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Introduction 
The great technology advance in the microelectronic industry has permitted to 

jointly integrate digital, analog, RF and even MEMS components. Therefore, complex 
systems can now be designed and integrated as chips. Such design concept reduces 
the global size of the system and increases its performance as well. These two major 
features explain the great success of System-on-Chip (SOC), and the growing up of 
the System-in-Package (SIP) market, despite the increasing complexity in design and 
test tasks.  

Testing is required to guarantee fault-free products because of unavoidable 
manufacturing imperfections. In fact, the test activity plays a key role in the 
production process of integrated circuits by its ability to differentiate good devices 
from faulty ones before delivery to end-users, as well as to improve the manufacturing 
yield, by giving quasi real-time feedback. Basically, testing consists of two processes: 
the test generation and the test application. The test generation designates the process 
of providing appropriate test stimuli, whereas the test application refers to the process 
of applying these test stimuli to the circuit inputs and analyzing its responses. 
Traditionally, the first test application is performed at wafer level using contact-based 
probing technologies. 

 However, as the integration density of the SIP/SOC continues to increase, test 
generation and test application becomes more and more complex tasks. Particularly, 
the current test application solutions based on probing technologies suffer from many 
drawbacks such as limited parallelism and test cost, among others. Moreover, SIP 
testing leads to new challenges. Conversely to SOC, where cores and interconnects 
are tested after manufacturing of the whole system, SIP may require intermediate 
testing. Indeed, early binning during manufacturing prevents the assembly of good 
dies on faulty systems. However iterative testing requires multiple touchdowns on the 
test pads and induces scrubbing. For that, new probing technologies have been 
developed to push the mechanical limits forward. However, even with the advancing 
probing solutions, the contact-based probing techniques will not be able to catch up 
with the SIP/SOC test evolution.  

In this context, we propose an original test method based on wireless transmission. 
It consists in adding a unique Wireless Test Control Block (WTCB) in every Device 
under Test (DUT) to provide wireless communications between the tester and the 
DUTs on a wafer and to apply the test. This original wireless solution is not based on 
any previous work, and is brand new with respect to the “related” methods based on 
wireless/non-contact transmission.  

In this document, Chapter 1 describes the trends in the design and test of SIP and 
SOC systems, and gives an overview of the main testing issues encountered at every 
manufacturing step. A state-of-the-art of “related” work is also given in this chapter. 

Taking advantage of the wireless transmission, test data can be broadcasted, in 
packets, from the tester to all DUTs on the wafer providing full test parallelism. The 
WTCB, integrated in the DUT, is in charge of extracting test signals from received 
packets, controlling the test at DUT level and sending back the DUT test responses to 
the tester. The WTCB communicates with the internal circuits of the DUT through 
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JTAG interface. Its architecture includes a wireless communication module to handle 
the wireless transmission, and a Test Control Block (TCB) to handle the test 
application. Chapter 2 is dedicated to the definition of this new wireless test approach, 
and the proposed WTCB architecture. The structure of the exchanged packets is also 
given in this chapter. 

Chapter 3 reports validation experiments. For that, we elaborated a dedicated 
wireless test platform, based on the use of FPGA cards. This experimental platform 
emulates a tester and a WTCB embedded in a DUT. Several experiments have been 
conducted with this platform, among them a wireless test of a real circuit (ASIC) was 
successfully performed. In this chapter, the conducted experiments are described and 
their results are discussed.  

Finally, the proposed method is extended in Chapter 4 to a larger application field, 
namely in-situ testing. The main issue is the remote access to the targeted. In most 
cases, such as medical implants, or automotive applications for instance, it is 
practically impossible to have a direct access to the targeted device. A possible 
solution for such cases consists in embedding an appropriate test interface in the 
system. In Chapter4, we describe how the proposed WTCB, initially developed for 
wafer testing, can be also adapted to such context.  
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I  SIP and SOC testing 

I.1 Introduction 

Electronic systems are going to higher complexity, integrating ever more complex and 
numerous functions under ever more pressure for cost reduction. With advances in 
semiconductor manufacturing technology, the system on chip (SOC) technology 
represents a viable solution to reduce device cost through higher levels of integration, 
while keeping the hardware design effort in reasonable limits, in particular thanks to the 
so-called reuse strategy. In parallel, the push towards more functionality in a single small 
“box” requires the integration of heterogeneous devices that cannot be intrinsically 
achieved in single-technology SOC. In this context, system in package (SIP) clearly 
appears as the best alternative to integrate more functions in an equal or smaller volume. 

A good illustration of this global trend is given by cellular handset. Today, a cellular 
design must support multi-band and multi-mode in addition to Bluetooth networking, 
global positioning system (GPS), wireless local area network (WLAN), without 
mentioning user applications such as games, audio, and video. This miniaturized 
application pushes the need for both SOC and SIP solutions to solve the problems related 
to the integration of highly complex design in an economical way. 

I.1.A SOC and SIP differences 

The SOC refers to integrating the different components of a system into a single IC. 
These components can be logic, memory or analog cores. Being a single die, an SOC is 
consequently fabricated using a single process technology. In addition, it has a single 
level of interconnections from the die to the package pads or to the interposer. The 
interconnection technologies used are wire bonding or flip chipping. Figure 1-1 presents 
an example of a SOC. 

 

Figure 1-1: SOC example 

An attractive alternative for system integration is the SIP technology. The SIP concept 
started with the development of multi-chip module (MCM) in the 1990s. At that time, a 
typical MCM contained memories and a processor. Since then, the capacity of integrating 
several dies into a single package has continued to increase over time. Nowadays, a SIP 
may include analog and RF dies in addition to logic and memory ones, and even micro-
electromechanical system (MEMS) components. These various dies/components can be 
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fabricated with different process technologies, such as CMOS, BiCMOS, or GaAs. In 
addition, they are interconnected with multiple levels of interconnections: from 
die/component to die/component, or from die/component to the package pads or to the 
interposer. Several interconnection technologies can be used for this purpose, such as 
wire-bond, flip-chip, stacked-die technology, or any combination of the above.  

An appropriate definition of a SIP is given in the International Technology Roadmap 
for Semiconductors published by Semiconductor Industry Association, where a SIP is 
defined as any combination of semiconductors, passives, and interconnects integrated 
into a single package [SIA 2005]. This definition covers all the SIP technologies, which 
differ in their type of carrier or interposer intended for holding the bare dies (or 
components) and the type of interconnections between components. The carrier or 
interposer can be a leadframe, an organic laminate, or silicon-based. Another possibility   
is to stack components on top of each other [Cauvet 2007]. Figure 1-2 shows an example 
of a silicon-based SIP fabricated by “NXP Semiconductors”, and characterized by: 

- A passive die serving as platform for the active ones, 

- High level integration of passive components in the passive die. 

 

Figure 1-2: SIP example 

I.1.B SOC versus SIP 

The continuous advance in CMOS technology has led recently to a successful 
migration of RF and analog circuits from BiCMOS technology to a full CMOS solution. 
This important transition in the IC fabrication has permitted to a system with logic, mixed 
and analog functions to be designed as a single IC, namely as a SOC. As consequence, an 
interesting debate is launched: which is the better technology for a given system, to be 
designed as a SIP or as a SOC? Clearly, the better technology is dictated by the 
specifications and the constraints of the intended system. In the following we give a brief 
description of the main characteristics of both technologies, which are carefully 
considered by the system designers when they choose the SIP or SOC technology for 
their design. 

With the SIP technology, the system can be designed in shorter time than a SOC. Each 
die can be separately designed in his most suited technology. Moreover, the SIP 
technology enables the plug-and-play approach. For example, considering an RF 
application system made of RF analogue mixed signal and digital dies, different RF 
designs can be done for different applications, without changing the baseband chip 
[Wilson 2005]. However, a system fabricated as a SIP is often more expensive than a 
SOC. fact, a SIP contains multiple pre-tested dies and passive components. They are 
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assembled together by a complex assembly process, where many different interconnect 
techniques may be used for wire bonding and flip-chip connections. In addition, the SIP 
technology uses some complex assembly processes that could reduce the system 
reliability, which is not the case of a SOC.  

As result, the SIP technology seems to be more suitable for systems that have short 
production cycles, or for systems with short time-to-market. For example, in mobile 
phone applications, the system integrators came to the conclusion that integrating existing 
and available integrated circuits (ICs) into an SIP is often much easier and faster than 
creating new SOC designs [L-T. Wang 2008]. On the other hand, the SOC seems to be 
more suitable for high production volume, or for applications intended for a long run. 

Anyway, both SIP and SOC manufacturers have to master the technology. This is one 
of the essential points to provide a reliable product, with the desired performances. 
However, this is not sufficient to provide a high quality product. In fact, due to the 
unavoidable flaws in the materials and masks used in the IC or SOC fabrication, a 
physical imperfection may be generated, leading to a defect in the fabricated IC or SOC. 
Similarly, during SIP fabrication several defects may be generated by the assembly 
process. Thus, any fabricated IC, SOC or SIP is considered to be defect prone. In 
consequence, all fabricated circuits and systems must be tested in order to filter the good 
from the defected ones. The following subsection presents an overview of the test 
principle and basics, focusing on digital IC testing.  

