Faces of Diamond Crystals, Russian Journal of Electrochemistry, vol.40, issue.9, pp.40-886, 2004.
DOI : 10.1023/B:RUEL.0000041354.70107.c8

G. Kern, J. Hafner, J. Furthmuller, and G. Kresse, (2 ?? 1) reconstruction and hydrogen-induced de-reconstruction of the diamond (100) and (111) surfaces, Surface Science, vol.352, issue.354, pp.352-354, 1996.
DOI : 10.1016/0039-6028(95)01244-3

Z. Jing and J. L. Whitten, Ab initio studies of H chemisorption on C(100) surface, Surface Science, vol.314, issue.2, pp.300-306, 1994.
DOI : 10.1016/0039-6028(94)90014-0

]. T. Frauenheim, U. Stephan, P. Blaudeck, D. Porezag, H. G. Busmann et al., Stability, reconstruction, and electronic properties of diamond (100) and (111) surfaces, Physical Review B, vol.48, issue.24, pp.48-18189, 1993.
DOI : 10.1103/PhysRevB.48.18189

]. T. Ando, K. Yamamoto, M. Ishii, M. Kamo, and Y. Sato, Vapour-phase oxidation of diamond surfaces in O2 studied by diffuse reflectance Fourier-transform infrared and temperture-programmed desorption spectroscopy, Journal of the Chemical Society, Faraday Transactions, vol.89, issue.19, pp.3635-3640, 1993.
DOI : 10.1039/ft9938903635

]. R. Klauser, J. Chen, T. J. Chuang, L. M. Chen, M. C. Shih et al., The interaction of oxygen and hydrogen on a diamond C(111) surface: a synchrotron radiation photoemission, LEED and AES study, Surface Science, vol.356, issue.1-3, pp.410-416, 1996.
DOI : 10.1016/0039-6028(96)00673-5

F. K. De-theije, M. F. Reedijk, J. Arsic, W. J. Van-enckevort, and E. Vlieg, Atomic structure of diamond {111} surfaces etched in oxygen water vapor, Physical Review B, vol.64, issue.8, p.85403, 2001.
DOI : 10.1103/PhysRevB.64.085403

H. Notsu, T. Fukazawa, T. Tatsuma, D. A. Tryk, and A. Fujishima, Hydroxyl Groups on Boron-Doped Diamond Electrodes and Their Modification with a Silane Coupling Agent, Electrochemical and Solid-State Letters, vol.4, issue.3, pp.1-3, 2001.
DOI : 10.1149/1.1346556

]. F. Maier, R. Graupner, M. Hollering, L. Hammer, J. Ristein et al., The hydrogenated and bare diamond (110) surface: a combined LEED-, XPS-, and ARPES study, Surface Science, vol.443, issue.3, pp.177-185, 1999.
DOI : 10.1016/S0039-6028(99)01010-9

]. K. Bobrov, H. Shechter, A. Hoffman, and M. Folman, Molecular oxygen adsorption and desorption from single crystal diamond (1 1 1) and (1 1 0) surfaces, Applied Surface Science, vol.196, issue.1-4, pp.173-180, 2002.
DOI : 10.1016/S0169-4332(02)00053-3

]. I. Duo, A. Fujishima, and C. Comninellis, Electron transfer kinetics on composite diamond (sp3)???graphite (sp2) electrodes, Electrochemistry Communications, vol.5, issue.8, pp.695-700, 2003.
DOI : 10.1016/S1388-2481(03)00169-3

]. S. Alehashem, F. Chambers, J. W. Strojek, G. M. Swain, and R. Ramesham, Cyclic Voltammetric Studies of Charge Transfer Reactions at Highly Boron-Doped Polycrystalline Diamond Thin-Film Electrodes, Analytical Chemistry, vol.67, issue.17, pp.2812-2821, 1995.
DOI : 10.1021/ac00113a014

M. C. Granger and G. M. Swain, The Influence of Surface Interactions on the Reversibility of Ferri/Ferrocyanide at Boron-Doped Diamond Thin-Film Electrodes, Journal of The Electrochemical Society, vol.146, issue.12, pp.4551-4558, 1999.
DOI : 10.1149/1.1392673

D. A. Tryk, K. Tsunozaki, T. N. Rao, and A. Fujishima, Relationships between surface character and electrochemical processes on diamond electrodes: dual roles of surface termination and near-surface hydrogen, Diamond and Related Materials, vol.10, issue.9-10, pp.1804-1809, 2001.
DOI : 10.1016/S0925-9635(01)00453-8

]. I. Yagi, H. Notsu, T. Kondo, D. A. Tryk, and A. Fujishima, Electrochemical selectivity for redox systems at oxygen-terminated diamond electrodes, Journal of Electroanalytical Chemistry, vol.473, issue.1-2, pp.173-178, 1999.
DOI : 10.1016/S0022-0728(99)00027-3

