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Abstract

Since the emergence of imaging techniques, MRI, CT, it is now possible to directly probe the geometrical
organization of systems such as bone, cement, paper, glass, rocks. As the physical and mechanical
properties depend on the geometrical organization, there is a scientific and industrial interest for the
understanding of this relationship by using these imaging techniques. In this context, the purpose of
this thesis is the development of a toolkit for digital image analysis of the material geometry, then the
application of this toolkit in the study of the evolution of the pore space of cement paste.

In part one, after a discussion on the choice of an imaging technique adapted to a material, we present
the two imaging techniques selected, scanning electron microscopy and synchrotron tomography for the
analysis of cement paste and the experimental protocol for sample preparation.

In the second part, we propose a generic, efficient and simple methodology of segmentation. Segmen-
tation is the transformation of a grey-level image to an labeled image where each label represents a phase
of the material. Generic means that this methodology can be used for a wide range of materials and
imaging techniques. Effective means that the segmented structure matches the real structure. Simple
means that the calibration is easy. The implementation of the optimized algorithms associated with this
methodology is done thanks to the theoretical conceptualization of the region growing.

In the final part, we quantify the morphology and topology of the geometry of the material statistically.
Then, we decompose a phase in term of elementary components along two agreements: one morphological
and the other topological. Finally, we use the stereological information estimated on the 2D slice to
reconstruct a 3D model larger than the representative elementary volume using the optimized algorithm
of simulated annealing. The validation of the 3D reconstruction is performed by the comparison of
properties of diffusive transport.

Depuis I’émergence des techniques d’imagerie, IRM, tomographie, il est maintenant possible d’observer
directement l'organisation géométrique de systémes tels 1’os, le ciment, le papier, le verre, les roches.
Comme les propriétés physiques et mécaniques dépendent de ’organisation géométrique, il existe un
intérét scientifique et industriel de comprendre et de définir cette relation de dépendance a ’aide de ces
techniques d’imagerie. S’inscrivant dans ce contexte, le but de cette thése est de développer un ensemble
d’outils numériques pour ’analyse d’image de la géométrie d’un matériau, puis d’appliquer ces outils
dans I’étude de 1’évolution de la porosité de la pate de ciment.

En premiére partie, aprés une discussion sur le choix d’une technique d’imagerie adaptée & un matériau,
nous présentons les deux techniques d’imageries sélectionnées, la microscopie électronique & balayage et
la tomographie par synchrotron, pour ’analyse de la pate de ciment et le protocole expérimental pour la
préparation des échantillons.

En deuxiéme partie, nous proposons une méthodologie générique, efficace et simple de segmentation.
La segmentation est la transformation de 'image en niveaux de gris en une image labellisée ou chaque
label représente une phase du matériau. Générique signifie que cette méthodologie est applicable pour
une large classe de matériaux et de techniques d’imageries. Efficace spécifie que la structure segmentée
correspond a la structure réelle. Simple indique que ’étape de calibration est facile. L’implémentation
de ’ensemble des algorithmes optimisés associés & cette méthodologie est rendue possible grace a la
conceptualisation théorique de la croissance de régions.

En derniére partie, nous quantifions statistiquement la morphologie et la topologie de la géométrie
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du matériau. Puis, nous décomposons une phase en éléments élémentaires suivant deux conventions:
I’'une morphologique, 'autre topologique. Enfin, nous utilisons I'information stéréologique estimée sur
une coupe 2D pour reconstruire un modeéle 3D plus grand que le volume élémentaire représentatif a ’aide
de l'algorithme optimisé du recuit simulé. Une validation de la reconstruction 3D est effectuée par un
suivi des propriétés de transport diffusif.
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Introduction

In material sciences, a porous medium is a solid, often called matrix, permeated by a pore network (voids)
filled with a fluid (liquid and/or gas) such as a sponge. Many natural systems such as rocks (e.g. lime-
stone), soils (e.g. sand), biological tissues (e.g. bones, lung), and man made materials such as cements,
foams and ceramics can be considered as porous media.

The geometrical organisation of the porous medium affects numerous physico-chemical phenomena such
as molecular diffusion, excitation relaxation, reaction kinetics, phase transitions, adsorptions and capil-
lary condensation. For example, one feature of this geometrical organisation, the specific surface area
measuring the surface area per unit of volume, is related to the adsorption, heterogeneous catalysis, and
reactions on surfaces. In a industrial context, of activated charcoal, synthetic resins, and water purifi-
cation, the main goal is to design porous media that exhibit a large specific surface area in order to
maximise the possible interaction with reactants.

In turn, for some industrial applications, the aim is the conception of porous media in order to min-
imise transport properties. For cementitious materials, the transport properties are closely related to the
durability since they control the invasion dynamics of various molecules inside the porous medium. One
direct effect of these potential contaminants is the corrosion of the structural steel by the chloride ions.
The mechanical strain, from the dilation induced by the corrosion, is the source of cracks [131, 184].

In porous media, the two main processes for transport are diffusion (due to difference in concentration)
and convection (due to a difference inpressure). Molecular diffusion is usually slower. However, con-
vection in a porous medium, with pores smaller than a few microns, is slowered down by the viscosity
effects, so that molecular diffusion is predominant and allows the chemical species to move in the porous
medium. This is the case of a cement paste with a pores size smaller than a few microns. The aim of
this thesis is to understand this transport process.

In porous media, molecular diffusion is affected by the fluid saturation, the electro-chemical gradient,
the surface chemistry and the surface reactivity. In this thesis, we assume that the pore network is
homogeneously filled either by liquid or gas water, there is no electro-chemical gradient and finally the
interface is considered as inert in order to focus on the understanding of the relation between the diffusive
transport and the geometrical organisation of the porous medium of cement paste.

To achieve this task, it is crucial to describe correctly the geometrical organisation. A first level of
description is reduced to few numbers that characterise the global properties of the geometrical organisa-
tion. The most common numbers are the porosity, ¢, and specific surface area, S,. In most of cases, the
model of the geometrical organisation is based on these two numbers as input parameters. The variety
of the cement chemical compositions imposes a wide range of the geometrical organisations of the porous
medium. The use of ¢ and S, does not take into account many geometrical features, like the connectiv-
ity of the pore network, the structural correlation and the hierarchy at different length scales. A more
extended analysis has thus to be performed.

In this respect, experimental imaging techniques play and will play an important role in understanding
the metric and topology of geometrical organisation of porous medium. A development in material sci-
ence imaging is actually taking place involving for example X-ray, neutron, electron 2D /3D microscopies.
However, several obstacles remain. The image processing needs an accurate and robust segmentation.
This step is often badly controlled with no matching between the segmented phases and the real phases,
although efficient tools of segmentation already exist, for example the watershed transformation in math-
ematical morphology. Since most often we have only access to the observation of 2D sections through a
3D sample, an important question is how to do an analysis allowing to quantify statistical information,

ix



Introduction

like the average pore size, the mean curvature, the pore shape, the surface roughness and the structural
correlation, the isotropy, the homogeneity and the class of disorder. Using this extended metric infor-
mation, another challenge is to reconstruct a realistic 3D configuration from the 2D sections that would
enable the topological and diffusion properties of the original medium to be retrieved. Finally, an impor-
tant question is to know if it it possible to simplify the geometrical description of the 3D pore network
using a small number of functions that are well representative for the analysis of transport properties.
The main objective of this PhD work is to improve the processing of experimental images
in order to extract quantitative information, then to understand the relation between this
quantitative information and the diffusion properties. The principle components of this work are
as follows:

In chapter 1, we rapidly present cement paste as an example of a reactive porous material where
the diffusive transport takes place. Two papers will be reviewed to stress the guiding ideas of our
work.

In chapter 2, we describe the two experimental techniques: Scanning Electron Microscopy (SEM)
and X-ray tomography that are used to image two cement pastes (Portland and alite) during the
setting.

In chapter 3, we introduce a theoretical framework for a class of algorithms, called Seeded Region
Growing by Pixels Aggregation/Dissolution (SRGPAD). This framework allows the fast imple-
mentation of advanced and optimised algorithms dedicated to segmentation, decomposition of the
porous medium in elementary pores and permutation localisation on the phase boundaries.

In chapter 4, we apply these algorithms to get a simple, generic and robust method to segment
experimental two- or three-dimensional images of materials obtained by X-ray tomography and
SEM.

In chapter 5, we characterise the geometrical organisation at three levels. First, we present the
extended metric analysis of 2D or 3D images, then we describe how to extract relevant information
about the connectivity of the pore network on 3D images and finally, we decompose a porous medium
in term of elementary pores using either a metric and a topological approach. The guiding idea
of this decomposition will be to study restricted diffusion inside and between adjacent pores, and
to get a coarse graining description of the diffusive transport in an effective network of elementary
pores.

In the chapter 6, we introduce an efficient procedure to reconstruct a representative elementary
volume of a multi-phases material using metric information of a bi-dimensional imaging technique
such as SEM. This last experimental set up is widely used in the cement industry and the possibility
to restore 3D models from 2D observation should provide a gain of efficiency in a industrial context.

Finally, major results of this work as well as futur works are summarised in the conclusion.



(Glossary

To simplify the reading, the notations will always be the same.
Notations used in set theory

E a vector space
Z the integers set
Q a subset of E
Qe the complement of 2
D the Minkowski addition, also called dilation, operator: A®& B={a+b:a€ A and b€ B}
A, the set A translated by the vector x
o the erosion operator: A B={a+b:a€ A°and b € B%}°
Bs the symmetric of B, B* = {z : —z € B}.
o the opening operator: A6 B= (A& B)® B
. the closing operator: Ae B=(A® B)S B
times k

D the dilation operator times k: A®y B = (.(A® B)...® B)
+ the disjoint union operator in the set theory: A+ B={AUB: ANB =0}
W the disjoint union operator in the set theory: AW B={AUB: ANB =0}
- the inclusion restriction operator in the set theory: A— B={A\B: BC A=0}
Q a domain included in the space F
1 the characteristic function of Q : I(z) =1 if x € Q,0 otherwise
o0 the boundary of the domain Q (the closure of © without the interior of )

Notations used in seeded region growing by pixels aggregation/dissolution
X! a region (a domain of the space) at time ¢ with the label i
A a zone of influence associated to the region X}: Zf = (X[ @ Vi) \ ( U X})

JEN;

N; a restricted set, a subset of N
Vi a neighbourhood
0(x,1) an ordering attribute function
Coy the set of continuous application from [0, 1] to F such as the two extremities are equals to x and y
f a grey-level image: an application of F to Z
A the operator and in the symbolic logic

d*(x,y) the lower bound of the paths length in Q linking x and y

xi
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Notations used in geometrical characterization

I; the characteristic function of the phase i

W; the i-Minkowski functional

b; the volume fraction of the phase i

ac(t) the degree of hydration at time ¢

S; the specific surface area of the phase 4

S the 2-point probability function of the phase i (auto-correlation function)
fiu the p-chord length distribution function of the phase 4

l; the mean chord length

N3 the Euler-Poincaré invariant

K the Gaussian curvature

Pe the percolation threshold

b the volume fraction of the given phase at the percolation threshold

Bo the number of connected components of the microstructure

01 the number of irreducible cycles

B2 the number of internal surfaces or the number of connected components of the complementary
Qg the number of vertexes of the topological graph

a the number of edges of the topological graph

N(v) the coordination number of the vertex v

< N, > the mean coordination number
the intensive topological number

Notations used in annealing simulated algorithm

524, the 2-point probability functions of the phase ¢ and j (i = j auto, ¢ # j cross)
d(M,R) the distance between the model and the reference
P(M|R) the probability of the model M given R

Q the selection matrix (the perturbation)

p the acceptance matrix

NZIZ (d) the number of auto-correlation of the phase 4, at the distance d, for the partition Z*
/\/II; (d) the number of chords of the phase i which size is d, for the partition Z*

p‘g(y) the phase label at left of the voxel, y, on the direction €

5(y) the phase label at right of the voxel, y, on the direction &

lg(y) the length of the chord at left of the voxel, y, on the direction €

lg(y) the length of the chord at right of the voxel, y, on the direction €

xii
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1.1 Cement paste

Cement is made by heating limestone with small quantities of other materials (such as clay) to 1450°C in
a kiln. The resulting hard substance, called ’clinker’, is then ground with a small amount of gypsum into
a powder to make ’Ordinary Portland Cement’, the most commonly used type of cement (often referred
to as OPC). Cement refers to a dry powder substance. Upon addition of water, the cement mixture is
referred to as cement paste, with the addition of water and of sand, it is referred to a mortar, and with
the addition of of water, of sand and of aggregate (generally a coarse aggregate such as gravel, limestone,
or granite) is referred to as concrete. The cements set and harden because of chemical reactions when
it is mixed with water. A category of cement, called hydraulic cements, retains strength and stability
even under water. The key requirement for this strength and stability is that the hydrates formed by
immediate reaction with water be essentially insoluble in water. Most construction cements today are
hydraulic, and most of these are based on Portland cement.

The typical constituents of Portland clinker are

name | chemist notation | cement chemist notation | Mass
Tricalcium silicate Ca0)3(Si03) C3S 45-75%
Dicalcium silicate Ca0),(Si02) C2S 7-32%
Tricalcium aluminate Ca0);3 (Al,O3) C3A 0-13%
Tetracalcium aluminoferrite | (Ca0)y (AloO3) (FeaOs) | C4AF 0-18%
Gypsum (CaS04)(H20)2 2-10%

Upon the addition of water, the hydration reactions of the anhydrous phases begin. These processes
can vary widely depending upon the mix used and the conditions of curing of the product, but a typical

A~ N N N
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concrete sets (i.e. becomes rigid) in about 6 hours, and develops a compressive strength of 8~MPa in
24 hours. The strength rises to 15~MPa at 3 days, 23~MPa at one week, 35~MPa at 4 weeks, and
41~MPa at three months. In principle, the strength continues to rise slowly as long as water is available
for continued hydration, but cement paste is usually allowed to dry out after a few weeks, and the increase
in strength is stopped. Hydration products formed in hardened cement pastes (HCP) are complicated,
because many of these products have nearly the same formula (the hyphens in C-S-H indicate a phase of
variable composition).

name chemist notation cement notation
Calcium Silicate Hydrate (Ca0), (Si02), (H20). C-S-H

Calcium hydroxide Ca(OH), CH

Ettrlnglte [CagAl(OH)612HQO]22H20 C3A30&SO432H20
Aluminate Ferrite trisulfate contains three anhydrite molecules: C3A.3CaS04.32H,0 | AFt

Aluminate Ferrite monusulfate | contains one anhydrite molecule: C3A.CaSO4.A2H, AFm

The hydration reaction can be decomposed into two steps (see figure 1.1):

1. dissolution of the ions in the solution from the anhydrous phases. For example, the dissolution of
the calcium and silicate from C3S:

1 2 . 2— —
Ca38i055) + 3H20()y = 3Cayy + HaSiOj;) +40H ;)
where the subscript (s) means a solid phase, (1) means a liquid phase.

2. precipitation of hydrate phases from the solution. For example, the precipitation of C-S-H and CH
from water solution of calcium and silicate ions:

L.5Cagy + Ha8i0%) + OH ) + H0() ((Ca0)1.5(8i02)(H20)2.5) (s

=
2+ -
Ca(l) + 20H(l) = C’a(OH)g(S)
The dissolution-precipitation reaction and the pattern formation of the porous medium (space distribution
of the solid and liquid phases) depend on many parameters:

1. the constituents of the dry powder substance of cement,
2. the ratio of water to cement (W/C) ,

3. the temperature [110],

4. the relative humidity [157],

The porous medium exhibits a geometrical organisation in a wide range of length scales from nanometres
to millimetres. Powers and Brownyard [136] distinguished two kinds of pores: gel water pores (under
the influence of adsorbing forces) from the nanometre to 0.1 micrometer and capillary water pores (“free”
water) form 0.1 micrometer to millimetre. The geometrical features characterising the porous medium are
related to a wide range of different mechanical, physical and chemical properties. One important issue,
connected to the concrete durability, is the understanding of the transport properties. This is a crucial
point in order to control the invasion dynamics of various molecules inside the porous medium. One effect
of these possible contaminants is the corrosion of the structural steel induced by the steel depassivation
when pH decreased (for example the chemical reaction of portlandite, Ca(OH)sy, and calcium silicate
hydrate, C-S-H, in the cement matrix with carbon dioxide gas leading to calcite CaCQOs for example).
Since iron oxide formation is accompanied by an increase in volume, it should lead to micro-cracking in
the surrounding cement paste [184, 131] (see figure 1.2). The two main origins for molecular transport are
diffusion (due to a difference a concentration) and convection (due to a difference in pressure). Molecular
diffusion is usually slower. However, for a porous medium, having pores smaller than a few microns,
since convection is slowed down by the viscosity effects, molecular diffusion is predominant and allows
the chemical species to move in the porous medium. As the studied material is cement paste with a pore
size smaller than a few microns, our work will be focused on molecular diffusion.
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Figure 1.1: Dissolution-precipitation reaction. (a) at time of hydration = 0, (b) at the beginning of the
hydration, (c) Portland cement image obtained by SEM at time of hydration = 1 day.

1.2 Diffusion in a confined domain

Let us consider a bath at uniform temperature without fluid motion. At initial state, a black ink drop
falls in the bath. Propagation of the colour occurs due to the molecular diffusion. There is a flux, 7,
of molecules (pigments) from regions of high concentration (where the drop is fallen) to regions of low
concentration. In 1845, Fick introduced a macroscopic law of diffusion, which governs the molecular
diffusion:

j=—-DoVec with V the gradient operator . (1.1)

where c¢ is the molecular concentration and Dy is the free diffusion coefficient depending on the temper-
ature and the interactions between the species and the solution.
Using the mass conservation law,

0 -
(’)_j + V- j =0 with V- the divergence operator, (1.2)

we get the second Fick’s law:

% = Dy V?¢ with V2the Laplace operator. (1.3)

By dimensional analysis, we find that the diffusion characteristic length is proportional to /¢ (for a water
molecule at 20°C, this length is in the order of 100 um for ¢ = 1s) . This slow dynamics is observed in
the diffusion of black ink drop in the bath. The diffusion inside a porous medium of cement paste is also
slow (see figure 1.3). In a confined domain (the porous medium of cement paste), a good understanding
of the diffusive transport will involve:
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Figure 1.2: Carbonation. (a) Transport of the carbon dioxide gas inside the porous medium, (b) front
of PMC Laboratory (c) zoom on the top of front of PMC Laboratory-cracks due to the corrosion of the
structural steel.

e the water saturation inside the porous medium since the water diffusion coefficients in liquid phase
and in gas phase are different. In most materials made of cement, the relative water humidity is
above 30%, large enough to have both water gas inside the capillary porosity and water liquid inside
the gel porosity [13].

e the electro-chemical gradient since, if the diffusing species are ionic, their motion depends also on
the electro-chemical gradient (j¢ = —ucVy where j€ is the flow due to electro-chemical gradient,
¢ is the concentration, u is the ionic mobility, V¢ is the gradient of local potential) [145]. The
water inside the cement paste is an ionic solution (pH=13): it is a electrolyte. By imposing an
electro-chemical gradient (see figure 1.4), the measurement of the diffusivity of ions species in
water-saturated hardened cement pastes [130, 100] can be done using the Nernst-Einstein relation:

" DzF
- RT

where the z the valence of the ionic particle, F' = Ne is the Faraday’s constant, T is the temperature
and R is the gas constant.

e the surface chemistry and the surface reactivity, for example, the diffusing species can be chemically
transformed into other species after hitting the surface [136]. In cement paste, there is a possibility
of a strong carbonation, the chemical reaction of the interface (portlandite, Ca(OH)2, and calcium
silicate hydrate, C-S-H, in the cement matrix) with diffusing species such as carbon dioxide gas
leading to calcite, CaCOs.
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Figure 1.3: Experimental measurement of the diffusion coefficient. In steady state, the constant flow is
given by j, = % where AQ is the diffused quantity in the time interval At through the section S of
the specimen. The effective diffusion coefficient is calculated using the first Fick’s law with the relation:
D, = Iqu—I«:o\l where ¢; and ¢y are the concentrations in the two chambers. For a concrete with a thickness
equal to 3 cm, where a constant, concentration gradient is applied between the two faces, the steady state
flow is obtained after one year [45] (corresponding to the linear part of the curve at long time).
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Figure 1.4: Migration of the ionic particles under a electronic field. The advantage of this experiment is
that the steady state is rapidly reached, allowing the diffusion coefficient to be measured in a reasonable

time (5 days).
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e the geometry of the confined pore network.

In this thesis, we focus on the link between the diffusion transport and the geometry of the porous medium
of cement paste. We assume that the pore network is homogeneously filled either by liquid or gas water,
there is no electro-chemical gradient and finally the interface is considered as inert.

In a homogeneous isotropic porous medium, the effective Fick law is:

Oce
ot

= ¢D.Vic.. (1.4)

where D, (m?/s) is the effective diffusion coefficient and c, is the effective molecular concentration (¢
is the volume fraction of pore phase). Experimentally [130, 100], we measure the effective diffusion
coefficient (see figure 1.5). D, may be related to its free diffusivity, Dy (m?/s), by the following equation:

— ey ° 7o = OCO micr
Cl.macro = PCl.micro €2 macro = P2 micro

Figure 1.5: Experimental measurement of the diffusion coefficient. In steady state, the constant flow is

given by j, = qég ; where AQ is the diffused quantity in the time interval At through the section S of

the specimen. The microscopic diffusion coefficient is D,
conditions impose C; = ¢; ..

L= i Clj_’cCﬂL since the boundary

_ =
[e1,e—c2,el

1
D. = =Dy (1.5)
T

where 7 is dimensionless parameter (7 > 1) called the tortuosity of the porous medium. In fact, the above
relationship attempts to scale Dy to D, by including a factor that is the increased transport path length
due to the geometrical organisation of the porous medium of cement paste (PMCP) (7). This physical
parameter is different to the geometrical tortuosity. The direct or indirect estimation of the tortuosity
can be done by:

e the utilisation of the Archie’s empirical law [4] where we have:
1 1
T ~ o with 5 <a<jg (1.6)

Although this approach is commonly used in reservoir engineering, it is useless to predict the
tortuosity for an unknown material.

e the proposition of a “toys model” of the porous medium based on experimental constraints [105]
or the coarse graining description in using a perturbation method [156] or self consistent method
[17, 43]. The common input parameters of these methods are the porosity, the specific surface area,
and the structural correlation function.
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Figure 1.7: For the random walk methods, with the assumption of a self-diffusion and an unbounded

domain, we have D, = lim;_,o D.(t) and D,(t) = W with d the dimension.

e the simulation of the diffusive transport in the three dimensional microstructure. The computational
methods are finite difference [3, 6] (see figure 1.6) or random walk methods [151] (see figure 1.7).
In order to get the three dimensional microstructure, the solutions are to propose a “toy model” or
to use an 3D imaging technique.

In this thesis, we will focus on this last approach with the utilisation of two imaging techniques: Scanning
Electron Microscopy (SEM) and X-ray tomography to see the microstructure. In the next section, we
comment two papers related to this thesis.
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1.3 Link between the geometry of cement paste and transport
properties

1.3.1 Estimating transport properties of mortars using image analysis of
SEM images

Wong et al [180] study the porous medium of two ordinary Portland cement mortars at a water to
cement ratio of 0.35 and 0.70 respectively. They correlate two simple metric parameters, the porosity
and the specific surface area, obtained by using quantitative scanning electron microscopy, with transport
coefficients obtained experimentally. Then, they introduce some models incorporating tortuosity and
constrictivity to predict oxygen diffusivity and permeability.

The work is in five parts: selection of the specimens, segmentation, comparison between the metric
parameters obtained by image analysis and by other indirect methods, correlation between transport
properties and metric parameters, and proposition of a model.

Selection of the samples

Wong et al select the samples in order to obtain a wide range of PMCP characteristics:

e Ordinary Portland Cement (OPC) and medium graded (BS 882:1992) siliceous sand were used to
prepare two mortar mixtures at different proportions,

e high and low water/cement ratio,
e curing period (time of hydration), 2 days or 28 days,
e conditioning regime: temperature, 20°C, 50°C, 105°C, and relative humidity, 100%, 55%, 10%.

However, as the pore structure of cement paste strongly depends on its chemical composition, they do
not explore a wide range of possible PMCP since they selected only one kind of cement paste (OPC).

Segmentation

The quantitative analysis of images needs an accurate segmentation. Segmentation is the transformation
of a grey-level image to a labelled image where a label is associated to a phase. The classical segmentation
procedure is a threshold segmentation based on:

e simple pre-filtering such as median filter, erosion, dilation, opening, closing,
e thresholding,
e simple post-filtering such as erosion, dilation, opening, closing.

To our knowledge, threshold segmentation using tint information is the only method applied to extract
the different phases of cementitious materials [120, 123, 137, 182, 181]. This segmentation procedure is
suitable when a good contrast between the phases gives a specific peak for each phase in the histogram.
When this is not the case, as in the case of the porosity on the backscattered electron images, first the
selection of the threshold using the histogram is difficult and second, the segmented pore structure will
not match the real pore structure. In order to do a comparative analysis, Wong et al determine the
upper threshold grey-level for pores from the inflection point of the cumulative brightness histogram of
the BSE image (see figure 1.8). However, this segmentation does not allow a accurate prediction of the
physical behaviour or properties of the material since the segmented microstructure does not match the
real microstructure.
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Figure 1.8: (a) Typical BSE image of cement paste. Field of view: 240x180 um?; (b) cumulative brightness
histogram showing the location of the upper threshold value for porosity; (c) segmented pores (black
pixels) superimposed onto the original faded BSE image. Pore area fraction is 17.8

Comparison between the metric parameters obtained by image analysis and by other indi-
rect methods

As noted by Wong et al, the comparison between specific surface areas measured by image analysis and
by other indirect methods (gas sorption [157], small angle scattering using neutrons [179], and nuclear
magnetic resonance relaxation [92]) would lead to a large discrepancy since the indirect methods cover a
wider range of pore sizes including gel pores, small capillary pores and large air voids. As capillary pores
control the transport properties in cement paste, the metric parameters measured by image analysis are
suitable since they are calculated using images at this specific range of length scales.

Correlation transport properties and metric parameters

Oxygen diffusivity is measured by imposing an electro-chemical gradient [130, 100], and oxygen perme-
ability is determined by measuring the steady-state flow rate when a pressure difference is applied between
two faces of the sample. Wong et al find a strong correlation between the measured pore properties and
effective diffusive coefficient (see figure 1.9) emphasising that:

1. the range of porous medium sizes analysed by SEM is relevant,

2. the tortuosity follows the Archie’s law: d)% with o = 1.

Modelling

Wong et al introduce some models to predict oxygen diffusivity and oxygen permeability. However, the
input parameters of these models are the porosity, the geometrical tortuosity and the constrictivity. The
problem is that the geometrical tortuosity parameter cannot be measured by SEM. The study of Béjaoui
et al [15] shows that the capillaries porosity of Portland are almost equivalent to the capillaries porosity of
Portland-Pozzolanic with the same ratio W/C, but for a given W/C, the diffusion coefficient in Portland
is twenty times smaller than the diffusion coefficient in Portland-Pozzolanic, despite a larger porosity (see
figure 1.10). Therefore, the tortuosity strongly depends on the chemical composition of the
cement.

Conclusion of this work

To summarise,

1. SEM allows to image PMCP at relevant range of length scale to study transport properties. How-
ever, the relative similarly of the electron back scattering emission coefficients in the pores and
C-S-H makes the segmentation difficult and in more the partial volume effect cannot be neglected.

9
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Figure 1.9: Correlation between the porosity and diffusion coefficient for OPC mortar.

2. The geometrical /physical tortuosity strongly depends on the chemical composition of the cement.

3. The geometrical /physical tortuosity cannot be estimated by using SEM images because the images
are two-dimensional sections of a three-dimensional microstructure. 3D imaging techniques or an
algorithm allowing the 3D reconstruction of multiphase material from a 2D observation are then
required to allow the simulation of the diffusive transport in the three dimensional microstructure
given the estimation of the tortuosity.

The second article is related to the application of 3D imaging techniques using X-ray microtomography.

1.3.2 X-ray microtomographic studies of pore structure and permeability in
Portland cement concrete

Lu et al [107] studied the pore structure of conventional concrete mixture and three Pozzolanic-modified
concrete mixtures. They related a three-dimensional parameter, called “disconnected pore distance”,
obtained in X-ray microtomographic images, to standard measures of chloride permeability.

Selection of the samples

Lu et al use conventional concrete mixture and three Pozzolanic-modified concrete mixtures cured at 28
days in order to represent those typically used in transportation applications in the Northeast U.S. They
explore the wide range of pore structures of concrete, varying the chemical composition.

Quantitative analysis

In order to study the pore connectivity, Lu et al analyse the percolation of the pore space in looking
at how the connected components hitting one surface are connected to the opposite surface. For all the
samples, the pore space is not connected at the resolution of 1um for a mature concrete [137, 55, 139].
They observe that the difference between the cement pastes is the depth of the pore network connected
with the face. Lu et al evaluate this depth with a distance, called disconnected pore distance. Then,
they find a correlation between this distance and the chloride permeability (see figure 1.11)

10
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Figure 1.10: (a) capillary porosity as a function of the ratio W/C , (b) diffusion coefficient as a function

of the ratio W/C [15].

Figure 1.11:
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concretes[107]. For details of the link between the chloride permeability and the chloride concentra-
tion see [50].

Conclusion of this work

To

summarise,

1. the main drawback of X-ray microtomography is its spatial resolution which is at present quite
low relative to the sizes of capillary pores controlling transport properties in mature cement pastes
[55]. This fact is observed by the absence of connexion in the capillary pores. Nevertheless in
the early stages of hydration, the size of the capillary pores is large enough in comparison to the
image resolution that allows to quantify the tortuosity. This information can be interfaced with
microstructural models, which in turn should allow extrapolation to mature pastes [55].

2. as for SEM imaging, the relative similarity of X-rays attenuation coefficients for pores and C-S-H
makes the segmentation difficult,

11
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1.4 Conclusion and discussion

In 2D, SEM allows a qualitative and quantitative analysis of a mature paste in the relevant range of
length scales. In the cement paste literature [51, 154, 155, 180], the metric analysis is focused on the
volume fraction and the specific surface area of the phases. However, a more extended metric analysis
would give important information about parameters such as the average pore size, the mean curvature,
the surface roughness, the structural correlation, the isotropy, the homogeneity and the class of disorder
(see section 5.2). Also, a challenge will be to reconstruct a realistic 3D configuration from the 2D image
that would enable to retrieve the topological and diffusion properties of the original medium (see chap-
ter 6).

In 3D, X-ray microtomography is relevant to image PMCP only in the early ages of pastes. It will be
interesting to observe the disconnection of the pore network as a function of the curing times (see sec-
tion 5.3).

For both imaging techniques, the low grey-level contrast between the phases makes the extraction of the
phases difficult and practically impossible by standard thresholding procedures. An advanced segmenta-
tion procedure will be developed to capture realistic geometrical features and to accurately predict the
material properties (see chapter 4).
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2.1 Introduction

2.1.1 Why 3D imaging?

The geometrical organisation of the porosity of cement paste affects numerous processes such as molec-
ular diffusion, excitation relaxation, reaction kinetics, adsorption and capillary condensation as well as
mechanical strength of concrete constructions and buildings. In order to especially understand how the

diffusion occurs in this porous media, the requirements are:

o the statistical characterisation of the geometry of the porous microstructure,

e a theory to link this characterisation and the diffusion transport.

The characterisation of the geometry can be done by indirect measurement.

features,

e the porosity can be measured using gas porosimetry based on the Boyle’s law [35, 64],

o the specific surface area can be measured using Brunauer, Emett and Teller (BET) method [27, 127]

or nuclear magnetic relaxation dispersion [12].

13
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For statistical geometrical features (see subsection 5.2.4),

e the two-point probability function can be measured using small angle scattering [39] or direct energy
transfer [104],

e the chord length distribution can be measured using small angle scattering. [115, 106, 109].
These metric features obtained by indirect methods are used:

1. to probe a reliable model of the real microstructure [105],

2. to correlate these measurements with a phenomenological law [109].

The initial goal of this thesis is to understand the link between the metric/topological features! and the
diffusion transport. Since the diffusion transport depends on the topology and the metric of the porous
microstructure and these indirect methods give only metric information, a 3D imaging method has been
chosen in order to characterise the topology and the metric of the porous microstructure.

One image is a grid of the sample where the value of cell is the average of a physical interaction (e.g.
attenuation) of the different solids and fluids contained into it at the moment of acquisition. An imaging
technique is defined by two characteristic length scales: the resolution? (length of the cell) and the field
of view (length of the grid). In order to a have complete spatial information of the microstructure,

e the resolution of the image has to be much smaller than the smallest feature size of the material
(see figure 2.1),

Z 2 g === 2

\

k)@&

.
\

Z > T ez
(a) Lo ~ 1 (b) le ~ L

Figure 2.1: For a complete spatial information of this two-phases material, we need to have | < [, < L
with [ the image resolution, L the image field of view and [. the feature size of this material .

e the field of view of the image has to be much bigger than the biggest feature size of the material.

IThe first one deals with average pore size, mean curvature, pore shape, surface roughness, structural correlation between
pixels belonging to the solid, the interface or the pore network. .. The second is closely related to the long-range connectivity
or percolation of pore network (Gauss curvature of the interface left angle bracket Kright-pointing angle bracket, deformation
retract, genus of the interface). Several interesting properties should be analysed at this level such as the number of available
paths linking two distinct points of the pore network, the metric distance between two points compared to their shortest
(geodesic) distance and the important role of pore throats.

2The resolution describes the ability of an imaging technique to resolve detail in the material. Basically, to quantify the
resolution, we estimate the minimum distance between two points still visibly resolved. The resolution fixes the limit length
scale of the investigation and it is a physical parameter. Therefore, the length of the pixel/voxel size has to be larger than
the resolution because there is no spatial information at the sub-scale.

14
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Figure 2.2: General principle of an experiment

The material under investigation is cement paste that is a hierarchical media. The shape of the porous
media is organised over a large range of length-scale and, moreover, each length scale organisation is
specific. Therefore, it is impossible to have an imaging technique covering this large range of length scale.
In the thesis, we focus on the upper length-scale of the porosity of cement paste, called the capillary
porosity3. To observe the cement paste capillary porosity, ideally, we need a resolution of 0.1 um (to have
one magnitude order of length scale between the resolution and the characteristic length of the capillary
porosity) and a field of view of 200 um (the characteristic length of the Representative Elementary Volume
(REV) of capillary porosity is 200 um, see subsubsection 5.2.4).

2.1.2 Choice of an imaging technique
Schematically, an imaging technique is (see figure 2.2):

1. a source generating waves-particles (e.g. electromagnetic radiation) with some physical properties
(e.g. monochromatic),

2. an interaction between the material and the source generating waves-particles,
3. a detector to collect the waves-particles,
4. a computer to generate the mapping of the physical interaction.

