.. Obtention-de-catalyseurs-de-petite-taille, 61 3.4.1 Démouillage de film mince d'or, p.69

.. Mise-en-Évidence-de-l-'effet-catalytique, 157 5.2.2 Application à la croissance des fils : croissance en 3 étapes, p.159

.. Classification-des-types-de-facettage and 8. , 165 5.4.1 Formalisme : facettes primaires et secondaires, p.169

E. Compétition-radiale, 170 5.5.1 Effet de l'aluminium à haute température, p.175

. De-la-même-manière and . Qu, à la partie précédente (croissance 3 étapes, figure 5.2), on identifie aisément les deux segments correspondant aux deux conditions de dépôt grâce à leurs différences d

J. Lett, HCl faible flux' (figure 5.5[g]) et l'extrémité proche du catalyseur(figure 5 A la base du segment , la taille des facettes est importante (>5 nm) et leur orientation est similaire à celle observée lors de la croissance en 3 étapes (figure 5.2) Près du catalyseur, les facettes sont très petites (<1 nm) et la mesure de leur orientation est difficile. 1. [accepted] 'The importance of the radial growth in the faceting of siliconSurface recombination velocity measurements of effciently passivated goldcatalyzed silicon nanowires by a new optical method, On remarque cependant que la taille des facettes diminue entre la base du segment, 2010.

'. O. Demichel, V. Calvo, N. Pauc, A. Besson, P. Noe et al., Recombination Dynamics of Spatially Confined Electron???Hole System in Luminescent Gold Catalyzed Silicon Nanowires, Nano Letters, vol.9, issue.7, pp.9-2575, 2009.
DOI : 10.1021/nl900739a

'. M. Den-hertog, J. Rouviere, F. Dhalluin, P. Desré, P. Gentile et al., Control of gold surface diffusion on Si nanowires, pp.1544-1550, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00394786

'. O. Demichel, F. Oehler, P. Noé, V. Calvo, N. Pauc et al., Photoluminescence of confined electron-hole plasma in core-shell silicon/silicon oxide nanowires, Applied Physics Letters, vol.93, issue.21, p.213104, 2008.
DOI : 10.1063/1.3021359

URL : https://hal.archives-ouvertes.fr/hal-00394789

'. O. Demichel, F. Oehler, V. Calvo, P. Noé, A. Besson et al., Growth and low temperature photoluminescence of silicon nanowires for different catalysts, Magnea MRS 2009 Spring meeting proceedings DOI 10
DOI : 10.1557/PROC-1178-AA04-10

'. O. Demichel, F. Oehler, V. Calvo, P. Noé, N. Pauc et al., Photoluminescence of silicon nanowires obtained by epitaxial chemical vapor deposition, Physica E: Low-dimensional Systems and Nanostructures, vol.41, issue.6
DOI : 10.1016/j.physe.2008.08.054

URL : https://hal.archives-ouvertes.fr/hal-00455408

. La-croissance-doit-Être-libre, sur Silicium et non-guidée par un pore La condition (1) impose de travailler avec des catalyseurs localisés très espacés La condition (4) privilégie l'utilisation de colloïdes. Les conditions (2) et (3) sont réunies lors de l'utilisation de HCl (cf. chapitre 4). En l'absence d'une seule de ces conditions, la mesure est faussée

'. Méthode-des-potentiels-des-'éléments-chimiques and C. .. , 194 B.2.2 Solution du problème : potentiel des 'éléments chimiques'

.. Potentiel-chimique-des-systèmes-de-petite-taille, 203 B.3.1 Approximation des systèmes sphériques, p.203

{. Le-système, H. Si, }. Cl, and . Met-en-jeu-des-chlorosilanes, Les pressions partielles de ces derniers dans la phase gaz peuvent être importantes à l'équilibre thermodynamique. On utilise ici le programme STAJAN[141] pour obtenir la composition de la phase gaz à l'équilibre thermody- namique

. Le-système-considéré-est-formé-par-{si, SiCl 4 } dans la phase gaz et Si solide (Si(s)) dans la phase solide. La figure B.1 (p.202) présente l'évolution selon la température (450°C-1300°C) de la composition à l'équilibre du système présenté ci-dessus, dans les conditions classiques d'un dépôt dans notre réacteur CVD, SiH 3 Cl, SiH 2 Cl 2 On observe qu'à basse température SiCl 4 domine (?rH 0 le plus faible) mais qu'à haute température SiCl 2 est l'espèce majoritaire. Ces résultats sont similaires à ceux obtenus par Bloem et al

. De-la-même-manière, une désoxydation chimique (HF) ne change pas l'état de surface et conserve les structures obtenues. On est donc en présence d'une surface de silicium désoxydée

C. La-figure, 4 présente le résultat du même recuit sur un échantillon oxydé (Si[100]+2 nm SiO 2 ) La surface est complètement lisse au SEM et on ne distingue pas de différence avant et après recuit Ce résultat est confirmé par Kumigata et al.[146] qui montrent que l'attaque de SiO 2 n'est possible qu'à des températures supérieures à 1000°C, Il n'est donc pas possible d'attaquer SiO 2 avec H 2 dans nos conditions expérimentales (850°C, 10-20 minutes), ce qui infirme le modèle proposé ci-dessus. b. Désorption de SiO