J. P. Mcevoy and J. S. Foord, Direct electrochemistry of blue copper proteins at boron-doped diamond electrodes, Electrochimica Acta, vol.50, issue.14, pp.2933-2941, 2005.
DOI : 10.1016/j.electacta.2004.11.043

]. R. Declements, G. Swain, T. Dallas, M. Holtz, R. Herrick et al., Electrochemical and Surface Structural Characterization of Hydrogen Plasma Treated Glassy Carbon Electrodes, Langmuir, vol.12, issue.26, pp.6578-6586, 1996.
DOI : 10.1021/la960380v

P. H. Chen and R. L. Mccreery, Control of Electron Transfer Kinetics at Glassy Carbon Electrodes by Specific Surface Modification, Analytical Chemistry, vol.68, issue.22, pp.3958-3965, 1996.
DOI : 10.1021/ac960492r

J. C. Angus, H. B. Martin, U. Landau, Y. E. Evstefeeva, B. Miller et al., Conducting diamond electrodes: Applications in electrochemistry, New Diamond And Frontier Carbon Technology, vol.9, issue.3, pp.175-187, 1999.

T. N. Rao, D. A. Tryk, K. Hashimoto, and A. Fujishima, Band-Edge Movements of Semiconducting Diamond in Aqueous Electrolyte Induced by Anodic Surface Treatment, Journal of The Electrochemical Society, vol.146, issue.2, pp.680-684, 1999.
DOI : 10.1149/1.1391662

]. L. Boonma, T. Yano, D. A. Tryk, K. Hashimoto, and A. Fujishima, Observation of Photocurrent from Band-to-Band Excitation of Semiconducting p-Type Diamond Thin Film Electrodes, Journal of The Electrochemical Society, vol.144, issue.6, pp.142-145, 1997.
DOI : 10.1149/1.1837704

S. C. Eaton, Y. E. Evstefeeva, J. C. Angus, A. B. Anderson, and Y. V. Pleskov, Sulfur-doped n-type diamond: Preparation and electrochemical properties, Russian Journal of Electrochemistry, vol.39, issue.2, pp.154-159, 2003.
DOI : 10.1023/A:1022304824414

A. D. Modestov, Y. E. Evstefeeva, Y. V. Pleskov, V. M. Mazin, V. P. Varnin et al., Synthetic semiconductor diamond electrodes: kinetics of some redox reactions, Journal of Electroanalytical Chemistry, vol.431, issue.2, pp.211-218, 1997.
DOI : 10.1016/S0022-0728(97)00140-X

Y. Pleskov, Y. Conway, B. E. White, and R. E. , Modern aspects of electrochemistry, Bockris, J.OM, 1985.

]. S. Kono, T. Takano, M. Shimomura, T. Goto, K. Sato et al., Electron-spectroscopy and -diffraction study of the conductivity of CVD diamond ()2??1 surface, Surface Science, vol.529, issue.1-2, pp.180-188, 2003.
DOI : 10.1016/S0039-6028(03)00241-3

]. W. Deferme, K. Haenen, G. Tanasa, C. F. Flipse, and M. Nesl-dek, Compositional and electrical characterisation of the hydrogen-oxygen terminated diamond (100) surface, physica status solidi (a), vol.10, issue.12, pp.3114-3120, 2006.
DOI : 10.1002/pssa.200671125

]. S. Ferro, M. Dal-colle, and A. Battisti, Chemical surface characterization of electrochemically and thermally oxidized boron-doped diamond film electrodes, Carbon, vol.43, issue.6, pp.1191-1203, 2005.
DOI : 10.1016/j.carbon.2004.12.012

P. Muret and C. Saby, Band bending, electronic affinity and density of states at several (100) surfaces of boron-doped homoepitaxial diamond thin films, Semiconductor Science and Technology, vol.19, issue.1, pp.1-7, 2004.
DOI : 10.1088/0268-1242/19/1/001

]. D. Ballutaud, N. Simon, H. Girard, E. Rzepka, and B. Bouchet-fabre, Photoelectron spectroscopy of hydrogen at the polycrystalline diamond surface, Diamond and Related Materials, vol.15, issue.4-8, pp.4-8, 2006.
DOI : 10.1016/j.diamond.2006.01.004

URL : https://hal.archives-ouvertes.fr/hal-00092058

]. R. Graupner, F. Maier, J. Ristein, L. Ley, and C. Jung, core-level spectra of clean and hydrogen-terminated diamond (100) and (111) surfaces, Physical Review B, vol.57, issue.19, pp.12397-12409, 1998.
DOI : 10.1103/PhysRevB.57.12397

