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Abstract

Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups
(clusters). The clustering problem has been addressed in many contexts and there exist a multitude of different
clustering algorithms for different settings. As datasets become larger and more varied, adaptations of existing
algorithms are required to maintain the quality of clusters. In this regard, high-dimensional data poses some
problems for traditional clustering algorithms known as ‘the curse of dimensionality’.

This thesis proposes a co-similarity based algorithm that is based on the concept of distributional semantics
using higher-order co-occurrences, which are extracted from the given data. As opposed to co-clustering, where both
instance and feature sets are hard clustered, co-similarity may be defined as a more ‘soft’ approach. The output of
the algorithm is two similarity matrices — one for the objects and one for their features. Each of these similarity
matrices exploits the similarity of the other, thereby implicitly taking advantage of a co-clustering style approach.
Hence, with our method, it becomes possible to use any classical clustering method (k-means, Hierarchical
clustering ...) to co-cluster data.

We explore two applications of our co-similarity measure. In the case of text mining, document similarity is
calculated based on word similarity, which in turn is calculated on the basis of document similarity. In this way, not
only do we capture the similarity between documents coming from their common words but also the similarity
coming from words that are not directly shared by the two documents but that can be considered to be similar. The
second application is on gene expression datasets and is an example of co-clustering. We use our proposed method
to extract gene clusters that show similar expression levels under a given condition from several cancer datasets
(colon cancer, lung cancer, etc).

The approach can also be extended to incorporate prior knowledge from a training dataset for the task of text
categorization. Prior category labels coming from data in the training set can be used to influence similarity
measures between features (words) to better classify incoming test datasets among the different categories. Thus, the
same framework can be used for both clustering and categorization task depending on the amount of prior

information available.

Keywords: Clustering, co-clustering, supervised learning, text mining, co-similarity, structural similarity



Résumé

La classification de données (apprentissage non-supervisé) vise a regrouper un ensemble d'observations sous la
forme de classes homogenes et contrastées. Lorsque les données sont caractérisées par un grands nombre de
propriétés, il devient nécessaire d'adapter les méthodes classique, notamment au niveau des métriques, afin de
maintenir des classes pertinentes ; ce phénomeéne est connu sous le nom de "malédiction de la dimension".

Dans cette thése nous proposons une mesure de co-similarité basée sur la notion de co-occurrences d'ordre
supérieur, directement extraites a partir des données. Dans le cas de l'analyse de texte, par exemple, les similarités
entre documents sont calculées en prenant en compte les similarités entre mots, qui simultanément prennent en
compte les similarité entre documents. Par cette approche circulaire, nous mettons en correspondance des documents
sans mots communs mais juste des mots similaires. Cette approche s'effectue sans nécessiter de thesaurus externe.

En outre, notre méthode peut également étre étendu pour tirer partie de connaissances "a priori" pour réaliser
des taches de catégorisation de textes : 1'étiquette des documents est utilisée pour influencer les mesures de similarité
entre les mots afin de classer de nouvelles données. Ainsi, le méme cadre conceptuel, exprimable en terme de la
théorie des graphes, peut étre utilisé a la fois pour les taches de classification et de catégorisation en fonction de la
quantité d'information initiale.

Nos résultats montrent une amélioration significative de la précision, par rapport a 1'état de 1'art, pour le co-

clustering et la catégorisation sur les jeux de données qui ont été testés.

Mots-Clés: Co-similarité, co-classification, systeme d’apprentissage, fouille de texts, expression génique, co-

clustering.
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Introduction Générale

Avec l'avénement de l'age de l'information et I'Internet, en particulier au cours des deux derniéres décennies, notre
capacité a générer, enregistrer et stocker des données multi-dimensionnelles et non structurées est en augmentation
rapide. D'énormes volumes de données sont maintenant disponibles pour les chercheurs dans différents domaines
(publications de recherche et bibliothéques en ligne), les biologistes (par exemple: micro puces ou données
géniques), en sociologie (données de réseaux sociaux), etc. Pour faire face a cette augmentation du volume de
données les taches d'extraction d’informations pertinentes et d’acquisition des connaissances - telles que la
recherche de motifs ou de relations cachées - ont connu un grand essor. Ainsi, le Data Mining (ou fouille de
données) se référe au domaine qui s’intéresse a I'é¢tude formelle de ces problémes et il englobe un large éventail de
techniques dans les domaines des mathématiques, des statistiques et de l'apprentissage machine. Un défi majeur
dans l'exploration de ces données est que les informations que nous souhaitons extraire ne sont généralement peu ou
pas connues a l'avance.

Les techniques de Data Mining sont donc utiles pour découvrir des modéles et des relations inattendues a partir
de données et elles ont recu une large attention dans divers domaines scientifiques et commerciaux. Ces techniques
peuvent étre classées en deux grandes facons: l'apprentissage non supervisé ou clustering et l'apprentissage
supervisé ou la classification. Le clustering est une approche visant a découvrir et identifier des « motifs » (comme
des ensembles caractéristiques, des éléments typiques de données) a partir de la création de groupes (clusters) . Elle
vise donc a organiser une collection d’observations ou d’objets en fonction de la similarité qui existe entre eux
(généralement les données sont représentées comme un vecteur de données, ou comme un point dans un espace
multidimensionnel). Intuitivement, les caractéristiques qui apparaissent au sein d'un cluster valide sont plus
semblables les unes aux autres qu’elless ne le sont pour de celles appartenant a un autre cluster.. En pratique, un
algorithme de clustering est basée sur une fonction objectif qui essaie a minimiser la distance intra-cluster entre ses
objets et de maximiser la distance inter-cluster (on cherche des classes homogenes et contrastées). La FIGURE 1 ci-
dessous illustre un regroupement d'objets de données (également appelé les individus, les cas ou les lignes d’un
tableau de données). Ici les données peuvent étre facilement divisées en 3 groupes différents en fonction de leur
mesure de distance.

11 faut noter que cette tache de clustering a été pratiquée par les humains depuis des milliers d'années (Willett,
1981; Kural, Robertson, et Jones, 1999), et qu’elle a été en grande partiec automatisé dans les derniéres décennies en
raison de l'avancement de la technologie informatique. On 1’utilise maintenant dans une grande variété de domaines,

tels que l'astronomie, la physique, la médecine, la biologie, 1'archéologie, la géologie, la géographie, la psychologie,

x
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et de le commerce. De nombreux domaines de recherche différents ont contribu¢ a proposer de nouvelles approches
(par exemple, la reconnaissance des formes, les statistiques et I’analyse des données, la théorie de 1’information,
I’apprentissage machine, la bioinformatique et ). Dans de nombreux cas, 1'objectif du clustering est d’obtenir une
meilleure compréhension des données (par exemple, en faisant apparaitre une structure "naturelle" sous-jacente des
données qui se traduit par ’apparition un regroupement significatif). Dans d'autres cas, la constitution de classes
n'est qu'une premiére €tape a des objectifs diverss, telles que 1'indexation ou la compression de données. Dans tous

les cas le clustering est une démarche « exploratoire » visant a condenser et mieux comprendre les données.
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FIGURE 1 Clustering objects

Les données enregistrées dans une base de données, ou comme une matrice de données, peuvent étre analysées
sous deux angles, a savoir (i) en se référant aux enregistrements (ou lignes), ou (ii), en se référenat aux attributs (ou
colonnes). Dans les deux cas, 1’ objectif est la découverte des motifs récurrents cachés. Considérons une base de
données constituées par un ensemble d’objets ou les lignes sont les documents et les colonnes sont les mots contenus
dans ces documents. L’aproche classique en clustering repose sur le calcul d’une mesure de similarité entre les
paires de documents puis sur I’utilisation de ces valeurs pour regrouper les documents afin de former des groupes de
documents (partition) ou des groupes de clusters (hiérarchies) qui sont liés les uns aux autres. Ceci est connu comme
le « one-way clustering » ou simplement clustering, ou 1’on essaye de trouver des modeles basés sur une vision
globale des données.

Considérons maintenant une base de données contenant des données comme des micro-puces (micro-arrays), ou
les lignes sont les génes et les colonnes sont les conditions expérimentales dans lesquelles le degré d’expression des
genes a été mesurés, par exemple selon que le tissu contient une tumeur cancéreuse ou non. Prenons le cas d’un gene
qui contréle la division cellulaire, il est clair qu’un tel géne va s’exprimer fortement dans le cas d’un cancers mais ce
degré d’expression n’est pas forcément spécifique d’un cancer ni méme d’ailleurs d’un cancer en général. Si I’on
analyse ce geéne de maniére générale, indépendamment des conditions expérimentales on risque donc de ne trouver
aucune information pertinente. Dans ce cas, un point de vue plus local, qui considére les valeurs d'expression de
geénes visa vis d’un sous-ensemble des conditions, peut étre plus approprié.

Par conséquent, travailler simultanément sur les expressions (ou documents) et les génes (ou vatriables) est
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fondamental. Ceci est connu comme la tache de « biclustering » ou « co-clustering ».

Par ailleurs, en apprentissage supervisé (ou classification), des connaissances a priori sur les données sont
utilisées pour entrainer un « classifieur » pour faire des prédiction sur de nouvelles données. Une application
classique de l'apprentissage supervisé est la catégorisation de textes. La catégorisation de textes vise a affecter de
nouveaux documents texte, non étiquetés, dans I'une des catégories prédéfinies en fonction de leur contenu. Si les
textes sont des articles de journaux, les catégories pourraient étre des thémes tels: économie, politique, science, et
ainsi de suite. Cette tAche a d’autres applications telles que la classification automatique d'email et de catégorisation
de pages Web. Ces applications sont de plus en plus importantes dans la société d'aujourd’hui qui est axée sur la
circulation de I’information. La catégorisation de textes est aussi appelée la classification de texte, la catégorisation
de documents ou de classification des documents.

Plusieurs approches de catégorisation de documents — comme celles basées sur des mesures de similarité
comme le cosinus ou des distances Euclidiennes, etc. - supposent implicitement que les textes de la méme catégorie
ont une distribution de mots identiques. De telles mesures de similarité sont fondés sur le nombre de mots qui sont

partagés entre les deux documents. Considérons les 4 phrases suivantes :

S1: There are many types of ocean waves.
S2: A swell is a formation of long surface waves in the sea.
S3: Swelling is usually seen around a broken knee or ankle.

S4: The patella bone is also known as the knee cap and articulates with the femur.

I1 est évident que les deux premiéres phrases concernent 1'océanographie, tandis que la troisi¢me et la quatriéme
phrase traitent de I'anatomie. Les mots qui pourraient étre associés a ces sujets sont en italique alors que les mots qui
sont partagés entre les documents sont soulignés. Ici, il pourrait donc étre difficile de déterminer quelles phrases
forment un cluster. La phrase deux (S2), par exemple, partage un mot chacun avec S1 et S3 respectivement.1

Les humains peuvent facilement identifier quelles deux phrases doivent étre regroupées, en partie parce que la
phrase S1 contient le mot océan et la phrase S2 contient le mot mer. De méme, S3 contient les mots du knee et
ankle, et S4 contient les mots patella bone et femur. Si nous pouvions attribuer des valeurs de similarité entre ces
mots, alors nous serions capable de définir quelles paires de phrases devraient étre regroupées, méme si elles ne
partagent pas les mémes mots.

Si I’on dispose d’assez de documents, il devient possibke d’attribuer automatiquement les valeurs de similarité
entre les mots et entre les documents qui contiennent des tels mots. Nous appelerons 1’étude de telle similitude la
mesure de co-similarité. L'objectif fondamental de cette thése est donc de proposer une approche fondée sur la co-

similarité au co-clustering afind’ améliorer le one-way-clustering et le biclustering.

" Dans le contexte de fouille de texte, seulment les mots de base sont pris en compte. Par exemple, les mots swell et
swelling sont considérés comme le méme mot. En plus, on ne prend pas en compte des mots fréquents tels que is, a,
to...
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Contribution Principle de la Thése

Les principales contributions de cette thése sont les suivantes:
=  Nous vous proposons une nouveau mesure de (co-) similarité qui peut étre utilisée avec n'importe quel
algorithme de clustering comme la Classification Ascendante Hiérarchique, les k-means, les classification
par densité, etc.

o Notre nouvelle mesure de similarité, baptisé x-Sim, exploite la nature duale de la relation qui
existe dans de nombreux ensembles de données entre les objets et les variables. Par exemple, entre
les documents et les mots, dans le contexte du Text Mining. Nous mesurons la similarité entre les
documents en tenant compte de la similarité entre les mots qui apparaissent dans ces documents et
réciproquement.

o Nos résultats expérimentaux montrent que 1'utilisation de cette approche basée sur la co-similarité
donne de meilleurs résultats (en termes de précision) que de nombreux algorithmes de clustering et
co-clustering existants.

=  Nous fournissons une explication en terme de théorie des graphes du fonctionnement de notre algorithme.
Le fonctionnement de notre algorithme est basé sur I’idée de produire des valeurs de similarité utilisant les
co-occurrences pondérées d’ordre supérieur dans un gaphe bi-partite. Tutefois lorsque I'on considére ces
graphes, il faut prendre soin d'éviter les nceuds redondants, qui ont déja été visités précédemment. Nous
proposons une technique pour explorer les chemins (pondérés) jusqu' a I'ordre 3 tout en évitant ces chemins
redondants.

= Nous ¢élargissons notre mesure de (co-)similarité afin d'exploiter des connaissances préalables sur les
étiquettes des classes pour faire de 1”'apprentissage supervisé. Nous proposons une double stratégies
complémentaires pour exploiter les étiquettes des catégories dans 1’ensemble d’apprentissage :

o maximisation de la similarité des documents appartenant a la méme catégorie.

o minimisation de la similarité des documents ayant des étiquettes différentes.

= Nous fournissons des résultats expérimentaux obtenus a partir de plusieurs bases de données de textes pour
évaluer le comportement de notre algorithme et pour pouvoir effectuer une comparaison avec plusieurs
autres algorithmes classiques de la littérature.

= Enfin, nous proposons des adaptations de notre algorithme pour qu’il soit applicable a données
d'expression génique pour accomplir la tAche de biclustering. Nous testons notre algorithme sur plusieurs

bases de données de cancer.
Structure de la Thése

Le reste de cette thése est organisé en 5 chapitres.
=  Chapter 2 chapitre 2 donne un apergu des travaux antérieurs dans les domaines du clustering et du co-

clustering, principalement dans le contexte de 1'exploration de texte..
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=  Chapter 2 chapitre 3 fournit les détails de notre algorithme et son contexte théorique. Ce chapitre traite
¢galement des inconvénients potentiels de 1'algorithme et examine les moyens par lesquels ils peuvent étre
minimisés. Enfin, une extension de 1'algorithme a la tache de l'apprentissage supervisée est également
proposées dans ce chapitre.

= Chapter 2 chapitre 4 fournit tous les résultats expérimentaux a la fois pour le clustering de documents et
pour leur catégorisation, en faisant I'analyse et la comparaison avec d'autres techniques existantes.

= Chapter 2 chapitre 5 fournit une introduction au domaine de la bioinformatique et les problémes rencontrés
lors du biclustering sur les données d'expression génétique, comme la transformation des données, la
sélection génétique, etc. Ensuite nous étudions 'application de 'algorithme proposé pour le biclustering de
plusieurs ensembles de données concernant l'expression des genes et issus du domaine de la bio-
informatique.

=  Chapter 2 chapitre 6 fournit une conclusion de notre travail et examine les perspectives d'avenir.
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Chapter 1

Introduction

1.1. Setting the Scene

With the advent of the information age and the internet, particularly during the last couple of decades, our capacity
to generate, record and store multi-dimensional and apparently un-structured data is increasing rapidly. Huge
volumes of data are now available to researchers in different fields (research publications and online libraries),
biologists (for example micro array and genetic data), sociology (social networks data), ecologists (sensor network
data), etc. With the increase in data and its availability, however, comes the task of mining relevant information and
knowledge — such as finding patterns or hidden relationships within the data. Data mining refers to the formal study
of these problems and encompasses a broad range of techniques from the fields of mathematics, statistics, and
machine learning. A key challenge in data mining is that the information we wish to extract is usually not known or
only partially known beforehand.

Data mining techniques are useful for discovering unsuspected patterns and relationships from data and have
received wide attention in various scientific as well as commercial fields. These techniques can be categorized in
two broad ways — unsupervised learning or clustering and supervised learning or classification.

Clustering is the unsupervised identification of patterns (such as observations, data items, or feature vectors)
into groups (clusters). It refers to the organization of a collection of patterns (usually represented as a vector of
measurements, or as a point in a multidimensional space) into clusters based on their similarity values. Intuitively,
patterns within a valid cluster are more similar to each other than they are to a pattern belonging to a different
cluster. The goal of a clustering algorithm thus is to partition the data in such a way that objects that are similar in
some sense are grouped in the same cluster. Typically, a clustering algorithm has an objective function that tries to
minimize the intra-cluster distance between its objects and maximize the inter-cluster distance. FIGURE 1.1 below
shows a grouping of data objects (also called observations, individuals, cases, or data rows). The data can easily be

divided into 3 different clusters based on their distance measure.
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Clustering is a task that has been practiced by humans for thousands of years (Willett 1981; Kural, Robertson,
and Jones 1999), which has been mostly automated in the last few decades due to the advancements in computing
technology. Cluster analysis has been used in a large variety of fields, such as astronomy, physics, medicine,
biology, archaeology, geology, geography, psychology, and marketing. Many different research areas contributed
new approaches (i.e., pattern recognition, statistics, information retrieval, machine learning, bioinformatics, and data
mining). In some cases, the goal of cluster analysis is a better understanding of the data (e.g., learning the “natural”
structure of data which should be reflected by a meaningful clustering). In other cases, cluster analysis is merely a

first step for different purposes, such as indexing or data compression.
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FIGURE 1.1 Clustering objects

The data recorded in a database, such as a data matrix, has traditionally been analyzed from two perspectives,
namely (i) with reference to the records (or rows); or (ii), with reference to the attributes (or columns). In both cases,
our objective is the discovery of hidden, yet interesting, patterns by comparing either the rows or the columns of the
data matrix depending on which clustering we are interested in. Consider a database, for example, a set of
documents whose rows are the documents and whose columns are the words contained in those documents.
Typically, we calculate the similarity measure between pairs of documents and use these values to group together
documents to form groups or clusters of documents which are related together. This is known as one-way clustering
or simply clustering and it tries to find patterns based on a global view of the data.

Consider now a database containing micro-array data, where the rows are genes and the columns are the
conditions under which the intensity of the genes were measured, such as whether the tissue contains a cancerous
tumor or not. Typically, a gene will express itself with higher intensity under certain conditions such as a gene that
controls specific functions of cell division. Such a gene may have a high intensity in tissues having a cancerous
tumor or even having only a specific type of cancer. In this case, a global view of the gene’s expression values might
not form any interesting pattern(s). Rather, our interest lies in identifying sets of genes that are over (or under)

expressed under certain cancerous conditions. Thus a local view, which considers the expression values of genes




Chapter 1 Introduction

under a subset of the conditions, might be more desirable. Therefore a clustering of both the records and attributes is
essential. This is known as biclustering or co-clustering.

Classification on the other hand is a technique where prior knowledge about the records is used to train a
classifier for new records. One such application of supervised learning is text categorization. Text categorization is
the task in which new, unlabelled, text documents are categorized into one of predefined categories based on their
contents. If the texts are newspaper articles, categories could be, for example, economics, politics, science, and so
on. This task has various applications such as automatic email classification and web-page categorization. Those
applications are becoming increasingly important in today’s information-oriented society. Text categorization is also
called text classification, document categorization or document classification.

Several text clustering approaches — such as those based on similarity measures like Cosine, Euclidean, etc —
implicitly assumes that texts in the same category have an identical distribution of words. Such similarity measures

are based number of documents that are shared between two documents. Consider the following 4 sentences

S1: There are many types of ocean waves.

S2: A swell is a formation of long surface waves in the sea.

S3: Swelling is usually seen around a broken knee or ankle.

S4: The patella bone is also known as the knee cap and articulates with the femur.

It is evident that the first two sentences concern oceanography, while the third and forth sentences are taking about
anatomy. Words that could be associated with these topics are italicized while words that are shared between
documents are underlined. In this way, it could be hard to determine which sentences form a cluster. Sentence two
(S2), for instance, share one word each with S1 and S3 respectivelyz.

Humans could easily identify which two sentences should be grouped together, in part because sentence S1
contains the word ocean and sentence S2 contains the word sea. Similarly, S3 contains the words knee and ankle
while S4 contains the words patella, bone and femur. If we could assign similarity values between these words, then
we would be capable of defining which sentence pair should be grouped together even if they do not share the same
words.

Given enough documents, we could automatically assign similarity values between words and between the
documents that contain such words. We refer to such a similarity as co-similarity. The fundamental aim of this thesis

is to provide a co-similarity based approach to co-clustering for improving one-way clustering and for biclustering.

1.2. Main Contribution of this Thesis

The main contributions of this thesis are as follows:

* In text mining, words are usually compared in their base forms, for example ‘swell’ and ‘swelling’ will be
considered as the same word; while common words such as ‘is’, ‘a’, etc are usually not taken into account. For
details see section 4.4
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=  We propose a new (co-)similarity measure that could be used with any clustering algorithm such as
Agglomerative Hierarchical Clustering, k-means, etc.

o Our new similarity measure, christened x-Sim, exploits the dual nature of relationship that
exists in many datasets for example, between documents and words, in text mining. We
measure the similarity between documents taking into account the similarity between words
that occur in these documents.

o Our experimental results show that using this co-similarity based approach yields better
results (in terms of accuracy) than many clustering and co-clustering algorithms.

=  We provide a graph-theoretical explanation of the working of our proposed algorithm. The working of
our algorithm is rooted in the concept of generating similarity values based on exploring weighted
high-order paths in a bi-partite graph. When considering any such walks, care must be taken to avoid
self-repeating nodes which has been previously visited. We provide a technique to explore such
(weighted) paths of up to order-3 while avoiding such redundant paths.

=  We extend our (co-)similarity measure to exploit available prior knowledge for supervised learning.
We propose a two pronged strategy to exploit category labels in the training set to influence similarity
learning such that

o documents in the same category tend to have a higher similarity value.

o documents in different categories tend to have a lower similarity value.

= We provide experimental results on various text datasets to evaluate the behavior of our proposed
algorithm and provide a comparison with several other algorithms.
We apply our proposed algorithm on gene expression data to perform the task of biclustering. We test our

algorithm on several cancer datasets to bicluster gene and conditions.

1.3. Structure of the Thesis

The rest of this thesis is organized in 5 chapters.

= Chapter 2 provides an overview of the related work which has been previously done in the area of

clustering and co-clustering, mostly related to text mining.

= Chapter 3 provides the details of our proposed algorithm and its theoretical background. This chapter
also discusses potential drawbacks of the proposed algorithm and discusses ways in which these could
be reduced. Finally, an extension of the proposed algorithm to the supervised task is also given in this

chapter.

= Chapter 4 provides all the experimental results for both document clustering and categorization, with

analysis and comparison with other techniques.




Chapter 1

Introduction

Chapter 5 provides an introduction to the bioinformatics domain and the problems of biclustering gene
expression data such as data transformation, gene selection, etc and the application of the proposed

algorithm on biclustering on several gene expression datasets coming from the bioinformatics domain.

Chapter 6 provides a conclusion of our work and discusses the future perspectives.
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Chapter 2

Related Work

The objective of clustering is to partition an unstructured set of objects into clusters (groups).
From a machine learning point of view, clustering represents an unsupervised learning technique to
search for hidden patterns (clusters) and the outcome represents the data concept. Clustering
algorithms can usually be described as hierarchical or partitioning methods. Typically, these
methods revolve around the concept of similarity/distance measures between objects such that
objects grouped together in a cluster are more similar is some way than objects grouped in different
clusters. In certain domains with high-dimensional data, however, the notion of distance is
somewhat lost because most objects are only represented by a small subset of these dimensions.
Several approaches such as the Latent Semantic Analysis, project such data onto a lower dimension
space before trying to determine similarity values between objects. In the last decade, attempts have
also been made to simultaneously partition the set of samples and their attributes into co-clusters.
The resulting (co-) clusters signify a relationship between a subset of samples in a subset of
attributes. Such algorithms employ certain additional information — such as entropy, about the data
to enhance the clustering. The task of clustering then can be seen as a compact representation of the
data that tries to preserve this additional/auxiliary information as much as possible. In this chapter,
we review some of the techniques that have been used for clustering and co-clustering, particularly

in the domain of text mining and bio-informatics.

2.1. Data Representation

As introduced in Chapter 1, clustering is the unsupervised classification of patterns (such as observations, data
items, or feature vectors) into groups (clusters). We first give a formal definition of the task of clustering below. We

will focus on the task of document clustering (unless specifically mentioned otherwise) throughout the rest of this
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chapter since this will be a principal application area for our proposed similarity measure.