I.2 Test principle and basics 

In the microelectronic industry, a manufacturer is always interested to deliver a high 
quality product to its clients. For that, the fabricated circuits must be sufficiently tested 
before delivery. That is a must to maintain a good reputation, and to minimize the 
customer compliant as well. The good circuits are delivered, while the faulty ones can 
possibly undergo a failure mode analysis (FMA), which is typically used to improve the 
production yield, by giving a feedback to the product engineers in charge of the processes 
and products monitoring and improvement. The yield of a manufacturing process is 
defined as the percentage of acceptable parts among all manufactured parts: 

fabricatedpartsofnumberTotal

partsacceptableofNumber
yield =  

In the following, we give an overview of digital IC testing, where we describe the 
processes of test data generation and the equipments for test application. Next, we present 
the main features that are added to the IC design in order to improve its testability, before 
ending this subsection by detailing the JTAG boundary scan technique. 

I.2.A ICs Test principle 

Testing typically consists of transmitting test stimuli to the inputs of the device under 
test (DUT), while analyzing the output responses, as illustrated in Figure 1-3. The DUT 
term designates an IC, a SOC or a SIP undergoing a test. DUTs that produce the correct 
output responses for all input stimuli pass the test and are considered to be fault-free. 
Devices that fail to produce a correct response at any point during the test sequence are 
assumed to be faulty. 
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Figure 1-3: Basic test principle [L-T. Wang 2006] 

In digital IC testing, the test stimuli consist of a set of input patterns applied to the 
DUT. Each input pattern is a combination of logic 1’s and 0’s, called a test vector. Thus, 
in order to test a circuit with n inputs and m outputs, a set of test vectors is applied to the 
DUT, and its responses are compared to the known good responses of a fault-free circuit. 
Two processes are required for this purpose: the test generation and the test application. 
The test generation is the process of producing test vectors for efficient testing, whereas 
the test application is the process of applying those test vectors to the DUT and analyzing 
the output responses.  

I.2.A.a. Test generation 

Three approaches can be used in test generation: exhaustive, structural and (peudo)-
random approaches. The exhaustive approach consists in applying all possible input 
combinations to the inputs (2n input patterns for an n-input logic circuit). This approach 
detects 100% of static defects that may exist in a combinational circuit; and the 
generation process is very simple. However, this strategy is not efficient for sequential 
circuits that require an ordered set of test vectors for every defect, which are necessary to 
reach required internal states. Thus, the 2n input patterns are not sufficient for sequential 
circuit testing. In addition, the test application process is too time-consuming in case of 
large value of n. 

A more practical method, called structural testing is usually used for test generation. 
Based on circuit structural information, this approach uses a set of fault models to 
generate specific test patterns dedicated to the detection of these faults. 

A fault model is an engineering model describing the possible physical defects that 
can occur in the fabricated device at a higher level of abstraction. By using fault models, 
the test vectors can be automatically generated by dedicated softwares. Common types of 
fault models are: 

1. single and multiple stuck-at faults affecting the state of signals on the logic 
circuit lines, 

2. delay faults that cause excessive delay along a path,  

3. Transistor faults (stuck-open, stuck-short) that results in memory or non-logic 
behavior on gate outputs, open and short affecting the circuit wires. 

A description of a single stuck-at fault is detailed as an example (see Figure 1-4). In 
this model, only one line in the circuit is faulty at a time. The fault is permanent, and its 
effect is as if the faulty node is tied to either Vcc (stuck-at-1 or s-a-1), or Gnd (stuck-at-0 
or s-a-0). This model supposes that the function of the gates in the circuit is unaffected by 
the fault, this leads to a reasonable number of faults equal to 2*k, where k is the number 
of signal lines in the gate-level netlist of the circuit. 
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Output 1 
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Figure 1-4: (a) True table of the fault-free AND gate, (b) fault model: s-a-1 on input 
A, (c) True table of the faulty AND gate  

Using a fault model, the test generation begins by generating the faulty list, which 
contains all the potential faults. Then, a fault is selected for test generation, where an 
automatic test pattern generator (ATPG) is used to generate a test vector for this selected 
fault. Once generated, a fault simulation is performed to determine all faults that are 
detected by this test vector. Those detected faults are marked off of the list (fault-
dropping). Then, another fault is selected from the remaining undetected faults in the 
faulty list, and the previous test generation steps are performed for this fault. This process 
is repeated until all the faults in the list are marked off, or the ATPG is unable to provide 
a test vector for the remaining faults. This is illustrated in Figure 1-5. 

 

Figure 1-5: test generation process 

Structural testing provides high quality test sequences, particularly for combinational 
circuits, but may require large CPU time. The process can be shortened using the 
(pseudo)-random approach as preliminary step. Random test vectors are first generated in 
order to remove the “easy to detect” faults from the faulty list. Easy-to-detect faults are 
those that can be detected by a large number of test vectors. In consequence, a vector 
generated randomly is likely to detect some of these easy-to-detect faults. A new pseudo-
random test vector is generated until several successive generations fail to provide a test 
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vector detecting new fault in the list. At this point, the process switches to the 
deterministic and structural approach in order to generate test vectors for the remaining 
“hard-to-detect” faults.   

Not that test vectors are generated for detection of faults and not defects. In other 
words, a test sequence including all the necessary vectors for detection of faults in a 
model, stuck-at faults for instance, cannot guarantee the detection of all possible 
manufacturing defects. 

I.2.A.b. Test application 

As already mentioned, the test application designates the process of applying test 
vectors to the DUT and analyzing output responses. This process is performed by 
automatic test equipment (ATE), which contains typically the following main 
components: 

1) A powerful computer: it represents the interface between the user and the tester, 
stores the test program, including test data and responses, timing and level 
information. 

2) A main frame and/or a test head: it include(s) all the electronics that are 
necessary to perform the test (level and timing generators, power supply, vector 
memory, all necessary pin electronic for driving and reading values on the tester 
channels). Under the control of the test program, the tester electronics translate 
test patterns into corresponding electrical waveforms with the desired shape and 
timing, compare (or measure) DUT output responses to expected values, and 
return pass/fail information to the computer.  

3) DUT board and probe card: they are used as an interface between the electronics 
of the tester and the DUT IOs. Their goal is to provide electrical paths for power 
supply and test signals transfer between the tester electronics and the pads of an 
IC on a wafer or the pins of a packaged chip during testing. The contact 
elements of the probe card are called probe tips. 

The ATE may contain other resources such as digital signal processors (DSP), used 
for analog testing. Regarding the various components of an ATE, this later can be very 
expensive. The pin electronics and the correspondent probe card are typically the most 
expensive part of the ATE. 

To summarize, the digital IC testing consists in generating logic values of the test 
vectors (ATPG program), based on fault models. An ATE is used to apply those test 
vectors to the DUT and to analyze the output responses. Depending on the complexity of 
the DUT, the test generation process may take a long time to generate a set of test vectors 
detecting all faults; in some cases, some faults remain undetectable, which reduces the 
test quality.  

In order to decrease test generation and test application times and to enhance test 
quality, testability-related design rules are used during the circuit design. This will be 
explained in the following subsection. 

I.2.B Design for testability 

Integration of design and test consists in considering testing early in the design flow. 
This task is referred as design for testability (DFT). Related techniques are usually 
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classified into three categories: Ad-hoc DFT techniques, Scan design, and built-in self-
test (BIST). 

I.2.B.a. Ad-hoc DFT techniques and Scan design 

The goal of such techniques is to enhance the capabilities of controlling and observing 
the poorly testable nodes in a circuit. Doing so, the test generation is easier, the quality of 
test is improved, and the test, debug and diagnose tasks are simplified. 

Ad-hoc methods target the difficult-to-test protions of the circuit and consist in adding 
dedicated circuitry (test points) for controllability and observability improvement. The 
test points allow to access circuit internal nodes directly. 

Scan design is the most common DFT technique used for sequential circuits. All or a 
part of the storage elements (latches or flip-flops) in the IC design are made externally 
controllable and observable. An extra circuit signal called scan enable is added to the 
design. When asserted, the storage elements, called scan cells, are stitched together to 
form one or several shift register(s), called scan chain(s). Each scan chain is connected to 
one primary input and one primary output. Thus, an arbitrary pattern can be serially 
entered into the chain of flips flops, and the state of every flip flop can be read out. 
Therefore, the problem of sequential testing becomes one of combinational logic testing 
only, leading to an easier test generation process, and better test quality. An example of 
full scan design circuit is shown in Figure 1-6. 

 

 

Figure 1-6: sequential circuit (a) designed as full scan circuit (b). 

Another important technique based on test data serialization is the JTAG boundary scan 
test introduced for board testing. Since our work, presented in chapters 2 and 3 of this 
document, is heavily based on this technique, this later will be described in details in 
section I.2.C. 

I.2.B.b. BIST techniques  

The BIST is a design technique consisting in integrating in the DUT a test pattern 
generator (TPG) and an output response analyzer (ORA) in order to perform testing 
internal inside the IC. The TPG generates the test vectors applied to the DUT inputs, 
while the ORA automatically compacts the output responses of the DUT into a signature. 
The operations of the TPG, the DUT and the ORA are controlled by a logic BIST 
controller. This later provides all the necessary timing control signals to ensure a correct 
testing operation. Once the BIST operation is complete, the BIST controller provides a 
pass/fail indication after comparison of the final signature with a golden signature. Figure 
1-7 shows an example of DUT with logic BIST structures. 
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Figure 1-7: typical logic BIST structure 

Clearly, the BIST technique generates an important area overhead, since it implies the 
integration of the TPG, ORA and logic controller in the DUT. However, BIST techniques 
offer many advantages that can favorite their use: 

- In fact, the test time is reduced with BIST. In consequence, the test cost is reduced 
on its turn, which alleviates the cost of the area overhead.  