W. M. Lau, L. J. Huang, I. Bello, Y. M. Yiu, and S. T. Lee, Modification of surface band bending of diamond by low energy argon and carbon ion bombardment, Journal of Applied Physics, vol.75, issue.7, pp.3385-3391, 1994.
DOI : 10.1063/1.357016

]. L. Ley, R. Graupner, J. B. Cui, and J. Ristein, Electronic properties of single crystalline diamond surfaces, Carbon, vol.37, issue.5, pp.793-799, 1999.
DOI : 10.1016/S0008-6223(98)00273-5

T. H. Borst and O. Weis, Boron-Doped Homoepitaxial Diamond Layers: Fabrication, Characterization, and Electronic Applications, Physica Status Solidi (a), vol.3, issue.1, pp.423-444, 1996.
DOI : 10.1002/pssa.2211540130

H. Notsu, I. Yagi, T. Tatsuma, D. A. Tryk, and A. Fujishima, Surface carbonyl groups on oxidized diamond electrodes, Journal of Electroanalytical Chemistry, vol.492, issue.1, pp.31-37, 2000.
DOI : 10.1016/S0022-0728(00)00254-0

M. P. Seah and S. J. Spencer, Ultrathin SiO2 on Si.??? I. Quantifying and removing carbonaceous contamination, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.21, issue.2, pp.345-352, 2003.
DOI : 10.1116/1.1535173

]. S. Fellah, A. Teyssot, F. Ozanam, J. Chazalviel, J. Vigneron et al., Kinetics of Electrochemical Derivatization of the Silicon Surface by Grignards, Langmuir, vol.18, issue.15, pp.5851-5860, 2002.
DOI : 10.1021/la0203739

Y. V. Pleskov, Electrochemistry of diamond: A review, Russian Journal of Electrochemistry, vol.38, issue.12, pp.1275-1291, 2002.
DOI : 10.1023/A:1021651920042

Y. V. Pleskov, Y. E. Evstefeeva, V. P. Varnin, and I. G. Teremetskaya, Synthetic Semiconductor Diamond Electrodes: Electrochemical Characteristics of Homoepitaxial Boron-doped Films Grown at the (111), (110), and (100) Faces of Diamond Crystals, Russian Journal of Electrochemistry, vol.40, issue.9, pp.40-886, 2004.
DOI : 10.1023/B:RUEL.0000041354.70107.c8

]. T. Kondo, K. Honda, D. A. Tryk, and A. Fujishima, AC impedance studies of anodically treated polycrystalline and homoepitaxial boron-doped diamond electrodes, Electrochimica Acta, vol.48, issue.19, pp.2739-2748, 2003.
DOI : 10.1016/S0013-4686(03)00391-8

]. R. Ramesham, Determination of flatband potential for boron doped diamond electrode in 0.5 M NaCl by AC impedance spectroscopy, Thin Solid Films, vol.322, issue.1-2, pp.158-166, 1998.
DOI : 10.1016/S0040-6090(97)00920-6

Y. V. Pleskov, Y. E. Evstefeeva, M. D. Krotova, V. A. Laptev, Y. N. Palyanov et al., Effect of crystal structure on the electrochemical behavior of diamond electrodes: characteristics of individual crystal faces, pp.25-43, 2001.

]. S. Ferro, A. De-battisti, I. Duo, C. Comninellis, W. Haenni et al., Chlorine Evolution at Highly Boron-Doped Diamond Electrodes, Journal of The Electrochemical Society, vol.147, issue.7, pp.2614-2619, 2000.
DOI : 10.1149/1.1393578

K. Maeda, R. Sato, T. N. Ramaraj, D. A. Rao, A. Tryk et al., The electrochemical response of highly boron-doped conductive diamond electrodes to Ce3+ ions in aqueous solution, Electrochimica Acta, vol.44, issue.20, pp.3441-3449, 1999.
DOI : 10.1016/S0013-4686(99)00109-7

D. A. Tryk, K. Tsunozaki, T. N. Rao, and A. Fujishima, Relationships between surface character and electrochemical processes on diamond electrodes: dual roles of surface termination and near-surface hydrogen, Diamond and Related Materials, vol.10, issue.9-10, pp.1804-1809, 2001.
DOI : 10.1016/S0925-9635(01)00453-8

A. D. Modestov, Y. E. Evstefeeva, Y. V. Pleskov, V. M. Mazin, V. P. Varnin et al., Synthetic semiconductor diamond electrodes: kinetics of some redox reactions, Journal of Electroanalytical Chemistry, vol.431, issue.2, pp.211-218, 1997.
DOI : 10.1016/S0022-0728(97)00140-X

M. C. Granger, J. Xu, J. W. Strojek, and G. M. Swain, Polycrystalline diamond electrodes: basic properties and applications as amperometric detectors in flow injection analysis and liquid chromatography, Analytica Chimica Acta, vol.397, issue.1-3, pp.145-161, 1999.
DOI : 10.1016/S0003-2670(99)00400-6