There are several 3D imaging techniques:

e Nuclear Magnetic resonance Imaging (MRI) has seen increasing application for characterisation the
structure of porous material, in rocks [44], in cement pastes [25], in bones [135]. This technique is
based on the application of the strong main magnetic field (source 1) to align the nuclear magneti-
sation of hydrogen atoms in water on the same direction of this field (interaction 1), then a second
electromagnetic field (source 2), that oscillates at radio-frequencies and that is perpendicular to
the main field, is then pulsed to push the protons on the normal plan of direction of main field
(interaction 2). So, at initial time, the protons rotate perpendicular of the direction of the main
field with phase coherence. Then, the protons drift back into alignment with the main field, T1
relaxation, and loses progressively the phase coherence, T2 relaxation. These two physical phe-
nomenons of relaxation emit a detectable radio frequency signal (emission). For the study of the
capillary porosity, this method is of limited use since the best resolution of this technique, 40 pm,
is much coarser than the biggest feature size of the cement paste porosity, 3-4um. In cement, this
method is used to give profiles of liquid diffusion or saturation, for example the moisture content
profile for drying concrete [25].

e The Focused Ion Beam (FIB) nanotomography, based on the serial sectioning procedure with a
sequence of erosion by FIB and 2D imaging by Scanning Electron Microscopy (SEM), has been

3Tn order to investigate the whole length-scale range of heterogeneity of cement paste, this thesis is coupled with two
others thesis:

e S. Brisard supervised by P.L. Levitz (understanding the nanostructure of C-S-H: macroscopic implications),

e H. Chemni supervised by D. Petit (multi-scale diffusion and moisture scorpion in cement paste materials).
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increasing use to characterise the structure of porous material, in ceramics [71], and in cement [70].
The resolution of 50 nm is suitable for the study of the capillary porosity. However, the field of
view is 50 pm, much lower the characteristic length scale of the REV of cement paste, 200 pum.
Moreover, this method is intrusive, causing irreversible modification of the pore matrix.

e The Transmission Electron Microscopy (TEM) tomography, based on TEM acquisitions at different
angles, is a powerful technique to investigate the nano-geometrical organisation [91, 118]. For cement
paste, the resolution is suitable for the study of CSH (thesis of S. Brisard). However, in the case of
the present thesis, the characteristic length scale to be investigated is way above the nanometer.

e The laser scanning confocal microscopy, based on a sequence of focusing the beam on different
layers of the material, has been applied in geosciences [54] in cement [93]. Due to the small size
in depth of the image, this technique is suitable to investigate individual particle like the 'Hadley’
grains [66] but for the study of porosity of cement paste, this technique is not appropriate.

e The synchrotron-based X-ray Tomographic Microscopy (SRXTM) based on X-ray acquisitions at
different, angles is a powerful, non-destructive, and high-resolution technique for the observation of
many different kinds of materials [52]. The resolution, in order of 1 um, is just little bit smaller than
the characteristic length scale of the capillary porosity, 1 ym. The field of view, 500 pym, is much
bigger than the characteristic length scale of the REV, 200 pm estimated in the subsubsection 5.2.4.

Two techniques have been used to image our cement sample:

1. Synchrotron-based X-ray Tomography. This is suitable technique for the study of capillary porosity
but the resolution is limited. Because of the difficult access to the experimental set-up this technique
is inconceivable for the cement industry, as the quantity of cement paste samples to analyse is high.

2. SEM. This is widely used in the cement industry to give qualitative and quantitative information.
As this technique gives 2D observation, the quantitative analysis is limited. A standing and open
question is to link the 3D physical properties with a 2D observation (see chapter 6).

The preparation of samples and the image acquisition have been done with the strong collaboration of
the Laboratory of Ecole Polytechnique Fédéral de Lausanne with the assistance of E. Gallucci.

2.2 Scanning Electron Microscopy (SEM)

In this section, we briefly recall the principles of SEM, then we present the application for cement paste,
by explaining the sample preparation.

2.2.1 Principle

The source of SEM is a monochromatic electron beam focused on a region of the sample surface. The
interaction between this source and the atoms is electrostatic (interaction between the beam electrons
and the electron cloud of atoms). The interaction generates secondary and back scattered electrons,
characteristic X-rays and light. In our case, 2d-mapping of the microstructure will be built based on the
phase contrast of back scattered electrons, since:

1. heavy elements (high atomic number) containing phases or dense phases backscatter electrons more
strongly than light elements containing phases or poorly compacted phases due to the monotonic
increase in electron backscatter coefficient 7 as a function of their weighted average atomic number
[126, 37],

2. the electron penetration depth is in the range of 100nm [67], which is small enough to have a good
resolution and deep enough to not to be affected by the remaining roughness of the polished cross
section.
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Figure 2.3: SEM. (a): interaction between an electron and an atom; (b): interaction between the incident
beam of electrons and the sample; (¢): a scheme of SEM (1) Electron gun with a negative voltage. (2)
Anode to the mass. (3) Condenser lenses. (4) System of deflexion-scanning which deflect the beam
horizontally and vertically (to scan the surface). (5) Sample fixed on a goniometer. (6) Detector of
backscattered electrons. (7) I,, Measure of the adsorbed current. (8) I;, Measure of the transmitted
current. (9) Visualisation of the image.

The detector is a double Everhart-Thornley detector located above the sample in a "doughnut" type
arrangement, concentric to the electron beam. To obtain a surface mapping, the electrons beam scans
the sample surface[46] (see figure 2.3).

The image contrast is the result of two effects: the topographic contrast and composition/atomic
number contrast. In order to quantify the phases organisation, only the composition contrast is relevant.
To remove the topographic contrast, the sample is filled in resin and polished. The brightness of each pixel
is the average atomic number of the different phases contained into it. For the major phases present in
Portland cement, the phases encountered from brightest to darkest pixels are tetracalcium aluminoferrite
(C4AF), tricalcium silicate (C3S), dicalcium silicate (C2S), tricalcium aluminate (C3A) and gypsum, and
the resin-filled voids. Because the back scattered electrons signal is weak, images are inherently noisy.
To reduce the noise, the counting time is long.

2.2.2 State of art

Further pioneering work on the physical principles of the SEM and beam specimen interactions was per-
formed by Manfred von Ardenne in 1937 [174]. In the study of cementitious materials, further pioneering
work on quantitative backscattered electron (BSE) imaging in SEM, was performed by Scrivener et al in
the early 1980 [153]. Since this time, SEM has demonstrated its great potential for the study of cemen-
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titious materials for qualitative observations and quantitative measures [154]. For quantitative measures
(see section 5.2), we can mention the determination of:

e the volume fraction of the void phase [180],

e the volume fraction of the anhydrous phase which gives the degree of chemical reaction, called the
degree of hydration in cement industry [51] (chemical information) ,

e the metric parameters of cracks [124, 159] (micro-mechanical information),

The major drawback of this technique is the fact that only two dimensional sections of a three-dimensional
microstructure may be observed. A standing and open question is to link the 3D physical properties with
2D observation. Some authors used a phenomenological approach to link some porosity metric descriptors
obtained by SEM and physical properties such as compressive strength [129] and diffusion? [180]. Others
reconstructed a 3D model using some metric descriptors obtained by SEM [138]. This last approach will
be explored on the chapter 6.

2.2.3 Sample preparation

The preparation of polished specimens is relatively tedious, and requires special equipment and skills.
Severe artefacts can result from improper preparation. This preparation is known to produce irreversible
changes in the pores structure, particularly at small sizes.

Preparation of the slices

After mixing the water with cement, the cement paste is poured into a plastic cylindrical container. For
a chosen hydration age, a slice is cut from the mother cement paste cylinder. The slice is immersed into
isopropanol. The chemical reaction of hydration is immediately stopped because the chemical potential
is changed. After three days, the water inside the slice is substituted by isopropanol. Then, the sample
is put in a vacuum chamber during a half-day to substitute the liquid phase by the vapor phase. The
capillary pressure of the isopropanol is lower than that of water (the interfacial energy /superficial strain of
the isopropanol, 4 /1iq = 22, 3m.N/m, is lower than the superficial strain of the water, v, /1iq = 72.79).
Therefore, a weak vaccum is sufficient for this process without damaging the microstructure.

Epoxy impregnation

The sample is filled with an epoxy resin to stabilise and reinforce the microstructure. The slices are put
under vacuum (~10Mbar) for half hour (enough time to reach the steady-state pressure between outside
and inside the slice). Impregnation by the resin is performed with a small plastic pipe. At this level,
the porosity is not filled but the porosity is isolated from the outside by the resin. The vacuum is then
suddenly broken given a pressure difference between atmospheric pressure outside the sample and the
vaccum pressure inside the sample. This gradient forces the resin to invade the porosity efficiently.

Polishing

Once cured, the resin layer above the sample is removed using a coarse SiC grinding paper (SiC grade
: 1200). Polishing is done manually until the outcrop of cement paste. The outcrop is reached when
the boundary between the cement paste and the resin is observed by sun reflects. Then, the sample is
polished with a series of decreasing diamond suspension grades of 9, 3, 1, and 0.25 um on a low-speed
lap wheel using oil as a polishing lubricant for about 30 minutes for each step with a pressure of 25N. A
5-10 nm thick coating of carbon is evaporated onto the polished surface to eliminate specimen charging
during SEM observation.

4The measure of diffusion has been done by oxygen permeability [88] but the NMR. is a powerful alternative [99, 125].
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Imaging by SEM

The results are presented in the table 2.1. In the figure 2.4-j and figure 2.5-j, four phases are mainly
observed: :

e the bright grains are remaining unhydrated cores of tricalcium silicate (C3S),

e the light grey clusters including the bright ones are portlandite (CH), one hydrated phase,
e the dark grey phase is the main hydrated phases : calcium silicate hydrate (CSH),

e the black regions are the porosity.

In each column in the figure 2.4, we observed the advancement of the hydration reaction over time. For
instance, in the last row, the anhydrous grains are surrounded by a small layer of CSH at the beginning
(see first figure 2-4-c) but this layer increases over time (see figures 2-4-e,i). We observe that the size of
the cluster of portlandite is much larger for alite than for OPC. The reason is related to the nucleation of
the portlandite clusters which is less likely in the case of alite since the reaction of germination is driven
by the heterogeneous precipitation. In the figure 2.4-2-4-c, some cracks are observed in the anhydrous
grains due to sample preparation.

Cement Water/cement | time sampled (days)
0.4
Alite 0.4
0.4
0.5
CEMI 0.5
0.5
0.4
CEMILslag | 0.5
0.4

W =g w R~ w -

Table 2.1: Samples observed by SEM. For each sample, the pixel size of the BE images are 1, 0.675, 0.25,
0.1, 0.025 pym

2.2.4 First comments on image analysis

Quantitative analysis of the geometrical features of a complex media needs as a prerequisite to propose an
accurate segmentation of the image. The segmentation process consists of converting a grey-level image®
to a labelled image®. In order to do a comparative analysis of the capillary porosity over hydration time,
the segmentation has to be robust. For SEM, the major difficulty is the acquisition parameters at not
constant over time. Between two successive acquisitions of the same cement paste, the images are different
since the acquisition parameters are not stable (for example, the electrons energy obtained by Electron
gun is not stable). Therefore, the shape of the grey-level histogram moves between each acquisition (see
figure 2.6). In the chapter 4, we will apply a segmentation procedure based on boundary information
allowing a reproducible result even with a shift of the grey-level.

2.3 SRXTM

Synchrotron X-ray Tomographic Microscopy (SRXTM) is a powerful, non-destructive, and high-resolution
technique to observe the 3D geometrical organisation of many different types of materials [162, 52, 28]. In
this section, we briefly remind the principle of SRXTM, then we present the application of this technique
to cement, after we explain the sample preparation and finally we present the results.

5A pixel is coded by a grey-level corresponding to a quantification of the physical phenomenon under investigation.
6 A pixel is coded by a label corresponding to a phase of the material.
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Anhydrous grains
Capillary pores

Hydrate

Portlandite clusters

L=1mm
(j) 1=0.675 pm, h = 7 day

Figure 2.4: The cement paste is alite with W/C=0.4 observed by SEM. 1 = pixel size and h = hydration
time.
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1=0.25 pm, h = 3 day

Portlantide clusters

L=1mm
(j) 1=0.675 pm, h = 7 day

Figure 2.5: The cement paste is OPC with W/C=0.4 observed by SEM. | = pixel size and h = hydration
time.
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Histogramme of OPC with W/C=0.5 observed by SEM
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Figure 2.6: Histogram of OPC with W/C=0.5 at different times. If the acquisition parameters are still
constants, the peaks of the histograms have always located at the same value. Here, it is not the case.
Therefore, the acquisition parameters are not constants.
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Figure 2.7: A scheme of SRXTM

2.3.1 Principle

There exists two kinds of X-ray sources: laboratory or synchrotron. For the study of the capillary
porosity of cement pastes, synchrotron has been chosen because the highest resolution of laboratory-
based X-ray Tomographic Microscopes (10 micrometers) is bigger than the feature size of the cement
paste capillary porosity (3-4 micrometers). A synchrotron is a toroidal vacuum tube (a ring) surrounded
by electromagnets in which electrons travel in the centre of the ring. The orbital motion is the result of
a centripetal acceleration. During this acceleration, electrons lose energy in the form of photons, called
synchrotron radiation. In the photon beam lines, end-stations (small laboratories) use this radiation for
various applications. In tomography application, a monochromator filters the frequency spectrum of the
photon beam to produce a bright, almost monochromatic’, parallel photon beam (X-ray frequency).
The figure 2.7 shows the principle of X-ray tomography. Next, we will explain the different stages.

Interaction between the monochromatic photons beam and the material

Intersection between a X-ray and a cloud of identical atoms:

Let us considered a X-ray going through a cube containing a cloud of identical atoms represented by
spheres. The absorption coefficient, u, is defined in such a way that pL is the probability that a random
line, with a normal direction to a side of the cube, will intersect with the spheres® included in the cube
(see figure 2.8). Therefore, the probability is the ratio of the projected spheres surface area to the surface
area of the side under the assumption of diluted spheres:

in our application, the energy was 20 KeV.

8the spheres are diluted
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Figure 2.8: probability of interaction between a X-ray and a cloud of atoms contained in the cube
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where o is the cross absorption section (1 barn = 10724cm?) and N is the number of atoms contained
in the cube. Since the density, p, is equal to g—j’f} where A is the atom mass (g) and N is the Avogadro
number, we obtain:

Tabulation:
The absorption coefficient depends on the density and, therefore, the physical state. For the purpose of
tabulation, the absorption coefficient is divided by the density:

oN
A

e
p

The mass absorption coefficient y1/p (cm?/g) is more or less independent from the physical state of the
element allowing the elements tabulation.
Cross section absorption coefficient for one atom:

With wavelengths of the order of 1 A, the interaction between the electromagnetic field and the atom
affects the electronic system of the latter. Two main effects must be distinguished:

e Photoelectric absorption. The absorbed radiation is used to eject a lower-level from the atom,
the photo-electron carrying away any excess energy in the form of kinetic energy. 7 is the linear
photoelectric absorption.

e Scattering. The X-ray photon is deflected from its original direction of propagation, with or without
loss of energy, by collision with an electron or atom.

The cross section absorption coefficient is the sum of the cross section of these two interactions.
Intersection between a X-ray and a cloud of different atoms :

Let us consider a X-ray going through a cube containing a cloud of different atoms represented by spheres.
The absorption coefficient is an additive measure (see figure 2.9). Therefore, the absorption coefficient is
the sum of the absorption coefficients of each element, p;:

MZZM
i
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Figure 2.9: The additive attenuation comes from the additive surface for diluted sphere

The mass absorption coefficient is
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where g; is the mass fraction contributed by the element ¢ and (u/p); is the mass absorption coefficient
of the element i.

Radiograph:

The attenuation of a photon beam®, AI, going through a cube, is:

N

—

[\
[N
~— ~—

For a heterogeneous material, taking an elementary cube, with a flow parallel to the direction y, the
absorption law is:

—d[(m,y,z) :M(‘T’yaz)l(‘rayaz)dy (23)
% = —plz,y, 2)dy (2.4)

Integrating the eq 2.4 along a beam path parallel to y-axis, we get the transmitted intensity through a
path known as the Beer-Lambert law:

i/l = = [ w2y (2.5)
path
I, = Ioe—fpmh wlz,y,z)dy (2.6)

In our experiment, the initial beam is parallel to a direction y. If a 2D detector is localised perpendicular
to the y-axis and behind the sample, a radiograph is obtained where the value of each pixel is the measure
of I;. A blank image measures the incident intensity, Iy. The logarithm of the ratio of the measure of I
to I, is the integral of the attenuation along the path line using the eq 2.6 (see figure 2.10):

pla,z) = - / (s, 2)dy
path

From the radiographic images to the y-mapping:
In order to obtain the y-mapping, a set of radiographic images is recorded for different angular positions
of the sample. Let py be the radiograph for the angular position . We have (see figure 2.11):

9A sum of individual rays.
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Figure 2.10: (a): Principle of radiograph; (b): the X-ray beam attenuation of an OPC with a W/C=0.4
and an a ageing equal to 1 day.
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(a)

Figure 2.11: (a): acquisition of a radiograph with a angle 6; (b): sinogram of py(x, z) of an OPC with a
W/C=0.4 and an hydration time—=1 day, in axis z, in coordinate the angle 0 and at z fixed. Due
to its definition, the sinogram is the addition of sinusoid as shown in figure b.
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+oo

pg(.’L‘,Z) = RH,Z[H’](‘Tayaz)dy (27)
+oo

po(x,2) = / p(xcos® —ysinb, xsinf + ycos b, z)dy (2.8)

where Ry . is the rotation operator of angle § about the z-axis!o,

Slice by slice:

For a height fixed, z.st, we will reconstruct a 2D slice using a sinogram. A sinogram is pg(z, z) where x and
6 are the variables (with z in axis and € in coordinate) and z is fixed (see figure 2.11). Given a sinogram,
in 1917 Radon has proved that this inverse problem has a solution. The filtered back projection algorithm
is usually used for this purpose [75] (see figure 2.12). To reconstruct the 3D-p-mapping, we stack the
2D-p-mapping done at different height (see figure 2.17). In our experiment!®, the typical resolution is 1

pwm.

2.3.2 State of the art for cementitious materials

Tomographic microscopy has been used by many authors to quantify transport properties according
to diffusion [150, 142] and permeability [161, 8]. In order to obtain representative quantitative data
correlated with others experiments, the development of advanced computational algorithms'? is required
[146]. Many groups, for example in Japan [122, 123] or in Australia [89, 90, 6], have this capability.

The application of this technique to the study of cementitious materials can be seen from two angles.
The first one is the study of global features of porosity in relation with a physical phenomenon:

e Burlion et al [29] quantified the evolution of porosity profile during an accelerated leaching process
(see figure 2.13),

e Hu et al [74] studied the moisture gradient due to the surface drying. Since the mass of the sample
is constant'® except the variation due to the evaporation of the water caused by surface drying, the
global X-ray transmission allows the global weight loss due to water evaporation to be measured,
and, therefore, the drying profile to be assessed (see figure 2.14).

The second angle is the relation between a geometrical organisation and a physical phenomenon.

e At the length scale of millimetre, the study of the shape of aggregates in concrete has enabled
the access of many concrete properties, especially the rheology of fresh concrete and early-age
mechanical properties [56]. In order to characterise the aggregates on the segmented images obtained
by X-ray tomography, Garboczi used spherical harmonic functions to interpolate each aggregate
(see figure 2.15). Therefore, the classification the shape of aggregates in different categories has
been possible.

e At a lower length scale 100pm, Landis et al [96] studied the formation of cracks under mechanical
compression. Fracture energy was calculated using a linear elastic fracture mechanics approach and
correlated with the measures of surface area of the internal cracks. This last measure is obtained
by the analysis of X-ray tomography images (see figure 2.16).

e At the micro-length-scale, the microstructural analysis of the porosity has been done by many
authors [94, 55, 137, 107]. Lu et al have found a good correlation between a parameter “disconnected
pore distance” and standard measures of chloride permeability.

10 An axis of rotation is defined by a direction and a translation vector v = (vz,vy,v:). Experimentally, the translation
vector is unknown. Since the determination of vy is required, this property is used: pg(z, z) = vy — Po4 (2, 2) to find it.

Ty see the matter more deeply with a resolution in the order of 0.1um, the nanotomography, based on the focusing of
the beam, is a very promising technique.

12The typical algorithms chain is: segmentation and simulation of a physical property.

13«Rien ne se perd, rien ne se crée, tout se transforme”, the law of matter conservation-Lavoisier.
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z is fixed
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i

Figure 2.12: Principle of back projection algorithm where B[py,] is one back projection at the given angle
0; and % Z;’:l Blpy,] is the cumulative of the back projections form j=1 to i. For each figure couple: first
figure B[py,] and second figure %Z;Zl Blpe,]. From (a) to (i): we progressively increases the subscript
i. At this end, we observe the anhydrous grains of the cement paste. Courtesy by E. Gallucci.

ilion = 0.90 mm ()} 61 hours of leaching, fron: position = .38 mm

Figure 2.13: Evolution of the front evolution during an accelerated leaching process.
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Figure 2.14: X-ray count — X-ray transmission. Mortars reveal a slightly lower evaporation rate since
the aggregate increases the length of the transport route because of a larger tortuosity.

Fig. 6. A 2707 voxel pieee of u tomographic image ofa concrete matesial gy 12 Comparing the digital image taken directly from the original X-ray wmogrph (motted gray) (digial volume = 9173 voxels), with the spherical
hamonic expansion reconstruction (shiny gray). A slight surface texnire has been added 10 the tomographic image in oder 1o see the digital detail more clearty,

Figure 2.15: Left figure: aggregate after the segmentation of the image obtained by X-ray tomography.
Right figure: Comparison between one aggregate taken directly from the original X-ray tomography
(mottled grey) (digital volume = 9175 voxel), and its spherical harmonic expansion reconstruction (shiny

grey).
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2.3. SRXTM

(e third scam (f] sith scum

Figure 2.16: Vertical sections through specimen at five different levels of damage: (a) first scan; (b)
second scan; (c) third scan; (d) fourth scan; (e) fifth scan; (f) sixth scan.
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Chapter 2. Imaging methods: SEM and X-ray tomography

2.3.3 Preparation

Cement and distilled water were mixed by hand for 5 min and then injected into thin cylindrical plastic
tubes with a diameter of 1 mm and a wall of thickness of 30 um. The plastic cylinder tubes have two
advantages. First, the absorption of plastic is low and second the cylinder shape is a suitable geometry'#
for tomography acquisition. After one day, the cylindrical plastic are immersed into water!® to avoid the
surface drying. Two series of experiments'® were performed at the Swiss Light Source (SLS) in Villigen
(Switzerland) on the TOMCAT beam line [162]. For the first series, samples were prepared in advance
and kept unsealed into water in order to have the desired age at the same date. For the second series, in
order to prevent the variations due to sample preparation, the same capillaries of two different cements
were studied over time (see table 2.2 and figure 2.17). Reconstructed slices were computed using the
filtered back projection algorithm in use at the SLS.

| Cement | Water/cement | time sampled (hours) |
series 1
Alite 0.4 27, 55
Alite 0.5 81
oPC 0.4 24, 61, 95, 150
OPC 0.5 34, 83, 150
OPC+slag 0.4 80, 150
OPC+slag 0.5 35, 48, 150
OPC+limestone | 0.4 26.79,150
OPC+limestone | 0.5 32.150
series 2
Alitel 0.4 24.4, 31, 34.5, 38.5
Alite2 0.4 32, 40, 45, 51, 55, 60, 67
opPC 0.4 26.75, 31.33, 34, 37.75, 40, 45.7, 52.3, 55.75, 60, 66, 72

Table 2.2: For the series 2, the same capillaries of different cements were studied over time

The grey level distribution is similar for SEM and for the X-ray tomography:
1. the bright grains are remaining unhydrated cores,

2. the light grey clusters are portlandite,

3. the dark grey phase is a mix of hydrated phases,

4. the blackest phase is the porosity

We observe in the alite image that the porosity in tomography image is much smaller than the porosity
in SEM image (see figure 2.4-a). The first explanation is that the reaction of hydration/precipitation
depends on the temperature. The samples, observed by SEM, were stored at constant temperature of
16°C whereas the samples, observed by tomography, were prepared and immediately transported to the
SLS during a warm day. However, this effect cannot only explain the large discrepancy between these
two results. Another explanation is the shrink of the porosity during the preparation of the sample for
SEM images.

L41f the axis of rotation coincides with the axe of cylinder, the sample thickness is invariant about the radiograph angle.

15We use the mixing water in order to not disturb the reaction of dissolution/precipitation.

16In order to enhance the contrast between the porosity and the solid phases, the void has been filled for some
samples with a liquid alloy called Wood’s metal[155, 178]. However, due to the high absorption of the metal
(http://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html), the exit beam intensity has been too low even for the
maximum of energy given that not allows an accurate reconstruction
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2.3. SRXTM

Figure 2.17: (a): alite with W/C=0.4 and t=32h, the size is 700*700*700 voxel with a pixel size of 0.7
pm?3, (b): OPC with W/C=0.4 and t—24h, the size is 700*700*700 voxel with a pixel size of 0.7 pm?.
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Chapter 2. Imaging methods: SEM and X-ray tomography

2.3.4 First comments on image analysis

The volume of the tomography image is 700*700*700 voxel where each voxel represents a cube of size
0.675 um? of the sample. Several preliminary comments can be made:

1. as the image size obtained by tomography is large, the algorithms associated to the image processing
must be efficient. The next chapter will explain how to implement efficient algorithms,

2. as the intensity SLS synchrotron beam line is stable, the results are reproducible!”,

3. as the contrast is weak between the solid phases, the classical threshold procedure is not suitable for
the segmentation. For an accurate segmentation, boundary information will be use in the chapter
4,

4. as the resolution is in the same order of the capillary pore size, the capillary pores observation is
only possible in the early-ages.

2.4 Conclusion

We have obtained images of cement paste using two imaging techniques: SEM and SRXTM. SEM images
are spatially resolved for the investigation of capillary porosity but this is bi-dimensional imaging tech-
nique. The chapter 6 will propose an easy method to reconstruct 3D model from 2D slice. The qualitative
comparison between SEM and SRXTM for the same sample lead us to ask this question: do you really
observe the natural pore network since the preparation of SEM sample is invasive? With SRXTM, we
observe the tri-dimensional pore network without any destruction but, due the limited spatial resolution,
a relevant information can be obtained only on the early-age of the cement paste. A question remains,
can you extrapolate the results obtained by SRXTM in the early-age cement paste for mature cement
paste?

Analysis of the 3d geometrical features of a complex media needs, as a prerequisite, an accurate segmen-
tation of the image. Due to the properties of the images (low contrast for tomography and instability of
acquisition parameters for SEM), the threshold segmentation will not yield a segmented microstructure
consistent with real microstructure. This is why a segmentation procedure, using advanced algorithms,
based on boundary information, will be developed in the chapter 4. Since the size of tomography images
is large, the advanced algorithms have to be efficient. In order to speed up the implementation of efficient
and advanced algorithms, we have conceptualised a class of algorithms, called seeded region growing by
pixels aggregation/dissolution. The next chapter will develop this point.

17The Filtered Back Projection algorithm in used in SLS requires the selection of a range of attenuation. This range has
always been the same to assure the reproductively
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3

Seeded region growing by pixels

aggregation /dissolution

A grey-level image is a grid of a sample where the value of each cell (pixel/voxel) is the average of a
physical interaction (e.g. attenuation of X-rays for tomography or emission of back scattered electrons
for SEM) between different solid and fluid phases contained in the cell and the excitation source, at the
moment of acquisition. A labeled image is a grid of the sample where the label of each cell corresponds
to a phase of the material. Phase partition is the transformation of the grey-level image to the labeled
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image. The phase partition is segmented in three levels:
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Chapter 3. Seeded region growing by pizels aggregation/dissolution

e Pre-filtering: to increase the signal-to-noise ratio without removing some structural features like
the presence of cracks.

e Segmentation: to convert the grey-level image to a labelled image.
e Post-filtering: to remove some numerical artefacts.

The classical phase partition is the threshold method (see chapter 3). This method is suitable when
the imaging device yields enough “contrast-to-noise ratio” for the material in order to have a specific
peak for each phase in the histogram. When it is not the case, as tomography images of cement pastes
hampered by a low signal-to-noise ratio, an advanced phase partition method has to be used in order to
extract the different phase accurately. In this thesis, we focus on the second level of phase partition, the

segmentation. The literature of computer science reveals three principle fields for this purpose'®:

e partial difference equation such as level set [128],
e stochastic processes such as Bayesian statistics [26],
e automate/Seeded Region Growing by pixels Aggregation:Dissolution (SRGPAD)[2, 23].

The algorithms of SRGPAD are efficient since their complexity is O(n) where n is the number of pix-
els/voxel of the image. Therefore, this class of algorithms allows the treatment of the large tomography
size which typical size is one giga voxel in a reasonable time. In this thesis, for the purposes of segmen-
tation, decomposition in elementary pores, 3D reconstruction of multiphase porous media obtained by
SEM, geometrical characterisation, a wide range of algorithms of SRGPAD is used: distance function,
dynamic filter, global minima, geodesic dilation, watershed transformation, permutation localisation on
the phase interface, geometrical tortuosity, hole filling, ...

There are many commercial (Aphelion® Morph-M) or non commercial (ImageJ) libraries available imple-
menting SRGPAD algorithms. At the beginning of this thesis in 2005, these libraries were implemented
for 32 bits processor architecture that limited addressing to Random Access Memory (RAM) to 3.2 Gb.
Since advanced algorithms requires dynamic structures having a high memory cost and the typical size
of a tomography image is 1 Gb, the demand of random access memory exceeds largely 3.2 Gb. This
point led us to the creation of a home-made library implementing these algorithms for 64 bits processor
architecture.

3.1.2 Why conceptualising?

A direct implementation of optimised advanced algorithms is relatively long and tedious, and requires
special skills. Therefore, in first order, the development of a library containing many algorithms of
SRGPAD is a too long work for a PhD student. In order to speed-up the implementation of algorithms
of SRGPA, a theoretical work is done to extract the generic concepts in this class of algorithm. Then,
we translate these generic al concepts in term of generic objects in object-oriented programming with an
optimized implementation. Finally, these generic objects yield implementation of optimised algorithms
of SRGPAD with less than 40 lines of codes and, thus, allow the implementation of the library containing
many algorithms of SRGPAD in a reasonable time.

In this chapter, we introduce a theoretical framework for a class of algorithms, called Seeded Region
Growing by Pixels Aggregation/Dissolution (SRGPAD). In the first section, we present an example
of SRGPAD algorithm in order to exhibit the key ideas behind this conceptualisation. In the second
section, the theoretical concepts of SRGPAD are introduced. In the third section, we use these concepts
to implement a wide range of algorithms. In the last section, we deal with the different conventions to

18These three frameworks are also used to analyse pattern formation. The science of pattern formation deals with the
visible, (statistically) ordered outcomes of self-organisation and the common principles behind similar patterns. In physics,
the analysis of pattern-forming systems often consists of finding a model in using a
- a Partial Difference Equation (PDE). An approximate solutions of PDE can be estimated using finite difference method,
finite element method [73], level set [128], phase field [30, 83].
- a Cellular Automata for the study of phases transitions[32]
- a stochastic process for the study of the evolution sea-coasts through damped erosion [147]
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3.1. Introduction

manage the collision between two regions.

In this chapter, each image is a subset of the space E. E is a n-dimensional discrete space Z", consisting
of lattice points with integer coordinates. The elements of a n-dimensional image array are called pixels
if n=2 and voxel if n=3. A point will be called pixel although the algorithms can be developed whatever
the space dimension.
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Chapter 3. Seeded region growing by pizels aggregation/dissolution

Figure 3.1: Left figure: one object feature is the texture and one texture feature is the tint. Right figure:
the object boundary discontinuity becomes the lines of ridge in the gradient image.

3.2 Example of SRGPAD algorithm: the watershed transforma-
tion

Many fields in computer science, stereovision [82], mathematical morphology [158], use algorithms which
principle is Seeded Region Growing by Pixels Aggregation/Dissolution (SRGPAD). This method consists
in initialising each region with a seed, then iterating pixels aggregation/dissolution on regions until
getting a convergence [2, 69]. The general purpose of this field is to define a metric divided into two
distinct categories [10]: the object feature like the tint [2, 133] and the object boundary discontinuity
[23, 49, 164, 108] (see figure 3.1). For instance, the watershed watershed developed in mathematical
morphology [23] is a segmentation tool and an algorithm of SRGPAD using the boundary information.

3.2.1 Presentation of the watershed transformation

Any grey-level image can be considered as a topographic surface and all boundaries as sharp variations
of the grey level. When a gradient is applied to an image, boundaries are enhanced (see the second
image in the figure 3.1). When the topographic surface obtained from the gradient is flooded from its
seeds, the waterfronts meet on watershed lines in 2D, and on watershed surfaces in 3D. The investigated
volume is partitioned by the watershed basins (see figure 3.2). Efficient implementations of the water-
shed transformation based on immersion simulation, were proposed by many authors [24, 173] but each
implementation remains specific to the algorithm. In this section, we introduce some generic objects to
implement rapidly this algorithm. But, these generic objects will also allow the implementation of any
SRGPAD algorithm.

3.2.2 Selection of a pair

A SRGPAD algorithm is not global but local. The aggregation/dissolution is pixel by pixel. A time
is defined in order to follow the evolution of the basins. At each aggregation or dissolution of a pixel,
z, on a basin, 7, the time, ¢, is incremented: ¢t «— t 4+ 1. With this notation for the set of basins:
(XE,..., X!, ..., X!) where X! is the localisation of the basin'® with the label i at time ¢, we have:

Xit{a} ifi=j

Vje(0,...,n): Xttt =
jel )X X;— otherwise

BxtcE
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3.2. Ezxzample of SRGPAD algorithm: the watershed transformation

Greylevel Topographic surface
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Figure 3.2: Watershed transformation requires two images: the topographic surface (a grey-level image)
and the seeds image. The process is: (a) association of each seed to a hole (b) immersion (c) the water
enters in the topographic surface by the holes and the basins take the colour of the hole, (d) a part of the
topographic surface is not merged although its level is under the level of the immersion, (e) fusion of two
basins of same colour, (f) creation of a dam when two basins have different colours: A video is available
at hitp://pme.polytechnique.fr/~vta/water.mpeg.

where the addition, +, between two sets A and B, is the disjoint union:
A+B={AUB:ANnB =0}
and the subtraction, —, between two sets A and B, is the inclusion restriction:
A-B={A\B:BCA}

Therefore, at each step of time, the algorithm has to select a pair (z,¢) where x is the pixel and 4 is the
label. This selection is done following three rules:

1. The value given by a metric?°, §(z, 1), respects a condition, 1. For the watershed transformation,
when the level of immersion is equal to [, the basins can grow on the pixels, x, where the level of
the topographic surface, f(z), is under this level of immersion. Therefore, the metric is associated
to the topographic surface, §(x,i) = f(z), and the condition 2! is: §(x,7) <.

2. The pixel = belongs to the “basin neighbourhood’ (homogeneous aggregation). To localize where
the aggregation can take place, for each basin, a Zone of Influence (ZI), Z!, is defined. For the
watershed transformation, the ZI of each basin is the outer boundary of the basin in excluding the
other basins. The second condition is: z € Z!

