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Chapter 1

Introduction

In this thesis, we propose adaptive algorithms for estimating the background to
detect moving objects in the videos.

1.1 Context
Nowadays, cameras appear in various domain of our society. For example, cameras
are used to monitor the tra�c of vehicles on roads, to detect intrusion into restricted
area, to detect abnormal behavior such as violence or vandalism in public places, to
monitor disabled people, to control access of public places etc. When the number of
cameras in the system increases, human operators cannot process the tremendous
amount of information coming from these cameras. Therefore, human operators
need automatic video analysis systems to help them to accomplish their work.

Figure 1.1: The general architecture of the object detection framework.

The �rst step in many video analysis systems is to detect objects of interest.
Background subtraction is one of the most popular object detection approach. As
illustrated in �gure 1.1, an object detection framework following the background
subtraction approach often consists of the following tasks:
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• Foreground pixel detection task: this task detects the foreground pixels which
may belong to objects of interest. For simplicity, we call this task as fore-
ground detection task.

• Blob construction task: this task gathers adjacent foreground pixels into a
bigger structure called blob. Each blob may correspond to one object of
interest.

• Classi�cation task: this task classi�es the detected blob into di�erent types
of objects.

Construction of automatic real-time video analysis systems is the main research
theme of PULSAR team (PULSAR stands for Perception Understanding System
for Activity Recognition) of INRIA Sophia-Antipolis. PULSAR has accumulated
a strong expertise in this area throughout the last decade. The team has par-
ticipated in many French and European projects in this domain such as AVIT-
RACK (Aircraft surroundings, categorised Vehicles and Individuals Tracking for
apRon's Activity model interpretation and ChecK), CARETAKER (Content Anal-
ysis and REtrieval Technologies to Apply Extraction to massive Recording), GER-
HOME(GERrontology at HOME), CoFriend.

Working in the PULSAR team, we study background estimation algorithms to
detect moving objects in the videos. Moreover, we study the methods to adapt these
algorithms to di�erent scene conditions. These algorithms belong to the foreground
detection task of the object detection framework.

1.2 De�nitions
Before going into details, we describes the important terminologies in the thesis.
These de�nitions are taken partly from [ETISEO b].

• Image: a matrix of pixels generated at a time step by a video camera (e.g.,
composite, CCD, CMOS, PTZ, omni directional). An image can correspond
to a frame in the video sequence. An image can be of the following type:
color, black and white, infrared and with di�erent compression levels.

• Chromaticity: from [Stroebel 1993], chromaticity is de�ned as the �relative
magnitude of stimulus values�. Then a color can be de�ned by a chromaticity
and lightness. For image in RGB color space, chromaticity can be represented
by the ratio between di�erent color channels.

• Video sequence: temporal sequence of images which are generated by a
video camera.

• Scene: the physical space where a real world event occurs and which can
be observed by one or several video cameras. A scene without any physical
object of interest is called an empty scene.
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• Foreground pixels: pixels belonging to objects we want to detect.

• Background pixels: every pixels which are not foreground pixels are back-
ground pixels.

• Foreground regions: a set of connected foreground pixels.

• Foreground detection results of one frame: a binary image in which pix-
els with value 0 represent background pixels and pixels with value 1 represent
foreground pixels.

• Blob: 2D image region that has been segmented based on regions (e.g., homo-
geneous in motion, colour, energy or texture information) or contours (e.g.,
using a shape model). This region can be de�ned as a set of pixels (not
necessarily connected) or as a polygon delimiting its contour.

• Physical object: a real world object in the scene. There are two types of
physical objects: physical object of interest and contextual object.

• Physical object of interest: a physical object evolving in the scene whose
class (e.g., person, group, vehicle) has been prede�ned as interesting by end-
users and whose motion cannot be foreseen using a priori information. It is
usually characterized by a semantic class label, 2D or 3D features (e.g., 3D
location, width and height, a posture, a trajectory, a direction, a speed), a
list of blobs, an initial tracking time, etc.

• Contextual object: a physical object attached to the scene. The contextual
object is usually static and whenever in motion, its motion can be foreseen
using a priori information. For instance, it can be in motion such as a door,
an elevator, a fountain, a tree. Sometimes, contextual objects like a chair or
a luggage can be displaced, added to or removed from the scene. The object
detection framework should distinguish this type of contextual objects with
objects of interest.

• Bounding box: 2D Box including a physical object in an image. It is
represented by the top left corner point coordinates (x,y), the width and the
height. The system coordinate is for X a left to right axis and for Y a top to
bottom axis.

• Ground truth data: data given by a human operator and which describe
real world expected results (e.g. physical objects, events) at the output of a
video understanding algorithm. These data are supposed to be unique and
corresponding to end user requirements even if in many cases, this information
can contains errors (annotation bias).

• Background subtraction algorithm: background subtraction is one of the
most popular approach to detect foreground pixels in the video from �xed
camera.
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• Background representation: the data that the background subtraction
algorithm uses to represent the background and to detect foreground pixels.
In the simple case, background representation can be a reference image which
does not include object of interest.

1.3 Problem statement and objective
1.3.1 Problem statement
Although automatic video analysis systems have great potential, the performance
of these systems are not su�cient for many applications. One of the main reasons
is that the foreground detection task has many di�culties in dealing with the vari-
ations of the environment. For example, video analysis systems have to work in
various types of scenes (indoor, outdoor scenes), each type has its own characteris-
tics. Moreover, in many cases these video analysis systems have to work 24 hours
per day and the scene illumination may change continuously according to the time
of the day: the illumination of the scene may be normal during the morning, shining
during the noon, and dark during the night. Therefore, the foreground detection
task have to quickly adapt themselves to these changes of the environment to ensure
a good performance.

1.3.2 Objectives
The objective of this thesis is to propose an adaptive foreground detection approach
to detect foreground pixels in the video. This approach includes a background
subtraction algorithm to detect foreground pixel, algorithms to remove illumination
changes, and a controller that adapt these algorithms to the current scene conditions.
The proposed approach focus on solving the following problems:

• Weakly contrasted objects of interest: objects of interest may have pixel char-
acteristics similar to the pixel characteristics of the background. For example,
video analysis systems would have di�culties in detecting a person wearing
white clothes in a room with white walls. Background subtraction algorithms
must be able to detect objects of interest at the lowest contrast level.

• Displacement of contextual objects: contextual objects are objects belonging
to the scene such as table, chairs, doors. When these objects are displaced,
they may be included in the detection results and produce errors. Background
subtraction algorithms must di�erentiate the motion of these contextual ob-
jects from the motion of objects of interest in the scene.

• Repetitive movements of contextual objects in the scene: contextual objects
in the scene may have repetitive movements. For example, in outdoor scenes,
leaves of trees often oscillate especially when there is wind. Background sub-
traction algorithms must distinguish this kind of movements from the move-
ments of objects of interest.
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• Shadow: objects of interest often cast shadow over the background. Shadow
has the same characteristics as objects of interest: shadow is di�erent from
normal background and it moves with objects of interest. Therefore it is
di�cult for background subtraction algorithms to distinguish shadow from
objects of interest.

• Highlight: contrasting from shadow, highlight makes the scene lighter. High-
light may happen due to the scene illumination change when the windows are
opened for example. Together with shadow, highlight makes the pixel inten-
sity features less reliable. There are two types of highlight. The �rst type of
highlight corresponds to a small increase of pixel intensity but the relationship
between the values of RGB channel remains the same. The second type of
highlight corresponds to strong illumination where RGB values are saturated.
In this thesis, we use the word highlight to refer to the �rst type of highlight.

• Lack of clean training video: in some scenes, it is impossible to have training
videos without objects of interest. For example, in a crowded street, most
of the time, the street is covered by people crowd and by vehicle streams.
However, some background subtraction algorithms need several images or
videos of empty scene to construct their background representation.

• Gradual changes of illumination: illumination of the scene may change grad-
ually with the time of the day. For example, with outdoor scene, illumination
in the early morning is not as strong as the illumination at noon. Beside that,
the e�ect of gradual change of illumination may not be the same for every
pixel in the image. The gradual change of illumination may make the current
background very di�erent from the initial background representation of the
algorithm.

• Sudden changes of illumination: For outdoor scene, sudden change of illu-
mination may happen when the sun is covered by clouds. For indoor scene,
sudden change of illumination may happen when light is turned on or o�.
Like gradual change of illumination, the sudden change of illumination may
have global or local e�ect. In this case, the change is so quick that the back-
ground subtraction algorithms cannot use normal update as in case of gradual
illumination change to compensate for this change.

• Keeping track of several kinds of objects of interest like people even when they
stop moving: if a person stops moving, it is likely that the background sub-
traction algorithm still updates the region corresponding to this person. As a
consequence, after several frames, this person is absorbed into the background
and the system cannot detect this person anymore.

• Managing stationary objects: when a certain kind of moving object such as
a car stops, background subtraction algorithms should be able to distinguish
the stopped car and other objects of interest passing in front of the car.
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• Ghosts: Sometimes, an object initially in the background for a long time
such as a parked car in a car park can start moving. Then the camera can
observe for the �rst time the region occluded by this car. This region is
certainly di�erent from the background representation. As a consequence,
the background subtraction algorithm detects two cars, one corresponding to
the car that has moved and one corresponding to the newly observed region
which is a false positive (a ghost car).

1.4 The proposed foreground detection approach
In this section, we �rst present the requirements of the proposed foreground detec-
tion approach. After that we present the requirements that the proposed approach
must satisfy. Finally, we present the general structure of the approach.

1.4.1 Requirements

Our approach has the following requirements:

• The input video is produced by a single and �xed camera.

• Inside the object detection framework, the foreground detection task can re-
ceive the feedback from the classi�cation task.

• The foreground detection task uses a background subtraction approach.

1.4.2 Requirements for the proposed approach

To be able to work in various video analysis systems, the proposed approach has to
satisfy the following requirements:

• The framework must be fast enough for real-time video analysis systems. For
video surveillance systems which require real-time processing, the framework
must process at least 10 frames/s with the video of normal size (e.g. 640 x
480 pixels).

• The framework must work with various types of scenes (e.g. indoor and
outdoor scenes) and can adapt itself to a variety of the environment changes
in the scenes.

• The framework must work autonomously with minimal intervention of human
operators. Human can participate in o�ine processes such as de�nition of the
scenes, de�nition of events of interest, or supervised learning process.
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Figure 1.2: The general architecture of the adaptive foreground detection approach
inside the object detection framework.

1.4.3 General structure
Figure 1.2 shows the general structure of the adaptive foreground detection approach
inside the object detection framework.

The adaptive foreground detection approach consists of a background subtrac-
tion algorithm, an algorithm to remove background illumination changes, and a
controller which adapts these algorithms to the current scene conditions. This con-
troller has two adaptation methods for the background subtraction algorithm. The
�rst adaptation method is to guide the algorithm to update the algorithm back-
ground representation. The second adaptation method is to tune the algorithm
parameter values to be suitable for the current conditions of the scene.

1.4.4 Contribution
By proposing this adaptive foreground detection approach dedicating to background
subtraction approach, the thesis has the following contributions:
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• A new background subtraction algorithm. This algorithm is robust to small
variations of illumination but still sensitive to weakly contrasted objects of
interest appearing in the scene.

• An algorithm to remove shadow / highlight in region with non saturated
illumination.

• An algorithm to remove shadow in region with saturated illumination.

• A controller for the background subtraction algorithms GMM and EGMM.
This controller has two adaptation methods:

• To guide the background subtraction algorithm to update the back-
ground representation of this algorithm. This adaptation method helps
the underlying background subtraction algorithm to solve the problems
concerning updating background representation presented earlier.

• To tune parameter values of GMM and EGMM to adapt these algo-
rithms to the current scene condition.

These algorithms are not speci�c to any platform. Moreover, these algorithms
are relatively independent from each others. For example, the adaptation method
which guides the background subtraction algorithms can work with any background
subtraction algorithm that can implement a set of updating commands.

1.5 Structure of manuscript
The following of the manuscript is structured in six main chapters.

Chapter 2 presents the state of the art in detecting objects in videos. This
chapter �rst describes three main approaches to detect objects of interest in video.
Then it focuses on the approach using reference image, the principal approach used
in video surveillance systems. Particularly, this chapter presents related work in
solving important problems of the approach using reference image: how to detect
foreground pixels, how to remove visual artifacts such as shadow and highlight, how
to update the background representation, and �nally how to tune the parameters
to be suitable for current scene conditions.

Chapter 3 presents an overview of the proposed foreground detection approach
inside the object detection framework. This chapter �rst describes the general ar-
chitecture of the framework. Then it brie�y presents two principal components of
the framework: the foreground detection component and the controller.

Chapter 4 presents the proposed method to detect foreground pixels. To detect
foreground pixels, we propose a new background subtraction algorithm, an algorithm
to remove shadow / highlight in region with normal illumination, and an algorithm
to remove shadow in region with saturated illumination.

Chapter 5 describes our controller for background subtraction algorithms. Par-
ticularly, this chapter details the two main tasks of our controller: how to guide the
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background subtraction algorithm to update its background, and how to tune pa-
rameters of background subtraction algorithm to be suitable for the current scene
conditions.

Chapter 6 presents the experimental results of this thesis. It focuses on the
performance of di�erent features to detect shadow / highlight, the performance of
the proposed background subtraction algorithm, and the performance of the con-
troller in guiding the background subtraction algorithm to update the background
representation and in tuning parameter of this algorithm.

Chapter 7 presents our conclusion on the proposed adaptive foreground detec-
tion approach. We also discuss about the sort term and long term future work.





Chapter 2

State of the art

In this chapter, we present the related works in four main tasks of the background
subtraction approach: detection of foreground pixels, removal of visual artifacts,
update of background representation, and parameter tuning for background sub-
traction algorithms. In section 2.1, we present di�erent background subtraction
algorithms to detect foreground pixels. In section 2.2, we describe related work in
removing shadow and highlight. After that, in section 2.3, we present the frame-
works in the literature which incorporate feedback from higher level tasks to update
the background representation of the background subtraction algorithm. Finally,
in section 2.4 we present two principal approaches in parameter optimization for
background subtraction algorithms. After each section, we discuss the open issues
of related work which are the objectives of this thesis.

2.1 Detection of foreground pixels
The detection of foreground pixels is the �rst step for detecting foreground regions.
After this step, the detected foreground pixels are grouped into foreground regions
by either simple algorithms for detecting connected foreground pixels or statistical
algorithms such as Markov Random Field [Sheikh 2005].

There are several approaches to detect foreground pixels.
As presented earlier, to compute foreground pixels, background subtraction al-

gorithms are widely used in video analysis systems which need real-time processing.
Inside the framework for detecting objects of interest, this thesis aims at proposing
a new background subtraction algorithm to detect foreground pixels in videos.

A background subtraction algorithm can be characterized by the model of back-
ground representation and the features that this algorithm employs to construct
its background representation. We discuss these two characteristics in the next
subsections.

2.1.1 Features to construct background representation
Various features have been employed to construct background representation. Among
these features, texture and especially color are the two most popular.

Colors:
In video, the signal at each pixel is encoded by a 3-tuple (R, G,B) in the RGB

color space. Color features are extracted by transforming this 3-tuple from the RGB

color space to other color spaces such as HSV , Y UV , La∗b∗. Color features have
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strong discriminative power because color features have a large representation space
and the color of one particular object often belongs to one small region inside this
space. Therefore, color features have been used extensively in many background
subtraction algorithms [Stau�er 1999], [Elgammal 2000], [Kim 2004] to construct
their background representation. However, the use of color features alone is not
enough to detect objects of interest when these objects have the same colors as
background. In such cases, color features should be used together with other features
such as texture to overcome this problem.

Some background subtraction algorithms [Stau�er 1999], [Elgammal 2000] use
directly the color features (R,G, B) in the RGB color space to construct their back-
ground representation. With RGB color space, these algorithms assume that the
variations of three channels R, G, and B are independent. Although this assump-
tion simpli�es the construction of background model, the variations of individual
channels may be large, especially in case of shadow or highlight which decrease the
e�ectiveness of the background model.

To overcome this problem, other algorithms [Cavallaro 2004], [Cucchiara 2003],
[Benedek 2007], [Kumar 2002], [Kim 2004] employ di�erent color spaces such as
normalized RGB, HSV , Y UV , La∗b∗, Lu∗v∗ to model the correlation between
R, G, and B channels. Unlike the RGB color space, these color spaces have one
channel representing the brightness (e.g. V in HSV , Y in Y UV , L in La∗b∗) and
two channels to represent the chromaticity (e.g. HS in HSV , UV in Y UV , a∗b∗ in
La∗b∗). These algorithms assume that the variations of illumination only a�ect the
brightness channel and have little e�ect on chromaticity channels. This assumption
has been exploited extensively to remove variations of illumination especially in case
of shadow and highlight.

Due to a large number of di�erent color spaces, it is di�cult to judge which color
space is more generic for detecting foreground pixels in videos. Some work attempt
to solve this problem by experimenting di�erent color spaces on di�erent videos to
evaluate their performance. In [Kumar 2002], Kumar et al �nd that Y UV is better
than normalized RGB, HSV , XY Z for detecting shadow. In the experiment of
Benedek et al [Benedek 2007], Lu∗v∗ is better than gray scale, normalized RGB,
C1C2C3, RGB, HSV , La∗b∗ for detecting shadow. In [Shan 2007], Shan et al
attempt to explain the e�ectiveness of di�erent color spaces by using a shadow model
and through several experiments. They conclude that HSV and normalized RGB

are more e�ective for removing shadow. In short, these works lack a theoretical
explanation of the e�ectiveness of di�erent color spaces in handling variations of
illumination in video. Beside that, some of the proposed color spaces such as La∗b∗,
Lu∗v∗ are too complex and not suitable for real-time systems.

This thesis aims at using a model of the camera to analyze the e�ectiveness of
di�erent color spaces in modeling the variations of illumination in videos. Based
on this analysis, we want to propose a simple but e�ective color-based feature set
to construct the background representation. This feature set must be robust to the
variations of the illumination in videos.

Texture:
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Unlike color features which contain only the information of individual pixels,
texture features model the intensity relationship of a group of adjacent pixels. This
relationship does not change too much with the changes of illumination. There-
fore, texture features are robust to shadow and highlight of environment. As a
result, texture features are also employed by many background subtraction algo-
rithms [Heikkila 2006] [Leone 2005] [Tian 2005]. However, texture features have
also some disadvantages. Firstly, texture features are not e�ective when the texture
of the background is similar to the texture of objects of interest as in case of tra�c
scenes. In tra�c scenes, the surface of roads are often �at and homogeneous, similar
to the surface of cars. Secondly, the size of the region to compute texture is also a
problem. If this size is too large, the computation of texture features is slow and the
results may be a�ected by partial shadow and highlight, if this size is too small, it
may not capture the texture of large size. Thirdly, the computation cost of texture
features used in the literature is often higher than that of color features. Therefore,
texture features are often used together with color features to improve the detection
results as in [Li 2008], [Tian 2005].

Because texture feature is widely used to detect shadow and highlight, we will
discuss about texture features in more detail in the section describing the features
to detect shadow and highlight.

Other features
Stereoscopic features and motion features have been exploited to construct back-

ground representation.
For stereoscopic features, in [Harville 2001, Harville 2002], Harville et al compute

depth from stereo cameras and use it as a supplement feature to detect objects of
interest. In [Harville 2001], Harville et al combine the color features of Y UV color
space with the depth information to form the feature vector for the mixture of
Gaussian model. Because of depth information, their algorithm can remove several
noise regions in their experiment. However, the computation of depth requires the
video from stereo camera which is not always available with common video analysis
applications.

For motion features, optical �ow is used by several background subtraction algo-
rithms [Cucchiara 2003], [Gutchess 2001], [Yokoyama 2005] to estimate the motion
of objects of interest in the scene. However, the cost of computing optical �ow is so
high that it cannot be used in video analysis systems that need real time process-
ing. Therefore, to exploit the strengths of optical �ow, in [Gutchess 2001] Gutchess
et al use optical �ow in an o�ine phase together with other features to construct
the reference image of background subtraction algorithms from a video which con-
tains objects of interest. In [Cucchiara 2003], Cucchiara et al use optical �ow as
a supplement feature to verify the foreground region detected by the background
subtraction algorithm. In [Yokoyama 2005] Yokoyama and Poggio combine optical
�ow with edge detection algorithms to �nd the moving region to propose a quite fast
algorithm to detect foreground regions. However, because optical �ow is suitable
for moving objects, it has problem with objects of interest which stop moving.

In conclusion, these supplement features can be used together with other features
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such as colors or texture to improve the performance of video analysis systems.
However, these features should be used properly so that they do not seriously slow
down the speed of the whole system.

Discussion
As presented earlier, each type of feature has its own strengths and weakness

depending on the video. Therefore, background subtraction algorithms should com-
bine several features to improve the results of object detection. In this thesis, we
propose a new background representation which is constructed with a new color fea-
tures and a new texture-like feature. These new features can be computed rapidly
but still have good discriminative power.

2.1.2 Models of background representation
Background subtraction algorithms use the features presented in previous section
to construct background representation according to a certain model. Then this
background representation will be used to detect foreground pixels in the video.
We present here di�erent models for background representation along with their
methods of classi�cation.

2.1.2.1 Simple reference image model

As presented earlier, the most simple form of background representation is a single
reference image and a threshold T. To detect foreground pixels, we compute the
di�erence image Diff = |Icur − Iref | where Icur is the current frame, Iref is the
reference image, and Diff is the di�erence image. Then, we classify a pixel at
the position (x, y) as foreground pixel if Diff(x, y) > T with T is a pre-de�ned
threshold value whose value depends on the noise level in the video. An example of
this model is illustrated in �gure 2.1. The problem of this model is that each pixel
may have di�erent level of variations and a single value of the threshold T cannot
be suitable for every pixel in the image.

To overcome this problem, in [Wren 1997], Wren et al model the colors of each
pixel in the Y UV color space by a single Gaussian distribution. This distribution
is described by a vector of mean values and a full covariance matrix. These mean
values and the covariance matrix are updated regularly using a simple adaptive
�lter:

yt = (1 − α)yt−1 + αx (2.1)

where yt is the current parameter value at time t, x is the parameter value es-
timated using the pixel value of the frame at time t, and α is the learning rate.
For example if y is the mean value, then x is the current pixel value, if y is the
covariance value, x is the di�erence between the mean value and the current pixel
value. The learning rate α decides how fast the background representation adapts
to the current frame. With this update, each pixel has its own classi�cation thresh-
old suitable for the level of variations at this pixel. This updating scheme is also



2.1. Detection of foreground pixels 15

(a)

(b) (c)

Figure 2.1: The simple reference image model uses the image of the empty scene
(image (a)) as the background representation. To detect objects of interest in the
current frame (image(b)), this model compares the current frame with the reference
image. If the di�erence at one pixel is big, this pixel is classi�ed as foreground pixel
as in image (c). Foreground pixels are the white pixels on this image.

used by various models of background representation such as [Stau�er 1999], and
codebook [Kim 2004].

However, the simple model with a reference image has two major problems.
Firstly, because this model has only one distribution for each pixel, this distribution
is updated with not only normal values but also noise value. Therefore, the reference
image model is sensitive to noise. Secondly, the simple model with a reference image
cannot deal with the scenes containing motion of contextual objects like escalators
or waving trees. In such cases, one single Gaussian distribution cannot model the
pixel values in the regions containing motion.

Gaussian mixture model
In [Stau�er 1999], Stau�er and Grimson solve the problems of the reference

image model by using a Gaussian Mixture Model (GMM). In this model, the pixel
values of one pixel is modeled by K Gaussian distributions. The probability of
observing the pixel value Xt at time t is:

P (Xt) =
K

∑

k=1

ωk,t ∗ η(Xt, µk,t, Σk,t) (2.2)
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where K is the number of Gaussian distributions, ωk,t is the estimated weight,
µk,t is the mean value, and Σk,t is the covariance of the kth Gaussian at time t and
η is a Gaussian probability density function:

η(Xt, µk,t, Σk,t) =
1

(2π)
n
2 |Σk,t|

1
2

e
1
2
(Xt−µk,t)

T Σ−1
k,t

(Xt−µk,t) (2.3)

In the original model of Stau�er and Grimson, they assume that the di�erent
elements of the feature vectors describing pixel values are independent and have the
same variance. Therefore, the covariance matrix is simpli�ed to Σk,t = σ2

k,tI where
σ2

k,t is the variance and I is the unit matrix.
To update the model, Stau�er et al use an on-line K-mean approximation algo-

rithm. This algorithm sorts the K Gaussian distributions based on ωk/σ2
i . Then

every new pixel value Xt is checked against the existing K Gaussian distributions
until a match is found. In this algorithm, a pixel value matches a Gaussian dis-
tribution if this pixel value lies within 2.5 standard deviations of the distribution.
After �nding the matched distribution, the weight of the Gaussian distributions are
updated with the following formula:

ωk,t = (1 − α)ωk,t−1 + α(Mk,t) (2.4)

where α is the learning rate and Mk,t is 1 for the matched distribution and 0
for the other distributions. If none of the K distributions matches the current pixel
value, the distribution with the lowest ωk/σ2

k is replaced with a distribution with the
current pixel value as its mean value, an initially high variance, and low prior weight.
After updating the weights of all distributions, these weights are re-normalized.

The mean and variance of the matched distributions are also updated as follows:

µt = (1 − ρ)µt−1 + ρXt (2.5)

σ2
t = (1 − ρ)σ2

t−1 + ρ(Xt − µt)
T (Xt − µt) (2.6)

where ρ = αη(Xt|µt, σt). The mean and the variance of unmatched distributions
remain the same.

To classify a pixel value, this algorithm selects the �rst B distributions as back-
ground where B is estimated as

B = argminb(
b

∑

i=1

ωi > T ) (2.7)

where T is the fraction of the total weight given to the background model.
This rule is illustrated in �gure 2.2. If T is small, the background model should
be unimodal, suitable for static background. If T is large, the background model is
multi modal, suitable for background containing motion. The pixel value is classi�ed
as background if the matched distribution is a background distribution.
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Figure 2.2: This �gure illustrates the classi�cation rule of GMM. Assuming that
there are three Gaussian distributions with the corresponding weights: 0.5, 0.3, 0.2.
If 0.5 ≤ T < 0.8, the �rst two Gaussians are classi�ed as background, the last
Gaussian is classi�ed as background.

Figure 2.3: The sample of detection results of GMM [Stau�er 1999] on a scene with
dynamic background. Image (a) is the original image, image (b) is the detection
results. Source [Kim 2005]

Figure 2.3 shows a sample of detection results of GMM [Stau�er 1999] on a scene
with dynamic background caused by a moving tree. As we can see, there is only few
noise at the region corresponding to the tree.

To simplify the computation of ρ, in [Power 2002, Harville 2001], the authors
propose to set ρ = α for the matched distribution.
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The GMM has several advantages. Firstly, this model can solve the problem
of multi background. Secondly this model is less a�ected by noise. If a noisy
background pixel value is very di�erent from normal background values, this value
is assigned to a separated distribution and other distributions are not a�ected.
Thirdly, this model does not need empty training sequences which do not contain
objects of interest. Finally, the GMM can adapt to gradual changes of illumination
automatically.

The original GMM has been extended in two main directions: in adapting model
parameters (the number of distributions K, the learning rate α, and the threshold
T ), and in classifying foreground / background.

The problem of adapting model parameters is important because each parameter
value is suitable for one kind of scene. For example, outdoor scenes often need high
value of T and K to have many distributions to describe motion in background. In
contrast, indoor scenes only need small value of K and T because pixels in indoor
scenes are often unimodal. Beside that, scene may change continuously and these
changes require the adaptation of the algorithm parameters.

In [White 2007], White et al propose a method to initialize the parameters T

and α of the GMM. Particularly, they select the parameter values that optimize the
performance metric F-Score, which is the balance between precision and sensitivity,
of the model over the ground truth. The metrics Precision (P), Sensitivity (S), and
F-Score are computed based on True Positive (TP), False Positive (FP), and False
Negative (FN) as:

P =
TP

TP + FP
, S =

TP

TP + FN
,F − Score =

2 × P × S

P + S
. (2.8)

To optimize the F-Score, White et al employ the Particle Swarm Optimization al-
gorithm. In their experiment using the videos of Wall�ower [Wal ], the detection
results of the model with optimized parameters have been improved dramatically.
However, scenes may change continuously which makes the optimized parameters
obsolete. Therefore the work of [White 2007] should be part of a parameter optimiza-
tion framework which can handle the changes of scene as the algorithms described
in section 2.4.

In [KaewTraKulPong 2003], KaewTraKulPong et al propose an adaptive learn-
ing rate α. Before collecting enough L samples, each Gaussian distribution uses
a high learning rate which is inversely proportional to the number of samples in
this distribution. Therefore, the model is less dependent on initial value. Simi-
larly, in [Lee 2005], Lee proposes to use a learning rate of a matched distribution
proportional to the number of times that this distribution has been matched.

In [Lee 2004], Lee proposes a method to approximate the incremental Expecta-
tion Maximization algorithms. Comparing with the original GMM of Stau�er and
Grimson, the proposed method replaces the term Mk,t in equation (2.4) to update
the weight by P (Gk|xt) which is the posterior probability of the Gaussian distribu-
tion kth for the pixel value xt. Beside that, to update the mean and variance of each
distribution, the updating rate ρ of Lee is not only proportional to P (Gk|xt) but also
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inversely proportional to the weight of distribution kth. In other words, the current
pixel value has a stronger e�ect when updating the Gaussian distributions having
smaller weight. The experiment shows that the new updating strategy achieves bet-
ter detection results than [Stau�er 1999]. However, this updating scheme is more
costly than the original GMM.

In [Harville 2001], Harville proposes a method to adapt the learning rate α to
the level of activities occuring at a pixel. His method is based on the intuition
that when there are shadow and highlight or the displacement of contextual objects
at a pixel, the di�erence between consecutive pixel values is big. In this case, the
learning rate should be increased to update the background representation quickly
so that these changes do not occur in the detection results again. In contrast, when
di�erent objects of interest pass over this pixel, their pixel values are often di�erent
from each others and from background. In this case the learning rate should be
reduced so that the background representation is not updated with pixel values of
objects of interest. Harville measures the level of activities based on the cumulative
di�erence of consecutive pixel values.

In [Zivkovic 2004], Zivkovic proposes a method to determine automatically the
number of Gaussian distributions for each pixel in videos. He assumes that, if
a distribution corresponds to background, this distribution should contain enough
samples. To model it, he adds a negative term in the formula to update the weight.
As a result, if a distribution does not have samples for a long time, its weight
becomes negative and this distribution is removed. After the initialization phase,
he can determine the number of distributions needed for each pixel. Therefore, with
an adaptive number of distributions, the processing time is reduced. Similar work
can be found in [Cheng 2006].

The second direction of improvement is to change the rules for classifying fore-
ground vs background. In the original GMM, the classi�cation is based on the
threshold T which is unreliable. For example, if the scene is crowded, background
distributions may account for a small percentage of the total weight. Therefore, if T
is high, there is a chance that a distribution with a small weight could be classi�ed
as a background distribution. If this distribution corresponds to a mobile object
(the distribution corresponding to objects of interest often have small weights), the
classi�cation commits an error.

To directly solve this problem, in [Harville 2001], Harville et al classify a dis-
tribution as background if its weight is higher than a threshold. This threshold is
the same for the whole image. In [Pnevmatikakis 2006] Pnevmatikakis et al propose
to adapt the threshold based on the feedback of classi�cation and tracking tasks.
They propose to lower the background threshold in the regions far from detected
mobile object to remove �ickerings from detection results. These �ickerings are very
common in night vision cameras.

Despite of these improvements the GMM has two main intrinsic shortcomings.
The �rst problem is the updating scheme of the GMM for the mean and vari-

ance of di�erent distributions is not reliable. In this updating scheme, the mean
and variance are updated immediately with the current pixel value. Then the new
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value of mean and variance is used to classify subsequent pixel values. In other
words, the decision of updating is unreliable because it is based only on one sam-
ple. Consequently, if the current pixel value is abnormal, it may seriously a�ect the
classi�cation of subsequent pixel value. For example, if a sequence of 10 consecutive
pixel values which are very close to the mean value of one distribution occurs, the
variance is reduced greatly. Therefore, the estimation algorithm depends seriously
on the occurrence order of pixel values. To reduce this e�ect, one can reduce the
learning rate α but it also slows down the adaptation of the background represen-
tation to the changes of environment.

The second problem concerns the classi�cation of foreground vs background.
To classify a pixel value as background or foreground, the GMM is based on the
hypothesis that background pixel values occur frequently whereas foreground pixel
values occur intermittently. This hypothesis is not always correct. In [Kim 2005],
Kim et al show that the pixel values of the tip of a tree occur periodically but at a
low frequency. This fact is also correct for the leaves of trees when they move due
to the wind. For this kind of background, extra information is needed to distinguish
objects of interest from background. In [Porikli 2005b], Porikli et al have the same
conclusion. They show that, the GMM does not take into account the temporal
correlation among the previous values of a pixel. This prevents them from detecting
a structured or periodic change like the motion of leaves in outdoor scenes, of waves
in the sea.

2.1.2.2 Kernel density estimation method
In [Elgammal 2000], Elgammal et al argue that the GMM is not e�ective for out-
door scenes. They show that in outdoor scenes, the distribution of pixel intensity
over a long period covers a wide range of intensity. However, when they divide the
long period into smaller ones, the intensity distributions during these small peri-
ods become narrow and these distributions are very di�erent. As in the case of
GMM which constructs intensity distribution over a long period, the constructed
distribution will have a wide variance and this will result in poor detection results.
Moreover, the intensity distribution may be too complex to be modeled by only
a few Gaussian distributions. Therefore they propose to use many �short term�
distributions to model intensity distributions in video of outdoor scenes.

Particularly, Elgammal et al use a sample set of n recent intensity values x1, x2, ..., xn

for a pixel to model the intensity distribution at that pixel. The probability den-
sity function that this pixel will have intensity value xt at time t can be non-
parametrically estimated using the kernel estimator as follows:

P (xt) =
1

n

n
∑

i=1

K(xt − xi) (2.9)

where K is a kernel function. In [Elgammal 2000], the authors use the Normal
function N(0, Σ) where Σ represents the kernel function bandwidth. The density
function becomes:
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P (xt) =
1

n

n
∑

i=1

1

(2π)
d
2 |Σ| 12

e−
1
2
(xt−xi)

T Σ−1(xt−xi) (2.10)

where d is the number of color channels. The authors simplify this formula by
assuming that the di�erent color channels are independent from each other and
each has a di�erent kernel bandwidth σ2

j for the jth color channel. Then

Σ =





σ2
1 0 0

0 σ2
2 0

0 0 σ2
3



 (2.11)

and the density estimation is reduced to

P (xt) =
1

n

N
∑

i=1

d
∏

j

1
√

2πσ2
j

e
−

1
2

(xtj
−xij

)2

σ2
j (2.12)

With this probability estimate, a pixel value xt is considered a foreground pixel
if P (xt) < th where the threshold th is a global threshold over all the image.

The kernel bandwidth is estimated as

σ =
m

0.68
√

2
(2.13)

where m is the median of |xi − xi+1| for each consecutive pair (xi, xi+1) in the
sample. The kernel bandwidths of di�erent color channels are computed indepen-
dently.

Comparing with the GMM, the kernel estimation uses much more Gaussian dis-
tributions to estimate the pixel distribution. In the experiment of [Elgammal 2000],
the kernel method uses a sample of size 100 to model the background whereas
the GMM only use 10 distributions. With more Gaussian distributions, the ker-
nel method could model complex distributions of pixel values. Beside that, since
the kernel method depends only on recent pixel values of the video, this method
can avoid the problem of estimating parameters such as mean and variance. This
problem requires large amounts of data to be both accurate and unbiased.

However, because the model contains only a short history of pixel values, the
basic kernel method cannot recognize background pixel values which have a long
occurrence period. To overcome this problem, Elgammal et al propose to use two
background models: one short-term model and one long term model.

The short-term model consists of the most recent N background sample values.
N is small enough for the model to quickly adapt to changes. This model is updated
only with pixel values classi�ed as background. The short-term model may have two
kinds of false positive errors: errors due to rare background values which are not
represented in the model, and errors due to incorrect updating decisions.

The long-term model also consists of N background sample values but these
values are taken from a wide window of size W . This model captures a more stable
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representation of background containing also the background pixel values which
occur rarely. The long-term model is expected to have more false positives because it
cannot represent the quick changes of background, and more false negatives because
it may adapt too quickly to objects of interest as well.

A pixel value is classi�ed as foreground if and only if it is classi�ed as foreground
by both long-term and short-term models. This intersection eliminates both the false
positive errors due to rare background values of the short-term model and the false
positive errors of the long-term model due to quick changes of background. However,
the �nal results may not contain the true positives of the short-term model because
the long-term model may autonomously adapt to objects of interest. To address this
problem, Elgammal et al propose to keep all foreground pixels detected by the short-
term model if they are adjacent to foreground pixels detected by the combination.
However this solution could not solve the problem completely.

Figure 2.4: The sample of detection results of GMM [Stau�er 1999] and kernel
density estimation method [Elgammal 2000] on a scene with dynamic background.
Image (a) is the original image, image (b) is the detection results of GMM, image
(c) is the detection results of kernel density estimation method. Source [Kim 2005]

Figure 2.4 shows a sample of detection results of GMM [Stau�er 1999] and kernel
density estimation method [Elgammal 2000] on a scene with dynamic background
caused by a moving tree. As we can see, the noise level of kernel density estimation
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method is a litte bit higher than GMM but it can detect the whole person because
it uses chromaticity constraint to detect foreground objects.

The original kernel method of Elgammal et al has been extended in using di�er-
ent kernel functions, in using an adaptive kernel bandwidth, and in using adaptive
threshold to classify foreground / background pixel values.

In [Zivkovic 2006] [Tanaka 2007], to reduce the computation time, the authors
propose to use a rectangular function as kernel function.

In [Tavakkoli 2005], Tavakkoli et al use training data to set up an adaptive
bandwidth of the kernel and adaptive threshold to classify foreground / background
pixel values for each pixel in the image.

In [Mittal 2004] Mittal and Paragios use an adaptive bandwidth for the kernel
function. This bandwidth is computed based on two distances: the distance between
the sample value to its kth-nearest neighbor and the distance between the new pixel
value to its kth-nearest neighbor inside the sample. The computation of adaptive
bandwidth ensures that the bandwidth is large in areas with a small number of
sample values and small in the densely populated areas.

In [Cvetkovic 2006], Cvetkovic et al use two thresholds Tlarge and Tsmall to detect
two kinds of foreground pixel values: strongly con�dent foreground and weakly
con�dent foreground. Then in the post processing process, the weakly con�dent
foreground is further classi�ed into foreground / background based on the label of
adjacent pixels.

In conclusion, the kernel method has several advantages over the Gaussian mix-
ture of model. Firstly, the kernel method is more accurate than the GMM in esti-
mating complex distribution because of large number of kernel points. Secondly, the
kernel method does not have to solve the di�cult problem of estimating model pa-
rameters. Finally, the kernel method adapts quickly to the changes of environment.
However, the kernel method cannot handle rare events that occur periodically if
the period is longer than the size of the background sample. More importantly, the
kernel method is much slower than the GMM which makes it di�cult to be used in
real time video analysis systems.

2.1.2.3 Codebook model

The codebook model was introduced by Kim et al [Kim 2004]. The authors argue
that GMM and Kernel method cannot handle rare background pixel values which
occur periodically which are very common in outdoor scenes. For GMM, because
these values occur rarely, the weights of the distributions describing these pixel
values are small. As a result, these values are classi�ed as foreground. For kernel
density estimation method, the sample size must be large enough so that the rare
pixel values exist in the background representation. This large sample size slows
down the kernel density estimation method and prevent it from reacting quickly
to the changes of environment. Beside that the kernel density estimation method
has to lower the threshold to classify foreground / background pixels which leads to
more false positive errors.
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To solve this problem, Kim et al propose to use a training phase to model these
rare pixel values. In the Codebook model, every pixel value occurring during the
training phase must pass a temporal test. This test is designed specially for rare
pixel values. If a pixel value passes the test successfully, this pixel value is considered
as background and is used to represent background. In the testing phase, they
assume that all the possible rare pixel values have occurred during the training
phase. Then, for a new pixel value, the algorithm will compare this pixel value
with all the background values learned in the training phase. If the algorithm can
�nd a similar pixel value in the background representation, the algorithm classi�es
the new pixel value as background. Otherwise, the new pixel value is classi�ed as
foreground.

Formally, Kim et al model each pixel with a codebook CB consisting of one
or more codewords cwi, CB = cw0, cw1, ..., cwm. The pixel values occurring in
the training phase are clustered into the set of codewords based on a chromaticity
distortion metric together with brightness bounds. Unlike the GMM or the kernel
density estimation method, the number of clusters (codewords) for each pixel is not
�xed. One codeword contains the intensity and temporal information of the cluster
constructed during the training phase as follows:

cwi =
{

(µRi
, µGi

, µBi
), (Ǐi, Îi), (fi, λi, pi, qi)

}

(2.14)

where:

• (µRi
, µGi

, µBi
) are the RGB mean values of the pixels belonging to this cluster.

• (Ǐi, Îi) are the minimal and maximal intensity of the pixels belonging to this
cluster. The intensity of the pixel value is computed as I = R + G + B

• fi is the number of pixel values belonging to this cluster

• λi is the maximum negative run-length (MNRL) de�ned as the longest interval
during the training period that the codeword has not been activated by any
pixel values (a codeword is activated if the incoming pixel value belongs to
this codeword)

• pi, qi are the �rst and last access times, respectively, that the codeword has
been activated.

The training phase works as follows:

• At the beginning of the training phase, the codebook CB is empty

• For each pixel value xt coming at time t, verify if xt activates any codeword
in CB. xt activates codeword cwi if:

� The chromaticity distance between xt and cwi is smaller than a threshold
ε
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� The intensity of xt is in range of codeword cwi

• If CB is empty or if there is no codeword activated, create a new codeword
and insert it into CB. The content of newly created codeword is:

cw = {(Rxt , Gxt , Bxt), (Ixt , Ixt), (1, t − 1, t, t)} (2.15)

• If xt activates codeword cwi, this codeword is updated as follows:

cwi =

(
(

fiRi+Rxt

fi+1 ,
fiGi+Gxt

fi+1 ,
fiBi+Bxt

fi+1

)

,

(min(Ixt , Ǐi),max(Ixt , Îi)), (fi + 1,max(λi, t − qi), pi, t)

)

(2.16)

• After training with N pixel values, terminate building the codeword cwi by
setting λi ← max(λi, (N − qi + pi − 1))

In this training phase, to compute the chromaticity distance between the pixel
value xt and the codeword cwi the original codebook model use a distance based on
the angle between the (R, G,B) vector of xt and cwi. The intensity of xt is in range
of codeword cwi if

αÎ < Ix < min

(

βÎ,
Ǐ

α

)

(2.17)

where α is a constant smaller than 1 and β is a constant bigger than 1.
Codebook model can also use other color spaces such as HSV , Y UV which sep-

arate chromaticity and intensity. For example, in [Doshi 2006], Doshi and Trivedi
propose a method to compute the color distance to replace the color distance of
codebook model. This color distance is computed in HSV color space. Moreover,
the authors notice that for shadow where the intensity decreases, the chromaticity
di�erence in HSV color space also decreases. Therefore, the threshold for chro-
maticity should decrease gradually as the intensity decreases. On the other hand,
in the highlight regions, the threshold for the chromaticity di�erence should not
increase as the intensity increases because a high threshold would make the model
less sensitive.

Codebook model can use other method to verify if one pixel value belongs to one
codeword. For example, in [Li 2006], Li et al use a Gaussian distribution to model
the distribution of pixels belonging to a codeword. If the pixel value lies within 3
standard deviations of a codeword distribution, it belongs to this codeword. The
mean and variance then are updated using simple adaptive �lter as the one in
equation (2.1).

During the traing phase, Codebook model can use training videos which contain
objects of interest. In that case, codebook model assumes that the same mobile
object often appears at one place once or only few times and the duration between
each time is long. Therefore, the codewords corresponding to that mobile object may



26 Chapter 2. State of the art

have a large value of λ. On the other hand, the codewords corresponding to even
the rare background pixel values should have a smaller λ because they should be
activated more regularly. Based on this hypothesis, Kim et al remove the codewords
corresponding to objects of interest by eliminating every codeword with λ higher
than a threshold. In the original codebook model [Kim 2004], this threshold is set
to be N/2 where N is the number of training frames (the length of the training
video).

After the training phase, the constructed codebook CB is used to classify fore-
ground / background pixel values. A pixel value is classi�ed as foreground if it does
not activate any codeword in CB. Otherwise, it is classi�ed as background.

The performance of the above basic codebook model relies on the training video.
However the scene may change and these changes may not appear in the training
video. In that case the background model should update these changes. To do
this, Kim et al employ an additional transition codebook model CBT beside the
permanent codebook constructed in the training phase CBP . The transition CBT

is constructed in the testing phase with the help of three parameters Tadd, Tdelete,
and Tfilter. If a coming pixel value is classi�ed as foreground by the permanent
codebook CBP , this value is used to train the transition CBT . If this pixel value
does not reappear again during Tfilter frames, the corresponding codeword is deleted
from CBT . If this pixel value reappears for more than Tadd times, the corresponding
codeword in CBT is classi�ed as non-permanent, short-term background and will be
added into CBP . Therefore, the CBP contains two types of background codewords:
the permanent, long-term codewords constructed during the training phase, and the
non-permanent, short-term codewords added from CBT during the testing phase.
Beside that, the CBP removes all the codewords which are not activated during
Tdelete frames. Then the updating process works as follows:

1. For an incoming pixel value x, �nd a matching codeword in CBP . If found,
update the codeword and the pixel value x is classi�ed as background.

2. Otherwise, try to �nd a matching codeword in CBT and update it. If there is
no match, create a new codeword and add it to CBT .

3. Remove the codewords which are not activated during Tfilter frames from
CBT .

4. Add the codewords which stay for more than Tadd frames in CBT into CBP .

5. Remove the codewords which are not activated during Tdelete frames from
CBP .

The codebook model has several advantages. Firstly, the codebook model can
overcome the problem of GMM and the kernel density method in recognizing rare
background pixel values. For the GMM, the probability of these rare values is too
small to be classi�ed as background. For the kernel density estimation method, the
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sample length is not long enough to contain such rare values. Therefore, the code-
book model often has better detection results for outdoor scenes as rare background
pixel values are common in these scenes. Secondly, the codebook model does not
limit the number of codewords. Therefore, this model can estimate complex pixel
value distributions. Thirdly, the codebook model is quite fast because it does not
have to evaluate the probability of pixel values. Finally, the background represen-
tation of the codebook model is more compact than the background representation
of the kernel density estimation method. Beside that, although the codebook model
needs a training video, the training video may contains objects of interest and the
training algorithm can automatically remove these objects of interest from back-
ground representation.