M. C. Granger and G. M. Swain, The Influence of Surface Interactions on the Reversibility of Ferri/Ferrocyanide at Boron-Doped Diamond Thin-Film Electrodes, Journal of The Electrochemical Society, vol.146, issue.12, pp.4551-4558, 1999.
DOI : 10.1149/1.1392673

]. S. Alehashem, F. Chambers, J. W. Strojek, G. M. Swain, and R. Ramesham, Cyclic Voltammetric Studies of Charge Transfer Reactions at Highly Boron-Doped Polycrystalline Diamond Thin-Film Electrodes, Analytical Chemistry, vol.67, issue.17, pp.2812-2821, 1995.
DOI : 10.1021/ac00113a014

]. L. Boonma, T. Yano, D. A. Tryk, K. Hashimoto, and A. Fujishima, Observation of Photocurrent from Band-to-Band Excitation of Semiconducting p-Type Diamond Thin Film Electrodes, Journal of The Electrochemical Society, vol.144, issue.6, pp.142-145, 1997.
DOI : 10.1149/1.1837704

]. S. Dieckhoff, D. Ochs, J. Gunster, and V. Kempter, Metastable impact electron spectroscopy (MIES) study of chemical vapour deposited (CVD) diamond films, Surface Science, vol.423, issue.1, pp.53-60, 1999.
DOI : 10.1016/S0039-6028(98)00894-2

S. Petrick and C. Benndorf, Potassium adsorption on hydrogen- and oxygen-terminated diamond(100) surfaces, Diamond and Related Materials, vol.10, issue.3-7, pp.519-525, 2001.
DOI : 10.1016/S0925-9635(00)00440-4

]. Y. Références1, K. Kaibara, M. Sugata, H. Tachiki, H. Umezawa et al., Control wettability of the hydrogen-terminated diamond surface and the oxidized diamond surface using an atomic force microscope, Diamond and Related Materials, vol.12, pp.3-7, 2003.

]. R. Boukherroub, X. Wallart, S. Szunerits, B. Marcus, P. Bouvier et al., Photochemical oxidation of hydrogenated boron-doped diamond surfaces, Electrochemistry Communications, vol.7, issue.9, pp.937-940, 2002.
DOI : 10.1016/j.elecom.2005.05.010

URL : https://hal.archives-ouvertes.fr/hal-00154909

S. Ferro, A. De-battisti, I. Duo, C. Comninellis, W. Haenni et al., Chlorine Evolution at Highly Boron-Doped Diamond Electrodes, Journal of The Electrochemical Society, vol.147, issue.7, pp.2614-2619, 2000.
DOI : 10.1149/1.1393578

]. S. Ferro and A. Battisti, Electrochemistry of the aqueous ceric/cerous redox couple at conductive diamond and gold electrodes, Physical Chemistry Chemical Physics, vol.4, issue.10, pp.1915-1920, 2002.
DOI : 10.1039/b109931k

M. C. Granger and G. M. Swain, The Influence of Surface Interactions on the Reversibility of Ferri/Ferrocyanide at Boron-Doped Diamond Thin-Film Electrodes, Journal of The Electrochemical Society, vol.146, issue.12, pp.4551-4558, 1999.
DOI : 10.1149/1.1392673

]. L. Ostrovskaya, V. Perevertailo, V. Ralchenko, A. Dementjev, and O. Loginova, Wettability and surface energy of oxidized and hydrogen plasma-treated diamond films, Diamond and Related Materials, vol.11, issue.3-6, pp.3-6, 2002.
DOI : 10.1016/S0925-9635(01)00636-7

I. Yagi, H. Notsu, T. Kondo, D. A. Tryk, and A. Fujishima, Electrochemical selectivity for redox systems at oxygen-terminated diamond electrodes, Journal of Electroanalytical Chemistry, vol.473, issue.1-2, pp.173-178, 1999.
DOI : 10.1016/S0022-0728(99)00027-3

C. H. Goeting, F. Marken, A. Gutierrez-sosa, R. G. Compton, and J. S. Foord, Electrochemically induced surface modifications of boron-doped diamond electrodes: an X-ray photoelectron spectroscopy study, Diamond and Related Materials, vol.9, issue.3-6, pp.3-6, 2000.
DOI : 10.1016/S0925-9635(99)00267-8

J. P. Mcevoy and J. S. Foord, Direct electrochemistry of blue copper proteins at boron-doped diamond electrodes, Electrochimica Acta, vol.50, issue.14, pp.2933-2941, 2005.
DOI : 10.1016/j.electacta.2004.11.043

