HAL

open science

Calcul d’objet asynchrone: confluence et déterminisme

Ludovic Henrio

» To cite this version:

Ludovic Henrio. Calcul d’objet asynchrone: confluence et déterminisme. Modélisation et simulation.
Université Nice Sophia Antipolis, 2003. Francais. NNT: . tel-00505940

HAL Id: tel-00505940
https://theses.hal.science/tel-00505940
Submitted on 26 Jul 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00505940
https://hal.archives-ouvertes.fr

UNIVERSITE DE NICE - SOPHIA ANTIPOLIS UFR Sciences

Ecole Doctorale STIC

THESE

pour obtenir le titre de

Docteur en Sciences

de I"Université de Nice - Sophia Antipolis

Spécialité : INFORMATIQUE

présentée et soutenue par

Ludovic HENRIO

Equipe d’accueil : OASIS — INRIA Sophia-Antipolis - CNRS - I3S - UNSA

Asynchronous Object Calculus:
Confluence and Determinacy

Calcul d’Objet Asynchrone :
Confluence et Déterminisme

Theése dirigée par Denis CAROMEL

Présentée publiquement le vendredi 28 novembre 2003 & 10h30
devant le jury composé de :

Rapporteurs:

Autres membres du jury:

Directeur de theése:
Codirecteur de thése:

Luca CARDELLI
Ugo MONTANARI
Elie NAJM

Gérard BOUDOL
Gilles KAHN

Denis CAROMEL
Bernard SERPETTE

Microsoft research, Cambridge
Universita di Pisa

ENST, Paris

INRIA Sophia Antipolis

INRIA, Direction générale

Université Nice Sophia-Antipolis, IUF
INRIA Sophia Antipolis

Table of Contents

Definitions and properties ix
List of Figures xi
Remerciements xiii
I French Extended Abstract 1

1 Introduction 3

2 Description Informelle d’ASP et de ses Propriétés 7
2.1 Principes e 8
2.2 Syntaxeo 9

2.2.1 Termes SOUICES . . . « « v v v i e e 9
2.2.2 Structures Dynamiques 10

2.3 Sémantique Informelle o 000000 10
2.3.1 Les Activités 11
232 LesRequétes Lo oo 12
233 LesFuturs 13
2.3.4 Le Servicedes Requétes 13

2.4 Propriétéso 15
24.1 Topologie L 15
2.4.2 Confluence et Déterminisme 15

3 Conclusion 17

iii

iv Table of Contents
II Context 19
4 Introduction 21
4.1 Overview and Orientation 21
4.2 Organization of this Thesis 24

5 Distribution, Parallelism, Concurrence, and Objects 27
5.1 A Few Definitions oo oL 27
5.2 Parallelism and Concurrence 28
5.2.1 Parallel Activities oo 28

5.2.2 Sharing 29

5.2.3 Communication 29

5.2.4 Synchronization L. 30

53 Objects 31
5.3.1 Object, Remote Reference and Communications 31

5.3.2 Objects vs. Parallel Activities 31

5.3.3 Objects and Synchronization 32

6 Formalisms and Distributed Calculi 33
6.1 Basic Formalisms. oo o 0oL 33
6.1.1 Functional Programming and Parallel Evaluation 33

6.1.2 Actors. 33

6.1.3 m-calculus. 35

6.1.4 «c-calculus 37

6.1.5 Process Networks, 38

6.2 Concurrent Calculi and Languages 39
6.2.1 Multilisp 39

6.22 PICT e 41

6.2.3 Ambient Calculus 41

6.2.4 Oblig and Qjeblik 42

6.2.5 The mofBA Language 44

6.2.6 Gordon and Hankin Concurrent Calculus 45

6.2.7 Join-Calculus 46

6.2.8 CML e 46

6.29 Kell-calculuso o 47

6.3 Other Expressions of Concurrency
6.4 Short Synthesis L

IIT ASP Calculus

7 An Imperative Sequential Calculus

7.1 Syntaxo
7.2 Semantic Structures oo
7.2.1 Substitutiono o L
7.2.2 Store
7.2.3 Configuration
7.3 Reduction.
7.4 Properties. oL

8 Asynchronous Sequential Processes

8.1 Principles L
82 New Syntax e
8.3 Informal Semantics,
8.3.1 Activities
83.2 Requests
83.3 Futures
8.3.4 Serving Requestso oL

9 A few Examples

9.1 Binary Tree. Lo
9.2 Distributed Sieve of Eratosthenes
9.3 From Process Network to ASP
9.4 Example: Fibonacci Numbers
9.5 A bank Account Server

IV Semantics and Properties

10 Parallel Semantics
10.1 Structure of Parallel Activities
10.2 Parallel Reduction oo

47
47

49

51
ol
52
52
52
53
53
54

55
95
56
o7
58
58
58
59

61
61
62
64
64
65

67

vi Table of Contents
10.2.1 More Operations on Store 71

10.2.2 Reduction Rules 72

10.3 Well-formedness 76
11 Properties and Confluence 79
11.1 Notations and Hypothesis 79
11.2 Object Sharingo 81
11.3 Futures and Parameters Isolation 82
11.4 Configuration Compatibility 83
11.5 Equivalence Modulo Replies 87
11.6 Properties of Equivalence Modulo Replies 90
11.7 Confluence 91
11.8 Deterministic Object Networks 92
11.9 Tree Topology Determinism 95
11.10A Deterministic Example: The Binary Tree 95
11.11Another deterministic example 96
11.12Discussion: Comparing Requests Service Strategies 98

V Proofs 99
12 Equivalence Modulo Futures 101
12.1 Renaming 101
12.2 Reordering Requests oL 101
12.3 Future Updates. oo 102
12.3.1 Following References and Sub-terms 102

12.3.2 Equivalence Definitiono 105

124 Propertiesof =p 107
12.5 Sufficient Conditions for Equivalence 111
12.6 Equivalence Modulo Futures and Reduction 112
12.7 Another Formulation 116
12.8 Equivalence of the Two Definition 118
12.9 Decidability of =po oL 121

12.10Exampleso 122

vii

13 Confluence Proof

13.1 Context .

13.2 Lemmas .

13.3 Local Confluence e
13.3.1 Local vs. Parallel Reduction
13.3.2 Creating an Activity L oL

13.3.3 Localized Operations (SERVE, ENDSERVICE)

13.3.4 Concurrent Request Sending: REQUEST/REQUEST

13.4 Case of the Calculus with Serve(a)

13.5 Extension

VI Final Words

14 Implementation Strategies
14.1 Garbage Collection
14.1.1 Local Garbage Collection
14.1.2 Futures o L
14.1.3 Active Objectso

15 ASP Versus Other Concurrent Calculi

15.1 Actors . .

15.2 ¢-calculus and related

15.3 m-calculus and related

15.4 Ambient Calculus

15.5 Join-calculus

15.6 Process Networks

15.6.1 Expressing Process Networks channels

15.6.2 ASP is more expressiveo
15.7 Oblig and @jeblik
15.8 The mofA language

15.9 Multilisp

16 Conclusion

125
125
126
127
128
129
130
132
132
133

137

139
139
139
139
140

141
141
142
142
144
144
144
145
145
145
146
146

147

viii

Table of Contents

17 Perspectives 149
17.1 Static Analysis 149

17.2 Components Lo 149

17.2.1 From Objects to Components 150

17.2.2 Deterministic components 151

17.2.3 Components and Futures 152

17.3 Generalizing Confluence oo, 153

17.4 Temporized Requests o oo, 153

175 Mobility 154

A Another Proof of Confluence 155
Al Aimsand Interest 155

A2 Hypothesis 155

A3 Context o e e e e e 156

A.3.1 The Special Case of the REPLY Rule 156

A32 Lemmas. 158

A.4 Proof of the Local Confluence 159

A.4.1 Conflicts Between Localized and REPLY Rules 159

A.4.2 Concurrent replies: REPLY/REPLY 162

A.4.3 Interfering requests and replies: REQUEST/REPLY 165

A.44 Concurrent Requests Sending: REQUEST/REQUEST 168

Index of Notations 169
Syntax of ASP 173
Operational Semantics 175
Overview of Properties 177
Bibliography 179
Index 187

Definitions and properties

Definition 7.1 Well formed sequential configuration......... 53
Definition 7.2 Equivalence on Sequential Configurations 53
Property 7.1 Well-formed sequential reduction............. 54
Property 7.2 Determinism....... ..., 54
Definition ~ 10.1 Copy and Merge ...t 72
Property 10.1 Copy and Mergecovviiiiniineennn.. 72
Definition 10.2 Futures list ...t 76
Definition 10.3 Well-formednesscoiiiiiiiii . 77
Property 10.2 Well-formed parallel reduction 7
Definition ~ 11.1 Potential servicescoooiiiin.. 81
Property 11.1 Store partitioning.............. ... 82
Definition 11.2 Request Sender List.......................... 83
Definition ~ 11.3 RSL comparison <..............cooiiiia... 85
Definition =~ 11.4 RSL compatibility: RSL, X RSLg........... 85
Definition =~ 11.5 Configuration compatibility: PX Q.......... 85
Definition = 11.6 Parallel Reduction modulo future updates.... 90
Property 11.2 Equivalence modulo futures and reduction.... 90
Property 11.3 Equivalence and generalized parallel reduction 91
Definition ~ 11.7 Confluent Configurations: PLY Py 91
Theorem 11.1 Confluence. ... 91
Definition 11.8 DON ... e 92
Property 11.4 DON and compatibility 93
Theorem 11.2 DON determinismc.cooiieiinnean... 93
Theorem 11.3 Tree Determinacyooevieeiieanea.n. 95
Definition 121 ..o e 104
Definition 12.2 @ P37 B 104
Lemma 12.1 %, and fﬁ;L 104
Lemma 12.2 Uniqueness of path destination............... 104
Definition 12.3 Equivalence P=p Q.........cooiiiiiian... 105
Property 12.3 Equivalence relation.............. 106
Definition = 12.4 Equivalence of sub-terms..................... 106
Lemma 12.4 sub-term equivalence.............. 106
Property 12.5 Equivalence and compatibility................ 107
Lemma 12.6 =p and storeupdate............... ... 107

1x

Definitions and properties

Lemma 12.7 =g and substitution 109
Lemma 12.8 Another definition of deep copy 109
Lemma 12.9 Copy and Mergecoovviiiiiiiiinnna... 109
Lemma 12.10 =p and store merge. ... 110
Property 1211 REPLY and =p .. .cvviiiiiiiiiii i, 111
Property 12.12 Sufficient condition for equivalence........... 112
Property 12.13 =p and reduction(l)...................oo... 112
Property 12.14 =p and reduction(2)......................... 113
Corollary 12.15 =p and reduction............................ 116
Definition 12.5 Equivalence modulo replies(2)................ 117
Property 12.16 Decidability........ ...t 121
Definition 13.1 confluent configurations: Py Y P» 125
Property 13.1 Confluence.........cociiiiiiiii .. 125
Lemma 13.2 Independent Storescciiiin... 126
Lemma 13.3 Extensibility of Local Reduction 126
Lemma 13.4 copy and Locations 126
Lemma 13.5 Multiple Copies.......c.ooviiiiiiiiii ... 126
Lemma 13.6 Copy and Store Update...................... 127
Corollary 13.7 Copy and Store Update...................... 127
Property 13.8 diamond property............coiiiiiii.. 128
Lemma 139 =pand Q(Q, Q') ..o vvviii 133
Lemma 13.10 REPLY vs. other reduction.................... 133
Property 13.11 diamond property with =p......... 133

Definition ~ 17.1 Deterministic Primitive Component (DPC)... 151
Definition ~ 17.2 Deterministic Composite Component (DCC). 152

Property 17.1 DCC determinism.............c.oiiiiiia... 152
Property A.1 Tree Dependence Graph Determinacy 155
Property A.2 (HA.1) = no cycle of futures................. 156
Property A.3 Local confluenceoocoiiiiin... 156
Lemma A4 renaming and parallel reduction.............. 158
Lemma A5 Renaming and copy ...l 158
Corollary A.6 Copy and Store Append...................... 158
Corollary A.7 Independent Copy and Merge................ 158

Lemma A 8 158

21
2.2
2.3
2.4
2.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

8.1
8.2

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10

10.1
10.2
10.3
104
10.5

List of Figures

Un exemple simple de topologie des objets et des activités 8
Exemple de configuration parallele 11
Envoi derequéteo 12
Mise & jour de futur Lo 13
Autre exemple de configuration Lo 14
Calculi classification (informal) 34
A Factorial Actor - [Agh86] 35
Sieve of Eratosthenes in ¢-calculus - [AC96] 38
Binary tree in ¢-calculus - [AC96] 39
Sieve of Eratosthenes in Process Networks - [KM77] 40
Locks in ambients - [CGO00] 42
Prime number sieve in Obliq. oo 43
Binary tree in (a language inspired by) moBA - [LW95] 44
Binary tree, an equivalent program (moB\)- [LW95] 45
Objects and activities topology 55
Example of a parallel configuration 57
Example: a binary tree oo oo 62
Example: Sieve of Eratosthenes (pull) 62
Sieve of Eratosthenes (pull) 63
Example: Sieve of Eratosthenes (push) 63
Sieve of Eratosthenes (push) 000 64
Process Network vs. Object Network 64
Fibonacci Numbers Processes 65
Example: Fibonacci Numbers 65
Example: a bank application o0, 66
Example: Bank account server 66
Example of a Deep copy: copy(t,04) -« - - v v v oo oo i 71
NEWACT rule o e 73
REQUEST rule e e e e 74
SERVETule e 75
ENDSERVICE Tule e 75

xi

xii List of Figures
10.6 REPLY rule 76
10.7 Another example of configuration 7
11.1 A simple properties Diagram oL 80
11.2 Store Partitioning: future value, active store, request parameter 82
11.3 Example of RSL oo 84
11.4 Example of RSL compatibility 86
11.5 Two terms equivalent modulo future update 88
11.6 Another example 89
11.7 Updates in a cycle of futures 90
11.8 anon-DON term e 94
11.9 Concurrent replies in the binary tree case 96
11.10Fibonacci Numbers RSLs 96
12.1 Simple example of future Equivalence 102
12.2 The principle of the alias conditions 106
12.3 Simple example of future Equivalence 122
12.4 Equivalence in case of cycle of futures 123
12.5 Example of “cyclic” proofo oL 123
12.6 Another example 123
13.1 SERVE/REQUEST . . . © v v v v v vt e e e et e e e e e e e 131
13.2 ENDSERVICE/REQUEST . « « « « v v v v v vt e e e ettt 131
13.3 The Diamond property proof 134
17.1 A primitive componento 150
17.2 A composite component 151
17.3 Components and Futures. 152
A.1 Diagram of the proof with REPLY|| 157
A.2 Activation of an object containing a future 160
A.3 Concurrent Replies 163
A4 Interfering requests and replies: arpquest = QrEpry = & « « « « « « « . . 166
5 properties Diagram (very informal) 177

Remerciements

First, I would like to thank my referees Luca Cardelli, Ugo Montanari and Elie Najm
and more generally all the memebers of my jury for their comments. The following of
this section will be in french.

Bien siir je voudrais remercier mon directeur de thése, Denis Caromel, ainsi que
mon co-directeur de thése, Bernard Serpette, pour toutes les discussions intéressantes,
pour leur commentaires, pour leur soutien, mais aussi pour m’avoir parfois permis de
mener cette thése comme je le souhaitais.

Je remercie aussi toute I’équipe OASIS car j'ai pu effectuer cette thése dans un
cadre trés agréable. Entre autres, je remercie Christian et Romain pour leur com-
mmentaires et leur patiente quant & la préparation de ma soutenance de thése mais
aussi tous les membres de ’équipe pour leur différentes contributions & cette thése et
plus généralement & toutes ces choses sans lesquelles ce travail n’aurait pas pu étre
réalisé.

Je tiens aussi a remercier ma famille et mes amis (je préfére ne pas me lancer dans
une liste sans fin ici, je ne souhaite pas avoir & me demander comment ordonner tout
ceci, et surtout je ne veux pas courir le risque d’oublier quelqu’'un). Donc merci a
tous ceux qui m’ont soutenu, écouté, aussi bien a propos de mon (difficile) parcours
de thése que concernant tout le reste. Merci a ceux qui ont accepté de relire certaines
partie de mes articles sans tout comprendre et parfois, aussi étonnant que cela puisse
paraitre, en comprenant! Merci a tous ceux qui m’ont accompagnés lors de sorties
sportives (ou non), et surtout a ceux qui sont quand méme revenus aprés la premiére
sortie...

xiii

xiv Remerciements

Part 1

French Extended Abstract

This part presents a translation in french of the introduction, the conclusion and a
informal description of ASP principles described in this thesis.

Cette partie traduit en francais I'introduction, la conclusion et décrit informelle-
ment les principes d’ASP présentés dans la suite de cette thése.

Chapter 1

Introduction

Les systémes a objets distribués deviennent omniprésents. Des objets communiquants
interagissent & différents niveaux et dans des environnements trés variés. Ces ob-
jets envoient des messages, appellent des méthodes en fonction de leurs interfaces et
recoivent des requétes ainsi que des réponses. Ces objets ont un état interne et in-
teragissent par des appels de méthodes. Les appels de méthodes par RMI (Remote
Method Invocation) ont pris de plus en plus d’ampleur sur les plateformes industrielles;
ceci est la conséquence de 15 ans de recherche académique. De plus, il semble que
cette solution soit & la fois efficace et pratique.

Les appels de méthodes synchrones ne sont pas adaptés aux systémes actuels pou-
vant étre constitués de milliers de machines communiquant les unes avec les autres.
Ainsi, dans un systéme distribué a grande échelle destiné & faire des calculs, les ap-
pels de méthodes devraient systématiquement étre asynchrones. Bien sitir, dans un
cadre ou la plupart du temps est consacré aux communications, les communications
asynchrones ne sont plus vraiment nécessaires. Nous sommes habitués & attendre le
téléchargement d’une page Web de fagon synchrone. De tels appels de méthodes asyn-
chrones sont aussi appelés requétes. Le terme requéte semble assez adapté car, dans le
cas particulier des communications client-serveur, un tel appel de méthode peut étre
considéré comme une requéte adressée au serveur. Bien stir, dans le cadre général,
chaque objet agit au cours de son existence & la fois en temps que client et en temps
que serveur.

Afin d’avoir un mécanisme d’appels de méthodes structuré méme lorsque ces ap-
pels sont asynchrones, nous avons besoin d’'un mécanisme capable de retourner un
résultat a l'objet ayant envoyé la requéte. Ce résultat sera représenté par un fu-
tur: un futur représente le résultat encore attendu d’un appel de méthode donné.
Les futurs s’avérent étre une abstraction trés efficace pour des systémes distribués a
grande échelle, garantissant a la fois un faible interdépendance des processus et une
programmation trés structurée.

Contrairement a la plupart des calculs d’objets, nous ne souhaitons pas avoir
recours spécifiquement & une notion de thread ou de processus. Dans tout le discours
précédent, nous avons supposé que les calculs étaient effectués par des objets, et donc,
nous souhaitons unifier la notion de thread et d’objet. Certains objets auront ainsi

3

4 Chapter 1. Introduction

leur propre processus et seront appelés objets actifs. Les objets passifs (non actifs)
appartiennent tous & un unique objet actif. On crée de cette fagcon une partition
de ’ensemble des objets en différentes activités. Chaque activité posséde son propre
thread et contient un unique objet actif capable de traiter des requétes.

Comme tous les systémes paralléles, nous avons besoin d’'un mécanisme de syn-
chronisation. Nous avons choisi pour cela un mécanisme trés naturel a la fois du point
de vue du modéle et du programmeur. En effet, une synchronisation naturelle est
automatiquement effectuée lorsqu’on essaye d’accéder au résultat d’une requéte dont
la valeur n’a pas encore été retournée. Cette synchronisation dirigée par le flot de
données n’a lieu que quand la valeur réelle d’un objet représenté par un futur est
nécessaire; Ce mécanisme est appelé attente par nécessité [Car93]. Du point de vue
théorique, ce mécanisme est naturel car il est impossible d’évaluer une construction
nécessitant la valeur réelle d'un objet a partir du futur seul. Du point de vue du pro-
grammeur, aucune primitive de synchronisation spécifique n’est nécessaire et seules les
synchronisations nécessaires sont effectuées de maniére totalement transparente. De
plus, 'aspect “flot de données” permet & certaines synchronisations difficiles & prévoir
d’avoir lieu automatiquement, en particulier entre deux processus qui ne sont pas
directement reliés.

Méme si la notion d’attente par nécessité a été définie dans [Car93], elle est forte-
ment reliée & I’évaluation paresseuse [HMT6| (aussi appelée évaluation ¢ la demande)
et & la notion de futurs dans les langages fonctionnels comme Multilisp [Hal85]. En
effet, les futurs de Multilisp peuvent étre vus comme une certaine adaptation de
I’évaluation paresseuse & la programmation paralléle. Bien siir, les futurs sont peu
adaptés a une évaluation des fonctions non-strictes mais ils permettent une évalua-
tion paralléle. Autrement dit, les futurs permettent d’avoir une évaluation au plus
tét contrairement & 1’évaluation paresseuse. Le fait qu’“une opération qui a besoin de
savoir la valeur d’un futur indéterminé est suspendue” est commun & tous ces mécan-
ismes. Dans notre cas, les futurs permettent d’effectuer des appels asynchrones de
fagon & la fois puissante et élégante.

La plupart des modéles théoriques considérent que les communications sont com-
posés de simples messages circulant sur des canaux. Par exemple, le w-calcul et
les calculs similaires sont considérés comme bien adaptés & la modélisation des ob-
jets, mais aucune notion de méthode ou d’édition de lien dynamique n’est présente
dans le modeéle. Au contraire, Abadi et Cardelli ont proposé un calcul séquentiel (le
¢-calcul [AC96]) beaucoup plus représentatif de la structure des objets et de leur ty-
page. De nombreux langages et calculs concurrents ont été dérivés de celui-ci mais
aucun d’eux ne satisfait nos objectifs : principalement 'unification des processus et
des objets ainsi que des appels de méthodes et des communications.

Pour résumer, nous souhaitons modéliser les aspects suivants dans un calcul aussi
simple et structuré que possible:

e Orientation objets : & cause de la structure des objets et de la théorie qui
leur est associée.

¢ Communications par appels de méthodes : parce que les appels de méth-

odes permettent de structurer les communications et sont représentatifs de la
programmation orientée-objets.

¢ Communications asynchrones : pour limiter les effets de la latence dans les
réseaux et découpler les processus.

e Futurs : afin de maintenir une communication structurée (avec des réponses)
entre des processus asynchrones.

e Synchronisation dirigée par le flot de données : parce que ce mécanisme
de synchronisation est naturel, pratique et bien adapté aux futurs.

¢ Chaque objet peut devenir un processus : ol, a chaque objet actif corre-
spond un unique processus.

En fait, habituellement dans les langages orientés-objets un processus est déja
un objet particulier. En Java, la classe Thread hérite de la classe Object mais
un objet de type Thread n’a aucun role fonctionnel car il n’a pas de méthode
spécifique. Mais ce qui rend notre calcul innovant, c’est que chaque objet peut
aussi devenir un processus.

e Politique de service : afin de pouvoir spécifier 'ordre dans lequel un objet
actif doit traiter les requétes qui lui sont destinées.

A partir d’une théorie classique dans le domaine des objets, le ¢-calcul [AC96], une
extension syntaxique assez simple est proposée pour prendre en compte la distribution.
Deux primitives simples sont proposées : Active et Serve. La premiére transforme un
objet en une activité indépendante et potentiellement distante; la deuxiéme permet
a un objet actif d’exécuter (servir) une requéte en attente. Une fois activé, un objet
devient une entité accessible & distance avec son propre thread : un objet actif. En
accord avec le raisonnement ci-dessus, nous avons choisi de rendre asynchrones tous
les appels de méthodes sur des objets actifs. En ce qui concerne la synchronisation,
une attente par mécessité interrompt automatiquement l’exécution courante en cas
d’opération stricte (comme ’accés & un champ) sur un résultat pas encore disponible
(un futur). L’asynchronisme et le découplage des processus est encore augmenté par
le fait que les futurs sont des entités de premiére classe qui peuvent étre transmis entre
objets (actifs) comme parameétres de méthodes et renvoyés comme résultats.

Le calcul que nous proposons s’intitule ASP : Asynchronous Sequential Processes,
reflétant ainsi une propriété importante : la séquentialité des objets actifs. Les pro-
cessus en ASP sont formés d’un ensemble d’objets sous le controle exclusif d’un objet
racine. La théorie que nous proposons permet d’exprimer une condition suffisante pour
la confluence des programmes, évitant ainsi au programmeur de considérer un trés
grand nombre d’entrelacements entre toutes les instructions et les communications.
De plus, une propriété de déterminisme identifient certains systémes comme détermin-
istes. Cette propriété garantit que, quel que soit I’ordre des communications, quel que
soit ’ordre de mise & jour des futurs, méme en présence de cycles, ces systémes se com-
portent de fagon déterministe. A part les Process Networks [Kah74, KM77, WWV00],

6 Chapter 1. Introduction

peu de calculs ou langages paralléles assurent des propriétés de déterminisme, et en-
core moins dans le cas d’objets distribués ayant un état propre et interagissant par
des appels de méthodes asynchrones.

Un des objectifs du modéle proposé ici est d’avoir un aspect pratique. Ainsi, une
API Java open source, ProActive [Pro, CKV98|, implémente la théorie proposée dans
cette theése en utilisant une stratégie destinée a dissimuler en partie la latence dans le
contexte des réseaux a grande échelle.

Les principales contributions de cette thése sont :

e La définition formelle d’un calcul d’objets impératif et asynchrone (ASP) avec
des futurs et une synchronisation “data-driven”.

e Une vision de la programmation paralléle comme une extension simple de la pro-
grammation orientée-objet séquentielle; principalement grace a l'utilisation de
I’attente par nécessité, a la transmission transparente de futurs entre processus
et leur mise & jour a n’importe quel moment.

e Des conditions suffisantes pour assurer un comportement déterministe des pro-
grammes dans ce contexte de programmation trés asynchrone.

e Un rapport fort entre ’aspect pratique et théorique, & la fois & travers certaines
considérations pratiques évoquées dans cette thése, et de par le fait que le modéle
ASP est implémenté sous la forme d’une librairie Java.

Une présentation courte du calcul ASP et de certaines propriétés et preuves peu-
vent étre trouvée dans les articles suivants : [CHS03, CHS04].

Chapter 2

Description Informelle d’ASP et de
ses Propriétés

Dans ce chapitre, nous introduisons un calcul nommé ASP : Asynchronous Sequen-
tial Processes. ASP modélise un calcul orienté-objet avec des communications asyn-
chrones, des futurs et une exécution séquentielle & l'intérieur de chaque processus en
paralléle.

A partir d’un calcul d’objet séquentiel et classique (proche du impg-calcul [AC96]),
ASP est défini par I'ajout de deux constructeurs Active et Serve. Active rend actif
un objet standard, une fois activé, cet objet exécutera des opérations en paralléle et
servira des requétes dans l’ordre spécifié par l'opérateur Serve. Les appels de méth-
odes sur les objets actifs sont asynchrones. Le résultat d’un appels asynchrones est
représenté par un futur jusqu’a ce que le résultat correspondant soit renvoyé. La
synchronisation automatique des processus est due a I’attente par nécessité [Car93] :
une attente automatique interrompt toute tentative d’opération stricte (comme par
exemple un appel de méthode) sur un futur.

Dans le Chapitre 6 nous verrons que de nombreux calculs et langages ont déja été
définis pour modéliser la concurrence. Le nouveau calcul introduit dans cette thése
nous est apparu comme nécessaire pour avoir un modeéle structuré de calcul objet
impératif avec communications asynchrones et futurs. En effet, aucun des calculs que
nous avons étudiés ne présente toutes ces caractéristiques. De plus, ASP reste un
calcul avec une syntaxe structurée. Ainsi, la traduction des programmes ASP dans
d’autres calculs est possible, mais dans ce cas la structure des programmes ASP serait
perdue et la preuve des propriétés exposées dans cette thése serait probablement trés
difficile voire impossible. Le Chapitre 15 fournit une comparaison d’ASP avec de
nombreux calculs concurrents existants.

8 Chapter 2. Description Informelle d’ASP et de ses Propriétés

2.1 Principes

ASP est basé sur la notion d’activités. Chaque objet ASP est soit actif soit passif. La
racine de chaque activité est un objet actif. Les activités exécutent des instructions
de maniére paralléle et concurrente et n’interagissent que par des appels de méthodes.
Les appels de méthodes adressés & des objets actifs sont tous asynchrones. C’est
I’attente par nécessité sur le résultat d’un qui permet de synchroniser les différentes
activités (synchronisation data-driven).

Figure 2.1: Un exemple simple de topologie des objets et des activités

De fagon simplifiée, une activité est un processus unique (thread d’exécution) ainsi
qu’un ensemble d’objets mis dans un store. Parmi ces objets, un seul est actif, et toutes
les requétes (appels de méthode) envoyées a l’activité sont en fait adressées a cet ob-
jet. Une activité contient en plus les requétes en attente (qui ont été regues et seront
servies plus tard), et les réponses des requétes traitées (valeurs des résultats). Les
objets passifs (c’est & dire non-actifs) ne sont référencés que par des objets internes
a ’activité mais peuvent référencer des objets actifs appartenant & d’autres activités.
En d’autres termes, les activités ne partagent pas de mémoire et les seules références
généralisées sont les objets actifs et les futurs (décrits ci-dessous). La Figure 2.1 donne
un exemple de topologie d’objets dans une configuration formée de quatre activités.
Les objets sont représentés par des ellipses, les références par des fleches et les objets
actifs par des ellipses en gras. Sur cette figure, I’absence de partage de mémoire est
représentée par le fait que les seules fleches d’une activité & une autre sont des fléches
en gras pointant vers des objets représentés par des ellipses en gras (référence vers un
objet actif).

Les appels de méthodes asynchrones respectent les principes suivants:

e Quand un objet envoie une requéte a une activité (appel de méthode sur un
objet actif), celle-ci est stockée dans une queue et un futur lui est associé. Un

2.2. Syntaxe 9

futur représente le résultat d’'une méthode qui n’a pas encore été retourné. De
telles requétes sont appelées requétes en attente (pending requests).

e Plus tard, ces requétes seront servies (c’est a dire prises dans la queue des re-
quétes pour étre évaluées), elles deviennent ainsi des requétes courantes (current
requests). Une fois que ces requétes sont traitées, une valeur est associée a leur
résultat, et la correspondance entre le futur associé a cette requéte et la valeur
du résultat calculé est stockée dans une liste de valeurs de futurs (future values
list).

e Encore plus tard, les références distantes au futur pourront étre mises a jour
(future update), c’est a dire que la référence au futur sera remplacée par la
valeur du résultat associé.

L’activation d’un objet (Active(a,m)) crée une nouvelle activité ayant pour objet
actif une copie (profonde) de 'objet a. Apres 'activation d’un objet, tous les ap-
pels adressés a celui-ci sont asynchrones. C’est & dire que 'exécution du programme
continue aprés ’appel jusqu’a ce qu'une opération stricte sur le résultat d'un appel
asynchrone soit rencontré avant que ce résultat ne soit mis a jour. Ces états bloquants
sont appelés attente par nécessité.

Serve(M) effectue un service bloquant des requétes en attente. M spécifie la liste
des méthodes (identifiées par leur nom) devant étre servies. La premiére méthode qui
convient est servie.

Contrairement & la plupart des calculs basés sur le ¢-calcul, en ASP, les requétes
sont exécutées par le processus associé a la destination de la requéte et non par le
processus qui envoie la requéte.

2.2 Syntaxe

2.2.1 Termes Sources

La syntaxe d’ASP est la suivante, elle est composée d'un calcul d’objets séquentiels
“classique” & la Abadi-Cardelli auquel on ajoute deux opérateurs propres au calcul
parallele. Ces deux derniers opérateurs permettent respectivement de créer un ob-
jet actif et de servir une nouvelle requéte. On notera [; les champs des objets et
m; les noms de méthode. ¢ est un lieur pour les parameétres de méthodes qui sont
au nombre de deux, le premier représente l'objet appelé (self), le deuxiéme est un
paramétre transmis a la méthode. L’existence de ces deux paramétre est justifiée par
la sémantique attachée au passage de paramétre entre objets actifs. La mise & jour de
méthode ne nous a pas semblé nécessaire mais elle peut étre simulée dans notre calcul
séquentiel.

10 Chapter 2. Description Informelle d’ASP et de ses Propriétés

a,be L=z variable,
| [l = biymy = c(xj,y5)a;]5e1 ™ définition dun objet,
| a.l; acceés 4 un champ,
|a.l; :=b mise & jour d’un champ,
| a.m;(b) appel de méthode,
| clone(a) copie superficielle,
|Active(a, m;) active ’objet a,

copie profonde + création de ’activité
m; doit définir I'activité de ’objet
ou () pour un service FIFO
el k
i)

|Serve(m,

i primitive de service : Sert la plus

ancienne requéte portant sur une

méthode de la liste m;:el“k.

2.2.2 Structures Dynamiques

Une configuration paralléle est formée d’un ensemble d’activités, chaque activité con-
tient plusieurs champs qui seront définis informellement dans la suite de ce chapitre.
Un définition formelle de la sémantique d’ASP est faite dans le Chapitre 10.

P,Q = aaa; 0a; ta; Fo; Ras fa] || BL- Il -
Un store est une fonction partielle associant un objet & une location.
o= {1 0;}
Ol o; est un objet réduit ou une référence globale.

o:=[li = ti;mj = s(xj,y;)a;]*Sh-" Objet réduit

JEL.M
|AO(«) Référence a un objet actif
|fut(f) Référence vers un futur
i = wymj = c(xj,yj)aj]zeellfﬁ est un objet ou tous les champs sont réduits & une

référence & lintérieur du store. fut(f; —F) référence un futur
une requéte de l'activité « vers activité 8. AO(«) référence 1'objet actif de 'activité

Q.

(6% N
f; P correspondant &

2.3 Sémantique Informelle

Dans chaque activité «, un terme courant a, représente le calcul en cours. Chaque
activité a son propre store o,. Le store de 'activité a contient un objet actif et
plusieurs objets passifs. Une activité contient aussi une liste de requétes en attente
(queue des requétes) qui contient les appels de méthodes en attente sur l'objet actif ;
et une liste de futurs qui contient le résultat des requétes terminées.

2.3. Sémantique Informelle 11

légende :
Valeur de futur
D Activité (GD) Terme courant r/é:j — |
< Objet actif —> référence & un objet actif -
Requéte § Requéte
D Objet passif a Reéférence locale courante en attentf
Paramétre de requéte
<>\ — W Référence a un futur & foo | Requéte sur la méthode foo
store
9p

_—

Référence vers un
objet actif

Futur vers une
requéte en attente -

-~ —_ = _—_——— -

S Futur correspondant
~ au terme courant

- -
— ——

Futur correspondant a
un résultat déja calculé

Figure 2.2: Exemple de configuration paralléele

La Figure 2.2 représente une configuration formée de deux activités. Elle contient
trois références a des futurs (un calculé, un en cours et un correspondant & une requéte
en attente). Les objets actifs sont représentés par des ellipses en gras; les références
vers des futurs sont des losanges; les valeurs des futurs, le futur courant et les requétes
en attente sont rassemblées dans les rectangles en bas des activités : les futurs calculés
sont & gauche, le futur courant est représenté par un rectangle en gras et les requétes
en attente sont & droite. Les continuations n’apparaissent pas dans les schémas.

2.3.1 Les Activités

L’opérateur Active (Active(a,m;)) crée une nouvelle activité a ayant a sa racine une
copie de I'objet a. Une copie profonde est effectuée’, c’est & dire que tous les objets
référencés directement ou indirectement par a seront recopiés dans la nouvelle activité
excepté les objets futurs et actifs pour lesquels seule la référence sera recopiée. Le
second argument de l'opérateur Active est le nom de la méthode qui sera appelée dés

!Cela évite d’avoir des références distantes 3 des objets passifs.

12 Chapter 2. Description Informelle d’ASP et de ses Propriétés

que le nouvel objet actif sera créé. Cette méthode est appelée méthode de service car
elle devrait spécifier I’ordre dans lequel l'activité doit servir les requétes. Si aucune
méthode de service n’est spécifiée, un service FIFO sera effectué. C’est a dire que les
requétes seront servies dans 1’ordre dans lequel elles arrivent dans ’activité.

Dans la Figure 8.2 et dans le cas d'un service FIFO, la requéte courante (rectangle
en gras) progresse de la gauche vers la droite. Lorsque la méthode de service termine,
plus aucune requéte n’est traitée (il n'y a plus d’activité). Les références distantes a
lobjet actif de l’activité « seront notées AO(«). AO(a) peut étre considéré comme
un proxy vers I’objet actif de ’activité a.

2.3.2 Les Requétes

Les communications entre activités se font par des appels de méthodes sur des objets
actifs. Un appel de méthode sur un objet actif (Active(o,0).foo()) consiste, de fagon
atomique, & ajouter une entrée dans la queue des requétes de 'appelé et & associer
un futur & la réponse. D’un point de vue pratique, cette atomicité est garantie par
un mécanisme de rendez-vous (I’émetteur de la requéte attend un accusé de réception
avant de continuer son exécution). Les arguments d’une requéte ainsi que les valeurs
des futurs sont transmis entre activités par copie profonde!. Les objets actifs sont
transmis par référence.

La Figure 2.3 montre un exemple d’appel de requéte depuis 'activité « vers
l’activité f. On remarquera qu'un futur a été créé, que le paramétre a été passé
par copie profonde et que la nouvelle requéte a été mise & la fin de la queue des
requétes.

Figure 2.3: Envoi de requéte

2.3. Sémantique Informelle 13

2.3.3 Les Futurs

Une opération portant sur un objet est dite stricte si elle a besoin de la valeur réelle
de l'objet, c’est & dire si elle a besoin d’accéder au contenu de ’objet : les seules
opérations strictes sont les accés aux champs, les appels de méthodes, les mises & jour
de champs et la copie (clone). Par exemple, la transmission d’objet comme paramétre
de méthode ou le stockage dans le champ d’un autre objet ne sont pas des opérations
strictes.

Un futur est une référence généralisée qui peut étre manipulée classiquement tant
que 'on n’effectue pas d’opération stricte sur ’objet qu’il représente. Dans la Fig-
ure 8.2, les futurs fy et f3 pointent vers des résultats de requétes qui n’ont pas encore
été calculés, alors que f est un futur dont la valeur associée a été calculée par ’activité
B. C’est le résultat d’une requéte adressée a 3.

