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Résumé étendu

La biologie structurale est riche en problèmes NP-complets qui sont habituellement
résolus par des heuristiques dont l’efficacité est mise à mal par la taille des espaces de
solutions. Afin de rendre applicables les approches proposées, notre objectif est de
concevoir des algorithmes exacts et efficaces en se basant sur les techniques avancées
de l’optimisation combinatoire.

En biologie structurale, il est couramment admit que la structure tridimension-
nelle d’une protéine détermine sa fonction. Ce paradigme permet de supposer
que deux protéines possédant des structures tridimensionnelles similaires peuvent
partager un ancêtre commun et donc posséder des fonctions similaires. Estimer la
similarité entre deux structures de protéines est donc une tâche primordiale pour
laquelle la recherche a produit de nombreuses méthodes [27,59,60,68], souvent très
différentes les unes des autres, sans qu’aucune ne s’impose réellement. Parmi toutes
les méthodes proposées, nous nous intéressons à la mesure de similarité appelée “
maximisation du recouvrement de cartes de contacts ” [28] (ou CMO), principale-
ment parce qu’elle fournit des scores de similarité pouvant être utilisés pour obtenir
de bonnes classifications automatiques des structures de protéines.

Dans cette thèse, la comparaison de deux structures de protéines est modélisée
comme une recherche de sous-graphe dans des graphes k-partis spécifiques appelés
graphes d’alignements. Ainsi modélisée, nous montrons que cette tâche peut être
efficacement réalisée.

Le premier chapitre de cette thèse est dédié aux connaissances nécessaires sur
les structures des protéines et leurs comparaisons. Nous proposons également un
cadre général pour la comparaison des structures de protéines, basé sur les graphes
d’alignements. Dans le second chapitre, nous modélisons CMO comme une recherche
de sous-graphe maximum induit par les arêtes dans des graphes d’alignements, prob-
lème pour lequel nous proposons un solveur exact qui surpasse les autres algorithmes
de la littérature. Néanmoins, la procédure d’alignement requière encore trop de
temps de calculs pour envisager des comparaisons à grande échelle. Le troisième
chapitre est consacré à l’accélération de CMO en utilisant des connaissances issues
de la biologie structurale. Nous proposons notamment une approche hiérarchique
basée sur les structures secondaires des protéines. Enfin, bien que CMO soit une
très bonne mesure de similarité, les alignements qu’elle fournit possèdent souvent de
fortes valeurs de déviation (root mean squared deviation, ou RMSD). Pour palier
cette faiblesse, dans la dernière partie de cette thèse, nous proposons une nouvelle
méthode de comparaison de structures de protéines basée sur les distances internes
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RÉSUMÉ ÉTENDU

que nous appelons DAST (pour Distance-based Alignment Search Tool). Elle est
modélisée en une recherche de clique maximum dans des graphes d’alignements pour
laquelle nous présentons un solveur dédié montrant de très bonnes performances.

Chapitre 1 : Cadre général

1.1 Introduction

Estimer la similarité entre deux structures de protéines est une tâche primordiale
pour laquelle la recherche a produit de nombreuses méthodes (souvent très différentes
les unes des autres), sans qu’aucune ne s’impose réellement. Dans cette thèse, nous
améliorons la mesure de similarité appelée “ maximisation du recouvrement de cartes
de contacts ” (CMO). Pour cela, nous formalisons le concept de comparaison des
structures de protéines et nous proposons un cadre général pour la comparaison des
structures de protéines.

1.2 Principe général

Soient deux protéines P1 et P2 représentées par leurs ensembles ordonnés d’éléments
(souvent leurs acides-aminés) V1 et V2. Une paire d’alignements i ↔ k signifie que
l’élément i ∈ V1 est mis en correspondance (est aligné) avec l’élément k ∈ V2. Un
alignement est une séquence de paires d’alignements “ i1 ↔ k1, i2 ↔ k2, . . . , in ↔ kn
” telle que pour tout j < n− 1, ij < ij+1 et kj < kj+1. Le but de la comparaison de
structures est d’obtenir à la fois un score et l’alignement correspondant. Le score
mesure la similarité entre les deux protéines, et l’alignement représente ce qui est
commun entre les deux protéines.

Un graphe d’alignements N1 ×N2 est un graphe G = (V,E) dont l’ensemble
des sommets V est décrit par une grille de N1 lignes et N2 colonnes, un sommet
i.k ∈ V se trouvant en ligne i et en colonne k. Entre deux sommets i.k et j.l, une
arête (i.k, j.l) ne peut exister (c.a.d (i.k, j.l) ∈ E) que si i < j et k < l.

La comparaison de structures protéiques se modélise dans un graphe d’alignements
|V1| × |V2| de la manière suivante. Chaque ligne représente un élément de P1, et
chaque colonne représente un élément de P2. Un sommet i.k est dans V si et seule-
ment si la paire d’alignements i ↔ k est admissible (c.a.d. i ∈ V1 est compatible
avec k ∈ V2). Une arête entre deux sommets i.k et j.l existe dans E si et seulement
si : (1) i < j et k < l, et (2) la paire d’alignements i ↔ k est compatible avec la
paire d’alignements j ↔ l. Il existe une multitude de méthodes d’alignements dans
la littérature, et elles diffèrent principalement par:

1. La nature des éléments présent dans V1 et V2.

2. Les définitions de compatibilité entre éléments et de compatibilité entre paires
d’alignements.

3. Le sous-ensemble de V correspondant à un alignement optimal entre P1 et P2.
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Par exemple, rechercher des alignements tels que toutes les paires d’alignements
soient mutuellement compatibles revient à chercher des cliques dans G, et l’alignement
le plus long correspond à une clique maximal dans G.

1.3 Contributions

La formulation en graphe d’alignements pose un cadre général pour la comparaisons
de structures de protéines. Ce cadre, basé sur des graphes k-partis particuliers,
permet la conception d’algorithmes efficaces pour résoudre les problèmes de com-
paraisons de structures de protéines.

Chapitre 2 : La maximisation du recouvrement des
cartes de contacts

2.1 Introduction

La maximisation du recouvrement de cartes de contacts (ou CMO, pour Contact
Map Overlap maximisation) est une mesure similarité entre structures de protéines,
proposée par Godzik dans [28]. C’est une mesure robuste car elle prend en compte
les alignements partiels. Elle est invariante par translation et elle capture bien
la notion intuitive de similarité. Quand une protéine se replie, des acides-aminés
qui sont éloignés dans la séquence peuvent se retrouver très proches dans l’espace
tridimensionnel. Ces relations de proximité sont capturées par une carte de contacts.
La carte de contacts d’une protéine P est un graphe G = (V,E), dont les sommets
de V sont ordonnés et correspondent aux acides-aminés de P , et ou une arête (i, j)
entre deux sommet i et j existe si et seulement si la distance euclidienne entre
les acides-aminés i et j est inférieure à un certain seuil. Dans l’approche CMO,
l’évaluation de la similarité entre deux protéines P1 et P2 se fait en déterminant le
recouvrement maximum de leurs cartes de contacts G1 = (V1, E1) et G2 = (V2, E2).
La définition formelle est la suivante. Soit I = (i1, i2, . . . , is), i1 < i2 < . . . < is, un
sous ensemble de V1, et J = (j1, j2, . . . , js), j1 < j2 < . . . < js, un sous-ensemble
de V2. Dans l’alignement “ ik ↔ jk ”, ∀k ∈ [1; s], une arête (k, l) est commune (un
recouvrement a lieu) si et seulement si les deux arêtes (ik, il) ∈ E1 et (jk, jl) ∈ E2

existent. CMO consiste à trouver un alignement (et donc les sous ensembles I et J)
dont le nombre d’arêtes communes soit maximum.

2.2 Problématique

CMO est un problème NP-difficile [29] et la création d’un solveur efficace qui garan-
tisse la qualité de CMO est toujours un problème ouvert (un état de l’art est présenté
dans [69]). Dans ce chapitre, nous nous focalisons sur la conception d’un algorithme
exact pour résoudre CMO. Dans [14], Carr, Lancia et Istrail ont été les premiers à
attaquer CMO par programmation linéaire en nombres entiers (PLNE). Cette ap-
proche semble prometteuse quand elle est couplée avec une méthode de relaxation
lagrangienne [11,12]. Une alternative a été récemment publiée dans [69], et propose
une technique de réduction associée à un algorithme par séparation et évaluation.
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Enfin, dans [63], CMO est reformulé comme une recherche de cliques maximum dans
des graphes qui ressemblent à nos graphes d’alignements.

2.3 Principe général

CMO est modélisé dans un graphe d’alignements |V1|× |V2| de la manière suivante :
Les élément de V1 et de V2 sont les acides-aminé des deux protéines P1 et P2. Toutes
les paires d’alignements i↔ k sont autorisées (c.a.d : ∀i ∈ V1 et ∀k ∈ V2, i.k ∈ V ).
Une arête (i.k, j.l) existe si et seulement si : (1) i < j et k < l, et (2) (i, j) ∈ E1

et (k, l) ∈ E2. Résoudre CMO revient à chercher dans G un ensemble ordonné de
sommets {i1.k1, i2.k2, . . ., in.kn}, nommé ensemble de sommets croissants, tel
que (1) pour tout j < n, ij < ij+1 et kj < kj+1, et (2) le nombre d’arêtes correspon-
dantes dans G soit maximal.

En se basant sur les propriétés des graphes d’alignements (par exemple, une so-
lution admissible pour CMO ne peut contenir qu’au plus un sommet par ligne, et
au plus un sommet par colonne), nous proposons un nouveau modèle de program-
mation linéaire en nombre entier. Il s’agit d’un problème du type maxF (X, Y ),
ou les variables binaires xik ∈ X représentent le fait de prendre ou non le som-
met i.k dans la solution, et les variables binaires yikjl ∈ Y représentent le fait de
prendre ou non l’arête (i.k, j.l) dans la solutions. Lorsque ce problème est soumis
à toutes les contraintes de CMO, le résoudre est NP-difficile. Nous proposons une
relaxation lagrangienne (qui consiste à relâcher certaines contraintes tout en les in-
troduisant dans la fonction objectif avec des coefficients λ) dont le problème relâché
maxF ′(X, Y, λ) est résoluble en temps polynomial. Le problème original et le prob-
lème relâché sont liés par la propriété suivante : maxF (X, Y ) ≤ maxF ′(X, Y, λ),
pour tout λ. Pour résoudre CMO, nous résolvons le problème dual associé qui est
une minimisation sur λ de maxF ′(X, Y, λ) à l’aide d’une descente de sous-gradient.
À chaque itération, étant donnée une valeur de λ, la solution optimale (en termes
de X et de Y ) de max(F ′(X, Y, λ)) est calculée, puis les contraintes relâchées et
violées sont identifiées, et enfin les λ correspondants sont modifiés. Ce processus ce
répète jusqu’à l’obtention de la solution optimale. Cependant, si la solution opti-
male de max(F (X, Y )) n’est pas trouvée en moins de 4000 itérations de descente
de sous-gradient, un processus par séparation et évaluation est mis en place. Ceci
garantit de trouver la solution exacte, mais permet aussi de se comporter comme
une métaheuristique en obtenant toujours une borne et une bonne solution.

2.4 Contributions

Dans un premier temps, nous modélisons CMO comme une recherche de sous-
graphes induits par les arêtes dans un graphe d’alignements. Dans un second temps,
en exploitant les caractéristiques des graphes d’alignements, nous proposons une
nouvelle formulation de CMO à l’aide de la PLNE. Ensuite, nous présentons une
relaxation lagrangienne efficace de notre modèle de PLNE qui est intégrée dans un
algorithme par séparation et évaluation dédié. Sur des jeux de tests de la littéra-
ture, nous observons que notre algorithme est plus rapide que les quatre autres
algorithmes exacts de la littérature précédemment cités [11, 14, 63, 69], et même
plus rapide que certaines heuristiques récemment proposées [38, 54]. Les résultats
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obtenus montrent que notre solveur est à la fois plus rapide et propose également
de meilleures bornes que [11]. Enfin, nous montrons que notre algorithme peut être
utilisé en tant que heuristique pour déterminer rapidement des scores de similarité
permettant d’obtenir des classifications automatiques en très bon accord avec la
classification manuelle SCOP [49].

Les idées présentées dans ce chapitres ont été publiées dans:
R. Andonov, N. Yanev and N. Malod-Dognin, “ An Efficient Lagrangian Relaxation
for the Contact Map Overlap Problem ”, K.A. Crandall and J. Lagergren (Eds.) :
WABI 2008, LNBI 5251, p. 162-173, 2008.
Une version journal a été soumise à “ Journal of computational Biology ” et est en
attente d’acceptation.

Chapitre 3 : Utilisation de connaissances biologiques

3.1 Problématique

Dans le chapitre précédant, nous avons montré que CMO est une bonne mesure
de similarité, dans le sens ou les scores associés aux paires de structures de pro-
téines permettent d’obtenir de bonnes classifications automatiques. Cependant, les
comparaisons de paires de protéines sont encore trop coûteuses en temps de calcul
pour permettre des comparaisons à grande échelle. Puisque CMO est un prob-
lème NP-difficile, une manière efficace pour accélérer le processus de résolution est
de réduire la taille des données qui correspondent, dans notre cas, aux graphes
d’alignements. Dans une première étape, nous nous inspirons de la biologie struc-
turale en utilisant la structure secondaire des protéines pour définir deux filtres pour
les sommets des graphes d’alignements. Dans une deuxième étape, afin de mieux
exploiter l’information des structures secondaires, nous définissons une approche
hiérarchique pour résoudre CMO. À chaque fois, le but est double: d’un côté le
graphe d’alignements devient creux et donc le processus de résolution devient plus
rapide, d’un autre côté, les alignements obtenus doivent être acceptables d’un point
de vue biologique.

3.2 Principes des approches proposées

Le but du premier filtre est d’interdire les alignements entre les acides-aminés
provenant d’une hélice-α et les acides-aminés provenant d’un brin-β. Étant donné
une fonction Type(P, i) qui associe à l’acide aminé i de la protéine P le type de
structure secondaire à laquelle il appartient (hélice-α, brin-β ou boucle), cela re-
vient à supprimer du graphe d’alignements des acides aminés les sommets i.k tels
que Type(P1, i) = α et Type(P2, k) = β, ou bien tels que Type(P1, i) = β et
Type(P2, k) = α. Ce premier filtre autorise encore le mariage entre des acides-
aminés provenant d’une structure secondaire et des acides aminés provenant d’une
boucle. Le but du second filtre est d’interdire également de tels mariages. Cela est
réalisé en supprimant du graphe d’alignements les sommets i.k tels que Type(P1, i)
6= Type(P2, k).

RÉSUMÉ ÉTENDU vii
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L’approche hiérarchique, inspirée de celle de VAST [26], consiste à obtenir dans
une première étape un alignement des éléments de structures secondaires (SSEs).
Puis, dans une seconde étape, le graphe d’alignements des acides-aminés est filtré
afin d’enlever les sommets qui contredisent l’alignement des SSEs. Comme il n’existe
pas de méthodes d’alignement des SSEs basées sur les cartes de contacts dans la
littérature, nous présentons une nouvelle méthode d’alignement des SSE basée sur
des cartes de contacts afin de rester dans le contexte de CMO. Pour cela, la structure
secondaire d’une protéine P est décrite par une carte de contacts valués qui est un
graphe G = (V,E,W ) où les sommets de V sont ordonnés et représentent chacun
une SSE de P . Deux SSEs i et j sont en contact (l’arête (i, j) existe dans E) si
il existe au moins un contact entre leurs acides-aminés. Le poids wij ∈ W de ce
contact est égal au nombre total de contacts entre les acides-aminés de i et ceux de j.
Étant donné deux cartes de contacts valués G1 = (V1, E1,W1) et G2 = (V2, E2,W2),
à chaque contact commun entre deux arêtes (i, j) ∈ E1 et (k, l) ∈ E2 est associé
un poids wikjl = min(w1ij, w2kl). L’alignement de deux cartes de contacts valués
est alors très similaire à celui proposé par CMO, la seule différence étant que l’on
ne cherche plus à maximiser le nombre de contacts communs mais à maximiser la
somme des poids sur les contacts communs. Ce problème, très similaire à CMO et
accepté par notre modèle de PLNE, est résolu par une version modifiée de notre
solveur A_purva.

3.3 Contributions

Nous proposons de réduire les graphes d’alignements en utilisant deux filtres basés
sur les structures secondaires des protéines. Utiliser ces filtres permet d’accélérer
jusqu’à 50 fois le processus de résolution de CMO. Les résultats obtenus nous ont
incité à davantage exploiter les informations de structures secondaires et à pro-
poser une approche hiérarchique pour CMO. Celle-ci consiste, dans une première
étape, à aligner les éléments de structures secondaires (SSE), puis dans une deux-
ième étape, à utiliser cet alignement de structures secondaires pour filtrer le graphe
d’alignements correspondant aux acides-aminés. Dans ce but, nous avons développé
une nouvelle méthode d’alignement des structures secondaires basée sur des cartes
de contacts valués. La maximisation du recouvrement de cartes de contacts val-
ués est résolue par une version modifiée de l’algorithme proposé dans le deuxième
chapitre. Nous montrons entre autres que les alignements de structures secondaires
que nous obtenons permettent d’obtenir très rapidement des classifications automa-
tiques des structures de protéines en très bon accord avec la classification SCOP [49].

Seul le premier filtre SSE a été présenté dans la conférence WABI 2008.

Chapitre 4 : Alignement basé sur les distances in-
ternes (DAST)

4.1 Problématique

Une des principales faiblesses de CMO est que dans le but de maximiser le nombre
de contacts communs, elle peut introduire des “ erreurs ” comme aligner des acides-
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aminés qui sont proches dans l’espace tridimensionnel avec des acides-aminés qui
ne le sont pas. Ces erreurs ont pour conséquence que les alignements générés ont
souvent de grandes valeurs de RMSD (entre coordonnées ou entre distances internes).
Ce problème de RMSD est notamment visible dans les résultats de comparaisons
menées par Godzik dans [27], où les alignements générés par CMO sont généralement
plus longs que ceux générés par d’autres méthodes, mais possèdent également des
valeurs de RMSD (entre coordonnées) bien supérieures.

4.2 Principe

Les deux protéines P1 et P2 sont représentées par les ensembles ordonnés d’acides-
aminés V1 et V2. Nous remplaçons la notion de contact commun, utilisée dans CMO,
par celle de distance interne commune : soient deux acides-aminés i et j de P1 et
deux acides-aminés k et l de P2. Si la distance euclidienne entre i et j (notée dij) est
similaire à celle entre k et l (notée dkl), plus ou moins un seuil τ , alors i et j partagent
une distance interne commune avec k et l. Nous recherchons l’alignement le plus
long tel que pour tout couple de paires d’alignements, les distances internes associées
soient communes. La principale caractéristique de cette méthode d’alignement, que
nous avons appelé DAST (pour Distance-based Alignment Search Tool), est que
l’alignement obtenu possède obligatoirement un RMSD entre distances internes1 in-
férieur ou égal à un seuil fixé τ .

DAST est alors modélisé dans un graphe d’alignements de la manière suivante
: afin de réduire le taille du graphe d’alignements, deux acides-aminés i ∈ V1 et
k ∈ V2 sont compatibles (c.-à-d. le sommet i.k est dans V ) si et seulement si i et
k proviennent du même type de structure secondaire (hélice α, brin β ou boucle).
Deux sommets i.k et j.l sont reliés par une arête (i.k, j.l) ∈ E si et seulement si
(1) i < j et k < l, et (2) |dij − dkl| ≤ τ . Rechercher l’alignement le plus long tel
que pour tout couple de paires d’alignements, les distances internes associées soient
communes revient à rechercher dans G une clique de cardinalité maximum.

Le problème de la clique de cardinalité maximum est l’un des premiers à avoir été
prouvés NP-complet [40]. Dans un premier temps, nous exploitons les caractéris-
tiques des graphes d’alignements pour proposer un nouveau modèle de program-
mation linéaire en nombres entiers pour résoudre les différents problèmes de cliques
maximums (cardinalité, sommes des poids sur les noeuds et/ou sur les arêtes). Dans
un deuxième temps, nous proposons un nouvel algorithme par séparation et éval-
uation que nous appelons ACF (pour Alignment Clique Finder) pour résoudre le
problème de la clique de cardinalité maximum.

ACF peut être vu comme une généralisation en deux dimensions de l’algorithme
d’Östergȧrd [52], à laquelle nous avons ensuite ajouté des bornes profitant des spé-
cificités des graphes d’alignements. Ces bornes se basent sur l’observation que dans
un graphe d’alignements N1 ×N2 G = (V,E), la cardinalité de la clique maximum,
dénotée par |MCC(G)|, peut être surestimée par les trois méthodes suivantes :

1RMSDd =
√

1

Nm

×
∑

(|dij − dkl|2), où Nm est le nombre de couples de paires d’alignements
“i↔ k, j ↔ l”.

RÉSUMÉ ÉTENDU ix



RÉSUMÉ ÉTENDU

1. |MCC(G)| ≤ min(N1, N2), car il n’existe pas d’arêtes entre deux sommets
provenant d’une même ligne ou d’une même colonne.

2. |MCC(G)| ≤ |LIS(G)|, ou |LIS(G)| dénote la cardinalité du plus grand en-
semble de sommets croissants dans G.

3. |MCC(G)| ≤ |LIP (G)|, ou |LIP (G)| est la la cardinalité du plus grand en-
semble de sommets croissants dans G, tel que deux sommets consécutifs soient
toujours reliés par une arête.

La plus efficace de ces bornes, en termes d’accélération de la recherche de la clique
maximum, est basée sur |LIS(G)|. Nous montrons également que la complexité en
temps de cette borne est en O(|V | × log(|V |)).

4.3 Contributions

Nous introduisons une nouvelle méthode d’alignement des acides-aminés que nous
appelons DAST. Étant donné un seuil τ , DAST cherche l’alignement le plus long
tel que pour chaque couple de paires d’acides-aminés alignés (i ↔ k, j ↔ l), i et j
partagent la même relation de distance que k et l (+/- τ). Par conséquent, le RMSD
(entre distances internes) de l’alignement est inférieur à τ . D’un point de vue al-
gorithmique, DAST est modelé comme une recherche de cliques maximum dans un
graphe d’alignements. En exploitant la structure particulière de ces graphes, nous
présentons une nouvelle formulation en programmation linéaire en nombres entiers
pour les problèmes de cliques maximums. Nous proposons également un nouvel al-
gorithme de recherche de clique maximum dont les performances dépassent celles
d’un des meilleurs algorithmes de recherche de clique maximum de la littérature.