- BIST techniques permit to avoid the use of high expensive ATE, as most of the 
tester functions reside on-chip itself.  

- BIST techniques offer the possibility to perform a reliable test of internal circuit 
components, in case of limited external access via the primary inputs. 

- BIST can be used from wafer to in-situ testing. 

I.2.C JTAG boundary scan 

The joint test action group (JTAG) TAG was an industry group formed in 1985, which 
has developed a specification for boundary-scan testing that was standardized in 1990 
[IEEE 1149.1 Std]. In 1994, a supplement containing a description of the boundary-scan 
description language (BSDL) was added to the standard. Since that time, JTAG has been 
adopted by major electronics companies all over the world. Applications are found in 
high volume, high-end consumer products, telecommunication products, defense systems, 
computers, peripherals, and avionics.  

The boundary-scan test architecture provides a means to test interconnects between 
integrated circuits on a board without using physical test probes. Its basic idea consists in 
adding scan registers to the inputs and outputs of ICs, as shown in Figure 1-8.  

 

Figure 1-8: basic idea of boundary scan 

The boundary scan cells of ICs on the same board are interconnected into a single 
boundary-scan chain (see Figure 1-9). Through this chain, the I/Os of each IC are 

Boundary scan registers 

Internal logic 
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controllable and observable via serial scan and Capture/Update operations. Thus, a 
pattern can be applied to the circuit inputs, and the response can be read out via the 
boundary scan chain. This can be used to test the soldered ICs on a board, as well as the 
interconnections between them. 

 

Figure 1-9: a board containing four ICs complying with boundary scan 

I.2.C.a. Test architecture and procedure 

In addition to the boundary-scan register, extra control circuitry is implemented. The 
boundary-scan circuitry can be divided into four main hardware components: 

• A Test Access Port (TAP), which represents the circuit test interface. 
• A TAP controller (TAPC), which is a 16-states finite-state machine that controls 

each step of the boundary-scan operations. 
• An instruction register (IR), and its associated decoder. 
• Several test data registers, including mandatory register like a Bypass register, and 

some optional registers like device-ID register. 

Figure 1-10 shows the architecture of a boundary scan compliant circuit. Each of the four 
main components is detailed in the following sub-sections.  

 

Figure 1-10: Compliant digital die with IEEE 1149.1  
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In addition to extra hardware components, the IEEE 1149.1 std. also defines a set of 
test instructions, including four mandatory ones (BYPASS, SAMPLE, PRELOAD, and 
EXTEST), and several optional ones. 

An outline of test procedure using boundary scan is as follows: 

1. A boundary-scan test instruction is shifted into the IR through the TDI. 

2. The instruction is decoded by the decoder associated with the IR to generate the 
required control signals so as to properly configure the test logic. 

3. A test pattern is shifted into the selected data register through the TDI and then 
applied to the logic to be tested. 

4. The test response is captured into some data register. 

5. The captured response is shifted out through the TDO for observation and, at the 
same time, a new test pattern can be scanned in through the TDI. 

6. Steps 3 to 5 are repeated until all test patterns are shifted in and applied, and all 
test responses are shifted out. 

I.2.C.b. Test access port 

The TAP of 1149.1 contains four mandatory pins and one optional pin, as described 
below: 

• Test Clock Input (TCK): is a clock input to synchronize the test operations 
between the various parts of a chip or between different chips on a PCB. This 
input must be independent of system clocks, so the shifting and capturing of test 
data can be executed concurrently with normal system operation. 

• Test Data Input (TDI) is an input to allow test instructions and test data to be 
serially loaded respectively into the instruction register and the various test data 
registers. 

• Test Data Output (TDO) is an output to allow carious test data to be driven out. 
Changes in the state of the signal driven through TDO should occur only on the 
falling edge of TCK. 

• Test Mode Select (TMS) is the sole test control input to the TAP controller. All 
boundary-scan test operations such as shifting, capturing, and updating of test 
data are controlled by the test sequence applied to this input. 

• Test Reset (TRST) is an optional pin used to reset the TAP controller. 

I.2.C.c. Data registers and boundary-scan cells 

Standard 1149.1 specifies several test data registers, as shown in Figure 1-10. Two 
mandatory test data registers: the boundary scan register and the bypass register, must be 
included in any boundary scan architecture. 

a) Boundary-scan registers (BSR)  

BSR is the collection of the boundary- scan-cells (BSCs) inserted at the I/O pins of the 
original circuit, as shown in Figure 1-10. A typical BSC is shown inFigure 1-11.  
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Figure 1-11: a typical boundary scan cell 

This cell can be used as either an input or output cell. As an input cell, the IN signal 
line corresponds to a chip input pad, and the OUT signal line is tied to an input of the 
internal logic. As an output cell, IN corresponds to the output of the internal logic, and 
OUT is tied to an output pad. 

The test operations of a BSC are controlled by three output signals of the TAP 
controller: ClockDR, ShiftDR, and UpdateDR. There are four major modes for the 
boundary-scan cell: 

- Normal mode: simply passes inputs to outputs. (Mode = ‘0’). 

- Scan mode or shift mode passes data from SI to R1 and from R1 to SO. (ShiftDR = 
‘1’, ClockDR = clock pulse). 

- Capture mode loads the value on the input IN to R1. (ShiftDR = ‘0’, ClockDR = 
clock pulse). 

- Finally, update mode loads values from R1 to the output. (Mode = ‘1’, UpdateDR 
= 1 clock pulse). 

To shift in data, the scan mode must be selected for a number of clock cycles. This 
number is dictated by the number of scan cells in the scan chain. Once the shift operation 
is complete, the update mode is selected for only one clock cycle to apply the data. To 
capture data and scan it out, one cycle of capture mode must be selected followed by the 
required number of scan cycles. 

b) Bypass register 

Bypass register is a single-bit register that is used to bypass a chip when it is not 
involved in the current test operation. This can significantly reduce test time required to 
shift in/out test data through the long TDI-TDO system path. 

I.2.C.d. TAP Controller (TAPC) 

The TAPC is a 16-states finite state machine, which operates according to this state 
diagram. 
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Figure 1-12: state diagram of TAP Controller 

According to the state diagram shown in Figure 1-12, we give the data scan timing 
diagram as an example of test logic operation, shown in Figure 1-13. 
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Figure 1-13: timing diagrams in scan operation [IEEE 1149.1 Std] 
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I.2.C.e. Instruction register and instruction set 

The instruction register (IR) is used to store the instruction to be executed. The 
decoder associated with the IR decodes the instruction to generate the required control 
signals. Four mandatory boundary-scan test instructions (SAMPLE, PRELOAD, 
BYPASS, and EXTEST) are defined in 1149.1. In addition, the INTEST instruction is 
recommended. There are other useful instructions such as USRCODE, IDCODE, 
CLAMP… but they are not described here. 

BYPASS: this instruction is used to “bypass” the boundary-scan registers on unused 
chips so as to prevent long shift operations. 

SAMPLE: the sample operation can be completed when the Capture operation is 
executing, such that the required test data can be loaded in parallel to the selected data 
registers. This means that a snapshot of the normal operation of the chip can be taken and 
examined. 

PRELOAD: this instruction allows test data to be shifted into or out of the selected 
data register during the Shift-DR operation, without causing interference to the normal 
operation of the internal logic (see Figure 1-14). This allows an initial data pattern to be 
placed at the latched parallel outputs of boundary-scan test operation.  

 

Figure 1-14: execution of PRELOAD instruction 

EXTEST: this instruction is used to test the circuitry external to the chips, typically the 
interconnections between chips and between boards. 

There are other versions for the standard IEEE 1149, such as 1149.4 [IEEE 1149.4] 
which is created to standardize the boundary scan for analog test, and 1149.6 [IEEE 
1149.6], which is intended for advanced digital networks that include analog components 
and high speed I/O ports. 

I.3 Testing at various manufacturing stages: test application issues  

The microelectronic circuits go through several fabrication steps, prior to their 
exploitation by the end user. Taking account of the possible defaults which could be 
generated by the fabrication process, the circuits are tested at the end of each fabrication 
step. Only the fault-free circuits move to the next step, where the defected circuits are 
discarded in general. 

The lifecycle of a circuit begins when the designers provide the circuit design masks. 
These latter are used to fabricate the circuits on a silicon wafer. Once the fabrication is 
complete, the circuits first undergo the “wafer test” (Figure 1-15), where the faulty ones 



Chapter 1: Context and state-of-the-art 

1-15 
Confidential    

are marked to be discarded after wafer dicing. The next manufacturing step is packaging 
(for simple IC or SOC) or assembly with other circuits (in case of bare dies to be 
included in an SIP before packaging of the complete system. Once packaged, the chips 
undergo another test before delivery, named “final test”. The packaged circuits or 
systems that pass the final test are delivered to the board or product manufacturer. 
Delivered IC and systems are then assembled onto a printed circuit board (PCB). The 
PCB is tested before and after assembly of the components in order to check the 
interconnections and the assembly process. Later, this PCB is integrated in the final 
product, which is tested before sale. At this point, the fabrication flow of the IC is 
finished, where it is now ready to be exploited by the end user.  