. Xue, 147] étudient l'évolution d'un substrat de silicium présentant un oxyde mince de silicium (? 1 nm) chauffé sous ultra-vide (UHV, 'Ultra High Vacuum, Ils observent alors la désorption de l'oxyde SiO 2 sous la forme de SiO

C. La-figure, 6 propose un mécanisme pour la formation des trous sur nos échantillons de silicium désoxydés

. Ce-mécanisme-ne-nécessite and . Qu, une pression partielle faible de SiO et que la surface de silicium soit accessible (diffusion du surface) Elle est donc cohérente avec nos expériences, en particulier l'absence d'attaque d'un échantillon totalement oxydé

J. Czochralski, Ein neues Verfahren zur Messung des Kristallisationsgesch-windigkeit der MetalleA new method for the measurement of crystallisation rate of metals, Z. phys. Chem, vol.92, issue.3, p.219, 1918.

G. K. Teal and J. B. Little, Growth of germanium single crystals, Phys. Rev, vol.78, issue.3, p.647, 1950.

G. Basile, A. Bergamin, G. Cavagnero, G. Mana, E. Vittone et al., Measurement of the silicon (220) lattice spacing, Physical Review Letters, vol.72, issue.20, p.723133, 1994.
DOI : 10.1103/PhysRevLett.72.3133

H. Mathieu, Physique des semiconducteurs et des composants électroniques, 1997.

M. Marc, K. Vladimir, and L. , Who should be given the credit for the discovery of carbon nanotubes ? Carbon, 2006.

S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, issue.6430, pp.603-605, 1993.
DOI : 10.1038/363603a0

R. Wagner and W. Ellis, VAPOR???LIQUID???SOLID MECHANISM OF SINGLE CRYSTAL GROWTH, Applied Physics Letters, vol.4, issue.5, pp.89-138, 1964.
DOI : 10.1063/1.1753975

R. Wagner, K. Ellis, S. Jackson, and . Arnold, Study of the Filamentary Growth of Silicon Crystals from the Vapor, Journal of Applied Physics, vol.35, issue.10, p.2993, 1964.
DOI : 10.1063/1.1713143

R. Wagner and W. Ellis, The vapor-liquid-solid mechanism of crystal growth and its application to silicon. Transactions of the Metallurgical Society of AIME, pp.1053-1064, 1965.

G. Boostma and H. Gassen, A quantitative study on the growth of silicon whiskers from silane and germanium whiskers from germane, J. Cryst. Growth, vol.10, issue.87, pp.223-55, 1971.

E. I. Givargizov, Fundamental aspects of VLS growth, Journal of Crystal Growth, vol.31, issue.116, pp.20-30, 0200.
DOI : 10.1016/0022-0248(75)90105-0

. Givargizov, Periodic instability in whisker growth, Journal of Crystal Growth, vol.20, issue.3, pp.217-256, 1973.
DOI : 10.1016/0022-0248(73)90008-0

. Givargizov, Ultrasharp tips for field emission applications prepared by the vapor???liquid???solid growth technique, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.11, issue.2, p.449, 1993.
DOI : 10.1116/1.586882

J. Westwater, S. Dp-gosain, S. Tomiya, H. Usui, and . Ruda, Growth of silicon nanowires via gold/silane vapor???liquid???solid reaction, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.15, issue.3, pp.554-557, 1997.
DOI : 10.1116/1.589291

M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, and K. Hiruma, Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers, Applied Physics Letters, vol.61, issue.17, pp.612051-2053, 1992.
DOI : 10.1063/1.108329

M. Yazawa, M. Koguchi, A. Muto, and K. Hiruma, Semiconductor nanowhiskers, Advanced Materials, vol.32, issue.7-8, pp.577-580, 1993.
DOI : 10.1002/adma.19930050715

A. M. Morales and C. M. Lieber, A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires, Science, vol.279, issue.5348, pp.208-211, 1998.
DOI : 10.1126/science.279.5348.208

P. Yang, R. Yan, and M. Fardy, Semiconductor Nanowire: What???s Next?, Nano Letters, vol.10, issue.5, pp.1529-1536, 2010.
DOI : 10.1021/nl100665r

Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, vol.293, issue.5533, pp.1289-1292, 2001.
DOI : 10.1126/science.1062711

Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath, and C. M. Lieber, Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems, Science, vol.302, issue.5649, pp.1377-1379, 2003.
DOI : 10.1126/science.1090899

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu et al., Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature, vol.9, issue.7164, pp.449885-889, 2007.

I. Allon, R. Hochbaum, R. D. Chen, W. Delgado, E. C. Liang et al., Enhanced thermoelectric performance of rough silicon nanowires, Nature, vol.9, issue.7175, pp.451163-167, 2008.