]. I. Duo, A. Fujishima, and C. Comninellis, Electron transfer kinetics on composite diamond (sp3)???graphite (sp2) electrodes, Electrochemistry Communications, vol.5, issue.8, pp.695-700, 2003.
DOI : 10.1016/S1388-2481(03)00169-3

T. N. Rao, D. A. Tryk, K. Hashimoto, and A. Fujishima, Band-Edge Movements of Semiconducting Diamond in Aqueous Electrolyte Induced by Anodic Surface Treatment, Journal of The Electrochemical Society, vol.146, issue.2, pp.680-684, 1999.
DOI : 10.1149/1.1391662

]. I. Duo, C. Levy-clement, A. Fujishima, and C. Comninellis, Electron Transfer Kinetics on Boron-Doped Diamond Part I: Influence of Anodic Treatment, Journal of Applied Electrochemistry, vol.34, issue.9, pp.935-943, 2004.
DOI : 10.1023/B:JACH.0000040525.76264.16

H. B. Martin, A. Argoitia, U. Landau, A. B. Anderson, and J. C. Angus, Hydrogen and Oxygen Evolution on Boron-Doped Diamond Electrodes, Journal of The Electrochemical Society, vol.143, issue.6, pp.133-136, 1996.
DOI : 10.1149/1.1836901

]. N. Vinokur, B. Miller, Y. Avyigal, and R. Kalish, Electrochemical Behavior of Boron-Doped Diamond Electrodes, Journal of The Electrochemical Society, vol.143, issue.10, pp.238-240, 1996.
DOI : 10.1149/1.1837157

]. P. Bouamrane, A. Tadjeddine, J. E. Butler, R. Tenne, and C. Levyclement, Electrochemical study of diamond thin films in neutral and basic solutions of nitrate, Journal of Electroanalytical Chemistry, vol.405, issue.1-2, pp.95-99, 1996.
DOI : 10.1016/0022-0728(95)04388-8

]. H. Girard, N. Simon, D. Ballutaud, E. De-la-rochefoucauld, and A. Etcheberry, Effects of controlled anodic treatments on electrochemical behaviour of boron doped diamond, Diamond and Related Materials, vol.16, issue.4-7, pp.4-7, 2007.
DOI : 10.1016/j.diamond.2006.12.002

]. N. Simon, H. Girard, D. Ballutaud, S. Ghodbane, A. Deneuville et al., Effect of H and O termination on the charge transfer of moderately boron doped diamond electrodes, Diamond and Related Materials, vol.14, issue.3-7, pp.3-7, 2005.
DOI : 10.1016/j.diamond.2004.12.013

]. M. Riedel, J. Ristein, and L. Ley, Recovery of surface conductivity of H-terminated diamond after thermal annealing in vacuum, Physical Review B, vol.69, issue.12, 2004.
DOI : 10.1103/PhysRevB.69.125338

J. Alvarez, J. P. Kleider, E. Snidero, P. Bergonzo, D. Tromson et al., On the metastability of the surface conductivity in hydrogen-terminated polycrystalline CVD diamond, Diamond and Related Materials, vol.13, issue.4-8, pp.751-754, 2004.
DOI : 10.1016/j.diamond.2003.12.030

URL : https://hal.archives-ouvertes.fr/hal-00321021

D. A. Tryk, K. Tsunozaki, T. N. Rao, and A. Fujishima, Relationships between surface character and electrochemical processes on diamond electrodes: dual roles of surface termination and near-surface hydrogen, Diamond and Related Materials, vol.10, issue.9-10, pp.1804-1809, 2001.
DOI : 10.1016/S0925-9635(01)00453-8

]. S. Ferro, M. Dal-colle, and A. Battisti, Chemical surface characterization of electrochemically and thermally oxidized boron-doped diamond film electrodes, Carbon, vol.43, issue.6, pp.1191-1203, 2005.
DOI : 10.1016/j.carbon.2004.12.012

]. K. Bobrov, H. Shechter, A. Hoffman, and M. Folman, Molecular oxygen adsorption and desorption from single crystal diamond (1 1 1) and (1 1 0) surfaces, Applied Surface Science, vol.196, issue.1-4, pp.173-180, 2002.
DOI : 10.1016/S0169-4332(02)00053-3

]. W. Deferme, K. Haenen, G. Tanasa, C. F. Flipse, and M. Nesl-dek, Compositional and electrical characterisation of the hydrogen-oxygen terminated diamond (100) surface, physica status solidi (a), vol.10, issue.12, pp.3114-3120, 2006.
DOI : 10.1002/pssa.200671125

S. Ri, D. Takeuchi, H. Kato, M. Ogura, T. Makino et al., Surface conductive layers on oxidized (111) diamonds, Applied Physics Letters, vol.87, issue.26, pp.262107-262108, 2005.
DOI : 10.1063/1.2158020

]. A. Gali, J. E. Lowther, P. Deak, A. D. Modestov, Y. E. Evstefeeva et al., Defect states of substitutional oxygen in diamond Synthetic semiconductor diamond electrodes: kinetics of some redox reactions, Journal of Physics: Condensed Matter Journal of Electroanalytical Chemistry, vol.13, issue.431, pp.211-218, 1997.