Some applications require test and diagnosis during the chip lifetime, which means to 
perform an in-situ test. 

 
Figure 1-15: IC manufacturing and test steps 

A short state-of-the-art of the wafer test technologies is presented in section I.3.A to 
exhibit the major technological problems. Once the circuits are packaged, the compound 
needs to be tested again: in section I.3.B, we will see what the most critical issues are. 
Some considerations will be additionally addressed in sections I.3.C and I.3.D, dealing 
with the board and the in-situ test issues. 

I.3.A Wafer testing issues 

Manufacturers try to catch the defects at the earliest stages of the circuit life for both 
cost savings and quality improvement. Indeed, every late detected defect represents a 
significant loss, and it is even more costly if it is detected by the customer after delivery. 
The preferred strategy therefore consists in reaching the highest possible coverage during 
the wafer test, to minimize the yield losses at final test. A test applied to a bare die is 
usually called ‘wafer test’ while a test applied to a packaged IC is called ‘final test’.  

Clearly, an ATE must be connected to the primary I/Os of the DUT when test is 
applied. During wafer test, this connection is done with the IC pads through a dedicated 
probe card. The physical contact between the DUT pads and the probe tips is called a 
touchdown.  

This contact-based technology suffers from several limitations and problems. For 
example, after testing a number of DUTs on a wafer, debris can accumulate on the tips of 
the probe needles due to repetitive touchdowns. This can affect the probe card efficiency 
and reduce the test quality in consequence. Thus, the probe tips must be periodically 
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cleaned. In the following, we address the major technological problems of current 
probing techniques. Next subsection presents different probing technologies and general 
related issues. The following section is dedicated to issues related to SIP testing. 

I.3.A.a. Probing technologies and limitations 

Probe cards are classified according to their probe tips type. The traditional technology 
is based on tungsten needles shaped in a cantilever profile. The shaft of each needle is 
held in place by an epoxy ring (seeFigure 1-16.) This technology remains one of the most 
widely used technologies in the probe card market today [Mann 2004]. 

 

Figure 1-16: Principle of cantilever probe card [L-T. Wang 2008] 

This technology suffers from pads scratching. In addition, the number of DUTs that 
can be concurrently tested (parallel test) with cantilevers probe card is very limited. In 
fact, two limiting factors are caused by the volume and the shape of the cantilevers: the 
alignment of probe tips and the important space required by the probe needles -dedicated 
to one DUT- above the wafer. Typically, the number of DUT concurrently tested with 
this type of probe card is limited to two.  

The vertical probe is an alternative probing technology appeared in 1977. Basically, 
this technology was developed to fulfill the requirements for array configurations. An 
array configuration designates an IC design where the I/O pads are placed over the entire 
IC surface rather than being restricted to the perimeter. Recently, with the increasing 
demand for concurrent test, the vertical probe technology has known a growing use. Its 
principle is depicted in Figure 1-17. 

 

Figure 1-17: principle of vertical probe card [Mann 2004] 

The “membrane” technology is a particular type of vertical probe cards, basically 
developed for RF IC testing. By reducing the distance between the pads and the test head 
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components, the membrane technology permits a better transfer of analogue and RF 
signals from the ATE to the DUT. Thus, the problems of signal attenuation and noise 
interference, encountered with classical probing techniques, are resolved. The membrane 
technology is illustrated in Figure 1-18. The signals transfer from the ATE electronics to 
the DUT is done through a set of micro-strip transmission lines, which are designed on a 
flexible dielectric material. The DUT is contacted by an array of micro-tips formed at the 
end of the transmission lines through “via holes” in the membrane (Figure 1-18.a) [Leslie 
1989], [Leung 1995], [Wartenberg 2006]. The membrane is mounted on a PCB carrier 
that interfaces with the test board (Figure 1-18.b). 

 

(a) Membrane technology 

 

(b) Structure of the probe card 

Figure 1-18: Membrane probe card [Leslie 1989] 

In general, the vertical probe technology permits to test several DUTs in parallel, as 
much as the tester resources can support. However, this concurrent test is limited by the 
co-planarity factor. In fact, when test is applied, all vertical probes must contact the 
dedicated pads on the DUTs. A pressured touchdown may cause damaging to the DUTs, 
whereas a relaxed touchdown may leave some pads without contact. Therefore, it is 
preferred to test a limited number of DUTs with correct probing, rather than testing a 
higher number of DUTs with risked probing. 

The vertical probe implies that the pad size and pitch (minimum distance between two 
pads) must be large enough to perform a correct contact with the vertical probe needles. 
However, pad size and pitch have regularly decreased, requiring more and smaller probe 
needles, and forcing probe cards therefore towards novel technologies. In addition, the 
growth of chip-scale and wafer-level packages put further demands on probes, which 
must contact now solder bumps instead of planar pads [L-T. Wang 2008].  
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An emerging technology, based on MEMS implementation of probe needles, is 
recently developed to push the mechanical limits forward. With this technology, the 
volume of probe needles is significantly reduced. Thus, pitches of 35µm can be achieved 
with minimal scratching risk, and a higher number of DUT can be tested in parallel. 
MEMS based probe cards are now starting to replace the traditional ones, where 
industrial products and research demonstrations show a growing interest in the MEMS-
based technologies [Cooke 2005]. However, this novel technology -currently under 
development- is very expensive. In addition, like other technologies, it suffers from the 
debris problem. In fact, due to the probe needle reduced size, debris can rapidly 
accumulate on the MEMS cantilevers. Moreover, it needs more time to become 
sufficiently reliable. For that, this technology is not used today for high production 
testing. 

Table 1-1 summarizes the main advantages and problems of probing technologies.  

 

 Advantages Drawbacks 

Cantilever  simple and cheap - pads scratching 

- limited parallel test 

- debris problem 

Vertical - large parallel test 

- testing of array configuration  

- reliable RF test (membrane 
technology) 

- size and pitch of pads are limited 

- planarity problem 

- debris problem 

 

MEMS - bond pads probing 

- enhanced parallel test  

- reduced pitch size 

- no serious scratching problem 

- very expensive 

- not a mature technology (still under 
development) 

- debris problem 

Table 1-1: advantages and drawbacks of various probing technologies 

To summarize, various probing technologies have been developed for IC testing. Each 
technology presents some advantages but suffers from several limitations at the same 
time. The reduction of the size and the pitch of the pads, the development of very 
complex devices, beside the increasing demand for multi-site (parallel) testing, have 
pushed the fabrication of probe cards towards the limits of the technology. However, 
even with the most advanced probing techniques, the wafer test stills suffer from contact 
problems, and it is expected to not be able to catch-up with the increasing requirements 
for high speed and high frequencies test needed for the complex circuits [Wu 2006].  

In this section, we have discussed the major technological problems concerning the 
wafer test for any type of circuit. Additional limitations that are related to SIP testing are 
discussed in the next section.  

I.3.A.b. SIP testing and related issues 

A SIP is a sophisticated system, including multiple pre-tested dies and passive 
components. They are assembled together by a complex assembly process, where many 
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different interconnect techniques may be used for wire bonding and flip-chip 
connections. Thus, the resulting SIP is an expensive product. Knowing that a defective 
SIP cannot be repaired, we come therefore to the following observation [L-T. Wang 
2008]: 

“The SIP process is economically viable only if the associated yield YSIP of the 
packaged SIP is high enough”. 

Considering an SIP assembly process including n different dies, the overall yield YSIP 

can be ascertained by the Equation 1-1 [L-T; Wang 2008]: 

YSIP = 100 [P1 × P2× … × Pn] × Ps × Pint
Q × Pw .  (1-1) 

Where Pi is the probability that die #i is defect-free, Ps is the probability of 
manufacturing a defect-free substrate (possibly including passive components), Pint is the 
probability of die interconnect being defect-free, Q is the quantity of die interconnects, 
and Pw is the probability of placement and mounting being defect-free.  

The previous equation shows that the overall yield of a SIP manufacturing process 
depends on the quality of assembled components, as well as on the quality of the 
assembly process. In fact, complex process may create new failures, because: 

- More stress is applied during assembly, which may cause die cracks, or broken 
bonding. 

- Placement of active dies on passive die is a potential source of misalignment, i.e. 
shift and rotation (see Figure 1-19) 

 

Figure 1-19: possible misplacement during assembly process: shift (left), and 
rotation (right). 

Thus, dies must be of a high quality and the assembly process must be under control in 
order to achieve a viable yield. For that, a special strategy can be followed during SIP 
manufacturing process. It consists of: 

1. Use of known good dies (KGD) in SIP fabrication. A KGD is a bare die with 
the same, or better, quality after wafer test than its packaged and “final tested” 
equivalent [Cauvet 2007].  

2. An assembly process beginning by the cheaper die and finishing with the most 
expansive one, and 
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3. A recursive test after the assembly of each die, in order to avoid the loss of 
expensive dies not yet assembled, if any default is detected at current assembly 
phase.  