K. A. Dick, K. Deppert, M. W. Larsson, T. Maartensson, W. Seifert et al., Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events, Nature Materials, vol.14, issue.6, pp.380-384, 2004.
DOI : 10.1038/353737a0

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-evans, M. C. Putnam et al., Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications, Nature Materials, vol.9, issue.3, pp.239-244, 2009.

B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis et al., Growth of vertically aligned Si wire arrays over large areas (>1cm2) with Au and Cu catalysts, Applied Physics Letters, vol.91, issue.10, pp.103110-64, 2007.
DOI : 10.1063/1.2779236

Y. Wang, V. Schmidt, S. Senz, and U. Gösele, Epitaxial growth of silicon nanowires using an aluminium catalyst, Nature Nanotechnology, vol.10, issue.3, pp.186-189, 2006.
DOI : 10.1038/nnano.2006.133

G. Moore, Cramming More Components Onto Integrated Circuits, Proceedings of the IEEE, vol.86, issue.1, 1965.
DOI : 10.1109/JPROC.1998.658762

J. Goldberger, A. I. Hochbaum, R. Fan, and P. Yang, Silicon Vertically Integrated Nanowire Field Effect Transistors, Nano Letters, vol.6, issue.5, pp.973-977, 2006.
DOI : 10.1021/nl060166j

V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess et al., Realization of a Silicon Nanowire Vertical Surround-Gate Field-Effect Transistor, Small, vol.104, issue.1, pp.85-88, 2006.
DOI : 10.1002/smll.200500181

Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, High Performance Silicon Nanowire Field Effect Transistors, Nano Letters, vol.3, issue.2, pp.149-152, 2003.
DOI : 10.1021/nl025875l

O. Demichel, F. Oehler, P. Noé, V. Calvo, N. Pauc et al., Photoluminescence of confined electron-hole plasma in core-shell silicon/silicon oxide nanowires, Applied Physics Letters, vol.93, issue.21, pp.213104-213116, 2008.
DOI : 10.1063/1.3021359

URL : https://hal.archives-ouvertes.fr/hal-00394789

A. Zhang, H. Kim, J. Cheng, and Y. Lo, Ultrahigh Responsivity Visible and Infrared Detection Using Silicon Nanowire Phototransistors, Nano Letters, vol.10, issue.6, 2010.
DOI : 10.1021/nl1006432

Y. Qu, L. Liao, R. Cheng, Y. Wang, Y. Lin et al., Rational Design and Synthesis of Freestanding Photoelectric Nanodevices as Highly Efficient Photocatalysts, Nano Letters, vol.10, issue.5, pp.1941-1949, 2010.
DOI : 10.1021/nl101010m

C. Erik, P. Garnett, and . Yang, Silicon Nanowire Radial p-n Junction Solar Cells, Journal of the American Chemical Society, vol.130, issue.29, pp.9224-9225, 2008.

B. M. Kayes, H. A. Atwater, and N. S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells, Journal of Applied Physics, vol.97, issue.11, pp.114302-106, 2005.
DOI : 10.1063/1.1901835

C. K. Chan, H. Peng, G. Liu, K. Mcilwrath, X. F. Zhang et al., Highperformance lithium battery anodes using silicon nanowires, Nature, vol.3, pp.31-35, 2008.

T. Song, J. Xia, J. Lee, D. H. Lee, M. Kwon et al., Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries, Nano Letters, vol.10, issue.5, pp.1710-1716, 2010.
DOI : 10.1021/nl100086e

M. Daniel, M. K. Dobkin, and . Zuraw, Principles of Chemical Vapour Deposition, pp.36-39, 2003.

L. Donald and . Smith, Thin Film deposition, pp.36-39, 1995.

M. Klein, H. J. Hanley, F. J. Smith, and P. Holland, Tables of Collisions Integrals and Second Virial Coefficient for the (m,6,8) Intermolecular Potentiel Function, National Standard, vol.28, p.30, 1974.

M. W. Chase, National Institute of Standards, and Technology (US) NIST-JANAF thermochemical tables, p.202, 0201.

A. Andrei, . Onischuk, N. Viktor, and . Panfilov, Mechanism of thermal decomposition of silanes, Russian Chemical Reviews, vol.70, issue.38, pp.321-360, 2001.

