M. Kearney, On a random area variable arising in discrete-time queues and compact directed percolation, Journal of Physics A: Mathematical and General, vol.37, issue.35, p.8421, 2004.
DOI : 10.1088/0305-4470/37/35/002

W. Feller, An Introduction to Probability Theory and its Applications, 1968.

S. Redner, A Guide to First-Passage Processes, 2001.

A. Comtet, J. Desbois, and C. Texier, A: Math. Gen. 38 R341 [8] For a short review on Brownian functionals and their applications see Majumdar S N, J. Phys. Curr. Sci, vol.89, p.2075, 2005.

S. Majumdar and A. Comtet, Airy Distribution Function: From the Area Under a Brownian Excursion to the Maximal Height of Fluctuating Interfaces, Journal of Statistical Physics, vol.69, issue.3-4, p.777, 2005.
DOI : 10.1007/s10955-005-3022-4

URL : https://hal.archives-ouvertes.fr/hal-00005757

S. Majumdar and A. Comtet, Exact Maximal Height Distribution of Fluctuating Interfaces, Physical Review Letters, vol.92, issue.22, p.225501, 2004.
DOI : 10.1103/PhysRevLett.92.225501

URL : https://hal.archives-ouvertes.fr/hal-00002293

L. Takács, Limit distributions for the Bernoulli meander, Journal of Applied Probability, vol.4, issue.02, p.375, 1995.
DOI : 10.1214/aoap/1177005514

P. Flajolet, P. Poblete, and A. Viola, On the Analysis of Linear Probing Hashing, Algorithmica, vol.22, issue.4, p.490, 1998.
DOI : 10.1007/PL00009236

URL : https://hal.archives-ouvertes.fr/inria-00073424

M. J. Kearney and S. Majumdar, On the area under a continuous time Brownian motion till its first-passage time, Journal of Physics A: Mathematical and General, vol.38, issue.19, p.4097, 2005.
DOI : 10.1088/0305-4470/38/19/004

URL : https://hal.archives-ouvertes.fr/hal-00005045

S. Majumdar and A. Comtet, Exact Maximal Height Distribution of Fluctuating Interfaces, Physical Review Letters, vol.92, issue.22, p.225501, 2004.
DOI : 10.1103/PhysRevLett.92.225501

URL : https://hal.archives-ouvertes.fr/hal-00002293

T. W. Burkhardt, G. Gyorgyi, N. R. Moloney, and Z. Racz, Extreme statistics for time series: Distribution of the maximum relative to the initial value, Physical Review E, vol.76, issue.4, p.41119, 2007.
DOI : 10.1103/PhysRevE.76.041119

S. Majumdar and A. Comtet, Airy Distribution Function: From the Area Under a Brownian Excursion to the Maximal Height of Fluctuating Interfaces, Journal of Statistical Physics, vol.69, issue.3-4, p.777, 2005.
DOI : 10.1007/s10955-005-3022-4

URL : https://hal.archives-ouvertes.fr/hal-00005757

W. Feller, An Introduction to Probability Theory and its Applications, 1968.

M. J. Kearney and S. Majumdar, On the area under a continuous time Brownian motion till its first-passage time, Journal of Physics A: Mathematical and General, vol.38, issue.19, p.4097, 2005.
DOI : 10.1088/0305-4470/38/19/004

URL : https://hal.archives-ouvertes.fr/hal-00005045

K. Chung, Excursions in Brownian motion, Arkiv f??r Matematik, vol.14, issue.1-2, p.155, 1976.
DOI : 10.1007/BF02385832

D. Kennedy, The distribution of the maximum Brownian excursion, Journal of Applied Probability, vol.13, issue.02, p.371, 1976.
DOI : 10.1007/BF00535106

R. T. Durrett, D. L. Iglehart, and D. Miller, Weak Convergence to Brownian Meander and Brownian Excursion, The Annals of Probability, vol.5, issue.1, p.117, 1977.
DOI : 10.1214/aop/1176995895

R. T. Durrett and D. Iglehart, Functionals of Brownian Meander and Brownian Excursion, The Annals of Probability, vol.5, issue.1, p.130, 1977.
DOI : 10.1214/aop/1176995896

W. Vervaat, A Relation between Brownian Bridge and Brownian Excursion, The Annals of Probability, vol.7, issue.1, p.143, 1979.
DOI : 10.1214/aop/1176995155

URL : http://projecteuclid.org/download/pdf_1/euclid.aop/1176995155

P. Biane, J. Pitman, and M. Yor, Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions, Bulletin of the American Mathematical Society, vol.38, issue.04, p.435, 2001.
DOI : 10.1090/S0273-0979-01-00912-0

J. Pitman and M. Yor, Infinitely Divisible Laws Associated with Hyperbolic Functions, Journal canadien de math??matiques, vol.55, issue.2, p.292, 2003.
DOI : 10.4153/CJM-2003-014-x

URL : https://hal.archives-ouvertes.fr/hal-00104738

J. W. Essam and A. J. Guttmann, Vicious walkers and directed polymer networks in general dimensions, Physical Review E, vol.52, issue.6, p.5849, 1995.
DOI : 10.1103/PhysRevE.52.5849

A. J. Bray and K. Winkler, Vicious walkers in a potential, Journal of Physics A: Mathematical and General, vol.37, issue.21, p.5493, 2004.
DOI : 10.1088/0305-4470/37/21/001