However, recursive test requires several touchdowns on SIP pads. Even with the 
advanced probing techniques, performing several touchdowns may lead to substrate pad 
scrubbing (see), which may affect the quality of wire bonding.  

 

Figure 1-20: pad scrubbing due to several touchdowns (source :NXP 
semiconductors) 

For this reason, the number of touchdowns is typically limited to three. In 
consequence, the number of assembled active dies is limited to two, since a preliminary 
test of the substrate is usually performed before to start the assembly process. Regarding 
the previous limitations of contact-based probing techniques, alternative solutions must 
be investigated for the particular case of SIP testing during manufacturing.  

I.3.B Final testing  

After wafer dicing, the expected fault-free devices (IC, SOC or SIP) are packaged. A 
package consists typically of a “lead frame” intended to hold up the bare device, and a 
kind of box intended to cover this device. The packaging process consists in putting the 
bare device on the lead frame, interconnecting the die pads to the lead frame pins, and 
finally fixing the box on the leadframe, creating therefore the final package. Once 
packaged, the circuits are tested before their delivery. This test is called final test. 

In general, the final test tries to detect the possible defects caused by wafer dicing or 
packaging process, as well as to cover the misses of wafer test. Even when manufacturers 
try to guarantee the quality of the bare dies by an efficient wafer test, this objective is not 
easy to reach because of many limitation factors, such as limited contact and probe speed. 
Fortunately, these limitations do not exist in final test, where the contact is performed 
with the package pins instead of circuit pads. Moreover, high speed and high frequencies 
can be handled more easily than at wafer level [Mann 2004]. 

The final test consists in a combination of functional and parametric test. The 
functional test consists in applying a set of test vectors at the input of the DUT and 
verifying if the output responses are equal to the expected ones. The parametric test 
consists in verifying the limit values of circuit parameters. Two types of parametric test: 

1- DC parametric test: it consists in measuring a DC current or a DC voltage 
during test application. According to the measured value, a “pass/fail” 
decision is done at the end of test. 

2- AC parametric test: it permits to measure the dynamic parameters of a 
circuit: width of the clock pulse, propagation time, set-up time, hold time, 
fall time, etc… 
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After final test, the packaged circuits are delivered to the customer. Each delivery is 
characterized by a defect level (DL). A DL, called reject rate also, is the ratio of delivered 
faulty parts to the total number of delivered parts: 

parts deliveredofnumberTotal

partsfaulty deliveredofNumber
rateReject =  

A reject rate of 300 parts per million (PPM) chips or less may be considered to be 
acceptable for mobile phones, while 100 PPM or lower represents good quality for home 
consumer devices. A reject rate of 10 PPM or less is needed for automotive applications. 

I.3.C Board and product testing 

Traditionally, the circuits on board have long been tested using a “Bed of Nails”, 
usually combined with functional testing of every chip. However, this approach has 
several drawbacks. In fact, a Bed of Nails, basically used to create test access, requires 
the addition of “test-lands” to the PCB, which generates a significant board area 
overhead. In addition, fast functional tests are used to test the chips. These tests can target 
chip damages due to the assembly process but do not provide high fault coverage like a 
structural test for instance. To overcome these drawbacks, the current test strategy 
consists in using only “fault-free” chips and the JTAG boundary scan standard [van Geest 
2001], [Schuttert 2004]. Following this strategy, the assembled circuits are considered 
fault-free components (high quality testing must thus be performed on every component 
before system assembly). Consequently, the board testing can be limited on faults 
possibly introduced during the PCB assembly process. That leads to focus the test on the 
interconnections between the circuits, in addition to a partial test of the circuits 
themselves to ensure that they are not damaged during the assembly process.  

Following this strategy, the JTAG boundary scan technique is strongly adopted for 
interconnections test. Thanks to the analogue extension of the boundary scan standard 
(IEEE 1149.4), digital and analogue interconnections can be easily tested at board level. 
Concerning the test of the chips soldered on the board, the JTAG boundary scan 
infrastructure allows accessing extra test resources introduced by the DFT activity on 
every chip. 

 

Figure 1-21: novel strategy of PCB assembly test [van Geest 2001] 
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To summarize, a novel strategy for board testing has been suggested. It consists in 
building or re-using on-chip test solutions (DFT), beside JTAG boundary scan for 
convenient test access. With this trend, the area overhead, costs and development time of 
board testing can be significantly reduced (see Figure 1-21).  

As for components at lower level of integration, parallel and concurrent testing of 
several boards leads to save test application time. However, physical and contact-based 
accesses to several boards at a time require the development of a dedicated test 
infrastructure, where the test data could be broadcasted to a large number of boards.  

I.3.D In-situ test 

As discussed earlier, testing an integrated circuit or system at manufacturing time is a 
must to guarantee a high quality product, and After delivery, the device undergoes 
another test when it is assembled to the dedicated system (e.g. PCB). This last test aims 
to detect the possible defaults generated by the assembly process.  

Once the system is successfully assembled, it becomes ready for use, and therefore, to 
begin its application lifetime. However, some applications need to test and diagnosis the 
devices on board or system during their active lifetime, which is the case for critical 
application (e.g. automotive, medical implants …). However, in order to perform an in-
situ test, we need to satisfy two conditions:  

- First, we need to provide an external access to the device embedded within the 
system.  

- Secondly, this access must be reliable and non-intrusive as well.  

In several cases, a wired contact with the DUT is not possible. This can be the case of 
circuits embedded in a satellite or a vehicle for example, or the case of medical implants 
in a human body. Thus, an attractive solution for such cases consists in using the wireless 
communications, where it provides a non-intrusive access to the DUT for in-situ test 
purpose.  

I.4 Conclusion  

Because defects created during the chip manufacturing process are unavoidable, the 
test activity plays a key role in this process by its ability to differentiate good devices 
from faulty ones before delivery to end-users, and to improve the manufacturing yield, 
where it permits to analyze and correct the causes of defects when encountered. 
Basically, testing consists of two processes: the test generation and the test application. 
Test generation designates the process of providing test vectors, whereas the test 
application refers to the process of applying those generated vectors to the DUT inputs 
and analyzing the responses. 

As the microelectronic devices continue to shrink in size and increase in density, 
testing these devices has become increasingly difficult. In fact, while the number of 
primary I/O is stable, the integration of different cores in the same chip (SOC) or in the 
same package (SIP) continues to grow up. In consequence, the number of tests that must 
be applied to a manufactured circuit has increased, while the test access from primary 
inputs remains relatively limited. Thus, test generation becomes more complicated, 
implying a higher cost and a longer development time. To solve the previous issues, DFT 
techniques are increasingly adopted for circuits testing. The test application consists in 
applying the test stimuli from an ATE to the DUT and in collecting test responses from 
the DUT through a dedicated interface. As previously mentioned, the test application 
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suffers from several drawbacks and limitations according to the DUT (IC, SOC, or SIP) 
and the considered manufacturing or integration step. 

 At wafer test time, the ATE is connected to the DUT pads through a probe card. 
Various technologies of probe card have been elaborated for IC wafer testing, but every 
one has its limitations. The traditional probing technology, based on tungsten needles 
shaped in a cantilever profile presents a limited parallelism (number of dies on a given 
wafer that can be tested at a time) [L-T. Wang 2008]. In addition, it suffers from pad 
scratching and debris problems. These later ones are common also to the vertical probing 
technology [Mann 2004]. Moreover, it is expected that the vertical technology will not be 
able to catch up with the continuous decrease of pad size and pitch. Recent probing 
technology based on MEMS cantilever is currently under development, pushing the 
mechanical limits forward. However, this technology is very expensive and suffers also 
from debris problem.  

Parallel testing of numerous devices (from bare dies to boards) is always a challenge 
due to the difficulty to contact numerous devices at a time. Additionally, in-situ testing 
encounters the problem of missing a reliable external access to IOs of the DUT embedded 
in the system. Finally, the particular case of SIP testing, which requires several 
touchdowns during the assembly process, increases the problems related to test 
application based on physical contacts between probe cards and DUT. 

In result of all these contact-based test technology related issues (test costs, limited 
parallelism, pad scrubbing, in-situ testing) a test technology based on wireless 
transmissions appears as a possible alternative. For that, we propose a new wireless test 
solution, which can be used at various levels of manufacturing process. Before describing 
this solution, we give an overview of the wireless test methods currently under 
development in the next section. 
 

II  State of the art of wireless test methods 
Several wireless or contactless test methods were recently proposed to solve the 

probing-related or contact-related issues. In this section, we first address the main 
challenges related to test strategies based on wireless communication, and we give a 
detailed description of several related methods proposed so-far for wafer or in-situ test. In 
the following, “wireless test” stands for test application strategies using wireless or 
contactless communications for transmission of test data between the test equipment and 
the DUT. 

II.1  Wireless test challenges 

The wireless test is proposed to solve the problems of contact-based test. Its purpose 
consists in transferring the test signals from the ATE to the DUT through a wireless link, 
to get rid of the probe needles and their limitations. Clearly, a wireless test interface must 
be added to the ATE and to the DUTs for this purpose. In consequence, some 
modifications must be done at design time in order to provide a wireless interface to the 
DUT, and classical test procedure must be adapted as well. These modifications generate 
new critical issues that must be addressed in any proposed wireless test approach, mainly 
the following ones: 

- Power supply: In classical probing techniques, the ATE delivers the power and 
clock signals to the DUTs through the probe needles. However, no contact is 
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envisaged with the DUT in wireless test; and therefore, an alternative solution 
must be provided to deliver power and clock signals.  