Une première version du modèle de programmation linéaire en nombres entiers
a été présentée dans la conférence “ ROADEF 2008 ” :
N. Malod-Dognin, R. Andonov, N. Yanev and J-F. Gibrat, “ Modèle de PLNE pour
la recherche de cliques de poids maximal ”, ROADEF 2008, p.307-308, le 25 février
2008.
La version actuelle du modèle de programmation linéaire en nombres entiers, ainsi
que les bornes utilisées dans l’algorithme par séparation et évaluation ont été présen-
tées dans les conférences :
N. Malod-Dognin, R. Andonov and N. Yanev, “ Maximum clique approach to protein
structure similarity ”, MASSEE (Mathematical Society of South-East Europe) Inter-
national congress on mathematics, Ohrid, Macedonia, p.31, du 16 au 20 septembre
2009.
et
N. Malod-Dognin, R. Andonov and N. Yanev, “ Maximum clique and similarity
measures ”, MMSC’09 International Workshop on Mathematical modelling and sci-
entific computations, Velingrad, Bulgaria, p.22, du 23 au 26 septembre 2009.
Une version journal a également été acceptée :
N. Malod-Dognin, R. Andonov and N. Yanev, “ Solving Maximum Clique Problem
for Protein Structure Similarity ”, Serdica Journal of Computing.
Enfin, la version finale de l’algorithme par séparation et évaluation a été acceptée
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à la conférence “ SEA 2010 : the 9th international Symposium on Experimental
Algorithms ”.

Chapitre 5 : Discussions et travaux futurs

5.1 Discussions

5.1.1 Relations entre les différents modèles mathématiques pour les en-
sembles de sommets croissants

Dans CMO, il n’est pas nécessaire de modéliser des contraintes pour choisir une arête
dont les extrémités participent dans l’ensemble de sommets croissants (il s’agit d’une
conséquence de la maximisation de la fonction objectif). Il est à noter que ceci n’est
pas toujours vrai. Par exemple, cette contrainte nécessite d’être explicitement mod-
élisée pour les arêtes associées à des poids négatifs. Cela arrive notamment dans
le modèle des alignements locaux développé par Guillaume Collet [16] pour la pré-
diction du repliement des protéines. Dans DAST, la définition d’une clique impose
que deux sommets ne participent à l’ensemble de sommets croissants que s’ils sont
connectés par une arête, ce qui nécessite l’ajout d’une contrainte de choix d’arête
entre tout couple de sommets. Par conséquent, le modèle pour CMO est le plus
général (c.-à-d. le moins contraint), suivit par le modèle des alignements locaux et,
enfin, le modèle pour DAST est le plus spécifique (c.-à-d. le plus restrictif).

5.1.2 Solutions non-optimales

Notre solveur de CMO, A_purva, et notre solveur de clique, ACF, sont tous deux
basés sur des algorithmes par séparation et évaluation. Cependant, ils diffèrent à la
fois en termes de stratégie de séparations et en termes de nature des bornes utilisées
pour les évaluations. Cela entraine une différence notable lorsque les processus de ré-
solution sont arrêtés avant que la solution optimale ne soit trouvée. A_purva essaye
dans un premier temps de trouver la solution optimale dans l’intégralité de l’espace
de recherche (c.-à-d. dans la totalité du graphe d’alignements), en améliorant de
façon itérative la borne inférieure (la meilleure solution admissible trouvée) et la
borne supérieure (la plus petite solution relâchée trouvée). Si, lors de cette explo-
ration, la solution optimale n’a pas été trouvée, alors l’espace de recherche est divisé
et chaque sous-problème ainsi obtenu est résolut indépendamment. Si le processus
de résolution est interrompu, alors A_purva peut retourner une solution admissible
de bonne qualité qui correspond au graphe d’alignements dans son intégralité. Dans
ACF, par contre, l’espace de recherche est tout d’abord divisé en sous-problèmes (le
premier étant le sous graphe dont l’ensemble de sommet ne contient que le dernier
sommet, le deuxième sous-problème étant le sous-graphe dont l’ensemble de som-
met ne contient que les deux derniers sommets, etc.) qui sont ensuite résolus du
premier au dernier. Cette fois-ci, si le processus de résolution est arrêtés, la solution
retournée par ACF peut ne correspondre qu’à un sous-graphe très petit, et donc être
très éloignée de la solution optimale dans la graphe d’alignements complet. Con-
trairement à A_purva, ACF ne peut donc pas être utilisé pour obtenir rapidement
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de bonnes solutions sub-optimales.

5.1.3 Utilisation des structures secondaires

Nous avons modélisé l’alignement des structures secondaires en tant qu’alignement
stable (c.-à-d. qu’un élément ne peut être aligné qu’avec au plus un seul autre
élément). Cependant, comme illustré dans le chapitre 3, la reconnaissance des
structures secondaires n’est pas parfaite. Par exemple, une longue hélice-α peut
être courbée, et les méthodes de reconnaissances de structures secondaires risquent
alors de la considérer comme étant plusieurs petites hélices-α. Cela implique que la
contrainte de stabilité dans l’alignement devrait être relâchée, à moins que la recon-
naissance des structures secondaire ne s’améliore. Qui plus est, le début et la fin des
éléments de structures secondaires sont encore mal détectés, et cela devrait être pris
en compte, notamment au niveau des filtres basés sur les structures secondaires.

5.1.4 Préservation de l’ordre dans les alignements

Comme dans de nombreuses méthodes de comparaison de structures de protéines,
et comme dans la définition originale de CMO, nous avons supposé que l’alignement
entre deux structures de protéines doit conserver l’ordre entre les éléments alignés.
En utilisant cette contrainte de préservation de l’ordre, nous avons pu créer des
algorithmes efficaces pour la comparaison de structure de protéines. Cependant,
relâcher cette contrainte pourrait permettre de détecter d’autres types de similarités
entre protéines.

5.2 Travaux futurs

Nous sommes pleinement conscient que bien que nous ayons beaucoup travaillé
l’aspect modélisation et l’aspect algorithmique de la comparaison de structures des
protéines, il manque aux travaux présentés un point de vue biologie structurale per-
mettant de confirmer la pertinence biologique des méthodes proposées.

Modéliser la comparaison des structures de protéines dans des graphes d’aligne-
ments nous a permis de proposer des algorithmes exacts très efficaces. Bien que
notre solveur, A_purva, puisse être utilisé en tant que heuristique, cela n’a jamais
été son objectif principal. Pour certaines applications, telle que la classification au-
tomatiques des structures de protéines à grande échelle, le temps d’exécution peut
avoir une importance capitale. Nous pensons qu’il doit être possible, en exploitant
les caractéristiques de nos graphes d’alignements, de proposer des heuristiques bien
plus efficaces que celle disponibles actuellement.

Nous avons utilisé des informations issues des structures secondaires des protéines
afin de réduire la taille des graphes d’alignements. Il serait intéressant d’utiliser
d’autres types d’informations qui pourraient, par exemple, provenir des séquences
des protéines (tels que les propriétés physicochimique des acides-aminés) ou bien des
structures tridimensionnelles (tels que les angles dièdre entre acides-aminés).
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Comme présenté dans les discussions, nous souhaitons relâcher la contrainte
de préservation de l’ordre dans notre solveur de cliques maximum (ACF). Le but
serait double : d’une part nous pourrions obtenir de nouveaux types d’alignements
avec DAST et, d’autre part, ACF pourrait alors être appliqué sur des graphes plus
généraux.

Enfin, puisque nous avons proposé un programme linéaire en nombres entiers
pour le problème de la clique maximum, nous prévoyons la création d’un algorithme
par séparation et évaluation avec relaxation lagrangienne pour le résoudre. Ce nou-
veau solveur pourrait ensuite être intégré dans DAST.
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Chapter 1

Introduction

In structural biology, it is commonly admitted that the three dimensional structure
of a protein determines its function. A fruitful assumption based on this paradigm is
that proteins sharing close three dimensional structures may derive from the same
ancestor and thus, may share similar functions. Understanding function through
structure is the primary goal of structural biology, and computing the similarity
between two protein structures is one of the keys used for determining the homol-
ogy relations between the proteins and for determining the function of a protein.
Estimating the function of a protein is one of the keys among others for developing
novel protein-based medical treatments. Consequently, determining the structural
similarity between two proteins is a crucial task which has been extensively inves-
tigated by computational structural biologists. However, unlike the case of protein
sequence comparisons, it is not yet clear what quantitative measure to use for com-
paring protein three dimensional structures, and a multitude of methods have been
proposed, each aiming at capturing the intuitive notion of similarity.

In this thesis, and among all the proposed methods, we focus on the similarity
measure called Contact Map Overlap maximisation (CMO) [28], mainly because it
provides scores which can be used for obtaining good automatic classifications of the
protein structures. In our approachs, comparing two protein structures is modelled
as finding specific sub-graphs in specific k-partite graphs which we called alignment
graphs, and we show that this task can be efficiently done by using advanced com-
binatorial optimisation techniques from operation research.

This introduction is divided in four parts. First, we introduce some structural
biology knowledge about proteins which is necessary to undertand the rest of this
study. Second, we both present the protein structure comparison problem and a
short state of the arts of the proposed methods for solving it. Third, we pro-
pose a general canvas (based on alignments graphs) for modelling protein structure
comparison problems, which is the basis of this thesis. Last, we introduce two
advanced combinatorial optimisation techniques that we use, the integer program-
ming approach and the Lagrangian relaxation. The second chapter of this thesis
is then dedicated to the CMO problem which is modelled as a kind of maximum-
edge-induced subgraph problem in an alignment graph. Based on this model, we
propose both a novel integer programming formulation and an efficient Lagrangian
relaxation-based solver which clearly outperforms previous algorithms from the lit-
erature, and which is a first step towards CMO based automatic classification of
proteins. Even though we succeed to notably accelerate CMO, the procedure still
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Figure 1.1: General structure of an α amino-acid.
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The α carbon is the one connected to the R group. The amine group is on the left and the carboxyl
acid group is on the right.

stays too much time consuming for large database comparisons. The third chapter
of the thesis is dedicated to further accelerating CMO by using structural biology
knowledge. Towards this goal we propose to reduce the alignment graph by using
secondary structure knowledge and then we introduce a hierarchical approach for
CMO which is also based on secondary structure of the proteins. Finally, although
CMO is a very good scoring scheme, the alignments that it provides frequently pos-
sess large root mean square deviation values. To overcome this weakness, in the
last chapter of the thesis, we propose a new comparison method based on internal
distances which we call DAST (for Distance-based Alignment Search Tool). It is
modelled as a maximum clique problem in alignment graphs, for which we design a
dedicated solver with very good performances.

1 Protein composition, structures and functions

Since we are dealing with proteins, it is necessary to possess some basic knowledge
about theirs compositions, structures and functions. Note that the notions presented
here partly come from the book “Protein Structure and Function” [55].

1.1 Protein composition

An amino-acid is a molecule containing one amine group, one carboxylic acid group
and one R group (sometime called sidechain). In an α amino-acid, the amine group
and the carboxylic groups are attached to the same carbon atom, which is called
the α-carbon (and denoted by Cα), as illustrated in figure 1.1. There are twenty
different (in terms of R group) α amino-acids which enter into the composition of
proteins. As illustrated in table 1.1, they are usually denoted by 1 letter codes.
They are also classified according to common properties (big/small, polar/non-polar,
etc...) as illustrated in the Venn diagram presented in figure 1.2, which was first

2 1. PROTEIN COMPOSITION, STRUCTURES AND FUNCTIONS
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Table 1.1: The 20 α amino-acids found in proteins.

Name 3 letters code 1 letter code
alanine ala A
arginine arg R
asparagine asn N
aspartic acid asp D
cysteine cys C
glutamine gln Q
glutamic acid glu E
glycine gly G
histidine his H
isoleucine ile I
leucine leu L
lysine lys K
methionine met M
phenylalanine phe F
proline pro P
serine ser S
threonine thr T
tryptophan trp W
tyrosine tyr Y
valine val V

proposed in [65]. In the rest of this thesis, the term amino-acid will refers to the
twenty α amino-acids which appear in proteins.

Proteins are polymers of amino-acids, linked together by peptide bonds in the
order induced by the gene encoding for it. This means that a protein has a beginning,
called N terminus, and an ending, called C terminus, and that the amino-acids of a
protein can be labelled from first to last.

1.2 Protein structures

In the cells, at physiological temperatures and in aqueous solution, the polypeptide
chains fold into specific 3D shapes which in most case are globular. The protein
structure is divided into four levels, as illustrated in figure 1.3.

• The primary structure refers to the sequence of the different amino-acids
in a protein chain, as determined by the sequence of nucleotides in the gene
encoding it (see figure 1.3A).

• Thanks to regular strong hydrogen-bonding interactions betweens N-H and
C=0 groups, parts of the protein chain adopt specific periodic motifs called
α-helix and β-stands, also referred as secondary structure elements. The parts
which are not in a secondary structure element are said to be loops. The
secondary structure refers to the composition of a protein chain in terms
of secondary structure element (see figure 1.3B).

• The tertiary structure refers to the complete fold of a protein chain (see
figure 1.3C). It represents how secondary structures and loops pack together,
and is usually described by the 3D coordinates of the amino-acid atoms.

1. PROTEIN COMPOSITION, STRUCTURES AND FUNCTIONS 3
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Figure 1.2: Venn diagram grouping amino-acids according to their properties.
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The most important properties are small, hydrophobic and polar (and their counterparts). This
Venn diagram grouping of amino acids is not the only one possible, but is probably the one that
which most people would agree. Note that cystein is present in two positions (CS−S and CS−H).
They represent the two oxidation states of cystein which have quite different properties.
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Figure 1.3: The four levels of protein structure.

A) Primary structure. B) Secondary structure.

C) Tertiary structure. D) Quaternary structure.

Pictures taken from “Protein Structure and Function” [55]. A) The protein is represented by its
ordered sequence of amino-acids, from it N terminus (or begining) to its C terminus (or ending).
B) Hydrogen-bonding interactions define secondary structures element, like α-helices (in red) and
β-strand (in blue). C) The fold of a protein chain alone. D) The fold of two or more protein
chains together.

• The quaternary structure refers to the association of more than one folded
protein chain into a single protein (see figure 1.3D), and is also described by
the 3D coordinates of the amino-acid atoms.

Protein structures are frequently split into structural domains, which are units
of protein structures able to fold stably as an independent entity in solution. These
multidomain proteins probably appeared during the evolution by the fusion of genes
that once coded for separate proteins. In this thesis, protein structure refers to
the 3D coordinates of the amino-acids’ Cα from a single protein chain or from a single
domain, whenever this coordinates comes from tertiary or quaternary structures.

1.3 Protein functions

Defining the function of a protein is not a simple task, partly because the function
itself can be described at different level. From a biochemist point of view, the

1. PROTEIN COMPOSITION, STRUCTURES AND FUNCTIONS 5
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function is the biochemical role of an individual protein or of a protein complex.
The four main biochemical role are :

1. Binding - The protein binds itself with another molecule called ligand. This
is done by complementarity of shape and polar interaction, and thus, a binding
protein only target a specific ligand.

2. Catalysis - The protein is used to change the speed of a chemical reaction,
or even allow a reaction which should not be possible because of unfavourable
thermodynamic conditions. Unlike other reagent that participates in the chem-
ical reaction, a catalyst is not consumed by the reaction itself. Almost all
chemical reactions in a living cell are catalysed.

3. Information transfer - Protein are flexible molecule, and their shape (also
called conformation) may change in response to a change in pH or ligand
binding. Such changes can be used to control cellular processes.

4. Structural proteins - Unlike other proteins which participate in the bio-
chemical process of a cell, structural proteins are the building block of the
cell itself. For example, actin and tubulin polymerise to form the cytoskeleton
which allows the cell to maintain its shape and size.

From a geneticist point of view, function includes the biochemical role and the cellu-
lar role of a protein. Physiologist and developmental biologist may also include the
phenotypic role of the protein (i.e. its effect on general properties of the organism).

1.4 Protein structure databases and classifications

The main freely available protein structure database is the Research Collaboratory
for Structural Bioinformatics Protein Data Bank (PDB)1 [6]. Thanks to the recent
progresses in molecular acquisition techniques like X-ray crystallography, nuclear
magnetic resonance spectroscopy (NMR) and cryo-electron microscopy, the num-
ber of known structures has grown almost exponentially over the last 20 years, as
illustrated in figure 1.4.

In order to function as a protein, a polypeptide must be able to form a stable
tertiary structure under physiological conditions. Moreover, the demand of a protein
function require that the folded protein should not be too rigid. Probably because of
these opposite constraints, the number of folds adopted by proteins, though large, is
very limited compared to all the possibilities of 3D shapes. This limited number of
folds may results from physical constraints or from the limited divergent evolutions
from pre-existing stable folds, and it is important in practice. First, if some stable
folds are not represented in nature, it should be possible to create completely new
proteins for industrial and medical applications. Second, it is then possible to classify
proteins according to their structures.

Many protein structure classification have been proposed, but in this thesis, we
will refer to the Structural Classification of Proteins (SCOP) [49] as a gold standard.
It is a largely manual classification of protein structural domains based on similarities
of their amino acid sequences (primary structure) and three-dimensional structures

1http://www.pdb.org
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Figure 1.4: Data growth in the PDB during the last 20 years
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During the last 20 years, the number of structure in the Protein Data Bank as grown rapidely. In
october 13, 2009, there was 60756 structure in the PDB.
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(tertiary or quaternary structure). Originally published in 1995, it is usually updated
every two years by Alexei G. Murzin and his colleagues [4]. SCOP uses four levels
of hierarchic structural classification:

1. Class - General “structural architecture” of the domain. Classes contain pro-
teins having approximatively the same the composition in terms of secondary
structure elements.

2. Fold - Major structural similarity. A fold contains proteins that have the
same major secondary structures in the same arrangement and with the same
topological connections. Different proteins with the same fold often have pe-
ripheral elements of secondary structure and turn regions that differ in size
and conformation. In some cases, these differing peripheral regions may com-
prise half the structure. Proteins placed together in the same fold category
may not have a common evolutionary origin: the structural similarities could
arise just from the physics and chemistry of proteins favouring certain packing
arrangements and chain topologies.

3. Superfamily - Probable common evolutionary origin. Proteins that have low
sequence identities, but whose structural and functional features suggest that
a common evolutionary origin is probable are placed together in superfami-
lies. For example, actin, the ATPase domain of the heat shock protein, and
hexakinase together form a superfamily.

4. Family - Clear evolutionarily relationship. Proteins clustered together into
families are clearly evolutionarily related. Generally, this means that pairwise
residue identities between the proteins are 30% and greater. However, in some
cases similar functions and structures provide definitive evidence of common
descent in the absence of high sequence identity; for example, many globins
form a family though some members have sequence identities of only 15%.

There are now a number of other databases which classify protein structures,
such as CATH [51], FSSP [36] and DDBASE [62], however, the distinction between
evolutionary relationships and those that arise from the physics and chemistry of
proteins is a feature that is only available in SCOP and in CATH. Human exper-
tise is still needed to decide whether certain proteins are evolutionary related and
therefore should be assigned to the same superfamily, or their similarity is a result
of structural constraints and therefore they belong to the same fold. This human
expertise explains why only 63 percents of the PDB structures (as illustrated in
table 1.2) are classified in SCOP.

2 Protein structure comparison

The experiments required for determining the function of a protein are costly, and
thus the biochemical and the pharmaceutical enterprises need “in silico” methods
for estimating if a protein posseses a specific function. As stated in the beginning
of the introduction, one of the paradigms of structural biology is that the three
dimensional structure of a protein determines its function. Even if recent researches
on specific proteins called “intrinsically disordered” [17] show exceptions to this rule,

8 2. PROTEIN STRUCTURE COMPARISON
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Table 1.2: Data growth in the SCOP database.

Scop version PDB entries Domains Folds Super-families Families
1.75 (2009) 38221 110800 1195 1962 3902
1.73 (2007) 34494 97178 1086 1777 3464
1.71 (2005) 27599 75930 971 1589 3004
1.69 (2004) 25973 70859 945 1539 2845

In 2009, over the 60756 structures present in the PDB, 38221 were processed by SCOP. From these
38221 PDB structures, 110800 structural domains were extracted and then classified into 1195
folds, 1962 super-families and 3902 families.

the corresponding assumption that proteins sharing similar structures may share a
common function was the starting point of the protein structure comparison.

Earlier methods compared the proteins by using their sequences, like the
Needleman-Wunsch algorithm [50] in 1970, the Smith-Waterman algorithm [61] in
1981, and more recently the BLAST heuristic [2] in 1990. BLAST, which allows
comparison with a bank of sequences, is now the reference for the protein sequence
comparison. Protein sequence comparison is still heavily used for two reasons. First,
the corresponding algorithms are polynomial (they are based on dynamic program-
ming or on polynomial heuristics) and are very fast. Second, the number of known
protein sequences is clearly larger than the number of known protein structures.
However, protein sequence comparison has a weak point, which consists in a “twi-
light zone”. Two protein sequences having less than about 30% of sequence identity
(i.e. the same amino-acids at the same positions after alignment of sequences) are
considered by sequence comparison to be unrelated, while such proteins can pos-
sess similar structures and functions [8]. This is the reason why protein structure
comparison is considered to be more reliable than protein sequence comparison.

Unlike protein sequence comparison, there is not a clear consensus about how
to compare two protein structures. However, we can easily describe the desired
outputs of such comparisons. First, an optimal matching (also called alignment)
between the amino-acids of the two proteins, according to matching rules which are
dependant of the comparison method. This alignment represents what is common in
the two protein structures. Second, a similarity score which is based on the optimal
alignment. This score measures how similar are the two protein structures.

Definition 1 Let P1 and P2 be two proteins, described by their ordered set of amino
acids V1 and V2. Matching amino-acid i from V1 with amino-acid k from V2 is
represented by the matching pair i ↔ k. An alignment is a sequence of matching
pairs “i1 ↔ k1,..., it ↔ kt”, as illustrated in figure 1.5. Since we focus on protein
chains or on domains, we can make the assumption that this matching should be
order preserving, as illustrated in figure 1.6.

It is important to note that in most of the structure comparison methods, the
contribution of a matching pair i ↔ k to the objective function does not only
depends on i and k, but also depends on the other chosen matching pairs. In such
cases, as proved by lathrop [42], finding an optimal alignment is a NP-complete
problem.

2. PROTEIN STRUCTURE COMPARISON 9
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Figure 1.5: An example of alignment between two protein structures.
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Between the two proteins P1 and P2, the alignment “2↔ 2′, 3↔ 3′, 4↔ 5′, 5↔ 6′” is represented
by the black arrows.

