Skip to Main content Skip to Navigation
Theses

Algèbres de Processus Réversibles

Abstract : We propose a notion of distributed backtracking built on top of Milner's Calculus of Communicating Systems. This reversible process al- gebra (RCCS) offers a clear-cut theoretical characterisation of reversibility. In particular, given a process and a past, we show that RCCS allows to backtrack along any causally equivalent past. We express behavioural equi- valence of reversible processes in terms of simple bisimimulation of causal transition systems. This results in a declarative way of programming dis- tributed transactional systems that can be efficiently model-checked using an event structure based algorithm. Using a categorical abstraction we then show that this method can be generalised for a wide range of concurrent calculus.
Complete list of metadatas

Cited literature [70 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00519528
Contributor : Jean Krivine <>
Submitted on : Monday, September 20, 2010 - 3:53:02 PM
Last modification on : Thursday, December 10, 2020 - 11:06:43 AM
Long-term archiving on: : Tuesday, December 21, 2010 - 3:03:27 AM

Identifiers

  • HAL Id : tel-00519528, version 1

Citation

Jean Krivine. Algèbres de Processus Réversibles. Réseaux et télécommunications [cs.NI]. Université Pierre et Marie Curie - Paris VI, 2006. Français. ⟨tel-00519528⟩

Share

Metrics

Record views

211

Files downloads

1472