J. Jasinski and S. Gates, Silicon chemical vapor deposition one step at a time: fundamental studies of silicon hydride chemistry, Accounts of Chemical Research, vol.24, issue.1, pp.9-15, 1991.
DOI : 10.1021/ar00001a002

W. Weerts, M. De-croon, and G. Marin, The Kinetics of the Low-Pressure Chemical Vapor Deposition of Polycrystalline Silicon from Silane, Journal of The Electrochemical Society, vol.145, issue.4, pp.1318-1357, 1998.
DOI : 10.1149/1.1838458

M. K. Farnaam and D. Olander, The surface chemistry of the thermal cracking of silane on silicon (111), Surface Science, vol.145, issue.2-3, pp.390-406, 1984.
DOI : 10.1016/0039-6028(84)90090-6

G. Valente, C. Cavallotti, M. Masi, and S. Carra, Reduced order model for the CVD of epitaxial silicon from silane and chlorosilanes, Journal of Crystal Growth, vol.230, issue.1-2, pp.247-257, 2001.
DOI : 10.1016/S0022-0248(01)01349-5

J. H. Comfort and R. Reif, Chemical Vapor Deposition of Epitaxial Silicon from Silane at Low Temperatures, Journal of The Electrochemical Society, vol.136, issue.8, pp.2386-2425, 1989.
DOI : 10.1149/1.2097378

W. A. Claassen and J. Bloem, Rate-determining reactions and surface species in CVD of silicon III. The SiH4-H2-N2 system, Journal of Crystal Growth, vol.51, issue.3, pp.443-452, 1981.
DOI : 10.1016/0022-0248(81)90421-8

M. J. Bierman, Y. K. , A. Lau, A. V. Kvit, A. L. Schmitt et al., Dislocation-Driven Nanowire Growth and Eshelby Twist, Science, vol.320, issue.5879, pp.3201060-1063, 2008.
DOI : 10.1126/science.1157131

E. Gil-lafon, J. Napierala, D. Castelluci, A. Pimpinelli, R. Cadoret et al., Selective growth of GaAs by HVPE: keys for accurate control of the growth morphologies, Journal of Crystal Growth, vol.222, issue.3, pp.482-496, 2001.
DOI : 10.1016/S0022-0248(00)00961-1

-. Byung, T. Kim, J. Koo, D. S. Lee, Y. C. Kim et al., Catalyst-free Growth of Single-Crystal Silicon and Germanium Nanowires, Nano Letters, vol.9, issue.2, pp.864-869, 2009.

C. Wen, M. C. Reuter, J. Tersoff, E. A. Stach, and F. M. Ross, Structure, Growth Kinetics, and Ledge Flow during Vapor???Solid???Solid Growth of Copper-Catalyzed Silicon Nanowires, Nano Letters, vol.10, issue.2, pp.514-519, 2010.
DOI : 10.1021/nl903362y

S. Hofmann, R. Sharma, C. T. Wirth, F. Cervantes-sodi, C. Ducati et al., Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth, Nature Materials, vol.91, issue.2, pp.372-375, 2008.
DOI : 10.1038/nmat2140

C. Wen, M. C. Reuter, J. Bruley, J. Tersoff, S. Kodambaka et al., Formation of Compositionally Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires, Science, vol.326, issue.5957, pp.1247-1250, 2009.
DOI : 10.1126/science.1178606

V. Dubrovskii, . Sibirev, . Suris, J. Ge-cirlin, V. Harmand et al., Diffusion-controlled growth of semiconductor nanowires: Vapor pressure versus high vacuum deposition, Surface Science, vol.601, issue.18, pp.4395-4401, 2007.
DOI : 10.1016/j.susc.2007.04.122

V. G. Dubrovskii, I. P. Soshnikov, N. V. Sibirev, G. É. Cirlin, V. M. Ustinov et al., Effect of deposition conditions on nanowhisker morphology, Semiconductors, vol.41, issue.7, pp.41865-874, 2007.
DOI : 10.1134/S1063782607070159

L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F. M. Kolb et al., Silicon nanowhiskers grown on ???111???Si substrates by molecular-beam epitaxy, Applied Physics Letters, vol.84, issue.24, pp.4968-4970, 2004.
DOI : 10.1063/1.1762701

S. Kodambaka, J. Tersoff, F. M. Mc-reuter, and . Ross, Diameter-Independent Kinetics in the Vapor-Liquid-Solid Growth of Si Nanowires, Physical Review Letters, vol.96, issue.9, pp.96105-114, 2006.
DOI : 10.1103/PhysRevLett.96.096105

D. T. Hurle, J. B. Mullin, and E. R. Pike, Thin alloy zone crystallisation, Journal of Materials Science, vol.5, issue.2, pp.46-62, 1967.
DOI : 10.1007/BF00550052

R. Thomas and . Anthony, Grain-driven zone melting, Journal of Applied Physics, vol.56, issue.2, pp.477-485, 1984.

V. Nebol-'sin, A. Shchetinin, A. Korneeva, A. Dunaev, A. Dolgachev et al., Development of lateral faces during vapor-liquid-solid growth of silicon whiskers, Inorganic Materials, vol.42, issue.56, pp.339-345, 0200.

A. I. Dunaev, V. A. Nebol-'sin, and M. A. Zavalishin, Effect of the Line Tension at the Vapor-Liquid-Solid Boundary on the Growth of Silicon Nanocrystals, Inorganic Materials, vol.44, pp.559-562, 2008.

F. Dhalluin, P. J. Desré, M. I. Den-hertog, J. L. Rouvière, P. Ferret et al., Critical condition for growth of silicon nanowires, Journal of Applied Physics, vol.102, issue.9, pp.94906-151, 2007.
DOI : 10.1063/1.2811935

URL : https://hal.archives-ouvertes.fr/hal-00394770

T. Tanaka and S. Hara, Thermodynamic Evaluation of Binary Phase Diagrams of Small Particle Systems, Z. Metallkd, vol.92, issue.5, pp.467-59, 2001.