Figure 1.6: Order preserving matching.
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A) B)

A) Between P1 and P2, the alignment “1↔ 1′, 2↔ 3′, 4↔ 4′” is order preserving. B) Alignment
“1 ↔ 1′, 2 ↔ 3′, 3 ↔ 2′, 4 ↔ 4′” is not order preserving. It is sometimes referred as crossing
matching.
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Since the notion of similar three-dimensional structures is not clearly defined,
a multitude of methods has been proposed and compared [27, 59, 60, 68], but no
method has successfully imposed itself as a gold standard. It is not possible to give
an exhaustive state of the art about the protein structure comparison methods, but
the ones presented here illustrate the variety of the possible protein structure repre-
sentations and of the similarity functions used for comparing the protein structures.

2.1 DALI

In DALI [35, 37], the structure of a protein is represented by a two-dimensional
distance matrix, which contains the internal distances between the α-carbons of
the amino-acids. DALI tries to find the alignment which minimize the differences
between the sub-matrices corresponding the the matched amino-acids (i.e. which
minimise the differences between the corresponding internal distances). More pre-
cisely, the contribution of matching pairs i↔ k and j ↔ l to the objective function
is :

score(ikjl) = 0.2−

(

2× |di,j − dk,l|

di,j + dk,l

)

× exp
(

(di,j + dk,l)
2

1600

)

, (1.1)

where di,j (resp. dk,l) is the euclidean distance between amino-acid i and j (resp
k and l). Since finding such alignment is a NP-complete problem, DALI uses a
heuristic solver based on the Monte-Carlo algorithm [48], which does not guaranty
that the returned alignment is optimal.

2.2 STRUCTAL

In STRUCTAL [24, 25, 64], the structure of a protein is represented by the three-
dimensional coordinates of the amino-acid α-carbons. STRUCTAL tries to both find
the transformation (which is a combination of a rotation and a translation) and the
alignment which minimize the root-mean-squared-deviation (RMSD) of the coordi-
nates between matched amino-acids (also called RMSDc). Given (i) an alignment
A = “i1 ↔ k1,..., in ↔ kn”, and (ii) a transformation T such that after applying it,
the coordinates of amino acid k from P2 are T (k), then the RMSDc of an alignment
is :

RMSDc(A, T ) =

√

∑

∀i↔k∈A(di,T (k))

n
, (1.2)

where n is the number of matching pairs in A. Since transformation T depends
on all matching pairs, finding the alignment which minimise the RMSDc is also a
NP-complete problem. In STRUCTAL, it is solved by using the following iterative
algorithm. Each iteration is composed of two steps. First, according to an initial
transformation T is computed an new optimal alignment A. Second, based on the
new optimal alignment A, a new transformation T is computed and is given to the
next iteration. This process is then repeated until convergence. Note however that
this iterative algorithm is not an exact solver and thus does not guaranty that the
returned alignment is optimal.

2. PROTEIN STRUCTURE COMPARISON 11
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Figure 1.7: An example of triangulation between two proteins.
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A triangulation consists in dividing the area in between the two proteins P1 and P2 into triangles
which endpoints are the amino-acid α-carbons.

2.3 GAFIT

In principle, GAFIT [46] and STRUCTAL are very similar. Both try to find the
transformation T and the alignment A which minimize the RMSD of the coordi-
nates between matched amino-acids. however, they differ in the algorithms they
use. In GAFIT, a genetic algorithm [34] is used to find the transformation T . Eval-
uating the fitness of a member of the current population (i.e. how good is one
possible transformation) is done by computing the RMSDc of the corresponding
best alignment.

2.4 MINAREA

While STRUCTAL computes both an alignment A and a transformation T which
both minimise the RMSDc, MINAREA [18] computes both a triangulation (as
illustrated in figure 1.7) between the amino-acid α-carbons and a transformation
T which both minimise the surface area in-between the amino-acid α-carbons.

Since transformation T depends on the whole triangulation, minimising the sur-
face in-between the amino-acid α-carbons is also a NP-complete problem. Similarly
to STRUCTAL, this problem is solved by an iterative algorithm where each iter-
ation is composed of two steps. First, given an initial transformation function T ,
a dynamic programming step is used to compute the triangulation leading to the
smallest surface area. Second, based on this triangulation, a new transformation
function T which minimises the surface area is computed and is given to the next
iteration. This process is iterated until convergence. Again, this iterative algorithm
is not an exact solver and thus does not guaranty that the returned triangulation is
optimal.

12 2. PROTEIN STRUCTURE COMPARISON
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Figure 1.8: A dihedral angle between four consecutive α-carbons.

i-1

i i+1

i+2
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α

The α-carbons (i − 1, i, i + 1) define plane A, and the α-carbons (i, i + 1, i + 2) define plane B.
The angle between plane A and B is a dihedral angle (here named α).

2.5 VAST

VAST [26] (Vector Alignment Search Tool) is a hierarchical approach. In a first step,
the protein structure is described by vectors which represent its secondary structure
elements. VAST tries to find the alignment of vectors which optimize a probability
function based on the RMSD (It is less probable, and thus more significant, to
find a long alignment of secondary structure elements having a small RMSD value,
compared to a random alignment having the same length). Finding this optimal
alignment is modelled as looking for a clique in a graph and is solved by using the
Bron and Kerbosch algorithm [9], which is an exact solver. Then, in a second step,
VAST extends the optimal secondary structure alignment to the amino-acids by
using a Gibbs-Sampling technique [23], which this time is not an exact solver, and
thus, the returned amino-acids alignment may not be optimal.

2.6 YAKUSA

In YAKUSA [13], the protein structure is represented by sequences of dihedral an-
gles between four consecutive amino-acid α-carbons (as illustrated in figure 1.8).
The sequence does not contain exact angle values, but symbols corresponding to a
discretization of all possible angle values (each symbol corresponding to an inter-
val of 10 degrees). Comparing two protein sequences of dihedral angles (one called
“query”, and the other one called “target”) is done in four steps.

1. The query is split in overlapping fixed size sub-sequences which are given to an
automaton. This automaton both describes exact sub-sequences and similar
sub-sequences (symbols are similar if they correspond to consecutive angle
intervals, i.e. [10o, 20o] is similar to [20o, 30o]).

2. The target sequence is scanned with the automaton in order to retrieve all
similar short common sub-sequences, called “seeds”.

3. Seeds are extended to the longest possible SHSPs (Structural High Scoring
Pair).

2. PROTEIN STRUCTURE COMPARISON 13
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4. The best “compatible” SHSPs (according to a RMSD function) are assembled,
and a score is computed for the query/target pair.

2.7 CMO

In CMO (Contact Map Overlap maximisation) [28], the protein structure is rep-
resented by an adjacency matrix, in which two amino-acids are adjacent if their
euclidean distance in three-dimensional space is less than a given threshold (in such
case, they are said to be in “contact”). CMO tries to find the alignment which
maximises the number of common contacts (i.e. when two amino-acids which are in
contact are matched with two amino-acids which are also in contact). In [11], and
then in [69], CMO is associated to scoring schemes which are efficient for comparing
two protein structures. The best one, from [69] is :

Sim(P1, P2) =
2× ncc

nc1 + nc2
, (1.3)

where ncc is the number of common contacts between P1 and P2, nc1 and nc2 are
the number of contacts in P1 and P2. CMO is a NP-complete problem [29] for
which many algorithms have been proposed [11, 12, 14, 63, 69]. However, despite its
qualities, efficiently solving CMO is still an open problem. Conceiving an efficient
solver for CMO which guarantees the quality of the obtained results is the main
objective of this thesis.

3 The alignment graph approach

In this thesis, we propose a general canvas for modelling the protein structure com-
parison which is based on a specific graphs that we called “alignment graphs” and
whose particular structure allows the development of efficient solvers. Let us first
introduce some notations and basic graph theory knowledge.

3.1 Undirected graph and cliques problems

An undirected graph is usually denoted by G = (V,E), where V is the set of vertices
and E is the set of edges. Two vertices i and j are said to be adjacent if they are
connected by an edge of E. A clique of a graph is a subset of its vertex set, such
that any two distinct vertices in it are adjacent.

Definition 2 The maximum clique problem, also called maximum cardinality
clique problem, (MCC) is to find a largest, in terms of vertices, clique of an arbitrary
undirected graph G, which will be denoted by MCC(G).

The maximum clique problem is one of the first problem shown to be NP-
Complete [40] and it has been studied extensively in the literature. Interested
readers can refer to [7] for a detailed state of the art about the maximum clique
problem.

When weights are associated to the vertices and to the edges of G, then other
maximum clique related problems arise.

14 3. THE ALIGNMENT GRAPH APPROACH
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Definition 3 The Maximum Vertex Weighted clique problem (MVW) consists in
finding in G a clique with a maximum sum of vertex weights.

If the vertex weights are all equal to 1, then MVW is equivalent to MCC. Since
MCC is a special case of MVW, then MVW is also NP-Complete.

Definition 4 The Maximum Edge Weighted clique problem (MEW) consists in
finding in G a clique with a maximum sum of edge weights.

If the edge weights are all equal to 1, then MEW is equivalent to MCC, so MEW
is also NP-Complete. All these clique problems have been intensively investigated
[1, 7, 9, 10,58].

Definition 5 The Maximum Weighted Clique problem (MWC) consists in finding
in G a clique having a maximum sum of vertex and edge weights.

It is easily seen that MCC, MVW and MEW are all special cases of MWC. If the
vertex weights are equal to zero, then MWC is equivalent to MEW, if edge weights
are all equal to zero, then MWC is equivalent to MVW. If the vertex weights are
all equal to 1 and the edge weights are all equal to zero, then MWC is equivalent to
MCC. Thus, MWC is also NP-Complete.

3.2 Alignment graphs

In this thesis, we focus on specific k-partite graphs, which we define as follows.

Definition 6 A m×n alignment graph G = (V,E) is a graph in which the vertex
set V is depicted by a (m-rows) × (n-columns) array T , where each cell T [i][k]
contains at most one vertex i.k from V (note that for both arrays and vertices, the
first index stands for the row number, and the second for the column number). Two
vertices i.k and j.l can be connected by an edge (i.k, j.l) ∈ E only if i < j and k < l.
An example of such alignment graph is given in figure 1.9.

It is easily seen that the m rows form a m-partition of the alignment graph G,
and that the n columns also form a n-partition. In the rest of this paper we will
use the following notations. A successor of a vertex i.k ∈ V is an element of the
set Γ+(i.k) = {j.l ∈ V s.t. (i.k, j.l) ∈ E, i < j and k < l}. V i.k is the subset of V
restricted to vertices in rows j, i ≤ j ≤ m, and in columns l, k ≤ l ≤ n. Note that
Γ+(i.k) ⊂ V i+1.k+1. Gi.k is the subgraph of G induced by the vertices in V i.k. The
cardinality of a vertex set U is |U |.

3.3 Relations with protein structure similarity

From a general point of view, two proteins P1 and P2 can be represented by their
ordered set of components N1 and N2, and estimating their similarity can be done
by finding the longest order-preserving matching (also called alignment) between
the elements of N1 and N2. In our approach, such matchings are represented in a
|N1| × |N2| alignment graph G = (V,E), where each row corresponds to an element
of N1 and each column corresponds to an element of N2. A vertex i.k is in V (i.e.
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Figure 1.9: A 4× 4 alignment graph.
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matching i↔ k is possible), only if element i ∈ N1 and k ∈ N2 are compatible. An
edge (i.k, j.l) is in E if and only if (i) i < j and k < l, for order preserving, and (ii)
matching i↔ k is compatible with matching j ↔ l.

There is a multitude of alignment methods and they differ mainly by :

1. The nature of the elements of N1 and N2.

2. The compatibility definitions between elements (for creating vertex i.k) and
between couples of matching pairs of elements (for creating edges (i.k, j.l)).

3. The subset of V corresponding to an optimal matching between P1 and P2.

If we are looking for an alignment such that all couples of matched pairs of amino-
acids are compatible, then we are looking for a clique in G .

Many protein structure similarity related problems from the literature can be
converted into clique problems in alignment graphs, as we illustrate here with DALI,
with the secondary structure alignment in VAST [26], and the Contact Map Overlap
Maximization problem (CMO) [28].

Dali: When the two proteins P1 and P2 are represented by their ordered sets of
amino-acids N1 and N2, Dali, which is based on distance matrices, can be modelled
in an |N1| × |N2| alignment graph in the following way. All amino-acids from P1 are
compatible with all amino-acids from P2, and thus, for all i ∈ N1 and all k ∈ N2,
vertex i.k is in V . User can choose if the alignment is order preserving or not : either
all matchings i ↔ k are compatible with matchings j ↔ l, or i ↔ k is compatible
with j ↔ l only if i < j and k < l. If i ↔ k is compatible with j ↔ l then edge
(i.k, j.l) is in E. Dali can use two different scoring schemes. The first one, called
“rigid” associates to each edge (i.k, j.l) ∈ E a weight wr

ikjl = τ−|di,j−dk,l|, where τ is
a rigid distance threshold, fixed to 1.5 Å. The second one, called “elastic”, associates

a weight we
ikjl = τ −

(

2× |di,j − dk,l|

di,j + dk,l

)

× exp
(

(di,j + dk,l)
2

1600

)

, where τ is a relative
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distance threshold, fixed to 0.2. The best alignment is then a clique with maximum
sum of (either rigid or elastic) edge weights.

VAST: In VAST, N1 and N2 contain 3D vectors representing the secondary
structure elements (SSE) of P1 and P2. Matching i↔ k is possible if vectors i and
k have similar norms and correspond either both to α-helices or both to β-strands.
Finally, matching i ↔ k is compatible with matching j ↔ l only if the couple
of vectors (i, j) from P1 can be well superimposed in 3D-space with the couple of
vectors (k, l) from P2.

CMO: In the next chapter of this thesis, we model CMO in alignment graph,
but not by using cliques. However, a maximum clique formulation in alignment
graphs was proposed by Strickland et al. in [63] and then reused in [56], but they
did not exploit the properties of the alignment graphs.

4 Integer programming and Lagrangian relaxation

In this thesis, we solve the protein structure comparison problems by using integer
programming formulations and Lagrangian relaxation. To better understand the
rest of the thesis, let us introduce these two combinatorial optimisation techniques.
The interested readers should refer to [30] for more detailled explanations about
relaxation and Lagrangian relaxation. Please note that the notions and definitions
presented in this section are given in the context of the maximisation of a func-
tion f(x). The case of the minimisation is not presented, since minimising f(x) is
equivalent to maximising −f(x).

4.1 Preliminary notations and definitions

The problem P of maximising a given function f(x) over the set V of the feasible x
variables is denoted by:

P = max{ f(x) | x ∈ V }. (1.4)

The optimal value of P is denoted by v(P ), and the corresponding solution in terms
of x variables is denoted by z(P ).

According to Geoffrion [22], the relaxation of a maximisation problem is defined
as follows :

Definition 7 The problem RP = max{ g(x) | x ∈ W } is a relaxation of the
problem P = max{ f(x) | x ∈ V } if and only if :

• The feasible set of RP contains the feasible set of P (i.e., V ⊂ W ).

• Over the feasible set of P , the objective function of RP dominates the objective
function of P (i.e., ∀x ∈ V, f(x) ≤ g(x)).

The most important relation between the original and the relaxed problem is
that v(RP ) is an upper-bound on v(P ) (i.e., v(RP ) ≥ v(P )). On the other hand,
the relaxed solution x = z(RP ), which is usually infeasible for P , can often be
repaired into a feasible solution x′ which then provides a lower-bound on v(P ) (i.e.,
f(x′) ≤ v(P )).

4. INTEGER PROGRAMMING AND LAGRANGIAN RELAXATION 17
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The relaxation is widely used for generating bounds in branch and bound algo-
rithms. Towards this goal, the relaxation scheme should have the following proper-
ties. First, the difference v(RP )− v(P ), called gap, should be as small as possible.
Second, the relaxed problem should be easy to solve (i.e., in polynomial times).

4.2 Integer programming

The Integer Programming (IP) approach consists in reformulating a given problem
P as a maximisation of a linear function f(x), where the variables are integers
(x ∈ Z), and subjected to linear constraints Ax ≤ b.

P = max{ f(x) | x ∈ Z, Ax ≤ b }. (1.5)

The most widely used relaxation scheme in the context of integer programming
is the continuous relaxation, which consist in removing (relaxing) the integrality
constraints on the variables (x ∈ Z becomes x ∈ R). The corresponding relaxed
problem is the Linear Programming problem

LP = max{ f(x) | x ∈ R, Ax ≤ b } (1.6)

which can be solve (for example) by using the simplex algorithm (G. Dantzig, 1947)

4.3 Lagrangian relaxation

The Lagrangian relaxation was proposed by Held and Karp in 1970 [32], and is based
on the observation that given a NP-Complete IP problem P = max{ f(x) | x ∈
Z, Ax ≤ b }, the set of constraints Ax ≤ b can be divided into two sets, A′x ≤ b′

and A′′x ≤ b′′, such that when subjected to both sets of constraints, P is hard to
solve (NP-Complete), while relaxing (removing) the constraints A′′x ≤ b′′ makes
P easy to solve (in polynomial times). The constraints A′′x ≤ b′′ are then called
“complicating” constraints.

Definition 8 The Lagrangian relaxation of the problem P = max{ f(x) | x ∈
Z, A′x ≤ b′, A′′x ≤ b′′ }, with nonnegative Lagrangian multipliers λ associated to
the complicating constraints A′′x ≤ b′′, is the new problem

LR(λ) = max{ f(x) + λ(b′′ − A′′x) | x ∈ Z, A′x ≤ b′ }. (1.7)

In the Lagrangian relaxation, the complicating constraints are removed from the
set of constraints, and are then introduced as penalties into the objective function
associated with nonnegative multipliers λ. Among the many relations between P
and LR(λ), the most interesting ones are :

• LR(λ) is also an IP problem, but easier to solve than P .

• LR(λ) is a relaxation of P for any values of λ, and consequently, v(P ) ≤
v(LR(λ)), for any values of λ.

• LR(λ) is a tighter relaxation of P than LP for any values of λ, i.e., v(P ) ≤
v(LR(λ)) ≤ v(LP ).
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4.4 Lagrangian dual problem

Definition 9 The Lagrangian Dual problem of P , relatively to the complicating
constraints A′′x ≤ b′′, is the problem

LD = min
λ
{ v(LR(λ)) | λ ∈ R

+ }, (1.8)

which consists in finding the smallest upper-bounds of v(P ) given by v(LR(λ)).

In order to tighten the bounds of P given by LR(λ), or eventually to solve P ,
we need to solve (or at least to find a good sub-optimal solution) the Lagrangian
dual problem of P .
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Chapter 2

The Contact Map Overlap

maximization problem: from

mathematical model to efficient

exact solver

1 Introduction to the Contact Map Overlap max-
imisation problem

The Contact Map Overlap maximization problem (CMO), is a protein structure
comparison scoring scheme first proposed by [28]. This measure is robust, takes
partial matching into account, is translation-invariant and it captures the intuitive
notion of similarity very well. The protein primary structure is the linear arrange-
ment of its amino-acids. Under specific physiological conditions, this linear arrange-
ment will fold and adopt a complex 3D shape, called tertiary structure. In this
folded state, amino-acids that are far away along the linear arrangement may come
into proximity in 3D space and form contacts. This proximity relation is captured
by a contact map. The contact map of a protein P is a simple graph with vertices
corresponding to the amino-acids of P and where a contact edge (i, j) between two
amino-acids i and j exists if and only if their Euclidian distance in the protein fold
is smaller than a given threshold.

In the CMO approach one tries to evaluate the similarity between two proteins by
determining the maximum overlap of their contact maps. The formal definition is as
follows. Let I = (i1, i2, . . . is), i1 < i2 < . . . is and J = (j1, j2, . . . js), j1 < j2 < . . . js
be arbitrary subsets of vertices from the first and second contact maps, respectively.
Under the alignment (matching, one-to-one map) ik ←→ jk, k = 1, 2, . . . s, the edge
(k, l) is common (an overlap occurs) if and only if both edges (ik, il) and (jk, jl)
exist. The CMO problem is to find the optimal I and J , where optimality means
maximum number of common edges. Since the sets of amino-acids are supposed
linearly ordered then for any two sets I and J of the same cardinality the only
one-to-one map that respects this order (non-crossing matching) is the one given
above. Problems with the same goal (maximum number of common edges) but
without restriction on the mapping (i.e. crossing matchings are allowed) are known
as Maximum Common Subgraph (MCS) [21] and Maximum Common Edge Subgraph
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CHAPTER 2. THE CONTACT MAP OVERLAP MAXIMIZATION PROBLEM:
FROM MATHEMATICAL MODEL TO EFFICIENT EXACT SOLVER

Figure 2.1: Comparing CMO with MCES.
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CM2
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A: CMO (order preserving MCES) B: MCES
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A: The matching “1 ↔ 1′, 2 ↔ 3′, 4 ↔ 4′”, represented by the arrows, matchs vertex set
{1, 2, 4} from CM1 with vertex set {1′, 3′, 4′} from CM2. The corresponding common edges
(two in this case) are denoted by the same number of vertical dashes. It is an order preserv-
ing MCES with maximum score 2. B: Vertex set {1, 2, 3, 4} from CM1 is matched with ver-
tex set {1′, 4′, 2′, 3′} from CM2. This is a MCES with score 3. The order is not preserved.

(MCES) [47]. The later notion is usually used in the context of chemical structure
similarity. In fact in both problems, in CMO as well as in and MCES, one looks for
the optimal I and J . However, while for CMO finding these sets merely solves the
problem, discovering MCES requires solving MCS for the graphs induced by I and
J respectively. Figure 2.1 illustrates these notions.