3. Several pairs can respect these two previous conditions. In order to select only one of these pairs,
we add a condition of the entering time, 7. For the the watershed transformation, we select the
pair that respects for the first time the two previous conditions and still respects their until now.

3.2.3 Algorithmic implementation of the watershed transformation

In the SRGPAD algorithm, a basin is called a region. The algorithm of watershed transformation is (see
figure 3.3):

20called the ordering attribute function
2Lah(8(x, i) = 1 for §(z,i) < 1,0 otherwise
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Chapter 3. Seeded region growing by pizels aggregation/dissolution

1. Input: topographic surface, f, and seeds, (s;)o<i<n.-

2. Sequential initialisation of the regions with the seeds, (localisation of the regions on the seeds
Xf:O = si),

3. //Growing process :
4. For the [ = 0 to the maximum level of the topographic surface,

(a) While there is a pair (z,7) such that 6(z,i) <[ and z € Z!

e Selection of the pair (x,i) that respects for the first time the two conditions (d(x,i) <
l and x € Z!) and still respects their until now.

e Aggregation of the pixel, x, on the region, X! (X" = X! + {2} )
(b) End while
5. Return the regions
This is an algorithmic implementation of the watershed transformation. In the next subsection, the

implementation is presented in using object-oriented programming allowing the implementation using
modern languages as C++ or java.

3.2.4 Implementation of the watershed transformation using generic classes

In the previous implementation, we have seen that:
e the regions localise the basins,

e the Zones of Influences (ZI), associated at each region, localise the “region neighbourhood’ where
the aggregation can take place given the second condition of the pair selection,

e the metric (the topographic surface for the watershed transformation) given the first condition of
pair selection,

e the entering time allowing the selection of the pair that respects for the first time the two previous
conditions and still respects their until now.

For each of this point, we will define a class.

Class: regions

The first class is the set of regions, (X¢,..., X}, ..., X!). This class has four accessible methods for the
implementation of the SRGPAD algorithm:

1. int add_region(), addition of a region to the set of regions in returning the label of the added
region.

2. void initial _seed(set s, int i), initialisation of the region ¢ with the seed s.

3. void growth(pixel x, int i ), aggregation of the pixel x on the region i: X!™' = X! + {x} (see
figure 3.4)

4. void degrowth(pixel x, int i), dissolution of the pixel x on the region i: X/*' = X! — {z}
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Figure 3.3: The watershed transformation with non-periodic boundary condition.
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Figure 3.4: Aggregation of pixel x=2 on the red region. (a) before, (b) after

Class: Z1

The second class is the set of the zone of influences, (ZI{,..., ZI!,..., ZI!). A zone of influence localises
where the growing process can take place for the associated region. This class has one accessible method
for the implementation of the SRGPAD algorithm 22:

1. void add ZI(int i, “some parameters”), addition of the a ZI to the region, i. “some parameters”
precise the localisation of the zone of influence (see next section). For the watershed transformation,
the ZI is the outer boundary of this basin in excluding the other basins.

Class: metric

The third class defines the metric, §(x, 7). This class has a specefic constructor with a functor as parameter
in order to define the metric?®. For the watershed transformation, the functor is max(f(.),!) where f is
the topographic surface and 1 the level of immersion.

Class: system of queues

To manage the pixel by pixel organisation, a fourth class, called System of Queues (SQ), stores all pairs
(z,4) (pixel, x belonging to ZI i) in a data structure. It gives the possibility to select a pair (z,1%)
depending on three conditions:

e the pixel x belongs to the ZI i (z € Z}).
e the metric, § respect a condition ( ¥(d(x,4)) = 1)
e the entering time.

This method has one constructor with two parameters. The first parameter defined the kind of queue
and the second one the number of queue. For the the watershed transformation, the condition of the
entering time is to select the pair that respects for the first time the two previous conditions and still
respects their until now. The convenience data structure is composed by n queues, Qf, = {q{,...,qd.},
because the strategy is:

e to store each pair (x,i) whose metric is the same in the same queue (a queue is associated to a
quantification of the metric and n is the metric range),

228ince the ZI depends on the regions, after each growth or degrowth of a region, the ZI have to be actualised. Therefore,
in the implementation of the methods, growth(pixel x, int i ), or degrowth(pixel x, int i ) of the class Region, one of these
method is called (see figure below):
1. void actualise_growth(pixel x, int i), actualise the zones of influence depending on the aggregation of pixel x on the
region i.

2. void actualise degrowth(pixel x, int i), actualise the zones of influence depending on the dissolution of pixel x on
the region i. This method is called by the method degrowth(pixel x, int i ) of the class Region.

Regionsllllll NN = Regions NN NN Regions N NN
0o 1L 2 3 4 5 6 77X 0o 1 2 3 4 5 6 7X 012%4567X
Zl [ ! ZI ! ZI
0o 1L 2 3 4 5 6 7X 0o 1 2 3 4 5 6 7X 0o 1 2 3 4 5 6 7X
Initial state at time t Aggregation of the pixel x=2 on the red region  Actualisation of the ZI

23In the computer, for each different metric, a sub-class is implemented where the polymorphic method, int
metric_ value(pixel x, int i), returning 6(x, ¢) is defined.
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3.2. Ezxzample of SRGPAD algorithm: the watershed transformation

e to organise in First In First Out (FIFO) "what comes in first is handled first, what comes in next
waits until the first is finished".

This class has two accessible methods for the implementation of the SRGPAD:

1. Boolean empty(metric m) return false if there exists a pair (z,) such that z € Z! and m = §(z, 1),
otherwise true.

2. pair=(x,i) pop_ pair(metric m), return pair (z,4) such that x € Z! , m = §(x,4) and a condition of
the entering time.

24

Class: Population

Due to the interactions between the objects of these different classes, a master class, call Population, is
defined in order to link their. This class has only a constructor defined by: Population(Region & r,ZI &
zi, Metric & m, SQ & sq).

Implementation of the watershed transformation

Using these generic classes, the watershed transformation implementation is simple (see figure 3.5 and
algorithm 1). The major difficulty is the implementation and the optimisation of these generic classes.
But, if this task is achieved, the implementation of any SRGPAD algorithm will requires less than twenty
lines of codes and will already give an optimised algorithm.

Implementation of the generic classes

In footnote of the presentation of these generic classes, I describe which methods to implement in order
to allow the interaction between the different classes. This interaction is: after the growth of a region
on a pixel, first, we have the actualization of the zones of influence. Then, during this actualisation, at
each growth of the zone of influence, j, on the pixel y, then the pair (y,) is pushed in the system of
queue and the index of the queue is given by the metric. Numerically, the implementation of the classes,
Region and Metric, is easy. The class region has an instance, label space, given the label?® of the region
for any pixel. The next section will be focused on the description of the two others classes allowing their
implementation.

24At each addition of a pixel, = to a ZI, i, the pair (z,7) is stored in system of queue. There-
fore, this class has one method, void push pair(pixel x, int i), to store the pair (z,i) in the data
structure. The method metric_value(pixel x, int i) of the class metric gives the index of the queue.

0 1 2 3
3 3
2 2
1 1
0 e e ° 0
o1 2 3 4 5 6 7X
Regions N NN Regions
0 1 2 3 4 5 6 7X
Al ) 71
0 1 2 3 4 5 6 7X 0 1 2 3 4 5 6 7X
Initial state store the pair (z = 2,i = red)

25if the label is equal to -1, there is no region
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Figure 3.5: The watershed transformation with non-periodic boundary condition. initialisation two seeds:
x=0 for the red region and x=6 for the blue region; (d,e,f,g,h,i,j): growth process; (d) the growth process
begins on the pixels with the lowest elevation: the queue number 0 with the aggregation of the pixel x=7
on the blue region, (e): 1) after this aggregation, the ZI have be actualised, 2) as the queue number 0 is
empty, the queue number 1 is selected, and so one, (j) there is no aggregation of the pixel x=3 on the
red region because this pixel does not belong to the red ZI.
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3.2. Ezxzample of SRGPAD algorithm: the watershed transformation

Algorithm 1 the watershed transformation

Require: f, (s;)o<i<n //the topographic surface, the seeds

//initialisation
int immersion _level =0;
Region r;
71 zi;
Metric m (max(f,immersion level); //§(x,i) = maz(f(x),immersion_ level)
SQ sq( FIFO, max level of the topography);//n FIFO queue such as the pizels with the corresponding
label of the ZI are stored depending on the elevation on the topographic surface
Population pop (r,zi,m,sq);
for all for j = 0 to n do

int region label = r.add_region();

zi.add _ZI(region label, “some parameters”) ;

r.inti_seed(region label, s;);
end for
//Growth process:
for all immersion level = 0 to the max level of the topography do

while sq.empty(immersion _level)=—false do

(x,i)=sq.pop_ pair(immersion_level);
r.growth( x, i);

end while

end for
20: return r;
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Chapter 3. Seeded region growing by pizels aggregation/dissolution

4

8

Figure 3.6: Neighbourhood in 2-dimensional discrete space

3.3 The framework of SRGPAD

In this section, we will introduce a mathematical definition of the Zone of Influence (ZI). Then, we will
describe an efficient procedure to actualise the ZI after a aggregation/dissolution of a pixel on a region.
After, in order to manage the pixel by pixel organisation, we will introduce a System of queues (SQ)
that stores all pairs (x,i) (z belongs to the ZI ) in a data structure and allows the selection of a pair
following three conditions. Finally, we will compare the efficient of the watershed transformation imple-
mented in this framework and the implementation in the library Aphelion. s. To localize efficiently these
fluctuations, a procedure is defined such that some operations have to be computed onvincent@vincent-
laptop: /DesktopvincentQuincent — laptop : /Desktop ly on the aggregation/dissolution neighbourhood.

3.3.1 ZI

An object, called Zone of Influence (ZI), is associated at each region to localise a zone where the propa-
gation can take place. in this subsection, we will introduce its mathematical definition progressively.

Minkowski addition

The Minkowski addition, also known as dilation, of two subsets X! and V of a linear space is the result
of the addition of every element of X! to every element of V, i.e. the set (see figure 3.7-b):

XleoV={z+v:ze X ,veV}
In 2-dimensional discrete space, the set V', called the neighbourhood, is usually defined as (see figure 3.6):
1. 4-neighbourhood V = {(0,0), (1,0),(-1,0), (0,1), (0, —1)},
2. 8-neighbourhood V' = {(0,0), (1,0),(—1,0),(0,1),(0,—1),(1,1),(1,-1),(—1,1),(—-1,-1)},

Boundary of a set

The boundary of a set, X!, is the Minkowski addition of this set with the neighbourhood set excluding
itself (see figure 3.7-c):

(XfeoV)\ Xl ={z+v:ze X ,veV,z+v¢ X}

Zone of influence

For the watershed transformation, the ZI of a set, X/, is the Minkowski addition of this set with the
neighbourhood set excluding all the regions (see figure 3.7-d):

(Xf@V)\(UX;-):{:EJrv:xEXf,vEV,(VjGN:z+v§ZX;)}
JEN

In general, for a given set N; C N, called restricted set, and a neighbourhood set2®, V;, we define the ZI
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3.8. The framework of SRGPAD

XlaVv (X @ V)\ (X)) (X @ V)\ (XU X))
X! Xj Xi X X
@ ®) © (@

Figure 3.7: Construction of the ZI, Z!. (a): A region X}; (b): Minkowski addition of the region, X}, by
the neighbourhood set, V' ; (c¢): Minkowski addition of the dilatation of X} by the neighbourhood set,
V excluding X/; (d): Minkowski addition of the dilatation of X! by the neighbourhood set, V excluding
the union of X; and of Xj,.

associated to a region: as:
7zt = (Xjev)\(l X))
JEN;
The restricted set is usually defined as:
e N; = {i}, then Z! is the outer boundary of the region;
e N; =N, then Z! is the outer boundary of the region excluding all the regions.

In the method add _ZI(int i, “some parameters”) of the class ZI, “some parameters” are the restricted set
and the neighbourhood set (see appendix A.1 for the numerical implementation of these two sets).

3.3.2 Actualisation

As the ZI depend on regions, after each aggregation/dissolution of a pixel on a region, the ZI have to be
actualised. For the actualisation, the simplest way is to check for each ZI the possible modification. This
strategy has a high numerical cost with a complexity equal to O(n) where n is the number of ZI/regions.
Therefore, the computational cost will be too high. A solution is to reformulate the link between ZI and
the regions: the ZI at time t+1 depends on ZI at time t plus or minus a set defined in the neighbourhood
of the aggregation/dissolution. This reformulation gives an actualisation with a constant complexity.
This subsection is quite technical and it is not necessary for the understanding of the whole section (it
can be skipped at first reading).

Decomposition in two parts

At each step of time, one and only one basin, ¢, grows by aggregation of the pixel z or by dissolution of
the pixel x:

t .
X;+{z} forj=i

Vje(0,...,n): Xttt =
jel )X X;— otherwise

ownself other

—_—~——
We see two parts in the expression of ZI: Z! = (X!, ® Vi) \( U X;,O). The "ownself part" depends
N

J i
only on the associated region. The "other part" depends on all regions. Therefore, we decompose the
actualisation in two stages. First, we actualise the "ownself part": Xffnl = X/,, £ {x} then the "other

part": X/t = X! =+ {z} (see figure 3.8). All the proofs are in the appendix A.2.

26this set is equal to V or 0
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Ownself part In this part, we have only the aggregation or dissolution of the pixel z on Xf,m between

times ¢t and ¢ + 1.
If j is not equal to i (j # i), Z;H is equal to Z! because Z} does not depend on X}, .
If j is equal to i:

o for aggregation X!t = X!+ {x}, we have:
Zit = Zi+(aye i)\ ZI\ (U X))
JEN;

The numerical implementation is:
for all Vy € {z} ®V; do
if y¢ Z! then
ify¢ U Xj then

JEN;
ZH — gt 4 g
end if
end if
end for

o for dissolution X/*! = X! = — {x}, we have:
zi" = Zi— (({z} e V)N (X e Vi) \ (Z))°

The numerical implementation is:
for allVz € {2} &V, do
if y € Z! then
if (yoV, H)NnX/™ =0 then
2" =2} -y
end if
end if
end for

Other part In this part, we have only the aggregation or dissolution of the pixel x on Xfyo between
times ¢ and ¢ + 1.

e for aggregation Xf,'gl = X/, + {z}, we have:

Zt— ({2} \ (28)°) if (i € Nj) A (V; #0)

Vj e (0,...,n):Z’?+1{
7 Z; else

where the symbol A means the and in the symbolic logic. The numerical implementation is:

for all j € (0,...,n):x € Z} do
if i € N; AV; # (0 then
2 =7t —
j J ’
end if
end for

o for dissolution X/?' = X! — {z}, we have:
ZE+ ({23 \ (X o V))N (U X))\ Z)) if (i € N;j) A (V; #0)
Vi€ (0,...,n): th.“ = kEN;
Z§ else
This numerical implementation is based on the assumption that for all j, V; is equal to () or

V:
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3.8. The framework of SRGPAD

Figure 3.8: Actualisation of the ZI after a aggregation/dissolution of a pixel on a region. Two regions,
X! and X}, and two ZI, Z! = (X! ® V) \ (X! U X}) and Z} = (X} ® V,) \ (X! U X]). Both rows show
the ZI actualisation after a aggregation for the first row and dissolution for the second row. The first
figure is the initial state, the second figure is the aggregation or dissolution of a pixel on the blue region,
the third figure is the actualisation of the "ownself part" of ZI, the last figure is the actualisation of the
"other part" of ZI.

for all j: (z® V™) NX|#0do
ifi¢ U X;'H then
JEN;
if i ¢ Z} then
if i € N; AV # () then
Z;H = Z]'? + x;
end if
end if
end if
end for

The complexity of this actualisation is time constant O(1) if two data structures are implemented given
the label of region and the list of zones of influence located on any pixel of the space. This mathematical
definition of the actualisation gives the implementation of the methods of the class ZI directly. The next
subsection will describe the class system of queues.

3.3.3 Organisation

To manage the pixel by pixel organisation, the class, System of Queues (SQ), stores all pairs (z,4), where
the pixel x belongs to the zone of influence ¢, and allows the selection of a pair (z,i) following three
conditions:

e z belongs to Z!,

e the value of the metric [10], ¢, is equal to a certain value (for watershed transformation, a pixel is
chosen depending on its elevation on the topographic surface),
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Chapter 3. Seeded region growing by pizels aggregation/dissolution

e a condition of the entering time (for watershed transformation, we choose the oldest pair respecting
these previous two conditions),

At each aggregation/dissolution, we have some pixel added and removed to the ZI:

e The set B! is the pairs to add to the SQ between times ¢ and ¢ + 1:

B' = {(x,i) 1z ¢ Zf/\:z:erH}

e The set C? is the pairs to remove to the SQ between times ¢ and  + 1:

Cct = {(:C,i)::cer/\x¢Zf+1}

The SQ is like a store. There are:
e the products, B?, to place to the store,
e the products, C?, to remove from the store,

e a customer that chooses product by product in the store following a label and a condition on the
entering time.

To get the best efficiency in the store organisation, the three following points must be respected:

Data structure

A data structure is a way to store data in a computer. A data structure depends on the operations to be
performed, using as few resources in execution time and in memory space, as possible. In this thesis, we
have used two data structures:

e n queues, Q! ={¢},...,q.}, because the strategy is:

— to store each pair (z,4) whose metric is the same in the same queue (a queue is associated to
a quantification of the metric and n is the metric range),

— to organise in First In First Out (FIFO) "what comes in first is handled first, what comes in
next waits until the first is finished".

e n vectors, V! = {uvf,..., v}, because the strategy is:

— to store each pair (x,7) whose metric is the same in the same vector (a vector is associated to
a quantification of the metric and n is the metric range),
— to organise in random access to handle randomly a pair?”.
We have implemented these two data structure: queue and random access using the Standard Template
Library (STL) of the C++ library.

Store

The ordering attribute function, &, assigns each pair (z,4) of B! in the appropriate queue. After addition
of a pixel, z, is to a zone of influence i, the method push _pair(x, i) of the class SQ is called. This method
uses the method metric_ value(pixel x, int i) of the class Metric to assign the pair (z,4) in the appropriate
queue (see figure 3.9). If the method returns OUT then the pair is not assigned to the system of queues.

27 A vector is a dynamic array v = ((20,40), - - - (Zp,ip)). When the method pop is called, we drawn randomly an integer,
I,in (0,...,p). Therefore, we return the pair (xr,ir) and we permute the last pair of the array with the pair (zr,is) and
we decrease the size of the array by one.
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ok N ®

o b mow
[}

2 |@ 4
o 1 2 3 4 5 6 7X
Regons I NS Regions
o 1 2 3 4 5 6 7X
ZI pA 71

0 1 2 3 4 5 6 7X

(a)

Figure 3.9: Each time, a pixel, x, is added to the ZI i, the pair (z,i) is stored in the queue §(z,7). In
this example, the pair (r = 2,7 =red) is assigned in the queue number §(z,7) = f(x) = 3. (a) before, (b)
after

Customer

Between time ¢ and ¢ + 1, all pairs belonging to C* have to be removed from the set of queues. The
numerical cost of this strategy is significant. Another solution is to do nothing until a pair (z,%) is
extracted from a queue j at time ¢. Then, if = still belongs to the zone of influence i, the pair (x,1)
is selected, otherwise this pair is deleted®® (see figure 3.10). Using this description, the implementation

Time t

Choose a queue, here queue 3

N CT) Extraction of a pair, here
2) Test if (x=2) € Z!,

Yes
This pair is selected

Figure 3.10: How to act? 1)Choose a queue 2)Extract a pair (z,i) 3)Test if z € Z! 4) Yes, action, 5)
No, come back to the first step

of the methods of the class SQ can be done. At this level, all the generic classes are defined allowing
their implementation. Since I have done this implementation, the next subsection will compare the
efficient of the watershed transformation between the implementation in the library Aphelion and my
own implementation.

28(when a pair (z,4) enters in the SQ at time ¢/, « belongs to Zf/, but at time ¢ > ¢/, it cannot be the case any more.

49



Chapter 3. Seeded region growing by pizels aggregation/dissolution

3.3.4 Comparison

In this subsection, we will compare with the classical commercial library of Mathematical Morphology,
named Aphelion. The comparison of CPU time and RAM allocation will be done using the watershed
transformation with the minima as seeds (see subsection 3.4.2). The figure 3.11 shows that the library

aphelion

CPU time (s)

200 -

N
a
=3

=
o
S

j Aphelion 32
Population

. . . . .
5 10 15 20 25
image size (Mb)

(a) CPU time versus image size

30

RAM allocation (Mb)

1000 : —
Aphelion 3.2
Population

800 -

t . . . . .
0 5 10 15 20 25
image size (Mb)

(b) RAM allocation versus image size

Figure 3.11: A voxel is coded in one byte.

1. is three times speeder in term of CPU time

2. consumes twice less RAM allocation

30

than the library Population. The Aphelion Library works more efficiently and use fewer resources than
the Population Library. Optimization can occur mainly at two levels:

e Design Level: At the highest level, an algorithm can be implemented in many ways. The choice
affects the utilisation of the resources of CPU time and RAM allocation. In the library Aphelion,
the watershed algorithm is based on immersion simulations proposed by L. Vincent [173] and F.
Meyer [24] in the early 90’s. In this thesis, the watershed algorithm is based on the conceptualisation
of SRGPAD.

Source code level: In the implementation, various scopes can affect the executable computer
program. The optimisation of these scopes give a real gain of efficient. Since this Computational
task has not been performed in my implementation, the library Aphelion is more efficient. The
optimization of the Population library at the Source code level could be resolved by the utilization
of the template meta-programming approach in C++ [47]. Tt is a work in progress

In the next section, we will use the generic classes for the implementation of a wide range of algorithms.
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3.4. Some SRGPAD algorithms

3.4 Some SRGPAD algorithms

In the previous section, we have described some generic classes, called the library Population, dedicated
to the implementation of SRGPAD algorithms.We will implement many optimised algorithms for the
purpose of this thesis easily: Voronoi tessellation, extraction of the connected components, regional
minima, distance function, watershed transformation and geodesic reconstruction. All these algorithms
have been applied on 3D image with a size of 700¥700*700—3.43- 108 pixels and the computational time
was less than 3 hours using a conventional computer (Intel(R) Xeon(R) CPU 3.00GH). We will present
the algorithms using only one queue in the System of Queue (SQ), then the algorithms using several
queues.

3.4.1 One queue

In this section, we will present some algorithms using a single queue during the growing process.

Simulated Voronoi tessellation

Consider ® a Poisson point process in a metric space M. The cells
C(zr)={y € M :d(y,x) <d(y,2'),2' € 2}, v € @,

constitute the so-called Poisson-Voronoi tessellation of M where d is a distance of M. Presented by
Gilbert in 1962 [57], this statistical model is appropriate for random crystal growth. In the discrete space
E, the implementation for a distance?® associated to norm 1 or 003 is done using the library Population.
Starting form the affectation of each region with a point of the Poisson point process, an isotopic growing
process at constant velocity is simulated. The ordering attribute function is d(z,i) = 0 for all  and 3.
The growing process is (see algorithm 2 and figure 3.12):

e initialisation of the regions/ZI by the seeds
e while the selected queue label 0 is not empty

— extract the pair (z,4) from the queue label 0
— aggregation of x on the region 14
e return regions
To prove that this growing process gives a correct Poisson-Voronoi tessellation of E, this following prop-

erty is used:

Vr,y € E:d(z,y) = min ((d(z,y)+1)
zeV (x)
The generation of a Poisson point process is done using the Boost software. This implementation is not
restricted to the Poisson-Voronoi tessellation since:

e cach seed can be a domain of F (second row in the figure 3.12),

29The norm 1 of a point = = (o, ..., 2n), |||, is:

n
llzlle = lail
i=0

The norm oo of a point = (zo,...,Zn), ||Z|cc, is:
lzlloo = max(|zol, ..., |2n])
The distance associated with the norm n is:

d(z,y) = [l = ylln
30For the Euclidian distance, see [171].
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e the growing process can be restricted to a domain Q = {Va € E : I(x) # 0} if the ordering attribute
function is: 6(x,4) = 0 if I(z) # 0,0UT otherwise (third row in the figure 3.12).

Algorithm 2 Geodesic dilation
Require: S,V // the seeds, the neighbourhood

//initialisation
Region r;
Restricted N = N;
71 zi;
Metric m (0); //d(x,i) =0,
SQ sq( FIFO, 1);//1 FIFO queue such as all pixels with the corresponding labels of the ZI are stored
in the same queue
Population pop (r,zi,m,sq);
for all for j = 0 to n do
int region label = r.add _region();
zi.add_ZI(region label,V.N) ;// Z} = (X] @ V)\ (U X})
jEN

r.initial seed(region label, s;);

end for

//Growth process:

while sq.empty(0)==false do
(x,i)=sq.pop_ pair(0);
r.growth( x, 1 );

end while

return r;

Connected components extraction

Let C, , be the set of continuous application from [0, 1] to E such that the two extremities are equal to
zand y (Vy € Cpy : v(0) =z and y(1) = y).
(¢i)o<i<n is the connected components of 2 if:

E—J Ci:Q

0<i<n
Vie(0,...,n)Ve,y€c¢; Fyelyy ((VEe0,1]:7(t) €)
Vi# jV(@,y) € (ci¢j) VY ECay (BtE0,1]:7(t) Q)

The second line means that all the points belonging to the same connected component are linked by a
continuous path that is included in the domain. The third line means that any two points belonging to
different connected components are not linked by a continuous path that is included in the domain (see
figure 3.13). The connected components give information about the critical percolation concentration,
percolation probabilities, and cluster size distributions [72]. Using the library Population, an algorithm
can be implemented to extract the set of connected components. The principle is: to scan the image
and each time, a connected component is touched, this connected component is removed from (2 using a
growing process (see algorithm 3 and figure 3.14). Let I be the characteristic function of Q = {Vx € E :
I(x) # 0}. The ordering attribute function is: é(z,4) = 0 if I(x) # 0,OUT otherwise .

e scan the image (Vx € F)

—if I(x) #0
* create a region/ZI initialised by the seed {x}
+ while the queue label 0 is not empty
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Figure 3.12: Mlustration of the Voronoi-growing process. For the first row, the
seeds are generated following a Poisson point process, A wvideo is available at
http://pmc.polytechnique.fr/~vta/geodesic_ invariant_ cube.mpeg. For the second row, each seed is
a set of voxel (in the subsection 4.4.1, we will see how to extract individually each grain of a grains
phase. In order to characterise the connectivity of the grains phase, we apply a Voronoi-growing
process with the regions initialised by a grain of the grains phase. At the end of the growing process, a
network can be defined by the neighbourhood of the regions and it gives the connectivity of the grains
phase.), A video is available at hitp://pme.polytechnique.fr/~vta/geodesic_ invariant_ cube_ grain.mpeg.
For the last row, the growing process is restricted by the first figure, A wvideo is available at
http://pmc.polytechnique.fr/~vta/geodesic. mpey.

-0
-1

Figure 3.13: Tllustration of the connected components extraction. Whatever the continuous path between
the point z and z, the path goes through the red region. There exists a path between the point x and y
such the path belongs only to the blue region.
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- extract (y,) from the queue label 0
- aggregation of y on the region i

- I(y) =0
e return regions

This algorithm allows (see figure 3.15):

e to remove all the connected components touching the boundary,

to fill the hole®!,

to keep only the cluster which area is maximum.

% % [/

(a) (b) (c)

Figure 3.14: Tllustration of the extraction of the connected components (a) : scan the image until I(x) # 0,
(b): growing process starting form z (I(z) # 0) such that at each growth the characteristic function of
) is modified I(z) # 0 — I(xz) = 0, (c): at the end of the growth, the connected component has been
extracted and removed from 2 and the scanning continues until I(x) # 0.

Regional minima

Let C,, be the set of continuous application from [0, 1] to E such that the two extremities are equal to
zand y (Vy € Cpy : v(0) =z and y(1) = y).

Let f be a grey-level image (a topographic surface).

S = (8;)o<i<n is the decomposition of (E, f) in level connected components if:

L‘lj Si:E,

0<i<n
Vie (0,...,n) Vr,yes;, IFyeCay (Vte[0,1]: f(v(t)) = f(2));
Vi#j Ve,y€s; VyeClyy (3te[0,1]: f(v(2)) (x)).
The second line means that all the points belonging to the same level connected component are linked by

a continuous path which level is constant. The third line means that any two points belonging to different
connected components are not linked by a continuous path which level is constant (see figure 3.16).

31To fill the hole, the procedure is the following chain of algorithms:
inversion,
extraction of the connected components,

deleting the connected components no touching the image boundary,

W N =

binarization and inversion.
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Algorithm 3 Extraction of the connected components

Require: I,V //The binary image, the neighbourhood
// initialisation
Region r;
Restricted N = N;
71 7i;
Metric m (0,1); //0(x,i) = 0 if I(x) # 0,0UT otherwise
SQ sq( FIFO, 1);//1 FIFO queue such as all pizels with the corresponding labels of the ZI are stored
in the same queue
Population pop (r,zi,m,sq);
//Scan the image
for all Vx € E do
if I(x) # 0//Test if a connected component is touched then
int region label = r.add _region();
zi.add_ZI(region label,V.,N) ;// Z! = (X[ © V) \ (U X})
JEN
r.nitial _seed(region label, {z});
//Growth process:
while sq.empty(0)==false do
(y,1)=sq.pop_pair(0);
r.growth( y,4);

I(y) =0;
end while
20: end if
end for
return r;

In this decomposition, an element s of S is a regional minimum if the levels of points belonging to the
outer boundary of s are greater than the level of points belonging to s (see figure 3.16):

V(z,y) € (s,(s@V)\s) [flz) <[fly).

Using the library Population, a growing process is defined to extract the regional minima. This growing
process is: to scan the image (V& € E) until there is not a region on z yet(r[z] == NO_REGION) |,
then to start the growing process initialised by the seed equal to {z}. Let level = f(x) be the level of
the growing region. The ordering attribute function is defined as:

0(y,1) = 01if f(y) <level, OUT otherwise

For this algorithm, the ZI is defined as: Z! = (X! @ V) \ X}. The ZI is localised on the outer boundary
region even if there are still some region to check the condition: V(z,y) € (s, (s® V) \ s) : f(z) < f(y).
The growing process is (see algorithm 4 and figure 3.16):

e scan the image (Vx € F)

— if rlzr] == NO_REGION
* create a region/ZI initialised by the seed {x}
x level = f(x)
+ while the queue label 0 is not empty
- extract (y,4) from the queue label 0
- if f(y) == level
then aggregation of y on the region i
- otherwise
this region/ZI is not a regional minimum

e return regions that are regional minima
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Algorithm 4 Regional minima

Require: f,V //The grey-level image, the neighbourhood
// initialisation
int level;
Region r;
Restricted N = {i};
71 zi;
Metric m (0,f,level); //6(y,i) = 0 if f(y) < level, OUT otherwise
SQ sq( FIFO, 1);//1 FIFO queue such as all pizels with the corresponding labels of the ZI are stored
in the same queue
Population pop (r,zi,m,sq);
Set set; //Container: self-balancing binary search tree.
//Scan the image
for all Vx € E do
if r[x] == NO_REGION //Test if there is no a region on x then
level = f(x);
int region label = r.add_region();
zi.add_ZI(region_label,V\N) ;// Z! = (X! & V) \ (X))
r.initial _seed(region label, {z});
bool regional minima=true;
//Growth process:
while sq.empty(0)—=false do
(y,4)=sq.pop_pair(0);
if f(y) < level then
regional minima=false;
else
r.growth(y,i );
end if
end while
if regional minima==true then
set.insert(ref tr);
end if
end if
end for
return (r,set);
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(a) (b) (c) (d)

(e) (f)

Figure 3.15: (a): the initial binary image; (b): extraction of the connected components; (c): the connected
components touching the boundary of the image are removed; (d): the max cluster of the previous image;
(e): the initial image; (f): maximum cluster of percolation after the selection of the component whose

the area is maximum in the connected components.
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Figure 3.16: (a): principle of minima; (b): a grey-level image; (c): the regional minima of this image
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3.4. Some SRGPAD algorithms

3.4.2 n queues

In this section, we present algorithms which SQ contains several queues.

Distance function: flip-flop queue

Let Q be a domain of F and z and y two points of . We call geodesic distance d*}(x, %) in 2 the lower
bound of the paths length in  linking « and y:

d(z,y) = o Length(y).

where Ci’,y be the set of continuous application from [0,1] to 2 such that the two extremities are equal
to x and y.

Let S be a set. We call the geodesic distance d**(S, y), the lower bound of all geodesic distance d*(z,y)
such that x belongs to S.

Q _ : Q
d*(5,y) = min d"(z,y).
We have:

dﬂ(z,y) min (dﬂ(:c,z) + dﬂ(z,y)).

- Vz€({z}PBr=1)NO

In discrete space, as d**(z, z) is equal to 1, we get:

dQ(x,y) (dQ(z,y)) +1. (3.1)

= min
Vze({z}®Br=1)NQ

In order to calculate the distance function, we use the property of the equation 3.1: all pixels at distance
d+1 are neighbourhood of at least one pixel at distance d. Using the library Population, a SRGPAD algo-
rithm is implemented to calculate the distance function d*?(A,y) for all y in Q. Let I be the characteristic
function of €.

n queue implementation

First, we initialise the single region by the seed equal to A, the growing process takes place on pixels
in the neighbourhood of A. Since the pixels belonging to the set A are at distance 0 (d*(A4,z € A) = 0),
the pixels belonging to this growing process, D1, are at distance 1. Then, the growing process takes place
on pixels in the neighbourhood of D;. The pixels belonging to this growing process, Ds, are at distance
2 and so on. To operate this growing process, the ordering attribute function is: 0(z,i) = d+1 if I(x) #
0, OUT otherwise. We initialise the variable distance, d at 0 and the single region with the seed A. Since
the the ordering attribute function is: §(x,i) = d+ 1if I(x) # 0,0UT otherwise, at the initialisation,
the pairs are stored in the queue label 1. When the initialisation is finished, we increment the variable
d (d = 1). We extract the pair (z,7) from the queue label d = 1 until this queue is empty. At each
extraction, we aggregate the pixel x on the single region and the distance function is assigned at distance
d =1 on z. When the queue label d = 1 is empty, we increment the variable d, and so on. This recursion
is done while the system of queues is not empty.
The growing process is:

e int d=0
e initialise of the single region/ZI by the seed s = A
e while the system of queues is not empty

—d=d+1
— while the queue label d is not empty

x extract (y,4) from the queue label d
x aggregation of x on the region 4
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x dist[z]=d
e return dist

The number of queues is equal to the maximum of the distance function. The problem of this implemen-
tation is that this number is unknown before the growing process. To overcome this problem, a solution
is to use a flip-flop queue.