- Area overhead: clearly, an antenna and a RF transceiver and possible extra logic 
must be integrated in the DUT. The resulting area overhead is a critical issue that 
must be carefully considered. 

- Transmission reliability: the reliability of the wireless communication is crucial. 
The bit error rate (BER) of the transmission must be very low. The possible errors 
of the RF transmission must not generate any error in the test application.  

- MAC protocol: in order to establish a good communication between the ATE and 
the DUT(s), an efficient medium access protocol (MAC) must be used.  

- Transparent solution: it is highly preferable that a proposed wireless solution do 
not imply any modification on the test generation process. Thus, the test programs 
and software remain unchangeable with wireless test. 

- Test data management: once generated, the test data are transported from the tester 
to the DUT in wireless manner. Generally, the data are transmitted in packets. 
Thus, the DUT must be able to extract the test data from the received packets, and 
generates a packet to transmit its response, as well.  

- Types of test: an interesting method is who permits to perform the large types of 
test, such as JTAG boundary scan, or BIST application that is not accessible 
through JTAG interface, etc…  

- Security: the access to the internal circuit structures through the embedded 
wireless interface must be denied for anyone, except the person in charge of 
performing the test.  

- Multi-usage: a powerful method is that which can be used at several stages of 
manufacturing (e.g. wafer test and in-situ test).  

II.2  Scanimetrics approach 

An emerging solution for wafer test was recently developed by “Scanimetrics”, a 
Canadian company. It consists of replacing the traditional probe card by a non-contact 
interface [Moore 2008], [Moore 2007], [Sellathamby 2005]. Following this approach, 
each probe needle is replaced by a couple of antennas and transceivers. A first “antenna 
& transceiver” is connected to the DUT pad, and a second “antenna & transceiver” is 
integrated in the probe card. Thus, a probe card with n probe needles is replaced by a 
probe card with n micro antennas and transceivers. On the other side, the DUT integrates 
equally n micro antennas and transceivers connected to n pads, and operating at the same 
carrier frequency. The communication between the probe card and the DUT is performed 
pad to pad; where near field communication (NFC) is used to transfer data at tens of 
megabit per second rates. The distance between the probe card and the DUTs is up to 100 
µm, depending on the antenna size. The principle is depicted in Figure 1-22 and Figure 
1-23. 
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Figure 1-22
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22: Scanimetrics principle of non-contact testing 

(Courtesy of Scanimetrics) 

Cross-sectional view of the non-contact test solution

(Courtesy of Scanimetrics)  
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- No need for test data processing on the ATE side, and 

- Significant reduction of test time because it enables a parallel test (up to 6 DUT 
tested in parallel) with high data rate. 

However, this non-contact test approach requires the design of a specific chip to be 
placed on the probe card with “mirror” antennas and transceivers. Hence, for every new 
device (IC, SOC or SiP) design, a specific probe card must be designed. The alignment 
remains a key parameter, although the orders of magnitude can be significantly relaxed 
(up to 100 µm in z direction, and to 30 µm in X or Y direction). 

The DUTs must be powered during test. In [Sellathamby 2005], the authors 
investigate the power delivery from the probe card to the DUT by non-contact means. For 
that, in addition to the micro antenna and the transceiver, a power rectifier (PR) is 
connected to each power pad in the DUT. The probe card delivers the power to the DUT 
power pads in form of AC electromagnetic signals. The PR circuits extract the power 
from the received AC signal and deliver it in form of DC current.  The authors show that 
the amount of delivered power depends on the number of power pads on the DUT, which 
determines the number of power rectifier (PR) circuits (see Figure 1-24). The 
investigation result shows that the non-contact power transfer method could be used only 
for low and medium power devices.   

 

Figure 1-24: block diagram of power transfer system whithout contact [Sellathamby 
2005] 

For high power dissipations, the authors propose a hybrid solution: some power pads 
are directly contacted, while the remaining ones receive the power by non-contact means. 
Thus, a hybrid probe card must be used. It contains micro antennas and transceivers (for 
test data transmission, and partial power delivery) and some cantilevers (for power 
delivery). This hybrid solution is possible because the distance between the probe card 
and the DUT does not exceed the 100 µm, which permits the non-contact communication 
beside the physical touchdowns. However, the main restricting factor of this hybrid 
solution is the number of power and ground pads in the DUT. For a low number of power 
pads, the power is completely delivered by contact. In this case, only the power and 
ground pads are directly contacted, while the remaining pads (data) perform a contactless 
communication with the probe card.  

This very promising wafer test solution cannot, however, be used for final or in-situ 
test. In fact, once the DUT is packaged, the near-field communication with the embedded 
micro antennas and transceivers becomes practically impossible. Thus, the utility of this 
method is restricted to the wafer test only. 
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II.3  HOY system 

The HOY system proposed by the National Tsing Hua University (Taiwan) is a new 
wireless test approach, currently under development [Wu 2006], [Chen 2006], [Liou 
2007]. This system is based on RF transmission to perform a wireless test of the 
integrated circuits, and targets wafer test, test after packaging and test during active 
application of the DUT (in-situ). However, the published papers show that the work was 
only conducted on wafer test. The general concept of the HOY system is illustrated in 
Figure 1-25. 

 

Figure 1-25: HOY applications: (a) wafer test, (b) chip test, and (c) field diagnosis 
[Wu 2006] 

One of the primary goals of HOY system consists in reducing the test cost and 
discarding the expensive investment in the automatic test equipment (ATE) [Wu 2006], 
[Chen 2006]. Thus, the simplification of the tester is a key factor in the concept of the 
HOY system. For that, the implementation of advanced DFT techniques in the DUTs is 
necessary, in order to transfer the complexity from the tester to the DUTs. More 
particularly, the integration of BIST circuits and even built in self repair (BISR) in the 
DUT is heavily adopted by the HOY system [Wu 2006], [Ko 2007]. Based on that, the 
tester becomes a simple test controller. Its role is limited to initiate and control the BIST 
circuitry, and collect the response from the DUT at the end of test. Doing that, the tester 
can be drastically simplified to a personal computer (PC), as it is shown in Figure 1-25.  

According to the HOY system, every DUT contains a “Test Module” and a 
“Communications Module” (see Figure 1-26). The “Test Module” contains the BIST 
and/or BISR circuitry and a standard interface called HOY Test Wrapper.  The 
“Communications Module” contains the RF, baseband, and medium access control 
(MAC) circuits for communicating test commands and response data between the “HOY 
Tester” and the DUTs. 
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Figure 1-26: HOY architecture for wireless test [Liou 2007] 

Every DUT on the wafer contains at least one wireless transceiver to communicate 
independently with the tester [Wu 2006]; however, this DUT transceiver is not directly 
described in anyone of the published papers.  

In [Liou 2007], the authors describe the wireless transceiver that must be added to the 
ATE. It has the following main characteristics: 

a) ATE transmitter: 

- Output frequency: 902 ~ 928 MHz 

- Modulation : on-off keying (OOK) 

- Data rate: 250 Kb/s 

b) ATE receiver: 

- Input frequency: 2.4 ~ 2.5 GHz 

- Modulation: frequency shift keying (FSK) 

- Data rate: 250 Kb/s 

Therefore, we can deduce from the previous ATE transceiver characteristics that the 
DUT transceiver has a constant bit rate equal to 250 Kb/s. it operates with two 
frequencies: 900 MHz and 2.45 GHz.  

Unfortunately, there is no public information on the expected DUT antenna, and it is 
not clear if the DUT will have two separated antennae, one for the transmitter (Tx) and 
one for the receiver (Rx), or if it will integrate only one antenna adapted to work with 
both frequencies. Anyway, due to the size of the expected antenna(e) for the proposed 
frequencies (900 MHz and 2.5 GHz), this (these) antenna(e) seems too large to be 
integrated in the DUT; this remark leads us to suppose that the antenna will be build out 
the DUT, on the scribe lines of the wafer for instance. 

The used MAC protocol allows the tester to establish the connection with the DUTs, 
broadcast the data to the DUT, and finally collect the responses from the DUT by 
individual “polling” [Ko 2007]. Thus, the tester must send a polling message to a DUT 
requesting its transmission. A DUT cannot transmit its response without being polled by 
the tester.  

The data exchange unit (DEU) is the last layer in the communication module. Its role 
consists in storing the received data (from tester) in two buffers: Instruction and Data, 
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and storing the DUT response in a third buffer: Response. The data stored in Instruction 
and Data registers are used to control the function of HOY Test Wrapper (see Figure 
1-27). Once DEU enable Wrapper, this later begins to fetch instructions and decodes 
them for initializing, controlling the BIST and sending out test results from BIST [Liou 
2007]. Note that the Wrapper is designed according to the BIST controller description. 
The DEU and the Test Wrapper are illustrated in Figure 1-27. 