Thus, CMO is just a way to introduce a similarity measure, a function ρ(A,B)
that associates a numerical value with a pair of contact maps (A,B). Often this is
normalized to be in the interval [0, 1]. CMO is an NP-hard problem [29] (it is easily
seen that if one of the contact maps is a complete graph of k vertices then the CMO
is equivalent to the decision problem of the existence of a clique of cardinality k
in a given graph), and thus designing efficient algorithms that guarantee the CMO
quality is a problem that has eluded researchers so far. For a detailed state of the art
on this subject the interested reader can refer to a recent paper by [69]. Here we focus
on designing exact algorithm for solving CMO problems. Towards this goal, [14] were
the first to tackle maximum CMO by integer programming. This approach seems
promising, especially when coupled with Lagrangian relaxation [11,12]. Alternative
approaches have been recently proposed by [69], who proposed a reduction technique
in the context of Branch and Bound (B&B), as well by [63], who reformulated CMO
as a maximum clique problem. This chapter demonstrates once more the efficiency
of Lagrangian relaxation approach when applied to maximum CMO. Our interest
in CMO was provoked by its resemblance to the Protein Threading Problem (PTP)
for which Andonov et al. have presented a methodology based on the non-crossing
matching in bipartite graphs [3]. It yielded a highly efficient algorithm by using
Lagrangian duality [70]. We aim to extend this approach to CMO by presenting
it as a matching problem in a bipartite graph, which in turn will be posed as a
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maximum weight augmented path in a structured graph.
The contributions of this chapter are as follows. We propose a new mixed integer

programming (MIP) formulation for the CMO problem. We present an efficient
Lagrangian relaxation to solve our model and incorporate it into a Branch and
Bound (B&B) search. On data set available from the literature we observe that our
algorithm is faster than the four above mentioned exact algorithms [11, 14, 63, 69],
and is even faster than two recent heuristics [38,54]. The comparisons with the most
recent algorithms [11, 69] were performed on a benchmark which is widely used in
the CMO community (the Skolnick set), and we noted that our solver outperforms
them significantly, both in time and in quality of the provided bounds. We also
solve new hard Skolnick set instances. Finally, we used our method as a classifier on
both the Skolnick set and the Proteus_300 set (a large benchmark of 300 domains
that we extracted from SCOP [49]). We are not aware of any previous attempt to
apply a CMO approach on such a large database. The obtained results are in perfect
agreement with SCOP classification and clearly demonstrate that our algorithm can
be used as a tool for large scale classification.

2 Integer programming model

Let us first introduce some notation. The contact maps of two proteins P1 and P2
are given by graphs G1 = (V1, E1) and G2 = (V2, E2), with n1 =| V1 | and n2 =| V2 |.
The vertices in V1 and in V2 correspond to the amino-acids of the proteins and it
is convenient to see them as ordered points on a line. The edges in E1 and in E2

correspond to the contacts. The right and left neighbors of vertex i are elements
of the sets δ+m(i) = {j|j > i, (i, j) ∈ Em} and δ−m(i) = {j|j < i, (j, i) ∈ Em}, for
m ∈ {1, 2}. Let i ∈ V1 be matched with k ∈ V2 (i.e. i↔ k) and j ∈ V1 be matched
with l ∈ V2 (i.e j ↔ l). We will call a matching non-crossing if i < j implies k < l.
Feasible alignments of two proteins P1 and P2 are given by non-crossing matchings
in the complete bipartite graph B with a vertex set V1 ∪ V2 (see figure 2.2: Left ).

Let the weight wikjl associated to the couple of matching pairs (i↔ k, j ↔ l) be
set as follows :

wikjl =

{

1 if (i, j) ∈ E1 and (k, l) ∈ E2

0 otherwise.
(2.1)

For a given non-crossing matching M in B we define its weight w(M) as the sum
of weights over all pairs of edges in M . CMO consists then in maximizing w(M),
where M belongs to the set of all non-crossing matchings in B.

In [3,70], Andonov et al. have already dealt with similar non-crossing matchings
and have proposed for them a network flow presentation. This approach is adapted
to CMO as follows (see figure 2.2). The edges of the bipartite graph B are mapped
to the vertices of a n1 × n2 alignment graph B′ = (V ′, E ′) according to the rule: a
vertex i.k ∈ V ′ corresponds to the edge (i, k) in B and vice versa. We also add arcs
(i.k, j.l) ∈ E ′ iff wikjl = 1.

Definition 10 An increasing subset of vertices in an alignment graph B′ is
an arbitrary ordered set {i1.k1, i2.k2, . . ., it.kt} of vertices in B′ such that ij < ij+1

and kj < kj+1 for j ∈ [1, t− 1].
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Figure 2.2: Relationship between a matching in a bipartite graph B and an increasing
subset of vertices in the corresponding alignment graph B′

1 2 3 4 5

G2

G1

G1

G2

B

B'

V1

V2

Left: Two contact maps G1 and G2, and a matching in the bipartite graph B (in the grey area).
Note that B is a complete graph, but for the sake of simplicity only the edges of the considered
matching (M = {(1, 1)(2, 3), (3, 4), (5, 5)}) are visualized. According to (2.1), w(M) = 2. Right:
The same matching is visualized in the grid alike graph B′ as the increasing subset of vertices
{1.1, 2.3, 3.4, 5.5} . It activates the arcs (1.1, 2.3) and (3.4, 5.5). The score of the path is the
number of these arcs (i.e. 2 in this case).

The correspondence between an increasing subset of vertices and a non-crossing
matching is then obvious. Searching for feasible alignments of two proteins is thus
converted to searching for an increasing subset of vertices. In B′, solving CMO,
corresponds to finding the densest (in terms of arcs) subgraph of B′ whose vertex
set is an increasing subset of vertices. To each vertex i.k ∈ V ′ we now associate a
0/1 variable xik, and to each arc (i.k, j.l) ∈ E ′, a 0/1 variable yikjl. Denote by X
the set of increasing subsets of vertices. The problem can be stated as follows :

v(CMO) = max
∑

(i.k,j.l)∈E′

yikjl (2.2)

subject to

xik ≥
∑

l∈δ+
2
(k)

yikjl, j ∈ δ+1 (i), i ∈ [1, n1 − 1], k ∈ [1, n2 − 1]. (2.3)

xik ≥
∑

j∈δ+
1
(i)

yikjl, l ∈ δ+2 (k), i ∈ [1, n1 − 1], k ∈ [1, n2 − 1]. (2.4)

xik ≥
∑

l∈δ−
2
(k)

yjlik, j ∈ δ−1 (i), i ∈ [2, n1], k ∈ [2, n2]. (2.5)

xik ≥
∑

j∈δ−
1
(i)

yjlik, l ∈ δ−2 (k), i ∈ [2, n1], k ∈ [2, n2]. (2.6)

x ∈ X (2.7)
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Actually, we know how to represent X with linear constraints. It is easily seen
that definition 10 of a feasible path yields the following inequalities

k
∑

l=1

xil +
i−1
∑

j=1

xjk ≤ 1, i ∈ [1, n1], k ∈ [1, n2]. (2.8)

The same definition also implies that the j-th amino-acid from P1 could be matched
with at most one amino-acid from P2 and vice-versa. This explains the sums on
the right hand sides of (2.3) and (2.4) (for arcs having their tails at vertex i.k);
and (2.5) and (2.6) (for arcs heading to i.k). Any arc (i.k, j.l) can be activated
(i.e. yikjl = 1) iff xik = 1 and xjl = 1 and in this case the respective constraints are
active because of the objective function.

A tighter description of the polytope defined by (2.3)–(2.6) and 0 ≤ xik ≤ 1,
0 ≤ yikjl could be obtained by lifting the constraints (2.5) and (2.6) as shown in
figure 2.3. The gray area contains the predecessors of the vertex i.k in the graph
B′ and they form a grid of δ−1 (i) rows and δ−2 (k) columns. Let i1, i2, . . . , is be all the
vertices in δ−1 (i) ordered according to the numbering of the vertices in V1 and likewise
k1, k2, . . . , kt in δ−2 (k). Then the vertices in the l-th column {i1.kl, i2.kl, . . . is.kl}
correspond to pairwise crossing matchings and at most one of them could be chosen
in any feasible solution x ∈ X (see constraint (2.6)). This “all crossing” property
holds even if we add to this set the following two sets: {is.k1, is.k2, . . . , is.kl−1}
and {i1.kl+1, i1.kl+2, . . ., i1.kt}. Denote by colik(l) the union of these three sets,
and analogously, by rowik(j) the corresponding union for the j-th row of the grid
(colik(l) (resp.rowik(j)) is illustrated in figure 2.3 b (resp. d)), . When the grid is
one column/row, the set colik(l)/rowik(j) reduces to this column/row only.

Now a tighter LP relaxation of (2.3)–(2.6) is obtained by substituting (2.5) with
(2.9), and (2.6) with (2.10).

xik ≥
∑

(r,s)∈rowik(j)

yrsik, j ∈ δ−1 (i), i ∈ [2, n1], k ∈ [2, n2]. (2.9)

xik ≥
∑

(r,s)∈colik(l)

yrsik, l ∈ δ−2 (k), i ∈ [2, n1], k ∈ [2, n2]. (2.10)

Remark: Since we are going to apply the Lagrangian technique there is no need
for either an explicit description of the set X or for lifting the constraints (2.3) and
(2.4).

3 The lagrangian relaxation based solver

Here, we show how the Lagrangian relaxation of constraints (2.9) and (2.10) leads to
an efficiently solvable problem, yielding upper and lower bounds that are generally
better than those found by the previously published algorithms [11,69].

3.1 Lagrangian relaxation approach

Towards this goal we first add to problem (2.2)-(2.8) the following constraint.
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Figure 2.3: Illustration of the tighter LP model

(i,k)

n2

n1
(i,k)

n2

n1
l l

(i,k)

n2

n1
(i,k)

n2

n1

j j

a) c)b) d)

The shadowed area represents the set of vertices in V ′ which are tails for the arcs heading to a
given point i.k. The boldfaced points in a) visualize the set δ−

1
(i) for a given l and illustrate (2.6);

b) depicts colik(l) in the tightened constraint (2.10). The boldfaced points in c) visualize the set
δ−
2
(k) for a given j and illustrate (2.5); d) depicts rowik(j) in the tightened constraint (2.9).

Figure 2.4: Relaxed problem.

1 2 3 4 5

V2

V1

V1

V2

B B'

Left: Graph B represents a matching (in red lines) yielding one common contact (in green). Right:
The same matching is represented as an increasing subset of vertices with four red nodes in the
alignment graph B’. When the constraints related to the incoming arcs are relaxed, the nodes
incident to the heads of these arcs may not be activated. Arcs activating the node incident to their
tail only (in blue) give an upperbound (UB=3). Arcs activating their both extremities (in green)
provide a lowerbound (LB=1). The exact solution here is 2.

∑

l∈δ+
2
(b),l≤k

yabil+
∑

j∈δ+
1
(a),j<i

yabjl ≤ 1, a ∈ [1, n1], b ∈ [1, n2], i ∈ δ+1 (a), k ∈ δ+2 (b) (2.11)

Constraint (2.11) requires that the heads of all arcs outgoing from a vertex a.b
must satisfy the definition of an increasing subset of vertices. It is in fact induced
by the constraint (2.8) and the new problem is therefore equivalent to the original
one. We now relax constraints (2.9) and (2.10), authorizing in this way the heads of
the activated axes not to be incident with the chosen nodes of the increasing subset
of vertices. Activated arcs having only their tail lying on the increasing subset of
vertices provide then an upper bound of the original problem, while arcs having
their both extremities lying on the increasing subset of vertices give a lower bound.
An illustration is given on figure 2.4.

Let λh
ikj ≥ 0 (respectively λv

ikj ≥ 0) be a Lagrangian multiplier assigned to each
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Figure 2.5: The sets of left/right neighbors of a given vertex
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The boxes below/above vertex 5.4 contains its left/right neighbors. The dashed lines symbolize the
relaxed constraints (2.9) and (2.10) for i.k = 5.4. The numbers on its right neighbors correspond
to the values of the coefficients c54jl(λ) for a given λ. The solution of the local problem in 5.4
equals 2 and is given by vertices 7.8 and 8.9 (indicated by stars). This value is used in the global
problem.

constraint (2.9) (respectively (2.10)). By adding the slacks of these constraints to
the objective function with weights λ, we obtain the Lagrangian relaxation of the
CMO problem

LR(λ) = max
∑

(i.k,j.l)∈E′

yikjl +
∑

i,k,j∈δ−
1
(i)

λh
ikj(xik −

∑

(r,s)∈rowik(j)

yrsik)

+
∑

i,k,l∈δ−
2
(k)

λv
ikl(xik −

∑

(r,s)∈colik(l)

yrsik)
(2.12)

subject to x ∈ X, (2.3), (2.4) and y ≥ 0. Now, we are going to show the polynomial
(linear) complexity of this problem. The proof is constructive and it is used in the
algorithm described in 3.3.

Theorem 1 LR(λ) can be solved in O(|V ′|+ |E ′|) time.

Proof: The proof is better seen as a call to two kinds of optimization problems,
one is called local and the other one global, which are both solved using the same
dynamic programming approach.

Local problem :

To each edge (i.k, j.l) ∈ E ′, we associate a weight cikjl(λ) = 1 − λh
ikj − λv

ikl, which
corresponds to the coefficient value of yikjl in (2.12). The local problem is, for each
vertex i.k ∈ V ′, to find the best subset of its outgoing edges (i.e., to find the values
of the corresponding yikjl variables, j ∈ δ+1 (i), l ∈ δ+2 (k)) such that :
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• all activated edges have their heads lying on an increasing subset of vertices,

• the sum of their weights, denoted by cik(λ), is maximal.

All arcs in E ′ outgoing from i.k can be put in one-to-one correspondence with the
entries of a |δ+1 (i)|×|δ

+
2 (k)| array denoted by tik. To each entry tik(j, l) in this array,

we assign the profit cikjl(λ). Then, the local problem is equivalent to searching in
the array tik for a maximum weighted increasing subset of vertices (i.e : a subset
of cells which contains vertices such that they form an increasing subset of vertices,
and such that the sum of their weights is maximum.

Global problem :

To each vertex i.k ∈ V ′, we associate a weight cik(λ) +
∑

j∈δ−
1
(i) λ

h
ikj +

∑

l∈δ−
2
(k) λ

v
ikl

(where the last two terms are the coefficients of xik in (2.12)). The global problem
is then to find the values of the xik variables such that :

• all activated vertices lie on an increasing subset of vertices,

• the sum of their weights is maximal.

Again, all vertices in V ′ can be put in one-to-one correspondence with the entries of a
|V1|×|V2| array denoted Tg, and for all entries in this array, we set Tg(i, k) = cik(λ)+
∑

j∈δ−
1
(i) λ

h
ikj +

∑

l∈δ−
2
(k) λ

v
ikl. The global problem is then equivalent to searching in

Tg for a subset of cells corresponding to a maximum weighted increasing subset of
vertices. See figure 2.5 for an attempt to visualize parts of this proof. Note that
because of relaxation some yikjl variables could be equal to 1 in the optimal solution
of LR(λ) even though if xjl = 0.

Dynamic programming approach :

In this manner, for the both above problems, a 2D array is created. The definition
(10) implies that finding a maximum weighted increasing subset of vertices in a
n×m array T can be done by the following dynamic programming (DP) recurrence.
Let Ts be an array which keeps the value of a maximum weighted increasing subset
of vertices up to the cell T (i, k). Then :

Ts(i, k) =







0 if i = 0 or k = 0

max

(

Ts(i, k − 1), Ts(i− 1, k),
Ts(i− 1, k − 1) + T (i, k)

)

otherwise.
(2.13)

We are looking for the value Ts(n,m), which can be computed in O(n × m) time
complexity. We implemented the DP recurrence as presented in algorithm 1. Note
that a second pass of dynamic programming is needed in order to retrieve the cells
participating in this maximum weighted increasing subset of vertices.

Thus, cik(λ) are computed by calling the DP algorithm on the corresponding
array tik and it is done in O(|δ+1 (i)| × |δ

+
2 (k)|) time. The sum over all local DP calls

(one for each (i, k) ∈ V ′) gives a O(|E ′|) time complexity. Then, we can find the
(global) optimal solution to LR(λ) by calling the DP algorithm on the array Tg.
This is done in O(|V ′|) time complexity. This gives us a total time complexity of
O(|V ′|+ |E ′|) for solving LR(λ).

28 3. THE LAGRANGIAN RELAXATION BASED SOLVER



CHAPTER 2. THE CONTACT MAP OVERLAP MAXIMIZATION PROBLEM:
FROM MATHEMATICAL MODEL TO EFFICIENT EXACT SOLVER

Algorithm 1 DP(T ), where T is a table containing n rows and m columns.
Require: Let Ts and Tm be two arrays of (n+1) rows and (m+1) columns, used for

storing partial results. Ts keeps the optimal sum of profit for cells up to (i, k),
and Tm keeps the corresponding selected cells. Let L be the maximum weighted
increasing subset of vertices in T , and Best_Sum be the corresponding sum of
weights.

1:
2: # Initialisation
3: Column 0 and row 0 of Ts are initialized with 0.
4: L← {∅}.
5: Best_Sum = 0.
6:
7: # Forward Step : Find optimal sum of profits.
8: for col = 1 to m do
9: for row = 1 to n do

10: if Ts(row, col − 1) > Ts(row − 1, col) then
11: Ts(row, col) = Ts(row, col − 1).
12: Tm(row, col) = ’left’.
13: else
14: Ts(row, col) = Ts(row − 1, col).
15: Tm(row, col) = ’down’.
16: end if
17: if T (row, col) + Ts(row − 1, col − 1) > Ts(row, col) then
18: Ts(row, col) = T (row, col) + Ts(row − 1, col − 1).
19: Tm(row, col) = ’diag’.
20: end if
21: end for
22: end for
23: Best_Sum = Ts(n,m).
24:
25: # Backward Step : Retrieve corresponding cells.
26: col = m, row = n.
27: while col ≥ 1 and row ≥ 1 do
28: if Tm(row, col) = ’diag’ then
29: Add (row, col) into L.
30: col = col − 1, row = row − 1.
31: else if Tm(row, col) = ’left’ then
32: col = col − 1.
33: else
34: row = row − 1.
35: end if
36: end while
37: Return Best_Sum, L
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3.2 Subgradient descend

In order to find the tightest upper bound on v(CMO) (or eventually to solve the
problem), we need to solve in the dual space of the Lagrangian multipliers LD =
minλ≥0 LR(λ), whereas LR(λ) is a problem in x, y. A number of methods [30]
have been proposed to solve Lagrangian duals : dual ascent, constraint generation,
column generation, etc... Here, we choose the subgradient descent method [33],
because of our large number of lagrangian multipliers. It is an iterative method in
which at iteration t, given the current multiplier vector λt, a step is taken along a
subgradient of LR(λ); then, if necessary, the resulting point is projected onto the
nonnegative orthant. It is well known that practical convergence of the subgradient
method is unpredictable. For some problems, convergence is quick and fairly reliable,
while other problems tend to produce erratic behavior of the multiplier sequence,
or the Lagrangian value, or both. In a “good" case, one usually observes a saw-
tooth pattern in the Lagrangian values for the first iterations, followed by a roughly
monotonic improvement and asymptotic convergence to a value that is hopefully the
optimal Lagrangian bound. The computational runs on a rich set of real instances
confirm a “good" case belonging to our approach at some expense in the speed of
the convergence.

In our realization, the update scheme for λikj (and analogously for λikl) is λt+1
ikj =

max{0, λt
ikj − Θtgtikj}, where gtikj = x̄ik −

∑

ȳjlik (see (2.9) and (2.10) for the sum
definition) is the subgradient component (0, 1,or −1), calculated on the optimal
solution x̄, ȳ of LR(λt). The step size Θt is Θt = α(LR(λt)−Zlb)∑

(gt
ikj

)2+
∑

(gt
ikl

)2
where Zlb is a

known lower bound for the CMO problem and α is a variable which is first initialized
to 1, and then depends on the subgradient behavior. Every 5 consecutive improving
subgradient iterations (i.e subgradient iteration which results either in a lower LR(λ)
or either in a bigger Zlb), the α value is multiplied by 1.11, and every 5 consecutive
non-improving subgradient iterations, it is divided by 1.11. In our experiments, this
dynamic update of α proved to be more effective than the use of a fixed value.

Into this approach the x-components of LR(λt) solution provides a feasible solu-
tion to CMO and thus a lower bound also. The best one (incumbent) so far obtained
is used for fathoming the nodes whose upper bound falls below the incumbent and
also in section 5 for reporting the final gap. If LD ≤ v(CMO) then the problem is
solved. If LD > v(CMO) holds, in order to obtain the optimal solution, one could
pass to a B&B algorithm suitably tailored for such an upper and lower bounds
generator.

3.3 Branch and Bound

From among various possible nodes splitting rules, the one shown in figure 2.6
gives good results (see section 5). Formally, a node of B&B is given by n2 couples
(bk, tk) for k ∈ [1, n2] which define the candidate vertex set Cand (the white area
in-between the two broken lines on figure 2.6). A vertex j.l of the graph B′ belongs
to Cand if bl ≤ j ≤ tl.

For any vertex j.l in Cand, we can create two sets : U(j, l) = {i.k ∈ Cand such
that i.k 6= j.l, i ≥ j and k ≤ l} and D(j, l) = {i.k ∈ Cand such that i ≤ j and
k ≥ l}. By definition, if an increasing subset of vertices has a vertex in U(j, l), it
cannot have one in D(j, l), and vice versa.
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Figure 2.6: Sketch of the B&B splitting strategy

(rbest,cbest)

a) b)

c)

d)

U

D

a) The white area in-between broken lines represents the current node feasible set; b) Fixing the
point rbest.cbest creates the two regions, D and U; c) and d) are the descendants of the node a).

Now, the two descendants of the current node are obtained by discarding from
its feasible set the vertices belonging to the two respective domains U(rbest, cbest)
and D(rbest, cbest) (see figure 2.6). The goal of this strategy is twofold: to create
descendants that are balanced in sense of feasible set size and to reduce maximally
the parent node’s feasible set. Note that we experimentally found that applying
this splitting rule in order to obtain four descendants (by dividing a problem in two
sub-problems, and then by dividing each sub-problem in two) greatly speed up the
branch and bound algorithm.

Finally, the main steps of the B&B algorithm are as follows:
Initialization: Set L={root} (root is the original CMO problem, i.e. with no restric-
tions on the set of vertices).
Problem selection and relaxation: Select and delete the problem
P from L having the biggest upper bound. Solve the Lagrangian dual of P .
Fathoming and Pruning: Follow classical rules.
Partitioning : Create and add to L the four descendants of P
Termination : if L = ∅, the solution (x∗, y∗) is optimal.

4 Relationship to other exact CMO approaches

Four other exact CMO approaches have been previously published : B&Cut [14],
Clique [63], LAGR [11] and CMOS [69].

B&Cut, [14], was the first exact CMO solver. It has been outperformed by the
recent exact algorithms, and we refer to its results only for the purpose of illustrating
the progress in solving CMO.

Clique was designed by [63] who reformulated CMO as a maximum clique prob-
lem on a specially defined graph. The size of this graph (where any vertex cor-
responds to a common contact (overlap)) could be very large, and discovering the
maximum clique in it is a difficult task.