Une attente par nécessité a lieu automatiquement lorsqu’une opération stricte
porte sur un futur qui n’a pas encore été mis a jour. Cette attente par nécessité ne
peut étre arrétée qu’en mettant a jour le futur c’est & dire en remplagant la référence
vers le futur par une copie! de la valeur calculée pour celui-ci.

La Figure 2.4 montre la mise a jour d’un futur dans l'activité a.

Figure 2.4: Mise & jour de futur

2.3.4 Le Service des Requétes

La primitive Serve peut apparaitre & n’importe quel endroit du code source. Son exé-
cution interrompt 1’activité jusqu’a ce qu’une requéte correspondant & ses arguments
soit trouvée dans la queue des requétes (une requéte portant sur l'une des méthodes
dont le nom est spécifié comme parameétre de la primitive Serve). Pour des raisons

14 Chapter 2. Description Informelle d’ASP et de ses Propriétés

de spécifications sémantiques, nous introduisons un opérateur supplémentaire {} per-
mettant de stocker la continuation de la requéte que nous étions en train de servir
avant de choisir d’en servir une autre. Il est important de noter que, avec un tel mé-
canisme, plusieurs requétes peuvent étre en cours de traitement & chaque instant sauf
si les instructions Serve ne sont effectués que par ’activité principale (aucun Serve
pendant qu’une autre requéte est en cours de traitement).

Quand l’exécution d’une requéte est terminée, la valeur calculée est associée au
futur correspondant. Puis, ’exécution continue en restituant la continuation qui avait
été stockée au moment du service de cette requéte. Le terme qui avait provoqué le
service de la requéte terminée continue son exécution (il devient le terme courant).
La liste des futurs associe a chaque futur calculé sa valeur, & l'intérieur de I'activité
qui a effectué le calcul. On dit qu’une valeur de futur est partielle si elle fait référence
(directement ou indirectement) & un futur.

Il est important de noter que 1’accés & un champ ou la modification d’'un champ
d’un objet actif est interdite et une activité tentant d’accéder & un champ d’un objet
actif est bloquée de maniére irréversible.

Figure 2.5: Autre exemple de configuration

2.4. Propriétés 15

2.4 Propriétés

Cette section donne un trés bref apercu informel des propriétés d’ASP.

2.4.1 Topologie

La topologie des objets en ASP suit quelques propriétés importantes. Tout d’abord,
il n’y a pas de mémoire partagée entre activités ; c’est a dire que les seules références
généralisées d’ASP sont les futurs et les objets actifs. Cette propriété est directement
garantie par la syntaxe du calcul. De plus, tout au long de ’exécution, chacun des
parameétres des requétes et chacun des futurs est situé dans une partie isolée du store.
Ceci permet de garantir que l’exécution courante ne va pas modifier la valeur des
futurs déja calculés ou des paramétres de requétes encore en attente.

2.4.2 Confluence et Déterminisme

Les propriétés de confluence évitent au programmeur d’étudier I’entrelacement des
instructions et des communications. De nombreux travaux assurent la confluence de
calculs, langages ou programmes. Les canaux linéaires en 7-calcul [NS97, KPT96],
les propriétés de non-interférence dans les systémes & mémoire partagée [Ste90], les
Process Networks [Kah74] ou les techniques de Jones pour créer des programmes
concurrents sont des exemples typiques. Mais aucune de ces approches ne concerne
un langage d’objets concurrent et impératif avec des communications asynchrones.
La principale propriété présentée dans cette thése montre que ’exécution d’un
ensemble d’activités est déterminée de facon unique par l'ordre des activités ayant
envoyé des requétes & un destinataire donné. Les réponses asynchrones peuvent avoir
lieu dans n’importe quel ordre sans aucune conséquence observable. Ce travail semble
étre, d’une certaine fagon, fortement relié et plus général que les canaux linéarisés en
w-calcul [KPT96] et les Process Networks [Kah74]. Une spécification d’un ensemble de
termes se comportant de facon déterministe est donné en Section 11.8. Cet ensemble
de termes peut étre vu comme une généralisation des Process Networks. Enfin, une
caractérisation plus simple des programmes déterministes est donnée en Section 11.9.

16

Chapter 2. Description Informelle d’ASP et de ses Propriétés

Chapter 3

Conclusion

Dans cette thése, nous avons proposé un calcul modélisant les communications asyn-
chrones dans les langages orientés objets, et montré des propriétés de confluence.
De telles propriétés simplifient la programmation car elles évitent au programmeur
d’avoir & étudier tous les entrelacements possibles entre messages et instructions pour
comprendre le comportement d’un programme.

Nous avons présenté un calcul nouveau nommé ASP et prouvé des conditions suff-
isantes pour la confluence des programmes écrits dans ce langage. Notre objectif était
de fournir des propriétés le plus générales possibles. A partir de ces propriétés dy-
namiques, des propriétés plus statiques et plus faciles & vérifier peuvent étre déduites.
De plus, les propriétés présentées dans cette étude, ont déja de grandes conséquences
pratiques, entre autres en ce qui concerne ProActive.

Le calcul ASP est basé sur la notion d’activités s’exécutant de fagon asynchrones,
traitant des requétes et répondant par le biais de futurs. Dans chaque activité,
I’exécution est séquentielle et il existe une bijection entre activités et objets actifs.

En ce qui concerne l'asynchronisme et la synchronisation, dés qu’un processus a
envoyé une requéte, il peut poursuivre son exécution (de maniére asynchrone) tant
que le résultat de la requéte n’est pas nécessaire. Pendant ce temps, le résultat & venir
est représenté par un futur. Les futurs sont des entités de premiére classe qui peuvent
étre transmises comme paramétres et résultats entre les objets et les activités. La
synchronisation est due & un mécanisme naturel dirigé par le flot de donnés : une
attente par nécessité est effectuée lorsqu’un objet a besoin de la valeur réelle d’un
résultat encore sous forme de futur. IL’étude formelle de cette attente est un des
résultats majeurs de cette these.

ASP garantit une propriété de confluence entre des termes compatibles : deux
configurations ayant des RSLs (Request Sender List) compatibles sont confluentes.
La compatibilité des RSLs est basée sur un ordre préfixe entre les activités envoyant
des requétes & une méme activité de destination. Par conséquent, ’exécution est
déterminée de facon unique par ’ordre des activités envoyant des requétes & une
méme activité de destination. Le fait que 1’exécution soit insensible & l’ordre dans
lequel ont lieu les retours de résultats (les mises a jour de futurs) rend les propriétés
d’ASP réellement intéressantes. Par conséquent, nous avons introduit une relation

17

18 Chapter 3. Conclusion

d’équivalence identifiant les termes avant et aprés la mise & jour d’un futur. Nous
avons défini un sous-calcul d’ASP intitulé Deterministic Object Networks (DON) qui
se comporte de facon déterministe (Théoréme 11.4). Nous avons aussi prouvé que
chaque programme communiquant sur un arbre (Théoréme 11.3 : Tree Determinacy)
se comporte de facon déterministe, méme dans le cas du service FIFO qui est pourtant
celui ou la concurrence est maximale.

Méme si ASP est un calcul nouveau, il a été fortement inspiré par de nombreux
langages et calculs concurrents existant. Par exemple les objets sont modélisés comme
en ¢-calcul, et la propriété DON fortement liée aux Process Networks peut aussi étre
vue comme une adaptation des canaux linéaires et linéarisés du w-calcul.

Les propriétés d’ASP illustrent la puissance et ’adéquation des futurs aux langages
impératifs. Plus précisément, c’est 1’équilibre entre les communications asynchrones
et la synchronisation par le biais de I’attente par nécessité qui rend ASP confluent.
Bien str, la topologie des objets assurant que ’on ne peut accéder & une activité que
par son objet actif joue aussi un role primordial. Le fait que la synchronisation soit
liée au flot de données et que les réponses peuvent avoir lieu & tout moment permet
de plus de programmer des applications paralléles et concurrentes de fagon pratique.
En effet, le programmeur est juste tenu d’assurer que la réponse peut étre calculée?
au moment ou sa valeur est nécessaire pour éviter des deadlocks.

ProActive est une librairie Java qui implémente le modele de calcul ASP. Un de
nos objectifs consiste & pouvoir utiliser en ProActive les propriétés prouvées sur ASP.
Par exemple, le fait que le moment ol un futur est mis & jour n’est pas observable en
ASP peut étre utilisé en ProActive pour choisir n’importe quelle stratégie de mise &
jour des futurs.

Les preuves présentées dans cette thése peuvent étre adaptées afin de prouver
d’autres cas assurant la confluence dans ASP ou dans des calculs similaires. Par ex-
emple, nous expliquons dans cette étude comment adapter les preuves au cas fortement
déterministe mais faiblement ouvert ol la primitive de service demande d’expliciter
I’activité source de la requéte & servir.

2dans le sens ou il existe un ordre dans lequel on peut effectuer les calculs pour garantir que ce
résultat est déja calculé lorsqu’on en a besoin.

Part 11

Context

19

Chapter 4

Introduction

4.1 Overview and Orientation

Distributed objects are becoming ubiquitous. Communicating objects interact at var-
ious levels, and in a wide range of environments. These objects send messages, call
methods on each others’ interfaces, and receive requests and replies. These objects
are stateful and interact with each other. In most of object-oriented frameworks,
these objects interact through method calls. Remote method invocation in industrial
platforms, following 15 years of research in academia, has taken off, and appears to
be a practical and effective solution.

Large systems, with potentially thousands of interacting entities, cannot accommo-
date the high coupling induced by synchronous calls. Thus, in a wide range distributed
system performing computations, method calls should be asynchronous. Of course,
this is not fruitful in the case where most of the time is spent in communications.
For example, on the web, one always wait synchronously for a page. In the following,
those asynchronous method calls are also named requests. The term request seems
rather adequate as asynchronous method calls can represent requests sent to a server,
even if, in the most general case of interactions, each object acts both as server and
client.

In order to keep a well structured method invocation mechanism, we need to be
able to send back results to the sender of a request. This result will be represented
by a future: the expected result of a given asynchronous method call. Futures turn
out to be a very effective abstraction for large distributed systems, preserving both
low-coupling and high-structuring.

Unlike most of calculi based on object framework, we do not want to introduce a
specific notion of thread or process. All the discussion above considers that computa-
tion is performed by objects, thus we want to unify the notion of threads and objects.
Some objects will have their own process and be called active objects. Objects that
are not active will all belong to a unique active one. This leads to a partition of objects
into activities. An activity has its own thread and contains a unique active object
which is able to handle requests.

All parallel frameworks need a synchronization mechanism. In our case, this syn-

21

22 Chapter 4. Introduction

chronization comes in a very natural way both from the model and from the program-
mer’s point of view. Indeed, a natural synchronization automatically occurs when one
tries to access to a result that has not yet been returned: a future. This data-driven
synchronization only occurs when the real value of the object represented by the future
is needed; this mechanism is called wait-by-necessity [Car93|. From the model point of
view, this principle is natural as it is impossible to evaluate an operation that needs
the real value of an object only from the future representing it. From the program-
mer point of view, no specific synchronization primitive is needed and only necessary
synchronizations are transparently performed (just in time). Most importantly, the
data-driven aspect implies that non-obvious synchronizations between processes that
are not directly connected can be performed automatically.

Even if the notion of wait-by-necessity has been introduced in [Car93] it is strongly
related to lazy evaluation [HMT76| (also called demand-driven evaluation) and to the
notion of futures in functional languages like in Multilisp [Hal85]. Indeed futures in
Multilisp can be considered as an adaptation of lazy evaluation to parallel computing.
Of course futures are less adapted to non-strict functions than lazy evaluation but
they provide a parallel evaluation. In other words futures mechanism is eager while
lazy evaluation is lazy. The fact that “an operation that needs to know the value of an
undetermined future is suspended” is common to all these mechanisms. In our case,
futures provide an elegant and powerful means for performing asynchronous method
calls.

Most of theoretical models consider the communications being composed of simple
messages traveling over channels. For example, m-calculus and similar calculi are con-
sidered as fitting object paradigms but do not include methods and dynamic binding
in the model. At the opposite, Abadi and Cardelli proposed a sequential calculus
(the ¢-calculus [AC96]) more representative of objects structure and typing. Several
concurrent languages and calculi have been derived from this one, but none of them
fit with our objectives: mainly unification of objects and processes and of method
calls and communication.

To sum up, we want to model by a simple and structured calculus the following
aspects:

e Object-orientation: because of the objects structure and the theory associated
to them.

e Communications through method calls: because method calls provide
structured communications and are representative of object-oriented program-
ming.

¢ Asynchronous communications: for the sake of hiding network latency and
decoupling of processes.

e Futures: to maintain a structured communications (with returns), between
asynchronous processes.

4.1. Overview and Orientation 23

e Data-driven synchronization: because it allows a natural and convenient
synchronization mechanism well adapted to futures;

e Any object can become a process: where active objects uniquely identify
processes.

Actually, the fact that a process is also an object is classical in object-oriented
languages. In Java, the Thread class inherits from the Object class but a thread
object is not an applicative object as it has no specific method. But, what makes
our calculus innovative is that, moreover, each object has the ability to become
a process;

e Service policy: to allow the specification of the order in which requests should
be served.

Starting from widely-adopted object theory, the ¢-calculus [AC96], a syntactically
light-weight extension is proposed to take into account distribution. Two simple primi-
tives are proposed: Active and Serve. The former turns an object into an independent
and potentially remote activity; the latter allows such an active object to execute
(serve) a pending remote call. Upon activation, an object becomes a remotely acces-
sible entity with its own thread of control: an active object. In accordance with the
above reasoning, we have chosen to make method calls to active objects systematically
asynchronous. For synchronization, a wait-by-necessity automatically occurs upon a
strict operation (like a field access) on a communication result not yet available. A
further level of asynchrony and low coupling is reached with the first-class nature
of futures; they can be passed between (active) objects as method parameters and
returned as results.

The proposed calculus is named Asynchronous Sequential Processes (ASP), reflect-
ing an important property: the sequentiality of active objects. Processes denote the
potentially coarse grain nature of active objects. Such processes are usually formed
with a set of standard objects under the exclusive control of a root object. The pro-
posed theory allows us to express a fundamental condition for confluence, alleviating
the programmer of the un-scalable need to consider the interleaving of all instruc-
tions and communications. Furthermore, a property ensures determinism, stating
that whatever the order of communications, whatever the order of future updates,
even in the presence of cycles, some systems converge towards a determinate global
state. Apart from the close to 40-year-old Process Networks [Kah74, KM77, WWV00],
few parallel calculi and languages ensure determinism, and even less in the context of
stateful distributed objects interacting with asynchronous method calls.

One objective of the proposed model is to be a practical one. An illustration of such
practicability is available under an open source Java API and environment, ProActive
[Pro, CKV98|, which implements the proposed theory using a strategy designed to
hide latency in the setting of wide area networks.

The main contributions of this study are:

24 Chapter 4. Introduction

e The formal definition of an imperative and asynchronous object (ASP) calculus
with futures and data-driven synchronization.

e Parallel programming as a smooth extension of sequential objects, mainly due
to data-driven synchronizations (wait-by-necessity) and pervasive futures with
concurrent out-of-order updates.

e The characterization of sufficient conditions for deterministic behavior in such
a highly asynchronous setting.

e A strong link with the practical side both in some practical considerations inside
this study and with the fact that the ASP-calculus model is implemented as a
Java library.

Shorter presentations of ASP calculus and some of its properties and proofs can
be found in [CHS03, CHS04].

4.2 Organization of this Thesis

Part II presents the context of this thesis. In the following, Chapter 5 presents a brief
overview of distribution and parallelism in an object-oriented framework. Chapter 6
introduces formalisms, calculi, and distributed frameworks related to this thesis. We
chose to focus on some of the most popular calculi and languages and to try to give
a precise description of them.

Part III describes the ASP calculus. It starts from a sequential calculus, a la
Abadi-Cardelli, described in Chapter 7 with a sequential semantics very closed to
the one of Gordon and Hankin. Then the syntax and an informal description of the
ASP calculus is given in Chapter 8. And finally, some classical examples illustrate
the parallel calculus in Chapter 9. Some of these examples are strongly inspired
from process networks and a first link between those two theories can be deduced
from those programs.

Part IV presents the ASP semantics and its properties. Firstly, Chapter 10
describes ASP semantics, this chapter can be seen as a formalization of the ASP
principles previously introduced in Chapter 8. From this model, Chapter 11 gives
some properties of the ASP calculus. After some properties about objects topology,
a notion of compatibility and an equivalence relation between terms are presented.
Informally, compatibility will be a necessary condition for confluence, and equivalence
relation identifies terms modulo some futures updates. These two definitions are
strongly interconnected and leads to a confluence property. Then a set of confluent
term (DON terms) is defined. Finally, based on objects topology, a set of programs
that behave deterministically is identified.

Part V provides formal details and proofs related to Chapter 11. Firstly, Chap-
ter 12 formally describes equivalence modulo futures and its properties. Then, Chap-
ter 13 proves the confluence property of Chapter 11. This part interleaves formal
definitions and proofs. Indeed, the part IV can be seen as a summary of this part
with more informal details and more intuitive explanations.

4.2. Organization of this Thesis 25

Part VI concludes this thesis. Chapter 14 gives implementations strategies re-
lated to ASP or ProActive. Chapter 15 compares ASP with other concurrent calculi
and languages presented in Chapter 6. This chapter both justifies the existence of a
new parallel object calculus with asynchronous communications, gives links between
existing calculi and ASP, and explains how some notions specific to other calculi could
be compared to ASP or adapted in our framework. Chapter 16 concludes this thesis
and Chapter 17 draws some perspectives to this study. Firstly, ASP could also be
used to model components and mobility. Moreover, the confluence property could
also be ensured by identifying some objects that do not modify their internal state or
by ordering differently the services of requests.

Appendix A gives a proof of determinacy in the case of a tree topology of the
object dependence graph.

26

Chapter 4. Introduction

Chapter 5

Distribution, Parallelism,
Concurrence, and Objects

Parallel and distributed languages — including calculi — all fall within the scope of a
few important dimensions. This chapter identifies those dimensions and attempts an
informal analysis of existing frameworks.

We first explore distribution, parallelism, and concurrency. In a second phase, we
consider the shift of paradigm, if any, brought in by objects.

5.1 A Few Definitions

Let us first introduce a few awfully basic definitions.

Parallelism: Execution of several activities or processes at the same time

In the following, an activity will denote an unity of parallelism, that is something
more general than a thread or a process; each parallel entity behaving more or less
independently (except of communications and synchronization) will be called an ac-
tivity. Simultaneously, several activities achieve some actions, may they be visible or
invisible. Basic examples of parallelism include two multiplications going on at the
same time on two different processes, printing simultaneously two different files on
two printers, saving the same file redundantly on several discs.

Concurrency: Simultaneous access to a resource, physical or logical 3

When at least two activities are trying to access a single entity, concurrent actions
are being carried out, or at least attempted to. In many cases, concurrency leads
to interleaving, as it is rather frequent that concurrent actions actually take place
one after the other, or at least appear to be - our world is in appearance at least
rather discrete. Two files printing concurrently on the same printer will produce
unpredictable output. Observation is a crucial aspect of concurrency as from different

3Sometimes, concurrency is also defined as the fact that several different operations can be per-
formed and consequently one have to be chosen.

27

28 Chapter 5. Distribution, Parallelism, Concurrence, and Objects

point of views some aspects may be considered or not as concurrent. To get back to the
printer example, further analysis can probably tell apart the interleaving that occurred
(pages, words, lines ...). Indexed, when printing starts, nothing can determine (no
predefined order) which file will be printed first.

Distribution: Several address spaces

Distributed environments assume a fundamental constraint: no single address
space. Examples of distribution include PCs on a Local Area Network (LAN), clus-
ter of machines more and more used for intensive computation, and of course Grid
computing over World Area Networks (WAN).

While the definitions above attempt to strongly differentiate three physical reali-
ties, it is often the case that they are slightly tangled, intentionally or just by mistake.
The strong implications that do exist between them is in all likelihood one reason for
the confusion.

Finally, there is an hypothesis, and a reality, that we believe cannot be bypassed:
Asynchronous systems: No global clock, and unbounded communication time. Each
process runs at its own speed, and communications take a non predictable time —
not to be confused with synchronous or asynchronous communications. Again, this
hypothesis proceeds from the need to scale up to large and global systems. On the
contrary, synchronous systems take a few strong hypotheses: instantaneous communi-
cations (including broadcasting), instantaneous process reaction to inputs. Of course,
the synchronous hypothesis does not scale up; no global clock can be assumed all over
the world, and communications do take time, especially if you go half-way around
the globe. Therefore, there are clearly two correlated challenges still to be tackled for
distributed systems:

e asynchronous system that behave deterministically,
e synchronous systems that can scale up.

This study is an attempt to contribute solutions towards tackling the first chal-
lenge.

5.2 Parallelism and Concurrence

5.2.1 Parallel Activities

Provided we are beyond the frame of purely sequential execution or fully implicit
parallelism, the very first dimension deals with the definition of activities. Whether
statically or dynamically defined, a language always features concepts and constructs
permitting to define parallel executions. Processes (tasks), threads, actors, active
objects, or just the parallel evaluation of expressions or functions exemplify the main
abstractions.

5.2. Parallelism and Concurrence 29

The nature of activities has a strong impact on the characteristic of activity iden-
tities, which in turn influences the language capacity to deal with them in a uniform
and flexible manner.

5.2.2 Sharing

A second and strongly differentiating dimension is sharing of state between activities.
The fact that several activities can or cannot reach the same data, leading to inter-
leaving and potential race conditions, has a dramatic influence on both programming
style and intrinsic properties.

5.2.3 Communication

As soon as sharing and interleaving is not the unique option for interactions between
activities, communication comes into play as a crucial dimension.

Channels are a first option for enabling communications between activities. In
that case, communication takes the form of messages being sent and received over
channels. Message is a very basic, and somehow primitive, abstraction for interac-
tions. The advent of procedural languages has led to the practical use of a higher
level communication pattern: remote procedure call (RPC). The information being
communicated is no longer raw data, but a request for a procedure execution, to-
gether with its parameters. It is striking to observe that most of the formal work on
parallel calculus is still within the paradigm of channel based communications, while
programming languages are for a long time now in the era of procedure, functions and
method calls. Section 5.3 will exhibit an important object enhancement to RPC-based
communications.

Besides the form of communication, the nature of information being exchanged is
also influential. The capacity to send and receive either activity identifiers or channel
names induces an important characteristic: dynamic topology. A feature both theo-
retically and practically systematically used nowadays. With respect to exchanging
data, the choice between copy or reference semantics arises. Maintaining reference
semantics across physically disjoint address spaces leads to generalized references: a
kind of Distributed Shared Memory (DSM) leading to complexity and poor scalabil-
ity. The second solution, (deep) copying to manage distribution, is rather popular and
quite effective. From RPC to Java RMI, including Network Objects [BNOW95], the
automatic copy of data being referenced within a communication can occurs. While
validated by practice, it must be clear that this solution imposes a semantic shift
from procedure call to RPC; the user ends up with the task to maintain coherency
of copies when needed. An interesting solution has been proposed that diminish this
semantic change: copy-restore semantics that put back the parameters value after the
call — somehow similar to a call-by-name semantics. Somehow, copy-restore semantics
bridge some gap between DSM and deep copy. However, if the framework is to be
scalable, copies have to be made somewhere. So, the user has to specify where and
how the copies will take place, and of course the action needed to reconcile a global
semantics. Moreover, copy-restore does not work properly for multiple (asynchronous)

30 Chapter 5. Distribution, Parallelism, Concurrence, and Objects

calls between two activities.

Not only passive data can be copied along communications: instead of passing
references to activities, processes can themselves be deep-copied. A feature we believe
captures at its best a practical facet: mobility of activity. Such computational or
process mobility is rather present in calculi (e.g. higher-order PI-calculus, Ambient,
Obliq), but only in a few languages, probably reflecting the difficulty to implement
process mobility in operational frameworks.

With respect to the semantics of communication, there is of course the dichotomy
of synchronous versus asynchronous communication. The reality is much more com-
plex with large variations, and to some extent a continuum: purely synchronous,
asynchronous with rendezvous, asynchronous FIFO preserving, asynchronous out of
order, asynchronous without any guaranty including delivery.

5.2.4 Synchronization

Synchronization always boils down to waiting something, a given event or a piece of
data.

Control based mechanisms provide primitives that allow to explicitly block the
course of execution. The programmer makes use of a dedicated instruction to wait
for some conditions or occurrence of events. One of the main purpose of such control
based synchronization is often to avoid a busy wait. The well known select with
guards statement is the outmost example, as for instance in CSP or ADA. However, a
select is usually a rather complex control structure that also embodies features such
as process termination, and non deterministic choice. Moreover, the guard capacity
to include rendez-vous based communications leads to a very complex semantics for
the programmer, and a rather difficult implementation in distributed environment;
cf. for instance the polling nature of the Ada select [GC84]. This study proposes a
clear answer to avoid such trouble: systematic asynchronous calls that systematically
allows for selection upon a local pending queue.

In the quest for powerful synchronization primitive, selection can also be based
on the caller identity, breaking the caller anonymity and somehow returning to two-
sided communications. Some languages (e.g. Concurrent C [GR89]) even authorized
selection, and as such synchronization, based on the value of effective parameters.

Overall, the select statement is an instruction to filter upon pending commu-
nications, and trigger the appropriate control flow. As there is no reason to wait
for a unique communication, filtering can be achieved on several procedure calls or
messages. This is the case in frameworks such as the Join calculus [FGLT 96|, or the
polyphonic C# [BCF02] language. These synchronizations are still control based, and
rather demanding with respect to programmer skill, mainly due to the interleaving to
be considered.

Dataflow synchronization is an important step in the direction of more manageable,
but also more efficient distributed systems.

The idea is rather simple and powerful: let us trigger operations just based on the
data availability. The programmer should say no more than the functional dependen-

5.3. Objects 31

cies between computations. Coming from applicative languages, dataflow evaluations
naturally allow parallel evaluation. But our focus being on explicit distribution and
parallelism, the dataflow idea turns into a language construct: the future.

To the best of our knowledge, Multilisp [Hal85] invented the imperative face of
dataflow synchronization with a reference to a value yet to be known, a future value.
While still in an imperative setting, synchronization become implicit: a strict opera-
tion on an unknown future will automatically block until the value is available. While
Multilisp is in a functional and shared memory setting, an important contribution of
this study will be to apply this idea to a non-shared memory and object settings.

5.3 Objects

In the previous section, we pointed out parallel processes, message or remote procedure
communications, and data-flow synchronization. What comes about to those concepts
when objects come into play?

5.3.1 Object, Remote Reference and Communications

Let us start with a fairly embraced shift: Remote Procedure Call (RPC) to Remote
Method Invocation (RMI, e.g. Java RMI). Method in the RMI acronym denotes the
object paradigm. But the major shift is not in the terminology move, from procedure
to method. In truth, the move comes from the target: a method call has a peculiar
parameter, the target object, hence the dot notation. When turning a call such
as ro.foo (p); into a communication, ro represents, identifies, a remote entity; in
contrast RPC requires a specific parameter, a handler, to represent the remote target
(e.g. foo(ro_handler, p);). As a consequence, references to objects are somehow
unified with references to remote entities. So far, the shift is rather syntactical.

5.3.2 Objects vs. Parallel Activities

We said just above that references to objects are unified with references to remote
entities. But the important unification is between objects and activities. Is the very
notion of object unified with activity, or process?

Let us quickly put aside models such as Java RMI. A Java remote object is not
by essence an activity. The fact that several threads can execute method simultane-
ously within a remote object does illustrate that when writing ro.foo (p);, what ro
identifies is not a remote activity, just a remote object.

On the contrary, the notion of object can be unified with the notion of activity.
Then, an activity is an object. A remote reference to an object becomes also a remote
reference to an activity. This is the case in the functional framework of Actors [Agh86,
AMST97]. An activity is identified with an actor, and an actor address is just a
reference to a remote activity. In the context of imperative object language, such a
concept merging an activity and a remote entity is an active object.

A final question remains: are all objects activities? The actor language answer
to that question is yes, leading to what is call uniform actor models. All objects

32 Chapter 5. Distribution, Parallelism, Concurrence, and Objects

are active. Although theoretically interesting, we believe that solution not to be
effective and practical. We prefer the so called non-uniform models, where only some
objects are turned into active objects. The capacity for the programmer to specifically
pinpoint the active objects reflects the role of activities in explicit parallelism, which
is most needed for large scale distribution. But, of course, this study could be easily
adapted to a uniform model (which would leads to a lot of simplifications).

5.3.3 Objects and Synchronization

At last, let us offer a quick overview of dataflow synchronization in an object world.

When activities are remote objects, asynchronous method call is a first move to
decoupled computations and envision scalability. As method calls can return values,
a dataflow synchronization can naturally be added to object languages: each result of
an asynchronous call can be viewed as a future. It will be updated upon the reception
of the result, after the remote method execution. In the meantime, any attempt to
use the unknown future will block.

For instance, when ro is a remote object, the execution of the asynchronous call
v= ro.foo (p); will not block the current activity, leading to v being a future. Any
strict operation on an unknown future, for instance a v.bar(); method call, will block
until the future is filled up.

We will call such an object-oriented dataflow principle wait-by-necessity [Car93].
Many issues arise with such a principle. They will be examined at depth along the
course of this thesis.

Chapter 6

Formalisms and Distributed
Calculi

6.1 Basic Formalisms

This section reviews main calculi and formalism from which most of the (formally
described) concurrent languages and calculi have been derived. Note that in [DZ01],
Zilio gives a classification of mobile processes different from ours. It classifies mobile
processes into mobility of names which are called “labile processes” and processes hav-
ing a notion of movement and explicit locations like Ambient Calculus called “motile
processes”. The purpose of this study is to examine the impact of different communi-
cation and concurrency methodologies, and thus will not focus on the importance of
locations. From this point of view, Ambient calculus can be considered as belonging
to the same family as w-calculus. Figure 6.1 provides an informal classification of
calculi considering the different concurrency principles.

6.1.1 Functional Programming and Parallel Evaluation

A-Calculus and pure functional languages provide a simple framework for designing
parallel languages. In fact, it is well known that the A-Calculus is confluent [Bar81]. In
other words, the absence of side effect allows one to evaluate expressions composing
the programs in any order. A parallel evaluation of functional languages is both
deterministic and deadlock free.

The parallel functional evaluators have been widely studied, see for example
[KPR 92| for a lazy parallel evaluation, or [Ham94] for a survey of parallel functional
programming.

6.1.2 Actors

Actors [Agh86, AMST92, AMST97| are rather functional processes relying on asyn-

chronous communications. Actors are interacting by asynchronous message passing.
Agha, in [Agh86], presented an actor language. More formal syntax, operational

semantics, equivalence, and bisimulation techniques for actors are given in [AMST92|

33

34 Chapter 6. Formalisms and Distributed Calculi

CSsp
A-calculus CCS
mw-calculus
k— S §—/calcu1us —
T4 Actors™ ~ /7 B -
Mult{LlSp \ - Obliq / Djeblik
N \ woBA
\ \ Pict . Hanki
Process. N \ Join-calculu cocr;l(c)ﬂ(lir?gnt Saleulus
Networks™ _ | Ambients
N \
NN
\
N\
N ASP

Figure 6.1: Calculi classification (informal)

and [AMST97]. Actors are based on a functional language but are organized in an
object-oriented style. An actor is an object for which each method is written in a
pure functional language. Communication is ensured by a mailbox mechanism and
thus is asynchronous. Fairness is an important requirement of actor specification.
According to Agha, fairness is a realistic hypothesis that provides semantics properties.
Characteristics specific to actors are:

e An actor may send a message to another actor. send(a,v) creates a message
with receiver a and contents v.

e An actor may change its own behavior. During a message treatment, an actor
must specify its new behavior (which can be the same as before the message
treatment) by the primitive become(b).

e An actor may create other actors with the primitives newaddr() for creating an
address and initbeh(a,b) for initializing an actor behavior.

The history sensitive aspect of actors is performed by the become primitive. In
other words, the state of an actor is specified by its behavior. This means that the
behavior of an actor at invocation time may differ from its behavior at execution time.
In ASP, such behavior modification will be forbidden and replaced by an imperative
aspect allowing objects to modify their state (their data). These two approaches are
somewhat opposite. Indeed, Agha and al. store the state of the actors inside their
functions, while in ASP, the state is only stored in the data part of objects (field).

A notion of futures for actors is also presented in [Agh86].

A A-calculus based actor calculus is presented in [AMST92, AMST97]. Actors are
presented as an open system: they can receive messages from outside actors. These
articles specify an operational semantics, an operational equivalence and operational
bisimulation techniques for actors.

6.1. Basic Formalisms 35

(define (Factorial ())
(Is-Communication (a eval (with customer = c)
(with number = n)) do
(become Factorial)
(if (NOT (= n 0))
(then (send x 1))
(else (let (x (new FactCust (with customer c)
(with number n)))
(send Factorial (a eval (with customer x)
(with number n-1))))))))
(define (FactCust (with customer = m)
(with number = n))
(Is-Communication (a number k) do
(send m n*k)))

Figure 6.2: A Factorial Actor - [Agh86]

Figure 6.2 defines an actor computing a factorial that distributes the work to
customers. More precisely, a chain of FactCust objects is created. Each customer
performs one multiplication and forwards the result to the following customer, thus
each call to factorial first creates a FactCust actor and recursively calls the Factorial
actor with the newly created customer, for n — 1.

In [KY94], an actor-like concurrent language is presented but is more related
to typing theory and can capture “message not understood” errors. It is based on
ML-like typing of record calculus. Indeed, this article considers that a concurrent
object-oriented programming language is an assemblage where records are added to a
concurrent calculus (¢ la 7-calculus).

6.1.3 m-calculus

According to Zilio [DZ01], “Milner argues that when one talks about mobility in a
system of interacting agents, what really matters is the movement of the access paths
to the agents.” This study partly follows this idea and will not focus on the notion of
location. Even if the notion of location is important, we consider that the interaction
between locations and the methodology of communication is out of the scope of this
study.

Even if some kind of channels can be explicited in ASP and communicated
between processes; this study will be more focused on the concurrency aspects than
on mobility of names as presented by Milner. However, a notion of mobility ¢ la
Milner is intrinsic to ASP through the mobility of global references to some objects:
ASP global references can be transmitted between processes.

m-calculus is a concurrent calculus based on communications over channels and
introduced by Milner and al. [MPW92, Mil89]. It is a very small calculus where

36 Chapter 6. Formalisms and Distributed Calculi

channels are first class entities and communication is due to synchronization between a
process performing an output on a channel, and another process performing a blocking
input on the same channel. Channel names are first class entities and can be passed
over channels.

Several version of w-calculus exist and 7-calculus syntax can be presented in differ-
ent ways. We will use the following syntax and present the main variants of m-calculus
below.

P,Q:=0 nil
| P|Q parallel composition
| (vx.P) restriction of name x
| z(y).P input
| z(y).Q output
| [z =y].Q matching
|P+Q choice
[P replication

Informally, z(y).Q sends y along channel x and, after synchronization with a pro-
cess x(z).P listening on channel x, continues as (. Similarly and synchronously,
x(2).P receives y on channel x and continues as P where z is replaced by y. vx.P
creates a fresh channel x with lexical scope P. P|Q corresponds to the parallel com-
position of two processes, ! P is an infinite number of P processes running in parallel.
P + @ denotes an external choice: as soon as P can be reduced, @ is discarded, or
vice versa. Name matching only exists in some variants of w-calculus. In that case
[z = y].Q executes @ if x and y are the same channel.

Most of m-calculus derived languages and calculi presented here do not include
name matching. Name matching makes equivalent different equivalence relations on
m-calculus [FG98], but this is not directly linked to the subject of this study.

Polyadic m-calculus [Mil93] allows to send/receive several channels on a channel
(i.e. z(y).P becomes z(yi ...yn).P).

m-calculus can be either synchronous or asynchronous. Asynchrony is obtained by
disallowing choice and output prefix. This last point means that output messages do
not have any continuation, that is to say, x(y).Q is replaced by z(y) in the syntax
above. Asynchronous w-calculus was first proposed by Honda and Tokoro in [HT91]
and Boudol in [Bou92|. Synchronous m-calculus can be encoded in asynchronous 7-
calculus.

Sangiorgi and Merro introduce a “local 7-calculus” (Lzr) which is similar to the
asynchronous m-calculus in [MS98] (neither output prefix nor choice operator). In
[San01], Sangiorgi extends this calculus with the capacity of sending processes through
channels (LHO7: Local Higher Order m-calculus) and shows the compilation from
LHO7 to Lwr. A more general compilation of the HO#x into the w-calculus was pre-
sented in [San93].

Linear and linearized channels Linear and linearized channels provide confluence
for some 7-calculus terms. A channel with a linear type [KPT96| can only be used

6.1. Basic Formalisms 37

once in input and once in output. Thus communication over a linear channel can not
be affected by a third process.

Steffen and Nestmann in [NS97] introduce a generalization of linear channels:
“linearized” channels which can be reused after a “unique” usage. This article aims at
ensuring, with typing techniques, that at any time only one communication is possible
through a given channel.

Communication over linear and linearized channels is deterministic. Thus «-
calculus terms only communicating over linear and linearized channels are confluent.

PicT is a language based on m-calculus and is briefly described in Section 6.2.2.

6.1.4 c¢-calculus

Abadi and Cardelli [AC96, AC95a, AC95b| present a calculus for modeling object-
oriented languages: ¢-calculus. They study both functional and imperative behavior,
starting from an object-based functional calculus (no classes) without typing, and
added imperative aspects and most importantly studied typing. A class-based object
calculus can also be translated to ¢-calculus. An example of translation is defined
in [AC96].

The main contribution of [AC96| deals with typing in object calculi. Even if this
aspect is important, we will not focus on it. Indeed in our case, classical typing could
be considered as orthogonal with concurrency.

¢-calculus is a base-calculus for several parallel calculi (e.g. @jeblik [MKNO02],
concurrent object calculus of [GH9S], ...).