Let us assume that X is the document set to be clustered, X = {x;, x5, ..., x,,}. Each document x; is an n-
dimensional vector, where each dimension typically corresponds to an indexing term. A clustering X of X into k

(distinct) sets can be defined as X = { )?1 , )?2 s eees )Ack } so that the following conditions are satisfied:
1. Each cluster )Acl. contains at least one document: )?l. o=, ...,k
2. The union of all clusters is the set X: Uf;l )Acl. =X

3. No two clusters have documents in common: X, VX, =@,i # j;i,j=1..k

The third condition guarantees that clusters do not overlap. In this thesis, we will only deal with single labeled
clustering (and categorization), also known as hard clustering (as opposed to soft clustering where an object can be
part of different clusters with varying levels of confidence).

Several techniques have been used in the literature to index documents, mostly borrowed from Information
Retrieval (Manning, Raghavan, and Schiitze 2008; Baeza-Yates and Ribeiro-Neto 1999; Jurafsky, J. H Martin, and
Kehler 2000; Manning and Schiitze 1999). The most commonly used one is the Vector Space Model (and its

graphical representation as a bi-partite graph).

2.1.1. Vector Space Model

The Vector Space Model (VSM) was proposed by (G. Salton, Wong, and C. S. Yang 1975). Given a set X of m
documents, let Y be the set of terms in the document collection whose size is give by n (n is the size of the corpus
dictionary). The dimensions of the vector space usually represent the set of all different words that can be found
throughout a document collection, i.e., the vocabulary set. Also let y; denote a term in the set of terms used to index

the set of documents with i=1...n. In the VSM model, for each term y; there exists a vector y, in the vector space

that represents it. It then considers the set of all term vectors {y, } (1<i<n) to be the generating set of the vector

space, thus the space basis. A document vector X, is given by

(2.1) X, = (Viis Vigseros Vi)

If each X; (for i = 1... m) denotes a document vector of the collection, then there exists a linear combination of
the term vectors {y, } which represents each X;in the vector space. Once a vector has been defined for each

document in the corpus, they can be collected in a document-by-term matrix’ A in which each row represents a
document and each column represents a word (or term) in the corpus. The resulting document-by-term matrix A

whose element 4;; denotes the occurrence of a word j in document 7 as shown below

* In the literature, term-by-document matrix is also used especially in the domain of IR. The term-by-document
matrix corresponding to A is simply the transpose of A.
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All AIZ 1n
o) a| A A A
Ay Ay e A,

When referring to documents and words in the matrix A, we will use a; to denote a row vector (corresponding to
document x;) and a' to denote a column vector (corresponding to word ;).

The second aspect of the vector space model deals with weighting the terms. The techniques used are borrowed
from Information Retrieval domain, where text documents are represented as a set of index terms that are weighted
according to their importance for a particular document and the corpus (G. Salton and Lesk 1968; G Salton 1971;
Sebastiani 2002; Y. Yang and X. Liu 1999). Various techniques have been proposed in the literature to weight
terms, for example a binary-valued vector weighting scheme indicating the presence or absence of the term in the
document; or real-valued, indicating the importance of the term in the document. There are multiple approaches for
how real-valued weights can be computed such as #f-idf (G. Salton and C. Buckley 1988), term distribution

(Lertnattee and Theeramunkong 2004), or simply the number of occurrence of a word in a document, etc.

The TF-IDF Model The most popular approach used for term weighting in the domain of text clustering, text
categorization and information retrieval is the #~idf scheme (G. Salton and C. Buckley 1988). In this approach, the
entry A is defined as a product of the Term Frequency (7F) and the Inverse Document Frequency (/DF) given by

(2.3) Al.j = TE.J. *IDFJ.
where
A
(2.4) TF; =—"—— and
Ay
k=l..n
X
(2.5) IDF; =log| 17—
)

TF is a function of the number of occurrences of the particular word in the document divided by the number of
words in the entire document. This means that the importance of a term in a document is proportional to the number
of times that the term appears in the document. Similarly, IDF ensures that the importance of the term is inversely
proportional to the number of times that the term appears in the entire collection. The logarithm in /DF is used as it
has been shown that a word in a collection of documents follows the Zipf’s law (Zipf 1949). Without the logarithmic
scale, the IDF function would grow too fast with decreasing number of occurrences of a word in the corpus
(Manning and Schiitze 1999). If only IDF was used to weight terms in a document x;, then rare terms would
dominate a geometric similarity computation: a term that occurs only once in the document collection has a

maximum /DF value. The product of 7F and IDF ensures that both rare and frequent terms do not over-influence the
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similarity measure.
The Boolean Model In the Boolean document model, the representation x; of a document x; € X is a vector whose
jth component indicates if y; occurs in x;. An equivalent of the Boolean model is the set model, where a document is

represented as a set in which the elements are the document’s terms. The Boolean model is defined as

(2.6) Vi=l.m,j=1.n A;=1 if word joccursindocumenti
0 otherwise

The Number of occurrences In this case, the entities in 4; corresponds to the number of time word j occurs in
document i. As opposed to the Boolean case, by using the number of occurrences, one could give more importance
to words that occur multiple times in a document. For instance, the word “y-Sim” * is much more relevant to this
thesis (and occurs multiple times throughout the document), than say some other work that simply cites this work.
Using the Boolean model, one may loose this importance of different words in documents by assigning just the
presence or absence of the word.

Several other weighting schemes have been proposed in the literature, for example, a probabilistic method
based on the assumption that informative words are only found in a subset of the documents. The term weighting is
then done based on the divergence from the randomness theory based on Ponte and Crofts language model (Ponte
and Croft 1998). Similarly, Amati and Rijsbergen (Amati and Van Rijsbergen 2002) have proposed to first

normalize a document based on the document length and propose an alternative normalized idf.

2.1.2. The Bipartite Graph Model

Several clustering algorithms (discussed later in the chapter) adopt a graph-theoretical view of grouping objects.

First, let us understand what a graph is and how it is represented. The word graph has at least two meanings:

- A graph could refer to the plot of a mathematical function, or

- A collection of points and set of lines connecting some subsets of these points.

We are concerned with the second definition. We define a graph as a collection of entities and their relationships.
The entities are usually represented as the vertices (or nodes) of the graph, and their relationships as edges (or links).
In the case of text, we have two sets of objects — documents and words — which are represented as a bipartite graph.
A bipartite graph is a special graph which can be partitioned into two set of vertices X and Y, such that all edges
link a vertex from X to a vertex in Y and no edges are present that link two vertices of the same partition.
Equivalently, a bipartite graph is a graph in which no odd-length cycles exist.

A bipartite graph is usually defined by G = (X,Y,E) where X={x,,...x,,} and Y={y,,...,y,} are two sets of
vertices and E is a set of edges {(xi,); xi € X, yj€Y}. In our case, the two sets of vertices X and Y represent the
document set and word set respectively. An edge signifies an association between a document and a word. By

putting positive weights on the edges, we can identify the strength of this association. It is straightforward to identify

* y-Sim is the name we give to a new co-similarity measure that we will propose in chapter 3.
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a clear relationship between a bipartite graph and a matrix. This is shown in FIGURE 2.1.

Y1 Y2 Y3 V4
X 1 0 0 1
X2 0 1 1 1
X3 1 1 1 0
(a) (b)

FIGURE 2.1 Representing 3 documents (x;-x3) and 4 words (y;-y4) using (a) a vector space model, and (b) a bipartite
graph model

The two sets of vertices correspond to the rows and columns of the matrix A while the edges correspond to the
entries 4;. Similarly, bipartite graph can be either weighted with a weight assigned to each edge or simply binary,
indicating the presence of absence of an edge as seen previously for matrix entries 4. Bipartite graphs are usually

represented using an adjacency matrix. Given a document-by-term matrix A, the corresponding adjacency matrix M

for the bipartite graph G is given by

2.7 M= 0 A

where we have ordered the vertices such that the first m vertices index the documents while the last » index the
words and A" denotes the transpose of the matrix A. The dimensions of M are m+n by m+n. As shall be seen in the
later part of this chapter (section 2.5), such representation is sometimes useful when using graph theoretical methods

to cluster documents and words simultaneously that use several matrix manipulation techniques.
2.2. Document Similarity Measures

Recall that the objective of clustering is to partition an unstructured set of objects into clusters (groups). Most
clustering algorithms use a similarity (or dissimilarity) measure between the objects. A large number of such
measures that quantify the resemblance between objects have been proposed in the literature. We introduce here a

formal definition of a distance measure. Using the VSM presented above where X is the set of documents to be
clustered, then a distance measure is a function dist: X x X — R, where ‘R is the set of nonnegative real numbers.
Such a function dist, in general, satisfies the following axioms:

1. dist (x;x;))=0 (reflexivity)

10
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2. dist (x;x)) >0 (non-negativity)

3. dist (x;,x;) = dist (x;,x;) (symmetry)

4. dist (x;,x)) + dist (x;,x) = dist (x;,x;) (triangular inequality)
5. dist (x;,x;) € [0,1] (normalization)

A function that satisfies the first four axioms is called a metric (Duda, Hart, and Stork 2001). The axiom 5 is
usually satisfied by a large number of distance measures but is not a necessity for being a similarity or distance

metric. A similarity measure Sim(,) can similarly be defined as a function Sim: X x X — R. The use of either types

of similarity or distance measures is usually problem dependent.

Sneath and Sokal (Sneath and Sokal 1973) categorize such measures in four main classes: association (or
similarity), dissimilarity, probabilistic, and correlation coefficients. The first two usually belong to more generic
sets of geometric measures and to the set theory. Document clustering has mostly utilized geometric measures which
we discuss below. Probabilistic measures have mostly been used in Information Retrieval where probability
measures are used to rank documents according to a given query, while correlation coefficients have mostly been

employed in the domain of bioinformatics to group genes based on their profiles over certain conditions.
Geometric Measures

The category of measures is usually used with the vector model under Euclidean geometry and has been
popularly employed when comparing continuous data. Given the index vectors for two documents, it is possible to
compute the similarity coefficient between them, Sim(a;a;) which represents the degree of similarity in the

corresponding terms and term weights. For instances, the Minkowski distance measure is defined as

" p
2.8) Dist(a;,a;) = Z(‘Aﬂc - Aﬂf‘l/p)
k=1

Perhaps the most popular distance metric is the Fuclidean distance which is the special case of the Minkowski
distance with p=2. The Euclidean distance works well when the dataset have compact or isolated clusters (A. K Jain,
Duin, and Mao 2000). The Euclidean distance has a drawback in that it is not scale invariant. This implies that the
largest-valued features tend to dominate over other features. Another potential drawback arises when comparing two
unequal sized objects, such as two document vectors of different lengths. As a result, the most common measure of

similarity used in text mining is the Cosine measure or the Cosine of the angle between the two given documents:

a'a, 1 &
. Sim(a,a,)=— A A
> Y Y I Y

This is intuitively appealing: two texts of different sizes covering the same topics are similar in content when
the measure of angle between their vectors is small. The Cosine measure is not affected by the size of the documents
i.e. it is scale invariant. It merely considers the proportions of the words in the document (the normalized vectors).

Thus, documents are regarded as equal when they use similar proportion of words irrespective of their lengths. It

11
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should be noted that if the vectors x; and x; are normalized to the unit norm (|jx/[=||x;||=1), then the Euclidean
measures becomes scale invariant and is complementary to the dot product since (||x,--xj-||)2 = (x,-—xj)T(x,-—xj) = ||x,-H2 +
[xI* -2c0s(x;,x;) where (x,-x))" is the transpose of (x;-x;).

2
|

X, —X;

Strehl and Gosh (Strehl 2002) proposed a similarity measure Sim( X, xj) - e_H =% which is based on the

Euclidean distance and has been used in k-means clustering. A summary of most commonly used measures can be
found in (R. Xu and Wunsch 2005).

Several other similarity (and distance) measures have been proposed in the literature. A discussion about some
of the classical measures can also be found, for example, in (A. K. Jain, Murty, and Flynn 1999; Diday and Simon
1976; Ichino and Yaguchi 1994) among others. Similarity measures are central to most clustering algorithms. We
conclude this section with a brief note on the utilization of these measures. Given the large number of measures
available, the question naturally arises of the choice of the most appropriate one(s) for the purpose of document
clustering. We first consider the normalized and non-normalized measures. Van Rijsbergen (Van Rijsbergen 1979)
advised against the use of any measure that is not normalized by the length of the document vectors under
comparison. (Willett 1983) performed experiments on different measures to determine inter document similarity
using 4 similarity measures (inner product, Tanimoto coefficient, Cosine coefficient, and the overlap coefficient)
and five term weighting schemes. Experimental results confirmed the poor effectiveness of non-normalized
measures. Similarly, (Griffiths, Robinson, and Willett 1984) compared the Hamming distance and Dice coefficient
and found the former (which is not normalized) inferior to the later.

In most such comparison analysis, especially using the hierarchical clustering algorithm, the Cosine similarity
measure was reported to perform better. (Kirriemuir and Willett 1995) applied hierarchical clustering using Cosine,
Jaccard and normalized Euclidian distance measures to the output of database search. Their reported results also

suggest that the Cosine and Jaccard coefficient were found to be superior in their study.

2.3. Clustering Methods

The clustering problem has been addressed in many contexts and there exist a multitude of different clustering
algorithms for different settings (A. K. Jain et al. 1999; Berkhin 2006; Buhmann 2003; R. Xu and Wunsch 2005).
This reflects its broad appeal and usefulness as an important step in data analysis. As pointed out in Backer and Jain

(Backer and A. K. Jain 2009),

“In cluster analysis, a group of objects is split up into a number of more or less homogeneous subgroups on the
basis of an often subjectively chosen measure of similarity (i.e., chosen subjectively based on its ability to create
“interesting” clusters), such that the similarity between objects within a subgroup is larger than the similarity

between objects belonging to other subgroups” (Backer and A. K. Jain 2009).

However, the idea of what an ideal clustering result should look like varies between applications and might be
even different between users. Clustering algorithms may be divided into groups on several grounds, see for example

(A. K. Jain et al. 1999). A rough but widely used such division is to classify clustering algorithms as hierarchical

12
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algorithms that produce a hierarchy of clusters, and partitioning algorithms that give a flat partition of the set
(Everitt, Landau, and Leese 2001; A. K. Jain et al. 1999; R. Xu and Wunsch 2005; Berkhin 2006). Hierarchical
algorithms form new clusters using previously established ones while partitioning algorithms determine all clusters
at once. Clustering methods usually employ a similarity matrix. They do not care how this matrix is calculated, since
they perform the clustering process assuming that the matrix has been calculated in some way.

A vast amount of algorithms and their variants have been proposed in the literature. In this section, we review
some of the widely used hierarchical and partition algorithms and stress a common drawback of such algorithms
when applied high-dimensional data. A survey of all the algorithms is not the goal of this thesis and no such attempt
has been made. Several attempts have been made previously by different authors to provide a survey of various
popular clustering algorithms and wherever possible, we provide a reference for readers who wish to read more
details about these algorithms. Instead, we will provide a brief introduction to popularly used clustering algorithms
in this section to focus more on alternate approaches that have been proposed for high-dimensional data in the next

section.
2.3.1. Hierarchical Clustering

Hierarchical clustering methods result in tree-like classifications in which small clusters of objects (i.e. documents)
that are found to be strongly similar to each other are nested within larger clusters that contain less similar objects.
Hierarchical methods are divided into two broad categories, agglomerative and divisive (A. K. Jain et al. 1999). An
agglomerative hierarchical strategy proceeds through a series of (|X|-1) merges, for a collection of |X| documents,
and results in clustering building from the bottom to the top of the structure. In a divisive strategy, on the other hand,
a single initial clustering is subdivided into progressively smaller groups of documents (Van Rijsbergen 1979). A
hierarchical algorithm yields a dendrogram representing the nested grouping of patterns and similarity levels at
which groupings change. The dendrogram can be cut at different levels to achieve several clusterings as shown in

FIGURE 2.2.
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FIGURE 2.2 A dendrogram showing different clustering of 5 documents x;..xs
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We will concentrate here on the agglomerative approaches as they have been popularly used in clustering,

especially document clustering. Hierarchic agglomerative methods usually follow the following generic procedure

(Murtagh 1983):

1. Determine all inter-document similarities,

2. Form a new cluster from the two closest (most similar) objects or clusters,

3. Redefine the similarities between the new cluster and all other objects or clusters, leaving all other

similarities unchanged,

4. Repeat steps 2 and 3 until all objects are in one cluster.

The various agglomerative methods proposed usually differ on the way that they implement step 3 of the above

procedure. At each step ¢ of the clustering process, the size of the similarity matrix S (which initially is X by X)

becomes (X-7) by (X-7). The matrix S’ of step ¢ of the process is derived from the matrix $”' by deleting the two rows

and columns that correspond to the newly merged documents (or clusters), and by adding a new row and column

that contain the new similarities between the newly formed cluster and all unaffected (from step ¢ of the process)

documents or clusters.

Table 2-1 Summary of various linkage algorithms

Linkage Method Comments Reference
Single Combine clusters with closest | - Easy to implement (Cormack 1971)
distance between any members | -Susceptible to outliers
- might form loose clusters
Complete | Combine clusters with the | - Sensitive to outliers (Lance and
smaller  farthest  distance. | - Good when there are tightly bound, small | Williams 1967)
Sometimes  called farthest | clusters
neighbor or maximum | - May suffer from space dilution when the size
algorithm. of clusters grow. Not suitable for elongated
clusters.
Average Combines clusters based on - Sensitive to outliers with might affect the | (Murtagh 1983)
their average distance measure | average
between all pairs of objects - When a large cluster is merged with a small
one, the properties of the smaller one are
usually lost
- Could be both weighted or un-weighted
Centroid Similar to Average but builds a | - Same as with Average linkage (Murtagh 1983)
prototype (centroid) to | - Need to re-calculate cluster centroid at each
represent each cluster. iteration.
Ward’s Combine clusters that result in | - Considers overall cluster objects before | (Ward Jr 1963)

minimum sum of

distances

squared

merging
- May form spherical clusters, thus making it
non-suitable for highly skewed clusters

Several linkages are used to combine clusters at each iteration, such as the single linkage, complete linkage,

Ward’s linkage, etc. The methods have been summarized in Table 2-1 while a graphical interpretation of some of
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the linkage methods appear in Figure 2.3. In the single linkage algorithm (Figure 2.3a), a new cluster is formed in
step by merging two clusters that have the closest distance from any member of the first cluster to any member of
the second cluster. In the complete linkage clustering algorithm (Figure 2.3b), two clusters are merged by
considering the farthest distance from any member of the first cluster to any member of the second cluster. The
average linkage merge clusters with the lowest average distance between elements of the clusters (Figure 2.3c),
while the Centroid linkage first builds a “representative” or “centroid” (for example by taking the mean or the

median) element for each cluster and then merges clusters whose centroids are nearest (Figure 2.3d).

Single Linkage Complete Linkage
L .
.
* _'_. -I-.
. : ]
L .
L ] . - .
* -1 £ —_—
L . 2} .
(a) (b)
Average Linkage Centroid Linkage
# . . <
L2 1 & —_—
* L ]
(c) ()

Figure 2.3 Various Linkage algorithms

The Ward’s (Ward Jr 1963) linkage merges two clusters so as to minimize an objective function that reflects the
investigator's interest in the particular problem. Ward illustrated this method with an error sum of squares objective
function, and Wishart (Wishart 1969) showed how Ward’s method can be implemented through updating a matrix of

squared Euclidean distances between cluster centroids. Lance and Williams (Lance and Williams 1967) proposed a
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special recurrence formula that is used in the computation of many agglomerative hierarchical clustering algorithms.
Their formula (see Appendix I for details) provides updating rules by expressing a linkage metric between the union
of the two clusters and the third cluster in terms of underlying components. Thus, manipulation using similarity (or
distance) measures become computationally feasible. In fact, under certain conditions such as reducibility condition
(Olson 1995) linkage based algorithms have a complexity of O(m?). A survey of linkage metrics can be found in

(Murtagh 1983; Day and Edelsbrunner 1984).
Other Hierarchical Algorithms

Several other hierarchical clustering algorithms have been proposed in the literature. For example, the

agglomerative hierarchical clustering algorithm CURE (Clustering Using Representatives) was proposed by Guha et
al. (Guha, Rastogi, and Shim 2001). Instead of using a single centroid to represent a cluster like in the linkage based-
approaches presented above, CURE chooses a constant number of cluster points to represent each cluster. The
similarity is then based on the closest pair of representing points between the two clusters. As a result, CURE is able
to find clusters of arbitrary shapes and sizes since each cluster is represented via multiple points and does not suffer
from the issues mentioned in the earlier linkage methods. The choice of these “representative” points however is
usually not trivial.
Another similar algorithm is CHAMELEON (Karypis, E. H Han, and V. Kumar 1999) which tries to find clusters in
the data using a two-phase approach. First, it generates a k nearest neighbors (k-NN) graph (containing links
between a point and its &-NN) and uses a graph-partitioning algorithm to cluster the data objects into a large number
of clusters. Similarly, BIRCH (Balanced Iterative Reducing Clustering using Hierarchies) is another approach
proposed by Zhang et al. (T. Zhang, Ramakrishnan, and Livny 1996) that builds a height-balanced data structure
called a CF-Tree while scanning the data. It is based on two parameters the Branching factor £ and the threshold 7
which refers to the maximum diameter of a cluster. At each stage when a new data object is found, the tree is
traversed by choosing the nearest node at each level and the object placed on a leaf node if it satisfies the threshold
condition. BIRCH has an advantage in that it can create a clustering tree with one scan (though subsequent scans are
usually needed to improve the result). However, since it is based on a threshold condition 7, it may not work well
when clusters are not spherical. Additionally, the clustering also depends on the order of the input and the same data
may result in different clustering on subsequent runs.

Some of the advantages of using hierarchical algorithms include the following

= provides a hierarchy of the clusters
= case of visualization and interpretation

= flexibility in the granularity of clusters (by using a cut through the dendrogram).

But at the same time, Hierarchical clustering also suffers from a few disadvantages, such as
= they are usually computationally expensive for large datasets
= most hierarchical algorithms cannot improve a previous assignment since they do not revisit a node after

assigning an object.
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2.3.2. Partition Based Clustering

In contrast to the hierarchical clustering algorithms, partitions based clustering methods starts by clustering the
whole dataset into & partitions. Once the data objects are initially partitioned into k-clusters, several heuristics are
then used to refine the clustering based on some objective function. Hence, unlike the hierarchical clustering
algorithms, partitioned based algorithms are relatively fast and objects that have been assigned to a partition are
revisit and may be re-assigned to iteratively improve the clustering.

Most partition based clustering algorithms starts with a definition of an objective function that is to be
iteratively optimized. Linkage metrics such as pair-wise similarity (or dissimilarity) measures provide such a natural
function that can be used to measure the intra- and inter-class similarities. Using an iterative approach to optimize
such a clustering would be computationally prohibitive, hence a “representative” or “prototype” of a cluster is
chosen instead. Therefore, instead of comparing each object against every other object, we only compare it against a
set of k prototype objects of each cluster. Perhaps the most widely used partition based algorithm is the k-means
using the squared error criterion (MacQueen 1966). The k-means algorithm tries to partition the objects in the
dataset into & subsets such that all points in a given subset are closest to a given center or prototype. It starts by
randomly selecting a set of & instances as “representatives” of clusters and assigning the rest of the objects based on
some distance criteria (such as sum of squared errors). A new centroid (such as the mean) is then recalculated for

each cluster to be used as k prototype points and the process is repeated until a termination criterion (usually a
threshold or number of iterations) is met. If we represent m; as the mean of each cluster )%i , then the sum of squared

error is given by

2.10) SSE :Zzua_/ —ml.H2

ick jex;

The k-means algorithm has its advantages in that it is simple to implement and fast. But it suffers from a
number of drawbacks, for example it is sensitive to outliers which can effect the mean value. The k-medoids method
is a variation of the ~-means where the cluster is represented by one of its points. This has a few advantages over the
k-means as mediods have an embedded resistance against outliers (hence are less affected). Various propositions
have been made to select suitable initial partitions and using different distance measures, see for example (Berkhin

2006). However, k-means based algorithm suffers from number drawbacks such as

1. There is no universal method to identify the number of partitions beforehand,
2 The iteratively optimal procedure of k-means does not guarantee convergences towards a global optimum,
3. The k-means algorithm remains sensitive to outliers, and

4. The clusters usually have a spherical shape.

A detailed description of some of these limitations and different variations proposed to improve the clustering
solution can be found in (R. Xu and Wunsch 2005). Similarly, recent work (Z. Zhang, J. Zhang, and H. Xue 2008;

Arthur and Vassilvitskii 2007) have also improved the k-means algorithm by proposing new methods to choose the
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initial seeds that have resulted in improvements in both clustering accuracy (section 4.2) and instability.