LAGR was designed by [11] and similarly to our solver is based on Lagrangian
relaxation. However, both algorithms differ in two major characteristics: (1) in the
proposed MIP formulation ; and (2) in the set of dualized constraints. This can
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explain the significant discrepancies in the computational behavior. More precisely,
in contrast to our formulation, the set of “increasing subsets of vertices" in [11] is
defined by an exponential number of linear constraints (excluding the usage of any
MIP solver); the variables yikjl are substituted by two variables yikjl and yjlik and
the dualized constraints are yikjl = yjlik. This kind of Lagrangian relaxation falls in
the class of the so called cost-split techniques.

CMOS, recently proposed by [69], is a direct CMO approach without using any
mathematical programming models. The main result can be shortly derived in
our Lagrangian relaxation approach as explained below. Consider both rectan-
gles (right/left neighbors) associated to any vertex i.k in Fig. 2.5. Denote by
p+(i, k)/p−(i, k) the longest feasible "path" with vertices in the right/left rectangle.
Then p+(i, k)+p−(i, k) is the length of the longest feasible “path" passing through i.k.
Let us rewrite the objective function by using the substitutions yikjl = 0.5(yikjl+yjlik)
and let us add the constraint yikjl = yjlik. The problem obtained by relaxing this
constraint (equivalent to dualizing it with zero weight) is polynomialy solvable by
DP algorithm. To check that solve the global problem from Theorem 3.1 by setting
to 0.5(p+(i, k) + p−(i, k)) the table entry at the position (i, k) (i.e. Tg(i, k)) and
where p+(i, k)/p−(i, k) is computed by solving the local problem in the rectangle
|δ+1 (i)| × |δ

+
2 (k)| (respectively |δ−1 (i)| × |δ

−
2 (k)|). The bound, say U(CMOS), ob-

tained in this manner is exactly the one given as Theorem 11 in [69]. Our initial
bound LR(0) in our subgradient descent is similar to U(CMOS), but is obtained
by using p+(i, k) instead of 0.5(p+(i, k) + p−(i, k)). Our improved bound LR(λ∗) is
obtained at the expense of N subgradient iterations needed to solve the Lagrangian
dual. We observed on the Skolnick set that LR(λ∗) is on average about 25% smaller
than LR(0). We come to a principle question: is it worthwhile to use better, but
N times more expensive bound instead of making zero subgradient iterations and
to create N nodes in the B&B tree? To check this, we emulated CMOS with our
algorithm and on all Skolnick instances the Lagrangian duality was definitely the
winner.

5 Numerical results

The results presented here were obtained on a computer with an AMD Opteron CPU
at 2.4 GHz and 4 Gb RAM. Our algorithm, denoted by A_purva1, was implemented
in C++. To generate contact maps we consider two amino-acids to be in contact if
their Cα are within 7.5 Å, without taking into account contacts between consecutive
amino-acids.

The protein benchmark sets we used are described in section 5.1. In section 5.2,
we show that A_purva solves more CMO instances than other known exact CMO
algorithms, and does it faster. In section 5.3, we show that even on instances that
were not optimally solved, A_purva’s bounds are always tighter than the ones of
LAGR (i.e. A_purva’s bounds are always closer to the optimum). Finally, in section
5.4, we successfully used A_purva to quickly obtain automatic classifications in very
good agreement with the SCOP [4] ones.

1Apurva (Sanskrit) = not having existed before, unknown, wonderful, ...
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Table 2.1: The Sokol set

Protein Length Species
1bpi 58 Cow (Bos taurus)
5pti 58 Cow (Bos taurus)
1knt 58 Human (Homo sapiens)
2knt 58 Human (Homo sapiens)
1era 62 Sea snake (Laticauda semifasciata)
3ebx 62 Sea snake (Laticauda semifasciata)

6ebx(A) 62 Sea snake (Laticauda semifasciata)

This set contain 7 small protein chains. The four first are from the “Small Kunitz-type inhibitors
& BPTI-like toxins” SCOP family, and the last three are from the “Snake venom toxins” family.

Table 2.2: The five families in the Skolnick set.

SCOP Family Length Proteins
1 CheY-related 120-130 1b00A, 1dbwA, 1natA, 1ntrA, 3chyA

1qmp(A,B,C,D), 4tmy(A,B)
2 Plastocyanin 97-105 1bawA, 1byo(A,B), 1kdiA, 1ninA

/azurin-like 1plaA, 2b3iA, 2pcyA, 2pltA
3 Triosephosphate 243-256 1amkA, 1aw2A, 1b9bA, 1btmA, 1htiA

isomerase (TIM) 1tmhA, 1treA, 1triA, 1ydvA, 3ypiA, 8timA
4 Ferritin 158-191 1b71A, 1bcfA, 1dpsA, 1fhaA, 1ierA, 1rcdA
5 Fungal ribonucleases 104 1rn1(A,B,C)

The Skolnick set contains 40 small protein chains from 33 proteins. They are classified by SCOP
in five differant families.

5.1 Benchmark set descriptions

In the following experiments, we used three protein structure benchmark sets. The
first one, known as Sokol set and described in table 2.1, was first introduced in [14]
and was also used in [38,63,69]. It contains 7 small protein chains, whose number of
amino-acids varies from 58 to 62. In the corresponding contact maps, the number
of contacts varies from 177 to 197.

The second one, known as Skolnick set and described in table 2.2, was sug-
gested by J. Skolnick and used in various recent papers related to protein structure
comparison [11,38,54,69]. It contains 40 medium size chains / domains from 33 pro-
teins. The number of amino-acids varies from 97 to 256, and in the corresponding
contact maps, the number of contacts varies from 320 to 936. According to SCOP
classification, the Skolnick set contains five families.

The last test set, denoted by Proteus_300, was proposed by us for the purpose of
evaluating the capability of our algorithm to perform as a classifier. This is a large
set containing more, and significantly longer proteins: 300 domains, with amino-
acids number varying from 64 to 455. The maximum number of contacts is 1761.
These domains are classified by SCOP in 24 folds, 27 super-families and 30 families.

For the interested reader, all our benchmarks and obtained results (solved in-
stances, upper and lower bounds, run time, classifications...) are available on the
URL:
http://www.irisa.fr/symbiose/softwares/resources/proteus300.
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Table 2.3: Running time comparison on 10 Sokol set instances

Running time (sec.) A_purva
Instances B&Cut1 Clique2 CMOS3 SADP4 LAGR5 A_purva5 sgd iter.
1bpi-1knt 331 19 0.27 0.05∗ 0.17 0.01 1
1bpi-2knt 423 182 0.46 0.06∗ 0.15 0.01 1
1bpi-5pti 320 30 0.00 0.05∗ 0.07 0.01 7
1knt-1bpi 331 110 0.43 0.06∗ 0.17 0.01 1
1knt-2knt 52 0 0.00 0.03 0.01 0.01 1
1knt-5pti 934 46 0.55 0.05∗ 0.13 0.01 5
2knt-5pti 760 95 0.37 0.05∗ 0.12 0.01 4
3ebx-1era 487 236 0.69 0.08 0.31 0.01 28
3ebx-6ebx 388 6 0.00 0.04∗ 0.01 0.01 1
6ebx-1era 427 101 0.38 0.04∗ 0.32 0.01 5

1 Hardware similar to “Clique”. 2 SGI workstation ∼ 200MHz.
3 Intel Pentium 4 ∼ 3GHz. ∗ Instance not optimally solved.
4 AMD Athlon64 3200+ ∼ 2GHz. 5 AMD Opteron ∼ 2.4GHz.

Running time in seconds of the different algorithms on 10 Sokol set instances. Note that only
LAGR and A_purva were run on the same hardware. Other running times can only be used for
order-of-magnitude comparisons. A_purva is clearly faster than the other algorithms, and is able
to solve these small instances in less than 28 sub-gradient descent iterations (last column) on the
root problem without branch and bound.
Note that for some instances, Clique and CMOS report running times of 0 seconds, which we
believe correspond to running times smaller than 0.01 second. In our experiments (for LAGR and
A_purva), these small values were rounded up to 0.01 second.

5.2 Performance

First, in table 2.3, we compare the time needed by the five exact algorithms – B&Cut,
Clique, LAGR2, CMOS and A_purva – plus a recent heuristic SADP [38]– for solving
10 instances from the Sokol set. Note that B&Cut, Clique, CMOS and SADP were run
on different hardwares and contact maps. Thus, their running times are presented
for order-of-magnitude comparison only. Data concerning B&Cut and Clique were
taken from [63], the ones of CMOS from [69] and the ones of SADP from [38]. A_purva
clearly outperforms all above mentioned algorithms. Note that many instances were
solved by A_purva during the first iteration of sub-gradient descent (i.e. the optimal
solution of LR(λ0) was also the optimal solution of v(CMO)). The other instances
only needed few iteration of sub-gradient descent (see last column of table 2.3).

The second experiment consisted in using LAGR, CMOS and A_purva for aligning
all 780 pairs of domains from the Skolnick Set. Again LAGR was executed on the
same computer and with the same data as A_purva, while data concerning CMOS

were taken from [69]. For all algorithms, the execution time was bound to 1800
seconds per instance3. As recapitulated in table 2.4, A_purva succeeded to solve
610 pairs, while LAGR and CMOS solved only 161 pairs.

We observed that the time for aligning similar structures (domains from the same
family) varies between 0.02 sec. and 2.14 sec. (except for two instances). This time

2The code of LAGR was kindly provided to us by Giuseppe Lancia.
3This time limit, not mentioned in [69], was kindly provided to us by N. Sahinidis.
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Table 2.4: Number of instances solved by the different CMO solvers

LAGR1 A_purva1 CMOS2

Easy instances (164) 161 164 161
Hard instances (616) 0 446 0

Total (780) 161 610 161

1 Run on AMD opteron ∼ 2.4GHz, with 7.5Å contact map.
2 Run on Intel Pentium 4 ∼ 3GHz, with 7Å contact map.

Time limit was fixed to 1800 sec. per instance. Easy instances are the 164 pairs where both
domains belong to the same SCOP family. Only A_purva is able to solve all easy instances, as
well as some of the hard instances.

varies respectively from 3.47 sec. to more than 1800 sec. when aligning dissimilar
structures (domains from different families). In this manner our results confirm once
more the property (also observed in [11,69]) that : instances, such that both domains
belong to the same family, seem to be easily solvable–in contrast to instances that
align domains from different families. Note however, that this property is not shared
with non CMO methods–exactly the opposite holds for FAST [71] where the average
time for aligning similar structures is twice bigger then the one for aligning dissimilar
ones. To the best of our knowledge, A_purva is the only solver able to solve many
“hard” CMO instances (446 in the case of the Skolnick set).

Figure 2.7 compares the time needed by LAGR to the one of A_purva on the set
of 161 Skolnick instances solved by both algorithms. We observe that A_purva is
significantly faster than LAGR. More precisely, LAGR needed 10 h. 03 m. 30 seconds
total time to solve these 161 instances while A_purva needed only 29.37 sec. Thus
A_purva is about 1232 times faster than LAGR on this subset.

We also would like to mention that our approach seems to be not only the fastest
exact CMO solver, but it is also noticeable faster than a recently published heuristic
VNS [54] which solved the same 161 instances in 3 hs. 11 m. versus 29.37 sec. for
A_purva (on similar workstations).

5.3 Quality of bounds

When a B&B type algorithm stops because of time limit (1800 sec. in our case), it
provides an upperbound (UB) and a lowerbound (LB), which is a real advantage
compared to any meta-heuristics. The relative gap value UB−LB

UB
measures how far is

the optimization process from finding the exact optimum (small relative gap values
relate to near optimality).

Our next observation concerns the quality of relative gaps obtained by LAGR and
A_purva on the set of 170 Skolnick instances that both algorithms were not able to
solve. Figure 2.8 shows the relative gaps of A_purva plotted against those of LAGR.
The entire is very asymmetric to the advantage of our algorithm since the relative
gaps of A_purva are always smaller than those of LAGR, meaning that A_purva was
always closer to the optimum.

Even on the root of the branch and bound tree, our Lagrangian relaxation algo-
rithm is still able to provide two bounds, an upperbound UB which is the smallest
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Figure 2.7: A_purva versus LAGR running time comparison on the set of the 161
Skolnick instances solved by both algorithms
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Figure 2.8: Comparing relative gaps on the set of the 170 unsolved instances
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Table 2.5: Five families chosen from Proteus_300 set for observing the relative
duality gap divergences

SCOP Family SCOP Super-Family SCOP Fold
1 Beta-glycanases (Trans)glycosidases TIM beta/alpha-barrel
2 Class I aldolase Aldolase TIM beta/alpha-barrel
3 AAT-like PLP-dependent transferases
4 Extended AAA- P-loop containing nucleoside P-loop containing nucleoside

ATPase domain triphosphate hydrolases triphosphate hydrolases
5 G proteins P-loop containing nucleoside P-loop containing nucleoside

triphosphate hydrolases triphosphate hydrolases

Each family contains 10 instances. Families 1 and 2 come from the same fold but different super-
families, family 3 is unique in its fold, while families 4 and 5 come from the same fold and same
super-family.

LR(λ) value found during the subgradient descent, and a lowerbound LB which is
the incumbent value (the biggest value of v(CMO) found so far). In this case, the
relative gap value is called Relative Duality Gap (RDG).

In our results we observed that the RDG is smaller for instances in which both
domains come from the same SCOP family. To illustrate this property, we extracted
five families (presented in table 2.5) from Proteus_300 set. We run A_purva on
this subset, using only 500 iterations of the sub-gradient descent on the root of
branch & bound tree. Table 2.6 presents the minimum, maximum and average
value of the RDG for the corresponding instances. This gap equals zero (i.e. the
instance was optimally solved) only for some of the pairs in which both domains
come from the same family. Even if it is not zero, for such pairs the RDG is, in
average, relatively small. Once again, such instances seem to be easily solvable, in
contrast to instances for which the domains belong to different families. As we will
see in the next section, this property (the smaller is the relative duality gap, the
more similar are the domains) can be successfully used for classification purpose.

5.4 A_purva as a classifier

In this section we are interested in checking the ability of A_purva to perform as a
classifier in a given small lapse of time. We used the following protocol. We limited
the runs of A_purva to the root of the B&B tree, with a limit of 500 iterations for
the subgradient descent. To evaluate the similarity between two proteins P1 and
P2, we compared two measures. The first was the relative duality gap. To the
best of our knowledge, this is the first attempt to use this function (considered as a
dissimilarity - i.e. bigger duality gap relates to bigger dissimilarity) as a classifier.
The second measure we have dealt with was the function4 used in [69], where the
similarity between two proteins P1 and P2 is given by Sim(P1, P2) =

2×LB
|E1|+|E2|

. The
values computed by these two measures were given to Chavl [43, 44], a publicly
available tool which proposes both a hierarchical ascendant classification and the cut
corresponding to the best partition level (therefore, it does not require a similarity
threshold). The obtained results were compared using the SCOP v1.73 classification

4this function is very close to the one used in [11]
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Table 2.6: Relative duality gaps values

1 2 3 4 5
min 0.000 0.150 0.309 0.277 0.287

1 avg 0.113 0.298 0.401 0.354 0.412
max 0.305 0.443 0.495 0.473 0.493
min 0.000 0.278 0.200 0.178

2 avg 0.114 0.420 0.275 0.332
max 0.330 0.545 0.366 0.460
min 0.000 0.323 0.351

2 avg < 0.001 0.421 0.458
max 0.016 0.508 0.537
min 0.000 0.184

4 avg 0.005 0.322
max 0.038 0.429
min 0.000

5 avg < 0.001
max 0.003

Minimum, average and maximum relative duality gaps obtained after 500 iterations of the subgra-
dient descent concerning the five families from table 2.5. Pairs that belong to the same family are
characterized by smaller relative duality gaps compared to pairs belonging to different families.

as a gold standard.

For the Skolnick set, the alignment of all pairs was done in less than 357 seconds
(≃ 0.46 sec./pair). For both measures, the classification returned by Chavl was
exactly the same as the classification at the family level in SCOP (which coincides
with the fold level classification for the Skolnick set). The ascendant classification
and the cut returned by Chavl when using the similarity function Sim() is presented
in figure 2.9. Note that in [38], SADP was also successfully used to automatically
classify the Skolnick set, but required about 12 minutes on similar hardware.

To get a stronger confirmation of A_purva classifier capabilities, we performed
the same operation on Proteus_300. Aligning all 44850 pairs required roughly 13h.
38m. (≃ 1.09 sec./pair).

In table 2.7 we compare the SCOP classification at family level (1st column)
with the classifications obtained using the relative duality gap and the similarity
function Sim(P1, P2). The relative duality gap classification (2nd column) contains
17 classes denoted by letters A − Q. Eleven of those classes correspond to SCOP
families. The other classes are combinations of different SCOP families. This shows
that either the relative duality gap is not specific enough for classification purpose
(i.e. it will consider two proteins to be similar even if they are not), or more sophis-
ticated tools are to be used. The results of the Sim function are given in the last
column. The obtained classification contains 34 classes. The following four SCOP
families: L-arabinose binding protein-like, Tyrosine-dependent oxidoreductases, beta-
glycanases and Class I aldolase were each split in two in our classification. Such a
divergence can be considered as a good result in the above context.
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Figure 2.9: Ascendant classification of the Skolnick set.
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Ascendant classification of the Skolnick set returned by Chavl when using the similarity function
Sim(). Chavl also returns the cut corresponding to the best partition (in black).
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Table 2.7: Comparing three classifications of Proteus_300 set

Scop Families RD-gap Sim

1 WD40-repeat. A
2 N-acetyl transferase, NAT. B
3 C-type lectin domain. C
4 Cytochrome P450. D
5 Proteasome subunits. E
6 L-arabinose binding protein-like. F *
7 Phosphate binding protein-like. G
8 AAT-like. H
9 Protein kinases, catalytic subunit. I
10 Beta-glycanases. J *
11 Class I aldolase. K *
12 Ubiquitin-related.
13 Enolase N-terminal domain-like. L
14 PDZ domain.
15 DNA polymerase processivity factor. M
16 Lactate & malate dehydrogenases.
17 HMA, heavy metal-associated domain.
18 Canonical RBD.
19 Fibronectin type III. N
20 C1 set domains (antibody constant domain-like).
21 I set domains.
22 Ferritin.
23 Globins. O
24 Glutathione S-transferase (GST), C-terminal domain.
25 LDH N-terminal domain-like.
26 Tyrosine-dependent oxidoreductases. P *
27 G proteins.
28 CheY-related.
29 Nuclear receptor ligand-binding domain. Q
30 Extended AAA-ATPase domain.

SCOP family classification of Proteus_300 set (1st column) versus the classifications ob-
tained using the A_purva’s relative duality gap (2nd column) and the Sim function (3rd
column). The classification obtained by the Sim function is the same as the SCOP classi-
fication, except that four of the SCOP families (indicated by *) are each split in two into
A_purva’s classification.
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5.5 Sensitivity and specificity analysis

In order to test the overall accuracy of A_purva, we checked its sensitivity and speci-
ficity with the SCOP classification v1.73 as the gold standard. For this purpose we
have chosen from Proteus_300 four query structures (see table 2.8) with different
level of difficulty for detecting their family affiliation. Note that:

• the family of d1t7ra_ is alone in its fold (an easy case);

• the family of d1uhva2 and the family Class I aldolase belong to two different
super-families, but both are coming from the same fold (an intermediate case);

• the family of d1ny5a2 and the family G proteins belong to the same super-
family and, hence, to the same fold (a hard case);

• detecting the affiliation of difp5a1 to its family is perturbed by the presence
of two other families : the three families belong to the same fold, but only two
of them come from the same super-family (the hardest considered case).

Each query belongs to a family of cardinality 10. For a fixed query we determined
the sensitivities and specificities using 9 same-family pairs as the positive set and
290 different-family pairs as the negative set.

For comparison we also ran two other structure alignment algorithms (VAST [26]
and Yakusa [13]) on the same dataset. The theoretical bases of these comparison
methods differ significantly from CMO approach. Moreover, they belong to two
distinct categories. VAST substantially uses the SSEs knowledge. It first supplies
an exact SSEs alignment, and then, extends it heuristically (using a Gibbs sampling
technique) to the amino-acids. In contrast to VAST, Yakusa directly establishes
amino-acid-amino-acid correspondences. Its scoring scheme is based on the dihedral
angles between the Cα atoms of four consecutive amino-acids. Both softwares are
available to us5 and we were able to manipulate easily large data sets on the local
server. Both (VAST and Yakusa) are fast heuristics, in contrast to the exact CMO
approach. For Proteus_300 (i.e. 44850 instances) the average running times were
0.02, 0.14, 2.25 sec/instance for Yakusa, VAST and A_purva respectively.

Table 2.9 summarizes the detected specificity at fixed sensitivity cutoffs, while
table 2.10 summarizes the detected sensitivity at fixed specificity cutoffs. Globally,
we observe that A_purva is more accurate than VAST, which is more accurate than
Yakusa. Even more, tables 2.9 and 2.10 show that A_purva was able to detect all
pairs of structures designated by SCOP to be in the same family without errors,
and this - for all four queries. Hence, on the observed dataset A_purva achieves the
highest specificity even at the highest sensitivity, and vice versa.

6 Conclusion

In this chapter, we give an efficient exact algorithm for contact map overlap problem.
The bounds are found by using Lagrangian relaxation, and the dual problem is solved
by sub-gradient approach. The performance of the algorithm is demonstrated on

5Many thanks to Jean-François Gibrat and Joel Pothier for kindly providing us the source code
of VAST and Yakusa respectively.

6. CONCLUSION 41



CHAPTER 2. THE CONTACT MAP OVERLAP MAXIMIZATION PROBLEM:
FROM MATHEMATICAL MODEL TO EFFICIENT EXACT SOLVER

Table 2.8: The four queries and their neighbourhoud in the Proteus_300 set.

Query Family Super-Family Fold

d1t7ra_ Nuclear receptor Nuclear receptor Nuclear receptor
ligand-binding domain ligand-binding domain ligand-binding domain

d1uhva2 beta-glycanases (Trans)glycosidases TIM beta/alpha-barrel
Class I aldolase Aldolase TIM beta/alpha-barrel

d1ny5a2 Extended AAA- P-loop containing nucleoside P-loop containing nucleoside
ATPase domain triphosphate hydrolases triphosphate hydrolases
G proteins P-loop containing nucleoside P-loop containing nucleoside

triphosphate hydrolases triphosphate hydrolases

difp5a1 C1 set domains (antibody Immunoglobulin Immunoglobulin-like
constant domain-like) beta-sandwich
I set domains Immunoglobulin Immunoglobulin-like

beta-sandwich
Fibronectin type III Fibronectin type III Immunoglobulin-like

beta-sandwich

Four queries (1st column) and their SCOP classification.

the Skolnick set and its superiority over the existing algorithms is obvious. The
capability of the proposed algorithm to provide a similarity measure was tested on
a large data set of 300 protein domains. We were able to obtain in a short time a
classification in very good agreement to the well known SCOP database.
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Table 2.9: Specificity at three sensitivity cutoffs.

