M. T. Barlow, Continuity of local times for L???vy processes, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.3, issue.2, pp.23-35, 1985.
DOI : 10.1007/BF00532583

M. T. Barlow, Necessary and Sufficient Conditions for the Continuity of Local Time of Levy Processes, The Annals of Probability, vol.16, issue.4, pp.1389-1427, 1988.
DOI : 10.1214/aop/1176991576

R. Bass, N. Eisenbaum, and Z. Shi, The most visited sites of symmetric stable processes, Probability Theory and Related Fields, vol.116, issue.3, pp.391-404, 2000.
DOI : 10.1007/s004400050255

R. Bass and P. Griffin, The most visited site of Brownian motion and simple random walk, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.28, issue.53, pp.417-436, 1985.
DOI : 10.1007/BF00534873

J. Bertoin, On the Hilbert transform of the local times of a Lévy process, Bull. Sci. Math, vol.119, issue.2, pp.147-156, 1995.

J. Bertoin, Lévy Processes, 1996.

J. Bertoin, R. A. Doney, and R. A. Maller, Passage of L??vy processes across power law boundaries at small times, The Annals of Probability, vol.36, issue.1, pp.160-197, 2008.
DOI : 10.1214/009117907000000097

J. Bertoin, T. Fujita, B. Roynette, and M. Yor, On a particular class of selfdecomposable random variables : the duration of a Bessel excursion straddling an independent exponential time, Prob. Math. Stat, vol.26, pp.315-366, 2006.

. Ph, M. Biane, and . Yor, Valeurs principales associées aux temps locaux browniens, Bull. Sci. Math, vol.111, pp.23-101, 1987.

N. H. Bingham, Limit theorems in fluctuation theory, Advances in Applied Probability, vol.2, issue.03, pp.554-569, 1973.
DOI : 10.1214/aoms/1177703283

N. H. Bingham, Maxima of sums of random variables and suprema of stable processes, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.9, issue.4, pp.273-296, 1973.
DOI : 10.1007/BF00534892

R. M. Blumenthal, Excursions of Markov processes. Probability and its Applications, 1992.

K. Borovkov and Z. Burq, Kendall's identity for the first crossing time revisited, Electronic Communications in Probability, vol.6, issue.0, pp.91-94, 2001.
DOI : 10.1214/ECP.v6-1038

L. Chaumont, Processus de Lévy et conditionnement, Thèse de Doctorat de l'université Paris VI, 1994.

L. Chaumont, Excursion normalisée, méandre et pont pour les processus de Lévy stables, Bull. Sci. Math, vol.121, pp.377-403, 1997.

Z. Q. Chen, M. Fukushima, J. Ying, F. E. Benth, G. Di-nunno et al., Extending Markov processes in weak duality by Poisson point processes of excursions Stochastic Analysis and Applications, The Abel Symposium, pp.153-196, 2005.

K. L. Chung, A course in probability theory, 1968.

F. Cordero, On the Scaling Property in Fluctuation Theory for Stable L??vy Processes, Theory of Probability & Its Applications, vol.55, issue.4, 2010.
DOI : 10.1137/S0040585X97985157

R. A. Doney and A. E. Kyprianou, Overshoots and undershoots of L??vy processes, The Annals of Applied Probability, vol.16, issue.1, pp.91-106, 2006.
DOI : 10.1214/105051605000000647

N. Eisenbaum, H. Kaspi, M. Marcus, J. Rosen, and Z. Shi, A Ray-Knight theorem for symmetric Markov processes, Annals of probability, vol.28, pp.1781-1796, 2000.

P. J. Fitzsimmons and R. K. Getoor, On the Distribution of the Hilbert Transform of the Local Time of a Symmetric Levy Process, The Annals of Probability, vol.20, issue.3, pp.1484-1497, 1992.
DOI : 10.1214/aop/1176989702

P. J. Fitzsimmons and R. K. Getoor, Occupation time distributions for Lévy bridges and excursions. Stochastic processes and their applications, pp.73-89, 1995.