Different version of the k-medoids have been proposed such as Partitioning Around Medoids (PAM) by
(Kaufman and Rousseeuw 1990), in which the guiding principle is the effect on an objective function by combining
the relocation of points between clusters and re-nominating the points as potential medoids. This of course has an
effect on the cost of the algorithm since different options must be explored. Similarly, the CLARA (Clustering Large
Applications) algorithm (Kaufman and Rousseeuw 1990) and its enhancement to spatial databases, known as
CLARANS (Ng and J. Han 1994), are based on the idea of choosing multiple samples to represent a prototype and
each is subjected to PAM. The dataset is assigned to the best system of medoids based on the objective function
criteria. Other variants that allow to use splitting and merging resulting clusters based on the variance or SSE have
also been proposed. Several other enhancements to the k-medoids algorithm have been proposed in the literature. A

survey of such techniques can be found in (Berkhin 2006).
2.3.3. Other Clustering Methods

Density Based Techniques. This set of algorithms is based on the idea that an open set in the Euclidean space can
be divided into a set of its connected components (Berkhin 2006). They consider a similarity graph and try to find
partitions of highly connected sub-graphs. Their core idea is based on the notions of density, connectivity and
boundary. Ideally, they can find the number & of sub-graphs automatically and can find clusters of arbitrary shape
and size. Representative algorithms of this category include DBSCAN (Ester et al. 1996), OPTICS (Ankerst et al.
1999), etc. Their running time normally depends on a variety of factors but is usually in the magnitude of O(m?)
where m is the number of samples. A limitation of density based clustering algorithms is that they may not be able to
separate two dense sub-clusters in a larger cluster and their results are often difficult to interpret. An introduction to
density based methods can be found in (J. Han and Kamber 2006) and a survey of some of these methods can be

found in (Berkhin 2006; R. Xu and Wunsch 2005) under the heading Large scale datasets.

Graph Theory Based Techniques. These algorithms are based on the concepts and properties of graphs theory
where each object is represented as a node and similarity between objects is denoted by a weighted edge between
objects usually based upon a threshold value. Graph theoretic approaches consist of both hierarchical and partition
based approaches. Perhaps the best known partition based graph theoretic clustering algorithm is the Minimum
Spanning Tree (MST) (Zahn 1971). It works by constructing a MST on the data and then removing the largest
lengths to generate clusters. Hierarchical approaches such as Single Linkage and Complete linkage can also be
considered as Graph-based approaches. Clusters generated by using single linkage are sub-graphs of minimum
spanning tree of the data (Gower and G. J. S. Ross 1969) and are the connected components in the graph (Gotlieb
and S. Kumar 1968). Similarly, complete linkage generated clusters are maximal complete sub-graphs. Other graph
theoretic approaches for overlapping clusters have also been developed (Ozawa 1985). A brief survey of graph-
theoretical approaches is covered in (A. K. Jain et al. 1999), and a more detailed survey can be found in (R. Xu and

Wunsch 2005).
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Probability Estimation Based Techniques. This class of algorithms considers the data to be in R” as a sample
independently drawn from a mixture of models of several probability distributions of k¥ m-dimensional density
functions 93, .., ; with different parameters. Each sample is then considered to have been derived form a weighted
combination of these mixture models with weights wy,...w; and Zw,_; ;=1. The objective of the algorithm in this
category is thus to estimate the set of parameters for each density function J;, because each cluster is thought to be
generated by such a function. The probability that a sample was generated by such a function is then computed
based on density estimates and the number of data points associated with such a cluster. A representative algorithm
of this category is the Expectation-Maximization (EM) methods. A survey of methods in this category can be found
in (R. Xu and Wunsch 2005; A. K. Jain et al. 1999; Achlioptas and McSherry 2005).

Several other methods have been proposed in the clustering literature such as Grid based methods, Fuzzy
clustering methods, Evolutionary algorithms, Search based methods etc. An excellent survey of clustering data
mining techniques can be found in (A. K. Jain et al. 1999; Berkhin 2006; M. W Berry 2007; M. S Yang 1993). A
more recent survey of clustering algorithms and their applications can be found in (R. Xu and Wunsch 2005). In the
next subsection, we consider a limitation of these algorithms when applied to high-dimensional dataset known as the

curse of dimensionality.

2.3.4. Curse of Dimensionality

As datasets become larger and more varied, adaptations of existing algorithms are required to maintain the quality of
cluster as well as efficiency. However, high-dimensional data poses some problems for traditional clustering
algorithms. Berkhin (Berkhin 2006) identifies two major problems for traditional clustering algorithms — the
presence of irrelevant attributes and the curse of dimensionality.

The problem of irrelevant features is as follows: data groups (clusters) are typically characterized by a small
group of attributes. The other features are considered as irrelevant attributes since they do not necessarily help in the
clustering process. Moreover, such attributes could confuse clustering algorithms by hiding the real clusters by
heavily influencing similarity measures. It is common in high dimensional data that any pair of instances share some
features and clustering algorithms tend to get lost since “searching for clusters where there are no clusters is a
hopeless enterprise” (Berkhin 2006). While irrelevant features may also occur in low dimensional data, their
likelihood and strength increases substantially with increase in dimensionality.

The curse of dimensionality is a well known problem in high dimension data. Originally coined by Bellman
(Bellman 1961), the term is used to refer to the exponential growth of hyper-volume with a linear increase in
dimensionality. There are two phenomenons

1. the density of points decrease exponentially with the increase in dimensions, and

2. the distance between two given points, chosen randomly, tends to be increasingly similar
Mathematically, the concept of nearness increasingly becomes “meaningless” (Beyer et al. 1999). In particular, for a
given object, the distance between the farthest and nearest data point tends to decrease with increase in

dimensionality (Beyer et al. 1999). Traditional distance measures such as Euclidean or Cosine do not always make
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much sense in this case. This is further illustrated in FIGURE 2.4 below. The dataset consists of 20 points randomly
placed between 0 and 2 in each of three dimensions. FIGURE 2.4 (a) shows the data projected onto one axis. The
points are close together with about half of them in a one unit sized bin. By adding additional dimension, the data
points are further pulled apart (FIGURE 2.4(b) and (c)). According to Berkhin (Berkhin 2006), this effect tends to
influence similarity for dimensions greater than 15. In the case of document clustering, the curse of dimensionality
can be explained by considering two documents x; and x,. Clearly, even if documents x; and x, do not belong to the
same topic, they will typically share some common words. The probability of finding more such random words will

increase with the increase in dimensionality of the given corpus.

Dimension b

Dimension c

15 oo oE 1.0
Dimension a
(b) 6 Objects in One Unit Bin

20

1B

Dimension a

(a) 11 Objects in One Unit Bin (c) 4 Objects in One Unit Bin

FIGURE 2.4 The curse of dimensionality. Data in only one dimension is relatively tightly packed. Adding a
dimension stretches the points across that dimension, pushing them further apart. Additional dimensions spread the
data even further making high dimensional data extremely sparse (Parsons, Haque, and H. Liu 2004)

Several pre-processing steps (some of which will be discussed in section 4.4) are a way of reducing dimensions
but they act on a global scale i.e. reduce the global feature set. As a result two broad-based approaches have been
proposed in the literature to deal with problems with high dimensionality. The first one tries to capture the semantic
relationship in the feature space hence providing the clustering algorithm with more information about the feature
relationships. Typically feature transformation techniques such as a low rank approximation using Singular Valued
Decomposition (SVD) (section 2.4.1) are used to transform the high dimensional data onto a lower dimensional
space. The second approach, known as biclustering or co-clustering, divides the feature space into / clusters and
tries to find clusters in the sub-spaces. It involves the simultaneous clustering of rows and columns and exploiting
the duality between the two. Moreover, it provides us with a clustering of the features in addition to the instances.
Various approaches based on matrix decomposition, information theory, etc have been proposed in the literature. In
the next section we explore some techniques adapted to clustering high dimensional data while various co-clustering

algorithms are explored in section 2.5 below.
2.4. Using Information about Word Semantics

To overcome the issue of high dimensionality, various approaches have been suggested that take into account the
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semantic relationship occurring within the dataset in order to better perform the clustering task. We will refer to
these algorithms as semantic based or structure based algorithms. In this section, we examine some of the popular

semantic based algorithms proposed in the literature, particularly for text analysis.

2.41. Latent Semantic Analysis

Latent Semantic Analysis (LSA) is a well known technique that has been applied to a wide variety of learning tasks
such as Information Retrieval (Deerwester et al. 1990), document classification (Chakraborti et al. 2006;
Chakraborti, Mukras, et al. 2007; Zelikovitz and Hirsh 2001), and filtering (Dumais 1994). The principle behind
Latent Semantic Analysis (LSA) is to determine the significance of words and their similarities in a large document
corpus. Such significance depends on the occurrences of the words and the context of their occurrences based on the

hypothesis that words that occur in similar contexts are similar in nature.

Mathematical Principle Latent Semantic Analysis was proposed by (Deerwester et al. 1990) as a least square
projection method based on the mathematical technique termed as Singular Value Decomposition (SVD). The
principle of LSA can be explained by taking the following example (D. I. Martin and M.W. Berry 2007) as shown in
Table 2-2 below. The documents C1-C5 are Human-Computer interaction related and the documents M1-M4 are

related to graphs. The keywords used in the example are in italics.

Table 2-2 Titles for Topics on Music and Baking

Label Titles

Cl Human machine interface for Lab ABC computer
applications

C2 A survey of user opinion of computer system response time

C3 The EPS user interface management system

C4 System and human system engineering testing of EPS

C5 Relation of user-perceived response time to error
measurement

M1 The generation of random, binary, unordered frees

M2 The intersection graph of paths in trees

M3 Graph minors IV: Widths of trees and well-quasi-ordering

M4 Graph minors: A survey

The LSA based technique takes as input data corpus a document by word matrix A, whose rows represents
keywords and whose columns represent the labels/topics. Each elements A;; represent the number of occurrence of
the keyword i in the topic j. This is shown in Table 2-3. However, using raw frequency may not yield the best results
and a transformation of the data is needed (Landauer et al. 2007). Various such schemes have been used such as a

sub-linear transformation given by log (freq;+1) followed by IDF or a simple TF-IDF weighting as described
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previously. Such transformations are needed to take into account the distribution of a word in the given corpus. For
example, a word which occurs 25 times in a corpus of, say, 100 documents could be evenly distributed in 25

documents or occur multiple times in fewer documents.

A U by VT

(mxn) (mxp) (pxn)

FIGURE 2.5 Diagram for the truncated SVD

The next and most essential step of using LSA is the reduced-rank singular valued decomposition, performed on
the transformed matrix, in which the r largest singular values are retained and the remainder set to zero.

Mathematically speaking, the matrix A is decomposed as a multiplication of 3 matrices given by
2.11) A=UYV"

where U and V are the left and right orthogonal matrices and X is the singular values matrix. The original matrix A
is an m by n matrix. The matrix U corresponds to the rows by dimension matrix and the matrix V to the dimension

by columns of the original matrix A. The diagram for the truncated matrix A, is shown in FIGURE 2.5. A
“compression” of information A, (A, =U_ X VTr ), is obtained by selecting the top r singular values in the

matrix X by setting the smallest singular values from (#+1...p) to zero. The resulting matrix A, is the best (minimum
distance) rank » approximation to the original matrix A. The first 7 columns of U and V are orthogonal but the rows
of U and V are not orthogonal.

For our example of Table 2-3 and using =2 which corresponds to keeping the highest 2 singular values of
and only the first 2 columns of U and V, the resulting term similarity matrix is shown in Table 2-5 (the term-term
similarity matrix corresponds to U,Z, (U,Z‘,,)T ). As can be seen from Table 2-5, the terms ‘user’ and ‘human’ now
have a (relatively) strong similarity value of 0.94 even though the two terms never occur together in any document.
On the other hand, the terms ‘trees’ and ‘computer’ have a similarity value of 0.15, which albeit being (relatively)

small is still non-zero.
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Table 2-3 Term by document matrix (Kontostathis and Pottenger 2006)
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Table 2-4 Deerwester Term-to-Term Matrix, truncated to 2 dimensions (Kontostathis and Pottenger 2006)

t1 t2 t3 td t5 th t7 t8 t9 t10 t11 t12

human (t1) x 0.54 056 094 1.69 058 0.58 0.84 032 -032 -034 -025
interface (t2) 0.54 x 052 087 1.50  0.55 0.55 0.73 035 -020 -0.19 -0.14
computer (t3) 0.56 0.52 x 1.09 1.67 075 075 ST 063 0.15 0.27 0.20
user (t4) 0.94 0.87 1.00 X 279 125 125 1.28 1.04 0.23 0.42 0.31
system (t5) 1.69 50 1.67 279 x L81 1.81 230 120 -047 -0.39 -0D.28
response (t6) 0.58 0.55 075 125 1.81 x 089 0.80 0.82 0.38 0.56 0.41
time (t7) 0.58 0.55 075 125 1.81 0.89 X 0.80 0.82 0.38 0.56 0.41
EPS (t8) 0.84 073 0.77 128 230 080 080 x 046 -041 -043 -0.31
survey (t9)  0.32 035 063 104 120 0.82 0.82 0.46 be 0.88 117 0.85
trees (t10)  -0.32 -0.20 015 023 -047 038 038 -041 088 X 1.96 1.43
graph (t11) -0.34 -0.19 027 042 -039 0.5 056 -043 117 1.96 X 1.81
minors (t12) -0.25 -0.14 020 031 -028 041 041 -031 085 1.43 1.81 X

Table 2-5 Term-to-Term Matrix on a modified input matrix, truncated to 2 dimensions
(Kontostathis and Pottenger 2006)

t1 t2 t3 td th t6 t7 t8 t9 t10 t11 t12

human (t1) x 050 060 101 1.62 066 066 076 045 - - -
interface (£2) 0.50 x 053 090 145 059 059 068 040 - - -
computer (t3) 0.60 0.53 x 108 174 071 071 081 048 - - -
user (t4) 1.01 090 1.08 x 292 119 1.19 137 0.1 - - -
system (t5) 1.62 145 1.74 292 x 191 191 220 1.30 - - -
response (t6) 066 059 071 119 1.91 x 078 090 0.53 - - -
time (t7) 066 059 071 1.19 191 078 x 090 0.53 - - -
EPS (t8) 0.7 0.68 081 1.37 220 090 0.90 x 061 - - -
survey (t9) 045 040 048 081 1.30 053 053 061 X - - -
trees (t10) - — - - - - - - - x 237 1.65
graph (t11) - — - - - - - - - 237 x 101
minors (t12) - — - - - - - - - 165 1.91 b

23



Chapter 2 Related Work

The purpose of reducing the dimension is to capture the semantic relationships in the data. Words that have
similar meanings are near each other and documents that are similar in meaning are near each other in the reduced r
dimensional space (Homayouni et al. 2005). Konstosthatis and Pottenger (Kontostathis and Pottenger 2006) provide
a more concise framework for understanding the working of LSA and show a clear relationship between the
similarity values of term pairs and the average number and length of paths between them in their corresponding bi-
partite graph. For example, the words user and human as seen above do not directly co-occur in any document,
however the term user occurs with the term interface which also co-occurs with the term human. The term interface
is thus a transitive relation between the terms user and hAuman and represents an example of a second-order co-
occurrence.

It can be mathematically proven (as done in (Kontostathis and Pottenger 2006)) that the LSA algorithm
encapsulates the term co-occurrence information. More precisely, they show that for every non-zero element in the
resulting low rank approximation matrix, there exists a connectivity path in the original matrix. In other words, a
word or group of words not connected to other words would result in a zero similarity value in the term-term
similarity matrix. Taking back the example of Table 2-2, it is evident that the topics can be divided into two subsets
C1-C5 and M1-M4. Note that only the word ‘survey’ provides a transition between these two sub-sets, and by
removing it (setting the corresponding value to 0) the two subsets becomes disjoint. The corresponding term-term
matrix generated by removing the word survey is given in Table 2-5. Since there is now no transitive word between
‘user’ and ‘human’, the corresponding value is zero.

The above phenomenon is very important in the task of document clustering and information retrieval. It can be
argued that the terms user and human can be used interchangeably to specify someone who utilizes, say a software
system. Using a word matching measure (such as Cosine, Euclidean, etc) on the document vectors, the similarity
between the words and the corresponding documents containing these terms would be zero. Using a low rank
approximation on the other hand, can generate non-zero similarities if the two terms co-occur with other terms
which in turn would generate a similarity value between the documents containing these two terms.

A limitation of the LSA, however, is that the results can not be easily interpreted. While a non-zero value in a
low rank matrix indicate transitivity, it is difficult to interpret the value obtained. For example, it is not clear how the
value of 0.94 was obtained between the terms user and human. Moreover, the approximated low-rank matrix may
also contain negative values whose interpretation is also non-trivial. As will be seen in the next chapter, we will use
the concept of transitivity and higher-order co-occurrences to define a new algorithm that explicitly takes the
(weighted) higher order paths between words and documents and has a clear interpretation of the results.

The choice of dimensions 7 plays a critical role in the performance of LSA and the best choice of rank remains
an open question. Several authors (D. I. Martin and M.W. Berry 2007; Lizza and Sartoretto 2001; Jessup and J. H.
Martin 2001) have performed empirical evaluation on large datasets and suggest a range of between 100 and 300 for
the number of dimensions to keep. Keeping only a small number of dimensions fail to exploit the latent relationship
present in the data and keeping too many dimensions amounts to word matching. In practice, the optimal value of
depends on the corpus and the value is usually empirically determined. (Landauer et al. 2007) found the optimal

number to be 90 for the task of information retrieval on a collection of medical texts but showed a fairly large

24



Chapter 2 Related Work

plateau for the value of 7. Schiitze and Silverstein (Schiitze and Silverstein 1997) observed that accurate

performance for the document clustering task was achieved using only a small number of dimensions (20-100).
2.4.2. Other Approaches

Several other alternate clustering approaches particularly for document clustering like document clustering

using random walk, clustering by friends, higher-order co-occurrences, etc have been proposed.

Clustering by Friends Dubnov et al (Dubnov et al. 2002) proposed a technique labeled “clustering by friends,

which uses a pair-wise similarity matrix to extract the two most prominent clusters in the data. The algorithm is non-
parametric and iteratively employs a two-step transformation of the proximity matrix.

= Normalization Step: Given a proximity matrix SO let s=(S;1,Si,...,Sim) denote the similarity between

a document i and all other documents. The vector s; is normalized by dividing each of its components

by ||si/|. The resulting transformed matrix is denoted by S’ .

*  Re-estimation step: A new proximity matrix is calculated from the normalized proximity matrix S’

denoted by S’ for +=1,2,...

Thus, documents are represented by their proximity to other documents. In this representation, documents that
are close together (belong to the same cluster) have common “friends” or “non-friends”. At each iteration,
documents with similar friends are brought closer together and after a few iterations a two-value matrix is observed
that corresponds to the two principal clusters. The process may be repeated for finding more clusters. Dubnov et al.
used the L, normalization and KL-divergence for the re-estimation step but other similarity values and
normalizations can be used. This method is intuitive since it looks at the neighborhood of a document to determine
its similarity with other documents. Thus, even if two documents do not share a common set of vocabulary, they
might still be clustered. The algorithm is also reasonably resistant to noise since a few odd documents will not
necessarily affect its most similar friends or non-friends. It must be noted that while the algorithm is advertized as
non-parametric, the output is a hierarchical tree and to obtain the actual clusters, the tree must be cut at some point.

Also the algorithm is limited to finding two clusters at a time.

Document Clustering Using Random Walk Giines Erkan (Erkan 2006) proposed a new document vector
representation where a document is represented as an m-dimensional vector, where m is the number of documents.
Instead of the usual frequency of occurrence like in the bag-of-words model, they define A as a proximity matrix
(hence n=m) in their technique whose entries represent a measure of the generation probability of document j from
the language model of document i. The concept is similar to building a proximity matrix and then iteratively
improving the similarity values. A new directed graph is now generated where the nodes are the documents and the
edges are the probabilities of generating one document based on the language model of the other document. The
algorithm then uses a restricted random walk to reinforce these generation probabilities and find “hidden patterns” in
this graph. These weighted links are incremented by calculating probabilities of starting from d; and end up at d; in a

t-step walk. The value of ¢ is kept low since
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* an infinite size walk ending up at d; will be roughly the same irrespective of the starting point.
= the aim is to discover local links “inside a cluster” that separates the cluster with the rest of the graph and
not a global semantic structure of the whole graph.

= the generation similarities lose their significance because they are multiplied at each step.
The clustering is performed using a k-means approach on the final proximity matrix.

Co-training of Data Maps and Feature Maps (CoFD) This algorithm proposed by (S. Zhu, T. Li, and Ogihara
2002) is based on the concept of representing data using two maps (clustering) — a sample map Cyx : X —{1,2,...k}
for the document set, and a feature map Cy :Y —{1,2,...k} for the feature set. The algorithm is based on the

Maximum Expectation Principle5 to measure the “concept” of each map and the resulting model.

The informal idea is to find the sample map Cx and feature map Cy from which the original data A was most
likely generated. Given the number of clusters k, we define Cx and Cy as clustering of the data and measure the
likelihood of its generation. If we consider the m by k& matrix, B, such that B;=1 if Cx(i/)=Cy(j) and 0 otherwise., then
we could measure the likelihood of generation of the data from the maps Cx and Cy by considering P(4,~b|B;
(Cx,Cy)=c) where P() represents the probability, and b and ¢ belong to {0,1}. This is interpreted as the ;™ feature
active in the /™ sample in the real data conditioned on the j™ feature being active in the i sample given by the model
Cx and Cy. The assumption here is that the conditional probability is only dependent on the values of b and c. One

can now estimate the likelihood of the model using

2.12) log L(Cy,Cy) = loggP(Aij | B;(Cy.Cy))

where log L is the log likelihood. Our goal here is to findarg max . . log L(Cy,Cy ). For this, the authors use

hill-climbing algorithm based on alternately estimating Cx and Cy. They use an approximate (and greedy) approach
to estimate Cy given Cy, for instance, by optimizing each feature Cy(j) (i.e. the cluster label of feature j) by
minimizing the conditional entropy H(4«| B+ (Cx,Cy)) where the “*’ in the subscript means over all rows. Cy(j) is
assigned to the class resulting in the minimum entropy. Optimizing Cx given Cy is similar. The outline of the

algorithm is as follows:

1. Randomly assign the data points to a sample map C()?) . Set =1 (¢ is the iteration)

2. Compute feature map Cg) from Cgéfl) to increase the likelihood

3. Compute sample map Cgé) from Cgfl)

4. r=t+1. Repeat steps 2 and 3 until no change.

The algorithm starts with an initial clustering then iteratively improves the clustering by fixing Cx and improves Cy

and vice versa. This algorithm can be compared to co-clustering algorithms (see 2.5) where A=/ and a mixture of

> Maximum Expectation Principle states that the best model is one which has the highest likelihood of generating the
data.
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models based algorithm is iteratively applied on the sample and feature set.

Several other works have also been proposed that takes advantage of the structural relationship in the data to
estimate similarity measures in high dimensional data, such as the shared nearest neighbor approach by (Jarvis and
Patrick 1973) and its extension (Ertoz, Steinbach, and V. Kumar 2002). Similarly, the point wise mutual information
(PMI) based Second-Order Co-occurrence PMI (SOC-PMI) proposed by (Islam and Inkpen 2006) exploits words
that co-occur with other words. The SOC-PMI method maintains a sorted list of the closest neighbors of a given
word using PMI. It should be noted that while these methods have been proposed to compute the proximity between
words, they can also be used to calculate the proximity between documents. In the next section, we will see a further
development of the concept of mutual information that performs a simultaneous clustering of both the documents
and words by maximization of mutual information.

A common theme in these alternative approaches to clustering high dimensional data is that they try to
implicitly find relationship between (the features) in the data. As pointed out in (Hastie et al. 2005), all methods that
overcome the dimensionality problems have an adaptive metric for measuring neighborhoods. Using this additional
information helps to reduce the adverse effect of the curse of dimensionality. This idea will also form the basis of
our novel co-similarity based co-clustering technique that forms the basis of this thesis (Chapter 3). For the moment,
however, we proceed to discuss a different approach to dealing with high dimensional data which is to
simultaneously cluster the feature set, thereby explicitly reducing the n-dimensional feature space and then find
clustering that are defined in the subspaces. This is known as biclustering or co-clustering which we discuss in the

next section.