Sensitivity (number Specificity (number of
Query of corresponding corresponding false positive)

true positives) A_purva VAST Yakusa
100% (9) 100% (0) 100% (0) 99.7% (1)

d1t7ra_ 88.9% (8) 100% (0) 100% (0) 100% (0)
77.8% (7) 100% (0) 100% (0) 100% (0)
100% (9) 100% (0) 97.2% (8) 91.7% (24)

d1uhva2 88.9% (8) 100% (0) 99.3% (2) 99.7% (1)
77.8% (7) 100% (0) 100% (0) 100% (0)
100% (9) 100% (0) 100% (0) 60.7% (114)

d1ny5a2 88.9% (8) 100% (0) 100% (0) 90.7% (27)
77.8% (7) 100% (0) 100% (0) 97.9% (6)
100% (9) 100% (0) 98.6% (4) 25.5% (216)

d1fp5a1 88.9% (8) 100% (0) 99.7% (1) 93.1% (20)
77.8% (7) 100% (0) 100% (0) 95.2% (14)

Specificity at three sensitivity cutoffs computed for the queries from table 2.8. True positives are
defined as domains coming from the scop family of the query.

Table 2.10: Sensitivity at three specificity cutoffs.

Specificity (number Sensitivity (number of
Query of corresponding corresponding true positives)

false positive) A_purva VAST Yakusa
100% (0) 100% (9) 100% (9) 88.9% (8)

d1t7ra_ 99.6% (1) 100% (9) 100% (9) 100% (9)
98.3% (5) 100% (9) 100% (9) 100% (9)
100% (0) 100% (9) 77.8% (7) 77.8% (7)

d1uhva2 99.6% (1) 100% (9) 77.8% (7) 88.9% (8)
98.3% (5) 100% (9) 88.89% (8) 88.9% (8)
100% (0) 100% (9) 100% (9) 44.4% (4)

d1ny5a2 99.6% (1) 100% (9) 100% (9) 44.4% (4)
98.3% (5) 100% (9) 100% (9) 66.7% (6)
100% (0) 100% (9) 77.8% (7) 11.1% (1)

d1fp5a1 99.6% (1) 100% (9) 88.9% (8) 11.1% (1)
98.3% (5) 100% (9) 100% (9) 11.1% (1)

Sensitivity at three specificity cutoffs computed for the queries from table 2.8. False positives are
defined as domains which does not come from the scop family of the query.
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Chapter 3

Speeding up CMO by using

biological knowledge

1 Problematics

In the previous chapter, we showed that the contact map overlap maximization is
an efficient scoring scheme, in the sense that the scores it associates to the pairs
of protein structures allow good automatic classifications. However, the pairwise
comparisons are still too much time consuming for using CMO in the context of
large database classification.

Since the CMO problem is NP-Hard, a good approach for speeding-up the solving
process is to reduce the size of the input data, which in our case is the alignment
graph. In a first step, we were inspired by structural biology to use the Secondary
Structure Elements (SSE) of the proteins for creating vertex-filters for the alignment
graph. In a second step, to further exploit the secondary structure information, we
define a hierarchical approach for solving the CMO problem. Each time, the goal is
twofold. On the one hand, the alignment graph gets sparser, and thus the solving
process gets faster. On the other hand, the obtained alignment should be more
biologically acceptable.

The ideas presented in this chapter are presented for the first time in the context
of CMO. We are not aware of any attempt to include secondary structure knowledge
into CMO, thus it was mentioned as a possible future work in [69]. Hierarchical
approaches have already been used in the context of protein structure comparison,
for example in VAST [26] or in CATHEDRAL [57], but no hierarchical approach
was proposed for CMO.

2 Secondary structure based filters

Reducing an alignment graph G = (V,E) can be done either at the vertex level, by
removing vertices i.k from V according to some rules saying that amino-acid i from
P1 is not compatible with amino-acid k from P2, or at the edge level, by removing
edges (i.k, j.l) from E according to some rules saying that matching i from P1 with
amino-acid k from P2 is not compatible with matching j from P1 with amino-acid
l from P2. Note that removing a vertex i.k also removes the edges connected to it,
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so it seems to be a good idea to start reducing the alignment graph by removing
vertices.

As stated in the thesis introduction, the protein structure can be described at
different levels : at the primary structure level by using its sequence of amino acids,
at the secondary structure level by using its secondary structure elements, or at the
tertiary/quaternary structure levels by using the 3D coordinates of its amino-acids
atoms. In this chapter, we decided to use the secondary structure knowledge for
designing our filters, because most molecular biologists will agree that an α-helix
should not be matched with a β-strand, while using sequence information (like the
physical properties of amino-acids) or tertiary/quaternary structure informations
(like angles between amino-acids) is more delicate.

In its original definition, CMO deals with a simplification of the three dimen-
sional structure of proteins which is the notion of contact between amino-acids, and
does not consider secondary structure informations. Thus, any amino-acid coming
from an α-helix can be matched with an amino-acid coming from a β-strand if this
matching contributes positively to the objective function. Potentially, this conducts
to biologically unacceptable matching. Based on theses observations, we designed
two filters which prohibit such undesirable matchings by removing the corresponding
vertices from the alignment graph.

SSE filter 1: The goal of the first SSE filter is to prohibit matchings between
amino-acids from α-helices and amino-acids from β-strands. Thanks to secondary
structure assignment software like DSSP [39], Kaksi [45] or Stride [20], it is possible
to create a function Type(P, i) which associates to the ith amino-acid of a protein
P the kind of secondary structure to which it belongs.

Type(P, i) =







α if the ith amino-acid of protein P belongs to an α-helix
β if it belongs to a β-strand
. if it does not belong to a SSE (i.e. it belongs to a loop).

(3.1)

Given an alignment graph G = (V,E) and a secondary structure assignment
function Type(), prohibiting matchings between α-helices and β-strands is done by
removing from G the vertices i.k ∈ V (and the corresponding edges) such that (1)
Type(P1, i) = α and Type(P2, k) = β, or (ii) Type(P1, i) = β and Type(P2, k) = α.

SSE filter 2: The first SSE filter still allows matching between a secondary
structure (α-helix or β-strand) and a loop. The goal of the second SSE filter is to
also prohibit such matchings. This is done by removing from the alignment graph
G = (V,E) the vertices i.k ∈ V (and the corresponding edges) such that Type(P1, i)
6= Type(P2, k).

The effects of these two SSE filters on the alignment graph are illustrated in
figure 3.1. Note that an optimal solution found on a filtered graph (by using SSE
filter 1 or 2) is a feasible solution of the original problem, but is not necessarily an
optimal solution of the original problem.

As shown in the result section, using the SSE filters greatly reduces the compu-
tational time of A_purva. This led us to further exploit the secondary structure
knowledge for solving the contact map overlap.
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Figure 3.1: Effect of the SSE filters on the alignment graph.
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In the original CMO, all amino-acids from P1 can be matched with all amino-acids from P2.
Left: SSE filter 1 prohibits matching between amino-acids coming from an α-helix and amino-
acids coming from a β-strand (prohibited matchings are represented by grey areas on the alignment
graph). Right: SSE filter 2 also prohibits matching between amino-acids coming from a secondary
structure (α-helix or β-strand) with amino-acids coming from a loop.

3 The hierarchical approach

We were inspired by VAST for better using the secondary structure information.
VAST uses the following hierarchical approach : first, a “low resolution” alignment
is done at the secondary structure level, and second, this secondary structure align-
ment is used to filter the “high resolution” alignment at the amino-acids level. This
strategy is interesting because the number of secondary structure element in a pro-
tein is much smaller than the number of amino-acid (as illustrated in table 3.1
on the Skolnick set), and thus the time spend for solving the secondary structure
alignment is more than justified by the gain when solving the amino-acid alignment.
In this section, we aim at producing a similar hierarchical approach for CMO, that
is, to first align secondary structures, and then to used this alignment for filtering
the amino-acids alignment graph.

3.1 SSEs alignment, the contact map approach

In the literature, the two main references for aligning secondary structure of protein
are : (i) VAST, the protein structure comparison software used in the NCBI for
determining the neighbourhood of a protein structure in the ENTREZ database1,
and (ii) GRATH [31], the secondary structure alignment algorithm used in the
structural classification of protein CATH, more precisely in the domain boundary
recognition algorithm CATHEDRAL.

Using VAST to align SSE and then A_purva for the amino-acids has been im-
plemented, but not really tested. The main reason is practical: VAST only returns
secondary structure alignment for similar proteins, when we are interested in the
opposite cases. In effect, A_purva easily solves the CMO problems corresponding

1www.ncbi.nlm.nih.gov/Entrez
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Table 3.1: Amino-acid and secondary structure element number comparison in the
Skolnick set.

SCOP Family No of AA No of SSEs Protein chains
CheY-related 120-130 9-10 1b00A, 1dbwA, 1natA, 1ntrA, 3chyA

1qmp(A,B,C,D), 4tmy(A,B)
Plastocyanin 97-105 7-10 1bawA, 1byo(A,B), 1kdiA, 1ninA

/azurin-like 1plaA, 2b3iA, 2pcyA, 2pltA
Triosephosphate 243-256 19-20 1amkA, 1aw2A, 1b9bA, 1btmA, 1htiA

isomerase (TIM) 1tmhA, 1treA, 1triA, 1ydvA, 3ypiA, 8timA
Ferritin 158-191 5-8 1b71A, 1bcfA, 1dpsA, 1fhaA, 1ierA, 1rcdA
Fungal ribonucleases 104 6-8 1rn1(A,B,C)

For each family of the Skolnick set, the number of amino-acids in the protein chains (presented
in the second column) is compared to the number of secondary structure elements (presented in
the third column). For example, in the CheY-related family, the number of secondary structure
element is about 13 times smaller than the number of amino-acids.

to similar structures, while it is not always able to solve (within a reasonable amount
of time) the CMO problems corresponding to dissimilar structures. Moreover, we
wanted to stay in the context of CMO. This motivated us to propose a novel ap-
proach for aligning secondary structure elements based on contact maps. To the best
of our knowledge, there is no such secondary structure alignment method based on
CMO, and thus we needed to both define how to create and how to align secondary
structure contact maps.

Secondary structure contact maps

The secondary structure contact map graph of a protein is a derivative of the amino
acid contact map graph. In a first step, an amino-acid contact map graph is created
by using the same protocol as in chapter one (by using a distance threshold of 7.5
Å between α-carbons, and without taking into account contacts between successive
amino-acids). The composition of the protein in terms of secondary structure is
determined by using a secondary structure assignment software (we used Kaksi [45],
though any other secondary structure assignment tool can be used). Note that the
secondary structure elements are also ordered according to their positions in the
protein chain. The secondary structure contact map of a protein P is a weighted
graph G = (V,E,W ) in which each vertex of the ordered vertex set V correspond
to a secondary structure element of P (the ith vertex of V corresponds to the ith

secondary structure element of P ). To each vertex is also associated the type of
its corresponding secondary structure element (either α or β). A contact edge (i, j)
between vertices i and j exists if and only if there exist at least one contact between
the amino-acids from SSE i and the amino-acids from SSE j. To each edge (i, j) is
associated a weight wij ∈ W which is equal to the number of contacts between the
amino-acids from SSE i and the amino-acids from SSE j. This process is illustrated
in figure 3.2.
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Figure 3.2: Secondary structure contact map graph creation.
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  β
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+

Amino-acid contact map graph

Secondary structure assignment

Secondary structure contact map graph

Each vertex of the secondary structure contact map correspond to a secondary structure element,
and to each vertex is associated the type of the corresponding secondary structure element which
is either α-helix (in white) or β-strand (in black). Two secondary structure element are connected
by a contact edge if there is at least one contact between their amino-acids. To each contact
edge is associated a value which represents the exact number of amino-acid contacts between the
secondary structure elements.
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Figure 3.3: Secondary structure alignment graph.
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The secondary structure alignment of proteins P1 and P2 (represented by their secondary structure
contact map graphs G1 = (V1, E1,W1) and G2 = (V2, E2,W2)) is modelled in a |V1|×|V2| alignment
graph G = (V,E,W ). Vertex i.k is in V if i ∈ V1 and k ∈ V2 are from the same type (α-helix, in
white, or β-strand, in black). Edge (i.k, j.l) ∈ E if and only if (i) i < j and k < l, and (2) if edge
(i.j) ∈ E1 and edge (k.l) ∈ E2. To each edge (i.k, j.l) ∈ E is associated a weight wikjl ∈W which
is equal to min(w1ij , w2kl).

Secondary structure alignment

Aligning two secondary structure contact maps is similar to aligning two amino-acid
contact maps. Given two proteins P1 and P2, and their corresponding secondary
structure contact map graphs G1 = (V1, E1,W1) and G2 = (V2, E2,W2), we are
looking for an order preserving matching between element of V1 and V2. Matching
i ↔ k is possible only if i and k are compatible, i.e. if both are α-helices or if
both are β-strands. The contribution of matching i ↔ k and j ↔ l is wikjl =
min(w1ij, w2kl), as this value represents the maximum number of common contacts
between the amino-acids induced by the secondary structure matching.

As illustrated in figure 3.3, the secondary structure alignment is then modelled
in an |V1| × |V2| alignment graph G = (V,E,W ). A vertex i.k exists (i.e. i.k ∈ V )
if SSE i ∈ V1 and SSE k ∈ V2 are from the same type. An edge (i.k, j.l) exists
(i.e. (i.k, j.l) ∈ E) if and only if (i) i < j and k < l, for order preserving, and (2)
if edge (i.j) ∈ E1 and edge (k.l) ∈ E2. To each edge (i.k, j.l) ∈ E is associated a
weight wikjl ∈ W which is equal to min(w1ij, w2kl). Like in the original CMO, we
are looking in G for the maximum edge-weighted increasing subset of vertices, the
only difference being that the weights associated to the edges are not necessarily
equal to 1, but are in N− {0}.

Thus, the integer programming model for solving the weighted CMO problem is
similar to the one for solving the unweighed CMO problem, except for the objective
function.

We associate to each vertex i.k ∈ V a binary variable xik such that :

xik =

{

1 if vertex i.k is in the increasing subset of vertices,
0 otherwise.

(3.2)
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And we associate to each edge (i.k, j.l) ∈ E a binary variable yikjl such that :

yikjl =

{

1 if edge (i.k, j.l) is in the increasing subset of vertices,
0 otherwise.

(3.3)

The new objective function is to find the maximum sum of edge weights :

v(Weighted_CMO) = max
∑

(i.k,j.l)∈E′

wikjl × yikjl (3.4)

Subject to :

xik ≥
∑

l∈δ+
2
(k)

yikjl, j ∈ δ+1 (i), i ∈ [1, n1 − 1], k ∈ [1, n2 − 1]. (3.5)

xik ≥
∑

j∈δ+
1
(i)

yikjl, l ∈ δ+2 (k), i ∈ [1, n1 − 1], k ∈ [1, n2 − 1]. (3.6)

xik ≥
∑

(r,s)∈rowik(j)

yrsik, j ∈ δ−1 (i), i ∈ [2, n1], k ∈ [2, n2]. (3.7)

xik ≥
∑

(r,s)∈colik(l)

yrsik, l ∈ δ−2 (k), i ∈ [2, n1], k ∈ [2, n2]. (3.8)

k
∑

l=1

xil +
i−1
∑

j=1

xjk ≤ 1, i ∈ [1, n1], k ∈ [1, n2]. (3.9)

∑

l∈δ+
2
(b),l≤k

yabil+
∑

j∈δ+
1
(a),j<i

yabjl ≤ 1, a ∈ [1, n1], b ∈ [1, n2], i ∈ δ+1 (a), k ∈ δ+2 (b) (3.10)

Our CMO solver, A_purva, was modified accordingly.

3.2 Extension to the amino-acids

The principle is to extend the alignment obtained at the secondary structure level to
the amino-acid. Being given two proteins P1 and P2, a secondary structure alignment
“i1 ↔ k1, ..., in ↔ kn” and an amino-acid alignment graph G = (V,E), this is done
by removing from the alignment graph all vertices i.k which do not satify at least
one of the following conditions:

1. Amino-acid i comes from SSE ij, amino-acid k comes from SSE kj, and ij ↔ kj
is in the secondary structure alignment.

2. Amino-acid i comes from the loop before SSE ij, amino-acid k comes from the
loop before SSE kj, and ij ↔ kj is in the secondary structure alignment.

3. Amino-acid i comes from the loop after SSE ij, amino-acid k comes from the
loop after SSE kj, and ij ↔ kj is in the secondary structure alignment.

The effect of this filter is illustrated in figure 3.4.
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Figure 3.4: Illustration of the hierarchical filter.
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Left : Secondary structure alignment “1↔ 1′, 2↔ 2′, 4↔ 4′”. Right : The corresponding filtered
amino-acids alignment graph, when applying the rules discribed in section 3.2.

4 Results

The results presented in this chapter were all obtained on the GenOuest bioinformat-
ics platform, “GenoCluster2”, a cluster of computers with Intel Xeon E5462 processor
at 2.8 GHz and 32GB of memory, running under Red Hat Enterprise Linux Server
release 5.1. Our CMO solver, A_purva, is compared to its filtered counterparts,
which are denoted as follows : When the alignment graph is filtered by using SSE
filter 1, the solver is denoted by A_purva_SSE1. When the alignment graph is
filtered by using SSE filter 2, the solver is denoted by A_purva_SSE2. When CMO
is solved by using the hierarchical approach, the solver is denoted by A_purva_H.
The comparison of all these approaches are done on the Skolnick set (previously
presented in table 3.1), and the corresponding contact map graphs were generated
by using a distance threshold of 7.5 Å between the α-carbons, without taking into
account the contacts between consecutive amino-acids.

In section 4.1 we compare A_purva to its filtered counterparts A_purva_SSE1
and A_purva_SSE2 to illustrate the effect of the secondary structure based filters.
Then, in section 4.2, we present the secondary structure alignment obtained by
the first stage of A_purva_H. Finally, in section 4.3 we compare A_purva to its
hierarchical counterpart A_purva_H.

4.1 Effect of using SSE filters

In this section, we show that using SSE filter 1 and SSE filter 2 greatly reduces the
running times of A_purva. We also show that even on filtered alignment graphs, the
scores returned by A_purva_SSE1 and A_purva_SSE2 still allow good automatic
classifications of protein structures.
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Solved instances comparison

The first experiment consisted in aligning all 780 pairs of domains from the Skolnick
set with A_purva (when alignment graphs are not filtered), A_purva_SSE1 (when
alignment graphs are filtered by SSE filter 1) and A_purva_SSE2 (when alignment
graphs are filtered by SSE filter 2). In all cases, execution time was bounded to
1800 seconds per instance.

Table 3.2 presents the number of instance solved by each algorithm. Using SSE
filter 1 allows A_purva to solve 25 more instances, while using SSE filter 2 allows
A_purva to solve 138 more instances

Table 3.2: Effects of SSE filters on the number of solved instances.

A_purva A_purva_SSE1 A_purva_SSE2
(without filter) (with SSE filter 1) (with SSE filter 2)

Similar instances (164) 164 164 164
Dissimilar instances (616) 465 492 603

Total (780) 629 654 767

Time limit was fixed to 1800 sec. per instance. Similar instances are the 164 pairs where both
domains belong to the same SCOP family. Using SSE filter 1 allows A_purva to solve 25 more
instances than without using it, while using SSE filter 2 allows to solve 138 more instances than
without filtering.

Amongst the 584 Skolnick instances which are solved by both A_purva and
A_purva_SSE1, we observed that the optimal solution found by A_purva_SSE1
was equal to the one of A_purva in 266 cases. However, this only happens once
between the 619 Skolnick instances which are solved by both A_purva and A_purva-
_SSE2.

Figure 3.5 compares the running time of A_purva to the one of A_purva_SSE1
on the set of 584 Skolnick instances solved by both algorithms. On average, using
SSE filter 1 makes A_purva 2.53 times faster (up to 461.48 times). Figure 3.6
does the same comparison between A_purva and A_purva_SSE2, on the set of 619
Skolnick instances solved by both algorithms. On average, using SSE filter 2 makes
A_purva 48.69 times faster (up to 15041.13). These results were expected, since
SSE filter 2 removes much more vertices from the alignment graphs than SSE filter
1. However, note that the SSE filters are efficient only for instances which required
more than one second of computational time.

Automatic classifications

The second experiment consists in testing the ability of A_purva_SSE1 and of
A_purva_SSE2 to quickly provide good scores for automatic classifications. The
runs of both methods were limited to the root problems (i.e. without branch and
bound) and to 500 sub-gradient iterations. We used the score defined in [69] which
is Sim(P1, P2) = 2×LB

|E1|+|E2|
, where LB denotes the number of common contacts in

the best feasible solution found by the algorithm, and where E1 and E2 denote the
number of edges in the contact map graphs of P1 and P2. These scores, computed
for the Skolnick set, were given to Chavl, and the corresponding classifications are
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Figure 3.5: A_purva and A_purva_SSE1 running time comparison.
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For each of the 584 Skolnick instances solved by both methods, the running time of A_purva_SSE1
(x-axis) is plotted against the running time of A_purva (y-axis). In average, A_purva_SSE1 is
2.53 times faster than A_purva, and this difference goes up to 461.48 times.

Figure 3.6: A_purva and A_purva_SSE2 running time comparison.
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For each of the 619 Skolnick instances solved by both methods, the running time of A_purva_SSE2
(x-axis) is plotted against the running time of A_purva (y-axis). In average, A_purva_SSE2 is
48.69 times faster than A_purva, and this difference goes up to 15041.13 times.
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compared to the family level of the SCOP classification (v1.73) used as a gold
standard.

Figure 3.7 presents the ascendant classification and the corresponding best par-
titioning cut returned by Chavl when using the scores computed by A_purva_SSE1.
The obtained classification is identical to the SCOP’s one at family level, and was
obtained in 365.98 seconds (0.47 second per instance in average). This is 1.23 times
slower than the 297.67 sec needed by A_purva to obtain the same results.

Figure 3.8 presents the ascendant classification and the corresponding best par-
titioning cut returned by Chavl when using the scores computed by A_purva_SSE2.
The obtained classification is identical to the SCOP’s one at family level, and was
obtained in 201.21 seconds (0.26 second per instance in average), which is about
1.48 times faster than when using A_purva.

