V. Critère-de, Les multiples possibilités du nano-contact printing, p.130

I. Figure, Images de MEB du substrat de silicium après transfert des nanotubes à partir d'un timbre de PDMS comportant des motifs en creux

I. Figure, Courbes d'intensité en fonction de la tension d'un nanotube ou fagot métallique (en haut) et d'un nanotube ou fagot semi-conducteur (en bas)

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

J. C. Charlier, X. Blase, and S. , Electronic and transport properties of nanotubes, Reviews of Modern Physics, vol.79, issue.2, pp.677-732, 2007.
DOI : 10.1103/RevModPhys.79.677

S. Ghosh and C. N. Rao, Separation of metallic and semiconducting single-walled carbon nanotubes through fluorous chemistry, Nano Research, vol.112, issue.3, pp.183-191, 2009.
DOI : 10.1007/s12274-009-9016-9

T. W. Ebbesen, H. Hiura, J. Fujita, Y. Ochiai, S. Matsui et al., Patterns in the bulk growth of carbon nanotubes, Chemical Physics Letters, vol.209, issue.1-2, pp.83-90, 1993.
DOI : 10.1016/0009-2614(93)87206-I

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Catalytic growth of single-walled manotubes by laser vaporization, Chemical Physics Letters, vol.243, issue.1-2, pp.49-54, 1995.
DOI : 10.1016/0009-2614(95)00825-O

J. J. Schneider, C. N. Hagen, and E. J. Ensling, Metallorganic Routes to Nanoscale Iron and Titanium Oxide Particles Encapsulated in Mesoporous Alumina: Formation, Physical Properties, and Chemical Reactivity, Chemistry, vol.6, issue.23, pp.4305-4321, 2000.
DOI : 10.1002/1521-3765(20001201)6:23<4305::AID-CHEM4305>3.0.CO;2-N

A. Peigney, . Ch, F. Laurent, A. Dobigeon, and . Rousset, Carbon nanotubes grown in situ by a novel catalytic method, Journal of Materials Research, vol.12, issue.03, pp.613-615, 1997.
DOI : 10.1557/JMR.1997.0092

URL : https://hal.archives-ouvertes.fr/hal-00972028

H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert et al., Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chemical Physics Letters, vol.260, issue.3-4, pp.471-475, 1996.
DOI : 10.1016/0009-2614(96)00862-7

G. Diaz, M. Benaissa, J. G. Santiesteban, and M. Jose-yacaman, Carbon Nanotubes Prepared by Catalytic Decomposition of Benzene Over Silica Supported Cobalt Catalysts, Fullerene Science and Technology, vol.48, issue.5, pp.853-866, 1998.
DOI : 10.1126/science.265.5172.635

J. Wei, L. Ci, B. Jiang, Y. Li, X. Zhang et al., Preparation of highly pure double-walled carbon nanotubes, Journal of Materials Chemistry, vol.13, issue.6, pp.1340-1344, 2003.
DOI : 10.1039/b300484h

T. Sugai, H. Yoshida, T. Shimada, T. Okazaki, H. Shinohara et al., New Synthesis of High-Quality Double-Walled Carbon Nanotubes by High-Temperature Pulsed Arc Discharge, Nano Letters, vol.3, issue.6, pp.769-773, 2003.
DOI : 10.1021/nl034183+

S. Iijima, C. Brabec, A. Maiti, and J. Bernholc, Structural flexibility of carbon nanotubes, The Journal of Chemical Physics, vol.104, issue.5, pp.2089-2092, 1996.
DOI : 10.1063/1.470966

T. Ogasawara, Y. Ishida, T. Ishikawa, and R. Yokota, Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites, Composites Part A: Applied Science and Manufacturing, vol.35, issue.1, pp.67-74, 2004.
DOI : 10.1016/j.compositesa.2003.09.003

F. H. Gojny, M. H. Wichmann, U. Köpke, B. Fiedler, and K. Schulte, Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content, Composites Science and Technology, vol.64, issue.15, pp.2363-2371, 2004.
DOI : 10.1016/j.compscitech.2004.04.002

H. Miyagawa, M. Misra, and A. K. Mohanty, Mechanical Properties of Carbon Nanotubes and Their Polymer Nanocomposites, Journal of Nanoscience and Nanotechnology, vol.5, issue.10, pp.1593-1615, 2005.
DOI : 10.1166/jnn.2005.181

A. Peigney, . Ch, E. Laurent, A. Flahaut, and . Rousset, Carbon nanotubes in novel ceramic matrix nanocomposites, Ceramics International, vol.26, issue.6, pp.677-683, 2000.
DOI : 10.1016/S0272-8842(00)00004-3

URL : https://hal.archives-ouvertes.fr/hal-00957547

E. Flahaut, A. Peigney, . Ch, C. Laurent, F. Marlière et al., Carbon nanotube???metal???oxide nanocomposites: microstructure, electrical conductivity and mechanical properties, Acta Materialia, vol.48, issue.14, pp.3803-3812, 2000.
DOI : 10.1016/S1359-6454(00)00147-6

URL : https://hal.archives-ouvertes.fr/hal-00938352

A. Peigney, E. Flahaut, . Ch, F. Laurent, A. Chastel et al., Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion, Chemical Physics Letters, vol.352, issue.1-2, pp.20-25, 2002.
DOI : 10.1016/S0009-2614(01)01441-5

URL : https://hal.archives-ouvertes.fr/hal-00990974

B. Q. Wei, R. Vajtai, and P. M. Ajayan, Reliability and current carrying capacity of carbon nanotubes, Applied Physics Letters, vol.79, issue.8, pp.1172-1174, 2001.
DOI : 10.1063/1.1396632