Figure 2.5: The sample of detection results of GMM [Stau�er 1999], kernel density
estimation method [Elgammal 2000], and codebook model [Kim 2005] on a scene
with dynamic background. Image (a) is the original image, image (b) is the detection
results of GMM, image (c) is the detection results of kernel density estimation
method, image (d) is the detection results of codebook model. Source [Kim 2005]

Figure 2.4 shows a sample of detection results of GMM [Stau�er 1999], kernel
density estimation method [Elgammal 2000], and codebook [Kim 2005] on a scene
with dynamic background caused by a moving tree. As we can see, the codebook
can eliminate most of the noise because they have occurred during the training
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phase. Moreover, it can detect the whole person because it also uses a chromaticity
constraint like the kernel density estimation method in [Elgammal 2000].

The codebook model also has two main disadvantages. Firstly, the codebook
model may not be e�ective if the content of the training video is a crowded scene.
In crowded scenes, people may wear similar clothes and they may frequently pass at
the same place. As a result, the codewords corresponding to these people can pass
the temporal �lter based on maximum negative run-length and can be classi�ed as
background codewords. Therefore, the codebook model cannot distinguish between
the codewords corresponding to people or corresponding to rare background pixel
values. Beside that, also in crowded scenes, if the cache model is used to update the
trained model, as the codebook model does not limit the number of codewords, the
number of codewords in the cache model may increase dramatically. In that case,
the algorithm becomes slow. Secondly, the basic codebook model cannot handle
environment changes which do not occur during the training phase. The extended
version of codebook to deal with these changes is not very e�ective in case of the
changes producing rare background pixel values.

Other background models
Several other background models have been proposed in the literature but they

are not as popular as the GMM, kernel density estimation model, and the codebook
model.

In [Toyama 1999], Toyama et al propose a background model called Wall�ower
which is based on Wiener �lter. Like the kernel density estimation method, the
Wall�ower background model also keeps a set of recent pixel values as the back-
ground representation. However, instead of using this set to compute the probability
of incoming pixel values, Wall�ower computes the temporal relationships between
consecutive pixel values using Wiener �lter. The Wiener �lter is a linear predictor
based on a recent history of pixel values. Any pixel value that deviates signi�cantly
from the predicted value is classi�ed as foreground. This background model is ef-
fective in detecting periodical changes of pixel values as in the case of leaf motion.
However, this method also su�ers from the problem of short history as the kernel
density estimation method.

In [Porikli 2005b], Porikli et al also propose a method to model the periodical oc-
currence of pixel values. The authors keep a sequence of N pixel values and compute
the coe�cients of the Discrete Cosine Transform (DCT) for this sequence. For each
incoming pixel value, a new sequence is formed by removing the oldest pixel value
in the stored sequence and by adding the new value to the head of this sequence.
After that, the algorithm computes the DCT coe�cients of the new sequence and
compares these coe�cients with the coe�cients of the old sequence. If the di�erence
is small, the incoming pixel value is classi�ed as background. Otherwise, it is clas-
si�ed as foreground. This algorithm is e�ective in detecting the periodical changes
of pixel values but it is slow.

To conclude this section, in �gure 2.6 we show an image taken from [Kim 2005]
which compares GMM, Kernel density estimation method, and Codebook model.
This �gure shows that Kernel density estimation method and Codebook are better
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Figure 2.6: This �gure taken from [Kim 2005] compares three background models:
GMM (image (b)), Kernel density estimation method (image (c)), and Codebook
model (image (d)). Image (a) shows the original frame. We see that GMM cannot
detect the person on the right because GMM uses the same variance for R,G,B
channels. With this method, the variance is big due to illumination changes. On
the other hand, Kernel density estimation method and Codebook represent pixel
values with brightness and chromaticity. Therefore, they can detect the person
on the right using the chromaticity constraint. For rare background events due to
tree leave motion, Codebook is a little bit better than GMM and Kernel density
estimation method in removing noise due to tree leave motion.

than GMM in detecting people because GMM does not take into account the chro-
maticity constraint. We also see that, Codebook is a little bit better than the other
two in removing noise due to tree leave motion.

Discussion
Each of the above background modeling approaches has its own strengths and

weaknesses. The Gaussian mixture approach can handle background containing mo-
tion as well as the problem of slow illumination changes. However this approach is
not good at dealing with quick illumination changes, at estimating model parame-
ters, and at classifying rare background pixel values. The kernel density estimation
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approach can handle quick illumination changes and does not have to estimate the
parameter values. Nevertheless this approach is often slow and it also cannot resolve
the problem of rare background pixel values. The codebook approach are fast and
it can deal with rare background pixel values. However this approach need training
data.

Based on the analysis of the popular background subtraction algorithms, we see
that we need a new background subtraction algorithm. This algorithm should have
the following characteristics:

• Handle background motion, including rare background motion like tree leave
motion.

• Better classify foreground / background pixels than the algorithms using oc-
currence frequency as the only classi�cation criteria.

• Work with or without learning video.

• Adapt to gradual illumination changes of the scene.

• Have robust methods to estimate the values of model parameters.

The background subtraction algorithm proposed in this thesis can learn from
those algorithms to better model the background. For example, the GMM shows a
simple but e�ective method to deal with background containing motion and gradual
changes of environment. The codebook approach shows that by avoiding the prob-
ability estimation, the background subtraction algorithm becomes faster. Beside
that, this approach also shows the potential of a temporal �lter in distinguishing
people from background. The kernel method shows that to be able to estimate the
background with complex intensity distributions as in case of outdoor scenes, only
few Gaussian distributions are not enough.

2.2 Removal of shadow and highlight
In this thesis, we aim at removing shadow and highlight caused by two sources:
strong shadow and highlight (including shadow in non saturated region), and shadow
in regions with saturated illumination.

2.2.1 Strong shadow and highlight
Problem statement

Illumination of one region may change dramatically when there are moving
shadow or highlight. Moving shadow happens when objects of interest block part
or the whole light coming from the main light source (e.g. the sun or the lamp in
a room) to one region. In this case, the shadowed region is mainly lit by ambient
light. Highlight happens when one region is lit by an additional light beside the nor-
mal light. For example, the room becomes brighter when the windows are opened.
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Highlight may make the illumination saturated and the background becomes white.
In this thesis, we only remove the shadow and highlight which do not change the
chromaticity and the texture of the background.

Because moving shadow is more common than highlight, most of the works in
the literature focus on removing shadow. Therefore in this section we mainly present
the methods of removing shadow. The principle of removing shadow is nearly the
same as the principle of removing highlight.

Shadow / highlight detection
In [Finlayson 2006], the authors propose a method to compute 1D representation

of a color image. This 1D representation depends only on the camera and on the
surface of objects in the scene, not on the illumination. Therefore, with this 1D
representation, we can avoid the problem of shadow and highlight because shadow
and highlight does not alter this 1D representation. However, the cost for computing
this 1D representation is quite high and not suitable for real time video processing
application.

In case of videos, there are several approaches to detect shadow. They in-
clude image projection, learning, geometrical, and texture - chromaticity based ap-
proaches.

Figure 2.7: The image projection approach. The line passing the gravity center PG

splits shadow from object. Source [Hsieh 2003]

The image projection approach detects shadow in two steps. In the �rst step, this
approach computes the border points that can separate people from their shadow
using vertical histogram projection. In the second step, this approach re�nes the
detection results by estimating the line passing the border point that split people
from their shadow. In [Hsieh 2003], Hsieh et al determine this line by computing the
orientation of the region containing both a person and his/her shadow. The image
projection approach is only e�ective in scenes with simple lighting conditions where
there is only one shadow per person. Moreover, the angle between the person and
his/her shadow must be suitable for the vertical projection technique to separate
this person from his/her shadow. Beside that, this approach cannot be extended to
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remove highlight because highlight is not usually attached to people. Finally, this
approach is slow and not suitable for real-time applications.

The o�ine learning approach uses training videos to learn how the background
changes with shadow. This approach is e�ective for scenes where the characteristics
of the background such as chromaticity change signi�cantly with shadow as in case
of outdoor scenes. However, this approach needs training videos which have shadow
over every pixel in the image. To overcome this problem, in [Nadimi 2004], Nadimi
et al divide the scene into di�erent regions such as roads, grass. Each region has
a unique characteristic of illumination. Then the authors build the ground truth
for one sample and analyze the e�ect of the shadow on this sample. The result
is generalized for other regions which have the same characteristics. Nevertheless,
this algorithm in particular and the o�ine learning approach in general cannot deal
with the scenes where the shadow characteristics change frequently. For example,
the shadow characteristics of outdoor scenes may change according to time of the
day (morning, noon, night), and according to the weather (cloudy or sunny).

The geometrical approach is not a complete approach to detect shadow but it
can be used as an additional veri�cation stage to detect shadow and highlight. For
example, typical rules can indicate that shadow regions must not be inside objects
of interest, they must not be small and isolated.

The texture - chromaticity based approach is the most popular approach to
remove moving shadow or highlight. This approach is based on the following hy-
potheses:

• Moving shadow or highlight does not change the chromaticity of the a�ected
region. They only change the brightness of this region.

• Moving shadow or highlight changes the brightness of the a�ected region.
However the changed brightness must lie in a range relative to the original
brightness of the a�ected region.

• Moving shadow or highlight does not change the texture of the a�ected region.
In other words, moving shadow or highlight has nearly the same e�ect on the
adjacent pixels in the a�ected regions.

Based on these hypotheses, the methods of removing shadow employ three types
of features: chromaticity, ratio between the shadow brightness and normal bright-
ness, and texture.

From now on, we only discuss about the texture - chromaticity based approach.
Particularly, in the rest of this subsection, we discuss about the features and the
algorithms to detect shadow and highlight.

Features to remove shadow / highlight
As presented above, the �rst feature to remove shadow and highlight is chro-

maticity. There are several approaches to represent and compare the chromatic-
ity. Some works transform the original image in RGB color space into other
color spaces which separate the brightness from the chromaticity. For example,
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in [Cucchiara 2003, Liu 2007, Su 2008, Chen 2004], the authors transform pixel val-
ues from the RGB color space to the HSV color space and use the H and S

channels to represent chromaticity. In [Martel-Brisson 2007], the authors use the
U ,V channels in the color space Y UV to represent chromaticity. Other works such
as [Huang 2009, Martel-Brisson 2008, Huang 2008, Porikli 2005a] use directly the
angle of the vector (R,G, B) in the RGB color space to represent chromaticity.
These works assume that shadow and highlight only changes the length of the vec-
tor (R,G, B) but not the direction of this vector.

The second feature to detect shadow and highlight is the possible range of shadow
and highlight. For example, in [Wang 2005], Wang et al de�ne a generic shadow
model I(x, y) = aB(x, y) + c where I(x, y) is the intensity of the shadowed / high-
lighted pixel at position (x, y), B(x, y) is the intensity of background at (x, y), a and
c are constants which are independent from the position (x, y). This approximation
is acceptable for outdoor scenes where the only light source is the sun which is far
from objects of interest. However for indoor scenes the values of a and c may vary
greatly depending on the geometry of the scene, on the position of objects of inter-
est, and on the position of light sources in the scene. In [Liu 2007], the authors set
prior lower bound α and upper bound β for the ratio I(x, y)/B(x, y). These bounds
are global for all pixels in the image. After processing each frame, these bounds are
updated with the pixels classi�ed as shadow in this frame. This constraint is less
strict than the previous method. However, this range could be theoretically large
and the use of automatic updating may be biased because the shadow in the recent
frames may not be representative enough for every possible ratio values.

The third feature to detect shadow and highlight is texture. There are two main
types of texture features: texture features based on the relative intensity order
of adjacent pixels, and texture feature based on the similar e�ect of shadow and
highlight on adjacent pixels.

Figure 2.8: The sample of detection results of [Leone 2005]

The �rst type of texture features is used to detect shadow and highlight with the
assumption that shadow and highlight does not change the relative intensity order
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of adjacent pixels. For example, in [Leone 2005], Leone et al use Gabor �lters to rep-
resent texture. With the atom size of 4×4, the algorithm has to compare one patch
with 512 possible atoms. Although the comparison is done with a speci�c algorithm
(Matching pursuit), the texture veri�cation is still slow (few hundred milliseconds
per frame). Beside that, to collect the texture of background, this method needs a
training phase with ground truth video. Figure 2.8 shows a sample of detection re-
sults of this method. In [Heikkila 2006], Heikkila and Pietikainen use LBP features
for both foreground pixel detection and shadow and highlight removal. This algo-
rithm employs the GMM and does not need training data. In [Martel-Brisson 2008],
Martel-Brisson and Zaccarin use the hypothesis that shadow and highlight change
the magnitude of the spatial gradients between the intensities of neighboring pixels
but not their direction. Therefore, to compare the background with the current im-
age at one particular pixel, they use the angle between the gradient of background
and the gradient of the current image at this pixel. If this angle is wide, the pixel
likely belongs to objects of interest. Otherwise, the pixel belongs to background.
This type of texture feature can have good performance if the background has tex-
tured surface. However, when the surface is textureless, the relative intensity order
of the adjacent pixels may change due to the variation of shadow / highlight e�ect.
We give a detail explanation in chapter 4.

The second type of texture features is used to detect shadow and highlight with
the assumption that shadow and highlight often has the same e�ect on a small re-
gions. For example, in [Jacques 2005], Silveira Jaques et al detect moving objects by
comparing the background image with the current image using the Normalized Cross
Correlation (NCC) index. In the regions corresponding to objects of interest, the
correlation between the current image and background image is small. As a result,
NCC is close to 0. Otherwise, NCC is close to 1. This method produces good results
but the computation of NCC is complex. Others [Bevilacqua 2003, Bevilacqua 2006,
Toth 2004, Zha 2007, Zhang 2007, Nghiem 2008] compute the image of intensity ra-
tios between the background and the current image. They use the hypothesis that
the adjacent pixels should have the same ratio when there is shadow / highlight
over these pixels. In [Bevilacqua 2003, Bevilacqua 2006], Bevilacqua computes the
gradients over the ratio images. If the gradients of one pixel value are higher than a
threshold, this pixel is classi�ed as foreground. In [Toth 2004], Toth et al compute
the ratio k = I(x, y)/B(x, y) where I is the current image and B is the background
image for each pixel (x, y). Then for the neighboring pixels (x + i, y + j), if (x, y) is
a shadow / highlight pixel, I(x + i, y + j)−B(x + i, y + j)/k must be smaller than
a threshold. Using this transformation helps the proposed algorithm to select the
threshold on the absolute intensity value rather than on the ratio k which is di�cult
to select. In [Zha 2007, Zhang 2007], the authors use other variances of these ratios.

This thesis use the texture feature in [Toth 2004] to verify the foreground pixels
detection result because of its simple calculation, ease of selecting threshold, and
robustness to noise.

Algorithms
According to [Prati 2003], there are two types of algorithm to detect shadow:
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rule-based and statistical approaches.
The simplest shadow detection algorithms are the rule-based algorithms. These

algorithms often consist of a set of rules to detect shadow pixel values. For example,
in [Cucchiara 2003], Cucchiara et al only check two chromaticity and one intensity
ratio constraints to verify whether a pixel value is shadow or not. The rule-based
algorithms are fast and can be used in video analysis systems which need real time
processing.

The statistical algorithms employ statistical methods to detect shadow pixel
values. Compared to the deterministic algorithms, the statistical algorithms have
several advantages. Firstly, the detection results of statistical algorithms are often
smoother. For the deterministic approach, the veri�cation of each feature is a binary
decision and there is no di�erence between no deviation from the background and a
deviation which is close to the threshold. For the statistical approach, these devia-
tions are accumulated and the �nal probability that a pixel value is shadow re�ects
the deviations of all the features as in [Martel-Brisson 2008, Liu 2007]. Secondly,
with the probability of being shadow for individual pixels, the statistical approach
can employ Markov Random Field to represent dependencies between the label of
single pixel and labels of its neighborhood. However, the statistical algorithms are
often slower than the deterministic and few of them can satisfy real time require-
ment.

In both deterministic and statistical algorithms, there are several important pa-
rameters which establish the algorithm performance. For example, for the determin-
istic algorithm in [Cucchiara 2003], the chromaticity thresholds on the deviations of
H and S are important parameters. For the statistical algorithm in [Liu 2007], the
important parameters are the lower bound and upper bound of intensity. These pa-
rameter values must be set according to the speci�c conditions of the scene. Setting
these parameter values manually is di�cult. Moreover these values may become
obsolete when the scene changes. Therefore, adaptation mechanisms are necessary
to adapt these parameters to the current conditions of the scene. To do this, some
algorithms use a weak classi�er with loose constraints. This weak classi�er selects
a set of pixel values (called shadow candidates) most of which are real shadow
pixel values. Based on this set, these methods extract the shadow characteristics
to recognize shadow pixel values in the future. For example for scenes where the
hypothesis about chromaticity invariance is incorrect (e.g. outdoor scenes), some
works [Liu 2007, Martel-Brisson 2007, Martel-Brisson 2008] try to estimate the chro-
maticity deviations of shadow pixel values. In [Martel-Brisson 2008], Martel-Brisson
and Zaccarin select shadow candidates by using a weak classi�er with large threshold
on chromaticity and the gradient direction of adjacent pixels. Then they compute
the deviation direction of these shadow candidates from the color direction of back-
ground using the kernel method. Figure 2.9 shows a sample of the detection results
of this method. In [Liu 2007], Liu et al use the shadow candidates to construct
a GMM. When this model gets enough samples, it is used to detect shadow pixel
values. In [Martel-Brisson 2007], Martel-Brisson and Zaccarin use a single GMM
to detect background, shadow, and foreground. Whenever the algorithm detects a
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Figure 2.9: The sample of detection results of [Martel-Brisson 2008] on a highway
scene with strong shadow. Image (a) is the original image, image (b) shows the
posterior values for background P(B|x) with x is the current image, image (c) shows
the cast shadow posterior P(S|x), image (d) shows the foreground posterior P(F|x),
image (e) and image (f) are binary results obtained from image (b) and (c) with
P(S|x) > 0.5.

shadow candidate, it increases the learning rate so that the corresponding Gaussian
distribution is not discarded and becomes stable. After n frames, the mean value
of the Gaussian distribution corresponding to shadow candidates is fed into another
GMM called GMSM. When this GMSM gets enough samples, it will be used to
detect shadow. Although the automatic adaptation of parameters can help shadow
detection algorithms to work with di�cult scenes, this method is not always feasi-
ble because at each pixel, there are not always enough shadow values to construct
a good estimation.

Discussion
This thesis aims at proposing a fast shadow and highlight detection algorithm

for our mobile object detection framework. To achieve good detection results, the
proposed algorithm should employ both chromaticity and texture features. These
features must be robust to the changes due to shadow and highlight.

Concerning the features to represent chromaticity and texture, most of the pre-
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sented works assume a linear model of the camera. In particular, they assume that
the response function of the camera has the form Ii = ki × qi where Ii is the pixel
value in the image, i is one of three values R, G, B, ki is the multiple coe�cient
of the camera, and qi is the quantity of light coming to the sensor. However, as
described in [Mann 2002, Grossberg 2004], the camera response function is more
complex. Therefore, based on the camera characteristic, we propose a new set of
features to represent chromaticity and texture. The new features will be discussed
in more details in chapter 4.

Concerning the algorithm to detect shadow and highlight, to ensure the require-
ment of real time processing, we propose a deterministic algorithm. Beside that, to
be suitable for the speci�c conditions of the scene, the proposed algorithm should
have adaptation mechanisms to adapt the parameter values to the speci�c conditions
of the scene. The details of the proposed algorithm will be presented in chapter 4.

2.2.2 Shadow in regions with saturated illumination
The shadow detection methods presented in the previous section rely on the hy-
pothesis that shadow does not change too much the texture and the chromaticity
of the scene. However, in some cases, the illumination of one part of the scene is so
strong that every pixel value is saturated and the camera cannot observe the tex-
ture and the chromaticity of the region with saturated illumination. For example,
in �gure 2.10, the illumination of the �oor is saturated. Therefore, in the image,
this region become white. When the person comes in, inside the shadow region,
the illumination reduces and the camera can observe the �oor. Consequently, when
there is shadow, the �oor in the image is di�erent from the �oor without shadow.
In that case we cannot employ the shadow detection algorithms presented earlier to
distinguish shadow from objects of interest.

In the literature, we �nd only [Martel-Brisson 2007] which proposes a solution to
this problem. In [Martel-Brisson 2007], Brisson and Zaccarin use a GMM to model
the background. They assume that, in saturated region, although di�erent objects of
interest may produce di�erent shadow, the pixel values for one pixel inside di�erent
shadow caused by di�erent objects of interest are nearly the same. Therefore, the
Gaussian distribution of these pixel values in GMM has a higher weight than the
Gaussian distributions modeling pixel values of objects of interest. Based on this
assumption, Brisson and Zaccarin set a threshold for this weight to detect shadow in
regions with saturated regions. Then every non background Gaussian distribution
whose weight is higher than this threshold is considered as the Gaussian distribution
of background when there is shadow. This method may work with crowded scene
when the algorithm can collect enough pixel values inside shadow. However it is
di�cult to select a good threshold for the weight because the weight may depend
on the number of objects of interest in the scene. For scenes with only few objects
of interest passing by, this threshold must be small because there are only few pixel
values of shadow. On the other hand, in crowded scenes, this threshold must be
higher to eliminate the Gaussian distributions of objects of interest.
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(a)

(b)

Figure 2.10: Shadow in the region with saturated illumination. Figure (a) shows
the scene in which the illumination of the �oor is saturated. Therefore, the camera
cannot observe the texture and the chromaticity of the �oor. Figure (b) shows
the scene when there is shadow on the �oor. The shadow reduces the illumination
and the camera can observe the �oor which is di�erent when the illumination is
saturated. Therefore shadow detection algorithms have di�culties in distinguishing
shadow from objects of interest.

In this thesis, we propose a method to detect shadow in region with saturated
illumination. This method has an o�ine supervised learning phase to learn the dis-
tribution of pixel values inside the shadow. Therefore, the proposed method does not
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have to wait online to collect enough pixel values of shadow as in [Martel-Brisson 2007]

2.3 Updating background
For object detection algorithms which work with very long video sequences, they
must be able to adapt to various changes of the scene. To do this, background
subtraction algorithms should update their background representation regularly.
Therefore, after a certain number of frames, the changes of the scene are absorbed
into the background representation and these changes do not occur in the detection
results again. However, in scenes like the one in �gure 2.11, a person can often
stay at the same place for a long time. Consequently, if we do not distinguish this
person from the changes of the scene, after a while, the person will be absorbed into
the background representation and the background subtraction algorithm will not be
able to detect this person. In [Harville 2002], Harville et al propose a simple solution
for this problem. In their framework, whenever the classi�cation task detects a
person from the segmentation results, the background subtraction algorithm does
not update the corresponding region. However, the classi�cation task may be wrong,
i.e. it may misclassify a background region as a person. For example, in �gure
2.12, at the beginning, the person is sitting in the arm chair and the background
subtraction algorithm does not have the background corresponding to the arm chair
region occupied by the person. As a result, when this person moves to the table,
the background at the arm chair is visible to the camera and the classi�cation task
classi�es wrongly this region as a sitting person (called a ghost). In this case, the
updating strategy of Harville et al will not update the newly observed region and
the �ghost� person (the background region classi�ed as person) remains forever in
the detection results.

(a) (b) (c)

Figure 2.11: The e�ect of uniform updating on stationary people. Figure (a) is the
original image. The background subtraction algorithm detects the person in this
frame correctly (�gure (b)). However, after 80 frames, the person is absorbed into
background and the background subtraction algorithm cannot detect the person any
more (�gure (c)).

To distinguish ghosts from real objects of interest, some works employ object
borders (i.e. edges). In [Connell 2004], Connell et al compute the edge energy along
the border of each detected object. A foreground region is considered as a ghost
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(a) (b) (c)

Figure 2.12: The �ghost� problem of selective updating strategy. At the beginning
(�gure (a)), the person is sitting in the arm chair and the background subtraction
algorithm does not see the background occupied by the person. Then, when the
person moves to the table (�gure (b)), the background at the arm chair can be ob-
served and the classi�cation task classi�es it as a person. Therefore, the background
subtraction algorithm does not update the corresponding region. Then the �ghost�
person stays forever in the detection results.

if it does not have a su�cient amount of edges. In [Lu 2007], Lu et al use the in-
painting algorithm to �ll the region corresponding to each detected object. If it is
a ghost, it does not have strong borders and the algorithm could �ll a large part or
the whole detected foreground region. In general, these techniques can have good
results if background subtraction algorithms can correctly detect the real object
borders. However this requirement cannot always be satis�ed, for example in case
of shadow.

Beside detecting ghosts, the object detection algorithm should also handle stationary objects
	

.
For example in �gure 2.13, the background subtraction algorithm has to detect both
people and cars. Therefore, the background subtraction algorithm should not in-
tegrate the regions of detected people and cars into background. However, when
a car stops and a person gets out of the car, the classi�cation task is unable to
distinguish the person from the car given only the detection results as in �gure
2.13. This problem is called stationary object updating. To solve this problem, in
[Fujiyoshi 2002, Yang 2004], the authors create a temporary background layer con-
taining the pixel values of the car. Then when people pass in front of the car, the
background subtraction algorithm uses this temporary background layer to extract
these people from the car detection. When the car moves again, the background
subtraction algorithm removes the corresponding temporary background layer. In
general, these algorithms perform well when the illumination of the scene does not
change too much. When such a change happens, these algorithms have di�culties
in maintaining the lighting consistency of the background layers. Moreover, these
multi-layer frameworks cannot be applied directly to many background subtraction
algorithms such as GMM.
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(a)

(b)

Figure 2.13: The stationary object problem. Figure (a) is the original frame. Figure
(b) shows the detection results of this frame. The background subtraction algorithm
should detect both cars and people. Therefore it should not update the regions
corresponding to detected cars or people. However, given only the detection result
of the background subtraction algorithm, the classi�cation task cannot distinguish
the person from the car.
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2.4 Tuning parameters
2.4.1 Problem statement and related works
Another problem of background subtraction algorithms is to adapt their parameters
to the scene conditions. For example, with a background subtraction algorithm
such as GMM in [Stau�er 1999] presented earlier in section 2.1.2, the parameter T
indicates the proportion of the background in the GMM. T is a sensitive parameter
and its value depends on the type of the background. A small value of T is suitable
for static background and a high value of T is suitable for background containing
motion such as waves, wind in trees, etc. Selecting the wrong value of T may degrade
the performance of GMM seriously. Therefore, a parameter adapting algorithm is
necessary for background subtraction algorithms.

A generic evaluation based tuning framework which uses program supervision
can be found in [Shekhar 1994, Thonnat 1999]. In this framework, tuning parameter
is done in four step: planning, execution, evaluation, and repair. This framework
extensively uses expert knowledge to set up the module (planning), to evaluate the
performance and to modify the parameter values to repair errors. This knowledge
is externalized so that users can add, remove, or modify this knowledge easily.
However, the application of this work requires a very �exible design of the video
analysis system and not every system can satisfy.

To tune parameter values for video analysis system, in the literature, there are
two main approaches: context-based and evaluation-based adaptation.

In the context-based approach [Martin 2008, Georis 2007], a context is a speci�c
scene condition in which the underlying algorithm needs speci�c parameter values
to have good performance. This approach has an online and an o�ine phase.

In the o�ine phase, the tuning algorithm �rst collects a set of reference videos
representing every possible scene conditions in which the algorithm need speci�c
parameter values. Each of this condition is an algorithm context. After that, the
tuning algorithm constructs ground truth information on the objects of interest for
each video. Finally, optimization algorithms are used to �nd optimal parameter
values for each reference video (each context).

In the online phase, the tuning algorithm determines the context of the current
video. If the context of the current video is similar to one of the context learnt in
the o�ine phase, the tuning algorithms applies the optimized parameter values of
the learnt context to the background subtraction algorithm to process the current
video. The method in [Martin 2008] is an example of this approach which uses a
large amount of ground truth and reference videos illustrating all variations within
24 hours of recording. Figure 2.14 shows the e�ectiveness of this method compared
with the original codebook model [Kim 2005]. With the background representation
suitable for the current context, the codebook model can achieve a better foreground
detection results.

In the evaluation based approach, the tuning algorithm tunes parameter values
based on the online evaluation of the foreground detection results. To evaluate the
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Figure 2.14: The sample of detection results of the original codebook [Kim 2005]
(image on the left) and the context-based codebook [Martin 2008] (image on the
right)

foreground detection results, the evaluation-based approach uses feedback from the
classi�cation and tracking tasks. By this way, the evaluation-based tuning approach
does not have to collect the reference videos and construct the corresponding ground
truth.

In [Hall 2006], Hall propose an evaluation based tuning algorithm to select pa-
rameter values for the tracker. This algorithm evaluates the object detection results
based on the similarity between the trajectory and the size of detected objects of in-
terest to the reference model (clusters of trajectories and sizes of objects of interest,
learned over long sequences). This method is expensive in terms of processing time.
Therefore, the parameter optimization must be run on a separated process (on a
di�erent computer in the network for example). Moreover, this tuning algorithm is
only able to �nd a global parameter value set for the whole image since trajectories
spread over the whole scene throughout the video. This global value may not be
good especially if the scene is complex and each region needs a di�erent parameter
value. This global value corresponds also to a compromise between all the trajec-
tories detected within the last period, thus this parameter value is not necessarily
optimal.

2.4.2 Discussion
With the help of ground truth, the context-based tuning approach can �nd better
parameter values than the evaluation-based approach if the current video is similar
to one of the training videos of the o�ine approach. The reason is that the evalua-
tion based approach uses the feedback from higher level tasks such as classi�cation
and tracking and the learned knowledge about the motion of objects of interest in
the scene and this information is not always reliable. However, for the context-based
approach, it is di�cult to collect enough training videos representing every possible
condition of the scene. Beside that, if there are too many context, the comparison
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between current context and the learnt context would increase the processing time.
Therefore context based tuning only select important contexts and the di�erence
between these contexts may seriously a�ect the performance of the background sub-
traction algorithm. Then, for other cases, the evaluation approach is a complement
for the context based approach when the current condition of the scene is di�erent
from what the o�ine approach has learned.

2.5 Conclusion
In this chapter, we have reviewed the literature on the background subtraction
algorithms, the methods to remove shadow and highlight, the adaptive methods to
update the background representation, and the methods to tune parameter values
of the background subtraction algorithm.

For the background subtraction algorithms, this chapter has presented three
main models in the literature: GMM, Kernel density estimation method, and Code-
book. These models can work with various types of scene (indoor scenes, outdoor
scenes). However, they either have problems in modeling rare background pixel
values (GMM, Kernel density estimation method) or in adapting to the changes
of the scene (Codebook). Our objective is to propose a model to represent back-
ground which can work with complicated background as the above models but at the
same time, can solve the existing problems. The detail of the proposed background
subtraction algorithm is presented in chapter 4.

For the methods to remove shadow and highlight, we have seen that the most
popular approach to remove shadow and highlight is the one which assumes that
the shadow and highlight do not changes too much the chromaticity and the texture
(homogeneity) of the a�ected region. However, the e�ectiveness of the existing color
and texture features is validated mainly with few short experiments and not by a
theory on the response function of the camera. In chapter 2, we use the camera
model in [Mann 2002, Grossberg 2004] and the illumination model in [Bui 1975] to
analyze the e�ectiveness of these features in detecting foreground pixels.

For the methods to update the background according to the feedback from the
classi�cation task, a good updating method can help the background subtraction
algorithm to solve many problems such as to keep track of objects of interest, to
manage stationary objects, to deal with sudden illumination changes. However, in
the literature, there is only work of [Harville 2001] which is mainly a prototype.

For the methods to tune parameter values of the background subtraction al-
gorithm, we see that both context-based and evaluation based approaches can be
complement each other to improve the performance of the background subtraction
algorithm. In this thesis we focus more on the evaluation based approach.



Chapter 3

Overview of the object detection
framework

3.1 Overal description
Detecting foreground pixels is the �rst step in an object detection framework. One
of the most popular methods to detect foreground pixels is background subtraction
algorithm. The performance of the background subtraction algorithm is heavily
dependent on the current scene conditions. When the scene conditions change,
the background subtraction algorithm has to adapt itself to the new conditions.
However, working only at the pixel level, it is di�cult for the background subtraction
algorithm to ful�ll this work.

In this thesis, we propose a controller for the background subtraction algorithm
to help the background subtraction algorithm to adapt to the current scene condi-
tions. To do this, the controller uses the feedback from the classi�cation task and
the information about the background subtraction algorithm and the scene. The
general structure of the object detection framework with the controller is illustrated
in �gure 3.1.

With the controller for the background subtraction algorithm, the object detec-
tion framework works as follows:

• The framework takes as input a video sequence from a single and �xed cam-
era. From this video sequence, for each frame, the background subtraction
algorithm produces a list of potential foreground pixels.

• The algorithm to remove shadow and highlight receives this list and it removes
from the list the pixels corresponding to shadow or highlight. The results are
sent to the blob construction task and the controller.

• The blob construction task constructs the blobs from the foreground pixels,
then sends the blobs to the blob classi�cation task.

• The blob classi�cation task classi�es these blobs and sends the list of blobs
together with their types to the higher tasks and to the controller.

• The controller analyzes the feedback from the classi�cation task to evaluate
the detection results of the background subtraction algorithm. Based on its
evaluation, the controller decides that whether the foreground detection task
needs to apply any adaptation methods or not. If the adaptation is necessary,
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Figure 3.1: The general architecture of the object detection framework with the
controller for the background subtraction algorithm. This controller helps the back-
ground subtraction algorithm to adapt itself to the current scene condition. To do
this, the controller needs the feedback from the classi�cation task and the informa-
tion about the scene and the background subtraction algorithm. In this thesis, we
propose the algorithms for the green component.

the controller creates necessary adaptation commands based on the analy-
sis of the performance evaluation and the knowledge about the algorithms
and the scene. After that, the controller sends adaptation commands to the
background subtraction algorithm. If the controller cannot improve the per-
formance of the object detection process, it inform human operators and store
the current video for o�ine analysis.

To adapt the background subtraction algorithms to the changes of the scene,
the controller has two adaptation methods: to update the background representa-
tion of the background subtraction algorithm and to tune parameter values of this
algorithm.
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Inside the controller, the evaluation of the foreground detection results is inde-
pendent from the background subtraction algorithm. It evaluates the performance
of the foreground detection task based on the feedback from the classi�cation task.
Particularly, in terms of classi�cation, the foreground detection task has good per-
formance if there are only few noise blobs and the appearance of the detected objects
of interest complies with the appearance model.

On the other hand, depending on the adaptation method, the controller can be
independent or partially independent from one particular background subtraction
algorithm. For example, to update the background representation of the background
subtraction algorithm, the controller de�nes a set of standard updating commands.
These commands serve as a generic interface between the controller and the back-
ground subtraction algorithm. Therefore, the controller can be used with any back-
ground subtraction algorithm that can implement these commands. On the other
hand, to tune the parameter values of the background subtraction algorithm, the
controller provides generic tuning algorithms, the background subtraction algorithm
has to provide the information about the parameters so that the controller can use
the generic tuning algorithms to tune the values of these parameters. This informa-
tion includes the parameters to be tuned, the e�ect of changing these parameters.
Therefore, the controller can work with any background subtraction algorithm which
can provide such information.

The structure of the next sections is as follows. In section 2, we brie�y describe
the background subtraction algorithm proposed in this thesis. In section 3, we
present the general description of the algorithm to remove shadow and highlight. In
section 4, we present the overview of the controller with two adaptation methods.
The conclusion is presented in section 5.

3.2 The proposed background subtraction algorithm
This thesis proposes a new background subtraction algorithm called EGMM (Ex-
tended Gaussian Mixture Model) to detect foreground pixels in the video. The
proposed algorithm is an extension of the Gaussian Mixture Model [Stau�er 1999].

Inside a background subtraction algorithm, the algorithm �rst constructs a back-
ground representation for each pixel. Then to detect foreground pixels in the current
frame, the algorithm compares the current frame with the background representa-
tion of the algorithm. The pixels in the current frame which are di�erent from
the background representation are classi�ed as foreground pixels. The background
representation is updated regularly after each incoming frame.

The performance of background subtraction algorithms depends on 4 principal
characteristics: (1) the features to construct the background representation, (2) the
background representation, (3) the classi�cation rules, and (4) the updating process.
Therefore the thesis focuses on these 4 characteristics to improve the performance
of the proposed background subtraction algorithm.

Features: The proposed background subtraction algorithm uses a new color
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feature (including one chromaticity and one brightness features) to construct the
background representation for each pixel. To construct this feature, we employ
the camera model in [Mann 2002, Grossberg 2004] and the Phong shading model
in [Bui 1975]. Using these models, we are able to propose a simple color feature
which is robust to the variations of the illumination. The model of the camera
is also used to analyze the e�ectiveness of the color features widely used in other
background subtraction algorithms such as RGB, Y UV , and HSV .

Background representation: the background representation in the proposed
background subtraction algorithm stores various information about the scene. For
example, for a pixel value, the proposed background representation stores the index
of the �rst frame where a pixel value occurs, the index of the last frame it has
occurred, the number of times it occurred etc. Thanks to this enriched information,
the classi�er can distinguish the foreground pixels from the background more easily.

Classi�cation rules: Based on an enriched background representation, the
proposed background subtraction algorithm uses a set of classi�cation rules to dis-
tinguish foreground pixels from background. These rules are designed speci�c to
di�erent scene types to have a better foreground detection performance. Beside
that, these rules are intuitive for users to understand and users can easily change
these rules to meet their speci�c needs.

Updating process: The background representation in the proposed back-
ground subtraction algorithm must be updated regularly to adapt itself to the
changes of the scene. To be reliable, at each pixel, the update should be based
on the evidence of many pixel values. However, if we store many pixel values for
each update, we need a large amount of memory. In this thesis, we propose an iter-
ative updating method using the evidence from many pixel values without storing
these pixel values. The proposed updating method is based on the iterative formula
to compute the mean and variance of Welford [Welford 1962].

3.3 Removal of shadow and highlight
This task aims at removing two types of shadow and highlight: shadow and highlight
in non saturated region, and shadow in regions with saturated illumination.

Removing shadow and highlight in regions with non saturated illumi-
nation

To remove shadow and highlight in regions with non saturated illumination,
we assume that shadow and highlight do not change too much the chromaticity
and the homogeneity (texture) of the scene. We eliminate this kind of shadow and
highlight in two steps. In the �rst step, at the pixel level, the background subtraction
algorithm classi�es the pixels whose chromaticity is similar to the chromaticity of
the background as potential shadow / highlight pixels. In the second step, at the
local neighborhood level, we verify the homogeneity constraint at the position of
these pixels. If these pixels satisfy the homogeneity constraint, they are classi�ed
as background pixels. To verify the homogeneity, we propose a simple homogeneity
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constraint working at the scope of three adjacent pixels. This constraint is designed
based on the analysis of the camera model and the illumination model. In this
thesis, we also use these models to analyse the e�ectiveness of di�erent homogeneity
constraint in the literature.

Removing shadow in regions with saturated illumination
In the regions with saturated illumination, the light intensity is so strong that

every pixel value is saturated. However, when there is shadow, the light intensity
decreases and the camera can observe the scene texture inside the shadow regions.
Consequently, shadow removal algorithms based on comparing the color and texture
of shadow and background are not e�ective because these feature values are di�erent
in these two cases. To overcome this problem, our algorithm applies a supervised
learning phase to learn the color of these regions when they are covered by shadow.
With this learned knowledge, the proposed algorithm is able to distinguish objects
of interest from shadow in the region with saturated illumination.

3.4 Controller
In this thesis, we propose a controller which consists of two adaptation methods
for the background subtraction algorithm inside the foreground detection task. The
�rst adaptation method of the controller is to supervise the background subtraction
algorithm to update its background representation. The second adaptation method
is to tune parameter values of background subtraction algorithms.

3.4.1 Update background representation
Updating the background representation is a method to adapt the background sub-
traction algorithm to the current conditions of the scene. However, a single, static
updating strategy for the whole image does not ensure a good adaptation. For ex-
ample, a background region should be updated gradually with the pixel values of
recent frames. Nevertheless, if an object of interest in the scene stops moving for
a long time and the corresponding region is updated with the same amount as the
background region, after a while, this object of interest is classi�ed as background
and the video analysis system loses track of this object. The controller is in charge of
creating an adaptive updating strategy for the underlying background subtraction
algorithm to update its background representation.

As illustrated in �gure 3.2, by guiding the background subtraction algorithm to
update the background representation, the controller can help the background sub-
traction algorithm to solve the following problems: removing noise, keeping tracks of
objects of interest, handling sudden illumination changes, and managing stationary
objects.

Figure 3.3 shows the input/output of the controller when it guides the back-
ground subtraction algorithm to update its background representation. To do this
work, the controller takes as input the frame at time t, the foreground detection re-
sults of this frame, and the feedback from the classi�cation task for this frame. After
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Figure 3.2: The controller helps the background subtraction algorithm to update the
background representation. With this help, the background subtraction algorithm
can remove noise, handle sudden illumination changes, manage stationary objects
like cars, and keep tracks of partially stationary objects like people.
.

Figure 3.3: The input / output of the controller when it guides the background
subtraction algorithm to update the background representation.

analyzing the input, the controller produces a matrix of updating commands. Each
updating command is assigned to one pixel of the video. When the background sub-
traction algorithm receives these updating commands, it applies the corresponding
updating strategies to the background representation. The newly updated back-
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ground representation will be used to detect foreground pixels at time t + 1. Here,
updating commands play the role of an interface between the controller and the
underlying background subtraction algorithm. This interface enables the controller
to communicate with di�erent background subtraction algorithms.

3.4.2 Tuning parameters of background subtraction algorithm
Tuning parameter value is another method of adapting the background subtraction
algorithm to the current conditions of the scene. The default parameter values
cannot be suitable for every condition. To overcome this problem, the controller
adapts the parameter values of the background subtraction algorithm to be suitable
to the current conditions of the scene.

Because tuning parameters is a time-consuming process, the controller only tunes
parameter values of the background subtraction algorithm when the performance of
the system is lower than a certain threshold or it has been long enough since this
process has been activated.

The tuning is done in three steps: execution of the background subtraction
algorithm, evaluation of the foreground detection results, and repair. Here repair
means to �nd new parameter values for the background subtraction algorithm. The
execution step is done by the background subtraction algorithm. The controller is
responsible for the evaluation and repair steps.

Evaluating the performance of the foreground detection task
As presented in the overall description section, the controller evaluates the de-

tection results of the background subtraction algorithm using the feedback from the
classi�cation task. In our system, we evaluate the foreground detection results using
�ve criteria:

• The area covered by small noise over the image.

• The area covered by blobs classi�ed as unknown by the classi�cation task.

• The area covered by stationary blobs classi�ed as unknown by the classi�ca-
tion task.

• The ratio between the detected object height over the object height in the
object model.

• The number of detected objects compared to the number of objects estimated
by users in the scene description.

Tuning parameters of the background subtraction algorithm To tune
the parameter values of the background subtraction algorithm, we use both context-
based and evaluation-based tuning approaches. In fact, we propose a context-based
tuning method to tune the values of the parameters that EGMM, the background
subtraction algorithm proposed in this thesis, uses to detect strong shadow in out-
door scenes. Beside that, we propose two generic evaluation-based tuning algorithms
to help background subtraction algorithms to maintain the balance between noise
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and the sensitivity in detecting foreground pixels. The �rst tuning algorithm called
PBT can tune parameter values for every pixel in the image but it is slower and
the tuned parameter values is not as good as the values found by the second tuning
algorithm. The second tuning algorithm called RBT exploits parameter knowledge
to �nd better parameter values in a shorter time. The parameter knowledge includes
the information such as which parameter in�uences which evaluation criteria, what
is the e�ect of changing these parameter on the evaluation criteria. However, RBP
has certain assumptions about the parameters and this tuning algorithm cannot
work with certain types of parameters.

3.5 Conclusion
In this chapter, we have presented an overview of an object detection framework in
which the background subtraction algorithm can adapt itself to the current scene
conditions with the help of a controller. To do this, the controller uses the feedback
from the classi�cation tasks and the information about the background subtraction
algorithm and the scene. To realize this framework, this thesis proposes the following
algorithms:

• A new background subtraction algorithm EGMM to detect foreground pixels.
This algorithm has a color feature which is simple but robust to intensity vari-
ations, a new background representation model rich in information about the
pixel values, the corresponding set of classi�cation rules, and a new updating
method.

• A new algorithm to remove shadow and highlight in the region with non satu-
rated illumination. This algorithm uses both color and homogeneity (texture)
features to improve the precision.

• A new algorithm to remove shadow in regions with saturated illumination.
This algorithm uses an o�ine learning phase to learn the regions inside
shadow.

• An controller for the background subtraction algorithms GMM and EGMM
which has two adaptation methods. The �rst adaptation method is to guide
the background subtraction algorithm to update its background representa-
tion. The second adaptation method is to tune the parameter values of the
background subtraction algorithm to be suitable for the current scene condi-
tions.
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Foreground pixel detection

Foreground pixel detection is the �rst step in our object detection framework as
illustrated in �gure 4.1. This step takes as input a video sequence and controlling
information from the controller to produce a list of foreground pixels for each frame.
Foreground pixels are the pixels belonging to the objects of interest that the system
wants to detect. To realize this step, we propose a new background subtraction al-
gorithm called EGMM (Extended Gaussian Mixture Model) and several algorithms
to remove shadow and highlight in region with non-saturated illumination, shadow
in region with saturated illumination.

Figure 4.1: This �gure illustrates the main components of foreground detection
task: a background subtraction algorithm and an algorithm to remove shadow and
highlight.

In this chapter, we �rst present the chromaticity features to characterize back-
ground representation. These features are used by the background subtraction algo-
rithm to detect foreground / background pixels as well as the algorithm to remove
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shadow and highlight.

4.1 Chromaticity features to characterize background rep-
resentation

The background subtraction algorithm EGMM employs directly the value of R, G,B

to construct its background representation. However, to verify whether one pixel
value belongs to the background representation, unlike the GMM or the Kernel
density estimation method which compare directly R, G,B pixel values, we represent
this pixel value with one chromaticity and one brightness features and compare the
pixel value in these two domains (chromaticity and brightness). These features
must have high discriminative power so that the background subtraction algorithm
can distinguish the background from objects of interest. Beside that, because the
chromaticity feature is reused to detect shadow and highlight, it must be robust to
the illumination variations. Based on these requirements, we have two criteria to
evaluate the e�ectiveness of chromaticity and brightness features:

• For a given pixel value, if we keep the values of two channels, e.g. R,G,
and change a little bit the value of the third channel, the brightness and
chromaticity features must be able detect this small change.

• If we sample pixel values at one point in the background when there is illumi-
nation changes such as shadow and highlight, these pixel values should have
the same chromaticity value as the chromaticity value of the pixel values at
this point when there is no illumination change.

As discussed in chapter 2, there are many methods to represent the chromaticity.
However, most of these methods does not take into account the physical character-
istics of shadow / highlight and the characteristics of the camera. Therefore, in
some cases due to di�erent camera settings (e.g. white balance), these chromaticity
representations are not robust to illumination changes.

