.. Numerical, 28 4.1. Option for numerical methods, p.28

F. Principle-of-the and .. , 29 4.3. Limit of the FDTD method for30 4.3.1 CFL limit and numerical dispersion30 4.3.2 Limit in application to simulation of the Purpose of the trial simulation, Configuration of the trial simulation, p.33

.. Simulation, 53 6.2.2.1 Field distribution model in RC, 53 6.2.2.2 Discussion of the parameters in Random Multiple Plane Waves Method (RMPWM)...............54 6.2.2.3 Deterministic Multiple Plane Wave Method (DMPWM), p.56

.. Objective, 67 7.2. Rat models in simulation and measurement Numerical model of different ages, p.69, 0677.

.. Objective, 96 8.2. Assessment of variation for the simulation results, p.96

A. Huygens-principle-in and F. , 126 AI.4 Non-uniform and sub-grids method in FDTD, p.126

U. Bergqvist and E. Vogel, Possible health implications of subjective symptoms and electromagnetic field. A report prepared by a European group of experts for the European Commission, DGV. Arbete och Hälsa, 1997:19. Swedish National Institute for Working Life, 1997.

G. Rubin, D. Munshi, J. Wessely, and S. , Electromagnetic Hypersensitivity: A Systematic Review of Provocation Studies, Psychosomatic Medicine, vol.67, issue.2, 2005.
DOI : 10.1097/01.psy.0000155664.13300.64

H. Seitz, D. Stinner, E. Th, C. Herr, and M. Roosli, Electromagnetic hypersensitivity (EHS) and subjective health complaints associated with electromagnetic fields of mobile phone communication, Science of the Total Environment, 2000.

H. Staudenmayer, Environmental Illness, 1999.

E. Conil, . Hadjem, M. Lacroux, J. Wong, and . Wiart, Variability analysis of SAR from 20 MHz to 2.4 GHz for different adult and child models using finite-difference time-domain, Physics in Medicine and Biology, vol.53, issue.6, pp.1511-1525, 2008.
DOI : 10.1088/0031-9155/53/6/001

G. Vijayalaxmi and . Obe, Controversial cytogenetic observations in mammalian somatic cells exposed to radiofrequency radiation, Radiat. Res, vol.162, pp.481-496, 2004.

J. Streckert and V. Hansen, Design of high-frequency exposure setups for the experiments in Bonn and Essen, Electromagnetic Compatibility of Biological Systems, 1997.

A. Lerchl, H. Brendel, J. R. Streckert, A. K. Bitz, and V. W. Hansen, Investigations on the effects of 900 MHz electromagnetic fields on growth, melatonin, and testicular cell composition in Djungarian hamsters Electrically fully shielded, but mechanically easily accessible, rf-exposure system for a large number of small biological samples, BEMS Annu. Meet., St. Petersburg, FL, 1998.

H. A. Mendes, N. K. Slattery, and . Jeffrey, A new approach to electromagnetic field-strength measurements in shielded enclosuresA comparison of REVERBERATION CHAMBER and Semi-Anechoic Chamber Testing for Automotive Susceptibility, western Electronic Show and Convention(WESCON) Digital Avionics Systems Conference Proceedings. 18th, p.29, 1999.

D. R. Leo and M. V. Primiani, Radiated Immunity Tests: Reverberation Chamber vs, Anechonic Chamber Results" IMTC 2005-Instrumentation and Measurement Technology Conference, pp.17-19, 2005.

P. Corona, J. Ladbury, G. Petirsche, and A. Schwab, Reverberation-chamber research-Then and now: A review of early work and comparison with current understanding Electromagnetic compatibility (EMC)-Part 4-21: Testing and measurement techniques-Reverberation chamber test methods Inverstigation on different methods to improve shielded room for EMO measuremlentExperimental results obtained in the vibrating instrinsic reverberation chamberPerformance and analysis of a reverberating enclosure with variable geometry, presented at the Proc. Mode-stirred chamber, Anechoic chamber aznd OATS Users Meeting, pp.87-94, 1997.

]. F. Compat and . Leferink, Test chamber The netherland Patent WO 00FDTD Modeling of A vibration Intrinsic Reverberation Chamber In-situ EMI measurements using a vibration intrinsic reverberation chamber, EMC-22 Progress In Electromagnetics Research Proc. 14th Int, pp.2-547, 1990.

]. J. Hong, ]. Wu, and D. Chang, Electronic mode stirring for reverberation chambersMultimode chamber excited by an array of antennasthe effect of an electrically large stirrer in a mode-stirred chamberEffect of a modulated source on a multimode cavityThree-Dimensional Simulation and Experimental Verification of a Reverberation ChamberCriteria of choice of mode stirred reverberation chamber, Zurich Symp. and Technical Exhibition on Electromagnetic Compatibility. Zurich, Switzerland: Swiss Federal Inst. Techol. Zurich Proc. 17 th int. Wroc_law Symp. And Exhibition on Electromagnetic Compatibility, pp.653-658294, 1989.