H. L. Richards and T. L. Einstein, Beyond the Wigner distribution: Schr??dinger equations and terrace width distributions, Physical Review E, vol.72, issue.1, p.16124, 2005.
DOI : 10.1103/PhysRevE.72.016124

M. Katori and H. Tanemura, Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems, Journal of Mathematical Physics, vol.45, issue.8, p.3058, 2004.
DOI : 10.1063/1.1765215

C. A. Tracy and H. Widom, Nonintersecting Brownian excursions, The Annals of Applied Probability, vol.17, issue.3, p.953, 2007.
DOI : 10.1214/105051607000000041

URL : http://arxiv.org/abs/math/0607321

F. J. Dyson, A Brownian???Motion Model for the Eigenvalues of a Random Matrix, Journal of Mathematical Physics, vol.3, issue.6, pp.1191-1199, 1962.
DOI : 10.1063/1.1703862

D. A. Huse and M. E. Fisher, Commensurate melting, domain walls, and dislocations, Physical Review B, vol.29, issue.1, p.239, 1984.
DOI : 10.1103/PhysRevB.29.239

S. N. Majumdar and A. Comtet, Exact Maximal Height Distribution of Fluctuating Interfaces, Physical Review Letters, vol.92, issue.22, pp.225501-777, 2004.
DOI : 10.1103/PhysRevLett.92.225501

URL : https://hal.archives-ouvertes.fr/hal-00002293

G. Schehr and S. N. Majumdar, Universal asymptotic statistics of maximal relative height in one-dimensional solid-on-solid models, Physical Review E, vol.73, issue.5, p.56103, 2006.
DOI : 10.1103/PhysRevE.73.056103

URL : https://hal.archives-ouvertes.fr/hal-00081015

G. Györgyi, signals, Physical Review E, vol.75, issue.2, p.21123, 2007.
DOI : 10.1103/PhysRevE.75.021123

T. W. Burkhardt, Extreme statistics for time series: Distribution of the maximum relative to the initial value, Physical Review E, vol.76, issue.4, p.41119, 2007.
DOI : 10.1103/PhysRevE.76.041119

A. N. Borodin and P. Salminen, Handbook of Brownian Motion-Facts and Formulae (Birkhaüser, 2002.

N. Bonichon and M. Mosbah, Watermelon uniform random generation with applications, Theoretical Computer Science, vol.307, issue.2, p.241, 2003.
DOI : 10.1016/S0304-3975(03)00218-4

URL : https://hal.archives-ouvertes.fr/hal-00307592

C. Krattenthaler, A. J. Guttmann, and X. G. Viennot, Vicious walkers, friendly walkers and Young tableaux: II. With a wall, Journal of Physics A: Mathematical and General, vol.33, issue.48, p.8835, 2000.
DOI : 10.1088/0305-4470/33/48/318

URL : http://arxiv.org/abs/cond-mat/0006367

M. Katori, M. Izumi, and N. Kobayashi, Two Bessel Bridges Conditioned Never to Collide, Double??Dirichlet Series, and Jacobi Theta Function, Journal of Statistical Physics, vol.17, issue.6, p.1067, 2008.
DOI : 10.1007/s10955-008-9524-0

K. Johansson, Shape Fluctuations and Random Matrices, Communications in Mathematical Physics, vol.209, issue.2, p.437, 2000.
DOI : 10.1007/s002200050027

URL : http://arxiv.org/abs/math/9903134

I. M. Johnstone, components analysis, The Annals of Statistics, vol.29, issue.2, p.295, 2001.
DOI : 10.1214/aos/1009210544

B. J. Worton, A Convex Hull-Based Estimator of Home-Range Size, Biometrics, vol.51, issue.4, p.1206, 1995.
DOI : 10.2307/2533254

L. A. Santaló, Integral Geometry and Geometric Probability, 1976.

W. Feller, An Introduction to Probability Theory and Its Applications, 1968.

R. L. Graham, An efficient algorith for determining the convex hull of a finite planar set, Information Processing Letters, vol.1, issue.4, p.132, 1972.
DOI : 10.1016/0020-0190(72)90045-2

B. Aldama, A. A. Ramirez, and A. I. , Dam design flood estimation based on bivariate extreme-value distributions, The extremes of the extremes : extraordinary floods, pp.257-262, 2002.

A. Bengtsson and C. Nilsson, Extreme value modelling of storm damage in Swedish forests, Natural Hazards and Earth System Science, vol.7, issue.5, pp.515-521, 2007.
DOI : 10.5194/nhess-7-515-2007

URL : https://hal.archives-ouvertes.fr/hal-00299446

E. Alvarado, D. V. Sandberg, and S. G. Pickford, Modeling large forest fires as extreme events, Northwest Science, issue.1, pp.66-75, 1998.

B. H. Lavenda and E. Cipollone, Extreme value statistics and thermodynamics of earthquakes : large earthquakes, Annali di Geofisica, vol.43, issue.3 1, pp.469-484, 2001.

