Skip to Main content Skip to Navigation
Habilitation à diriger des recherches

TRANSITIONS DE PHASE EN DIMENSIONS FRACTALES

Résumé : Parmi les méthodes de la théorie du groupe de renormalisation, les développements en epsilon sont basés sur des calculs dans l'espace réciproque et permettent de calculer les exposants critiques associés aux transitions magnétiques du second ordre pour des valeurs non entières de la dimension d'espace. Une interprétation physique naturelle consiste à se demander comment se comporte un système de spins en interaction dans un espace de dimension fractale. Or les structures fractales sont construites par itération d'une cellule génératrice dont les détails sont donc présents à plusieurs échelles ; la question qui se pose alors est de savoir ce qui se passe lorsque l'invariance par translation est remplacée par une invariance d'échelle géométrique. La convergence vers la limite thermodynamique se produit en même temps que le processus d'itération construit la structure. De ce fait, des simulations Monte Carlo fiables de ces transitions de phase n'ont pu être menées à bien que récemment, puisqu'elles nécessitent la simulation de très grandes tailles, lesquelles varient comme des séries géométriques avec l'étape d'itération. C'est en utilisant des algorithmes non locaux dits “d'amas” (Wolff, Swendsen-Wang), capables de réduire le ralentissement critique de manière significative, et des méthodes d'histogrammes pour traiter les données des simulationsMonte-Carlo que j'ai tout d'abord réalisé ces études. Il s'avère que le calcul précis des exposants critiques est rendu encore plus difficile par le fait que l'analyse en tailles finies du modèle d'Ising souffre de corrections d'échelle qui peuvent affecter fortement le comportement de certaines grandeurs thermodynamiques, en particulier lorsque la dimension fractale tend vers 1. J'ai montré que ces corrections d'échelle sont en partie liées à la très forte inhomogénéité du réseau sous jacent (due à l'existence de trous sur plusieurs ordres de grandeurs) et à la concomitance de la construction du fractal avec la convergence vers la limite thermodynamique. Les résultats que j'ai obtenus pour les exposants critiques, ou leurs bornes, sont toujours compatibles avec la relation d'hyperscaling dans laquelle on substitue la dimension de Hausdorff à la dimension d'espace. Le comportement critique en dimension non entière se décrit dans le cadre de l'universalité faible. Cela se manifeste par un désaccord net entre les exposants que j'ai obtenus par les méthodes Monte Carlo et les développements en epsilon. Les exposants critiques ne dépendent pas seulement de la dimension d'espace, des propriétés de symétrie du paramètre d'ordre et de la portée des interactions, mais aussi des propriétés géométriques de la structure fractale : Très récemment des calculs précis d'exposants critiques m'ont permis de montrer que des classes d'universalité différentes sont en général nécessaires pour décrire le comportement du modèle d'Ising sur des fractals de même dimension et de lacunarités différentes. Un tel résultat généralise le concept d'universalité faible proposé par Masuo Suzuki. L'hypothèse d'homogénéité qui sous-tend les lois d'échelle permettant de décrire un comportement critique se dérive par renormalisation. La procédure de renormalisation dans l'espace direct est naturelle dans les fractals, puisqu'elle suit exactement le processus inverse de construction de la structure. Avec mon étudiant Pai-Yi Hsiao, nous avons mené à bien l'étude du modèle d'Ising par une méthode de renormalisation Monte-Carlo sur une structure fractale de dimension voisine de 1, 89 ; il s'avère que l'exposant associé à l'une des directions propres peut être calculé avec une très bonne précision et est en accord avec les résultats de l'analyse en tailles finies. En revanche, la convergence est très lente dans l'autre direction, ce qui est lié aux corrections d'échelle mises en évidence lors de cette analyse. La cinétique stochastique associée à la formation des amas construits par l'algorithme de Wolff sous tend la compréhension du phénomène de ralentissement critique. J'ai montré que les distributions des tailles des amas de Wolff ont une propriété d'homogénéité qui fait intervenir l'un des exposants associé à une des directions propres du processus de renormalisation. Par ailleurs, les distributions des tensions de surface des amas vérifient une propriété analogue dans laquelle intervient un nouvel exposant critique. L'étude des fonctions d'autocorrélation m'a permis de calculer précisément les exposants dynamiques de Wolff lorsque la température critique est connue, et d'éclaircir l'évolution du ralentissement critique avec la dimension et la connectivité. Dans le cas de systèmes invariants par translation, l'ordre de la transition ferromagnétique du modèle de Potts est lié au nombre d'états de spin ; le passage du premier au second ordre est attendu pour des dimensions non entières. Par ailleurs, la présence de désordre peut, dans certaines conditions, induire une transition du second ordre à partir d'un système qui en présente une du premier. L'étude du comportement critique du modèle de Potts sur des fractals est donc particulièrement intéressante, puisque deux des paramètres qui le déterminent (dimensionnalité et désordre structurel) sont liés. Avec mon étudiant Pai-Yi Hsiao, nous avons montré que la transition associée au modèle de Potts à trois états sur une structure fractale de dimension voisine de 1, 89 est du second ordre. Les difficultés attendues lorsqu'on augmente le nombre d'états de spins se font déjà nettement sentir : Les corrections d'échelle empêchent de calculer la température critique avec une très bonne précision. Nous n'avons donc pu donner que des bornes pour certains exposants ; nous avons cependant clairement mis en évidence la différence entre les classes d'universalité de Potts à 2 et 3 états. L'étude de la percolation en dimension non entière est liée à la fois à celle du modèle de Potts et aux algorithmes d'amas. Elle est basée sur l'étude des moments de la distribution de taille des amas, ce qui nécessite la localisation de pics en fonction de la probabilité d'occupation. J'ai pu montrer que les corrections d'échelle n'affectent pratiquement pas le comportement des pics avec la taille des structures, et proposé de les interpréter en termes de "seuil effectif".
Document type :
Habilitation à diriger des recherches
Complete list of metadata

Cited literature [85 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00521313
Contributor : Pascal Monceau Connect in order to contact the contributor
Submitted on : Monday, September 27, 2010 - 10:42:13 AM
Last modification on : Thursday, March 4, 2021 - 4:21:45 PM
Long-term archiving on: : Tuesday, December 28, 2010 - 2:40:59 AM

Identifiers

  • HAL Id : tel-00521313, version 1

Citation

Pascal Monceau. TRANSITIONS DE PHASE EN DIMENSIONS FRACTALES. Analyse de données, Statistiques et Probabilités [physics.data-an]. Université Paris-Diderot - Paris VII, 2004. ⟨tel-00521313⟩

Share

Metrics

Record views

472

Files downloads

863