J. Sambles, An Electron Microscope Study of Evaporating Gold Particles: The Kelvin Equation for Liquid Gold and the Lowering of the Melting Point of Solid Gold Particles, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.324, issue.1558, pp.339-351, 1558.
DOI : 10.1098/rspa.1971.0143

. Ph, J. Buffat, and . Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A, vol.13, issue.6, pp.2287-2298, 1976.

J. Yanfeng and Z. Yamin, Influence of gold particle size on melting temperature of VLS grown silicon nanowire, Journal of Semiconductors, vol.31, issue.1, pp.12002-59, 2010.
DOI : 10.1088/1674-4926/31/1/012002

J. Edwin, P. W. Schwalbach, and . Voorhees, Phase Equilibrium and Nucleation in VLS-Grown Nanowires, Nano Letters, vol.8, issue.59, pp.3739-3745, 2008.

T. Haxhimali, D. Buta, M. Asta, P. W. Voorhees, and J. J. Hoyt, Size-dependent nucleation kinetics at nonplanar nanowire growth interfaces, Physical Review E, vol.80, issue.5, pp.50601-60, 2009.
DOI : 10.1103/PhysRevE.80.050601

S. M. Roper, S. H. Davis, S. A. Norris, A. A. Golovin, P. W. Voorhees et al., Steady growth of nanowires via the vapor-liquid-solid method, Journal of Applied Physics, vol.102, issue.3, pp.34304-112, 2007.
DOI : 10.1063/1.2761836

S. Kodambaka, J. Tersoff, M. C. Reuter, and F. M. Ross, Germanium Nanowire Growth Below the Eutectic Temperature, Science, vol.316, issue.5825, pp.316729-732, 2007.
DOI : 10.1126/science.1139105

S. Sharma, T. I. Kamins, and R. Williams, Synthesis of thin silicon nanowires using gold-catalyzed chemical vapor deposition, Applied Physics A, vol.108, issue.6, pp.1225-1229, 2005.
DOI : 10.1149/1.2428182

H. Schmid, M. T. Bjork, J. Knoch, H. Riel, W. Riess et al., Patterned epitaxial vapor-liquid-solid growth of silicon nanowires on Si(111) using silane, Journal of Applied Physics, vol.103, issue.2, pp.24304-88, 2008.
DOI : 10.1063/1.2832760

B. Fuhrmann, H. Leipner, H. Hoche, L. Schubert, P. Werner et al., Ordered Arrays of Silicon Nanowires Produced by Nanosphere Lithography and Molecular Beam Epitaxy, Nano Letters, vol.5, issue.12, pp.2524-2527, 2005.
DOI : 10.1021/nl051856a

P. Manandhar, E. A. Akhadov, C. Tracy, and S. T. Picraux, Integration of Nanowire Devices in Out-of-Plane Geometry, Nano Letters, vol.10, issue.6, 1967.
DOI : 10.1021/nl100747w

V. Glazov and O. Shchelikov, Volume changes during melting and heating of silicon and germanium melts, High Temperature, vol.21, issue.11, pp.405-412, 1972.
DOI : 10.1007/BF02756000

R. Waghorne, V. Rivlin, and G. Williams, Structure of liquid alloys of the Au-Si and Au-Ge systems, KC Prince, S. Heun, and Y. Homma. Wetting of Si surfaces by Au?Si liquid alloys, pp.147-156, 1976.
DOI : 10.1088/0305-4608/6/2/011

E. Guyon, C. Prost, C. Betrencourt, B. Boulet, and . Volochine, Beware of surface tension!, European Journal of Physics, vol.3, issue.3, pp.159-168, 1982.
DOI : 10.1088/0143-0807/3/3/007

P. Roura, Thermodynamic derivations of the mechanical equilibrium conditions for fluid surfaces: Young???s and Laplace???s equations, American Journal of Physics, vol.73, issue.12, pp.1139-1147, 2005.
DOI : 10.1119/1.2117127

L. Boruvka and A. Neumann, Generalization of the classical theory of capillarity, The Journal of Chemical Physics, vol.66, issue.12, pp.5464-73, 1977.
DOI : 10.1063/1.433866

P. Chen, J. Gaydos, and A. W. Neumann, Contact Line Quadrilateral Relation. Generalization of the Neumann Triangle Relation To Include Line Tension, Langmuir, vol.12, issue.24, pp.5956-5962, 1996.
DOI : 10.1021/la960291i

O. G. Shpyrko, R. Streitel, S. K. Venkatachalapathy, A. Y. Balagurusamy, M. Grigoriev et al., Surface Crystallization in a Liquid AuSi Alloy, Science, vol.313, issue.5783, pp.31377-80, 2006.
DOI : 10.1126/science.1128314