ASP calculus is based on an untyped imperative ¢-calculus (impg-calculus
of [AC96]). Gordon and al. presented substitution based semantics of impg-calculus
(small step and big step), and proved their equivalence with Abadi and Cardelli
closure-based semantics in [GHL97b, GHL97a]. We based our semantics on opera-
tional semantics of [GHLI7b| because it is more intuitive and concise than the one
of Abadi and Cardelli. However, such a semantics is based on a substitution that is
more difficult to implement efficiently.

Note that Gordon, Hankin and Lassen [GHL97b, GHL97a] also present compila-
tion and CIU (Closed Instance of Use) equivalence on imperative objects. Moreover
Gordon and Rees also present a bisimilarity equivalence of typed object calculi of
Abadi and Cardelli in [GR96]. Those aspects deal with equivalence of static terms.
In the following, we will not use this framework because, to be as general as possible,
we were interested in relations that are still defined on (partially) reduced terms.

Also note that in @jeblik the notion of argument of a method is introduced: a
method has two formal parameters, one is the object itself (self/this/...), the other is a
function parameter. Such an extra argument is only necessary in the context of remote
method calls. Indeed, in a local context, a method call can return a function* that
will be applied to the argument, whereas in concurrent object calculi, it can be useful
to protect the state of the object from outside modifications. In that case, returning
a function and performing operations “inside” the object® are not equivalent because

4it is easy to encode A-calculus in g-calculus.
Sor more precisely inside a thread belonging to the object invoked.

38 Chapter 6. Formalisms and Distributed Calculi

only the later solution can modify the state of the invoked object (without loosing
coherence of the objects or introducing locks). In ASP, the argument of methods is
even more important as it is deep copied in order to preserve a given topology of links
between objects : see Section 11.2.

Figure 6.3 presents an example of prime number sieve expressed in ¢-calculus.

Sieve 2 [m = ¢(s) A(n)
let sieve’ = clone(s)
n s.prime :=n;
s.next := sieve';
s.m=c(s") A\(n')
if(n’ modn)=0
then ||
else sieve' .m(n');
[,
prime = ¢(z) x.prime,
next = ¢(z) z.next];

<= denotes the method update: modifies the body of a method.

The sieve can be used in the following way:

for i in 2..99 do sieve.m(i) initializes primes< 100

steve.next.next.prime returns the third prime

Figure 6.3: Sieve of Eratosthenes in ¢-calculus - [AC96]

Figure 6.4 presents a binary tree Class example. It has been slightly modified:
types were removed.

6.1.5 Process Networks

Process Networks of Kahn [Kah74, KM77, WWV00] are explicitly based on the notion
of channels between processes, performing put and get operations on them. Each
process is an independent sequential computing station (no shared memory). They
are linked with channels (one to one or one to many) behaving like unbounded FIFO
queues making the communications asynchronous.

One process network channel can link at most one source process and many des-
tinations. The destinations do not split the channel output, but each one reads every
value put in the channel (a kind of broadcast). The reading on a channel is performed
by a blocking get primitive. The order of reading on channels is fixed by the source
program. Process networks provide deterministic parallel processes, but require that

6.2. Concurrent Calculi and Languages 39

binClass £ [new =
¢(2) [isleaf = ¢(s) z.isleaf(s),
Ift =¢(s) z.lft(s),
rht = ¢(s) z.rhi(s),
consLft = ¢(s) z.consL ft(s),
consRht = ¢(s) z.consRhit(s)],
isLeaf = A(self) true,
Ift = X(self)self.lft
rht = A(self) sel f.rht
consLft = \(self) A(newl ft)
((self.isleaf := false).lft .= newlft).rht := self,
consRht = A(sel f) A(newrht)
((self.isleaf := false).lft .= self).rht := newrhit]

Figure 6.4: Binary tree in ¢-calculus - [AC96]

the order of service is predefined and two processes cannot send data on the same
channel.

Figure 6.5 shows the example of a sieve of Eratosthenes written in Process Net-
works. Note that all communications are performed through explicit and blocking PUT
and GET operations which impose a lot of (not always necessary) synchronizations.

6.2 Concurrent Calculi and Languages

6.2.1 Multilisp

Halstead defined Multilisp [Hal85|, a language with shared memory and futures. The
construct (future X) immediately returns a future for the value of X and concurrently
evaluates X. A future without a value associated to it is said to be undetermined, it
becomes determined when its value has been computed. The combination of shared
memory and side effects prevents Multilisp from being determinate.

The main parallelism primitive is a PCALL that performs an implicit fork and join
and evaluates its arguments concurrently: (PCALL F A B) evaluates concurrently
F, A, and B to f, a, and b; and applies f to the arguments a and b.

40 Chapter 6. Formalisms and Distributed Calculi

Process INTEGERS out QO

Vars N; 1 — N;

repeat INCREMENT N; PUT(N,QO0) forever
Endprocess;

Process FILTER PRIME in QI out QO
Vars N;
repeat GET(QI) — N;
if (N MOD PRIME)#0 then PUT(N,Q0) close
forever
Endprocess;

Process SIFT in QI out QO
Vars PRIME; GET(QI) — PRIME;
PUT(PRIME,QO); emit a discovered prime
doco channels (;
FILTER(PRIME,QI,Q); SIFT(Q,Q0);
closeco
Endprocess;

Process OUTPUT in QI;
repeat PRINT(GET(QI)) forever
Endprocess

Start doco channels Q1 Q2;
INTEGERS(Q1) ;SIFT(Q1,Q2) ; OUTPUT(Q2);
closeco;

Figure 6.5: Sieve of Eratosthenes in Process Networks - [KM77]

In Multilisp, as the addition operator + needs a value of its arguments, the two

following expressions yield essentially to the same parallelism:

(+ (future A) (future B))

(pcall + A B)

Halstead classifies the programming languages by specifying whether they have

explicit parallelism, side effects, and shared memory. For example, CCS is charac-
terized by explicit parallelism, side effects and no shared memory, and Multilisp by
explicit parallelism, side effects and shared memory.

According to Halstead [Hal85], the fact that no data is shared between different

threads (no shared memory) is one of the failings of CSP. But the interleaving of
processes accessing and modifying data can also be considered as disturbing for the
programmer as different interleaving between the threads can lead to different re-
sults (Multilisp is not deterministic). Another drawback of CSP is that it leads to

6.2. Concurrent Calculi and Languages 41

nonuniform access to data. Indeed local accesses can be performed classically, whereas
accesses to data belonging to another process needs a communication through chan-
nels. In ASP no memory is shared but the copying of shared data is implicit.

Katz and Weise [KW90] studied the interactions between futures and continuations
and problems arising when those two functionalities are mixed.

6.2.2 PictT

Pict [PTO0] is a language based on m-calculus. It is based on an asynchronous 7-
calculus without choice and name matching. Typing (sub-typing and type inference)
of P1cT and higher level features (than m-calculus) are also presented in [PT00].

A core language of PICT is presented in [PT95] and is used to create more complex
objects able to encode classical features. For example, synchronization, locks, choice
and, a lot of other primitives can be derived from the core calculus.

From a general point of view, PICT is designed to be used to experiment new
designs of concurrent object structures (like for example, the one of [PT95]). Only a
few primitives provide the possibility of writing simple objects and their typing. No
specific concurrency mechanism for objects has been implemented inside PICT.

6.2.3 Ambient Calculus

Ambient calculus [CGO00] is a calculus describing the movement of processes through
the explicit notion of location. Ambients are convenient for modeling movements
through administrative domains (e.g. through firewalls).

An ambient is defined by the following characteristics.

e An ambient is a bounded place.

e Ambients can be nested and can be moved as a whole.

e Computation appears inside ambients, and can control the ambient itself (e.g.
make it move).

The actions of ambients are also called capabilities. The capability in m allows
entry into the ambient m, the capability out m allows exit out of m, and the capability
open m allows the opening of m.

Syntax of ambient calculus is the following (n are names, P, @ are processes and
M are capacities):

P,Q::=(vn)P restriction

0 inactivity
P|Q composition
P replication
n[P] ambient
M.P action
M:=inn can enter n

out n can exit n
open n can open n

42 Chapter 6. Formalisms and Distributed Calculi

Some communication primitives can be added to ambients in a somewhat orthogo-
nal way (in a m-calculus style): (x).P performs an input action that can interact with
an asynchronous output action (M). Such interactions are only local to an ambient.
Indeed, long range communications may need to cross firewalls and should not happen
automatically. According to Cardelli and Gordon, long range communications should
be performed by the movement of a “messenger” ambient. With such communication
primitives, ambients can encode the asynchronous m-calculus.

Operational semantics is based on the three following rules:

nlin m.P|Q]|m[R] — m[n[P|Q]|r]

m[n[out m.P|Q]|r] — n[P|Q]|m[R]
open n.P|n[Q] — P|Q

and a local communication rule:
(z).P(M) — P{z — M}

Note that mobility in 7-calculus is a mobility of names: names can be communi-
cated over channels whereas mobility in ambients consists in moving ambients them-
selves. Thus the notion of mobility in these two calculi are not incompatible and in
fact inside each ambient a mobility of names is possible because of the encoding of
the asynchronous 7-calculus.

The main contribution of [CGO00] concerns expressiveness of Ambients. This paper
also contains a lot of examples of ambients.

Figure 6.6 shows an example of encoding of locks in ambients [CGO0].

acquire n.P £ open n.P
release n.P £ nJ]|P

Figure 6.6: Locks in ambients - [CGO00]

Note that a meaningless term of the form n.P can arise during reduction, and a
type system like the one described in [CG99] is necessary to avoid such anomaly.

6.2.4 Obliq and Qjeblik

Obliq [Car95] is a language based on the ¢-calculus that expresses both parallelism
and mobility. Obliq is an object language based on threads communicating with a
shared memory. @jeblik [NHKMO02, BN02, MKN02], is a sufficiently expressive subset
of Obliq which has a formal semantics. The main results on @jeblik concern migration.

6.2. Concurrent Calculi and Languages 43

let sieve =
{m=
meth(s, n)
print(n);

let sO = clone(s);
s.m := meth(s1,n1)
if (n1 % n) is 0 then ok
else s0.m(n1)
end
end;
end};

print the primes <100
for i=2 to 100 do sieve.m(i) end;

Figure 6.7: Prime number sieve in Obliq

(Djeblik and Obliq semantics is based on threads (fork and join operators) and
all references are global (when necessary)®. As a consequence these languages are
based on a shared memory mechanism. Calling a method on a remote object leads
to a remote execution of the method but this execution is performed by the original
thread (or more precisely the original thread is blocked). Thus the parallelism is
only based on threads, and is independent of the location of the objects performing
operations.

In Obliq, the interferences between threads can be limited by serialized objects:
if an object is serialized, then, at any time, only one thread is inside this object.
In other words, a second thread entering an object is blocked until the first one
has finished. Serialization may be guaranteed with a mutex. An operation is self-
inflicted if it addresses the current self. Authorizing reentrant mutexes allows self
inflicted operations to be performed for serialized objects. This allows recursion but
not mutual recursion (no call back).

In Obliq and @jeblik migration is the composition of cloning and aliasing:

surrogate = ¢(s)s.alias(s.clone).

This composition is deeply studied in @jeblik, see for example [NHKM99.

An Obliq object can be protected, for example, in [NHKM99] : “based on self
infliction, objects are protected against external modification”. That means that for
the protected objects, only self-inflicted updates cloning and aliasing are allowed. In
Djeblik every object is protected and serialized .

In [NHKMO02], Nestmann and al. present different semantics for forwarding and
updating. The effect of authorizing or not some operations to pass or not through the
forwarders is studied.

5Indeed, when an object reference is passed through the network, a local reference becomes a
global reference.

44 Chapter 6. Formalisms and Distributed Calculi

6.2.5 The nmoB)\ Language

Inspired from POOL [Ame89, Ame92| Jones designed a concurrent object-oriented
calculus named moBA [Jon92, JHI6].
mofBA can be considered as a rather synchronous language. Indeed:

e Only one method of a given object can be active at any time. Using the Obliq
vocabulary, one could say that every object is serialized.

e Like in Obliq, the calling method is blocked until a result is returned by the
called object.

There is no direct notion of thread in moBA. Instead, parallelism comes from two
facts:

e A function can return a value before the end of its execution. In that case,
the calling method obtains the result and can continue its execution while the
called function terminates its computation (which will have no consequence on
the returned value).

e A function can delegate the task of returning a value to another object by using
the yield primitive. In that case, this object is not blocked any more and the
result is directly returned from the last object to the first caller.

These features will have to be compared with automatic and transparent updates of
futures in ASP.
Figure 6.8 shows an example of a w08\ binary tree.

class TO
var K:NAT, V:ref(A), L:ref(T), R:ref(T)

method Insert(X:NAT, W:ref(A))
if K=nil then (K:=X ; V:=W ; L:=new(T) ; R:=new(T))
else if X=K then V:=W
else if X<K then L!'Insert(X,W)
else R!Insert(X,W);
return

method Search(X:NAT) :ref (A)
if K=nil then return nil
else if X=K then return V
else if X<K then return L!Search(X)
else return R!Search(X)

Figure 6.8: Binary tree in (a language inspired by) mofA - [LW95]

A sufficient condition is given for increasing the concurrency of woBA programs
without losing confluence, it is based on a program transformation. The principle
is that an operation can be safely exchanged with a return statement, provided the

6.2. Concurrent Calculi and Languages 45

operation does not interfere with the result to be returned. The interference can
concern both data flow aspects: the operation should not affect the result; and control
flow ones: the operation should terminate and can not invoke methods on public
objects (because such calls could interfere with calls performed by the caller object
which should occur later).

Under this condition, one can return a result from a method before the end of
its execution; then the execution of the method continues in parallel with the caller
thread. This sufficient condition is expressed by an equivalence between original and
transformed program. wof\ can be translated to (dialects of) m-calculus (e.g. [Jon93]).
From such a translation, Sangiorgi [San99], and Liu and Walker [LW95, LW98] proved
the correctness of transformations on mof\ described in [JH96].

Figure 6.9 shows an example with the result of such a transformation applied to
the program of Figure 6.8. Consequently, these two programs behave identically.

class TO
var K:NAT, V:ref(A), L:ref(T), R:ref(T)

method Insert(X:NAT, W:ref(A))
return ;
if K=nil then (K:=X ; V:=W ; L:=new(T) ; R:=new(T))
else if X=K then V:=W
else if X<K then L!Insert(X,W)
else R!Insert(X,W)

method Search(X:NAT) :ref(A)
if K=nil then return nil
else if X=K then return V
else if X<K then commit L!Search(X)
else commit R!Search(X)

Figure 6.9: Binary tree, an equivalent program (mofBA)- [LW95]

There is an equivalent version of the calculus (defining, for example, a Sieve of
Eratosthenes), with a very different syntax in [Jon92].

6.2.6 Gordon and Hankin Concurrent Calculus

Gordon and Hankin [GH98| proposed a concurrent object calculus: a parallel com-
position || is added to the ¢-calculus. Moreover, every object has a name: there is a
denomination operator. In such a calculus, a method is executed by the thread that
has invoked it. Moreover, objects need to be declared as separate processes that do
not perform computation. As a consequence, the notion of object and of executing
threads are clearly separate (one could define objects and threads in different spaces).
Moreover a type system is necessary to distinguish terms from expressions as a de-
nominated object can only be a process, but an expression can either be a top level
process (thread) or be included inside another expression.

46 Chapter 6. Formalisms and Distributed Calculi

Note that an additional synchronization mechanism has to be added to the calculus
(via mutexes).

Jeffrey [Jef00] introduced a modified version of Gordon and Hankin’s concurrent
object calculus, and added the notion of location in order to make this calculus dis-
tributed.

6.2.7 Join-Calculus

The join-calculus [FGL196, FG96, FBL9S8] is an asynchronous calculus with mobility
and distribution. Synchronization in join-calculus is based on filtering patterns over
channels. From the communication point of view, join-calculus can be seen as an
asynchronous 7-calculus with powerful message receivers (called triggers): a process
can be triggered by the presence of several messages simultaneously.

The Join-Calculus syntax is composed of processes:

P:=|z(g) message emission
|def D in P definition of ports
| P|P parallel composition
|0 null process,

definitions:

D:=Jr> P rule matching join pattern J (trigger)
| DA D connection of rules
| T empty definition,

and join patterns:

Ju=xz(y) message pattern
| J|J joined patterns

The Join calculus semantics is based on a reflexive chemical abstract machine
(RCHAM) and can be summarized by the following rules:

+ P|P'—<kF P, P’
F 0=k
T Fet
Fdef D in P~ Do+ Po o creates fresh channels

J>PtFJo— J> Pt Po

6.2.8 CML

In [Rep91], Reppy presents an extension of SML (Standard ML) called CML (Con-
current ML) for concurrent programming in SML. CML is a threaded language. The
synchronization is performed by a sync operator. In the base language, the commu-
nications are synchronous but a mailbox (request queue) mechanism can be easily
implemented with a buffered channel.

6.3. Other Expressions of Concurrency 47

6.2.9 Kell-calculus

Stefani [Ste03] has introduced a calculus that is able to model hierarchical components
— especially sub-components control. The kell-calculus is based directly on the 7-
calculus with the possibility to have joins inside triggers (like in distributed join-
calculus - DJoin [FG96]). Kell-calculus is also intended to overcome the limitations
of the M-calculus [SS03] which are also presented in [Ste03].

6.3 Other Expressions of Concurrency

Steele [Ste90] expressed a programming model ensuring the confluence of programs
by analyzing (mainly dynamically) the shared memory accesses in order to ensure
non-interference. But, it is based on a shared memory mechanism with asynchronous
threads and not on possibly distributed programs.

Montanari and al. introduced tile-based semantics [BMMO02, FM00] which is based
on rewrite rules in side effects. This theoretical framework (based on double cate-
gories) has been applied to give a semantics to located CCS in [FM00]. We think
such a framework could be used to provide a less heavy (or at least more modu-
lar) semantics for ASP calculus but this would require the semantics to be entirely
rewritten.

6.4 Short Synthesis

In this chapter, we reviewed some classical concurrent calculi and languages. In the
following, a new calculus (ASP) will be presented. This new calculus was necessary
for us to have a structured model of an imperative object calculus with asynchronous
communications and futures. Indeed none of the calculi presented here has all these
characteristics. Furthermore, ASP is a calculus with a more structured syntax than
other calculi, and even if ASP programs could be rewritten into another calculus or
language, ASP structuring would be lost and the proof of the ASP properties would
probably be more difficult or impossible. Chapter 15 will further compare most of the
languages and calculi presented here with ASP.

48

Chapter 6. Formalisms and Distributed Calculi

Part 111

ASP Calculus

49

This part presents a calculus named ASP: Asynchronous Sequential Processes.
ASP models an object-oriented language with asynchronous communications and fu-
tures, and sequential execution within each parallel process. We start from a purely
sequential and classical object calculus (impg-calculus) [AC96] and extend it with
two parallel constructors: Active and Serve. Active turns a standard object into an
active one, executing in parallel and serving requests in the order specified by the
Serve operator. Method calls on active objects are asynchronous: the results of asyn-
chronous calls are represented by futures until the corresponding response is returned.
Automatic synchronization of processes comes from wait-by-necessity [Car93]: a wait
automatically occurs upon a strict operation (e.g. a method call) on a future.

The passing of futures (results of asynchronous calls) between processes, both as
method parameters and as method results is an important feature of ASP.

Chapter 7

An Imperative Sequential Calculus

7.1 Syntax

ASP calculus starts from an imperative sequential object calculus & la Abadi-Cardelli.
Note that a few characteristics have been changed between impg-calculus and ASP
sequential calculus.

e Because arguments passed to an active objects methods will play a particular
role, a parameter is added to every method like in [NHKMO02]: in addition to the
self argument of the methods (noted x; and representing the object on which
the method is invoked - self), an argument representing a parameter object can
be sent to the method (y; in syntax below). In practice, we will use methods
with several arguments in our examples, but, for simple, we will not add them
in the semantics.

e Method update is not included in ASP calculus because we do not find it nec-
essary and it is possible to express updatable methods in ASP calculus anyway
(e.g. updatable fields containing lambda expressions). Moreover, adding updat-
able methods would not arise any theoretical problem.”

e Asin [GHLI7b], during the reduction, locations (reference to objects in a store)
can be part of terms in order to simplify the semantics. The locations should
not appear in source terms.

The abstract syntax of the ASP calculus is the following (I; are field names, m;
are method names, ¢ is a binder for method parameters and a location ¢ is an entry
in the store defined below). In the folowing of this study, ;, i € 1..n® range over fields
names and m;j, j € 1..m over method names. In practice, there is one integer n and
one integer m for each object, but we will simply denote all these numbers by n and
m.

"But, in the parallel case, updating methods would unnaturally modify the meaning of requests
that have already been sent but are not executed yet.
84 € 1..n classically abbreviates i € NN [1,n]

o1

52 Chapter 7. An Imperative Sequential Calculus

a,be L=z variable,
| [li = bism; = ¢(x, yj)aj];’-%'ﬁn object definition,
| a.l; field access,
|a.l; =10 field update,
| a.m;(b) method call,
| clone(a) superficial copy,
| ¢ location (not in source terms)

As an example, a point object could be defined in the following way:

Point 2 [=0,y =0, color=[R=0,G=0,B=0;print =...);
getX =¢(s,p)s.x, setX = ¢(s,p)s.x := p, getColor = ¢(s,p)s.color, . .]

Note that let x = a in b and sequence a; b can be easily expressed in this sequential
calculus and will be used in the following:

let x =ain b= [m = ¢(z,2)bl.m(a)

a;b = [m = ¢(z,2")bl.m(a)

Lambda expressions, and methods with zero and more than one argument are also
easy to encode in the sequential calculus and will also be used in this study.

7.2 Semantic Structures

Let locs(a) be the set of locations occurring in a and fv(a) the set of variables oc-
curring free in a. The source terms (initial expressions) are closed terms (fv(a) = 0)
without any location (locs(a) = 0), such terms are also called static terms. Locations
appear when objects are put in the store.

7.2.1 Substitution

The substitution of b by ¢ in a is written: a{b < c}. Substitutions are denoted by
6 ::= {b — c}. Multiple substitutions are applied from left to right: a86’ = (a)6’

In method calls (INVOKE), substitution is applied in a classical way on bounded
variables: formal parameter x is replaced by the location of the argument without
replacing inside binders ¢(x, z) or ¢(z,x).

An injective substitution of a location by another location will also be called a
renaming. A renaming is in fact an alpha-conversion of locations.

7.2.2 Store
Reduced objects are objects with all fields reduced (to a location):

ou=[l; =u;m; = §(~’Uj,yj)aj];'€elllf.%

7.3. Reduction 53

A store o is a finite map from locations to reduced objects:
ou= {1~ o0}

The domain of o, dom(o), is the set of locations defined by o.

Let o :: o/ append two stores with disjoint locations (store append). When the
domains are not disjoint, o + ¢’/ updates the values defined in ¢’ by those defined in
o(store update). It is defined on dom(o) U dom(c') by

(c+d)1)= o(1) ifiedom(o)
o'(¢) otherwise

0.

Note that o :: ¢ is equal to o + ¢’ but specifies that dom (o) N dom(a")

7.2.3 Configuration

Let a configuration (a,0) be a pair (expression, store). (a,0)OK denotes a well
formed configuration (no free variable and o defines every useful location):

Definition 7.1 (Well formed sequential configuration)

locs(a) C dom(c) A fu(a) =0
F{a,0) Ok & {VL € dom(o), locs(o(v)) C dom(a) N fo(o(r)) =0

Let = be the equality between configurations modulo renaming of locations:

Definition 7.2 (Equivalence on Sequential Configurations)

(a,0) = (a',0") & 30, (ab,d8) = (a’,0")

7.3 Reduction

Table 7.1 defines a small step substitution-based operational semantics for the se-
quential calculus. It gives reduction rules for object creation (sToreaLLoC), field
access (FIELD), method invocation (INVOKE), field update (UPDATE) and shallow clone
(cLonE). This semantics is very close to the one defined in [GHL97a]. Table 7.1 ap-
plies one rule on the point of reduction represented by the unique occurrence of e in
the following reduction contexts:

R:=e | [lz = U3, lk = R, lk/ = bk’; my; = C(l‘j, yj)aj]";ee[ll...;'ic—1},k’€[k+1...n]
| R.my; | Romj(b) | e.mj(R) | R.l; := bl :=R|clone(R)

R]a] denotes the substitution inside a reduction context:

Rlo] = Rfe — a}

54 Chapter 7. An Imperative Sequential Calculus

v & dom(o)
(STOREALLOC)
(Rlo], o) —s (R[i],{t — o} : o)
o(v) = [l = ui;mj = s(zj,y5)a;)ie 1, k€l
(FIELD)
(Rle-le], 0) =5 (Rw], o)
o(v) = [li = tiymj = <(zj,y5)a)i57 0, k€lom
(INVOKE)

(Rlemp()], 0) —s (Rlarfzr — v, yp — '}, 0)

o(t) = [li = ymy = s(zj,y5)a5)51 7, k€l
i€l k—1,k €k+1...
o' = [li = ujlk = sl = wpymy = g(xjayj)a’j];eel..m errhen (UPDATE)

(Relg := 1], 0) —s (R[], {t = o'} + 0)
' ¢ dom(o)
(Rlclone(1)],0) —s (R[], {t' — (1)} :: 0)

(CLONE)

Table 7.1: Sequential Reduction

7.4 Properties

Initial Configuration To evaluate a source term a, we create an initial configura-
tion (a,?) containing this term and an empty store. Then, this configuration can be
evaluated.

Well-formedness As a first correctness property, it is easy to show that reduction
preserves well-formedness.

Property 7.1 (Well-formed sequential reduction)

F (a,0) OK A (a,0) =g (b,o) = F (b,0)OK

sequential determinism Moreover, a first result towards determinism is to ensure
that a sequential reduction is deterministic. Indeed, the reduction contexts specify
the order of reduction. Consequently, a sequential reduction is deterministic up to the
choice of freshly allocated locations:

Property 7.2 (Determinism)
c—gd A C—>5dI=> d=d

In fact, at most one reduction can be made on each configuration. The only choice
is the name of locations created by STOREALLOC and CLONE.

Chapter 8

Asynchronous Sequential Processes

We introduce here a parallel calculus which is based on activities. Each ASP object
is either active or passive. There is one active object at the root of each activity.
Activities execute instructions concurrently, and interact only through method calls.
Method calls toward active objects are always asynchronous. Synchronization is due
to wait-by-necessity on the result of an asynchronous method call (data-driven syn-
chronization).

8.1 Principles

Passive
object

Figure 8.1: Objects and activities topology

An activity is a single process (execution thread) associated with a set of objects
put in a store. Among them one is active and every request (method call) sent to the
activity is actually sent to this object. An activity also contains the pending requests
(requests that have been received and should be served later) and the responses to
the finished requests (values of the results). Passive (non active) objects are only
referenced by objects belonging to the same activity but any object can reference

95

56 Chapter 8. Asynchronous Sequential Processes

active objects. ASP activities do not share memory. Figure 8.1 shows an example of
objects topology in a configuration containing four activities.

The principles of asynchronous method calls is the following, when an object sends
a request to an activity, it is stored in a request queue and a future is associated to
this request. A future represents the result of a method call to an active object that
has not yet been returned. Such a request is called pending. Later on this request
will be served (i.e. taken in the request queue in order to be evaluated), it becomes
a current request. When the service is finished, a value is associated to the result
of this request and the association between the future corresponding to this request
and the calculated value is stored in a future values list. Such requests are called
served requests. Afterwards, the distant reference to the future may be updated by
the calculated value.

The activation of an object (Active(a,m)) creates a new activity whose active
object is a copy of a. Serve(M) performs a blocking service of requests received by
the current active object.

For example, with the point object defined in Section 7.1, Point.getColor() will
perform a classical method call with synchronous semantics. In the term
let p = Active(Point, D) in let col = p.getColor() in p.setX (2); col.print()
every method call to object p will be asynchronous. p.setX(2) executes the method
in the activity of p and continues the local evaluation in parallel. Execution will be
blocked when one tries to perform a strict operation on the result of an asynchronous
method before the end of its execution. Such blocking states are called wait-by-
necessity.

Unlike many other concurrent calculus based on ¢-calculus, in ASP, the requests
are not executed by the process that performs the method call but by the processed
associated to the destination of the request.

8.2 New Syntax

We extend the sequential calculus by adding the possibility of creating an active object
and of serving a request:
a,be Lu=...
|Active(a,m;) activates object: deep copy + activity creation
m; is the activity method or @ for FIFO service
|Serve(M) Serves a request among a set of method labels,
la f,b a with continuation b (not in source terms)

Where M is a set of method labels used to specify which request has to be served.
M =my,...,myg

A parallel configuration is a set of activities, each activity contains several fields
that will be introduced informally in the following and formally defined in Chapter 10:

P,Q == alta; 0aj tas Fas Ras fol || BL- Il

8.3. Informal Semantics 57

To summarize, the whole syntax of the ASP source terms is the following.
mj, j € K range over method names:

a,be L=z variable,

| [li = bi;my = <(xy, yj)aj]zeell?n object definition,
| a.l; field access,

|a.l; :=10 field update,

| a.m;(b) method call,

| clone(a) superficial copy,

|Active(a, m;) activity creation,
|Serve(m;)I<t-* service primitive.

Legend
.. Future values
D Activity (G Current term (Jé:j — |
<O Active object ——> Active object reference T — ;
Current Pending
(D Passive object “a TLocal reference reques requests
Request parameter
<>\ —w Future reference & foo | Request on method foo
The store
7/ \ B)

_—

Reference to an
active object

/
//"Request
/(parameter
!

|
\ Future to a
\ U—Q‘Eﬁ@\—‘—l pending request -
\

~ -

N Future corresponding
Future~ _ to the current term

-~ - - _ —_ -

Figure 8.2: Example of a parallel configuration

8.3 Informal Semantics

In every activity «, a current term a, represents the current computation. Every
activity has its own store o, which contains one active and many passive objects. It
also contains pending requests which store the pending method calls and a future list
which stores the result of finished requests.

58 Chapter 8. Asynchronous Sequential Processes

Figure 8.2 gives a representation of a configuration consisting of two activities. It
contains three references to futures (one calculated, one current and one pending).
The active objects are bold ellipses; the futures references are diamonds; the futures
values, the current future and the pending requests are merged in the bottom rectan-
gles: calculated futures values are on the left, current future is represented by a bold
rectangle and pending requests are on the right. The continuation will not appear in
the figures.

8.3.1 Activities

The Active operator (Active(a,m;)) creates a new activity a with the object a at
its root. The object a is copied as well as all its dependencies® (deep copy) in a new
activity. The second argument to the Active operator is the name of a method which
will be called as soon as the object is activated. This method is called the service
method as it should specify the order of requests that the activity should serve. If
no service method is specified, a FIFO service will be performed. That is to say
the requests will be served in the order they arrived in the activity. Note that in
Figure 8.2, in case of a FIFO service, the current request (bold square) progresses
from left to right in the queue. When the service method terminates, no more request
is treated (activity ends). The remote references to the active object of activity a will
be denoted by AO(a). AO(«) acts as a proxy for the active object of activity .

8.3.2 Requests

The communications between activities are due to method calls on active ob-
jects and returns of corresponding results. A method call on an active object
(Active(o,0).foo()) consists in atomically adding an entry to the pending requests
of callee, and associating a future to the response. From a practical point of view,
this atomicity is guaranteed by a rendez-vous mechanism (the request sender waits for
an acknowledgment before continuing its execution). The arguments of requests and
the values of futures are deeply copied when they are transmitted between activities®.
Active objects are transmitted with a reference semantics.

8.3.3 Futures

An operation on an object is strict if it needs to access to the content of the object:
the only strict operations are field and method access, update, clone. For example,
transmitting an object as a method parameter is not a strict operation.

Futures are generalized references that can be manipulated classically while no
strict operation is performed on the object they represent. In Figure 8.2, the futures
fo and f3 denote pointers to not yet computed requests while f is a future pointing
to a value computed by a request sent to the activity S.

9o prevent distant references to passive objects.

8.3. Informal Semantics 59

A wait-by-necessity occurs when we try to perform a strict operation on a future.
This wait-by-necessity can only be released by updating the future i.e. replacing the
reference to the future by a copy? of the future value.

8.3.4 Serving Requests

The primitive Serve can appear at any point in source code. Its execution stops the
activity until a request matching its arguments is found in the pending requests (a
request on one of the method labels specified as parameter of the Serve primitive).
For semantics specification reasons, we introduced the operator f} which allows us to
save the continuation of the request we are currently serving while we serve another
one. Note that with such a mechanism there are several requests being served at the
same time except if Serve operations are only performed by top level activity (no
Serve while a request is being served).

When the execution of a request is finished, the corresponding future is associated
with the calculated value (future value). Then, the execution continues by restoring
the stored continuation. The term that had served the finished request continues
its execution (it becomes the current term). The future list maps futures to their
values within the activities that computed them. A future value is called partial if
its dependencies contain futures references.

Note that a field access on an active object is forbidden (it would nearly always
be non deterministic) and an activity trying to access a field of an active object is
irreversibly stuck (like an access to a non-existing field).

60

Chapter 8. Asynchronous Sequential Processes

Chapter 9

A few Examples

This chapter presents four examples illustrating the ASP calculus. First, Section 9.1
presents a simple binary tree. Then, sections 9.2 and 9.4 presents two examples: a
Sieve of Eratosthenes and a Fibonacci numbers computation, inspired from process
networks. Thus, Section 9.3 gives a brief idea of the possible translations from process
networks to ASP. Finally, Section 9.5 outlines how a more complex program (a bank
account server) could be implemented in ASP.

9.1 Binary Tree

Figure 9.1 shows an example of a simple parallel binary tree with two methods: add
and search. Fach node can be turned into an active object. Lambda expressions,
integers and comparisons (Church integers for example), booleans and conditional
expressions and methods with many parameters can be easily expressed in ASP. The
definition of classes (new method ...) has already been proposed by Abadi and
Cardelli in the impg-calculus [AC96].

add stores a new key at the right place and creates two empty nodes. Note that
in the concurrent case, nodes are activated as soon as they are created.

search searches a key in the tree and returns the value associated with it or an
empty object if the key is not found.

new is the method invoked to create a new node.

This example is parameterized by a factory able to create a sequential (sequential
binary tree) or an active (parallel binary tree) node.

In the case of the parallel factory, the following term creates a binary tree, puts in
parallel four values in it and searches two in parallel. Then it searches another value
and modifies the field b. It always reduces to: [a = 6,b = 8|.

let tree = (BT.new).add(3,4).add(2,3).add(5, 6).add(7,8)in
[a = tree.search(5),b = tree.search(3)].b := tree.search(7)

Note that as soon as a request is delegated to another node, a new one can be
handled. Moreover, when the root of the tree is the only node reachable by only one

61

62 Chapter 9. A few Examples

BT £ [new = ¢(c)[empty = true,left = [|,right = [|, key = [}, value = [],
search = ¢(s, k)(c.search sk),add = ¢(s, k,v)(c.add skv)],
search = ¢(c)As k.if (s.empty) then ||
else if (s.key == k) then s.walue
else if (s.key > k) then s.left.search(k)
else s.right.search(k),
add = ¢(c) s kv.if (s.empty) then(s.right := Factory(s);
s.left := Factory(s); s.value := v;
s.key :== k; s.empty := false; s)
else if (s.key > k) then s.left.add(k,v)
else if (s.key < k) then s.right.add(k,v)
else s.walue :=v; s]

where: Factory(s) £ s.new in the sequential case and
Factory(s) £ Active(s.new) for the concurrent binary tree.

Figure 9.1: Example: a binary tree

let Integer = Active([n = 1;get = ¢(s, _)(s.n:= s.n+ 1;5.n)],0) in
let Sieve = [parent = [], prime = 0; init = ¢(s, par)s.parent := par,
get = ¢(s, _)let n = parent.get() in
if(n mop s.prime # 0) n else s.get()] in
let Sift = [source = Integer;
act=¢(s,)Repeat(let n = source.get() in
print(n); Sieve.prime := n;
s.source :=Active(clone(Sieve.init(s.source))))] in
Active(Sift,act)

Figure 9.2: Example: Sieve of Eratosthenes (pull)

activity, the result of concurrent calls is deterministic. Determinism properties will
be detailed in Section 11.

9.2 Distributed Sieve of Eratosthenes

Let us translate the distributed sieve of Eratosthenes described in [KM77] in ASP. In
[KM77|, the sieve was performed by several processes linked by channels, a process
for each prime number. We tried to apply the same methodology and create one
activity by prime number. We first considered that the communications comes from
the process that performs a get on a channel to the one that performs a put on
the same channel and replace such communication by a call to a request get (see
Figure 9.3). Repeat performs an infinite loop and will be defined later on. Figure 9.2
defines a “pull” sieve of Eratosthenes in ASP.

The Integer object generates all integers. There is one Sieve object for each prime

9.2. Distributed Sieve of Eratosthenes 63

number. It returns the next integer given by its parent that is not divisible by the
prime number n. The Sift object represents the main object (print(n) denotes the
output of integer n). When a new prime is found, a new Sieve in inserted between
the Sift and the former last Sieve.

parent

Figure 9.3: Sieve of Eratosthenes (pull)

let Sieve = [N = 0, prime = 0; next = [|; put = ¢(s,n)s.N :=n,
act = ¢(s,)Serve(put); Display.put(s.N);

s.prime := s.N; s.next := Active(s, act);

Repeat(Serve(put);

if (s.N wmop s.prime # 0) s.next.put(s.N))] in
let Integer = [n = 1; first = Active(Sieve, act);

act = ¢(s, _)Repeat(s.n := s.n + 1;s.first.put(s.n))] in
Active(Integer, act)

where Display is an object collecting and printing the prime numbers.

Figure 9.4: Example: Sieve of Eratosthenes (push)

Another Formulation In the preceding example, every object always replies to
a get request. Thus, the program will be evaluated sequentially and the pipelining
that could be performed on the example of Kahn and MacQueen can not occur here.
The following implementation of the sieve allows such pipelining (see Figure 9.5).
Figure 9.4 defines a “push” sieve of Eratosthenes in ASP.

The problem with this example is that every Sieve object keeps a reference on the
Display object. Some conflicts could occur between sending of results to the display.
Here, we can consider that determinism is ensured by the fact that as soon as a new
Sieve is created, the preceding one “promise” not to use its reference to Display any
more. But the fact that this reference will not be used any more could only be verified
by a (complex) control flow analysis.

64 Chapter 9. A few Examples

puty __
{ Sieve_

Figure 9.5: Sieve of Eratosthenes (push)

9.3 From Process Network to ASP

These two examples suggest the translation sketched by Figure 9.6.