J. N. Al-abbasi and K. J. Fahmi, Estimating maximum magnitude earthquakes in Iraq using extreme value statistics, Geophysical Journal International, vol.82, issue.3, pp.535-548, 1985.
DOI : 10.1111/j.1365-246X.1985.tb05150.x

J. F. Eichner, J. W. Kantelhardt, A. Bunde, and S. Havlin, Extreme value statistics in records with long-term persistence, Physical Review E, vol.73, issue.1, p.16130, 2006.
DOI : 10.1103/PhysRevE.73.016130

J. H. Einmahl and M. J. , Records in Athletics Through Extreme-Value Theory, Journal of the American Statistical Association, vol.103, issue.484, pp.1382-1391, 2008.
DOI : 10.1198/016214508000000698

J. Bouchaud and M. Potters, Theory of financial risk and derivative pricing : from statistical physics to risk management, p.34, 2003.
DOI : 10.1017/CBO9780511753893

URL : https://hal.archives-ouvertes.fr/hal-00121107

H. E. Daniels, The Statistical Theory of the Strength of Bundles of Threads. I, Proc. Royal Soc, pp.405-435, 1945.
DOI : 10.1098/rspa.1945.0011

Z. P. Bazant, S. D. Pang, M. Vorechovsky, D. Novak, and R. Pukl, Statistical size effect in quasibrittle materials : Computation and extreme value theory, 5th Int. Conference FraMCoS -Fracture Mechanics of Concrete and Concrete Structures, pp.189-196

R. A. Fisher and L. H. Tippett, Limiting forms of the frequency distribution of the largest or smallest member of a sample, Mathematical Proceedings of the Cambridge Philosophical Society, vol.24, issue.02
DOI : 10.1017/S0305004100015681

M. Fréchet, Sur la loi de probabilité de l'´ ecart maximum, pp.93-108, 1927.

B. Gnedenko, Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire, The Annals of Mathematics, vol.44, issue.3, pp.423-453, 1943.
DOI : 10.2307/1968974

J. Bouchaud and M. Mézard, Universality classes for extreme-value statistics, Journal of Physics A: Mathematical and General, vol.30, issue.23, pp.7997-8015, 1997.
DOI : 10.1088/0305-4470/30/23/004

S. N. Majumdar and P. L. Krapivsky, Extreme value statistics and traveling fronts : various applications. Physica A : Statistical Mechanics and its Applications, pp.161-170, 2003.

G. Biroli, J. Bouchaud, and M. Potters, Extreme value problems in random matrix theory and other disordered systems, Journal of Statistical Mechanics: Theory and Experiment, vol.2007, issue.07, p.7019, 2007.
DOI : 10.1088/1742-5468/2007/07/P07019

B. Duplantier, Le mouvement brownien, " divers et ondoyant, Séminaire Poincaré, pp.155-212, 2005.

E. Frey and K. Kroy, Brownian motion: a paradigm of soft matter and biological physics, Annalen der Physik, vol.113, issue.11, pp.20-50, 2005.
DOI : 10.1002/andp.200410132

S. N. Majumdar, Brownian Functionals in Physics and Computer Science, Current Science, vol.89, pp.2075-55, 1920.
DOI : 10.1142/9789812772718_0006

URL : https://hal.archives-ouvertes.fr/hal-00165789

D. Chowdhury, 100 years of Einstein???s theory of Brownian motion: From pollen grains to protein trains ???2, Resonance, vol.14, issue.11, pp.42-54, 2005.
DOI : 10.1007/BF02837644

J. Kahane, Le mouvement brownien et son histoire, réponses réponsesà quelques questions, p.156, 2006.

A. Einstein, ¨ Uber die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. d. Physik, vol.17, issue.1, pp.549-560, 1905.

J. Perrin, Mouvement brownien et réalité moléculaire, Ann. Chim. Phys, vol.18, issue.2, pp.5-114, 1909.
DOI : 10.1051/radium:01909006012035300

URL : https://hal.archives-ouvertes.fr/jpa-00242381/document

J. Freeman and . Dyson, A Brownian-motion model for the eigenvalues of a random matrix, Journal of Mathematical Physics, vol.3, issue.6 2, pp.1191-1198, 1962.

P. Reimann, Brownian motors: noisy transport far from equilibrium, Physics Reports, vol.361, issue.2-4, pp.57-265, 2002.
DOI : 10.1016/S0370-1573(01)00081-3

S. Chandrasekhar, Stochastic Problems in Physics and Astronomy, Reviews of Modern Physics, vol.15, issue.1, pp.1-89, 1943.
DOI : 10.1103/RevModPhys.15.1

P. Chatterjee, L. Hernquist, and A. Loeb, Brownian Motion in Gravitationally Interacting Systems, Physical Review Letters, vol.88, issue.12, p.121103, 2002.
DOI : 10.1103/PhysRevLett.88.121103

P. G. Saffman and M. Delbrück, Brownian motion in biological membranes., Proceedings of the National Academy of Sciences, vol.72, issue.8, pp.3111-3113, 1975.
DOI : 10.1073/pnas.72.8.3111

P. Hänggi, Brownian machinery in physics and biology, Noise in physical systems and 1 f fluctuations, pp.397-399

R. D. Astumian, Thermodynamics and Kinetics of a Brownian Motor, Science, vol.276, issue.5314, pp.917-922, 1997.
DOI : 10.1126/science.276.5314.917

G. Louchard, Brownian motion and algorithm complexity, BIT, vol.10, issue.1, pp.17-34, 1986.
DOI : 10.1007/BF01939359

R. T. Smythe and J. Wellner, Stochastic Analysis of Shell Sort, Algorithmica, vol.31, issue.3, pp.31442-457, 2001.
DOI : 10.1007/s00453-001-0048-0

M. F. Osborne, Brownian Motion in the Stock Market, Operations Research, vol.7, issue.2, pp.145-173, 1959.
DOI : 10.1287/opre.7.2.145