4.2 Secondary structure alignment

First, we tested the ability of A_purva to solve the secondary structure alignment
instances from the Skolnick set. We created the secondary structure contact map
by using a 7.5 Å distance threshold between α-carbons, and by using the secondary
structure assignment returned by Kaksi. Since secondary structure instances are
much smaller than the amino-acid instances, we set the time limit per instance to 1
second. Table 3.3 shows that A_purva was able to solve 777 secondary structure
instances over 780 within such time limit. Moreover, for these 777 instances, the
average running time was less than 0.01 sec. (up to 0.05 sec.). For the three unsolved
instance, the absolute gap (the difference between the smallest relaxed solutions
and the best feasible solution) was equal to 1, and the corresponding relative gaps
(the relative differences between the smallest relaxed solutions and the best feasible
solutions) were less than 2.4 percent.

Table 3.3: Number of secondary structure instances solved by A_purva

SSEs
similar instances (164) 164

dissimilar instances (616) 613
Total (780) 777

Time limit was fixed to 1 sec. per secondary structure instance. A_purva succeeded in solving
777 instances. Unsolved instances are : 1ninA–3ypiA, 1ninA–1treA, 1ninA–8timA.

Second, we wanted to know if the secondary structure alignments found during
the previous experiment can be used for automatic classification. In order to take
into account the weights on the edges, the similarity function from [69] was modified
as follows:

SIM(P1, P2) =
2× LB

∑

(i,j)∈E1
w1ij +

∑

(k,l)∈E2
w2kl

. (3.11)

This similarity index was given to Chavl, which returned both an ascendant classifi-
cation and the cut corresponding to the best partition (both are presented in figure
3.9). The total running time was about 4.10 sec (including the three instances which
were not optimally solved, and which each required 1 second). It is about 49 times
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Figure 3.7: Ascendant classification obtained when using SSE filter 1.
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Figure 3.8: Ascendant classification obtained when using SSE filter 2.
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Ascendant classification returned by Chavl when using the scores computed by A_purva_SSE2.
Chavl also returns the cut corresponding to the best partition.
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Figure 3.9: Ascendant classification obtained by using SSE alignment only.
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Ascendant classification returned by Chavl when using scores based on secondary structure contact
map alignments. Chavl also returns the cut corresponding to the best partition.
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Figure 3.10: SSE assignments of 1qmpA and 1b00A.
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Protein chains 1qmpA and 1b00A are from the same SCOP family (CheY-related). However, SSE
assignments returned by Kaksi show two differences: the second β-strand, present in all members
of the family, is split in two in 1qmpA, and second, the third β-strand, which is in the middle of
the β-sheet, is not detected in 1qmpA. These two “errors” are also present in the SSE assignments
of 1qmpB, 1qmpC and 1qmpD.

Table 3.4: Automatic classification obtained by using secondary structure align-
ments.

Classes Proteins SCOP Family
1 1qmp(A,B,C,D) CheY-related
2 1b00A, 1dbwA, 1natA, 1ntrA, 3chyA, 4tmy(A,B) CheY-related
3 1bawA, 1byo(A,B), 1kdiA, 1ninA Plastocyanin

1plaA, 2b3iA, 2pcyA, 2pltA /azurin-like
4 1amkA, 1aw2A, 1b9bA, 1btmA, 1htiA Triosephosphate

1tmhA, 1treA, 1triA, 1ydvA, 3ypiA, 8timA isomerase (TIM)
5 1b71A, 1bcfA, 1dpsA, 1fhaA, 1ierA, 1rcdA Ferritin
6 1rn1(A,B,C) Fungal ribonucleases

Automatic classification returned by Chavl when using the similarity score associated to secondary
structure alignments. The only difference with the SCOP one at family level is that the CheY-
related family was split into two classes.

faster than the 201.21 sec. needed when using SSE filter 2, and about 72.6 times
faster than the 297.67 sec. needed whithout filtering.

The corresponding classification is presented in table 3.4, and it is very close
to the SCOP one at family level, the only difference being that the SCOP family
“CheY-related” is divided in two. This “error” is introduced by Kaksi which does
not assign correctly two β-strands in protein chains 1qmpA, 1qmpB, 1qmpC and
1qmpD, as shown in figure 3.10. These two SSEs are parts of a β-sheet (in this
case a set of five parallel β-strands) and are involved in many contacts.

4.3 Hierarchical CMO

In this section, we compare A_purva to its hierarchical counterpart both in terms
of number of solved instances and in terms of running times.

4. RESULTS 59



CHAPTER 3. SPEEDING UP CMO BY USING BIOLOGICAL KNOWLEDGE

Solved instances comparison

We used A_purva and A_purva_H to solve the 780 Skolnick set instances, when
setting a time limit of 1800 seconds per instance. Note that for A_purva_H, this
time limit includes both the time needed for solving the secondary structure align-
ments and the time needed for solving the amino-acid alignments. As illustrated
in table 3.5, the hierarchical version of A_purva succeeded to solve 134 instances
more than the original A_purva.

Table 3.5: Number of solved instances comparison

A_purva SSEs A_purva_H
Similar instances (164) 164 164 163

Dissimilar instances (616) 465 614 600
Total (780) 629 778 763

Number of solved instances from the Skolnick set, when the time limit is fixed to 1800 sec. per
instance. The easy instances are instances such that both protein structures come from the same
SCOP family, and dissimilar instances are instances such that the two protein structures come
from different SCOP families. A_purva_H (4th column) is able to solve 134 more instance than
A_purva (2nd column). The number of Secondary structure alignment instances solved during
the first step of A_purva_H is also presented (3rd column).

Running times comparison

Figure 3.11 compares the running time of A_purva to the one of the A_purva_H
on the set of 613 Skolnick instances solved by both algorithms. A_purva needed
99976.55 sec. to solve these instances while A_purva_H only needed 1941.10 sec.,
and thus A_purva_H is about 51.51 times faster than A_purva, and this difference
goes up to 120329 times (for instance 1bcfA-1rn1C, solved by A_purva in 1203.29
sec. and by A_purva_H in 0.01 sec.).

5 Conclusion

In order to accelerate A_purva, we proposed to reduce the size of the amino-acid
alignment graphs by using two filters based on the secondary structure of the pro-
teins. Using these filters allows A_purva to be about 50 times faster. The obtained
results motivated us to further exploit the secondary structure informations and
to propose a hierarchical approach for solving CMO, which consists in first aligning
secondary structure elements, and then to use this secondary structure alignment for
filtering the amino-acid alignment. Towards this goal we developed a new secondary
structure alignment approach based on weighted contact maps. This weighted CMO
problem is efficiently solved by a modified version of A_purva, and we show that the
secondary structure alignments it returns can be used for obtaining a very fast au-
tomatic classification of proteins, except for proteins for which secondary structures
are not assigned correctly.
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Figure 3.11: time comparison
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For each of the 613 Skolnick instance solve by both methods, the running time of A_purva_H (x-
axis) is plotted against the running time of A_purva (y-axis). In average, the hierarchical version
of A_purva is about 51.51 times faster than the original A_purva (up to 120329 times).
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Chapter 4

Improvement of the contact map

approach: a maximum clique

problem

1 Problematics

One of the main weakness of CMO is that in order to maximize the number of
common contacts, it also introduces some “errors” like aligning two amino-acids
that are close in 3D space with two amino-acids that are remote, as illustrated in
figure 4.1. These errors could potentially yield alignments with large root mean
square deviations (RMSD) which is not desirable for structure comparisons.

The results of Godzik, taken from [27] and presented in table 4.1, illustrate this
RMSD problem. Table 4.1 compares the alignments returned by CMO to the ones
returned by DALI and by GRAFIT. While the alignments returned by CMO are
longer (in terms of amino-acids), they also possess the largest RMSDc values.

The goal of the work presented in this chapter is to avoid such problems by
reformulating the alignment between two protein structures.

2 Distance-based Alignment Search Tool (DAST)

As previously illustrated, CMO only tries to maximize the number of common con-
tacts, without taking into account the remote amino-acids. Matching close amino-
acids only with close amino-acids, and remote amino-acids only with remote amino-
acids does not really solve this problem, since two pairs of remote amino-acids are
not necessarily comparable.

This motivated us to replace the notion of common contact by the more general
notion of similar internal distance (according to a fixed threshold), and then to pro-
pose DAST (Distance-based Alignment Search Tool), a protein structure alignment
method based on internal distances which is modeled as a maximum clique problem
in alignment graphs. In DAST, the two proteins P1 and P2 are represented by their
ordered sets of amino-acids N1 and N2. In order to reduce the size of the alignment
graph, we use the rule presented in the previous chapter for the SSE filter 2: two
amino-acids i ∈ N1 and k ∈ N2 are compatible only if they come from the same
kind of secondary structure elements (i.e. i and k both come from an α-helix, or
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Figure 4.1: An optimal CMO matching.
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Two proteins ( P1 and P2) are represented by their contact map graphs where the vertices cor-
respond to the amino-acids and where edges connect amino-acids in contacts (i.e. close). The
matching “1 ↔ 1′, 2 ↔ 3′, 4 ↔ 4′”, represented by the arrows, yields two common contacts which
is the maximum for the considered case. However, it also matches amino-acids 1 and 4 from P1

which are in contacts with amino-acids 1′ and 4′ in P2 which are remote.

Table 4.1: Comparison of published alignments for two pairs of protein structures.

Instance Method RMSDc (Å) nb contacts nb identities length
CMO 5.1 180 15 89

1azcA–1plcA DALI 4.5 68 13 93
GAFIT 1.5 65 11 60
CMO 4.3 107 14 108

4fxnA–3chyA DALI 3.8 44 11 112
GAFIT 2.9 72 12 100

For the two protein structure comparison instances, the RMSD between the aligned
amino-acid’s α-carbons (RMSDc) is presented in the third column, the number
of common contact is presented in the fourth column, the number of amino-acid
identities is presented in the fifth column and the length of the alignment (in amino-
acid) is presented in the last column. CMO alignments are longer (in terms of
amino-acids), but they also possess the biggest RMSDc values.
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from a β-strand) or if both come from a loop. Let us denote by dij (resp. dk.l) the
euclidean distance between the α-carbons of amino-acids i and j (resp. k and l).
Matching i ↔ k is compatible with matching j ↔ l only if |dij − dkl| ≤ τ , where
τ is a distance threshold. The longest alignment in terms of amino-acids, in which
each couple of amino-acids from P1 is matched with a couple of amino-acids from
P2 having similar distance relations, corresponds to a maximum clique in G.

Since RMSDd =
√

1
Nm
×

∑

(|dij − dkl|2), where Nm is the number of matching
pairs “i ↔ k, j ↔ l”, the alignments given by DAST have a RMSDd of internal
distances ≤ τ .

3 Integer programming model

By using the properties of our alignment graphs, we designed a new integer pro-
gramming model (whose formulation is very different from [5, 53]) for solving the
maximum weighted clique problem (and thus the maximum clique problem), where
the weights Wik associated to the vertices i.k and Wikjl associated to the edges
(i.k, j.l) are all in R,

To each vertex i.k ∈ V (in row i ∈ V1 and column k ∈ V2), we associate a binary
variable xik such that :

xik =

{

1 if vertex i.k is in the clique,
0 otherwise.

(4.1)

In the same way, to each edge (i.k, j.l) ∈ E, we associate a binary variable yikjl such
that :

yikjl =

{

1 if edge (i.k, j.l) is in the clique,
0 otherwise.

(4.2)

The goal is to find a clique which maximizes the sum of its vertex weights and
the sum of its edge weights. This leads to the objective function :

ZMWC = max
∑

i.k

Wik xik +
∑

(i.k,j.l)

Wikjl yikjl. (4.3)

The one-to-one matching implies special order set constraints. In each row i ∈ V1,
at most one vertex can be chosen (only one xik can be set to 1).

∑

k

xik ≤ 1, ∀i ∈ V1. (4.4)

The same holds for the columns.
∑

i

xik ≤ 1, ∀k ∈ V2. (4.5)

These special order set constraints (at most one activated vertex per row and per
column) lead to compact formulations of the relations between vertices and edges.
Denote by d+col(i.k) the set of columns l, l > k, such that ∃(i.k, j.l) ∈ E. In a similar
way, d−col(i.k) is the set of columns l, l < k, such that ∃(j.l, i.k) ∈ E. d+row(i.k) is
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the set of rows j, j > i, such that ∃(i.k, j.l) ∈ E. And finally, d−row(i.k) is the set of
rows j, j < i, such that ∃(j.l, i.k) ∈ E.

Edges driven activations of vertices can be formulated with the following compact
inequalities :

xik ≥
∑

j

yikjl, ∀i.k ∈ V, ∀l ∈ d+col(i.k). (4.6)

xjl ≥
∑

i

yikjl, ∀j.l ∈ V, ∀k ∈ d−col(j.l). (4.7)

xik ≥
∑

l

yikjl, ∀i.k ∈ V, ∀j ∈ d+row(i.k). (4.8)

xjl ≥
∑

k

yikjl, ∀j.l ∈ V, ∀i ∈ d−row(j.l). (4.9)

Vertices driven activations of edges can be formulated with the following compact
inequalities :

∑

i

xik +
∑

j

xjl −
∑

ij

yikjl ≤ 1, ∀k ∈ V2, ∀l ∈ V2, k < l. (4.10)

∑

k

xik +
∑

l

xjl −
∑

kl

yikjl ≤ 1, ∀i ∈ V1, ∀j ∈ V1, i < j. (4.11)

4 Branch and Bound approach

We have been inspired by [52] to propose our own algorithm which is more suitable
for solving the maximum clique problem in the previously defined m× n alignment
graph G = (V,E). Note that the next illustrations are based on the alignment graph
presented in figure 4.2.

As written in the first chapter, a successor of a vertex i.k ∈ V is an element of
the set Γ+(i.k) = {j.l ∈ V s.t. (i.k, j.l) ∈ E, i < j and k < l}. V i.k is the subset
of V restricted to vertices in rows j, i ≤ j ≤ m, and in columns l, k ≤ l ≤ n.
Γ+(i.k) ⊂ V i+1.k+1. Gi.k is the subgraph of G induced by the vertices in V i.k, and
the cardinality of a vertex set U is |U |.

Let Best be the biggest clique found so far (first it is set to ∅), and |MCC(G)|
be an over-estimation of the cardinality of a maximum clique (|MCC(G)|). By
definition, V i+1.k+1 ⊂ V i.k+1 ⊂ V i.k, and similarly V i+1.k+1 ⊂ V i+1.k ⊂ V i.k. From
these inclusions and from the definition of an alignment graph, it is easily seen that
for any Gi.k, MCC(Gi.k) is the biggest clique among MCC(Gi+1.k), MCC(Gi.k+1)
and MCC(Gi+1.k+1)

⋃

{i.k}, but for the latter only if vertex i.k is adjacent to all
vertices in MCC(Gi+1.k+1). Let C be a (m + 1) × (n + 1) array where C[i][k] =
|MCC(Gi.k)| (values in row m + 1 or column n + 1 are equal to 0). For reasoning
purpose, let assume that the upper-bounds in C are exact. If a vertex i.k is adjacent
to all vertices in MCC(Gi+1.k+1), then C[i][k] = 1 + C[i + 1][k + 1], else C[i][k] =
max(C[i][k+ 1], C[i+ 1][k]). We can deduce that a vertex i.k cannot be in a clique
in Gi.k which is bigger than Best if C[i + 1][k + 1] < |Best|, and this reasoning
still holds if values in C are upper estimations. Another important inclusion is
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Figure 4.2: A 4× 4 alignment graph.
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Γ+(i.k) ⊂ V i+1.k+1. Even if C[i + 1][k + 1] ≥ |Best|, if |MCC(Γ+(i.k))| < |Best|
then i.k cannot be in a clique in Gi.k bigger than Best.

Our main clique cardinality estimator is constructed and used according to these
properties. A function, Find_clique(G), will visit the cells of T according to north-
west to south-est diagonals, from diagonal “i+ k = m+ n” to diagonal “i+ k = 2”
as illustrated in figure 4.3. For each cell T [i][k] containing a vertex i.k ∈ V ,
it may call Extend_clique({i.k}, Γ+(i.k)), a function which tries to extend the
clique {i.k} with vertices in Γ+(i.k) in order to obtain a clique bigger than Best
(which cannot be bigger than |Best| +1). If such a clique is found, Best is updated.
However, Find_clique() will call Extend_clique() only if two conditions are satisfied
: (i) C[i + 1][k + 1] = |Best| and (ii) |MCC(Γ+(i.k))| ≥ |Best|. After the call to
Extend_clique(), C[i][k] is set to |Best|. For all other cells T [i][k], C[i][k] is set to
max(C[i][k + 1], C[i + 1][k]) if i.k /∈ V , or to 1 + C[i + 1][k + 1]) if i.k ∈ V . Note
that the order used for visiting the cells in T guaranties that when computing the
value of C[i][k], the values of C[i+ 1][k], C[i][k + 1] and C[i+ 1][k + 1] are already
computed.

Array C can also be used in function Extend_clique() to fasten the maximum
clique search. This function is a branch a bound (B&B) search using the following
branching rules. Each node of the B&B tree is characterized by a couple (Cli,
Cand) where Cli is the clique under construction and Cand is the set of candidate
vertices to be added to Cli. Each call to Extend_clique({i.k}, Γ+(i.k)) create a
new B&B tree which root node is ({i.k}, Γ+(i.k)). The successors of a B&B node
(Cli, Cand) are the nodes (Cli

⋃

{i′.k′}, Cand
⋂

Γ+(i′.k′)), for all vertices i′.k′ ∈
Cand. Branching follows lexicographic increasing order (row first). According to
the branching rules, for any given B&B node (Cli, Cand) the following cutting rules
holds : (i) if |Cli| + |Cand| ≤ |Best| then the current branch cannot lead to a clique
bigger than |Best| and can be fathomed, (ii) if |MCC(Cand)| ≤ |Best| − |Cli|,
then the current branch cannot lead to a clique bigger than |Best|, and (iii) if
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Figure 4.3: Visiting order of array T .
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|MCC(Cand
⋂

Γ+(i.k))| ≤ |Best| − |Cli| − 1, then branching on i.k cannot lead to
a clique bigger than |Best|. For any set Cand and any vertex i.k, Cand

⋂

Γ+(i.k) ⊂
Γ+(i.k) , and Γ+(i.k) ⊂ Gi+1.k+1. From these inclusions we can deduce two way
of over-estimating |MCC(Cand

⋂

Γ+(i.k))|. First, by using C[i + 1][k + 1] which
over-estimates |MCC(Gi+1.k+1)| and second, by over-estimating |MCC(Γ+(i.k))|.
All values |MCC(Γ+(i.k))| are computed once for all in Find_clique() and thus,
only |MCC(Cand)| needs to be computed in each B&B node.

4.1 Maximum clique cardinality estimators

Even if the described functions depend on array C, they also use another upper-
estimator of the cardinality of a maximum clique in an alignment graph. By using
the properties of alignment graphs, we developed the following estimators.

Row and columns numbers

Definition 6 implies that there is no edge between vertices from the same row or
the same column. This means that in a m × n alignment graph, |MCC(G)| ≤
min(m,n). If the numbers of rows and columns are not computed at the creation
of the alignment graph, they can be computed in O(|V |) times.

Longest increasing subset of vertex

Definition 11 An increasing subset of vertices in an alignment graph G =
{V,E} is an ordered subset {i1.k1, i2.k2, . . ., it.kt } of V , such that ∀j ∈ [1, t − 1],
ij < ij+1, kj < kj+1. LIS(G) is the longest, in terms of vertices, increasing subset
of vertices of G.
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Since any two vertices in a clique are adjacent, the definition of an alignment
graph implies that a clique in G is an increasing subset of vertices. However, an
increasing subset of vertices is not necessarily a clique (since vertices are not nec-
essarily adjacent), and thus |MCC(G)| ≤ |LIS(G)|. In a m × n alignment graph
G = (V,E), LIS(G) can be computed in O(n×m) times by dynamic programming.
However, it is possible by using the longest increasing subsequence to solve LIS(G)
in O(|V |× ln(|V |)) times which is more suited in the case of sparse graph like in our
protein structure comparison experiments.

Definition 12 The longest increasing subsequence of an arbitrary finite se-
quence of integers S = “ii, i2, . . . , in” is the longest subsequence S ′ = “i′i, i

′
2, . . . , i

′
t”

of S respecting the original order of S, and such that for all j ∈ [1, t], i′j < i′j+1. By
example, the longest increasing subsequence of “1,5,2,3” is “1,2,3”.

For any given alignment graph G = {V,E}, we can easily reorder the vertex
set V , first by increasing order of columns, and second by decreasing order of rows.
Let’s denote by V ′ this reordered vertex set. Then we can create an integer sequence
S corresponding to the row indexes of vertices in V ′. For example, by using the
alignment graph presented in Figure 4.2, the reordered vertex set V ′ is {4.1, 2.1,
1.1, 3.2, 4.3, 3.3, 2.3, 1.3, 4.4, 3.4, 1.4}, and the corresponding sequence of row
indexes S is “4, 2, 1, 3, 4, 3, 2, 1, 4, 3, 1”. An increasing subsequence of S
will pick at most one number from a column, and thus an increasing subsequence is
longest if and only if it covers a maximal number of increasing rows. This proves that
solving the longest increasing subsequence in S is equivalent to solving the longest
increasing subset of vertices in G. Note that the longest increasing subsequence
problem is solvable in time O(l× ln(l)) [19], where l denotes the length of the input
sequence. In our case, this corresponds to O(|V | × ln(|V |)).

Longest increasing path

Definition 13 An increasing path in an alignment G = {V,E} is an increasing
subset of vertex {i1.k1, i2.k2, . . ., it.kt} such that ∀j ∈ [1, t−1], (ij.kj, ij+1.kj+1) ∈ E.
The longest increasing path in G is denoted by LIP (G)

As the increasing path take into account edges between consecutive vertices, |LIP (G)|,
should better estimate |MCC(G)|. |LIP (G)| can be computed in O(|V |2) by the
following recurrence. Let DP [i][k] be the length of the longest increasing path in
Gi.k containing vertex i.k. DP [i][k] = 1+ maxi′.k′∈Γ+i.k(DP [i′][k′]). The sum over
all Γ+(i.k)) is done in O(|E|) time complexity, and finding the maximum over all
DP [i][k] is done in O(|V |). This results in a O(|V | + |E|) time complexity for
computing |LIP (G)|.