The translation from a process network to an ASP term is performed either by
a push strategy allowing pipelining: we call a method put on the destination of the
channel or by a pull strategy: the destination calls a method get on the source of
the channel. Section 15.6 details the translation and comparisons between ASP and
process Networks.

Object Network

Producer P Consumer C

Process Network

channel Q push
CputQ(v) Serve(putQ)
Put(v, Q) get(Q) — « putQ = ¢(s,z).5.0 =z
pull
Serve(getQ) v = P.getQ()
getQ = ¢(s,z).v

Figure 9.6: Process Network vs. Object Network

9.4 Example: Fibonacci Numbers

Consider the process network that computes the Fibonacci numbers in [PR03|. Let us
write an equivalent program in ASP. Figure 9.7 describes the set up of processes that
computes the Fibonacci numbers and Figure 9.8 gives the corresponding program.

Display receives the list of Fibonacci numbers. Initialization consists in sending
0 (fib(0)) and 1 (fib(1)) from Cons2 and Consl respectively. At the opposite from
the other examples, this program is rather synchronous because there is at most one
pending request in each activity (except the Display).

9.5. A bank Account Server 65

fib(n)

ﬁbn+1)
CaTme

Figure 9.7: Fibonacci Numbers Processes

let Add = Active([nl = 0,n2 = 0;
service = <(s, _)
Repeat(Serve(setl); Serve(set2); Consl.send(s.nl + s.n2)),
setl = ¢(s,n)s.nl :=n, set2 = ¢(s,n)s.n2 := n|, service)
and Consl = Active([0;
service = ¢(s,) (Add.setl(1); Cons2.send(1); Repeat(Serve(send)))
send = ¢(s,n)(Add.setl(n); Cons2.send(n))], service)
and Cons2 = Active([0;
service = ¢(s,) (Add.set2(0); Display.send(0); Repeat(Serve(send)))
send = ¢(s,n)(Add.set2(n); Display.send(n))], service)

Figure 9.8: Example: Fibonacci Numbers

9.5 A bank Account Server

Let us imagine a bank application server. Figure 9.9 gives the set up of the different
objects, this application should provide the following characteristics:

e A client activity sends a request to a unique Central Service to get a statement
of his account.

e The Central Service dispatches the request to the appropriate activity corre-
sponding to the regional database of the client.

e Further, based on the client device type (browser, PDA, ...) the Central Service
requests the formatting of the data (the statement) to the appropriate presen-
tation server. Some advertising could be added.

e The final result has to be sent to the client.

The Figure 9.10 defines the Central Service object. The client calls the
getStatement request on the Central Service, which receives the account number and
device type of the client. The Central Service asks for the statement to the appropri-
ate Regional Database and send it to the right Presentation Server before returning
the result to the client as a reply to its initial request.

66 Chapter 9. A few Examples

Regional
Databaseg

Presentation *
Servers _ .-

Figure 9.9: Example: a bank application

let CentralService = |...;
regional Database = ¢(s,ID). ...,
presentationServer = ¢(s, device). ...,
act = ¢(s,).Repeat(Serve(getStatement)),
getStatement = ¢(sel f,ID, device).
let state = (sel f.regional Database(I1D))
.getStatement(ID)
in (self.presentationServer(device))
.getPresentation(state) |

Figure 9.10: Example: Bank account server

The other involved objects are not detailed here. The Regional Databases have
to be able to serve the request getStatement(accountNumber). The Presentation
Servers will serve getPresentation(statement) requests. The client will obtain the
statement of his account by calling CentralServer.get Account(ID, device) where ID
is its account number and device the kind of device it is using.

Note that at the end of the getStatement evaluation, the result sent to the client
might contain several futures coming from Regional Database and Presentation Server.
Thus, by writing a classical object oriented program, one obtains a parallel and some-
what lazy execution.

Part IV

Semantics and Properties

67

This part formally defines the ASP calculus semantics and formalizes determinism
properties on this calculus.

As futures can proliferate (they can be passed between activities), a strategy must
be specified to choose when and how a value should be updated. Therefore, in practice
many strategies can be implemented (e.g. eager, lazy): the ASP calculus captures all
the possible update strategies, and thus the demonstrated properties are valid for all
of them. While communication is asynchronous, a given process is insensitive to the
moment when a result comes back. This is a powerful characteristic of the convergence
property we exhibit.

Chapter 10

Parallel Semantics

10.1 Structure of Parallel Activities

Assume now that there are three distinct name spaces: activities («, 3 € Act), loca-
tions (¢) and futures (f;). Consequently, locations and future identifiers f; are local
to an activity.

A future is characterized by its identifier f;, the source activity « and the desti-
nation activity £ of the corresponding request (the activity that receives and handles
the request): (fl-a_”g). The identifier f; must be chosen in order to ensure that f;* —p
is unique. For example, one can choose to associate the identifier f; to the i*" request
received by f3, or equivalently to the i*! request sent by a.

Each activity afa;o;¢; F'; R; f] is characterized by:

e a current term: a = bt f] 7%,V to be reduced. @ contains the terms corre-
sponding to the different requests being treated separated by {}. The left part b
is the term currently evaluated, the right one f; % ¥ is the continuation: fu-
ture and term corresponding to a request that has been stopped before the end
of its execution (because of a Serve primitive). Of course, b’ can also contain
continuations;

e a store: o contains all the objects of the activity «;

e an active object location: ¢ is the location of the active object of activity «, thus
o(¢) is the active object of «;

o futures walues: a list associating, for each served request, the corresponding
future f;* and the location ¢ where the result of the request (also called
future value) is stored: F' = {f] "% — 1};

e pending requests: R = {[mj;¢; f; %]}, a list of pending requests. A request
can be seen as the “reification” of a method call [Smi84]|. Each request r ==
[mj; ¢ fio‘_)ﬁ] consists of:

— the name of the target method m;,

69

70 Chapter 10. Parallel Semantics

— the location of the argument passed to the request ¢,

— the future identifier which will be associated to the result f;* -,

e a current future: f = f] %, the future associated with the request currently
served. To simplify notations, f will denote any future (f ::= f;).

Empty parts of activities will be denoted by . 0 designates an empty list (futures
values or pending requests) or an empty current future (when no request is currently
treated).

A parallel configuration is a set of activities

P,Q = ofa;o;0 F; R; f] || Bla’so's /s F' R)]

Configurations are identified modulo reordering of activities.

Adding a request 7 at the end of the pending requests (R) will be denoted by R :: r
and taking the first request (r) at the beginning of the pending requests by r :: R .
Similarly, F :: {f; — ¢} adds a new future association to the future values.

In the store, one has either objects or global references:

o= [l; = u;m; = ¢(zj, y])a]]zeellfé reduced object
|AO(«) active object reference
| fut(£07) future reference

fut(f —p) references the future f;" —p corresponding to a request from activity «a to
activity 8. AO(«) references the active object in activity a. AO(«) and fut(fl-a_’ﬁ)
act as “proxy” to a remote activity or to a future object. As they are valid across
activities, references to active objects and futures are called generalized references.
From a more practical point of view, when a reference to a future is encountered in
an activity, the activity that may know the corresponding value can easily be contacted

because it is encoded in the future reference (8 in f2~7).

10.2 Parallel Reduction

The terms below define the infinite loop Repeat and the FIFO service that will be
used when no service method is specified and serves the requests in the order they
arrived:
Repeat(a) = [repeat = ¢(x).a; z.repeat()].repeat()
FifoService = Repeat(Serve(M))

where M is the set of all method labels. Note that M only needs to contain all the
method labels of the concerned (active) object.

Y
Y

Object activation and terms containing a continuation are added to the reduction
contexts as follows:

R :u=...| Active(R)| R 1} f,a

10.2. Parallel Reduction 71

10.2.1 More Operations on Store

Deep Copy The operator copy(t, o) creates a store containing the deep copy of ().
The deep copy is the smallest store satisfying the rules of Table 10.1. The deep copy
stops when a generalized reference is encountered. In that case, the new store contains
the generalized reference. In Table 10.1, the first two rules specify which locations
should be present in the created store, and the last one means that the codomain is
similar in the copied and the original store.

A more operational definition would consist in marking the location ¢ at the root of
the copy and recursively all the locations that are referenced by marked locations (all
locations contained in o(¢') if /' is marked). When a fix-point is reached, copy(t, o) is
the part of store defining marked locations. Note that this part of store is independent:
it references only locations defined in copy(t,0). In other words

F (¢,0) OK =t (¢, copy(t, o)) OK.

v € dom(copy(t,0))
' € dom(copy(r,a)) = locs(a(l')) C dom(copy(t, o))

/€ dom(copy(r,a)) = copy(r,o)(d') = o(i))

Table 10.1: Deep copy

Figure 10.1 shows an activity « and the deep copy of a location ¢. The deep copy
is inside the dotted circle.

Figure 10.1: Example of a Deep copy: copy(t,0q)

Merge Let us define a function Merge which merges two stores. It creates a new
store, merging independently ¢ and ¢’ except for « which is taken from o”:

Merge(i,0, 0') =d'0+ 0o
where 0 = {/ — " | ' € dom(c") N dom(o)\{¢}," fresh}

72 Chapter 10. Parallel Semantics

Copy and Merge The following operator adds the part of o starting at location ¢
at the location ¢/ of ¢’ avoiding collision of locations (only ¢’ can be updated):

Definition 10.1 (Copy and Merge)
Copy&Merge(a,i ; o', 1') & Merge(d, o', copy(t,)i« ¢'})
The following property is a consequence of the preceding definitions:
Property 10.1 (Copy and Merge)

v € dom(o’Y A # V= o' (1) = Copy&eMerge(o,i ; o,)(1)

10.2.2 Reduction Rules

(a,0) —g (a',0) —g does not clone a future
(LocAL)

ala; o565 F5 15] || P— ald'so's 15 R f] | P

7 fresh activity ¢/ & dom(o) o ={/+— AO(y)} =0
oy = copy(’, o) Service = (if mj = 0 then FifoService else ".m;())

(NEWACT
a[R[Active(s" ,m;)]; 050 F 125 f] || P

— a[R[/];0'5 0 F Ry f Service;o,;1";0;0;0] || P
[[) " b b ,y) ’y’ b) b

oa(t) = AO(B) V' & dom(op) F27F new future v & dom(oq)
a'ﬁ = Copy&Merge(oa,t ; og,t") on,={tf— fut(f-a_’ﬁ)} SN

1

a[Rle.mj ()00 tas Fos Ras fo] || Blagsasis; Fas Res [5] || P —
A[Rf]; 0hi tas Fos Ras fol || Blags olgs o3 Fos Rg = [mys o5 £777): fa] || P

(REQUEST)

R=R:[mj;u;f]:R" mj € M Vm e M, m ¢ R

a[R[Serve(M)]; o F'y R; f] || P— (SERVE)
ol () £, RIl o303 75 R = R]| P
V' ¢ dom(o) F'=F:{f—/} o' = Copy&Merge(o,i ; o,1)

(ENDSERVICE)
al (f'sa);050 F; By f] || P — ala; 0’5 F' B f'] || P

oa(t) = fut(f?qﬁ) Fg(fg_ﬁ) =15 o, = Copy&Merge(og,if ; Oa,t)

0003003 to; Foi Ros fol |l Blos; o3 15 Fas R f] | P — (rEPLY)
a[au;o';;[(\;E\;R(\;fu] || /8[(1.};Uﬂ;[/;'};F[?;R;i;f,}] || P

Table 10.2: Parallel reduction (used or modified values are non-gray)

10.2. Parallel Reduction 73

Table 10.2 describes the reduction rules corresponding to the small step semantics
of the parallel calculus. The grayed values are unchanged and unused by reduction
rules. A description of these rules is given in the following:

LocAaL Inside each activity, a local reduction can occur following the rules of Ta-
ble 7.1. Note that sequential rules concerning strict operations: FIELD, INVOKE, UP-
DATE, cLONE! are stuck (wait-by-necessity) when the target location is a generalized
reference. Only REQUEST allows to invoke an active object method, and REPLY may
transform a future reference into a real object (ending a wait-by-necessity)!®.

NEwACT This rule activates an object. A new activity v is created containing the

Figure 10.2: NEWACT rule

deep copy of the object o(¢), an empty pending requests and no futures values. A
generalized reference to the created activity AO(vy) is stored in the source activity
a. The other references to ¢ in « are unchanged (still pointing to a passive object)
because it seems more intuitive to us and it follows the ProActive behavior.

m; specifies the service method (the first method executed). The service method
has no argument and should perform Serve instructions. If no method m; is specified,
a FIFO service is performed by default. When the execution of the service method
is finished, the activity do not execute any more operation. Afterwards, it is only
useful for updating the values of futures which have already been calculated. Such an
activity only performs REPLY operations.

Remark that in Active(Active(r,m;),0), the first target activity is reduced to
{//'+— AO(~)} and acts as a forwarder.

0¢loning future is considered as a strict operation for determinism reasons (cf page 115 for more
details).
176 be precise, an update can also transform a future reference into another future reference.

74 Chapter 10. Parallel Semantics

Figure 10.3: REQUEST rule

REQUEST This rule sends a new request from the activity a to the activity 8 (Fig-
ure 10.3). A new future fl-a_’ﬁ is created to represent the result of the request, a
reference to this future is stored in «. A request containing the name of the method,
the location of a deep copy of the argument (which is stored in ¢3), and the associated
future [mj; " f —p | is added to the pending requests Rg.

From a practical point of view, the atomicity of this operation can be ensured by
a rendez-vous: the caller process wait for an acknowledgment from the callee activity
before continuing its execution. Meanwhile, if the future identifier is created by the
callee, it can be returned inside the acknowledgment message.

SERVE When a call to a Serve primitive is encountered, SERVE serves a new request
(Figure 10.4). The current reduction is stopped and stored as a continuation (future
f, expression R[[]]) and the oldest request concerning one of the labels specified in
M is treated: current term to be evaluated is a call to the method (:.m;(¢,)). The
activity is stuck until a matching request is found in the pending requests.

ENDSERVICE When the current request is finished (current term is a location), END-
SERVICE associates the location of the result to the current future f. The response is
(deep) copied to prevent post-service modification of the value and the next current
term and current future are extracted from the continuation (Figure 10.5).

REPLY This rule updates a total or partial future value (Figure 10.6). It replaces
a reference to a future by its value. Deliberately, it is not specified when this rule
should be applied. It is only required that any activity « contains a reference to a
future f;' —p , and another one (/) has calculated the corresponding result. Also, some
operations (e.g. INVOKE) need the real object value of some of their operands. Such
operations may lead to wait-by-necessity, which can only be resolved by the update of

10.2. Parallel Reduction 75

Figure 10.5: ENDSERVICE rule

the future value. Of course, a future f; P can be updated in an activity different from
the origin of the request (a # 7) because of the capability to transmit futures inside
the value of a method call parameter and inside returned values (futures values).
After an update, a future cannot be removed from the futures values because the
future might have proliferated in other activities; reference counting could be used to
perform garbage collection of futures [LQP92, Fes01]. See 14.1 for more details.

Note that both SERVE, LocAL and ENDSERVICE are local rules (involving a single
activity). NEWACT only creates an activity and thus the only communication rules are
REQUEST and REPLY.

76 Chapter 10. Parallel Semantics

Figure 10.6: REPLY rule

Initial Configuration An initial configuration consists of a single activity,
called main activity, the current term of this configuration is the source term a:
wla; 0;0; 0; 0;8]. This activity will never receive any request. It can only commu-
nicate by sending requests or receiving replies.

10.3 Well-formedness

Let ActiveRefs(a) be the set of active objects referenced in o and FutureRefs(«)
the set of futures referenced in a:

ActiveRefs(a) = {B|3t € dom(04), 0a(t) = AO(B)},

FutureRefs(a) = {fiﬁ_WBL € dom(cy), ou(t) = fut(fiﬁ_’7)}

For example, in the Figure 10.7, one has, for the activity «:
ActiveRefs(a) = {f,6}
FutureRefs(a) = {f*P ff=7}

Definition 10.2 (Futures list) Let F'L(~) be the list of futures that have been cal-
culated, the current futures (the one in the activity and all those in the continuation
of the current expression) and futures corresponding to pending requests of activity .
It is depicted by the rectangles of Figure 8.2.

FL(Y) = {f77"{fP" =} € B} = {f,} = Flay)
():: {ff*w([n;j, LT € Ry)
Flaq f,b)=f = F(b
where { Fla) =0 ifatd ffb

10.3. Well-formedness 77

Figure 10.7: Another example of configuration

In the Figure 10.7, the futures list of the activity = is:

FL(W) = {flﬂfﬁ_vyv.f%f?)}

A parallel configuration is well formed if all local configurations are well formed (in
the sense of Definition 7.1), every referenced activity exists, and every future reference
points to a future that has been or will be calculated (in the absence of dead or live
locks):

Definition 10.3 (Well-formedness)

F (aa,0q) OK

F (ta,0q) OK

g € ActiveRefs(a) = 3 € P

ff_w € FutureRefs(a) = ff_w € FL(v)

F POK & VYaeP

Sequential Property 7.1 can be translated to the parallel reduction case. Indeed,
it is easy to show that parallel reduction preserves well-formedness:

Property 10.2 (Well-formed parallel reduction)
FPok AP—P = FPok

Of course, initial configurations are well-formed and then every term obtained
during reduction is also well-formed.

78

Chapter 10. Parallel Semantics

Chapter 11

Properties and Confluence

This chapter starts with properties on topology of objects, first between activities (Sec-
tion 11.2) and then inside an activity (Section 11.3). Then a notion of compatibility
between configurations (Section 11.4) and an equivalence relation on configurations
(Section 11.5) are introduced. Different confluence and determinism properties form
the main contribution of this chapter.

Confluence properties alleviate the programmer from studying the interleaving
of instructions and communications. Very different works have been performed to
ensure confluence of calculus, languages, or programs. Linear channels in m-calculus
[NS97, KPT96], non interference properties in shared memory systems [Ste90], Process
Networks [Kah74] or Jones’ technique for creating deterministic concurrency in wofA
[Jon92| are typical examples. But none of them deals with a concurrent, imperative,
object language with asynchronous communications.

The key property of this chapter states that the execution of a set of processes
is only determined by the order of arrival of requests (Section 11.7); asynchronous
replies can occur in an arbitrary order without observable consequence. This work
seems, to some extent, more general and strongly related to both linearized channels
in 7-calculus [KPT96] and the Process Networks of Kahn [Kah74]. A specification of
a set of terms: DON terms, behaving deterministically is given in Section 11.8. It can
be seen as a generalization of Process Networks. Then, a set of programs that behave
deterministically is identified in Section 11.9. Finally, a discussion on the different
strategies for serving requests conclude this chapter.

The proofs, some technical details, and the specification of equivalence can be
found in chapters 12 and 13, and also in [CHS03]. Appendix A gives another proof
of determinacy in the case of a tree topology which does not necessitate to define an
equivalence modulo future updates.

11.1 Notations and Hypothesis

In the following, ap denotes the activity « of configuration P. We suppose that the
freshly allocated activities are chosen deterministically: the first activity created by «
will have the same identifier for all the possible executions. This condition is necessary

79

80 Chapter 11. Properties and Confluence

gmp-calculus — __

\L N T > Asp

Local determinism \ \\
N
\ N tore partitionning

A

\ E((]iuivalenc_e
modulo replies

Seqtygﬁlc]i_zﬁ){rrepft(}ction

p Wi 1llifor(rined_
arallel reduction Compatibility

Abﬁenge of Confluence
sharing

Deterministic Object Networks

7N

e o o Tree determinism e o e

Figure 11.1: A simple properties Diagram

to avoid renaming activities. Indeed the renaming of activities leads to complicated
considerations to be sure that renamed activities are equivalent. For example, two
activities may be exchanged and that may make compatible two configurations that
do not converge. To simplify we have chosen to consider that activities are named
deterministically. But for example one could safely add a renaming of activities to
equivalence modulo futures without technical difficulty. The main interest of renaming
activities seems to be the case where, after a set of interleaving requests, a term
always reaches the same state and then behaves deterministically. As this case is not
studied here, we chose to simplify the following by choosing a deterministic naming
of activities.

For example, in order to ensure a deterministic choice of activity, an activity could
be characterized by a list of integers. And when an activity [1.2.5] creates its fifth
activity, this activity is called [1.2.5.5]. Of course, a more concise (but somewhat
equivalent) notation should be used in practice. In the following, to keep notations
concise, we still use «, 3,7, 0 ... for activities names.

Moreover, the equivalent activities have the same identifier in equivalent config-
urations (i.e. if P and @ are equivalent, the activity corresponding to ap in the
configuration @ is ag). In practice, this is directly ensured by the facts that con-
figurations to be compared are always derived from the same source terms, and the
freshly allocated activities are chosen deterministically.

Let us specify the choice of fresh futures fia_’ﬂ . We consider that the future
identifier f; is the name of the invoked method indexed by the number of requests
that have already been received by 8. Thus if the 4 request received by 3 comes

11.2. Object Sharing 81

from ~ and concerns method foo, its future identifier will be foo] ”. In the following,
for notations simplicity, both m; and f will denote method labels.

— will denote the transitive closure of —, and T, will denote the application

of rule T (e.g. LOCAL, REPLY...). thus, for example, REPLY" will denote any number
(> 0) of applications of the REPLY rule.

Potential Services

Let M, be a static approzimation'? of the set of M that can appear in the Serve(M)
instructions of ap. In other words, for a given source program Py, for each activity
« created, consider that there is a set ./\/loq,0 such that if « will be able to perform a
Serve(M) then M € M, . More formally:

Definition 11.1 (Potential services) Let Py be an initial configuration. M“Po 18
any set verifying:

Py =P A aq, = R[Serve(M)] = M € Map,

For example, let Py be a source program. An activity a created by this program
and that may serve either some requests on m; and my (Serve(mi,ms)), or some
requests on mg (Serve(ms)) will be characterized by Ma,, = {(m1,m2), (m3)}.

A static approximation is needed because a Serve primitive can be present in an
object received as a request parameter. Thus if one had a dynamic approximation of
potential services M',,,. The service of a new request could modify M’,, and, as a
consequence the following potential services would be changed and that would make
the compatibility relation even more dynamic.

11.2 Object Sharing

In ASP, a shared reference would be an object that could be referenced by objects
belonging to different activities. The syntax of intermediate terms guarantees that
there are no shared references in ASP except future and active object references.

In other words, the only generalized references are the active objects and the future
references. No memory is shared because futures can only be deeply copied when they
are updated in another activity (and thus are immutable) and active objects are only
accessible through asynchronous method calls. This property on topology is strongly
related to the fact that the only communications between activities are the requests
sending and the futures updates and implies the using of deep copy in the sending of
requests and the receiving of replies.

Note that this property is syntactic: it is directly ensured by ASP syntax. As a
consequence, deep copies are necessary to maintain well formedness of ASP configu-
ration without loosing the absence of sharing.

Consequently, it is adequate to choose locations locally to an activity: if some
memory could be shared between activities then a location identifier local to an ac-
tivity would not be sufficient.

12For example, it could be approximated and verified by a type system.

82 Chapter 11. Properties and Confluence

11.3 Futures and Parameters Isolation

The store o,

Figure 11.2: Store Partitioning: future value, active store, request parameter

The following property states that the value of each future and each request pa-
rameter is situated in an isolated part of a store. Figure 11.2 illustrates the isolation
of a future value (on the left) and a request parameter (on the right).

Property 11.1 (Store partitioning)
Let
ActiveStore(a) = copy(ta, 0a) U copy(t,04q),
t€locs(aq)

At any stage of computation, each activity has the following invariant:

0o 2 | ActiveStore(a) @ copy(tf,0q) @ copy(tr,0q)
{fHLf}EFa [mjﬂ'r?f]ERa

where @ is the disjoint union.

This invariant is proved by checking it on each reduction rule. The part of o, that
does not belong to the preceding partition may be freely garbage collected. The only
modifications allowed on the futures and the parameters partitions is the update of a
calculated future value.

Equivalently, one could consider that, instead of a single store by activity, one
could have a local store and specialized stores for each future value and each method
parameter. In that case, one would need to add two REPLY rules: one that updates
futures inside a future value and another one that updates futures inside a method
parameter. In fact, this two rules are not necessary to obtain a coherent calculus but
without them, we could not express all the future updates strategies.

11.4. Configuration Compatibility 83

11.4 Configuration Compatibility

This section introduces notations and concepts that will be useful for establishing
confluence of terms in 11.7. Informally, two configurations are compatible if, for all
activities present in both, the served, current and pending requests of one is a prefix of
the same list in the other. Moreover, if two requests can not interfere, that is to say if
no Serve(M) can concern both requests, then these requests can be safely exchanged.
The compatibility definition is justified by the fact that the order of evaluation is
entirely defined by the order of request sending. More precisely, Theorem 11.1 states
that the order of activities sending requests to a given activity determines the behavior
of the program. Or in other words that compatible configurations are confluent. This
means that futures updates and imperative aspects of ASP do not act upon the final
result of evaluation. This property can be considered as the main contribution of this
study.

Definition 11.2 (Request Sender List) The request sender list (RSL) is the list
of request senders in the order the requests have been received and indexed by the
invoked method.

The it* element of RSLe is defined by:
(RSLy)i = B if {77 € FL(a)

The list of futures that have or will be calculated by activity « is F'L(«) and has been
defined in 10.3. The RSL list is obtained from futures associated to served requests,
current requests and pending requests. Moreover, if n requests have been received by
a, then for each i between 1 and n (RSL,); is well defined. It is important to note
that the order of this list is the order of requests arrivals; and thus, for example some
entries corresponding to served requests can appear after some current or pending
requests.

In the examples, for simplicity of notations, in an activity 8 we will denote by
6.foo(b) when there is ¢ such that ¢.foo(b) and o5(¢) = AO(B).

The example of the Figure 11.3 shows four activities. This state (calculated current
and pending futures of activity ¢) is obtained with the following sequence:

e the activity (3 invokes a bar request on the activity 6: 6.bar(),
e « performs a 6.foo(),

e 7 performs two consecutive 8.gee(),

a performs a 6. foo(),

e (3 performs two consecutive é.foo(),

e ~ performs a d.gee().

In this example, the RSL of the activity ¢ is:

RSL(8) = (P97 i af %0 w2 y9¢€ :: y9%€ 1 g 00 ., ghar .. ghar .. gee

84 Chapter 11. Properties and Confluence

foo
0 = o = the object a performs (or has performed) a

method call on the method "foo" of the
active object b (written 8.foo(c)).

| future inside
continuation

B—6 B—6 y—& y—6
fooly bary geey gees

Kfoo?_'g barg_“S barg_)& geeg_’é j

Figure 11.3: Example of RSL

Let RSLQ‘ 1 represent the restriction of the RSL, list to the set of labels M. For
instance (af°° :: P 4™ ,uf"o)|f007m = afoo .. ym .yl
In the example of the Figure 11.3, one has:

RSL(6)|foo,bar = Igbar - oqfo0 . g0 .. ﬂbm .. ﬂbw

For a FIFO service, and if no service is performed while another request is being
served, the order of requests can not be changed when they are served. Thus the RSL
is directly obtained from the concatenation of the futures values (in the order they
have been calculated), the unique current future, and the pending requests in the order
they arrived. Finishing the current service (ENDSERVICE) and serving a new request
(sErvE) will put the current future at the end of the futures values and take the first

pending request future as current future. Indeed if f;, * is the current future then
fime L f17 correspond to calculated futures and fo7f*... correspond to pending

requests.

11.4. Configuration Compatibility 85

Definition 11.3 (RSL comparison <) RSLs are ordered by the prefix order on ac-
tivities:

f1 fn 1 fi 1 fh n<m
ot o o't = .
! mo=t m {Vz € [l.n],q; = o

Two RSLs are compatible if they are comparable. That means that one of the two
RSL is simply the beginning of the other one.

Definition 11.4 (RSL compatibility: RSLy, X RSLg) Two RSLs are compati-
ble if they have a least upper bound or equivalently if one is prefix of the other

RSL,X RSLg < RSL,URSLg exists
& (RSL,<IRSLg)V (RSLs <A RSL,)

Two configurations are said to be compatible if all the restrictions of their RSL that
can be served are compatible (have a least upper bound). Suppose that configurations
to be compared derive from the same source term. Thus there is Py such that Py — P
and Py — @ and then the compatibility of P and Q is defined by:

Definition 11.5 (Configuration compatibility: P X Q)
If Py is an initial configuration such that Py — P and Py —— Q

PXQ&VaePNQ,YM € Moy, ,RSLy,|,, M RSL

‘M O‘Q‘M

Intuitively, it means that RSLs are in a compatible state if the application of Serve
operations present in the code will lead to equivalent lists of calculated futures. Then,
two configurations are compatible if for every activity « present in both configurations,
their RSLs are in a compatible state (served, current and pending requests).

Following the RSL definition (Definition 11.2) the configuration compatibility only
relies on the arrival order of requests; the future list (FL) order (Definition 10.2),
potentially different on served and current requests, does not matter. Indeed, the
behavior of an activity is fully determined by the arrival order of requests.

In the general case, Serve operations can be performed while another request is
being served; then the relation between RSL order and FL order can only be deter-
mined by a precise study. If no Serve operation is performed while another request
is being served (only the service method performs Serve operations), then all the
restrictions (to potential services) of the RSL and the FL are in the same order. In
the FIFO case, the FL order and the RSL order are the same.

Observe that the restriction of RSLs in Definition 11.4 is only useful for the part
of the RSL containing pending requests. If two calculated futures are exchanged (even
if they correspond to different labels) they correspond to two requests that have been
served in a different order. And thus, they correspond to a non-confluent program.
Indeed, these two services could have modified the state of the object concurrently.
In fact, such exchanged futures means that there are two RSLs (of another activity)
that are not compatible.

For example if the method foo sets a field to the value 1 and the method
bar sets the same field to the value 2, then, if the calculated futures are

86 Chapter 11. Properties and Confluence

{foo]™7 = bary "} then the field has the value 2. Whereas if the calculated fu-
tures are {bary ' :: foo] 7} then the field has the value 1 even if there is no
Serve(foo,bar)'3. Such a configuration can be obtained, if the service method per-
forms a Serve(foo); Serve(bar) in one case and Serve(bar); Serve(foo) in the other
case. For example, because the activity that has created this activity has a non-
deterministic behavior and, two RSLs (leading to the two service methods) that are
not compatible.

Serve(foo, bar)

Serve(foo, gee)

0o—8 B—6 y—6
6

(4 barg_’6 bar, geey J
—& —6 —6 —6 -8
..... foog barf—* bar? geel N o | foog—e barf geel™? barf
N foozt—>5 gee'g_’é barg_'ﬁ gee:{?_’g ba?"g_"s = RSL1
N foog—6 bm,g—>5 geeg_’é barg_’é bmg—'t? = RSL»

Figure 11.4: Example of RSL compatibility

3Moreover, in that case, the two RSLs are the same!

11.5. Equivalence Modulo Replies 87

The Figure 11.4 extends the example of Figure 11.3. Suppose, the potential ser-
vices of the activity ¢ is:

M&p'o = {{bCLT, f00}7 {gee’ fOO}}

that is to say, the only calls to Serve primitive are Serve(foo, bar) and
Serve(foo, gee). The two last RSLs are:

RSLl (6) — Ozfoo.,ygee-/gbar.,ygee-/@bar

RSLZ((S) — afoo-ﬂbar_,ygee-ﬂba’r./@bar

Then all the configurations having the RSLs at the bottom of the diagram are
compatible. For example, for the two last RSLs:

RSL1(6)|bar, foo=...a.B.0=<...a.0.0.0 = RSL2(6)|ba7‘, foo
RSLl((S)‘gee,foo =...avyX...ay= RSLQ((S)‘Q@@,fOO

11.5 Equivalence Modulo Replies

First, let us generalize the equivalence relation = defined previously (Definition 7.2).
Let = denote the equivalence modulo renaming of locations and futures. Furthermore
= takes into account the RSL compatibility. Indeed, the equivalence on pending
requests allows them to be reordered provided the compatibility of RSLs is maintained:
requests that can not interfere (because they can not be served by the same Serve
primitive) can be safely exchanged. Modulo these allowed permutations, equivalent
configurations are composed of equivalent pending requests in the same order.

Let us now introduce an equivalence relation that is insensitive to the update of
futures.

Equivalence modulo future replies (P = Q) is an extension of = authorizing the
update of some calculated futures. This is equivalent to considering the references
to futures already calculated as equivalent to local references to the part of the store
which is the (deep copy of the) future value. Or, in other words, a future is equivalent
to a part of the store if this part of the store is equivalent to the store which is the
(deep copy of the) future value (provided the updated part does not overlap with the
remainder of the store).

Figure 11.5 shows two equivalent terms. The second is obtained by updating the
future f (applying a REPLY rule).

Chapter 12 and [CHS03] formally defines equivalence = and proves its properties.
A brief explanation of this formal definition is given below.

First, let ©® be a renaming of some futures identifiers from configuration P to
configuration Q.

Let L be a path in the tree formed by the term a that follows references inside
the local store. Paths contain field access, dereferencing, ...but are insensitive to
the dereferencing of a future reference. Following a path inside « is denoted by > ;

88 Chapter 11. Properties and Confluence

Figure 11.5: Two terms equivalent modulo future update

and following a path containing futures references and thus possibly inside different
activities is denoted by .

In this chapter, we will only informally describe major points that have to be
verified by this equivalence.

First let us illustrate what “insensitive to the dereferencing of a future reference”
means. In Figure 11.5, suppose in the second configuration o,(:) = [@ = ¢"]. Then in
the second configuration:

a a I
Q= L refal

Which corresponds in the first one to (with Fg(f) = ¢/):

a sk ’
Q= L Prefa l

An important condition is that aliased objects are the same in both configurations,
that is if, in the second configuration there are two paths Ly = ref.a.ref.c.ref.b and
Ly = ref.a.ref.d.ref.a leading to the same location (u)) without following futures
references:

3Ly, Lya v o v A avs e, i

Then the same two paths lead to the same location in the first configuration with the
constraint that the end of these paths does not follow futures references:
Ly = LL{L ALy = LILI2 ALy #]
3L, L4 Ty a1 g

o ax ;B
O R e VI S TN

11.5. Equivalence Modulo Replies 89

That is verified with:L = L' = ref.a.ref, L} = cref.b and L}, = d.ref.a.
That is to say those paths are also aliased in the other configuration and the alias
occurs (at least partially) in the last activity encountered:

B
CI—+L3L1
B
C P+L§lq

Furthermore, alias condition is necessary to avoid identifying the first and the last
configuration of Figure 11.6.

=F .@ @

REPL% -

Figure 11.6: Another example

As explained informally in this section, two configurations only differing by some
future updates are equivalent:

P R,E)Y P/ = P :F PI
More precisely, we have the following sufficient condition for equivalence modulo
future replies:

P, REPLY
{l)2 REPLY p/ = Pi=rh
But this condition is not necessary as it does not deal with mutual references
between futures. On the Figure 11.7 the two bottom configurations are equivalent
but there is no configuration P’ such that:

REPLY REPLY
P — PI/\P2 == P

Indeed all configurations derived from P; will only contain future f; and similarly, all
configurations derived from P, will only contain future fs.

In this example, one can still conclude because of the transitivity of =, and P; and
P, are derived by REPLY rules from a common configuration, but, in the general case, it
is difficult to find this common configuration when one only knows the configurations
P; and P». In the most general case, it seems difficult to infer which futures must be
“un-updated” to find a common source configuration.

90 Chapter 11. Properties and Confluence

P,

Figure 11.7: Updates in a cycle of futures

11.6 Properties of Equivalence Modulo Replies

In the following, some important properties of =p are exhibited. Let T" be any parallel
reduction.

T € {LOCAL, NEWACT, REQUEST, SERVE, ENDSERVICE, REPLY }

Then let us denote by = the reduction — preceded by some applications of
the REPLY rule.

Definition 11.6 (Parallel Reduction modulo future updates)

T REPLY* T . REPLY* .
= = —5 — ifT # REPLY and — if T = REPLY

Informally, this reduction allows to achieve any replies necessary to the applica-
tion of another transition. If the rule is REPLY then = represents any number of
application of the REPLY rule (including zero). The following property is verified:

Property 11.2 (Equivalence modulo futures and reduction)
T
PLQAP=pP =3Q, P =>QNQ =¢Q

This important property states that if one can apply a reduction rule on a configuration
then, after several REPLY, a reduction using the same rule can be applied on any
equivalent configuration. The proof consists in verifying that, after several REPLY
rules, the application of a given rule on equivalent terms preserves equivalence (see
Section 12.6 for details).

The following corollary states that one can actually apply several REPLY before the

reduction P — @ without any consequence on the Property 11.2:

11.7. Confluence 91

Property 11.3 (Equivalence and generalized parallel reduction)
T / !/ ! T !/ /
P—=> QAP=P =3Q,P =>QANQ =¢Q

In the following sections, we present sufficient conditions for confluence of ASP
configurations and determinism of their behavior.

11.7 Confluence

Two configurations are said to be confluent if they can be reduced to equivalent
configurations.

Definition 11.7 (Confluent Configurations: Py Y P»)

P R,
P Y P& ElRl,Rg, P N Ry
Rl =F R2

The next property states that if, from a given term, one obtains two compatible
configurations, then these configurations are confluent.

Theorem 11.1 (Confluence)

P
P5Q,=Q1YQ
Q1 M Qs

The principles of the confluence theorem can be summarized by: non-determinism
can only originate from the application of two interfering REQUEST rules on the same
destination activity; the order of updates of futures never has any influence on the
reduction of a term. The only constraint to the moment when a REPLY must occur is
a wait-by-necessity on that future. In fact even if this theorem is natural, it allows
a lot of asynchronism and proves that the mechanism of futures is rather powerful,
even in an imperative calculus.

Furthermore, the order of requests does not matter if they can not be involved in
the same Serve primitive, thus some requests on different methods do not interfere;
and they can be safely exchanged. This is expressed by the compatibility relation.

On the contrary, consider two requests R1 and Rs on the same method of a given
destination activity; if in 1, Ry is before R, and in Q2, R» is before R1; then the
configurations obtained from @1 and Q9 will never be equivalent.

In other words, @1 M @2 is a necessary condition for @J; and Q2 to be confluent
modulo future update. Of course, another equivalence relation could be found for
which compatibility between terms would not be necessary for confluence. For exam-
ple, consider a strictly functional server which has no internal state and only serves
request. Such a server could be considered as deterministic even if it receives requests
in an undetermined order.