S. N. Majumdar and J. Bouchaud, Optimal time to sell a stock in the Black???Scholes model: comment on ???Thou shalt buy and hold???, by A. Shiryaev, Z. Xu and X.Y. Zhou, Quantitative Finance, vol.7, issue.8, pp.753-760, 2008.
DOI : 10.1088/1742-5468/2007/10/P10008

S. N. Majumdar and A. Comtet, Exact Maximal Height Distribution of Fluctuating Interfaces, Physical Review Letters, vol.92, issue.22, pp.225501-55, 1920.
DOI : 10.1103/PhysRevLett.92.225501

URL : https://hal.archives-ouvertes.fr/hal-00002293

S. N. Majumdar and A. Comtet, Airy Distribution Function: From the Area Under a Brownian Excursion to the Maximal Height of Fluctuating Interfaces, Journal of Statistical Physics, vol.69, issue.3-4, pp.777-826, 2005.
DOI : 10.1007/s10955-005-3022-4

URL : https://hal.archives-ouvertes.fr/hal-00005757

M. J. Kearney, On a random area variable arising in discrete-time queues and compact directed percolation, Journal of Physics A: Mathematical and General, vol.37, issue.35, pp.8421-8431, 2004.
DOI : 10.1088/0305-4470/37/35/002

P. Lévy, Sur certains processus stochastiques homogènes, Comp. Math, vol.7, issue.104, pp.283-339, 1939.

W. Feller, An Introduction to Probability Theory and its Applications, 1968.

M. E. Fisher, Walks, walls, wetting, and melting, Journal of Statistical Physics, vol.32, issue.50, pp.667-729, 1984.
DOI : 10.1007/BF01009436

P. De-gennes, Soluble Model for Fibrous Structures with Steric Constraints, J. Chem. Phys, vol.48, issue.5, pp.2257-2259, 1968.
DOI : 10.1142/9789812564849_0006

W. Vervaat, A Relation between Brownian Bridge and Brownian Excursion, The Annals of Probability, vol.7, issue.1, pp.143-149, 1979.
DOI : 10.1214/aop/1176995155

K. L. Chung, Maxima in Brownian excursions, Bulletin of the American Mathematical Society, vol.81, issue.4, pp.742-745, 1975.
DOI : 10.1090/S0002-9904-1975-13852-3

K. L. Chung, Excursions in Brownian motion, Arkiv f??r Matematik, vol.14, issue.1-2, pp.155-177, 1976.
DOI : 10.1007/BF02385832

D. P. Kennedy, The distribution of the maximum Brownian excursion, Journal of Applied Probability, vol.13, issue.02, pp.371-376, 1976.
DOI : 10.1007/BF00535106

S. N. Majumdar, J. Randon-furling, M. Kearney, and M. Yor, On the time to reach maximum for a variety of constrained Brownian motions, Journal of Physics A: Mathematical and Theoretical, vol.41, issue.36
DOI : 10.1088/1751-8113/41/36/365005

URL : https://hal.archives-ouvertes.fr/hal-00257348

R. T. Durrett, D. L. Iglehart, and D. R. Miller, Weak Convergence to Brownian Meander and Brownian Excursion, The Annals of Probability, vol.5, issue.1, pp.117-129, 1977.
DOI : 10.1214/aop/1176995895

R. T. Durrett and D. L. Iglehart, Functionals of Brownian Meander and Brownian Excursion, The Annals of Probability, vol.5, issue.1, pp.130-135, 1977.
DOI : 10.1214/aop/1176995896

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, 1964. 30, 39, 123 [52] S. Redner. A guide to first-passage processes, p.33, 2001.

M. J. Kearney and S. N. Majumdar, On the area under a continuous time Brownian motion till its first-passage time, Journal of Physics A: Mathematical and General, vol.38, issue.19, pp.4097-4104, 2005.
DOI : 10.1088/0305-4470/38/19/004

URL : https://hal.archives-ouvertes.fr/hal-00005045

J. Randon-furling and S. N. Majumdar, Distribution of the time at which the deviation of a Brownian motion is maximum before its firstpassage time, J. Stat. Mech, vol.33, p.42, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00167112

S. Asmussen, Applied probability and queues, p.34, 2003.

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, p.92, 1941.

H. Bateman, Tables of Integral Transforms, p.41, 1954.

T. A. Witten, Polymer solutions: A geometric introduction, Reviews of Modern Physics, vol.70, issue.4, pp.1531-1544, 1998.
DOI : 10.1103/RevModPhys.70.1531

J. W. Essam and A. J. Guttmann, Vicious walkers and directed polymer networks in general dimensions, Physical Review E, vol.52, issue.6, pp.5849-54, 1995.
DOI : 10.1103/PhysRevE.52.5849

A. J. Bray and K. Winkler, Vicious walkers in a potential, Journal of Physics A: Mathematical and General, vol.37, issue.21, pp.5493-5501, 2004.
DOI : 10.1088/0305-4470/37/21/001

H. L. Richards and T. L. Einstein, Beyond the Wigner distribution: Schr??dinger equations and terrace width distributions, Physical Review E, vol.72, issue.1, pp.16124-54, 2005.
DOI : 10.1103/PhysRevE.72.016124

P. Ferrari and M. Praehofer, One-dimensional stochastic growth and Gaussian ensembles of random matrices, Markov Proc. Relat. Fields, pp.203-236, 2005.