2.5. Co-Clustering

As mentioned in Chapter 1, co-clustering or simultaneous clustering of rows and columns of two-dimensional data
matrices is a data mining technique with various applications such as text clustering and microarray analysis. Most
of the proposed co-clustering algorithms such as (Deodhar et al. 2007; Long, Z. M Zhang, and P. S Yu 2005;
Dhillon, Mallela, and Modha 2003), among many others, work on the data matrices with a special assumption of the
existence of a number of mutually exclusive row and column clusters. Several co-clustering algorithms have also
been proposed that view the problem of co-clustering as that of a bi-partite graph partitioning by finding sub-graphs
such that the weight of the edges between the sub-graphs are minimized (Abdullah and A. Hussain 2006; Long et al.
2006; Dhillon 2001; Madeira and Oliveira 2004).

Co-clustering can be applied in situations where a data matrix A is given in which its elements 4; represent the
relation between its rows i and its columns j, and we are looking for subsets of rows with certain coherence
properties in a subset of the columns. As opposed to independently clustering rows and columns of a given data
matrix, co-clustering is defined as the simultaneously partitioning of the rows and the columns such that a
partitioning (cluster) of the rows show some statistical relevance in a partition (cluster) of the columns. This is
shown in FIGURE 2.6.

In recent years, co-clustering has been successfully applied to a number of application domains such as:
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= Bioinformatics: co-cluster genes and conditions (Kluger et al. 2003; Cho et al. 2004; Y. Cheng and Church
2000; Madeira and Oliveira 2004; Barkow et al. 2006)

= Text Mining: co-cluster terms and documents (and categories) (Dhillon et al. 2003; Deodhar et al. 2007;
Long et al. 2005; B. Gao et al. 2005; Takamura and Matsumoto 2002; Dhillon 2001)

= Natural Language Processing: co-cluster terms & their contexts for Named Entity Recognition (Rohwer
and Freitag 2004)
= Image Analysis: co-cluster images and features (Qiu 2004; J. Guan, Qiu, and X. Y Xue 2005)

=  Video Content Analysis: co-cluster video segments & prototype images, co-cluster auditory scenes & key

audio effects for scene categorization (Zhong, Shi, and Visontai 2004; R. Cai, Lu, and L. H Cai 2005)

=  Miscellaneous: co-cluster advertisers and keywords (Carrasco et al. 2003)

In this thesis, we are more concerned with co-clustering for text mining and bioinformatics and will focus on

algorithms that have been proposed in these domains. We attempt to find connections among the several popular

algorithms and, as such, we have identified several major families of these algorithms which we explore in the

following sub-sections. It should be noted that soft co-clustering algorithms have also been proposed in the literature

(Shafiei and Milios 2006) but these algorithms are beyond the scope of this thesis and we limit ourselves to the hard

clustering problem.

kel

Ny

s

(=]

ety

W

2.5.1.

Co-clusterind

-~V

Matrix Decomposition Approaches

Document
clustering

/
\

Word
clustering

=

.
==

=
[ )

=
Fa

o

FIGURE 2.6 The Two-Way clustering and Co-clustering Frameworks

Given a matrix Ae R" ™", we are interested in finding an approximate matrix Z to A such that,
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@2.13) |a-zZ|

is minimized, where ||.|[r is the Frobenius Norm®. The interest is in finding a matrix Z that can usually be defined as
matrix decomposition or a low-rank approximation to the original matrix A. This decomposition of Z allows us to
“capture” the hidden block structure of the original matrix A. Depending on the approach used, several conditions

can be placed on the matrix Z. For instance, in the case of LSA, Z can be a low-rank approximation to the matrix A.

LSA as a Co-clustering Algorithm

As seen previously, the Latent Semantic Analysis is a remarkable matrix factorization approach based on SVD
typically used for dimensionality reduction. However, one may relate the SVD to a co-clustering task by considering
an idealized or perfect co-cluster matrix with a block diagonal structure. Define the matrix A = [A;, A, A/] (k is

,,,,,

the number of co-clusters) where each { A}, i=1..k are arbitrary matrices corresponding to the row cluster )Acl. and

column cluster ;. All other values in the matrix A are assumed to be zero as shown in FIGURE 2.7 below. It is

intuitive, based on our earlier discussion of transitivity, that each pair of singular vectors will quantify one bicluster
from the matrix A. For each {Ai}, there will be a singular vector pair (u,, v;) such that non-zero elements of u;
correspond to rows occupied by A, and non-zero components of v; correspond to columns occupied by A;. However,
such ideal or perfect biclusters are rare and in most practical cases, elements outside the diagonal block might be
non-zero. Even in such a case, if the block diagonal elements are dominant in the matrix A, “the SVD is able to
reveal the co-clusters too as dominating components in the singular vector pairs” (Busygin, Prokopyev, and

Pardalos 2008).

< (S— > A, 0 0
T -+ 0 A 0

T A = 2
l : X 0 0 A,

FIGURE 2.7 An ideal matrix with block diagonal co-clusters

To re-iterate the connection between LSA and co-clustering, we may look as the working of LSA from a

% The Frobenius Norm, also known as a Euclidean Norm, is defined as the square root of the sum of the square of the

. 2
elements of a matrix, ”A” =
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geometrical perspective. Consider the geometrical representation of documents in terms of their words as showing in
FIGURE 2.8 below. In a traditional (vector space model) representation (FIGURE 2.8 (a)), the words form a natural
axes of the space and two terms (such as Term 1 and Term 2) are orthogonal because there is no similarity between
them. Documents are represented as vectors in this terms space and the number and nature of words in a document
determine its length and direction respectively. As a result, if we compare two documents, say Doc 3 and Doc 4,
which do not share any common term, then the resulting similarity between them, will be zero.

FIGURE 2.8 (b) shows a geometric representation of documents and terms, the axes being derived from the
SVD. Both terms and documents are represented in this reduced r-dimensional space after reducing the rank of the
matrix. In this representation, the derived LSA axes are orthogonal. The Cosine value between Doc 3 and Doc 4 will
be non-zero. As can be seen, in the LSA representation, the geometrical analogy corresponds to both the words and
documents being represented in the same space and any clustering of either on the low-rank approximation matrix
are dependent on the other. Note that when Z = U,Y,V," , then Z represents the r-rank approximation of A such that
the value in equation (2.13) is minimized over all rank » matrices. Geometrically, this amounts to finding the “best-

fit” subspace for the points of A (Landauer et al. 2007).

>

Term 2
L]
1 Doc 2 % Doc 4 y g e
- » Doc 1 £ ‘," x ;Doc 2
Docd ~ - = I _Docl
“/ © Doc 3 = .---_-':___;_ﬁéc__g__,. Term 1
" szl ' . >
LSA Dimension 1

FIGURE 2.8 Comparison (a) of vector space, and (b) LSA representation (adapted from (Landauer et al. 2007))

Block Valued Decomposition

The Block Value Decomposition (BVD) proposed by (Long et al. 2005) can be considered as a general
framework for co-clustering. It is a partitioning-based co-clustering algorithm that seeks to find a triple
decomposition of a dyadic7 data matrix. The matrix is factorized into 3 components — the row coefficient matrix R,
the block value matrix B and the column coefficient matrix C. These coefficient matrices denote the degree to which

the rows and columns are associated with their clusters, whereas the block value is an explicit and compact

" A dyadic data refer to a domain of finite sets of objects in which the observations are made for dyads i.e., pairs
with one element in each set.
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representation of the hidden co-cluster structure in the original matrix, A.

We wish to partition the matrix A into k row clusters and / column clusters. This partitioning or compact k by /
representation of A is contained in the Block value matrix, B. For a document by word matrix A, each value
corresponding to a row in R gives the association of that document to each of k possible clusters of documents and

each column in C contains the degree of association of each word in A to each of the / possible partitioning of the

words. More formally, the block value decomposition of a data matrix AeR"*" is given by the minimization of

(2.14) f(R,B,C)=|A-RB(|’
where ReR"™*, CeR™", and Be R*/ and subject to the constraint that Vij: R;20 and C;>0. We seek to approximate
the original data matrix A by the reconstruction matrix, RBC.

The objective of the algorithm is to find the matrices R, B and C such that equation (2.14) is minimized. The
matrices R, B and C are randomly initialized and then iteratively updated to converge to a local optimum. The
authors in (Long et al. 2005) show that the following updating rules for these matrices are monotonically non-

increasing, thus ensuring that we converge on local minima,

(AC'B"),

2.15 R «R ——M —~
@19 Y Y (RBCCTBT)ij
(R'ACY),
(R'RBCC"),
B'R'A).
2.17) ( )y

C.«(C, ———
g g (BTRTRBC)U

As compared to the SVD approach, BVD has a more intuitive interpretation. Firstly, each row and column of
the data matrix can be seen as a additive combination of block values since BVD doesn’t allow negative values. The
product RB is a matrix containing the basis of the column space of A and the product BC contains the rows space of
A. Each column of the m-by-/ matrix RB captures the base topic of a word cluster and each row of the k-by-n matrix
BC captures the base topic of a particular document cluster.

As opposed to SVD, BVD is an explicit co-clustering approach characterized by the k-by-/ block structure
matrix B. The updating of R, B and C are intertwined and the strength of each row coefficient and column

coefficient association in R and C respectively depends on the other and the block structure.

Other Approaches

Several low-rank matrix approximation approaches such as the Independent Component Analysis (ICA) (Oja,

Hyvarinen, and Karhunen 2001; Comon and others 1994), Principle Component Analysis (PCA) (Ringnér 2008;
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Jolliffe 2002; Hotelling 1933), Random projection (Bingham 2003), etc have been proposed in the literature.
However, these cannot easily be labeled as co-clustering approaches and, hence, are not discussed further. Interested
readers can find a discussion on such methods in (Bingham 2003), for example. Here, we briefly examine the Non-
negative Matrix Factorization (NMF) proposed by (D. D Lee and Seung 1999) and used for document clustering by
(W. Xu, X. Liu, and Gong 2003).

The Non-negative Matrix Factorization algorithm proposed by (D. D Lee and Seung 1999) is a matrix
factorization technique. In the semantic space derived by the non-negative matrix factorization (NMF), each axis
captures the base topic of a particular document cluster, and each document is represented as an additive
combination of the base topics. The cluster membership of each document can be easily determined by finding the
base topic (the axis) with which the document has the largest projection value.

Mathematically, given a non-negative data matrix A, NMF tries to find an approximate matrix AxWH where W
and H have non-negative components. As compared to the SVD based decomposition, NMF has two basic
differences

1. The latent semantic space derived by NMF need not be orthogonal, and

2. Each document is guaranteed to take a non-negative value in each direction.

This can be interpreted as each axis in the derived space has a straightforward relation with a document cluster. The
NMF can be seen as a special case of BVD by considering the matrix decomposition as AxWIH, where I is the
identity matrix. Thus, NMF can be considered as a biclustering algorithm with the additional constraint that the
number of word clusters is the same as the number of document clusters and that each document cluster must be

associated with a word cluster.

2.5.2. Bipartite Graph Partitioning Approaches

The idea of using graph-theoretic techniques have been considered for clustering and many earlier hierarchical
agglomerative clustering algorithms (Strehl, Ghosh, and Mooney 2000; Duda et al. 2001) among others. The idea
behind graph partitioning approaches is to model the similarity between objects (e.g. documents) by a graph whose
vertices correspond to objects and weighted edges give the similarity between the objects. The objective is then to
find a cut in the graph such that similarities between vertices (as denoted by edges) are maximized within sub-
graphs and similarity between sub-graphs is minimized. In this sub-section, we briefly introduce some concepts
related to graph theory and linear algebra and use it to present some standard spectral clustering approaches

proposed in the literature.

Definition 1 Let G = {V,E} be a graph with a set of vertices V={1,2,... ,|V]} and set of edges E. The adjacency

matrix is defined as

E_, if thereis alink betweeni and j
(2.18) J:{ 4 /

0, otherwise
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where E; corresponds to some weighting scheme on the edge between i and j (section 2.1)

Definition 2 The degree of a vertex v; denoted by d; is given by

(2.19) d, =Y 4,
J

and the degree matrix of the graph is a diagonal matrix defined as

D,,:{df’ i=J

(2.20) '
0, otherwise

Note that the degree matrix D is a diagonal matrix with degree d; in the diagonal. For a subset S — V, we denote the
complement V\S as S.

Given a partitioning of the vertex set V into k subsets Vi, V5, ..., Vi, the most common objective functions
measure the quality of the partitioning is given by a measure of the cut, which we would like to minimize.

Mathematically speaking,

2.21) cat(V, Vo, V=Y, > A,
a<b i€V, jel, .
The problem with the above objective function is that in many cases, the clustering of the graph results in
separating just one vertex from the rest of the graph. Clearly, this is not a desired clustering since a cluster should be

reasonably large. As a result, two popular measures have been proposed in the literature

=  RatioCut (Hagen and Kahng 1992)
Hagen and Kahng proposed a simple extension of the cut function to take into account the number of

vertices

(2.22) RatioCut(V,,V,,....V,) =

= NormalizedCut (Shi and Malik 2000)
Shi and Malik proposed including the weights of the edges vol(¥) as a normalizing factor and hence,
cut(V,,
(2.23) NCut(V,,V,,....,V,) = Z where vol(V}) = de
i vol (V) =7
Note that both objective functions try to achieve clusters that are “balanced” since both will take small values if the
cluster V; is large. However, adding these conditions into the simple cut function results in a mincut problem that is

NP hard, see for example (D. Wagner and F. Wagner 1993). The spectral clustering algorithm described below is a

popular method used to solve this mincut problem by relaxing some of the conditions.
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Spectral Co-clustering

Spectral clustering has gained popularity over the years in different domains such as document clustering
((Dhillon 2001) , image processing (Shi and Malik 2000), bioinformatics (Kluger et al. 2003), etc. It is simple to
implement and can be solved using standard linear algebra based software. For a self-contained detailed tutorial on
spectral clustering including a brief introduction to graph theory, graph Laplacians and the interpretation of spectral
clustering, we refer the reader to (von Luxburg 2007). Similarly, a survey on various spectral clustering algorithms

can be found in (Filippone et al. 2008a).

Perhaps the most important tool in spectral clustering is the graph Laplacian matrix. Spectral approach to
clustering is strongly connected to Laplacian Eigen maps. As described in the previous section, the dimensionality
reduction problem aims to find a low dimensional representation of the original data on which clustering is
performed. Here we consider a popular spectral co-clustering method proposed by (Dhillon 2001) and describe its

relation to the SVD problem considered earlier.

Definition 3 The graph Laplacian L of a graph is a [V| by |V| symmetric matrix with one row and column for each

vertex such that

d. o
(2.24) L,.j:{_’A vi=J

j2

otherwise

The graph Laplacian matrix L has many important properties such as

= L is a symmetric and semi-definite positive matrix that has n eigenvalues 4, 4, ..., Ay
= The smallest Eigenvalue of L is 0 and the corresponding eigenvector is a constant one vector.
= Let G be an undirected graph with non-negative weights, the multiplicity £ of the 0 eigenvalue of L

equals the number of connected components A,,...,A;
=  The matrices L,D and A are related by the equation L=D-A

As described above, we are looking for partitioning of the set of vertices into & partitions, V=V,;uU V,U ...V,. For a
co-clustering of words and documents, the graph partitioning is shown in FIGURE 2.9 below. Let G={X,Y,E} be a
graph with two sets of vertices X and Y, and a set of graph edges E connecting vertices of X with vertices of Y.
Then the adjacency matrix of the bipartite graph can be expressed as

2.25 M= 0 A
(2.25) AT 0

Where the first m vertices are those of X and the last n are those of Y i.e. [V| = |X[+]Y].

Let a partition V=V UV, be defined as a vector p such that
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526 L iel
(2.26) b = 1, ieV,

Theorem 1 Given the Laplacian matrix L. of G and a partition vector p, the following condition holds (Dhillon

2001)

graph cuts

Cluster 1 Cluster 2 Cluster 3

FIGURE 2.9 The square and circular vertices (x and y respectively) denote the documents and words in the co-
clustering problem that is represented as a bi-partite graph. Partitioning of this graph leads to co-clustering of the
two data types. (Rege, Dong, and Fotouhi 2008)

T
L 1
227) PP _ — deun(V,,V,)
p'p |Vl
From the above theorem, it is clear that the cut is minimized by the trivial solutions when all p; are either +1 or -
1. As a result, a different objective function that favors balanced clusters has been proposed. Let each vertex be
associated with a weight w; and W denote a diagonal matrix of such weights, and let weight(V,) be the sum of

weights of vertices in the partition V,, then the Rayleigh Quotient is given by

cu(V,,V,) | cut(V, V)

2.28 n.v,)=
(2.28) .12) weight(V)) ~ weight(V,)

It can be shown (Dhillon 2001) that the generalized partition vector q equals the above objective function where the

generalized partition vector q with elements
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"
+ [, ieV,
Vi
(2.29) q. =
S R - v,
Vo

satisfies q' We=0 and q' Wq=weight(V) where e=[1,....,1]" is a constant vector.

Theorem 2. Using the definition in Eq. (2.29) above, it can be shown that

q'Lq _ cut(V,Vy) | cut(4,5)

(2.30) - ,
q Wq weight(V)) weight(V,)

Theorem 2 above is the generalization of theorem 1. We would like to find the global minima from equation (2.30)
above. This, however, is a NP-complete problem and hence we look to find a relaxation to the optimal generalized

partition vector.

Theorem 3. The problem

T
(2.31) min-4 Lq , subjectto q'We=0
q

q=0 qTW

is solved when q is the eigenvector corresponding to the 2™ smallest eigenvalue A, of the generalized eigenvalue

problem,
(2.32) Lz=AWz

The solution to the above problem can be obtained via the SVD. Note that for the bipartite case, the Laplacian and

Degree matrices are given by

D, -A D 0
(2.33) L= T ,and D =
-A" D, 0 D,

Where D; and D, are degree matrices corresponding to X and Y respectively. Then Lz=AWz can be written as

e ol

If we denote u = Di/zx and v = Dlz/zy , then

DZAD; "y =(1- A,
(2.35) ~1/2 A Ty-1/2
D "A'D u=(1-A)wv
2
which are the precise equations that define the singular value decomposition of the normalized matrix

A= DT/ZADIZ/Z. Note that the minimum cut problem can now be solved by finding the singular values since
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the singular vectors u, and v, of A, give a real approximation to the discrete optimization problem of minimizing
the normalized cut. The co-clustering is performed on the eigenvector pair corresponding to the second smallest
eigenvalues by using k-means. For a generalized case of k-modal information from s=[logyk] singular vectors

corresponding to Up,Us,...Ugy; and to vo,vs,... Ve, we can formulate an s-dimensional matrix Z given by

-1/2

(2.36) 7= {EI_MV} where U= (up,us,...Us1) and V=( v, V3,... V1)
2

Note that the rows of Z represent both the object and features of the original dataset A.

Spectral clustering has been widely used in the literature. Kluger et al. (Kluger et al. 2003) used spectral
clustering to find biclusters in gene expression data. They explore a variant where the dataset is normalized to have
constant row and column sum before normalization (known as Bistochatization or Binormalization). Shi and Malik
(Shi and Malik 2000) used spectral clustering for image segmentation. Zha and Ji (Zha and Ji 2002) used spectral
clustering to cluster documents from two languages where documents from each type formed vertices of the bi-
partite graph. Wu et al. used spectral clustering on stories and features extracted from video key frames that each
represent one type of vertices.

Given the popular use of spectral algorithms, it is important to mention the theoretical and intuitive meaning
behind the approach. At least two main explanations have been provided for the working of spectral approach (von
Luxburg 2007). We consider the random walk model here. Using a random walk model, spectral clustering has an
intuitive interpretation. Using the mincut objective function, a partitioning with a low cut denotes low probability of
jumping between different partitions. Thus, spectral clustering can be interpreted as trying to find a partition such

that random walks mostly stays long within the same partition and seldom jumps between partitions.
Other Approaches

Ding (Ding 2003) performed document-word co-clustering by extending the Hopfield networks to partition
bipartite graphs and show that the solution is the Principal Component Analysis. Rege et al (Rege et al. 2008)
proposed an isoperimetric graph partitioning algorithm for co-clustering known as the Isoperimetric Co-clustering
Algorithm (ICA). Instead of the spectral clustering approach which defines mincut and tries to find eigenvalues
based on SVD, the authors propose a methodology that heuristically minimizes the ratio of the perimeter of the
bipartite graph partition and the area of the partition. Their algorithm is based on a solution to a non-singular sparse
system of linear equations.

Bipartite graph partition based on crossing minimization has also been proposed in the literature (Abdullah and
A. Hussain 2006; Erten and Sozdinler 2009; Ahmad and Khokhar 2007). The basic approach behind these methods
is a fast but approximate biclustering by minimizing the number of edge crossings in a bi-partite graph model. To
achieve this, several crossing minimization heuristics such as the Barycenter approach proposed by
Sugiyama(Sugiyama, Tagawa, and Toda 1981), the Median Heuristic proposed by Eades and Wormald (Eades and
Wormald 1986), Genetic algorithms (Makinen and Sieranta 1994), simulated annealing (May and Szkatula 1988),

etc have been used in the literature.
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2.5.3. Information Theoretic Approaches

Information theory has been widely used in the area of machine learning. It has been used for clustering data in both
one sided methods (clustering) such as the Information Bottleneck method proposed by Tishby et al. (N. Tishby, F.
C Pereira, and Bialek 2000) and two sided (co-clustering) such as the Information Theoretic Co-clustering (ITCC)
framework used by Dhillon et al. (Dhillon et al. 2003).

We denote discrete random variables as before by capitals (X,Y,..) and their realizations (values taken by the
random variable) by lower case (x, y,...). The probability distribution function of X is denoted by p(x) = p(X=x), and
the conditional probability distribution as p(x]y) = p(X=x|Y=y). A brief summary of Information theory and different
concepts is given in Appendix II.

The Information Bottleneck (IB) method introduced by Tishby et al (N. Tishby et al. 2000) is an information
theoretic approach to clustering. While most of information theory has focused on the problem of transmitting
information rather than its meaning, the IB framework sees information theory, particularly source compression, as a
natural quantification approach to the meaning of the data. In the context of document clustering, a natural measure

of similarity of two documents is the similarity between their word conditional distributions. For every document we

can define
n X
237 p(y|x)=%
yeY

where n(ylx) is the number of occurrences of the word y in document x. We would like documents with similar
conditional word distributions to belong to the same cluster. This formulation of finding a cluster hierarchy of the
members of one set (e.g. documents), based on the similarity of their conditional distributions with respect to the
members of another set (e.g. words), was first introduced in (Fernando Pereira, Naftali Tishby, and Lillian Lee
1993) and called “distributional clustering”. IB formalizes the problem as that of finding a short code for X that

preserves the maximum information about Y. It squeezes the information that X provides about Y through a
bottleneck formed by a limited set of clusters, X . The intuitive idea behind this information theoretic approach is to

“find clusters of the members of the set X, denoted here aSX, such that the mutual information / (X, Y) is
maximized under a constraint extracted from X, / (X, X) ” (N. Slonim and N. Tishby 2000). Here the compactness

is determined by the mutual information between the random variable X and clusters X given by / (X;X) , while
the quality of the clustering is given by the fraction of the information captured about Y given
by I(X;Y)/ I(X;Y).

Co-clustering can be achieved by applying the IB algorithm to both the words and documents alternately. In this
regard, two such approaches have been proposed to extend the algorithm for two-way clustering. Slonim and Tishby

(N. Slonim and N. Tishby 2000) proposed a Double Clustering (DC) algorithm consisting of two steps: first cluster

the words using IB and then define a new conditional probability distribution using these word clusters instead of
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the individual words. Each word y is represented by its conditional word cluster over the set of documents, p(x|y).
From this, we can use distributional clustering algorithm to obtain the word clusters Y. As a second step for
document clustering, we use these word clusters to replace the original representation of documents i.e. instead of
using the conditional distribution of words, p(y|x) to represent a document we now use its conditional distribution

over the word clusters p(y|x) defined by

2 n(y|x)

NI -
e AR WIF R 3 WIE)

The algorithm generates a coarse feature set in the form of feature clusters and the corresponding conditional
distribution can help reduce the effect of noise and sparseness that might exist in the original dataset.

El-Yaniv and Souroujon (El-Yaniv and Souroujon 2001) extended the above DC algorithm to iterative over
word clusters and document clusters several time. Thus, words are grouped into word clusters and used as input to
define the conditional probability distribution when clustering for documents using the IB framework. The resulting
document clusters are in turn used as input to define the conditional probability when clustering for words and the
process is repeated several times. The resulting algorithm, called the Iterative Double Clustering (IDC) yields a
significant improvement of the accuracy (section 4.2) of the document clustering over the DC algorithm. However,
no convergence properties or theoretical explanation of the iterations have been proposed and the optimal number of

iterations is empirically determined.
Information Theoretic Co-clustering

The Information Theoretic Co-clustering (ITCC) algorithm, proposed by Dhillon et al. (Dhillon et al. 2003), is
similar to the IB framework but generalizes to simultaneously clustering the two dimensions. The algorithm treats
the non-negative contingency table as a joint probability distribution between two random variables X and Y that
take values over the rows and columns respectively. Given a contingency matrix, the ITCC algorithm tries to
minimize the information loss between the contingency matrix and its approximation given by the co-clustered
matrix.