92 Chapter 11. Properties and Confluence

The proof of the Theorem 11.1 is presented in Chapter 13. It is rather long but the
key idea is that if two configurations are compatible, then there is a way to perform
missing sending of requests in the right order (see Chapter 13 and [CHS03| for more
details). Thus the configurations can be reduced to a common one (modulo future
replies equivalence).

The next sections identify sets of terms that behave deterministically.

11.8 Deterministic Object Networks

The work of Kahn and MacQueen on process networks [KM77] suggested us the
following properties ensuring the determinacy of some programs. In process networks,
the determinacy is ensured by the facts that channels have only one source, and
destinations read the data independently (values are broadcasted to all destination
processes). And, most importantly, the order of reading on different channels is fixed
for a given program, and the reading of an entry in the buffer is blocking.

In ASP, Serve being a blocking primitive, if at some time, two activities can send
concurrently to the same activity a request on a given method, then a conflict appears
and the reduction is not confluent. A conflict also appears when the two activities
send requests on two method labels my and my that appear in the same Serve(M)
(m1 € M and my € M)

In other words, if at any time two activities can not send concurrently a request
to the same third activity; or if such requests can be sent concurrently then they
concerns two methods that do not appear in the same Serve(M); then there is no
interference and the reduction is confluent.

In order to formalize this principle, Deterministic Object Networks (DON) are
defined below.

Definition 11.8 (DON) A configuration P, derived from an initial configuration
Py, is a Deterministic Object Network -DON (P)- if :
* 1
DON(P)& P—Q=VaeQ, VM e My, ,3°€Q,Ime M,
ag =Rle.m(...)]Aog(t) = AO(«)

where 31 means “there is at most one”

A program is a deterministic object network if at any time, for each set of labels M
on which « can perform a Serve primitive, only one activity can send a request on
methods of M.

For example the Sieve of Eratosthenes examples verify DON(P). But if the first
one is easy to verify statically because in Figure 9.3 the object dependence graph
forms a tree.

The second example seems much more difficult to verify because in Figure 9.5 the
object dependence graph is no longer a tree. This comes from the fact that all sieve
objects keep a reference to the Display object. However dynamically, at each time a
single one will be able to send a request on Display object.

11.8. Deterministic Object Networks 93

From the definition of DON one can conclude easily that DON terms always reduce
to compatible configurations :

Property 11.4 (DON and compatibility)
DON(P)AP 5 Qi AP 5 Q2= Q1 X Qy

Indeed, RSL compatibility comes from the fact that DON(P) implies that two ac-
tivities can not be able to send requests that can interfere to the same third activity:
uniqueness of request sender () for every target (a).

This can be proved by contradiction: If two incompatible RSLs could be obtained
in v, one would have two requests R; and Rs at the same place in the two RSLs.
Moreover, one has Ry = [foo,t, f1; '] and Ry = [bar, Ll,fzg_w] and foo € M and
bar € M for a given Serve(M). Then there would exist another term Q' such that
P =5 @' and in Q' the two concurrent requests R; and Ry can be sent concurrently

from (8 and v to the activity a:
ag =Rlt.foo(...)] Nog(t) = AO(«)

and
ay = R[bar(...)] Aoy () = AO(w)

And P would not be a DON term.

Thus, the reduction of DON terms always leads to the same RSLs, for all orders
of request sending: requests are always served in the same order.

Thus the set of DON terms is a deterministic sub-calculus of ASP:

Theorem 11.2 (DON determinism)

DON(P)

P-5Q = Q1YQ
P Q,

Figure 11.8 illustrates the fact that term that does not verify the DON definition
can lead to undeterministic behavior. In P two request can be sent concurrently
to 6, and we obtain two configuration P; and P, that are not confluent (and have
uncompatible RSLs).

As explained before, the two examples of sieve of Eratosthenes (Figures 9.2 and 9.4)
are both DON and thus their execution is deterministic.

The DON definition is dynamic but could be approximated by statically determin-
ing the set of active objects that can send a request on method m of activity . This
means that one first has to statically decide whether an object is active or not (by
static analysis). Note also that a static approximation of reachable configurations @ is
needed. Such static analyses have been (heavily) studied in the literature. However,
the dynamic nature of the DON property is rather intrinsic and unavoidable: the
dependencies between objects can evolve over time; over different periods, different

94 Chapter 11. Properties and Confluence

bar

Serve(foo, bar)

[]

ﬁQUEST WUEST

P Py

erve(foo, bar)

o — 6]

Figure 11.8: a non-DON term

activities can send requests to a given one. These changes in object topology can be
related to reconfigurations in Process Networks [KMT77].

This section showed that one can identify a sub-calculus (DON terms) of ASP that
is deterministic and inspired from process networks. The similarities between DON
terms and Process Networks are further studied in Section 15.6. The idea is that,
for a DON term, a channel is a set M € M, for a given activity a. At any time,
only one activity can send requests on this channel (because of the DON definition);
remember that the process networks are based on the uniqueness of sender for each
channel. Such ASP channels have a behavior similar to the process networks ones and

11.9. Tree Topology Determinism 95

one could simulate such channels by process networks channels. It is important to
note that this definition of channels can be considered as a first step towards a static
approximation of DON: if one can statically determine such channels and prove that
two channels never interfere in the same Serve primitive of the same activity then
one obtains a confluent sub-calculus that is statically verifiable.

11.9 Tree Topology Determinism

In this section a simple static approximation of DON terms is performed. It has the
advantage to be correct even in the highly interleaving case of FIFO services.

The request flow graph is the graph where nodes are activities and there is an
edge between two activities if one activity has previously sent requests to another one
(o — g B if @ has sent a request to 3). Such a graph is only growing with time.

It is easy to prove that if, at every step of the reduction, the request flow graph
is a tree then the term verifies the DON definition. Indeed, at any time a unique
activity can send a request to a given one. Thus, for each a € Q, RSL, contains
occurrences of at most one activity (the same activities for all possible reductions):
RSL, = {B.8.6...}. Then for all Q and R such that P — QAP - R, Q and
R are compatible (Q X R) as they can only differ by the existing activities and the
length of their RSLs (of course, 5.6 X 3.5.5). As a consequence:

Theorem 11.3 (Tree Determinacy)

If, at every step of the reduction, the request flow graph forms a set of trees
then the reduction is deterministic.

What is important here, is to see that the parts of reduction where request flow
graph forms a tree are deterministic. Indeed, upon a global synchronization, one can
reset the request flow graph to an empty one. Then, in order to prove that a term is
confluent, one only has to study determinism on moments where request flow graph is
not a tree. For example, consider a program that first, creates and communicates over
a set of activities forming a tree, performs a global synchronization step and finally
communicates over another tree. Such a program is confluent.

11.10 A Deterministic Example: The Binary Tree

The Binary Tree of Figure 9.1 verifies Theorem 11.3 and thus behaves deterministically
provided, at each time, at most one client can add new nodes.
Figure 11.9 illustrates the evaluation of the term:
let tree = (BT.new).add(3,4).add(2, 3).add(5,6).add(7,8) in
[a = tree.search(5),b = tree.search(3)].b := tree.search(7)
This term behaves in a deterministic manner whatever order of replies occurs.
Now consider that the result of a preceding request is used to create a new node
(dotted lines in Figure 11.9):
let tree = (BT.new).add(3,4).add(2, 3).add(5,6).add(7,8) in
let Client = [a = tree.search(5),b = tree.search(3)] in
Client.b := tree.search(7); tree.add(1,Client.a)

96 Chapter 11. Properties and Confluence

- =I> Flow of requests

= =P Flow of (indirect) replies

Figure 11.9: Concurrent replies in the binary tree case

Then the future update that fills the node indexed by 1 can occur at any time since
the value associated to this node is not needed. Consequently a future update can
occur directly from the node number 5 to the node number 1.

11.11 Another deterministic example

To show the interest of DON theorem (Theorem 11.4), let us examine the Fibonacci
numbers example of the Section 9.4.

In the following, we will show that this example is fully deterministic but does not
verify a tree topology.

The Figure 11.10 shows the Fibonacci numbers example of Figure 9.8 with, the
RSLs inside the bottom rectangles of each activity.

Y
fib(n)
Add <

asetl ﬂsetz ﬂSEtQ

fib(n+2)

Figure 11.10: Fibonacci Numbers RSLs

11.11. Another deterministic example 97

The most interesting activity is the one containing the Add object, we will focus
on this one. In the most general case, its RSL is of the form'4:

RSL(’Y) — @ | lgsetg ‘ aset1|
aset 2 352 ot RSLaaq | 5512 i @M @t RSLa4q

The potential services of activity = is:

M7EzempleF‘ibo = {{Setl}’ {SetQ}}

Thus, in all possible executions, one has:
RSLadd|Set1 =

RSLadd ‘ Setz == ﬁ*

But it seems difficult to prove formally and statically that the RSL has the form
given above.

By comparison, let us prove that the Fibonacci numbers example verifies the DON
definition.

It is easier to verify that only Cons; invokes the set; method on the Add object.
Similarly, only Conss invokes the sety method on the Add object. Thus, for the
activity a:

V6 € Act(Fibo) # «, as = Re.set1(...)] A os(t) = AO(7) is impossible

and:
Fla, ag = Rl.set (...)] A oa(r) = AO(7)

Similarly
38, ag = Ri-seta(...)] Aog(t) = AO(7)

Thus Theorem 11.4 states that the Fibonacci numbers example has a deterministic
behavior.

This example shows that the DON property is, to our mind, an interesting first
step towards the static detection of confluent programs. Indeed, from a static ap-
proximation of active objects and method calls, it does not seem difficult to verify
the DON property (when it is true). At the opposite, some control flow informations
are necessary to find the possible RSLs and this is much more difficult to determine
statically.

Therefore, we consider that the compatibility between configurations is the most
general property ensuring confluence in our context (without information on the be-
havior of programs). The tree topology determinism is the easiest to verify statically.
And the DON property seems the best compromise both ensuring determinism in a
lot of cases and adapted to a static approximation.

Details on static analysis of ASP calculus are out of the scope of this study.

0One could find a more precise form for the RSL but it is not our purpose here.

98 Chapter 11. Properties and Confluence

11.12 Discussion: Comparing Requests Service Strategies

FIFO service is, to some extent, the worst case with respect to determinism, as any
out of order reception of requests will lead to non-determinism.

By contrast, a request service by source activity (Serve(a)) is entirely confluent.
More precisely, if no FIFO service was allowed and the service determined by method
label (Serve(M) service primitive) was replaced by a service determined by the source
activity of requests (Serve(a) service primitive) then the resulting calculus would be
fully confluent and somewhat closer to process networks..

Indeed, the request service order would be the same whatever the interleaving of
request arriving. This aspect is not developed here but could be very interesting if the
order of activities sending a request to a given one was known. Such a calculus would
be more similar to process networks where get operations are performed on a given
channel and a channel only has one source process. However, specifying in a language
from whom a sever accepts (serve) requests is no longer considered as a general option
as clients must remain anonymous for the sake of modularity.

Even if DON definition allows much more flexibility in the general case, it seems
difficult to find a more precise property for FIFO services. Determinism Theorem 11.3
is easy to specify but difficult to ensure. For example, a program that selectively
serves different methods will still behave deterministically upon out of order receptions
between those methods. This is a direct consequence of DON property that is not
directly related to object topology and then such a DON program will not verify the
Theorem 11.3.

Part V

Proofs

99

Chapter 12

Equivalence Modulo Futures

Let Act(P) be the set of activities defined in P.

12.1 Renaming

Remember activities are chosen deterministically. Let us introduce a set © of renaming
futures from configuration P to configuration Q:
In other words, © is an alpha-conversion of futures.

Ou={f/ 7" — £k

2

where a € Act(P) and a € Act(Q).

12.2 Reordering Requests

The equivalence relation must be defined modulo the reordering of some requests.
Indeed two requests can be exchanged if they concern different methods which can
not interfere. That is to say if there is no service concerning both method labels.

Thus, two request queues are equivalent if all their restrictions of requests that
can interfere in the same Serve(M) are equivalent. In other words, for every set
M of labels belonging to a Serve(M) primitive of « the list of requests that can be
captured by Serve(M) is equivalent in both configurations (ap and ag). Moreover,
we will only compare terms coming from the same source term Py as M, is a static
approximation. R; is a correct reoreding of the request queue Ry if and only if
R; =r Ry where =p is defined in Table 12.1.

The first rule expresses the fact that two requests can be exchanged if they do not
interfere. Others 2 rules are reflexivity and transitivity rules.

That could also be expressed by finding a renaming ¢, that only permutes requests
on methods that cannot be selected concurrently by the same Serve(M).

101

102 Chapter 12. Equivalence Modulo Futures

{M € Map |mi € M} N{M € Mg, |ms € M} =0

Ry [masu; fi] i [masee; fa] = Ry =g Ry [maje; fa] o [mas s fi] = R

RER R1 R1 =R R

RERR
RERRI

Table 12.1: Reordering Requests

12.3 Future Updates

The equivalence modulo replies consists in considering the reference to calculated
futures like local reference to deep copy of the value of the future. In other words,
future references can be followed as if they were local references to a deep copy. Thus,
when two futures references concerns the same future, they are not considered as
aliases.

The following example (Figure 12.1) illustrates a simple update of future value.
Of course the two configurations are equivalent.

Figure 12.1: Simple example of future Equivalence

12.3.1 Following References and Sub-terms

Let us formalize the idea that “future references can be followed as if they were local
references”. In the following, the relation > is defined.

First, Table 12.2 describes the rules that defines a . b. Note that there is no
b such that AO(B) +%, b or fut(f7~#) +%, b. The second set of rules define the

12.3. Future Updates 103

following of paths starting from an activity and inside lists. The last set of rules
defines paths inside lists of requests and futures values.

More precisely, a path starting by an activity begin with an access to the current
term a, active object location ¢, futures values F', current future f, or pending requests.
Ensuring equivalence of pending requests through a reordering equivalence =g defined
in Table 12.1 is easier even if this could be performed directly by a definition with
paths. The following of paths inside of the store is not necessary but could also be
added. When one does not follow paths inside stores, terms are identified modulo
garbage collection inside each activity.

Lrep Talt) [l = bi;my = s(xj, y;)a;)5e1 T & bi

[l = biymj = <(2,97)a51561 T Pomy(s,ar) aif@j — 8y — 2}
ali ¥ field(s;) @ ali == b > ypdate1(s;) @ ali == b "> ypdatea(t;) b
a‘ll(b) 'E)Invokel(li) a alz(b) 'g)Im;okEZ(li) b Clone(a) 'gclone a

ACtiU@(a, mj) 'E)Acti'ue(mj) a Serve(M) &Serve(M) 0

aﬂfab'g)ﬂcurra aﬂfab'g)ﬂfa aﬂfab'g)ﬂcontb

Ra =R R
a a a a

Qp et Ao Qp a0, Lla Qp P f. la Qp 2 fo. F, o ,
Qp Frgq. R

[m; 2 f] =R 'greqs_meth m [m; L f] TR 'g)reqs_arg 12
m;i3 b 'g)reqs fut m;it; b 'g’reqs cdr
[ms;e; fl o R _fut f [m;e; f] = R _car R
{fz'v_’a = L} o F 'g)futsiid f;y_)a {fz’y_)a = L} o F 'ifutsi'ual L

{f?_)a = L} o F 'ifuts_cdr F

Table 12.2: Paths Definition

15Bounded variables are renamed here and thus it avoids to consider alpha-conversion of formal
parameters at a higher level. Equivalence on methods ensures both text equality for a non-evaluated
method and equivalence of locations inside method body when they appear.

104 Chapter 12. Equivalence Modulo Futures

Definition 12.1 Let L represent the list of references or parts of expressions that
must be followed inside activity o (following rules of Table 12.2), one defines induc-
tively:
o
a—ga
aSrabifarsrd Ad S, b
More generally, N L,.L, denotes the concatenation N L1+3> Lo-

Let /5 be the preceding relation where one can follow futures if necessary (one
can have n = 0):

Definition 12.2 (a 53 b)
arsr, b forn=0

@Sy fut(f777) A sy (f77) = u
V3u, fis Biv <" op (1) Bip AL A

o, (tn) 51, b

ok
a‘—Lg..Ly b

This definition consists in, first, following a path inside an activity «, then, following a
future reference from « to 1 and continuing the path in 31 etc...note that when one
follows a future reference, two local (ref) and a future reference are in fact considered
as identical to a single local reference. The following of local and future references
from ¢ in « to ¢} in By is not taken into account in the path L.

For example, in Figure 12.1 the three arrows of the first configurations that are
around the future reference (around the dashed arrow) are considered as equivalent
with a single arrow on the second configuration.

Note that trivially:

Lemma 12.1 (+31 and &)
argL b=>alcf>L b

Furthermore, he following of paths is (generally) unique: Following a path from a
given term leads to the same expression except if the destination of the path can be
a future reference:

Lemma 12.2 (Uniqueness of path destination)

) — y—6 Y=y
aBrbAaSB b =>b=0 vy, B, 6 (o, () ,fm(f’ V(") = u)
b=y VY =y
Here, the particular case (when b # V') is due to the fact that when the destination
of the path is a future reference the path does not necessarily follow this reference.
In other words, for example, if b = ¢; in 3; where o, = fut(f; _’5) then one can have
b = 1y where ¢f is the location of future fut(f;' %) in B. A more precise formulation
of the preceding lemma would be:

N y—6 F y—=by\ 1
Qk bA ax b/ b:b/vaz !/ (o-ﬁ1(L’t)_fUt(fz)/\ (5(f1)_LZ)
ar—y, ar=y, = Liy bgs {(b:Lz/\bI:L,IL)V(b:LQ/\bI:L'L)

12.3. Future Updates 105

12.3.2 Equivalence Definition
Definition 12.3 (Equivalence P =r Q) Let R = QO. Then

P=pQ & Vae€ Act(P)U Act(R), VL (Ela, ap Spa < 3d, ar Sy a')
AVL, L', a(ap 5 a Aap rep a = 3c, Lo, Lh,a', Ly, LY,y
L=LoL AL =Li.L\ AL #0
ok Qux
QR —rLg CANQR = c
v ! v !
cepaANepa
A VL, L'a(aR S a Aag S a = 3, Lo, Ih,a', L1, I,y
L=LoLi AL =Ly.L\ AL #0
CYP&LOC/\CYPPL*)LBC)

g g
crop, @ Aerprdl

The first condition expresses both the equivalence inside an activity and by following
futures and the two last conditions express the correctness of aliasing (alias must
be the same in both configurations). These two last conditions will be named alias
conditions in the following. Note that in the alias conditions the existence of a’ and
" such that ap &7 o’ and ap *57s a” is ensured by the first condition. This rules
ensures @' = a” and a’ and a” are “correctly” aliased.

The alias conditions can be expressed in the following way: “if two paths lead to the
same term (e.g. the same location) then in the equivalent configuration these paths
lead to the same (equivalent) term”. Note that the paths on the left of the implication
are local to an activity. Indeed, two references to a future leads to the same future
value, and are aliased; while the two updated futures will be two different deep copy of
the future value which is both logical and sound. Thus ensuring correctness of aliases
is sufficient on local paths.

The paths on the right of the implication can follow the future references but the
last alias must be local to an activity. This ensures that the last alias will still be
aliased when the future value will be updated. For the aliases that can appear before
the last one (if L1 # L)), the correctness of the aliases is guaranteed by the alias
conditions with Ly and Li: ¢ rl>L1 a' Ac rl>L/1 a'

This definitions formalizes the intuition given in Section 11.5. The explanations
given with Figure 11.5 can be compared to this definition and the informal points
ensuring the equivalence in this example (page 88) can now be considered as hints in
order to prove that both terms of Figure 11.5 verify the equivalence definition.

The role of the different paths in the alias conditions are illustrated in the Fig-
ure 12.2. One can verify that the alias of paths L and L’ in the bottom configuration
is simulated by two aliases in the first one. Remark that the last alias is local to an
activity.

Note that the above equivalence is not precise in the sense that if P and @ con-
tain non equivalent garbage collectable terms then P and) may be considered as
equivalent by Definition 12.3. But this will have no consequence on the subsequent
reductions and as explained before one could make this equivalence more precise.

106 Chapter 12. Equivalence Modulo Futures

Figure 12.2: The principle of the alias conditions

Property 12.3 (Equivalence relation) =y is an equivalence relation.

In the following equivalence of sub-terms will be needed. In fact sub-terms are
equivalent if they are part of equivalent expressions.

Definition 12.4 (Equivalence of sub-terms)
a=pa & da, P,Q, L, a € apAd € ag ANP=p QA (Ozp I(E;L a, = aQ IOﬁ;L a')

Thus, the definition of equivalence modulo futures on configurations has the fol-
lowing consequences on the sub-terms:

Lemma 12.4 (sub-term equivalence)

a=pd = VL (Elb,aﬂybéﬂb', a & b’)

AVL, L' b, avspbAasp b= 3c, Lo, Ly, b, Ly, LY,y
L:Lo.Ll/\LI:LB.Lll/\Ll#(D
a'ﬁLoc/\a'loﬁ;L&c
CllLl bl/\cll>Ll1 b’

AYL, L', b, a' &g bAa &S b= 3c, Lo, b, Ly, LY, v
L=LoIi AL =Ly LN NL1 #0
aﬂLoc/\aﬂ%c

v v
crr, b'/\c+—>L:1 b

In the following proofs, the arguments related to renaming will not be detailed.
That is to say, we will always suppose that, when P = @), P and @ use the s futures

12.4. Properties of = 107

names (or more precisely, renaming of futures have already been applied). Proofs
will focus on parts of proof related to updates of futures. In other words, the alpha
conversion part of proofs is considered as straightforward. In the same way, terms are
identified modulo renaming of locations. For example, when a fresh location has to be
taken, one can choose the location that makes the proof more simple and concise (for
example the one that have been chosen in another reduction). This is always possible
modulo alpha conversion of the different terms involved.

12.4 Properties of =p

The following property is a direct consequence of Tables 12.1, 12.2 and 12.3:

Property 12.5 (Equivalence and compatibility)
P=rQ=PNXQ

Consider the case where a new entry is added in the store of two equivalent terms
and is referenced from the same place in both terms. Adding equivalent sub-terms at
the same place in two equivalent configurations produces equivalent configurations:

Lemma 12.6 (=F and store update)

P =F Q A a=F CLI

v € dom(oap) AN € dom(oay) N t=F 1
P' = P except 04, = {t — a} + 0a,

Q' = Q except oy, = {V — a'} + 0aq

= PI = Q”
provided - P' ok A F Q' 0OK

The condition "provided = P’ 0K A F Q' OK” is useful to ensure that local or
generalized references inside a and a’ are defined in P and Q. In the following proofs,
a and o’ will always be sub-terms of P and Q respectively and thus this condition will
always be verified.

Furthermore, « =g ¢/ is important because + and «/ are already in P and Q.

An equivalent version consists in Replacing the condition ¢ € dom(oa,) Al €
dom(oay) At =F ¢ by (direct consequence of the definition of sub-term equivalence):

ElL, Cvplﬂ)L L/\OéQ &LL

Note that the path L leading to ¢ is not necessarily unique.
Proof :
We will use the existence of the path L and the objective of this proof is to verify:

P=pQ

a=pd A 3L, ap g LA Qg KoL
P' = P except 0, = {t = a} + 0ap
Q' = Q except oo, = {V' — a'} + 04,

= P =r Q”
provided - P'ok A F Q' oK

Let © be the futures renaming that has to be applied to @ to prove P =r Q.

108 Chapter 12. Equivalence Modulo Futures

Let R = Q'©. Then if 8p £ 1 b, let us make a recurrence on the number n of

times P 1 passes by the location ¢ of the activity a.
If n = 0, the fact that P =p @ is sufficient to conclude.
If n > 0 either n =1 and

a=0BANap lgL LgLH b
or
ﬁ* y—o Yo (67 ok
ﬁPl '_)LO fut(f)/\ Ua(Fa(f)) = L= b

All these cases are similar, we will focus on the first one (which has a simpler notation).

As ap v5p 1 ~pn b, one has ap r>p ¢ by hypothesis and «/ . ¥ by
definition of a =p o' (Lemma 12.4). This proves, in the case where n = 1 and
a=0ANap liL LPOE;LH b

ok sk
Ja, ap =1 a = 3d, ap — d

The other cases follows the same reasoning with more complex notations and using a
recurrence hypothesis. Finally, one has:

VB3a, Bp B4 a = 3d, Br &1 o

The opposite implication is similar (symmetric).
For alias conditions, suppose

3L0,L6,d Qpr lg)LO b/\ap/ 'E)Lﬁ, b

the most interesting case is when there are several L; such that (of course, L is one
of the L;)
« o
apr = LAapr =L, L

By hypothesis, as P = @), one has:
L; = LlLll ALy = LQLIZ
* B
3Ly, LY, Ly, Ly { ap &, c =l
ax B ’
Qpr —p, C '—>L12 2
Moreover, as L is one of the L; and ap +>1 ¢/ (path local to a) the preceding assertion

is simplified to:
o o
Qpr LI A apr '_)Lil LI

That already ensures alias condition for path reaching ¢ and ' (when Ly = L; and
Ly = Ly). Furthermore, for terms inside a and a’, the worst case is when, there are
L;, L', L" b such that (Ly = L;.L' and Ly = Ly.L"):

o o (6 o
Qpr b= L bA ap =Ly L b

12.4. Properties of = 109

the Lemma 12.4 ensures that in R’
! ,E,L, bAY ,ﬁ)L,, b
when adding the alias property for P =p @ one obtains:
ap &Li S A ap &Li, =S

Finally, other cases for verification of alias conditions are simpler application of the
same hypothesis and lemmas. O

Lemma 12.7 (=F and substitution)

{PEFQ

L=) = afz — 1} =p afx '}
=F

The proof is straightforward. This lemma will be useful for the cases of the following
proofs concerning method invocation. It proves the soundness of =p with respect to
the substitution applied in INVOKE rule.

Recall that (Definition 10.1):
Copy&Merge(o,i; o',1') & Merge(, o, copy(v,0){r — /'})

The following definition of deep copy is well adapted to the proofs on equivalence
relations:

Lemma 12.8 (Another definition of deep copy)
a € copy(t,08) < 3L, ¢ ﬁ,L a
As a direct consequence:
v =r ' = Vi € copy(s, O'/jp),HLll € COpy(LI,O'gQ), 1 =F 1)

The following lemma is also a consequence of the preceding properties:

Lemma 12.9 (Copy and Merge)
If P' = P except 04, = Copy&eMerge(osp, 10 ; Tapst)

B apr
LOP—P>LCL<:>L ija'

It only means that the part of store that is deeply copied verify the Lemma 12.8
and thus paths starting from the destination of the deep copy in apr are the same
than paths starting from the source location in Gp.

The following property states that adding equivalent deep copies to equivalent
configurations produces equivalent configurations.

110 Chapter 12. Equivalence Modulo Futures

Lemma 12.10 (=F and store merge)

P=rQ AN it€ap N/ €agNw€fp N j€ B
a=pd AN 1=l AN w=pl

P' = P except 0o, = Copy&Merge(p,,t0 ; Tap,t)
Q' = Q except Oag = Copy&Merge(aﬂQ,Lf) : UQQ,L')

=P =pQ

Proof : There is 8y such that:

Copy&Merge(ogp, L0 5 Oap,t)= Merge(t,0a,, copy(to, osp){eo — ¢})
= Copy(LOa U,Bp)90 + Oap

From Lemma 12.8, one has:
B
a € copy(Lo,0p,) © 3L, =1 a
Thus, using Lemma 12.9, for all a € copy(wo,03,)
Bp api
ke as L aby
The same property is also true for configuration Q.
Informally, if a location is in the merged sub-store of apr then it comes from the
sub-store copy(to,0s,) of P and it is equivalent to a location inside copy(L{),a/gQ)

(because tg = () which corresponds to a location in the merged sub-store of ag.
More formally:

Qpr
L'—P>La(9() <:>L0ﬁI—P>La
Bq

&= a because) =p ()
Q!
s Spd 6}, preceding property for configuration Q

Then, let Ly be a path leading to ¢ in apr, it also leads to ¢’ in aiyr because ¢ =5 0.

a

— /

LEF LA ap! Q /
apr el :>(apr|—>L_La<:>a:r—>L_La)

(Lr—>La<:>L'r—>La'> 0 Q 0

The general case follows similar reasonings (with a recurrence on the number of time
we pass by the location ¢ like in the proof of Lemma 12.6) and finally we obtain:

,3 1% IBQ’*
VB,8p L as Bor o a

The proof of alias conditions follows is similar too and finally P’ and Q' are
equivalent. O

12.5. Sufficient Conditions for Equivalence 111

12.5 Sufficient Conditions for Equivalence

The following properties relates the formal definition of =p with the intuitive one
saying that two configurations are equivalent modulo future update if they differs
only by the update of some calculated futures.

As explained informally in 12.3, two configurations only differing by some future
updates are equivalent:

Property 12.11 (REPLY and =pF)
PP = P=pP

Proof : One only has to prove that the updated store is equivalent with the old one.
The other activities and other parts of the updated activity are unchanged.

oa(t) = fut(F777) Fa(f177) =14
o, = Copy&Merge(og,tf ; Oa,t)
P = alaa; 04 ta; Foj Raj foll|Blags o5 153 Fgs R f5]|Q —
a[“(,\; 0{1; L(n;Fa;R(\; f(,\’]“ﬁ[a 350351 vaﬁaRh f?]”Q =P

(REPLY)

There are two renamings # and 6 such that:

o = Merge(t, 00, copy(iy,op)fes < 1})
= copy(es,o8)fey — 1} +0a
= copy(ef,08)00 + 0a

Let ¢/ be in the updated part of the store of a: ¢ +>p ¢/. Then ' = 140y where
Lo € copy(if, o) and ¢f riL tp (Lemma 12.9).

Let Ly be such that ap > Lo t- Thus, when the path passes one time by the
location ¢, there is L such that:

— — ﬁ
(aP Sro tAoa(t) = Fut(F]P) NFR(F]7P) = 0p Aup i Lo) & (aP' Lol L')
The more general assertion:
Ve, L, v B a e e B

is obtained by a classical recurrence.

For the alias conditions, note that:

If ap 51,1 1o and apr +5 10 49 then I = L1.L" A ap +>1, 1« by definition of the
Merge operator (the only common location between original and merged store is ¢)
and thus, because the deep copy creates a part of store similar to the original one
(Lemma 12.9),

B
— — L =L
ap e LA oa(t) = fut(f] %) A Fa(f] ﬁ)zw{ P
Lf I—>LII [,0

112 Chapter 12. Equivalence Modulo Futures

O
Note that this proof justifies the adequacy between definition of = Lo.r and of the
equivalence modulo futures, and the informal definition of the same equivalence.
More precisely, we have the following sufficient condition for equivalence modulo
future replies:

Property 12.12 (Sufficient condition for equivalence)

PRE)YP/
{P;RE)YP/ = PIEFPZ

This is easily proved by transitivity of =p.
Recall this condition is not necessary as it does not deal with mutual references
between futures (Figure 11.7).

12.6 Equivalence Modulo Futures and Reduction

The objective here is to prove that if a reduction can be made on a configuration then
the same one can be made on an equivalent configuration. This is a very important
property as it somewhat proves the correctness of =p with respect to reduction.
The proof is decomposed in two parts. First, one may need to apply several REPLY
rules to be able to perform the same reduction on the two terms. Indeed one of the
configurations can be waiting by necessity the value of the future. Indeed, some futures
may be updated in a configuration and calculated but not updated in an equivalent
configuration (definition of equivalence). The second part consist in verifying that the
application of the same reduction rule on equivalent terms leads to equivalent terms.
Note the similarity with properties of bisimulation: two equivalent configurations can
perform the same reduction and become equivalent configuration. The non-observable
transition being REPLY.
In the following, let T be any parallel reduction rule: T range over

{LOCAL, NEWACT, REQUEST, SERVE, ENDSERVICE, REPLY }. T, denotes the application of
a parallel rule named 7" (cf Table 10.2).

Property 12.13 (=F and reduction(1))

pep P AP TS 0= { if T = REPLYRzﬁ,fﬁ %EF P
else IQ", P "— — Q' ANQ' ' =F Q
This property suggests to define the new reduction =»:
Let =» be the reduction — preceded by some applications of the REPLY rule if
the rule of — is not REPLY and any (possibly 0) number of application of the REPLY
if the rule is REPLY. More formally:

T REPLY* T .
= = — — if T' # REPLY
REPLY™ .
— if T'= REPLY

12.6. Equivalence Modulo Futures and Reduction 113

Note that if the applied rule is REPLY, :T> may do nothing. That is necessary for
example, to simulate the update of a future on an (equivalent) configuration where
this future has already been updated.

Using this new reduction, the Property 12.13 can be rewritten in the following
manner:

Property 12.14 (=F and reduction(2))
— / r 1 pr L / I —
P=p PAP —Q=3Q, P =>Q NQ =rQ

The properties 12.13 and 12.14 are equivalent. The following proof is valid for
both.
Proof : If one cannot apply the same reduction than P — @ (same rule on the

same activities ...) on P/, "5 is applied enough times (P’ REPLY” pit) to be able to
apply this reduction: P’ may be performing a wait by necessity on the value of some
futures. The principle is that for each awaited future reference, as P can perform the
reduction, the future has already been calculated in P, and P = P’ implies that the
future has also been calculated in P’. Thus P’ only needs to update it.

More precisely, it is straightforward to check that if two configurations are equiv-
alent, the same reduction can be applied on the two configurations except if one of
them is stuck. Stuck configurations can occur in two situations:

e In the case of a forbidden access to an object (e.g. field access on an active object
or non-existing field or method) by the definition of equivalence, the reduction
on the two equivalent terms leads to an error. This is impossible because P can
be reduced.

e In the case of an access to a future (wait-by-necessity): if in an activity of P’

onehasa=.../... and 04, (V) = fut(f?_’ﬁ) and the operation performed on

/' is strict then in P, a =....... where ¢ = ¢/6, and o,(¢) is not a future. The

future equivalence ensures that f;’ ~PeF Bpr -

Then it is possible to update f/~° in P: P'"™5'Pl. If in P

Oap (V) = fut(f;_’ﬁ) then, another time, we update the future f;. After a
1

finite number of updates, we obtain P” such that P’ "= P” and Tapn (V') is

not a future reference. Indeed, if the number of updates was infinite, then P
could not be reduced, that is contradictory with the hypothesis.

Then P’ "% P where P" =p P (Property 12.11) and in P" Oapn (V) is not a
future reference. Then the same reduction can be applies on P” and P. Actually
the REPLY rule needs to be applied:

— 0 time if the object to be accessed is not a future,

— 1 time if it is actually a future whose value is not a future

— n times if it is a future whose future value is n times itself a future reference.

114 Chapter 12. Equivalence Modulo Futures

Note that the reduction that occurs in P cannot access an object inside a future that
has not been updated in P’ because

P=p P = a4 = o, = Vi € an,p, 8, € g, -

In other words, only the objects accessed directly by the reduction 1" may have to be
updated.

Now, one has to verify that if P” = P and the same reduction rule is applied on
P and P” on equivalent activity(ies) one obtains equivalent configurations:

P10
pr g =Q=rQ
P”EFP

Where both applications of the rule T" are the same (same application points and same
activities concerned). In fact, from a given configuration a rule is uniquely specified
by the name of the rule and the names of the different activities concerned except in
the case of the REPLY rule where the future identifier is also necessary.

This is obtained by a (long) case study. The different cases depend of the reduction
applied and the rules applied to prove the equivalence. In the following the proofs will
only focus on the cases where one of the locations concerned by the reduction points
to a future in P and is an object in P”. Other cases (several futures or no future) can
be trivially obtained. Of course, we will (implicitly) use the fact that if two terms are
equivalent, they have the same form. In the following, no details about renaming of
futures, and locations are given: one could easily prove a first step toward the whole
proof concerning only renaming:

j Ny
prLg=Q0=Q
P'=p

LoCAL One should consider cases depending on the local rule applied:

STOREALLOC Consequence of Lemma 12.6.

FIELD

o(t) =[li = tism; = g(xj7yj)a]‘];e€i::7n kel.n

(FIELD)
(R[e.li]y0) =5 (Rltin], o)

With ap = i.l; = 13.l; = apr then « =p 13 and ;1 =p 12 (452 is the
location of field /; in P") because ¢ gli ti1 and ¢o arg'li tin. Thus P" =p Q.
The following cases will often use reasoning similar to this one, and will
not be detailed.

INVOKE Straightforward: Note that the two method bodies must be equivalent
and the two arguments too. The final equivalence comes from Lemma 12.7.

12.6. Equivalence Modulo Futures and Reduction 115

UPDATE Direct from Lemma 12.6 and the kind of reasoning of the FIELD case.

cLONE Note that one cannot clone a future. Other cases are trivial.

Indeed, this case justify the fact that cloning a future is considered as a
strict operation. The future updates consists in a deep copy of the value
whereas the clone operator performs a shallow clone. Thus performing a
cLONE and then a REPLY reduction creates two deep copies of the future
value. At the opposite performing a REPLY before a CLONE reduction creates
only one deep copy with two shallow copies of the first object of the future
value. Thus, for the coherence of the calculus, in ASP, cloning is considered
as a strict operation (cloning a future is blocking: wait-by-necessity). Of
course these blocking states can create dead locks.

NEWACT

~v fresh activity V' & dom(o) o ={/— AO0(y)} 0
oy = copy(t', o) Service = ((if m; = () then FifoService else v".m;())
a[R[Active(t”,m;)]; 0505 5 125 /] || P
— a[R[(];0"5 05 F; s f] || v[Service; o505 0;0; 0] || P

(NEWACT)

The only interesting case is the presence of futures in the newly created activity.
Lemma 12.10 is sufficient to conclude. Indeed in NEWACT, 0, = copy(t, 04) could
be written o, = Copy&Merge(oa,t ; 0,¢)

REQUEST

aa(1) = AO(B) /" & dom(op) £27F new future vy & dom(oq)
oy = Copy&Merge(oa,t' ; ag,1") o, = {1p — fut(fF")} o4

K3

: (REQUEST)
a[R[emj ()]s 0as o Fos Ros ol | Blagsogsiss Fos Re; fo] || P —
O‘[R[Lf];aéﬁ /'a?Fc\'§Ra§.fa] Il ﬁ[“,x;UIﬁ;/,x;FﬂRﬁ I [ij”;quB];fd] | P

K3

Modulo renaming, one can choose the same name for future in P and @, the same
location for the copy of the argument. Lemma 12.10 can be applied to manage
with futures that can be present in the deep copy of the requests parameters.