P. Roura and J. Fort, Local thermodynamic derivation of Young's equation, Journal of Colloid and Interface Science, vol.272, issue.2, pp.420-429, 2004.
DOI : 10.1016/j.jcis.2004.01.028

K. W. Schwarz and J. Tersoff, From Droplets to Nanowires: Dynamics of Vapor-Liquid-Solid Growth, Physical Review Letters, vol.102, issue.20, p.206101, 1974.
DOI : 10.1103/PhysRevLett.102.206101

B. Widom, Line Tension and the Shape of a Sessile Drop, The Journal of Physical Chemistry, vol.99, issue.9, pp.2803-2806, 1995.
DOI : 10.1021/j100009a041

B. A. Pethica, The contact angle equilibrium, Journal of Colloid and Interface Science, vol.62, issue.3, pp.567-569, 1977.
DOI : 10.1016/0021-9797(77)90110-2

V. Schmidt, S. Senz, and U. Gösele, The shape of epitaxially grown silicon nanowires and the influence of line tension, Applied Physics A, vol.93, issue.3, pp.445-450, 2005.
DOI : 10.1063/1.1558996

N. Li, U. Tan, and . Gösele, Chemical tension and global equilibrium in VLS nanostructure growth process: from nanohillocks to nanowires, Applied Physics A, vol.12, issue.4, pp.433-440, 2007.
DOI : 10.1007/s00339-006-3809-4

B. Bokhonov and M. Korchagin, In situ investigation of stage of the formation of eutectic alloys in Si???Au and Si???Al systems, Journal of Alloys and Compounds, vol.312, issue.1-2, pp.238-250, 2000.
DOI : 10.1016/S0925-8388(00)01173-7

J. B. Hannon, S. Kodambaka, F. M. Ross, and R. M. Tromp, The influence of the surface migration of gold on the growth of silicon nanowires, Nature, vol.151, issue.7080, pp.44069-71, 2006.
DOI : 10.1038/nature04574

A. and E. Handbook, Alloy Phase Diagrams, pp.98-99, 1992.

A. I. Hochbaum, R. Fan, R. He, and P. Yang, Controlled Growth of Si Nanowire Arrays for Device Integration, Nano Letters, vol.5, issue.3, pp.457-460, 2005.
DOI : 10.1021/nl047990x

G. Won-il-park, X. Zheng, B. Jiang, C. M. Tian, and . Lieber, Controlled Synthesis of Millimeter-Long Silicon Nanowires with Uniform Electronic Properties, Nano Letters, vol.8, issue.9, pp.3004-3009, 2008.
DOI : 10.1021/nl802063q

F. Dhalluin, Nanofils de Silicium : Dépôt chimique en phase vapeur assisté par catalyseurs métalliques et prémices d'intégration, p.109, 2009.

K. Lew and J. M. Redwing, Growth characteristics of silicon nanowires synthesized by vapor???liquid???solid growth in nanoporous alumina templates, Journal of Crystal Growth, vol.254, issue.1-2, pp.14-22, 2003.
DOI : 10.1016/S0022-0248(03)01146-1

L. Latu-romain, C. Mouchet, C. Cayron, E. Rouviere, and J. Simonato, Growth parameters and shape specific synthesis of silicon nanowires by the VLS method, Journal of Nanoparticle Research, vol.2, issue.12, p.120, 2007.
DOI : 10.1007/s11051-007-9350-3

URL : https://hal.archives-ouvertes.fr/hal-00394394

J. Kikkawa, Y. Ohno, and S. Takeda, Growth rate of silicon nanowires, Applied Physics Letters, vol.86, issue.12, pp.123109-88, 2005.
DOI : 10.1063/1.1888034

P. Billel-kalache, A. Roca-i-cabarrocas, . Fontcuberta, and . Morral, Observation of Incubation Times in the Nucleation of Silicon Nanowires Obtained by the Vapor-Liquid- Solid Method, Japanese Journal of Applied Physics, issue.7, pp.45-190, 2006.

H. Jagannathana, Y. Nishi, M. Reuter, M. Copel, E. Tutuc et al., Effect of oxide overlayer formation on the growth of gold catalyzed epitaxial silicon nanowires, Applied Physics Letters, vol.88, issue.10, pp.103113-95, 2006.
DOI : 10.1063/1.2179370

S. Sharma, R. S. Kamins, and . Williams, Diameter control of Ti-catalyzed silicon nanowires, Journal of Crystal Growth, vol.267, issue.3-4, pp.613-618, 2004.
DOI : 10.1016/j.jcrysgro.2004.04.042

T. Vincent, M. Renard, P. Jublot, P. Gergaud, D. Cherns et al., Catalyst preparation for CMOS-compatible silicon nanowire synthesis, Nature Nanotechnology, vol.4, issue.103, pp.654-657, 2009.