To overcome this problem, we �rst need an illumination model to understand the
e�ect of shadow and highlight on the scene illumination. Then we need to under-
stand the camera characteristics in�uencing the transformation of the illumination
into pixel values in the image. Based on these models, we propose new features to
represent brightness and chromaticity. The proposed chromaticity feature is robust

4.1.1 Illumination model
To explain the e�ect of the shadow and highlight on the illumination, we employ the
Phong re�ection model [Bui 1975], a simple illumination model widely used in 3D
computer graphic. For the sake of simplicity, it is assumed that the scene has only
one light source. The approach can be extended to the case of multiple light sources.
According to the Phong re�ection model, a surface point is lit by three types of light:
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ambient light qa, di�use light qd, and specular light qs as illustrated in �gure 4.2.
Ambient light is the light coming to a surface from all the non-directional ambient
light that is in the environment. The di�use light is the light coming from light
sources such as the sun or light bulbs to the object surface, di�used by the object
surface to the camera. The specular light is the shiny part, coming from the light
source, re�ected on the object and goes directly to the camera.

Figure 4.2: Phong re�ection model. Source: Wikipedia

In Phong re�ection model, the light power coming to the camera is described by
the following formula:

q = kaqa + kd(L · N)qd + ks(R · V )αqs (4.1)

where ka is the ambient re�ection constant, kd is the di�use re�ection constant, ks

is the specular re�ection constant, L is the direction vector from the point on the
surface towards the light source, N is the normal at this point on the surface, R is
the direction that a perfectly re�ected ray of light (represented as a vector) would
take from this point of the surface, V is the direction towards the camera, α is a
constant, (·) is the dot product operation.

The specular light is usually small and it is negligible especially when the surface
is not very shiny. Therefore, to simplify the model, we omit this term. Beside that,
if we consider kd = ka = k then (4.1) becomes:

q = k(qa + (L · N)qd) (4.2)

We will study how the Phong re�ection model can be used to express the shadow
and highlight e�ect.

In case of shadow, an object in the scene has blocked the light from the main
light source to the background region as illustrated in �gure 4.3. Inside the shadow,
there are two region types: umbra and penumbra. The umbra is the darkest part
of the shadow. Inside the umbra, di�use light from the main light source is blocked
completely by the object. This region is mainly lit by the ambient light. The
penumbra is the region where some or all of the di�use light is blocked (i.e., the
umbra is a subset of the penumbra). This region is lit by both ambient light and
part of the di�use light. When the size of the main light source is small or when it
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Figure 4.3: The shadow generation: inside the shadow, there are two region types:
umbra and penumbra. The umbra region only receives light from ambient light, not
from the main light source. The penumbra receives light from ambient light and
partially from the main light source. Source [Stauder 1999].

is too far from the object like the case of the sun in outdoor scenes, we can consider
that all the shadow is covered by the umbra. On the other hand, when the size
of the main light source is big or when there are multiple light source, penumbra
accounts for a large part of the shadow. Inside shadow, the light power of both
umbra and penumbra regions can be expressed by the following equation:

qshadow = k(qa + β(L · N)qd) (4.3)

where β ∈ [0, 1] indicates how much the di�use light has been blocked.
Equations (4.2), (4.3) show that the illuminance of a particular object depends

on object re�ection constant and the light power that this object receives. In case
of shadow, the power of the di�use light coming onto this object reduces and it
is lit mainly by the ambient light. Therefore, if the chromaticity of ambient light
is di�erent from the chromaticity of the di�use light, then the chromaticity of the
shadowed region would be di�erent from the chromaticity of that region when there
is no shadow. For example, in the extreme case as in [color shadow ], if the back-
ground is gray and if there are three light sources of three di�erent chromaticities
red, green, blue, then the shadow of the same object could have various chromatic-
ities (Figure 4.4).

We will examine the chromaticity di�erence of ambient and di�use light in two
scene types: outdoor scenes during the day and indoor scenes. In outdoor scenes
during the day, the di�use light is the light coming from the sun which is the only
light source (other light sources are too weak comparing to the sun). Therefore the
chromaticity of the di�use light is often yellow. On the other hand, the ambient
light is mainly the light coming from the blue sky. Hence the chromaticity of the
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Figure 4.4: Color shadow occurs when background is grey and there are multiple
light sources with di�erent chromaticities. Source [color shadow ].

ambient light in outdoor scenes is often blue which is di�erent from the chromaticity
of the di�use light. In indoor scene, if the re�ection constant of most of the objects
in the scene is not too biased to a particular wavelength, then the ambient light is
only the complete re�ection of the di�use light on the objects in the scene. As a
result, the chromaticity of the ambient light is similar to the chromaticity of the
di�use light. If the indoor scene has multiple light sources, these light sources often
has the same chromaticity because they belong to the same type such as a chain of
bulbs or light tubes. From this analysis, we see that di�erent types of scenes need
di�erent algorithms to remove shadow.

In case of highlight, a highlight region occurs when an additional light source has
been added to the scene (e.g. a window is opened). Similar to the case of shadow, if
the chromaticity of the additional light source is similar to the chromaticity of the
existing light sources, the chromaticity of light coming from objects to the camera
remains the same. Otherwise, we have to take into account this di�erence. Because
of the similarity between shadow and highlight, we will use the same method to
manage both of them.

4.1.2 Camera characteristics
Using the Phong re�ection model we can understand how illumination variations
a�ect the light coming to the camera. We need to study the camera characteristics
to know how the changes caused by illumination variations are expressed in the
image. Particularly, in this section we present the camera model, the automatic
white balance adjustment of the camera, and the camera sensor characteristic that
a�ects the noise level of di�erent R, G,B channel.

In [Mann 2000], Mann proposes a model of the camera recording and image
displaying process as illustrated in �gure 4.5. In brief, during the camera recording
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Figure 4.5: The typical process of recording and displaying image(taken
from [Mann 2000]).

process, light coming from subject matter goes through the lens and is quanti�ed
by the sensor to produce �q� which is linearly proportional to the quantity of light
falling on the sensor. At this step noise nq is added. The dynamic range of �q� is
then compressed by an unknown non-linear function f . This function is called the
camera response function. Another noise nf is added to the signal. This noise may
include quantization noise if the camera is a digital camera and compression noise if
the camera produces a compressed output such as JPEG image. The output image
is f1. The image f1 is then transmitted or recorded and played back into a display
system. Inside the display system, the dynamic range of the image is expanded
again.

In details, according to this model, the output of the sensor q for one pixel at
position (x, y) is computed by the following equation:

q(x, y) =

∫

∞

0
qs(x, y, λ)s(x, y, λ)dλ (4.4)

where qs(x, y, λ) is the quantity of light falling on the image sensor and s(x, y, λ)

is the spectral sensitivity of an element of the sensor array. In case of color camera
with three types of sensor R, G, B, we have a set of light quantity [qR(x, y), qG(x, y), qB(x, y)].
Thus, the continuous spectral information q(x, y, λ) is represented by a set of three
numbers [qR(x, y), qG(x, y), qB(x, y)]. It is assumed that the spectral sensitivity does
not vary across the sensor array. Therefore s(λ) is the same for every position (x, y).
According to [Grossberg 2004], for the CCD and the CMOS sensors, qi(x, y) is lin-
early proportional to q(x, y, λi) with i ∈ {R, G,B}. Therefore, we can use qi(x, y)

as a representation of the quantity of light q(x, y, λi) coming to the image sensor.
Although the output of the sensor qi(x, y) is the linear transformation of the light

input, the pixel values in the image do not vary linearly with light input. Indeed,
most cameras contain a dynamic range compressor, as depicted in �gure 4.5. With
this compression, cameras can reduce the storage space while still maintaining a
large dynamic range. For example, according to [Debevec 1997], the Kodak DCS-
420 and DCS-460 cameras capture internally in 12 bits (per pixel per color) and
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then apply dynamic range compression to produce the range-compressed images in
8 bits (per pixel per color). The camera compression function is called the camera
response function.

Figure 4.6: The estimated camera response function of the camera Kodak DCS460
(taken from [Debevec 1997]). The horizontal axis represents the logarithm of the
exposure. This exposure corresponds to the quantity of light coming to the sensor.

In the literature, the camera response function f can be estimated using several
images of the same subject matter taken at di�erent exposure as in [Mann 2000,
Mann 2002, Grossberg 2004, Debevec 1997]. Figure 4.6 shows the estimated camera
response function for the camera Kodak DCS460 in [Debevec 1997]. The horizontal
axis represents the logarithm of q. From this �gure, we can see that except the
lower end and the upper end, the middle range is a linear relation between log(q)

and pixel values. In this thesis, our goal is not to determine the correct camera
response function f but to determine some of its characteristics to estimate the
e�ect of the illumination variations in the image. In [Mann 2000], Mann proposes
various forms of camera response function. Among these forms, the simplest and
wildly used form is:

f(q) = α + θqγ (4.5)

Where γ is approximately equal to 1/2.22 which is inverse to the raising power
(expander) of the display, α and θ depend on the particular type of cameras. For
a color camera, each color channel R, G, B may have its own values of α and θ as
in case of white balance presented later. Also from [Mann 2000], Mann de�nes a
certainty function as follows:

c(log(q)) =
df

dlog(q)
(4.6)
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The certainty function captures the slope of the response function in �gure 4.6. This
function indicates how quickly the output (pixel value) of the camera varies for given
input. Mann states that, for most of the cameras, the output is most reliable where
it is most sensitive to a �xed change in input light level. From �gure 4.6, we can
see that the output of the camera is the most reliable (the certainty function is at
the peak) if the input light is at the middle of the camera's exposure range. If the
quantity of light (q) coming to the sensor is higher than a threshold, the output pixel
value is cut o� to 255. If q is small, the changes of q only produce slight changes
of the output pixel values. As a result, if q is small, it is di�cult to distinguish
the changes of the value of q from the noise nq and nf given only the pixel value.
Therefore, when the pixel values are too small or too large, we cannot rely on the
camera response function to estimate the quantity of light coming to the sensor.

For color cameras, another characteristic we have to pay attention to is the
balance between di�erent colors. In other words, in equation (4.5), we cannot assume
that di�erent color channels R, G,B share the same values of α, θ. From �gure 4.6,
it seems that these values are nearly the same for R, G,B. In fact, these values
are di�erent for di�erent types of light sensing elements R, G, B due to the e�ect of
automatic white balance. White balance is the global adjustment of the intensities
of the three channels R, G, B to render correctly speci�c colors, particularly neutral
colors. Figure 4.7 shows the e�ects of white balance. The image on the left is the
original image without white balance processing. The scene in this image is lit by
a light source of which the dominant chromaticity is blue. As a result the scene in
the image becomes blue. To correct this problem, the camera can apply the white
balance process which globally reduces the intensity of the blue channel. The result
is the image on the right.

(a) (b)

Figure 4.7: The white balance e�ects (Source [white balance ]). Figure (a) is the
original image without white balance processing. The scene in �gure (a) is lit by
the light source of which the dominant chromaticity is blue. The scene in �gure (b)
is corrected with white balance which globally reduces the blue color.
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We will analyze how the approximate form of camera response function in equa-
tion (4.5) can accommodate the white balance e�ect. From [Liu 1995], we know
that the amount of adjustment must be proportional to the output intensity f(q)

in equation (4.5). Consequently, we have di�erent values of α and θ.

Figure 4.8: The distribution of di�erent types of light sensing elements over the
camera sensor. Normally there are more green elements because the human visual
system is more sensitive to green light. Source: [Bayram 2008]

The �nal characteristic of the camera we want to discuss is the distribution of
di�erent type of light sensing elements over the camera sensor. In [Bayram 2008],
Bayram states that a camera sensor often consists of three types of light sensing
elements corresponding to the three colors red, green, and blue. Since human visual
system is more sensitive to green light, camera sensors typically have more green
elements than red and blue as shown in �gure 4.8. The missing RGB values are
calculated based on the neighboring pixel values by an operation called demosaicing.
As a result, the green is less noisy than the red and blue.

4.1.3 Chromaticity features
Current methods to detect shadow presented in chapter 2 often rely on the hypoth-
esis that in scenes with homogeneous light such as indoor scenes, illumination varia-
tions only a�ect the brightness, not the chromaticity of the background. Therefore,
these methods use the color spaces that separate the brightness from the chromatic-
ity such as HSV , Y UV , normalized RGB and use the constraint on chromaticity
invariance to detect illumination variations. However the use of these color spaces
to represent chromaticity is not always successful, as illustrated in the example in
�gure 4.9. The illumination in this scene is quite homogeneous because the scene is
only lit by the natural light coming through the windows. Let's examine the values
of pixel A in HSV color space. In HSV color space, the component V represents
the brightness, the components H, S represent the chromaticity. The range of H

is [0, 360]. However, because the value of H is represented by a circle, the actual
di�erence of two H values is in range [0, 180]. In case of pixel A, the H value when
there is no shadow is 180. When the shadow of the woman casts on this pixel, the
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H value of pixel A is 96. For pixel A, shadow has changed the H value of pixel A

from 180 to 96, which is nearly half of the possible di�erence range.

(a) (b)

Figure 4.9: Problem of HSV color space to detect shadow. Figure (a) shows the
scene in which there is no shadow at pixel A. The H value of pixel A in HSV color
space is 180. Figure (b) shows the scene when there is a shadow over point A. This
time, the H value of pixel A in the HSV color space is 96 which is very di�erent
from the original value (180). Therefore shadow detection algorithms using HSV

color space have di�culties in distinguishing shadow from objects of interest.

Therefore, in this section, we �rst need to understand why the chromaticity
representation of these color spaces can be e�ective in some kinds of scene but not
in the other kinds. Then based on the knowledge acquired from this study, we
propose our own chromaticity features to be robust to various scene conditions.

4.1.3.1 E�ectiveness of di�erent color spaces to represent chromaticity
Using the camera model and the illumination model, we can analyze the e�ectiveness
of di�erent color spaces to represent chromaticity. Here we analyze three chromatic-
ity representations: (1) the angle of the vector (R, G, B), (2) H, S in HSV color
space, and (3) U, V in Y UV color space. These chromaticity representations are
widely used in the literature to detect shadow and highlight.

According to the illumination model in equation 4.2, the quantity of light coming
from an object in the scene to the camera can be computed as:

qi = ki(qi,a + (L · N)qi,d)

= kiqi

Where i ∈ {R, G, B}, ki is the re�ectance coe�cient corresponding to channel i,
and qi is the environment light coming to the object. When there is a shadow or
highlight, the amount of qi changes to qi,var as:

qi,var = miqi

0 < mi ∀i ∈ {R, G,B}
(4.7)
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The value mi may be di�erent for di�erent channels R, G, B.
For the chromaticity representation using the angle of the vector (R, G, B), this

representation assumes that illumination variations change only the length but not
the angle of vector (R, G, B). As a result, the ratio between di�erent color channels
remains the same when illumination variations occur. Using the camera model and
the equation (4.7), we have:

IR

IB
=

αR + θR(kRqR)γ

αB + θB(kBqB)γ

IR,var

IB,var
=

αR + θR(kRmRqR)γ

αB + θB(kBmGqB)γ

In the ideal case (when αi ≈ 0) and the variance is the same for di�erent color
channels (mi = m), this ratio remains the same when there is illumination variation.
In the normal case when the denominator IB, IB,var are not too small, the above
ratios are not too much a�ected by α and small noise nq, nf . In this case, the
two ratios are nearly equal and these ratios can be used to represent chromaticity
invariance. However, in case of strong shadow, the denominator IB,var is small.
Then the ratio with the small denominator can change greatly due to those noises
and α. Moreover, if IR,IB are in the middle range and IR,var, IB,var are in the lower
range of the camera input, the camera response function behaves di�erently in these
two cases as illustrated in �gure 4.6. As a result, the ratios between di�erent color
channels in this case are not reliable. Let's take the pixel values at position B in
�gure 4.9 to demonstrate this problem. When there is no shadow, the (R, G, B)

pixel value is (87, 45, 33). In this case, the ratio between the red and blue channels
is 87/33 ≈ 2.64. When there is shadow, the (R, G,B) pixel value is (52, 28, 16).
In this case, the ratio between the red and blue channels is 52/16 ≈ 3.25 which
is very di�erent from the ratio when there is no shadow. If we multiply the pixel
value (52, 28, 16) with 33/16 (the ratio of the blue channel of two pixel values) to
compare with the �rst pixel value, we have (107, 58, 33). The angle between the two
vectors corresponding to two pixel values remains the same but we can see the great
di�erence between the two pixel values.

On the other hand, in case of highlight when the denominator IB,var is big, if
we add a noticeable value into the nominator IR,var, the �nal ratio does not change
much. Therefore, the ratio in this case is not sensitive to foreground pixel values.

To overcome this problem, in [Kim 2004], Kim et al use a normalized chro-
maticity constraint. This chromaticity constraint is illustrated in �gure 4.10 taken
from [Kim 2005]. Particularly, they set a threshold on the distance δ between
the point represented by (IR,var, IG,var, IB,var) to the line containing the vector
(IR, IG, IB) (the line going through the original and the point (IR, IG, IB)). By
this way, in case of strong shadow, the threshold δ on the distance allows a large
deviation of the angle θ between the two vector in �gure 4.10 to accommodate for
noise and abnormal behavior of the camera response function when the input light
quantity is small. In case of highlight, this threshold also prevents the problem of
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Figure 4.10: This �gure (taken from [Kim 2005]) illustrates Kim chromaticity con-
straint. If vt and xt are the two pixel values represented by two vectors in (R,G,B)
color space, then they are considered to have the same chromaticity if the distance
δ between xt and the line containing vt is smaller than a threshold.

foreground insensitivity. However, this method cannot deal with automatic white
balance.

For the chromaticity representation using H and S in HSV color space, this
representation assumes that illumination variations change only the V value, not
the value of H and S. The formula to compute H and S from RBG value is:

H =



















0 if max(IR, IG, IB) = min(IR, IG, IB)

(60 ◦ × IG−IB

max−min
+ 360 ◦) mod 360 ◦ if max(IR, IG, IB) = IR

60 ◦ × IB−IR

max−min
+ 120 ◦ if max(IR, IG, IB) = IG

60 ◦ × IR−IG

max−min
+ 240 ◦ if max(IR, IG, IB) = IB

S =

{

0 if max(IR, IG, IB) = 0
max−min

max(IR,IG,IB) otherwise

Let's take the case when max(IR, IG, IB) = IG, min(IR, IG, IB) = IR, and
IG > IR. By replacing the equation (4.5) of the camera model and the equation (4.7)
into the formula to compute H we have:

H = 60 ◦ × IB − IR

IG − IR
+ 120 ◦

= 60 ◦ × θB(kBqB)γ + αB − θR(kRqR)γ − αR

θG(kGqG)γ + αG − θR(kRqR)γ − αR
+ 120 ◦

Hvar = 60 ◦ × IB,var − IR,var

IG,var − IR,var
+ 120 ◦

= 60 ◦ × θB(kBmBqB)γ + αB − θR(kRmRqR)γ − αR

θG(kGmGqG)γ + αG − θR(kRmRqR)γ − αR
+ 120 ◦

In the ideal case when the camera does not have automatic white balance (αi =

α), the environment light is white (qi = q), and the variance is the same for di�erent
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color channels (mi = m), H remains the same when there is illumination variation.
When one of these conditions is not correct, the value of H may change. Beside that,
when the saturation is small (max − min is small), noise has more impact on the
value of H. More importantly, the value of H depends on which color channel is the
biggest channel, when saturation is small, due to noise or automatic white balance
e�ect, H may change dramatically as in case of the point A in �gure 4.9. In this
�gure, due to the white balance e�ect, the blue channel is raised up. Therefore, when
there is shadow, the RGB value at position A is (88,94,84) and the blue channel
is the smallest channel. When there is no shadow, the RGB value at position A

becomes (174,188,188) and the blue channel is the biggest channel. As a result, the
value of H has changed from 96 to 180.

Using the camera model and the equation (4.7) to compute S we have:

S = 1 − IR

IG

= 1 − θR(kRqR)γ + αR

θG(kGqG)γ + αG

Svar = 1 − IR,var

IG,var

= 1 − θR(kRmRqR)γ + αR

θG(kGmGqG)γ + αG

Similar to the case of using angle to represent chromaticity, S can be robust to
the illumination variances if both IG and IG,var are big.

For the chromaticity representation using U and V in Y UV color space, this
representation assumes that the illumination variations change only the Y value,
not the value of U and V . The formula to compute U, V from RBG value is:

U = −0.1473IR − 0.2886IG + 0.436IB

V = 0.615IR − 0.51499IG − 0.10001IB

By replacing the equation (4.5) of the camera model and the equation (4.7) into
the above formula to compute U we have:

U = −0.1473IR − 0.2886IG + 0.436IB

= −0.1473(θR(kRqR)γ + αR) − 0.2886(θG(kGqG)γ + αG)

+ 0.436(θB(kBqB)γ + αB)

Uvar = −0.1473IR,var − 0.2886IG,var + 0.436IB,var

= −0.1473(θR(kRmRqR)γ + αR) − 0.2886(θG(kGmGqG)γ + αG)

+ 0.436(θB(kBmBqB)γ + αB)

Clearly we see that U 6= Uvar. Especially, when mi = m and αi = α, then mγU =

Uvar. Beside that, the value of U can vary a lot when the saturation is high. For



66 Chapter 4. Foreground pixel detection

example, if IR and IG are very small compared with IB, the value of U is mainly
decided by IB which can have big variation due to shadow or highlight. We can
have the same conclusion for V .

Proposed chromaticity feature
Our objective is to propose a simple chromaticity representation based on RGB

color space which is robust to the illumination variations and must be generic enough
to accommodate for the white balance of the camera. In fact, our solution is a
combination of a normalization version of the approach using the angle of the vector
(IR, IG, IB) with the adjustment for automatic white balance e�ect.

To check if I = (IR, IG, IB) can become Ivar = (IR,var, IG,var, IB,var) due to
illumination variance, we verify one brightness constraint and two chromaticity con-
straints.

For the brightness constraint, we say that pixel value Ivar = (IR,var, IG,var, IB,var)

satis�es the brightness constraint of pixel value I = (IR, IG, IB) if:

|B(IR, IG, IB) − B(IR,var, IG,var, IB,var)| < T

where B is a feature that represents the brightness of a pixel value and T is a
threshold on the brightness. There are many methods to de�ne the brightness as Y

in Y UV , V in HSV or the length of the vector (IR, IG, IB). However, as we have
presented earlier the characteristics of the camera, we know that the green channel
is less noisy than the red and blue channel. Therefore, we de�ne the brightness
simply as: B(IR, IG, IB) = IG.

For the chromaticity constraint, to compare the chromaticity of I = (IR, IG, IB)

and Ivar = (IR,var, IG,var, IB,var) , we try to estimate IR,var, IB,var from (IR, IG, IB)

and IG,var. Then we compare these estimated values with the real values. If the
di�erences are small enough, we can considered that they represent the same chro-
maticity. The estimated values of IR,var, IB,var is computed as follows:

IR,estimated = IG,var ×
IR

IG

IB,estimated = IG,var ×
IB

IG

(4.8)

where IR,estimated and IB,estimated are the estimated value of IR,var and IB,var. Then
the chromaticity constraint is expressed as follows:

dR(I, Ivar) = IR,var − IG,var ×
IR

IG
< ε

dB(I, Ivar) = IB,var − IG,var ×
IB

IG
< ε

where ε is a threshold in the gray scale unit. By replacing the equations (4.5) of the
camera model and equation (4.7) into the above constraint, we have:



4.1. Chromaticity features to characterize background representation67

dR(I, Ivar) = IR,var − IG,var ×
IR

IG

= (θR(kRmRqR)γ + αR) − (θG(kGmGqG)γ + αG)
θR(kRqR)γ + αR

θG(kGqG)γ + αG

dB(I, Ivar) = IB,var − IG,var ×
IB

IG

= (θB(kBmBqB)γ + αB) − (θG(kGmGqG)γ + αG)
θB(kBqB)γ + αB

θG(kGqG)γ + αG

(4.9)

In the ideal case of the camera response function (equation (4.5)) when α ≈ 0

and shadow / highlight has the same e�ect on di�erent color channel ( mi = m),
we can verify easily that dR = 0 and dB = 0. In that case we have:

IR

IG
=

IR,var

IG,var

IB

IG
=

IB,var

IG,var

This is also the assumption of the approach which uses the direction of the vector
(IR, IG, IB) to represent chromaticity. This assumption is incorrect when α 6= 0, or
when there is noise, or more importantly when the pixel value (IR,var, IG,var, IB,var)

is too small and it falls in the abnormal range of the camera as the case of pixel B in
�gure 4.9. If it is the case, the more the di�erence between IG and IG,var, the bigger
the di�erence between the two ratios. However, in case of shadow (IG,var < IG), in
equation (4.9) this ratio di�erence is �normalized� (reduced) by multiplying it with
the smaller value IG,var. Therefore, we can set a small threshold for dR, dB. As a
result, the chromaticity constraint becomes robust to small noise on IR,IB but still
sensitive to foreground pixel values (it can detect small changes of IR,var, IB,var).
In case of highlight (IG,var > IG), this ratio di�erence is magni�ed and accounts for
a large portion of the threshold for this constraint. As a result, this constraint is
not robust to small noise on (IR, IG, IB). We have to accept this weakness because
we do not want the point (IR,var, IG,var, IB,var) to deviate too far from the line
containing the vector (IR, IG, IB). In return this chromaticity constraint becomes
more sensitive to foreground pixel values in case of the highlight. The problem of not
being robust to the small noise on (IR, IG, IB) in case of highlight is not important
because highlight, especially strong highlight is less frequent than shadow. Finally,
IG,var is selected to estimate IR,var, IB,var because the green is less noisy than the
red and the blue channel.

To accommodate for the white balance e�ect, we employ two adjustment terms
which are proportional to the intensity reduction of each color channel. Therefore,
the �nal form of the chromaticity constraints are as follows:
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dR = IR,var − IG,var ×
IR

IG
+ aR(IR − IR,var) < ε

dB = IB,var − IG,var ×
IB

IG
+ aB(IB − IB,var) < ε

(4.10)

where aR and aB are the two parameters to control the white balance e�ect, ε is the
threshold in gray scale unit. In this equation because ε is in the intensity domain,
we can select ε based on the estimation of the camera noise. For example, if we
estimate that the intensity precision of the camera is around 10 gray scale units, we
can set the threshold at 10. For aR, aB, we would like to estimate aR, aB so that:

aR =
θR − θG

θG

aB =
θB − θG

θG

(4.11)

In normal scenes where the e�ect of automatic white balance is small, aR and aB

could be in the range of [−0.1, 0.1]. In section 4.3, we present a method to estimate
aR and aB automatically.

We will use the chromaticity constraints in equation (4.10) to verify the pixel
transformations due to shadow at point A and B in �gure 4.9. Assuming that we
can estimate aR = 0 and aB = 0.1. For point A: (IR, IG, IB) = (174, 188, 188),
(IR,var, IG,var, IB,var) = (88, 94, 84). By replacing into the chromaticity constraint
we have:

dR = IR,var − IG,var ×
IR

IG
+ aR(IR − IR,var)

= 88 − 94 × 174

188

= 1

dB = IB,var − IG,var ×
IB

IG
+ aR(IB − IB,var)

= 84 − 94 × 188

188
+ 0.1(188 − 84)

= 0.4

For point B: (IR, IG, IB) = (87, 45, 33), (IR,var, IG,var, IB,var) = (52, 28, 16). By
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replacing into the chromaticity constraint we have:

dR = IR,var − IG,var ×
IR

IG
+ aR(IR − IR,var)

= 52 − 28 × 87

45

= −2.1

dB = IB,var − IG,var ×
IB

IG
+ aR(IB − IB,var)

= 16 − 28 × 33

45
+ 0.1(33 − 16)

= −2.8

We see that the estimation at point A is nearly correct (dR, dB are small). At
point B the shadowed pixel value is small and it falls into the abnormal range of
the camera. In this case the di�erences between the estimated values and the real
values are higher but still small (In our experiment, we often set ε from 5 to 10). On
the other hand, if we use the shadowed pixel values to estimate pixel values when
there is no shadow, the error is higher (for point A dR = −6, dB = 12, for point B
dR = 3.4, dB = 5.6).

Combining the brightness and the chromaticity constraints, we say that the pixel
values (IR, IG, IB) can be transformed to (IR,var, IG,var, IB,var) due to illumination
variations if:

dR = IR,var − IG,var ×
IR

IG
+ aR(IR − IR,var) < ε

dB = IB,var − IG,var ×
IB

IG
+ aG(IB − IB,var) < ε

T1 < IG − IG,var < T2

(4.12)

4.2 Background subtraction algorithm EGMM
In this section we present the background subtraction algorithm proposed in this
thesis called EGMM (Extended Gaussian Mixture Model). EGMM is an extension of
the background subtraction algorithm Gaussian Mixture Model (GMM) [Stau�er 1999].

Firstly, we present why we want to propose a new background subtraction algo-
rithm based on GMM. After that, we describe in details GMM. Finally, we present
EGMM and explain why EGMM can solve the problems of GMM.

4.2.1 Motivation
As discussed in chapter 2, the background subtraction algorithm GMM is one of the
most popular algorithms because of its various advantages as follows:
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• GMM can model pixel values of the scenes with multi-modal distributions
caused by a repetitive background motion such as waves in a lake, a �ag in
the wind, etc.

• GMM can adapt itself to gradual changes of the scene.

• GMM is not too slow compared with other complex models such as Kernel
density estimation method.

However, GMM also has the following drawbacks:

• GMM does not take into account illumination changes of the background.
These illumination changes become noise in the foreground detection results.

• The updating method of GMM is not e�ective enough to model complex
distributions of pixel values as shown in [Elgammal 2000, Porikli 2005a].

• GMM has the same classi�cation rule with one parameter for every scene
type. This is an advantage for users because it is easier to control the model.
However, it is di�cult to optimize GMM for di�erent scene types to have
better foreground detection results.

EGMM, constructed based on GMM, aims to solve these drawbacks.

4.2.2 Background subtraction algorithm GMM
In this section, we recall the three main components of GMM: the background rep-
resentation, the background updating algorithm, and the foreground versus back-
ground classi�cation.

4.2.2.1 Background representation

GMM considers that an image is a matrix of pixels and these pixels are independent
from one another. For each pixel, GMM models the recent values {X0, · · · , Xt} of a
pixel at position (i,j) (called pixel (i,j)) using a mixture of K Gaussian distributions
{G1,t, · · · , Gk,t, · · · , GK,t}, where Gk,t is the Gaussian distribution k at time t. The
set BRt(i, j) = {G1,t, · · · , Gk,t, · · · , GK,t} is the background representation of pixel
(i,j) at time t. The set BRt = {BRt(i, j), 0 ≤ i ≤ n, 0 ≤ j ≤ m}, mxn is the size of
the image, is the background representation at time t of the whole image.

At one pixel, the probability of observing the pixel value Xt at time t is:

P (Xt) =
K

∑

k=1

ωk,t ∗ η(Xt, µk,t, Σk,t)

where K is the number of Gaussian distributions, ωk,t is the estimated weight,
µk,t is the mean value, and Σk,t is the variance of the Gaussian distribution Gk,t at
time t and η is a Gaussian probability density function:
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η(Xt, µk,t,Σk,t) =
1

(2π)
n
2 |Σk,t|

1
2

e
1
2
(Xt−µk,t)

T Σ−1
k,t

(Xt−µk,t)

GMM assumes that the values of RGB channels are independent and have the
same variance. Therefore, the covariance matrix is simpli�ed to Σk,t = σ2

k,tI where
σ2

k,t is the variance and I is the unit matrix.
With the assumption that the values of RGB channels are independent, GMM

has di�culties in modeling slight illumination changes because when there are il-
lumination changes, all RGB channels often increase or decrease together. Beside
that, if the Gaussian contains pixel values caused by illumination changes and the
amplitude of illumination changes is high, the common variance of the three RGB
channels will be high which makes GMM less sensitive to foreground pixel values.

In summary, each Gaussian distribution is characterized by the following at-
tributes:

• µ = (IR, IG, IB) is the mean value of the pixel values belonging to this Gaus-
sian distribution.

• σ is the common standard deviation for all R, G, B channel.

• ω is the estimated weight of this Gaussian distribution in GMM.

With this background representation, GMM considers that the incoming pixel
value Xt matches a Gaussian distribution Gk,t−1 in the background representation
BRt−1(i, j) if Xt is within 2.5 standard deviation of Gk,t−1. Precisely, if Xt =

(IR,t, IG,t, IB,t) and the Gaussian distribution Gk,t−1 has the mean R,G,B value
µk,t−1 = (IR,t−1, IG,t−1, IB,t−1) and standard deviation σk,t−1, then Xt matches
Gk,t−1 if and only if:

|Ii,t−1 − Ii,t| < 2.5σk,t−1 ∀i ∈ {R, G,B}

4.2.2.2 Updating background representation
To update the background representation of the whole image at time t, BRt, using
the frame Ft, EGMM independently updates the background representation of each
pixel (i,j) with the incoming pixel at position (i,j), Ft(i, j). At each pixel, the
background representation is updated gradually with each incoming pixel value.
At the beginning, t = 0, the background representation for each pixel is empty,
BR0(i, j) = ∅. To update the background representation at time t with the pixel
value at time t, Ft(i, j), GMM uses the following algorithm:

Updating background representation algorithm
Input

• Ft(i, j) : the value at time t of pixel (i,j)

• BRt−1(i, j) : the background representation at time t − 1 of pixel (i,j)
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• K: the maximum number of Gaussian distributions in the background repre-
sentation.

Output
• BRt(i, j) : the background representation at time t of pixel (i,j)

Begin
1. Find the most important distribution Gi,t−1 that Ft matches.

2. If Gi,t−1 is found then update Gi,t−1 with Ft(i, j)

3. If Gi,t−1 is not found

(a) Create a new Gaussian distribution Gj,t for Ft(i, j).
(b) If L < K with L is the current number of Gaussian distributions, BRt(i, j) =

BRt−1(i, j) ∪ {Gj,t}. Otherwise, replace the least importance Gaussian
distribution in BRt−1 by Gj,t

4. Update other Gaussian distributions that do not match Ft(i, j)

End
In this algorithm, in step 1, the importance of each Gaussian distribution Gk,t is

de�ned as the ratio between the distribution weight ωk,t and the standard deviation
σk,t:

Importance(Gk,t) =
ωk,t

σk,t

In step 2, Gi,t is updated using Ft(i, j). We will discuss the method to update
the mean and standard deviation of GMM in section 4.2.5. To update the weight
in step 2 and step 4, the weight ωk,t−1 of Gk,t−1 is updated as follows:

ωk,t = (1 − α)ωk,t−1 + α(Mk,t)

where α is the learning rate, Mk,t is 1 if Ft(i, j) matches Gk,t−1, otherwise, Mk,t is
0.

With this updating method, GMM can only model the recent history of pixel
values at each pixel. Therefore, GMM su�ers from the problem called �ghost�. The
�ghost� problem occurs when an object of interest stops moving for a while and then
starts leaving again. For example, when an object stops at pixel A, the weight of the
background Gaussian distribution at pixel A decreases gradually. If the object stays
long enough, the weight of the background distribution at pixel A becomes very
small. Hence, when the object starts moving again, the background distribution is
matched again but due to a small weight, it is classi�ed as foreground, no matter
how long it was present at pixel A as a background distribution before.

In step 3, the mean of the newly created Gaussian corresponding to the pixel
value Xt is Xt, the weight ω and the standard deviation σ are assigned the default
values.
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4.2.2.3 Foreground / background classi�cation
To select background Gaussian distributions, GMM �rst sorts the Gaussian distri-
butions at this pixel in the descending order of importance. After that GMM selects
the �rst B distributions as background distributions with B is de�ned as follows:

B = argminb[(

b
∑

i=1

ωi) > T ]

Then, a pixel value Xt is classi�ed as background if it matches a background
Gaussian distributions.

There are several problems with this method of selecting background Gaussian
distributions. Firstly, there is only one foreground versus background classi�cation
rule which is di�cult to optimize for di�erent scene types. Secondly, this classi�ca-
tion rule is based mainly on the distribution weight. However, as discussed in chapter
2, in scenes with rare background events, the weight of the Gaussian distributions
corresponding to these events is small. Therefore, the pixel values corresponding to
these background events are classi�ed as foreground by GMM. Thirdly, it is di�cult
to select an appropriate value of T. To overcome the problem of estimating T value,
we need the parameter tuning methods presented in chapter 5.

4.2.3 The proposed background subtraction algorithm EGMM
In this section, we �rst present the general structure of EGMM, then we present the
three principal components of EGMM: the background representation (data describ-
ing recent pixel values), the background updating algorithm, and the foreground vs
background classi�cation algorithm.

4.2.3.1 EGMM structure
Figure 4.11 shows the general structure of EGMM inside the proposed object de-
tection framework. EGMM contains three principal components: the background
representation (data describing recent pixel values), the foreground vs background
classi�cation algorithm, and the algorithm to update the background representa-
tion. The background subtraction algorithm works in two steps: classi�cation of
pixel values and updating background representation.

In the �rst step, EGMM uses the foreground vs background classi�cation algo-
rithm to classify the incoming frame Ft at time t. To do this, the foreground vs
background classi�cation algorithm takes as input the background representation at
time t − 1, BRt−1, and the parameter values from the controller. When the fore-
ground vs background classi�cation algorithm produces the foreground detection
results for Ft, the results are sent to the higher level task as well as the controller.

In the second step, the controller sends back to EGMM the updating commands
according to the foreground detection results and the feedback from higher level
tasks. EGMM then updates the background representation according to the updat-
ing commands of the controller. To do this, EGMM takes as input the current frame
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Figure 4.11: This �gure illustrates the structure of the background subtraction
algorithm EGMM. EGMM consists of one background representation (data describ-
ing recent pixel values), a background updating algorithm, and a foreground vs
background classi�cation algorithm. EGMM works in two steps. In the �rst step,
the foreground vs background classi�cation algorithm takes as input the parameter
values from the controller, the current background representation BRt−1, and the
input frame Ft. The output of this algorithm is the foreground detection results.
In the second step, the background updating algorithm takes as input the updat-
ing commands from the controller, the current background representation BRt−1,
and the input frame Ft. The output of this algorithm is the updated background
representation BRt for the next iteration.

Ft, the background representation at t− 1, BRt−1, and this algorithm produces the
updated background representation BRt.

Currently, with the input frame Ft, for each pixel (i,j) in the frame, the con-
troller has �ve updating commands Update (BRt−1(i, j) is updated normally with
Ft(i, j)), NotUpdate ( Ft(i, j) is discarded), Integrate (Ft(i, j) becomes background
immediately), QuickUpdate (adjust BRt−1(i, j) so that if Ft(i, j) occurs few times,
it will be classi�ed as background), Reset (BRt(i, j) becomes empty). We will dis-
cuss about these updating commands in details when we present the controller in
chapter 5.
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4.2.4 Model of background representation
EGMM considers that an image is a matrix of pixels and these pixels are inde-
pendent from one another. Therefore, the background representation for the whole
image is the matrix of the background representation for each pixel as illustrated in
�gure 4.12.

Figure 4.12: This �gure illustrates how EGMM represents the background of the
whole image. The background representation BR(i, j) represents the values of pixel
(i,j). The background representation BR, which is the matrix of BR(i, j), represents
pixel values of the whole image. The matrix size is equal to the image size. In this
model, EGMM assumes that each pixel is independent from each other.

For each pixel, EGMM also models the recent values {X0, · · · , Xt} of a pixel at
position (i,j) using a mixture of K Gaussian distributions {G1,t, · · · , Gk,t, · · · , GK,t},
where Gk,t is the Gaussian distribution k at time t. The set BRt(i, j) = {G1,t, · · · , Gk,t, · · · , GK,t}
is the background representation of pixel (i,j) at time t. The set BRt = {BRt(i, j), 0 ≤
i ≤ n, 0 ≤ j ≤ m}, mxn is the size of the image, is the background representation
at time t of the whole image.

Similar to GMM, EGMM assumes that each incoming pixel value X belongs to
one of the Gaussian distribution in the background representation for that pixel.
However, EGMM di�ers from GMM in some points.

Firstly, EGMM also assumes that if the pixel value X belongs to the Gaussian
G with the mean value µ, then the distribution of the values dR(X, µ) (dR, dB are
the chromaticity distances de�ned in equation (4.10)) is a Gaussian with the mean
equal to 0. Similarly, the distribution of the values dB(X,µ) is also a Gaussian with
the mean equal to 0. With this assumption, the di�erent RGB channels of pixel
values are not independent anymore. When the value of G increases / decreases, the
value of R and B cannot vary arbitrarily. This assumption helps EGMM to handle
the variation of pixel values due to slight illumination changes because when there
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are illumination changes, all RGB channels often increase or decrease together.
Secondly, EGMM does not only rely on the probability of observing pixel values

to classify these pixel values because for pixel values of rare background events, this
probability is very small.

Finally, to correctly classify pixel values in di�erent scene types, EGMM de-
scribes each Gaussian distribution by a richer representation. The weight ω is re-
placed by four attributes: nSamples, lastMatchedT ime, nConsecutiveMatchedT imes,
and startingFrame. These attributes are described as follows:

• µ = (IR, IG, IB) is the mean value of the pixel values matching this Gaussian
distribution.

• σ = (σR, σG, σB): σR, σB are the standard deviation of dR(X, µ), dB(X, µ)

(dR, dB are chromaticity distances de�ned in equation (4.10)), σG is the stan-
dard deviation of the G channel of X. Here X is the pixel value matching this
Gaussian distribution. σR and σB are called the two chromaticity standard
deviations of this Gaussian distribution.

• nSamples: the number of pixel values matching this distribution.

• lastMatchedT ime: this attribute indicates how long this Gaussian distri-
bution has not been matched. When the distribution is matched or newly
created, lastMatchedT ime = 0. In the next frame, if this Gaussian distri-
bution is not matched, lastMatchedT ime = lastMatchedT ime − 1. So this
value is always negative.

• nConsecutiveMatchedT imes: this attribute indicates how many times the
Gaussian distribution has been consecutively matched. To understand this
attribute, let's take an example. Assuming that among 10 frames, the cur-
rent Gaussian distribution is matched in frames 1, 3, 5, 6, 7, 9. Then
nConsecutiveMatchedT imes = 4 which corresponds to four sequences of
consecutive frames: [1], [3], [5,6,7], [9].

• startingFrame: this attribute contains the frame number when the �rst time
this Gaussian distribution has been created and matched.

Here with the attributes nSamples and lastMatchedT ime, EGMM does not
forget the past and it can solve the ghost problem which cannot be solved by GMM.
For example, when an object stops at pixel A, the attributes lastMatchedT ime

of the background Gaussian distribution G at pixel A decreases gradually but
nSamples remains the same. If the attributes nSamples is big enough (pixel values
of this Gaussian appeared many time in the past), when the object starts moving
again, EGMM can still correctly classify G as the background based on the value
of nSample and lastMatchedT ime. In case an object appears in the scene as soon
as the �rst frame, EGMM cannot have information about the background at the
position of the object. Consequently, if this object starts moving, a ghost appears at
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the initial position of the object. However, this ghost will be detected and removed
with the object veri�cation method presented in chapter 5. Another advantage of
the two attributes nSamples and lastMatchedT ime is that they are intuitive and
simple to be updated.

The attribute nConsecutiveMatchedT imes provides useful information to dis-
tinguish a Gaussian distribution corresponding to a person who has just stopped
moving and a background event which happens periodically. For the former case,
nConsecutiveMatchedT imes = 1, for the latter case, nConsecutiveMatchedT imes >

1.
Finally, the attribute startingFrame helps EGMM to estimate useful character-

istics of the Gaussian. For example, EGMM estimates in average how many times
the pixel values of one Gaussian distribution appear in 100 frames. The pixel values
of a background distribution should appear regularly.

EGMM considers that an incoming pixel value Xt matches a Gaussian distribu-
tion Gk,t−1, if it satis�es the following constraints:

dR(µk,t−1, X) < 2.5 × σR,t−1

dB(µk,t−1, X) < 2.5 × σB,t−1

|IG,t−1 − IG| < 2.5 × σG,t−1

(4.13)

where µk,t−1, σR,t−1, σB,t−1, σR,t−1 are the attributes of Gk,t−1 de�ned above.
Here EGMM uses the G channel as the brightness and the two chromaticity stan-
dard deviations to set up the thresholds for the chromaticity constraints. This idea
is similar to the Codebook model but unlike codebook model which uses a �xed
chromaticity threshold, EGMM updates the chromaticity standard deviations with
each incoming pixel value.

4.2.4.1 Updating background representation
To update the background representation of the whole image at time t, BRt, using
the frame Ft, EGMM independently updates the background representation of each
pixel (i,j) with the incoming pixel at position (i,j), Ft(i, j). At the beginning, t = 0,
the background representation for each pixel (i,j) is empty, BR0(i, j) = ∅. EGMM
gradually updates the background representation BRt(i, j) with each incoming pixel
value according to the updating commands of the controller.

EGMM provides �ve updating methods corresponding to �ve updating com-
mands of the controller. We �rst describe the updating method corresponding to
the updating command Update and then we describe other updating methods cor-
responding to other updating commands.

For the updating method corresponding to the updating command Update,
EGMM uses the following algorithm:

Updating background representation algorithm for updating command
Update

Input
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• Ft(i, j) : the value at time t of pixel (i,j)

• BRt−1(i, j) : the background representation at time t − 1 of pixel (i,j)

• K: the maximum number of Gaussian distributions in the background repre-
sentation.

Output

• BRt(i, j) : the background representation at time t of pixel (i,j)

Begin

1. Find the most important distribution Gk,t−1 that Ft(i, j) matches.

2. If Gk,t−1 is found then update Gk,t−1 with Ft(i, j)

3. If Gk,t−1 is not found

(a) Create a new Gaussian distribution Gj,t for Ft(i, j).
(b) If L < K with L is the current number of Gaussian distributions, BRt(i, j) =

BRt−1(i, j) ∪ {Gj,t}. Otherwise, replace the least importance Gaussian
distribution in BRt−1(i, j) by Gj,t

4. Update other Gaussian distributions that do not match Ft(i, j)

End
This algorithm is similar to the updating method of GMM but the details of

each step are di�erent. We now go into the details of each step.
In step 1, EGMM compare the importance of two Gaussian distributions G1, G2

as follows:

Importance(G1) > Importance(G2) ⇔(nSamples1 > nSamples2)
∨

((nSamples1 = nSamples2)
∧

(lastMatchedT ime1 > lastMatchedT ime2)

(4.14)

This formula means that a distribution is important if many pixel values match
this distribution. Beside that, it is important if it has been matched recently.

In step 2, EGMM has to update the Gaussian distribution matching the current
pixel value Xt. To update the mean value and the standard deviation, we apply the
iterative updating method presented in section 4.2.5. Other attributes are updated
as follows:

• nSamples = nSamples + 1

• lastMatchedT ime = 0
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• nConsecutiveMatchedT imes = nConsecutiveMatchedT imes+1 if this dis-
tribution was not matched at time t − 1. Otherwise, this attribute remains
the same.