The rest of the proof is straightforward. For example the equivalence of requests

is established by the fact that we take the same location and future name and
[mj; e £27P) =5 [mhs 0 £277) comes from m; = m’; because aq =, d
3 by Sy =p jr & Jy] j a —a Ay

SERVE This is the most important case of the proof.

Informally, the equivalence between the two requests lists implies that the served
requests are equivalent which is sufficient to conclude.

The fact that the equivalence definition is defined modulo a reordering of re-
quests is essential here. More precisely:

P” EFP:>VM S Map, RaP‘M =F Rapu|M

Thus the first request of R, | u Will be equivalent modulo replies in both con-
figurations. Consequently, SERVE will serve equivalent requests.

116 Chapter 12. Equivalence Modulo Futures

ENDSERVICE The equivalence between futures lists is straightforward. The proof is
based on the application of the Lemma 12.10.

REPLY In this case P/ =p Q and P’ =» P’. Thus P’ = P" is sufficient.

Note that without consequence on the proof of the property, one may be unable
to apply directly the same rule on the two equivalent terms for three reasons:

e cither several future updates may be needed to have the reference on which
the concerned future must be updated (several futures updates are needed
to apply the same rule),

e or the future has already been updated in the equivalent term (no REPLY
rule is applied),

e or there was a cycle of futures references and the order of futures updated

was different (in Figure 11.7 one has either only references to future f or
to future f5)

Note that most of this proof is simplified by the important Lemma 12.10. O
The following property is a direct consequence of Property 12.14.

Corollary 12.15 (= and reduction)
/ T ! / T / /
P=FPAP=Q=3Q, P =>Q NQ =rQ

T
Proof : If T = rREPLY then the proof is straightforward. Else P =» @ can be

decomposed in P REPLY P N Q. The conclusion comes from the application of

the preceding property to P; instead of P (because of the transitivity of =p one has
P =F PI) O

12.7 Another Formulation

Let us formalize another definition of equivalence between terms based on renaming
and prove its equivalence with the preceding one.

Let us extend the renaming of futures defined in 12.1 with a renaming on locations
inside an activity 6,, and between two activities 6,, ., . Recall that 07, is a
bijection from Fyp t0 Fag - '

Q.= (Hfuta ngAct(P), H‘XGACt(P):ﬁGQ7 s)

RN)

Ofut = {fiﬁp_’ap — filﬁQ_)aQ, .k
Va € Act(P) N Act(Q)0a = {11 — ¢} ...}; where ¢ € locs(ap),) € locs(ag)

a € Act(P), B € Act(Q),
Oap—po = {1 — ¢1,...} where v € locs(ap), ¢/, 1) € locs(Bq)

a € Act(P), B € Act(Q),
Oap—pou i=1{t1 — t1,...} where ¢,11 € locs(ap), 1 € locs(ag)

12.7. Another Formulation 117

The last two renaming of locations allow expressing future updates: In the two
last lines « and ¢/ represent the location of the updated future. To prove that a future
ff ~%n P and its update in the location ¢/ of the activity v of Q) are equivalent, one
must provide a renaming 0./ /.

Of course, each renaming must be bijective and

o for each 3 € Act(Q) the sets codom(03;), (codom(0,—.3)acp are disjuncts;
o for each o € Act(P) the sets dom(6,), (dom(fa—p)seq are disjuncts;
Let us define the following equivalence relation:

Definition 12.5 (Equivalence modulo replies(2))
=r s the largest equivalence relation closed backward under the rules of Table 12.3
(for any activity o). x is either a or oo — 3,1 or a « (3.

Oap(t) Za Tag(t0a)
fut(f) =2 fut(fOrue) AO(a) =, AO(a) 0=,0 Q

L =q L0,

_ 0 b is in the location ¢ of the activity v of P
Oap (Ll) =a<—f,t0 UﬁQ(Ll a<—ﬂ,L) FﬁQ (fa—>ﬁ) —

— !
¢ :7‘_55L ¢

2 Eou—ﬁ,Lo [feou—,B,L

b=, fut(fP7)

_ 0 a is in the location ¢/ of the activity v of Q
Oap (1) Zapiy T (Wap) Foe(ff77) = 0

— !
L=y b

L Ea—>ﬂ,b6 L0a—>ﬁ,b’

fut(f8) =, a

L=t Rop =a Rag Vf € Fop, Fap(f) Za Fag(fOsut)
[mj,t, f] 2 Rap =a [mj, ', fOrut] = Rag Fop =a Fay
Aap =a Qag lap =a lag Fap =a FaQ

VM e MQP7 RO‘P‘M EF RO‘Q‘M fOcQ = fapefut

a[aap; Oap;tap; Fap; Rap; fap] =a a[aaQ; Oags LaQ;FaQ;RaQ; faQ]

30 = (Ofut, Oays---) Act(P) = Act(Q)
Va € Act(P), altap;Oap;tap; Fap; Rap; fap] Za AGag; Oag; tag; Fagi Rag; fag]

P=rQ

Table 12.3: Equivalence

All the trivial induction rules corresponding to operators in the syntar are not
explicited in this table.

118 Chapter 12. Equivalence Modulo Futures

In other words, suppose one want to prove P =p @, one must provide

o= ((9f'u.t eaeAct(P) HOéEACt(P):,BEQ

O ey

such that the rules of table 12.3 are verified

=, denotes the equivalence between (sub-)terms that appears in « in both con-
figurations. =, denotes the equivalence between terms contained in a future
calculated in the activity a of P and its updated value in the location ¢/ of the activ-
ity B of Q. =, denotes any equivalence relation (either inside an activity when z = «
or between activities when z is of the form o« 3',0 or a — §',/).

The existence of 6,5, means that the future calculated in the activity o of P has
been updated in the location ' of the activity § of Q. The renaming 6,5, must be
applied to locations of the activity « of the configuration P in order to obtain locations
(corresponding to a deep copied future value) in the activity 3’ of the configuration@Q.

Symmetrically, 6., is useful when a future in the activity 3 of @ has been
updated in the activity « of P, at the location ¢.

This definition is coinductive because, one may need to use the fact that « = ¢/ to
prove that « = ¢/. The Figure 12.5 shows the example of a configuration where such
kind of definition is necessary

Some Important Remarks:

e 0n_q, is different from 6, and is useful for the update of a future in the same
activity.

e “a is in the location /' of the activity v of " could be (easily) expressed more
formally but one would have to use even more complicated rules and notations.

e The unaccessible parts of the store are not taken into account. These parts
represent the locations that can be safely garbage collected.

12.8 Equivalence of the Two Definition

Let us now prove that the two definitions are equivalent. Let =g, be the second
formulation of equivalence

Proof :Here are some details of the proof. The whole proof is longer but based
on the principles given below:

First note that the renaming of future to be applied in both cases is the same.

=py =>=p If P=pyQ, then for all a one has ap|...] =; ag|...]. Renaming of futures
is not detailed here. By recurrence and by cases on [, we can prove that:

(VL, ap loﬁ;L b= agQ icﬁ;L b Ab = bl> = (Ozp gL.l c= aqQ DCE)L.I dAe = CI)

It is easy to verify that ap|...] =, ag[...] implies that ap F3g ap.

12.8. Equivalence of the Two Definition 119

Most cases for | are simple case analysis. For example, if [= m;, then b is an
object and ' too (because b =, b'). From

c=,c

b=1[...mj=¢(s,2)c,...] =5 [....m; =¢(s,z)d,...] =V

One can prove ap na—tL_mj c= ag fﬁ;L_m]. dAhe=, .

Note that the case where a future is only updated in one configuration needs only
to be considered in the case | = ref.In that case a simple store access is equivalent
(according to the definition of =p) to an access to the calculated (but not updated)
future.

Let us detail here the case where [= ref:

e future reference: Suppose:

¢ is in the location ¢ of the activity v of P
6— —
Fg, (f; ﬂ) = L=

¢ =, fut(f777)

and then ap & ¢ rlref ¢ and, suppose the considered fut(ff_’ﬁ) is in the

location ¢ of the activity v in). Then, because by recurrence hypothesis
aQ 1 1o, finally:

ag #3110 A oy(o) = fut(f) A Epg (fi %) = At Poreg o (d).

Thus ag 'Oﬁ;[,_mf O'ﬁQ(LI).
One concludes easily because ¢ =g.,, ¢ is ensured by proving

c=0y(t) Spry, 08, (1)

e ife=a— 1 b=1t=qp, tba—p, = b implies by hypothesis:

ap I(gL b/\OzQ FOSL bl

and by definition of =p4:

€= 0ap(l1) Sacpuo 0o (110acp,) = ¢

b=1 e Leou—ﬂ,L =V

This proves that b ©,. Fe b P e 7 ¢ and ¢ =, ¢ and concludes for equivalence.

120 Chapter 12. Equivalence Modulo Futures

All the cases that are not detailed before involve the same kind of arguments.

The bijectivity of renaming ensures the two last conditions of Definition 12.3. This
can be proved by contradiction by showing that if one condition is not verified then a
renaming is not bijective:

First note that one can prove moreover that if ap 57 a and ap r>7 a then there
is ¢ such that ap +>7 ¢ and ap > o

Suppose for example:

!

OépliLL/\OéprngLg/\L#Lg /
AN =1y

(a7 o
ar =L U Nag = th

then one would need to have : 0, = {¢ — ¢/,19 «— /... } which is not injective.
The bijectivity of the renaming for futures (6,.. . ,) corresponds to the case
1 J’

(6723
where ag —r, ' follows futures references.

=p= =p9 The idea is to start from an activity « and to follow arrows to determine
the renamings. The recurrence cases are trivial. The following proof details only store
access and futures:

Note that all the non garbage collectable objects in « are obtained from « by
following +>;. Also note that for the garbage collectable terms, they are ignored by
both equivalence relations.

Thus, suppose that P and @ are equivalent according to Definition 12.3.

If a location in ap is accessible from ap then there is L such that ap r>p .
Definition 12.3 ensures ag 7, ¢'. One can specify the different renaming from this.
Two cases are possible:

e cither ag 57 ¢/ then {1 — '} € 6,

e or ag 57 ¢ and ¢/ is in the activity v of R then {1 «— '} € Oov,, Where ¢ is
the location in ap corresponding to the last reference to future encountered in
ar =1 /. More precisely decompose:

ok ')’
QR =L, 1o+ ¢ where L = Lo.L,

then one has
sk ' sk . _
QR L Ly = ap L, o definition of =p

and moreover, g € ap because Ly is a prefix of L. Thus ap &LO to. This
defines both ¢y and ~.

{v « /} € 0,—p,, is obtained from the cases where ap S 0 and ag Yol
As futures are not garbage collected, these three cases are sufficient to determine
renamings.

From these specifications, it is easy to prove P=g,(Q by recurrence.

12.9. Decidability of =p 121

Note that bijectivity conditions on renamings are ensured by the two last condi-
tions of Definition 12.3.

For example, if 6, is non bijective then one would have {+ «— /} € 6, and
{ta — '} € 0, and thus

(a4 o o o
ap—=rLitANap—rp s N —p, L'/\oer—>Lf !/

which is contradictory with Definition 12.3. In the same way, the above construction
never builds renamings such that {¢ «— '} € 04 A {t — 2} € 04 if V/ # 1o. O

12.9 Decidability of =p

Property 12.16 (Decidability) =p is decidable.

Proof : In the first case, verifying the equivalence consists in first applying a
renaming © of futures. The set of such renamings is finite and could be enumerated
and applied in a finite time even if it is probably not the best way to proceed.

Then one has to follow arrows starting from each activities of the first configura-
tion and verify that an equivalent arrow can be followed in the second configuration,
following future values if necessary (and the same thing starting from the second one).
Of course, as soon as a cycle is found, the verification must be stopped. In the worst
case one follows, from any activity paths that leads to all locations in this activity and
all locations in all the futures values. The set of locations being finite, this location
is finite.

The alias conditions can be verified by checking that for all locations such that
two sub-terms of this activity points to this location, take the two shorter'® paths us-
ing these two references and verify that they are also aliases in the other configuration.

To prove that the second definition of =p is decidable, first note that the set of
renaming © that could prove P =r @ is finite. Indeed the set of activities of P and
Q is finite and the set of locations and of futures too. One concludes easily that the
set of possibly valid 0f,¢, and 0, is finite. In the same way, the number of 6a,~—>a;-,L’
is bounded by the square of the number of activities multiplied by the number of
locations in activity oz;-. For each 005.;—»049,L’a the set of valid such renamings can be
bounded too because the set of locations is finite.

Note that here, the set of such apparently valid renamings is really huge but the
real number of renamings that should be considered is much smaller. In practice the
renamings should be created during the equivalence proof.

Now, one only has to prove that verifying that whether © allows to prove P =r @
or not is decidable. This is easy to show if we consider that, starting from the inductive
rules at the activities level, we prove the equivalence by going deeper into the activity
store. The algorithm verifying whether © proves P =p) or not can be summarized

8 Thus, we avoid having more than one cycle in each path, and we only have a cycle when the
aliasing is due to a cycle of references.

122 Chapter 12. Equivalence Modulo Futures

by inductively verifying that the rules of Table 12.3 are verified using ©. Finiteness
of the verification is ensured by marking the rules already verified or more simply the
locations already visited. (Note that if one marks locations already visited one has to
verify, when arriving at two marked locations that they are equivalent according to
0). O

12.10 Examples

A list of examples of equivalent terms is given below. The verification of equiva-
lence consist in simply following the arrows on the diagram (trivial). The figures are
considered as proofs hints.

In order to illustrate the second definition of equivalence relation, some details on
the renaming that have to be used are given in that case.

In the case of Figure 12.3, a simple future value is updated. Thus, one must take:

Figure 12.3: Simple example of future Equivalence

O = {11 = 1112 — 15}

The Figure 12.4 illustrates the case where there is a cycle of future references. The
proof of equivalence is not detailed here, but is based on the renamings:

6a—>a,L2 = {Ll 2,02 — L3}
9a—>a,L3 = {Ll U3, — L4}
9a—>a,b4 — {Ll g, L2 — LS}

Figure 12.5 illustrates a case of cyclic proof. Note that this may only happen when
there is a cycle of local references (locations).

The Figure 12.6 illustrates the importance of the bijectivity properties: in Q'
every renaming is bijective but one would need to have g_o, = {11 «— t,02 — ¢4}
and Op_ay = {u1 — ¢/, 12 «— ¢4} which would be contradictory with codom(63—a,.)
and codom(6p—.q,) disjuncts.

12.10. Examples 123

Figure 12.4: Equivalence in case of cycle of futures

Figure 12.5: Example of “cyclic” proof

=F

REPLYX
%

Figure 12.6: Another example

124 Chapter 12. Equivalence Modulo Futures

Chapter 13

Confluence Proof

13.1 Context

Let — be the reflexive transitive closure of — and —— " any reduction except the

REPLY rule.
Two configurations are said to be confluent if they can be reduced to equivalent
configurations.

Definition 13.1 (confluent configurations: P; Y Py)

P Ry
PIYP2<:>E|R17R27 PQL)RQ
R =r Ry

Let Py be an initial configuration. The goal of this chapter is to prove the following
confluence property (which is also Theorem 11.1):

Property 13.1 (Confluence)

Py Q
P-5Q =QY(Q
QM@
Let us consider two configurations obtained from the same initial one: Py — Q,
Py = @'. Let us suppose that the two configurations are compatible: @ X Q' that
is to say their RSLs have a least upper bound.

Let Q(Q, Q') represent the set of configurations obtained from Py and compatible
with both Q and Q"

Q@,Q) = {RIPh—RAR>QAR>Q'}
= {R|Py = RAVa € R, RSLay > RSLag A RSLapRSLay, }
= {RIP) = RARXQARNXQ'"}

125

126 Chapter 13. Confluence Proof

The principle of the proof is that in order to reduce terms Q and Q' to a common
one, the terms derived from them will be constrained to stay inside Q. Then complet-
ing the missing reductions from @ and @’ will lead to a common term (thus proving
confluence).

13.2 Lemmas

The following lemma gives simple consequences of the fact that two stores are disjunct.
Lemma 13.2 (Independent Stores)

01109 =09+ 01

0109 =092 :01

o1+ 09 =092+ 01
01+ (092 0) =09 2 (01 + 0)

dom(o1) Ndom(oz) = 0 =

Lemma 13.3 (Extensibility of Local Reduction)

"2 o) where (a”,0") =F (d',0")

(a,0) —5 (a',0') = (a,0 = 0¢) =g (a0
This lemma is trivially proven by checking it on each sequential reduction rule. Note
that the using of =p implies that we are placed in a configuration where all the futures
and the active objects of o, o and ¢’ are well defined. That is to say all stores and
expressions are parts of a well formed parallel configuration (that is always the case
when we use this lemma).

Lemma 13.4 (copy and Locations)
dom(copy(t,0)) C dom(o)
Proof : Direct consequence of the definition of the deep copy. O
Lemma 13.5 (Multiple Copies)
v € dom(copy(V,a")) = copy(t,o) + copy(d, ") = copy(i, copy(v, o) + o)

Proof : This proof will only focus on verifying the domain of the deep copy. The
content of the store follows the same reasoning but needs more properties on the
update (+) of two stores.

First, remark that

dom(o) C dom(c') = dom(copy(t,a)) C (copy(s,a’))

Thus if g € copy(t', o) then vy € copy(i, copy(r, o) + o).

Else if 19 € copy(t, o) then, let us prove vy € copy(t/, copy(t, o) + ') by recurrence
on the length of the path necessary to reach ¢y, which is the number of times the
second rule of Table 10.1 must be applied to prove that vy € copy(e, o).

13.3. Local Confluence 127

e either 19 = ¢ then ¢y € copy(//,0’) and vy € copy(', copy(t, o) + o')

o else 11 € dom(copy(t,0)) Aty € locs(o(e1)) and
by recurrence hypothesis 11 € copy(i/, copy(t, o) + o)
then ¢y € copy(!/, copy(t, o) + o)
because vy € copy(t,0) C copy(t,0) + o' and
to € locs(a(11)) = loes ((copy(e, o) + a') (11))-

We have proved that
copy(t, o) + copy(t', o) C copy(V/, copy(r, o) + ')

The other inclusion (which is more natural) is a little more easy to prove but still
uses a recurrence proof. O

Lemma 13.6 (Copy and Store Update)

o' + Copy&Merge(o1,t ; 09,t") = Copy&Merge(o1,t 5 o' + og,1)
if dom(c') N dom(Copy&Merge(oi,t ; og,t')) C dom(os)
/' ¢ dom(o’)

The preceding lemma is a direct consequence of the definition of Merge operator: In
the right side of the equality, the only location that can belong to both the initial
and the merged store is «/ (Property 10.1). Thus if ' ¢ dom(o’) the two store define
disjuncts locations (but their codomain can be interleaved). For the left side, o’ and
the merged store are disjuncts by hypothesis. This implies that the presence of the
store ¢’ has no influence. ¢’ can be seen as an independent part of o».

In fact we will use the following corollary:

Corollary 13.7 (Copy and Store Update) If /' ¢ dom(o’) then there is a way of
choosing locations allocated by Copy&Merge(oyi,t ; 09,t') such that:

o' + Copy&Merge(o1,1 5 09,t") = Copy&Merge(oy,i; o + o9,1)

Note that, in the following we can choose convenient locations and only have to verify
/' ¢ dom(o'). That is due to the fact that configurations can be identified modulo
renaming of locations.

13.3 Local Confluence

This section presents and proves the diamond property, that is to say the local con-
fluence property necessary to establish confluence properties of Chapter 11.

The following property establishes what is usually called local confluence. It is
the key property for proving confluence. It is strongly based on the definition of
compatibility between configurations () because of the using of Q.

128 Chapter 13. Confluence Proof

Property 13.8 (diamond property) Let P be a configuration obtained from Py:
Py P

T2 /

T P1—>P1
P—)Pl , , P T P’
pin = Py =r P,V 3P, P, 22— 1
P{ :szl

PP, P € Q(Q,Q) P[,P; € Q(Q,Q)

Proof : This proof is a (long) case study on the conflict between rules. Cases
where one of the applied rules is REPLY will not be detailed. These cases can be
verified but are not useful for the proof of the Property 13.11. Indeed, for REPLY rule
this proof will only need the Property 12.13. However, conflicts between rEpLY and
other rules will be detailed (under other hypothesis) in the Appendix A.

This analysis is only interesting when there is a real conflict between two rules.
That is to say at least a component of one activity can be read or modified by two
rules. The following cases are labeled with the two rules in conflict.

In the following, we suppose that one can choose any location or future name
when one needs a fresh one. This is justified by the fact that reduction is not sensible
(modulo equivalence) to futures and locations names. The fact that activities are
chosen deterministically avoids the problem of renaming activities and ensures that
the name of an activity will be the same for two application of the same NEwACT rule.

e If the concerned rules are different, the activities («,) will be indexed by the
corresponding rule (e.g. Qgppquesr 1S the activity « of the REQUEST rule: the
source activity of the request)

e if the rules are the same, the activities will be indexed by 1 and 2.

The proof can be divided into four parts

13.3.1 Local vs. Parallel Reduction

LOCAL/LOCAL Obvious consequence of the determinism of local reduction.

LOCAL/NEWACT No conflict : apocar = @npwacr lmpossible because R[Active(s)]
cannot be reduced locally.

LOCAL/REQUEST

Orocar = Orequest 1mpossible (this would correspond to a method call which
would be both local and distant).

13.3. Local Confluence 129

QrocaL — /BREQUEST let @ = QREQUEST and ﬁ = QrocaL = ﬁREQUEST

(a,@,Uﬁ) -8 (a,ﬂhU,EII)
Blag; ;13 Fs Ry; [5]11Q — Blagy; op1; s Fios Res [5]1Q = P

(LOCAL)

oga(t) = AO(B) (" & dom(op) £27F new future ty & dom(oq)
op2 = Copy&Merge(oa, ' 5 og,t") 0oz = {ty — fut(fFP)} :: 04
[Re.m; (V)]s 003 ta; Fus Ras fulllBlag; op; 155 Fas Ras 15]11Q
— a[R[if); 0a2; to; Fos Ras fulllBlas; os2; 155 Fas Rg == [my; s £27P); £5111Q

(REQUEST)

One can suppose (up to renaming) that the locations added to o by the two rules are
disjuncts. The deep copy of the argument of the request is added in an independent
store thus 032 = 05 :: 0. Thus Lemma 13.3 allows to perform the local reduction on
the extended store:

(ag,08) —s (ap1,0p1) = (ag,0 1 05) =5 (apy, 0y 12 0)
where (aj3,,0%,) = (ag1,0p41) and

Py = a[R[tf); 0a2; ta; Fus Ros folllBlas; op2; ts; Fia; Raos [4]]|Q
— a[R[ef]; 0a2; tas Foi Ras folll Blaja; o5 155 Fo Raas f5] = P3|Q

o1 is obtained by some updates on og:
o1 =00+ 03

Corollary 13.7 is used for adding the request to the store obtained by local reduction.
One can apply the request rule to Pi: let 0'51 be the new store :

Ulﬁl = Copy&Merge(oa,t ; op1,") =p 00 + Copy&Merge(oa,t' ; og,")

and obtain a configuration equivalent to Py (Lemma 13.2):

(ah93059) =r (ap1,0p1 1 0)
=y (ap1, (00 + 0p) 2 0)
=y (apg1,00 + (0g :: 0))
=F (aﬁlaglﬁl)

LOCAL/ENDSERVICE In ENDSERVICE, 0!, = 01 :: 0, where dom(o1) Ndom(ay) = 0.
Thus Lemma 13.3 is sufficient to conclude.

LOCAL/SERVE No conflict.

13.3.2 Creating an Activity

NEWACT/NEWACT No conflict. One may only need to rename activities.

130 Chapter 13. Confluence Proof

NEWACT/REQUEST One only has to prove that (if axgwacr = Brequesr) Creating a
new activity does not interfere with receiving a request. This is similar to the case
LOCAL/REQUEST.

NEWACT/ENDSERVICE No conflict.
NEWACT/SERVE No conflict.

13.3.3 Localized Operations (SERVE, ENDSERVICE)

e SERVE:
SERVE/SERVE No conflict

REQUEST/SERVE Figure 13.1. If agppvr = Brequesr: Informally, if one can perform
a serve(M) on P then there is a request matching the labels of M in the request
queue so adding a new request to the request queue will not change the served one
because SERVE takes the first request matching M. A better way of expressing mobility
would be to create a new primitive that creates a new activity and replace the service
primitive by a forwarder which, instead of treating a request forwards it to the newly
created activity. Note that the fact that the first request is taken is essential to ensure
confluence. A more complicated service primitive (like serving the last request arrived)
would require further studies and would probably not verify confluence properties. Of
course a serve(a) serving the first request coming from the activity a does not pose
any difficulty here.

® ENDSERVICE:

ENDSERVICE /ENDSERVICE No conflict.

REQUEST/ENDSERVICE Figure 13.2. There can only be a conflict when

O ENDSERVICE — ﬂREQUEST =

ga(t) = AO(B) V" & dom(op) f27P new future Ly & dom(ow)

K3

op1 = Copy&Merge(aa,t' ; op,l"") =0 + 05 oa1 = {t5 — fut(ff‘_"g)} 0.

(REQUEST)
a[Re.m; ()]s 005 t0; Fuos Ras [2)||Blas; as; 183 Fis; Ra; [5]]|1Q
— a[Ref]; 0at; te; Fus Ras folllBlas; op1;0a; Fas Rg < [my; fiaqﬁ]; 21Q = P}
/' & dom(op) Fy=Fp: {If,g I—>ILI}
o2 = Copy&Merge(og,t ; 0p,t') =o' + 05 (ENDSERVICE)

Blet £77, 05085 153 Fa; Ris; f5lllP — Blas op2; 105 Fyi R)| P = Py

13.3. Local Confluence

131

Request to serve
NE

< _’
NRS!

REQUEST E] ERVICE

Figure 13.2: ENDSERVICE/REQUEST

132 Chapter 13. Confluence Proof

The conflict only concerns the store. But the merges that are performed on the
store are independent (¢ ¢ dom(og)). One can suppose that these two operations
create disjuncts sets of locations. Then one can perform the missing two rules on the
configurations P| and Pj. A configuration with the stores

02;2 =ro+op and o+ 081 =F 02;1
is obtained. The crucial point of the proof uses Lemma 13.2 to prove:

0/'32 =F0+0p2
=0+ +op
=0 +o+op
=0 +op
EFUIﬁl

ENDSERVICE/SERVE No conflict.

13.3.4 Concurrent Request Sending: REQUEST/REQUEST

a1 = 2 or 1 = ay Same kind of arguments as in the case LOCAL/REQUEST.
a1 = a9 No conflict.

81 = B2 Impossible because Pi, P, € Q so, if 1 = [, then the two requests come
from the same activity (RSL compatibility) a; = a2 and there is no conflict. O

Note that the preceding proof widely use (indirectly) the fact that the parts of
store containing the requests arguments and the futures are isolated.

13.4 Case of the Calculus with Serve(«)

In that case, requests can be safely exchanged as soon as they do not come from
the same activity. As a consequence, no compatibility relation is necessary. The
equivalence modulo futures on requests queues uses the restriction of requests queue
to the requests having a given source activity:

Rop =r Ry, < VB € Act(P), Rap|ﬁ =k, Rab|ﬁ
Note that this new equivalence relation also verifies

P=p PAPEY Q=30 P QAQ =5 Q
because for any Serve(f3) performed by a, the equivalence modulo futures ensures
that the first request from § is the same (modulo future update) in P and P'.
Then, there can be a conflict in the concurrent request sending for 81 = (2 A
a1 # ao. But this conflict has no consequence because we still obtain equivalent
configurations: the request queues are of the form :

Ri=R:urlur2 Ry=R:r2:rl

13.5. Extension 133

with 1 and r9 coming from different activities. Thus, the resulting configurations are
still equivalent.
To sum up, confluence come from the facts that

e Two requests coming from the same activity can not overtake each other. That
is sufficient to ensure equivalence modulo futures.

e Even with this imprecise equivalence modulo futures, the request served by a
Serve(a) primitive is the same for two equivalent terms.

13.5 Extension

This section extends the local diamond property presented before to obtain a general
diamond property which will allow us to conclude about confluence of ASP calculus.

Lemma 13.9 (=r and 2(Q,Q’))
P=pP'AP€QQ,Q)ANPy,— P =P €QQ,Q)
Proof : Direct consequence of the Property 12.5: P =p P' = P P’. O

Lemma 13.10 (REPLY vs. other reduction)
P EEYRAPER P =P 5" RAR =fR

This lemma could be considered as strongly linked to the Property 12.14 It is
more easy to prove (because P’ can be reduced directly) but it ensures that P’ can
be reduced in a unique reduction rule.

Proof : It is easy to verify that if a rule (different from REPLY) can be applied on
P then it can be applied on P’ and the reasoning of the proof of the Property 12.14
suffices to conclude. O

Then, global confluence is a consequence of local confluence. The following prop-
erty is a another formulation of the Theorem 11.1:

Property 13.11 (diamond property with =F)

T T
PL= Q1= Ry
T. T
P, = Q, — Q1 =r Q2 VIR, Ry, Q2 = Ry
Q1,Q2 € 9(Q,Q") Ri=r Ry
P1 =F P2 R17R2 € Q(Qa QI)

Proof : If one of the = applies only REPLY rules then one can conclude immediately
by corollary 12.14.

Else, both 77 and T» are reduction rules different from REPLY and can be decom-
posed, there is P| such that:

REPLY™ T
P — P1' — Q1.

134 Chapter 13. Confluence Proof

NG

Figure 13.3: The Diamond property proof

Note that one could have P, = P|. In the same way, there is Py such that:

REPLY* -y T3
Py — P, — Q@

By Property 12.3, =p is transitive and then P{ = P;. By corollary 12.15:
3P, P S AS T S A Sy =0 Qy

Moreover, by Lemma 13.10:

EPLY™ T
PI: MY S N S = S ‘
Pl — S1=r Q1

Then, using diamond Property 13.8 (Lemma 13.9 is used to prove Si,Ss € Q):

s s Sy 2 s
T

52>52 :}Sl =F SZVHR17R2, S?—%S;é

S1,8, € Q 51 =r S5

Si,S,eQ

13.5. Extension 135

Finally, using Property 12.14:
Ty ar T ,
S1— S ANS1=rQ1=>Q1=> RiIANS =r Ry

Sy 2SN S, = n -
2 — 95 A5 =Fr Q2= Qs =» Ry NSy =r R»

Thus (remark that Ry =p Ry and Ry, Ry € Q come trivially):

Q1 =» Ry
Q2 =» Ry
Ri =r Ry
Rl,RQ €9

136 Chapter 13. Confluence Proof

Part VI

Final Words

137

Chapter 14

Implementation Strategies

14.1 Garbage Collection

The study of garbage collection mechanisms is out of the scope of this study. In
this section, we simply describe the aspects of garbage collection which are linked to
ASP. The objective here is just to give informations in order to show how to adapt an
existing garbage collector (or at least existing techniques for garbage collection) to the
special case of ASP. Because of the objects topology in ASP described in Section 11.2,
a garbage collection mechanism on ASP can be separated into three concerns. A
local garbage collection phase, and the distributed garbage collection of futures and
activities (the only generalized references in ASP). Of course, in practice, the handling
of these three concerns should interact.

14.1.1 Local Garbage Collection

First note that parameters of requests and values of futures are situated in isolated
parts of store and thus could be put in a different store (Property 11.1).

Thus, local garbage collection can be performed easily: useful objects are refer-
enced by the current term (a,), the active object (to), the futures list (F,), and the
requests lists (R,). Note that the best moment for a garbage collection step seems to
be after the ENDSERVICE. Indeed, every object that has only been allocated for serving
the preceding request will not be useful any more.

Note that the global references consists only in futures and active objects. Thus
the first step of garbage collection described previously is clearly a purely local one
and can be performed by classical and well known techniques.

14.1.2 Futures

First, one must note that futures garbaging depends on the future update strategy.
If the strategy does not update futures as soon as their values are calculated, then,

futures have to be kept in the futures values list in order to be potentially used later

on for update. From a Garbage collection point of view, immediate future reply is

139

140 Chapter 14. Implementation Strategies

much simpler but it does not allow a future to be updated at any time and we consider
this as too restrictive.

Therefore, as the future might have proliferated in a lot of activities, it is difficult
to decide when a future can be removed from the list of futures values. Of course, in
practice, reference counting or any distributed garbage collector mechanism could be
used to perform distributed garbage collection of futures. See, for example, [LQP92]
and [Fes01] for the study of distributed garbage collectors. Indeed, future references
are particular global references, and all these frameworks dealing with garbage collec-
tion of global references can be applied to the particular case of futures.

14.1.3 Active Objects

In fact, garbage collection of active objects could be more generally called garbage
collection of activities. Active objects references are also generalized references that
can be spread over the different activities. In order to perform garbage collection
of active objects one first needs to determine if this active object (or activity) is
referenced from “useful” activities (classical garbage collection). Then an activity can
be garbage collected if it is no more referenced, the activity does not contain any
more pending requests, and does not have any more proper activity (empty current
term with no continuation). In that case all the activity except the futures list can be
garbage collected. Of course references to futures contained within this activity can
still exist, their garbage collection is dependent on the constraints described previously.

Chapter 15

ASP Versus Other Concurrent
Calculi

This chapters compares ASP and the different calculi and languages introduced in
Chapter 6. The objective of this chapter is both to compare ASP communication and
parallelism mechanisms with existing ones, and to discuss how the ASP concepts can
be adapted to other calculi. We will also present how tools developed on other calculi
could be adapted to ASP.

Generally, with respect to shared memory calculi, our objective is to design a
calculus with accesses local to a process and between processes as uniform as possi-
ble, without using a shared memory mechanism. Note that as soon as no memory
is shared, some copying of data is needed, and the semantics of local and remote
communications is still different: ASP defines a semantics with implicit data copying
upon communication between processes.

15.1 Actors

Relying on the active object concept, the ASP model is rather close to, and was some-
how inspired by, the notion of actors [AMST92, AMST97]. Both rely on asynchronous
communications, but actors are rather functionals, while ASP is in an imperative and
object-oriented setting. While actors are interacting by asynchronous message pass-
ing, ASP is based on asynchronous method calls, which remain strongly typed and
structured and most importantly more adapted to object-oriented framework. From
a more fundamental point of view, Actors and ASP differ by the definition of state.
As in ASP the state is encapsulated in objects fields whereas, in Actors, the state is
encoded in the actor behavior. Furthermore, in the Actors model every actor acts in-
dependently and has its own thread, but ASP adopts a less uniform model where only
some objects are active. Generally, the ASP application designer has the possibility,
and responsibility to achieve this partition for the sake of distribution and parallelism.
Thus, starting from very similar objectives, ASP and Actors are very different calculi
where a lot of crucial points differ (activity definition, communications, asynchrony,
futures, states, ...).

141

142 Chapter 15. ASP Versus Other Concurrent Calculi

ASP future semantics, with the store partitioning property (isolation between
future values, the active store, and the pending requests), accounts for the capacity to
achieve confluence and determinism in an imperative setting. Finally, the bisimulation
techniques used by Agha et al. in [AMST92, AMST97] would have been inadequate
to obtain the main result presented in the current thesis: a strong, somehow intrinsic,
but dynamic property on processes interacting by asynchronous communications.

To some extent, this study develops the idea introduced in [AMST92, AMST97]
that “The behavior of a component is locally determined by its initial state and the
history of its interactions”. ASP extends this idea on an imperative language. We
chose to take into account a more global history in order to be only sensitive on the
order of the message senders instead of the complete history of messages. In other
words, we do not need to compare all message contents (arguments of method) in
the history of an activity but instead we compare the history of just message senders
(RSL) of all activities. Our properties state that in ASP, the history of an activity
interactions is uniquely determined by the RSLs of all activities.

15.2 ¢-calculus and related

First note that this study is strongly based on the works of Abadi, Cardelli, Gordon,
Hankin and al. about impg-calculus [AC96, GHL97a, GHL97D].

Proving equivalence between terms can be performed by introducing bisimulation
on an object calculus like in [GR96]. This thesis introduces an equivalence relation
specific to ASP, and actually some aspects of equivalence modulo replies are close to
bisimulation techniques. But CIU (Closed Instance of Use) equivalence introduced
in [GRY6] deals only with static terms. In order to capture the intrinsic properties
of the calculus, we are interested in dynamic properties like confluence, thus CIU
equivalence is inadequate to our problem. As a perspective, more static properties
could be obtained from confluence property in order to perform static analysis of
programs.

From a different point of view, Gordon and Hankin [GH98]|, and Jeffrey [Jef00] also
introduce parallel calculi based on threads and shared memory, it is also inadequate
to our case because it would not fit the characteristics of communications that we
want to model.

15.3 m-calculus and related

ASP calculus could be rewritten in w-calculus [MPW92, Mil93] but this would not
help to prove confluence properties directly. Indeed, in m-calculus, synchronization
is based on channels. On the contrary, ASP relies on data-driven synchronization
over an imperative object calculus, and thus its semantics is different from n-calculus.
Indeed, while the synchronization in ASP is implicit, 7-calculus impose to explicitly
perform synchronization on channels. Thus, writing ASP programs in w-calculus
would require to know the first point where the value of a future is needed, and to
write explicit communication for the reception of the replies. Note that, in 7-calculus,

15.3. m-calculus and related 143

the information contained in f*~# does not be sufficient to completely build these
channels: somehow the receiver of the reply must listen on the channel and is not
encoded in f*~#. An approximation of the first point in a program using a future
could be computed statically, but such a static analysis (strictness analysis) seems to
be both complicated and imprecise. In general, finding the exact first point using a
future is undecidable.

In the same way, PICT also necessitates channel based synchronization.

For example, the following code would be problematic (b and c¢ are two boolean
variables, r.wait access to a field of r performing a wait-by-necessity):

foo(bool b, bool c)

r = oa.m(); gets a future

if bthen rawait; performs a wait by necessity

if cthenr=Ja=1,b=2]; creates a local object

oa2.bar(r); sends to oa2 a possible future possibly awaited

The example above shows that one can not determine whether a future is already
used, if a future is still (or may still be) awaited at a point, and even if a variable
contains or not a future.