G. Schehr, S. N. Majumdar, A. Comtet, and J. Randon-furling, Vicious Walkers, Physical Review Letters, vol.101, issue.15, pp.150601-56, 2008.
DOI : 10.1103/PhysRevLett.101.150601

URL : https://hal.archives-ouvertes.fr/hal-01070755

C. Nadal and S. N. Majumdar, Nonintersecting Brownian interfaces and Wishart random matrices, Physical Review E, vol.79, issue.6, pp.61117-55, 2009.
DOI : 10.1103/PhysRevE.79.061117

URL : https://hal.archives-ouvertes.fr/hal-00400076

R. L. Dobrushin, R. Koteck´ykoteck´y, and S. Shlosman, Wulff construction : a global shape from local interaction. Translations of Mathematical Monographs, p.59, 1992.

J. Haushofer, C. I. Bake, M. S. Livingstone, and N. Kanwisher, Privileged Coding of Convex Shapes in Human Object-Selective Cortex, Journal of Neurophysiology, vol.100, issue.2, pp.753-762, 2008.
DOI : 10.1152/jn.90310.2008

S. G. Akl and G. T. Toussaint, Efficient convex hull algorithms for pattern recognition applications, International Conference on Pattern Recognition, pp.483-487, 1978.

R. Meier, F. Ackermann, G. Herrmann, S. Posch, and G. Sagerer, Segmentation of molecular surfaces based on their convex hull, Proceedings., International Conference on Image Processing, pp.3552-59, 1995.
DOI : 10.1109/ICIP.1995.537694

R. L. Graham, An efficient algorithm for determining the convex hull of a finite planar set, Information Processing Letters, vol.1133, issue.141, pp.132-59, 1972.

R. A. Jarvis, On the identification of the convex hull of a finite set of points in the plane, Information Processing Letters, vol.2, issue.1, pp.18-21, 1973.
DOI : 10.1016/0020-0190(73)90020-3

W. Eddy, F. P. Preparata, and S. J. Hong, A New Convex Hull Algorithm for Planar Sets, ACM Transactions on Mathematical Software, vol.3, issue.4, pp.398-403, 1977.
DOI : 10.1145/355759.355766

L. Devroye, How to reduce the average complexity of convex hull finding algorithms, Computers & Mathematics with Applications, vol.7, issue.4, pp.299-308, 1981.
DOI : 10.1016/0898-1221(81)90059-6

D. G. Kirkpatrick and R. Seidel, The Ultimate Planar Convex Hull Algorithm?, SIAM Journal on Computing, vol.15, issue.1, pp.287-299, 1986.
DOI : 10.1137/0215021

B. Bhattacharya and S. Sen, On a simple, practical, optimal, outputsensitive randomized planar convex hull algorithm, Journal of Algorithms, vol.25, pp.173-193, 1997.

R. Wenger, Randomized quick hull. Algorithmica, pp.322-329, 1997.

R. Seidel, Convex Hull Computations, Handbook of Discrete and Computational Geometry, pp.361-375, 1997.
DOI : 10.1201/9781420035315.pt3

G. T. Toussaint, A historical note on convex hull finding algorithms, Pattern Recognition Letters, vol.3, issue.1, pp.21-28, 1985.
DOI : 10.1016/0167-8655(85)90038-8

F. Yaacoub, Y. Hamam, A. Abche, and C. Fares, Convex Hull in Medical Simulations: A New Hybrid Approach, IECON 2006, 32nd Annual Conference on IEEE Industrial Electronics, pp.3308-3313, 2006.
DOI : 10.1109/IECON.2006.347668

M. Nikolay and . Sirakov, A new active convex hull model for image regions, J. Math. Imaging Vis, vol.26, issue.3, pp.309-325, 2006.

B. J. Worton, A Convex Hull-Based Estimator of Home-Range Size, Biometrics, vol.51, issue.4, pp.1206-1215, 1995.
DOI : 10.2307/2533254

J. Randon-furling, S. N. Majumdar, and A. Comtet, Planar Brownian Motions: Exact Results and an Application to Ecology, Physical Review Letters, vol.103, issue.14, pp.140602-60, 2009.
DOI : 10.1103/PhysRevLett.103.140602

URL : https://hal.archives-ouvertes.fr/hal-00423361

P. Lévy, Processus stochastiques et mouvement brownien. Gauthiers- Villars, pp.61-157, 1948.

J. Geffroy, ContributionàContributionà la théorie des valeurs extrêmes. II. Publ, Inst. Stat. Univ. Paris, vol.7, issue.62, pp.3-65, 1959.

J. Geffroy, Localisation asymptotique du polyèdre d'appui d'unéchantillon unéchantillon LaplacienàLaplacienà k dimensions, Publ. Inst. Stat. Univ. Paris, vol.10, pp.213-228, 1961.

F. Spitzer and H. Widom, The circumference of a convex polygon, Proceedings of the American Mathematical Society, vol.12, issue.3, pp.506-509, 1961.
DOI : 10.1090/S0002-9939-1961-0130616-7

G. Baxter, A Combinatorial Lemma for Complex Numbers, The Annals of Mathematical Statistics, vol.32, issue.3, pp.901-76, 1961.
DOI : 10.1214/aoms/1177704985

A. Rényi and R. Sulanke, ???ber die konvexe H???lle von n zuf???llig gew???hlten Punkten, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.2, issue.1, pp.75-84, 1963.
DOI : 10.1007/BF00535300

A. Rényi and R. Sulanke, ???ber die konvexe H???lle von n zuf???llig gew???hlten Punkten. II, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.2, issue.2, pp.138-147, 1964.
DOI : 10.1007/BF00535973

H. Raynaud, Sur le comportement asymptotique de l'enveloppe convexe d'un nuage de points tirés au hasard dans R n, C. R. Acad. Sciences, vol.261, issue.66, pp.627-629, 1965.