H. Notsu, T. Fukazawa, T. Tatsuma, D. A. Tryk, and A. Fujishima, Hydroxyl Groups on Boron-Doped Diamond Electrodes and Their Modification with a Silane Coupling Agent, Electrochemical and Solid-State Letters, vol.4, issue.3, pp.1-3, 2001.
DOI : 10.1149/1.1346556

C. E. Nebel, B. Rezek, D. Shin, and H. Watanabe, Surface electronic properties of H-terminated diamond in contact with adsorbates and electrolytes, physica status solidi (a), vol.151, issue.1, pp.3273-3298, 2006.
DOI : 10.1002/pssa.200671401

G. Pastor-moreno and D. J. Riley, Electrochemical studies of moderately boron doped polycrystalline diamond in non-aqueous solvent, Electrochimica Acta, vol.47, issue.16, pp.2589-2595, 2002.
DOI : 10.1016/S0013-4686(02)00119-6

F. K. De-theije, M. F. Reedijk, J. Arsic, W. J. Van-enckevort, and E. Vlieg, Atomic structure of diamond {111} surfaces etched in oxygen water vapor, Physical Review B, vol.64, issue.8, p.85403, 2001.
DOI : 10.1103/PhysRevB.64.085403

]. R. Klauser, J. Chen, T. J. Chuang, L. M. Chen, M. C. Shih et al., The interaction of oxygen and hydrogen on a diamond C(111) surface: a synchrotron radiation photoemission, LEED and AES study, Surface Science, vol.356, issue.1-3, pp.410-416, 1996.
DOI : 10.1016/0039-6028(96)00673-5

H. A. Girard, E. De-la-rochefoucauld, D. Ballutaud, A. Etcheberry, and N. Simon, Controlled Anodic Treatments on Boron-Doped Diamond Electrodes Monitored by Contact Angle Measurements, Electrochemical and Solid-State Letters, vol.10, issue.8, pp.34-37, 2007.
DOI : 10.1149/1.2743824

H. Notsu, T. Tatsuma, and A. Fujishima, Characterization of Oxygenated Diamond Electrodes, pp.218-237, 2005.
DOI : 10.1016/B978-044451908-5/50012-7

]. H. Références1, I. Notsu, T. Yagi, D. A. Tatsuma, A. Tryk et al., Surface carbonyl groups on oxidized diamond electrodes, Journal of Electroanalytical Chemistry, vol.492, pp.31-37, 2000.

]. S. Ferro and A. Battisti, Electrochemistry of the aqueous ceric/cerous redox couple at conductive diamond and gold electrodes, Physical Chemistry Chemical Physics, vol.4, issue.10, pp.1915-1920, 2002.
DOI : 10.1039/b109931k

P. C. Ricci, A. Anedda, C. M. Carbonaro, F. Clemente, and R. Corpino, Electrochemically induced surface modifications in boron-doped diamond films: a Raman spectroscopy study, Thin Solid Films, vol.482, issue.1-2, pp.311-317, 2005.
DOI : 10.1016/j.tsf.2004.11.169

]. T. Kondo, K. Honda, D. A. Tryk, and A. Fujishima, AC impedance studies of anodically treated polycrystalline and homoepitaxial boron-doped diamond electrodes, Electrochimica Acta, vol.48, issue.19, pp.2739-2748, 2003.
DOI : 10.1016/S0013-4686(03)00391-8

H. Notsu, I. Yagi, T. Tatsuma, D. A. Tryk, and A. Fujishima, Introduction of Oxygen-Containing Functional Groups onto Diamond Electrode Surfaces by Oxygen Plasma and Anodic Polarization, Electrochemical and Solid-State Letters, vol.2, issue.10, pp.522-524, 1999.
DOI : 10.1149/1.1390890

]. I. Duo, A. Fujishima, and C. Comninellis, Electron transfer kinetics on composite diamond (sp3)???graphite (sp2) electrodes, Electrochemistry Communications, vol.5, issue.8, pp.695-700, 2003.
DOI : 10.1016/S1388-2481(03)00169-3

]. J. Mcevoy and J. S. Foord, Direct electrochemistry of blue copper proteins at boron-doped diamond electrodes, Electrochimica Acta, vol.50, issue.14, pp.2933-2941, 2005.
DOI : 10.1016/j.electacta.2004.11.043