 

Figure 1-27: DEU and Test Wrapper of HOY system [Liou 2007] 

For power supply, the designers of HOY system suggest to power the DUTs in 
wireless manner, and to generate the clock signal from the received signal (see Figure 
1-28). Therefore, in addition to the “Test Module” and “Communications Module”, the 
DUT must contain a “Power Module”. This later consists of a power regulator and a 
clock modulator. 

 

Figure 1-28: The HOY test system with contactless power supply [Wu 2006]. 

The power regulator extracts the average power of the received carrier through an AC-
to-DC conversion, and provides the regulated power to drive the whole chip. The clock 
modulator generates the clock signal, in synchronisation with the tester [Wu 2006]. 
However, this method for power supply and clock generation implies a continuous signal 
transmission from the ATE and a continuous signal reception by the DUT. Thus, when 
there are no data to be transmitted (e.g. BIST is launched in the DUT), the ATE continues 
to transmit a signal without data (carrier only) to ensure the proper function of power 
regulator and clock modulator.  
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However, if the DUT has only one antenna for transmission and reception as it is 
shown in Figure 1-28, then the DUT transceiver cannot perform a simultaneous 
transmission and reception even if the Tx and Rx operate at different frequencies; 
otherwise the high power signal generated by the Tx is injected in the Rx, damaging its 
components. In consequence, the antenna cannot be connected to the Tx and to the Rx at 
the same time. Following that, when the DUT sends back its response to the tester, the 
DUT Rx and “Power Module” cannot receive any signal from the antenna. Therefore, 
both components of the “Power Module” cannot operate as expected, and the clock signal 
cannot be generated properly. Moreover, if the antenna is integrated in the DUT (as 
inFigure 1-25.a), then it will be a very small antenna. Hence, the amount of signal power 
captured by this antenna is insufficient to power the DUT during test.  

In case of DUT equipped with two antennae, it is possible that the “Power Module” 
receives a continuous signal, allowing it to work properly. Anyway, the wireless 
powering method does not guarantee a high power quality for the DUT, which implies 
the use of a special mechanism to stabilize and monitor the power. Taking account of 
these difficulties, the HOY system designers proposes the contactless power supply as an 
option necessitating a further investigation, and not as final solution [Wu 2006]. From the 
previous remarks, we come to the following conclusions: 

- The HOY system is limited to BIST test only. JTAG interconnection testing, 
scan tests and other types of test are not supported by the HOY system, 
restricting the usage to systems including IP cores equipped with their own 
BIST circuitry and cores developed by the system integrator where fault 
simulation is conceivable. 

- The generation of “Test module” depends on the BIST controller description; 
i.e. the “Test module” is specific to each circuit.  

- According to the proposed frequencies, the expected antenna is too large to be 
integrated in the DUT. 

- Wireless power supply for wafer testing is not yet fully explored. 

In summary, the HOY system – currently under development – needs further 
development before proper evaluation. Its usage is restricted to systems including IP 
cores equipped with their own BIST circuitry. 

II.4  “JTAG Technologies” solution 

An interesting method for remote wired or wireless communication to board and 
system level boundary-scan architectures (in compliance with the 1149.1 standard) has 
been proposed by JTAG Technologies [Collins 2005], [Reis 2006], [Sparks 2006]. 
According to this method, an in-situ boundary-scan testing is possible, by utilizing the 
existing wired or wireless communication protocol.  

One of the basic ideas of this patented solution [WO2004/046741] is to use existing 
JTAG controllers according to the IEEE 1149.1 standard and the software thereof, which 
have the following characteristics: 

- They have the five JTAG signals as I/Os. 

- The connection of the test controller with the DUT is synchronous. 

- The TCK clock driven from the test controller is free running and cannot be 
switched off. 
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- Once the first bit of TDI is shifted out on the rising edge of TCK, a first bit 
read out from the DUT is expected on the JTAG controller TDO input on the 
next rising clock edge. Since the TDO is updated at the falling edge of TCK in 
the DUT, this means that the amount of time available for TDO to travel from 
the DUT to the test controller is half the TCK period. 

The architecture of the proposed solution consists of a transceiver pair, one (named 
TapSpacer Uplink) connected to the boundary scan controller and the other (named 
TapSpacer Downlink) connected to the board or system under test. The Uplink and the 
Downlink transceivers use the existing communication interface for connection, which is 
an asynchronous interface in the most of communication techniques. The general concept 
of this solution is illustrated in Figure 1-29. 

 

Figure 1-29: proposed architecture of remote boundary-scan [Collins 2005] 

The proposed solution is designed to be transparent for the JTAG test controller. 
Therefore, the characteristics of the test controller mentioned above must be respected, 
especially the last one. However, the signal is always delayed on an asynchronous 
transmission path. Supposing that the round trip transmission delay is calculated to be 
100 ms for example, in this case the maximum achievable TCK frequency is 5 Hz, 
leading to very long test time.  

In order to have a reasonable TCK frequency, authors in [Collins 2005] propose to add 
a component at the end of the boundary scan-chain in the DUT. This component is a 
“virtual” boundary-scan register made of boundary-scan cells not connected to any IO of 
the DUT (see “virtual” boundary scan cells v1 to v20 in Figure 1-30). That means that a 
component comprising of n boundary scan cells (n = 20 in Figure 1-30) is added to the 
test architecture description of the targeted boundary scan DUT. In this sense, the 
proposed solution is not completely transparent for the system developer. 

 

Figure 1-30: principle of virtual component as seen by a test controller 

The number of virtual added cells depends on the round trip propagation delay, the 
communication link speed, the delay created in the encoding and decoding required by 
the data transmission protocols, and the latency. Regarding that, the worst case delay 
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must be defined and the corresponding number of virtual cells is added to the end of 
boundary scan register.  

The Uplink gets the TDI, TMS, TCK and TRST from the test controller, and sends 
only the TDI and TMS bits to the Downlink by packets, which are transported over the 
existing communication channel of the targeted board/system. Once the Downlink 
receives a packet, it extracts the TDI and TMS signals, generates the TCK locally and 
applied them to the DUT. The TDO generated by the DUT is packed and sent back to the 
Uplink. Once received, this later will store the TDO in a temporary buffer and prior to 
entering the shift state, the virtual-cell counter will be preset for the prescribed number of 
virtual cells (see Figure 1-31). Hence, for every TCK cycle within the shift sequence, the 
virtual-cell counter will decrement until it reaches zero. At this point the uplink will start 
transferring the real TDO data to the test controller for comparison against the expected 
TDO data. Doing that, the test control expects the TDO to arrive after predefined delay, 
which allows variations in the data transmission and latency. Therefore, all the 
characteristics of the test controller are respected. 

 

Figure 1-31: hardware implementation in the Uplink of the virtual cells 

Public information on this work is not available, particularly with regards to the 
following points:  

- How the Uplink and Downlink TapSpacers are implemented? And how they 
communicate with the existing system interface. 

- How the TDI and TMS are packed into packets: Do these packets have a 
packet header? Do they have a constant size, or a field in the packet header for 
showing the packet length?  

- How transmission errors are managed? 

In summary, the proposed method implies the addition of one virtual component to the 
description of the DUT at the cost of additional test time. It suggests that each packet sent 
by one node of the transceiver pair is correctly received by the other one in the predefined 
delay. Cases of transmission errors are not discussed. Not that, there is no problem 
concerning the power supply and the clock signals, since they are delivered to the DUT 
from its embedding system.  

II.5   “Sun Microsystems” wireless approach  

A wireless test concept for systems on board was developed in “Sun Microsystems” 
laboratories [Eberle 2004], [Eberle 2002] based on a wireless version of the JTAG 
standard. This wireless test approach aims to replace the wired scan paths on the board by 
wireless ones. Thus, the indirections appearing in architectures using daisy-chained or 
hierarchical wiring are replaced by direct connection between the system controller and 
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the monitored device on the board. An antenna and a RF transceiver are added to each 
monitored device for this purpose. This is illustrated in Figure 1-32. 

 

Figure 1-32: wired scan path (a) vs. wireless scan path (b) [Eberle 2004] 

This solution offers the opportunity for systems on board to be non-intrusively tested. 
It permits also to the electrically erasable programmable read-only memories 
(EEPROM) or field-programmable gate arrays (FPGA) to be wirelessly reprogrammed, 
without having to physically connect a programmer to the device. Finally, the proposed 
solution provides direct and more reliable connection to every DUT on the board 
compared to physical interconnects technologies. 

Clearly, there is no problem concerning the power supply and the clock signals in this 
context, since they are delivered to the DUTs from the board resources. On the other 
hand, equipment with wireless resources is less critical for system on board for systems 
on chip. Taking into account this particular context and focusing on the present work 
(wireless testing of integrated systems from the manufacturing phase down to in-situ 
testing), here we are interested to the packet format (data processing), the MAC protocol, 
and the test types supported by this solution. 

a) Data processing 

According to this solution, the packet used for the wireless exchange has a maximal 
length of 24 bytes. Among them, there are 8 bytes containing the necessary information 
for communication, which allow the receiver device to have a reliable connection with 
the transmitter device. The remaining 16 bytes (at maximum) are reserved for data.  

b) MAC protocol 

The proposed solution uses a MAC protocol to manage the transmissions between the 
tester and the DUTs. Communication is based on a master/slave protocol whereby the 
system controller implements the master and the DUTs on the cards implement the 
slaves. Message exchanges use a simple request/acknowledge protocol: The master sends 
a command in a  request  packet  and  the  slave  returns  a  reply  in  an  acknowledgment  
packet.  That is, a single master initiates all packet transfers and slaves can only send 
packets after they were instructed to do so by the master (polling).  
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c) Test types 

Eberle et al. describe a possible use of wireless transmission for other applications 
than boundary scan test. The concept of systems wireless monitoring is given in [Eberle 
2004]. In fact, the monitored systems integrate normally an EEPROM, which is 
permanently updated following the system state. Eberle et al. describe in their paper the 
idea of EEPROM wireless reading, via an RF interface added to the monitored systems.  