H. Raynaud, Sur l'enveloppe convexe des nuages de points aléatoires dans R n, J. Appl. Prob, vol.7, issue.1, pp.35-48, 1970.
DOI : 10.2307/3212146

W. Eddy, The distribution of the convex hull of a Gaussian sample, J

B. Brown and S. I. Resnick, Extreme values of independent stochastic processes, Journal of Applied Probability, vol.14, issue.04, pp.732-739, 1977.
DOI : 10.1214/aop/1176996221

W. Eddy and J. D. Gale, The convex hull of a spherically symmetric sample, Advances in Applied Probability, vol.261, issue.04, pp.751-763, 1981.
DOI : 10.1214/aoms/1177697395

C. Buchta, Zufallspolygone in konvexen Vielecken, J. reine u. angew. Math, vol.347, issue.70, pp.212-220, 1983.

F. Affentranger, The expected volume of a random polytope in a ball*, Journal of Microscopy, vol.151, issue.3, pp.277-287, 1988.
DOI : 10.1111/j.1365-2818.1988.tb04688.x

R. Schneider, Random approximation of convex sets*, Journal of Microscopy, vol.68, issue.4, pp.211-70, 1988.
DOI : 10.1111/j.1365-2818.1988.tb04682.x

W. Weil and J. A. Wieacker, Handbook of Convex Geometry, pp.1391-1438, 1993.

H. Brozius and J. De-haan, On limiting laws for the convex hull of a sample, Journal of Applied Probability, vol.2, issue.04, pp.852-75, 1987.
DOI : 10.1214/aop/1176993148

H. Brozius, Convergence in mean of some characteristics of the convex hull, Advances in Applied Probability, vol.3, issue.03, pp.526-542, 1989.
DOI : 10.1214/aoms/1177698320

R. Davis, E. Mulrow, and S. Resnick, The convex hull of a random sample in, Communications in Statistics. Stochastic Models, vol.52, issue.1, pp.1-27, 1987.
DOI : 10.1080/15326348708807044

D. Aldous, B. Fristedt, P. S. Griffin, and W. E. Pruitt, The number of extreme points in the convex hull of a random sample, Journal of Applied Probability, vol.11, issue.02, pp.287-304, 1991.
DOI : 10.1093/biomet/52.3-4.331

M. Cranston, P. Hsu, and P. March, Smoothness of the Convex Hull of Planar Brownian Motion, The Annals of Probability, vol.17, issue.1, pp.144-70, 1989.
DOI : 10.1214/aop/1176991500

M. Shimura, A limit theorem for two-dimensional conditioned random walk, Nagoya Mathematical Journal, vol.21, pp.105-116, 1984.
DOI : 10.1214/aop/1176993658

M. Shimura, Excursions in a cone for two-dimensional Brownian motion, Journal of Mathematics of Kyoto University, vol.25, issue.3, pp.433-443, 1985.
DOI : 10.1215/kjm/1250521064

K. Burdzy, Brownian Paths and Cones, The Annals of Probability, vol.13, issue.3, pp.1006-1010, 1985.
DOI : 10.1214/aop/1176992922

URL : http://projecteuclid.org/download/pdf_1/euclid.aop/1176992922

J. Gall, Mouvement brownien, c??nes et processus stables, Probability Theory and Related Fields, vol.29, issue.2, pp.587-627, 1987.
DOI : 10.1007/BF00960076

P. Lévy, Le caract??re universel de la courbe du mouvement brownien et la loi du logarithme it??r??, Rendiconti del Circolo Matematico di Palermo, vol.6, issue.45, pp.337-366, 1955.
DOI : 10.1007/BF02854204

S. N. Evans, On the Hausdorff dimension of Brownian cone points, Mathematical Proceedings of the Cambridge Philosophical Society, vol.2, issue.02, pp.343-353, 1985.
DOI : 10.1007/BF00532968

K. Burdzy and J. Martin, Curvature of the convex hull of planar Brownian motion near its minimum point, Stochastic Processes and their Applications, vol.33, issue.1, pp.89-103, 1989.
DOI : 10.1016/0304-4149(89)90068-9

D. Khoshnevisan, Moment Inequalities for Functionals of the Brownian Convex Hull, The Annals of Probability, vol.20, issue.2, pp.627-71, 1992.
DOI : 10.1214/aop/1176989794

G. Letac, An explicit calculation of the mean of the perimeter of the convex hull of a plane random walk, Journal of Theoretical Probability, vol.85, issue.2, pp.385-76, 1993.
DOI : 10.1007/BF01047580

T. Snyder and J. Steele, Convex hulls of random walks, Proceedings of the American Mathematical Society, vol.117, issue.4, pp.1165-76, 1993.
DOI : 10.1090/S0002-9939-1993-1169048-2

A. Goldman and ]. Goldman, Le spectre de certaines mosa???ques poissoniennes du plan et l'enveloppe convexe du pont brownien, Sur une conjecture de D.G. Kendall concernant la cellule de Crofton du plan et sur sa contrepartie brownienne. C.R. Acad. Sc. Paris, pp.57-83, 1996.
DOI : 10.1007/BF01192071

P. Groeneboom, Limit theorems for convex hulls, Probability Theory and Related Fields, vol.23, issue.3, pp.327-368, 1988.
DOI : 10.1007/BF00342231