C. H. Goeting, F. Marken, A. Gutierrez-sosa, R. G. Compton, and J. S. Foord, Electrochemically induced surface modifications of boron-doped diamond electrodes: an X-ray photoelectron spectroscopy study, Diamond and Related Materials, vol.9, issue.3-6, pp.3-6, 2000.
DOI : 10.1016/S0925-9635(99)00267-8

]. I. Duo, C. Levy-clement, A. Fujishima, and C. Comninellis, Electron Transfer Kinetics on Boron-Doped Diamond Part I: Influence of Anodic Treatment, Journal of Applied Electrochemistry, vol.34, issue.9, pp.935-943, 2004.
DOI : 10.1023/B:JACH.0000040525.76264.16

]. M. Granger and G. M. Swain, The Influence of Surface Interactions on the Reversibility of Ferri/Ferrocyanide at Boron-Doped Diamond Thin-Film Electrodes, Journal of The Electrochemical Society, vol.146, issue.12, pp.4551-4558, 1999.
DOI : 10.1149/1.1392673

A. E. Fischer, Y. Show, and G. M. Swain, Electrochemical Performance of Diamond Thin-Film Electrodes from Different Commercial Sources, Analytical Chemistry, vol.76, issue.9, pp.2553-2560, 2004.
DOI : 10.1021/ac035214o

]. H. Girard, N. Simon, D. Ballutaud, M. Herlem, and A. Etcheberry, Effect of anodic and cathodic treatments on the charge transfer of boron doped diamond electrodes, Diamond and Related Materials, vol.16, issue.2, pp.316-325, 2007.
DOI : 10.1016/j.diamond.2006.06.009

G. Pastor-moreno and D. J. Riley, Electrochemical studies of moderately boron doped polycrystalline diamond in non-aqueous solvent, Electrochimica Acta, vol.47, issue.16, pp.2589-2595, 2002.
DOI : 10.1016/S0013-4686(02)00119-6

T. N. Rao, D. A. Tryk, K. Hashimoto, and A. Fujishima, Band-Edge Movements of Semiconducting Diamond in Aqueous Electrolyte Induced by Anodic Surface Treatment, Journal of The Electrochemical Society, vol.146, issue.2, pp.680-684, 1999.
DOI : 10.1149/1.1391662

]. S. Ferro, M. Dal-colle, and A. Battisti, Chemical surface characterization of electrochemically and thermally oxidized boron-doped diamond film electrodes, Carbon, vol.43, issue.6, pp.1191-1203, 2005.
DOI : 10.1016/j.carbon.2004.12.012

C. H. Goeting, F. Marken, A. R. Osborn, R. G. Compton, and J. S. Foord, Surface Modification of Chemical Vapor Deposited Diamond Induced by Power Ultrasound:???An X-Ray Photoelectron Spectroscopy Study, Electrochemical and Solid-State Letters, vol.4, issue.7, pp.29-31, 2001.
DOI : 10.1149/1.1377488

L. Y. Ostrovskaya, A. Dementiev, I. Kulakova, and V. Ralchenko, Chemical state and wettability of ion-irradiated diamond surfaces, Diamond and Related Materials, vol.14, issue.3-7, pp.3-7, 2005.
DOI : 10.1016/j.diamond.2004.09.010

]. H. Suffredini, V. A. Pedrosa, L. Codognoto, S. A. Machado, R. C. Rocha-filho et al., Enhanced electrochemical response of boron-doped diamond electrodes brought on by a cathodic surface pre-treatment, Electrochimica Acta, vol.49, issue.22-23, pp.4021-4026, 2004.
DOI : 10.1016/j.electacta.2004.01.082

M. Granger, M. Witek, J. Xu, J. Wang, M. Hupert et al., Standard Electrochemical Behavior of High-Quality, Boron-Doped Polycrystalline Diamond Thin-Film Electrodes, Analytical Chemistry, vol.72, issue.16, pp.3793-3804, 2000.
DOI : 10.1021/ac0000675

]. N. Simon, D. Ballutaud, M. Herlem, and A. Etcheberry, Influence of hydrogen plasma treatment on electrochemical behavior of moderately and highly boron doped diamond electrodes, Diamond and Related Materials, vol.13, issue.4-8, pp.4-8, 2004.
DOI : 10.1016/j.diamond.2003.11.035

]. N. Simon, H. Girard, D. Ballutaud, S. Ghodbane, A. Deneuville et al., Effect of H and O termination on the charge transfer of moderately boron doped diamond electrodes, Diamond and Related Materials, vol.14, issue.3-7, pp.3-7, 2005.
DOI : 10.1016/j.diamond.2004.12.013

]. R. Graupner, F. Maier, J. Ristein, L. Ley, and C. Jung, core-level spectra of clean and hydrogen-terminated diamond (100) and (111) surfaces, Physical Review B, vol.57, issue.19, pp.12397-12409, 1998.
DOI : 10.1103/PhysRevB.57.12397