More formally, given a contingency matrix, p(x,y), describing a joint probability distribution, and a target matrix
of size k x/ that is an optimal co-clustering, with an assignment of each row to one of the k row-clusters, and each

column to one of the / column-clusters, that minimizes the loss of information between the original matrix p(x,y) and

the clustered matrix p(X, y) = Z p(x,y) as follows:

xex,yeyp
(2.39) min /(X;Y) - 1(X;Y)
XY

This loss can be written in the form of a Kullback Leibler divergence between p(x,y) and ¢(X,y) where

q(x,y)=pE,P)p(x|X)p(y|P) givenby,
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(2.40) Dy, (p(X;Y) || 9(X,Y))

Thus, finding an optimal co-clustering is equivalent to finding a distribution ¢, which is close to p in terms of KL
divergence. ¢g has the same marginal distributions of p, and by working on g we can reach our goal. We illustrate this

relationship between p and ¢ with a small example. Let p(X,Y) be given as follows (Dhillon et al. 2003):

05 05 05 0 0 0
05 05 05 0 0 0
0 0 .05 .05 .05
0 0 .05 .05 .05
04 04 0 .04 04 .04
04 04 04 0 04 .04

(2.41) p(XiY) =
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The joint probability distribution p()% R f’ ) can be obtained when we consider the natural distribution of the rows

into 3 row clusters as X, = {x,, X, },X, = {x;,x,} and X, = {x;, X, } . Similarly, the columns form two clusters

as f/l = {yl sV y3} )A/z = {y4, Vss y6} . It can be verified using mutual information (equation(2.39)) that the loss in
information as a result of this clustering is only 0.957 and that any other clustering of p would result in a higher loss

in mutual information. Now using the definition of g above, we can easily verify that the corresponding

approximation ¢(X,Y) is defined as,

054 054 042 0 0 0 |
054 054 042 0 0 0
0 0 0 .042 .054 .054
0 0 0 .042 .054 .054
036 .036 0.28 .028 .036 .036
036 .036 .028 0.28 .036 .036

(2.42) q(X;Y) =

Interestingly, the Kullback Leibler divergence between p and g, Dk (p|lg) = 0.0957 is the same as the loss in mutual
information between p(X,Y) and p ()A(,?) .

In the context of co-clustering, it is more intuitive to write the probabilities as,
(243) p(x,y.%,9)=p(E 7)p(x,y| 2, 7)

(2.44) q(x,y,%,9)=p(x ) p(x| ) p(y| )

Comparing the distributions p and ¢ above, it can be shown (Dhillon et al. 2003) that the distribution ¢ tries to
approximate the conditional joint distribution p(x,y|X, ) as a product of p(x|X)and p(y| ), i.e. the co-

clustering tries to capture the joint distribution X and Y through the individual row and column cluster distributions.
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The following lemma (Dhillon et al. 2003) forms the basis of their co-clustering algorithm.

Lemma 1.
Given an assignment Cy and Cy of a row to a row cluster and a column to a column cluster, where Cx and Cy

are given by,

(2.45) Cy X, X,y X, f—{X, X550 X, )

(2.46) Cy Ve Vb =00 Vs I}
The loss in mutual information can be expressed as

(a) a weighted sum of the relative entropies between rows distribution p(Yl|x) and “row-lumped” distributions

q(Y|%),

e4) Do (PXYXD|eXYXD) =Y ¥ pDg (p(Y[0lg(Y )

X xCx(x)=x%

(b) a weighted sum of the relative entropies between rows distribution p(X|y) and “column-lumped” distributions

q(X17).

@49 D (PRYXNeXYIXN)=Y ¥ p1IDu (PXI»]a(X] )

yooyG )=y

Using Lemma 1, the co-clustering can be found by assigning a row x to the new row-cluster C>(<H1) (x) and

assigning column y to a new column-cluster Cg +) ( y) as follows:

(2.49) C%(x) = argmin D(p(Y[x)[ ¢ (Y| %))

(2.50) Cy(y) = argminD(p(X|y)[q""(X]5))
y

The co-clustering algorithm in (Dhillon et al. 2003) works by assigning each row and each column to the cluster

that minimizes the KL distance for rows and columns assignments. The algorithm starts with some (usually random)
o . 0 0 . . . .
initial co-clustering (C)(( ), CS{ )) and some ¢'” and then iterates these assignments, monotonically decreasing the

value of the objective function. It stops when the change in the objective is smaller than a given threshold.
Unfortunately, the algorithm only finds a local minimum, which is influenced by the starting condition. Also, it may
happen that one of the row (or column) cluster becomes empty, at some iteration of the algorithm. In this case, the
algorithm is not able to fill it up anymore, and the cluster is lost: the result will have (k — 1) clusters.

As opposed to the DC (N. Slonim and N. Tishby 2000) and IDC clustering algorithms (El-Yaniv and Souroujon
2001) discussed in the previous sub-section, the ITCC algorithm combines the clustering by intertwining word and

document clusterings at all stages and continuously improves both until a local minimum is found. This represents a
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true co-clustering approach as opposed to a two-way clustering approach of first finding word clusters followed by
document clusters. The ITCC algorithm, however, is prone to getting stuck in a local minima and the end co-
clustering result is dependent on the initialization step. As a result, successive runs of the algorithm can yield

significantly varying results.
Other Information Theory Based Approaches

A more generalized co-clustering framework is presented in (Banerjee et al. 2004) wherein any Bregman
divergences can be used in the objective function, and various conditional expectation based constraints can be
incorporated into the framework. The Bregman co-clustering algorithm (Banerjee et al. 2004) associates a co-
clustering task with a matrix approximation task whose quality is evaluated by the approximation error.

Bekkerman et al. (Bekkerman, El-Yaniv, and McCallum 2005) proposes an extension of the ITCC algorithm
(Dhillon et al. 2003) that simultaneously clusters variables of several types (e.g. documents, words and authors)
based on pair-wise interactions between the multiple data matrices. The goal of the algorithm is to aim at

maximizing an objective function that measures multiple pair-wise mutual information between cluster variables.

We generalize the notation used previously such that X = {X,|i =1,2,...,u} be the variables to be clustered and

5( = {Xi|i =1,2,...,u} be their respective clustering, where u is the number of interactions (for co-clustering,
u=2). Let G = (V,E) be an undirected graph with the vertices V represent the clustering and an edge E;; appears in E
if we are interested in maximizing the mutual information between the two clustering. The objective function is then
given by

(2.51) max Z I(Xi;Xj)

B

The actual clustering algorithm is a mixture among different clustering directions, constructed to locally
optimize the objective function. It blends agglomerative procedures for some variables and fop-down for others.
Both the routines are based on greedy approaches with end corrective measures, much in the same way as used in
the sequential Information Bottleneck (sIB) algorithm (N. Slonim, N. Friedman, and N. Tishby 2002).

Liu and Shah (J. Liu and Shah 2007) have used an information theoretic algorithm for scene modeling to detect
intermediate semantic concepts, using a Maximization of Mutual Information (MMI) approach. Information
theoretic approaches have also been used in other works closely relating to co-clustering such as Self Taught
Clustering by Dai et al. (Dai et al. 2008) who uses auxiliary data to co-cluster the target data. The idea behind using
this concept is that when the target dataset is small, they are not sufficient to allow effective learning of a high
quality feature representation and using auxiliary unlabelled data can increase the clustering results when the target
and auxiliary data are simultaneously clustered. Similarly, co-clustering based on information theory has also been
proposed, by the same authors (Dai et al. 2007), for the classification of out-of-domain documents as a supervised
approach.

Long et al. (Long et al. 2006) have proposed k-partite graph learning, which is an extension of a binary
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clustering into graphs that can be partitioned into k sets. The algorithm is based on Relational Summary Network
(RSN), which can be seen as a principled generalized framework for learning on a k-partite graph to find hidden
structures. The proposed algorithm tries to identify the hidden structure of a k-partite graph by constructing a
relation summary network to approximate the original k-partite graph under a broad range of distortion measures.
Similar to the Bregman co-clustering algorithm, it uses Bregman divergences to iteratively find a local optimal RSN
which tried to retain the many-to-many relationships across the datasets at the levels of clusters. The many-to-many
relationships between the clusters summarize the many-to-many relations between the data samples assigned to

them and this is captured by the edge weights between the cluster vertices in the cluster graph.
2.5.4. Matrix Density Based Methods

This group of algorithms tries to find patterns in matrices that satisfy some objective function such as the mean
square residue in the sub-matrix. The idea is that meaningful co-clusters will have homogenous data and hence the
residue (or any other function) would be minimized within the sub-matrix. First, we introduce some basic concepts

used in most algorithms of this category. Given an element 4; in the matrix A, we define the following

1
1. The row average [ corresponding to row 7 in the bicluster is given by Wy =74 Z A7.j ,
y jey
. iy . . 1
2. The column average [l i corresponding to column j in the bicluster is given by L ¥ = TA z Aij ,
. X| ick

3. The biclustering average [ corresponding to row cluster X and column cluster  is given

1
byly =1 z A[j'

Xy iex,jey

Direct Clustering of a Data Matrix

The seminal work on co-clustering was based on a density based technique proposed by Hartigan (Hartigan
1972) which he referred to as block clustering. The block clustering algorithm is based on statistical analysis of the
sub-matrices that form the biclusters. The block clustering algorithm splits the original data matrix into a set of sub-

matrices whose quality is assessed by the measure of variance given by

2

(2.52) VAR(Z,§)= Y| ‘A;, — Uy
iek,jep

Hartigan defined the “best” bicluster to have zero variance. According to this criterion, the best bicluster will

always consist of a single element or have constant values. To overcome this, a minimum number of elements per

cluster are fixed and the algorithm tries to find a pre-determined number & of biclusters in the data. Perfect biclusters

are rare in the real world, but biclusters with lower variance are considered to be better biclusters than those with

higher variance. The quality of the computed biclusters is computed using the overall variance of all the & clusters
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2

(2.53) VAR()A(,?)=Z > ‘Aj_ﬂi,j},

r=l.k i€x,,jep,

The block clustering algorithm is capable of finding constant biclusters. Hartigan also mentions that other

objective functions maybe used to find difference kind of biclusters with other desirable properties.

Cheng and Church Algorithm

Cheng and Church (C&C) (Y. Cheng and Church 2000) were the first to use biclustering for gene expression

data. Cheng and Church’s algorithm is based on the concept of mean residue score, denoted here by H as a measure
of coherence of the rows and columns in the bicluster. A §-bicluster is defined as H(X,,),) <O for a given

bicluster i and some 6>0. Thus, the Cheng and Church’s algorithm aims to find &-biclusters whose mean residue

score is greater than a predefined value, 8. The measure H is given by the following

2
(Aij My T Hy T ;Ufcy)

X

(2.54) HE D)= ),

iex,jey

A

y

The measure H is known as the mean squared residue.

Using their technique, biclustering is performed by greedily removing rows and columns from the data matrix
so as to reduce the overall value of H, and this continues till the given value of ¢ is reached. In the second phase
rows and columns are added using the same scoring scheme. This continues as long as the matrix size grows without
crossing the threshold. After a bicluster is extracted, the values of the bicluster are replaced by random values and

the process is repeated. There are a number of problematic issues associated with their approach including

1. how to ascertain the right value of o,

2. the possibility of an exponential growth in the number of sub-matrices,

3. the approach of deleting rows and columns from the data matrix (in order to improve o) can land into a
local minima, and

4. the random values replaced in an extracted bicluster could influence the rest of the clustering process.

The Cheng and Church algorithm produces one cluster at a time. Several enhancements to this algorithm have
been proposed in the literature. Yang et al. (Y. H Yang et al. 2002), for example, have criticized the Cheng and
Church approach because the replaced random numbers can influence further co-clusters and propose generalized
the definition of &-bicluster to cope with missing values and avoid being affected cause by replacing the values of
the extracted biclusters by random values. They provide a new algorithm called FLOC (Flexible Overlapped
biclustering) (J. Yang et al. 2003) that simultaneously produce the k co-clusters allowing for overlaps by introducing
the concept of an “occupancy threshold” for rows and columns. Similarly, (Tibshirani et al. 1999) enhanced the

block clustering algorithm by Hartigan by adding a backward pruning method.
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2.5.5. Other Approaches

Several other approaches have been proposed in the literature for the simultancous clustering of objects and their
features such as those based on a Bayesian framework (Sheng, Moreau, and De Moor 2003), general probabilistic
models (Segal, Battle, and Koller 2002; Segal et al. 2001), plaid model (Lazzeroni and Owen 2002), Order
preserving sub matrices (Ben-Dor et al. 2003; J. Liu and W. Wang 2003), self organizing maps (Busygin et al.
2002), etc. An excellent survey of commonly used biclustering techniques, with particular emphasis on gene
expression analysis, according to the structure of the biclusters extracted can be found in (Madeira and Oliveira
2004) and (Tanay, Sharan, and Shamir 2005). A more recent survey of co-clustering algorithms in general can be
found in Busygin et al (Busygin et al. 2008).

Several other techniques have been proposed that exploits the structural relation in a graph to implicitly perform
co-clustering. Instead of starting with a simultaneous clustering of both samples (rows) and features (columns),
known as hard clustering, these techniques uses relationships defined in terms of similarity score between elements
of one dimension to influence the clustering of the other. We shall discuss some of these techniques in the next
chapter (section 3.6) where we also provide a comparison between these techniques and our proposed co-similarity

measure.

2.6. Conclusion of the Chapter

In the first part of this chapter, we saw the basic concept of clustering as the grouping of “similar” objects. We
introduced the vocabulary and the notations utilized in the rest of the chapter. We further discussed the different
types of data representation usually found in the clustering literature. The first kind of data representation observed
is the popular Vector Space Model where elements are represented as row vectors and features form column vectors.
A second approach to represent such data is based upon using a bi-partite representation. We consider a collection of
texts as a bi-partite graph where one set of nodes represent the documents in a text corpus and the other set of nodes
represent the words that occur in those documents. A weighted value may be assigned as a link from a document to
a word indicating the presence of the word in that document. Different weighting schemes, such as the TF-IDF, may
be incorporated to better represent the importance of words in the corpus.

Classical similarity based clustering algorithms use these n-dimensional vector representation to find similarity
(or distance) between documents. This approach is simple and compares the vocabulary set of one document relative
to the other using some matching criteria. Usually, geometric and probabilistic criteria are used to judge the
similarity between objects. The downside of this, however, is the sparseness of the data and its high dimensional
nature, which can result in the curse of dimensionality. Two alternative approaches have been discussed in this
chapter that tries to utilize additional information in the data to minimize the effect of high dimensionality. The first
approach exploits the semantic and structural relation in the data while the second approach explicitly clusters the
feature set to form sub-spaces that might be more relevant to sub-sets of the objects.

The structural based approach brings features close together with other features with which they share semantic

relationship in relative terms. This can be seen as a soft-approach to defining subspaces in the global feature space.
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Algorithms exploiting semantic relationships in the data form complex hidden relationships in the semantic space
and exploit the additional information obtained to help in the clustering task. Dimensions are not explicitly reduced
but by having relationships between the feature set, it is possible to avoid the curse of dimensionality. The advantage
of using this kind of approach is that, unlike the co-clustering based algorithms, it is not necessary to know (and
provide to the algorithm) the number of column clusters which is usually not so evident. These classes of
algorithms, however, are usually harder to interpret in terms of the results since a clear picture of the underlying
process is not evident. Semantic based algorithms discussed in this chapter also tend to take a global approach when
exploiting these structural relationships in the data i.e. the structure is examined for the full feature set and does not
explicitly take localized relation into account, as is the case of co-clustering.

Co-clustering algorithms form a hard partitioning of both the feature space and the samples space and
simultaneously cluster both the dimensions thus explicitly reducing the dimension space and search for clustering in
the subspaces. By doing so, co-clustering algorithms are able to take advantage of the clustering of one space to
cluster the other. Co-clustering approaches are desirable when we need to identify a set of samples related to a set of
features like in gene expression data where we need to identify a set of genes that show similar behavior under a set
of experiments. Even when a feature clustering is not required, using co-clustering algorithms can improve the
clustering of the objects, like documents. Clearly, identifying feature sub-spaces can help classify objects for
example finding topics can help in the clustering of documents by associating each document with a topic. This also
makes the interpretation of results easier since we can intuitively match documents with topics. Specifying the
number of feature clusters, however, is usually not a trivial task. Unlike the semantic based algorithms, co-clustering
usually tries to optimize some given objective function but doesn’t explicitly take into account finer semantic
relationships.

In the next chapter, we present a novel algorithm that generates similarities between elements of one dimension
but by taking similarities of the other dimension into consideration. Thus, the proposed algorithm not only takes
advantage of the structural relationship that exists in the data, but by embedding the similarities of one dimension

when calculating the other, it also takes into accounts a more “localized” concept to these structural relationships.
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Co-similarity Based
Co-clustering

In this chapter, we propose a new similarity measure, known as y-Sim, which exploits the
duality between objects and features. Our aim is to propose a method for the comparison of objects
that incorporates the basic ideas of semantic similarity, which can be used with any popular
clustering algorithm that uses a proximity matrix as an input. As opposed to traditional similarity
measures, the method we propose takes into account the structure of both sets of nodes in a bipartite
graph, thus, incorporating information similar to co-clustering while calculating similarity
measures. We start by presenting some basic definitions that also serve as a motivation for our work
followed by the presentation of our proposed algorithm. As a second contribution, a theoretical
study is also performed to get an intuition into the inner workings of the algorithm. We believe this
explanation and the related discussion will allow us to better understand the behavior of the
algorithm and provide possible directions for future exploration as well as proposing modifications
or variants of the algorithm. In the last section of the chapter, we extend the proposed algorithm to
perform supervised classification by exploiting category labels from a training set by providing

different ways to benefit from such information within the scope of the algorithm.
3.1. Introduction

As discussed in Chapter 2, most traditional similarity measures do not scale well with increase in dimensions and
sparseness of data in a high-dimensional space, which makes calculating any statistics (and therefore the
corresponding similarity measure) less reliable (Aggarwal, Hinneburg, and Keim 2001). For instance, in a sample

text corpus of Table 3-1, documents d; and d, don’t share any common word w; (1<i<4). So, with a classical
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similarity measure such as the ones provided by the Minkowski distance or the Cosine measure (Sedding and
Kazakov 2004), their similarity equals zero (or is maximal in terms of distance). However, we can observe that both
d; and d, share words with document d; meaning that words w? and w’ have some similarities in the documents
space. If we can associate w” and w* together, it is thus possible to associate a similarity value between d, and d,
which will be, of course, smaller than the ones between d; and d; or d, and d; but not null. The justification is based
on the fact that two documents discussing the same topic may contain many words that are not shared amongst them

but may be found in the literature concerning such topic.

Table 3-1 Table showing the interest of co-clustering approach

A w! w2 w’ wt
d, 2 1 0 0
d, 0 0 3 4
d, 0 4 2 0

Alternative algorithms exploiting semantic relationship in the data have been proposed such as those based on
nearest neighbors and latent semantic spaces (section 2.4). Most of these algorithms exploit such relationships on a
global scale over the whole feature set. Co-clustering algorithms (section 2.5) on the other hand exploit localized
relationships and have been proposed for even for one-way clustering to improve clustering accuracy. These
algorithms usually consider subsets (clusters) of features to exploit semantic relationships between instances.
However, the number of feature clusters significantly affects the output of most co-clustering algorithms and this
forces the user to provide an additional parameter when only clustering of the samples is required.

Our work is motivated by the work of (Bisson 1992) proposed for comparing similarities of entities in the first

order logic. In their work, given two predicates E1 and E2 as follows:

El: Father (Paul, Yves) sex (Yves, male) age (Yves, 13)  age (Paul, 33)
El: Father (John, Ann) sex (Ann, female) age (Ann, 28)  age (Yves, 58)

Comparing two entities can be seen as a function of the entities with which they co-occur. For example, the
similarity between “Paul” and “John” can be extended to the similarity between “Yves” and “Ann”, which in turn is
calculated on the basis of their sex, age, etc. We use the analogy in a document corpus, such that comparing
documents can be seen as a function of comparing their words and vice versa.

In this thesis, we propose a co-similarity measure that is based on the concept of weighted distributional
semantics (see section 3.2 below) using higher-order co-occurrences. In the case of text analysis, for example,
document similarity is calculated based on word similarity, which in turn is calculated on the basis of document
similarity. Thus, we use an iterative approach to increase similarity between documents that share similar words and
make words that occur in similar together to have higher similarity values. Thanks to our method, it becomes
possible to use any classical clustering method (k-means, Hierarchical clustering, etc) to co-cluster a set of data. The

proposed method is founded on the concept of higher-order co-occurrences based on graph theory and can also be

48



Chapter 3 Co-Similarity Based Co-clustering

extended to incorporate prior knowledge from a training dataset for the task of text categorization as we shall see

later in this chapter (section 3.7).

3.2. Semantic Similarity, Relatedness, Association and Higher-order
Co-occurrences

Before presenting our algorithm, it is necessary to understand a few basic concepts about semantic associations

between words, as they form a crucial part behind the motivation of our algorithm.

Semantic similarity Semantic similarity is a concept that holds between lexical items having a similar meaning,
such as “palm” and “tree” (Kolb 2009). It is related to the concept of synonymy and hyponymy and requires that

words can be substituted for each other in context (Geffet and Dagan 2005).

Semantic Relatedness Semantic relatedness refers to words that may be connected by any kind of lexical

113

association and is a much broader concept than semantic similarity. Words such as “fruit” and “leaf” can be
considered to be semantically related (Kolb 2009) as they form a meronymy since they can be considered as a part of
a more general thing (for instance, a “tree”).

According to Budanitsky and Hirst (Budanitsky and Hirst 2006), semantic similarity is used when “similar
entities such as apple and orange or table and furniture are compared” but that semantic relatedness can also be used
for dissimilar things that may be semantically related such as in a is-a relationship like in (car, tires) , etc. From the
clustering point of view, these associations between words are significant. Consider the two sentences - Joe is a
hardworking student and Joe is a meticulous pupil, which more or less means the same thing. In a bag-of-words
approach using a traditional measure, such as a Cosine measure, these phrases might not be considered as similar. It
has been shown Gonzalo et al. (Gonzalo et al. 1998) that if we use the synonymous sets or sense (for example using

WordNet®®), it can improve result in obtaining higher similarity between similar documents for information

. 9
retrieval .

Distributional Semantics Repositories such as WordNet have to be hand-crafted and are not readily available for
different languages or other specialized domains. Therefore, a different approach to similarity known as
distributional similarity or association is defined as “Two words are associated when they tend to co-occur (for
instance “doctor” and “hospital”) (Turney 2008). Therefore, using distributional semantics is a more practical
approach (in a computational way) of finding such relationships and associations from within a given corpus.
Moreover, using distributional semantics help capture the relationship in the given text corpus since it is based on

the concept that similar words occur in similar contexts (Harris 1968).

Higher Order Co-Occurrences The concept of ‘higher-order’ co-occurrences has been investigated (Livesay and

Burgess 1998), (Lemaire and Denhiére 2006), among many others, as a measure of semantic relationship between

¥ WordNet® is a large lexical database of English. Nouns, verbs, adjectives and adverbs are grouped into sets of
cognitive synonyms (synsets), each expressing a distinct concept. ( http://wordnet.princeton.edu/)

? The goal of information retrieval is to retrieve a sorted list of documents relevant to a query-vector
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words. The underlying analogy is that humans do not necessarily use the same vocabulary when writing about the
same topic. For instance, Lemaire and Denhicre (Lemaire and Denhiére 2006) report finding 131 occurrences of the
words “internet” and 94 occurrences of the word “web” but no co-occurrence at all in a corpus of 24-million words
collected from the French newspaper Le Monde. It is evident, however, that these two words have a strong
relationship. This relationship can be brought to light if the two words co-occur with other words in the corpus. For
example, consider a document set containing significant number of co-occurrences between the words “sea” and
“waves” and another document set in which the words “ocean” and “waves” co-occur. We could infer that the words
“ocean” and “sea” are conceptually related even if they do not directly co-occur in any document. Such a
relationship between “waves” and “ocean” (or “sea” and “waves”) is termed as a first-order co-occurrence. This

3

conceptual association between “sea” and “ocean” is called a second-order relationship. The concept can be
generalized to higher (3rd, 4th, 5th, etc) order co-occurrences.