S. Finch and I. Hueter, Random convex hulls : a variance revisited

T. Hsing, On the Asymptotic Distribution of the Area Outside a Random Convex Hull in a Disk, The Annals of Applied Probability, vol.4, issue.2, pp.478-493, 1994.
DOI : 10.1214/aoap/1177005069

J. Cabo and P. Groeneboom, Limit theorems for functionals of convex hulls, Probability Theory and Related Fields, vol.2, issue.1, pp.31-55, 1994.
DOI : 10.1007/BF01204952

V. Vu, Central limit theorems for random polytopes in a smooth convex set, Advances in Mathematics, vol.207, issue.1, pp.221-243, 2006.
DOI : 10.1016/j.aim.2005.11.011

P. Calka and T. Schreiber, Large deviation probabilities for the number of vertices of random polytopes in the ball, Advances in Applied Probability, vol.170, issue.01, pp.47-58, 2006.
DOI : 10.1239/aap/1037990949

URL : https://hal.archives-ouvertes.fr/hal-00262221

M. Reitzner, Random polytopes and the Efron--Stein jackknife inequality, The Annals of Probability, vol.31, issue.4, pp.2136-2166, 2003.
DOI : 10.1214/aop/1068646381

M. Reitzner, The combinatorial structure of random polytopes, Advances in Mathematics, vol.191, issue.1, pp.178-208, 2005.
DOI : 10.1016/j.aim.2004.03.006

M. Reitzner, Central limit theorems for random polytopes, Probability Theory and Related Fields, vol.23, issue.4, pp.483-507, 2005.
DOI : 10.1007/s00440-005-0441-8

I. Bárány and M. Reitzner, Random polytopes. Preprint, 2008.

I. Bárány and V. Vu, Central limit theorems for Gaussian polytopes

P. Biane and G. Letac, The Mean Perimeter of Some Random Plane Convex Sets Generated by a Brownian Motion, Journal of Theoretical Probability, vol.76, issue.4, p.77, 2010.
DOI : 10.1007/s10959-009-0272-0

URL : https://hal.archives-ouvertes.fr/hal-00666863

B. Efron, The convex hull of a random set of points, Biometrika, vol.52, issue.3-4, pp.331-108, 1965.
DOI : 10.1093/biomet/52.3-4.331

H. Larralde, P. Trunfio, S. Havlin, H. E. Stanley, and G. H. Weiss, Number of distinct sites visited by n random walkers, Phys. Rev. A, vol.77, issue.10, pp.457128-7139, 1992.

L. Acedo and S. B. Yuste, Multiparticle random walks. Recent Res, Dev. Stat. Phys, vol.2, issue.144, pp.83-106, 2002.

P. E. Rouse, A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers, The Journal of Chemical Physics, vol.21, issue.7, pp.12721272-1280, 1953.
DOI : 10.1063/1.1699180

S. Finch, Variants of brownian motion, 2004.

A. Comtet and J. Desbois, Brownian motion in wedges, last passage time and the second arc-sine law, Journal of Physics A: Mathematical and General, vol.36, issue.17, pp.255-261, 2003.
DOI : 10.1088/0305-4470/36/17/101

URL : https://hal.archives-ouvertes.fr/hal-00002285

J. S. Dowker, Heat kernel expansion on a generalized cone, Journal of Mathematical Physics, vol.30, issue.4, pp.770-773, 1989.
DOI : 10.1063/1.528395

A. Cauchy, La rectification des courbes. Mémoire de l'Académie des Sciences, pp.1832-96

M. W. Crofton, On the Theory of Local Probability, Applied to Straight Lines Drawn at Random in a Plane; The Methods Used Being Also Extended to the Proof of Certain New Theorems in the Integral Calculus, Philosophical Transactions of the Royal Society of London, vol.158, issue.0, pp.181-199, 1868.
DOI : 10.1098/rstl.1868.0008

E. Barbier, Note sur leprobì eme de l'aiguille et le jeu du joint couvert, Santaló. Integral Geometry and Geometric Probability. Encyclopedia of Mathematics and Its Applications, pp.273-286, 1860.

F. Valentine, Convex sets, p.101, 1964.

S. Ayari and S. Dubuc, La formule de Cauchy sur la longueur d'une courbe, Bulletin canadien de math??matiques, vol.40, issue.1, pp.3-9, 1997.
DOI : 10.4153/CMB-1997-001-5

S. Coles, An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics, 2001.

H. E. Daniels and T. H. Skyrme, The maximum of a random walk whose mean path has a maximum, Advances in Applied Probability, vol.37, issue.01, pp.85-99, 1985.
DOI : 10.2307/1426182

A. M. Odlyzko, Search for the maximum of a random walk, Random Structures & Algorithms, vol.11, issue.2-3, pp.275-295, 1995.
DOI : 10.1002/rsa.3240060215

P. Chassaing, J. Marckert, and M. Yor, A stochastically quasioptimal search algorithm for the maximum of the simple random walk
URL : https://hal.archives-ouvertes.fr/hal-00104835

H. J. Hilhorst, P. Calka, and G. Schehr, Sylvester???s question and the random acceleration process, Journal of Statistical Mechanics: Theory and Experiment, vol.2008, issue.10, p.115, 2008.
DOI : 10.1088/1742-5468/2008/10/P10010

D. Murphy and B. Noon, Integrating Scientific Methods with Habitat Conservation Planning: Reserve Design for Northern Spotted Owls, Ecological Applications, vol.2, issue.1, pp.3-17, 1992.
DOI : 10.2307/1941885