C. Büttner, N. Zakharov, . Pippel, P. Gösele, and . Werner, Gold-enhanced oxidation of MBE-grown silicon nanowires, Semiconductor Science and Technology, vol.23, issue.7, p.75040, 2008.
DOI : 10.1088/0268-1242/23/7/075040

T. Baron, M. Gordon, F. Dhalluin, C. Ternon, P. Ferret et al., Si nanowire growth and characterization using a microelectronics-compatible catalyst: PtSi, Applied Physics Letters, vol.89, issue.23, pp.233111-105, 2006.
DOI : 10.1063/1.2402118

URL : https://hal.archives-ouvertes.fr/hal-00394743

H. Jeong, T. E. Park, H. K. Seong, M. Kim, U. Kim et al., Growth kinetics of silicon nanowires by platinum assisted vapour???liquid???solid mechanism, Chemical Physics Letters, vol.467, issue.4-6, pp.4-6331, 2009.
DOI : 10.1016/j.cplett.2008.11.022

O. Demichel, F. Oehler, V. Calvo, P. Noe, A. Besson et al., Growth and low temperature photoluminescence of silicon nanowires for different catalysts, MRS Proceedings, vol.1178, issue.103, pp.1178-1182, 2009.
DOI : 10.1557/PROC-1178-AA04-10

P. Gentile, T. David, F. Dhalluin, D. Buttard, N. Pauc et al., The growth of small diameter silicon nanowires to nanotrees, Nanotechnology, vol.19, issue.12, pp.125608-129, 2008.
DOI : 10.1088/0957-4484/19/12/125608

URL : https://hal.archives-ouvertes.fr/hal-00394785

V. Schmidt, S. Senz, and U. Gösele, Diameter dependence of the growth velocity of silicon nanowires synthesized via the vapor-liquid-solid mechanism, Physical Review B, vol.75, issue.4, pp.45335-116, 2007.
DOI : 10.1103/PhysRevB.75.045335

F. Oehler, P. Gentile, T. Baron, and P. Ferret, The effects of HCl on silicon nanowire growth: surface chlorination and existence of a ???diffusion-limited minimum diameter???, Nanotechnology, vol.20, issue.47, pp.475307-123, 2009.
DOI : 10.1088/0957-4484/20/47/475307

URL : https://hal.archives-ouvertes.fr/hal-00455409

G. S. Doerk, N. Ferralis, C. Carraro, and R. Maboudian, Growth of branching Si nanowires seeded by Au???Si surface migration, Journal of Materials Chemistry, vol.6, issue.44, pp.5376-5381, 2008.
DOI : 10.1039/b811535d

J. M. Hartmann, L. Clavelier, C. Jahan, P. Holliger, G. Rolland et al., Selective epitaxial growth of boron- and phosphorus-doped Si and SiGe for raised sources and drains, Journal of Crystal Growth, vol.264, issue.1-3, pp.36-47, 1960.
DOI : 10.1016/j.jcrysgro.2003.12.055

P. Madras, E. Dailey, and J. Drucker, Spreading of Liquid AuSi on Vapor???Liquid???Solid-Grown Si Nanowires, Nano Letters, vol.10, issue.5, pp.1759-1763, 0129.
DOI : 10.1021/nl100249j

P. Madras, E. Dailey, and J. Drucker, Kinetically Induced Kinking of Vapor???Liquid???Solid Grown Epitaxial Si Nanowires, Nano Letters, vol.9, issue.11, pp.3826-3830, 2009.
DOI : 10.1021/nl902013g

M. T. Borgstrom, G. Immink, B. Ketelaars, R. Algra, and P. A. Bakkerserik, Synergetic nanowire growth, Nature Nanotechnology, vol.101, issue.9, pp.541-544, 2007.
DOI : 10.1038/nnano.2007.263

S. Boles, C. Fitzgerald, C. Thompson, K. Ho, and . Pey, Catalyst proximity effects on the growth rate of Si nanowires, Journal of Applied Physics, vol.106, issue.4, pp.44311-139, 2009.
DOI : 10.1063/1.3207821

M. Hansen and K. Anderko, Constitution of Binary Alloys, Journal of The Electrochemical Society, vol.105, issue.12, p.144, 1958.
DOI : 10.1149/1.2428700

Y. Ke, X. Weng, J. M. Redwing, C. M. Eichfeld, T. R. Swisher et al., Fabrication and Electrical Properties of Si Nanowires Synthesized by Al Catalyzed Vapor???Liquid???Solid Growth, Nano Letters, vol.9, issue.12, pp.4494-4499, 2009.
DOI : 10.1021/nl902808r

M. Hoch, The ternary system aluminum-gold-silicon, Proceedings of the 5th International Meeting on Thermodynamics of Alloys, pp.27-31, 1995.
DOI : 10.1016/0925-8388(94)06012-6

U. Forsbreg, O. Danielsson, A. Henry, M. K. Linnarsson, and E. Janzen, Aluminum doping of epitaxial silicon carbide, Journal of Crystal Growth, vol.253, issue.1-4, pp.340-350, 2003.
DOI : 10.1016/S0022-0248(03)01045-5