In step 3, EGMM has to create a new Gaussian distribution for current pixel
value Ft(i, j). This time, σR, σG, σB receives the default values. Other attributes
are initialized as in table 4.1.

In step 4, EGMM updates the Gaussian distributions that Ft(i, j) does not
match. For these distributions, EGMM sets lastMatchedT ime = lastMatchedT ime−
1. Moreover, for the Gaussian distribution that was matched at time t−1 but not at
time t, EGMM sets nConsecutiveMatchedT imes = nConsecutiveMatchedT imes+

1.
Now we present other updating methods of EGMM corresponding to other up-

dating commands.
For the updating method corresponding to the updating command Reset, EGMM

simply discards all Gaussian distributions inside the background representation.
For the updating method corresponding to the updating command Integrate,

EGMM discards all Gaussian distributions inside the background representation
except the one that matches the incoming pixel. By this way, this Gaussian distri-
bution becomes the only background Gaussian distribution.

For the updating method corresponding to the updating command QuickUpdate,
the background representation is updated n times with the same incoming pixel
value.

4.2.4.2 Foreground vs Background Classi�cation
To classify incoming pixel values, the foreground vs background classi�cation algo-
rithm of EGMM takes as input the current background representation and the scene
type from the controller. Each scene type has the corresponding classi�cation rule
set to distinguish foreground vs background Gaussian distributions. In this section
we �rst present the foreground vs background classi�cation algorithm of EGMM.
After that we present the foreground vs background classi�cation rules speci�c to
three scene types: scenes with dynamic changes, scenes with rare background events,
and scene with repetitive events.

Attributes Values
µ Xt

nSamples 1
lastMatchedT ime 0
nConsecutiveMatchedT imes 0
startingFrame t

Table 4.1: The initial attribute values of the Gaussian distribution Gj,t created for
pixel value Ft(i, j).
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The foreground vs background classi�cation algorithm of EGMM for each pixel
is as follows:

Foreground / background classi�cation algorithm
Input

• Ft(i, j) : the pixel value at time t of pixel (i,j)

• BRt−1(i, j) : the background representation at time t − 1 of pixel (i,j)

• s : the scene type

Output

• Label : the label of Ft(i, j), can be one of the three values: FG (foreground),
BG (background), and IC ( background illumination changes)

Begin

1. If Ft(i, j) matches Gk,t−1 ∈ BRt−1(i, j) and if isBackground(Gk,t−1, s) = true

then Label = BG, go to 4.

2. If Ft(i, j) does not match G∗ but isBackground(G∗, s) and isIlluminationChange(G∗, Xt) =

true then Label = IC, go to 4.

3. Label = FG.

4. Finish

End
In this algorithm, in step 1, EGMM uses the function isBackground(Gk,t−1, s)

to verify if a Gaussian distribution Gk,t−1 is a background distribution or not given
the scene type s. To do this, this function uses the set of foreground vs background
classi�cation rules speci�c to scene type s. These rule sets will be presented later
in this section. Compared with GMM, EGMM can optimize the foreground vs
background classi�cation rules for di�erent scene types.

In step 2, EGMM uses the function isIlluminationChange(G∗, X) to verify if
the label of pixel value X = (IR, IG, IB) is illumination change or not. Here G∗ is a
background Gaussian distribution. This function returns true if:

dR(µ∗, Xt) < 2.5 × σ∗

R

dB(µ∗, Xt) < 2.5 × σ∗

B

T1 < IG,t/IG < T2

(4.15)

where µ∗ = (IR, IG, IB) is the mean values of pixel values matching G∗, dR, dB are
chromaticity constraints de�ned in equation (4.10), σ∗

R, σ∗

B are the two chromaticity
standard deviations of G∗ de�ned above. T1, T2 are the two thresholds on the
ratio of the G channel. The third constraint means that illumination variations
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should not change much the brightness. Otherwise, the chromaticity constraints are
not reliable. Normally, we set T1 = 0.5 and T2 = 1.8. After this step, the pixel
values classi�ed as illumination changes will be veri�ed by homogeneity (texture)
constraints.

Now we present the characteristics of di�erent scene types and the corresponding
foreground vs background classi�cation rules of EGMM. For each scene type, �rstly
we present the characteristics that help to de�ne the classi�cation rules for the
background. Then, we present the set of the classi�cation rules speci�c to this scene
type. For each rule set, we present the main rules which are essential to distinguish
foreground vs background. Then we present the optional rules which might be
helpful to improve the performance of the background subtraction algorithm. Finally
we discuss how GMM, Kernel density estimation method, and codebook work in this
scene type.

Scenes with dynamic changes
This scene type often has dynamic changes such as displacement of contextual

objects, addition / removal of contextual objects, or illumination changes. Then
there are two types of background: permanent background and background cor-
responding to dynamic changes such as newly added objects, local illumination
changes (this background is called dynamic background).

For the permanent background, normally, there is only one permanent back-
ground and the pixel values of this permanent background appear regularly most
of the time. Therefore, pixel values of permanent background often match with
the most important Gaussian distribution in the background representation. The
distribution importance is de�ned in equation (4.14).

For the dynamic background, pixel values of dynamic background should ap-
pear many times and recently. Therefore, we can use the following constraint to
distinguish Gaussian distributions of dynamic background from distributions of fore-
ground:

nSamples + lastMatchedT ime > Ndynamic (4.16)

Where Ndynamic is a threshold on the number of pixel values. Ndynamic re�ects
how quickly we want to consider a foreground region as dynamic background. This
is the main classi�cation rule for dynamic background.

Beside this rules, we notice that dynamic background often occurs continuously
with only few interruption due to objects of interest passing by. Therefore, the
attribute nSamples of the corresponding Gaussian distribution must be close to
the life time of the Gaussian distribution. However, this characteristic depend on
speci�c scene condition. Therefore we can use it as an optional constraint. This
characteristic can be expressed by the following formula:

nSamples × a > currentFrame − startingFrame (4.17)

where a is a constant close to 1 and currentFrame is the current frame number.
a re�ects how much the dynamic background has been occluded. If a = 1, this
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constraint does not accept occlusion.
We now examine how other background subtraction algorithm detect permanent

and dynamic background.
For GMM, with the permanent background, GMM su�ers from the problem

called �ghost�. The �ghost� problem occurs when an object of interest stops moving
for a while and then starts leaving again. For example, when an object stops at pixel
A, the weight of the background Gaussian distribution at pixel A decreases gradually.
If the object stays long enough, the weight of the background distribution at pixel
A becomes very small. Hence, when the object starts moving again, the background
distribution is matched again but due to a small weight, it is classi�ed as foreground,
no matter how long it was present at pixel A as a background distribution before. For
our algorithm, when an object of interest stays at the place of the permanent back-
ground, the attribute lastMatchedT ime of the Gaussian distribution corresponding
to the permanent background decreases gradually. When the object moves again, if
the attribute nSamples is big enough, nSamples+lastMatchedT ime is still big and
the distribution corresponding to the permanent background is classi�ed correctly.

For the Kernel density estimation method, the background description is limited
to only N recent pixel values. Therefore, when an object of interest stops moving for
a long, the kernel density estimation method will forget the permanent background.
Consequently, this model also su�ers from the �ghost� problem.

For the Codebook model, dynamic background often do not occur in the learn-
ing phase, therefore, the original form of this algorithm cannot handle dynamic
background. To overcome this problem, the authors of the Codebook model use a
temporary model as described in chapter 2. Similar to the model constructed in the
learning phase, to distinguish objects of interest from the background the temporal
model do not use the number of pixel values matching a cluster but only a simple
temporal �lter: background pixel values must occur regularly. This rule may clas-
sify an object of interest as background if it goes back and forth at the same place
frequently. Beside that, with this temporal �lter, the Codebook model also su�ers
from the �ghost� problem as the occluded background region does not appear for a
long time.

Scenes with rare background events
In this scene type, some background pixel values occur rarely. Outdoor scenes

with tree leave motion often exhibit this characteristic. For example, in the tree
regions in �gure 4.13, if we take the pixel values at point A and use the GMM
to construct the background representation at this pixel, we can get the results as
shown in table 4.2. For this pixel, the background pixel values belong to 5 Gaussian
distributions. The weight of the �rst distribution is much bigger than the weight of
the other distributions. This distribution corresponds to pixel values of permanent
background. Pixel values matching the distributions with small weights correspond
to rare background events occurring in front of the permanent background.

For this scene type, we use the following heuristic to distinguish Gaussian dis-
tributions of tree leave motion from distributions of objects of interest:

Normally, one object of interest with a considerable size often has a homogeneous
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Figure 4.13: The image sample of outdoor scene where tree leave motion is the rare
background events.

Table 4.2: The weights of Gaussian distributions computed by GMM for pixel A in
�gure 4.13.

Distribution 1 2 3 4 5
Weight 0.9537 0.0356 0.0105 0.0001 0.0001

appearance in terms of pixel values. For example, in case of one person near the
camera, the pixel values in the region corresponding to the trousers or the coat are
nearly the same. In case of one car, the pixel values in the large part of the car are
nearly the same. Hence, when an object moves through a particular location, the
Gaussian distribution corresponding to the pixel values of this object is activated
for several consecutive frames . Let's take the case of the car in the video sequence
depicted in �gure 4.13. When this car moves on the road and we take the pixel values
at a given position, we see that the Gaussian distribution corresponding to the pixel
values at the border between the car and the road is matched in only one or two
consecutive frames but the Gaussian distribution corresponding the pixel values in
the center region of the car is matched in 7 consecutive frames. On the other hand,
in case of outdoor scenes, tree leaves are small compared with objects of interest.
Therefore, when a leaf moves due to the wind and passes at a particular position,
the pixel values corresponding to this leaf only occur in one or two consecutive
frames at this position. Then, the corresponding Gaussian distribution is matched
only in a short duration of consecutive frames. Therefore we can use this duration
to distinguish the Gaussian distribution corresponding to pixel values of tree leave
motion from the distributions corresponding to objects of interest. This constraint
can be expressed by the following formula:

nSamples/ε < nConsecutiveMatchedT imes (4.18)
ε is a small threshold which is greater than 1 and close to 1. The value of ε

depends on the size of the leaves in the image. For example, in the video sequence
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depicted in �gure 4.13, the selected value of ε is 2. This value is common for
tree leave motion. Otherwise, we can determine this value automatically by the
parameter tuning method presented in the next chapter.

Beside the main constraint, we can de�ne one additional constraint as follows:

nConsecutiveMatchedT imes × m > currentFrame − startingFrame (4.19)

where currentFrame is the frame number of the current frame. This constraint
means that rare background events must occur at least once every m frames. This
constraint is similar to the temporal �lter in the codebook model. To estimate m,
we use the tuning algorithm RBT inside the controller. In chapter 6, we will present
an experiment to estimate m.

Let's look at how GMM, kernel density estimation method, and codebook model
distinguish background pixel values from foreground pixel values in this scene type.

As presented earlier, the GMM sorts the Gaussian distributions in the descending
order of importance and selects the �rst B distributions as background distributions
with B is de�ned as follows:

B = argminb(
b

∑

i=1

ωi > T )

where ωi is the weight of the distribution i, b is the number of distributions, and
T ∈ [0, 1] is the fraction of the total weight given to the background. For scene with
background motion, this algorithm needs a high value of T (T = 0.7 for example).
If we apply the classi�cation rule of GMM for the pixel A in �gure 4.13, because the
weight of the second background distribution is much smaller than the weight of the
�rst distribution, pixel values matching this distribution are classi�ed as foreground.
This remark is similar to the remark of Porikli et al in [Porikli 2005b] as depicted
in �gure 4.14. Porikli et al claim that model based methods like GMM cannot
distinguish the two sequences in this �gure. The �rst sequence is periodic which is
the case of pixel values corresponding to tree leaves. To solve this problem, Porikli
et al propose a background subtraction method which employs the Discrete Cosine
Transform (DCT) to learn the periodicity of pixel values in the learning phase.
However the DCT is complex and needs an o�ine learning phase which cannot
handle dynamic changes of the scenes. Moreover, the hypothesis that the occurrence
of pixel values corresponding to tree leaves is periodic is still an assumption. Our
solution is simpler and does not need an o�ine learning phase. In conclusion,
because GMM distinguish background distributions from foreground distributions
based on only the number of pixel values matching each distribution, it cannot
handle rare background events.

In case of kernel density estimation, because the duration between consecutive
rare background events is long, inside N recent pixel values, there is only few rare
background pixel values. Therefore they might be classi�ed as foreground.

In case of Codebook model, if rare background pixel values occur during the
training phase, they are classi�ed as background in the detection phase. If these
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Figure 4.14: Without temporal constraint, GMM cannot distinguish these two se-
quences. The �rst sequence is periodic as the case of pixel values corresponding to
the tree leaves. Source [Porikli 2005b].

rare background pixel values do not occur during the training phase, the Codebook
model fail to classify them as background. The modi�ed version of Codebook model
can solve this problem but the temporal �lter is not e�ective in case of crowded
scenes as we have discussed in chapter 2.

The proposed method can work with rare background events due to tree leave
motion. In case the rare background events is caused by contextual objects of
considerable size like the wing of a wind mill, the movement of a �ag etc. the
attributes of the Gaussians corresponding to pixel values of these objects have similar
characteristics as the attributes of the Gaussians corresponding to object of interest
passing by except the attributes nSamples and lastMatchedT ime. Therefore, in
this case, we can only use these two attributes as the discriminative feature, similar
to the case of permanent background.

Scenes with repetitive background events
For repetitive background events like waves in the sea, the corresponding Gaus-

sian distribution is not classi�ed as permanent background because it contains less
pixel values than the distribution corresponding to the normal surface of the sea
(the permanent background). However, the number of pixel values matching the
Gaussian distribution corresponding to repetitive events must be higher than a
certain percentage of the Gaussian distribution corresponding to the permanent
background. Beside that, due to their repetitiveness, these repetitive background
events must occur at least once every m frames. Therefore we can use the following
constraints to detect repetitive background events:

nSamples > nSamples∗ × p

nConsecutiveMatchedT imes × m > currentFrame − startingFrame
(4.20)

where nSamples∗ is the number of pixel values matching the Gaussian distri-
bution of the permanent background (the most important distribution in the back-
ground representation), and p is a parameter in the range [0, 1]. n is the average
duration (in frame unit) of the repetitive background event.
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4.2.5 Updating background representation
To adapt to the current conditions of the scene, the background subtraction algo-
rithm should update its background representation regularly with the input pixel
values. In our model of background representation, for each Gaussian distribution
we must update the two attributes µ and T . As stated in [Elgammal 2000], updating
µ and T to estimate these parameter values is a di�cult problem. More importantly,
a bad estimation of these parameter values may lead to a bad performance of the
algorithm.

As presented in chapter 2, the most popular updating method in the literature
is the adaptive �lter:

yt = (1 − α)yt−1 + αx

where yt is the current parameter value at time t, x is the parameter value
estimated using the pixel value of the frame at time t, and α is the learning rate. The
GMM also uses this method to update the mean and the variance of the Gaussian
distributions.

Although widely used, the adaptive �lter is not reliable. Let's examine the case
of GMM. In GMM, the above updating scheme changes a little bit as follows:

µt = (1 − ρ)µt−1 + ρXt

σ2
t = (1 − ρ)σ2

t−1 + ρ(Xt − µt)
T (Xt − µt)

where ρ = αη(Xt|µt, σt). η(Xt|µt, σt) is the probability density function of the
Gaussian distribution with mean µt and standard deviation σt.

In this updating scheme, the mean and variance are updated immediately with
the current pixel value. Then the new value of mean and variance are used to classify
subsequent pixel values. In other words, the decision of updating is based only on
one sample. Consequently, if the current pixel value is abnormal, it may seriously
a�ect the classi�cation of subsequent pixel values. For example, if a sequence of 10
consecutive pixel values which are very far from the mean value of one distribution
occurs, the variance increases greatly. Therefore, the estimation algorithm depends
seriously on the occurrence order of pixel values and on the initial value of variance.

Let's look at the performance of this updating method in the reality. Figure 4.15
shows the histogram of threshold values of GMM in outdoor scene. This threshold
equal to 2.5 standard deviation of the �rst Gaussian distribution estimated with
the above adaptive �lter. We can see that, most of the threshold values are over 30
gray scale units. This is a big value which makes GMM less sensitive in detecting
foreground pixels. This problem is also described in [Elgammal 2000, Porikli 2005a].

In [Porikli 2005a], Porikli and Thornton propose another method to update im-
portant parameter values. Instead of using one pixel value to update the mean and
variance, they store a set of n pixel values and the mean and variance are updated
after each n frames using n pixel values at once. With this updating method, the
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Figure 4.15: This �gure illustrates the results of updating the standard deviation
of GMM in [Stau�er 1999] for outdoor scene. Image on the left is a sample of the
video. The image on the right is the corresponding histogram of updated threshold
values (equal to 2.5 standard deviation). The threshold unit is gray scale unit. Most
of threshold values are over 30 gray scale units and many thresholds are over 40 gray
scale units.

bigger the value of n, the more reliable the updating process. However, n could not
be too big because we cannot store too many pixel values.

Another possible solution to this problem is to use a small value of learning
rate. Therefore, the e�ect of outlier on the estimated parameter value is reduced.
However, if the learning rate is too small, the background representation cannot
catch up with the environment changes.

In our opinion, the process of updating mean and variance in GMM is not
reliable because it tries to solve two problems at once: the problem of deciding which
Gaussian distribution a pixel value match and the problem of estimating parameter
values. Therefore, we would like to solve each problem separately. Firstly, with
�xed values of mean and variance, we can verify if a pixel value matches a Gaussian
distribution. Assuming that for each Gaussian distribution we can store n pixel
values that match this distribution. However, unlike the method in [Porikli 2005a],
in our case n is a big number. Although among n pixel values, there are outliers
due to the incorrect estimation of the initial mean and variance, most of the pixel
values belong to this distribution. Therefore, if we can use all of these n pixel values
to update mean and variance, the updating process is more reliable than using only
one pixel value because the e�ect of outliers is reduced by other correct pixel values.
Our problem now is how to avoid the storage of n pixel values.

To solve this problem, we employ Welford online algorithm in [Welford 1962]
which is cited by [Knuth 1998]. This algorithm is an iteration formula for deriving
the variance of n values from the variance of n − 1 values. Assuming that we have
a set of n value xi with i = 1, · · · , n and we want to compute the mean xn and the
variance σ2

n. According to the de�nition of mean and variance we have:
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xn =
n

∑

i=1

xi

n

σ2
n =

1

n

n
∑

i=1

(xi − xn)2

We de�ne:

mk =

k
∑

i=1

xi

k
where k = 1, · · · , n

and:

Sk =
k

∑

i=1

(xi − mk)
2 where k = 1, · · · , n

With this de�nition, Sn = nσ2
n and mn = xn. Now we need a recursive formula

to compute mk from mk−1 and Sk from Sk−1.
For mk we have:

mk =
k

∑

i=1

xi

k

=
k−1
∑

i=1

xi

k
+

1

k
xk

=
k − 1

k
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∑
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k − 1
+
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k
xk

=
k − 1

k
mk−1 +

1

k
xk

If i < k then:

xi − mk = xi − mk−1 −
1

k
(xk − mk−1)

If i = k then:
xk − mk =

k − 1

k
(xk − mk−1)

For k = 1, 2, · · · , n:

Sk =
k

∑

i=1

(xi − mk)
2

=
k−1
∑

i=1

[

(xi − mk−1) −
1

k
(xk − mk−1)

]2

+

(

k − 1

k

)2

(xk − mk−1)
2

= A +
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k − 1

k

)2

(xk − mk−1)
2
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The term A can be computed as follows:

A =
k−1
∑

i=1

[

(xi − mk−1) −
1

k
(xk − mk−1)

]2

=

k−1
∑

i=1

(xi − mk−1)
2 +

k−1
∑

i=1

1

k2
(xk − mk−1)

2 − 2
1

k
(xk − mk−1)

k−1
∑

i=1

(xi − mk−1)

= Sk−1 +
k − 1

k2
(xk − mk−1)

2 − B

The term B can be computed as follows:

B = 2
1

k
(xk − mk−1)

k−1
∑

i=1

(xi − mk−1)

= 2
1

k
(xk − mk−1)

(

k−1
∑

i=1

xi − (k − 1)mk−1

)

= 2
1

k
(xk − mk−1)

(

k−1
∑

i=1

xi − (k − 1)
k−1
∑

i=1

xi

k − 1

)

= 2
1

k
(xk − mk−1)

(

k−1
∑

i=1

xi −
k−1
∑

i=1

xi

)

= 0

Therefore, by replacing A, B into the formula to compute Sk we have:

Sk = Sk−1 +
k − 1

k2
(xk − mk−1)

2 +

(

k − 1

k

)2

(xk − mk−1)
2

= Sk−1 +

(

k − 1

k

)

(xk − mk−1)
2

Finally, we have the iteration formula for the mean µn and variance σ2
n of a set

of xi with i = 1, · · · , n as follows:

µi =
i − 1

i
µi−1 +

1

i
xi

Si = (Si−1 +

(

i − 1

i

)

(xi − µi−1)
2)

σ2
i =

1

i
Si

(4.21)

With this recursive formula, we do not need to store n value of pi. Now, we can
adjust the values of mean and variance as each pixel value comes. However, we only
want to update the distribution when we collect enough n pixel values. Therefore we
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need temporary values of mean and variance which are updated with each incoming
pixel values. After every n pixel values (in our experiment, we set n = 30, the mean
and the variance of the distribution are assigned with the temporal values.

However, we cannot apply the online algorithm to compute mean and variance
directly. As i grows up to a big value, the term (i− 1)/i is close to 1 and the mean
and variance is not updated any more. To overcome this problem, we only allow the
value i to increase up to a �xed value m. If i = m, we do not increase i any more.
In our experiment, we set m = 100. In this case, the formula (4.21) to update mean
and variance is similar to the formula of the simple adaptive �lter (2.1). Therefore,
one may argue that why we do not use the simple adaptive �lter since the beginning.
There are two main reasons. Firstly, when i ≤ m, using (4.21), we can compute the
exact mean and variance whereas using the simple adaptive �lter, we only have the
approximation of these values. Secondly, when i > m, we apply the approximation
which is initialized with the correct mean and variance. On the other hand, if we
apply since the beginning the simple adaptive �lter, we apply the approximation
which is initialized with the approximated values of mean and variance. In this case
the results might not be as good as our solution.

When we apply this updating method for the background representation, the
Gaussian distribution often have smaller variance. We present in detail the ex-
periment to compare our updating method with the method in GMM in chapter
6.

4.3 Removal of illumination variations
Illumination variations such as shadow and highlight are often misclassi�ed as fore-
ground regions by background subtraction algorithms. These foreground regions are
noise for higher level tasks and they should be removed from detection results. In
this thesis, we aim at removing two types of illumination variations: strong vari-
ations of illumination (including shadow in non saturated regions), and shadow in
regions with saturated illumination. The latter can be extended to remove visual
artifact caused by displacement of contextual objects and opening / closing door.

4.3.1 Removal of illumination variations in non saturated region
Illumination variations in videos may be caused by shadow, highlight and automatic
camera gain. Depending on the intensity of the variations, the a�ected background
region may or may not have the same chromaticity and texture. In this section, we
present the method to remove illumination variations which do not alter much the
chromaticity and the texture of the background. The method to remove shadow in
saturated region will be presented later.

The process of detecting illumination variations are divided in three steps:

• Veri�cation of possible intensity range of illumination variations.

• Veri�cation of chromaticity.
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• Veri�cation of homogeneity (texture).

The �rst two veri�cations are realized inside the background subtraction algorithm,
the last veri�cation is the post processing of the detection results. After the last ver-
i�cation, the label of the pixel values classi�ed as illumination change are converted
back to background.

Because the detection of illumination variations is less reliable than the detection
of foreground pixels using background subtraction algorithms, in many cases, the
pixel values corresponding to objects of interest may be classi�ed as illumination
variations. Therefore our objective is not to eliminate all the pixel values corre-
sponding to illumination variations but to remove these pixel values as much as
possible. This principle will be re�ected in all the above veri�cation.

Because the method of removing shadow is nearly the same as the method of
removing highlight, to simplify the presentation, we mainly describe the method
to remove shadow and we only discuss about highlight when there is a di�erence
between the methods to remove shadow and highlight.

4.3.1.1 Verifying possible intensity range of illumination variations

Shadow changes the brightness of the a�ected region. In reality, the brightness of
the shadowed region may vary from 0 up to less than the brightness of this region
when there is no shadow. However the changed brightness in many scenes often
lies in an intensity range relative to the original brightness of the a�ected region.
Beside that, from the camera model we know that if the brightness varies too much,
due to the camera characteristic, the chromaticity and the texture veri�cation are
not reliable. Moreover, in case of strong shadow, the darkest part of the shadow
(the region where the brightness changes the most) is usually close to the objects of
interest. If this darkest part remains in the detection results, it does not change too
much the shape of the detected foreground regions. Therefore, to avoid the wrong
classi�cation of a foreground region as a region of illumination variation, we limit
the possible intensity range of the illumination variations. We can have the same
conclusion for highlight.

The constraint for the intensity range of illumination variation is expressed as
follows:

Assuming that µ is the center of the background distribution Gk,t in the back-
ground representation and pt is an input pixel value. If µ can be transformed into
pt due to illumination variation, µ and pt must satisfy the following constraint:

α <
Brightness(pt)

Brightness(µ)
< β (4.22)

Where α is the threshold for the shadow and β is the threshold for the highlight.
The value of α, β can be speci�c to each pixel in the images because they depend on
the scene geometry and the illumination con�guration. These values can be learned
by online [Liu 2007] or o�ine [Nghiem 2008] methods.
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For online methods, in [Liu 2007], the authors set initial values for these values.
Then when the algorithm detects a shadow pixel value, the ratio is updated using
the simple adaptive �lter presented earlier. However, because α is determined based
on only the darkest part of the shadow, there may not be enough learning data with
the darkest possible shadow for every pixel in the image. Beside that, automatically
determining the darkest part of shadow is not always easily.

For o�ine methods, in [Nghiem 2008], we try to determine the values of α by
manually sampling the pixel values of shadow region in o�ine images and compare
these values with the pixel values when there is no shadow. To overcome the problem
of lacking learning data, we extrapolate the learned α with the hypothesis that
similar pixel values would have the same value of α. Then in an online phase, for
one background region, we compare the current background pixel values with the
background pixel values we have learned. If they are similar, we can use the learned
values of α, β for the background region of the current image. In some scenes with
speci�c geometry and lighting con�guration, this o�ine learning method can greatly
reduce the possible range of α, β. For example, in case of outdoor scene where the
light source (the sun) is very far from the objects of interest, every pixel inside the
shadow has nearly the same value of α. For many other scenes, this range is quite
large and the o�ine learning method is not e�ective. Therefore, to simplify the
process, we set global values of α, β for every pixel in the image. These values can
determined manually with sample images or they can be the default values.

4.3.1.2 Verifying the chromaticity

As discussed earlier in the Phong re�ection model, depending on the illumination
conditions of the scene, shadow may or may not change the chromaticity of the back-
ground. Therefore, we need di�erent methods to verify the chromaticity constraint
in di�erent scene types. Normally, in most indoor scenes, shadow does not change
the chromaticity of the background. On the other hand, in outdoor scenes, shadow
may change the chromaticity of the background dramatically. Hence, we take these
two scene types as typical examples to present how we verify the chromaticity in
the two cases.

Indoor scenes
In indoor scenes where the chromaticity of the ambient light is similar to the

chromaticity of the di�use light, shadow does not change too much the chromaticity
of the pixels inside the image. Therefore, to compare the chromaticity of two pixel
values, we use the chromaticity constraint presented in section 4.1.3. In this con-
straint, there are two important parameters aR, aB re�ecting the in�uence of the
automatic white balance e�ect. Because automatic white balance is proportional
to the illumination change, when there is no illumination variation, the pixel inten-
sity does not change too much and we can ignore the e�ect of the white balance.
However, when the pixel intensity changes greatly under illumination variations, the
e�ect of white balance in the chromaticity constraint is noticeable. Then, a wrong
estimation of aR, aB may lead to a bad performance of removing illumination vari-
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ations.
The values of aR, aB can be estimated o�ine using video sample with ground

truth. However this method is not always possible as in case we do not have the
video of the scene beforehand or as in case the camera changes the white balance
when the scene illumination changes. Hence, in this case, we need an online method
to automatically estimate these parameter values using directly incoming video and
the detection results of the background subtraction algorithm. Because the two
online and o�ine estimation methods di�er only in the �rst step to collect shadow
/ highlight pixel values, we will present the main steps of the estimation algorithm
and explain the di�erence between the online and o�ine in step 1. The main steps
for estimating aR, aB are as follows:

1. Select shadow / highlight pixel values.

2. For each incoming frame, estimate aR, aB of this frame based on aR, aB of
the reliable shadow pixel values.

3. Update the global value of aR, aB with the values estimated for each frame.

4. If the frame has enough reliable shadow / highlight pixel values, update the
estimated aR, aB.

5. If we have updated aR, aB with enough frames since the last update, set the
new values of aR, aB for the background representation.

6. Return to step 2.

We now examine these steps in details.
Step 1: Select shadow / highlight pixel values.
In case of the online estimation method, we can only select potential shadow

/ highlight pixel values. Potential means that these pixel values are likely to be
shadow / highlight pixel values and there is a small probability that these pixel
values may correspond to objects of interest. To detect potential shadow / highlight
pixel values, we use a weak classi�er. A weak classi�er to detect shadow / highlight
pixel values is a classi�er which has a low precision but a high sensitivity. To achieve
this objective, we need to loosen the chromaticity constraint by setting a �exible
threshold. To set up a �exible threshold, we know that the white balance e�ect
is proportional to the intensity change of the whole image. Therefore, we can set
the chromaticity threshold proportional to the intensity change. Our solution is as
follows:

Assuming that we want to verify whether a pixel value pt satis�es the weak chro-
maticity constraint of a background Gaussian distribution Gk,t. Then the threshold
Tweak to check the chromaticity constraint of the weak classi�er consists of two
parts: the �xed part T and the �exible part Tflexible:

Tweak = T + Tflexible (4.23)
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In this equation, T is equal to the chromaticity threshold of the distribution Gk,t.
This threshold is computed based on the variance of the pixel values matching to
Gk,t. Tflexible is de�ned based on the illumination change as follows:

Tflexible = a|Brightness(pt) − Brightness(µc)| (4.24)

Where µc is the mean value of the distribution Gk,t and a is a parameter re�ecting
how strong is the e�ect of white balance. In our experiment, we set a = 0.2.

This weak classi�er can be e�ective if and only if:

• Shadow / highlight pixel values outnumber pixel values belonging to objects
of interest but has similar chromaticity as the chromaticity of background.

• The white balance e�ect is not too strong so that the weak classi�er can collect
enough real shadow / highlight pixel values to estimate aR, aB correctly.

In case of the o�ine estimation method using sample video and ground truth
data, ground truth may indicate which regions correspond to illumination variation.
If it is the case, selection of shadow / highlight pixel values becomes simple. If the
ground truth contains only bounding boxes of objects of interest, one might use the
background subtraction algorithm and consider that every foreground pixel outside
those bounding boxes are shadow / highlight pixel values. However, these foreground
pixels may correspond to displacement of contextual objects, addition / removal of
contextual objects. In this case we have to use the weak classi�er presented earlier
to select shadow / highlight pixel values. However, with the ground truth, we can
eliminate pixel values corresponding to objects of interest from the set of shadow /
highlight pixel values detected by the weak classi�er.

Step 2: For each incoming frame, estimate aR, aB of this frame based on aR,
aB of the reliable shadow / highlight pixel values.

To realize this step, we �rst need to de�ne what is a reliable shadow / highlight
pixel value. In this thesis, a shadow / highlight pixel value pt of a background
distribution is considered as reliable if it satis�es the following conditions:

• µ (the mean value of background distribution) and pt are not saturated. As we
know from the camera model, when the input light is too strong, the output
pixel is truncated to 255. As a result, when there is illumination variations,
the chromaticity constraint is invalid. In our experiment, a pixel value is
considered as saturated if one of its RGB channel is higher than 250.

• pt and µ are not too dark (not in the abnormal range of the camera). In our
experiment, a pixel value is considered as two dark if one of its RGB channel
is smaller than 30.

• The di�erence between pt and µ must be large enough so that the computation
of aR, aB is not a�ected by noise. In our experiment, we do not take the
shadow pixel value pt if |µc − pt| < 20.



4.3. Removal of illumination variations 95

To compute the values aR, aB of each reliable shadow / highlight pixel value, we
assume that the ideal value of aR, aB will make the values of dR, dB in equation 4.10
of the chromaticity constraints become 0:

dR = IR,var − IG,var ×
IR

IG
+ aR(IR − IR,var) = 0

dB = IB,var − IG,var ×
IB

IG
+ aB(IB − IB,var) = 0

Therefore, we have the formula to estimate aR, aB for each shadow / highlight
pixel value as follows:

aR = (IG,var ×
IR

IG
− IR,var)/(IR − IR,var)

aB = (IG,var ×
IB

IG
− IB,var)/(IB − IB,var)

(4.25)

The value aR, aB of a frame can be de�ned as the mean value of the reliable
shadow / highlight pixel values inside that frame. Then we can compute this mean
using the online algorithm presented in the section describing the updating back-
ground representation.

Step 3: Update the global value of aR, aB with the values estimated for each
frame with enough reliable shadow / highlight pixel values. In our algorithm a
frame is considered as having enough reliable shadow pixel values if these pixels
cover x percent of the area of the frame. Then, to update the global value of aR,
aB, we could compute aR, aB using each reliable shadow / highlight pixel value and
update the global aR, aB using the iterative method to compute mean presented in
equation (4.21).

In our algorithm a frame is considered as having enough reliable shadow pixel
values if these pixels cover x percent of the area of the frame. Then, the values aR,
aB of the selected frames will be used to update the global values of aR, aB. Recall
that the recursive formula to iteratively compute the mean value is as follows:

µi =
i − 1

i
µi−1 +

1

i
xi

where µi is the mean value of {x1, x2, · · · , xi}. Then, if we compute the value of
aR, aB using all reliable shadow / highlight pixel values in every frame, gradually
i becomes too high and up to a certain value of i, xi/i = 0 ∀xi and the mean does
not updated correctly.

To avoid this problem, we compute the value of aR, aB for each frame and use
the iterative method to update the global aR, aB.

Step 4: If we have updated aR, aB with enough frames since the last update,
set the new values of aR, aB for the background representation.

In our experiment, we often update aR, aB of the background representation
after every 50 frames with enough reliable shadow / highlight pixel values.
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Step 4: Return to step 2.
Because this algorithm is iterative, the values of aR, aB in the background

representation should be updated several times before they converge to the correct
values. At the early update, we still use the weak classi�er but with a smaller value
of Tflexible to eliminate errors.

Outdoor scenes
In outdoor scene, the chromaticity of the di�use light ( the sun) and the chro-

maticity of the ambient light (the blue sky) are di�erent. Therefore, when a shadow
casts on a surface, the chromaticity of the light coming from the surface to the
camera changes. This chromaticity change can vary due to many factors such as the
sky is sunny or cloudy, the sun is high or low. Therefore the chromaticity constraint
is not reliable and we have to rely more on other constraints such as homogeneity
(texture). With the chromaticity constraint, we use a �exible threshold.

To estimate the threshold, we replace the function of the camera model in the
ideal case (when α = 0 and the camera does not apply white balance adjustment)
into the chromaticity constraint and we have:

dR = IR,var − IG,var ×
IR

IG
< ε

= θR(kRmRqR)γ − θR(kRmGqR)γ < ε

= θR(kRmRqR)γ

(

1 −
(

mG

mR

)γ)

< ε

= IR,var

(

1 −
(

mG

mR

)γ)

< ε

dB = IB,var

(

1 −
(

mG

mB

)γ)

< ε

Because in outdoor scenes, mR 6= mG and mB 6= mG, the threshold ε on dR, dB

must be proportional to the intensity IR,var,IB,var. We cannot extend this constraint
to include white balance because the algorithm to estimate white balance e�ect
presented earlier relies on the hypothesis that mi = m ∀i ∈ {R, G, B} which is
incorrect in outdoor scene.

To make the chromaticity constraint more strict, we can apply several charac-
teristics of chromaticity in outdoor scene.

Firstly, in outdoor scenes, when the sky is clear, the ambient light (the sky) is
often bluer than the di�use light (the sun), then in case of shadow, the green and
the red channels decrease more than the blue channel. Therefore mγ

B > mγ
G which

leads to dB > 0 and dR/IR,var < dB/IB,var.
Secondly, when the scene is a �at surface like an airport and the shadow is

strong, we can assume that shadow would have the same e�ect for every point on
this surface. In other words, every pixel on the �at surface has the same values of
mR, mB. Therefore we can use an algorithm similar to the algorithm that estimates
aR, aB presented earlier to estimate

(

1 −
(

mG

mB

)γ)

and
(

1 −
(

mG

mR

)γ)

. Based on
this estimation, we can have a stricter constraint on dR, dB.
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4.3.1.3 Verifying homogeneity (i.e. texture)
We use this type of feature to verify whether the e�ect of intensity variation is ho-
mogeneous among adjacent pixels or not. If it is the case, the illumination variations
does not change the texture of the a�ected region. Then, the homogeneity features
could be classical texture features such as Gabor �lter, LBP or other features spe-
ci�c for homogeneity veri�cation. In this section, we �rst examine the e�ectiveness
of well known homogeneity features in the literature to detect shadow and highlight.
After that, we present the homogeneity feature we use in this thesis which is the
one in [Toth 2004].

E�ectiveness of di�erent homogeneity features
In this section, we examine the e�ectiveness of two types of homogeneity features:

homogeneity features based on relative intensity order of adjacent pixels such as LBP
or the gradient sign, and homogeneity features based on the intensity ratio.

Before discussing about the e�ectiveness of di�erent homogeneity features, we
would like to discuss about the e�ect of shadow and highlight on adjacent pixels.
As presented earlier in the illumination model, in outdoor scenes, shadow contains
mostly umbra. As a result, the shadow e�ect is nearly the same for every pixel
inside the shadow. However, in indoor scenes, shadow may have a penumbra region
(�gure 4.3) where the shadow e�ect decreases gradually as we get to the border of
the shadow. In case of highlight, due to the refraction e�ect of the additional light
source, a highlighted region also has the same characteristics as a shadow in indoor
scene: its e�ect is strongest at the center and decreases gradually as we get to the
border of the highlighted region.

The homogeneity features based on relative intensity order of adjacent pixels
assume that shadow and highlight may change the intensity but they does not change
the relative intensity order of adjacent pixels. In outdoor scenes this assumption is
correct because the e�ect of the shadow is homogeneous inside the shadow. This
assumption is also correct for the case of indoor scenes with textured surfaces because
on these surfaces the gradual change of the shadow/highlight e�ect in penumbra is
not strong enough to change the relative intensity order between adjacent pixels.
However, on textureless, homogeneous surface such as walls, �oors, the intensities of
adjacent pixels are nearly the same. As a result, when the e�ect of the shadow and
highlight varies a little bit among adjacent pixels, the intensity order of adjacent
pixels may be di�erent from the intensity order when there is no shadow or highlight.
In this case, the homogeneity features based on intensity order such as LBP or
gradient sign are not invariant in the penumbra regions of shadow and highlight.

On the other hand, the homogeneity features based on the intensity ratio as-
sume that shadow and highlight e�ect may vary among the adjacent pixels but the
variation is small. Therefore, the intensity ratio between shadowed pixel values and
normal pixel values are nearly the same for adjacent pixels. For example, if A and
B are two adjacent pixels, then:

δ(i, A, B) =
Ii,var,A

Ii,A
− Ii,var,B

Ii,B
< ε ∀i ∈ {R, G, B}
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where Ii,A, Ii,B are the intensities of the color channel i of two pixels A and B before
an illumination variation. Ii,var,A, Ii,var,B are the intensities of the color channel i

of two pixels A and B after an illumination variation. ε is the threshold for the
di�erence between the two ratios.

Using the equations (4.5) and (4.7) in the camera model, we can verify the
correctness of this assumption:

δ(i, A,B) =
Ii,var,A

Ii,A
− Ii,var,B

Ii,B

=
αi + θi(kAmi,Aqi,A)γ

αi + θi(kAqi,A)γ
− αi + θi(kBmi,Bqi,B)γ

αi + θi(kBqi,B)γ

In the ideal case, if we can consider that α = 0, qi,A = qi,B then δ(i, A,B) =

mγ
i,A − mγ

i,B which is very small and this term accounts for the variation of the
shadow / highlight e�ect. In the normal case when the above condition cannot be
realized, we have to accept a bigger threshold on the di�erence between these two
ratios. Similar to the chromaticity features using the angle of the vector (IR, IG, IB),
δ(i, A,B) has the same normalization problem. When Ii,A,Ii,B are big, a small
change in Ii,var,A,Ii,var,B does not change much the two ratios. As a result, in this
case this feature is not sensitive in detecting foreground pixels (some pixel values can
pass the homogeneity constraint to be wrongly classi�ed as shadow or highlight).
In contrast, when Ii,A,Ii,B are small, the threshold on the di�erence between two
ratios is not big enough to compensate for the e�ect of small noise and α.

Homogeneity veri�cation
To verify the homogeneity of shadow / highlight, we can use the constraints

working with two neighboring pixels. However, in many cases this type of con-
straint is not strong enough to distinguish shadow / highlight pixel values from
foreground pixel values. Therefore, to improve the detection results, we propose a
new homogeneity constraint working with three neighboring pixels. Because of its
larger scope, it would be slower than the constraints working with only two pixels.
To improve the speed, we combine the two constraints as illustrated in �gure 4.16.
In this scheme, the constraint working with two neighboring pixels plays the role of
an initial �lter to eliminate obvious foreground pixel values. The constraint work-
ing with three neighboring pixels is then used to re�ne the detection results of the
initial �lter. In our thesis, for the constraint working with two pixels, we use the
one in [Toth 2004]. In this section, we �rst present the homogeneity constraint
in [Toth 2004] and after that we present our new homogeneity constraint.

The homogeneity constraint in [Toth 2004] is a normalized version of the con-
straint using intensity ratio. This constraint is de�ned as follows: if A and B are two
adjacent pixels, then the pixel values of these pixels when there is an illumination
variation must satisfy the following conditions:

δ(i, A, B) = Ii,var,A − Ii,var,B × Ii,A

Ii,B
< ε ∀i ∈ {R, G,B} (4.26)
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Figure 4.16: The homogeneity veri�cation of potential shadow / highlight pixel
values. These pixel values are �rstly veri�ed with the constraint working with two
neighboring pixels. The unsatis�ed pixel values are classi�ed as foreground pixels.
The remaining pixel values are then veri�ed with the constraint working with three
neighboring pixels. If a pixel value can pass this constraint, it is classi�ed as shadow
/ highlight pixel value. Otherwise it is classi�ed as foreground pixel value.

where Ii,A, Ii,B, Ii,var,A, Ii,var,B are de�ned as above, ε is the threshold in gray scale
unit. By replacing the equations (4.5) and (4.7) of the camera model into the above
constraint, we have:

δ(i, A, B) = Ii,var,A − Ii,var,B × Ii,A

Ii,B

= (αi + θi(kAmi,Aqi,A)γ) − (αi + θi(kBmi,Bqi,B)γ) × αi + θi(kAqi,A)γ

αi + θi(kBqi,B)γ

In the ideal case, if we can consider that αi = 0, qi,A = qi,B then δ(i, A, B) =

θi(kAqA)γ(mγ
i,A−mγ

i,B) which can be small in gray scale unit if the shadow / highlight
has nearly the same e�ect on two pixels A and B. In that case we have:

Ii,var,A

Ii,var,B
≈ Ii,A

Ii,B

which is similar to the assumption of the approach which veri�es the homogeneity
using the intensity ratio. Normally, this assumption is incorrect because αi 6= 0,
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qi,A ≈ qi,B. We now examine our homogeneity constraint in the case of shadow and
highlight.

In case of shadow Ii,var,A < Ii,A and Ii,var,B < Ii,B, the di�erence between
Ii,var,A/Ii,var,B and Ii,A/Ii,B due to α and noise in our constraint is reduced because
it is multiplied with a small value Ii,var,B. Therefore, we can set a small threshold
for δ(i, A, B). As a result, our homogeneity constraint is sensitive to foreground
pixel values (it can detect the small changes of Ii,var,A Ii,var,B) but at the same time
it still robust to the e�ect of α and small noise on Ii,A, Ii,B.

In case of highlight, similar to the chromaticity constraint, the homogeneity
constraint is not robust to small noise on Ii,A, Ii,B or on the e�ect of α when Ii,A,
Ii,B are small. However, it is more sensitive to foreground pixel values because it
can detect the small changes of Ii,var,A, Ii,var,B.

(a)

(b) (c)

Figure 4.17: The e�ectiveness of homogeneity constraint working with two neighbor-
ing pixels. Figure (a) is the original image. Figure (b) is the foreground detection
results without homogeneity constraint. Figure (c) is the foreground detection re-
sults with homogeneity constraint in [Toth 2004]. This constraint works at with
two neighboring pixels. In �gure (b), (c) the green regions correspond to regions
with illumination change. With the homogeneity constraint, a part of the region
corresponding to the man's leg is recovered.

Figure 4.17 shows an example of the e�ectiveness of this homogeneity constraint.
In this �gure we can see that a part of the region at the man's leg is recovered but not
the whole leg. To have better detection results, beside the homogeneity constraint
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comparing two pixels, we propose a new constraint working with three neighboring
pixels.

Before de�ning the homogeneity constraint working with three pixels, we study
�rst the meaning of δ(i, A,B), the constraint combining two pixels. If δ(i, A, B) < 0

then

δ(i, A,B) = Ii,var,A − Ii,var,B × Ii,A

Ii,B
< 0

⇔Ii,var,A < Ii,var,B × Ii,A

Ii,B

⇔Ii,var,A

Ii,A
<

Ii,var,B

Ii,B

⇔αi + θi(kAmi,Aqi,A)γ

αi + θi(kAqi,A)γ
<

αi + θi(kBmi,Bqi,B)γ

αi + θi(kBqi,B)γ

If we can omit αi and consider that qi,A = qi,B then we have mi,A < mi,B. This
means that the e�ect of shadow / highlight at pixel A is stronger than this e�ect
at pixel B (the intensity reduction ratio at A is higher than that at B). Therefore,
from the sign and the absolute value of δ(i, A,B) we can determine the variation of
shadow / highlight e�ect at pixel A and its neighboring pixels. Our constraint aims
at determining the relationship between di�erent δ(i, A, B) of neighboring pixels of
A.

Figure 4.18: The directions to verify the smoothness of illumination variations on
neighboring pixels: 1-0-5, 2-0-6, 3-0-7, 4-0-8. Each number corresponds to one pixel
and 0 corresponds to the center pixel.

From the illumination model, we know that inside the umbra regions, the shadow
/ highlight e�ect on adjacent pixels is nearly the same but inside the penumbra
regions, this e�ect decreases gradually as we goes to the border of the shadow.
The decrease of this e�ect should be smooth and it should have a speci�c direc-
tion. Therefore, for one pixel, our new homogeneity constraint enables to verify the
smoothness along di�erent directions around this pixel as in �gure 4.18.