S. A. Boyle, W. Lourenço, L. R. Da-silva, and A. T. Smith, Home Range Estimates Vary with Sample Size and Methods, Folia Primatologica, vol.80, issue.1, pp.33-42, 2009.
DOI : 10.1159/000201092

F. Bartumeus, M. G. Da-luz, G. M. Viswanathan, and J. Catalan, ANIMAL SEARCH STRATEGIES: A QUANTITATIVE RANDOM-WALK ANALYSIS, Ecology, vol.86, issue.11, p.126, 2005.
DOI : 10.1890/0012-9658(1999)080[1019:SSFLLI]2.0.CO;2

L. Edelstein-keshet, Mathematical Models in Biology Random House, p.126, 1988.

B. Teissier, Volumes des corps convexes, géométrie et algèbre, Leçons de mathématiques d'aujourd'hui, p.142, 2007.

H. Larralde, P. Trunfio, S. Havlin, H. E. Stanley, and G. H. Weiss, Territory covered by N diffusing particles, Nature, vol.355, issue.6359, pp.423-426, 1992.
DOI : 10.1038/355423a0

T. Vicsek, A. Czirók, E. Ben-jacob, I. Cohen, and O. Shochet, Novel Type of Phase Transition in a System of Self-Driven Particles, Physical Review Letters, vol.75, issue.6, pp.1226-1229, 1995.
DOI : 10.1103/PhysRevLett.75.1226

A. Cavagna, A. Cimarelli, I. Giardina, A. Orlandi, G. Parisi et al., New statistical tools for analyzing the structure of animal groups, Mathematical Biosciences, vol.214, issue.1-2, pp.32-37, 2008.
DOI : 10.1016/j.mbs.2008.05.006

P. Romanczuk, I. D. Couzin, and L. Schimansky-geier, Collective Motion due to Individual Escape and Pursuit Response, Physical Review Letters, vol.102, issue.1, pp.10602-152, 2009.
DOI : 10.1103/PhysRevLett.102.010602

B. J. Ford, Brownian movement in clarkia pollen : A reprise of the first observations. The Microscope, pp.235-241, 1992.

A. Avogadro, Essai d'unemanì ere de déterminer les masses relatives des moléculesmoléculesélémentaires des corps, et les proportions selon lesquelles elles entrent dans ces combinaisons Journal de physique, de chimie et d'histoire naturelle, pp.58-76371, 1906.

C. C. Taylor, The Atomists : Leucippus and Democritus, p.156, 1999.

M. V. Smoluchowski, Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensione, Ann. d. Phys, vol.21, pp.756-780, 1906.

M. V. Smoluchowski, Sur le chemin moyen parcouru par les molécules d'un gaz et sur son rapport avec la théorie de la diffusion, Bull. Int

M. Smoluchowski, Drei Vortragë uber Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Phys. Zeit, vol.17, pp.557-571, 1916.

P. Langevin, Sur la théorie du mouvement brownien, C. R. Ac. Sci. Paris, vol.146, pp.530-532, 1908.

L. Bachelier, Th??orie de la sp??culation, Annales scientifiques de l'??cole normale sup??rieure, vol.17, pp.21-86, 1900.
DOI : 10.24033/asens.476

R. Feynman, Space-Time Approach to Non-Relativistic Quantum Mechanics, Reviews of Modern Physics, vol.20, issue.2, pp.367-387367, 1948.
DOI : 10.1103/RevModPhys.20.367

G. E. Uhlenbeck and L. S. Ornstein, On the Theory of the Brownian Motion, Physical Review, vol.36, issue.5, pp.823-841, 1930.
DOI : 10.1103/PhysRev.36.823

M. C. Wang and G. E. Uhlenbeck, On the Theory of the Brownian Motion II, Reviews of Modern Physics, vol.17, issue.2-3, pp.323-342, 1945.
DOI : 10.1103/RevModPhys.17.323

G. Matheron, Random convex sets and integral geometry, p.158, 1975.

J. J. Sylvester, Problem 1491. The Educational Times, 0158.

E. Seneta, K. H. Parshall, F. Jongmans, J. J. Sylvester, M. W. Crofton et al., Nineteenth-century developments in geometric probability, Archive for History of Exact Sciences, issue.6, pp.55501-524, 2001.

G. Choquet, Theory of capacities, Annales de l???institut Fourier, vol.5, pp.131-295
DOI : 10.5802/aif.53

D. G. Kendall, Foundations of a theory of random sets, Stochastic Geometry, pp.322-376, 1973.

H. D. Fara and A. E. Scheidegger, Statistical geometry of porous media, Journal of Geophysical Research, vol.9, issue.10, pp.3279-3284, 1961.
DOI : 10.1029/JZ066i010p03279

R. J. Gardner, Geometric tomography, Notices of the AMS, vol.42, issue.4, pp.422-429, 1995.
DOI : 10.1017/CBO9781107341029

W. Weil, Stereology: A Survey for Geometers, Convexity and its applications, pp.360-421
DOI : 10.1007/978-3-0348-5858-8_15

A. Al-jarrah, K. M. Dempsey, and M. L. Glasser, Generalized series of Bessel functions, Journal of Computational and Applied Mathematics, vol.143, issue.1, pp.1-8, 2002.
DOI : 10.1016/S0377-0427(01)00505-2

W. T. Vetterling, S. A. Teukolsky, W. H. Press, and B. P. Flannery, Numerical Recipes in C, p.173, 1992.