J. O. Carlsson, S. Gorbatkin, D. Lubben, and J. Greene, Thermodynamics of the homogeneous and heterogeneous decomposition of trimethylaluminum, monomethylaluminum, and dimethylaluminumhydride: Effects of scavengers and ultraviolet-laser photolysis, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.9, issue.6, pp.2759-144, 1991.
DOI : 10.1116/1.585642

. Shi-woo-rhee, Chemical vapor deposition of aluminum for ulsi applications, Korean Journal of Chemical Engineering, vol.33, issue.6, pp.1-11, 1995.
DOI : 10.1007/BF02697699

F. Oehler, P. Gentile, T. Baron, M. D. Hertog, J. Rouvière et al., The morphology of silicon nanowires grown in the presence of trimethylaluminium, Nanotechnology, vol.20, issue.24, pp.245602-145, 2009.
DOI : 10.1088/0957-4484/20/24/245602

URL : https://hal.archives-ouvertes.fr/hal-00455406

Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell et al., Controlled Growth and Structures of Molecular-Scale Silicon Nanowires, Nano Letters, vol.4, issue.3, pp.433-436, 2004.
DOI : 10.1021/nl035162i

F. Oehler, P. Gentile, T. Baron, P. Ferret, M. D. Hertog et al., The Importance of the Radial Growth in the Faceting of Silicon Nanowires, Nano Letters, vol.10, issue.7, pp.167-168, 2010.
DOI : 10.1021/nl904081g

I. Martien, J. Den-hertog, F. Rouviere, . Dhalluin, P. J. Desre et al., Control of Gold Surface Diffusion on Si Nanowires, Nano Letters, vol.8, issue.5, pp.1544-1550, 2008.

F. M. Ross, J. Tersoff, and M. C. Reuter, Sawtooth Faceting in Silicon Nanowires, Physical Review Letters, vol.95, issue.14, pp.146104-166, 2005.
DOI : 10.1103/PhysRevLett.95.146104

F. Li, P. D. Nellist, and D. J. Cockayne, Doping-dependent nanofaceting on silicon nanowire surfaces, Applied Physics Letters, vol.94, issue.26, pp.263111-165, 2009.
DOI : 10.1063/1.3155434

T. David, D. Buttard, T. Schulli, F. Dallhuin, and P. Gentile, Structural investigation of silicon nanowires using GIXD and GISAXS: Evidence of complex saw-tooth faceting, Surface Science, vol.602, issue.15, pp.2675-2680, 2008.
DOI : 10.1016/j.susc.2008.06.022

B. Mehta and M. Tao, A Kinetic Model for Boron and Phosphorus Doping in Silicon Epitaxy by CVD, Journal of The Electrochemical Society, vol.152, issue.4, pp.309-175, 2005.
DOI : 10.1149/1.1864452

S. Maruno, T. Furukawa, T. Nakahata, and Y. Are, A Chemical Mechanism for Determining the Influence of Boron on Silicon Epitaxial Growth, Japanese Journal of Applied Physics, vol.40, issue.Part 1, No. 11, pp.6202-6207, 2001.
DOI : 10.1143/JJAP.40.6202

P. Hay, . Boehm, R. Kress, and . Martin, Theoretical studies of H2 desorption processes in chemical vapor deposition of boron-doped silicon surfaces, Surface Science, vol.436, issue.1-3, pp.175-192, 1999.
DOI : 10.1016/S0039-6028(99)00661-5

W. C. Reynolds, The element potential method for chemical equilibrium analysis : implementation in the interactive program STANJAN, 0201.

G. Eriksson, SOLGASMIX, a computer program for calculation of equilibrium compositions in multi-phase systems, Chemica Scripta, vol.8, pp.100-103, 1975.

I. Bahrin, Thermochemical Data of Pure Substances. VCH, 0202.

J. Bloem and W. A. Claassen, Rate-determining reactions and surface species in CVD of silicon. II. The SiH2Cl2-H2-N2 system, Journal of Crystal Growth, vol.50, pp.807-815, 0201.

J. Bloem, W. A. Claassen, and W. G. Valkenburg, Rate-determining reactions and surface species in CVD silicon, Journal of Crystal Growth, vol.57, issue.1, pp.177-184, 0201.
DOI : 10.1016/0022-0248(82)90264-0

K. Kumigata and Y. Hirofuji, H2 enhanced Epitaxial Regrowth of Polycrystalline Silicon through Natural Oxide Layers on Silicon Substrates, Japanese Journal of Applied Physics, vol.24, pp.518-523, 1985.

K. Xue, J. Xu, and H. Ho, investigation of ultrathin silicon oxide thermal decomposition by high temperature scanning tunneling microscopy, Nanotechnology, vol.18, issue.48, pp.485709-209, 2007.
DOI : 10.1088/0957-4484/18/48/485709

K. E. Johnson and T. Engel, Direct measurement of reaction kinetics for the decomposition of ultrathin oxide on Si(001) using scanning tunneling microscopy, Physical Review Letters, vol.69, issue.2, pp.339-342, 0208.
DOI : 10.1103/PhysRevLett.69.339