Semantic and higher order relationship have been used in automatic word sense disambiguation (Schiitze 1998),
improving stemming algorithms (J. Xu and Croft 1998), in text categorization (Chakraborti, Wiratunga, et al. 2007),
etc. As opposed to semantic similarity and relatedness, distributional similarity can be estimated from a given text
corpus. Words that statistically co-occur are thought to capture distributional relatedness while word spaces that are
connected via higher-order co-occurrences can be said to capture distributional similarity (Sahlgren 2001). In our

algorithm, we incorporate statistical distribution extracted from the corpus to present a new similarity measure,

called x-Sim that is presented in the next section.
3.3. The Proposed Similarity Measure (y-Sim)

3.3.1. Notation

We will use the classical notations: matrices (in capital letters) and vectors (in small letters) are in bold and all
variables are in italic.

Data Matrix Let A be the data matrix representing a corpus having m rows (documents) and n columns (words); 4
denotes an element of A that contains the information of word j in document i. One possible definition of A is the
0/1 encoding which denotes the presence or absence of a word in a given document. Other definitions of A are also
possible, for example, we can replace the indicator encoding by the number of times words j would occur in
document i or the popular TF-IDF measure as discussed in Chapter 2, which in some cases leads to better clustering
results (Zhou, X. Zhang, and Hu 2007). Let E;;,1 <i<m and 1 <j< n denote the weight assigned to the occurrence

of word j in document i. We consider here the generic case which is given by:

E. if word j occursindocument i
_ ij

3.1 A. = )
0 otherwise

Using standard notations, we define a, = [A;; ... A;,] is the row vector representing the document i in the document

setand a' = [Aj ... A,,] is the column vector corresponding to word j. We will refer to a document as d, d», ... when
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talking about documents casually and refer to it as a;, a,,... when specifying its (row) vector in the matrix A.
Similarly, we will refer to a word as wy, w,,... when talking about words 1, 2,... and use the notation al,az,... when

emphasizing the word vector in the matrix A.

Similarity Matrices Let R and C represent the square and symmetrical row similarity and column similarity
matrices of size m-by-m and n-by-n respectively with R; €[0,1], 1<i,j<m and C;; €[0,1], 1<i,j<n. A similarity value
of zero corresponds to no similarity while a similarity value of 1 denotes maximal similarity. As before, we define
vectors in the similarity matrices ¢; = [C;; ... C;,] (respectively r; = [R;;...R;,]) as the similarity vector between the

word i and all the other words (respectively between the document j and the other documents).

Similarity Function We define a function of similarity fy(.,.) as a generic similarity function that takes two
elements 4;; and 4y, of A as input and returns a measure of the similarity fy(4;,4;) between these two elements. For
the sake of brevity, we will also use the shorthand notation f;(4;, a;) (respectively f,(4;;, a")) to represent a vector
that contains the pair-wise similarity fy(.,.) between the scalar 4; and each element of the vector a, (respectively a").
The function fy(.,.) can be a multiplication as used in Cosine similarity or any other user-defined function. This

makes the approach generic and adaptable to different specialized data types.

3.3.2. Calculating the Co-Similarities Matrices

As mentioned previously, the y-Sim algorithm is a co-similarity based approach which builds on the idea of
iteratively generating the similarity matrices R (between documents) and C (between words), each of them built on
the basis of the other. First, we present an intuitive idea of how to compute the co-similarity matrix R between rows,
the idea being similarly applicable to word-word similarity matrix C.

Usually, the similarity (or distance) measure between two documents d; and d; is defined as a function denoted

here as Sim(d;,d;) that is the sum of the similarities between words occurring in both d; and d; given as
(3.2) Sim(a,a;) = f.(44,) + o +£,(4,.4,,)

Other factors may be introduced, for instance to normalize the similarity in the interval [0, 1] or an exponent as in
the case of Minskowski distance (section 2.2), but the main idea is always the same — we consider the values
between columns having the same indices. Now let us suppose we have a matrix C whose entries provide a measure
of similarity between the columns (words) of the corpus. Equation (3.2) can be re-written as follows without

changing its meaning if C; =1:

(3.3) Sim(a.a,)=f.(4;.4,).C; +..+ f.(4,.4,)C

in’*"jn nn

Here our idea is to generalize equation(3.3) in order to take into account all the possible pairs of features
(words) occurring in documents a; and a;. In this way, not only do we capture the similarity of their common words
but also the similarity coming from words that are not directly shared by these two documents but that are

considered to be similar. For each pair of words not directly shared by the documents, we take into account their
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similarity as provided by the C matrix. Thus the overall similarity between documents a; and a; is defined in

equation (3.4) in which the terms in the boxes are those occurring in equation(3.3)

Sim(a,. a,)={f,(4,,4,).C |+ f.(4,4,).C, +..+ £,(4,,4,).C,, +
fs(AiZ)Aﬂ)-Cﬂ+fs(Aiz)Aj2)-C22+---+fs(Ai2’Ajn)-C2n +

1 (Ain’AjI)‘CnI +f (Ain’AjZ)‘Cn2 oA, (Ain’Ajn)'Crm

(3.4)

By using our shorthand notation for representing a row vector, we may re-write the above formula as follows

(3.5) Sim(al.,aj) :fs(A“,aj)oc1 +fS(Al.2,aj)oc2 +...+fS(Am,aj)ocn

[T

where “o” represents a dot product. Conversely, when we wish to express the similarity between two words

(columns) a’ and @’ of A, we use the same approach. Hence,
e Sim(a ) = £ (Ao 1, (Awsa/Jora b (4, 0o,

In this framework, the similarity between any two documents depends on the similarity between the words
appearing in these documents (weighted by the matrix C) and reciprocally the similarity of any two words depends
on the similarity between the documents in which they occur (weighted by the matrix R). This is achieved by the
combination of equations (3.5) and (3.6) which exploit the dual relationship between documents and words in a
corpus.

Since y-Sim is a similarity measure and its comparison with other similar measures is an integrated part of
this thesis, we make a clear distinction here between two types of indices that contribute to the similarity measure of
two documents a; and a, as given by equation(3.4). Traditional similarity measures such as the Cosine, Minkowski,
Euclidean, etc only take into account terms of the form fi(4,1,4,1)C\1, ..., f{din, Ajn)Cpn, for some suitable definition
of £i(,), which corresponds to words directly shared by the documents. We refer to the similarity measure contributed
by these terms to the overall similarity between a; and a; as direct similarity. The similarity measure contributed by
all other terms, which corresponds to comparing words with different indices, is referred to as induced similarity
because such a similarity is induced based on other direct similarities.

The values obtained by equations (3.5) and (3.6) cannot be directly used as elements R; and C; of the
matrices R and C respectively. As stated previously, each element of the matrices R and C must be normalized to
belong to the interval [0, 1], since we define the maximum similarity between two documents (or words) to be unity,

but neither Sim(a;, a;) nor Sim(a', a) verify this property. Therefore, it is necessary to normalize these values. We

define two normalization functions A®(,) and N°(,) — the row and column normalizations functions — that

corresponds to the maximum possible value that can be obtained from equations (3.5) and (3.6) respectively. We

will denote N (,) as the generic normalization function - it is evident which form is to be used depending on whether

we are normalizing a document pair or a word pair. We will discuss further the similarity function f;(,) in the next
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section and discuss the various normalization schemes in the section 3.3.5.
Now that we have defined (albeit partially) all the different concepts of the approach, we present a naive
version of the algorithm to compute the elements R;; of the matrix R and Cj; of the matrix C. The two equations are

given below

(3.7) Vi,jel.m,R Sim(a,.a,)
. i,jel.m,R, =————
/ 7 M(a,a))

. Sim(a’,a’)

3.8 Vi,jel.n,C, =————=
G5 / 7N (a',a))

To compute the matrices R and C for each pair of documents or words, we use an iterative method. The steps are

outlined as follows:

= Similarity matrices R and C are initialized with the identity matrix I, since at the first step and without any
further information, only the similarity between a document (respectively word) and itself is considered as
maximal. All other values (out of diagonal elements) are initialized with zero. We denote these matrices as
R and C'”, where the superscripts denote the iteration.

= The new matrix R" between documents, which is based on the similarity matrix between words C is

calculated using equation(3.7).

Similarly, the new matrix C" between words, which is based on the similarity matrix between documents
R is calculated using equation (3.8).

= This process of updating R® and C" is repeated iteratively for k=1..z iterations.

Function y-Sim
Input : data matrix A
Output : two similarity matrices R and C expressing the
co-similarity between rows and columns of A
Initialize R and C with the identity matrix
for i =1 to ¢t
for j=1 to m
for k=1 to m

RY =Sim(a;,a,)/ N(a,,a,)
end for
end for

for j=1 to n
for k=1 to n

CY) =Sim(a’,a")/ N'(a’,a")
end for

end for
end for

FIGURE 3.1 The Naive y-Sim algorithm
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The algorithm is defined in FIGURE 3.1. It is worth emphasizing here that computing the R matrix first and then the
C matrix or the converse doesn’t change the way the system of equations is evolving.

Classically, the overall complexity of computing a similarity matrix between documents represented by a matrix
A of size dimensions D (assuming it is square matrix), is equal to O(D’) in terms of the number of calls to the
function fi(.,.). However, in a naive implementation of %-Sim, the complexity is much higher. The number of
comparisons given by one call to equation (3.7) is n’ as is evident by looking at its expanded form given by
equation(3.4). The computation of R involves comparing all pairs of documents, or O(m?) and each of this document
pair comparison involves comparing all pair of words or O(x?). Similarly, the computation of C involves a pair-wise
comparison of all pair of words or O(n%), each of which requires O(m°) comparisons. Thus for a square matrix of
dimension D, we have a complexity of O(D") in terms of calls to £(,). That is clearly too high to cope efficiently
with real datasets.

Another question that arises from the algorithm shown in FIGURE 3.1 is the number of times the algorithm
needs to be iterated (the parameter £), and whether the algorithm converges towards a fixed point. As shall be seen in
section 3.4, where we explain a theoretical interpretation of the algorithm, the value of # has an intuitive meaning in

terms of paths in a bipartite graph. In practice, the value of 7 is relatively small, typically less than 5.
3.3.3. Optimization Techniques

Fortunately, there are two effective ways to deal with the problem of complexity, making the algorithm at the same
level of complexity, O(D?), as the other distance measures (Cosine, Minkowski, etc). In the case where the values in
A are discrete (i.e. belong to an enumerated type E containing |E| elements), a whole set of calculations for each pair
of documents (or words) in the naive O(D*) algorithm is repetitive and can be avoided. The second method is based

on the definition of the function f(,) itself. If the similarity function f;(4;, Ay) can be defined as a simple product

ijs
(i.e. fy(A4y, Aw) = AyAw), then the system of equations (3.7) and (3.8) used to compute the similarity matrices R and C
can be expressed simply as a product of three matrices without any loss of generality. We will see the two cases

individually.
Values Belong to an Enumerated Type

We consider the problem of optimization when the data type in the matrix A is of an enumerated type E i.e.
A;e{E} where [E| is small. We show here the principle of optimization between two documents (objects) for
computing the similarity value Sim(a;,a;), the idea being symmetrical when applied to a pair of words( features). We
illustrate the optimization with the help of an example as shown in Table 3-2. For the sake of brevity, we define 4
to be of the type Boolean i.e. 4;€{0,1}.

Recall from Equation (3.5) that when we compare two documents, say d; and d;, each feature (word) of

document 7 is compared with each feature of document j. Note that a given document say d; in Table 3-2 must be

54



Chapter 3 Co-Similarity Based Co-clustering

compared with all other (m—1) documents'. Using the shorthand notation for the similarity function fi(,), one can
see that the comparison of a given word w; in d; with all elements of d; is given by f(4;,a,)ec;. We make the

following two observations

e Firstly, for each feature k of the document d;, we need to calculate the term f{(4;,a;) with 4; € {E}.
Therefore, the vector resulting after applying f{(4;.a;) can take only |E| possible values. For the case
of Boolean values, for example, we have only two forms £;(0,a;) and £i(1,a;).

e Secondly, for each comparison of a document d; with d;, we have to repeat the computation of the
scalar f(4;,a))c, for a given word w,. As seen previously, there are only |E| vectors resulting from

Js(4i,a)) and therefore there exists only |E|.n scalars of the form f,(4;,a,)ec;.

Table 3-2 Illustration of the optimization principle for an enumerated data type

A w! w2 w’ wt
d, 1 1 0 0
d, 0 0 1 1
d; 1 1 1 0
d, 0 1 0 1

Imagine now that for a given document d;, we pre-calculate all the possible scalar values f,(4;,a;)e¢, for each
document 7, the calculation of the similarity value Sim(a;,a;) amounts to n possible values (one for each attribute)
corresponding to the value 4;. Suppose that we want to calculate the similarity between d; and all the other
documents. We first pre-calculate the two possible vectors f;(0,a;) and f(1,a,). The cost of this operation is given by
O(E.n). Next, for each of these vectors, we calculate the scalars corresponding to the comparisons resulting from
each possible word. There are 8 resulting scalars given by f{0,a,)ec;, f{0,a;)ec,, f{0,a)) ec3, f{0,a)) ec, and f{1,a)) ec;,
f(1,a)) ecy, f(1,a)) ec;3, f(1,a;) ec,. Since each vector of the form f(4;,a;) has a dimension of 7 and each vector of the
form ¢, also has a dimension of n, the total cost of this operation is O(E.m.n?) for all documents.

Computing the similarity values Sim(a;a;) now reduces to performing a sum over a set of pre-computed scalar
values. For example, the similarity value Sim(a;,a,) is given by f{0,a;) ec;+f(0,a;) ec,+, f{(1,a;) ecs+f(1,a;) ec4 or
O(n) operations. Thus, computing similarities between all pair of documents is given by O(m*n). Therefore, the

complexity for calculating the row similarity matrix R is given by

Complexitygr = O(1 .max(mz.n,\E\.m.nz)) or in a general case O(z. \E|.D3) for ¢ iterations

Similarly, the complexity for calculating the column similarity matrix C is given by

' In practice, a document d, is compared with i—1 elements since the matrix R (respectively C) is symmetric.
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Complexityc = O(I .max(n*.m, \E|.n.m2)) or in a general case O(z. |E\.D3) for ¢ iterations

As noted previously, ¢ is typically small. Therefore, the overhead of this optimization as compared to a classical
similarity measure for example the Cosine, is a constant K =~ 10 (for =5 and |[E[=2). Hence, the complexity of the
algorithm is given by O(KD?), where K is a constant, which is similar to a classical similarity measure. This
optimization is efficient only when the cardinal of E is relatively small. Nevertheless it is interesting since it works

for any kind of definition of f;(,).
Function f{,) as the Scalar Product

The second optimization possibility is when we define the function fi(,) as a product of elements, given by
Js(A4;5,Ai)=A;;.Ay which is the same as in traditional similarity measures such as Cosine, Tanimoto, etc. The x-Sim
algorithm can now be expressed as a product of matrices as explained below. Replacing f(,) as a product and by

using the associative property of multiplication, we have

Sim(a,,a,)=(4,.C,,).4, +(4,.C,) A, +..4(4,.C,) 4, +
(4,.C,)).4,,+(4,.Cyy). 4, +..+(4,.C,). 4, +

(4,.C,.).4,+(4,.C,.). A, +..+(4,.C, )4,

(3.9)

By collecting terms, we can re-write equation 3.9 as follows

Sim(a,a,)=[(4,C,,)+(4,Cy)) +..4(4,C,,) ] .4, +
I:(AiICIZ ) +(Ai2C22 ) + "'+(Amcn2 ):I 'AjZ +

I:(Ailcln ) +(Ai2c2n ) + "'+(Aincnn ):I 'Ajn

(3.10)

Note that the elements within the squared brackets in equation (3.10) correspond to elements of the matrix (AC) of
size m-by-n. The similarity measure between document a; and a; given by Sim(a;,a;) now corresponds to element (i)
of the triple matrix multiplication given by (ACAT),-j where A" is the transpose of the matrix A.

In the rest of this thesis, we will consider this definition of £i(,) (i.e. fy(4;,4x) = 4;.Ax) for two reasons — firstly,
this definition of f;(,) presents an interesting case since it renders the y-Sim algorithm to a framework that results in
a direct comparison with other classical similarity measures and enables us to elucidate the contribution of our
approach. Secondly, defining f;(,) as a product brings down the calculation of the R and C similarity matrices as a
simple product of matrices. This enables us to further explore the properties of these matrices and explore alternative
theoretical insight into the working of the algorithm. Moreover, considering the algorithm as product of matrices can

be easily implemented using programming languages such as Matlab® and allow the use of several pre-existing

libraries for efficient matrix multiplication in other languages such as Java, etc.
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3.3.4. A Generalization of the Similarity Approach

In this section, we discuss the connection between the x-Sim approach and existing similarity measures. We
consider them as special cases of the y-Sim approach and show that the x-Sim framework provides a generalized
approach to measuring similarity between two entities.

We describe here a generic formulation of several classical similarity measures between two documents. Given

two documents a; and a;, the similarity measure can be expressed as a product of matrices given by

a,(C)a;

(3.11) Similarity(ai,aj)zm

where a’ denotes the transpose of a and Ma;,a)) is a normalization function that depends on a; and a; used to map

the similarity function to a particular interval, such as [0,1]. Equation (3.11) can be seen as a generalization of
several similarity measures. For example, the Cosine similarity measure can be written using the above equation,
where C is set to the identity matrix, as
T
a,(Da,

(3.12) Cosine(a,,a ) = W
ill* J

where ||a,|| represents the L, norm of the vector a;. Similarly, the Jaccard index can be obtained by setting C to I and

Ma,a) to [a) + |a] - a,-ajT (|a] denotes L; norm), while the Dice Coefficient can be obtained by setting the C to 21

and Ma,, a)) to |a] + |a;|. Note that by setting the C matrix to identity, we define the similarity between a word and

itself to be 1 (maximal) and between every non-identical pair of word to be 0.
The similarity value between documents a; and a;, as expressed in equation(3.5), can be expressed in the form

of equation(3.12). Here the numerator from equation (3.12) corresponds to the terms in equation (3.5) and the

denominator corresponds to some normalization factor .(a;,a;) as described previously. We can now re-write how

to compute the elements R(k)l«, (1 <ij < m)of R® at a given iteration & as,

a,(C*Ma]

(3.13) Vi,jel.m,R" =
T M@a,.a)

Similarly, the elements C(k),-j (1<ij<n) atiteration k of the word similarity matrix C* can be computed as

a'(R¥")a’

(3.14) Vi,jel.n, C;.“ = ZD

We now move on to define a normalization factor for equations (3.13) and (3.14) for normalizing R(k),-j and dk)y
respectively. However, we first need to clearly understand the difference between the similarity values generated by

¥-Sim measure and the other classical similarity measures mentioned above. As opposed to the other similarity

57



Chapter 3 Co-Similarity Based Co-clustering

measures like the Cosine measure in equation (3.12), the similarity values in equations (3.13) and (3.14) differ in
two aspects: firstly, the non-diagonal elements of the C matrix are not zero; and secondly, the values in the C matrix

are defined as a function of another matrix R and the two are iteratively computed.
3.3.5. Normalization

Recall from the discussion in section 3.3.2 that neither of the functions Sim(a;a;) or Sim(a',a’) guarantee that the
similarity value belongs to the interval [0,1]. We explore two possible ways to normalize the similarity matrix.

In the first case, we consider the normalization as a function of the similarity matrices R and C. Since the
values of the similarity matrices are evolving at each iteration k (1<k<f), the values R(k),-j and C* ; are normalized as a

function of matrices R® and €% respectively, given by

(3.15) RM=RY/(> > RY)
i=l.m j=l.m
and
) _ k) (k)
(3.16) c'=cr1> > G
i=l.n j=l.n

Note that equations (3.15) and (3.16) do not guarantee that the similarity of a document (or word) with itself is 1.
Alternately, we could consider normalization based on the local document similarity distribution i.e. normalize each

element of R® and C* on a vector basis. Thus,

(k) _ plk) (k)
(3.17) R =R /('Z‘ R
Jj=l.m
and
(k) _ () (k)
(3.18) C,' =C; /(; C;)
Jj=l.n

As before, the similarity values between a document (or word) and itself is not maximal. In both cases, one can
overcome this by forcing the diagonal value of R® and C* to be 1 and excluding the values from the denominator
for R(k),-j (respectively C(k),-j) for i#j. However the resulting normalized similarity matrix is not symmetric since R(k),-j is
normalized relative to the similarity distribution of a, while R, is normalized with respect to that of a.

A more general drawback of using the above normalization methods, however, is that they do not take into
account the length of the vectors. This is particularly important in the case of text clustering since text documents
can vary significantly in size. In fact, considering the numerator of equation(3.11), it is clear that larger document
pairs can lead to higher values even if they share a relatively smaller percentage of words than smaller document
pairs sharing a higher percentage of words. Similarly, more frequent word pairs will have a higher similarity values
and the effect is magnified when R and C are iteratively computed. Therefore, when comparing document pairs of

unequal sizes, we need to take into account the greater probability that words will co-occur in larger documents to
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avoid undue bias towards such documents.
A second approach focuses on the document (or word) vectors themselves to take their length into account as

mentioned above. The Euclidean or L, Norm is an examples of such a normalization. The L, norm is defined as
(3.19) i = ;(A,.k)z and ' = ;(Akl.)z with  N(a,a,)=pu,

and guarantees that the similarity of a document (respectively word) with itself at the first iteration of the algorithm
is 1. In fact, using the normalization of equation (3.19) in equation (3.11) is equivalent to the Cosine similarity value
for the first iteration, since only the direct similarity value is considered (C;=0 Vizj). After the first iteration,
however, the resulting similarities values obtain when using equation (3.11) may be greater than 1. Therefore, even
by setting the diagonal elements to 1 at each iteration, one cannot that the similarity value between an element and
itself will be maximal.

Another possible normalization used under this approach is called the L; normalization. By definition, the
maximum similarity value between two pair of words C;; is 1. Therefore, it follows from equation (3.10) that the
upper bound of Sim(a;,a;) (1<i,/<m) is given by the product of the sum of elements of a; and a;. If we denote the sum
of vectors a; and a; by g4 and g4 respectively, then the normalization function when comparing two documents is

defined as

(3.20) N(a,a;)=up, where 4, =Y A andp; =Y A,
Similarly, the normalization factor when comparing two pair of words Sim(a’,’) is given by
(3.21) N(@',a")= 'y’ where 4/ =" A andu’ =) A,

This approach is particularly suited for textual datasets since it allows us to take into consideration the actual
length of the document and word vectors when dealing between pairs of documents or words of uneven length,
which is typically the case. Considering the rows and columns of A as components of a vector, the L; norm
described above represents the length of a Manhattan walk along the components of the vector. Note that using the
L1 normalization guarantees the similarity values between any pair of documents a; and a; or any pair of words a'
and @’ to lie in the interval [0,1], but does not satisfy that the similarity between a document (or word) and itself will
be 1. As previously, we could force the elements of the diagonal to be 1 (by definition) and calculate only similarity

between different pair of documents (or words).
3.3.6. The %-Sim Similarity Measure

Now that we have defined the function £;(,) and the normalization function (), we proceed to formally define the

¥-Sim algorithm in this section as a product of matrices. Equations (3.13) and (3.14) allow us to compute the
similarities between two documents and between two words. The extension over all pair of documents and all pair of

words can be generalized as a matrix multiplication. The algorithm follows:
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1.  We initialize the similarity matrices R (documents) and C (words) with the identity matrix 1.

2. At each iteration k, we calculate the new similarity matrix between documents R® by using the similarity
matrix between words C*". To normalize the values, we take the Hadamard'’ product between the matrix
R™ and a pre-calculated matrix NR defined as Vi,j €[1,m], NR; = 1/Ma;a;). We do the same thing for the
similarity matrix C* and normalize it using NC given by Vi,j €[1,n], NC; =1/ N (a',a). The two relations

are as follows:

“ 1 ifi=j
3.22 R =
(3.22) 7 T [(AC*PAT)®NR]  otherwise

i

N 1 ifi=j

3.23 ¢’ =
(3.23) 7 T [(ATR*MA®NC]  otherwise

ij

1
where ‘®’ denotes the Hadamard multiplication, NRi/ = and NCij ==
Ml H U

3. Step 2 is repeated ¢ times to iteratively update R® and ¥

In practice, equation (3.22) may be obtained by taking the matrix multiplication R?=AC*PAT ®NR and then
setting the diagonal to 1. Equation (3.23) may be similarly obtained. To update R (or C) we just have to multiply
three matrices using equations (3.22) and (3.23) respectively. Given that the complexity of matrix multiplication12 is
in O(D*) (for a generalized matrix of size D by D), the overall complexity of x-Sim is given by O(tD*) where ¢ is the
number of iterations.

Alternately, we could embed the normalization factor into the data matrix itself. For this, we need to define two
variants of the original matrix A — one normalized by the row, AR and one normalized by the column, A€, The two

matrices are given by,

A. A.
(3.24) Af =—L and A4 =—
H; ' K

for some definition of z; and u/ as given in section 3.3.5. The two equations to update the document and word

similarity matrices can now be expressed as

(3.25) RY = [ARC(”) (AR )T}
J]

=1

(3.26) cl) = [(AC )T R(”)AC}

Ji=1

"'In a Hadamard product A=B®C, the elements 4;, of matrix A are defined as: 4;= B;..Cj
12 The complexity of the Hadamard product is O(D?)
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where [...]; denotes setting the diagonal of the resulting matrix to 1.