Assuming that A, B,C are three adjacent pixels along one direction with A is
the center pixel. The �rst smoothness constraints veri�es the possible order between
di,A,B and di,A,C . Because of the smoothness of illumination change, when there is
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Figure 4.19: The pattern of the variations of shadow / highlight e�ect (intensity
reduction ratio) on 3 adjacent pixels B, A, C along one direction. This e�ect is
represented by the value of δ(i, A, X) with A is the center pixel and X is B or
C. In pattern (a), the shadow / highlight e�ect on adjacent pixels B, A,C remains
the same (δ(i, A, B) = δ(i, A, C)). This pattern corresponds to the umbra region
of shadow. In pattern (b), this e�ect on adjacent pixels decreases from B to C

(δ(i, A, B) < 0 andδ(i, A, C) > 0). This pattern corresponds to the penumbra
region of shadow. In pattern (c), this e�ect is the same at B, A but it decreases at
C (δ(i, A, B) = 0 and δ(i, A, C) > 0). This pattern corresponds to the intersection
between penumbra and umbra or the intersection between two shadow regions. In
pattern (d), this e�ect is smallest for A. In pattern (e), this e�ect is highest for A.
Because the shadow / highlight e�ect is smooth, pattern (d) and (e) are impossible.

shadow / highlight over A,B, C, this change must have a pattern as described in
�gure 4.19. In this �gure, pattern (a) means that δ(i, A, B) = δ(i, A,C), pattern (b)
means that δ(i, A, B) > 0 and δ(i, A,C) < 0, pattern (c) means that δ(i, A,B) < 0

and δ(i, A,C) > 0, pattern (d) means that δ(i, A, B) > 0 and δ(i, A, C) > 0, pattern
(e) means that δ(i, A, B) < 0 and δ(i, A, C) < 0. Therefore if the shadow / highlight
e�ect along direction 1-0-5 is smooth, then:
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δ(i, A,B) × δ(i, A, C) ≤ 0 ∀i ∈ [R, G, B] (4.27)

To avoid the e�ect of small noise on δ(i, A, B) and δ(i, A, C), if one of these
values is too small, we consider that it is equal to 0.

Then, a potential shadow pixel A satis�es the smooth constraint if the pixel
values around A satisfy 8 smoothing constraints corresponding to 4 directions (�g-
ure 4.18) in 3 channels RGB. If A does not satisfy the smooth constraint, A is
classi�ed as foreground.

(a)

(b) (c)

Figure 4.20: The homogeneity constraint working with three pixels improves the
precision of illumination change detection. Figure (a) is the original image. Figure
(b) is the detection results with the homogeneity constraint working with two pixels.
Figure (c) is the detection results when we add the new homogeneity constraint
working with three pixels. In �gures (b) and (c), the green regions correspond to
shadow regions, and the white regions correspond to foreground. In �gure (c), with
the new constraint, the region at the man's leg misclassi�ed as shadow is reduced.

Figure 4.20 shows the detection results when we use this constraint together
with the constraint working with two pixels. We can see that, the new constraint
helps to recover more foreground pixels at the man's leg.

Comparing our homogeneity constraint with other constraints to detect illumina-
tion variations, some of them works with only two adjacent pixels [Bevilacqua 2003,
Bevilacqua 2006]. Others assume that the shadow / highlight e�ect is the same
for small regions [Jacques 2005]. This hypothesis is incorrect for penumbra region.
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For our homogeneity constraint, it works three neighboring pixels and it accepts a
gradual change of the shadow / highlight e�ect. However, this change must have a
direction and the change pattern must be smooth.

(a)

(b) (c)

Figure 4.21: The homogeneity constraint working with three pixels produces several
error regions on the �oor where the homogeneity hypothesis is violated. Figure
(a) is the original image. Figure (b) is the detection results with the homogeneity
constraint working with two pixel in [Toth 2004]. Figure (c) is the detection results
when we add the new constraint working with three neighboring pixels. In �gure
(b) and (c), the green regions correspond to illumination change, the white regions
correspond to foreground objects.

With three neighboring pixels, the new constraint becomes more strict on �at
surface. However, on rough or curve surfaces where the homogeneity hypothesis is
violated, the new constraint also produces error although not too much as shown in
�gure 4.21.

Because the new homogeneity constraint is qualitative, not quantitative, we want
to extend it to quantify the di�erence between δ(i, A, B) and δ(i, A, C) where A is
the center pixel and B, C are the neighboring pixels in one particular direction.
Particularly, because both B and C are the neighboring pixels of A then if the
shadow / highlight e�ect changes at A, this change must be smooth. In other words,
the di�erence between the absolute values of δ(i, A, B) and δ(i, A, C) must be small.
From the original constraint working with three neighboring pixels, we know that,
in the regions with illumination change, δ(i, A,B) × δ(i, A, C) ≤ 0, which means
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(a) (b)

Figure 4.22: The quantitative form of the homogeneity constraint working with
three pixels improves the precision of illumination change detection. Figure (a) is
the detection results with the original (qualitative) form of the new homogeneity
constraint working with three neighboring pixels. Figure (b) is the detection results
when we use the quantitative form of this constraint. In �gures (a) and (b), the green
regions correspond to shadow / highlight regions, and the white regions correspond
to foreground. In �gure (b), with the quantitative form of the constraint, the region
at the man's leg misclassi�ed as shadow is reduced a little bit.

they have di�erent signs. Therefore, the quantitative form of the new constraint is:

δ(i, A, B) × δ(i, A,C) ≤ 0

δ(i, A, B) + δ(i, A,C) < ε

∀i ∈ [R, G,B]

(4.28)

Where ε is a small threshold. In our experiment, we set ε = 5 gray scale units.
Figure 4.22 shows the detection results with the quantitative form of the new con-
straints. The quantitative form of the new constraint recovers more foreground
pixels misclassi�ed as shadow at the man's leg. However, with this stricter con-
straint, the number of errors is also higher at the region where the homogeneity
hypothesis is violated as shown in �gure 4.23. In this �gure, the number of error
regions in the �oor is higher. Therefore, depending on the current scene conditions,
if the scene has many rough or curve surfaces, we only use the qualitative form of
the new homogeneity constraint.

This homogeneity feature is e�ective when the variation of the shadow / highlight
e�ect in the penumbra is not strong or when there is no penumbra at all (like in
outdoor scenes). In some cases, when the object is close to the shadowed surface
(e.g. walls, �oors) and the light source is big, the variations of shadow e�ect inside
penumbra regions are big. This problem is illustrated in �gure 4.24. In this �gure,
because the person is close to the wall and the size of the window (the light source)
is big, inside the penumbra, the shadow e�ect varies a lot. For example, at position
A, two adjacent pixels have two pixel values which are very di�erent ( (82, 88, 78)
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(a)

(b) (c)

Figure 4.23: The quantitative form of the homogeneity constraint working with
three pixels produces more errors on the �oor where the homogeneity hypothesis
is violated. Figure (a) is the original image. Figure (b) is the detection results
with the qualitative form of the homogeneity constraint. Figure (c) is the detection
results with the quantitative form of this constraint. In �gure (b) and (c), the
green regions correspond to illumination change, the white regions correspond to
foreground objects.

and (93, 98, 92) ) although when there is no shadow, their pixel values are nearly
the same. As a result the region around A can pass the chromaticity constraint
but not the homogeneity constraint. In this case, if we use a higher threshold on
the di�erence between adjacent pixel values, the homogeneity constraint becomes
ine�ective in detecting foreground pixels because the di�erence between adjacent
pixels for objects of interest is also small (except at the border between the object
and the shadow). Therefore, the use of homogeneity constraint must depend on
the speci�c characteristics of the scene a�ecting the size and variation of penumbra
regions (e.g. the size of the light source, the distance between the object and the
light source etc.).

Despite this shortcoming, we still use homogeneity constraint all the time be-
cause chromaticity alone may classify objects of interest as shadow which is a more
serious problem.
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(a)

(b) (c)

Figure 4.24: The problem of homogeneity veri�cation in penumbra region. Figure
(a) shows the original image. The shadow penumbra region is close to the man. In
this region the shadow e�ect varies a lot. For example, at position A, two adjacent
pixels have two pixel values which are very di�erent ( (82, 88, 78) and (93, 98, 92) )
although when there is no shadow, their pixel value are the same. Figure (b) shows
the foreground detection results when using only the chromaticity constraint. The
green regions correspond to the detected shadow / highlight regions. The white
region corresponds to the detected foreground regions. The penumbra regions suc-
cessfully pass the chromaticity constraint. Figure (c) shows the detection results
with both chromaticity and homogeneity constraints. Because of the big variation
of shadow e�ect inside penumbra regions, penumbra regions cannot pass the homo-
geneity constraint and they are classi�ed as foreground regions.

4.3.2 Removal of shadow in saturated regions
The shadow / highlight detection method presented above assumes that shadow
does not change too much the texture and the chromaticity of the scene. However,
when the illumination of one region of the scene is too strong, the output of the
camera is truncated to the value 255. Consequently, the camera cannot distinguish
the chromaticity as well as the texture of this region. For example, in �gure 4.25,
the illumination on the �oor is saturated. When the person comes in, inside the
shadow region, the illumination reduces and the camera can observe the �oor. This
time, due to the person shadow, the �oor in the image is di�erent from the �oor
without shadow. In that case we cannot employ the shadow detection algorithms



108 Chapter 4. Foreground pixel detection

presented earlier to distinguish shadow from objects of interest. Figure 4.25 also
shows the detection results of the background subtraction algorithm together with
the shadow / highlight removal algorithm presented above.

(a)

(b)

Figure 4.25: Shadow in the region with saturated illumination. Figure (a) shows
the scene in which the illumination on the �oor is saturated. Therefore, the camera
cannot observe the texture and the chromaticity of the �oor. Figure (b) shows the
detection results of the background subtraction algorithm together with the shadow
/ highlight removal algorithm using texture and chromaticity. This algorithm fails
to remove the shadow in the saturated region from the detection results.

To solve this problem, we rely on the fact that the �oor region is quite homo-
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geneous, when there is shadow, the pixel values in one part is similar to the pixel
values in other parts with a slight illumination change. Therefore we can employ
an o�ine phase to learn the shadow pixel values in one small part of the �oor and
generalize the result to the whole surface. Here we examine each shadow pixel sep-
arately and do not use homogeneity (texture) features because of the two reasons.
Firstly, the e�ect of penumbra region can be strong and it may change the texture
feature as we have discussed in the previous section. Secondly, we have to compare
the texture at di�erent places. Even when two areas have the same texture, due
to the perspective projection of the camera, the two image regions with the same
texture can be di�erent.

We realize this idea in three steps:

1. Detect the regions with saturated illumination (the region of which RGB

values of all pixels reach maximum value).

2. In the o�ine learning phase, for each region

(a) Collect the learning shadow pixel values inside that region.
(b) Construct the corresponding classi�er for that region.

3. In the online foreground detection phase, if a foreground pixel is detected in
a region with saturated illumination, use the corresponding classi�er to verify
the detection results.

We now examine important step in details.
Step 1 Detect the regions with saturated illumination.
This work must be done manually because automatic methods cannot determine

whether one region with saturated illumination may have shadow or not.
Step 2a Collect the learning shadow pixel values inside each region with satu-

rated illumination.
In this o�ine step, from training video, we �rst have to manually select frames

where shadow appears at this region with saturated illumination. Then, in each
frame, we manually draw the bounding box around shadow regions so that we can
extract shadow pixel values inside these regions to construct the classi�er in the
next step.

Step 2b Construct the corresponding classi�er for each region with saturated
region.

To construct the classi�er, we �rst have to decide which features we want to
extract from the learned shadow shadow pixel values. For the pixel values, we have
to decide whether we only store the chromaticity or the raw pixel values. If we only
store the chromaticity, we can overcome the problem of illumination change and the
detection sensitivity increases. Nevertheless, because we have the chromaticities of
many pixel values at many places, the precision decreases. This problem becomes
more serious due to the generalization of the learned knowledge from one region
to the whole surface. Therefore we need to store the raw pixel values instead of



110 Chapter 4. Foreground pixel detection

only the chromaticity to maintain the precision of the detection results. To avoid
the problem of illumination change, we have to accept a higher threshold on the
brightness.

Normally, constructing classi�ers needs both positive samples (pixel values cor-
responding to shadow) and negative samples (pixel values not corresponding to
shadow). However, similar to the problem of modeling background with negative
samples corresponding to pixel values of objects of interest, the distribution of neg-
ative samples is uniform because objects of interest may produce any pixel values.
Therefore, to avoid the problem of bias when negatives samples are not representa-
tive enough to pixel values of objects of interest, we do not use negative samples to
train the classi�er.

To learn and to recognize the pixel values in the shadow regions, we can use
various classi�ers such as neural networks or SVM. However, because there are only
three features corresponding to the three values R,G,B, we can use a simpler classi�er
which is a set of Gaussian distributions similar to the background representation of
the proposed background subtraction algorithm. However, in case of the classi�er,
we do not limit the number of Gaussian distributions to K.

To train such a classi�er, we use the following algorithm:
Learning algorithm
Input:

• A learning set of shadow pixel values

Output:

• Classi�er C capable of recognizing most of shadow pixel values in the learning
set.

Begin

1. Create an empty classi�er C.

2. For each pixel value pi in the learning set, recognize this pixel value with the
classi�er C

(a) If the classi�er C can recognize pi, update the classi�er with this pixel
value.

(b) If the classi�er C cannot recognize pi, adjust C so that it can recognize
this pixel value.

3. Return to step 2, run until the classi�er C can recognize every pixel value of
the learning set.

4. Prune the classi�er C (optional).
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End
We now explain the main steps of this algorithm in details.
In step 1, we create an empty classi�er. This classi�er is a set of Gaussian

distributions, each distribution is characterized by its mean and standard deviation.
In this step, the classi�er is an empty set.

In step 2, the classi�er recognizes each shadow pixel value in the learning set.
The classi�er can recognize a pixel value if this pixel value matches a Gaussian
distribution inside the classi�er. Similar to the background subtraction algorithm
EGMM, a pixel value matches a Gaussian distribution if it satisfy the constraints
in formula (4.13). If such a match occurs, the mean and the standard deviation of the
Gaussian distribution are updated with the iterative method of Welford [Welford 1962].
Also in this step, if the classi�er cannot recognize a pixel value, it creates a new
Gaussian distribution for this pixel value. The mean of the newly created distribu-
tion is the pixel value and the standard deviation is the default value.

In step 3, we have to rerun the step 2 because after each recognition, the mean
and standard deviation values are updated and the updated distribution may not
recognize a pixel value that it has recognized before. Therefore this step is necessary
to recognize all the pixel values in the learning set.

In step 4, to prune the classi�er means to remove the distributions which has
been matched by too few pixel values in the learning set. This step would make the
classi�er less sensitive but these pixel values correspond to only small and isolated
pixels. In turn, the pruning step makes the classi�er faster and more importantly,
it helps the classi�er to increase the precision which is not very high due to the
generalization. This step is optional because the pruning e�ect depends on the
learning set. If the learning set is small and not representative enough for shadow in
region with saturated illumination, there is a possibility that the proportion of the
pixel values in the learning set does not correspond to the proportion in the reality,
pruning may deteriorate the performance of the classi�er.

The e�ectiveness of the classi�er depends on the shadow pixel values. If they
are homogeneous and reside in a small region of RGB color space, the classi�er does
not a�ect much the sensitivity of the background subtraction algorithm in detecting
foreground pixels. If the shadow pixel values are heterogeneous, this sensitivity
decreases because the classi�er may recognize pixel values of objects of interest as
shadow.

If the surface of the scene is homogeneous like the one in �gure 4.25, we can
employ a single classi�er for several regions with saturated illumination. Figure 4.26
shows the foreground detection results with the classi�er to remove shadow in the
region with saturated region. We see that, the classi�er can correctly remove the
shadow from the detection results.

We can extend the idea of classi�er to other problems such as the displacement
of contextual objects or the opening / closing of a door.

When a contextual object like a chair is displaced, this displacement produces
two regions in the foreground detection results: the region where the chair has
been moved to, and the region where the chair was located before the displacement.
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Figure 4.26: The detection

Therefore, we need two classi�ers: one classi�er for the pixel values of the chair,
and another classi�er for the region occupied by the chair before. To limit the
misclasi�cation of the classi�er with pixel values corresponding to objects of interest,
we can limit to the regions where the chair can be moved to.

When a door is opened, the door will cover one part of the scene and at the same
time, a static background region of the scene appears. For the static background
region which has just appeared, we can extract the corresponding image region
as the background representation to recognize this region when the door is open.
For the door region, we can construct a background representation speci�c to pixel
values of the door.

4.4 Conclusion
In this section we have presented our approach to detect foreground pixels in a video.
The proposed approach consists of two main algorithms: a background subtraction
algorithm to detect potential foreground pixels, and a post processing algorithm to
remove undesirable visual artifacts from the detection results.

For the background subtraction algorithm, we focus on (1) features to construct
background representation, (2) the model of background representation, (3) pixel
classi�cation rules, and (4) the method to update the background representation.

Concerning the features to construct the background representation, the pro-
posed features consists of one chromaticity and one brightness feature. These fea-
tures are designed to be robust to illumination variations and to the white balance
adjustment of the camera. To achieve this objective, we �rst study how shadow and
highlight a�ect the scene illumination with the help of the Phong re�ection model.
Then we study the characteristics of the camera in�uencing the transformation of
the illumination into pixel values in the image. This study shows several important
results:

• The chromaticity feature is not reliable in outdoor scenes in case of shadow.
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• Not every chromaticity representation is robust to illumination variations.

Based on the acquired knowledge, we propose our feature set which minimizes
the e�ect of illumination variations.

Concerning the model of background representation and the classi�cation rules,
we show that it is di�cult for a generic model to have good performance on ev-
ery scene type. Therefore, we analyzed the characteristics of typical scene types.
Based on this analysis, we propose our model of background representation and the
classi�cation rules. These classi�cation rules are speci�c to each type of scene.

Concerning the method to update the background representation, we show that
the popular adaptive �lter used in many background subtraction algorithms such as
GMM is not reliable. Because this adaptive �lter updates the mean and variance
immediately with each incoming pixel values, the updated mean and variance are
a�ected seriously by outliers and initial estimation of variance. To avoid this problem
we postpone the update until we collect enough pixel values. To avoid the problem
of storing n pixel values, we employ the online algorithm of Welford to compute
mean and variance. The experiment with outdoor scenes proves the e�ectiveness of
our updating method.

For the algorithm to remove undesirable visual artifacts, we propose a method
to remove strong intensity variations (including shadow in non saturated region),
and shadow in regions with saturated illumination.

Concerning the method to remove strong intensity variations, we de�ne three
constraints on: intensity range, chromaticity, and homogeneity (texture). For the
chromaticity constraint, because the white balance adjustment is important in case
of intensity variations, we present a method to automatically estimate the white
balance adjustment. For the homogeneity constraint, we show the strengths and the
weaknesses of the current methods to verify homogeneity constraint. These methods
either work with only two neighboring pixels or do not take into account the variation
of shadow e�ect in penumbras. Then we propose a new homogeneity constraint
working with three neighboring pixels which can improve the performance of the
current homogeneity veri�cation methods. We also show that, the homogeneity
constraint is only e�ective in scenes with �at surfaces and when the variation of the
shadow / highlight e�ect in the penumbra region is not too strong.

Concerning the method to remove shadow in regions with saturated illumina-
tion, in an o�ine phase we construct a classi�er to learn the shadow pixel values in
one small region. In the online phase, the learned knowledge is then generalized to
recognize the shadow pixel values of the whole surface which has the same charac-
teristics as the learned region. This idea can be applied to detect the displacement
of contextual objects and the opening / closing of a door.

The algorithms introduced in this chapter require many parameters. These pa-
rameters help our algorithm to better �t to speci�c conditions of the scene. However,
how to set appropriate values for these parameters is a di�cult problem for users.
To overcome this problem, the controller for background subtraction algorithm is
responsible for tuning its parameter values. To do this, the controller employs the



114 Chapter 4. Foreground pixel detection

feedback from the classi�cation task, the knowledge about the algorithms and the
scene to �nd appropriate parameter values, suitable for the current scene conditions.
The details of this adaptation method is presented in chapter 5.



Chapter 5

Controller

In the previous chapter, we present the algorithms to detect foreground pixels in
the video. Working at the pixel level, these algorithms have di�culties in evaluating
their performance to adapt themselves to the current scene conditions.

In this chapter, we propose a controller which helps the background subtraction
algorithm inside the foreground detection task to adapt itself to the current scene
conditions.

5.1 Introduction
To help the background subtraction algorithm to adapt to the current scene con-
ditions, the controller uses the feedback from the classi�cation task. With this
feedback, the controller can work at the blob level, not only at the pixel level as in
case of the background subtraction algorithm alone. Figure 5.1 shows the general
architecture of the controller for background subtraction algorithms.

The controller continuously monitors the foreground detection task. When a
problem or a special event occurs, the controller supervises the foreground detection
task to take the appropriate reaction. To monitor the output of the foreground
detection task and to �nd the appropriate reaction to an event, the controller needs
the following input:

• The current video frame.

• The foreground detection results of this frame. This is a binary image in
which pixels with value 0 represent background pixels and pixels with value
1 represent foreground pixels.

• The feedback from the classi�cation task which is a list of blobs with the
corresponding type.

• Various information about the scene and the background subtraction algo-
rithm. We will explain in detail this information in subsequent section.

Currently, our controller focuses mainly on the background subtraction algo-
rithm inside the foreground detection task. With this algorithm, the controller has
two adaptation methods: supervising the background subtraction algorithm to up-
date its background representation, and tuning parameter values of the background
subtraction algorithm.
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Figure 5.1: The general architecture of the controller for background subtraction
algorithms.

In this chapter, we �rst present how the controller monitors the background
subtraction algorithm and then we present the two adaptation methods of the con-
troller.

5.2 Monitoring the background subtraction algorithm
Monitoring the background subtraction algorithm includes two works: to verify if the
foreground detection results of the background subtraction algorithm are consistent
with the object models, and to detect special events which may happen in the scene.

5.2.1 Veri�cation of the detection result consistency
In this section, we �rst present the consistency criteria and then we present how
these criteria are used to verify the consistency of the foreground detection results
with the object model. Finally, we present the possible problems that makes the



5.2. Monitoring the background subtraction algorithm 117

foreground detection results inconsistent with the object model.

5.2.1.1 Consistency criteria
To verify the consistency of the foreground detection results, we employ the feedback
from the classi�cation task. Therefore, we have two types of consistency criteria
related to two types of feedback.

For the feedback from the classi�cation task, we use the following criteria to
evaluate the consistency of the foreground detection results:

• The area covered by small noise over the image.

• The area covered by blobs classi�ed as unknown by the classi�cation task.

• The area covered by stationary blobs classi�ed as unknown by the classi�ca-
tion task. This symptom is related to the problem of dynamic changes. To
verify if a blob is stationary or not, we employ the algorithm presented in
section 5.2.2.4

• The ratio between the detected object height over the object height in the
object model. We only use the height because when objects move, the height
has the lowest variance.

• The number of detected objects compared to the number of objects estimated
by users in the scene description.

Among these criteria, the �rst criteria is the most reliable because small noise
region can be detected easily using the constraint on the blob size. The second
and the third criteria require that the classi�cation task must correctly classify
every detected blob in the video. This work is not always easy. The fourth criteria
depends on whether the scene has objects of interest or not and whether the real
size of objects is close to the size in the object model. However, this criteria is still
useful because if the height of most of detected objects of interest are too high, it
may indicate that the shadow detection algorithm has not remove much shadow.
Perhaps shadow makes the size of detected objects bigger. The last criteria depends
on speci�c applications where we can estimate the maximum number of people which
may appear in the scene.

Although the last four consistency criteria is not reliable, they provide supple-
ment information to evaluate the detection result consistency. Moreover, when the
foreground detection results of the background subtraction algorithm are not con-
sistent according to one of these criteria for a long time, the controller should inform
the operator to manually adjust the system to correct the problem.

To quantify these consistency criteria, we de�ne the error indicator corresponding
to these criteria as follows:

• Inoise = nnoise/N , where nnoise is the number of foreground pixels belonging
to small noise and N is the number of pixels in the image.
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• IunknownBlob = nunknown/N , where nunknown is the number of foreground
pixels inside unknown blobs and N is the number of pixels in the image.

• IunknownStationaryBlob = nunknownStationary/N , where nunknownStationary is the
number of foreground pixels inside unknown, stationary blobs and N is the
number of pixels in the image.

• IobjectSize = 1− 1
n

n
∑

i=1

hi/H where hi is the 3D height of the detected objects

and H is the 3D height in the object model, n is the number of detected
objects. If IobjectSize > 0, the size of detected objects of interest is bigger
than the size in the model. If IobjectSize < 0, the size of detected objects of
interest is smaller than the size in the model.

• InObject = N −N∗: where N is the number of detected objects and N∗ is the
number of objects estimated by users.

The controller can also use the feedback from the tracking task to evaluate the
consistency of both foreground detection and classi�cation tasks. For the feedback
from the tracking task, we can employ the error indicators proposed by [Chau 2009].
In this article, Chau et al propose seven consistency criteria concerning the state of
the tracking task as follows:

• How long are detected object trajectories? Short trajectories means poor
tracking quality.

• Do detected objects disappear at exit zone or not? If not, tracking task may
loose objects.

• Is the width / height ratio of detected objects stable or unstable? If it abruptly
changes, tracking results may not be good.

• Is the ratio of area of detected objects in consecutive frames stable or unsta-
ble? If it is unstable, tracking results may not be good.

• Is the speed of detected objects stable or unstable? If it is unstable, tracking
results may not be good.

• Is the histogram of pixel values of detected objects the same in consecutive
frames? If it is the case, tracking results may not be good.

• Is the moving direction of detected objects change abruptly? If it is the case,
tracking results may not be good.

To compute these consistency criteria, we need to modify the tracking task so
that it can provide this information. Therefore, up to now, the proposed controller
has not used the feedback from the tracking task yet.
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5.2.1.2 Veri�cation method

The consistency of the foreground detection task is estimated in n frames. On
each frame, we evaluate the consistency using the �ve error indicator related to
the feedback from the classi�cation task presented in section 5.2.1.1. Then after n

frames, the values of the error indicators for these n frame are the mean value of
the error indicators computed for each frame.

We can compute error indicators over the whole image. However, scenes may
contain di�erent regions where the values of the error indicators are very di�erent.
Then it is unnecessary to request the foreground detection task to adjust itself
at the regions with high consistency to improve the consistency. Moreover, if the
area of these regions is large enough, although the consistency in other regions is
small, the overall consistency on the whole image is still high. Consequently, the
controller never requests the foreground detection task to correct the inconsistencies
occurring locally. To have a better estimation of error indicators, we divide the image
into sub rectangular regions. Then the error indicators are computed inside these
small rectangles only and we only request the background subtraction algorithm to
change in the rectangles with low values of error indicators. With this approach,
the evaluation su�ers from the border problem. However, if the rectangle is small
enough, the border problem is not serious

5.2.2 Detecting special events
Our controller focuses on the following special events: small noise regions, sudden
illumination change, objects of interest, stationary objects.

5.2.2.1 Detecting small noise regions

The classi�cation task informs the controller which blobs correspond to small noise
regions. To detect small noise region, the classi�cation task set a threshold on the
3D size of blobs. If the 3D size of a blob is smaller than this threshold and this blob
is outside the bounding boxes of all detected objects of interest, the classi�cation
task classi�es this blob as small noise region.

5.2.2.2 Detecting sudden illumination changes

To detect sudden illumination changes, we �rst determine the a�ected region. Then,
we propose the method to detect sudden illumination changes in this region.

To determine the a�ected region, we have to take into account the characteristics
of sudden illumination changes.

Sudden illumination changes may have �xed pattern like sudden illumination
changes due to turning on / o� the light. To determine the a�ected region with
this kind of sudden illumination changes we use the video sample where the sud-
den illumination change occurs. Then, we de�ne the a�ected region of the sudden
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illumination change by comparing the two frames before and after the sudden illu-
mination change occurs. We then manually remove the di�erence regions which are
not caused by illumination change. Then, we store the background representation
( the reference image in the simple case) of the region a�ected by sudden illumina-
tion. This will be used to verify the sudden illumination change and to reset the
background representation in the a�ected region in an online phase.

Sudden illumination changes may not have a �xed pattern. For example, an
outdoor scene in a sunny day, when the cloud covers the sun, the illumination of
the whole scene decreases. This type of sudden illumination changes may occur
locally or globally. If it occurs locally and at an unpredictable place, it is di�cult
to distinguish the foreground region caused by sudden illumination changes and the
foreground region corresponding to objects of interest in the scene. Therefore, for
this type of sudden illumination change, we focus only on the changes which happen
globally and the a�ected region is the whole frame.

Figure 5.2: The point on which the controller takes samples of the foreground de-
tection results to verify whether sudden illumination changes occur.

A simple solution to detect sudden illumination changes in one speci�c region in
the image is to count the number of foreground pixels in the foreground detection
results inside this region. If this number is higher than a certain threshold, we
consider that a sudden illumination change appears. However, this method is slow
because we have to iterate every pixel in the image. To overcome this problem,
we only count the number of foreground pixel at n positions distributed as a grid
as illustrated in �gure 5.2. If the number of foreground pixels exceeds a certain
percentage of n, we can consider that there is a sudden illumination change. To be
more robust to noise, we can replace each pixel in the grid by a small region. Then
a region is considered as foreground if more than half of the pixels in this region
have the foreground label.

In case of sudden illumination changes with �xed pattern, we also have the back-
ground representation at the a�ected region. Then, to verify if a sudden illumination
change really occurs at the current frame, we compare the pixels on the grid in the
current frame with the corresponding pixels in the stored background representa-
tion. If the number of similar pixels is higher than a threshold, we consider that
there is a sudden illumination change.
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5.2.2.3 Detecting objects of interest
To detect objects of interest, the controller relies on the classi�cation task. However,
the feedback from the classi�cation task is not always correct. Therefore, we have
to verify every blob classi�ed as object of interest by the classi�cation task. Because
this is a complex task, we will present it in section 5.2.3.

5.2.2.4 Detecting stationary objects of interest
There are many types of stationary objects of interest. For example, a person sits
down and stays in a chair, a car stops in a car park. Here we focus only on one
speci�c type of stationary objects which become completely static after they stop.
Examples of the stationary objects of this type are stopped cars in a car park. This
type does not include people when they stop moving because when people stop, the
blobs corresponding to these people may contain motion when these people move
parts of their body such as hands, head etc.

To simplify the presentation, we assume that the type of objects which would be-
come stationary is a car. To distinguish stationary cars from moving cars, we use two
lists: TrackedCarPos and CurrentCarPos. Each element of the TrackedCarPos

list contains the bounding box of a car which can become stationary in association
with a counter which stores the number of consecutive frames when this car does
not move. The CurrentCarPos list contains the bounding box of cars detected in
the current frame. At the beginning, both of these lists are empty. The controller
tracks the stationary cars as follows:

1. In the current frame, whenever a car is detected, its bounding box is pushed
into the CurrentCarPos list. The background inside this bounding box is
not updated.

2. For each element in the TrackedCarPos list:

• If the bounding box of this element matches exactly one bounding box
(see equation (5.1)) in the CurrentCarPos list (i.e. the car has not
moved), remove the corresponding bounding box from the CurrentCarPos

list and increase the stationary counter of the element by 1. If the sta-
tionary counter is higher than a threshold, a stationary car is detected.

• If not, (i.e. when the car moves or when the car has stopped but it is
merged with another moving object) decrease the stationary counter. If
this counter is still greater than 1, perhaps the car has stopped but it
is merged with another object such as a person, so keep this element in
the TrackedCarPos list. With this counter, we hope that after several
frames, the person moves away and the stopped car can be detected
correctly again. If the counter is smaller than 0, remove this element.

3. Insert the bounding boxes which still exist in the CurrentCarPos list into
the TrackedCarPos list with stationary counter equal to 1.
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A bounding box is represented by two corner points: top left corner (xTL, yTL)

and bottom right corner (xBR, yBR). Then a bounding box R1 matches exactly
another one R2 if:

ExactMatch(R1, R2) =



























1 if abs(xTL
R1

− xTL
R2

) < τd

∧|yTL
R1

− yTL
R2

| < τd

∧|xBR
R1

− xBR
R2

| < τd

∧|yBR
R1

− yBR
R2

| < τd

0 otherwise

(5.1)

where τd is a threshold which compensates for the vibration of the camera. In
our experiment, we set τd = 2.

5.2.3 Veri�cation of objects of interests
Our veri�cation method excludes the case where objects of interest do not move for
a long time, for example a person goes to bed and sleeps. We assume that objects
of interest do not become completely static for too long.

There are several types of objects of interest such as people, vehicle. The veri�-
cation method presented in this section does not depend on one speci�c object type
except the object size. To simplify the presentation, we assume that the object type
is people.

The objective of the veri�cation of detected people is to classify a detected
person blob as a mobile object or a background region. Moreover, if we classify this
foreground region as a person, we must compute the con�dence score indicating how
likely this foreground region would be a person blob. If the con�dence score of a
detected person blob is smaller than 0, this person blob is considered as background.

The veri�cation method uses two types of features: visual and motion features.
Visual features are more di�cult to verify but they are often available. On the
other hand, motion features are easier to detect and are more reliable because in
scenes with no background motion, only mobile objects can move. However, motion
features are not always available because mobile objects may stop moving completely
in several frames. Therefore, we compute the con�dence score based mainly on
motion features. The con�dence score of each detected mobile object at frame t is
computed based on the con�dent score at frame t− 1 and on the motion and visual
evidents in frame t as follows:

CSt = min(CSt−1 + αV St + (1 − α)MSt − f,MaxCS) (5.2)

where CS is the �nal con�dence score, V S is the con�dence score computed using
visual features, MS is the con�dence score computed using motion features, f is
the forgetting coe�cient, α is a small coe�cient re�ecting the importance of V S

in computing con�dence score, MaxCS is the maximum con�dence score. In this
formula, concerning f , if there is no visual or motion evident of one detected mobile
object for a long time, the con�dence score of this object will decrease gradually.
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Concerning α, in our experiment, we set α = 0.005. This means that the con�dence
score of a detected mobile object without motion is very small. Moreover, we select
f so that f > αV S. Consequently, if this person blob does not contain motion
for a certain number of frames, its con�dence score will become too small and this
person blob will be removed when we update the list of person blobs. Here the
visual score only helps to slow down the decrease of con�dence score when there is
no motion inside the detected person blob.This helps us to distinguish foreground
regions corresponding to real people from foreground regions corresponding to the
displacement of contextual objects like a chair because with these objects, there is
only visual score, not motion score.

5.2.3.1 Veri�cation of person blobs using visual features

To verify person blobs visually, we use two features: person border and density of
foreground pixels (the number of the foreground pixels) between two border points.
Concerning the person border, a person blob must have a border with the back-
ground and this border must satisfy the person model. On the other hand, if a
background region is misclassi�ed as a person blob, this background region may
not have border or the border does not satisfy the person model. Concerning the
foreground density between two border points, this density is de�ned as the number
of the foreground pixels on a horizontal line connecting two border points. Be-
cause a person is a solid object, this number must be high. In contrast, background
regions misclassi�ed as people do not always satisfy this condition. For example,
when a chair is slightly displaced, the detected blob can satisfy the border condi-
tion. However, the space between the two edges of the chair may not be classi�ed
as foreground. Consequently, if we draw a horizontal line cutting the chair at two
border points, the number of the foreground pixels on this line between the two bor-
der points is small. Therefore, the foreground density between border is an useful
constraint to distinguish person blobs from background regions.

To verify person border we cannot rely on the foreground region border on the
foreground detection results because the foreground region may include background
pixels due to shadow as illustrated in �gure 5.3. One possible solution is to use
contour detection algorithms to verify whether a detected foreground region has a
valid contour. However, these algorithms are time-consuming and are not suitable
for real time systems.

To overcome this problem, we propose an algorithm to indirectly verify person
border. The proposed algorithm is based on the heuristic that if we draw a horizontal
line cutting a real person, this line (called cut) will intersect the person border at
at least 2 points. Moreover, the distance between these 2 points must be large
compared to the person model. For example, with the calibrated camera, in case of
people, the 3D distance between these two border points must be larger than 20 cm
(in case of neck or leg). We use this heuristic as the border constraint.

Based on this border constraint, the following algorithm is proposed to verify
person border:
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(a) (b)

Figure 5.3: The di�culty of verifying object border. Image (a) is the original
image. Image (b) is the corresponding detection results. A detected person blob
may include background pixels due to shadow. Therefore we cannot rely on the
foreground region border on the foreground detection results (image (b)) to verify
person border.

1. Take n horizontal cuts from the current blob

2. For each cut, verify if this cut satis�es the border constraint. If yes, compute
the foreground density score on this cut.

3. Find the maximal range of consecutive cuts satisfying the border constraint.
If this maximal range is smaller than a threshold, this blob is not a person
blob.

4. Compute the visual con�dence score based on the average of the foreground
density scores for the line satisfying border constraint.

We now examines these steps in details.
In step 1, we take n horizontal cuts from the current blob. We de�ne n =

height3D/d, where height3D is the height of the objects in 3D and d is a �xed
distance. In our experiment, we take d = 30cm. Therefore, if the height in 3D of a
person blob is 170 cm, we take n = 5.

In step 2, we have to verify if a cut satis�es the border constraint. This means
that the cut intersects the person border at at least two points and the 3D distance
between these two points is larger than 20cm. To verify if a point is a vertical
edge point, we �nd the points where there is a large gradient between the values of
adjacent pixels. Formally, a pixel at position (x, y) can be classi�ed as a Vertical
Edge Point (V EP ) as follow:

V EP (x, y) =



















1 if ∃i ∈ (R, G, B),

|Ii
(x,y) − Ii

(x+1,y)| > τ

∨|Ii
(x,y) − Ii

(x−1,y)| > τ

0 otherwise

(5.3)
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Figure 5.4: If a detected person is a real person (not a misclassi�ed background
region), each line (cut) should cross the person border at at least two points (inter-
section points). Each red line in the image corresponds to a cut. This �gure shows
the image region corresponding to the detected foreground in �gure 5.3.

where Ii
(x,y) is the channel i value at position (x, y), τ is the threshold for the

intensity di�erence, V EP (x, y) = 1 means the pixel at the position (x, y) is a
possible vertical edge point.

Among possible border pixels, the algorithm takes the left most and the right
most pixels as the real border pixels to verify the lower bound of the 2D distance
between border points. This 2D lower bound is computed from the 3D lower bound
using the 2D and 3D width of the blob. Particularly, if the 2D width of a blob is
with2D and the 3D width of this blob is width3D then we de�ne LowerEdge2D =

(LowerEdge3D × width2D)/width3D where LowerEdge2D is the lower bound in
2D and LowerEdge3D is the lower bound in 3D. For the 3D distance between the
two edge points on the same cut, we set LowerEdge3D = 20cm.

With this border veri�cation, a background region misclassi�ed as a person might
pass the border constraint if inside this background region, there are border points
of the contextual objects. To avoid this problem, we only accept that one border
point is coincident with the border points of the contextual objects as in case half of
a person is occluded by a door. Otherwise, we consider that the current cut does not
satisfy the border constraint. To verify if a border point is coincident with a border
point of the contextual objects, we use the information of the contextual object
edges. To collect this information, we can compute edge positions of the contextual
objects using an image of the empty scene where there is no object of interest. This is
not always available for some dynamic scenes where contextual objects may be added
or removed. To overcome the problem, we employ the background representation of
the background subtraction algorithm. For example, in case of GMM, we take the
mean value of the distribution with the biggest weight as the pixel values for the
image to compute edge. This method should work if we apply an adaptive updating
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scheme so that the background representation is not updated with the pixel values
of objects of interest in the scene. Then, to update the edges of the contextual
objects newly added to the scene, after each n frames, we reconstruct the empty
scene image and compute edge positions.

For each cut, we compute a border score. If both of the left most and right most
border points are not coincident with the border points of the contextual objects,
the cut receives a high border score. Otherwise, the cut receives a low border score.
Formally, the border score is computed as follows:

BorderScore =







1 if nGoodBorder = 2

0.75 if nGoodBorder = 1

0 if nGoodBorder = 0

(5.4)

where nGoodBorder is the number of border points not coincident with the
edge of contextual objects. This border score is then used with the density score to
compute the �nal visual score of the blob.

Once the cut satisfy the border constraint, we compute the density score of this
cut. Particularly, we de�ne the density score as follows:

DensityScore =











1 if totalFg ≥ Upper2D
totalFg−Lower2D

Upper2D−Lower2D
if Lower2D < totalFg < Upper2D

0 if totalFg < Lower2D

(5.5)

where totalFg is the number of the foreground pixels between the left most and
the right most border points, Lower2D and Upper2D are the lower bound and
upper bound in 2D computed from Lower3D, Upper3D which are the threshold in
3D. The computation method is similar to the method to compute the threshold for
the distance between two edge points. In our experiment, for the lower bound and
upper bound of the density, we de�ne Lower3D = 10cm and Upper3D = 20cm.

In step 3, we have to �nd the range of the consecutive cuts satisfying the border
constraint. For example, if we have 5 cuts and only the �rst cut does not satisfy
the border constraint, then the range of the consecutive cuts satisfying the border
constraint is [2,5]. Also in this step, we have to de�ne a threshold R for the length
of this range to decide whether the current blob is a person blob or not. We set this
constraint because a person is a solid object and therefore inside the person blob,
the cuts must satisfy the border constraint. Then the range of these cuts re�ects
the possible height of the person blob. In our experiment, we de�ne:

R = min(MaxCutRange, height3D/d − 1) (5.6)

where height3D is the height of the blob in 3D, d is the vertical distance between
two cuts and we set d = 30cm as before, and MaxCutRange is the maximum range
in case height3D is too large. This formula means that we only accept 1 cut which
does not satisfy the border constraint. This case may happen when the person blob
is merged with other foreground regions.
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In step 4, we compute the visual con�dence score based on the foreground density
score and the border score as follows:

V isualConfidenceScore =

∑

i BorderScorei × DensityScorei

totalCuts
(5.7)

where i is the index of the cuts satisfying the border constraint, BorderScorei

and DensityScorei are the border score and foreground density score of cut i,
totalCut is the total number of cuts satisfying the border constraint.

5.2.3.2 Veri�cation of person blobs using motion feature

To verify person blobs using motion features means to verify if there is motion
inside person blobs. We can detect this kind of motion using the relative di�erences
between consecutive frames. In fact, we cannot rely on the underlying background
subtraction algorithm using the current background representation because it can
only give us the di�erence between the current frame and the current background
representation. Because this di�erence contains both the person as well as the
motion of this person, we cannot distinguish the person motion from the person blob.
Therefore, we use directly the simple frame di�erence technique to detect relative
motion. Particularly, we �rst compute the di�erence image Idiff = |It− It−k| where
It is the frame at time t and It−k is the frame at time t − k. Then, we classify a
pixel as a motion pixels if Idiff at this pixel is bigger than a threshold. If k is small
enough, we can avoid the problem of illumination change.

With this simple frame di�erence technique, we may face the issue concerning
the vibration of the camera or the specular re�ection on contextual object edges.
This issue often results in motion pixels at the edge of the contextual objects as
well as objects added in the scene such as handbag, papers, cups, etc. We call these
motion pixels as motion pixels of contextual edges. Therefore we have to distinguish
motion pixels produced by person motion from motion pixels of contextual edges.
To distinguish these two kinds of motion pixels we cannot employ the number of
motion pixels because if the scene is complex, the number of motion pixels of con-
textual edges could be high. In contrast, person motion may be subtle such as �nger
movements, head turning. In these case the person motion produces only a small
number of motion pixels.

To overcome this problem, we notice that the region of motion pixels produced
by contextual edges are often thin (often as thin as a line) at the edge of objects
in the scene. On the other hand, human motion often has a larger amplitude and
it produces larger motion regions. Moreover, if we take a larger value of k (e.g.
k = 3) in the formula to compute the di�erence image, the size of the motion region
produced by contextual edge often remains the same whereas the size of the motion
region produced by human motion become larger. Therefore we can use morphology
erosion to remove the motion pixels of contextual edges. However, the kernel of the
operation should be large enough to remove motion pixels at the corners of the
contextual objects because at these corner, the density of these motion pixels is
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often higher.
Based on this remark, we propose an algorithm to verify person blob using

motion which works as follows:

1. Compute the di�erence image Idiff and classify a pixel as a potential motion
pixel if the value of the di�erence image at this pixel is bigger than a threshold.

2. Among potential motion pixels, only keep the motion pixels having all neigh-
boring pixels which are potential motion pixels.

3. Compute the motion score based on the number of detected human motion
pixels.

In this algorithm, in step 2, we only keep the motion pixels having all neighboring
pixels which are potential motion pixels. If the motion region is thin as in case of
motion produced by camera vibration, this motion region does not contain any
motion pixel satisfying such condition. In our experiment, we set the neighboring
size at 3x3.

In step 3, we could compute the motion score based on the ratio of the number
of detected human motion pixels over the area of the person blob. However, when
people stop moving, most of the time, their motion is often very subtle such as head
turning, small movement of hands, body. In these cases, if we compute the motion
score based on this ratio, the motion score is always very small. Therefore, we set
the motion score equal to 0 if the number of detected motion pixels is smaller than
a threshold. Otherwise, the motion score is set to be the maximum motion score.

5.3 Updating background representation
5.3.1 General description
To adapt background subtraction algorithms to the current conditions of the scene,
they should update their background representation (e.g. reference image in case
of simple background subtraction algorithm). However, without the controller, the
background subtraction algorithm alone can only apply the same updating strategy
for every pixel in the image. This unique updating strategy is not always e�ective.
The controller is in charge of supervising the underlying background subtraction
algorithm to update its background representation adaptively based on the global
understanding of the scene.

Particularly, the controller supervises the background subtraction algorithm to
apply four updating schemes for its background representation to solve the following
problems:

• Small noise region: when the controller detects a small noise region, the con-
troller does not want this noise to occur again in the detection results of
subsequent frames. To do this the controller requests the background sub-
traction algorithm to update this region quickly into the background.
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• Sudden illumination changes: when the controller detects a sudden illumina-
tion change, to enable the background subtraction algorithm to detect objects
of interest normally, the controller requests the background subtraction algo-
rithm to reset its background representation.

• Objects of interest: when the controller detects an object of interest, it always
want to keep track of this object. However, when an object of interest like
a person stops moving, if we update the region corresponding to this person,
after a while, the person is integrated into the background and we loose track
of this person. To solve this problem, the controller employs the object type
information from the classi�cation task, then it requests the background sub-
traction algorithm to not update the regions corresponding to the objects it
wants to keep track. Therefore, the background subtraction algorithm will be
able to detect these objects in the subsequent frames.

• Stationary objects like parked cars: when the controller detects a stationary
object like a parked car, the background subtraction algorithm should be able
to distinguish the stopped car from other objects of interest passing in front
of the car. By cooperating with the tracking task, the controller can help the
background subtraction algorithm to solve this problem e�ectively.