Flip-flop queue implementation

In the last implementation, during the growing process, there are only two queues in the SQ not empty
at the step d: the queue label d where the pairs are extracted and the queue label d + 1 where the pairs
are stored. Using this property, the pairs are now extracted from the queue label flip and stored in the
queue label flop. The ordering attribute function, é(x, ), is equal to flop if I(z) # 0, OUT otherwise.
The growing process becomes (see figure 3.17 and 3.18 and algorithm 5):

e int d=0
e initialise of the single region/ZI by the s = A
e while the system of queues is not empty

-d=d+1
— switch(flip,flop)
— while the queue label flop is not empty

* extract (y,7) from the queue label flop
x aggregation of z on the region i
x dist[z]=d

e return dist

The watershed transformation

The watershed transformation was introduced in the subsubsection 3.2.4. The application of the water-
shed transformation will be presented in the chapter 4.

Let f be the topographic surface. The ordering attribute function is: §(x,i) = max(level, f(z)) (see
algorithm 6). This growing process is not limited to the watershed transformation on E. The growing
process can be restricted to a domain Q = {Vax € E : I(x) # 0} if the ordering attribute function is:
d(xz,4) = max(level, f(x)) if I(z) # 0,0UT otherwise (see figure 3.19).

Geodesic reconstruction

The geodesic reconstruction is an efficient tool in Mathematical Morphology [158, 20]. Given a function
f and a function g with f > g, the geodesic erosion is defined as:

Ry(f) = Eg(f)

where E2°(f) is the infinitely iterated geodesic erosion such as ELt(f) = sup(E}(f) oV, g) with EQ(f) =
f.

Introduced by Grimaud [59], the geodesic reconstruction is called a dynamic filter when the function f
is equal to the function g plus a constant h: f(x) = g(x) + h. The dynamic filter belongs to the category
of vertical filters that fills the valleys with depth lower than h (see figure 3.20).

Introduced by Beucher [20], the geodesic reconstruction is called a homotopic transformation when the
function f is equal to g on the seeds, (sg,...,Ss), and oo’ on the complement of the seeds [21] (see
figure 3.21). The homotopic transformation is used in the watershed transformation implemented by
Vincent [173] in order to keep only the most significant contours in the areas of interest between the
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Algorithm 5 Distance function

Require: I, s = A,V //the characteristic function, the seed equal to A, the neighbourhood
// initialisation
Image Img_ dist;
int flip=0, flop =1;
Region r;
Restricted N = N;
71 7i;
Metric m (0,f1lip); //6(x,i) = flip if I(x) # 0,0UT otherwise
SQ sq( FIFO, 1);//1 FIFO queue such as all pizels with the corresponding labels of the ZI are stored
in the same queue
Population pop (r,zi,m,sq);
int region label = r.add _region();
zi.add_ZI(region label,V\N) ;// Z! = (X! @ V)\ (U X;)
jEN

r.initial _seed(region_label, s); ;// X179 = s
int dist=0;
//Growth process
while sq.all _empty()—=false do
switch(flip,flop);
dist++;
while sq.empty(flop)==false do
(z,7)=sq.pop(flop);
r.growth(x, 7 );
Img_dist(z)= dist;
end while
end while
return Img dist;
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I age SQ Init with the seed
— flip  SQ
SN \
N flip=0
N\ N flop=1
N
N
(a) (b)
Growth with distunce 1 Growth with distunce 2
11111 11111
1 1 fip=1 12221 fip=0
1 1 flop=0 1 2&J2 1 flop=1
1 1 12221
11111 11111
Dist=1 dist=2 l
Growth Growth

(c) (d)

Figure 3.17: Illustration for the distance function algorithm. (a): the seed is the white pixels; (b): after
the initialisation of the region/ZI by the seed. The pixels belonging to the ZI are stored in the flip queue;
(c): after the growing process at the distance 1, the queue number 0 is empty and the queue number 1
stored the pixels at the distance 2. As the queue number 0 is empty, flip and flop will be switched and
the growing process will take place now in the pixels at distance 2; (d): the same as the previous figure
with the distance 2.

markers. In our implementation of the watershed transformation, the homotopic transformation is done
during the growing process.

The classical implementation of the geodesic reconstruction is to use directly the formula E;H( f) =

Sup(E;( f)eV,g) with Eg( f) = f. Numerically, the recursion is stopped when there is convergence,
E!*1(f) = EL(f). The implementation is simple but the complexity is O(n - k), where n is the number
of pixels of the image and k is the index of the convergence condition.
An alternative to the previous algorithm is a SRGPAD algorithm by a merging procedure. First, the
regional minima (S;)o<i<q Of ¢ are extracted. For the convenience, each S; is reduced to a single pixel
x; thrown randomly in S; corresponding to a seed. Then, a watershed procedure is applied on the
topographic surface g with the difference that the creation of region/ZI is done during the merging
procedure. At the immersion level equal to level, a number of regions/ZI is created for all x; such that
f(x;) is equal to level and if there is not yet a region on the pixel x;. At every growth x of a region,
the immersion level is attributed to the dynamic function on x, Eg°(f)(x) = level (see figure 3.22 and
algorithm 7). The complexity of this algorithm is O(n) where it is the number of pixels of the image.
The application is shown on the figure 3.23.
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3.4. Some SRGPAD algorithms

Figure 3.18: Illustration for the distance function. First row: the left image is a realisation of a random
points process, (xq,...,Z,) with A = 0.005 (for the visualisation convenience, the realisation has been
dilated). Let Q be the complement of the union of these points. the right image is the distance function
d® (¢, y) for all y belonging to Q . Second row: Same as first row except that the set § is the set of

white pixels. Third row: Left figure 2, middle figure, the seed, s, right figure, d*}(s,y) for all y belonging
to Q. This distance function is used to calculate the geometrical tortuosity.
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Algorithm 6 The watershed transformation

Require: f, (s;)o<i<n, V' //The topographic surface, the seeds, the neighbourhood

//initialisation
int immersion _level =0;
Region r;
71 zi;
Restricted N = N;
Metric m (I,immersion_level); //6(x,i) = max(f(x),immersion_ level)
SQ sq( FIFO, max level of the topography);//n FIFO queue such as the pizels with the corresponding
label of the ZI are stored depending on the elevation on the topographic surface
Population pop (r,zi,m,sq);
for all for j = 0 to n do

int region _label = r.add_region();

zi.add _ZI(region label,V\N) ;// Z! = (X! & V) \ (U X;)

jEN

r.initial seed(region label, s;);
end for
//Growth process :
for all immersion_level = 0 to the max level of the topography do

while sq.empty(immersion _level)=—false do

(x,1)=sq.pop_ pair(immersion_level);
r.growth( x, i);
end while
20: end for

return r;

64



3.4. Some SRGPAD algorithms

Figure 3.19: The first row: the first image is the initial image, the second image is the application of a
Deriche’s gradient[41] on the first image, the third image is the visualisation of two seeds: one localised
on the grains, the other on the complement of grains. The second row: the first image is the basins due
to the watershed transformation on the topographic surface equal to the previous gradient image using
the two seeds, the second image is the foreground of the boundary region on the initial image. There is a
good match with the visual segmentation. The third row: the first image is the initial image, the second
image is a 2D slice of the opposite distance function of the initial image, the third image is the basins
due to the watershed transformation restricted by the initial image on the topographic surface equal to
the opposite distance function of the initial image with appropriate seeds.
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Figure 3.20: The dynamic filter. Before the application of the dynamic filter, there are many minima
(green bullets). After the application of the dynamic filter, there are only two minima.
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Figure 3.21: Homotopic transformation. The initial image g with seeds. For all z, the function f(z) is
equal to g(z) if z belongs to the seeds and oo otherwise.
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Figure 3.22: Dynamic filter. The process is: (a) extraction of the regional minima of f, contraction
of these regional minima to single pixels x;, association of these pixels, x;, with chimneys with height
f(x;)—g(z;); (b) immersion process: the water enters in the topographic surface by the chimneys if there
is not a region yet; (c) the basin takes the colour of the chimney and at every growth z of a region, the
dynamic image takes the immersion level in z; (d) the red chimney does not create region/ZI because
the green region is already here. Note that there are 3 minima in the initial image and only two after the

dynamic filter.

67



Chapter 3. Seeded region growing by pizels aggregation/dissolution

Figure 3.23: For the first three rows, the first image is the initial image, the second image is the inverse of
the distance function of the initial image after the application of a dynamic filter, (h=0 for the first row,
h=3 for the second row, h=10 for the third row), the third image is the regional minima of the second
image, the fourth image is the watershed transformation restricted by the first image on the topographic
surface equal to the second image using the seeds equals to the third image. The fourth row is the same
process but in 3D. The first image is the initial image. h=0 for the second image, h=3 for the third,
h=10 for the fourth.
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Algorithm 7 Geodesic reconstruction

Require: f, g V, h //the two images (for the dynamic filter f = g+ h, the neighbourhood

//initialisation
Image GR(f );
int immersion level =0;
Region r;
71 7i;
Restricted N = N;
Metric m (I,immersion_level); //6(x,i) = max(g(x),immersion_ level)
SQ sq( FIFO, max level of the topography);//n FIFO queue such as the pizels with the corresponding
label of the ZI are stored depending on the elevation on the topographic surface
Population pop (r,zi,m,sq);
(Si)ogigq: regional_minima(f);
(zi)o<i<q= rand _pixel((S;)o<i<q);
//Growth process:
for immersion level = 0 to the max level of the topography do
for i=0 to q do
// Creation of region/ZI if two conditions
if (immersion level == f(z;)) and r[z;]==NO_REGION then
int region _label = r.add_region();
zi.add ZI(region label, V,N) ;
r.initial seed(region label, {z});
GR(z;)=immersion_level;
end if
end for
while sq.empty(immersion _level)=—false do
(x,1)=sq.pop_ pair(immersion_level);
r.growth( x,1);
GR(x)=level;
end while
end for
return GR;
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Figure 3.24: (a): A dam (boundary region) is used to separate the basins, (b) nothing is used to separate
the basins.

3.5 How to manage the region collisions

In the two previous sections, we have conceptualised the SRGPAD and implemented many algorithms.
Each implementation using this library is quick and provides efficient algorithms. At the end of the
growing process, the regions are a partition of the space or a domain. In a classical growing process, two
conventions for the partition are: with or without a boundary region for the separation of the regions (see
figure 3.24). The SRGPAD conceptualisation allows the implemention of these both conventions. But
with these convention, the partition depends on the seeded region initialisation order (SRIO) [22, 114, 175]
such that, if the order of initialisation is changed, the localisation of the inner border of each region will
also change. To overcome this problem, we will localise the boundary region on a set of pixels, called
ambiguous points. This set is called ambiguous points since the determination, at which regions they
belong, is impossible. We define a growing process assigning;:

e unambiguous points to the appropriate regions,
e ambiguous points to the boundary region.

Using this growing process, the localisation of final partition is independent of the SRIO. This section is
decomposed in two subsections: the classical growing processes and growing process independent of the

SRIO.

3.5.1 Classical growing processes

This section presents two classical growing processes. For the first, there is no boundary region to separate
growing regions. For the second, there is a boundary region to separate growing regions. The geodesic
dilation [149] is used like an example but this approach can be used for the most of SRGPAD algorithms
if the algorithm can be reduced to a succession of geodesic dilation [121]. This section is decomposed in
two parts: definition of two distinct partitions and definition of two growing processes.

Two distinct partitions

A segmentation of a set €2 is simple partition of € into subsets X; , ¢ =1,...,m, for some m if :

1. Q=U" X,

2.Vi#£j: X;NnX;=0.
A segmentation of a set ) is V-boundary partition®? of Q into subsets X; i = 1,...,m, for some m, and
X, if:

32V _-boundary-partition is also a simple-partition.
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Figure 3.25: Illustration of simple partition. For both rows, the first image is the initial image representing
the set 0 , the second image is the seeds and the last image is the simple-partition after the geodesic
dilation with a ordering attribute function equal to: §(x,i) = 0if I(x) # 0,0UT otherwise . The first
row is in 2D and the second in 3D. For both cases, the regions are simple-partitions of 2

1. Q= (U?;lXi)UXb
ZVZ#j(Xl@V)ﬂXJ:(Z)
3. Xb@V:@.

The second condition states that the boundary region separates the other regions and the third condition
states that the thickness boundary region is equal to 1.

Simple partition

To get a simple-partition using the SRGPAD, the zone of influence (ZI) at each region is localised on the
outer boundary region excluding all other regions: Z! = (X!®V)\ (| X;). During the growing process,
JEN

when a pair (z,17) is extracted from the SQ, there is a simple growth: r.growth(x, i)). At the end of the
growing process, the regions X!=> ¢ =1,...,m are a simple-partition of Q (see figure 3.25).
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V-boundary partition

To get a V-boundary using the SRGPAD, a boundary region, X, is added in such a way that its ZI

is always empty. For all the regions except the boundary region, their ZI are localised on the outer

boundary region excluding all the regions: Z! = (X! ® V) \ (U X;). In the implementation, the call of
JEN

the method, r.growth( x, i ), is substituted by

e if there is more than two ZI on x, then growth on z of the boundary region,
e otherwise growth on x of the region 4

At the end of the growing process, the regions X!=>° i = 1,...,m, and X, are a V-boundary-partition
of Q. The algorithm 8 is an example (see figure 3.26).

Algorithm 8 Geodesic dilation with a boundary

Require: S,V // the seeds, the neighbourhood
//initialisation
Region r;
Restricted N = N;
71 7i;
Metric m (0); //d(x,i) =0,
SQ sq( FIFO, 1);//1 FIFO queue such as all pizels with the corresponding labels of the ZI are placed
in the same queue
Population pop (r,zi,m,sq);
//create a passive region
Neighbourhood V_ void =
int region _boundary — r.add_region();
zi.add_ZI(region_boundary,V_void \N) ;// Z! =0
for all for j = 0 to n do
int region _label = r.add_region();
zi.add_ZI(region label,V.N) ;// Z} = (X] @ V)\ (U X})
jEN

r.init_seed(region label, s;);
end for
//Growth process:
while sq.empty(0)==false do
(x,i)=sq.pop_pair(0);
20:  if sq[x].size()>=2 then
r.growth( x, region _boundary );
else
r.growth( x, i);
end if
end while
return r;

The partition depends on SRIO

Whatever the growing process, the final partition depend on the SRIO (see figure 3.27 and figure 3.28).
If the order of initialisation is changed, the localisation of the inner border of each region will also change.
The next subsection will present a growing process independant of the SRIO.
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Figure 3.26: Tllustration of V-boundary partition. For both rows, the first image is V-boundary-partition
obtained by the geodesic dilation with a boundary, the second figure and third figure are the visualisation
of the boundary region depending on the chosen neighbourhood. For the second figure, it is the 8-
neighbourhood in 2D and 26-neighbourhood in 3D and for the third figure; it is 4-neighbourhood in 2D
and 6-neighbourhood in 3D.
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. Initialisation of red seed firstly Initialisation of blue seed after
At the beginning
he ZI he ZI
he regions he regions
® The seeds ® The seeds ® The seeds
0 1 2

Growth of the red region

he ZI Nothing is done because
the pixel 1 does not belong the blue ZI
he regions
® The seeds he ZI
he regions
® The seeds
t=0
0 1 2 SQ [el1

rorci- || G

N 0o 1 2
Test if = EE

Growth

Figure 3.27: The geodesic dilation without a boundary region separating the growing regions. The point
1 is an ambiguous point for this growing process because it belongs to the region that was initialised first
(here the red region).
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Figure 3.28: The geodesic dilation without a boundary region separating the growing regions The point
1 and 2 are ambiguous pixels in this growing process because they belong to different regions depending
on SRIO. In this presented case, the point 1 belongs to the red region and the point 2 belongs to the
boundary region but if the blue region was initialised first, the point 1 would belong to the boundary
region and the point 2 would belong to the blue region.
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3.5.2 Partition independent of the seeded region initialisation order
Why the dependence?

Let S = (si)1<i<n be a set of subset of 2. In a metric space M, the cells are
C(si) ={ye M:d%4y,s;) < dﬂ(y,sj),sj € S}, s, €8,

The C(s;)1<i<n is not a partition of  because U ;C(s;)) # Q. In fact, it is possible to demonstrate
that (U ;20(s;)) WA =Q 33. The set A, called ambiguous points, is

A={Ve e Q: 3 #j, (dﬂ(z,si) = dQ(:c,sj) and (Vk € (1,...,n) : d%(z,s;) < dﬂ(z,sk))}

The set A, called the ambiguous points, contains all the points of € for which the geodesic distance
of d*(z,s;) and d(z, s;) are equal and d*(x, s;) and d**(z, s;) are the lower bound of all the geodesic
distance with other elements of S. In the previous implementations of the geodesic dilation, the ambiguous
points are distributed depending on the SRIO (see figure 3.27 and 3.28). The next paragraph presents
an implementation for which the boundary region is the set of ambiguous points.

Boundary as ambiguous points

We suppose in this paragraph that the seeded initialisation follows this order 0, 1,...,n. In order to get
a boundary localised on the ambiguous points, a boundary region is added such that its ZI is always
empty. For all the regions except the boundary region, their ZI are localised on the outer boundary

region excluding all the regions: Z! = (X! ® V) \ (U X,). When a pair (z,1) is extracted from the SQ,
jEN
one runs (see figure 3.29,3.30):

1. r.growth(x, boundary region)) if there is more than two ZI in x and if i = min_elements( zi[x]),
2. r.growth(x, i)) otherwise

This partition is independent of the SRIO but is not a V-boundary-partition (see figure 3.29). Since
the space is a discrete space, the boundary region is not a closed surface in 3D or a closed line in 2D
(some holes on the boundary region). Hence, the partition obtained by this growing process is a simple
partition.

How to choose the convention?

Depending on the application, a convention is choose. For instance,

1. for the splitting of grains (see subsection 4.4.1), we use a V-boundary partition in order to separate
the grains by a tinny gap,

2. for the study of the evolution of the cement paste microstructure, we choose a partition without a
border to avoid the affection of the boundary reagion, but, the SRIO follows at each segmentation
the same order.

3.6 Conclusion

In the conceptualisation part, we defined four classes and one procedure to create a library, called Popula-
tion, dedicated to the implementation of the SRGPAD algorithms. The zone of influence, associated with
each region, localises a zone on the outer boundary region. The system of queues organises the pixel by
pixel aggregation/dissolution around a concept of store. A procedure was defined to actualise at constant
time the zones of influence after a aggregation/dissolution of a pixel of a region. This procedure and
these objects permitted to the library Population to be numerically efficient and to implement algorithms

33The symbol W means the disjoint union:BwC = {BUC : BN C = §}
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Figure 3.29: Illustration of the independence of the SRIO if the boundary is the ambiguous points. The
first row is the case of one ambiguous point. A classical growing process goes on until there appear two ZI
in the same point, z. The min_elements( zi[x]) returns 0 because there are two ZI with label 0 and 1. The
boundary region grows because the pair extracted from the queue has a label 0 equal to min_elements(
pop.Z()[x]). The second row is the case without ambiguous point. A classical growth goes on until there
appear two ZI in the same point, . The min_elements( pop.Z()[x]) returns 0 because there are two ZI
of label 0 and 1. As the pair extracted from the queue has a label 1 not equal to min_ elements( zi[x]),
there is the region growth of label 1

Figure 3.30: Illustration of the independence of SRIO in the case where the boundary is the ambiguous
points. The two first images are the geodesic dilation with a boundary region localised on the ambiguous
points such as the SRIO is different. The third image represents the XOR the boundary regions difference
between the two previous images. It is empty image since the regions localisation is independent of the
SRIO.

rapidly.

In the algorithmic section, we implemented various SRGPAD algorithms. Each implementation is sim-
ple and efficient using the library Population. When the growing process is done at constant velocity
without memory (simulated Voronoi tessellation, domain to clusters, regional minima), a single queue is
sufficient to implement these algorithms. When the growing process depends on the topographic surface
(watershed transformation and dynamic filter) or when information has to be kept during the growing
process (distance function), one needs several queues to implement these algorithms.

In discrete space, the boundary is not clearly defined. Using the SRGPAD, we have proposed two growing
processes to obtain a simple or V-boundary partition. These growing processes have an uncertainly on
the boundary region localisation. To overcome this problem, we have defined a set of ambiguous points
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Chapter 3. Seeded region growing by pizels aggregation/dissolution

for which it is impossible to know to which regions they belong. Knowing that, we have defined a growing
process with a boundary region localised on these ambiguous points. The partition associated to this
growth process is independent of the SRIO but it is only a simple partition since there are some holes on

the boundary region.
In the three next chapters, we will apply these algorithms for segmentation, decomposition in elementary

pores and 3D reconstruction.
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Introduction

A grey-level image is a grid of a sample where the value of each cell (pixel/voxel) is the average of a
physical interaction (e.g. attenuation of X-rays for tomography or emission of back scattered electrons
for SEM) between different solid and fluid phases contained in the cell and the excitation source, at the
moment of acquisition. A labeled image is a grid of the sample where the label of each cell corresponds to
a phase of the material. Segmentation is the transformation of the grey-level image to the labeled image.
The best segmentation tool is the human eye (see figure 4.1) and, whatever the algorithm, the computer-
assisted segmentation will almost always be less efficient3*. The aim of this chapter is to propose a
simple, generic and robust method to segment experimental two- or three-dimensional images of samples

34During my PhD, I met many colleagues unfamiliar with Image Processing who asked me to segment the images obtained
by various technique like atomic force microscopy. They do not often understand that this task is difficult since their eyes
segmented the images easily.
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Chapter 4. Segmentation

Figure 4.1: Our eyes can draw easily a line between the two phases, but numerically, it is not so easy
[165]. reproduced with permission from Alain Fanget (DGA).

obtained by SEM and X-ray tomography. Simple means that this method can be used by anyone whether
or not they are a specialist in image processing. Generic means that this method remains valid for a wide
range of materials. Robust means that the extraction is less sensitive to a perturbation of the segmented
parameters.

The methodology is:

e If there is a sufficient contrast-to-noise ratio between the different phases, a classical threshold
procedure followed by a succession of morphological filters is applied,

e If not, and if the boundary needs to be located precisely, a watershed transformation controlled
by seeds is applied. The seed localization is the basis for number of algorithms involving the tint
propagation [2], the active contour methods [160], the watershed transformation [20], etc. For our
purpose, each seed localization has to respect two constraints: inclusion (the seed is included in the
phase) and hitting (the seed intersects all the connected components of the phase). Using this seed
localisation, two different chain-linking methods are proposed:

— If a seed can be localised for each phase, a one-step method is applied to extract all phases
within the same transformation.

— If a seed cannot be localised for one phase, a step-by-step method is applied to extract a phase
at each step (the last step is skipped since the last phase is the complementary of the sum of
the other phases).

This segmentation has been tested for various complex porous media and granular materials, and allowed
the prediction of various properties (diffusion, electrical conductivity, deformation field). These numerical
results have been validated by a good agreement with experimental data.

Whatever the algorithm, some artefacts are inherent to segmentation:

1. in tomography, some solids are completely surrounded by the liquid phase (levitation),
2. in SEM, some holes in the grain phase have been induced by the polishing process.

A hole-filling algorithm is applied to correct these artefacts.

For many applications, the extraction of each grain of the grain phase, called grain partition, has to be
performed. The basic algorithm is the extraction of connected components in the grain phase. However,
this algorithm will not yield a consistent grain partition since many grains close to each other are connected
on the segmented grain phase. The method, introduced by L. Vincent in 1993 [172], results will lead to
an efficient grain partition.

In this chapter, we describe in detail the above mentioned algorithms, with a focus on the segmentation
of three-dimensional images of materials obtained by X-ray tomography.
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4.1. Materials and methods

4.1 Materials and methods

4.1.1 Image characteristics
Noise

Each voxel of a microtomography image is associated with a cube included in the sample under investiga-
tion. To a first order, its grey-value (its tint) is the space average of the linear X-ray absorption coefficient
of the different solid and fluid phases contained in the cube. But, since tomographic reconstruction often
amplifies the noise of the projections and generates artefacts, there are extra-terms which give imprecise
images that are generally weak quality for threshold segmentation. Due to the large variety of materials®®
and the imprecise images, a generic, simple and robust segmentation procedure has been developed.

Partial-volume effect

Because each pixel /voxel in a microscopy image represents the attenuation properties of a specific material
volume, if this volume contains different phases then the resulting value represents an “average’ of their
properties [85]. This is called the partial-volume effect. During segmentation, each pixel /voxel is affected
to a phase. Therefore, if a pixel/voxel contains more than one phase,-the partial-volume effect-, its
affectation will be ambiguous, whatever the algorithm. Next, we will quantify this effect for a boolean
model related to the characteristic size of the boolean model and the image resolution.

Boolean model We consider, as germs ¢, the stationary Poisson point process in R? with an intensity
measure Au(.)(A > 0) with p the Lebesgue measure:

o=1{X;,iel}

and as grains Kj, the closed ball of radius r using the norm-oo.
Then, we consider Boolean Model such as the random set in R? is

M = Uier(X; @ Ko)

and the Boolean random field, I, is:
I(z) = ]'UieI(Xi@KU)

where 1 is the indicator function.

Discretisation using a tessellation To represent the resolution limitation, we transfer the continuous
model into discrete counterpart. A tessellation or tiling of the plane is a collection of plane figures that
fills the plane with no overlaps and no gaps. Here, we consider a squares regular tessellation (square grid)
defined as follows:

{z:,j; Z?] € N}
with @ ; = [ir, jr[[( + 1)r, (j + 1)r[ and r the resolution.
The intensity of each pixel of the regular tessellation is defined by the intersection surface between the
random set of the boolean model and the pixel normalised by the surface of the pixel:

I:N* — [0,1]
. p(zy ;N M)
(4,5) —
,U(xi,j)

A quantification of the resolution error of the discrete model can be the probability, P(0 < I(i,7) < 1).
This is the probability that a random pixel contains two phases since its value is different to 0 and 1.
Therefore, this probability quantifies the occurrence of the partial-volume effect. When 7 tends to 0, this
probability tends to 0 and the discrete model tends to the continuous model. When 7 tends to oo, this
probability tends to 1 and the value of each pixel tends to Au(Ky) given the coarse graining description.

35Materials are different in their chemical composition and in their geometrical organisation.
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Application In this example, the intensity of the boolean model is 0.01 and the grain radius is 4
(Me(Kp) = 0.64). The characteristic size of the boolean model is in order of 4. The figure 4.2 shows the
discretization of boolean model for different resolutions. As illustrated in table 4.1, the partial volume
effect can only be neglected (error<2%) if the ratio between the characteristic size and resolution is
superior to 32. For a ratio equal to 4, the error is superior to 7.5%. The extrapolation of this model on
real images leads to the following conclusion: if the resolution of the imaging technique is in the same
order of the characteristic size of phase under investigation, segmentation will not yield an accurate phase
microstructure whatever the method. This is the case of the capillary porosity of mature paste.

Resolution | Characteristic size/Resolution | P(I(i,7) =0) | P(0 < I(i,5) <1) | P(I(i,5) =1
0.125 32 0.513593 0.0200 0.466231
0.25 16 0.486389 0.0407038 0.47290

0.5 8 0.451744 0.0775146 0.470741

1 4 0.361465 0.150116 0.488419

2 2 0.251465 0.237793 0.510742

4 1 0.0939941 0.271729 0.634277

8 0.5 0.00878906 0.55957 0.431641

16 0.25 0 0.839844 0.160156

32 0.125 0 1 0

Table 4.1: The grain radius is equal to 4.

(g) r=16 (h) r = 32

Figure 4.2: The image size is equal to 256r x 256r with r the pixel size.

4.1.2 Materials

For the material A, the data come from a mechanical triaxial test on a sand specimen realised under a
synchrotron microtomography (ESRF, ID15A) to follow the structural evolution of the granular media.
Digital Image Correlation is used to observe and detect the strain localisation mechanisms at the grain
scale [62, 101]. This work is funded by the French project ANR-05-BLANC-0192 (see figure 4.3.a).
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4.2. Threshold segmentation using tint information

For the material B, the data come from pyrotechnical specimen realised under a laboratory microtomog-
raphy designed by Skyscan®. Finite elements are used to compute the stresses and strains as well as
other fields like the thermal flux and the temperature distribution in the material at a micro scale [80].
This work is funded by les Mines de Paris and le Centre d’Etudes de Gramat, DGA (see figure 4.3.b).
The material C is a cement paste presented in the chapter 2 (see figure 4.3.c).

For the material D, the data come from geological rock, limestone, realised under a laboratory microto-
mography designed by Phoenix X-ray to understand the effects of the porous structure on the resistivity
index curves [63] (see figure 4.3.d).

4.1.3 Computational requirements

The segmentation procedure has to be efficient in terms of computational time because the size of the
images obtained by X-ray tomography is very large. In the previous chapter, it was shown possible to
improve the efficiency of the algorithms used for this purpose. Typically, for the largest image of this
article, the material D with a size 700 % 700 * 700 = 0.348 - 10® voxel, the segmentation requires less
than 6 hours of executing time with an Intel(R) Xeon(R) CPU 3.00GH and the allocation of RAM is 16
Gb. This short executing time allows the segmentation to be performed on conventional computers. The
algorithms are developed and implemented on the open source software, called Population, soon available
on the web. For every image, the grey-level is coded on one byte (0-255). A median filter is applied
to minimise the ring artefact [16] and to smooth the noise while still in keeping the sharpness of the
boundary. For the visualisation convenience, the results are sometimes presented in 2D but the method
has been applied in 3D images for all materials.

4.2 Threshold segmentation using tint information

To the best of our knowledge, threshold segmentation using tint information is the only method applied
to extract the different phases for cementitious materials [120, 123, 137, 182, 181]. These articles focus
on how to find the right grey-level range for thresholding.

4.2.1 Threshold
Threshold operator

Given that each phase has a specific tint, the threshold operation uses this information to extract the
phases. The threshold operation requires the selection of a range of grey-levels. The label ’1’ is assigned
to each voxel of the image when the grey-level belongs to this range, and the label ’0’ otherwise. The
grey-level range selection is usually based on the information contained in the grey level histogram of the
image (see figure 4.4). The automatic or manual grey-level range is selected in order to best separate the
mode in the histogram [36, 132, 143, 176]. One requirement is that the mode is populated almost always
by the given phase.

n times

For a n-phases material, n modes have to be present in the histogram in order to operate the thresh-
old segmentation. Under this assumption, n modes give n — 1 valleys, with value vy,...,n, and
v; < v;41. Manually, the threshold operator is applied n times with these grey-level range selections:
[0,v1], [v1, V2], - ., [Un, 255].

Results

For the two phases of the materials A and B, the figure 4.4-a-b shows two modes in the histogram,-a
specific mode for each phase-. For both, the value of the valley is 125. Therefore, to extract the white
grains in the material A, the grey-level range is [125,255] and to extract the black grains in the material
B, the grey-level range is [0, 125]. Despite some holes in the numerical grains and some isolated islands
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(d)

Figure 4.3: A wide range of materials. (a) material A, size=450x450x200, resolution=14 microns; (b)
material B, size=500*500*100, resolution=3 microns; (c) material C, size=700x700x700, resolution=0.675
microns, there are four phases: the anhydrous grains in light, the portlandite (some isolate clusters) in
light grey, the hydrate in grey and the capillary porosity in black; (d) material D, size=700x700x700
resolution—3 microns, there are three phases: the void in dark and two grain classes (one lighter and the
(8);clher with a medium average grey level).



4.2. Threshold segmentation using tint information

outside the grains, the numerical segmentation matches the visual segmentation. The aim of the next
subsection is to remove these both effects by Morphological filtering.

4.2.2 Morphological filtering
Presentation

The four basic operators of the mathematical morphology [158] are:
1. erosion of the set A by the set B, called structural element, is defined by3:
AeB={VzeE:B, C A}
where B, is the translation of B by the vector z (see figure 4.5),
2. dilation of object A by the structural element B, also called the Minkowski addition, is defined by:
A®B={Vze E:(B%).,NA#0}
where B*® denotes the symmetric of B, that is, B* = {z : —x € B} (see figure 4.6),

3. opening of A by B is obtained by the erosion of A by B, followed by dilation of the resulting
structure by B:

AoB=(A&B)® B,

4. closing of A by B is obtained by the dilation of A by B, followed by erosion of the resulting structure
by B:
AeB=(A®B)o B,

Application

After the application of the threshold operator, two classical artefacts are to be processed in the binary
image (see figure 4.4-b):

e some holes,
e some isolated islands.

To remove isolated islands without changing the size of the clusters, the opening filter is applied 7. To
fill the holes without changing the size of the clusters, the closing filter is applied. Let A be the binary
image after the threshold application. The filtering is only: (A o B) e B (see figure 4.7). The figure 4.8
shows a agreement between the visual segmentation and the numerical segmentation but the numerical
boundary is not closely located on the visual boundary and some grains close to each others become
connected.

36For visualisation, the inner boundary is defined as: A = A\ (A & B)
37As all the materials are isotropic, the structural element is chosen isometric. The structural element is associated to
the 26-connectivity in the cubic grid

B ={(-1,-1,-1),(0,-1,-1),(1,-1,-1),(-1,0,-1), (0,0, -1), (1,0, —1),(—1,1,-1),(0,1,—-1), (1,1, —1),
(-1,-1,0), (0,-1,0),(1,-1,0),(—1,0,0), (0,0,0), (1,0,0), (-1, 1,0), (0,1, 0), (1,1,0),
(-1,-1,1),(0,-1,1),(1,-1,1),(-1,0,1),(0,0,1), (1,0,1),(—1,1,1),(0,1,1), (1,1, 1)}
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Figure 4.4: Each row is associated with a material, the first image is the histogram, the second figure is
the binary image after thresholding, and the third figure is the visualisation of the numerical boundary
on the initial image.
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Ao B

Erosion

Figure 4.5: FErosion. The set A is the set of white pixels and the structural element B is:
{(0,0),(-1,0),(1,0),(0,—1),(0,1)} representing by the red cross. The set, A © B, is each pixel, z,
of the images such that all the pixels are whites at on-up-down-left-right of z: B, C A.

A A®B

Dilation

Figure 4.6: Dilation. The set A is the set of white pixels and the structural element, B, is:
{(0,0),(-1,0),(1,0),(0,—1),(0,1)} representing by the red cross. The set, A @ B, is each pixel, z,
of the images such that at least one pixel is white at on-up-down-left-right of z, B, N A # ().
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Opening Closing

Figure 4.7: Opening then closing. At the beginning, the set A has one hole and one isolated island. After
the application of the opening, the isolated island has been removed. After the application of the closing,
the hole has been removed.

Figure 4.8: For both rows, the binary image is the result of a threshold, the second image is obtained
by the application of opening on the first image in order to remove the isolated islands, the third image
is obtained by the application of closing on the second image to fill the holes and the last image is the
numerical boundary visualisation on the initial image.

4.2.3 Limitation of the threshold segmentation

For the material C, the histogram presents only two modes in the histogram (see figure 4.4.c). The right
mode is almost only populated by the anhydrous grain phase, but the left mode is populated by three
phases: capillary porosity, hydrates and portlandite since the contrast-to-noise ratio is weak. With the
manual grey-level range [140, 170] (see figure 4.4-c), the weak contrast to noise ratio leads to many holes
on the portlandite clusters (missed pixels) and many isolated islands outside the clusters (added pixels).
Moreover, the boundary of the anhydrous is extracted due to a halo artefact. Due to both these artefacts,
an accurate segmentation is impossible even with a post-filtration. This is the same for the material D
(see the histogram in the figure 4.4.d)).