P. J. Fitzsimmons and R. K. Getoor, Excursion theory revisited, Illinois J. Math, vol.50, issue.1-4, pp.413-437, 2006.

G. B. Folland, Real Analysis. Modern Techniques and their applications, 1984.

R. K. Getoor, Excursions of a Markov Process, The Annals of Probability, vol.7, issue.2, pp.244-266, 1979.
DOI : 10.1214/aop/1176995086

P. Greenwood and J. Pitman, Fluctuation identities for l??vy processes and splitting at the maximum, Advances in Applied Probability, vol.XIV, issue.04, pp.893-902, 1980.
DOI : 10.1090/S0002-9947-1977-0433606-6

D. V. Gusak, On the Joint Distribution of the First Exit Time and Exit Value for Homogeneous Processes With Independent Increments, Theory of Probability & Its Applications, vol.14, issue.1, pp.14-23, 1969.
DOI : 10.1137/1114002

D. V. Gusak and V. S. Korolyuk, On the Joint Distribution of a Process with Stationary Increments and Its Maximum, Theory of Probability & Its Applications, vol.14, issue.3, pp.400-409, 1969.
DOI : 10.1137/1114053

K. Itô, Poisson point processes attached to Markov processes, Proc. 6th Berkeley Symp, pp.225-239, 1970.

K. Itô and H. P. Mckean, Diffusion processes and their sample paths, 1965.

L. F. James, B. Roynette, and M. Yor, Generalized Gamma Convolutions, Dirichlet means, Thorin measures, with explicit examples, Probability Surveys, vol.5, issue.0, pp.346-415, 2008.
DOI : 10.1214/07-PS118

URL : https://hal.archives-ouvertes.fr/hal-00174743

T. Jeulin and M. Yor, Sur les distributions de certaines fonctionnelles du mouvement Brownien, Sém. Prob., XV ; Lect. Notes in Math, vol.28, issue.53, pp.210-226, 1981.
DOI : 10.1112/plms/s3-28.4.738

URL : http://archive.numdam.org/article/SPS_1981__15__210_0.pdf

A. E. Kyprianou, J. C. Pardo, and V. Rivero, Exact and asymptotic n -tuple laws at first and last passage, The Annals of Applied Probability, vol.20, issue.2, pp.522-564, 2010.
DOI : 10.1214/09-AAP626

URL : http://arxiv.org/abs/0811.3075

P. W. Millar, Germ sigma fields and the natural state space of a Markov process, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.28, issue.2, pp.85-101, 1977.
DOI : 10.1007/BF00535179

E. A. Pecherskii and B. A. Rogozin, On Joint Distributions of Random Variables Associated with Fluctuations of a Process with Independent Increments, Theory of Probability & Its Applications, vol.14, issue.3, pp.410-423, 1969.
DOI : 10.1137/1114054

G. Peskir, The Law of the Hitting Times to Points by a Stable L??vy Process with No Negative Jumps, Electronic Communications in Probability, vol.13, issue.0, pp.653-659, 2008.
DOI : 10.1214/ECP.v13-1431

P. Bateman-manuscript, Table of Integral Transforms, 1954.

D. Ray, Stable processes with an absorbing barrier, Transactions of the American Mathematical Society, vol.89, issue.1, pp.16-24, 1958.
DOI : 10.1090/S0002-9947-1958-0105178-5

D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 1999.

B. A. Rogozin, On Distributions of Functionals Related to Boundary Problems for Processes with Independent Increments, Theory of Probability & Its Applications, vol.11, issue.4, pp.580-591, 1966.
DOI : 10.1137/1111062

P. Salminen and M. Yor, Tanaka Formula for Symmetric L??vy Processes, pp.265-285, 2007.
DOI : 10.1007/978-3-540-71189-6_14

URL : http://arxiv.org/abs/math/0501182

K. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in advanced mathematics, 1999.

H. G. Tucker, Absolute continuity of infinitely divisible distributions, Pacific Journal of Mathematics, vol.12, issue.3, pp.1125-1129, 1962.
DOI : 10.2140/pjm.1962.12.1125

K. Yano, Excursions Away from a Regular Point for One-Dimensional Symmetric L??vy Processes without Gaussian Part, Potential Analysis, vol.61, issue.14, pp.305-341, 2010.
DOI : 10.1007/s11118-009-9152-6

K. Yano, Y. Yano, and M. Yor, On the Laws of First Hitting Times of Points for One-Dimensional Symmetric Stable L??vy Processes, pp.187-227, 1979.
DOI : 10.1007/978-3-642-01763-6_8

K. Yano, Y. Yano, and M. Yor, Penalising symmetric stable L??vy paths, Journal of the Mathematical Society of Japan, vol.61, issue.3, pp.757-798, 2009.
DOI : 10.2969/jmsj/06130757

V. M. Zolotarev, One-dimensional stable distributions, Amer. Math. Soc, 1986.