To supervise the background subtraction algorithm to update its background
representation, the controller works as illustrated in �gure 5.5. The controller takes
as input the frame at time t, the foreground detection results of this frame, and the
feedback from the classi�cation task for this frame. After analyzing the foreground
detection results with the help of the feedback from higher level tasks, the controller
updates the matrix of status variables. Then, based on the value of status variables,
the controller produces a matrix of updating commands. Each updating command
is assigned to one pixel of the video. When the background subtraction algorithm
receives these updating commands, it applies the corresponding updating strategies
to the background representation. The newly updated background representation
will be used to detect foreground pixels at time t + 1. For the controller, updating
commands play the role of an interface between the controller and the underlying
background subtraction algorithm. This interface enables the controller to work
with di�erent background subtraction algorithms.

The output of the controller is a matrix of updating command. In our system,
there are �ve types of updating commands:

• Update: this updating command means that the background subtraction al-
gorithm should update the background representation with the current pixel
value normally. This is the updating scheme for normal background region.

• NotUpdate: this updating command means that the background subtraction
algorithm should discard the current pixel value and not update the back-
ground representation. This is the updating scheme for regions corresponding
to objects of interest.
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Figure 5.5: The general diagram of how the controller supervises the background
subtraction algorithm to update its background representation. The controller re-
ceives the feedback from the classi�cation task and updates the status of each pixel
in the image. Pixel status are stored in a matrix of status variables. Then based
on the value of status variables, the controller sends the corresponding updating
commands to the background representation.

• Integrate: this updating command means that the background subtraction
algorithm should adjust its background representation so that the current
pixel value becomes background immediately. This is the updating scheme
for the region where the controller is pretty sure that it is background.

• QuickUpdate: this updating command means that the background subtrac-
tion algorithm should adjust its background representation so that in the
future if the current pixel value reappears again only several times, it will
becomes background. This is the updating scheme for the noise region.

• Reset: this updating command means that the background subtraction algo-
rithm should discard the current background representation and construct a
new one with the current pixel value as the background. This is the updating
scheme for the whole image when there is a sudden illumination change.

These updating commands are quite generic and many background subtraction
algorithms can implement the corresponding updating scheme. For example, in
EGMM, to implement the updating command �Integrate�, we replace the mean value
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of the Gaussian distribution with the biggest weight by the current pixel value.
To implement the updating scheme �Quick update�, we update the background
representation several times with the same pixel values.

Inside the controller, there is a matrix of status variables. Each status variable
is associated with a pixel in the image. These status variables enable the controller
to set di�erent updating schemes for di�erent pixels in the image. Moreover, these
status variables also help to store the current status for updating schemes which
need to be realized in several frames, and to combine the previous status with
the feedback of the classi�cation task in the current frame. The value of a status
variable s is an integer in the range [−3, n]. The mapping from the value of s to the
corresponding updating commands is as follows:

• s = −3: the corresponding updating command is Reset.

• s = −2: the corresponding updating command is Integrate.

• s = −1: the corresponding updating command is QuickUpdate.

• s = 0: the corresponding updating command is Update.

• 0 < s < n: the corresponding updating command is NotUpdate. After
producing the updating command NotUpdate, the value of s decreases by 1.
Therefore, if s = m, then the corresponding pixel of s will not be updated in
m frames.

If s ∈ [−3,−1], after being used to produce corresponding updating commands,
the controller set s = 0.

Now we present in details how the controller supervises the background sub-
traction algorithm to update the background representation to react to the events
presented earlier.

5.3.2 Small noise regions
When the controller receives the feedback that a noise region occurs in the fore-
ground detection results, it sets the corresponding status variable s = −1 of pixels
inside the noise region to produce the updating command QuickUpdate for those
pixels.

5.3.3 Sudden illumination change
As discussed before, sudden illumination changes may or may not have a �xed
pattern. If the controller detects an illumination changes with a �xed pattern like
tuning on the light, it has the background representation of the a�ected region.
Then when a sudden illumination change of this type is detected in m consecutive
frames, the controller sets up the value to the status variables s = −3 for all the
pixels in the a�ected region to produce the updating command Reset. At the
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(a)

(b) (c)

Figure 5.6: The e�ectiveness of managing sudden illumination changes. Figure (a)
shows the original image of the video. In this video, at time t the person turns o�
the light. Therefore, the background subtraction algorithm produces noisy detec-
tion results with many foreground pixel values (image (b)) for frame at time t. By
analyzing the detection results for this frame, the controller detects the illumina-
tion change. Therefore it requests the background subtraction algorithm to reset its
background representation. As a result, at frame t+1 the noise disappears from the
detection results (image (c)). As the controller does not store the background repre-
sentation corresponding to the illumination change, the background representation
at time t is reset with the frame at time t. Therefore, the background subtraction
algorithm cannot detect the person. However, when this person moves again, this
person will be detected by the background subtraction algorithm.

same time, the controller send the stored background representation corresponding
to this illumination change to the background subtraction algorithm. In case the
illumination change does not have a pattern and the controller does not store the
corresponding background representation of the a�ected region, the controller takes
the pixel values of the current image inside the a�ected region as the new background
representation for the background subtraction algorithm. This time, the background
representation might include objects of interest as background. However, when these
objects move to another places, the background subtraction algorithm can detect
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these objects.
For the background subtraction algorithm, when it receives the updating com-

mand Reset, the background subtraction algorithm has to discard the old back-
ground representation in the a�ected region and to construct a new one for the next
iteration. This new background representation is provided by the controller.

Figure 5.6 illustrates the performance of the controller to handle sudden illu-
mination changes. In this �gure, we see that when the person turns o� the light,
the sudden illumination change is detected and as soon as the next frame (we set
m = 1), the background representation is reset. Therefore, noise does not occur in
the detection results. In this example, the controller does not store the background
representation of the a�ected region. Therefore, the background representation at
this region is reset with the pixel values of the current image.

5.3.4 Objects of interest
To keep track of objects of interest even when they stop moving, a simple solution
is not to update the regions corresponding to these objects. However, when a
background region is misclassi�ed as an object of interest due to various reasons such
as displacement of contextual objects, this background region is not updated and it
exists for a long time in the foreground detection results. To avoid this problem, we
need to distinguish such background regions from real objects of interest.

To handle this problem, we have to verify every blob classi�ed as an object of
interest with the method presented in section 5.2.3. This method uses the motion
to verify objects of interest and if an object does not have motion for a long time,
it will be considered as background, not an object of interest. Therefore, we have
to �nd the corresponding between blobs of the same object in consecutive frames.

To realize this task, the controller maintains a list of objects of interest. For
each object, the controller stores the bounding box of this object in the current
frame and the con�dence score quantifying how much the controller believes that
this object is a real object of interest. Then, with each incoming frame, to update
the list of objects, we use the following algorithm:

The algorithm to update the list of objects
Input

• List of objects with the corresponding bounding boxes in the previous frames
L1.

• List of blobs classi�ed as objects of interest in the current frame L2.

Output

• Updated list of objects (L1).

Begin

1. For each blob bi in L2
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(a) Verify if this blob is a real person blob.
(b) Find the corresponding object in L1.

• If there is a corresponding object in L1, update this object with
information from bi.

• If not, create a new object from bi and add it to L1.

2. Decrease the con�dence score of each object in L1.

3. Remove from L1 the objects of which the con�dence score is too small.

End
After updating the list of objects, the controller requests the background sub-

traction algorithm not to update the region inside the bounding box of these objects
in the current frame.

We now examine the important steps of this algorithm in details.
In step 1.(a), we have to verify if a blob corresponds to a real object of interest

or just a background region misclassi�ed as an object of interest. This is the most
important step of our algorithm and the solution to this problem is presented earlier
in section 5.2.3. After this step, if we classify this blob as a real object, we have
a con�dence score for this blob indicating how much we believe that this blob is a
real object.

In step 1.(b), with the current blob bi we have to �nd the corresponding object
in L1. We consider that the blob bi with the bounding box bboxi in the current
frame correspond to an object bj with the bounding box bboxj in L1 if the Dice
coe�cient between bboxi and bboxj is higher than a threshold. The Dice coe�cient
is de�ned as follows:

Dice(bboxi, bboxj) =
2|bboxi ∩ bboxj |
|bboxi| + |bboxj |

(5.8)

where |bboxi| is the area of the bounding box bboxi. In case bboxi intersect more
than one bboxj , we take bboxj with the highest Dice coe�cient. Also in this step,
after �nding a corresponding object bj , we replace the bounding box of bj with the
bounding box of bi and we add the con�dence score of bi computed in step 1.(a) to
the con�dence score of bj .

In step 2, we decrease the con�dence score of each object in L1 by a �xed amount
ε. To set up ε, we have to take into account the nature of the con�dence score. We
know that the con�dence score is the weighted sum of the visual score and the motion
score. In this sum, the motion score has a bigger weight (more important) than the
visual score. Then we choose ε so that it is greater the maximum contribution of
the visual score into the con�dence score. This means that the visual score only
helps to slow down the decrease of the con�dence score. Therefore, if a background
region is misclassi�ed as an object and if this region satis�es the visual constraint,
without motion its con�dence score is decreased gradually and it will be removed in
step 3 if its con�dence score becomes too small.
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(a) (b)

(c) (d)

Figure 5.7: The e�ectiveness of removing background regions misclassi�ed as per-
son. At the beginning, the person sits in the armchair (�gure (a)). Then she moves
to the table (�gure (b)) and this is the �rst time the camera can observe the region
of the armchair. If we do not verify person blobs, the controller thinks that the arm-
chair region is a person and it requests the background subtraction algorithm not to
update this region. The results is illustrated in �gure (c). With the veri�cation of
person blobs, the controller understands that the detected foreground region at the
armchair is not a real person, it requests the background subtraction algorithm to
update this region normally. Therefore, this foreground region disappears after sev-
eral frames (70 frames in case of the algorithm EGMM). The results are illustrated
in �gure (d).

Figure 5.7 shows the e�ectiveness of the controller with the veri�cation of per-
son blobs. Because of this veri�cation, the controller can distinguish the regions
corresponding to real persons from the background regions misclassi�ed as person.
Therefore, it can correctly request the background subtraction algorithm to up-
date the misclassi�ed background regions, but not the regions corresponding to the
person. As a results, after several frames, the misclassi�ed background region dis-
appears from the detection results as illustrated in �gure 5.7 (d). Here we could
integrate the blob misclassi�ed as person into the background so that it can dis-
appear from the detection results immediately. However, there is a possibility that
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the veri�cation of objects of interest may make mistake, for example an objects of
interest does not have motion for a long time and the veri�cation think that this is
a background region. In this case, if we integrate the blob into the background, we
have no chance to recover from this error. If we update this region normally, there
is a chance that before disappearing into the background, the object of interest may
move and we can recover from the error. Then normally updating is a trade o� be-
tween error recovering and noise removal. As in case of the background subtraction
algorithm EGMM, when we set the static mode, since the controller veri�es that a
blob is misclassi�ed as an object of interest, this blob will become background after
70 frames.

5.3.5 Managing stationary objects
For some applications, when an object of interest like a car stops moving the tracking
task must be able to detect the stopped car. Moreover, at the same time the
background subtraction algorithm must be able to detect other objects of interest
such as a person passing in front of the car. Finally, when the car starts moving
again, the background subtraction algorithm must detect the region occupied by
the car before as background, not as a ghost car.

Some authors [Fujiyoshi 2002, Yang 2004] propose to store the pixel values of the
stationary objects inside temporary background layers and then use these temporary
background layer to detect other objects of interest passing by. This solution su�ers
from the problem of updating hidden temporary background layers as well as the
old background when the illumination conditions of the scene changes.

Our solution to this problem is to store only the position of stationary objects,
not the stationary objects themselves. Therefore, we can avoid the problem of
updating background when the illumination conditions change. Particularly, when
the car is moving, the controller requests the background subtraction algorithm not
to update the region of the car so that the background is not a�ected by the pixel
values of the car. When the controller detects a stationary car, it requests the
background subtraction algorithm to absorb immediately the region inside the car
bounding box into background. Therefore, the background subtraction algorithm
can detect other objects of interest passing in front of the stationary car. At the same
time, it informs the tracking task (the external tracker outside the controller) that
there is a stationary car at the location of the bounding box. When the stationary
car moves again, a ghost car can occur in the detection results. The external tracker
in this case compares the location of the ghost with the list of stationary cars. If
it can �nd a corresponding car, the tracking task removes the ghost as well as the
stationary object from its output and informs the background subtraction algorithm
to integrate the ghost into the background. As a result, the background subtraction
algorithm does not have to take care of storing and updating the old background if
the illumination of the scene has changed as this is the case in [Fujiyoshi 2002].

To detect stationary objects, we employ the method presented earlier in sec-
tion 5.2.2.4.
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(a)

(b) (c)

Figure 5.8: The e�ectiveness of managing stationary objects of interest. Figure (a)
shows the original image of the video. In this video the car enters the scene then
stops. After that, a person gets out of the car and enter the building. If we want to
always detect the car even when it stops, we can request the background subtraction
algorithm not to update the region corresponding to the car. However, with this
solution, we cannot detect the person as illustrated in �gure (b). Figure (c) shows
the e�ectiveness of the controller in managing stationary objects, the background
subtraction algorithm can detect the person when the car has stopped moving.

Figure 5.8 shows the e�ectiveness of the controller in managing stationary ob-
jects. In this �gure, we see that, with the management of stationary cars, the
background subtraction algorithm can distinguish the person from the car when the
car stops as illustrated in �gure 5.8 (c).

The method to manage stationary objects is simpler than the method to keep
track of objects of interest when these objects stop moving. However, we cannot
use the method to manage stationary objects to keep track of objects of interest
because some objects are not completely stationary. For example, when a person
sits down in a chair, if we consider that this person is stationary and integrate this
person into the background, when the person moves his hand, his hand becomes
noise in the detection results.
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5.4 Tuning parameter values
In this section, �rstly we present the program supervision approach, a generic ap-
proach to tune parameters. Secondly we present the proposed parameter tuning
approach inside the controller. Finally, we present the two parameter tuning meth-
ods of the controller: context-based and evaluation based tuning.

5.4.1 Program supervision approach
Tuning parameter values is another method to adapt the background subtraction
algorithm to the current conditions of the scene. This adaptation method is impor-
tant because each algorithm often has a set of parameters which heavily in�uence
the algorithm performance. Moreover, the default values of these parameters can
only be suitable for certain conditions of the scene. Users alone �nd it di�cult to
set up these parameters because of the two reasons:

• It is di�cult to quantify the relationships between the current scene conditions
and the algorithm parameters to set up the correct parameter values.

• The scene conditions may change continuously.

The problem of tuning parameter values can be solved using the program su-
pervision approach as in [Thonnat 1999]. A program supervision system consists
of a reusable program supervision engine, a knowledge base about the use of pro-
grams, and the program library. This approach is illustrated in �gure 5.9 taken
from [Thonnat 1999].

Figure 5.9: General program supervision system architecture (taken
from [Thonnat 1999]).

In this approach, there are four main phases: planning, execution, evaluation,
and repair. The program supervision works as follows:

• The planning phase selects and assembles modules from the program library
to make a complete program capable of ful�lling users' request.
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• The execution phase then run the program built by the planning phase and
produces the results.

• The evaluation phase evaluates the results using expert knowledge in the
knowledge base and returns an assessment. If the results are correct, the plan
can continue.

• If the evaluation results are incorrect, the repair phase repairs the plan or
modi�es parameter values and returns to the planning phase. To repair the
plan or to modify parameter values, the repair phase has to rely on expert
knowledge.

The program supervision approach is generic and can be applied in various prob-
lems. However, this approach needs a very �exible design of the video analysis
system.

5.4.2 The proposed parameter tuning approach
To tune parameter values of the background subtraction algorithm, the controller
uses only three phases of the program supervision: execution, evaluation, and repair.
The controller does not use the planning phase because in the planning phase, the
assembling of di�erent modules from the program library requires a �exible design
in which the interfaces between di�erent modules must be generic to work with
various modules. Moreover, these modules may require di�erent input/output. Not
every system can satisfy this requirement.

Among the three phases of the tuning process, the execution phase is done by
the foreground detection task. The controller is responsible for the evaluation and
repair phases.

In the evaluation phase, to evaluate the consistency of the foreground detection
results, the controller computes �ve error indicators presented in section 5.2.1.1 and
then it uses expert knowledge to evaluate the values of these error indicators.

In the repair phase, to repair means to modify parameter values of the fore-
ground detection task so that the foreground detection results are consistent with
the feedback from the classi�cation and tracking tasks. To do this, the controller
has a set of parameter tuners. Each tuner is responsible for reducing the values of
one or several error indicators. There are two types of parameter tuners correspond-
ing to the two tuning approaches: context-based and evaluation based described in
chapter 2.

Compared with the program supervision approach, the proposed tuning ap-
proach is not a generic tuning approach but it is dedicated to tune parameter values
of the background subtraction algorithm to detect objects of interest in the video.
Therefore, the proposed approach extensively exploits the knowledge about how to
evaluate the foreground detection results and the knowledge about the parameters
of the background subtraction algorithm (which parameter to change, the e�ect of
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(a)

(b)

Figure 5.10: This �gure shows that the controller works locally in each image region,
not on the whole image Image (a) is the original image. Image (b) is the detection
results of this image. The controller divides the image into small regions, evaluates
the foreground detection results in each region, and tunes parameter values of the
regions where the foreground detection results are not good as in the noisy region
in the upper left corner.

changing parameter values etc.). Another point which makes the proposed tun-
ing approach di�erent from the program supervision approach in [Thonnat 1999]
is that the controller works locally, not globally on the whole image as illustrated
in �gure 5.10. By this way, if the scene is complex with di�erent regions having
di�erent characteristics, the controller can better adapt the background subtraction
algorithm to each region in the image.

Similar to the program supervision approach the tuning process inside the con-
troller works as follows:

1. The controller takes as input the foreground detection results and computes
the values of �ve error indicators for each region in the image.

2. The controller uses the expert knowledge to verify if the values of the error
indicators are good or not.
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3. If the value of one error indicator in one region is not good, the controller
activates the corresponding parameter tuners.

4. If the parameter tuners can improve the value of this error indicator, the con-
troller requests the foreground detection task to change its parameter values
at the a�ected region.

5. If the parameter tuner fails or if no parameter tuner can reduce the value of
this error indicator, the controller informs human operators and stores the
current video sequence for further o�ine analysis.

We now examine each step in details.
In step 2, we have to de�ne how good is the value of each error indicator. As

discussed in section 5.2.1.1, among �ve consistency criteria measured by �ve error
indicators, the criteria on the area covered by the small noise over the image is
the most reliable. For this criteria, through experiments, we see that if Inoise ∈
[0.03, 0.05], the value of Inoise is good. We will explain in details this evaluation
knowledge in section 5.4.4.5. The criteria on the object size compared to object
model is an indicator that shadow detection algorithm has good performance or
not.

In step 3, we can use two types of parameter tuners: context-based parameter
tuners and evaluation-based parameter tuners.

A context-based parameter tuner is speci�c to one particular background sub-
traction algorithm. This tuner has two phases: online and o�ine. In the o�ine
phase, this tuner �nd all algorithm contexts and the corresponding optimized pa-
rameter values. In the online phase, the tuner determine the context of the current
video and then applies the corresponding optimized parameter values.

An evaluation-based parameter tuners has two parts: the tuning algorithm and
the knowledge about parameters of the background subtraction algorithm. The
tuning algorithm is generic and can be used with many background subtraction
algorithms ( we have tested the tuning algorithms with GMM and EGMM). To
tune parameter values, the tuning algorithm takes as input the current value of the
error indicator, the safe range of this value, and the parameter knowledge. This
parameter knowledge includes which parameters to be tuned, what is the e�ect of
the parameters on the value of the error indicator, what is the preferred value of the
parameters.

We have created two parameter tuners for the two consistency criteria Inoise and
IobjectSize. The parameter tuner for IobjectSize is a context-based parameter tuner
and the parameter tuner for Inoise is an evaluation-based parameter tuner. We will
present these two parameter tuners in the subsequent sections.

Up to now, our parameter tuners cannot handle the con�ict when the value of
one error indicator is improved and the value of another error indicator becomes
worse during the tuning process.

In the subsequent sections, we discuss in details about the context-based and
evaluation-based parameter tuning methods in this controller.
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5.4.3 Context-based parameter tuning
In this section, we present our context-based tuner for the background subtraction
algorithm to detect shadow in outdoor scenes where the chromaticity of the dif-
fuse light might be di�erent from the chromaticity of the ambient light. Through
this tuner, we also discuss about the context-based tuning approach in general.
This tuner is responsible for reducing the values of error indicator IunknownBlob and
IobjectSize as shadow makes detected blobs bigger and sometimes the classi�cation
task cannot recognize these blobs due to their big size.

Let's recall the chromaticity constraints for the outdoor scene. If we call

mG =
IG,var

IG
,mR =

IR,var

IR
,mB =

IB,var

IB

where (IG,var, IG,varIB,var) are the RGB values of one pixel when there is shadow
and (IR, IG, IB) are the RGB values of that pixel when there is no shadow, then we
de�ne dR, dB as follows:

dR = IR,var

(

1 −
(

mG

mR

)γ)

dB = IB,var

(

1 −
(

mG

mB

)γ)

where γ is a coe�cient depending on the camera. The two ratios mG/mR and
mG/mB depends on the di�erence between the chromaticity of the di�use light (the
sun) and the chromaticity of the ambient light (the sky). When the weather is
cloudy, i.e. the sun is covered by the cloud, these ratios are nearly equal to 1 and
dR, dB are small. When the weather is sunny, these ratio are di�erent from 1. For
a certain condition of weather, if we can determine the value range of these two
ratios, we can determine the value ranges of dR,dB and these value ranges become
the chromaticity constraints for outdoor scenes.

Return to context-based parameter tuning, in general, context-based parameter
tuning assumes that the algorithms in the foreground detection task need di�erent
parameter values for di�erent scene conditions. We call such a scene condition as
an algorithm working condition. For example, the two ratios of EGMM to detect
shadow in outdoor scenes depend on the weather condition of the scene. Then
di�erent weather conditions corresponds to di�erent working conditions of EGMM.

To tune the values of these ratios, our context-based tuner maintains a set of
algorithm working conditions called S = {s1, s2, · · · , sn} with si is a working con-
dition. A working condition si contains the optimized parameter values p∗i for this
condition and a set of distinctive feature values Fi = {fi,1, fi,2, · · · , fj,m}. To verify
if the condition of a video sequence belongs to a working condition si or not, we
�rst extract the distinctive feature values f of this video, then we compare f with
the member of Fi. If f = fi,j ∈ Fi the working condition of this video belongs to si.
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The set of algorithm working conditions S is empty at the beginning and it is
constructed gradually. We will present how our parameter tuner constructs S when
we present how our parameter tuners works.

Our parameter tuner has two phases: online and o�ine.
In the online phase, the tuner works as follows:

1. The tuner veri�es if the condition of the current video belongs to one of the
working conditions in S.

2. If the condition of the current video belongs to the working condition si in S,
then the tuner applies the optimized parameter values p∗i in s to the algorithm
to detect shadow.

3. If the condition of the current video does not belong to any working condition
in S, the tuner requests the controller to store the video for o�ine phase.

In the o�ine phase, the tuner works as follows:

1. For each video stored by the controller in the online phase:

(a) Create ground truth data for this video
(b) Find optimized parameter values for this video using the ground truth

data

2. Compare the optimized parameter values of di�erent algorithm working con-
ditions. If two working conditions s1, s2 have the same optimized parameter
values, merge s1, s2 to make s3. The optimized parameter values of s3 is
the optimized parameter values of s1. The distinctive features values of s3 is
F3 = F1 ∪ F2 where F1, F2 are the two sets of distinctive feature values of s1,
s2.

To realize this parameter tuner, we have to solve two main problem: how to
de�ne distinctive features and how to �nd optimized parameter values for a video
given the ground truth data.

5.4.3.1 Distinctive features to recognize algorithm working conditions

Because the algorithm to detect shadows depends on the illumination condition
of the scene (strong illumination in sunny, normal illumination in cloudy, and
weak illumination at night), we can use a feature representing illumination as
the distinctive feature to recognize the working condition of a video sequence.
In [Martin 2008, Georis 2007], the authors use the histogram of the current image
as the feature to detect the working condition of the scene. Computing histogram
is time consuming and it would slow down the foreground detection task if we have
many working conditions. Beside that, with histogram we loose the spatial infor-
mation.
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Our solution to the problem of selecting distinctive features is to sample a set
of n pixels distributed over the image as in case of computing the number of fore-
ground pixel to detect sudden global illumination change. Then we take the current
background representation of the current scene at these points as the distinctive
features for the working condition of this video. For example, if we use GMM to
construct the background representation, at each sampled pixel we take the back-
ground distributions as the features for the current scene. Therefore, we can avoid
the problem of eliminating temporary objects in the scene.

To compare the distinctive features of one video with the distinctive features of
one working condition, we compare the background representations at the sampled
pixels. If they are similar at 80 % of the number of these pixels, we can consider that
these two scenes have the same working condition. At one pixel, two background
representations A and B are considered to be equal if the permanent background
of A is also the permanent background of B. For example, in case of GMM, we
consider the permanent background corresponds to the Gaussian distribution with
the highest weight. In case of EGMM, the permanent background corresponds to
the most important Gaussian distribution. In case of simple background subtraction
algorithm with a reference image, the permanent background at one pixel is the pixel
value.

With this solution, we might have many working conditions with the same op-
timized parameter values as the scene might change. That is why in the o�ine
phase, we have to merge working conditions having the same optimized parameter
values. Beside that, to recognize the working condition of the current video, we have
to compare the distinctive features of this video with many distinctive features of
di�erent working conditions. If the scene does not change much, this problem is not
serious because the time to compare two distinctive features values is small as we
only compare at sample points. A possible improvement is to remove the distinctive
feature values that do not occur for a long time to reduce the number of distinctive
feature values.

5.4.3.2 Finding optimized parameter values

The parameter values are the estimation of the algorithm for some of the scene
characteristics. Therefore, if we know the meaning of parameters, with the ground
truth video, we can compute directly the optimal value of these parameters. In
case of EGMM, to detect shadow, we know that to compute two ratio mG/mR and
mG/mB, we need the pixel values of the permanent background with and without
shadow. This work can be done easily with the ground truth data containing the
bounding boxes of shadow region as well as the bounding boxes of objects of interest.

In general, if the meaning of tuned parameters is not clear or there are com-
plex relationships between parameters, we need optimization methods to �nd the
optimal parameter values. For optimization methods, we can use various optimiza-
tion algorithms such as simplex as in [Georis 2006, Martin 2008], Particle Swarm
as in [White 2007], or genetic algorithm as in [Hall 2006, Martin 2008]. However,



5.4. Tuning parameter values 145

optimization algorithms are less important than the optimization function and the
knowledge that guides the exploration of parameter values. Normally, for one pa-
rameter, the algorithm developers often have a preference on some values or some
ranges. For example, in case of the simple background subtraction algorithm using
a reference image, the parameter is the threshold to distinguish foreground from
background. Then if the algorithm with two values of threshold may have similar
performance on testing video, we always prefer lower threshold value as it makes
the algorithm more sensitive. Therefore, it would be better if we could incorporate
this preference into the optimization function.

5.4.4 Evaluation-based parameter tuning
In this section, we �rst present the general description about the proposed evaluation-
based tuning method. Then we present two evaluation-based tuning algorithm:
Pixel-Based Tuning (PBT), and Region-Based Tuning (RBT). Finally, we present
the application of the evaluation-based parameter tuning algorithms to make the
background subtraction algorithm maintain good balance between noise and sensi-
tivity to the objects of interest.

5.4.4.1 General description

The evaluation-based tuning can be integrated on the object detection framework or
it could run on another machine as in [Hall 2006]. We prefer the �rst option because
the system does not need a special architecture to use our evaluation-based param-
eter tuner. However, this option requires that the evaluation-based tuning process
must not slow down the speed of the whole framework and it should return the
tuned parameter values quickly. Therefore we cannot employ complex optimization
algorithms which require evaluating several hundreds parameter values to �nd the
optimized ones. To achieve this goal, the controller must exploit all the parameter
information to speed up the tuning process.

Inside our evaluation-based parameter tuner, the tuning process is based on the
value of the error indicator that this tuner is responsible for. The tuning process
works as follows:

1. The auto-critical function computes the value of the error indicator related to
the parameter tuner.

2. If the error indicator value is good

(a) The evaluation-based parameter tuner tries to improve the current pa-
rameter value.

(b) If the tuner could not, the tuning process �nishes successfully with the
current parameter values as the tuned parameter values.

3. If the error indicator value is not good
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(a) The evaluation-based parameter tuner tries to produces new parameter
values which may help the foreground detection task to improve the val-
ues of the error indicator.

(b) If the evaluation-based parameter tuner cannot produce such new pa-
rameter values. The tuning process stop unsuccessfully.

(c) If the evaluation-based parameter tuner can produce such new parameter
values, the controller requests the foreground detection task to set the
new parameter values.

(d) The foreground detection task uses these new parameter values to detect
foreground in the next frame. Then the tuning process returns to step 1.

We now explain some steps in details.
In step 2a, to improve parameter values means to �nd new parameter values

which are more preferred by users but with these parameter values, the foreground
detection task still achieves good error indicator value. For example, in case of the
simple background subtraction algorithm with a reference image, the parameter we
want to tune is the threshold δ to distinguish foreground / background. For this
parameter, users always prefer lower values of δ because it makes the algorithm
more sensitive to foreground. In this case, to improve the value of δ means to �nd
a lower value of δ so that the value of error indicator remains nearly the same.

In step 3d, we can see the di�erence between context-based tuning approach
and our evaluation-based tuning approach. In context-based tuning, after changing
parameter values, the foreground detection task processes the same data again.
However, in our evaluation-based tuning, after changing parameter values, the
foreground detection task processes new data (incoming frames). Therefore, the
evaluation-based tuning does not have to store learning data as in [Hall 2006]. By
using incoming frames as learning data, the hypothesis of our evaluation-based tun-
ing approach is that the scene conditions are stable during the tuning process. If
the tuning process takes place in too many frames, this hypothesis may be violated.
In this thesis, we propose two evaluation-based tuning algorithms. In our experi-
ment, one algorithms needs up to 1000 frames to tune parameter values and one
algorithm needs less than 100 frames. In reality, these durations are equivalent to
several seconds to several minutes and normally, the scene does not change much in
such a short duration.

To tune parameter values evaluation-based, we have to take into account param-
eter characteristics. There are two parameter types: structural and classi�cation
parameters.

Structural parameters are the parameters having strong in�uence on the struc-
ture of the background representation. For example, in case of GMM, the initial
variance is a structural parameter. If the initial variance is big, two adjacent Gaus-
sian distributions may be merged into one. Therefore, if we change structural pa-
rameters, we have to construct the background representation with enough pixel
values to make it stable before we can evaluate the consistency of the detection
results.
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Classi�cation parameters are used to classify pixel values. These parameters
often have little in�uence on the background representation. For example, in case of
the simple background subtraction algorithm with a reference image, the threshold
to distinguish foreground / background pixel values is a classi�cation parameter.
Therefore, if we change the classi�cation parameters, we can evaluate the perfor-
mance of the background subtraction algorithm at the next frame.

In the following, we present two tuning algorithms called Pixel-Based Tuning
(PBT) and Region-Based tuning (RBT). PBT can work with both parameter types
but it is slower and not as good as the RBT. The RBT is quicker and can �nd
better tuned parameter values. However, this tuning algorithm only works with
classi�cation parameters. For each tuning algorithm, we examine two cases: tuning
single parameter and tuning multiple parameters.

5.4.4.2 Pixel-Based Tuning

Tuning single parameter
Our objective is to tune parameter values for every pixel in the image, each pixel

may have di�erent tuned parameter value. With this algorithm, for one pixel the
tuner only tries to select one parameter value among several pre-de�ned parameter
values. These pre-de�ned parameter values can be provided by the developers of
the background subtraction algorithm. For example, in case of simple background
subtraction algorithm with a reference image, developers can provide us three values
of the threshold to distinguish object of interest from the background. These three
values correspond to three cases: low threshold for scenes with weakly contrasted
objects of interest, medium threshold for normal scenes, and high threshold for noisy
scenes. Otherwise, in case of single parameter, we can divide the possible range of
the parameter into n equal sub ranges and take the middle values of these ranges
as the parameter values we want to select.

To tune the parameter value for one pixel, the tuning supervisor takes as input
the current pixel value, the corresponding background subtraction algorithm results
(i.e. the pixel label background or foreground), and the feedback of the classi�cation
task. The output of the tuner is the most suitable parameter value for this pixel.
This parameter value enables the background subtraction algorithm to be more
consistent with the feedback from the classi�cation task.

As described in �gure 5.11, the algorithm for parameter tuning consists of two
main components: pixel label coherence checker and a group of n detectors. The
pixel label coherence checker employs the feedback from the classi�cation task to
verify if the current pixel value can be used to tune the parameter value or not. The
detectors are the same background subtraction algorithm with di�erent parameter
values.

The tuning algorithm has two main stages: initialization stage and tuning stage.
In the initialization stage, the tuning supervisor �rst set up parameter values for
n detectors. Then, for k incoming pixel value, the tuning supervisor sends these
pixel values to the detectors to construct the background representation. After the
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Figure 5.11: Tuning parameter value for one pixel.

initialization stage, the detectors are ready to be evaluated.
The tuning stage works as follows:

1. For each incoming pixel value, the pixel label coherence checker veri�es the
consistence of the current pixel label provided by the current background sub-
traction algorithm (called current label) with the feedback information from
the classi�cation task. If the current label is foreground (FG) and the classi-
�cation task indicates that this pixel value is noise, the pixel value is labeled
as background for the next step. If the classi�cation task indicates that this
pixel belongs to a detected object, this pixel value is labeled as FG for the
next step.

2. The tuning supervisor feeds n detectors with the current pixel value.

3. If the background representation of n detectors are under construction, the
current pixel value is used to update the background representation. Other-
wise, if the background representation are stable enough for evaluation, the
tuning supervisor builds a statistical information on the number of times that
each detector classi�es input pixel values into the same class as input label.
This information is called Statistic for Local Evaluation (SLE).

4. The tuning supervisor chooses the parameter value of the best detector as the
tuned parameter value.

In the tuning stage, SLE is de�ned as:

SLE =
nCoherence

|Window| (5.9)

where nCoherence is the number of times the detector classi�es pixel values into
the same class as input label and |Window| is the size of temporal window we use
to construct SLE.
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In this algorithm to �nd the best detector, we use both SLE and the user
preference on parameter value. The user preference on parameter values depends
on speci�c algorithm. In chapter 6 we present a form of user preference for the value
of parameter T in GMM.

Figure 5.12: The points selected to tune the parameter values. After tuning the
parameter value of selected points, we extrapolate the tuned parameter value to
neighbouring pixels based on the background similarity.

With this solution, if we try to tune the parameter values for every pixel in the
image, the foreground detection process would be slower n times. To overcome this
problem, we only tune the parameter value of m pixels distributed as a grid over the
image (�gure 5.12). Then the tuned parameter value of one pixel on the grid will be
extrapolated to neighbouring pixels inside the e�ective region of this pixel based on
the background similarity. Particularly, to �nd a suitable parameter value for pixel
A, the tuner �rst �nds the 4 closest pixels (using Euclid distance) on the grid. Then
among these 4 pixels, the tuner �nds the pixel (called pixel B) whose the background
representation is closest to the background representation of pixel A. If the distance
between the two background representation at pixel A and B is small enough, the
tuner assigns the tuned parameter value of pixel B to the same parameter of pixel
A. The background similarity of two pixels depends on the underlying background
subtraction algorithm. For example, in case of the simple algorithm with a reference
image, two pixels A, B are considered as similar if |IA

i − IB
i | < ε ∀i ∈ (R, G,B).

Here IA, IB are the value of pixel A, B in the reference image. In case of the GMM,
two pixels A, B are considered as similar if:

D(BRA, BRB) =
n

∑

i=0

|wA
i − wB

i | < ε (5.10)

Where BRA, BRB are the background representation at two pixel A, B. n is the
number of Gaussian components corresponding to the background of BRA. wA

i , wB
i

are the normalized weight of background distribution i in BRA, BRB. According
to this formula, two background representations are said to be similar if they have
a similar form (similar number of background components, similar ratios between
di�erent component weight).
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In our experiment, we tune parameter value at only 200 pixels corresponding to
the grid size of 10x20. If the number of detectors at each pixel is 5 and the image
size is 640 × 480, the extra work dedicated to tuning parameter values account for
200 × 5/(640 × 480) = 0.0033. Therefore the tuning process does not a�ect much
the processing time of the foreground detection process.

Tuning multiple parameters
In this case, to tune many parameters at the same time, we have to solve two

problems: how to select the pre-de�ned sets of parameter values, and how to evaluate
the performance of each detector.

To select n pre-de�ned sets of parameter values, we assign a weight to each
parameter. This weight re�ects the in�uence of the parameter in correcting the
current problem. Then we divide the value range of each parameter according to
its weight. Let's take an example of two parameters h1, h2 with the corresponding
weight as w1, w2. If we divide the value range of h1 into a1 sub ranges, the value
range of h2 into a2 sub ranges, then we have the following equations:

a1 × a2 = n

a1

a2
=

w1

w2

Solving these equations we have:

a1 =

√

n × w1

w2

a2 =

√

n × w2

w1

5.4.4.3 Region-Based Tuning
In this section, we propose another evaluation-based tuning algorithm exploiting
parameter information. Therefore, this algorithm is faster and more accurate than
the pixel based tuning. However, this tuning algorithm is only suitable for classi�-
cation parameters because it needs to try several parameter values before �nding a
good parameter values.

For this tuning algorithm, to tune parameter values of the background subtrac-
tion algorithm, we divide the image into small rectangular regions and tune parame-
ter values for each region separately. The proposed tuning algorithm considers each
region as an unit and for each region it tries to �nd a single set of parameter values
optimized for the whole region. Compared to the tuning algorithm for structural
parameters, this algorithm has advantages as well as drawbacks. For the drawbacks,
the tuned parameter values provided by this algorithm is not speci�c to each pixel
in the image. Beside that, this algorithm su�ers from the border problem. How-
ever, if the region size is small enough, this problem is not very serious. For the
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advantages, to evaluate the consistency of the detection results in each region, we
can use directly the error indicator. This evaluation is more accurate than the clas-
si�cation of pixel values in the tuning algorithm for structural parameters because
it does not have to specify exactly the label of input pixel values. Additionally,
we need fewer frames for evaluation because we can evaluate the consistency of the
detection results on the whole region containing many pixels. Therefore we can use
more complex tuning algorithm to �nd better parameter values for the background
subtraction algorithm.

Similar to the tuning algorithm for structural parameters, we also consider two
cases: single parameter and multiple parameters.

Before presenting the tuning algorithm, we �rst present how to convert the
original form of algorithm parameter to the form usable by the tuning algorithm.

Converting parameters
Parameters of di�erent algorithms may have di�erent characteristics. To be

able to work with the parameters of various algorithms, our tuning algorithm has
to convert these parameters into a generic form. The generic parameters have two
characteristics:

• The values of generic parameters are real numbers.

• If a parameter is related to an error indicator, the parameter value is inversely
proportional to the value of this error indicator. In other words, if we increase
the parameter value, the value of the corresponding error indicator decreases
or at least remains the same.

In reality, many parameters can be converted into our generic form.
To convert parameters, we take two steps. In the �rst step, we transform pa-

rameter values to numerical values such as integer or real numbers. For parameters
having boolean values, we transform two boolean values (true, false) to two nu-
meric value (1, 0). Generally, for parameters having categorical values, if they have
n concrete value, we transform these n concrete values into n numerical values rang-
ing from 1 to n. In the second step, if the parameter values is proportional to the
value of the error indicator, we need another transformation to make it inversely
proportional to the value of the error indicator. To do this, we �rst de�ne the possi-
ble range of each parameter value. This range is identi�ed by the lower bound Pmin

and the upper bound Pmax. Then, we de�ne a function f as follows:

f(p) = 1 −











1 if p ≥ Pmax
p−Pmin

Pmax−Pmin
if Pmin < p < Pmax

0 if p ≤ Pmin

(5.11)

where p is the original parameter value, 0 ≤ f(p) ≤ 1. This function f(p) is the
transformation of p if the value of p is proportional to the value of the corresponding
error indicator related to this parameter.

Formally, our generic parameters are de�ned as follows:
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• Name: the name of the parameter. This name helps the tuning algorithm
and the algorithm in the foreground detection task to communicate about the
parameter.

• Value: this �eld includes three values: Pmin,Pmax, and δ. If p is the value of
this parameter then p ∈ [Pmin, Pmax]. δ is the granularity of the parameter
value. It means that the two parameter value pi, pj are considered to be equal
if |pi − pj | < δ

• Error indicator: the name of the error indicator related to this parameter.

• Preference: this �eld can receive one of the three values: {None, High, Low}.
None means that users do not have any preference on the value of this pa-
rameter. High means that if the value of the error indicator is the same with
two parameter values, users prefer the higher parameter value. In contrast,
Low means that users prefers lower parameter values.

For example, the parameter T of the algorithm GMM is de�ned as follows:

• Name: �T�

• Value: Pmin = 0.2, Pmax = 0.8, δ = 0.05.

• Error indicator: Inoise

• Preference: Low

The parameter T in GMM is a classi�cation parameter deciding the sensitivity
of GMM to foreground pixel values. Therefore, this parameter relates to the error
indicator Inoise. The value of this parameter is inversely proportional to Inoise

because the higher the T value, the lower the small noise level. Therefore, we do
not have to convert T values using function (5.11). The value range of T is [0, 1].
However our tuning algorithm only select a realistic range because if the T value
is too small, the foreground detection results would be too noisy and if T value is
too big, GMM becomes insensitive to foreground. For the preference on parameter
value, we want a low T value because it makes GMM more sensitive to foreground.

Up to now, there are two drawbacks of the de�nition of generic parameters.
Firstly, this de�nition does not take into account the relationships between pa-
rameters. For example, the value of one parameter may depend on the values of
other parameters. Secondly, the function expressing the user preference is limited
only to linear function, not a complex function. However, for parameters of many
algorithms, these drawbacks are not serious.

Now we can present how RBT tunes classi�cation parameters.
Tuning single parameter
Assuming that we have to �nd value p for parameter P to improve the value of

the error indicator I. Then I is a function of p. To improve I means to �nd p so
that I(p) ∈ [Isafe − ε, Isafe + ε] which is a safety range of I.

Then the tuning algorithm has two steps:
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1. Find the value psafe of P so that I(psafe) ∈ [Isafe − ε, Isafe + ε]

2. From psafe, try to improve the parameter value. In other words, try to �nd
p∗ so that I(p∗) ∈ [Isafe − ε, Isafe + ε] and p∗ is preferred to p according to
user preference.

We examine each step in details.
In step 1, because we assume that the value of p is inversely proportional to

the value of I, we can use an algorithm similar to the binary search algorithm to
�nd the value of p that makes the value of I satisfy the above condition. In this
algorithm, we use two variables plower and pupper to store the upper bound, lower
bound of the search range. The variable pcurrent stores the current parameter value.
The algorithm stops with success when pcurrent ∈ [plower, pupper] and I(pcurrent) ∈
[Isafe−ε, Isafe+ε]. The algorithm fails and it stops searching when pupper−plower < δ

and I(pcurrent)∈[Isafe − ε, Isafe + ε]. The algorithm to �nd psafe which makes
I(psafe) ∈ [Isafe − ε, Isafe + ε] works as follows:

1. Init: plower = min, pupper = max.

2. Estimate current value of the error indicator I(pcurrent) with pcurrent is the
current parameter value.

3. If I(pcurrent) ∈ [Isafe − ε, Isafe + ε], �nish.

4. If I(pcurrent) is lower than the safe error level Isafe:

(a) plower = pcurrent

(b) If pupper − plower < δ then the algorithm fails.
(c) Select a new parameter value for pcurrent: pcurrent = (pupper + plower)/2.
(d) Goto step 2.

5. If I(pcurrent) is higher than the safe error level Isafe:

(a) pupper = pcurrent

(b) If pupper − plower < δ then the algorithm fails.
(c) Select a new parameter value for pcurrent: pcurrent = (pupper + plower)/2.
(d) Goto step 2.

To select the new parameter value in step 4.(c) and 5.(c), we can select the
extreme points plower or pupper so that the algorithm can quickly change the error
level. However we choose the middle point between lower and upper so that the
detection results does not change abruptly.

In this algorithm, to select the new parameter values, we can also use the di�er-
ence between I(pcurrent) and Isafe. If I(pcurrent) is very small compared to Isafe, we
can select the new parameter values so that the sensitive capacity is close to pupper
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and vice versa. This selection would make the searching process converge faster.
To realize this solution, we should de�ne a mapping between the di�erence in error
level and the change in the sensitive capacity.

The selection of the new parameter value in step 4.(d) and 5.(d) assumes that the
value of the error indicator I is inversely proportional with the value of the parameter
in the range [plower, pupper]. However, this assumption might not be correct for some
error indicators. For example, the error indicator Inoise can gradually increase if the
background subtraction algorithm gradually increases its sensitivity to foreground
pixel values. This means that the small noise level gradually increases. However,
up to a certain level, the small noises can gather to form bigger noises which will be
classi�ed as unknown blobs. Consequently, at this level, Inoise decreases. To avoid
this problem, for the tuning algorithm, if we are not sure that the error indicator and
the parameter of the background subtraction algorithm can satisfy the assumption
of the tuning algorithm or not, in this step, instead of using the middle value of
[plower, pupper] as the new parameter value, in step 4.(d) we set pcurrent = pcurrent+δ,
in step 5.(d), we set pcurrent = pcurrent − δ. With this method, the tuning process
is slower but it can avoid the problem of violating the assumption of the tuning
algorithm. For the background subtraction algorithm, we also has to �nd good
initial parameter values so that the value of the error indicator can correctly re�ect
the performance of the background subtraction algorithm. We will discuss about
how to select the initial parameter value in section 5.4.4.5.

In the second step of the tuning algorithm, we have to improve the value of
pcurrent. This step depends on the function describing user preference. In the
de�nition of generic parameter, we have three values {None, Lower,Higher} corre-
sponding to three functions to describe user preference. The function corresponding
to None is quite simple, every parameter value is equal in terms of user preference.
In case the value is Lower, we can apply the binary search algorithm to �nd the
smallest possible value of p∗ satisfying the condition I(p∗) ∈ [Isafe−ε, Isafe +ε with
upper bound is pcurrent and the lower bound is plower. In contrast, if the value is
Higher, we search p∗ in the range [pcurrent, phigh] using this binary search algorithm.

To tune parameter values of the background subtraction algorithm, we require
other parameters such as the Isafe, ε, δ. However, unlike the parameters of the
background subtraction algorithm which depend heavily on the current conditions
of the scenes, the parameters for the tuning supervisor expresses the user require-
ment on the consistency of the detection results. Because this requirement is less
dependent on scene conditions, the value of these parameters may be the same for
many scenes. This is illustrated in chapter 6 when we use the same values of Isafe,
ε for di�erent scenes and di�erent background subtraction algorithm.