. Gibson and C. Walton, The Method of Moments in Electromagnetics Chapman & Hall, CRC, 2008.

A. Taflove, S. C. Hagness, J. Z. Taylor, and . Zhu-kane-yee, The Finite Element Method: Its Basis and Fundamentals Butterworth-HeinemannNumerical solution of initial boundary value problems involving Maxwell's equations in isotropic media". Antennas and PropagationModélisation et simulation d'une chamber réverbérante à brassage de modes à l'aide de la méthode des différences finies dans le domaine temporel, Yamanaka,"FDTD analysis on the effect of stirrers in reverberation chamber Proc.Int .Symp.on Electromagnetic Compatibility, pp.302-307223, 1999.

]. L. Bai, L. Wang, B. Wang, and J. Song, FDTD analysis of electromagnetic fields in a reverberation chamberReverberation chamber modelling using FDTD, Proc. IEEE Int.Symp. on Electromagnetic Compatibility. Piscataway, NJ: IEEE, pp.7-11, 1946.

]. F. Moglie, Finite difference, time domain analysis convergence of reverberation chambers, Proc. 15th Int. Zurich Symp. And Technical Exhibition on Electromagnetic Compatibility, pp.223-228, 2003.

F. Moglie and A. Pastore, FDTD analysis of reverberating chambers, Proc. Int. Symp. On Electromagnetic Compatibility, pp.6-11, 2004.

A. Gati, M. F. Wong, A. Ibazizen, F. Hanna, V. et al., Combining neural networks and IIR filters for circuit microwave design and optimization in the time domain, IEEE MTT-S International Microwave Symposium Digest, vol.4, 1927.

H. Ising and D. Prasher, Noise as a stressor and its impact on health, Noise Health, vol.2, pp.5-6, 2000.

I. Lagroye, Cancer, the immune system, differentiation, and the sensitivity of children: how supportive are the laboratory studies, 2004.

Q. Balzano, C. Chou, R. Cicchetti, A. Faraone, and R. Tay, An efficient RF exposure system with precise whole body average SAR determination for in vivo animal studies at 900 MHz, IEEE trans. Microw. Theory Tech, vol.48, pp.2040-2049, 2000.

M. Sklar, Rayleigh fading channels in mobile digital communication systems .I. Characterization, IEEE Communications Magazine, vol.35, issue.7, pp.90-100, 1997.
DOI : 10.1109/35.601747

J. G. Kostas and B. Boverie, Statistical model for a mode-stirred chamber, IEEE Transactions on Electromagnetic Compatibility, vol.33, issue.4, pp.366-370, 1991.
DOI : 10.1109/15.99120

V. J. Berdinas-torres, A. Hadjem, D. Lautru, C. Dale, M. Wong et al., Study of Specific Absorption Rate (SAR) Induced in Two Child Head Models and in Adult heads Using Mobile PhonesChanges in the dielectric properties of rat tissue as a function of age at microwave frequencies Changes in the composition of the developing mouse brain during early myelinization, IEEE Transations on Microwave Theory and Techniques. Phys. Med. Biol. J. Neurochem, vol.5753, issue.3, pp.1617-162961, 1958.

C. Gabriel, Review Dielectric Properties of Biological Tissue: Variation with Age, Bioelectromagnetics supplement, vol.7, pp.12-18, 2005.

J. Wang, T. Saito, and O. Fujiwara, Uncertainty Evaluation of Dosimetry Due to Plastic Holder for Restraining Small Animal in In Vivo Near Field Exposure Setup, IEEE Transactions on Electromagnetic Compatibility, vol.46, issue.2, 1993.
DOI : 10.1109/TEMC.2004.826879

N. Barry, C. E. Taylor, and . Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, Natl. Inst. Stand. Technol. Tech. Note, vol.1297, 1994.

D. Chizhik, J. Ling, P. W. Wolniansky, R. A. Valenzuela, N. Costa et al., Multiple-input - multiple-output measurements and modeling in Manhattan, IEEE Journal on Selected Areas in Communications, vol.21, issue.3, pp.321-331, 2003.
DOI : 10.1109/JSAC.2003.809457

L. Harris, T. Hikage, T. Nojima, and M. Hirono, A Numerical Estimation of Human Effects on Electric Field Distribution in Wireless Office LANS Using the FDTD Method, Proceedings of Progress In Electromagnetics Research Symposium(PIERS) 2008, p.635

S. Mengué, E. Richalot, and O. Picon, Comparison Between Different Criteria For Evaluation Reverberation Chamber Functioning Using a 3-D FDTD Algorithm, IEEE Transactions on Electromagnetic Compatibility, vol.50, issue.2, 2008.

J. Maxwell, A Dynamical Theory of the Electromagnetic Field, Philosophical Transactions of the Royal Society of London, vol.155, issue.0, pp.459-512, 1865.
DOI : 10.1098/rstl.1865.0008

K. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media". Antennas and Propagation, IEEE Transactions on, vol.14, pp.302-307, 1966.