Wong et al have introduced an automatic method for the selection of the grey-level range when a mode is
populated by two phases and, as noted by the authors, this method is very sensitive to the grey-level range
[181]. But, moreover, whatever the grey-level range, the segmented microstructures obtained with the
threshold operation, even after a post-filtration, will not match the real microstructure since the contrast-
to-noise ratio is weak (see figure 4.9). Therefore, the simulation of physical phenomenon like vapour
diffusivity, air permeability or electrical conductivity in this segmented microstructure will not yield
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Figure 4.9: As a model, we assume that the grey-level distribution of each phase follows a Gaussian
distribution defined by a mean, u, and a variance, o2 (o is the standard deviation). In the case of two
phases, when the contrast-to-noise ratio is weak, the surface intersection between the two distributions is
superior to 4% percent of the sum of the surface of the both distribution (1 — erf(2/+/2) ~ 0,0455 where
erf is the error function). Therefore, if the threshold value is chosen on the valley, the segmentation error
is superior to 4% such that the segmented error is the ratio between the wrong affected pixels/voxels
and all affected pixels/voxels. This error has to be added to the partial-volume effect error. Threshold
segmentation generates two kinds of wrong affected pixels/voxels:

1)those missed of the segmented phase given the holes on the segmented image,

2)those added by the other phase given the small islands on the segmented image,

For the materials C and D, whatever the threshold range, the segmented error will be high since there is
no even some specific peaks associated with the different phases.

direct measurements. When the contrast-to-noise ratio is weak, threshold segmentation gives
a false microstructure that does not allow the correct prediction of the physical behaviour
and properties of the material. The subsection 4.3 describes a method to handle this task.

4.3 Watershed transformation using boundary information

The threshold segmentation is suitable only if there is a sufficient contrast-to-noise ratio. Otherwise, one
solution is to improve the contrast-to-noise ratio by filtering the grey-level in order to reduce the noise.
In this article [53], the authors introduced a novel technique for noise reduction based on non-linear
anisotropic diffusion. This method leads to a significant gain in the signal-to-noise ratio. This allows the
visualization and the analysis of Electron tomography images initially hampered by an extremely low
signal-to-noise ratio. However, the calibration of input parameters is quite tedious and depends on the
material and the device. Generally, it seems difficult to find a generic filter that reduces the noise for
different microscopies since the nature of noise depends on the microscopy. To overcome this, we will
introduce a simple, generic and robust method based on a growing process algorithm with seeds as prior.

4.3.1 Seeds-controlled watershed

An efficient segmentation procedure developed in mathematical morphology is the watershed segmenta-
tion [23], usually implemented as a flooding process from seeds.

Watershed transformation : Any grey-level image can be considered as a topographic surface and all
boundaries as sharp variations of the grey level. When a gradient is applied to an image, boundaries
are enhanced. When the topographic surface obtained from the gradient is flooded from its seeds, the
waterfronts meet on watershed lines in 2D, and on watershed surfaces in 3D. The investigated volume is
partitioned by the watershed basins (see figure 4.10).

Seeds : the result depends strongly on the seeds localisation. For example, if a seed is associated with
each minimum of the gradient image, the watershed transformation with these seeds will produce the
well-known over-segmentation [165]. There are over minima due to noise and local irregularities in the
gradient image (see figure 4.11). To avoid this problem, the image is usually filtered by a combination of
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Greylevel Topographic surface
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Same color: merging

no hole no immersion

Immersion

Immersion Immersion

(d) (e) )

Figure 4.10: Watershed transformation requires two images: the topographic surface (a grey-level image)
and the seeds image. The process is: (a) association of each seed to a hole (b) immersion (¢) the water
enters in the topographic surface by the holes and the basins take the colour of the hole, (d) a part of the
topographic surface is not merged although its level is under the level of the immersion, (e) fusion of two
basins of same colour, (f) creation of a dam when two basins have different colours: A wvideo is available
at hitp://pme.polytechnique.fr/~vta/water.mpeg.

a vertical filter (like the dynamic filter [59]) and a horizontal filter (like an alternate sequential filter or a
Gaussian filter) in order to individualise each connected component of each phase with a single seed (see
figure 4.12) . This individualisation step is complex even with the introduction of the pyramid segmen-
tation [165]. A simple method will be introduced using two approaches: one-step method or step-by-step
method. Both these approaches depends on the appropriate seed localization [20, 160].

4.3.2 Seed inside a phase

A seed is a set of pixels/voxels, not necessarily 1-connected. Any localisation of a seed s; for a phase p;
has to respect these two constraints:

1. the seed is only included in its associated phase,
8; C i

2. the seed intersects®® each connected component of the phase. Let (coiy---Cn,i) be the set of con-
nected components of the phase p;, then
Vje(0,...n):s,N¢ji #0

Using the tint information, a ’soft’ threshold on the initial image followed by an opening with the struc-
tural element By ° is sufficient for this purpose. As shown in the figure 4.13, this filtering removes the

38In Mathematical Morphology, the appropriate word is: hit
39The opening filter of size k is

Ae By =(A® Bx)© By,

times k

—_——~
with B,=(B®B)...®B.
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4.8. Watershed transformation using boundary information

eeds
ansformation

Topographi
W

Figure 4.11: Tllustration of the over-segmentation. Many basins in the segmented images.

isolated pixels outside the phase and the halo artifact. This filtering can be performed since the constraints
of the seed localisation are weak in comparison with the phase-matching for threshold segmentation. The
next two subsections explore the possibility to localise a seed inside a phase.

4.3.3 One-step method
The one-step method consists of (see figure 4.14):

e the localisation of a seed inside each phase (n phases = n seeds),
e the application of the watershed transformation® to the gradient image with these seeds as prior.

Each basin associated with a seed corresponds to a phase. If each seed localisation respects the con-
straints, the watershed transformation results in a efficient segmentation of each phase (see figure 4.15

40Tn section 3.5, we have defined different conventions to manage the separation between the growing regions. For this
purpose, we use the watershed transformation without a border region in order to avoid the problem of the affectation of
the voxels belonging to the dams.
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° o o °
Horizontal filter Vertical filter Regional minima

iR

' [ .
Watershed with dams

Watérshed

‘, Topogaphic surfa

Figure 4.12: Tllustration of the swamping segmentation. On the segmented image (the last image), some
numerical grains split the real grains and some real grains are missed. To overcome both these artefacts,
Tariel and Jeulin [165] have introduced the pyramid segmentation.

Figure 4.13: Threshold followed by an opening to localise a seed inside a phase.
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Binary to seed

Waterg

Figure 4.14: The one-step method supposes the localisation of a seed inside each phase. The numerical
segmentation matches the visual segmentation.

and table 4.2) with a suitable topography surface (see subsection 4.3.6 for the gradient choice). The
major advantage of this approach is that it is not necessary for a seed localisation to match the
phase unlike for threshold segmentation.

4.3.4 Step-by-step method

For the material D, the constraints of the seed localisation cannot be respected for the light phase. To
make its segmentation possible, a step-by-step method is applied. At each step, two seeds have to be
localised: one in the phase, another in the phase’s complementary. Starting from the simplest phase
to extract, we proceed by extracting the next simplest phase step by step. Since the last phase is the
complementary of the addition of the extracted phase, its extraction is trivial. We do not have to localise
a seed in this phase. This is the main advantage of this method which allows the segmentation of the
material D (see figure 4.16).

4.3.5 Application

For the calibration, we begin the segmentation with a slice of the 3D image to find a suitable set of pa-
rameters rapidly. Then, we apply the segmentation to the whole 3D image with this set of parameters. In
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| phase | threshold range | opening size |

Material A

white phase (grains) 150-255 1
black phase (matrix) 0-100 0
Material B

black phase (grains) 0-80 1
white phase (matrix) 160-255 1
Material C

whitest phase (anhydrous grains) | 140-255 0
light-grey phase (portlandite) 100-130 1
grey phase (hydrate) 70-90 0
black phase (capillary porosity) 0-30 0

Table 4.2: The parameters for the one-step method

4 5}

Figure 4.15: Visualisation of each step for the materials A and B: (1) the initial image, (2-3) the seed
localisation inside both phases, (4) the seeds image, (5) the gradient image, (6) the catchment basins
after the application of the watershed transformation to the gradient image with the previous seeds, (7)
visualisation of the boundary of the catchment basin on the initial images. There is a good match with
the visual segmentation.

all the studied materials, 3D segmentation seems to work better than 2D segmentation®! (see figure 4.17).
In appendix A.4, we present the application for SEM images. For all material, the gradient operator is
Deriche operator[41]. In the next subsection, we will compare different gradient operators.

4“1 The watershed transformation is a growing process (see chapter 3). In 3D, more paths of propagation are available
Propagation in 3—dimensional spact

Propagation in 2—dimensional spact

® Seed

than in 2D.
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Figure 4.16: Extraction of three phases for the material D using a step-by-step method.
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Figure 4.17: (a) the white grains for the material A, (b) the black grains (drawn in white in the figure)
for the material B, (c) in blue the anhydrous grains, in pink the portlandite phase, in green the hydrate
phase and in green/blue the capillary porosity for the material C. (d) in blue the porosity (the black
phase) and in yellow the black grains for the material D.
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4.8. Watershed transformation using boundary information

4.3.6 Choice of the gradient operator

The watershed transformation belongs of the category of algorithms that detects the edges. The edges in
the gradient image are the phase boundaries of the material in the original since a phase boundary is a
sharp changes of grey-level. The efficient of the watershed transformation depends on the edges enhance-
ment by the gradient operator. In the ideal case, the result of applying a gradient operator to an image
lead to a set of connected curves in 2D and connected map in 3D that indicate the phases boundaries.
Unfortunately, it is not possible to obtain such ideal edges from tomography/SEM images. A variety
of computations are available which determine the magnitude of contrast changes and their orientation.
Extensive literature exists documenting the available operators. Fast and simple edge detection can be
performed by filters such as the popular Sobel gradient [102] which needs the convolution of a small kernel
(3 x 3 pixels) over the image or the Beucher gradient which is the subtraction of the dilated image by the
eroded image. Alternatively, more computationally intensive contour detection techniques are available
such as the Deriche gradient [41]. In this subsection, we will test the segmentation quality of these three
classical gradient operators using the watershed transformation as edges detector.

Sobel operator

The Sobel operator is based on the convolution the image with two 3x3 kernels*? to calculate the
derivation for horizontal changes and for vertical change. If we define I as the source image, G, and Gy,
the horizontal and vertical derivation, are computed as follows:

+1 42 41 +1 0 -1
G,I]=]0 0 0[xI and G.[[]=|+2 0 —2| [
-1 -2 -1 +1 0 -1

where * denotes the 2-dimensional convolution operator.
At each point in the image, the resulting gradient magnitude image is, using the Euclidean norm:

GlI] = \/G.[1] + G, [1]”

The 3 x 3 Sobel operator acts locally on the image and only detects edges at small scales. As the
convolution with a small bounded kernel has small computational cost, this algorithm is very efficient
and the implementation is simple. It can be extended to the n-dimensional space*?.

Beucher operator

The Beucher operator belongs to the field of Mathematical Morphology. The erosion and dilation for
grey-level image is [158]:

e Dilation of the image I by the set B, called structural element, is defined by:

[I ® Bl(x) :Vr/IzlzeuéI(:cfz).

42small, separable, and integer kernels in horizontal and vertical direction

43In n-dimensional space, the i-derived approximation is:
i—1 times n—(i+1) times

—N— ——
Gil]=g®..0gRd® g®...®g *I

1 -1

with ® the tensor product, g = i 2| the Gaussian vector and d = |: 0 :| the derivation vector.
1 1

At each point in the image, the resulting gradient magnitude image is:

Gl = [> Gl
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e FErosion of the image I by the set B is defined by:

[I © B](xz) = min I(x — 2).

VzeB

Morphological gradient of the image I by the set B is defined by:
1
GlI](z) = 5 (Il ® B](z) — [l © B](z)).

The scale parameter, the radius r of the structural element B, allows the filtering of the high frequency
noise. As the algorithm complexity is O(Nr™) with N the number of pixels/voxels of the image and n
the dimension of the space, the computational cost is not independent of the scale parameter. However,
this algorithm is quite efficient for practical utilisation since the scale parameter is most often inferior to
three. Finally, as the dilation and the erosion are defined in the n-dimensional space, the morphological
gradient is also defined in the n-dimensional space .

Deriche operator

The Deriche operator is the extension of the optimal edge detector proposed by J. Canny [31] to a
recursive filter. In the theory of edge detection algorithm, Canny defines three criteria for an "optimal"
edge detector:

e good detection - the algorithm should mark as many phase boundaries in the image as possible even
if the grey level variation on the phase boundaries is weak.

e good localisation - the lines of ridge** should be as close as possible to the phase boundaries in the
real image.

o minimal response - a given phase boundary in the image should only be marked once, and where
possible, image noise should not create false boundaries.

On an image model, using the calculus of variations, Canny proved that the optimal function is described
by the sum of four exponential terms, but can be approximated by the first derivative of a Gaussian, the
Canny filter. For a reduction of the computational time, Deriche proposed an another good approxima-
tion, 1):

Y(z) = czexp(—alz|)
with
[ e(a)p
exp(—a)

The scale parameter o represents the inverse of the standard deviation of the Canny filter (o = Z). In

one dimension, the resulting gradient magnitude image is:
Gl =vx*I

where * denotes the convolution operator.
In discrete space, this gradient operator can be efficiently implemented by two recursive filters moving in
opposite directions:

gt(m)=al(m—1)+bigT(m—1)+bygT(m—2) form=2,..,N—1

g (m)=—al(m+1)+big (m+1)+bg (m+2) form=N-3,..,0
G[I](m) =g (m)+g*t(m) form=0,...,N—1

44The gradient image can be seen as a topographic surface
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4.8. Watershed transformation using boundary information

with @ = ce™®, by =27, by = —e 2% ¢ = (1_:,7;&)2 The boundary values are:
+ = L[
70 = 1)
gt(1) = alI(0)+ (b1 +b2)g"(0)
a
“(N-1) = —I(N-1
;IN=1) = e IV =)
gt(N=2) = al(N—-1)+(b1+b2)g"(N-1)

The Deriche output can be adjusted with the « scale parameter to filter out high frequency noise and to
avoid the pixel effect*> by giving an intense, smooth and continuous line of ridges. Due to its recursive
nature, the computational time is independent of the scale parameter. Therefore, this algorithm is very
efficient. It can be extended to the n-dimensional space 6.

Gradient as topography in the watershed transformation

A gradient operator can generate two artefacts :

o false edges if there are some inhomogeneity in the phase,

e some holes on the edges if there are some weak sharp changes on the phase boundary.

45 Angularity is inherent of the discrete space
46This gradient operator is the first derivative of a smoothing filter,¥(z). Thus, we have:

av(z)
"D~y
U(z) = k(alz|+1)exp(—alz|)

with

_ (1 — e )2

T 14 2ae— —e—2
In n-dimensional space, the i-derivative is the convolution product of one derivation in the i-direction with the n — 1
smoothing on the other directions:

Gi[I](z0, .- yTn—1) = (P(z0) * ... * P(xi—1) * d(x;) * P(Tit1) * P(Tn_1)) * I

with (zo,...,zn—1) are the coordinates of the point x.
At each point in the image, the resulting gradient image magnitude is:

clll =[S Gl

In discrete space, this smoothing filter can be efficiently implemented by two recursive filters moving in opposite directions:
sT(m) = apl(m) +a1l(m —1)+bisT(m —1) +basT(m —2) form=0,...,N—1
sT(m)=a2l(m+1)+azl(m+2)+bis (m+1)+bas  (m+2) form=N-1,..,0
S[I](m) = s~ (m) +sT(m) form=0,..,N—1

—any2
with ap = k, a1 = k(a — 1)e™%, a2 = k(a + 1)e™%, azg = —ke 2%, by = 2%, by = —e7 2%, k = H_Q(iefﬁ The

boundary values are:

ap + a1

gt = mI(O)
97(1) = aol(1) +ail(0) + (b1 +b2)g™(0)
g (N—-1) = %1(1\/ —1)
gT(N—-2) = (ao+a)I(N—1)+ (bl +b2)gT (N —1)

The i-derivative can be implemented by n times two recursive filters using this iterative process:
e TInitialisation: RO =T,
e Until j < n, RIT! = B[R/] with B/*! = G for j =i and B/*! = S otherwise.

For n = 2, G is calculated by the derivation in the x-direction following by the smoothing in the y-direction.
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Chapter 4. Segmentation

As shown in figure 4.18, the image gradient depends strongly on the operator. With a scale parameter
a =5 and r = 1, the resulting images of Deriche operator and Beucher operator seem like the resulting
image of Sobel operator. With a scale parameter o = 0.5 and r = 3, Deriche operator blurs the line of
ridges corresponding to the spatial inhomogeneity in the phases and reveals the line of ridges of the phase
boundary unlike for Beucher operator or Sobel operator. Since the watershed transformation affects

(f) Beucher gradient: r =1 (g) Beucher gradient: r = 2 (h) Beucher gradient: r = 3

Figure 4.18: Illustration of the different gradient operators.

points on the catchment basins with a local law during the growing process*”, both these artefacts can
produce a bad localisation of the numerical boundary even with appropriate seeds. The gradient choice

47it is not global minimisation of a given functional
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4.8. Watershed transformation using boundary information

is crucial in the watershed transformation as illustrated in figure 4.19. We observe that Deriche operator
leads to the best localisation of the numerical phases boundary. The next subsection evaluates why the

) Seeds ) Catchment basins with Sobel gradient

(c) Catchment basins with Beucher gradient

(d) Catchment basins with Deriche gradient

Figure 4.19: Application of the watershed transformation with the seeds of the image (a) on the different
gradient images.

one step watershed transformation is more robust than threshold segmentation.

4.3.7 Robustness

Generally, the efficient of the segmentation is only evaluated by the accuracy. But, for pratical utilisation,
an important parameter is the facility of the calibration of the segmentation procedure. This subsection
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will prove that the calibration of the one-step is easy.

The definition of the segmentation robustness can be the stability of the segmentation against perturba-
tion of segmentation parameters. A segmented image localises the phases of the material. The geometrical
organisation of each phase is characterised using metric/topological descriptors (see chapter 5). The “sta-
bility" means that the metric/topological descriptors of the segmented image are not affected (or shows
very little fluctuation) by the perturbation of the segmentation parameters. In this subsection, the char-
acterization is restricted to two functional: chord length distribution and 2-point probability function.
This subsubsection has two paragraphs: morphological analysis and robustness evaluation.

Metric analysis

The chord length distribution function and the two-point correlation function give a statistical analysis
of the geometrical organisation of a phase [33, 106, 134]. Their determination gives information about
volume fraction, average granular size, surface roughness and structural correlation (for a more extended
explanation see section 5.2)

1) A chord is a segment belonging to the phase and having its two extremities at the phase interface. As
shown in Fig. 4.20, chords are obtained by tracing random and homogeneously distributed straight lines
through the microstructure. The chord length distribution function is the probability of getting a chord
length between h et h + dh, belonging to the phase, f,(h).

2) Let us draw an interval of length h randomly in the material : the two-point probability functions is the

Figure 4.20: A chord trough a material composed by two phases

probability of having both extremities of this interval belonging to the phase Sa ,(h)*® (see figure 4.21).

Figure 4.21: A yardstick drawn randomly in a material composed by two phases

Robustness evaluation

Let SA(I) be the resulting binary image after the application of the threshold segmentation or the one-
step method for a two phase material on the initial image I with the parameter set A.
To check the stability, the method is:

48also noted C(h) for covariance, or correlation function or covariance
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4.8. Watershed transformation using boundary information

1. to select a parameter, A, in the parameter set, A,

2. to increase step by step the chosen parameter, \; = \;_1 + ¢, starting from a low value until a high
value,

3. for each step,

e to apply the segmentation procedure to get the binary image Sy, (I) associated with the pa-
rameter \;,

e to calculate the distance between Sy, (I) and Sy, ,(I). The distance is defined as the ”area®
between the two plots of 2-point probability function or chord length distribution for Sa,(I)
and Sy, ,(I). A small distance means that the segmentation is stable and vice-versa.

Figure 4.22 shows that:
e the one-step method is more stable than threshold segmentation,

e the global minima for the threshold graph is 125. This value is equal to the value of the valley
on the histogram. Therefore, this graph could allow the automatic determination of the threshold
parameter,

e the global minima (see figure 4.23).) for the one-step graph is 85. This value is closed to the manual
determination of the treshold value for the seed localisation. Therefore, this graph could allow the
automatic determination of the threshold parameter,

e as the global minima is a hole for the threshold graph, if the parameter is not exactly 90, the
segmentation will be different. For the one-step graph, as the global minima is surrounded by
a table, a wide range of values lead to the same segmentation. This has been confirmed by the
experiments: the search of the input parameters is easy. Thus, the main advantage of the one-step
method is that the calibration is easy since the appropriate input parameters belongs to a range
(not a single value as is use with threshold segmentation).

In conclusion, the one-step method is more stable than threshold segmentation. However, this result
is not significant since the threshold operator without an advanced filtering is the simplest segmentation
method. The relevant results are that the calibration of the one-step method is easy and that an automatic
calibration is possible. The next subsection will prove the accuracy of the one-step method.

4.3.8 Noise stability
This methodology tests the noise stability of the one-step method:

e Objective image: it is a boolean random field (see subsection 4.1.1) which is often used for the
description heterogeneous material [5, 78].

I(z) =

aforz e M
b else

with M = U, (Xi @ Ky), {X;} a Poisson point process and K a constant ball.

e Addition of a noise: it is a Gaussian white noise®, N, with a standard deviation o to the original
image:
Y=I+N.

The contrast-to-noise ratio is defined by the dimensionless quantity: |a — b|/c.

49 A process N, is denoted by Gaussian white noise if:
— Ng is an independent white noise,

— N, follows a normal law N (0, o?)
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Figure 4.22: Stability of the segmentation methods for the material B. For both distances, the one-step
method is more stable by one decade than threshold segmentation.

e Segmentation: it is the application of the one-step method using the same input parameters what-
ever the contrast-to-noise ratio. The resulting segmented set is denoted by Sy.

e Distance: it is an error function defined by Tariel et al [165]:

p((AUB)\ (AN B))
p(A) + u(B)

In our purpose, A represents the initial boolean random set, M, and B represents the resulting
segmented set, Sy .

error(A,B) =

The results are presented in figure 4.24. Qualitatively, we observe a good match between the boolean
random set and the segmented image even when the contrast-to-noise ratio is low. Quantitatively, the
error values confirm it (see table 4.3). In conclusion, for the one-step method,

1. the calibration of the segmentation parameters is independent of the contrast-to-noise ratio,

2. the segmented microstructure matches the model even with a low contrast-to-noise ratio.
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Figure 4.23: After a dilatation with a structural element of size 5 on the graph, the minimum on both
curves is 87. This automatic value is closed to the manual value 90.

20 | u(Sv) | u((Sy UM\ (Sy 0 M) | error(Sy, M)

2.5 | 0.4915 0.0160 0.162
1.25 | 0.4901 0.0242 0.0245
0.83 | 0.488 0.0342 0.0348
0.55 | 0.472 0.0600 0.0620

Table 4.3: The Lebesgue measure of the boolean random set is equal to 0.4951.
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Boolean random field

—b .. . .
% noise image median filter segmented image

2.5

1.5

0.83

0.55

Figure 4.24: For the boolean model, the image size is 1024*1024 with a density of 0.000625 and a ball
radius of 16. The pixel value is equal to 150 inside the random set and 100 outside. Therefore, the contrast
is equal to 50. The standard deviation, o is respectively 20, 40,60 and 80. The segmentation parameters
are chosen constant. For the median filter, the structural element is associated to the 8-neighbourhood.
For the seeds selection, we operate a threshold (0-100) and (150-255) following by an opening using the
8-neighbourhood. The Deriche parameter is equal to 0.5.
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Figure 4.25: First figure: segmented image; second figure: extraction of the connected components. Each
colour represents a connected component. There is a large cluster, in blue, containing many grains.

4.4 Artefacts correction

Segmentation generates some artefacts:
1. some grains close to each others become connected,
2. some artificial holes appear.

This section describes two procedures to correct their.

4.4.1 Grain splitting

Whatever the method, segmentation exhibits one difficulty: some grains close to each other become
connected. For many applications, the extraction of each grain of the grain phase, named grain partition,
has to be performed. If a classical cluster procedure [72] is applied on the segmented binary image, these
connected grains are numerically considered as a single grain (see figure 4.25). To overcome this, we
apply a procedure introduced by L. Vincent in 1993 [172]. Let €2 be the domain of the grain phase on the
segmented image. The algorithm principle is the application of the watershed transformation controlled
by seeds restricted by the binary image, I, to the topographic surface. The topographic surface is the
opposite of the distance function of I (see figure 4.26).

Opposite of the distance function: The distance function Dist® gives the smallest distance between a
voxel z belonging to {2 and any voxel y belonging to the complementary of .

DistQ(x) = minyyeqe d(z,y) for G.Q
0 otherwise

The opposite of a image J is: K (%) = —J ().

A property of the opposite distance function is that the lines of ridge are located on the narrow lines/surfaces
between the grains. The watershed transformation, dedicated to the extraction of line of ridges, is also
used for this purpose. However, in this application,

1. the watershed transformation is restricted on the domain I (see subsubsection 3.4.2),
2. each grain has to be marked by a single seed,
3. the topographic is the opposite distance function

Appropriate seeds: First, the seeds can be the regional minima (see subsubsection 3.4.1 for the regional
minima definition) of the opposite distance function of the binary image. However, this merging produces
an important over-extraction of grains due to local irregularities of the binary image shape, generating
a set of uncontrolled and unwanted seeds. To avoid this problem, the opposite distance function of the
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Distunce function

|_1 = Dist(l)

opposite

I_2=0pp(l_1)

Dynamic filter

_3 = Dyn_filter(I_2)

regional minima

regional minima

I_4 =Reg_min(l_2) I_4 = Reg_min(l_3)

Watershed controled by seeds: topographic surface = 1 2, seeds =1 4, restrcited = |

Figure 4.26: Grains extraction: the watershed lines/surfaces are located on the narrow lines/surfaces
because the narrow lines/surfaces are located on the lines of ridge of the opposite distance function of 1.
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Figure 4.27: Each colour represents a grain. For each row, the first image is the visualisation of the
clusters on the segmented binary image and the second image is the catchment basins after the splitting
procedure. For both granular materials, the dynamic parameter is equal to 1.

binary image is filtered. A vertical filter is used in order to individualise each grain with a single seed.
The vertical filter uses the notion of dynamic (see subsubsection 3.4.2 for the dynamic filter definition)
with a parameter h [59]. For the granular materials A and B, this splitting procedure yields a consistent
grain partition as illustrated in figure 4.27.

4.4.2 Hole filling

During the preparation of samples for SEM, the surface is polished. This process generates some cracks
inside the grains. After segmentation, these cracks are not affected to the grain phase since the tint of the
crack is very different to the tint of the anhydrous grains. In tomography images, connected components
of the solid phase are numerically surrounded by porosity (levitation). We observe around 5 of such
“holes”. In order to correct these artefacts, a hole filling procedure is applied (see figure 4.28). This
artifact correction is important:

e for the characterization based on the chord length distribution function since this functional is very
sensitive to the presence of holes in the phase®®,

e for the contraction at constant topology (see subsection 5.3.3) since this method can only be applied
without internal surfaces.

Conclusion

X-ray tomography/SEM images involve specific problems of image segmentation, due to the weak contrast-
to-noise ratio and the limitation of the spatial resolution. If the resolution of the imaging technique is
in the same order of the characteristic size of phase under investigation, segmentation will not yield an

501t is not the case of the 2-point probability function.
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l)inverse 2)connected components 3) keep the clusters hitting surface 4) inverse

A B

X JA AR \ P "

5 Al .

1) Segmentation 2) Anhydrous phase 3) Hole filling 4) Remove pixels just added

Figure 4.28: The first row is the decomposition of hole filling by elementary operators in such a way:
-inverse-extraction of the connected components-keep the connected components touching the image
boundaries-inverse. The second raw is the application to anhydrous grains in a SEM image: first figure:
initial image -(1)-segmented image -(2)- selection of the anhydrous phase -(3)- hole filling procedure on
the anhydrous phase -(4)- removed the pixels/voxels belonging to holes of anhydrous grains initially
belonging to other phases.

accurate microstructure whatever the method. We have seen that many problems can appear during
the segmentation. In the first section, we presented the classical threshold segmentation given a good
result only if the contrast-to-noise ratio is high. When this is not the case, the one-step method or the
step-by-step method, was applied. These methods are, simple because the input parameters belongs to
a wide range of possible values and does not depend on the contrast-to-noise ratio; generic because they
can be applied for different materials obtained with different microscopies and robust because, even with
a weak contrast-to-noise ratio, segmentation yields an accurate microstructure.

In the last section, we introduced two procedures to correct two common artefacts:

e a split procedure to separate the connected grains®,

e a hole filling procedure.

51this approach will be also used to decompose the pore network into elementary pores.

110



5

(zeometrical characterization

Contents
5.1 Introduction . . . . . . . & @ @ i i i i i i e e e e e e e 112
5.1.1 The geometrical organisation is complex at onescale . . . . . . ... ... ... 112
5.1.2 The geometrical organisation is specific at each scale . . . . . .. ... .. ... 112
5.1.3 Basic concepts of image analysis . . . ... ... ... o0 113
5.1.4 Which class of geometrical feature? . . . . . . . . . ... 115
5.1.5 Which cement paste? . . . . . . .. ... 115
51.6 Notation . . . . . . . . . .. . 115
5.2 Metricanalysis . . . . . v v v vttt e e e e e e e e e e e e e e e e e e e e 116
5.2.1 Minkowski functionals . . . . . . .. ... oL 116
5.2.2 Volume fraction . . . . . . . . . ... 116
5.2.3 Specific surface area . . . . . . .. Lo L 118
5.2.4  2-point probability function/Covariance . . . . . . ... ... ... L. L. 121
5.2.5 Chord length distribution function . . . . . .. . ... .. ... L. 125
5.2.6 Volume distribution of connected components: non-stereological . . ... . .. 128
5.3 Topological characterisation . . . . .. .. .. ... 000t 131
5.3.1 Minkowski functional: Euler-Poincaré/Gaussian curvature . . . . . . . ... .. 132
5.3.2 Percolation . . . . . . ... 133
5.3.3 Topological graph . . . . . . . ... 137
5.3.4 Analysis of the topological graph . . . . . . ... ... ... L. 145
5.4 Decomposition in elementary pores . .. .. ... .. ... 000000 149
5.4.1 Materials . . . . ... L 150
5.4.2 Two conventions for the decomposition . . . . . . . .. ... ... ... ... .. 151
5.4.3 Characterisation . . . . . . . . . . . ... e 155

After segmentation, the different phases are located in space though a space partition. One challeng-
ing problem deals with the ability to describe the geometrical organisation of these phases. Quantitative
knowledge of Porous Medium of Cement Paste (PMCP) is important in order to understand the role of
geometric confinement in adsorption, condensation, transport, reaction processes and finally, the connec-
tion with the microstructure and durability of the material. In this chapter, we focus on the extraction
of the geometrical features of PMCP in order to observe their evolution with the hydration time. The

chapter is segmented in four sections:

e introduction,

e metric analysis,

e topological analysis,

e decomposition in elementary pores.
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Figure 5.1: Left figure: New York city had been organised to optimise the traffic; right figure: Angouleme
city had never been organised according to a global plan.

5.1 Introduction

5.1.1 The geometrical organisation is complex at one scale

To understand the complexity of the PMCP geometrical organisation, an example related to the car
traffic is given. Let us consider the car traffic in two towns: New York and Angouleme, a medieval town
in South West of France (see figure 5.1). Obviously, the car traffic flow in New-York can be higher than in
Angouleme although the fraction of surface area of road is quite similar for the both cities. Qualitatively,
in Angouleme, the car traffic is less efficient since its road network has:

1. some topological characteristics as

e many dead-end roads,
e no “direct road“ between one point and another point,

e some crossroads where many important roads merge.
2. some metric characteristic as
e some narrow roads.

This example shows that the properties of car traffic is related to its geometrical organisation. Obviously,
the geometrical organisation of road network of Angouleme is disorder. The geometrical organisation
of PMCP is also disorder. In order to especially understand how the diffusion occurs in this porous
media, the requirement is the statistical characterisation of the geometry of the porous microstructure.
Therefore, this chapter will dedicated to the quantitative analysis of the pore network at one scale. The
next subsection will introduce the concept of multi-scaling.

5.1.2 The geometrical organisation is specific at each scale

Now, let us consider the car traffic in the road network in France. The road network is segmented
depending on the road size: highways, low capacity road,. .. (see figure 5.2). Each road size is associated
to a scale. In order to understand the car traffic, a geometrical analysis has to be done:

e at each scale. For example, in France, at the upper scale (highway), it is a spider network centred
at Paris,

e between the scales since there a coupling between them. Go to mappy and choose two villages far
enough. Generally, the itinerary respects the principle of up-scaling-downscaling, starting from low
scale road (lane) to join a high scale road (highway) and finishing with a low scale road.

The geometrical organisation of PMCP is also:

1. organised through a wide range of length scales from the nanometre to the millimetre,

112



5.1. Introduction
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Figure 5.2: Multi scaling road network

2. specific at each length scale without statistical length scale invariance,
3. complex at each length scale.

Moreover, the geometrical organisation is hierarchical since there is no scale separation. At each increasing
of the magnification, new features of the PMCP are revealed®?. In this thesis, we focus on the upper length
scale of the PMCP, called the capillary porosity. In order to investigate the whole range of length-scale
heterogeneity of a cement paste, this thesis is coupled with two other theses:

e S. Brisard supervised by P. Levitz (understanding the nanostructure of C-S-H: macroscopic impli-
cations),

e H. Chemni supervised by D. Petit (multi-scale diffusion and moisture sorption in cement paste
materials).

5.1.3 Basic concepts of image analysis
Two length scales

The observation of the the geometrical organisation of PMCP has be done using two imaging techniques.
Each experiment imposes two length scales, the resolution, noted [, and the field of view®?, noted L. The
resolution, [, sets the lower scale of the investigation and the field of view the upper scale (see figure 5.3).
An important property is the spatial homogeneity [95] (translational invariance) allowing that the esti-
mation of a property does not depend where the image is taken. In order to have this property, the field
of view has to be larger than the characteristic size of the Representative Elementary Volume (REV).
In the literature of cement paste, this volume is estimated around 100 pm? [137]. The both imaging
techniques, SEM and X-ray tomography, have a field of view much larger than this size.