In summary, Eberle et al. propose a wireless approach for wireless test and monitoring 
of the systems on board. The proposed solution is not envisaged to be used for wafer test. 
It is suitable for big systems only, where the form factor is not really critical. 

II.6  Wireless test methods for intra-chip test 

A wireless communication for transmission of data between different cores inside the 
DUT was proposed [Chang 2001], [Zhao 2008], [Zhao 2006], [Y. Wang 2006]. None of 
these solutions addresses the question related to the transmission of data between the 
tester and the DUTs. In [Chang 2001], the authors investigate the implementation of RF 
transceivers coupled to the RF nodes in the DUT. The communication control between 
multiple RF nodes inside the DUT is addressed in [Zhao 2006], [Zhao 2008] as a network 
topic. Finally, in [Y. Wang 2006], the authors investigate the new wrapper architecture of 
each core in the DUT to be compliant with the RF communication, without giving any 
technical details. While related to wireless transmission of test data, the target application 
(wireless transmission between cores inside a system) shows specific issues (e.g. 
integration of many antennae, one per core) that do not apply for the problem addressed 
by the present work. 

II.7  Conclusion 

Several wireless/non-contact methods have been proposed so-far, either for wafer test 
or for in-situ test. Only the HOY system targets both applications. However, the HOY 
system is limited to BIST solutions where the data volume to exchange between the tester 
and the DUTs is very limited. Other types of test such as scan test or interconnect testing 
are not supported. Moreover, the proposed solution raises the very difficult issue related 
to the wireless transfer of power and clock signals during wafer test. 

“Scanimetrics” company has elaborated an interesting non-contact test method for 
wafer test. Test signals are transferred from the ATE to the DUT test structures through 
near-field, pad to pad communications. This approach supports all test types (scan test, 
JTAG, BIST…), and does not imply the integration of additional circuits rather than the 
antennas and transceivers that are added to every I/O pad. The near field communication 
with the integrated antennae and transceivers becomes practically impossible after system 
packaging. Thus the proposed solution cannot be extended to in-situ application. 

A wireless test method for in-situ test was elaborated by “Sun Microsystems” for 
systems on board. Aiming to avoid physical interconnections in the system test 
infrastructure, the physical paths between circuits on the board are replaced by a direct 
wireless communications between the ATE and every chip on the board; a wireless test 
interface is added to each chip for this purpose. This solution cannot be transported to 
wafer test where the goal is to test simultaneously a large number of identical DUT and 
where antennae and transceivers must be integrated to every DUT at manufacturing step. 

The method proposed for remote testing by JTAG Technologies supposes that the 
system embedding the targeted DUT has a communication interface (WiFi, Bluetooth, 
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Internet, etc…). The method consists in using this system interface to perform a remote 
JTAG boundary scan test. Clearly, it cannot be used for wafer test. A summary of the 
main characteristics of the previous methods is given in Table 1-2. 

 

 HOY System Scanimetrics  Sun 
Microsystems 

Reis 

Usage 
Wafer Yes Yes No No 

In-situ Yes No Yes Yes 

Test 
types 

JTAG No 

Yes 

Yes Yes 

BIST Yes ? No 

others No ? No 

Transparent 
solution 

No Yes ? Yes 

Parallel test Yes  Yes, but limited  Yes (up to 15) No 

Area overhead Large  Negligible Large ? 

Communication  
Far field (900 

MHz, 2.4 GHz) 
Near-field,   
pad to pad 

Far field     
(916 MHz) 

Any 
communication 

interface 

MAC protocol Yes No Yes 
That of the 

system interface 

Data rate 250 kbit/s Tens of Mbit/s 19.2 Kb/s Up to 10 Mbit/s 

Security issue 
To be 

addressed 
No problem  

To be 
addressed 

N/A 

Table 1-2: summary table of wireless test methods 

Our goal is to develop a wireless test method that can be used at several levels while it 
covers several types of test at the same time. Indeed, our study targets wafer test, board 
test, and in-situ test. In addition, it aims to provide a solution for several types of test such 
as Boundary scan test, BIST applications (without JTAG interface) etc… Finally, 
massive parallel testing of several DUTs on a wafer is also in order to reduce wafer test 
time. 
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As the microelectronic devices continue to shrink in size and increase in density, 
testing these devices becomes increasingly difficult. At wafer level, the test is usually 
performed using probing technologies. However, the contact-based probing 
techniques will may not be able to catch up with the increasing requirements in terms 
of parallelism, increasing number of I/Os and decreasing form factors. New test 
methods based on non-contact or wireless transmission were proposed. However, 
these solutions were limited to wireless activation of BIST structures (HOY system), 
wafer testing (Scanimetrics approach), or board level testing (Sun Microsystems’s 
solution). 

In order to cope with all related challenges, we elaborated a novel wireless test 
approach based on the integration of a Wireless Test Control Block (WTCB) in every 
DUT. This solution allows broadcasting the test data to all the DUT on a wafer 
allowing a massive parallel test, and thus improved test times, particularly when the 
test response evaluation is performed on chip. The WTCB interface has been designed 
as a modular architecture allowing smooth integration in different contexts. It consists 
of a Wireless communication module for wireless transmission of test data and a TCB 
for test application and test response collection to/from the system components. The 
TCB was designed to handle the DUT response in two ways according to the need of 
precise of global feedbacks.  

The communication module embeds a protocol stack of three layers: application, 
MAC and PHY layers. The application layer is the interface of the communication 
protocol stack with the TCB. It analyzes the application header of the test stimuli 
packets sent by the tester (DL packets) in order to generate the necessary information 
to the TCB, and encodes the application header for test responses packets sent back to 
the tester (UL packets). The MAC protocol is based on the master/slave model, and 
relies on allocating a temporal window for a group. It ensures a deterministic medium 
allocation, where each DUT can by itself send its test result without individual 
polling. This is a key factor in our solution because it permits to save test time by 
avoiding individual polling as proposed in the HOY system. The PHY layer is a key 
factor in the design of WTCB, but it was not the main objective of this work, for that 
it was only briefly described. 

In order to validate our original solution, we conducted several experiments. First 
ones targeted the power supply issue when addressing iterative wireless testing of 
SIPs during the manufacturing process. Our proposal of power supplying all the 
devices from dedicated pads implemented on the wafer border was experimented on 
real wafers. These experiments showed the feasibility of opening windows in the 
DUT seal ring for supplying the power from lines embedded in the wafer scribe lines. 
Complementary works are needed for ascertaining that systems connected to the same 
power line are sufficiently supplied. 

Secondly, we elaborated a dedicated experimental platform that emulates a tester 
and a WTCB. The tester prototype is implemented using a personal computer (PC) 
and a first FPGA, and the WTCB is implemented using a second FPGA. This 
platform was successfully used to perform a wireless test of two distinct circuits. The 
first one, developed for the targeted experimental validation, was implemented on a 
FPGA. The second one was an ASIC provided by the industrial partner of this project. 
Both were successfully tested through the proposed platform. Conducted experiments 
permitted to validate the following points: 
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- The operation of the tester-DUT link in both ways: uplink and downlink. 

- The efficiency of the proposed protocol stack, especially the application 
layer and the MAC layer. 

- The good interaction between the protocol stack and the TCB. 

- The efficient design of TCB, and the good functioning of its components: the 
JTAG test controller, the packet disassembler and the comparator. 

- The two comparison modes, i.e. the centralized mode (comparison in the 
tester) and the distributed mode (local comparison in the WTCB) 

Note that, a demonstration with multi-site test is currently under development. It 
aims at proving the capacity of our solution to perform parallel testing of multiple 
devices.  

Complementary works must be conducted on the WTCB PHY layer, concerning 
the integration of an antenna and a transceiver. These works will allow the proposition 
of complete WTCB IP. Finally, an important work should be conducted on the tester 
side in order to integrate the required wireless interface. 

As the microelectronic industry becomes more and more essential in several 
domains, such as automotive, health care, nuclear, environment and civil application, 
in-situ testing solutions get an increasing interest for many applications. In this 
context, our solution can be extended to be used for remote in-situ testing. In fact, 
thanks to its modular design, the proposed WTCB could be developed as an 
independent IP and connected with the functional interface of a system, providing 
therefore a reliable access between a remote tester and an embedded test 
infrastructure. 

Because wireless communication technology is used in increasing number of 
fields, radio-communication means are native resources in an increasing number of 
devices. On the other hand, a PC equipped with an appropriate wireless interface is 
sufficient for many remote testing applications. Taking into account the previous 
observations, our solution could preferably be developed for in-situ testing. For that, 
we are currently writing a patent proposal for defining the WTCB IP in the context of 
in-situ testing [Noun 2]. 
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