To conclude, we do not think that translating ASP into w-calculus would simplify
our specifications or our proofs. As a consequence it was more effective to focus our
work directly on ASP rather than obtaining result on translated terms (which will
not necessarily give us results on our initial calculus).

Under certain restrictions w-calculus channels are called linear and linearized
[NS97, KPT96]. The terms communicating over linear channels can be statically
proved to be confluent and such results could be applicable to some ASP terms. First,
the confluence property principle is very closed to linearized channels. But, even if
our confluence property is in general not statically verifiable, it is much more powerful
and several static approximations of these properties can be performed, some of them
would probably be closed to linear(ized) channels.

Channels in ASP

Let us introduce the notion of channels in ASP and precise the relations between
m-calculus and ASP channels.

Let a channel be a pair (activity, method label), and suppose every serve primitive
concerns a single label'”. If at any time only one activity can send a request on a
given channel then the term verifies the DON property, and the program behaves
deterministically. In m-calculus such programs would be considered as using only lin-
earized channels and would lead to the same conclusion. Note that in ASP, updates
of response along non-linearized channels can be performed which makes ASP con-
fluence property more powerful. Moreover, this definition of channels is more flexible
because it can contain several method labels and then, one can wait for a request

171f several methods can be served by the same primitive, then they must belong to the same
channel, and a channel becomes a pair (activity, set of method labels).

144 Chapter 15. ASP Versus Other Concurrent Calculi

on any subset of the labels belonging to a channel, in other words we can perform a
Serve on a part of a channel without losing determinacy.

A first step towards expression of channels in ASP has been presented on Process
Networks in Section 9.3. A more formal translation for ASP channels will be given
in the Section 15.6 below. What is surprising here is that the notion of channels in
Process Networks and linear channels in mw-calculus come from very different frame-
works but could be adapted to ASP through similar abstraction of channels; to some
extent, ASP generalizes both w-calculus and Process Networks channels abstractions

15.4 Ambient Calculus

Ambient calculus is based on locations. The objective of this thesis does not have the
same concerns as ambient framework. One of ASP objective is to abstract away loca-
tions, and to provide determinate distributed systems insensitive to location, whereas
Ambient calculus studies the effect of locations on distributed computations. These
two studies could be considered as complementary. For example, ASP communications
could replace m-calculus like communications in ambients. Also note that the trigger-
ing construct could be simulated provided a non-blocking primitive that inspects the
requests queue is added to ASP.

15.5 Join-calculus

Synchronization in the join-calculus is based on filtering patterns over channels. The
differences between the channel synchronization and the data-driven synchronization
described for the 7-calculus also make the join-calculus inadequate for expressing the
ASP principles.

15.6 Process Networks

The DON property widely used in this study is somewhat inspired from process net-
works. Indeed the ASP channel view introduced in Section 15.3 can also be compared
to Process Networks channels.

Process Networks of Kahn [Kah74, KM77, WWV00] are explicitly based on the
notion of channels between processes, performing put and get operations on them.
Process networks provide confluent parallel processes, but require that the order of
service is predefined and two processes cannot send data on the same channel, which
is more restrictive and leading to less parallelism than ASP.

As shown in 9.3, the process networks channels can be translated in any direction
(from process performing a get to process performing a put: push, or in the opposite
direction: pull). But this could not be considered as a systematic translation from ASP
to Process Networks, because Process Networks channels can be passed in parameter
to processes at creation. In practice, in ProActive, we can use reflection to pass
method names as parameters, but the theoretical aspect of this solution has not been
studied yet.

15.7. Obliq and Qjeblik 145

The following of this section tries to explicit more formally and more generally the
translation from process networks to ASP.

15.6.1 Expressing Process Networks channels

We present here a translation of process networks terms in ASP in the case where
each channel has only one destination process. We introduce a channel object:

Channel £ [values = [J;activity = ¢(s, _)Repeat(Serve(put); Serve(get)),
put = ¢(s,val)s.value :=val, get =¢(s,)s.value]

One just has to create a new channel by let Q = Active(Channel, activity) in ...
and use it by Q.put(...) and Q.get(). Such channels are first class entities that can be
manipulated with even more expressiveness than process networks ones. Note that the
request queue of the channel activity will play the buffering role of process networks
channel.

The multiple destination channels declaration does not raise any technical diffi-
culty, but is much longer to describe. As proposed in [KM77] we could have a different
reference for each activity that can read on a multiple destination channel (different
views of the same channel).

15.6.2 ASP is more expressive

Like in the m-calculus case, ASP channels seem more flexible and our property more
general.

First, if we consider a channel as a pair (activity, method label), we can perform a
wait (Serve) on several channels (several labels) at a given program point. This would
be expressed in process networks by the possibility to perform a get on several channels
and take the first request on one of these channels thus merging these channels.

ASP provides a more structured programming model where the causal flow of
data can remain in the program structure, for instance through method parameters
and results, while a process networks would require several un-obviously associated
channels.

Even more, the fact that future updates can occur at any time accounts very much
in ASP expressiveness: return channels do not have to verify any constraint. Thus,
futures can be seen as hidden and “automatic” transparent channels. These hidden
channels are really difficult to simulate in process networks because their existence is
based on a data-driven synchronization. Thus, ASP data-driven synchronization, and
more generally the futures mechanism can be considered as one of the most original
features of this thesis.

15.7 Obliq and Qjeblik

Let us compare ASP to Obliq shared memory and serialized objects with synchronous
method calls. In ASP, the notion of executing thread is linked to the activity, and thus

146 Chapter 15. ASP Versus Other Concurrent Calculi

every object is “serialized” but a remote invocation does not stop the current thread. In
other words, there is a unique thread by active object and the parallelism in ASP is due
to the coexistence of several activities. Finally, in ASP data-driven synchronization
is sufficient and no notion of joining threads is necessary. To summarize, the notion
of thread is replaced in ASP by the process associated to each activity and a wait-
by-necessity for synchronization. Furthermore, data-driven synchronization alleviates
the programmer from the explicit insertion of synchronization, thus it seems a very
convenient way of programming.

With respect to the confluence, the generalized references for all mutable objects,
the presence of threads, and the principle of serialization (with mutexes) make the
Obliq and @jeblik languages very different from ASP. In fact there is no way of ensur-
ing a confluence property similar to ours in Obliq. For example, to avoid concurrent
accesses to shared objects we would need to remove mutable objects from the cal-
culus which would be contradictory with one of the main characteristics of ASP: its
imperative aspect.

15.8 The 7wofB\ language

In wofA, a caller always waits for the method result (synchronous method call) which
can be returned before the end of the called method. In ASP, method calls are asyn-
chronous thus more instructions can be executed in parallel: the futures mechanism
allows one to continue the execution in the calling activity without having the result
of the remote call. A simple extension to ASP could provide a way to assign a value
to a future before the end of the execution of a method. Note that in woS\ this
characteristic is the source of parallelism whereas in ASP this would simply allow an
earlier future update (and potentially a shorter wait-by-necessity). In ASP the source
of parallelism is the object activation and the systematic asynchronous method calls
between activities. The condition given in [JH96]|, stating that the result of a method
is not modified after being returned, is balanced in ASP by a deep copy of the result
(Property 11.1: Store partitioning). Similarly, the unique reference condition from the
same work is balanced in ASP with the constraints on objects topology (no remote
reference to passive objects).

15.9 Multilisp

With respect to Multilisp, the shared memory mechanism is the main difference be-
tween the two languages but this difference has a lot of consequences. Therefore, it
seems difficult to compare precisely these two frameworks. The main common point
between ASP and Multilisp are the futures, but futures in Multilisp are not global
references, and as such much simpler to update than in ASP: they only need to be
updated once in the shared memory.

Chapter 16

Conclusion

In this study, we proposed a calculus modeling asynchronous communications in
object-oriented systems, and exhibited confluence properties. Such properties simplify
programming as they avoid having to study every possible interleaving of instructions
and messages to understand the behavior of a given program.

In this thesis, we presented a new calculus named ASP and proved sufficient condi-
tions for confluence. Our objective was to provide a formalized and general framework
with general properties suitable for open systems. From those dynamic properties
more static and easily verifiable conditions for confluence could be derived. More-
over, the properties proved in this thesis and their formalization already have great
practical consequences, at least on ProActive.

The ASP calculus is based on asynchronous activities processing requests and
responding by mean of futures. Inside each activity, the execution is sequential and
there is a one-to-one corresponding between processes and active objects.

Concerning asynchrony and synchronization, when a process has sent a request,
it can perform other operations while the result value is not needed and the result
to come is represented by a future. Such futures are first class entities that can be
passed as parameter and results. For synchronization, a rather natural data-driven
synchronization occurs when the real value of the result associated to a future is
needed. This mechanism is called wait-by-necessity and the formal study of this data-
driven synchronization is one of the main contributions of this thesis.

ASP ensures a confluence property of compatible terms: two configurations with
compatible RSLs (Request Sender List) are confluent. RSL compatibility is based on
a prefix order on sender activities. Thus ezecution is only determined by the ordered
list of activities sending request to a given one. What makes ASP properties powerful
is that the execution is insensitive to the moment when results of requests are ob-
tained. Consequently, an equivalence relation was introduced to consider equivalent a
term before and after the REPLY reduction. We defined a sub-calculus of ASP formed
of Deterministic Object Networks (DON) terms that behave deterministically (Theo-
rem 11.4). We proved that every program communicating over a tree (Theorem 11.3:
Tree Determinacy) behaves deterministically, even in the highly concurrent case of a
FIFO service.

147

148 Chapter 16. Conclusion

Even if ASP is a new calculus it has been greatly inspired by most of existing
concurrent languages and calculi (e.g. ¢-calculus model of objects, DON property
strongly related to process networks and can also be linked with linear channels of
m-calculus).

The properties of ASP illustrate the fact that futures in an imperative language
seem rather powerful and convenient. What actually provides confluence in ASP is
the balance between asynchronous communications, and synchronizations due to the
wait-by-necessity. Of course the topology of objects stating that we can only access
an activity through its active object is also important. Out of order replies and data-
driven synchronization also provides a convenient way of programming parallel and
distributed applications. Indeed, the programmer only has to ensure that the result
can be calculated'® at the moment when the value is needed to avoid deadlocks.

ProActive is a Java API implementing the ASP model. One of our objective is to
be able to use in ProActive the properties proved on ASP. For example, the fact that
the moment when a future is updated is not observable in ASP, can be used to choose
any strategy for updating futures in ProActive.

Note that the proofs detailed in this thesis can also be adapted to prove other
cases of confluence in ASP or similar calculus. For example we gave details about
the adaptation to the case where the service primitive explicitly specifies the source
activity of the request.

8Tn the sense that there is an order for performing computation ensuring that this result is calcu-
lated.

Chapter 17

Perspectives

17.1 Static Analysis

This thesis presented dynamic properties ensuring confluence. One important per-
spective is to deduce static properties from the properties presented here in order to
be able to identify statically deterministic programs.

As a first perspective, confluence properties could be ensured statically. A static
approximation of DON programs would provide a convenient way of ensuring conflu-
ence. A first step would be to specify a precise type system for M, , either for static
service verification, or for inferring the potential services. Such a type system would
be crucial in order to statically identify DON programs.

Indeed, the set of active objects and their topology could be approximated stat-
ically. Classical abstract interpretation or static analysis techniques [Deu94, Deu95,
SRH96, SP81] can be used here but a more approximate methodology like balloon
types [Alm97] could also be useful.

Balloon types [Alm97]| express a way of restricting the object topology by typing.
The balloon types topology is a sub-case of the topology that is sufficient for confluence
of ASP programs and it is simple to verify (typing). Indeed, if we applied a balloon
types methodology, it would create an objects topology where references between
activities form a tree and these reference only link active objects. In ASP, passive
objects can reference active ones. Thus the topology of objects ensured by [Alm97] is
too restrictive.

Another static approximations of tree topology properties have been performed
in [ACGO0], it is less restrictive than balloon types. The topology of object graph
have been analyzed by a static analysis [SRH96] in order to parallelize programs
deterministically.

17.2 Components

Taking advantage of the ASP properties, this section demonstrates how to build hi-
erarchical, distributed, and deterministic components. This could be considered as a
first study in order to provide a calculus modeling asynchronous and distributed com-

149

150 Chapter 17. Perspectives

ponents. In order to adapt ASP calculus to component programming, one could first
describe a calculus inspired by ASP and the following diagrams. The most interesting
perspective consists in studying the problem of reconfigurations of such components
which could probably be linked with the reconfiguration of process networks.

As already explained, DON property can be considered as a generalization of
process networks in an object-oriented framework. Furthermore, process networks are
actually not too far from asynchronous and distributed components. While process
networks channels just carry data, component interconnections carry method calls in
a much more typed and object-oriented way. Out of order futures updates is also an
important feature not present in process networks.

17.2.1 From Objects to Components

We consider a simple component model informally defined as follows. A primitive
component is defined from an activity « (a root active object and a set of passive
objects), a set of Server Interfaces (SI), and a set of Client Interfaces (CI).

Server Interface Client Interface

ST |— —| crL

SI, |— —| oL

Figure 17.1: A primitive component

Remember that M, p, is the set of M (M is itself a set of method labels) that can
appear in the Serve(M) instructions of a given activity . Each Server Interface SI;
is a subset of the served methods (SI; C Upsep, . M) 19 A client interface (CI;) is a

@40

reference to an(other) activity contained in any (single) attribute (field) of an activity.

From primitive components, composite components can be built by interconnecting
primitive components and exporting some SIs and Cls.

Figure 17.2 represents a component version of Fibonacci example of 9.4. A prim-
itive component Add can be built up from active object Add. Consl and Cons2
have been merged in a composite component (composed of two primitive compo-
nents). A controller component Cont has been added. It exports a server interface
(ComputeFib(k)) taking an integer k and forwards k — 1 times its input to ConsI.
According to the program of 9.4, Cons2 sends send requests on the client interface.
These components are connected in a single composite component F'IB exporting a
server interface ComputeFib(k) and producing Fib(1)... Fib(k) on a client interface
send(i).

19Served methods that do not belong to an interface correspond to asynchronous calls that can
only be internal to a component.

17.2. Components 151

FIB
fib(n+2)
fib(n)
fib(n+1)
| Lo i
ComputeFib(k)I (Cont HH— @_']_ @ ' send(ﬁg)((ﬁll))%k))
| . sen

Figure 17.2: A composite component

17.2.2 Deterministic components

Using ASP properties, we introduce deterministic assemblage of asynchronous com-
ponents.

Definition 17.1 (Deterministic Primitive Component (DPC)) A DPC is a
primitive component defined from an activity «. It verifies that server interfaces SI
are disjoint subsets of the served method of the active object of a such that every
M € Mgp, is included in a single SI;, let us first note:

Mar, = {M,lj € 7}
Then, let K; be disjoint subsets of J, in fact one only needs that:
ICN Viel, K;CJ
Then the SI; server interfaces should verify:
SI; = U M; p such thatVk,i# k= SL,NSI, =0
jEKi,MjEMapo
This definition implies that the set K; are disjoint (consequently one only needs
K; CJ):
i A7 => K # Ky =10

DPC ensure that there is no interference between the services on the different
interfaces: request sending on different interfaces will not interfere.

152 Chapter 17. Perspectives

Definition 17.2 (Deterministic Composite Component (DCC))
A DCC is

e cither a DPC,

e or a composite components connecting DCC such that at any point in time, the
binding between its sub-components (CI;,SI;) is one to one.

Of course, the binding between components can be cyclic. The deterministic
behavior of a DCC is a direct consequence of properties of Chapter 11. Indeed, a
DCC assemblage verifies the DON property: there is no interference between the
services on different interfaces inside a primitive component (DPC), and two CI will
not be (non-deterministically) merged to a single SI (DCC).

Property 17.1 (DCC determinism) DCC components behave deterministically.

Note that the composite components remain deterministic if two CI from the same
primitive component are merged to a single SI. But this generalization is no more valid
in the case of composite components connection.

17.2.3 Components and Futures

Cl C2 LlC3
l I

| I

result = C2.compute(p) compute :___C(Sﬁ) —

—|— T ~ (C3.com C4.com L 1C4

Display.print(result) - (/p(p), 4.comp()) T 1

Figure 17.3: Components and Futures

Consider the component assemblage of Figure 17.3; for the sake of simplicity,
components and active object names are identified. In this example, C'1 calls C'2 on
the interface compute, the result of this call will be printed. C2, within the method
compute, builds a result that includes parts coming from delegation to C3 and C4.

First of all, all the calls being asynchronous, the coupling between components
remains quite low: C2 is not blocked while C3 and C4 are computing their part of
the answer. Furthermore, without any explicit continuation or call back, the part of
the result computed by C3 and C'4 will transparently reach C1.

This kind of asynchronous assemblage is much more structured and transparent
than call back solutions, and it enables unlimited composition. Moreover, whatever
the number of delegations, whatever the depth of the composite, if definitions 17.1
and 17.2 are ensured, the composition is deterministic.

17.3. Generalizing Confluence 153

17.3 Generalizing Confluence

In the case of a server applications, there may be no way of ensuring the DON property.
But this server may behave deterministically because it has a functional behavior: its
internal state is never modified. In other words, it is a stateless service. Formalizing
the fact that such an application server has no influence on confluence seems to be
an interesting perspective. But a new equivalence relation and a new confluence
proof would be needed and a complete study of this case is not obvious. Interesting
perspectives consist in studying the interleaving of such functional active objects with
imperative ones.

17.4 Temporized Requests

We have made a first study in order to have a general confluence property in ASP
without hypothesis on objects topology and behavior. The idea was to have a time
expressing the causality between requests. A time is appended to each request and
to each activity (ezecution time). The principle is that a request will only be served
when its time is greater or equal to the time of its destination activity.

Moreover, we impose that the time appended to a request is greater than the
time of the request that creates this request (for causality reasons). Furthermore, if
a request invokes two requests the second one has a time greater than the first one
(sequential execution inside a request). That can be performed easily by considering
the time as a list of integers ordered lexically.

The problem now is to define the evolution of the time inside each activity without
using a centralized server which would be unsatisfactory and unadapted to a wide-
range distributed language.

In the case where there is no cycle in the activities dependence graph, a correct
algorithm consists in having a time that continuously grows in the root activities.
More precisely, the request are treated without condition and the activity time is
fixed to the treated request time. For any other activity the time must be either the
time of the treated request or (if no request is treated) the greatest lower bound of all
activities referencing this activity. With such an algorithm, we ensure that an activity
does not receive a request that it should have treated in the past. Equivalently, there is
no request sent with a time strictly smaller than the execution time of the destination
activity.

We proved this solution allows to order treating of requests for a fixed DAG topol-
ogy between activities. The main problem is not variable topology, but cycles. In the
sub-case where there is no overlapping cycles, another less simple algorithm can be
found. In the most general case a much more complex algorithm seems to work but
we did not manage to prove it yet and it is too much complex to be used in practice!

154 Chapter 17. Perspectives

17.5 Mobility

ASP is a calculus suited for expressing distributed objects: as references to active
objects are global, each activity can be placed on a different machine. We did not
explicitly include a primitive for moving objects between different machines. Usually,
active objects are identified by their activity name (a, 3...). The Active primitive
can be used to create a new activity with the same active object. It will create a clone
of the initial activity, potentially at a different location, hence simulating mobility.
However, it does not move the pending requests which would still be treated in the
old activity.

Thus one has to continue the old activity by unceasingly forwarding (in FIFO
order) all the requests in the requests queue to the newly created activity. The old
activity acts as a forwarder and is also useful for storing and replying previously
computed futures values. Using this method, all the request and futures will be
automatically forwarded by the old activity.

Note that this methodology first required that any activity can have the location
of its active object. This can be encoded in ASP. Then one could migrate an object
with:

newao = Active(thisActivity); Create Forwarders(newao); Repeat(Serve(M))

Where CreateForwarders(newao) replaces the body of each method of the current
activity by a forwarded call:

mj = s(z,y).newao.m;(y)

This necessitate to have updatable methods in ASP. Updatable methods could be
added to ASP or be encoded by updatable fields containing lambda-expressions.
Such work is, clearly strongly related to the assertion:

surrogate = ¢(s)s.alias(s.clone).

in Qjeblik.

The number of replies could be lowered by authorizing a future to be returned
from an activity that was not the original destination of the request. In that case, a
new mechanism for finding the activity that has calculated the value of a future would
be necessary?’.

20Tn the absence of mobility the activity that calculates the value associated to the future is encoded
in the future identifier.

Appendix A

Another Proof of Confluence

A.1 Aims and Interest

This appendix gives another confluence property with its proof. Even if the follow-
ing confluence property is much less interesting than the general confluence property
presented in Chapter 11, It is simpler and more adapted to the tree topology deter-
minism. Indeed, in that case the confluence property is stronger as it is valid modulo
a weaker equivalence relation: renaming of futures and locations instead of future
updates. Indeed in the case of a tree topology, there is no cycle in the dependence
between futures and futures can be exactly updated in all activities. In that case
global confluence is a direct corollary of local confluence.

The proofs below will require to study cases that have not been studied in Chap-
ter 13. Indeed, the proof presented in this appendix is more complex but do not
require to introduce the equivalence modulo futures which must verify a lot of lemma.
More precisely, the cases detailed here are generally balanced with the Property 12.13
(=F and reduction) which required a long proof.

Finally, we aim at proving the following property

Property A.1 (Tree Dependence Graph Determinacy)
If, at every step of the reduction (VQ s.t. P — Q), the object dependence graph (of
Q) forms a set of trees then the reduction is deterministic:

P—Q QITRI
% =—> 3Ry, Ry Q2 — Ry
P—>Q2 RlERQ

A.2 Hypothesis

Let us give a formalization of the tree topology previously introduced in this study.
We will suppose that the object dependence graph is a tree. The idea is that if two
objects have a generalized reference on a third one then they will be able to send
requests concurrently.

155

156 Appendix A. Another Proof of Confluence

Hypothesis HA.1 The object dependence graph is a set of trees.
That is to say, at every time, each active object has a unique father in the depen-
dence graph and there is no cycle of dependencies:

{Voz, B,7 € Act,OA(a) € BAOA(a) ey = B=1
An >0, ABy...0y € Act, Vi <nOA(Bi) € Biv1, OA(By) € Bo

We can deduct the following property that ensures that under hypothesis (HA.1)
there is no cycle of future references:

Property A.2 ((HA.1) = no cycle of futures)

Vi < nfut(f77%) € a,,,

(HA1) = An 20, Aby...[0n € Act, {fUt(fZi_)ﬁ”) € 04

A.3 Context

The local confluence property is the following one:

Property A.3 (Local confluence)

Q1 —, R1
P 2
{P IS gl = 3Ry, Ry (Q2 =), Ry
”2 2 R1 = R2

Where — |, is derived from the parallel reduction —. —, is defined below.

A.3.1 The Special Case of the rerLy Rule

The problem here is the possible propagation of generalized references to each future.
To be able to find a common term in one step, one may need to update in parallel
several references to a given future (f7~#) both in the same and in different activities.
—||, s equal to — for each rule except REPLY. The new REPLY rule is given below. In
the following rule, a set of activities {«;} will have a set of future references {oq; (¢5:))}
updated:

Fo(f]™%) =15
Vj e {1..m} Vi € {1.n;} aaj(Lj,-)) — fut(f]_’ﬁ)
Oaji = Copy&Merge(og, Ly ; Oaji—1,Lji) (REPLY||)

aj[(l(t'j;aajo;['(\J';F(\J';R(,’rj;f(\j] || /B[asf;o-ﬂ;[hFﬂaRhff] || P—
[0 0am;ita;s Foys Rays fo,] |l Blagsog; s Fps Rps f6] || P

This rule is a more general case of the reply rule. ASP calculus still have the same
properties; and, to simplify, we will use the new rREPLY|| rule only when it is necessary.
Note that one of the most important constraint on the application of the REPLY]|
rule is that it must be the same future that is updated several times.Moreover, as it is

A.3. Context 157

the same future that is updated and there is no cycle of futures that case, the several
replies can be performed in any order without consequence.
For the confluence property, we need:

P1 —>||2 P{

P P,
{ P s p = 3PP Q Py, P (A.1)
I =2 P =P
But we will only prove that:
Py —, P
P— P 2
{ P Pl = 3P|, P;,{ P, —, P} (A.2)
2 Pl — Pl
1=17

Indeed, at first, we can prove that: A.2 = A.1. Of course the reverse implication
is trivial.

Proof : We will only focus on the case where both of the applied rules are REPLY||.
Indeed, the case REPLY|| vs. — is simpler and — vs. — is obvious.

= —>||2

-
=~

R
K
o
K
5
0
0
e
g
0
0
.
0

Figure A.1: Diagram of the proof with REPLY]]

Let us divide the rule REPLY|| in several REPLY rules.

Then we can apply several times the confluence A.2 to each pair of REPLY rule. In
the most general case such a process is not sufficient because it can never terminate?'.
But, here, reduction terminates because one can verify easily that in the case where
there is no cycle of future, the number of references to a future f@—# strictly decreases
with every application of the REPLY rule on the future f*~#. Of course, the number
of future references is trivially finite.

One would only need to verify that the set of REPLY|| rules applied to P; can be
merged in a single REPLY|| rule; and the same thing for P. This is ensured by:

21Recall that in the case where reduction terminates local confluence implies confluence.

158 Appendix A. Another Proof of Confluence

e verifying that the future updated is the same in all rules (trivial);

e verifying that all occurrences of this future are present in the intermediate term
P;. Indeed no occurrence of the future f can appear during the update of the
future f because there is no cycle of futures.

A.3.2 Lemmas

Most of lemmas useful for the proof of this property have been given in 13.2. They
generally involve =p, but the lemmas that are used here could be proved with the
simple equivalence relation = that is the renaming of futures identifiers and locations.

Recall = is the equality modulo renaming of futures and locations.

In the following we ill not detail technical points corresponding to renamings.
Like in the proofs of part V we always suppose that futures and locations involved in
reduction can be chosen and renamed in a convenient way. This could be showed to
be correct by proving the following lemma.

Lemma A.4 (renaming and parallel reduction)
a=d ANd —b=T,a— b ANV =b
Lemma A.5 (Renaming and copy)
copy(t,0)0 = copy (0, 00)

The following corollaries are direct consequences of the Property 13.6 and its
corollary 13.7 (copy and store update):

Corollary A.6 (Copy and Store Append) There is a way of choosing locations
allocated by Copy&Merge(a, i ; o',1') such that:

o' 2 Copy&Merge(o1,t ; 09,1') = Copy&Merge(oy,1 5 o' :: 9,1')
Corollary A.7 (Independent Copy and Merge) If 11,19 € dom(a")

Copy&Merge(o, i ; Copy&Merge(a',t' ; " 19),01) =
Copy&Merge(a',i ; Copy&Merge(o,t; o”,11),12)

The following lemma can be considered as analogous to Property 13.6 and its
corollary 13.7:

Lemma A.8 If /' ¢ dom(c) then there is a way of choosing locations allocated by
Copy&Merge(oy,t 5 a9,1') such that:

Copy&Merge(o1,t ; a9+ 0,i') = Copy&Merge(oy,1 5 o9,') + 0

A.4. Proof of the Local Confluence 159

A.4 Proof of the Local Confluence

The proof of the local confluence (Property A.3) is a case study on the critical pairs
between reduction rules. We will label each case in the same way than in the proof
of Section 13.3.

Moreover most cases have already been proved in 13.3. Indeed, it is easy to verify
that the proofs performed for local confluence did not really necessitate a notion
of equivalence modulo futures??. More precisely, the cases where no RepLy rule is
involved can be proved again with our new hypothesis. These proofs would be the
same as the one performed in 13.3.

We will detail below the cases where one of the applied rule is REPLY.

A.4.1 Conflicts Between Localized and rerry Rules
LOCAL/REPLY

Orocar = QrepPLY

If there is a conflict, then the local rule can only be: INVOKE or UPDATE. Indeed one
cannot access to a field or clone a future and STOREALLOC stores a new reduced object
that cannot be a future. More precisely, if there is no common location between the
store updated by REPLY and the store manipulated by LocAL then the case is similar
to the LOCAL/REQUEST case of page 128. We will focus on the case of the UPDATE rule,
the proof in the case of the INVOKE rule is similar.

UPDATE The confluence comes from two facts. First, the updated object cannot
be a future (else, a wait-by-necessity would occur). And secondly, as expected, the
update operation is not directly influenced by the content of the new field value.

The following rules are applied (the UPDATE rule occur in the activity «):

oa(t) = [li = tsmj = s(wj,y7)a;]5E 77, k€lon
el k—1,k'€k+1...
o =l =u;ly =5l = yrymy = g(l‘ijj)aj]_zjeel,,m e (UPDATE)

(Redlg :=], 00) —s (R[], {t = o'} + 04)

oalia) = fut(f]77) Fs(fi7")=1; ol = CopyeMerge(op, s ; Tasia)

alaa; 00 ta; Fai Rai fu] || Blas; g5 053 Fys R fo] | P — (REPLY)
alan; 04 ta; Fos Rai fo] || Blagsops es; Fas Res f5] || P

First, as mentioned earlier, the modified object is not a future, thus ¢ # t9. Then
we can apply the corollary 13.7 (Copy and Store Append) to prove that

{v = o'} + Copy&Merge(og, L ; Ou,t2) = Copy&cMerge(ag, i ; {t — o'} + 04, t2)

22 Equivalence modulo futures was more a constraint for these proof, but, of course it was necessary
for the remainder of the proofs.

160 Appendix A. Another Proof of Confluence

This proves that both applications can be exchanged. Indeed,
{¢t = o'} + Copy&Merge(og, L5 ; 0a,t2) is the store of « after the sequence REPLY LOCAE

LOCAL REPLY
—

and Copy&Merge(og,tf ; {¢t — 0'} + 0a,12) after the sequence —

Qrocar = Prepry
In that case, the future isolation property (Property 11.1) is sufficient to conclude.

NEWACT /REPLY

OneEwacT — OREPLY
We can prove that a future can be safely activated and the update of the reply can

appear after. Conflicts may only appear when the updated future belongs to the deep
copy of the activated object. That is to say if 15 € dom(copy(.”,0)) in the following
rules (else the two reduction would not interfere):

Figure A.2: Activation of an object containing a future

A.4. Proof of the Local Confluence 161

7 fresh activity /' & dom(o) or={/— A0(y)} =0
oy = copy(”, o) Service = (if mj = 0 then FifoService else ¢".m;())

(NEWACT)
a[R[Active(t" ,m;)]; 05 10 Fo; Ros fo] || P

—s a[R[(];015 005 Fos R fa Service;o;0";0:0:0] || P
[[7 7 7 7 ’ 7) v) bl)

o(t2) = fut(ff_w) Fg(f§_>’8) =1 o9 = Copy&Merge(oa,tf ; 0,2)

2

a[a(‘;a;[“;Fa;R“;fﬂ] ” /B[ACtive(Lamj);aﬁ;[*‘:J‘;Fﬁ;st;f\j] || Q — (REPLY)
alan;o9;ta; Foy Ros fo) || Blagsoss s Fay Res fs] || Q

Where P = (]|Q.

Confluence is due to the fact that the future update performed by the REPLY rule
and the activation of an object (NEwAcT) both perform a deep copy.

Moreover, modulo renaming we can suppose that ' & dom(o3) thus we can apply
the following rule:

7 fresh activity /' & dom(o) oy ={/— AO(y)} 0o
or, = copy(.",a2) Service = (if mj = then FifoService else ¢".m;())

(NEWACT)
Oé[R[ACtiU@(L”, mj)]; 025 La; Foj Raj; /a] ” P
— a[R[]; 095 ta; Fos Ras fo] || v[Service; o755 0:0;0] || P

Furthermore, as 15 € dom(copy(:”, o)) one has o-(12) = fut(f° ") and thus:

Fs(f™") = 1
o(12) = fut(f{~") o} = CopyeMerge(op,is 3 01,12)
oy(t2) = fut(ff_)ﬁ) oy = Copy&Merge(op, iy ; 0y, 12)
o[RIVY; 013 1o Foi o fo] || BlActive(t,my)s o 153 B s £3]) ¢
y[Service; oy "3 0:0; 0] || Q' —
a[R[(]; 015 ta; Fos Ras fo] || Blas; o; 1s5 Fgs Rg; fo] ||
y[Service; all; 1" 0;0;0] || Q'

REPLY]|)

Firstly o) = o} is trivial because the two rules modify independent parts of the
store and applying corollary A.6 is sufficient to equate the two stores:

oy = Copy&Merge(og, Ly ; 01,12)
= Copy&Merge(og, i ; {¢' — AO(7y)} : 0,12)
= {/ +— AO(7)} :: Copy&Merge(og, s ; 0,13) corollary A.6
/!

Now, one only has to prove that: ¢” =

/
Y =05 Remember that .

162 Appendix A. Another Proof of Confluence

ol = copy (s, CopykMerge(ag,if 5 0,12))
— copy(¥" Merge(us, 0, copyeg, o) 1y — 121)
Lemma A.5
= copy (", copy(vs,08){if — 12}0 +0)
where 6 ensures that only ¢ is updated
copy (", copy(12,05{ts — 12}0) + o)
copy(ia, o{ ey — 12 }0) + copy(V’, o)
Lemma 13.5 with 2 € dom(copy(.”, o))
copy(ey,op){er — 12}0 + copy(”, o)

Lemma A.5
= Copy&Merge(og,tp ; copy(l’,0),t2)
— !
AnEwACT — ﬁREPLY

The Property 11.1 (futures and parameters isolation) ensures that
Inpwact & copy(Lf,o) and the independence between the activated object and
the future value.

REPLY/NEWSERVICE

No conflict.

ENDSERVICE/REPLY

There could be a conflict because the two rules access to the futures values list but,
as each future value is independent, the storage of a future and the reading of another
one are, in fact, independents.

A.4.2 Concurrent replies: REPLY /REPLY

a1 = Q9

In that case both future updates are necessarily independent. Thus there is no
conflict. Note that a possible future reference inside the updated future value cannot
cause an interference here (consequence of corollary A.7).

B = P

No conflict because the sending of a reply does not modify the sender state.

a; = B and ay # B
Let us denote 8 = a1 = (2, a = ay and v = f.
The future updates interfere if the update of a future performed in a REPLYmodify
the future value updated by the other REPLYTUle
In other words, if t2 € copy(ts,0p) in the following rules:

A.4. Proof of the Local Confluence 163

' m”
e

Figure A.3: Concurrent Replies

oal) = fut(f7™) Fa(ff*)=1; ol = CopyeMerge(ap,iy ; 0arir)

afaa;Oasta; Fos Ras fol || Blag;os;is; Fgs Ras f5] || P — (REPLY)
03045 ba; Fos Ras fol | Blagsop;is; Fps Ras f5] || P

o5(12) = fut(f] %) Fs(f] 7°)=1y ol = CopyeMerge(os, 1t} ; 0,12)

Blagsop;eps Fas Ba; 5] || 8las; os; 63 Fs; Rss [] || @ — (REPLY)
Blags o tss Fs R fa] || 6lass o tes Fiss Rss fo] || Q@

Where, P and @ are such that (let us introduce a new sub-configuration R):
6|P = ol|Q = af|§|| R.

In the following we suppose that « # ¢ thus the first reply does not modify the
store of ¢. If it was not the case, because Property A.2 ensures that there is no cycle
of future, the update of the future f; in the first rule (in o) cannot modify the value
of the future updated by the second rule (f; in &) too?, even if a = ¢ (else we would
have the case of Figure 11.7). Then even if the two activities were the same there

2Remember that we already consider that the update of the future f; modify the value of the
future f;.

164 Appendix A. Another Proof of Confluence

could not be any cyclic dependencies in the future updates and the fact that « = 6
would not show technical difficulties. Finally, for simplicity we consider that a # 6,
the case @ = ¢ can be easily deduced from the following proof.

First, one can apply the first REPLY rule on the configuration obtained by the
second one:

oh(u) = fut(fi77) Fa(f7F) =14
Opl = Copy&Merge(a'ﬁ,Lf Oy ll)

(REPLY)
a[”a;o'a;’a;Fa’;Ra;fa] || ﬂ[”i;o'lg;fd;Fﬁ;Rﬁ;f&] || 0 || R—
afaa; 0atstas Foi Ras fol || Blags og; s Fgs Ras o] | 6 || R

where o’ﬁ # op and

Ol = Copy&Merge(o;i,Lf P Oayll)
= Copy&Merge(Copy&Merge(%,L’f 0B, L2)sLf 5 Tayll)

Regarding the other rule, the future f; appears both in o), and in o because
Ly € copy(ty,0p) implies:
ol (t) = Copy&Merge(og,tf ; Oq,t1)(t)
— Merge(u1, 0a, copy(is, o5){ts — uh)0)
= (copy(ep, o)ty — u}b +0a) (1)
= (copy(¢y, 0'5){Lfl<— 11 }0) (120) if 1 = 190
= 0p(t2) = fut(f])
In the following, ¢ = 126 will denote the location of the future reference fut(f]l_’é) in
activity a. Of course, we can suppose that ¢ is a fresh location and ¢ ¢ dom(6).
Then we update the future in both activities with the rule:

1

Fs(fi %) =4
o5(t2) = fut(f]) o = CopyeMerge(os, s 5 0, 12)
oh (1) = fut(f]) oar = Copy&Merge(os, iy 5 0g,t)

@aa; 045 ta; Foi; Ras fo] || Blags og;is; F; R fa] |l
Olas; 065183 Fsy Rss fs] || R —
afta; Gazi ta; Fo; Ras fo] || Blags o; a3 Fp; Rss fa] |l
8las; 065153 Fs; sy fs] || R

(REPLY]])

Let us denote by @' the renaming applied in the update of the future f; (in
Copy&Merge(og,tf ; 0q,t1)): 0 = {if «— 01 }0 and ¢ the symmetrical renam-
ing applied in the update of the future f; (in Copy&Merge(os, iy ; 04, 1)) thus
0'(¢y) = w1, 0'(t2) = ¢ and (/) = . Modulo renaming, we can consider that
codom(v)) N dom(8') = 0.

A.4. Proof of the Local Confluence 165

We can also suppose that 1 can also be applied in Copy&Merge(os, (s ; 0p,t2)
that is to say, first ¢ ¢ o and more generally, codom(1) Nog = (. More precisely, we
have

Copy&Merge(os, s ; 0g,12) = copy(is,o8))' + 0o
where ' = 9{¢ — 12} in order to ensure ¢'(v;) = 2.
It is important to note that:

()"0 = 120" = o = 18’ = (()9)¢' because ¢ ¢ dom(6)

And thus:
1/)/0/ — wel
In the same way, we extend 6’ in order to be applied in the update future f; in
Copy&Merge(a, iy ; 0a,t1) that is to say 6 must rename more locations. More pre-
cisely but less intuitively, we could have taken 6’ valid for Copy&Merge(ojs, iy 5 Oa,t1)
and show that it could be applied in Copy&Merge(os,tf ; Ta,t1).