FIGURE 3.2 shows the matrix representation of x-Sim when using equations (3.25) and(3.26), explicitly
showing the matrix dimensions. Note that using this form of the algorithm means that the (normalized) data matrix
A, have to be stored twice, one matrix for each of the two normalizations. However, there is a small saving in the
computation time as we do not have to normalize at every iteration. More precisely, the Hadamard product between
the matrices R and NR and C and NC is not done at every iteration.

Note that we may chose not to force the entries in the diagonal of the similarity matrices to 1.This, however, has
an adverse effect on the overall evolution of the similarity values. The diagonal values correspond to similarity for
direct sharing of words between documents (and vice versa). Since, we use the L1 normalization and do not
guarantee that the similarity between a document (or between a word) and itself with be unity, the diagonal values
tends to decrease at each iteration. This means that direct co-occurrences (shared words or documents) contribute
less towards the similarity measure at each subsequent iteration Moreover, the L1 normalization also does not
gurantee that self simialarity between documents or words are maximal. This can lead to values where similarity

between two pair of distinct words may be more than the similarity between each of those words with itself.
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FIGURE 3.2 Representation of the matrix multiplications involved in ¢-Sim Algorithm

3.3.7. An lllustrative Example

To illustrate the behavior of the algorithm, we take back the example described in section 2.4.1. The example
contains the titles of 9 articles that can be categorized into two main types—d,; through ds that describes computer
science and dg through do that are related to graph theory. The titles are described by a set of keywords and we
reproduce the document by term matrix in Table 3-3.

There are two natural clustering of the data as shown by the dotted lines in Table 3-3. The two clustering are

nearly perfect except for a word ‘survey’ which is shared by d, from the first cluster and dy from the second cluster.
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Table 3-3 The document-word co-occurrence matrix corresponding to the sentences

Human| Interface | Computer | Survey |User | System | Response |Time |[EPS |Trees | Graph | Minors
d |1 1 1 0 0 0 0 0 010 0 0
d [D 0 1 1 1 1 1 1 0|0 0 0
d; |0 1 0 0 1 1 0 0 1 (0 0 0
ds |1 0 0 0 0 1 0 0 1 |0 0 0
ds [D 0 0 0 1 0 1 1 0.0 0 0
ds |0 0 0 0 0 0 0 0 0 |1 0 0
d; [0 0 0 0 0 0 0 0 0 |1 1 0
ds [0 0 0 0 0 0 0 0 0 |1 1 1
dy [O 0 0 1 0 0 0 0 0 [0 1 1
Table 3-4 The document similarity matrix at iteration =1
R d d, d; dg ds ds d; dg dy
d; 1,00 - . - - . - . -
d 0,06 1,00 - - - - - - -
d; 0,08 0,08 1,00 - - - - - -
dy 0,08 0,08 0,19 1,00 - - - - -
ds 0,00 0,17 0,08 0,00 1,00 - - - -
de 0,00 0,00 0,00 0,00 0,00 1,00 - . -
ds 0,00 0,00 0,00 0,00 0,00 0,50 1,00 - -
dg 0,00 0,00 0,00 0,00 0,00 0,33 0,33 1,00 -
do 0,00 0,06 0,00 0,00 0,00 0,00 0,17 0,22 1,00

Table 3-5 The word similarity matrix at iteration =2

c Human |Interface [Computer |[Survey | User [System |Response |Time | EPS |Trees |Graph [Minors
Human 1,00 - - - - - - - - - - -
Interface 0,25 1,00 - - - - - - - - - -
Computer | 0,25 0,25 1,00 - - - - - - - - -
Survey 0,00 0,17 0,17 1,00 - - - - - - - -
User 0,25 0,13 0,13 0,17 | 1,00 - - - - - - -
System 0,00 0,00 0,25 0,33 | 0,13 1,00 - - - - - -
Response 0,00 0,00 0,25 0,33 | 0,13 [ 0,50 1,00 - - - - -
Time 0,25 0,25 0,00 0,17 10,38 [ 0,00 0,00 1,00 - - - -
EPS 0,00 0,00 0,25 0,17 | 0,13 | 0,25 0,25 0,00 | 1,00 - - -
Trees 0,00 0,00 0,00 0,00 | 0,00 [ 0,00 0,00 0,00 | 0,00 | 1,00 - -
Graph 0,00 0,00 0,00 0,00 | 0,00 [ 0,00 0,00 0,00 | 0,17 | 0,22 | 1,00 -
Minors 0,00 0,00 0,00 0,00 | 0,00 [ 0,00 0,00 0,00 | 0,25 | 0,17 | 0,33 1,00
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Table 3-6 The document similarity matrix at iteration t=2

R® d d, ds dy ds ds d, dg do
d 1,00 - - - - - - - -
d, 0,17 1,00 - - - - - - -
ds 0,24 0,20 1,00 - - - - - -
d, 0,25 0,18 0,37 1,00 - - - - -
ds 0,09 0,39 0,20 0,08 1,00 - - - -
ds 0,00 0,00 0,00 0,00 0,00 1,00 - - -
d; 0,00 0,01 0,00 0,00 0,00 0,61 1,00 - -
dg 0,00 0,02 0,00 0,00 0,00 0,46 0,49 1,00 -
do 0,03 0,14 0,02 0,02 0,07 0,13 0,31 0,39 1,00

Table 3-7 A comparison of similarity values for different pairs of documents using y-Sim and Cosine.

Document pair type x-Sim at iteration 1 | Cosine similarity y-Sim at iteration 2
Same cluster with no shared words Sim(d,,ds) = 0.00 Cosine(d;,ds) = 0.00 | Sim(d,,ds) =0.09
Same cluster with shared words Sim(d;,dg) = 0.17 Cosine(d;,dg) = 0.32 | Sim(d;,dg) =0.31
Different clusters with no shared type | Sim(d,,d;) =0.00 Cosine(d,,d;) = 0.00 | Sim(d,,d;) =0.01

We run the %-Sim algorithm on the data given in Table 3-3 using equations (3.25) and (3.26) iteratively and
the result of the first iteration on the document similarity matrix, R is given by Table 3-4 below.

The matrix now contains the similarity values between documents that are calculated purely on the basis of
their shared word occurrence. For example, the documents d, and d; have no common words and the similarity
between d, and d; at iteration 1 is zero. Similarly, d; and ds, even though they belong to the same cluster, have a
similarity value of zero since they do not have any word that co-occurs between them. This behavior is similar to
what we would observe when using a different similarity measure such as the Cosine similarity.

However at the second iteration, both (d;,ds) and (d,,d;) get a similarity value which although small, is greater
than zero. This similarity comes from the fact that documents ds share the word ‘user, ‘response’, and ‘time’ with
document d,, which also contains the words ‘computer’. As result the word ‘computer’ gets a similarity value, albeit
small, with each of ‘user’, ‘response’ and ‘time’ given in the similarity matrix C'" as shown in Table 3-5. Now at
R?, when we compare the documents d; and ds again, they show a small similarity value since they now share some
similar word. The similarity value also comes via document d; which generates some similarity between the word
‘interface’ and the words ‘user’ and ‘system’. This results in a non-zero similarity value between the document d,
and ds at the second iteration.

Similarly, document d, and dg share the words ‘frees’ and ‘graph’. This generates a similarity value between
the words ‘tree’ and ‘graph’. At the first iteration, the similarity value between the documents d; and dy was 0.17 as
a result of a shared word, ‘graph’. However at the second iteration, the similarity value coming from similar words
‘tree’ and ‘graph’ generates an additional induced similarity measure between the documents d; and dy. Therefore,

even though documents d; and dy shared a common word, their similarity in iteration 2 increases since now they are
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also thought to be sharing similar words in addition to some common words.

Finally, document d, and d; which belong to different clusters also share some similarity since d, shares the
word ‘survey’ with dy and dy shares the word ‘graph’ with d;. Thus, at the first iteration, a similarity between the
words ‘survey’ and ‘graph’ is generated and this similarity is used at the second iteration to compare the documents
d, and d-.

A comparison of the similarity measure generated by x-Sim and the Cosine similarity measures for different
pair of documents is given in Table 3-7. Documents d; and ds belong to the same cluster but do not share any
common word. Documents d; and dy also belong to the same cluster but they do share a common word while
documents d, and d; do not belong to the same cluster. As seen from Table 3-7, the Cosine similarity13 measure
assigns a zero similarity between d; and ds and between d, and d,. Thus, using the Cosine similarity measure, it is
not possible to differentiate a pair whose documents belong to the same document cluster (but does not share any
word) to a pair whose documents belong to different clusters.

At the first iteration of x-Sim, we observe a similar behavior and the similarity between (d;,ds) and (d,,d,) is
zero. This is because we initialize the word similarity matrix, C'*’, as an identity matrix and therefore are in the same
framework as any classical similarity measure. However at the second iteration, we use similarity values coming
from C'" and generate similarity values greater than zero for both (d;,ds) and (d,,d;). Similarly, the similarity value
between d; and d, is increased. Hence, at each iteration, some new similarities are induced between objects that are
not directly connected. Each induced similarity can be thought of as either strengthening an existing link or
introducing a new bridge between otherwise unrelated documents (or less similar documents).

It is important to note here that documents d, and d; belong to different document clusters but still have been
assigned a non-zero similarity value. However, this similarity value is significantly smaller (relatively speaking) to
the similarity value of document d, with each of documents d;,d;,d; and ds. Similarly, the similarity values between
document d; and each of d¢-dy is significantly higher (relatively speaking) than document d,. Nonetheless, it should
be noted that the possibility exists that such (relatively) small similarity measures, if coming from numerous sources
may add up to distort the similarity ranking between documents, particularly when the clusters are no so well
separated. Such a similarity value can be described as ‘noise’ since it associates a similarity value between objects
pairs (either words or documents) that do not belong to the same cluster. We shall further discuss this in section
3.5.5.

In the next section, we define what we have observed in this example in a more formal method with
foundations in graph theory. The theoretical explanation will provides us a intuitive way to reason the functioning of
the algorithm and enable us suggest ways to both incorporate prior knowledge into the method (for supervised

classification) and explore ways to reduce the effect of noise in the algorithm.

" Similar behavior is observed for other similarity/distance measures such as the Hamming distance, Euclidean
distance, etc.
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3.4. Theoretical Background

We now present a graph theoretical interpretation of the algorithm which would enable us to better understand the
working of the algorithm. In the rest of this section, we will be using the concept of graphs and paths (or walks) in a
graph, so we start by a few definitions.

Recall from section 2.1.2 of chapter 2 that a bipartite graph G={X,Y,E) is a function mapping pairs of X and
Y. X and Y are finite collection of elements, enumerated x,...,x,, and yi,...,y,. E is a set of weighted edges defining
these mappings. G is called an undirected graph if the values in E are symmetric and a directed graph otherwise.
Additionally, the mapping given by G enforces that there cannot exist a mapping between a pair in X or a pair in Y.
Such a graph can be represented by a matrix as in our case, where the rows (documents) form one set of the vertices,

the columns (words) forms the other set of the vertices and elements 4;; forms an edge between x; and y;. A path (or

walk) of length p in G is a sequence of nodes X, ,..., X; 1 (respectively ); ,..., V; ] ). The path is called a circuit if
14 pH P Pt

i1=i,+; and is called a simple path if all indices i are distinct for &=1,...,p. It is called a loop if the circuit has length
2. A loop is defined as x;/—y;—x; (respectively y—x—y;).

Consider the bi-partite graph representation of a sample data matrix in FIGURE 3.3 (a) having 6 documents
d,-dg and 6 words w;-ws. The documents and words are represented by rectangular and oval nodes respectively and
an edge between a document d; and a word w; in the graph corresponds to the entry 4; in the document-term matrix
A. In the following explanation, we omit the normalization factor for the sake of clarity which we will re-introduce
later.

There is only one order-1 path between documents d, and d, given by d,—>w,—d,. If we define the measure
of similarity between d, and ds, represented by our similarity matrix R'”;, where the superscript represent an order-1
walk, as a dot product of words contained by d; and d,, then the similarity value R, is given by the product 4,,4,,,
using f{(4;,Au)= A;jAu. This the same value as obtained by the element (AA")},. Note that since the C matrix is
initialized as identity, at the first iteration, R;, just corresponds to the dot product between the corresponding
document vectors a; and a, (since C=0 for all k#/) as given by equation (3.11). Similarly, there is only one order-1
path between the documents d; and d; given by d;—w;—d;, and the corresponding similarity value is given by
A3Az3. This is also the same value given by (AAT)13. The matrix R"Y = AAT thus represents all order-1 paths

between the pair of documents a; and a; (i,j = 1..m).
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Documents

FIGURE 3.3 (a) A bi-partite graph view of the matrix A. The square vertices represent documents and the rounded
vertices represent words, and (b) some of the higher order co-occurrences between documents in the bi-partite
graph.

The same notion can be applied when comparing similarity values between words. Words w, and wy have
only one order-1 path between them given by w,—d,—wy. This value corresponds to the element (7,7) of the matrix
multiplication of A" with A, given by (ATA),-j. Therefore, each element of C'"=ATA represents an order-1 path
between words a’ and @’ (i,j=1..n). We omit the normalization factors as it clear from equations (3.22) and (3.23)
which normalization is to be used.

Documents d; and d4 do not have an order-1 path but are linked together by both d, and d;. Such a path with
one intermediate vertex is called an order-2 path. The link between d; and d4 can be represented as a combination of
two order-1 paths from d; to d, and from d, to d4 (similarity from d; to d; and from ds to d4). The similarity value
contributed via the document d, can be explicitly represented as d;—»w,—d,—»w;—d,. The sub-sequence
w,—d,—w, represents an order-1 path between words w, and w4 which is the same as C“)M. The contribution of d,
in the similarity of RY 14 Via d, can thus be re-written as 4 126‘1)24/144. This is just the partial similarity measure since
d, is not the only document that provides a link between d; and d4. The similarity via d; (see FIGURE 3.3 (b)) is
given by 4;;C";,4,,. To find the overall similarity measure between documents d; and d,, we need to add these
partial similarity values given by 4,,C"",,4,, + A;;C;,4,,. Incidentally, this is the same value as given by the
product of the matrices (ACVA™),,. Hence, the similarity matrix R at the second iteration corresponds to paths of
order-2 between documents in the original matrix A.

Using the same analogy, words w; and w, do not have an order-1 path but are linked together by w, and wy.
Their similarity value is given by w;—d,—»w,—»d,—»w; + w;—d;—>w;—d;—w,. As before, the subsequence
d,—w,—d, is given by R 12 and d,—w;—dj; is given by R(l), ;. Therefore, the similarity between w; and wy is given
by 4; 1R(1) 1242t A; IR(I) 13434 which corresponds to the element (ATR(I)A)M. Thus, the matrix CP=ATRVA provides
all order-2 paths between a given pair of words. Using the same criteria, it is easy to show that R, R¥,... and C?,
CY,... provide paths of increasing order between pairs of documents and pair of words respectively. This is also
true for document (or word) pairs that might be connected by a lower order path. For example documents d; and d,
are connected by an order-1 path provided by w, but also an order-2 path provided by, say d; given by

d,—w;—d;—w,;—d,. In general, it can be shown similarly that the matrices
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(3.27) R = AC'PAT
and
(3.28) C) = ATR“VA

represent all order-¢ path between documents and between words respectively. Note that without the normalization

factor, we can represent R” and C" (since R and C’ are defined as I) as
(3.29) R =(AATY

(3.30) CY =(ATAY

Re-introducing the normalization factor (as described previously) enables us to influence the contribution of
different paths towards the similarity value based on the size of the document or number of occurrences of a given
word. Using A® and A€ to describe a row normalized and a column normalized matrix respectively, we could re-

write equations (3.27) and (3.28) as
(3.31) RY =A*C" (A"

(3.32) CY=(A“)"'RVPAC

Notice that equations 3.25 and 3.26 are similar to equations (3.31) and (3.32) with the added constraint that the
similarity value of a loop has unit weight.

We can now define the number of iterations to perform for x-Sim. At each iteration ¢, one or more new links
may be found between previously disjoint objects (documents or words) corresponding to paths with length of
order-#; and existing similarity measures may be strengthened since higher-order links signifies more semantic
relatedness. Iteration ¢ thus amounts to count the number of walks of ¢ steps between nodes.

It is worth noting here that iterating y-Sim will indeed result in a fixed point for similarity matrices R and C,
for non-neagtive values of A (i.e. 4,> 0) since R“"” >R” and 0 < R; < 1 and C*"" >C” and 0 < C; < 1 (see
Appendix III for proof). Iterating a large number of times would result in values of R and C to converge towards 1.
It has been shown that “in the long run”, the ending point of a random walk does not depend on its starting point
(Seneta 2006) and hence it is possible to find a path (and hence similarity) between any pair of nodes in a connected
graph (Zelikovitz and Hirsh 2001) by iterating a sufficiently large number of times. Moreover, redundant paths (see
section 3.5) results in higher values of similarities between any given pair of words or documents.

In practice, however, co-occurrences beyond the 3rd and 4th order have little semantic relevance and hence
are not interesting (Bisson and F. Hussain 2008; Lemaire and Denhiére 2006). Therefore, the number of iterations ¢

is usually limited to 4 or less.
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3.5. Non-Redundant Walks

The elements of the matrix after the first iteration, R"" are the weighted (by the strengths of the corresponding links)
number of one-step paths in the graph: the diagonal elements R,, correspond to the paths from each document to
itself, while the non-diagonal terms R,; count the number of one-step paths between a document » and a neighbor s
(Vr,s €1..m), which is just the number of words they have in common. The matrix R'" after the first iteration is thus
the adjacency matrix of the documents graph. Iteration ¢ amounts thus to count the number of paths of ¢ steps
between nodes.

Calculating paths as shown above, however, reveals a critical shortcoming. When counting the number of
paths of a given length, we consider two kinds of paths: paths that are compositions of lower length walks, for
example R®,, also contains a walk of the form d,—w,—d;—w,—d,. We refer to such a path as a non-elementary or
redundant path since it contains a circuit from w;, to itself. The second kind of paths are one in which no node is
repeated (i.e. it contains no circuit) which we refer to as a non-redundant or elementary path. The former, however,
do not add any new information between a given pair of documents or words being considered. Only paths that are
non-redundant contribute with new information between the document or word pair being considered since they
represent previously non-existent links in the bipartite graph. When calculating similarity values as discussed
previously, the number of redundant paths grows exponentially because they represent paths that go back and forth
between nodes that have been already visited. At the same time the contribution of the non-redundant paths is
relatively smaller with increasing ¢. Thus, it is possible that the new information in terms of new document links is
overshadowed by links of increasing (but redundant) length of previously connected nodes.

We explore here an alternative approach of the algorithm where we are interested in finding only the
elementary paths in equation ((3.22) and (3.23). Finding all ™ order elementary paths in a graph is a well known
NP-Hard problem. However, as described previously, we are only interested in finding paths of lower order
(typically ¢ < 4). We now proceed to illustrate a method of finding elementary paths of order 1, 2 and 3 in a given
bipartite graph. We concentrate on the document similarity matrix R, the arguments being transposable to word
similarity matrix, C. To make the presentation more intuitive we will adopt hereafter the paradigm of documents and

words instead of rows and columns.
3.5.1. Preliminary Consideration

Consider the mixed products of normalized matrices
(3.33) L =(A%(A9)"),

(3.34) L, =((A9)"AY),

of dimensions m x m and n X n respectively.

The above products may be written explicitly, to understand the burden introduced by the normalizing factors
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|
(3.35) LT =(A"(A9)"), = L D
ﬂr =t M
1 m AA
(3.36) L, =(A9)' A", =—> —~
’ Sy Z‘ H,

The sum in equations (3.35) and (3.36) are not simple scalar product of vectors. The sums depend on the dummy
normalization factors g and g, respectively, making the interpretation of these products not straightforward, even
for the diagonal elements. For example, the number of paths from document » to document s through word c, A, A,
are weighted by a factor 1/ that is higher the less frequent the word ¢ in the whole database and a factor g, that
depends on the number and frequency of words in document d,. Rare words are thus more relevant than frequent
ones, since they enhance the weight of paths through them. Similarly, the number of paths between the words i and j
are weighted by a factor 1=y, that is higher the less frequent the documents containing these words and a factor £/
that depends on the number of documents in which the word occurs and its frequency. The overall normalization in
each case makes it non-symmetric.
Due to their structure the matrices in equations (3.35) and (3.36) may be written as follows (since both

matrices present the same structure we drop the superscript): L,, = ,G,; and (L)Tm = L, = K,0,,, wWith o,, = o,,. Then
L., (LT)m = K,K,G,,0 4 1S Symmetric. As a consequence, the direct product LxL" and the matrix product LL" are

symmetric. Notice also that, if S is a symmetric matrix, then LSL is also symmetric. Using the relationship to

calculate R and C given by equations (3.22) and(3.23), we can expand their evolution as follows:

Iteration I: Using the initialization with identity matrices for R and C”, we have RV=ANAM" and CV=(A)"AC,
which are symmetric matrices. Since these are order-1 paths, they do not contain sub-paths that form a circuit and

are hence contains only non-redundant paths.

Iterations 2: The second iteration gives R® = AR(CM)AR) = ARASHTAYAM = LALLM and C? = (A9'(RM)A" =
(AHTAKAMTAC = (LY'LE, which is symmetric.

Iteration 3: The third iteration gives R® = ARAYTARA®'A“AM" which may be written as
RO=LRARAMTLYT. Similarly, C® = (A9)" ARAY)TAA™T A = LAY ALY

We now proceed to determine the contribution of the non-redundant paths in equations (3.22) and (3.23)
(more precisely a variant of the algorithm where the diagonal paths are not set to 1). We will be using the matrices

L"® and L and one has to handle them carefully, since they are not symmetric.
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3.5.2. Order 1 walks

FIGURE 3.4 Elementary paths of order 1 between two different nodes (» and s) and between a node and itself (only
represented with dashed lines for nodes r and s.) In red: the paths included in matrix L®.

FIGURE 3.4 above represent the elementary paths of order 1. As mentioned previously, R" and C" contains paths

of order one only and hence do not contain any redundant paths.

3.5.3. Order 2 walks

FIGURE 3.5 In red: elementary paths of order 2 between two different nodes (» and 5). Any combination of 2-steps
(dashed) paths is a redundant (not elementary) path. These are not counted in L.

Initializing with the identity matrix, we get R? = L¥LY¥" and C? = (L)"LE. In the following, we represent by a
generic matrix L the adjacency matrix of the graph. We describe a way of calculating similarity based on non-
redundant paths between documents, the approach being similar for word similarity. We drop the super-indices as it
is clear which one of equation (3.33) or (3.34) is being referred to depending on whether we are calculating R or C
respectively. Also we denote L0 as a matrix that has the same out-of-diagonal elements as L but vanishing diagonal

elements:

(3.37)

L0, = {0 forr=s

L otherwise

The elementary paths of order 2 are of the form r— a —s (where we use Greek letter for the dummy
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variables in the sums) given by

L(Z)VS = Z Lora (LO)T(JS = ZLOWI (LO)T(IS

(3.38) L2 = (LO(LO)"),,

Notice that, since the diagonal elements of matrix L0 vanishes, the constraint o#r,s in the sum is
automatically taken into account. FIGURE 3.5 represent some self-avoiding paths of order two between two
different nodes. The diagonal elements L?,, of L' represent walks that goes from node r to a neighboring node and
come back to . We define LO® that has the same out-of-diagonal elements as L® but with vanishing diagonal

elements.

3.5.4. Order 3 Walks

FIGURE 3.6 In red: elementary paths of order 3 between two different nodes (r and s). In blue (dashed lines): a
redundant path.

Here, we are interesting in finding paths of the form »— a— S —s. The number of elementary paths of order 3 is

given by LRARAMTHLY!. If we substitute AR(A®)" as B, then we have

(3.39) = > LB

rs ra "o g
a#r,s;f#r,s;a#f

Using L0 instead of L and B0 instead of B eliminates the constraints a#r and a#f, r#a and f#s since it

eliminates paths of the form r— a— a —s, ¥ — r— r —s and r— s — s —s. Hence L(3)m is given by

(3.40) L(S)rs = z Lora BO(XI)’LOﬁS

a#s;f#r

By relaxing the condition a+s, we need to explicitly remove paths of the form r— s— f—s. Therefore

LY =>"10,B0,L0, —> L0, B0,LO,

a,p#r p#r

Removing the constraint f#s makes it necessary to remove paths of the form r—a—r—s
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L(3)rs = z Lora BO(X/)’ LOﬁv - z Lors BO?/)’ LOﬁv - Z LOra Boar Lors
a;p B#r a

Since

;LOrSBOSﬂLOﬂS = ;LO,SBOSﬂL()ﬂS ~L0, B0, L0,

We obtain, by collecting terms:

(3.41) £, =[ LOBO(LO)" |, L0, [LOBO] —[LOBO] (L0)) +| LOBO(LO)" |

s rs

This amounts to counting all the self-avoiding paths of two steps starting from 7 to any intermediate node a and then
making one step to reach s. Since the matrices have vanishing diagonal terms, they guarantee that walks like » — s
—f — s (see dotted paths in FIGURE 3.6) or r — a —r — s are not counted.