H. Kajiura, A. Nandyala, and A. Bezryadin, Quasi-ballistic electron transport in as-produced and annealed multiwall carbon nanotubes, Carbon, vol.43, issue.6, pp.1317-1339, 2005.
DOI : 10.1016/j.carbon.2004.12.004

H. Kajiura, H. Huang, and A. Bezryadin, Quasi-ballistic electron transport in double-wall carbon nanotubes, Chemical Physics Letters, vol.398, issue.4-6, pp.476-479, 2004.
DOI : 10.1016/j.cplett.2004.09.115

J. Li, C. Papadopoulos, J. M. Xu, and M. Moskovits, Highly-ordered carbon nanotube arrays for electronics applications, Applied Physics Letters, vol.75, issue.3, pp.367-369, 1999.
DOI : 10.1063/1.124377

J. Dijon, A. Fournier, P. D. Szkutnik, H. Okuno, C. Jayet et al., Carbon nanotubes for interconnects in future integrated circuits: The challenge of the density, Diamond and Related Materials, vol.19, issue.5-6, pp.382-388, 2010.
DOI : 10.1016/j.diamond.2009.11.017

G. Yu, A. Cao, and C. M. Lieber, Large-area blown bubble films of aligned nanowires and carbon nanotubes, Nature Nanotechnology, vol.303, issue.6, pp.372-377, 2007.
DOI : 10.1038/nnano.2007.150

G. Che, B. B. Lakshmi, C. R. Martin, and E. R. Fisher, Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method, Chemistry of Materials, vol.10, issue.1, pp.260-267, 1998.
DOI : 10.1021/cm970412f

J. Li, C. Papadopoulos, and J. M. Xu, Highly-ordered carbon nanotube arrays for electronics applications, Applied Physics Letters, vol.75, issue.3, p.367, 1999.
DOI : 10.1063/1.124377

E. Flahaut, F. Agnoli, J. Sloan, C. O. Connor, and M. L. Green, CCVD Synthesis and Characterization of Cobalt-Encapsulated Nanoparticles, Chemistry of Materials, vol.14, issue.6, pp.2553-2558, 2002.
DOI : 10.1021/cm011287h

L. Ding, D. Yuan, and J. Liu, Growth of High-Density Parallel Arrays of Long Single-Walled Carbon Nanotubes on Quartz Substrates, Journal of the American Chemical Society, vol.130, issue.16, pp.5428-5429, 2008.
DOI : 10.1021/ja8006947

L. Ding, A. Tselev, J. Wang, D. Yuan, H. Chu et al., Selective Growth of Well-Aligned Semiconducting Single-Walled Carbon Nanotubes, Nano Letters, vol.9, issue.2, pp.800-805, 2009.
DOI : 10.1021/nl803496s

A. Jorio, M. A. Pimenta, A. G. Souza-filho, R. Saito, G. Dresselhaus et al., Characterizing carbon nanotube samples with resonance Raman scattering, New Journal of Physics, vol.5, pp.139-140, 2003.
DOI : 10.1088/1367-2630/5/1/139

J. F. Joanny and P. G. De-gennes, A model for contact angle hysteresis, The Journal of Chemical Physics, vol.81, issue.1, pp.552-562, 1984.
DOI : 10.1063/1.447337

A. S. Dimitrov and K. Nagayama, Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces, Langmuir, vol.12, issue.5, pp.1303-1311, 1996.
DOI : 10.1021/la9502251

T. Kraus, L. Malaquin, E. Delamarche, H. Schmid, N. D. Spencer et al., Closing the Gap Between Self-Assembly and Microsystems Using Self-Assembly, Transfer, and Integration of Particles, Advanced Materials, vol.19, issue.20, pp.2438-2442, 2005.
DOI : 10.1002/adma.200501171

Y. Ye, S. Badilescu, V. Truong, P. Rochon, and A. Natansohn, Self-assembly of colloidal spheres on patterned substrates, Applied Physics Letters, vol.79, issue.6, pp.872-874, 2002.
DOI : 10.1063/1.1391234

L. Jiang, L. Gao, and J. Sun, Production of aqueous colloidal dispersions of carbon nanotubes, Journal of Colloid and Interface Science, vol.260, issue.1, pp.89-94, 2003.
DOI : 10.1016/S0021-9797(02)00176-5

J. A. Liddle, Y. Cui, and P. , Lithographically directed self-assembly of nanostructures, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.22, issue.6, pp.3409-3414, 2004.
DOI : 10.1116/1.1821572

B. G. Prevo and O. D. Velev, Controlled, Rapid Deposition of Structured Coatings from Micro- and Nanoparticle Suspensions, Langmuir, vol.20, issue.6, pp.2099-2107, 2004.
DOI : 10.1021/la035295j

S. Osswald, E. Flahaut, H. Ye, and Y. Gogotsi, Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation, Chemical Physics Letters, vol.402, issue.4-6, pp.422-427, 2005.
DOI : 10.1016/j.cplett.2004.12.066

URL : https://hal.archives-ouvertes.fr/hal-00476962

Y. Yin, Y. Lu, B. Gates, and Y. Xia, Template-Assisted Self-Assembly:?? A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures, Journal of the American Chemical Society, vol.123, issue.36, pp.8718-8729, 2001.
DOI : 10.1021/ja011048v

J. L. Wilbur, A. Kumar, E. Kim, and G. M. Whitesides, Microfabrication by microcontact printing of self-assembled monolayers, Advanced Materials, vol.264, issue.2, pp.600-604, 1994.
DOI : 10.1002/adma.19940060719

A. Jorio, M. A. Pimenta, A. G. Souza-filho, R. Saito, G. Dresselhaus et al., Characterizing carbon nanotube samples with resonance Raman scattering, New Journal of Physics, vol.5, pp.139-140, 2003.
DOI : 10.1088/1367-2630/5/1/139