Another two important properties is the spatial stability. The estimation of a property stays constant
when the resolution decreases. This involves that:

52For the road network, it is multi-scale since there is a scale separation due to the quantification of the road size
53For tomography at SIS, the resolution size is: I = 0.7um and as the size of the image is 7002 voxels, the field of view
is: L =0.5mm

113



Chapter 5. Geometrical characterization

(b)

Figure 5.3: A 2D slice of the tomography image of alite at time of hydration, 31h, and W/C=0.4. First
image: the acquisition, second image: after the segmentation. There are large clusters of portlandite
(blue phase) which size is equal to half of the length of the field of view. Therefore, the volume of field
is surely under the representative elementary volume. We observe few porosity (black phase). There is
still porosity not revealed at this resolution in the hydrate phase (pink and blue phases).

e a geometrical organisation is observed. For a mature paste, we do not observe the geometrical
organisation any more since the upper length scale of PMCP is lower than the tomography resolution
(see figure 5.3).

e the observed geometrical organisation drives the physical phenomenon. For instance, a pore network
with macro-pores and micro-pores such as the macro-pores are highly connected, the estimation of
the transport property at the macro length scale will yield consistent results in agreement with direct
experiments since the transport in the micro-pores can be neglected. When a physical phenomenon
depends on both scales, micro- and macro-pores, an effective microscopic property can be affected
at each pixel/voxel containing the micro-pores in order to take into account the coupling between
both scales.

At the beginning of the hydration time, we will see in the section 5.3 that the capillary porosity is highly
connected. Therefore, at this stage, the estimation of the diffusion properties is relevant. However, rapidly,
at the resolution of the tomography, we do not observe the pore network. At this stage, tomography
gives no information about the pore network of cement paste. Therefore, another imaging technique has
to be used to observe the smaller capillary pores that control transport for mature pastes.

Dimension

For a 3D disorder system, like cement paste, a section, of a three-dimensional microstructure, allows only a
limited geometrical analysis since topology is intrinsically a 3d information. Obviously, diffusive transport
depends on the connectivity of the pore network. Therefore, tomography, providing 3D images, allows a
full metric and topological analysis whereas SEM, providing 2D images, is limited for the understanding
of how the diffusion occurs in porous media.
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5.1.4 Which class of geometrical feature?

In this thesis, an extended analysis is done at one scale: the capillary porosity at the resolution of 0.7um
with a field of view of 0.5 mm. The geometrical organisation is described using two descriptor classes:
metric and topological. By analogy of the road network, the metric descriptors give information about
the throats, the distribution of road size, the distribution of mean curvature whereas the topological
descriptors give information about the connectivity of the network such as the existence of path between
two towns. For both classes, the analysis is segmented in two levels:

1. scalar analysis providing average numbers such as the porosity,

2. statistical analysis involving some statistical distribution such as the chord length distribution
function.

These descriptors do not allow to link between the geometrical features and diffusion transport properties
because their do not take into account the metric and the topology analysis simultaneously. A possible
way is to decompose the microstructure in terms of elementary pores. This decomposition permits a
metric description of the elementary pores and a topological description of the network of the elementary
pores. Our aim is then to understand the local transport in elementary pores by using their metric
features and to up-scale our analysis of the transport from the elementary pores to the microstructure,
using the connectivity properties of the network of the elementary pores.

5.1.5 Which cement paste?

In order to compare the geometrical analysis done with SEM and X-ray tomography, we have acquired
at the same resolution 0.675um, at the same field of view 0.5 mm, two cement pastes: Ordinary Portland
Concrete (OPC) and alite (see chapter 2).

5.1.6 Notation

After segmentation, we get a partition of the space defined by the domains (Qg, ..., Q) of the different
phases. Let Z be the characteristic function defined by:

I(z)=iifx ey
For each phase ¢, a characteristics function is defined as:

0 otherwise

A characteristic function is denoted, I, when the phase is not specified. The space and the image are
denoted with the same notation, E.
For a set A, we define the Lebesgue measure,® p(A) as

1. the surface of A, S(A), in 2-dimensional space,

2. the volume of A, V(A), in 3-dimensional space.

54 A function from the power set of E, P(E), the set of all subsets of E to RT
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5.2 Metric analysis

The aim of the metric characterization is to give information about forms, shapes and patterns like the
average pore size, the mean curvature, the pore shape, the surface roughness, the structural correlation
between pixels belonging either to the solid, to the interface or to the pore network. All the measure
presented in this section are accessible either in 2D and in 3D for an isotropic material. This section is
segmented in two subsections:

1. Minkowski functionals,

2. statistical analysis.

5.2.1 Minkowski functionals

To quantify the evolution of the pore network, we use three fundamental numbers: the volume fraction
¢, the specific surface area, S, and the Euler number, N3. In the more general context of integral
geometry, these three numbers are defined for an d-dimensional Euclidean space through d+ 1 Minkowski
functionals (see Table 5.1). The Minkowski functionals, W;, satisfy a number of criteria, the so-called

notation | geometric quantity Minkowski functionals | W;(A)

of number ¢
V,¢ = Vi | volume, volume fraction 0 V(A) = p(A)u(E)
S, Sy surface, specific surface area 1 S(A) = Sy (A)u(E)
H integral surface mean curvature 2 305 foula + R%)ds)
K integral surface Gaussian curvature | 3 3 (L5 A(R%R%)ds)

Table 5.1: Minkowski functional in 3-dimensional Euclidean space for a set A included in E. 1/R; and
1/Ry are the principal curvatures.
Hadwiger conditions:
1. Motion (translation and rotation) invariance, W;(A) = W;(gA) with g = rotation or translation ,
2. Homogeneity condition, VA € R : W;(AA) = X¥~W;(A),
3. Additive, W;(AU B) = W;(A) + W;(B) — W;(AN B),
4. Convex continuity, the application W; is continuous for the set of convex bodies.

Integral geometry shows how the sections of the 3D sample allow us to recover its Minkowski functionals.
This very attractive property, due to Crofton, open up the a fruitful path for the study of stereology®®
[158, 112, 79, 113] (see table 5.2). The first two Minkowski functionals will be used in the two next
subsubsections. Since the last Minkowski functional is a topological number without stereological relation,
it will be presented in the subsection 5.3.1.

5.2.2 Volume fraction
Methods

The volume fraction of the different phases, ¢; also called the 1-point probability function, is one of the
most important geometrical property since it influences physical properties.
The evaluatation of the volume fraction of the void phase can be done in using the following techniques:

55The stereology was developed by the French geologist A.E. Delesse in 1845 who has proposed a quantitative analysis of
a polished plane section of a rock. Assuming that rock under image analysis investigation is homogeneous, he has proved
that [40]:
P31 = p2d
where ¢3¢ is the volume fraction of a given phase estimated in a 3d sample and ¢2¢ is the surface fraction of the same phase
estimated on a 2D cut of the sample.
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Space of Stereological relations
dim. n
n=3 Volume fraction ¢ = Vi Specific surface area Sy Mean curvature % Gauss curvature
[ | |
n=2 Surface fraction A4 % Perimeter per surface Uy 27N, per surface
[ |
n=1 Length fraction L N, per length

Table 5.2: Stereological relations. N, is the number of connected components.

1. the mercury intrusion porosimetry [84, 1],

2. the water vapour adsorption, and nitrogen adsorption using Gurvitch’s law in the saturation regime
[35, 64].

The drawbacks are that these methods are intrusives (during drying, the geometrical organisation is
affected) and that these methods cover the whole range of pore sizes including the small pores, capillary
pores and large air voids. In order to focus the analysis of one pore size, major assumptions on the pores
geometry have to be done like cylindrical and ink-bottle pores [48].

In the case of cement paste, the volume fraction of the anhydrous grains is typically evaluated using:

1. the loss-on-ignition®® [9, 61],
2. the analysis of X-Ray-Powder Diffraction Patterns by the Rietveld method [177, 38§].

By image analysis, it is simple to evaluate the volume fraction of the different phases in 2D and in 3D
according to:

¢i = <Ii(77)> (51)
_ fEfi(ng (5.2)

_sum pixels/voxels belonging to the phase (5.3)
B sum pixels/voxels of the image '

Obviously, the sum of the various volume fractions is one. For a homogeneous sample, as explained in the
previous paragraph, the volume fraction calculated in a volume is equal to the surface fraction calculated
on a slice of this previous volume.

An important feature in cement paste, the degree of hydration, can be estimated using the volume fraction
of the anhydrous phase. After mixing cement with water, the dissolution of the anhydrous grains and
the precipitation of the hydrate phase begin. The degree of chemical reaction of the anhydrous grains at
time ¢, called degree of hydration, a.(t), is defined as:

_ ¢c(t = O) - ¢c(t)
)= "5 =0)

where ¢.(t) is the volume fraction of the anhydrous grains at time ¢ in cement paste. The reaction of
dissolution /precipitation depends on many parameters such as, the time of hydration, the ratio the water
to cement ratio, the temperature, the chemical composition of the cement. Therefore, for a comparative
analysis, the degree of hydration makes more sense than the time of hydration.

The volume fraction of anhydrous grains at time t, ¢.(t), is calculated on the SEM /tomography images
whereas the volume fraction of the anhydrous phase at time t=0 is calculated from the original mix design

(5.4)

(water to cement ratio and density of the cement): °7
Belt = 0) = ——5 (5.6)
¢ 1+ Ler(w/c)
56http://en.wikipedia.org/wiki/Loss_on _ignition
57Let us consider the mixture of anhydrous cement and water at time t=0. We have:
Guw(t=0)+¢c(t=0)=1 (5.5)
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where p. and p,, are the densities of cement and water and r(w/c) is the water to cement mass ratio.

Experimental results

The figure 5.4 represents the degree of hydration as a function of the time of hydration. This figure shows
that, at the same time of hydration, the degree of hydration obtained by tomography is significantly
higher than the degree of hydration obtained by SEM for both cements (the difference is higher for alite
than OPC). The reason is that the reaction of hydration/precipitation depends on the temperature [58].
The samples, observed by SEM, have been stored in a room at constant temperature of 16°C whereas
the samples, observed by tomography, have been prepared and immediately carried to the SLS during a
warm day 30°C.

To make possible the comparison, we always express the geometrical feature as a function of the degree
of hydration and not the time of hydration. For OPC cement, there is a common range of the degree of
hydration between tomography and SEM that allows a comparative analysis between both techniques.
For alite cement, there is no a common range of the degree of hydration. Therefore, a comparative
analysis cannot be done.

The figure 5.5 represents the volume fraction as a function of the degree of hydration. The increase of
porosity for the last point obtained by SEM for OPC is in opposition with the decrease of porosity due
to the precipitation. Qualitatively (see figure 5.6), we can make the same comment. Since cement paste
is not a homogeneous medium, the slice cut at 7 days is an heterogeneity. Therefore, we will not take
into account the last point obtained by SEM. For the remaining points, the volume fraction obtained by
SEM and X-ray tomography for OPC are coherent. As the ratio W/C of OPC for X-ray tomography is
smaller the ratio W/C of OPC for SEM, the fraction of porosity is smaller.

5.2.3 Specific surface area
Methods

The specific surface area, the ratio of the surface to the volume, has a particular importance in the case
of adsorption, heterogeneous catalysis, and reactions on surfaces.
To evaluate the specific surface area, it is current to use the following techniques:

1. the adsorption using Brunauer, Emett and Teller (BET) method [27, 127],

2. the small-angle neutron scattering in the Porod regime [39, 179, 167]

For a volume V of cement paste (anhydrous cement-+water), we have:

Vou(t=0)pw = mu
Voe(t =0)pc = me
Taking the ratio of these two equalities, we get:
Pw(t = 0)pw _ Mw
$e(t = 0)pc Mec

As Tn—‘j =r(w/c), noted W/C in the literature of cement paste, we obtain:
Pc

Gw(t =0) = ¢c(t =0)—r(w/c)
Pw

Replacing ¢, (0) in the equation 5.5, we obtain:
1

dc(t=10) = W

A simple experiment to evaluate the density of cement is to mix water with a mass m,, and cement with a mass m. in a
volume V' and to use this relation:
me
Pe = 1 — Mw
Vpw
Knowing that p, = 1kg.m~3 and p. ~ 3.15kg.m~3 for the all the cements, we can evaluate the volume fraction of anhydrous
cement at the initial state.
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Degree of hydration as a function of the hydration time
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Figure 5.4: Degree of hydration for alite/OPC obtained by SEM/X-ray

By image analysis, the value obtained for specific surface area depends on the method of evaluation (see
figure 5.7). Numerically, the specific surface area is estimated with: :

Si() = <[0%] > (5.7)
1 2o0eE 2ovye By, (o) (o} L (@) (Y)
= 5 0 (5.8)

where By n,(z) \ {z}.is the 4-neighbourhood in 2D and the 6-neighbourhood in 3D (see the algorithm in
the appendix A.5).

In euclidean space, the specific surface area S¥=3(€2;) is equal to the perimeter per surface, S¢=2 time 4

4
SI=3(Q,) = =872(Q; N C) (5.9)
m

where C is a plan of E (€; NC represents a 2D cut of the sample.). As the specific surface area is evaluated
in discrete space, the stereological relation is:

SEE3(y)  SE2(uNn0)
3 N 2

In order to compare the measures done with SEM and with tomography, we use the relation of stereological
SI=0()
T

(5.10)

specific surface defined in discrete space,
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Figure 5.6: on the left: OPC after a setting of 3 days, on the right: same OPC after a setting of 7 days.
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(a) Numerical boundary in red (b) Numerical and real
boundaries

Figure 5.7: Figure (a): The perimeter in 2-dimensional discrete space is equal to 12 [ where [ is the image
resolution. Figure (b): the organisation of the surface is blurred by the pixel-effect. The boundary on
the segmented image is represented in red. The real surface can be a smooth surface in black or a rough
surface in blue.

Experimental results

For the portlandite phase and the anhydrous grains, we observe an agreement between the results obtained
by SEM and by tomography for OPC (see figure 5.8). For the other phases, hydrate and porosity, this
is not the case. Porosity and specific surface area are merely two numbers characterising the geometric
properties of a material. Obviously, these two numbers are not sufficient to characterise the morphology
of a complex medium like Porous Medium of Cement Paste (PMCP). To do an extended analysis, a
stereological statistical analysis will be done using two correlation functions: 2-point probability function
and chord length distribution function in the next two subsections.

5.2.4 2-point probability function/Covariance

Let draw an interval of length r randomly in the material. The two-point probability functions/covariance
gives the probability of having both extremities of this interval belonging to the phase ¢, S ;(7) (see fig-
ure 5.9):

Syi(F) = P(FeQr +7e) (5.11)
VL +7) > (5.12)

This structural correlation quantifies how the “memory” of an initial state is progressively lost when a
point is moved away [103, 79]. This quantity has been extensively studied theoretically [33, 169]. Small-
angle X-ray or neutron scattering is used for the experimental evaluation [39]. The evaluation of the
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Stereologic specific surface area (1 m™1)

Stereologic specific surface area (u m™1)

Figure 5.9: 2-point probability function. An interval of length r drawn randomly in a bi-phase material
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Figure 5.8: Specific surface area as function of degree of hydration.




5.2. Metric analysis

2-point probability function by Fourier transform is performed using Matlab© 58 (see appendix A.5.2).
2-point probability function allows the evaluation of the material isotropy. The material is isotropic if
the 2-point probability function is invariant by rotation:

Sao(F) = Sa(RrF) with R a rotation

Practically, the isotropy is characterised by a series of rings in the figure of 2-point probability function
(see figure 5.10). Due to isotropy of cement paste, 2-point probability function can be plotted as a
function of the norm [ = |||z :

So(l) = < Sa(F) >|ry=i (5.23)

2-point probability function allows the evaluation of the characteristic length, ., of the representative
elementary volume. The “memory” of an initial state is progressively lost when a point is moved away.
When ||| tends to oo, we have, as long as there is no long-range order,?”:

lim P(FeQ,;,7+ reQ) = lim P(#eQ,;)P(F+ 7 € ;) as independant events (5.24)
[l || =00 [l ]| =00
= ¢? as 1-point probability function equals to ¢ (5.25)

Let [ be the distance when the graph tends to ¢7. By convention, the length of REV is %0 defined as 3
times this length, I (see figure 5.11). The length of REV is 200 um for OPC and 600 um for alite since
there are very large clusters of portlandite (see figure 5.3). As the length of the field of view in X-ray
tomography /SEM is 500 pum, the observation is done in a representative elementary volume for OPC,
but not for alite.

The 2-point probability function graph allows the estimation of the specific surface area, S{=2:

58Let F[I] be the Fourier transform of I:

FUN@ = / eI (7) di (5.13)
E
Let Z be the signal intensity:
(g = |F@F (5.14)
= FlQEF@D)" (5.15)
_ / =T () di / T (7 dr (5.16)
E E
- / / =i F=T[ (P 1(7 )i dF. (5.17)
EJE
Let (r/,7) = (r, i + 1) be the change of variable which Jacobian is equal to 1. We get:
(§ = / / e Y L(G + ) I(r)dr dit (5.18)
EJE
- / e—iﬁff”/ (@ + 7)I(7)dr did (5.19)
E E
= / e~ sy (@) di (5.20)
E
where s2(7) = S2(7)V (E). So Z(q) is the Fourier transform of the correlation function.
() = Fls2(@) (5.21)
s2() = FUII) (5.22)

In other words, we use this property F[f x g](q) = F[f](q)F[g](q) to substitute g by f and in using s2 = f * f.

59for an non periodic medium

60Tn order to estimate a given physical/geometrical property of porous medium, we investigate the sample in a given
volume for a set of positions. If the volume is too small, we will observe a fluctuation between each measure. If we increase
the volume, the measures will remain stable progressively. When the stability is reached, then the investigation volume is the
Representative Elementary Volume (REV). The REV depends on the material and also the physical/geometrical property
under investigation. Numerically, the determination of length of REV is similar. We estimate a given physical/geometrical
property on a set of sub volumes randomly located in the initial volume. If the measures remain stable, then the investigation
volume is a representative elementary volume [98]. Last point, the length of representative elementary surface is different
than the length of representative elementary volume.

123



Chapter 5.

Geometrical characterization

//ﬁ/' / / \.\ ,
oI

) Zebra texture (b) 2-point probability function of the zebra
texture

}.

¢ =1 2 S e i"‘br
(c) OPC, W/C 0.5, SEM, 1 day (d) 2-point probability function of OPC

Figure 5.10: Test of the isotropy of a material in using the 2-point probability function. To observe
the difference, we use an image of zebra texture. First row: there are some correlation peaks following

two directions in the 2-point probability function.

Therefore, the zebra texture is anisotropic.

This

anisotropy information is used by Redon et al [141] to get the orientation of fibres inside a reinforce of
concrete matrix. Second row: for the OPC image, the correlation function shows invariance by rotation,
so OPC is isotropic like alite.
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Figure 5.11: Characteristic length of the REV. For OPC, the field of view is above the length of the REV.
For alite, the field of view is not above the length of the REV due to the existence of large portlandite

clusters.

124

(5.26)



5.2. Metric analysis

Figure 5.12: A random line through a granular material composed by two phases allows to extract chords
belonging either to the solid phase or to the pore network.

We find a good agreement between the direct calculus of the specific surface area and the calculation
using the derivative of 2-point probability function at the origin. For vycor glass [105] (7930, lot 742098,
Corning) of size 500*500*500, the direct calculation gives: 0.108 and the slope at the origin of 2-point
probability function gives 0.106.

5.2.5 Chord length distribution function
Methods

p-chord A chord is a segment belonging to a phase and having its two extremities on the phase interface.
As shown in Fig. 5.12, u-chord are obtained by tracing random and homogeneous distributed straight
lines through the microstructure. The chord-length distribution function gives the probability f; ,(r) of
getting a chord length between r et r + dr, belonging either to the phase.

The chord-length distribution function is a fingerprint of the local morphology of the considered phase.
This quantity has been extensively studied theoretically [115, 106, 168, 111]. Small-angle X-ray scattering
can be used to evaluate it experimentally [115, 106]. Numerically, the definition of the distribution of
straight lines is not evident. Miles and Davy [117] give a precise definition of the random sampling of
straight lines, called Isotrope Uniform Randomness (see figure 5.13).

Sharp edges As demonstrated by Mering and Tchoubar [115], the chord-length distribution function
is a measure of the existence of sharp edges of the considered phase since f;,(0) # 0 means that the
phase has sharp edges. As a voxel is a cube with sharp edges (see figure 5.14), the value at the origin of
the chord-length distribution function will detect this numerical artefact (see figure 5.13-c).

Nd-chord This drawback leads us to consider Nd-chord which straight lines are sampled following a
random direction in the orthogonal base of the space and going through a random point of the microstruc-
ture (sees figure 5.15).

Catalogue the phase depending on the shape of the distribution As explained by Levitz et
al [106], a phase can be catalogued in three kinds of disorder depending on the distribution of chord
length:

1. LONG-RANGE DEBYE RANDOMNESS. Rapidly, the distribution follows negative exponential
(see figure 5.16-a).

2. “CORRELATED“ DISORDER. Just after the peak distribution, the distribution follows negative
exponential (see figure 5.15). The small-angle scattering of some porous solids shows a peak corre-
sponding to the existence of a relatively well defined correlation length.

3. COMPLEX STRUCTURES WITH LENGTH SCALE INVARIANCE. At large distance, the phase
chord distribution exhibits a 1/r™ form. In log-log scale, a tail is observed in large distance.
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‘i) 1) generate a disk (or a ball in 3d) embedding the image
e 2) Select randomly a point

on the circle (or the sphere in 3d)

3) generate the line (or the disk in 3d)

included in the disk (or in the ball 3d)
going through to the origin
with a normal direction equal to the vector defined by the origin and the previous point

® 4) Select randomly a point on this line (or this disk in 3d)

5) Generate the chord going through this point and with a normal direction to the green line (the green disk in 3d)

(a) Random sampling of straight lines

distribution of \mu-chord for the void phase of the vycor glass
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porous phase
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edges '
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(b) Chord lengths for a straight line (¢) Chord length distribution function for vycor

Figure 5.13: Random sampling using the p-chord distribution. Application for the void phase of vycor
glass.

Mean chord length: a way to capture pore size The mean chord length, I;, is:
L= / L1l (5.27)
0

The mean chord length is a characteristic length scale of the given phase®!. Since the chord length
distribution function is stereological [170], this length scale is accessible either in 2D and in 3D. Let f}!
be the chord-length distribution function of the phase and f;ﬁ be the chord-length distribution function
of the complement of the phase.

The volume fraction of the phase, ¢,, the surface specific area, S, and the star volume, V,* are formulated
by:

l
¢, = —L2— (5.28)
P lpe + 1,
4
S, = ——— 5.29
P lpc+lp ( )
T [
= 14 f,(D)dl .
Vo= a ), UH0 (5.30)

61 For mono-disperse sphere packing of radius, r, we have I; = %r
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Figure 5.14: A voxel has sharp edge.
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Figure 5.15: (a): random sample of a straight line; figure 2: Nd-chord distribution of void phase of the
vycor glass. We have f; ,(0) =0
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For vycor glass [105] (7930, lot 742098, Corning)) of size 500*500*500, the direct calculation of volume
fraction of the pore phase gives: 0.300 and the calculation using the mean chord length gives 0.310. The
the direct calculation of surface specific area gives of the pore phase gives 0.108 and the calculation using
the mean chord length gives 0,0775.

Lineal path function In mathematical morphology, another statistical function is used, lineal path
function. The chord length distribution is related to lineal path function [111], P(I C ), given the
probability that a yardstick, [, drawn randomly in the material belongs to the phase 4, by this formula
[60, 168]:

_ L d*P()
e

fi(l) (5.31)

Experimental results

In the case of cement paste, the evolution of the chord length distribution of portlandite, porosity and
hydrate phases is a negative exponential without a peak of correlation. It is the signature of a long-range
Debye randomness (figure 5.16-a). The figure 5.16-a figure 5.16-b exhibit the same distribution calculated
on SEM image and tomography image. This measure is stereological and it can be done directly in a 2D
slice. The figure 5.16-c shows that the chord length distribution is independent of the resolution. The
disorder of the pore network is similar in this range length scale (from 0.1um to 0.5 mm) and it is not
a length scale invariance. The figure 5.16-d shows that the chord length distribution of the anhydrous
phase follows a power law. It is the signature of length scale invariance. An explanation will be that the
poly-dispersion of grains follows a power law (see annexe A.6).

The figure 5.17 shows the evolution of mean chord length as a function of the degree of hydration.
The evolution of mean chord length of anhydrous phases (green graphs) seems to follow two regimes. At
the beginning of hydration, the mean chord length of anhydrous phase decreases and, then, the value
stays constant although the degree of hydration increases. An explanation is that, at the beginning, the
dissolution of the anhydrous grains is the same whatever the size of the grains, then this kinetic becomes
faster for small grains than for big grains.

5.2.6 Volume distribution of connected components: non-stereological

This measures is only accessible in using a 3d imaging technique. In a recent work, Landis et al [97]
observe the evolution of the distribution of volume and surface area of connected components of cracks
porosity in order to give some relationships between cracking and the stress states. To confirm the
power law observed by using chord length distribution of the anhydrous grains, we calculate the volume
distribution of connected components of anhydrous grains (see figure 5.18). We find a power law often
observed during the crush of a material [140]. In order to understand the dissolution of anhydrous grains,
we plot the volume distribution of connected components as a function of the degree of hydration (see
figure 5.18). We observe distribution invariance about the degree of hydration in the range between
[0.42,0.58]. This observation should be confirmed for a larger range of degree of hydration.
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Figure 5.17: Mean chord length
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Figure 5.18: left figure: the distribution of volume of grains of anhydrous phase follows a power law with
a cut off at 105 voxels. This length scale cut can be due to the sieve during the crush of clinker. Right
figure: the distribution of volume of grains of anhydrous phase at degree of hydration=0.42 and at degree
of hydration=0.58. The distribution is independent of the degree of hydration in this range of degree of

hydration.
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5.8. Topological characterisation

5.3 Topological characterisation

The branch of mathematics, called topology, began with the investigation of certain questions in geometry.
At the beginning, Euler introduced the basic notions of topology in solving an enigma called seven Bridges
of Konigsberg. To give some intuition about the topology, let us consider once again the analogy of car
traffic. Starting from Poitiers, a car driver wants to go to Bordeaux. He has the choice between two
mains roads (see figure 5.19): the first one is a highway going through Niort/Saintes and the second one is
a road going through Angouléme. In a normal day, the fast path is the high way. However, during a day
of intense car traffic, to avoid the traffic jam on the highway, a solution is to take the path of the road.
This last path is always taken by the truck driver because this path is shorter in length. The topology is
related to the connectivity of the network and it plays a crucial role to understand the transport.

X-ray tomography allows the observation of the larger capillary pores of cement paste. At the beginning
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Figure 5.19: Road map of the beautiful region of Charente

of the hydration time, these pores are highly connected. Therefore, the global transport is driven by
the transport at this scale. However, when the hydration progresses, the larger capillary pores become
weakly connected. Thus, there is a coupling between the transport at this scale and the transport at
smaller scales leading to an intermittent transport. One aim of this section is to define the transition
between the transport at one scale and the intermittent transport.

In this section, the analysis will be done with some scalars and with some statistical function. The system
in evolution will be the capillary pores of OPC with W/C=0.5 observed by X-ray tomography at different
hydration times.

e at time t=35h, the porosity is equals to 0.205 with a degree of hydration equals to 0.48.
e at time t=83h, the porosity is equals to 0.176 with a degree of hydration equals to 0.62.
e at time t=150h, the porosity is equal to 0.079 with a degree of hydration equals to 0.71.
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5.3.1 Minkowski functional: Euler-Poincaré/Gaussian curvature

Methods
The 3-Minkowski functional, W3(A), where A is the object, is defined by:
3W3(A) = 4rN3(A) (5.32)
= K(s)ds (5.33)
a0

where N3 is the Euler-Poincaré invariant (see figure 5.20) and K is the Gaussian curvature (see figure 5.21).
The Gaussian curvature has important role physically. For instance, in the case of foam, the gauss

00

Figure 5.20: We have N3(S) = N(S) — > ,cg9(s) where N(S) is the number of the isolated surface
and g¢(s) is the genus of the surface s (the number of tore in a connected sum decomposition of the
surface; intuitively, the number of "handles"). The first set is a hollow sphere with two isolated surfaces,
N(S) =2, with a genus equal to 0 for both surfaces; the second set is a sphere with one isolated surface;
the last set is a tore with one isolated surface. This surface can be cut one time with a closed line
without separation of the surface so the genus is equal to 1. A good property of Euler-Poincaré invariant
(homotopy invariant) is the additive which genus does not have.

1

1
o
«Q
1

curvature is related to the bending energy of the interface of surfactant film [68, 76].
The estimation of the Euler-Poincaré/Gaussian curvature can be done in using its additive property [158,
135]:

N3(AU B) = N3(A) + N3(B) — N3(AN B)

Another solution is the utilisation of the relation with the Gaussian curvature (see equation 5.33) presented
in the next subsubsection.

Gaussian curvature in a cubic space If the discrete space is cubic, a method to evaluate the Gaussian
curvature [76, 7] is to list all patterns of a unit cell (see figure 5.22). For each pattern, we calculate the
local integral curvature using the equivalence between the integral curvature and the Gaussian map of
the surface, a theorem of differential geometry (see figure 5.23). At this stage, any configuration of a unit
cell can be associated to one pattern with the same local integral curvature. This allows the creation of a
look-up table (see figure 5.22). Since the global integral curvature is the sum of local integral curvatures,
the sum of all unit cell curvatures gives the global curvature of the microstructure.

Experimental results

In the figure 5.24, the graph shows the evolution of the Fuler-Poincaré characteristic for the capillary
pore network of OPC. A topological conjecture is if N3 <0, then the pore network is connected and the
opposite. This conjecture seems to be true for OPC (see subsection 5.3.2)
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Figure 5.21: Curvature. We have K (s) = lez k1 and ko are the principal curvatures such as in all the
possible tangent vectors, k; and ko are the maximum and minimum values of the normal curvature at
point s. In this image k; is the curvature of the green circle and ks of the red circle. In this case, k1 and
ko have opposite signs. Therefore, the Gaussian curvature is negative at this point.

Limitation

As N3 is an extensive parameter, the increase of the field of view by a factor A yields the multiplication
of N3 by a factor A3. In order to get a measure independent of the field of view, it is usual to normalise
N3 by the field of view, V. However, this measure cannot allow the comparison between different
material because it is not stable by a homothetic transformation (see figure 5.25). In the subsection 5.3.3,
we will introduce a new parameter satisfying both properties: intensive and stable by a homothetic
transformation.

5.3.2 Percolation
Methods

Coffee A coffee percolator has the property that the hot water can go through®? the coffee grains
extracting the coffee grounds since the void space percolates. There is a path between two opposite face
of the coffee percolator, a long-range connectivity. In the science of mathematics/physics, an interesting
question is the emergence of a long-range connectivity, the percolation threshold.

Percolation theory A long range connectivity is the existence of a connected component with an
infinite size. For random lattice models, such as 3d-simple-cubic lattice model with the occupation
probability, p, the critical value, p. for emergence of infinite connectivity is closed to 0.195, for the site
percolation [148, 11]. This model makes the assumption that there is no correlation between two sites to
be occupied®®. In the case of real pore network, this assumption is not yet valid. Therefore, the porous
microstructure cannot be understood with this model.

62The water goes through the coffee percolator because of:

e a difference of pressure between a chamber at pressure inferior than the atmospheric pressure (the water boils) and
another chamber at atmospheric pressure;

e the gravity.

63For this model, the 2-point probability function, Sa, is equal to p if » = 0 and p? if r # 0
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-
>

Figure 5.22: 22 patterns. Property : any configuration in a unit cell of size 2*¥2*2 is isotropic with one
and only one of these patterns and has the same Gaussian curvature of the associated pattern.

Domain of the space In order to define the infinite connected component, the space has not to be
bounded. As the image is a bounded domain, the notion of infinite connected component is replaced by
the notion of connected component hitting each face of the 3d image. The equivalence between the infinite
connectivity and the hitting of the 6-faces is “valid” when the field of view is larger than REV. For OPC,
this property has been verified in the subsubsection 5.2.4. Numerically, first, the connected components
are extracted using the procedure introduced in the subsubsection 3.4.1. Then, the connected component
with the maximum volume, called max cluster, is kept. If the max cluster hits each face, then the pore
network percolates, otherwise not.
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Figure 5.23: Look up table given the Gaussian curvature. The first column (C) contains the label of each
pattern of the figure 5.22 (in the same order). Each number in the second column (N) is the number
of configurations which are isotopic with the associated pattern. The third column is the configuration
label of units cell such that the label is defined by: n = 21'7:0 2%.phase;, phase ; € {0,1} (see the upper
figure). The fourth column is the gauss curvature of this pattern.
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Figure 5.24: Result for OPC at W/C=0.5

at

Figure 5.25: The same material except that the characteristic size has been divided by 2. We expect that
the topological measure will remain constant for both microstructures. But, with N3 normalised by the
field of view, there will be a difference of factor 8.

Probability to belong to the max cluster of percolation In order to predict the disconnectedness,
a second interesting indicator is the probability to belong to the max cluster of percolation, po:

Poo ™~ 17 D >>De
Poo ~ ((b_(bc)ﬁa P> Pe
Poo ~~ 0, P <DPc

where ¢ is the volume fraction of the given phase, ¢. is the volume fraction of the given phase at the
percolation threshold, p..
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Experimental results

In the figure 5.26, we observe the disconnectedness of capillary pores at time=150h. With X-ray to-
mography, we observe only the larger capillary pores. This disconnectedness involves that the capillary
pore is weakly connected. At this stage, there is an intermittent transport between the pore network at
the micro-scale and at a sub-micro-scale. The pores, developed in hydrate component at the sub-micro
scale, start to be the main path of diffusion. We also observe that the pore network is still connected
at time=83h with a porosity equals to 0.176. Therefore, the critical threshold percolation is above 0.176
and different to the threshold percolation of the random lattice model.

In the figure 5.27, a manual interpolation gives a threshold percolation equal to 0.14. Since there is

Figure 5.26: Left image: max cluster at time=83h. Right image: max cluster at time=150h. At left, the
max cluster hits each face of the cube whereas at right not.

only three points for the interpolation, this value is just an indication and should be validate with more
points.

5.3.3 Topological graph

For the statistical analysis of the topology, we will use an old procedure introduced by Euler in 1736
to solve the mathematical enigma of Seven Bridges of Konigsberg (see figure 5.28). This procedure is
segmented in three parts [135, 14, 161, 158]:

1. from the microstructure to the thinning skeleton,
2. from the thinning skeleton to the topological graph,
3. analysis of the topological graph.

This approach involves the absence of internal surfaces. In the case of the pore network of OPC, the
internal surfaces, the "cluster" solids surrounded by void, have been removed (see subsubsection 4.4.2).

From the microstructure to the thinning skeleton

The thinning skeleton is obtained by progressively narrowing the microstructure starting from the surface
at constant topology. This shrinking must satisfy both topological invariance of the three first Betti
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Probabality knowing the voxel is occupied to belong to the max cluster depending on the volume fraction
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Figure 5.27: Probability to belong to the max cluster of percolation. The black plot is a manual fit.