We can enhance this, using the same method as presented above, to calculate paths of order-4 and above.
As compared to equations 3.22 and 3.23 in section 3.3.6 which contains all paths (including redundant paths)
between pairs of documents and pairs of words respectively, equations (3.38) and (3.41) contain only paths that
corresponds to paths order-2 and order-3. Thus, to determine the similarity between documents (or words) at
iteration ¢, one way could be to combine these individual similarity measures as follows (Chakraborti, Wiratunga, et

al. 2007)
3420 RO=w -RY+W, - (L)? +...+W, - (L)

(343 CY=w,-CY+W, - (L)? +..+ W, -(L)"

where W), W,, etc are the weights associated with combining paths of order-1, order-2, etc.

3.5.5. Pruning Threshold

The method examined in the previous sub-section (3.5.4) enables us to calculate higher order co-occurrences

between documents and words. A closer look at the method, however, highlights a couple of drawbacks.

- Firstly, calculating elements of L"), requires that we perform several matrix multiplication operations and
store the intermediate result. This is necessary since we calculate all the existing paths between two objects
and then successively remove those that are redundant. Moreover, to calculate the final similarity matrix
R" (or C”) we need to stock all lower-order similarity matrices L for 1<i<t. For large values of m and n,
these matrices will have significant effect on the space complexity of the algorithm.

- Secondly, combining matrices as done in equations (3.42) and (3.43) requires finding weighting parameters

W1,W,, etc which is not a trivial task for unsupervised learning (Chakraborti, Wiratunga, et al. 2007).

To understand the burden of higher order redundant paths in the original y-Sim algorithm, we consider the

example given in FIGURE 3.3 (an abstract of which is shown below for easy referencing) and examine paths of
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order-2 between documents d, and d,. The second order paths between d, and d, are listed below

(1) dz—)Wz—)dz—)W4—>d4

(11) dz—)W4—)d2—)W4—)d4 L4

(111) dz—)W4—>d3—)W4—>d4 ¢

(IV) dz—)W4—)d4—)W4—)d4 L4
(V) dz—)W4—>d4—)W5—>d4
(Vl) dz—)W4—)d4—)W6—)d4

Note that when using the word similarity matrix C as in equations 3.31 and 3.32, the paths indicated above
with the symbol “#” (paths (ii),(iii) and (iv)) shorten to d,—Cs—d,;. As described in section 3.3.6 where we
explained the y-Sim algorithm, elements along the diagonal of R and C are set to 1 at every iteration, hence Cyy=1.
The contribution towards the similarity between d, and d, resulting from these 3 paths will be Ay Ay which is the
same as the order-1 similarity between the documents as a result of sharing a common word. Paths (v) and (vi)
contribute to the similarity value between d, and d, using word pairs that belong to different clusters (pairs (w4,ws)
and (w4, ws)) while path (i) contribute to the similarity using word pairs that belong to the same cluster as shown in
FIGURE 3.3.

It is interesting to observe that non-redundant paths of second order using equation (3.38) would have
eliminated all the paths except (iii) since all other paths contain a circuit between d, or d4. At the first iteration, the
only similarity between d, and d; and between d; and d4 comes via w,. Hence at the second iteration when using
non-redundant paths, the similarity between other words in documents d, and d, with their common word w, would
have no influence on the similarity between d, and ds. Using y-Sim takes these similarities into account i.e.
similarities between words w, of d, and words ws and wg of d4 with w, Such similarities, however, would only make
sense if they represent a strong (distributional) similarity relationship. Otherwise random co-occurrences that may
not correspond to significant statistical relationships would overemphasize the similarity value since redundant paths
could possibly bias the similarity between two objects as stated previously. Similarly, when comparing a document
pair whose words belong to different clusters, such redundant paths could possibly over-emphasize their similarity
value and distort the similarity rankings. As seen in our example of the y-Sim algorithm in section 3.3.7, such
similarity values tends to be smaller relative to word pairs that belong to the same cluster. Intuitively, words that
belong to the same cluster have higher values since they occur in documents that are closely linked together than
documents that appear in different clusters.

Based on this observation, we tentatively introduce in the y-Sim algorithm a parameter, termed pruning
threshold and denoted by p, that sets to zero the lowest p% of the similarity values in the matrices R and C. The

idea behind this pruning threshold is as follows:

- To minimize the influence of random links between pairs of documents or words. Intuitively, document or
word pairs that have very low similarity values are not semantically related and, therefore, any semantic
links formed by such pairs may not carry the desired information.

- To minimize the effect of similarity propagation across document (and word) pairs that do not belong to the
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same cluster as discussed previously.

The two formulae for calculating R® and C* at a given iteration & using the pruning parameter, p, is given by the

following equations.

1 ifi=j
(3.44) RW =

if |:ARC(1'—1) (AR )T:|

1 ifi=]
(3.45) ¢’ = [(AC)T R(”)AC}

>p

>p

Where the subscript “>p” signifies that only elements higher than the lowest p % of the similarity values are

considered. When using pruning, we will denote the algorithm as y-Sim,,
3.6. Relationship with Previous Work

Some of the algorithms introduced in chapter 2 (section 2.4) as alternate approaches to text clustering, use (either
explicitly or implicitly) the underlying structure to estimate the underlying structure available within the dataset. In

this section, we compare 3 other approaches which are closely related to our algorithm.

3.6.1. Co-clustering by Similarity Refinement

Jiang Zhang (J. Zhang 2007) proposed the ‘co-clustering by similarity refinement” method which iteratively
calculates two refinement matrices to generate similarity matrices. Using our notation where R and C are the two
similarity matrices that contain similarity between objects (documents) and between features (words) respectively,
we define two new matrices - R,.rand C, - their corresponding refinement matrices. The idea of using refinement
matrices is to extend the classical object similarity measure (one which considers that features belong to an
orthogonal space) to include the clustering structure of the feature space and vice versa. The concept is similar to
using ‘similar words’ and ‘similar documents’ to contribute in the similarity measure as proposed in our algorithm.
Ideally, the elements of the refinement matrices should correspond to 1 if the elements belong to the same cluster or
0 if they belong to different clusters. Since the true cluster structure is not known, the conditions on the refinement
matrices are relaxed such that the values are either close to 1 or close to 0 depending on whether the elements are
close together or not. In practice, the refinement matrices are estimated from the similarity matrices (as described
below).

We define the similarity functions simR(a,-,a,‘,C,.qf) and simc(ai,a/,C,.qf) that uses the refinement matrices to
calculates the revised similarity values for R and C respectively. We will define these functions in a moment.

Similarly, we define by &(a;) the (normalized) coordinate vector of a; in a k-dimensional space using spectral
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embeddingM. The algorithm is then given by:

1. Compute initial similarity matrices, R and C (using some similarity metric, e.g. Cosine measure)
2. Obtain Va; € A, &@a,) from R
and va' € A, £(@') from C.
3. Construct refinement matrices:
(Rrep)y — &a)) » &(ay)
(Crp)j — &a') o &@)

“g”

where is the inner product.
4. Recompute similarity:
RU <« SimR(a[, aj, Cref)
C;j < sim“(a’,a R,
5. Cluster using R and C.
For two documents a; and a; with terms s and ¢ that are closely related, we would like A;-A; (and A;-Aj)

contribute to the similarity between a; and a;. Therefore, we use the refinement matrix to transform a; and a; such

that each element that belongs to the same cluster is aligned after the transformation. For a refinement matrix R,

A

Rm, is obtained after normalizing each column vector of R, using the L-2 norm. Then for each document a; and a;

the similarity is obtained by

k=l..nl=l.n

(3.46) SimR(ai’aj ’ergf): Z Z ((f.re{f)k o ( ref) ) H H

where (f'mf)k J(F,, )' represent the k" and /" column vectors of R, ,and (f'mf)k o (F,, ) will be close to 1 if terms

i and j belongs to the same cluster and close to 0 otherwise. Steps 2 through 4 may be repeated several times to

refine the values of the similarity matrices.

As compared to the y-Sim algorithm, the similarity refinement algorithm differs in two ways. Firstly, instead of
using the similarity values between rows (or columns) directly, an intermediate refinement value is used that is
based on the similarity distribution (across the documents or terms) in a k-dimensional embedded space. Secondly
(as discussed in section 3.3.5), the L-2 normalization used in their algorithm may not be well suited when
calculating this kind of similarity values, since ||a],.]|lajll. < (3.(a;)) (3(a;)) and the numerator might increase faster

then the denominator, thereby the refinement may overestimate the similarity value.

3.6.2. Similarity in Non-Orthogonal Space (SNOS)

The SNOS algorithm (N. Liu et al. 2004) is quite similar to our x-Sim algorithm and was proposed to deal with

' Spectral embedding computes the k eigenvectors with the largest Eigen values of R (or C). Let ey, e,, ...¢; be
these eigenvectors, then the coordinates of a; are the normalized version of the vector <e (i), e,(7),... ex(i)>

75



Chapter 3 Co-Similarity Based Co-clustering

situations where the input space is non-orthogonal such as in text clustering. Using the notation introduced for the

x-Sim algorithm, we define the SNOS algorithm as follows
(3.47) R® = &AC(H)AT +(L1)(H)
(348) C(i) — ZZATR(FDA_’_ (Lz)(i—l)

Where L,"=I - diag(klAR(i)AT) and L,"=I - dzag(szTC(’)A) A; and A, are normalizing factors satisfying the
2 2
property /11 < ”A”l and Az < ”A”OO corresponding to the /-norm and infinity norm of the matrix A. The /-norm of

m
a matrix is the maximum column sum of the matrix (”A” = max {Z‘Aij‘}) and the infinity norm of a matrix is
i=1

1<j<n

1<i<m

the maximum row sum of the matrix (”A” = max {i ‘Aij‘} .

The two matrices L; and L, acts as reinitializing the diagonal elements to 1 at each iteration and SNOS differs
primarily in the normalization step when compared to y-Sim. Instead of normalizing by the length of the
corresponding row/vectors, SNOS defines the normalization as 4,=4,=0.9/max{||Al|;, ||All»}. Although the
normalization guarantees that the similarity values belong to the interval {0,1}, it is not suitable for comparison of

vectors of different lengths (section 3.3.5).

3.6.3. The Simrank Algorithm

The Simrank algorithm was first proposed by (Jeh and Widom 2002) as a structural context based similarity measure
that exploits the object-to-object relationships found in many application domains, such as web link where two
pages are related if there are hyperlinks between them. The Simrank algorithm analyzes the graphs derived from
such datasets and computes the similarity between objects based on the structural context in which they appear.

Recall from the definition of a graph in section 2.1.2 that a bi-partite graph G={X,Y,E} consists of 2 sets of
vertices X and Y and a set of edges E between nodes of X and nodes of Y. For a node v in the graph, we will use the
authors notation and denote I(v) as the set of in-neighbors and O(v) the set of out-neighbors where individual in-
neighbors are denoted by I(v) for 1 <i < I(v) and individual out-neighbors as O,(v) for 1 <i < O(v). If we consider
documents as containing words in the document-by-term matrix, then each word in a document is its out-neighbor
and each document which contains a word is its in-neighbor. Let us denote by S(a,b) the similarity obtained using
Simrank between the objects a and b (S(a,b)[0,1]). Similarly, let S(c,d) denote the similarity between terms ¢ and d
(S(c,d)€[0,1]), then

- for a#b, we define S(a,b) as

¢ lowlow)

(3.49) S(a, W Z Z 5(0,(a),0,(b))

- and for c#d, we define S(c,d)
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¢, W

d
|I( )||I(d)|;,z;‘ s(1;(c),1,;(d))

For a=b and ¢=d, we define S(a,b)=1 and S(c,d)=1 respectively. C; and C, are constants (whose values are less than

(3.50) S(c,d

1) and are used so that all similarity values S(a,b) with a#b are less than 1. This was introduced as a measure of
uncertainty when comparing documents (words) of different indices since we can not be sure they represent the
same document (words). As in x-Sim, we start by initializing R and C with the identity matrices I and iteratively re-
compute R and C using equations (3.49) and (3.50) respectively.

The Simrank algorithm provides for an interesting comparison as it can be shown to be a special case of the -
Sim algorithm. Equations (3.49) and (3.50) corresponds to a non-directed, non-weighted bipartite graph (weights on
the edges are 1). This corresponds to a binary matrix A, where only the existence of non-existence of a term in a
document is represented by 1 or 0. Without loss of meaning, we could re-write equations (3.49) and (3.50) for the

case where i#/ and using our notation as

C n n i ;
(3.51) S(a,,a )= L A4,-S(@",a )4
DS S Z ‘ !
k=1..n k=l..n
(3.52) S(a* al):LiiA. .S(a,,a,)A4,
| ’ z Atk Ail i=l j=1 * B
i=l.m i=l.m

since A;€[0,1] Vij. Equations (3.51) and (3.52) form a generation of (3.49) and (3.50). As a result of the change in
normalization, we can now have equations (3.51) and (3.52) take any values in A. Equations (3.51) and (3.52) are
equivalent to equations (3.22) and (3.23) (except for the constants C; and (). In this sense, one could consider -
Sim as a more generalized version of the Simrank algorithm that can deal with non-boolean values in A. (but still
differ since x-Sim deos not use the Coefficients C; and C,) This is of significant importance since not only can we
use weighted input matrices (such as #f~idf, section 2.1) for document (co-)clustering, but we can also use the x-Sim
algorithm to deal with other data such as those involving gene expressions (Chapter 5) which is not possible using

the Simrank approach.

3.6.4. The Model of Blondel et al.

Several algorithms have been proposed for the case of matching similarity values between vertices of graphs.
Kleinberg (Kleinberg 1999) proposed the Hypertext Induced Topic Selection (HITS) algorithm that exploits the
hyperlink structure of web, considered as a directed graph, to rank query results. The premise of the HITS algorithm
is that a web page serves two purposes: to provide information and to provide links relevant to a topic. The concept
is based on the Hub and Authority structure. Authorities are web pages that can be considered relevant to a query,
for instance, the home pages of Airbus, Boeing, etc are good authorities for a query “Airplanes”, while web pages
that point to these homepages are referred to as Aubs. We can derive a simple recursive relation between hubs and

authorities — a good hub is one that points to many authorities while good authorities are those that are pointed to
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by many hubs.
Given a graph G=(V,E), let h* and a* be the vectors corresponding to the hub and authority scores associated
with each vertex of the graph at iteration &, we denote a*(p) and h'(p) to identify the authority and hub scores of a

vertex p. The HITS algorithm can be expressed in the following iterative manner

k+l . k
(3.53) a"(p)=2, (9

(3.54) h'(p)=2. 2@

where g—p denotes that the webpage ¢ contains a hyperlink towards page p. The initial values a’(p) and h’(p) are

initialized to 1 and then iteratively updated using equations (3.53) and (3.54) respectively. The values of a* and h*

are normalized at each iteration such that Zi a® ()= Zi h* (i)=1.

The HITS algorithm described above allows for the comparison of each node of a graph of the following structure,

H >

Figure 3.7 A Hub— Authority graph

Blondel et al. (Blondel et al. 2004) proposed a generalization of the HITS algorithm for all graphs. Blondel et
al. considered similarity measures of a directed graph i.e. based on asymmetric adjacency matrices, which allows us
to compare the similarity between nodes of one graph, say G;, and another graph, say G,. The concept is similar to
other methods we have studied (SimRank, y-Sim, etc) but extended to two graphs and applied on directed graphs —
anode i in G, is similar to a node j in G, if the neighborhood of i in G, is also similar to the neighborhood of j in G,.
Let n; and n, be the number of vertices in G; and G, respectively, we define a similarity matrix S (of dimensions 7,

by n,) given by the following recursive equation,
(3.55) S =L,S'L," +L,"S‘L,

where L, and L, are adjacency matrices of G; and G, respectively and S, is initialized by setting all elements to 1.
One may introduce a normalization factor to ensure convergence, such as dividing S;.; by its Frobenius Norm (see
section 2.5.1) which has been shown to converge for even and odd iterations (Blondel et al. 2004).

A special case for the similarity matrix in equation (3.55) for computing similarity between vertices of the same

graph, where G;=G,=G and L;=L,=L is given by,

. LS“'IT + 'S 'L
ustrr st

(3.56)
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The method of Blondel et al. has been used for the extraction of synonyms with considerable success (Blondel
et al. 2004). The data consists of a matrix, which corresponds to a directed graph, constructed from a dictionary
where each node of the graph is a word and there exists a link (edge) between vertex (representing a word) i and
vertex j if vertex j appears in the definition of i. A word, w, corresponding to a query, is chosen for which its
neighborhood graph G,, is constructed. Note that G,, is a sub-graph of G representing only vertices in which w
appears. A sample sub graph for the word “likely” is given in Figure 3.8. They then compare the similarity score of
the vertices of the graph G,, with the central vertex of the structure graph

1523
and the resulting words are ranked by decreasing score. In other words, we rank each word w’ based on the
similarity score between words that has w” in their definition with those words that have w in their definition, and

the similarity score between words that appear in the definition of w” with those that appear in the definition of w.

. adapted
invidious . 1

likely ——

FIVINE

truthy SIVINng

probable belief

verisimilar \
probably

Figure 3.8 Part of the neighborhood graph associated with the word “likely”. The graph contains all words used in
the definition of likely and all words using likely in their definition (Blondel et al. 2004).

Comparison with the y-Sim Measure

The similarity measure given in equation (3.56) corresponds to the similarity score between vertices in a
directed graph. We can consider a special case where the adjacency matrices are symmetric i.e. undirected graph,

and G;=G,=G. The resulting similarity matrix can be expressed using the matrices as
1 B
(3.57) S =r————MS“M
s+ m],

since L=L". Note that if we drop the normalization factors and the fact that we define R¥;=1 (i.e. set the diagonal to
1 at each iteration), we can observe a similarity between our x-Sim similarity measure and the score obtained using
Blondel et al. By replacing the values of C in equation (3.22) from equation(3.23), we can obtain the following

recursive equations for x-Sim (note that in our case AA'=L),

RO=1 CcO=1
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ROV=ACOAT-AAT=L C"-A"TRVA=-ATA
RP=ACA™=AATAA-LR"L CP=A'RVA=ATAATA
R(3):AC(0)AT:A AT AAT A AT: LR(I)L C(l):ATR(O)A:ATAATAATA

and in general RP=LR*?L. We can now re-introduce the normalization factor as previously (section 3.5.1). Let L*

and L be the two row and column normalized adjacency matrices given by equations (3.35) and (3.36) respectively,

then

(3.58) R — [RR*-? (L))
and

(3.59) C¥ = LcC @y
for £>3.

These recursions show that the calculation of matrices R and C can be disentangled. Comparing equations
(3.58) to (3.57), we observe that (apart from the difference in normalization), the similarity values at iteration &
depends on those of £-2 rather than k-1. One can interpret this graphically as follows: multiplying the adjacency
matrix AA" compares vertices i and j by their common neighbors. Therefore, one needs two iterations to compare
the similarity between the neighbors of i with the neighbors of j as expressed in terms of the matrix L in

equation(3.58).

(a) (b)

Figure 3.9 A sample graph corresponding to (a) the adjacency matrix A, and (b) the adjacency matrix L

There are certain differences, however, between the model of Blondel et al. and our method. Firstly, our
normalization is dependent on the document and word vector sizes. This, we believe, is particularly important in the
case of document clustering as will be seen in the experimental part (section 4.5.4) where we compare our method to
SNOS method (section 3.6.2) that primarily differ in the normalization. Secondly, the initialization used by Blondel

et al. corresponds to the matrix 1 i.e. setting all elements of R“ to 1 while our initialization uses the identity matrix.

80



Chapter 3 Co-Similarity Based Co-clustering

Thirdly, as mentioned previously (section 3.3.6), we set the diagonal values of R® and C* to 1 at each iteration
which is not the case in the method of Blondel et al.

One may also compare x-Sim with the method of Blondel et al. by using the adjacency matrix L instead of A as
the input matrix. The difference between the two is shown in Figure 3.9. Using x-Sim to compute the document
similarity matrix R as given in equation(3.22), we compute the similarity between vertices (documents) 7 and j (R;)
by taking the element A that corresponds to the edge between document i and word & (Figure 3.9a) and multiplying
it by the element (Aﬂ)T which corresponds to the edge from word / to document j (Vijel..m, Vklel..n). When
comparing word k and /, we multiply by their similarity C,.. Now if we use the adjacency matrix L, using the same
analogy, comparing documents i and j now corresponds to multiplying Ly with L (Vi,jk/el..m) and comparing

document k& with document / (Figure 3.9b) requires the similarity R;;. The corresponding equation is given by,

(3.60) R" = (L®NR)R*V(L®NR)

since L=L" and NR is a normalization matrix as defined in section 3.3.6. We see that equation (3.60) is very similar
to equation (3.57) of Blondel et al. The difference, of course, is in the normalization.

Notice that the similarity value given by equation (3.60) is no longer a co-similarity measure since the
similarity between documents i and j is given by their shared documents irrespective of the individual words that
contribute to this similarity i.e. documents are similar if they have similar (document) neighbors but not necessarily

if they share similar words.

3.6.5. Other Approaches

The proposed measure could also be compared to several other approaches for instance the Latent Semantic
Analysis (LSA) technique described in section 2.4.1. LSA also considers the words when analyzing documents since
using SVD is reduces the dimensionality of both rows and columns. Moreover, as was discussed previously in the
same section, a low rank approximation to the original matrix A also takes (implicitly) certain higher-order co-
occurrences into account. However, unlike our approach LSA is not iterative in nature and doesn’t explicitly
compute similarities between rows or between columns while generating the low rank matrix.

Here we compare another we would like to mention another such technique called Correspondance Analysis
(CA). Correspondence analysis is an exploratory technique designed to analyze simple two-way and multi-way
tables containing some measure of correspondence between the rows and columns. These methods were originally
developed primarily in France by Jean-Paul Benzérci in the early 1960's and 1970's (e.g., see for instance (Benzécri
1969) but have only more recently gained increasing popularity in English-speaking countries (Carroll, Green, and

Schaffer 1986). °

As opposed to traditional hypothesis testing designed to verify a priori hypotheses about relations between

variables, exploratory data analysis is used to identify systematic relations between variables when there are no (or

!5 Note that similar techniques were developed independently by different authors, where they were known as
optimal scaling, reciprocal averaging, optimal scoring, quantification method, or homogeneity analysis
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incomplete) a priori expectations as to the nature of those relations. Its primary goal is to transform a table of
numerical information into a graphical display, in which each row and each column is depicted as a point. Let x
denote the vector corresponding to the mean score of the rows, called “row scores” and y correspond to a vector of
“column scores”. Let Sum(a;) denote the sum of the elements of the row vector a; and Sum(a’) denote the sum of the
elements of the column vector @', Also let D, denote the diagonal matrix of row sums and D, to denote the diagonal

matrix of column sums. We can calculate the calibrated row scores based on the column scores as

x;m) :Z,Ary(")/ sum(a;) and the column scores, now based on the calibrated row scores
i i

as yl.(”l) = z/ Al.jxy) / sum(ai) . The corresponding equations for calculating x and y are

(3.61) x =D 'Ay"”

(3.62) y' =D 'A"X

The process is known as two way averaging algorithm and its eigenvectors are the solution to the
correspondence analysis problem of the matrix A (Hill 1974). The row analysis of a matrix consists in situating the
row profiles in a multidimensional space and finding the low- dimensional subspace, which comes closest to the
profile points. The row profiles are projected onto such a subspace for interpretation of the inter-profile positions.
Similarly, the analysis of column profiles involves situating the column profiles in a multidimensional space and
finding the low-dimensional subspace, which comes closest to the profile points. In a low k-dimensional subspace,
where k£ is less than m or n, these two k-dimensional subspaces (one for the row profiles and one for the column
profiles) have a geometric correspondence that enables us to represent both the rows and columns in the same
display. The row and column analyses are intimately connected. If a row analysis is performed, the column analysis
is also ipso facto performed, and vice versa. The two analyses are equivalent in the sense that each has the same total
inertia, the same dimensionality and the same decomposition of inertia into principal inertias along principal axes.

Correspondance analysis uses a similar concept to ours that updates values of x based on values of y and vice
versa.However, in this case we are not finding similarity values between row objects or column objects as given 