Multiple parameters
In this case, we have to change many parameters at the same time to improve

the error indicator values of the background subtraction algorithm. With parameter
information, we know the in�uence of each parameter on correcting the current
problem.

Let's call P = {P1, · · · , Pk} the set of parameters. Assuming that if i > j
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then Pi has more in�uence on improving the value of one error indicator than Pj .
pcurrent = {p1, · · · , pk} are the current values of P with pi is the value of the
parameter Pi.

Similar to the case of single parameter, the tuning algorithm has two stages. In
the �rst stage, the tuning algorithm tries to �nd a set of parameter values pcurrent

so that I(pcurrent) ∈ [Isafe − ε, Isafe + ε]. In the second stage, from pcurrent, the
tuning algorithm tries to improve the results by �nding another set of parameter
values p∗ still satisfying the condition but p∗ is preferred to pcurrent.

In the �rst stage, we start from the parameter P1 which has the lowest in�uence
on the current error indicator. By starting at the parameter having the least in�u-
ence on the error indicator, we do not want the results of the foreground detection
task to change abruptly. If after tuning P1, I(pcurrent) ∈ [Isafe − ε, Isafe + ε], we go
to the next stage. Otherwise, we must set a value for P1 and process P2. To set value
for P1, we examine two cases: (1) I(pcurrent) < Isafe, and (2) I(pcurrent) ≥ Isafe. In
the �rst case, we want to increase I(pcurrent), therefore we set the value for P1 to the
maximum value of parameter P1. This means that we make the detection results
as consistent as possible by changing P1. In the second case, we want to reduce
I(pcurrent), therefore we set the value of P1 to the minimum value of this parameter.
The tuning continues until we have no more parameter to tune or the tuned value
of one parameter makes the I(pcurrent) ∈ [Isafe − ε, Isafe + ε]. In the former case,
the tuning algorithm fails to tune parameter values. In the latter case, the tuning
algorithm goes to the second stage to improve the tuned parameter values.

In the second stage, assuming that by tuning parameter Pj , I(pcurrent) ∈ [Isafe−
ε, Isafe + ε]. Because from P1 to Pj−1 we always set the extreme values for these
parameters (either lowest or highest values), we have to improve the values of these
parameters. To improve the values of these parameters, we start from P1 to Pj−1 and
we use the procedure to improve the parameter value for single parameter presented
earlier.

With this tuning algorithm for multiples classi�cation parameters, the tuned
parameter values are optimal if and only if there is no relationships between param-
eters. If one parameter depends on other parameters, the tuned parameter values
proposed by this tuning algorithm are not optimal. In this case, we need a more
complex tuning algorithm.

5.4.4.4 Tuning both structural and classi�cation parameters

If we have to tune both structural and classi�cation parameters to correct one prob-
lem, we tune these two parameter types separately. We �rst tune the classi�cation
parameters because tuning this parameter type is quicker than tuning structural pa-
rameters. If after tuning classi�cation parameters, the value of the error indicator is
close to the safe level, we do not have to tune structural parameters. Otherwise, we
start tuning structural parameters and then with a new background representation
due to the change of structural parameters, we tune the classi�cation parameters
once again. If after this step, the value of the error indicator is close to the safe
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level, tuning �nishes successfully.

5.4.4.5 Example of evaluation-based parameter tuning

In this section, we present the parameter tuner using the evaluation-based parameter
tuning algorithm RBT to make the background subtraction algorithm maintain
good balance between noise and sensitivity to the objects of interest. To do this,
this parameter tuner relies on the values of the error indicator Inoise quantifying the
small noise level over the image. We have to de�ne a safe values range for Inoise. If
the value of Inoise is outside this safe range, the parameter tuner has to change the
parameter values of the background subtraction algorithm so that the value of Inoise

falls in this range again. Here we present how we select the safe range for Inoise.
As illustrated in �gure 5.13, if the noise level is too small or there is no noise

at all, maybe the background subtraction algorithm has good detection results or
maybe it is not sensitive enough to detect objects of interest. On the other hand, if
the noise level is too high, we cannot use the noise removal tool such as morphology
operation to remove this noise. Therefore, a small noise level in the detection results
is an indication that the background subtraction algorithm is sensitive to objects
of interest. Because the noise level is small, this noise can be eliminated with noise
removal tools such as morphology operation or object size �lter.

Because the noise level we want to keep depends only on the capacity of the
noise removal algorithms such as morphology operation, we use the same safe noise
level for every background subtraction algorithm and for every scene type. Through
our experiment, we see that the safe range of Inoise is 0.03-0.05 of the image area is
reasonable.

If the noise level Inoise is too high and we cannot change parameter values to
reduce the noise level to make Inoise ∈ [0.03, 0.05], the background subtraction
algorithm will use the best parameter value in removing noise. For example, in case
of GMM, it will use the highest possible T value. On the other extreme, if the noise
level is too low and we cannot change parameter values to increase noise level, the
algorithm will use the best parameter values that make it sensitive to objects of
interest.

The �nal problem is how to choose the initialize parameter values of the back-
ground subtraction algorithm? If the initial parameter values of the background
subtraction algorithm make the foreground detection results too noisy, small noise
may gather to form bigger noise. This time, Inoise might not be high but Iunknown

is high. As we have said, Iunknown is not reliable because an unknown blob might
be part of objects of interest. Therefore, we cannot use this error indicator alone
to tune parameter values. To avoid this problem, the parameter values of the back-
ground subtraction algorithm are initialized with the best values in remove noise.
For example, in case of GMM, T is initialized with the highest possible value. Nor-
mally, with these parameter values, Inoise of the detection results is low, and we can
change parameter values so that Inoise increases and falls in the safe value range
[0.3, 0.5].
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(a) (b)

(c) (d)

Figure 5.13: This �gure shows that the noise level is an indicator for the sensitivity
of the background subtraction algorithm. In this �gure, we shows the detection
results of the algorithm GMM [Stau�er 1999] with two values of threshold T (the
classi�cation parameter, equation 2.7), T = 0.1 and T = 0.95. Image (a) is the
original image. Image (b) is the detection results of GMM with T = 0.95. At the
regions corresponding to the road, there is few noise but at the same time GMM
cannot detect some parts of the car. Image (c) is the detection result of GMM with
T = 0.1. This time GMM can detect the whole car but noise is everywhere. Even
if we �lter out small noise using blob size, noise still exists as illustrated in image
(d). Here, small noise regions have gathered to form bigger noise. Therefore, few or
no noise at all might be the symptom of the insensitivity of background subtraction
algorithm to foreground pixel values. On the other hand, if the noise is too much,
we cannot remove it with noise removal tools such as morphology operation or blob
size �lter.

We have experimented this parameter tuner with two scene types (an outdoor
scene and an indoor scene) and with two background subtraction algorithm (GMM
and EGMM). In these experiment, we use the same safe value range for any scene
type and for any background subtraction algorithm. With this parameter tuner, the
optimized parameter values have helped to improve the quality of the foreground
detection results. Details of these experiments are presented in chapter 6.
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5.5 Conclusion
In this chapter, we have presented the controller for the background subtraction
algorithm inside the foreground detection task. This controller has two adaptation
methods to help the background subtraction algorithm to adapt itself to the cur-
rent scene conditions. The �rst adaptation method is to supervise the background
subtraction algorithm to update its background representation. The second adap-
tation method is to tune the algorithm parameter values. To realize this task, the
controller employs various sources of information about the algorithm, the scene,
and feedback from the classi�cation task.

Concerning the supervision of updating background representation, by creating
adaptive updating scheme speci�c to each type of the region in the scene, the con-
troller can help the background subtraction algorithm to solve many problems such
as handling noise, sudden illumination changes, keeping track of objects of interest
when they stop moving, managing stationary objects. Among these problems, keep-
ing track of objects of interest and managing stationary objects are the two most
di�cult problems.

Concerning the methods of tuning parameter values, we propose a tuning frame-
work which are independent from the underlying background subtraction algorithm.
Inside this framework, we also propose to evaluate the foreground detection results
using �ve consistency criteria. Then we present how we apply the two parame-
ter tuning approaches (evaluation-based and context-based) in the proposed tuning
framework. For context-based parameter tuning, we propose a tuner for the algo-
rithm to detect shadow which helps to remove strong shadow in the outdoor scene.
For evaluation-based parameter tuning, we propose two generic tuning algorithms,
Pixel-Based Tuning (PBT) and Region-Based Tuning (RBT). PBT is only capa-
ble of selecting one from several prede�ned values of parameters. However this
algorithm can work with both structural and classi�cation parameters. RBT uses
parameter information to improve the tuning speed as well as the quality of the
tuned parameter values. However, this algorithm only works with classi�cation pa-
rameters. Because RBT relies mainly on the feedback of the classi�cation task, it
only �nds the parameter values that enable the background subtraction algorithm
to be as consistent as possible with the object model. However, the proposed al-
gorithm requires that the input parameters must satisfy several conditions. These
conditions is not so strict that many parameters can satisfy. Finally, we present the
evaluation-based parameter tuner that helps background subtraction algorithms to
maintain good balance between noise and sensitivity to the objects of interest. One
interesting characteristic of this parameter tuner is that it is independent from the
underlying background subtraction algorithm and from the scene condition.
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Experimental Results

In this chapter, we present the main experimental results of our thesis. First of all, in
section 6.3, we present the methods we use to create ground truth for experiments.
Then, in section 6.4 we present the metrics employed in our experiments. After
that, we present the experiments on the features to detect and to remove shadow /
highlight, the background subtraction algorithm, and the controller for background
subtraction algorithms.

6.1 Implementation
To validate the proposed algorithms presented in chapter 4, 5, we have implemented
these algorithms and integrated them into the platform SUP (Scene Understanding
Platform) of our team PULSAR. This platform provides us the image acquisition,
blob construction, and blob classi�cation tasks. The platform also provides the
feedback from the classi�cation task to the controller for the background subtraction
algorithm. We will present the details of the implementation in Appendix A.

6.2 Video data
In our experiments, we use video sequence and the corresponding ground truth data
from several sources: ETISEO1 project, GERHOME2 project, and ATON3 project.

Figure 6.1: Image samples of the video from project ETISEO [ETISEO a].

ETISEO project is a project on performance evaluation of video surveillance sys-
tems, sponsored by the French government. This project ended successfully in De-
cember 2006. ETISEO provides many video sequences of various scene types (roads,

1http://www-sop.inria.fr/orion/ETISEO/
2http://gerhome.cstb.fr/fr/accueil/
3http://cvrr.ucsd.edu/aton/
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airport, metro station, building corridors) at various conditions (sunny, cloudy, weak
illumination, strong illumination, etc.). Figure 6.1 shows some image samples from
the videos of ETISEO project. Beside the videos, ETISEO also provides ground
truth data for these videos up to event recognition level. In our experiment, we use
only the ground truth at the object detection level which is the bounding boxes of
objects of interest in the scene. More important than the videos with the corre-
sponding ground truth, ETISEO provides the evaluation results of the participants
in the project. Some of these participants are: Barco, Capvidia NV, INRIA Lab,
LASL University ULCO Calais, Nizhny Novgorod State University, Queen Mary,
University of London, Queensland University of Technology, Robert Bosch GmbH,
Univeristy of Southern California, University Paris Dauphine, University of Central
Florida, University of Illinois at Urbana-Champaign, University of Maryland, Uni-
versity of Reading, University of Udine, VIGITEC SA/NV. In our experiment, we
compare the evaluation results of our algorithms with the evaluation results of these
participants.

Figure 6.2: An image sample of the video from GERHOME project [GERHOME ].

GERHOME project is a French project aiming to design, test and certify so-
lutions supporting technical assistance services at home for elderly people. This
project provides us the videos of a laboratory simulating an apartment of an elderly
person. Figure 6.2 shows an image sample of a video in GERHOME project. In
these videos, most of the time there is only one elderly person. However, detecting
people in these video is not easy because contextual objects in the scene are fre-
quently displaced and the white balance e�ect of these video is strong. For these
video, GERHOME does not provide ground truth data and we have to create ground
truth ourselves.

Project ATON (Autonomous Agents for On-Scene Networked Incident Manage-
ment) is a project at the University of California, San Diego. This project aims to
make tangible and substantive contributions to the realization of a powerful and in-
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(a) (b)

Figure 6.3: The video �Intelligence room� from ATON project [ATON ]. Image (a)
is an image sample of this video. Image (b) is the corresponding ground truth. The
blue region corresponds to the person, the red region corresponds to the shadow.

tegrated tra�c-incident detection, monitoring and recovery system. In this project,
shadow detection and analysis is an important research area. The ATON project
provides us a video sequence �intelligent room�. The scene of this video is a simple
room with only one person walking in the room as illustrated in �gure 6.3. The
person and his shadow in this video sequence is annotated by the ATON project
up to the pixel level. This video contains 300 frames. We uses this video mainly to
verify the ability of di�erent features to detect shadow.

6.3 Ground truth acquisition for videos of GERHOME
project

Because GERHOME project only provides us video without ground truth, we have
to create ground truth for these videos. Creating ground truth is a time-consuming
work, especially for the ground truth with the exact object borders. To speed up
ground truth acquisition, instead of exact object border, many evaluation projects
such as ETISEO only employ object bounding boxes. However, object bounding
boxes contain pixel values of both objects and the background. Therefore, if we
use pixel values inside bounding boxes to evaluate the foreground detection results,
this evaluation is not very precise. For some experiments, the precision o�ered
by the ground truth with bounding boxes is enough. For other experiments such
as the comparison between di�erent chromaticity features, we need a more precise
evaluation. Figure 6.4 shows an example of this problem.

To overcome the problem of ground truth with bounding boxes, we propose to use
supplement inner boxes for each object of interest. These inner boxes are inside the
object and they contain only the pixel values of the object of interest as illustrated
in �gure 6.4. Then, we use the pixel values inside these bounding boxes to evaluate
the sensitivity of the foreground detection algorithm. To have good evaluation, we
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(a)

(b) (c)

Figure 6.4: This �gure illustrates the problem of the ground truth with only bound-
ing box. Image (a) is the original image. Assuming that the green rectangle is the
bounding box in the ground truth. And assume that image (b) is the foreground
detection results of algorithm A, image (c) is the foreground detection results of
algorithm B. We see that A is more sensitive than B because A detects more fore-
ground pixels at the region of the person inside the bounding box than B does.
We cannot make this conclusion using only the bounding box. To overcome this
problem we need inner boxes containing only pixels of object of interest (red rectan-
gle in image (a)) and we compare the sensitivity of the two algorithm in detecting
foreground pixels inside the ninner boxes.

select these inner boxes so that these bounding boxes covers nearly all the region of
the object of interest. Then we can evaluate how good di�erent foreground detection
algorithms can distinguish foreground from background at these di�cult regions.

Another issue of ground truth acquisition is to create ground truth for long video.
In one of the experiment with the videos from GERHOME project, we use a video
having 48000 frames. Creating ground truth for every frame is di�cult. Beside that,
in two consecutive frames, an object of interest does not move much. Therefore,
most of pixel values in the previous frame is similar to pixel values in the current
frame. Therefore, evaluating the foreground detection algorithms in two frames at
time t and t + 1 does not bring much more information than evaluating only one
frame at time t. On the other hand, if we take one frame for every other n frames
to make ground truth, it is more likely that after n frames, this object of interest
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has moved to other places in the scene. As a result, we can test the foreground
detection algorithm in distinguishing foreground pixel values from background pixel
values at other background regions. Therefore, for this long video, we only take one
frame for every other 200 frames to make ground truth.

6.4 Metric description
Because metrics are closely related to the corresponding ground truth, we use two
sets of metrics corresponding to two types of ground truth.

6.4.1 Metrics for ground truth with one bounding box per object
For ground truth with one bounding box per object of interest, we employ two
metrics de�ned in ETISEO: number of objects of interest using their bounding box
(M1), and area of objects of interest (M2). The metric M1 depends on both the
foreground detection and the classi�cation tasks. The metric M2 depends only on
the foreground detection task. Therefore, to evaluate the performance of foreground
detection task, we use mainly M2 and M1 only gives us additional information.

These two metrics use three performance criteria: precision, sensitivity, and
F-score. The precision and sensitivity are de�ned as follows:

Precision =
TP

TP + FP

Sensitivity =
TP

TP + FN

(6.1)

where TP is true positive, FP is false positive, FN is false negative. The de�nition
of TP , FP , and FN depend on each metric.

F-score is the balance between the precision and the sensitivity. F-score F is
de�ned as follows:

F =
2 × Precision × Sensitivity

Precision + Sensitivity
(6.2)

where Precision and Sensitivity are the precision and the sensitivity of the
metric.

The metric M1 needs to match the detected objects of interest with the objects
in the ground truth. To match a detected object with an object in the ground truth,
ETISEO uses various criteria but in most of the experiments of ETISEO, the Dice
coe�cient often produces stable results. Therefore, in our experiment, we use only
the Dice coe�cient. The Dice coe�cient is de�ned as follows:

Dice =
|Intersection|

|Rdetected| + |RGT |
(6.3)

where |Intersection| is the area of the intersection between the two bounding
boxes, |Rdetected| is the area of the bounding box of the detected object, |RGT | is the
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area of the bounding box of the object in the ground truth. With this de�nition,
two bounding boxes are said to be matched if the Dice coe�cient is greater than a
threshold. In our experiment, we set this threshold equal to 0.5.

The metric M1 compares the number of detected objects of interest with the
number of objects in the ground truth. Particularly, M1 computes the following
values:

• TP : true positive, which is the number of detected objects which match with
the objects in the ground truth.

• FP : false positive, which is the number of detected objects which does not
match with the objects in the ground truth.

• FN : false negative, the number of objects in the ground truth which are not
detected.

The metric M2 compares the number of detected foreground pixels with the
number of foreground pixels in the ground truth. Particularly, M2 computes the
following values:

• TP : true positive, which is the number of detected foreground pixels belong-
ing to the bounding boxes of objects in the ground truth.

• FP : false positive, which is the number of detected foreground pixels be-
longing to the bounding boxes of detected objects but do not belong to any
bounding boxes of objects in the ground truth.

• FN : false negative, which is the number of foreground pixels in the ground
truth which are not detected.

However, we can compute the above values in case of the video �intelligent room�
of ATON project because this project provides the ground truth at the pixel level.
In case of the videos of ETISEO and GERHOME projects, both the ground truth
and the detection results contains only the bounding boxes, not the exact position
of foreground pixels. Therefore, in these cases, we use the de�nition of TP , FP , FN

in ETISEO project. According to this de�nition, TP is the area of the intersection
between the bounding boxes of detected objects and the objects in the ground truth.
Similarly, FP is the area of the bounding box of detected objects subtracted TP ,
FN is the area of the bounding boxes of objects in the ground truth subtracted TP .

6.4.2 Metrics for ground truth with one bounding box and several
inner boxes per object

In this case, for each object, we have an outer bounding box containing both fore-
ground and background pixels and several supplement inner boxes containing only
foreground pixels of this object. Therefore, we can use the metric M1 as before to
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(a)

(b)

Figure 6.5: This �gure illustrates how the metric M3 de�nes true positive TP , false
positive FP , false negative FN . Image (a) is the original image with a sample of
the ground truth containing a bounding box (green rectangle) and an inner box (red
rectangle). Image (b) is a part of the foreground detection results corresponding to
the image region having the ground truth.

evaluate the number of detected objects. However, to evaluate the number of de-
tected foreground pixels, instead of M2, we use M3 exploiting supplement bounding
boxes. Particularly, M3 computes the following values:

• TP : true positive, which is the number of detected foreground pixels belong-
ing to the supplement inner boxes inside objects in the ground truth.

• FP : false positive, which is the number of detected foreground pixels not
belonging to any bounding boxes of objects in the ground truth.

• FN : false negative, which is the number of foreground pixels inside the sup-
plement bounding boxes in the ground truth which are not detected.
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• P : the total number of detected foreground pixels.

To compute these values, we omit the pixel inside the outer bounding boxes but
outside the supplement bounding boxes because we cannot be sure about the labels
of these pixels. Figure 6.5 illustrates the de�nition of TP , FP , FN .

With TP and FP , we can compute the sensitivity of the algorithm in detecting
foreground pixels on the sample set. To approximate precision, we consider that all
detected foreground pixels inside the bounding box are correct and then Precision
is computed as follows:

Precision =
P − FP

P
(6.4)

where P is the total number of detected foreground pixels, FP is the number of
foreground pixels outside the bounding boxes.

6.5 Shadow detection experiments
In this section, we compare the e�ectiveness of di�erent chromaticity representations
as well as di�erent homogeneity constraints in detecting shadow. In the �rst section,
we brie�y present the video sequences used in our experiment. Then we present the
generic shadow detection algorithm using the chromaticity and homogeneity features
to detect shadow. After that, we present the evaluation results for two feature types:
chromaticity and homogeneity.

6.5.1 Testing videos
For testing videos, we employ four short video sequences representing di�erent
shadow conditions.

Figure 6.6: The image samples from ATON project.
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The �rst video sequence is the video sequence �Intelligence room" from ATON
project (�gure 6.6. Because this video has the ground truth up to pixel level for
every frame, we take all 300 frames of this sequence.

Figure 6.7: The seven testing images taken from a video of GERHOME project.

The second video sequence is a short period of a video sequence from GERHOME
project [GERHOME ]. This video is more than 2000 frames long but we only create
the ground truth for 7 frames where people moving to di�erent places in the scene
as illustrated in �gure 6.7. The duration from the �rst selected frame to the last
selected frames is 200 frames. For these frames, the ground truth contains both
bounding boxes and inner boxes. The inner boxes contain only pixel values of people
in the scene. This is a di�cult video sequence in terms of shadow detection because
it has three main problems. Firstly, the white balance [white balance algorithm ]
e�ect is strong. Particularly, the camera coe�cient for the blue is higher than the
red and the green which makes the image bluer than in reality. Secondly, people in
the scene wear clothes of which the chromaticity is similar to the chromaticity of
the background. Finally, the shadow in this video is strong which produces weak
incoming light to the camera. As we presented in chapter 4, when the incoming
light is too weak, the camera response function would become nonlinear which may
change the chromaticity of incoming light. For this video sequence, we use the
ground truth containing both bounding boxes and inner boxes.

The third video sequence is an outdoor video sequence of an airport apron from
ETISEO project [ETISEO a]. Similar to the video from GERHOME project, we
select only �ve frames where we can clearly see shadow. The duration from the
�rst selected frame to the last selected frame is 100 frames. Figure 6.8 shows the
selected frames. This video sequence is selected because the shadow is strong and
the shadowed regions change their chromaticity due to the di�erence between the
di�used light and the ambient light.

6.5.2 Shadow detection algorithm
Before detecting shadow, we need a background subtraction algorithm to detect
both foreground pixels and shadow pixels. If we use complex background subtrac-



168 Chapter 6. Experimental Results

Figure 6.8: The �ve testing images taken from a video of ETISEO project.

tion algorithm, it would be di�cult to evaluate di�erent features to detect shadow
because the detection results may be in�uenced by the algorithm characteristics.
For example, if we use GMM as the background subtraction algorithm, if an ob-
ject of interest stays at the same place for a long time, this object is integrated
into the background. In our experiment, because the selected video sequences do
not contain background motion, we use a simple background subtraction algorithm
with the reference image to detect foreground pixels. Moreover, because the selected
video sequences are short and do not change much, we do not have to update the
reference image. The foreground pixel detected by the background subtraction algo-
rithm contains pixel of both object of interest and shadow. Then, a foreground pixel
is classi�ed as shadow if the corresponding pixel value satis�es the homogeneity or
chromaticity constraint depending on speci�c features to detect shadow.

6.5.3 Chromaticity feature evaluation
In this section, we compare the e�ectiveness of four chromaticity representations in
detecting shadow / highlight: HS in HSV color space, UV in Y UV color space, the
chromaticity constraint in [Kim 2004] (called Kim), and the chromaticity constraint
proposed in this thesis (called NC - Normalized Chromaticity). A foreground pixel
is classi�ed as shadow if the corresponding pixel value has the same chromaticity as
the chromaticity of the background.

6.5.3.1 Intelligent room

For this video, we have the ground truth up to the pixel level. Therefore, we
can compute directly the values of Precision, and Sensitivity for both foreground
detection results and shadow detection results.

Figure 6.9 shows the samples of the detection results of di�erent chromaticity
constraints. From this �gure we can see that, without shadow detection, the simple
background subtraction algorithm classi�es shadow as foreground. When we apply
di�erent chromaticity constraints to remove shadow, most of the shadow has been
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(a) (b)

(c) (d)

(e) (f)

Figure 6.9: The detection results using di�erent chromaticity constraints on �In-
telligence room� video from project ATON [ATON ]. Image (a) is the original
image, Image (b) is the detection results of the simple background subtraction al-
gorithm without shadow detection. Image (c)(d)(e)(f) are the detection results of
the chromaticity constraints HSV, YUV, Kim, and NC. White regions are detected
foreground regions.

removed from the foreground detection results. However, we can also see that some
foreground pixels are also misclassi�ed as shadow and they are removed from the
foreground detection results. There are two main reasons. Firstly some parts of
the person have similar chromaticity as the chromaticity of the background. Sec-
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ondly, due to the smoothing e�ect of the camera at the border where there is a
transition between the background and the person, the border pixels have a similar
chromaticity than the chromaticity of the background. Consequently, these pixels
are often misclassi�ed as shadow. This problem can be seen clearly at the region
of the person leg. The detected legs in the foreground detection results are smaller
than the legs of the person in the video. Beside that, in this �gure, we can also
see small noise region on the table. These noise regions occur because this video
contain compression noises where pixel values change abruptly.

Among di�erent chromaticity constraints, we can see from �gure 6.9 that HSV
cannot detect the shadow on the �oor. The reason is that pixel values on the �oor
have low saturation (the ratios between the values of RGB channels are close to 1)
which leads to unstable value of H when there is shadow as discussed in [Nghiem 2008].
For example, the RGB value of one background pixel on the �oor is (100, 100, 100).
In the HSV color space, this value becomes (H = 0, S = 0, V = 100). When there
is shadow, the RGB value of this pixel becomes (95, 93, 94) and the corresponding
HSV value is (H = 330, S = 0.02, V = 95). In this case the di�erence between
H values is 30 (because the value of H is represented by a circle). This di�erence
is big compared to the maximum di�erence in H which is 180. Therefore, under
shadow this pixel value is classi�ed as foreground. The discrimination ability of HS

will become higher when the saturation is high as in case of the GERHOME video.
Other chromaticity constraints have similar shadow removal performance which is
higher than the performance of HSV. For UV in YUV, because shadow in this video
is not strong and it does not change much pixel intensity, U and V remain nearly
the same. As a result, the chromaticity constraint UV in YUV has good detection
results. The performance of YUV shall decrease rapidly when the shadow is strong
as in case of GERHOME video.

These comments are validated by two tables 6.1 and 6.2.

Chromaticity constraints Precision Sensitivity
Simple BS 0.37 0.9
HSV 0.73 0.75
YUV 0.78 0.75
Kim 0.77 0.76
NC 0.77 0.76

Table 6.1: The foreground detection results of di�erent chromaticity constraints on
�Intelligence room� video [ATON ].

Table 6.1 shows the precision and sensitivity of di�erent chromaticity constraints
in detecting foreground pixels in 300 frames of the video �intelligent room�. In this
table we do not compute f-score because for shadow detection algorithm, detecting
shadow is less important than keeping objects of interest in the detection results.
This means that, foreground sensitivity is more important than precision. Here
we select parameter values so that the sensitivity in detecting foreground pixels is
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approximately 75%. At this level the shadow removal does not seriously a�ect the
foreground detection results.

From this table we can see that, without shadow detection, the simple back-
ground subtraction algorithm has low precision (precision = 0.37) due to shadow.
With shadow removal, the precision increases over 73%. Here the precision is still
small due to compression noises. This table also illustrates the problem of HSV in
removing shadow as it only helps to increase the precision up to 73% while others
increase the precision to over 77%.

Chromaticity constraints Precision Sensitivity
Simple BS 0.75 0.31
HSV 0.83 0.85
YUV 0.85 0.94
KIM 0.86 0.93
NC 0.86 0.93

Table 6.2: The shadow detection results of di�erent chromaticity constraints.

Table 6.2 shows the shadow detection results of di�erent chromaticity con-
straints. In this table, precision is more important than sensitivity because we
do not want foreground pixels classi�ed as shadow. This table reinforces the con-
clusion we made before: in this video the chromaticity constraint HS in HSV is not
as good as others in detecting shadow due to low saturation of background pixel
values. Other chromaticity constraints have good performance in detecting shadow.

This video has been used in [Prati 2003] to evaluate several shadow detection
algorithms. In this article, the authors uses two evaluation criteria η and ξ to
evaluates di�erent algorithms. η is the sensitivity in detecting shadow, ξ is is de�ned
as follows:

ξ =
TP

TPF + FNF

where the subscript F stands for foreground and TP is the number of ground
truth pixels of the foreground objects minus the number of foreground pixels in the
ground truth misclassi�ed as shadow pixels. The higher the value of ξ, the lower
the number of FN errors in detecting foreground.

With these two evaluation criteria, the evaluation of this article does not take
into account the background pixels misclassi�ed as foreground (FP , false positive
errors) outside the regions corresponding to the shadow and the person.

In this article, the algorithms are tuned to keep as much foreground pixels as
possible and they only remove part of shadow. This is an advantage for HSV

because HSV cannot remove shadow on the �oor where the saturation is small.
The article concludes that HSV is the best constraint to remove shadow among the
tested algorithms. We tune our algorithm with HSV and NC to have similar results
as the algorithm HSV in this article. The results are shown in table 6.3:
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ξ η

HSV1 0.9 0.79
HSV2 0.91 0.79
NC 0.87 0.83

Table 6.3: Comparison results with the algorithm using HSV in [Prati 2003]. HSV1

is the algorithm using HSV in this article, HSV2 is the algorithm presented in this
thesis.

From this table we see that, the algorithm using HSV in [Prati 2003] has similar
performance with the algorithm using HSV in this thesis. NC can detect more
shadow than HSV but the precision is lower than the two algorithms using HSV .
However, as presented in table 6.1, the algorithm using HSV also classi�es many
background pixels as foreground as the precision in detecting foreground of HSV is
lower than the others( 0.73 vs 0.77). This cannot be seen using only η and ξ.

6.5.3.2 Gerhome

For this video we use the ground truth with one bounding box and several inner
boxes for each object as presented earlier. With this ground truth the precision and
sensitivity are de�ned speci�cally as described in section 6.4.

As we said before, this video has three problems: weakly contrasted objects,
strong shadow, and strong white balance e�ect. Consequently, most of the chro-
maticity constraints do not have good performance in detecting shadow as illustrated
in �gure 6.10.

Figure 6.10 shows sample foreground detection results using di�erent chromatic-
ity constraints. From this �gure, we see that without shadow removal, the simple
background subtraction algorithm classi�es shadow pixels as foreground. When we
apply di�erent chromaticity constraints to remove shadow, for HSV, YUV, and Kim,
they can remove part of weak shadow but they cannot detect strong shadow as the
shadow region on the �oor and on the arm chair. Beside that, these chromaticity
constraints also misclassify parts of objects of interest as shadow. There are two
main reasons: the white balance e�ect and the shadow strength. Because of these
two problems, the chromaticity represented by HSV, YUV, and Kim changes signif-
icantly. On the contrary, because the chromaticity constraint NC takes into account
these problems, it can remove most of shadow on the �oor and on the arm chair.
At the same time, it does not misclassify regions belonging to objects of interest as
much as the other chromaticity constraints.

Table 6.4 shows the quantitative evaluation results in detecting foreground of
di�erent chromaticity constraints. The evaluation results in this table rea�rm the
conclusion we make with �gure 6.10. From this table, we see that without shadow
removal, the simple background subtraction algorithm has low precision in detect-
ing foreground(precision = 0.57) because it classi�es shadow pixels as foreground.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.10: The detection results using di�erent chromaticity constraints on the
video from GERHOME project [GERHOME ]. Image (a) is the original image,
image (b) is the detection results of the simple background subtraction algorithm
without shadow detection. Images (c)(d)(e)(f) are the detection results of the chro-
maticity constraints HSV, YUV, Kim, and NC. White regions are detected fore-
ground regions. Only NC can eliminate shadow on the �oor and on the armchair.

Among di�erent chromaticity constraints, NC has the best performance in removing
shadow (foreground precision = 0.87) while still maintaining a high sensitivity in
detection foreground pixels (sensitivity = 0.75) as it takes into account the white
balance e�ect and the camera irregularity when the intensity of incoming light is
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Chromaticity constraint Precision Sensitivity
SimpleBs 0.57 0.93
HSV 0.78 0.65
YUV 0.68 0.58
KIM 0.71 0.71
NC 0.87 0.75

Table 6.4: The foreground detection results of di�erent chromaticity features on
Gerhome video.

weak.
On this video, among HSV, YUV, and KIM, the chromaticity constraint KIM

have good performance in removing shadow: it can maintain high precision and sen-
sitivity in detecting foreground pixel. KIM achieves good detection results because
this chromaticity constraint is normalized to deal with strong shadow. However,
because the chromaticity constraint of Kim su�ers from white balance e�ect, its
performance in detecting shadow is not as good as NC. For HSV, because the sat-
uration of background region is high, the H value becomes more stable. Therefore,
it rarely classi�es foreground regions as shadow which leads to a high precision.
However, the sensitivity of HSV is not as good as Kim because it su�ers from the
problem of strong shadow. For YUV, its performance in distinguishing shadow from
foreground is the worst. Shadow removal with UV in YUV has bad performance
because beside white balance, shadow in this video is strong which leads to a big
change in the values of UV.

6.5.3.3 ETISEO Airport

This video is an outdoor scene with strong shadow. Due to the chromaticity di�er-
ence between the sun and the sky, the chromaticity of background changes dramat-
ically under shadow. Consequently, none of the chromaticity constraints presented
earlier can detect shadow as illustrated in �gure 6.11.

To deal with strong shadow in outdoor scene, we modify the chromaticity con-
straint NC as presented in chapter 4. Particularly, we set up a threshold which is
proportional to the pixel intensity of the shadow and we employ the hypothesis that
in shadow of outdoor scenes, the blue decreases the least and the red decreases the
most. The detection results is depicted in �gure 6.12. From this �gure we can see
that most of shadow pixels are eliminated but some pixels belonging to the car are
also classi�ed as shadow. Therefore, to detect shadow in outdoor scenes, we need
to combine the chromaticity constraint with other methods such as to verify the
texture or to learn (online or o�ine) the chromaticity transformation when there is
shadow.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.11: The detection results using di�erent chromaticity constraints to re-
move shadow on airport video from ETISEO project [ETISEO a]. Image (a) is the
original image. We want to detect the moving vehicle in the red rectangle. Image
(b) is the detection results of the simple background subtraction algorithm without
shadow detection. Images (c)(d)(e)(f) are the detection results of the chromaticity
constraints HSV, YUV, Kim, and NC. White regions are detected foreground re-
gions. None of the chromaticity constraints can help to remove shadow from the
detection results.
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(a) (b)

Figure 6.12: The detection results on video Apron of project ETISEO using the
modi�ed version of NC as discussed in chapter 4.

6.5.3.4 Estimating white balance parameters

As we can see from previous experiments, in case the white balance e�ect is strong,
NC can achieve best performance if it handles white balance e�ect. But to handle
white balance e�ect, NC needs to estimate white balance parameters. In chapter 4
of this thesis, we propose an algorithm to automatically estimate two white balance
parameters aR, aB. aR, aB indicate how much the coe�cients of R, B channels are
higher than the coe�cient of G channel from the camera. Recall that to estimate
these parameters, we �rst set up a weak shadow detector to collect potential shadow
pixel values. Then we compute the values of parameters aR, aB using this potential
shadow set. After that we replace these parameters into NC. The iteration continues
until aR, aB become stable. To make the estimation more reliable, the values
of aR, aB is computed using potential shadow pixel values in 50 shadow frames.
After each 50 frames containing shadow, the white balance parameters of NC is
updated. If we immediately update aR, aB with each incoming shadow frame,
there is a possibility that in this shadow frame there is foreground pixel values
misclassi�ed as shadow. Then the updated aR, aB will be incorrect which badly
in�uence subsequence updates. With 50 shadow frames, this e�ect can be reduce
if we assume that the number of shadow pixel values correctly classi�ed is much
higher than the number of foreground pixel values misclassi�ed as shadow. Beside
that, the number of shadow frame before each update should not too big because
without updated aR, aB, the performance of the weak shadow detector is not very
good and it may classify many foreground pixel values as shadow.

The video used in this experiment is the video in the GERHOME project we
used in the previous experiment but with a longer duration (2048 frames).

For this video, we have computed the parameter values aR, aB manually by sam-
pling several background pixels with and without shadow. The manually computed
values are aR = 0, aB = 0.1. This means that for this camera the coe�cient of
the blue channel is 10% higher than the coe�cients of the green and the red. We
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will compare these values with the values which are automatically estimated by our
algorithm.

Frame number Ar Ab
113 -1 4
500 0 5
1267 0 7

Table 6.5: The evolution of aR, aB after each update. The last update occurs at
frame number 1267 which is nearly the end of this sequence.

Table 6.5 shows the evolution of aR, aB after each update. We see that the
duration between each update varies as the algorithm has to collect enough 50
shadow frames for each update. At the beginning, because the weak shadow detector
includes many non-shadow pixel values, the values of white balance parameters are
di�erent from the values computed manually. However, gradually the estimated
values approach the values computed manually. The last update occurs at frame
1267 which is near the end of the sequence. From this frame to the end, there is not
enough shadow frames to estimate the values of aR,aB.

(a) (b) (c)

Figure 6.13: This �gure illustrates the e�ectiveness of estimating parameter aR,
aB. Image (a) shows the frame 1276. Without automatic estimating aR,aB, the
chromaticity constraint NC using default values of white balance parameters (aR =

aB = 0) cannot detect the shadow on the �oor, on the armchairs and on the wall
(image (b)). On the same video, using the method to estimate aR, aB, after the
last update of aR, aB at frame 1275, the chromaticity constraint NC can detect the
shadow on the �oor, on the armchair, and reduce the noise on the wall (image (c)).
The green regions correspond to the detected shadow. The white regions correspond
to the foreground region.

Figure 6.13 shows a sample of detection results with and without estimating
parameter values of white balance. As we can see, with the automatically estimated
values of aR, aB, the chromaticity constraint NC can better detect shadow on the
ground and on the armchair.
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6.5.4 Homogeneity feature Evaluation
In this section we compare our homogeneity feature (called 3-Point Constraint 3PC)
with the homogeneity feature in [Toth 2004] (called 2-Point Constraint 2PC) in
removing shadow in 3 video sequences: intelligent room, Gerhome, and ETISEO
airport. In fact, 3PC takes as input the results of 2PC and applies a homogeneity
constraint working at 3 neighbouring pixels. Therefore, the foreground detection
sensitivity of 3PC are usually higher than 2PC but the foreground detection precision
is always equal or lower than the precision of 2PC

6.5.4.1 Intelligence room

On this video, the compression noise is high which leads to abrupt intensity change
in the scene. Therefore the detection results using homogeneity constraints contain
small noise as illustrated in �gure 6.14. Table 6.6 shows the detection results of
two homogeneity constraints. Compared with the chromaticity constraints, the
homogeneity constraints can achieve similar sensitivity but the number of noise FP
is higher. Among 2PC and 3PC, as we said earlier, the precision of 3PC is lower
but 3PC has a higher sensitivity. However, as illustrated by table 6.6 and by the
�gure 6.14, the detection results of both PC2 and PC3 are nearly similar because
the person in this video is easy to detect (similar foreground sensitivity) but both
of them su�er from compression noise (similar foreground precision). The di�erence
between these two features can be seen more clearly when we apply these constraints
for the video Gerhome.

Constraint Precision Sensitivity
Simple BS 0.37 0.9
2PC 0.69 0.75
3PC 0.67 0.77
Kim 0.77 0.76

Table 6.6: The foreground detection results of homogeneity (texture) constraints on
the �intelligent room� video of project ATON. The results of the simple background
subtraction algorithm and the chromaticity constraint KIM are included for com-
parison. The sensitivity of homogeneity constraints is nearly equal to the sensitivity
of chromaticity constraints such as Kim. However, the precision is lower because
the homogeneity constraints are more a�ected by compression noise.

6.5.4.2 Gerhome

Because in Gerhome video, there is a white balance e�ect and the shadow is strong,
the shadow removal using chromaticity is not very e�ective. Homogeneity features
do not su�er from these problem because they do not take into account the rela-
tionships between di�erent RGB channels. Therefore, removing shadow using ho-
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Figure 6.14: The detection results using di�erent homogeneity constraints on �In-
telligence room� from project ATON [ATON ]. The left image is the original image,
the middle image is the detection results of 2PC. The right image is the detection
results of 3PC.

mogeneity features has a higher performance as illustrated in table 6.7. To compare
with the chromaticity constraints, this table also includes the evaluation results of
NC, the best chromaticity feature in removing shadow in this video. We see that the
homogeneity constraint 2PC has higher sensitivity (0.72) than most of chromaticity
constraint except NC. The precision of 2PC is also high (0.82) but lower than the
precision of NC. When we apply 3PC over the results of 2PC, the sensitivity in-
creases up to 0.76, higher than that of NC but the precision slightly decreases (from
0.82 down to 0.8) because 3PC is a stricter homogeneity constraint.

constraint Precision Sensitivity
2PC 0.82 0.72
3PC 0.8 0.76
NC 0.87 0.75

Table 6.7: The detection results of homogeneity constraints 2PC and 3PC on video
Gerhome. NC is the chromaticity constraint included for comparison. Compared
with NC, the homogeneity constraint 3PC can achieve similar sensitivity but lower
precision.

Figure 6.15 shows some examples of the detection results using 2PC and 3PC.
From this �gure, we see that 2PC often has problem at the contextual object edges
where the intensity changes abruptly. That is why the precision of 2PC is lower than
the precision of NC. We can overcome this problem by storing the edges of contextual
objects as in case of verifying people edges in chapter 5. Then, we remove every
foreground pixels at the edge positions from detection results. Beside that, 2PC
cannot detect the di�erence at a larger scale than two adjacent pixels. Therefore,
it cannot detect foreground pixels at the regions inside objects such as the regions
inside the trousers of the man on the �rst and the second images and the regions
inside the coat of the old person on the third image. For these foreground pixels,
3PC can help to recover some of them as illustrated in the images in the third row
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of this �gure.

Figure 6.15: The detection results on video of project Gerhome using the two ho-
mogeneity constraints 2PC and 3PC. The images on the �rst row are the original
image. The images on the second row are the detection results using 2PC. The
images on the third row are the detection results using 3PC.

From the experiment on �intelligent room� and Gerhome videos, we see that
among the two homogeneity constraints 2PC and 3PC, when the most important
objective is to detect objects of interest rather than to remove shadow, we should
use 3PC. Otherwise, 2PC is preferred.

6.5.4.3 Airport from ETISEO project

In this video of an outdoor scene, none of the chromaticity constraint can have
good performance in removing strong shadow because the background chromaticity
changes under shadow. Homogeneity constraints do not su�er from this problem as
illustrated in �gure 6.16.

From this �gure, we see that the foreground detection results of 2PC and 3PC
constraints are nearly similar. We also see that homogeneity constraints can remove
shadow pixels inside shadow regions. However, they have problem with shadow
pixels at the shadow edge where there is an abrupt change of intensity. Therefore,
to be able to remove shadow, we have to combine homogeneity constraints with an
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Figure 6.16: The detection results on video of project ETISEO using the two ho-
mogeneity constraints 2PC and 3PC.

algorithm to remove noisy pixels at the shadow border.

6.5.5 Combining chromaticity and homogeneity features
As presented in chapter 4, we can combine the chromaticity and the homogeneity
constraints to improve the performance of shadow detection algorithms. Because the
homogeneity constraints is often slower than the chromaticity constraint, we apply
the homogeneity veri�cation on the pixels classi�ed as shadow by the chromaticity
constraint. With this method, we can improve the sensitivity of the foreground
detection algorithm using chromaticity constraints as illustrated in table 6.8.

Without homogeneity veri�cation, the sensitivity of the foreground detection
algorithms using chromaticity constraint NC is 0.75. With the homogeneity veri�-
cation using 2PC, the sensitivity increases up to 0.85, higher than both NC and 2PC
alone. However, the precision reduces to 0.78, still higher than other chromaticity
constraints except NC. This is the union of two error sets: errors due to chromatic-
ity and errors due to homogeneity. When we combine 3PC with NC, the sensitivity
increases up to 0.86 but the precision reduces to 0.73. Here 3PC does not help
to increases much sensitivity because most of foreground pixels it can recover have
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constraint Sensitivity Precision
NC + 2PC 0.85 0.78
NC + 3PC 0.86 0.73
NC 0.75 0.87

Table 6.8: The foreground detection results when we combine the chromaticity
constraint NC with the homogeneity constraint 2PC and 3PC.

been classi�ed as foreground by NC. However, these results depend on particular
video. Therefore, the more constraints we apply, the better the sensitivity. Then if
detecting objects is more important than removing shadow, the homogeneity con-
straints can help to recover parts of objects of interest misclassi�ed as shadow by
chromaticity constraints.

6.6 Background subtraction experiments
In this section, we conduct two experiments to verify how EGMM (Extended GMM,
the background subtraction algorithm proposed in this thesis) updates the back-
ground representation and how EGMM distinguishes objects of interest from the
background.

6.6.1 Updating background representation
In this experiment, we compare the updating method of GMM with the updating
method of EGMM. This experiment con�rms the conclusion in [Elgammal 2000,
Porikli 2005a] stating that the updating method in GMM often produces large stan-
dard variations for Gaussian distributions in case of outdoor scenes with tree leave
motion. In this experiment, we also select an outdoor video from ETISEO project
(ETI-VS2-BE-19-C1). Figure 6.17 shows an image sample of this video.

Parameter Values Description
α 0.01 Learning rate
T 0.6 Background proportion
Initial threshold value 25, 50 Equal to 2.5 standard deviation

Table 6.9: The parameter values of GMM

Table 6.9 shows the values of GMM parameters in this experiment. Here we set
T = 60 so that GMM can have more than one Gaussian distributions to describe
background at region containing background motion. For the initial threshold to
verify if a pixel value matches a Gaussian distribution, we select two values: 25
and 50 gray scale units. Because a threshold value is equal to 2.5 value of standard
deviation, these two values correspond to two values of standard deviations: 10 and
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20. We takes two initial threshold values because although the value 25 is reasonable,
with this threshold value, GMM produce noisy detection results.

Parameter Values Description
UpdatingCount 30 Number of pixel values for each update
TreeMode On The mode speci�c to tree leave motion
Initial threshold value 25 Equal to 2.5 standard deviation

Table 6.10: The parameter values of EGMM

Table 6.10 shows the values of EGMM parameters in this experiment. Here we
set UpdatingCount = 30 which means that a Gaussian distribution is updated if
and only if it has been matched 30 times since the last update. This update use
the pixel values of all 30 matches. The parameter TreeMode is On so that EGMM
can apply working mode speci�c to tree leave motion. As EGMM can remove noise
from the detection results better than GMM, we only need a low initial threshold
value.