Figure 5.28: The problem was to find a walk through the city that would cross each bridge once and only
once. Since only the connection information is relevant, the shape of a pictorial representation of a graph
may be distorted in any way without changing the graph itself. Only the existence (or lack) of an edge
between each pair of nodes is significant. For example, it does not matter whether the edges drawn are
straight or curved, or whether one node is to the left or right of another.

numbers and geometrical constraints in order to be located in the centre of the microstructure. This
process involves:

e a boolean function to answer this question, "Let X a discrete microstructure and X, = X — {z}
the microstructure X without the voxel . Do X, and X have the same topology?"
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5.8. Topological characterisation

e a procedure to contract isometrically the original microstructure to the "thinning" skeleton.

boolean function Let X a microstructure and = a voxel belonging to X. Let X, the set X without
the voxel x, X, = X \ {z}. To answer the question: "Do X, and X have the same topology?", Barret &
Yust [14] use the local conservation of the Betti numbers.

The Betti numbers characterize the void/solid microstructure topologically:

1. By, the number of connected components of the microstructure,
2. (1, the number of irreducible cycles,

3. [, the number of internal surfaces or the number of connected components of the complementary
of the microstructure.

The local conservation converts the global conservation of the Betti numbers for the whole microstruc-
ture to the local conservation of the Betti numbers for a subset of X of size 3*3*3 located in the 26-
neighbourhood of x, Nag(x)):

Vi=0,1,2: 3;(X N Nag(x)) = Bi( Xz N Nog(z))

Because of the Jordan’s theorem, the evaluation of the number of connected components, n, is done with
26-neighbourhood for the microstructure, 5y(A) = nas(A) and with the 6-neighbourhood for complemen-
tary of the microstructure, 8o(A) = ng(A4). A refers to X N Nog(x) or Xz N Nag(z). The algorithm of
Hoshen & Kopelman [72] or the algorithm developed in the subsubsection 3.4.1 allows the evaluation of
the number of connected components.

The evaluation of (; is done using the relation between the Euler-Poincaré characteristic, N3, and the
Betti numbers (see subsection 5.3.1 for the evaluation of Euler-Poincaré characteristic):

N3 = o — 1+ B2

To speed up the computational time, we use a look-up table given 1 if Vi = 0,1,2 : 5;(X N Nag(z)) =
Bi(X5 N Nog(z)) and 0 otherwise. We have evaluated for all the configuration of a cube of size 3*3*3 if
the configuration with and without the center voxel have the same Betti number.

Procedure of contraction The narrowing process must satisfy some geometrical constraints in order
to fit as exactly as possible the "thinning" skeleton. The natural algorithm is a step by step direction
process [135] (figure 5.29).

This "thinning" skeleton depends on the order of direction steps (see figure 5.30) A solution to overcome
this problem is to use the connected ordered topological space approach introduced by E. Khalimsky
[86, 19].

From the thinning skeleton to the topological graph

The contraction at constant topology gives a "thinning" skeleton. The next stage is the transformation
of the "thinning" skeleton (a set of voxels) to a graph skeleton (a set of vertexes connected by edges) at
constant topology. This transformation is segmented in three steps (see figure 5.31):

1. affectation of an edge/vertex label at each voxel belonging to the "thinning" skeleton,
2. extraction of the connected components for the edge labelled image and the vertex labelled image,

3. linking the edge and vertex connected components.

From "thinning" skeleton to vertex/edge images A voxel gets the road label if there is only two
voxels belonging to the thining skeleton in its neighbourhood. A voxel gets the crossroad label if there
is more than two voxels belonging to the thining skeleton in its neighbourhood. We denoted by V, the
vertex labelled image and by £ the edge labelled image (see figure 5.32).
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Figure 5.29: Each iteration of the thinning algorithm is decomposed in six steps. Each step corresponds to
one of the six main directions (d): up, down, north, south, east, and west. A voxel x of the component X
is called a d-border voxel if its six-connected neighbours in the d-direction belongs to the complementary
component, X¢. At each iteration, only d-border voxels are possibly removed. A video is available at
http://pmec.polytechnique.fr/~vta/squelette.mpeg. Two last images are before and after the retraction.

From the vertex/edge labelled images to the vertexes/edges connected components For
both labelled images, V and &£, we extract the connected components to get two sets, V = (vg,...,v,)
and E = (eq, ..., ep) (see figure 5.33).

From the edge/vertex connected components to the graph Let I' = (E, A,) be the topological
non-oriented graph of the initial microstructure, where E is a set of vertexes, and A is a set of edges and
~ is mapping from A into (E, E) (for example, v(a) = {x1, 22} is the link between the vertexes z; and
29 done by the edge a). The aim of this part is to construct this graph such that the topology between
the graph I' and the microstructure is the same. To achieve this goal, we will link the vertex connected
components and the edge connected components in two steps:

1. the tore graph,
2. the connected graph.

1) The tore graph I';
An edge connected component, e, is defined as tore if there is no vertex voxels on its 26-neighbourhood:

(e ® Nag) N (Uoci<nvi) =0
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Figure 5.30: Two different "thinning" skeleton depending on the direction step.

In figure 5.31, there is only one edge tore localised at the left. The tore graph has 2 x k vertexes and 2 x k
edges where k is the number of edge tore. The « function is defined by:

~v(ei) = {2 (i%2),2 * (i%2) + 1}

The vertexes with the label 1 and 2 are linked by the edges with the label 1 and 2 and so on.

2) The connected graph T'.

After removing the tores, each vertex/edge connected component is associated a vertex/edge on the graph
I'. with the same corresponding label:

E={u,...,v]}

A={ef,....ed}
For each edge connected component, e;, we calculate its neighbourhood vertexes:
N(el) = {Vj S (0,,k') : (eiEBBLNOO)ﬂvj %@}

N (e;) gives one or two integers. If two integers, 7, k, the edge, e;, links the vertexes, vj, v;. If one integer,
J, the edge, e;, does a loop at the vertex, v;. Therefore, the gamma function is defined by:

Vie (0,...,m):y(ed) = {N(ei) if card(Nfe.)) =2

! (N(e;), N(e;)) otherwise
The final graph is the union of the previous graphs (see figure 5.34).
3) local analysis
This final graph is not the topological graph since each connected component vertex can have a complex
topology. For each vertex connected component, we calculate the Euler-Poincaré invariant, N§. The delta
Euler-Poincaré invariant, ANj is the subtraction of N§ by 1 (1 is the value of Euler-Poincaré invariant
for a single voxel).
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Figure 5.31: From the thinning skeleton to the skeleton graph. First step: labelling each voxel of the
thinning graph; second step: extraction of the vertexes and edges connected components; third step:
creation of the three graphs; last step: union of these previous graphs.
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Figure 5.32: From the thinning skeleton to the edge/vertex label image. The blue voxels are the roads
and the yellow voxels are the crossroads.

Figure 5.33: From the vertex/edge images to the vertexes/edges connected components. The first image
is the connected components for the vertex labelled image and the second for the edge labelled image.

143



Chapter 5. Geometrical characterization

Figure 5.34: Top figure: graph of the initial microstructure. Bottom figure: same process with a material
with a representative size.
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5.3.4 Analysis of the topological graph

As seen in the previous subsection, the extraction of the topological graph is difficult. But, this graph
allows a statistical analysis of the topology. In this subsection, we will present the probability function of
coordination number. Then, we will introduce a new topological number having some good properties.

Probability function of coordination number

Methods Let us consider a car driver starting from a town and wanting to go to another town at a
given direction, d. Starting from this town, there are a number of possible roads. The car driver will
take the road such that the road direction, cfm, is the closest of the objective direction d. Tf the number
of road is high, the probability that the angle between both directions is low is high. In other case, it
is the opposite and the car driver will have to come by a roundabout way. Therefore, depending on
the connectivity of road network, the existence of a direct path is more or less probable. Thus, the
connectivity plays an important role for the understanding of the transport properties.

In graph theory, a town is a vertex and the number of possible roads starting from this town is the
coordination number of the vertex. The statistical analysis of the graph allows the determination of the
the probability function of coordination number, P(N.(V) = n) given the probability for a random vertex,
V', with a coordination number equal to n. In the case of internet network and in more general case of
small words, the probability function of coordination number has a power law form (see figure 5.35). The
implication of the power law form is that the internet network is breakable easyly. If the link between two
internet backbones highly connected is put down, the internet network can be segmented in two distinct
parts. You can imagine the deep consequence

Experimental results The figure 5.36 shows the distribution of the coordination number of the topo-
logical graph for OPC. Whatever the hydration time, the shape of the distribution is a negative expo-
nential with the same slope and with a shift between the distribution as the probability of the number
of coordination equal to 0 increases with the time of hydration. Therefore, the disconnectedness of the
pore network will be the consequence of the proliferation of small isolated components with a N3 = 1
isolating the big clusters. Moreover, the connectivity in the big clusters remains constant since the slope is
constant. In the next future, with a model material, a spinodal decomposition generating by a correlated
Gaussian random field technique, we will investigate this phenomenon in a wide range of porosity.

Connectivity number

Methods To get a relevant number from this probability function, we calculate the mean of the previous
probability function, < N, >. This number is related to the connectivity of the pore network: < N, > is
large, the network is highly connected and the opposite. However, the Euler-Poincaré has an important
property that this number does not have. For a statistical network coming from real material, the change
of sign, positive to negative, of the the Euler-Poincaré is related to the percolation of the network. To
get a connectivity number having this property, Levitz has defined this number:

< N.> -2

¢= 2
This number is equal to the Euler-Poincare divided by the number of vertex:

< N,> -2 N3
2 (7))

Proof The topological numbers of the graph and the topological numbers of the voluminous microstruc-
ture are related by these relations:

N3 = [Bo—5
N3 = ag—a1
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Figure 5.35: Each line is drawn between two nodes, representing two IP addresses. This is a small look
at the backbone of the Internet. From wikipedia.

where aq is the number of vertexes and «; is the number of edges.
The relation between the sum of the coordination numbers and o is:

a = » 1 (5.34)
veV

o = %ZNC(U) (5.35)
veV

where V is the set of vertexes of the topological graph. Since each edge is shared by two vertexes, we
have a pre-factor of 1/2.
The mean of the distribution of the coordination number, < N, >, is:

< Ne>= iP(Ne(v) = i)
€N

The probability, P(N.(v) = i), is the ratio of the number of vertexes with a coordination number equal
to ¢ over the total number of vertexes:

. Z’u ]lNC v)=t
P(N.(v) =1) = %—i)
veV
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Distribution of coordination number for OPC W/C=0.5
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Figure 5.36: The graph shows a linear decay starting from the value equal to 3. Its form is an negative
exponential because of the log-scale in coordinate.

Combining the two previous relations, we get:

N 22i€(0,m) b 2avev IN(v)=i
‘ ZUEV 1
<N.> = Zvev Zie(o,...,n)ilNc(v):i
ZUGV 1
As Zie(o vvvvv n) i1N, (v)=i = Ne(v), we obtain
N,
< Nc > = M
ZUEV 1
Using the relation 5.34, we obtain:
2
< N.> = o
ag
<N,>-—2 = i— %
o
< N.> -2 . N3
2 N (67

Numerically, to obtain the correspondence, the formula is:

< N> =2 N3+ AN

2 Q0 link + Q0 isolate + 2a0,tore
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Properties of this topological number This number C has four important properties:

1. the change of sign is related to the percolation,

2. intensive, its measure does not depends of the field of view"*,

64

3. invariance by homothetic transformation, its measure does not depend of the characteristic scale of

the material,

4. small range, its measure is limited between | — oo, 1]. In practical utilisation, the minimal value is

not inferior to -2.

Due to these properties, this number allows a topological comparison between different materials, solid
network of bone, pore network of vycor, etc. Moreover, for diffusion transport, when this number is low,
C < 1, the transport seems to drive by the morphological feature, and when the this number is closed to
0, C <0 — ¢, some critical exponents between this number and the coefficient of diffusion appear. This

is a work in progress.

Experimental results The results are presented in the table 5.3. In comparison of Euler-Poincaré
number, the values of the connectivity number are limited between [—1,1].

| time | N3 | < N¢ > | C | percolation |
34h | -115643 | 2.95 0.475 | yes
83h | -59851 | 2.59 0.295 | yes
150h | 44388 1.78 -0.11 | no

Table 5.3: Topological numbers for OPC with W/C=0.5

64when the field of view is larger than the REV
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5.4. Decomposition in elementary pores

5.4 Decomposition in elementary pores

In order to understand various physical phenomenon as mercury intrusion, diffusion, permeability, a pos-
sible way is to decompose the microstructure in term of elementary pores. At the scale of the elementary
pores, the physical phenomenon can be linked with morphological features. This first level allows to dress
the network of the elementary pores with some local properties of the physical phenomenon. At the scale
of the microstructure, a coarse graining description can be reached using the connectivity properties of
the dressed network of the elementary pores. The decomposition in term of elementary pores depends on
the physical phenomenon under investigation. For instance, permeability or mercury intrusion are driven
by the presence of throats. Therefore, we will propose a a morphological decomposition such that the
microstructure is cut on the throats. On the other hand, diffusion strongly depends on the connectivity of
the pore network. Thus, we will propose a topological decomposition such that the network of elementary
pores is the same as the topological network previously described. For the morphological decomposition,
we will apply the procedure introduced by L. Vincent in 1993 [172]. For the topological decomposition,
we apply the procedure introduced by L. Pothuaud et al in 2000 [135]. Both approaches have two stages:

1. localisation of a seed inside each elementary pore,
2. seeded region growing to associate a region at each elementary pore.

The outline of this section is as follows: first, the materials are presented, then the morphological /topological
decomposition are explained, and two kinds of pore network are defined. At the end, the comparison
between the two decompositions is done according to some geometrical features.
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5.4.1 Materials

In order to understand the difference between the two decompositions, we have selected three disorder
pore network of these materials (see figure 5.37):

e 3 vycor pore glass,
e 3 limestone,

e a sand specimen.

Figure 5.37: Top left: the material A is the vycor pore glass [105]; top figure: the material A is the
porosity of a limestone, size=500%*500*500, resolution—3 microns; bottom: the material C is the porosity

of a sand specimen, size:450x450x150, resolution—=3 microns.
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5.4. Decomposition in elementary pores

5.4.2 Two conventions for the decomposition

The definition of the elementary pores is not obvious. For instance, some people says: “the microstructure
is the elementary pore”. In our approach, the decomposition of elementary pores is a tool to understand
the link between the geometrical features of the disorder pore network and the properties of a physical
phenomenon. To be an efficient tool, the decomposition has to respect some constraints. The utilisation
of this tool is segmented in two levels. In the first level, a statistical relation has to be found between
the geometrical features of the elementary pore and the properties of the physical phenomenon in the
elementary pores. Therefore, the microstructure, as a single elementary pore, is not suitable since, in
the general case of disorder pore network, only some bounds of the physical properties can be found
using the geometrical features. In the second level, an up-scale from the physical phenomenon in the
elementary pore to the physical phenomenon in the pore network (microstructure), has to found using the
connectivity properties of the graph of the elementary pores. Thus, the relevant geometrical properties
must be captured on the graph®.

Morphological decomposition

As already known, throats slow down the convective transport. In the subsection 4.4.1, we have given
a procedure to split the connected grains on the narrow surfaces. We use this method for the purpose
of the decomposition of elementary pores (see figure 5.38). The advantage of this decomposition is that
each surface between two adjacent pores is a throat.

Topological decomposition

The paper of Pothuaud et al [135] presents a method to decompose a bone micro architecture in term
of tubercular. We use this procedure to decompose the porous media in term of elementary pores. The
advantage of this decomposition is that the topological features are kept during the decomposition.

Seeds like vertex/edge connected components of the thinning skeleton of the microstructure
In the subsubsection 5.3.3, we gave a procedure to extract the vertex/edge connected components. For
the topological decomposition, we have the choice between two conventions:

1. each vertex connected component is a seed (crossroad pores),
2. each edge connected component is a seed (road pores).
Geodesic influence zone The topological pores are the geodesic influence zones (see subsubsec-

tion 3.4.1 for the algorithm) of the previous seeds . The topology is preserved by this decomposition
but the surface between two adjacent pores is not located on the throats®® (see figure 5.39).

65Fach voxel belonging to the microstructure is an elementary pore. With this decomposition, the relevant properties, as
the connectivity or the existence of narrow surfaces, are lost.

66To locate the surface between two pores on the throats, the idea is to use the watershed on the topographic surface equal
to the opposite distance function of the microstructure. However, as the seeds, associated to the vertexes of the topological
graph of the microstructure, are not located on the minima of topographic surface, the watershed transformation with these
seeds leads to some bbasinswhich volume is equal to 1 voxel. The reason is that some seeds are located on the line of ridges
of the topographic surface. The geodesic influence zone is used rather than the watershed transformation to avoid this
problem.
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Figure 5.38: Application of the morphological extraction. Each colour represents an elementary pore.
The dynamic parameter is always 1.
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Figure 5.39: Application of the topological decomposition using the crossroad pores. Each colour repre-
sents an elementary pore.
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In black, the Dirichlet boundary

In color, the Neumann boundaries
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Figure 5.40: (a): the pores; (b): the boundaries of the pores; (c): the pore graph; (d): the surface graph.

Graph associated to the decomposition

The elementary pores, (F;)ic(o,...,n), are a partition of the microstructure Q. In this subsubsection, we
present two approaches to dress this partition with a graph:

1. by the volume of the pores,

2. by the adjacent surfaces of the pores.

Volume graph 1)A pore is associated to a vertex.
2)The neighbourhood of the pore, i is defined by the I', function:

Lp(i) ={Vj € (0,...,n)\i: 0P NOP; # 0}

3)Let j in I',(¢). The adjacent surface or Dirichlet surface is the surface between the pores, ¢ and 7, Sfj,
by:

SP =0P NoP;

where OP; is the boundary of the pore, P;.
4) The Neumann surface of the pore i is defined as the whole surface minus all the Dirichlet surfaces:

SN =0P;\ (UJGFP(i)Si[,)j)
The figure 5.40 -c shows a pore graph.

Surface graph 1)A surface between two adjacent pores is associated to a vertex. A vertex is defined
by a couple of integer, 7, j such as the intersection between the surfaces of pores ¢ and j is not empty.
2) The neighbourhood of the vertex 4, j is defined by the I'y function::

Ls(i,5) = (Tp(3) x Tp(i) \ (i, 4)

The figure 5.40-d shows a surface graph.
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5.4.3 Characterisation

The aim of this subsection is the comparison between the topological and morphological decompositions
using some geometrical features of the pores.

Volume histogram The first important characteristic of the pore is its volume. The figure 5.41 shows
the volume distribution. Whatever the material, we observe a large dispersion of volume distribution
for the morphological decomposition. Therefore, the two decomposition leads to a different partition. In
order to use this decomposition as a tool to understand a physical phenomenon, the choice of the decom-
position is crucial since the partition of pore space strongly depends on the convention: morphological or
topological.

Volume depending on the Feret’s diameter Let P be a pore in the orthonormal vector space E,
(e1,...,en). The Feret’s vector of P is the size of the minimal box embedding the pore (see figure 5.42):

maxygep(< z|ler >) — miny,ep(< zle; >)
F(P) = :

maxyzep(< z|le, >) — miny,ep(< zle, >)

There are two possible definitions of the Feret’s diameter:
Dy(F(P) = (] < F(P)lei>)""

ii<F(P)|ei>

n

Dy(F(P)) =

The results are presented in the figure 5.43. Before plotting, we expected to obtain a proportional relation
between the length associated to volume of the pore, V1/3, and the Feret’s diameter. However, the linear
regression in log-log scale does not give a slope equal to 1 but a smaller value. The reason is that larger
is the pore, larger is the space of the box not belonging to the pore. This slope depends on the material
and the type of decomposition.

Proportion of Dirichlet surface Throats slow down the transport. The key idea behind the morpho-
logical decomposition is to cut precisely the microstructure on the throats. To validate this decomposition,
we plot the distribution of the ratio between Dirichlet surface area (the surface area shared with other
pores) and to the total surface area of the pore. The results are presented in the figure 5.44. Whatever
the material, we observe that the mean of the distribution for morphological decomposition is lower than
for topological decomposition. Therefore, the topological decomposition has a major drawback that one
key feature is lost during the decomposition.

Coordination number The key idea behind the topological decomposition is to keep the topological
properties. The figure 5.45 presents the results. Whatever the material, the graph for the morphological
decomposition is similar to the graph for the topological decomposition. The morphological decomposition
seems to catch the topological connectivity of the microstructure.
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Figure 5.41: Comparison of volume histogram between the morphological and topological decomposition.
Raw 1: vycor, raw 2: limestone, raw 3: sand.
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Figure 5.42: The Feret’s vector is the vector of the minimal box embedding the pore.
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Figure 5.43:

Volume versus Feret’s diameter in log-log scale. (a): vycor, (b): limestone, (¢): sand.
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Histogram of proportion of Dirichlet Surface for vycor Histogram of proportion of Dirichlet Surface for limestone
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Figure 5.44: Proportion of Dirichlet surface. (a): vycor, (b): limestone, (c): sand.
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Figure 5.45: Distribution of coordination number. (a): vycor, (b): limestone, (c): sand.
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Chapter 5. Geometrical characterization

Conclusion

In this chapter, we have segmented the geometrical analysis in two classes and for each class, the analysis
has be done using some scalars and some statistical functionals:

1. Stereological metric (accessible in 2D and 3D)

(a) Scalar analysis

i

ii.

iii.

The graph of degree of hydration versus time of hydration has confirmed that the reac-
tion of dissolution/precipitation depends on the temperature. For alite, the influence of
temperature is stronger.

For OPC, there is a good agreement between the volume fraction of phases depending of
the degree of hydration observed by tomography and by SEM. This coherence emphasises
the quality of segmentation.

For OPC, there is also a good agreement between the specific surface area of the anhy-
drous grain phase and portlandite phase depending of the degree of hydration observed
by tomography and by SEM.

(b) Statistical functional analysis

i

ii.

iii.

The 2-point probability function is independent of the angle that confirms the isotropy of
the material,

The length, associated to the convergence of the 2-point probability function, is associated
to the length of the representative elementary volume. This length is equal to 200 um
for OPC and 600 pm for alite. This difference is due to the presence of large clusters of
portlandite in alite.

the phase can be classified in three kinds of disorder depending on the distribution of
chord length:

e For the portlandite/pore/hydrate phases, it is Debye randomness. It is important
information since this kind of disorder can be reconstructed easily.

e To validate this class of disorder for the pore network, the distribution of chord length
has been plotted at different resolution, 0.675um, 0.25um and 0.1ym. We find that
the local disorder of the capillary pore seems independent to the chosen resolution.

e For the anhydrous phase, the distribution follows a power law. It is the signature
of power law poly-dispersion of the granular phase. To validate this observation, we
measure the volume distribution of the connected components of the anhydrous grains
on the tomography images (this measure is not stereological). Also, we find a power
law distribution with a cross over. The power law distribution can be due to the crush
of a material and the kink is probably due to the sieve size introduced during the
crush of clinker. In the same figure, we plot the volume distribution of the connected
components of the anhydrous grains at two different degrees of hydration 0.55 and
0.65. The distributions are the same. Therefore, the volume distribution does not
depend on the degree of hydration. The first consequence is that the characteristic
length scale of this phase is constant in range of degree of hydration.

2. Topology (accessible only in 3D),

160

(a) Scalar analysis

As noticed by Gallucci et al [55], “the main drawback of the Synchrotron X-ray Tomographic
Microscopy is its spatial resolution which is at present quite low relative to the sizes of capillary
pores controlling transport properties in mature pastes.” This assertion is confirmed by the
observation of the disconnection of the pore network at time—=150h (degree of hydration equals
0.713045). This disconnection means that the capillary porosity is weakly connected implying
a coupling between the pore network at a sub-scale. The porosity, developed in hydrate phase
at the sub-micro scale, starts to be the main path for diffusion. In the next future, the nano-
tomography with a resolution of 0.1um, will be suitable to observe the evolution of capillary
porosity controlling transport properties in mature pastes.



5.4. Decomposition in elementary pores

(b) statistical functional analysis.
In order to characterise the connectivity of the network, we operate the transformation of the
microstructure to the topological graph. The mean coordination number, < N.(v) > is related
to the Euler-Poincaré invariant and the number of vertexes:

<NC>—2_N3
2 _040

This number —g—s has two important properties: intensive and invariant by a homotopic
transformation. Therefore, it allows the comparative analysis of the topology of different
materials, bone, cement, wood, etc.

To have a tool to understand the link between the geometrical properties and a physical phenomenon,
we decompose the microstructure in term of elementary pores following two conventions: morphological
and topological. Both decompositions are based on the seed localisation:

e seeds as minima of the opposite distance function of the microstructure after a dynamic filtering
for the morphological decomposition,

e seeds as vertexes or edges of the thinning skeleton of the microstructure for the topological decom-
position,

and a growing process:

e watershed transformation on the topographic surface equal to the opposite distance function of the
microstructure for the morphological decomposition,

e geodesic influence for the topological decomposition,
The advantages of the morphological decomposition are:

e the surfaces between adjacent pores are located on the throat as confirmed by the plot of the
distribution of the ratio of the Dirichlet surface area to the total surface area,

e the connectivity of the elementary pore network is similar to that the topological pore network.

The major drawback of the morphological decomposition is that the volume distribution presents a large
dispersion. The advantages of the topological decomposition is the topology is preserved.
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The purpose of this chapter is to reconstruct a representative model of the real microstructure using
the segmented image of cement paste obtained by SEM. As this thesis is financed by a CIFRE grant
(industrial research training grant), the industrial partner (ATILH) has fixed one constraint: the method
must be simple.

6.1 Introduction

The imaging technique in cement industry is SEM allowing the observation of a 2D serial section. Exper-
imentally, a 3D image may be built up from a set of 2D serial section. However, this task is tedious and
time consuming. Therefore, this method cannot be used in an industrial process. A phenomenological
approach can be used in order to build a comportment law between some geometrical properties and
a physical/mechanical property for instance compressive strength [129], diffusion [180]. The calibration
is done by the measure of the geometrical properties in the 2D section and by the direct measure of
physical /mechanical property experimentally. But, when a new material is designed, a great discrepancy
of the geometrical organisation between the new microstructure and the microstructures used to build
the comportment law, can be found. Therefore, the new material will not follow the compartmental laws.
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Chapter 6. Testing 2D— 3D reconstruction of multi-phase porous media obtained by SEM

Thus, the cement industry has to to spend time to make the laboratory tests. This chapter will describe
a method for generating a 3D-image from a 2D-image allowing the prediction of physical properties nu-
merically. This process aims to convert a number of real physical tests by numerical prediction in order
to save time and money for the cement industry.

There is two ways for the generation of 3D-images. Briefly,

1. the first one, called morphogenesis, is based on the simulation of the physical and chemical process.
In cement, the hybrid VCCTL (Virtual Cement and Concrete Testing Laboratory) provided at NIST
allows the simulation of hydration of cement-based. At each step of the simulation, a hydration
cycle is segmented in three steps: dissolution, random-walk of the mobile agents, precipitation.
The simulation of dissolution and precipitation is based on Cellular Automata, a deterministic
approach with fixed rule [42]. Therefore, the chemical kinetics are not taken into account. For
cement, containing more than 15 different phases, this simplification has to be done in order to
make the simulation in a reasonable time. Nowadays, phase-field modeling method has become
an important and extremely versatile technique for simulating microstructure evolution at the
mesoscale [119]. Historically, this model comes from Cahn and Hiliard [30] for the description of the
spinodal decomposition using diffusive interface in a thermodynamical formulation. A comparative
analysis between the measures done on the numerical model and the measures done experimentally
allows the quantitative validation.

2. the second one deals with the capability of the generation of a representative 3-D microstructure
using geometrical information. For this purpose, we can distinguish two schools: mathematical
and physical. For the mathematical school, further pioneering work on point processes, random
sets and random function models was performed by Georges Matheron [112]. Most of the papers
related of these models are focused on the mathematical aspect. However, these models are often
suitable for the description and the simulation of heterogeneous materials [77, 163]. In the other
hand, physicists aim to find some suitable models for the description of the structure of a given
media:

e the structure of a liquid may be regarded as a ’heap’ of molecules and several properties of
liquids have been shown to have their geometrical counterparts in a random close packing of
sphere [152].

e the spinodal decomposition is a phase separation occuring uniformly throughout the material.
Cahn [30] was proved that the correlated Gaussian random fields [18, 81, 103, 166] is the
solution of the thermodynamical formulation.

All these models form a catalogue and, depending on the media, one or a combination of these
models has to be chosen in order to match the geometrical organisation of the media. The utilisation
of image analysis allows the calibration and the validation of the selected model. In the purpose of
this thesis, since the geometrical organisation of cement paste is complex, it seems difficult to find
a suitable model.

Simulated annealing reconstruction [65, 87, 116, 183] is an optimisation technique which involves minimi-
sation of an objective function through perturbations in the spatial organisation of the microstructure.
The objective function is defined by the stereological morphological distribution functions in order to
reconstruct a 3D model having the same morphology as the 2D slice. This model does not involve any
hypothesis of the geometrical organisation. It is the major advantage of this model. But, the major
assumption of this model is that all the information of the geometrical organisation is contained in the
morphology of the media. For many media, this assumption is not verified. For instance, a granular phase
has no irreducible cycles and no holes. This is a strong topological information involving that the Betty
numbers, Gy and f; are equals to zero. Thus, we will find a great discrepancy of the geometrical organi-
sation between the model reconstructed with the simulated annealing method and the real grain phase.
In cement paste, the granular phase, the anhydrous grains, plays an important role for the mechanical
properties. For the diffusion transport, the purpose of this thesis, the geometrical organisation between
the hydrate phase and the void phase is the more important. These two phases does not have any topo-
logical constraints. Thus, simulated annealing reconstruction should lead to consistent results in relation
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Start point inside the volcano crater

Following path by Newton's method

End point

N

Figure 6.1: Gradient slope

Sea

with the diffusion transport. As this method requires a huge computational cost for the reconstruction
of a model larger than the representative elementary volume, this chapter will presented two ways of
optimisation. We will describe how to actualise the objective function after a perturbation efficiently
and how to localize the perturbation [144]. For the validation of this method for cement paste, we will
reconstruct some 3D models in using the objective functions defined with the real 3D microstructures
obtained by X-ray tomography. Then, we will compare the diffusion/topological properties between the
models and the real microstructures.

6.2 Metropolis algorithm for the 3D reconstruction

Let us consider a walker on the mountain wanting to reach the sea. The naive strategy would be to follow
the direction where the slope is minimum to come down. This determinism strategy is a gradient slope,
called Newton’s method. However, when the topographic surface is not convex, the walker can stay a
local minima (see figure 6.1). To overcome this problem, another strategy is the Metropolis’s algorithm.
At each point, a random direction is chosen. If the slope is negative, the walker follows this direction.
Otherwise the walker follows this direction depending on a probability that is low if the slope is very
positive and inversely. With this strategy, the walker will find the sea. But, the time to join the sea is
unknown. The walker is like a human. At the beginning, he accepts to climb (positive slope) easily but,
progressively, he will accept less and less. This strategy is the simulated annealing. The advantages are
exploration of the phase space and constant time of convergence. In the context of the 3D reconstruction
of a multi-phase material, we will define:

1. the phase space,

2. the objective function,

3. the probability space (the topographic surface),
4. the Metropolis algorithm,

5. the annealing simulated,

6. the perturbation (the footstep),

7. the actualisation of the stereological morphological functions.

6.2.1 Phase space

The algorithm works at constant volume fractions. The phase space, E(R), is the set of models which
are the same volume fraction as the reference microstructure, R. The size of this phase space is huge.
For two phase microstructure, we have |[E(R)| = C@f‘ where ¢ is the volume fraction, |F| is the number
of voxels of the image and C? is the binomial coefficient (C? = WLP)!). With a size of only 100 voxels
and a porosity of 0.5, we have C9{); > 109 of possible states. This number is upper than the number of
atoms in the known universe. It is impossible to explore all the states of the phase space. Therefore, we
need a strategy to reach the global minima without exploring the whole space phase.
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Figure 6.2: The objective is to minimise the area between the two graphs for each stereological metric
functions.

6.2.2 Objective function

Simulated annealing reconstruction is an optimisation technique, which involves minimisation of an ob-
jective function. In the case of the 3D reconstruction, the objective function is the distance between
stereological metric functions measured on the reference and on the model. In this thesis, we use the
stereological metric functions introduced in the section 5.2:

e the 2-point probability functions, S, ; ; where ¢ and j are the phase labels®.
e the chord length distribution functions, f, ;.

As the cement paste is isotropic (the subsection 5.2.4), these functions are calculated depending only on
a distance without a direction. Let M be a model (it belongs to the set E(R)) and R, the microstructure
reference . The distance between the model and the reference is defined by:

dM,G) = ao( Y fuilM) = fua(@I) +aa( D 1S2,55(M) = S2,0,5(G)])

i€Phase i,j€ Phase

where the ||f — g]| is the “area” between the function f and g (see figure 6.2).

6.2.3 Probability space

The Metropolis algorithm is based on a probabilistic approach. At each perturbation, we need to know
what is the probability, P, to have the model, M, given the reference, R. The Boltzmann distribution
allows the definition of a probability space:

1

PM|R) = Eexp(_w>

T

67For a bi-phase material, the auto-correlation of one phase can be expressed as a function of the other phase.

1
Sti(r) = (B /E Iz(pry=1 1z (r 4ry=1dr"
A 1 /
S1a(r) = (B E(1 = Iz(py=0)(1 = Lz(p 4r)=0)dr
511,1(7") = 1-2¢o+ S({O(r)

The cross-correlation is: 5'12’1(7") =¢1 — Soz’l(r). Hence, the information in one 2-point probability function contained the
information of the others. However, for a three-phase material, we have:

1
S34(r) = B /E Iz(rry=2 Lz 4ry=2dr’

1
S34(r) = B /E(l —Izy=1 — Izry=0)(1 = Iz(r4r)y=1 — Iz(r 4r)=0)dr’
522,2(7’) = 1-2(¢1+¢o)+ 2SOI,1(T) + 512,1(T) + SOI,O(T)

Hence, each 2-point probability function contains a specific information. Therefore, for microstructure containing more
than two phases, all the 2-correlations have to be taken into account in the objective function.
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6.2. Metropolis algorithm for the 3D reconstruction

where Z is the canonical partition function®®, T is the temperature and E, the energy, is equal to the
distance just previously defined. In this formalism, the problem is to find a model, M, maximising this
probability. As the phase space is too big to test all the states, an exploration procedure is defined.

6.2.4 Metropolis algorithm

The Metropolis-Hastings algorithm is a Markov chain. A Markov chain is a step by step stochastic process
such that the state at step ¢ + 1 depends only on the state at step t. A stochastic process is the fact that
the future states will be reached through a probabilistic process instead of a deterministic one.

Let M? be a model at step t.

The recurrence part of the Metropolis algorithm is:

1. choose G with a probability equal to Q(M?,G),
(a) accept G with probability p(Z,,G) (M1 = G)
(b) refuse G (M1 = M?)
where
e () is the selection matrix (the perturbation),
e pis the acceptance matrix%?:

¢ _ o PEIR)
p(M ’g) - mln(lﬂ P(Mt|R))

p(M',G) = min(1,exp ( d(G ~R) — d(M' — R))

T
Mathematically, the transition matrix of this Markov chain is :

JQF.G)p(F.G)if F#G
P(F.6) = {1 — > rug P(F,G) else

6.2.5 Simulated annealing algorithm

The Metropolis algorithm works at constant temperature. In practice, we observe two cases: the temper-
ature is low, so “only” the transitions decreasing the energy are accepted. Therefore, it is the same as the
Newton’s slope with the problem to reach only a local minimum. In the other case, the temperature is
high, so “all” the transitions are accepted. Therefore, it is like a random walk in the phase space without
an exploring strategy.