0oz = Copy&Merge(os, U5 o ol)
= C’opy&Merge(ag,Lf ; Copy&Merge(og,Lf 5 Oayt1),t)
= C’opy&Merge(ag,Lf i (copy(iy,08)0 +04),0)
Copy&Merge(as, s 5 (copy(s,a5)0),1) + 0a
v ¢ dom(o,) and Lemma A.8
copy (i, a8) + (copy(uy, 95)6") + o
(copy(e, o5v0) + copy(t1,080")) + 04 Lemma A.5

(copy(e, copy (v, o5%) + 030')) + 0
v € dom(copy(t1,050") and Lemma 13.5 (multiple copies)

= (copy (tf, copy(ts, o6)Y + oﬂ)e) + 0q
codom()) N dom(6') = 0 and Lemma A.5
= (copy (vfs copy(ty, o5)Y" + ag)e') + 04 because '8 = ¢’

Copy&Merge(Copy&Merge(os, Uy 5 08,12),Lf 5 Oastl1) = Oal

And finally the configurations obtained by the two sequences of applications of the
REPLY rules are the same. Thus the critical pair REPLY /REPLY is confluent.

A.4.3 Interfering requests and replies: REQUEST/REPLY

Preprty = Orequest O Brequest = Prepry
Corollary of the Property 11.1 about futures and parameters isolations. Any adding

of request parameter to the store is then independent from other operations on this
store.

ﬂREQUEST = OREPLY
No interference because the two modifications of the store are completely indepen-

dent.

166 Appendix A. Another Proof of Confluence

ORreQUEST — (YREPLY
Let us denote a = QAreqQuEsT — QREPLY B = ﬂREQUEST and v = Brepry -

This case is very similar to the concurrent replies. Thus we will briefly describe
the proof because technical details are strongly similar to the case REPLY /REPLYwith
a1 = fa.

The two store modifications are not independent when s € dom(copy(!/,04)). In-
deed, 13 = ¢ is impossible, and else, if 15 ¢ dom(copy(V',04)) then the future update
and the request send are independent.

Figure A.4: Interfering requests and replies: arpquest = Qrepry = &

oa(t) = AO(B) ' & dom(op) f;-x_)ﬁ new future vy & dom(oa)

o = Copy&Merge(oa, 1’ ; op,") oo ={ty— fut(f;‘qﬁ)} Oy

a[Re.mj ()]s 003 tas Fos Ras fal || Blass ops ess Fiss Res 5] | Q —
Q[R5 0 ta Foy Ros ful || Blas; ol Fis R [mys 3 £27P)s 101 1 Q

(REQUEST)

A.4. Proof of the Local Confluence 167

5—
f' Y

oa(t2) = fut(ff_w) F.(f;77) =y o, = Copy&Merge(oy, L5 ; Ta,t2)

O[R101,(1))s 0ai 1o Fos o o] || Yo ogi s Bys s f,] | P — (REPLY)
a[R~[1-7”J’(1/)]§UIa§IQQFO;Rc\;f«,\'] H 7[(17,307;17,;F7;R7;fq,] ” P

Where 7[|P = 5(|Q = 7|8/ R.
First, one can apply the REQUEST rule on the configuration obtained by the appli-
cation of the REPLY rule:

oa(t) = AO(B) V' & dom(op) f;‘_’ﬁ new future Vs & dom(aa)
op1 = Copy&Merge(ay, i ; og,.") ol = {L'f — fut(fja_)ﬁ)} ol

O‘[R[L'mj(u)];o';;l’cv;Fa;B(x;fu] || /8[(1“1’;0'5;I.J;FJ;Rﬁ;fJ] || Q -
A[R[Y]; 0ats b Fus Ros o] | Blags ot s Fas Rp = [mys s £277)] 1) Q

(REQUEST)

Then, one has:

a1 = {1} fut(ff77)} = o,
={s fut(f;xqﬁ)} it Copy&Merge(0y,Lf 5 Oa,t2)

and:
o1 = Copy&Merge(o,, ' ; og,t")
= Copy&Merge(Copy&Merge(oy,tf 5 Oayt2),t' 5 0p,0")

Concerning the configuration obtained by the REQUEST rule, f; appears both in o/,

and in oz because ¢y € dom(copy(t/,04,)) implies, there is ¢ such that (same reasoning
than in page 164):

op(t) = Copy&Merge(oa,t' 5 op,0")(1)
= ... = Ua(LQ) = fut(‘ff—ﬁ)

where ¢ = 1960 and 6§ is the renaming used in Copy&Merge(oq,t' ; op,t").
Then, the reply rule have to be applied to update the two references to future f;:

5—
s Fy(f;) = Lf
0alta) = fut(f;"7) oaz = Copy&Merge(oy, Ly ; On,t2)
o5(e) = fut(ff_w) op2 = Copy&Merge(ay,tf 5 0, 1)

o[R[V]; 045 ta; Fos Raj fol | (REPLY]|)
Blag; ol 15 Fos R o= [mys o5 £57)s fal | Ylansos g3 By Bos /5] || R —
Oé[/R[lH; 002 tas Fas Ra; fa] H
Blass o; 053 Fos Ry w2 Imys s (7770 f] | 7lans 05003 By Ry 1] | R

168 Appendix A. Another Proof of Confluence

Then, we must prove that 0,1 = 042 and 051 = 0ps.

0oz = Copy&Merge(o, L5 ; O, l2)
= Copy&Merge(oy, iy 5 {1 — fut(fja_)ﬁ)} O, l2)

= {Llf — fut(fja_’ﬁ)} it Copy&Merge(oy, L5 3 Oa,ta) corollary A.6
= Oal
The proof of o3y = 0p2 is more complicated but strongly similar to the case

REPLY/REPLY of page 165:

op2 = Copy&eMerge(oy, iy ; 05, 12)
= Copy&Merge(o,tf ; Copy&Merge(oa,t ; op,t"),t)
cf. page 165
= Copy&Merge(Copy&Merge(oy,tf 3 Oayt2),t' 5 03,0")
because ¢ = 1,6 and 6 appears in Copy&Merge(oq,t' ; op,t").

A.4.4 Concurrent Requests Sending: REQUEST/REQUEST

The only case different from the confluence proof in 13.3 is the case where 81 =
B2. That is to say, two requests come from different activities and have the same
destination. The hypothesis (HA.1) disallows such interferences.

Index of Notations

Concepts

Active object Root object of an activity 55

Activity A process made of a single active object and a set of 55
passive objects

Wait-by-necessity Blocking of execution upon a strict operation on a future: 56
a[R[t..],0a.-] A oalt) = fut(f]7)

Service Method Method started upon activation: 58
mj in Active(a,m;)

Request Asynchronous remote method call 55

Future Represents the result of a request before the response is 56
sent back

Future value Value associated to a future f;* —p 59
copy(1, o) where {f*% — .} € F,

Computed future A future which has a value associated: 82
fia_’ﬁ where fio‘_’ﬁ € dom(Fg)

Not (yet) updated future Reference to a computed future 87

Partial future value Future value containing references to futures 59

Closed term Term without free variable (fv(a) = 0) 52

Source term Closed term without location 52
fo(a)=0Alocs(a) =10

Reduced object Object with all fields reduced to a location: 52
0= [li = usmy = o(xj,9;)a;)e 7,

Syntax: ASP source terms

[l; = bs; Object definition 52

m; = <(zj,y5)a;)5C 1

a.l; Field access 52

al;i:="b Field update 52

a.m;(b) Method call 52

clone(a) Superficial copy 52

Active(a, m;) Object activation 56

Serve(M) Request service 56

169

170 Index of Notations

M list of method labels 96
letx=ainb [m = ¢(z,z)bl.m(a) 52
a;b [m = ¢(z,2")bl.m(a) 52
Repeat(a) [repeat = ¢(x).a; x.repeat()].repeat() 70
FifoService Repeat(Serve(M)) 70

ASP intermediate terms and semantics structures

(a,0) Sequential configuration 53

a, Activities: alaa;0a;ta; Fa; Ra; fal 55
[current term, store, active object, future values, pending
requests, current future]

L Locations 52
locs(a) Set of locations occurring in a 52
P,Q Configuration 70
af f,b a with continuation b 56
f is the future associated with the configuration
AO(a) Generalized reference to the activity « 58
foop Future identifier 69
Fut(f2F) Future reference 70
r=[mj;u; i —P Request: asynchronous remote method call 55
Ro = {[mj; ; fia_)ﬂ 1} Pending requests: a queue of requests 69

General Notations

{a b} Association/finite mapping 53
0 :={b—c} Substitution 52
5 Transitive closure of any reduction — 81
D Disjoint union 82
L‘ o Restriction of (RSL) list L to labels belonging to M 84
L, n™ element of the list L 83
L Least upper bound 85
3 There is at most one 92
Stores

o Store: finite map from locations to objects (reduced or 53

generalized reference) o ::= {i; — 0;}

dom(co) set of locations defined by o 53
oo Append of disjoint stores 53
o+o Updates the values defined in ¢’ by those defined in o) 53

(c+0) ()= o(t) if v € dom(o)
o'(1) otherwise

171

Merge(t, 0, o) Store Merge: merges independently o and ¢’ except for 71
¢ which is taken from o’
Merge(i,0, 0"y =0'0+0c
where 0 = {// «— | /' € dom(c") Ndom(o)\{¢}, " fresh}
copy(t, o) Deep copy of o(¢) 71
Copy&Merge(a,t ; o',1) Appends in o’(i') a deep copy of o(v) 72
= Merge(/,0', copy(v,0){¢ < '})

Semantics

R Reduction context 53,70

Rla] Substitution inside a reduction context 53

—g Sequential reduction 54

— Parallel reduction 72

AN Parallel reduction where rule T is applied 90

=> Parallel Reduction with future updates: 90
Parallel reduction preceded by some reply rules

:T> Parallel Reduction with future updates where rule T is 90
applied:
RePeyt T # REPLY and REPLY® if T = REPLY

FL(«a) Futures list of « 76

RSL,, Request Sender List of a: 83
(RSLy), = B/ if fn =% € FL(a)

< RSL comparison: prefix order on sender activities 85

Mo, Potential services. 81
Static approximation of the set of M that can appear in
the Serve(M) instructions of ap:
P 5 QAQ = a[R[Serve(M)],...]] --.

=M e M,,

ActiveRefs(a) Set of active objects referenced by a: 76
{83 € dom(aa), 7a(1) = AO(B)}

FutureRefs(a) Set of futures referenced by a: 76
(777130 € dom(aa), galt) = fut(f777)}

Equivalences

= equality modulo renaming (alpha-conversion) of loca- 87
tions, futures, activitities and reordering of pending re-
quests

=F Equivalence modulo future replies/updates 87

Properties

172 Index of Notations
F PoOK Well formed configuration 7
RSL,X RSLg RSL compatibility 85
PXQ Configuration compatibility 85
P YP Configuration confluence: 91
AR, Ry, P, = Ri NPy = Ry ARy =5 Ry
Deterministic Object Network 92

DON(P)

Syntax of ASP

Source terms
a,be L=z

[[li = bism; = §($jayj)aj]§'€ell'.'.7n

| a.l;

|a.l; =10

| am; ()

| clone(a)
|Active(a, m;)

|Serve(M)

variable,

object definition,

field access,

field update,

method call,

superficial copy,

activates object:

deep copy + activity creation
m; is the activity method
or () for FIFO service
Serves a request among

a set of method labels,

Where M is a set of method labels used to specify which request has to be served.

M:ml,...

Intermediate terms

Terms

a,be L =z

Activities

|l = bismy = oz, y5)a50581

| a.l;

|a.l; ==

| a.m;(b)

| clone(a)
|Active(a, m;)
|Serve(M)

| ¢

la A+ f,b

>, M

variable,

object definition,
field access,

field update,

method call,
superficial copy,
object activation,
service primitive,
location

a with continuation b

P,Q == ala;o;0 F;R; f] || Bl - -

173

174 Syntax of ASP

Requests
R = {[myi i 77}

Future values

F = {fg_’a — o}

store
o= {u— 0;}
on=[l; = <"ym; = g(xj,yj).a§<m] reduced object
|AO(c) active object reference

| fut(f za _>’6) future reference

Operational Semantics

¢ & dom(o)
(STOREALLOC)
(Rlo],0) —5 (R[], {t — o} :: 0)
o(t) = [li = uymy = s(zj,y)as)i Sy, k€lan
(FIELD)
(Rle-lk],0) =5 (Rlu], 0)
o(0) =l = iym; = o(wj,95)a)je 17, k€ Lom
(INVOKE)
(Rle.m ()], 0) —s (Rlag{zr < t,yx — '}, 0)
o(v) = [li = wsmj = o(zj,95)a)S 7, kelm
o' =li=1;ly =l = u;my = C(xj,yj)aj];eeﬁf_}iil’k ehrden (UPDATE)
(Rl :=1"],0) =5 (R[], {t = o'} + o)
/' & dom(o)
(CLONE)

(Rlclone(1)],0) —s (R[], {V' — a(4)} :: o)

Table 9: Sequential Reduction

v € dom(copy(t,0))

' € dom(copy(t,0)) = locs(a(d')) C dom(copy(t, o))

/' € dom(copy(t,a)) = copy(e,o)(') = o(!)

Table 10: Deep copy

175

176 Operational Semantics

(a,0) =g (a',0")

ala; ;055 F5 R] || P— ala'so's 0 15 75 f] || P

(LOCAL)

~ fresh activity /' & dom(o) o ={'—A0(")} =0
oy = copy(V', o) Service = (if m; = @ then FifoService else v"".m;())

(NEWACT)
a[R[Active(s ,m;));0; 0, F; R; /] || P
— a[R[/];0';0; F; B [|| v[Service; o545 0;0;0] || P
go(1) = AO(B) V" & dom(op) £ new future vy & dom(oy)
o = Copy&Merge(oqa,t' ; 0p,1") o, ={ir— fut(fia_'ﬂ)} N0,
(REQUEST)
a[Rlemj ()]s 0 b Fo; o [o] || Blog; op; 155 Fai Rgs fo] || P —
Q[Res); 0hs tos Fo Ros fo] | Blag; o 153 Fisi R = [mys o £577; £ || P
R=R:[mji; f']=R" m; € M Vme M, m¢R
(SERVE)

a[R[Serve(M)]; 050 Fy Ry f] || P — alem;(e) f# fiR[[]; 054 75 R = R f1] || P

V' & dom(o) F'=F:{f—/} o' = Copy&Merge(o,i ; o,u)
afu v (f,a); 050 F5 B f || P— alaso's i F5 7 f'] || P

(ENDSERVICE)

ga(t) = fut(f]aﬁ) Fg(f?ﬁﬁ) =1y al, = Copy&Merge(oa,if ; Tu,t)

afan;0a;ta; Fus Ray o] || Blag;oss a5 Fa; R 5] || P — (REPLY)
alan; 0t Fos Ras fo] || Blagsops s Fas Rp; 5] || P

Table 11: Parallel reduction (used or modified values are non-gray)

Fy(f777) = 5
Vie{l.m} Vie{l.n} oa;(ji) = fut(f]7)
Oa;i = Copy&eMerge(op, iy 5 Oozi1,Lji) (REPLY||)

jlta;5 0003 ta;s Foys Rajs fo;] || Blags op; s Fs Ras fs] || P —
aj[(l(\j;aajnj;[(\]’;F(\j;R(\j;f(\j] || /B[GJ;U,B;I hFﬂaRhfi] || P

Table 12: Parallel replies

Overview of Properties

The idea of the following diagram is to give the dependences between properties and
definitions.

gimp-calculus — __

i N > ep
Local determinism \ \\
\ A N tore partitionning
A\

Sequgg]tllgﬁrep(fgction
\ mE%uivalen e

odulo replies

Well-formed
Parallel reduction

¥,

A f
BRSSO

\J
RSL compatibility \j

Equivalence modulo futures
. and reduction
Configuration
compatibility

Confluence

}

Deterministic Object Networks

« o «Tree determinism e o e

Figure 5: properties Diagram (very informal)

177

178 Overview of Properties

[AC95a)

[AC95b]

[AC96]

[ACGO0]

[Aghs6]

[Alm97]

[Ame89)]

[Ame92]

[AMST92]

Bibliography

Martin Abadi and Luca Cardelli. An imperative object calculus. In P. D.
Mosses, M. Nielsen, and M. I. Schwartzbach, editors, TAPSOFT ’95: The-
ory and Practice of Software Development, number 915 in LNCS, pages
471-485. Springer-Verlag, 1995.

Martin Abadi and Luca Cardelli. An imperative object calculus: Basic
typing and soundness. In SIPL ’95 - Proc. Second ACM SIGPLAN Work-
shop on State in Programming Languages. Technical Report UTUCDCS-
R-95-1900, Department of Computer Science, University of Illinois at
Urbana-Champaign, 1995.

Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag
New York, Inc., 1996.

Isabelle Attali, Denis Caromel, and Romain Guider. A step toward au-
tomatic distribution of java programs. In S. F. Smith and C. L. Talcott,
editors, 4th IFIP International Conference on Formal Methods for Open
Object-Based Distributed Systems, pages 141-161. Kluwer Academic Pub-
lishers, 2000.

Gul Agha. An overview of actor languages. ACM SIGPLAN Notices,
21(10):58-67, 1986.

Paulo Sergio Almeida. Balloon types: Controlling sharing of state in
data types. In Mehmet Akgit and Satoshi Matsuoka, editors, ECOOP 97
— Object-Oriented Programming 11th Furopean Conference, Jyvdskyld,
Finland, volume 1241, pages 32-59. Springer-Verlag, New York, NY, 1997.

Pierre America. Issues in the design of a parallel object-oriented language.
Formal Aspects of Computing, 1(4):366-411, 1989.

Pierre America. Formal techniques for parallel object-oriented languages.
Lecture Notes in Computer Science, 612:119-77, 1992.

G. Agha, I. A. Mason, S. Smith, and C. Talcott. Towards a theory of ac-
tor computation (extended abstract). In W. R. Cleaveland, editor, CON-
CUR’92: Proc. of the Third International Conference on Concurrency
Theory, pages 565-579. Springer, Berlin, Heidelberg, 1992.

179

180

Bibliography

[AMST97]

[Bar81]

[BCF02]

[BMMO2]

[BN02]

[BNOWY5]

[Bou92]

[Car93]

[Car95]

[CGY9]

[CGOO]

[CHS03]

[CHS04]

Gul Agha, Tan A. Mason, Scott F. Smith, and Carolyn L. Talcott. A
foundation for actor computation. Journal of Functional Programming,
7(1):1-72, 1997.

Henk P. Barendregt. The Lambda Calculus, Its Syntax and Semantics,
volume 103 of Studies in Logics and the Foundations of Mathematics.
North Holland, Amsterdam, The Netherlands, 1981.

Nick Benton, Luca Cardelli, and Cédric Fournet. Modern Concurrency
Abstractions for C#. In Proceedings of the 16th European Conference on
Object-Oriented Programming, pages 415-440. Springer-Verlag, 2002.

R. Bruni, J. Meseguer, and U. Montanari. Symmetric monoidal and carte-
sian double categories as a semantic framework for tile logic. Mathematical
Structures in Computer Science, 12(1):53-90, 2002.

Sébastien Briais and Uwe Nestmann. Mobile objects "must" move safely.
In Formal Methods for Open Object-Based Distributed Systems IV - Proc.
FMOODS 2002, University of Twente, the Netherlands. Kluwer Academic
Publishers, 2002.

Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Net-
work objects. Software—Practice and Ezperience, 25(54):87-130, 1995.

Gérard Boudol. Asynchrony and the m-calculus (note). Rapport de
Recherche 1702, INRIA Sophia-Antipolis, May 1992.

Denis Caromel. Toward a method of object-oriented concurrent program-
ming. Communications of the ACM, 36(9):90-102, September 1993.

Luca Cardelli. A language with distributed scope. In Conference Record
of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL’95), pages 286—297, San Francisco, January
22-25, 1995. ACM Press.

Luca Cardelli and Andrew D. Gordon. Types for mobile ambients. In
Proceedings of POPL ’99, pages 79-92. ACM, 1999.

Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical
Computer Science, 240(1):177-213, 2000. An extended abstract appeared
in Proceedings of FoSSaCS ’98: 140-155.

Denis Caromel, Ludovic Henrio, and Bernard P. Serpette. Asynchronous
sequential processes. Technical report, INRIA Sophia Antipolis, 2003.
RR-4753.

Denis Caromel, Ludovic Henrio, and Bernard P. Serpette. Asynchronous
and deterministic objects. In Proceedings of the 31st ACM Symposium
on Principles of Programming Languages (POPL). ACM Press, 2004. To

appear.

181

[CKV98]

[Deu94]

[Deuds]

[DZ01]

[FBL9S]

[Fes01]

[FG96]

[FGYS8]

[FGL*96]

[FMO0]

[GCs4]

Denis Caromel, Wilfried Klauser, and Julien Vayssiére. Towards seam-
less computing and metacomputing in Java. Concurrency: Practice
and FEzperience, 10(11-13):1043-1061, 1998. Proactive available at
http://www.inria.fr/oasis/proactive.

Alain Deutsch. Interprocedural may-alias analysis for pointers: Beyond
k-limiting. In SIGPLAN’9} Conf. on Programming Language Design
and Implementation, pages 230-241, Orlando (Florida, USA), June 1994.
ACM. SIGPLAN Notices, 29(6).

Alain Deutsch. Semantic models and abstract interpretation techniques
for inductive data structures and pointers. In Proceedings of the ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based Pro-
gram Manipulation, pages 226-229, La Jolla, California, June 21-23, 1995.

S. Dal Zilio. Mobile processes: a commented bibliography. In Modeling
and Verification of Parallel Processes, 4th Summer School, MOVEP 2000,
Nantes, France, June 19-23, 2000. Springer, 2001.

Cédric Fournet, Michele Boreale, and Cosimo Laneve. Bisimulations in
the join calculus. In Proceedings of the IFIP Working Conference on
Programming Concepts, Methods and Calculi (PROCOMET), June 1998.

Fabrice Le Fessant. Detecting distributed cycles of garbage in large-scale
systems. In Conference on Principles of Distributed Computing(PODC),
Rhodes Island, August 2001.

Cédric Fournet and Georges Gonthier. The reflexive CHAM and the join-
calculus. In Conference Record of the 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’96)
[POP96], pages 372-385.

Cédric Fournet and Georges Gonthier. A hierarchy of equivalences for
asynchronous calculi. In Larsen et al. [LSW98], pages 844-855.

C. Fournet, G. Gonthier, JJ. Levy, L. Maranget, and D. Remy. A Calculus
of Mobile Agents. In U. Montanari and V. Sassone, editors, Proc. 7th Int.
Conf. on Concurrency Theory (CONCUR), volume 1119 of Lecture Notes
in Computer Science, pages 406-421, Pisa, Italy, August 1996. Springer-
Verlag, Berlin.

GianLuigi Ferrari and Ugo Montanari. Tiles for concurrent and located
calculi. In C. Palamidessi and J. Parrow, editors, FElectronic Notes in
Theoretical Computer Science, volume 7. Elsevier, 2000.

N. H. Gehani and T. A. Cargill. Concurrent programming in the ada lan-
guage: The polling bias. Software — Practice and Ezperience, 14(5):413—
427, May 1984.

182

Bibliography

[GHOS]

[GHL97a]

[GHL97D)

[GRS9)

[GRY6]

[Hal85]

[Ham94|

[HM?76]

[HT91]

[Jef00]

[JH96]

[Jon92]

Andrew D. Gordon and Paul D. Hankin. A concurrent object calculus:
Reduction and typing. In Proceedings HLCL’98. Elsevier ENTCS, 1998.

Gordon, Hankin, and Lassen. Compilation and equivalence of imperative
objects. FSTTCS: Foundations of Software Technology and Theoretical
Computer Science, 17, 1997.

Andrew D. Gordon, Paul D. Hankin, and S. B. Lassen. Compilation and
equivalence of imperative objects. In Proceedings FST+TCS’97, LNCS.
Springer-Verlag, December 1997.

Narain Gehani and William D. Roome. The concurrent C programming
language. Silicon Press, 1989.

Andrew D. Gordon and Gareth D. Rees. Bisimilarity for a first-order
calculus of objects with subtyping. In Conference Record of the 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’96) |[POP96|, pages 386-395.

Robert H. Halstead, Jr. Multilisp: a language for concurrent symbolic
computation. ACM Transactions on Programming Languages and Sys-

tems (TOPLAS), 7(4):501-538, 1985.

K. Hammond. Parallel Functional Programming: An Introduction (in-
vited paper). In H. Hong, editor, First International Symposium on Par-
allel Symbolic Computation (PASCO’94), Linz, Austria, pages 181-193.
World Scientific Publishing, 1994.

Peter Henderson and James H. Morris, Jr. A lazy evaluator. In Pro-
ceedings of the 8rd ACM SIGACT-SIGPLAN symposium on Principles
on programming languages, pages 95-103. ACM Press, 1976.

Kohei Honda and Mario Tokoro. An object calculus for asynchronous
communication. Lecture Notes in Computer Science, 512:133-77, 1991.

Alan Jeffrey. A distributed object calculus. In ACM SIGPLAN Workshop
Foundations of Object Oriented Languages, 2000.

Cliff B. Jones and S.J. Hodges. Non-interference properties of a concur-
rent object-based language: Proofs based on an operational semantics.
In Burkhard Freitag, Cliff B. Jones, Christian Lengauer, and Hans-Jorg
Schek, editors, Object-Orientation with Parallelism and Persistence, chap-
ter 1, pages 1-22. Kluwer Academic Publishers, 1996. ISBN 0-7923-9770-
3.

Cliff B. Jones. An object-based design method for concurrent programs.
Technical report, University of Manchester, 1992. UMCS-92-12-1.

183

[Jon93]

[Kah74]

[KM77]

[KPRT92]

[KPTY6]

[KW90]

[KY94]

[LQP92

[LSWOS]

[LW95]

[LW98]

Cliff B. Jones. Process-algebraic foundations for an object-based design
notation. Technical report, University of Manchester, 1993. UMCS-93-
10-1.

G. Kahn. The semantics of a simple language for parallel programming.
In J. L. Rosenfeld, editor, Information Processing '7j: Proceedings of the
IFIP Congress, pages 471-475. North-Holland, New York, NY, 1974.

G. Kahn and D. MacQueen. Coroutines and Networks of Parallel Pro-
cesses. In B. Gilchrist, editor, Information Processing 77: Proc. IFIP
Congress, pages 993-998. North-Holland, 1977.

Owen Kaser, Shaunak Pawagi, C. R. Ramakrishnan, I. V. Ramakrishnan,
and R. C. Sekar. Fast parallel implementation of lazy languages - the
EQUALS experience. In LISP and Functional Programming, pages 335—
344, 1992.

Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity
and the pi-calculus. In Proceedings of POPL ’96, pages 358-371. ACM,
January 1996.

Morry Katz and Daniel Weise. Continuing into the future: on the inter-
action of futures and first-class continuations. In Proceedings of the 1990
ACM conference on LISP and functional programming, pages 176-184.
ACM Press, 1990.

Naoki Kobayashi and Akinori Yonezawa. Type-theoretic foundations for
concurrent object-oriented programing. In Proceedings of the minth an-
nual conference on Object-oriented programming systems, language, and
applications, pages 31-45. ACM Press, 1994.

Bernard Lang, Christian Queinnec, and José Piquer. Garbage collecting
the world. In Conference Record of the Nineteenth Annual ACM Sympo-
sium on Principles of Programming Languages, ACM SIGPLAN Notices,
pages 39-50. ACM Press, January 1992.

Kim G. Larsen, Sven Skyum, and Glynn Winskel, editors. 25th Col-
loguium on Automata, Languages and Programming (ICALP) (Aalbory,
Denmark), volume 1443 of LNCS. Springer, July 1998.

Xinxin Liu and David Walker. Confluence of processes and systems of
objects. In Peter D. Mosses, Mogens Nielsen, and Michael I. Schwarzbach,
editors, TAPSOFT ’95: Theory and Practice of Software Development,
6th International Joint Conference CAAP/FASE, volume 915 of LNCS,
pages 217-231. Springer, 1995.

Xinxin Liu and David Walker. Partial confluence of processes and systems
of objects. Theoretical Computer Science, 1998.

184

Bibliography

[Mil89]

[Mil93]

[MKNO2]

[MPW92]

[MS98]

[NHKM99]

[NHKMO2]

[NS97]

[POP96|

[PRO3]

[Pro]

[PT95]

Robin Milner. Communication and Concurrency. International Series in
Computer Science. Prentice Hall, 1989. SU Fisher Research 511/24.

Robin Milner. The polyadic n-calculus: A tutorial. In Friedrich L. Bauer,
Wilfried Brauer, and Helmut Schwichtenberg, editors, Logic and Algebra
of Specification, volume 94 of Series F. NATO ASI, Springer, 1993. Avail-
able as Technical Report ECS-LFCS-91-180, University of Edinburgh, Oc-
tober 1991.

Massimo Merro, Josva Kleist, and Uwe Nestmann. Mobile objects as
mobile processes. Information and Computation, 177(2):195-241, 2002.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, part I/I1. Journal of Information and Computation, 100:1-77,
September 1992.

Massimo Merro and Davide Sangiorgi. On asynchrony in name-passing
calculi. In Larsen et al. [LSW98], pages 856-867.

Uwe Nestmann, Hans Huttel, Josva Kleist, and Massimo Merro. Aliasing
models for object migration. In European Conference on Parallel Process-
ing, pages 1353-1368, 1999.

Uwe Nestmann, Hans Hiittel, Josva Kleist, and Massimo Merro. Aliasing
models for mobile objects. Information and Computation, 175(1):3-33,
2002.

Uwe Nestmann and Martin Steffen. Typing confluence. In Stefania Gnesi
and Diego Latella, editors, Proceedings of FMICS 97, pages 77-101. Con-
siglio Nazionale Ricerche di Pisa, 1997. Also available as report ERCIM-
10/97-R052, European Research Consortium for Informatics and Mathe-
matics, 1997.

Conference Record of the 23rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’96), St. Petersburg,
Florida, January 21-24, 1996. ACM Press.

Thomas Parks and David Roberts. Distributed Process Networks in Java.
In "Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS2003)", Nice, France, April 2003.

Proactive API. Available at http://www.inria.fr/oasis/proactive (under
LGPL).

Benjamin C. Pierce and David N. Turner. Concurrent objects in a process
calculus. In Takayasu Ito and Akinori Yonezawa, editors, Proceedings
Theory and Practice of Parallel Programming (TPPP 94), pages 187-215,
Sendai, Japan, 1995. Springer LNCS 907.

185

[PT00]

[Rep91]

[San93]

[San99]

[San01]

[Smi84]

[SP81]

[SRH96]|

[S03]

[Ste90]

[Ste03]

Benjamin C. Pierce and David N. Turner. Pict: A programming language
based on the pi-calculus. In Gordon Plotkin, Colin Stirling, and Mads
Tofte, editors, Proof, Language and Interaction: Essays in Honour of
Robin Milner, Foundations of Computing. MIT Press, May 2000.

John H. Reppy. Cml: A higher concurrent language. In Proceedings of the
conference on Programming Language Design and Implementation, pages
293-305. ACM Press, 1991.

Davide Sangiorgi. Frpressing Mobility in Process Algebras: First-Order
and Higher-Order Paradigms. PhD thesis, LFCS, University of Edinburgh,
1993. CST-99-93 (also published as ECS-LFCS-93-266).

Davide Sangiorgi. The typed w-calculus at work: A proof of Jones’s
parallelisation theorem on concurrent objects. Theory and Practice of
Object-Oriented Systems, 5(1), 1999. An early version was included in the
Informal proceedings of FOOL 4, January 1997.

Davide Sangiorgi. Asynchronous process calculi: the first-order
and higher-order paradigms (tutorial). Theoretical Computer Science,
253(2):311-350, February 2001.

Brian Cantwell Smith. Reflection and semantics in lisp. In Conference
Record of the Eleventh Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 23-35, Salt Lake City, Utah, January 15-18,
1984. ACM SIGACT-SIGPLAN, ACM Press.

Micha Sharir and Amir Pnueli. Two approaches to interprocedural data
flow analysis. In S. S. Muchnick and N. D. Jones, editors, Program Flow
Analysis: Theory and Applications. Prentice-Hall, 1981.

Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise interprocedural
dataflow analysis with applications to constant propagation. Theoretical
Computer Science, 167(1-2):131-170, 1996.

Alan Schmitt and Jean-Bernard Stefani. The m-calculus: a higher-order
distributed process calculus. In Proceedings of the 30th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (POPL),
pages 50-61. ACM Press, 2003.

Guy L. Steele, Jr. Making asynchronous parallelism safe for the world. In
ACM, editor, POPL ’90. Proceedings of the seventeenth annual ACM sym-
posium on Principles of programming languages, January 17-19, 1990,
San Francisco, CA, pages 218-231, New York, NY, USA, 1990. ACM
Press.

Jean Bernard Stefani. A calculus of higher-order distributed components.
Technical report, INRIA Rhones Alpes, 2003. RR-4692.

186 Bibliography

[WWV00] D.L. Webb, A.L. Wendelborn, and J. Vayssiere. A Study of Computa-
tional Reconfiguration in a Process Network. In Proceedings of the 7th
Workshop on Integrated Data Environments Australia (IDEA’7), Febru-
ary 2000.

Index

m-calculus, 35
wof\, 43
¢-calculus, 37
impg-calculus, 51
PicT, 40

active object, 55, 56, 58
activity, 55, 56, 58, 69
actors, 33

alias conditions, 105
ambient calculus, 41
application server, 153
asynchronous, 36

binary tree, 61

channel, 94

CML, 46

compatibility, 83

compatible configurations, v, 85
components, 46, 149

composite component, 150
Concurrent Request Sending, 132
configuration, 53, 54, 70, 77
confluence, 23, 91, 125
continuation, 69

copy and merge, 72

current future, 70, 74

current request, 56

current term, 57, 69

data-driven synchronization, 55
deep copy, 71

determinism, 23, 95

Deterministic Object Networks, 92

equivalence modulo replies, 102, 117

Fibonacci numbers, 64

FIFO service, 58, 98
free variables, 52

future, 40, 56, 58, 70, 74
future update, 56

future values, 56, 57, 59
futures list, 76

futures values, 69

garbage collection, 139
generalized reference, 70

initial configuration, 76
interfering requests, 83
isolation, 82

join-calculus, 45
kell-calculus, 46

linearized channels, 36
local confluence, 127
location, 51-53

method arguments, 51
method parameter, 51
method update, 51
migration, 42
Multilisp, 40

object topology, 149
obliq, 42

parallel reduction, 70, 72
parallel replies, 156

passive object, 55

path, 87

pending requests, 56-58, 69, 74
potential services, 81

primitive component, 150

187

188 Index

process networks, 39
protected, 43
proxy, 58

reduced object, 53
reduction context, 53
renaming, 52, 101
rendez-vous, 58, 74
request, 55, 59, 69
request flow graph, 95
Request Sender List, 83
restriction, 84

self, 51

sequential reduction, 54, 175
serialized, 145

served requests, 56
service method, 58, 73
service primitive, 57, 98
sharing, 81

sieve of Eratosthenes, 62
source term, 52

static, 37

static analysis, 149
store, 52, 57, 69

store append, 53

store update, 53

stores merge, 71

strict operation, 58
substitution, 52
synchronous, 36

target method, 69
temporized requests, 153

wait-by-necessity, 56, 59, 73, 74
well-formedness, 54, 77

Résumé

L’objectif de cette thése est de concevoir un calcul d’objets permettant d’écrire des
applications paralléles et distribuées, en particulier dans un cadre & grande échelle,
tout en assurant de bonnes propriétés. Le calcul proposé s’intitule ASP : Asynchronous
Sequential Processes.

Les principales caractéristiques de ce calcul sont : des communications asyn-
chrones, la présence de futurs et une exécution séquentielle dans chacun des processus.
Ce calcul exhibe de fortes propriétés de confluence et de déterminisme. Cette thése
a donc aussi pour objectif de prouver de telles propriétés dans un cadre aussi général
que possible.

ASP est basé sur une répartition des objets en différentes activités disjointes. Une
activité est un ensemble d’objets gérés par un unique processus. Les objets actifs
sont des objets accessibles par des références globales/distantes. Ils communiquent a
travers des appels de méthodes asynchrones avec un mécanisme de futurs. Un futur
est une référence globale désignant un résultat qui n’est pas encore calculé. Cette thése
modélise ces différents aspects, leurs principales propriétés et les conséquences de ces
meécanismes sur la notion de comportement déterministe des programmes. Le résultat
principal consiste en une propriété de confluence et son application a I’identification
d’un ensemble de programmes se comportant de facon déterministe.

Du point de vue pratique, ASP peut aussi étre considéré comme une modélisa-
tion de la librairie ProActive. Cette librairie fournit des outils pour développer des
applications paralléles et distribuées en Java.

Mots-clés: Parallélisme, Concurrence, distribution, asynchronisme, langages et cal-
culs & objets, confluence, déterminisme, futurs.

189

Abstract

The objective of this thesis is to design an object calculus that allows one to
write parallel and distributed applications, particularly on wide range networks, while
ensuring good properties. This calculus is named ASP: Asynchronous Sequential
Processes.

The main characteristics of ASP are: asynchronous communications, futures, and
a sequential execution within each process. ASP presents strong confluence and de-
terminism properties, proved in a context as general as possible within this thesis.

A first design decision is the absence of sharing: objects live in disjoint activities.
An activity is a set of objects managed by a unique process and a unique active object.
Active objects are accessible through global/distant references. They communicate
through asynchronous method calls with futures. A future is a global reference rep-
resenting a result not yet computed. This thesis models those aspects, their main
properties, and the consequences of these mechanisms on the deterministic behavior
of programs. The main result consists in a confluence property and its application to
the identification of a set of programs behaving deterministically.

From a practical point of view, ASP can also be considered as a model of the
ProActive library. This library provides tools for developing parallel and distributed
applications in Java.

Keywords: parallelism, concurrency, distributed, calculus, asynchrony, object lan-
guages, confluence, determinacy, futures.

190