Amongst all of the previously defined upper bounds, the longest increasing sub-
set of vertices (solved using the longest increasing subsequence) exhibits the best
performances and is the one we used for obtaining the results presented in the next
section.
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5 Comparison with related protein structure com-
parison methods

Three methods from the literature are highly related to DAST, in the sense that
they try to find a protein structure alignment which minimize the internal-distance
differences induced by the matched alpha-carbon. The first one, Dali [35, 37], was
proposed by Holm and Sander in 1993. The second one, FAST [71], was proposed
by Zhu and Wang in 2005. The last one, Paul [66, 67], was recently developped by
Wohlers, Petzold, Domingues and Klau in 2009.

Dali: No matter if Dali uses rigid or elastic scores, it does not prohibit matching
pairs that introduce big distance differences (higher than the specified threshold
τ). Instead, they are rewarded negatively in the objective function, and thus a
matching pair i ↔ k can be kept in the alignment if its negative contributions
are counterbalanced by positive ones. For this reason, Dali does not guaranty that
the RMSDs of its alignments are less than a fixed threshold. From an algorithmic
point of view, Dali do not use an exact solver for its maximum edge-weighted clique
problem, but uses a heuristic (Monte-Carlo).

Fast: It can be seen as Dali when using order-preserving, even if its edge scoring
scheme is not exactly equal to Dali’s elastic one, as it also takes into account orienta-
tions of amino-acid R groups (also called sidechains). Similarly to Dali, FAST does
not guaranty that the RMSDs of the returned alignments are less than a fixed thresh-
old. However, FAST introduces an interesting heuristic filter for removing “bad”
matching pairs i ↔ k based on five consecutive amino-acids fragments. Matching
pair i↔ k is prohibited (i.e. vertex i.k /∈ V ) if the three internal distances di−2,i+1,
di−2,i+2 and di−1,i+2 in P1 are not similar to their counterparts dk−2,k+1, dk−2,k+2 and
dk−1,k+2 in P2.

Paul: Based on the same observation which led to the creation of DAST (that
maximising the number of common contacts may introduce large internal-distance
differences), Paul is a CMO based method in which the notion of common contact
is replaced by the one of similar internal distances. If the two proteins P1 and
P2 are represented by their ordered sets of amino-acids N1 and N2, Paul can be
modelled as an |N1| × |N2| alignment graph in the following way. All amino-acids
from P1 are compatible with all amino-acids from P2, and thus, for all i ∈ N1 and
all k ∈ N2, vertex i.k is in V . Paul tries to find an order preserving matching and
consequently, the matching pair i ↔ k is compatible with the matching pair j ↔ l
only if i < j and k < l. Edge (i.k, j.l) exist is matching pairs i ↔ k and j ↔ l
are compatible and if |dij − dkl| is less than a given threshold and if the number of
amino-acids between i and j is similar to the one between k and l (according to the
sequences of P1 and p2). To each edge (i.k, j.l) ∈ E is associated a weight based
on the rigid score of Dali. To each vertex i.k ∈ V is associated a negative weight
which is used to avoid introducing too many large internal distance differences (since
the negative vertex weights are not compensated by enough positive edge weights).
The optimal alignment is then to find in G the maximum weighted feasible path
(including both vertex and edge weights) . Since Paul does not look in G for a
clique, the alignments it returns may contain matching pairs which introduce large
internal distance differances, and thus Paul does not guaranty that the RMSDs of
its alignments are less than a fixed threshold.
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Table 4.2: Characteristics of the alignment graphs.

Number of vertices Number of edges Density
Set name min, average, max min, average, max min, average, max
Skolnick 100, 158.92, 208 886, 2368.69, 3547 0.16, 0.18, 0.20

6 Computational results

All results presented in this section come from real protein structure comparison in-
stances. The integer programming model has been implemented using ILOG Cplex
10 library and is denoted by MIP. Our branch and bound algorithm has been im-
plemented in C and is denoted by ACF (for Alignment Clique Finder).

Both were compared to the original VAST clique solver which is based on Bron
and Kerbosch’s algorithm [9] (denoted by BK ). It is important to note that BK is
not a maximum clique finder but it returns all maximal cliques in a graph. BK is
now outperformed by more recent algorithms based on smart pivot selection [15].
BK is presented here because it was already integrated in VAST. ACF was also
compared to Östergȧrd’s algorithm [52] (denoted by Östergȧrd), which is one of the
fastest maximum clique finders from the literature. All algorithms were set to solve
the maximum clique problem.

6.1 MIP solver on SSE alignment instances

In this section, MIP is compared to BK in the context of secondary structure align-
ment in VAST. The protein alignment instances come from the Skolnick set, but we
only use the 170 instances for which the alignment graphs contain more than 100
vertices. The corresponding graphs are described in table 4.2.

Figure 4.4 compares the time needed by MIP to the one of BK on the 170
Skolnick instances. In average, MIP is 3.35 times slower than BK. This is not sur-
prising, since dedicated solvers are expected to be faster than general purpose solvers
(CPLEX in this case). This observation motivated us to go further in developing a
fast special purpose clique solver.

6.2 ACF on SSE alignment instances

This section illustrates the behavior of ACF in the context of secondary structure
element (SSE) alignments. For this purpose we integrated ACF and Östergȧrd
(whose code is freely available) in VAST. We afterwards compared them with BK
by selecting few large protein chains having between 80 to 90 SSE’s (for small pro-
tein chains the running times of both Östergȧrd and ACF are less than 0.01 sec.).
Computations were done on a AMD at 2.4 GHz computer, and the corresponding
running times are presented in table 4.3. We observe that Östergȧrd is 4053 times
faster than BK, and that ACF is about 9.3 times faster than Östergȧrd. Although
we have chosen large protein chains, the SSE alignment graphs are relatively small
(up to 5423 vertices and 551792 edges ). On such graphs the difference between
Östergȧrd and ACF performance is not very visible–it will be better illustrated on
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Figure 4.4: MIP vs BK running time comparison on Skolnick set.
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larger alignment graphs in the next section.

6.3 ACF on DAST alignment instances

In this section we compare ACF to Östergȧrd in the context of amino-acid align-
ments in DAST. Computations were done on a PC with an Intel Core2 processor
at 3Ghz, and for both algorithms the computation time was bound to 5 hours per
instance. Secondary structures assignments were done with KAKSI [45], and the
threshold distance τ was set to 3Å. The protein structures come from the Skol-
nick set, described in [41]. It contains 40 protein chains having from 90 to 256
amino-acids, classified in SCOP [4] (v1.73) into five families. Amongst the 780 cor-
responding alignment instances, 164 comes from the same family and will be called
“similar”. The 616 other instances come from different families and thus will be called

Table 4.3: Running time comparison on secondary structure alignment instances.

Instances BK (sec.) Östergȧrd (sec.) ACF (sec.)
1k32B 1n6eI 1591.89 1.42 0.09
1k32B 1n6fB 1546.78 0.01 0.01
1k32B 1n6fF 1584.25 0.14 0.02
1n6dD 1k32B 1373.35 0.06 0.01
1n6dD 1n6eI 1390.27 0.11 0.03
1n6dD 1n6fB 1328.85 0.65 0.06
1n6dD 1n6fF 1398.41 0.13 0.05

Running time comparison of BK, Östergȧrd and ACF on secondary structure alignment instances
for long protein chains (containing from 80 to 90 SSE’s). BK is notably slower than the Östergȧrd ’s
algorithm, which is slightly slower than ACF.
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Table 4.4: DAST alignment graphs characteristics.

array size |V| |E| density |MCC|
similar min 97×97 4018 106373 8.32% 45
instances max 256×255 25706 31726150 15.44% 233
dissimilar min 97×104 1581 77164 5.76% 12
instances max 256×191 21244 16839653 14.13% 48

All alignment graphs from DAST have small edge density (less than 16%). Similar instances are
characterized by bigger maximum cliques than the dissimilar instances.

Table 4.5: Number of solved instances comparison.
Östergȧrd ACF

Similar instances (164) 128 155
Dissimilar instances (616) 545 616

Total (780) 673 771

Number of solved instances on Skolnick set: ACF solves 21% more similar instances and 13% more
dissimilar instances than Östergȧrd.

“dissimilar”. Characteristics of the corresponding alignment graphs are presented in
table 4.4.

Table 4.5 compares the number of instances solved by each algorithm on Skol-
nick set. ACF solved 155 from 164 similar instances, while Östergȧrd solved 128
instances. ACF was able to solve all 616 dissimilar instances, while Östergȧrd solved
545 instances only. Thus, on this popular benchmark set, ACF clearly outperformed
Östergȧrd in terms of number of solved instances.

Figure 4.5 compares the running time of ACF to the one of Östergȧrd on the set
of 164 similar instances solved by both algorithms (all instances solved by Östergȧrd
were also solved by ACF ). For all instances except one, ACF is significantly faster
than Östergȧrd. Figure 4.6 compares the running time of ACF to the one of
Östergȧrd on the set of 509 dissimilar instances solved by both algorithms (again,
all instances solved by Östergȧrd were also solved by ACF ). For all instances, ACF
is significantly faster than Östergȧrd. More precisely, ACF needed 12 hs. 29 min.
56 sec. to solve all these 673 instances, while Östergȧrd needed 260 hs. 10 min.
10 sec. Thus, on the Skolnick set, ACF is about 20 times faster in average than
Östergȧrd (up to 4029 times for some instances).

7 Comparison between CMO and DAST

The purpose of this section is to confirm experimentally that DAST provides align-
ments with good (i.e. small) RMSDd values. Towards this goal, we extracted ten
instances from the Skolnick set. The SSEs assignments were obtained by Kaksi.
The internal distance threshold of DAST was set to 3 Å, and the contact threshold
of CMO was set to 7.5 Å.

Table 4.6 compares the alignments found by DAST to the ones found by CMO.
On similar instances (where both domains come from the same SCOP family), the
alignments returned by DAST possess RMSDd values that are 40% smaller than
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Figure 4.5: Running time comparison on the Skolnick set.
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Figure 4.6: Running time comparison on the Skolnick set.
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Table 4.6: Alignment comparison between CMO and DAST.
Length (AA) RMSDd (Å) Contacts

Instance CMO DAST CMO DAST CMO DAST
1amkA–1aw2A 247 200 1.39 0.68 772 573

similar 1amkA–1htiA 247 204 1.24 0.74 783 600
instances 1qmpA–1qmpB 129 118 0.22 0.22 389 383

1ninA–1plaA 97 58 1.42 0.96 295 131
1tmhA–1treA 254 233 0.90 0.44 862 768
1amkA–1b00A 120 41 5.62 1.23 283 64

dissimilar 1amkA–1dpsA 163 32 13.01 1.06 333 57
instances 1b9bA–1dbwA 123 44 6.02 1.11 295 77

1qmpA–2pltA 95 17 7.36 1.18 157 24
1rn1A–1b71A 104 26 11.22 0.82 196 49

On ten Skolnick instances, the alignments returned by CMO are compared to the one returned by
DAST in terms of length (third and fourth columns), in terms of RMSD of internal distances (fifth
and sixth columns) and in terms of number of common contacts (seventh and eighth columns).
The similar instances consist in aligning domains coming from the same SCOP family, while the
dissimilar instances consist in aligning domains coming from different SCOP families. The align-
ments returned by DAST always have good RMSDd values (always less than 2Å), but in order to
obtain these good RMSDd values, the corresponding alignment are shorter than the ones returned
by CMO (and notably shorter for dissimilar instances), and also possess less common contacts.

the ones returned by CMO, while their lengths and number of common contacts are
about 20% smaller. On dissimilar instances (where the domains come from different
families), the alignments returned by DAST always have RMSDd values smaller
than 1.3 Å (though the setting suggested a maximum RMSDd of 3 Å), which are
notably smaller than the RMSDd values obtained by the CMO’s alignments (up to
13 Å). The smaller RMSDd values of DAST are obtained at the cost of the lengths
of the alignments, which are up to 6 times smaller than the ones of CMO.

These results illustrate that DAST succeeds in providing alignment having RMSDd

values smaller than a fixed threshold. However, they also show that the distance
threshold of 3 Å was maybe too restrictive, and that using a higher value may be
required. Tuning of this parameter needs to be further investigated.

8 Conclusion

In this chapter we introduce a novel protein structure comparison approach DAST,
for Distance-based Alignment Search Tool. For any fixed threshold τ , it finds the
longest alignment in which each couple of pairs of matched amino-acids shares the
same distance relation (+/- τ), and thus the RMSD of the alignment is ≤ τ . This
property is not guaranteed by the CMO approach, which inspired initially DAST.
From a computation standpoint, DAST requires solving the maximum clique prob-
lem in a specific k-partite graph. By exploiting the peculiar structure of this graph,
we design a new maximum clique solver which significantly outperforms one of the
best general maximum clique solver. Our solver was successfully integrated into two
protein structure comparison softwares and will be freely available soon. We are
currently studying the quality of DAST alignments from a practical viewpoint and
comparing the obtained results with other structure comparison methods.
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Chapter 5

General conclusion

1 Contributions

In the first chapter of this thesis, we propose a general framework based on alignment
graph for modelling protein structure comparison problems. In the second chapter,
this framework is applied to the contact map overlap maximisation problem (CMO).
Based on the corresponding model, we propose a novel integer programming for-
mulation for CMO which we efficiently solve by designing a dedicated branch and
bound algorithm using a Lagrangian relaxation approach. The corresponding solver,
A_purva , is compared to the best CMO algorithms from the literature and the ob-
tained results show that A_purva outperforms them both in terms of running time
and in terms of quality of the obtained bounds. By using A_purva’s results, we
are able to obtain automatic classification of protein structure in very good agree-
ments with SCOP. In the third chapter, in order to further accelerate A_purva,
we introduce filters based on the secondary structure of the proteins, which allows
A_purva to be about 50 times faster. We also propose a hierarchical approach
for solving CMO, which consists in first aligning secondary structure elements, and
then to use this secondary structure alignment for filtering the amino-acid align-
ment. Towards this goal we present a new secondary structure alignment approach
based on weighted contact maps. This weighted CMO problem is efficiently solved
by a modified version of A_purva, and we show that these secondary structure
alignments can be used for obtaining a very fast automatic classification of proteins.
In the fourth chapter, in order to overcome one of the main weaknesses of CMO,
that is, the RMSD of the returned alignment, we propose a new protein structure
comparison method based on internal distances, DAST (for Distance-based Align-
ment Search Tool), whose main characteristic is that the alignments it returns have
a RMSD of internal distance smaller than a chosen threshold. DAST is modelled
as a maximum clique problems in alignment graphs, and by exploiting the proper-
ties of these graphs, we propose a new integer programming formulation for solving
maximum cliques problems. In order to solve DAST, we present a new dedicated
maximum clique solver that outperforms one of the best maximum clique finder
from the literature.
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2 Discussions

2.1 Relation between the mathematical models

In CMO, we are looking for a maximum weighted increasing subset of vertices in
an alignment graph. Since the edge weights are positive, there is no need to model
constraints for activating an edge if its two corresponding endpoint vertices are ac-
tivated (it will be done in order to maximise the objective function). G. Collet, a
Ph.D. student in our team, is currently working on the protein threading problem,
which consists in aligning a protein sequence with a protein three dimensional struc-
ture. One of the proposed methods, called local [16], can be modelled as a maximum
weighted increasing subset of vertices problem in an alignment graph. It is similar
to CMO, except that some edge weights can be negative. For this reason, specific
constraints for activating the edges associated to negative weights were added into
the corresponding integer programming model. DAST is much more constrained
in the sense that activating two vertices must activates the edge connecting them.
Consequently, the CMO model is the most general (i.e. the less constrained), fol-
lowed by the local protein threading model, while DAST is the most specific one
(i.e. the most constrained).

2.2 Proposed solvers and non-optimality

Both our CMO solver A_purva and our clique solver ACF are branch and bound
approaches, but they differ both in terms of branching strategies and in terms of the
nature of the bounds used in each sub-problems. A_purva first tries to solve the
original problem by iteratively improving the lowerbound (the best feasible solution)
and the upperbound (the smallest relaxed solution) found on the full alignment
graph. If it can not obtain an optimal solution, then the branch and bound strategy
enter in action. If the solving process is stopped before an optimal solution is found,
then A_purva can still returns a good feasible solution which corresponds to the
full search space. In ACF, the alignment graph is first divided into sub-graphs,
according to the ordering of the vertices (the first one being the sub-graph which
vertex set contains only the last vertex, the second one is the sub-graph which vertex
set contains only the two last vertices, etc.). These problems are then solved from
first to last. Unlike A_purva, if the solving process is stopped before an optimal
solution is found, then ACF returns a feasible solution which was possibly found in
a very small sub-graph. Because of this, ACF can not be used to quickly obtain
good feasible solutions.

2.3 About using the secondary structure

We modelled the secondary structure alignment as a one-to-one matching. However,
as illustrated in chapter 3, the secondary structure assignments are not perfect. A
long secondary structure element can be bent, and secondary structure assignment
methods will split it into two or more fragments. This implies that unless the sec-
ondary structure assignments get better in terms of quality, the one-to-one matching
constraint of the secondary structure alignment should be relaxed. Moreover, the
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exact beginning and ending of a secondary structure are not well recognised. This
needs to be taken into accounts when filtering the amino-acids alignment graph.

3 Future works

First, we are fully aware that, while we worked a lot on the modelling and on the
algorithmic aspects of protein structure comparisons, the presented works are miss-
ing structural biologist insights for assessing the biological relevance of the methods
that we proposed. Second, as illustrated in this thesis, modelling protein structure
comparison methods as specific problems in alignment graphs allowed us to propose
efficient exact solvers. While our CMO solver A_purva can be used as a heuristic
for quickly obtaining good approximated results, this was not its primary objective.
Execution times can be a critical point, for example in the case of automatic classi-
fication of large databases. We believe that by using the properties of the alignment
graphs it is possible to design much faster (and better) heuristics. Third, we used
the secondary structure information to reduce de size of the alignment graphs. It
may be interesting to use other kinds of informations, which may come from the
protein sequence, like the physical properties of the amino-acids (small, polar...),
or from the protein three-dimensional structure, like dihedral angles. Fourth, and
similarly to what we did for CMO, we would like to propose a hierarchical approach
for accelerating DAST. Fith, as in many protein structure comparison methods and
as in the original definition of CMO, we supposed that the alignment between two
protein structures must be order preserving. By using this order preserving con-
straint we were able to design efficient solver for the protein structure comparison
problem. However, we would like to relax the order preserving constraints in our
solvers, in order to apply them on more general problems. Last, we would like to
design a langrangian relaxation based approach, similar to the one of A_purva, for
solving the maximum clique problem of DAST.
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Abstract

In structural biology, it is commonly admitted that the three dimensional structure
of a protein determines its function. A fruitful assumption based on this paradigm
is that proteins sharing close three dimensional structures may derive from the same
ancestor and thus, may share similar functions. Computing the similarity between
two protein structures is therefore a crucial task and has been extensively investi-
gated. Among all the proposed methods, we focus on the similarity measure called
Contact Map Overlap maximisation (CMO), mainly because it provides scores which
can be used for obtaining good automatic classifications of the protein structures.

In this thesis, comparing two protein structures is modelled as finding specific
sub-graphs in specific k-partite graphs called alignment graphs, and we show that
this task can be efficiently done by using advanced combinatorial optimisation tech-
niques. In the first part of the thesis, we model CMO as a kind of maximum edge
induced sub-graph problem in alignment graphs, for which we conceive an exact
solver which outperforms the other CMO algorithms from the literature. Even
though we succeeded to accelerate CMO, the procedure still stays too much time
consuming for large database comparisons. The second part of the thesis is dedi-
cated to further accelerate CMO by using structural biology knowledge. We propose
a hierarchical approach for CMO which is based on the secondary structure of the
proteins. Finally, although CMO is a very good scoring scheme, the alignments it
provides frequently posses big root mean square deviation values. To overcome this
weakness, in the last part of the thesis, we propose a new comparison method based
on internal distances which we call DAST (for Distance-based Alignment Search
Tool). It is modelled as a maximum clique problem in alignment graphs, for which
we design a dedicated solver with very good performances.

Keywords : protein structure comparison, contact map overlap maximisation,
k-partite graph, maximum edge induced sub-graph, maximum clique, integer pro-
gramming, branch and bound.
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Résumé

En biologie structurale, il est couramment admit que la structure tridimensionnelle
d’une protéine détermine sa fonction. Ce paradigme permet de supposer que deux
protéines possédant des structures tridimensionnelles similaires peuvent partager un
ancêtre commun et donc posséder des fonctions similaires. Déterminer la similarité
entre deux structures de protéines est une tâche importante qui a été largement
étudiée. Parmi toutes les méthodes proposées, nous nous intéressons à la mesure de
similarité appelée “maximisation du recouvrement de cartes de contacts” (ou CMO),
principalement parce qu’elle fournit des scores de similarité pouvant être utilisés pour
obtenir de bonnes classifications automatiques des structures de protéines.

Dans cette thèse, la comparaison de deux structures de protéines est modélisée
comme une recherche de sous-graphe dans des graphes k-partis spécifiques appelés
graphes d’alignements, et nous montrons que cette tâche peut être efficacement réal-
isée en utilisant des techniques avancées issues de l’optimisation combinatoire. Dans
la seconde partie de cette thèse, nous modélisons CMO comme une recherche de sous-
graphe maximum induit par les arêtes dans des graphes d’alignements, problème
pour lequel nous proposons un solveur exact qui surpasse les autres algorithmes de
la littérature. Même si nous avons réussi à accélérer CMO, la procédure d’alignement
requière encore trop de temps de calculs pour envisager des comparaisons à grande
échelle. La troisième partie de cette thèse est consacrée à l’accélération de CMO en
utilisant des connaissances issues de la biologie structurale. Nous proposons une ap-
proche hiérarchique pour résoudre CMO qui est basée sur les structures secondaires
des protéines. Enfin, bien que CMO soit une très bonne mesure de similarité, les
alignements qu’elle fournit possèdent souvent de fortes valeurs de déviation (root
mean squared deviation, ou RMSD). Pour palier à cette faiblesse, dans la dernière
partie de cette thèse, nous proposons une nouvelle méthode de comparaison de struc-
tures de protéines basée sur les distances internes que nous appelons DAST (pour
Distance-based Alignment Search Tool). Elle est modélisée comme une recherche de
clique maximum dans des graphes d’alignements, pour laquelle nous présentons un
solveur dédié montrant de très bonnes performances.

Mots clés : comparaison de structures de protéines, recouvrement de cartes
de contacts, graphes k-partis, clique maximum, programmation linéaire en nombres
entiers, algorithmes par séparation et évaluation.
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