The simulated annealing algorithm does not work at constant temperature. At the beginning, the tem-
perature is high in order to explore the phase space and progressively, the temperature decreases in order
to reach a minima in a reasonable time. Mathematically, when ¢ tends to infinity, a global minimum is
reached if the temperature follows a law in ﬁ Numerically, with this law, the temperature decreases
too slowly and, thus, we come back to the case of the Metropolis algorithm. Therefore, is is usual to
choose a temperature dependence running as %

6.2.6 Perturbation
The perturbation is the permutation of two voxels x and y such that the partition, G, is
Miz)if 2 £ ANz #y

G(z) = (Mi(y)ifz==z
Mi(z)if z =y

87 = ZI P(ZIR)
69The canonical partition function vanishes that is the trick of the metropolis algorithm.
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The localisation of the pair of the permutation voxels is chosen following two conventions: random on the
model or random on the phase interfaces of the model. The classical permutation is to select randomly
two voxels belonging to two different phases. As seen in the chapter characterization, the resolution
of the image has to be chosen much smaller than the smallest feature size of the material in order to
describe accurately the microstructure. In this hypothesis, whatever the geometrical shape, there are
some clusters meaning that the majority of voxels are surrounded by voxel of the same phase. When the
two voxels are selected randomly (selection matrix), in most of case, this permutation generate isolated
voxels. The microstructure due to this permutation will be rejected because this permutation goes in
the opposite way of the aggregation. So, many permutation will be rejected. To minimise the ratio of
rejection, an idea is to localise the permutation in order to aggregate the phases. A solution is to localise
the permutation on the interface of the phases. The localisation on the permutation on the interface of
the phases has been introduced by Rozman and Utz [144]. The framework, introduced in the chapter 3,
allows the implementation of this approach minimising the time needed to localise a voxel on the interface.
Let (X¢,...,X}!) be the domains of the phase at time ¢ and ¢; the volume fraction of the phase i.

The selection of the permutation voxels, x and y, is:

1. choose a phase, 7, with a probability equal to ¢;,
2. choose a voxel, z, on the outer boundary of the phase, Z! (see subsection 3.3.1)
Zi=(X]®V)\ X]
Let j be the other phase (M!(x) = 7).

3. choose a voxel y on the outer boundary of the phase j, th- while the phase on y is not i (M(y) = )
70

6.2.7 Actualisation of distance function depending on a permutation

As the model evolves at each perturbation, we have to update the stereological functions calculated on
the model after each perturbation. To speed-up this actualisation, these functions will be only calculated
on 3 directions. Numerically, we store all the correlations and all the chords of the model calculated
on the 3 directions in tables. These tables are actualised after each permutation. A permutation is two
times the modification of the state of a voxel. The modification of the voxel y is:

t _ I'(z)if x # y
) = {] £ (z)if x =y

In order to avoid some boundary effects, we impose a periodic condition™.

Actualisation of 2-point probability function

To update the 2-point probability function, the utilisation of Fast Fourier Transform (FFT) is an efficient
procedure [34] requiring O(N In N 4+ N) operation where N is the number of voxels on the image. An
alternative is to formulate the 2-point probability function after the perturbation depending on the 2-
point probability function before the perturbation plus an additional term [144]. This method requires
O(N) operations if the correlation is calculated on all direction and O(N'/3) if the correlation is only
calculated on the 3 orthogonal directions.

70To assure the conservation of the phase volume fractions, we have to choose randomly a voxel y belonging to: Z]t. ﬁX%5 =
((x;. aV)\ X;.) nxt
"1 The value on each voxel, z, is calculate using this relation:

I(z) = T(z%s™)

where sZ is the size of the image and % is the modulo operator.
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6.2. Metropolis algorithm for the 3D reconstruction

Figure 6.3: To update the auto-cross correlation functions, only basic operations have to be done on the
red arrows.

In this subsection, we explain the actualisation for the auto-correlation but the application for the cross-
correlation is straightforward. The number of auto-correlation of the phase i, at the distance d, on the
three direction, €9, €3, €3, for the partition ¢, is defined by this relation:

all the voxels the three main directions

It =~ —_——
Ni;i(d) = Z Z Iz¢(e)=ilzt (2 4de)=i
zelE ee(€h,€1,63)
We formulate the auto-correlation at time ¢ + 1, Nf; i (d), depending on the the auto-correlation at time
t, NZ; (d):
t41
NET(d) = Z Z Lzet1(gy=i L7+ (- de)=i

ec(ep,ei,e3) TrEE

t+1
NE () = Z ( Z Lzet1(g)=i Lzt (o qdey =i

éec(eo,ei,ez) z€E\{y,y—de}
+1ze1y)=ilzei(yrdey=i + Lreri(y—de)=i ]lf”l(y):i)
NG = NE@+ YD«
€e(€o,€i,63)
(11t+1(y):i]11t+1(y+dé‘):i + Lzet1(y—de)=i ]lf”l(y):i)
—(Lze(y)=ilze(yrae=i + Lzt (y—de)=i Lz (y)=i)

)

Hence, the auto-correlation at time ¢ + 1 is the auto-correlation at time ¢ with the addition of an extra
term. The calculation of the extra term is only two simple tests on the three mains directions. As the
update has to be done for the distance range of [0 : N'/3], it requires O(N'/3) operations.

Actualisation of chord length distribution

The number of chords of the phase i which size is d, for the partition 7, is defined by this relation (see
figure 6.4):

other phase same phase of length ¢  other phase
Zt=0 —
N7 (d) = Z Z Izt(zyzi  Lzt(ayie)y=i- - - LTt (et de)=i 1Tt (a4 (d+1)e) i

z€E ec(€),e1,632)

169



Chapter 6. Testing 2D— 3D reconstruction of multi-phase porous media obtained by SEM

All the line in one direction

IR

All the line in one direction

Figure 6.4: On each line (the rows and the columns) of the images, we find all the chords. On the first
raw of this figure, there are two chords: one red of distance 6 and one green of distance 4, so we add 1

to NZ,(6) and 1 to ./\/gITteen (4)

T

First, we find the phase label at left and at right of the voxel, y, on each direction:

pily) = I (y—19
pily) = T (y+19)

Second, we find the length of the chord at left and at right of the voxel y, on each direction:

fly) = arg ;2%%(]11’*(1—26)=I’5(1—e) o Lgta—(d42)e)=Tt (a—e)) T+ 1
E(y) = arg ;2%%(]]-1*(1-{-26):1*(1—}-6) oo Lzt (aq (d42)e) =Tt (e 4e)) T 1

We can prove that:
t+1 It
N = NE@+ Y
2 (€b.61,62)
Lzet1(y)=i (Lpr—iLpemiLttoti=a + Lpri LpesiLypima + LpeLpe i i a—a + Lpesi LpesiLima)
—Lze(y)=i (Lpe—iLpemili i, 41=a + DpeiLpesilipr—a + Lo Lpe—i i p1—q + Lpesi Lpesili—a)

)

Hence, the number of chords at time ¢ + 1 is the number of chords at time ¢ with the addition of an extra
term (see figure 6.5).

6.2.8 Numerically

Starting with a random partition with the same volume fractions as the reference microstructure, we do
an annealing simulated with an objective function defined with the 2-point probability function (cross
and auto). After the convergence, we add the chord length distribution function to the the objective
function and we operate a new time the annealing simulated.
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1)21(y))pla ll;pm lr
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Figure 6.5: (a) To update the number of chord of each phase with a change of state of black bullet,
for each direction, first we have to find the two chords starting at the left and at right of the voxel y,
p1, U, pr, - where Zt(y) is the state before and Z!™1(y) is the state after. (b) Depending on conditions,
the number of chord of the phase Z(y) and Zt*!(y) , NIt(y) and NIt+1(y) is updated.
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Chapter 6. Testing 2D— 3D reconstruction of multi-phase porous media obtained by SEM

6.3 Test and validation using 3D tomography images

Starting from SEM images of cement paste, the 3D reconstruction using simulated annealing stays on
open question in two points. The first point is the possibility to reconstruct a model with a volume larger
than the representative elementary volume in a reasonable time. For OPC, the REV is 200 um3 (see
subsubsection 5.2.4). As the resolution of SEM images is 0.675 um, the volume of 3D reconstruction has
to be upper than 3003 voxels. The second point is the representativeness of the 3D reconstruction. Of
course, the 3D reconstruction has the same morphology as the real 3D microstructure since the objective
function is defined by two morphological functions. But, this does not imply that the topology and the
the physical properties are the same. In the section, we will deal with these two points.

6.3.1 Time of convergence: temperature and perturbation
Gradient versus simulated annealing

In order to speed-up the algorithm, the temperature can be fixed at 0 kelvin, called gradient method. In
this case, the transitions increasing the energy are rejected. If the topographic surface” is not convex,
this approach has to be avoid. As the knowledge of the convexity is a very difficult task, we test the
both approaches numerically. The results are presented in the figure 6.6. In the beginning, the gradient

Convergence between grandient and simulated annealing
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Figure 6.6: Reconstruction of a 3D image of size 30*30*30 (time=30 seconds). We plot the distance
between the model and the reference depending on the number of steps.

is faster than the simulated annealing, but the time of convergence is similar for both algorithms. We
observe that the energy with simulated annealing method is lower than the energy with the gradient
method at the convergence. The reason is that the topographic surface is not convex. There are some
local minima. For these both reasons, the simulated annealing method is selected rather than gradient
method.

Localisation of the permutation on the phase interfaces

The figure 6.7 illustrates the convergence behaviour with or without the localisation of the permutation
on the interface. The decrease of the energy is significantly more rapid with the permutations localisa-
tion. After two days, there is the convergence with the permutations localisation whereas there is no
convergence without this localisation. Without the localisation, the acceptance ration versus the number

"2the application of the phase space to the probability
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6.3. Test and validation using 3D tomography images

of steps follows a power law. It is a major disadvantaged since the acceptance ratio will be rapidly very
low. Therefore, the simulated annealing method with the localisation of the permutation on the interface

is selected.

Distance between the reference and the model

Acceptance ratio

Convergence between permutation localization or no permutation localization
after 3 days for a 3d reconstruction (300*300*300) of a triphasique material (OPC)
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Convergence between permutation localization or no permutation localization
after 3 days for a 3d reconstruction (300*300*300) of a triphasique material (OPC)
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Figure 6.7: Reconstruction of a 3D image of size 300*300*300 (time=2 days). Figure 1: distance between
the model and the reference versus the number of steps. it is a log-log plot. Even after 2 weeks, there is
no convergence if the permutation is not localised. Figure 2: the acceptance ratio versus the number of

steps.

Reconstruction of 3D models with real 3D microstructure as reference

The real 3D microstructures as reference come from the first run to the SLS of OPC at W/C=0.5:

e at time t=35h, with porosity equals to 0.205 and a degree of hydration equals to 0.482

e at time t=83h, with porosity equals to 0.176 and a degree of hydration equals to 0.628

e at time t=150h, with porosity equals to 0.079 and a degree of hydration equals to 0.713
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Chapter 6. Testing 2D— 3D reconstruction of multi-phase porous media obtained by SEM

For these three cement pastes, we have reconstructed a 3D model with a size equal to 300 voxels such
that the objective function is defined using these microstructures (see figure 6.8).
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Figure 6.8: Validation using the 3D images obtained by X-ray tomography.
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6.3.2 Topological and diffusion validation
Coefficient of Diffusion

The figure 6.9 illustrates the comparison between the model and the reference for the factor Do/D(t).
There is a good agreement between the model and the reference. For the first two cement pastes, we
observe the convergence at the same level”. For the last cement paste, due to the disconnectedness of
the porosity, there is the convergence to a law’* varying linearly with ¢ for the real microstructure and
the model. The slope is quite the same between both systems.

Topological properties

The table 6.1 illustrates the good agreement between the model and the reference for the topological
parameters introduced in the section 5.3.

| | degree of hydration % < N, > | C | percolation |
model 0.482 -2.83%10~% | 2.95 0.475 yes
reference | 0.482 -3.37*10~% | 2.95 0.475 yes
model 0.628 -1.02*%10~* | 2.37 0.189 yes
reference | 0.628 -1.74*%10% | 2.59 0.295 yes
model 0.713 1.36*10~% | 0.652 -0.673 no
reference | 0.713 1.29*10~* | 0.873 -0.5635 | no

Table 6.1: Topological numbers for OPC with W/C=0.5

6.4 Conclusion and discussion

Simulated annealing algorithm was used to reconstruct a 3D multiphase material in order to allow the
investigation of the diffusive transport by SEM. An optimised implementation of this algorithm has been
reached using the localisation of the perturbation on the interfaces and a fast procedure of actualisation
of the objective function after a perturbation. The reconstructed volume can be greater than the REV
(for a computational time of 1 week, a volume of 400*400*400 can be reconstructed). For the capillary
pores of cement paste, there is a good agreement on the intrinsically 3D information (topology/diffusion
property) between the model and the real microstructure. In this chapter, we focus on the pore phase
for the validation of this algorithm. However in the case of prediction of mechanical properties, the
arrangement of each phase plays an important role. The arrangement of the granular phase (anhydrous
grains) between the real microstructure and the model is very different (see figure 6.10) given a bad
prediction of mechanical properties. Clearly, the strategy to reconstruct 3D “toy models” from 2D images
works for some physical properties and not for all the spectrum of pore texture. For capillary pores of
cement paste, simulated annealing algorithm appears to be efficient.

73This level is reach when the diffusion time is enough long to explore a space large greater than the REV. The value of
this value correspond to the macroscopic tortuosity.
"™Due to the disconnectedness of the porosity, the quadratic variation is bounded: < r2(t) >< A. As the tortuosity is

proportional to Tt(tb and the bounding of the quadratic variation, the tortuosity follows a law in ¢.
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Chapter 6. Testing 2D— 3D reconstruction of multi-phase porous media obtained by SEM
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Figure 6.9: Comparison of the factor Dy/D(t) between the model of size 300¥300*300 and the reference
obtained by X-ray tomography. Figure 1: degree of hydration—=0.482; figure 2: 0.628 and figure 3:
0.713045.
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Figure 6.10: The Volume distribution of the connected components of grain phase, anhydrous phase, is

very different between the model and the real microstructure.
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Conclusion

The main motivation of this PhD work is to improve the processing of experimental images in order to
extract quantitative information on geometrical and transport properties of porous media. This task was
achieved in three successive stages.

First, experiments were performed to image cement pastes. Though cement paste is a hierarchical
porous media, a limited range of length scales corresponding to the capillary pores controls transport.
To observe the capillary pores, two imaging techniques are used: Scanning Electron Microscopy (SEM)
and Synchrotron-based X-ray Tomography. The samples were two cement pastes, alite and Portland,
with different curing time in order to observe a wide range of geometrical organizations. The drawback
of both techniques is a weak contrast to noise ratio that makes the extraction of the phases by standard
thresholding procedures difficult.

Second, a part of this thesis was devoted to achieve a reliable segmentation of the experimental
images. We have introduced a simple, generic and robust method to segment experimental two- or three-
dimensional images of samples obtained by SEM and X-ray tomography. Simple means that this method
can be used by anyone whether or not they are a specialist in image processing. Generic means that this
method remains valid for a wide range of materials. Robust means that the extraction is less sensitive
to a perturbation of the segmented parameters. For this purpose, we have used the following advanced
algorithms: the watershed transformation, the distance function, the dynamic filter, the hole filling. . ..
Due to the large size of the tomography images, each of theses algorithms has to be optimised that the
treatment can occur within a reasonable time. The direct implementation of these optimised advanced
algorithms is relatively long, tedious and requires specific skills.

To speed up the implementation of the previous algorithms, we have conceptualised a theoretical
framework for a class of algorithms, called Seeded Region Growing by Pixels Aggregation/Dissolution
(SRGPAD). This work has led to the creation of a library, called Population, dedicated to the imple-
mentation of SRGPAD algorithms. The use of this library resulted in the fast implementation of any
SRGPAD algorithm. Furthermore any algorithm implemented by using this library is already optimised.

Thirdly, the resulting segmented images were processed to extract metric and/or topological quanti-
tative information concerning porous media. For the metric analysis, we have focused on stereological
measurements. Stereology guarantees the link between measurements done in a 2D section of the 3D
sample and measurements done on the whole sample for a homogeneous and isotropic material.

In the cement industry, metric analysis is focused on the evaluation of global geometrical properties.
Therefore, we have estimated the most commonly available numbers: the volume fractions of the phases™
and the specific surface area. The volume fraction of the anhydrous phase gives the degree of hydration
of the sample. It allows comparative studies between SEM and X-ray tomography. The volume fraction
of the pore phase, called porosity, is directly related to the diffusive property which follows one type of
Archie’s law. However, many important features are not contained in these numbers. Hence, a statistical
analysis has been performed with the 2-point probability functions and the chord length distribution
functions. The properties of the 2-point probability function have confirmed the isotropy of the material
and the characteristic length of the representative elementary volume equal to 200 pum for portland

"5anhydrous grain, hydrates, portlandite and pore space.
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and 500 pm for alite. The properties of the chord length distribution function have confirmed that the
disorder of capillary pore is a simple long-range Debye randomness (not a complex structure with length
scale invariance. The average of chord length distribution function gives the characteristic length of the
given phase. We observed that this characteristic length of anhydrous grains remains constant during
the hydration process although anhydrous grains are dissolved.

The above metric characterization is applicable in two and three dimensions. In turn, the topologi-
cal characterization is processed only on 3D images, in this case the tomography images. The primary
topological feature is the percolation of the pore network. Diffusion is only possible on a percolating
network. For Portland cement, no percolation of the pore network found for 150 hours of hydration time
and for a resolution of 0.675um while diffusion still occured. Imaging techniques are limited to a range of
length scales. Diffusion still occurs since the pore network still percolates at a smaller length scale than
the tomography resolution. Therefore, nano-tomography will play an important role in the observation
of the smaller capillary pores that control transport for mature pastes. Even for early-age paste, which
is still with relevant scales of tomography, the percolation does not quantify the degree of connectivity
of the pore network. To takle this task, we estimated a new topological number introduced by Levitz.
As this number is intensive, it allows the topological comparison of the degree of connectivity between
different porous media.

Initially, we intended to relate the geometrical characterization and the diffusion properties in two
ways. We verified on several sets of data that the information contained in a 2D section of a 3D sample
of cement paste allows the reconstruction of a 3D model that accounts for the topological and diffusion
properties of the original medium. In order to obtain a reliable diffusion coefficient, the simulation has
to be performed on a representative elementary volume (REV). The optimisation, using voxel permu-
tation at the phases boundary, allows the reconstruction of a model which volume is larger than the REV.

There are two area for future research. Firstly, industrial applications mainly focus on the ageing of
materials. In this framework, is is crucial to ensure the durability of cements materials. This property
is related to diffusive properties which directly depend on the geometrical organisation of the mature
cement pastes. As previously discussed, the extraction of the physical tortuosity by imaging techniques
is only reliable as long as the pore size remains bigger than the resolution range of the imaging device in
order to oberve the connexion of the capillary porosity. From this perspective, the extraction of tortuosity
based on synchrotron x-ray tomography is only reliable at the early-age of cements pastes. Taking an
image at early-age of this system in evolution is now possible since the acquisition time is inferior than
10 minutes at most of the synchrotron facilities. The image analysis approach should:

e be validated by comparing the experimental and computed diffusion coefficients,

e explore the phenemolical law of the effective diffusive coefficient in relation to the porosity for
different chemical composition of cement pastes.

Provided these two points are observed, we could estimate the diffusion coefficient of mature paste in
extrapoling the function of diffusion coefficient in relation to porosity of capillary pores (calculated on
SEM image).

An important theoretical question is to know whether it is possible to simplify the geometrical de-
scription of the 3D pore network using a small number that are representative of transport properties.
The decomposition of elementary pores was achieved in this thesis. Further work will attempt to link
some first passage statistics inside and between the pores with simple metric features. The first passage
statistics will be used to assign transition times and direction probabilities between vertexes of the pore
graph. This will provide a coarser graining description of the diffusive transport in an effective network
of elementary pores. Ultimately we hope to reveal an analytical law describing the diffusive transport
through some geometrical features. Its validity will be proved by the statistical properties of the pore
graph.

Finally, my original library covering the algorithms used in this thesis can be used on a wide variety
of image analysis applications in material science. For this purpose I intend to make it more user-friendly
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by developing a graphical user interface. In order to make it widely available, it will be released as an
open source software.
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Appendiz A. Annezes

A.1 restricted set and neighborhood set

The definition of the set ZI requires two sets: restricted set and neighborhood set.

A.1.1 neighborhood set
Numerically, the definition og the neighborhood set uses two classical methods:

e an image, I, of odd size”® with ¢ the center of the image” such as V is defined by:

V={vVeeE:I(zx—c)#0}
0 0 1

For example, = {0 1 0] gives V ={(-1,-1),(0,0),(1,1)}
1 0 0

e a ball in order to define a neighborhood independly of the dimension. For example, V = B(r =
1, N1), is (2n)-neighborhood in n-dimensional discrete space (4-neightborhood in 2D) where B(r =
1, N1) is the closed ball of radius 1 and N; is the norm 1 centered at point 0.
A.1.2 restricted set
Numerically to define the restricted set, the method uses two fields:
e a_w (all or without), a boolean
e [, alist of integer

such as

N— N, \Lifa_ w=true
N L otherwise

. This is a mathematical definition of ZI. In the next subsection, we will define a numerical process to
actualize the ZI depending on aggregation/dissolution on a region.

A.2 Proof of the acualization

A.2.1 Growth of the myself region

If there is only the growth of the myself region: Xtﬂ/2 Xt + A' then
Z7 = v @evi\Zi\ (U X (A1)
JEN,;
Proof:
Zf+1/2 _ (Xf;j/Q & V) U Xt+1/2
JEN:

As we have only the growth of the myself region: XtH/2 = X},, + A’ then

t+1/2
ZM = (X, AY e V) (| XL,)
JEN;
"6Let S = (sp,...,sn) be the size of the image. The size of the image is impair if for all j in (0,...,n), s; is impair.

""Let S = (sp,...,5n) be the size of the image. The center of the image is (s0%2 + 1,...,5,%2 + 1)
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As(AuB)aV =(AaV)U(Ba& V) so with Rl = gv Xt
J i

ZTP = (XL, @ V) U (A @ Vi) \ R!
We know that AUB = A+ (B\ A):
Z? = (X, oVi)+ A eV (XL, V) \ R
and (A+ B)\ C = (A\ C) + (B\ C), then
Z7? = (XL, Vi) \ Rl + (A" @ Vi \ (XL, © Vi) \ R!
We have Z} = (X{,, ® Vi) \ R}
Z77? = Zbr (A e V) \ (XL, ® Vi) \ R
As (A\B)\ C = (A\ (B\ ())\C then with Z! = (X!, ® Vi) \ R!
ZTV = 7V (At V) \ 28\ R,
A.2.2 Degrowth of the myself region

If there is only the degrowth of the myself region: X’ tH/ 2= = X/,, + A’ then
ZHP =zt (Ae )\ (X[ e Vi) \ (2D (A.2)
Lemme:

AV =(AuB)aV)\(BaV)\(AaV))
First, demonstrate that A = (AU B) \ (B \ A)

A = AUD

A = Au(BnNBY

A = (AUB)N(AUB®
A = (AUB)N(B°UA)
A = (AUB)\(B°UA)
A = (AUuB)\(BnNAY
A = (AuB)\(B\A4)

Switching A by A@ V and B by B @ V in this last formul, we get:
AV =((AeV)uBaV)\(BaV)\(4aV))
As (A V)U(BaeV)=(AUB)aV, we find
AoV =((AuB)aV)\(BaWV)\(AaV))
Proof:
Zf+1/2 _ (X:,—:nl/Q & V) U Xt+1/2
JEN;
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As we have only the degrowth of the myself region, Xf;;l/z = X}, — A" with R = |J X}, then
JEN;
ZiM = (X - A @V \ R

2

By the lemme, switching A by (X}, — A*) and B by A, we have

ZiM? = (A Ao\ R

with Ay = ((X{,, —AHYuAY eV

with Ay = (A @ V0) \ (XL, — A) & V)
Like ((X},, — A") U A" = X]  so we obtain 4; = X} &V,
As X, — Al = XT12 50 Ay = (At @ V) \ (Xf:rnl ®V;). We have

ZIP = (4\ A2)\ B!
with A; =X/, @V
with As = (A'@ V) \ (X2 e V)

As (A\ B)\C = (A\ C)\ B, substituting A by Ay, B by Ay and C by R! in this last formula. As
Ay \ Rt = Z!, we have

Zt1/2 _ 21\ Ay
with Ay = (A' @ V) \ (X112 & V)
As A\ B=A— (B\ A°), we have:

2R = (e i)\ (X2 e v\ (20

K2

A.2.3 Growth of the other region
If there is only the growth of the other region: Xf,‘gl = Xf:gl/Q + At then
Zitl = gt+1/2

J J
Vi€ Ny Q —AP\ (2720 ifie N AV #0 (A.3)
t+1 _ t+1/2
Zj =7

y else

Proof:
Let V; = 0, then V¢ : Z! = 0, in particulary th.“ = Z;.H/Q. Let assume now that V; = V.

t+1 t+1 t+1
Z_j = (Xj,m eV)\ Uken; Xk,o
By the commutativity of union, we have:

ZM = (X @ V)\ (Uken,u X[ UXETY)  ifie N

Z;H = Z; else
We suppose i € N;. We have only the growth of the other region: X!t' = Xfﬂng/Q + At
7 = (X OV Uren X, P U (G + A1)
A+ B = AU B and by the commutativity of union, we have:
ZJ¢+1 _ (X;EM SV)\ (UkeNjX£:1/2 U At)
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As A\ (BUC)=A\B\Cand Z/"? = (X1 @ V) \ (Uren, X, 1/?), we have
t+1 t+1/2 t
Z7 = 2T\ A
As A\ B=A - B\ A¢, thus

ZHY = ZVR At (e

A.2.4 Degrowth of the other region

If there is only the growth of the other region:XfZl = X;ng/2 — At then

ZH = 72y
(AN (XEP e v\ (U XEEh)\ 2077
VjeN, 7 keN; !
it (i € N;) A (V) #0)

t+1 _ t+1/2
Z;" =17

J else

Proof:

Let V; = 0, then Vt : Z! = (), in particulary Z;-H = Z;-H/Q. Let assume now that V; = V. Let j in N,

Zt = (X @ V) \ Upen, X0
By the commutativity of union, we have:
Z = (X e V)\ (Ugen,u XGH U XY siie N

ZiH = ZH? ifi ¢ N;

We suppose i € N;. We have only the growth of the other region: X;ng = X2 gt

ZH = (X @V)\ (Upen, o XoH P U (XTTV2 - A))

7,0

As A— B = AN B¢, we have
Z = (X @ V) (Uren, o X052 U (XEEY 1 (A)))
As AU(BNC)=(AUB)N(AUC(C), thus
t+1 _ t+1/2
Z = X Pev)
\(Unen, X152 0 (Uren i X072 0 (459)
As A\ (BNC) = (A\B)U(A\ ), thus:
t+1 t+1/2
Zj = Zj UA;
with Ay = (X752 @ V) \ (Upen, X052 U (AD)°)
As A\ (BUC) = (B°NA)\C, we have
A= (AN (X @ V) (Uren i X5
A= (AN (X @ VIO (Ureni Xt )
A1 = (A Upenp i X\ (X2 @ V)e)
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As XU = XITH? - Al so AN X[TY? = fand AT = AP\ X[HL As (A\ B)\ C = A\ (BUC), we have

i,0

A= (AN Uren i X0 P UXEI\ (X2 @ v)e)
A= (A (Uren, XEED\ (XIH2 @ v)9)
A = (At (X;fmw ®V)°\ (Upen, X1E

The last step is: Z;H/Q UA; = Z;Jrl/z + Ap )\ Z;H/Q.

A.3 Watershed transformation using meta-programmation ap-
proach in modern language

The real implementation of the algorithm in my library Population:

template<typename Space>
class Affect_watershed: public Affect<typename Space::Pixel >
{
private:
Space * _img;
int * _level;
public:
Affect_watershed(Space & img, int & level)
:_img(&img) , _level(&level)
{3
//Number of queue at the initialization (for watershed, it is I.max_range())
virtual int card()
{
return numeric_limits<typename Space::Type>::max()+1 ;
}
//Number of queue to add when a tribe is created (for watershed, it is 0)
virtual int new_tribe()
{
return O;
}
//ordering attribute function, \delta (x, i)= max(I(x),level)
virtual int affect(const typename Space::Pixel & x , int )
{
return max(static_cast<int>((* _img) [x]),*_level) ;
}
3
template<typename Space_topo,typename Space_label, typename Neight>
Pop: :Space_region watershed_withoutborder(const Space_topo & in,const Space_label & label,const Neigh
{
//initialization
int level=0;
Affect_watershed< Space_topo > f(in,level);//Creation of the object SQ
Zi zi(in.size(),f);//Creation of the object ZI
Pop pop(in.size(),zi);//Creation of the object Population
pop.neighborhood(V);//Definition of the neighborhood
restricted r; //Definition of the resttricted set
r.with_without=false;
r.my_self =false;
Tribe tr(r);
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label_to_tribe(label , pop, tr);//Initialization of the region using the seeds
typename Zi::maillon_la_Z m;
//growing process
for(;level< numeric_limits<=typename T::Type>::max();level++)
{
zi.select_queue(level);
while(zi.empty()==false)
{
m= zi.popQ);//m=(x,1)
pop.groth(m.first,m.second);
}
}
return pop.X(Q);

A.4 Application for SEM images of cement paste

In the figure A.1 and A.2, we have applied the one step segmentation for:
1. OPC with W/C=0.5, alite with W/C=0.4,
2. at hydration time: 1, 3, 7 days;

3. at the resolution: 0.675, 0.25, 0.1um

A.5 Algorithms

A.5.1 Specific surface area

The algorithm is:
Require: Z//The label image
// Count the number of surface for each phase
Neightborhood V = B=1 n, (- )\ {* } ;
Vector v__count( Z.nbr _label() );
for all Vx € E do
for all VY € V() do
if Z[x] # Z[y] then
v_count|[Z[z]]++;
end if
end for
end for
// Normalized by the Lebesgue measure of the image domain (pixels/voxels number)
for i = 0 to v_count.size() do
v_count [Z[z]]= v_count [Z[z]]/u(E) ;
end for
return v_ count;

A.5.2 2-point probability functio using Matlab

function [] = mafonction(name)
I imread(name) ;
F = fft2(double(I));
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F_s=fftshift(F);

F3 ifft2(abs(F_s));

F2 = log(abs(F3));

Fo=fftshift(F2);

S = imshow(F2,[8 15],’InitialMagnification’,’fit’); colormap(jet); colorbar
imwrite (S, [name ’_fourier.png’]l);

A.5.3 Graph of 2-point probability function

There are two possibilities to calculate the graph of the 2-point probability function. Both are built
around this formula:

SQ,i(F) = < Il(ﬁ)Il(T/ +7) >heE

Assuming the material is isotrope, we calculate:
Szyi(d) = << L({NL(r +7) > e g ||7l=d

The average <> =q is done only on the orthogonal directions. Numerically, we can estimate the 2-point
probability function on the orthogonal directions by calculated all the correlations (see algorithm 9) or
by repeated random sampling (method of Monte-Carlo ,see algorithm 10)

Algorithm 9 2-point probability function using the d-mains direction

Require: Z (The label image), dynq. (max distance)
matrix m_hit(dmar+1,Z.nbr_phase ); matriz of size (n,p) = (dmaz + 1, Z.nbr_phase)
matrix m_count(dimaz+1,Z.0nbr _phase);matriz of size (n,p) = (dmaz + 1,Z.nbr_phase)

.Vz € F do
.Vd e (0,...,dna) do
. Ve; € 1do
y=uxa+ed
m__count[Z[z]][d]++;
if Z[x] == Z[y] then
m_ hit|Z[x]|[d]++;
end if
end for
end for
end for

matrix m_ corr(dpmaz+1,Z.nbr _phase ); matriz of 2-point probability function of each phase
fori = 0 to Z.nbr_phase do
for j = 0 to dyq. do
m_ corr[i][j] = m_hit[i][j] /m_ count[i][j] ;
end for
end for
return m_ corr;

A.6 Signature of a polydispersion of grains following a power law

In the section, we prove that a polydispersion of grains following a power law gives the same power law
for the chord length distrubution function of the granular phase.

Let M be a granular phase, a collection of grains, with fys(r), its chord length distribution function such
as all the grains have the same characteristic size equal to 1.

Let AM the granular phase after the homothetic transformation with parameter A. Its chord chord length
distribution function is fanr = far(r/A)/A.
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Algorithm 10 2-point probability function using the d-mains direction and a Monte-Carlo algorithm

Require: Z (The label image), dpq. (max distance), n,q, (number of tests)
matrix m_ hit(dy,q.+1,Z.nbr _phase ); matriz of size (n,p) = (dpmas + 1,Z.nbr_phase)
matrix m_count(diaz+1,Z.0nbr _phase);matriz of size (n,p) = (dmaz + 1,Z.nbr_phase)
for i = 0 to nuper do
x= Z.rand()
.Vd e (0,...,dna) do
. Ve; € 1do
y=x+ed
m__count[Z[z]][d]++;
if Z[x] == Z[y] then
m_ hit|Z[x]|[d]++;
end if
end for
end for
end for
matrix m_ corr(dpmaz+1,Z.nbr _phase ); matriz of 2-point probability function of each phase
for i = 0 to Z.nbr_phase do
for j = 0 to dyee do
m_ corr[i][j] = m_hit[i][j] /m_ count[i][j] ;
end for
end for
return m_ corr;

To take into account the polydispersion of the granular phase, we define a probability function, P(A)dA,
given the probability to have a grain of size betweeen A and A + d\.
The chord length distribution function is:

fram(r) = /OO Fane (r)P(N)dA
0
Given that fay = far(r/N)/A, we get:
fem(r) = /0OO MP(AM)\

Let us consider that the probability function follows a power law distribution: 1/A™.

e A
fp,]\/[(T) = o %d)\

Let r/A = u be the change of variable. We get:

< fau(w)u™tt du
fpam(r) /0 TS )

fem(r)= ri"/o fM(u)unfldu

fem(r) o« e
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Appendiz A. Annezes

Figure A.1: OPC. For each raw, the resolution is 0.675 pum image 1, 0.25 um image 2, 0.1 pum image 3.
First raw=1 day, second raw= 3 days and last raw = 7 days. Visually, we observe that there is more
porosity at 7 days than at 3 days although normally the hydrate takes the place of the porosity during
the hydration. A possible reason of this anomaly is that the cement paste is a heterogeneous media.
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A.6. Signature of a polydispersion of grains following a power law

Figure A.2: alite. For each raw, the resolution is 0.675 um image 1, 0.25 pum image 2, 0.1 pwm image 3.
First raw=1 day, second raw= 3 days and last sraw = 7 days.
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