]. D. Ballutaud, N. Simon, H. Girard, E. Rzepka, and B. Bouchet-fabre, Photoelectron spectroscopy of hydrogen at the polycrystalline diamond surface, Diamond and Related Materials, vol.15, issue.4-8, pp.4-8, 2006.
DOI : 10.1016/j.diamond.2006.01.004

URL : https://hal.archives-ouvertes.fr/hal-00092058

]. K. Bobrov, H. Shechter, A. Hoffman, and M. Folman, Molecular oxygen adsorption and desorption from single crystal diamond (1 1 1) and (1 1 0) surfaces, Applied Surface Science, vol.196, issue.1-4, pp.173-180, 2002.
DOI : 10.1016/S0169-4332(02)00053-3

]. F. Maier, R. Graupner, M. Hollering, L. Hammer, J. Ristein et al., The hydrogenated and bare diamond (110) surface: a combined LEED-, XPS-, and ARPES study, Surface Science, vol.443, issue.3, pp.177-185, 1999.
DOI : 10.1016/S0039-6028(99)01010-9

]. R. Klauser, J. Chen, T. J. Chuang, L. M. Chen, M. C. Shih et al., The interaction of oxygen and hydrogen on a diamond C(111) surface: a synchrotron radiation photoemission, LEED and AES study, Surface Science, vol.356, issue.1-3, pp.410-416, 1996.
DOI : 10.1016/0039-6028(96)00673-5

C. H. Goeting, F. Marken, A. Gutierrez-sosa, R. G. Compton, and J. S. Foord, Boron-doped diamond electrodes: Growth, surface characterisation and sono-electrochemical applications, New Diamond And Frontier Carbon Technology, vol.9, issue.3, pp.207-228, 1999.

S. G. Ri, D. Takeuchi, C. E. Nebel, N. Tokuda, Y. Yamazaki et al., Surface electronic properties on boron doped (111) CVD homoepitaxial diamond films after oxidation treatments, Diamond and Related Materials, vol.16, issue.4-7, pp.831-835, 2007.
DOI : 10.1016/j.diamond.2007.01.018

S. Ri, D. Takeuchi, H. Kato, M. Ogura, T. Makino et al., Surface conductive layers on oxidized (111) diamonds, Applied Physics Letters, vol.87, issue.26, pp.262107-262108, 2005.
DOI : 10.1063/1.2158020

M. I. Landstrass and K. V. Ravi, Resistivity of chemical vapor deposited diamond films, Applied Physics Letters, vol.55, issue.10, pp.975-977, 1989.
DOI : 10.1063/1.101694

]. F. Maier, M. Riedel, B. Mantel, J. Ristein, and L. Ley, Origin of Surface Conductivity in Diamond, Physical Review Letters, vol.85, issue.16, pp.3472-3475, 2000.
DOI : 10.1103/PhysRevLett.85.3472

M. I. Landstrass and K. V. Ravi, Hydrogen passivation of electrically active defects in diamond, Applied Physics Letters, vol.55, issue.14, pp.1391-1393, 1989.
DOI : 10.1063/1.101604

G. Ganal, . De, and . Tour, Au microscope apparaissent de petits cristaux qui ressemblent à des octaèdres obtenus par «volatilisation lente produite dans un courant d'induction». En 1880, le chimiste écossais J. Hannay est l'un des premiers à avoir affirmé avoir synthétisé du diamant. Pour cela, il chauffa sous pression des produits organiques renfermant du carbone en présence de métaux alcalins. Cependant, dans les conditions de pressions et de température de l'expérience, ce matériau n'est pas stable. Sur les très nombreuses expériences qu'il effectue, seulement trois d'entre elles approchent le succès. Les quelques cristaux obtenus ont été analysés en 1943 par diffraction des rayons X et ont confirmé qu'il s'agissait bien de diamant, de type II (c'est à dire exempts d'impuretés d'azote, rares dans la nature) En 1893

A. Le-tableau, Elles ont été calculées par J. H. Scofield [7] en utilisant un modèle atomique basé sur le potentiel de Hartree-Slater. Toutes les valeurs sont normalisées par rapport à celle de l'orbitale 1s du carbone fixée à 1,00. Références : [1] Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, 1486.

B. E. Bishop, Surface Interface Anal, p.272, 1981.

M. P. Seah and W. A. Dench, Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids, Surface and Interface Analysis, vol.9, issue.1, p.2, 1979.
DOI : 10.1002/sia.740010103

P. W. Palmberg, G. E. Raich, R. E. Weber, and N. C. Macdonald, Handbook of Auger Electron Spectroscopy, pp.1-16, 1975.

J. H. Scofield, Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV, Journal of Electron Spectroscopy and Related Phenomena, vol.8, issue.2, pp.129-137, 1976.
DOI : 10.1016/0368-2048(76)80015-1