In this experiment, we run GMM and EGMM then compute the histogram of
threshold values at each pixel in the image. At each pixel, we select the threshold
value of the Gaussian distribution which is the most important (the notion of impor-
tance is de�ned in chapter 4, normally, it corresponds to the Gaussian distribution
matching most of values occurring at this pixel).

Figure 6.17 shows a sample of the detection results of GMM with two initial
values of standard deviations. This �gure also shows the two histograms of updated
threshold values of GMM corresponding to two initial values. We can see that,
when the initial value of standard deviation is lower (25 vs 50 gray scale units),
the updated threshold values of GMM is lower but the detection results is noisier.
However, even with low initial values of standard deviations, most of the updated
threshold values are higher than 20 gray scale units and many threshold values are
higher than 30 gray scale units. When the initial threshold value is 50, the detection
results are less noisy but most of the updated threshold values are higher than 30
gray scale units and many updated threshold values are higher than 40 gray scale
units.

Figure 6.18 shows a sample of detection results of EGMM and the histogram of
threshold values for RGB channels. In EGMM, because we intend to have higher
threshold value for the brightness (G channel), the threshold values of G channel
is high (40 gray scale unit). For chromaticity thresholds dR, dB, most of them has
a value less than 20 gray scale units which are much smaller than the threshold
values of GMM. Therefore with this updating method, EGMM becomes more strict
to detect objects of interest than GMM.
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Figure 6.17: The histogram of threshold values of GMM with two initial threshold
values 25 and 50. The top image is an image sample of the video ETI-VS2-BE-19-C1
from ETISEO project used in this experiment. In the second row, the image on the
left is the sample of detection results of GMM with initial threshold value equal to
25. The image on the right is the corresponding histogram of updated threshold
values. The threshold unit is gray scale unit. With initial threshold equal to 25,
updated threshold values are not too high but the detection results are noisy. The
third row contains the sample of detection results of GMM with initial threshold
value equal to 50 and the corresponding histogram of updated threshold values. This
time the detection results are less noisy but updated threshold values are higher.
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(a) (b)

(c) (d)

Figure 6.18: The histogram of threshold values of EGMM with the initial threshold
values 25. The top image is an image sample of the video ETI-VS2-BE-19-C1 from
ETISEO project used in this experiment. Image (a) is the sample of detection results
of EGMM. Image (b) is the histogram of threshold values for G channel. Because
G channel plays the role of brightness, most of threshold values are in the range
40 - 50 gray scale units. Images (c), (d) show the histogram of dR, dB thresholds
corresponding to R and B channels. Because these thresholds are chromaticity
thresholds, their values are smaller than brightness thresholds (G channel). Most of
threshold values for dR, dB are smaller than the thresholds of GMM.

6.6.2 Distinguishing objects of interest from the background con-
taining motion

6.6.2.1 EGMM versus GMM
In this section, we present our experiments to compare the detection ability of
EGMM with GMM. Particularly, we want to compare the ability in distinguishing
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objects of interest from tree leave motion in outdoor scene. Then if an algorithm
has good distinguishing ability, it can produces less noise. More importantly, when
an object stops moving, this algorithm can keep detecting this object for a long time
without confusing it with the background. The longer the object is detected, the
better for the tracking task.

In this experiment, we use the same parameter values for EGMM. For GMM,
to keep detecting objects longer and to remove noise, we use the initial threshold
value equal to 50.

To show the di�erence between two algorithms in keeping objects of interest
in the detection results, we use the same outdoor video (ETI-VS2-BE-19-C1) from
ETISEO project but at frame 800 we add arti�cial object at the tree region as
illustrated in �gure 6.19. Because this tree region contains background motion,
GMM often has di�culties in keeping objects at this region. From �gure 6.19 we
see that, EGMM can keep detecting the added arti�cial object much longer than
GMM (200 versus 49).

To quantitatively evaluate the detection results of di�erent background subtrac-
tion algorithm, we use two metrics M1 concerning the number of detected objects
and M2 concerning the area of detected objects as described in section 6.4.

As we said earlier in section 6.4, among these two metrics, the metric M2 is bet-
ter than M1 in evaluating di�erent background subtraction algorithms. However,
we include M1 here to have additional information about di�erent background sub-
traction algorithms. In our experiment, we set the threshold for the dice coe�cient
equal to 0.7.

M1 (object) Precision Sensitivity F-Score
GMM 0.57 0.64 0.6
GMM - shadow 0.65 0.68 0.67
EGMM 0.69 0.71 0.7

Table 6.11: The evaluation results of GMM, GMM with shadow removal, and
EGMM in detecting objects in the video ETI-BE-19-C1 of ETISEO project. The
evaluation metric is M1 computing the number of detected objects.

M2 (area) Precision Sensitivity F-Score
GMM 0.67 0.91 0.77
GMM - shadow 0.77 0.90 0.83
EGMM 0.84 0.92 0.88

Table 6.12: The evaluation results of GMM, GMM with shadow removal, and
EGMM in detecting objects in the video ETI-BE-19-C1 of ETISEO project. The
evaluation metric is M2 computing the area of detected objects.

Table 6.11 and 6.12 show the detection results of GMM, GMM with shadow re-
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(b) (c)

(d) (e) (f)

Figure 6.19: The ability to keep objects of interest which stop moving in the de-
tection results of GMM and of EGMM. Image (a) in the �rst row is the original
image showing the arti�cial object. Images in the second row are the zoomed out
detection results of GMM at the region of the arti�cial object. In this line, the
image on the left (image (b)) is the detection results at frame 800 when the object
is added. The image on the right (image (c)) is the detection results at frame 849
when GMM cannot detect the arti�cial object any more. Images in the third line
are the zoomed out detection results of EGMM at the region of the arti�cial object.
In this line, the �rst two images on the left correspond to the two images in the
second line. At frame 849, EGMM is still able to detect the arti�cial object (image
(e)). Up to frame 1000, EGMM gradually looses the arti�cial object (image (f)).
Compared with GMM, EGMM can detect the arti�cial objects longer (200 versus
49 frames).

moval, and EGMM in detecting objects of interest in this video. We see that GMM
has low precision (0.67 in M2 and 0.57 in M1). This low precision has two main
reasons: the original GMM cannot detect shadow and it still produces noises due
to tree leave motion in the detection results. To help GMM remove shadow from
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detection results, we add a shadow detection algorithm into GMM. This algorithm
is simple: a pixel value is classi�ed as shadow if the mean value of the Gaussian
distribution with the highest weight has the same chromaticity as the chromaticity
of this pixel value. We see that the precision of the GMM with shadow removal
increases dramatically (from 0.67 to 0.77 in M2 and from 0.57 to 0.65 in M1). How-
ever, compared with EGMM, GMM with shadow removal still has a lower precision
(0.77 vs 0.84 in M2 and 0.65 vs 0.69 in M2) due to tree leave motion. Concerning
the sensitivity, compared with the orginal GMM, due to errors of shadow removal,
the area sensitivity of GMM with shadow removal decreases a little bit (from 0.91
down to 0.90 in M2). However, because of the precision increase, the f-score still be
improved (from 0.77 to 0.83 in M2). Compared with EGMM, because EGMM can
detect the arti�cial object for a longer duration, the area sensitivity is the highest
(0.92 in M2). Therefore, EGMM can achieve the best f-score.

6.6.2.2 EGMM versus others

In this section, we compare EGMM with other participants in ETISEO project.
In ETISEO, there are four priority sequences which are processed by most of par-
ticipants. Among these four video sequence, there is one video sequence which is
speci�c to the problem of object re-identi�cation. Therefore, there are many people
in this video but the ground truth contains information of only one person. Then we
evaluate the performance of EGMM using three videos: ETI-VS2-BE-19-C1, ETI-
VS2-RD-6-C7, and ETI-VS2-AP-11-C4. To compare the performance of di�erent
algorithms, we use the metric M2 as before. Among the participants, we only take
the ones with the highest evaluation results. Figure 6.20 shows the image sample of
these videos.

In ETISEO project, each participant is assigned a representative number and we
do not know which number corresponds to which participant. Therefore, in the table
showing the evaluation results of di�erent algorithms, each algorithm is referred by
its representative number.

Table 6.13: The evaluation results of EGMM and other participants on video ETI-
VS2-BE-19-C1

M2 (area) EGMM 1 8 9 13 14 20
Precision 0.86 0.85 0.77 0.87 0.79 0.75 0.75
Sensitivity 0.93 0.97 0.94 0.55 0.8 0.86 0.86
F-Score 0.89 0.91 0.85 0.67 0.79 0.8 0.8

For video ETI-VS2-BE-19-C1, when the car stops, we apply the management of
static objects to keep detecting this car in the detection results. Table 6.13 shows
the evaluation results of EGMM and the best participants in this sequence. As we
can see, the precision of EGMM is the second (0.86 vs 0.87) and the sensitivity is



6.6. Background subtraction experiments 189

(a)

(b) (c)

Figure 6.20: The image samples of three videos from ETISEO projects used in
our experiment. Image (a) is the image sample of ETI-VS2-BE-19-C1, image (b)
is the image sample of ETI-VS2-RD-6-C7, and image (c) is the image sample of
ETI-VS2-AP-11-C4.

the third (0.93 vs 0.94 and 0.97). The f-score of EGMM is the second which is a
little bit smaller than the best participant (0.89 vs 0.91).

M2 (area) EGMM 8 12 13 14 19
Precision 0.79 0.8 0.78 0.92 0.74 0.8
Sensitivity 0.46 0.46 0.44 0.36 0.42 0.36
F-Score 0.58 0.59 0.56 0.52 0.54 0.5

Table 6.14: The evaluation results of EGMM and other participants on video ETI-
VS2-RD-6-C7

For video ETI-VS2-RD-6-C7, the ground truth includes three static cars in the
video. For these cars, most of the participants consider that these cars are back-
ground. Consequently, the sensitivity of these participants is not high. To be able
to compare with these participants, we also do not include these cars in the detec-
tion results. The comparison results are depicted in table 6.14. From this table we
see that, the precision of EGMM is similar to others. However, the sensitivity of
EGMM is equal to the best sensitivity of other participants. The f-score of EGMM
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is the second which is a little bit smaller than the best participant (0.58 vs 0.59).

M2 (area) EGMM 9 12 13 14 15 19
Precision 0.87 0.93 0.86 0.83 0.87 0.77 0.84
Sensitivity 0.14 0.11 0.11 0.11 0.12 0.1 0.11
F-Score 0.24 0.2 0.2 0.19 0.21 0.18 0.19

Table 6.15: The evaluation results of EGMM and other participants on video ETI-
VS2-AP-11-C4.

For video ETI-VS2-AP-11-C4, there is also a big and static vehicle which is an-
notated in the ground truth. Therefore, due to not taking into account this vehicle,
most of participants have low sensitivity. To compare with these participants, we
do not include this vehicle in the detection results. Table 6.15 shows the evaluation
results of EGMM and other participants on this sequence. We see that the precision
of EGMM is only smaller than the precision of one participant but the sensitivity
is the highest. Therefore the f-score of EGMM is the highest.

6.7 Controller
In this section we conduct the experiments to verify how the controller guides the
background subtraction algorithm to update its background representation and to
tune its parameters to be suitable for the current scene conditions.

6.7.1 Updating background representation
Updating background representation helps the background subtraction algorithm to
absorb small noises, to manage stationary objects, and to keep tracks of objects of
interest. We have already presented an example of managing stationary objects in
chapter 4 and this management has helped us to detect the stopped car in the video
ETI-VS2-BE-19-C1 in the experiments in section 6.6.2. However, we do not have
a video of a car park where many cars frequently come in and get out. Therefore,
we have not thoroughly tested the algorithm to manage stationary objects. In this
section, we present the experiment to verify how the controller helps the background
subtraction algorithm to keep tracks of the objects of interest.

As the background subtraction algorithms, we test the controller with GMM,
GMM with shadow removal, and EGMM. The testing video is one of the videos from
project Gerhome [GERHOME ]. This video shows a person living in an apartment.
The duration of this video is more than 1h (40800 frames). The ground truth has
been constructed by annotating a frame every other 200 frames and by drawing
bounding boxes around the person inside that frame. As usual, we use the two
metric M1 adn M2 presented in section 6.4 to evaluate the algorithm performance.
For the metric M1, the threshold for the Dice coe�cient is 0.5.
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(a) (b) (c)

Figure 6.21: Without the controller, the background subtraction algorithm cannot
keep detecting static objects of interest. Image (a) is the original image. The
background subtraction algorithm detects the person in this frame correctly (�gure
(b)). However without controller, the background subtraction algorithm uniformly
updates every pixel in the image. Therefore, after 80 frames, the person is absorbed
into the background and the background subtraction algorithm cannot detect the
person any more (�gure (c)).

Figure 6.21 taken from chapter 2 shows an image sample from the video in this
experiment. This �gure demonstrates the problem of uniform updating background
representation without the controller. Because this video is a dynamic scene where
contextual objects are frequently moved, the background subtraction algorithm has
to update its background representation quickly to absorb these contextual objects
into the background. However, without the controller to distinguishing objects of
interest from contextual objects, the background subtraction algorithm also includes
the objects of interest into the background if they stay at the same place for a long
time.

To deal with frequent dynamic changes in the scene, EGMM use the classi�cation
mode speci�c to dynamic changes. With this mode, if a pixel value consecutively
occurs at the same place for n frames, EGMM classi�es it as background. Here we
set n = 70.

M1 Precision Sensitivity F-score
Controller0 + EGMM 0.71 0.14 0.22
Controller1 + EGMM 0.41 0.92 0.57
Controller2 + EGMM 0.95 0.86 0.90
Controller2 + GMM 0.87 0.81 0.84
Controller2 + GMM + Shadow removal 0.90 0.84 0.87

Table 6.16: The evaluation results with metric M1 (counting detected objects) of our
background subtraction algorithm using di�erent updating method. The detection
results of GMM [Stau�er 1999] (GMM) and GMM with shadow removal (GMM1)
with selective updating is included for comparison.

In this experiment, we would like to evaluate the e�ectiveness of three updating
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M2 Precision Sensitivity F-score
EGMM 0.85 0.39 0.53
Controller1 + EGMM 0.64 0.85 0.73
Controller2 + EGMM 0.95 0.92 0.94
Controller2 + GMM 0.81 0.78 0.79
Controller2 + GMM + Shadow removal 0.89 0.78 0.83

Table 6.17: The evaluation results with metric M2 (counting detected area) of our
background subtraction algorithm using di�erent updating method. The detection
results of GMM [Stau�er 1999] and GMM with shadow removal with selective up-
dating method (Controller2) is included for comparison.

methods of the controller Controller0, Controller1, and Controller2 to keep track
of the objects of interest. In the �rst updating method Controller0, the controller
sends the updating command Update to every pixel in the image. It means that
every pixel is updated. In the second updating method Controller1, the controller
sends the updating command Update to every pixel not inside the blobs classi�ed as
the objects of interest by the blob class�cation task. For the pixels inside the blobs
of objects of interest, the controller sends the updating command NotUpdate. It
means that these pixels are not updated. In the third updating method Controller2,
the controller also sends the updating command Update to every pixel not inside
the blobs classi�ed as objects of interest. For the pixels inside a blob of this type,
the controller sends the updating commands corresponding to the results of the
veri�cation of this blob. If the controller veri�es that this blob is a real object of
interest according to the veri�cation method presented in chapter 5, the controller
sends the updating command NotUpdate to the pixel inside this blob. Otherwise,
the controller sends the updating command Update to the pixels inside the blob.

Tables 6.16 and 6.17 show the detection results of EGMM, GMM, and GMM
with shadow removal using di�erent updating methods of the controller. From
these tables, we see that EGMM with the updating method Controller0 has very
low sensitivity (0.14 in M1 and 0.39 in M2) because in this video, the person often
stay in the same place for a long time. The results are depicted in �gure 6.21. For
EGMM with the updating method Controller1, when the algorithm does not update
the region corresponding to detected objects of interest without object veri�cation,
the sensitivity increases (from 0.14 to 0.92 in M1 and from 0.39 to 0.85 in M2)
but at the expense of reducing precision (from 0.71 down to 0.41 in M1 and from
0.85 down to 0.64 in M2). With this updating method, the precision decreases
because in the detection results, there are blobs corresponding to shadow or to
the displacement of contextual objects misclassi�ed as objects of interest by the
classi�cation task. Because with the updating method Controller1, EGMM does
not update these blobs, these blobs stay for a long time in the detection results as
objects of interest. Figure 6.22 shows an example of displaced contextual objects
misclassi�ed as a person.
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(a) (b)

Figure 6.22: This �gure illustrates the error due to not verifying the classi�cation
results. In �gure (a), the original place of the chair is at the lower right corner of
the image. Then, the chair is moved to the center of the image as illustrated in
�gure (b). Because the classi�cation task classi�es the chair blob as a person blob,
the algorithm EGMM1 does not update the region of the chair blob. Consequently,
the chair blob stays in the detection results for a long time.

With the updating method Controller2, the controller veri�es every blob clas-
si�ed as objects of interest. Therefore, it can increase the precision of the detection
results (from 0.41 to 0.95 in M1 and from 0.64 to 0.95 in M2) . Figure 6.23 shows
an example of selective update where the controller can distinguish the object of in-
terest from the background region misclassi�ed as objects of interest. However, the
sensitivity decreases because sometimes the people detector misclassi�es a person
as an unknown blob as illustrated in �gure 6.24.

Tables 6.16 and 6.17 show that the controller can work with GMM and GMM
with shadow removal. Without shadow removal, the original GMM has lower pre-
cision and sensitivity in both M1 and M2 than EGMM. When we apply shadow
removal on the detection results of GMM, both precision and sensitivity increase.
Here the sensitivity of GMM increase because sometime the shadow makes the per-
son blob too big to be classi�ed as person blob. From these tables we also see
that even with shadow removal, the algorithm of GMM still has lower precision and
sensitivity than EGMM.

For this video, the sensitivity of the detection results is not very high (0.86 in M1

and 0.92 in M2) because the chromaticity of the person coat in this video is similar
to the chromaticity of the wall. Therefore, when the person goes to the kitchen
as illustrated in �gure 6.25, the background subtraction algorithm cannot correctly
detect the person. As a result, the person is absorbed into the background.

6.7.2 Evaluation based parameter tuning
In this section, we have four experiments with the controller to verify the controller
ability in tuning parameter values. In the �rst experiment, we test the tuning
algorithm PBT (Pixel-based tuning) which selects one parameter value from several
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(c) (d)

Figure 6.23: This �gure illustrates the e�ect of selective update. At the beginning,
the person moves to the table (�gure (a)). The foreground detection task detects
both the person and the shadow of the person (�gure (b)). Then after a while, the
person still stand at the table (�gure (c)). With the selective update, the background
subtraction algorithm only updates the shadow region and it can absorb the shadow
into the background. At the same time, the background subtraction algorithm is
still able to detect the person (�gure (d)).

prede�ned values with the parameter T of GMM. In the second experiment, we
test the tuning algorithm RBT (region-based tuning) which uses the parameter
knowledge to better select parameter values also with the parameter T of GMM. This
experiment shows that, with parameter knowledge, the tuned parameter values can
be more appropriate to each region of the video than PBT. In the third experiment,
we use RBT to tune parameter chromaticityThreshold of EGMM. In the fourth
experiment, we use RBT to tune the parameter m of EGMM.

6.7.2.1 Pixel-Based Tuning
In this experiment, we use the video ETI-VS2-BE-19-C1 of an outdoor scene as in
the experiment about the background subtraction algorithm. PBT is used to tune
the parameter T for each pixel in the image. Particularly, PBT selects one value
from three prede�ned values (0.2, 0.5, and 0.8) of T for each pixel. In GMM, T
represents the proportion of the background in the background representation. A
high T value is suitable for regions with background motion. Therefore, the tree
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Figure 6.24: Image (a) illustrates the error of EGMM1 which does not verify de-
tected person blob. Without veri�cation, EGMM1 considers that the chair blob is
a real person and it does not update this region. Image (b) illustrate the error of
EGMM2. EGMM2 can recognize that the chair is not a real person so it absorbs
the chair in the detection result. However, because the person blob also includes
the strong shadow region of this person which does not satisfy the edge condition,
the people detector misclassi�es this blob as an unknown blob.

region in this video needs a higher value of T. However, a low T value is necessary
for the road region so that GMM can better detect objects of interest. The problem
of inappropriate T values is illustrated in �gure 6.26.

The initial parameter values of GMM are set the same as in table 6.9 in the
previous experiments for this video sequence.

At each pixel, to select one of the three prede�ned values, PBT set up 3 GMMs
with three prede�ned values and then evaluates how the detection results of these
GMMs are consistent with the feedback from the classi�cation task. For each pixel,
each GMM will be evaluated using 200 pixel values.

When GMM has similar detection results with two parameter values of T, we
use the following formula to compare di�erent T values:

cost(T ) = error/evaluationPeriod + 0.1T (6.5)

where error is the number of times that the detection results of GMM are
inconsistent with the feedback of higher level task, evaluationPeriod is the number
of pixel values used to evaluate GMM with di�erent T values.

As we can see from �gure 6.27, PBT can �nd T = 0.8 for a region with back-
ground motion such as the tree region, the wall with mirrors. At the same time, it
can �nd T = 0.2 for static background regions such as parts of the road, the sky.
However, sometimes the feedback from the classi�cation task is not very reliable.
Therefore, PBT also assigns T = 0.8 for parts of the road which should have a lower
T value. This �gure also shows the detection results of GMM with adaptive and
�xed T values. We see that with adaptive T values, the detection results of GMM
are less noisy.
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(a) (b)

Figure 6.25: The background subtraction algorithm fails to detect the chromaticity
of the person coat is similar to the chromaticity of the wall. Image (a) is the original
image. Image (b) is the detection results.

Because this tuning algorithm has to wait until nearly the end of the testing
sequence before it can collect enough data to evaluate the algorithm with di�erent
parameter values for every pixel in the image, we do not have quantitative evaluation
of the e�ectiveness of this tuning algorithm. This is a weakness of PBT compared
with RBT in the next experiment.

6.7.2.2 RBT

Tuning parameter T of GMM
In this experiment, we use RBT to tune the parameter T of GMM. In the pre-

vious experiment with PBT, this algorithm can only select one value from several
prede�ned parameter values. Beside that, PBT must use the feedback from classi-
�cation task to guess the correct label of each incoming pixel values. This work is
not always correct. In contrast, by using parameter knowledge, RBT can select a
more appropriate parameter value given the parameter value range. This algorithm
is also more correct because it only has to evaluate the consistence between the
classi�cation feedback and the detection results on an image region. This problem
is easier than guessing the label at each pixel. Finally, RBT needs fewer frames
to evaluate the consistency. In this experiment, we use only one frame for each
evaluation.

As presented in chapter 5, to evaluate the consistency of the detection results
with the classi�cation feedback at a given image region, we use the error indicator
Inoise. The range of safe noise level is [0.3,0.5].

In this experiment, for GMM we use the same parameter values as in other
experiment except T. In fact, we set the initial T = 0.8. With this T value, the
noise level will be small and we will decrease T value gradually to increase the noise
level.

To �nd an appropriate T value for each region in the image, we divide the width
into 10 and the height into 10 to have a grid of 100 small regions. The optimization
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Figure 6.26: This �gure shows the problem of wrongly selecting T value for GMM.
In this �gure, we shows the detection results of the algorithm GMM with two values
of threshold T (the classi�cation parameter, equation 2.7), T = 0.1 and T = 0.95.
Image (a) is the original image. Image (b) is the detection results of GMM with T
= 0.95. In this image, due to high T value for the road region, GMM cannot detect
some parts of the car. Image (c) is the detection result of GMM with T = 0.1. This
time GMM can detect the whole car but noise level at the tree region is rather high.
Even if we �lter out small noise using blob size, noise still exists as illustrated in
image (d). Here, small noise regions have gathered to form bigger noise.

algorithm will work in each small region and assign an appropriate T value for each
region.

Before tuning T, the controller waits GMM to constructs its background rep-
resentation in 100 frames. From frame 101, the controller starts tuning parameter
T.

Figure 6.28 shows the tuning results of RBT. By using RBT to tune T values,
the detection results of GMM is less noisy than when using T = 0.2. Compared
with the case when T = 0.8, the detection results of GMM with tuned T values is
only a little noisier but tuned T values are appropriate to each region and they are
much smaller than 0.8. This �gure also shows that with tuned T values, GMM still
has small noise. Therefore, the detection results should be �ltered by eliminating
small blobs.

Compared with the tuning algorithm which assigns 0.8 to nearly every region
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Figure 6.27: This �gure illustrates the e�ect of tuning parameter T of GMM using
PBT. Image (a) is the original image. Image (b) is the image of T values. The red
corresponds to T = 0.8. The green corresponds to T = 0.2. The blue corresponds to
T = 0.5. This �gure is obtained at the end of the sequence. The tuning algorithm
automatically �nds T = 80 for the tree regions. Image (c) is the detection results
with adaptive T values. Image (d) is the detection results with �xed T = 0.5. The
detection results with adaptive T values are less noisy.

in the image, RBT only assign T = 0.48 to the tree region. This is because RBT
does not take into account low level of small noise which can be removed by �ltering
object size and by morphology operation.

From �gure 6.28 we see that most of the regions are assigned T = 20. Therefore,
to have a quantitative comparison, we compare the detection results of the GMM
with tuned T values and the GMM with �xed T = 20. In the video ETI-VS2-BE-
19-C1, when the car stops, the stationary object management help the background
subtraction algorithm to keep the car in the detection results. To clearly see the
di�erence between the two versions of GMM, we do not apply stationary object
management. To remove small noise, before being evaluated, the detection results
has �ltered out blobs having less than 80 foreground pixels.

Table 6.18 shows the quantitative comparison between the two version of GMM.
We see that, with tuned T values, GMM can remove a large amount of noise.
Therefore, the precision has been increased from 0.36 to 0.82. At the same time,
the tuned T values do not decrease the sensitivity of GMM.
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Figure 6.28: This �gure illustrates the tuned T values for each region in the image
as well as a sample of the detection results. Image (a) is the original image. Image
(b) shows the intensity image of the T value at each region. In this image, regions
with high T values correspond to bright regions. The algorithm can �nd higher T
value at the regions corresponding to tree. Image (c) is a sample of detection results
of GMM with tuned T values. Image (d) is a sample of detection results of GMM
with �xed T = 0.2. The detection results is noisier than in image (c). Image (e) is
a sample of detection results of GMM with �xed T = 0.8. There is no noise in the
detection results but at an expense of high T value for every pixel in the image.

Tuning parameter chromaticityThreshold of EGMM
In this experiment, the controller tunes the chromaticity threshold Th to verify if

a pixel value matches a Gaussian distribution or not. In fact, in EGMM we have two
chromaticity thresholds for R and B channels. Here the controller assumes that the
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M2 (area) Precision Sensitivity F-Score
GMM with �xed T = 20 0.36 0.4 0.38
GMM with tuned T 0.82 0.4 0.54

Table 6.18: The evaluation results of GMM with �xed T = 0.2 and with tuned T
values

two channels have the same threshold Th. Normally, these thresholds are updated
automatically with the method in [Welford 1962]. However, at the beginning of the
sequence or when the scene changes abruptly, our background subtraction algorithm
has to wait dozens of frames before it can estimate stable chromaticity thresholds.
If objects of interest appear during this time, our background subtraction algorithm
may have di�culties in detecting these objects. In this case, the controller helps the
algorithm to quickly estimate a suitable threshold based on the noise level of the
detection results. As in the previous experiment, we use the same safe noise range
equal to 0.03 - 0.05 of the image area.

The video in this experiment is ETI-VS1-BC-13-C4 from ETISEO project. This
video shows a building corridor at a low light condition. Figure 6.29 shows an image
sample of this video. We can see that the person in the video is weakly contrasted
with the background. Therefore, the threshold value Th should be small to detect
this person.

Table 6.19 shows some intermediate values of Th during the tuning process.
RBT starts working at frame 1. At the beginning as our background subtraction
algorithm has not constructed a stable background representation, the threshold
value Th �uctuate a little bit and then it becomes stable at frame 89 with Th = 3.
However, as soon as fram 4, the estimated value for Th is 4, which is very close to
the stable value Th = 3.

Frame 1 2 3 4 5 13 89
Th 10 7 5 4 5 4 3

Table 6.19: The intermediate values of Th while it is being tuned. The initial value
of Th is 10.

Without controller to tune chromaticity threshold Th, our background subtrac-
tion algorithm only updates the chromaticity threshold after 30 frames. We have
sampled the chromaticity thresholds at one pixel to compare with the threshold
found by the controller. At this pixel, the threshold for R is 5 and for B is 3.
These values are similar to the value found by the controller. However, as soon
as at frame 3, the controller can �nd a close value for Th. That is why when the
person appears before frame 30, only with the help of the controller to tune Th, our
background subtraction algorithm can detect nearly the whole person as illustrated
in �gure 6.29.



6.7. Controller 201

(a) (b) (c)

Figure 6.29: The detection results when the controller tunes the chromaticity thresh-
old Th of our background subtraction algorithm. Image (a) is the original image
sample at frame 29. Image (b) is the sample of detection results of EGMM with the
initial value Th = 10. This time, EGMM has not updated the chromaticity thresh-
old yet because it has not collected enough data. Figure (c) shows the detection
results of EGMM with the help of the controller to tune the parameter Th at frame
29. With this tuned Th value, EGMM can detect nearly the whole person.

Tuning parameter m of EGMM
Recall that, in the scenes with rare background event, EGMM uses two con-

straints to distinguish foreground Gaussian distribution from background Gaussian
distribution. One of them is:

nConsecutiveMatchedT imes × m > currentFrame − startingFrame

where currentFrame is the frame number of the current frame, startingFrame is
the frame number when this Gaussian distribution is created, nConsecutiveMatchedT imes

is the number of times the pixel values of this Gaussian distribution consecutively
occur (see section 4.2.4, chapter 4). This constraint means that rare background
events must occur at least once every m frames. If m is big, there is fewer noise.
However, there is a possibility that the Gaussian distributions corresponding to the
pixel values of similar objects of interest passing at the same place are classi�ed
as background. To avoid this problem, we would prefer low value of m. Without
tuning algorithm, it is di�cult to manually select the value of m.

In this experiment, we use the video sequence ETI-VS2-BE-19-C1 of ETISEO
project. In this video (�gure 6.30), the tree regions with rare background events
due to tree leave motion need higher values of m. On the other hand, the regions
corresponding to the sky and the road need lower values of m. In this experiment,
we try to �nd one value of m in the range [10,300] for each subregion in the image.
The starting value of m is 300. As usual, the safe range of Inoise is [0.03,0.05].
Figure 6.30 shows the values of m for each subregion found by the tuning algorithm
RBT.

Table 6.20 shows the quantitative evaluation results of EGMM with m = 10,
m = 200, and tuned values of m. Similar to the experiment to tune parameter T of
GMM, in this video, we do not use the management of stationary objects to clearly
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Figure 6.30: This �gure illustrates the tuned m values of EGMM for each region
in the image as well as a sample of the detection results. Image (a) is the original
image. Image (b) shows intensity image of the m value at each region. The regions
with higher m values are brighter (higher intensity) than the region with lower m

values. The algorithm can �nd higher m values at the regions corresponding to trees.
Image (c) is a sample of detection results of EGMM with tuned m values. Image (d)
is a sample of detection results of EGMM with �xed m = 10. The detection results
is noisier than in image (c). Image (e) is a sample of detection results of EGMM
with �xed m = 200. The noise level is similar to the noise level of image (c).

see the di�erence between the performances of EGMM with di�erent parameter
values. From this table, we see that, the performance of EGMM with tuned values
of m is similar to the performance of EGMM with m = 200 (precision and sensitivity
remain the same), but EGMM becomes more sensitive to foreground pixel values
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M2 Precision Sensitivity F-Score
EGMM, m = 10 0.23 0.53 0.33
EGMM, m = 200 0.73 0.5 0.59
EGMM, tuned m 0.73 0.5 0.59

Table 6.20: The evaluation results of EGMM with m = 10, m = 200, and tuned
values of m. The evaluation metric is M2.

because of smaller values of m.

6.8 Conclusion
This chapter has presented the main experimental results of our thesis. The exper-
iments are organized into three main parts: the experiments on features to detect
and remove shadow / highlight from foreground detection results, the experiments
on the proposed background subtraction algorithm, and the experiments on the
controller that helps background subtraction algorithms to update the background
representation and to tune parameter values online.

Concerning the experiments on the features to detect and remove shadow /
highlight, we have conducted experiments with two type of features: chromaticity
and homogeneity.

For chromaticity features, we have tested HSV, YUV, Kim [Kim 2004], and NC
which is the chromaticity feature proposed in this thesis. Experiments shows in-
teresting characteristics of di�erent chromaticity features. Particularly, YUV is not
good in detecting shadow, especially strong shadow. HSV can have good detec-
tion results if the saturation is high. And only NC can detect shadow in video
where white balance e�ect is strong. All of these chromaticity features cannot be
used to detect strong shadow in outdoor scenes because strong shadow changes the
chromaticity of background region.

For homogeneity features, we examine two features: two pixel feature in [Toth 2004]
(called 2PC), and three pixel feature proposed in this thesis (called 3PC). Experi-
ments show that homogeneity features do not su�er from chromaticity changes due
to shadow in outdoor scenes as well as white balance e�ect because homogeneity do
not exploit the relationships between di�erent RGB channels. However, experiments
also show the weakness of homogeneity features beside the problem with penum-
bra regions as we presented in chapter 4. For example, homogeneity features often
have problem when background regions contain edges of contextual objects. These
edges do not satisfy homogeneity constraints because illumination intensity changes
abruptly at these edges. Similarly, in case of strong shadow where shadow edges are
clear, by using homogeneity constraints, we can eliminate shadow region inside the
shadow but not the shadow region corresponding to shadow edges. Comparing two
homogeneity features 2PC and 3PC, experiments illustrates that 2PC is not as good
as 3PC in detecting foreground pixels. Nevertheless, 3PC often produces noise in
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background regions which are not �at. On these regions, the illumination intensity
often changes nonlinearly under shadow. In the experiment when we combine both
chromaticity and homogeneity features to detect foreground pixels, the detection
results are better than the detection results of individual features.

Concerning experiments on background subtraction algorithms, we have con-
ducted experiments to compare EGMM with GMM in [Stau�er 1999] and with the
participants in ETISEO project.

In the �rst experiment, we compare the updating method of GMM for and the
updating method in EGMM for the mean and variance of Gaussian distributions.
This experiment restates the clames in [Elgammal 2000, Porikli 2005b] that the
updating method in GMM does not have good results in complex scenes and they
often produces large variance. Our experiment shows that the iterative formula
in [Welford 1962] can help to update the mean and variance better than the updating
method in GMM.

In the second experiment, we compare GMM and EGMM in keeping objects
of interest when they stop moving in outdoor scenes with tree leave motion. This
experiment shows that when we put an arti�cial object into the tree region, this
object is absorbed quickly into the background. For EGMM, as EGMM can better
detect tree leave motion, EGMM can keep detecting this arti�cial object longer.
The quantitative evaluation results also show that the detection results of EGMM
for this outdoor scene is less noisy than GMM (higher sensitivity).

In the third experiment, we compare our background subtraction algorithm with
the algorithms of the participants in ETISEO project. In this experiment, we use
three representative videos: ETI-VS2-BE-19-C1, ETI-VS2-RD-6-C7, and ETI-VS2-
AP-11-C4. The detection results of EGMM are among the top 2 in every sequence.

Concerning experiments on the controller, we have conducted experiments on
how the controller helps background subtraction algorithms to update background
representation and to tune parameter values to be suitable for the current scene
conditions.

In the experiment on how the controller guides the background subtraction al-
gorithm to update the background representation, we evaluate the controller e�ec-
tiveness in helping the background subtraction algorithm to keep detecting objects
of interest even when they stop moving. This experiment shows that without the
controller, the background subtraction algorithm absorbs the stopped people into
the background. Consequently, the sensitivity in detecting objects is very low (0.14
in number of detected objects and 0.39 in detected area). With the help of the con-
troller, the sensitivity increases dramatically (0.86 in number of detected objects and
0.92 in detected area). The precision is also improved (from 0.71 to 0.95 in number
of detected objects and from 0.85 to 0.95 in detected area). This experiment also il-
lustrates the independence of the controller from background subtraction algorithm.
In fact, the controller can work with GMM, GMM with shadow removal, and the
background subtraction algorithm proposed in this thesis. Because the controller
relies heavily on the feedback of classi�cation task, if the foreground detection and
classi�cation tasks fail to correctly detect and classify an object of interest, the con-
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troller are unable to help the background subtraction algorithm to keep detecting
this object.

In the experiments on how the controller tune parameters of background sub-
traction algorithm, we have conducted four experiments. In the �rst experiment, we
use PBT to select one value from three prede�ned values of parameter T of GMM
for each pixel in the video frame. The tuning algorithm correctly select high T
value for tree leave regions to remove noise but it also assign high T value for some
static regions which only need a smaller T value. In the second algorithm, we use
RBT to �nd parameter T for each region in the video frame. This algorithm can
�nd more appropriate T value for each region than PBT. With tuned parameter
T values, GMM can reduce noise in the tree leave region but it can still keep a
high sensitivity in static regions. However, the detection results are not perfect as
there is still noise in the detection results. In the third experiment, we examine how
RBT can tune the chromaticity thresholds of EGMM. The results of this experiment
shows that RBT can help EGMM to quickly estimate good chromaticity thresholds
to detect objects of interest when scene conditions change suddenly. In the fourth
experiment, we use RBT to tune parameter m of EGMM. With tuned values of m,
EGMM becomes more sensitive to foreground pixel values. However, up to now,
the online tuning algorithms of our controller only handle one parameter or a set of
independent parameters at a time.





Chapter 7

Conclusion

Figure 7.1: The general architecture of the object detection framework with the
controller for the background subtraction algorithm. This controller helps the back-
ground subtraction algorithm to adapt itself to the current scene condition.

In this thesis, we have presented an object detection framework in which the
background subtraction algorithm can adapt itself to the current scene conditions
with the help of a controller. To do this, the controller uses the feedback from the
classi�cation task and the information about the background subtraction algorithm
as well as about the scene. Inside this framework, we propose a new background
subtraction algorithm and the algorithms to remove foreground pixels correspond-
ing to shadow and highlight from the foreground detection results. Beside that,
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we also construct a controller with two adaptation methods. The �rst adaptation
method is to guide the background subtraction algorithm to update its background
representation. The second adaptation method is to tune parameter values of the
background subtraction algorithm to be suitable for the current scene conditions.

In the rest of this chapter, we �rstly summary the main contributions as well as
the limitations of this thesis. After that, we present the future works necessary to
improve the results of this thesis.

7.1 Contributions
Our contributions can be classi�ed into two groups: contributions concerning fore-
ground detection task, and contributions concerning adaptation controller.

7.1.1 Contributions concerning the foreground detection task
Inside the foreground detection task, we propose a background subtraction algorithm
called EGMM and two algorithms to remove shadow/highlight from the foreground
detection results.

7.1.1.1 Background subtraction algorithm

For the background subtraction algorithm, we propose (1) a new color feature to
construct background representation, (2) a model of background representation (3)
the foreground versus background classi�cation rules, and (4) a method to update
the background representation.

Concerning the new color feature to construct background representation, this
feature is selected exclusively to deal with illumination changes such as shadow and
highlight. Because this color feature is also used to remove shadow and highlight,
we will discuss about this feature later when we talk about the algorithm to remove
shadow / highligh.

Concerning the model of background representation, it is an extension of the
background model in GMM. The extension helps EGMM to better handle illu-
mination changes and to have more information to correctly classify foreground /
background pixels.

Concerning the foreground versus background classi�cation rules, we show that a
generic model such as GMM can improve its performance if it takes into account the
characteristics of each scene type. Therefore, we have analyzed the characteristics
of typical scene types. Based on this analysis, we propose our model of background
representation and the classi�cation rules. These classi�cation rules are speci�c to
each scene type.

Concerning the method to update the means and variances, we have showed that
the updating method in GMM depends heavily on the occurrence order of pixel val-
ues. Therefore, this method often produces large variances in complex scenes where
pixel values must be modeled by several Gaussian distributions. Unfortunately, this
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updating method is widely used in many other algorithm. To overcome this prob-
lem, we propose to use the iterative method of [Welford 1962] to compute means
and variances. In our experiment, the iterative method is less dependent on the oc-
currence order of pixel values. Therefore, variances of pixel values computed using
this method is often smaller than the method in GMM.

7.1.1.2 Algorithm to remove shadow and highlight

In this thesis, we propose one algorithm to remove shadow and highlight in the
region with non saturated region and one algorithm to remove shadow in regions
with saturated illumination.

Concerning the algorithm to remove shadow and highlight in regions with non
saturated illumination, we assume that shadow and highlight do not change too
much the chromaticity and the homogeneity of the scene. Based on this assump-
tion, we de�ne three constraints on: intensity range, chromaticity, and homogeneity
(texture).

To construct the chromaticity constraint, we have taken chromaticity feature in
the color feature of the background subtraction algorithm. To create this feature,
we have studied the model of the camera proposed by [Mann 2000] and the model
of illumination change proposed by [Bui 1975]. Based on this study, we propose the
new color features (two chromaticity and one brightness) to construct background
representation. Beside the new features, we also analyze the e�ectiveness of popular
color spaces in modeling background and in removing shadow / highlight from fore-
ground detection results. This analysis has some interesting results. For example,
YUV is not robust to illumination change, HSV is useful only when saturation (S)
is high, color features based on ratios between di�erent RGB channels should take
into account the irregular camera response function at the two intensity extremes
(too dark or too bright). Beside that, another camera characteristic often neglected
by di�erent color features is white balance e�ect. Consequently, when white balance
e�ect is strong, most of popular color features are not robust to the illumination
changes. To deal with white balance e�ect, we propose an algorithm to estimate the
parameter of white balance e�ect. Then, our chromaticity features can use these
parameters to adjust themselves to deal with white balance. Our experiments shows
that the new chromaticity features is e�ective in removing shadow in indoor scene
video. However, chromaticity constraints become ine�ective when the objects of
interest have similar chromaticity with the background. In this case, we combine
the chromaticity and homogeneity features to recover from this type of errors. Up
to now, the proposed chromaticity constraint does not work with strong shadow in
outdoor scene because this kind of shadow changes the chromaticity of the back-
ground. We now have to study the learning method to detect strong shadow in
outdoor scene.

To construct the homogeneity constraint, we study the strengths and weaknesses
of current homogeneity features. These features either work with only two neighbor-
ing pixels or do not take into account the variation of shadow e�ect in penumbras.
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Then, based on this study we propose a new homogeneity constraint working with
three neighboring pixels which can improve the performance of the current homo-
geneity veri�cation methods. As homogeneity features do not take into account the
relationships between di�erent RGB channels, they do not su�er from the problems
of white balance or the chromaticity changes due to shadow as chromaticity features.
However, our homogeneity constraint in speci�c and other homogeneity constraints
in general has di�culties in dealing with penumbra regions of shadow where illu-
mination intensity changes dramatically from pixel to pixel. Beside that, as our
homogeneity constraint works with three adjacent pixels, it often produce noises in
curve surfaces of the background because on these surfaces, illumination changes
irregularly. Despite these drawbacks, we always use these homogeneity constraints
because homogeneity constraints are indispensable to recover the errors of the chro-
maticity constraint when the chromaticity of the objects of interest is similar to the
chromaticity of the background.

For strong shadow in outdoor scene, because homogeneity constraints do not de-
pend on the chromaticity, these constraints can remove most of shadow pixel from
the foreground detection results. However, homogeneity constraints still have prob-
lems with shadow edges, where there is a transition between shadow and non shadow
regions. We are studying methods to help homogeneity constraints to overcome this
problem.

Concerning the method to remove shadow in regions with saturated illumination,
this method has to solve the problem that due to strong (saturated) illumination,
the camera cannot capture the real chromaticity and texture of the background.
Therefore, to detect shadow, we cannot employ the method to remove intensity
variations above to remove shadow from the detection results. To overcome this
problem, in an o�ine phase we construct a classi�er to learn the shadow pixel
values in one small shadowed region. In the online phase, the learned knowledge
is then generalized to recognize shadow pixel values of the whole surface which has
the same characteristics as the learned region. This idea can be applied to detect
the displacement of contextual objects and the opening / closing of a door.

7.1.2 Contributions concerning adaptation controller
Our controller consists of two adaptation methods: supervising background subtrac-
tion algorithms to update background representation and tuning parameter values
of background subtraction algorithm. To realize these tasks, the controller employs
the feedback from the classi�cation task and information about the algorithm and
the scene.

7.1.2.1 Updating background representation

Concerning the supervision of updating background representation, by creating
adaptive updating scheme speci�c to each type of region in the scene, the controller
can help the background subtraction algorithm to solve various problems such as
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handling noise, sudden illumination changes, keeping track of objects of interest,
managing stationary objects. Among these problems, keeping track of objects of
interest and managing stationary objects are the two most di�cult problems.

To help the underlying background subtraction algorithm to keep track of the
objects of interest, our controller requests the background subtraction algorithm
not to update the regions corresponding to these objects. To avoid misclassi�cation
errors, the controller has to verify if a blob classi�ed as an object of interest by the
external blob classi�cation task is a real object of interest or not. The veri�cation
algorithm uses three characteristics: object edges, density of detected regions, and
motion inside the detected region.

To help the background subtraction algorithm to manage stationary objects,
instead of storing a temporary background layer for each stationary objects, the
controller cooperates closely with the tracking task and it stores only the position of
these objects. Therefore, the controller can avoid the problem of updating temporary
background layers when illumination changes.

7.1.2.2 Tuning parameter values of background subtraction algorithm

To tune the parameter values of the background subtraction algorithm, we �rst need
to automatically evaluate the foreground detection results. In this thesis, we pro-
pose a method to evaluate the consistency of the foreground detection results with
the feedback from the classi�cation task. We have de�ned �ve error indicators in-
dicating how the foreground detection results are consistent with the feedback from
the classi�cation. After that, we propose two generic evaluation-based tuning algo-
rithms to help background subtraction algorithms to maintain the balance between
noise and the sensitivity in detecting foreground pixels. The �rst tuning algorithm
called PBT can tune parameter values for every pixel in the image but it is only
able to select one from several pre-de�ned parameter values. Moreover, PBT is
slower than the second tuning algorithm. The second tuning algorithm called RBT
exploits the parameter knowledge to �nd better parameter values in a shorter time.
The parameter knowledge includes the information such as which parameter in�u-
ences the value of one error indicator, how to change parameter values to increase
/ reduce this value. However, the RBT can only tune the parameter values for a
region, not for each pixel in the image as in case of PBT. Beside that, RBT has cer-
tain assumption about the parameters and this tuning algorithm cannot work with
certain types of parameters. Finally, we propose a context-based parameter tuning
algorithm speci�c to EGMM, the background subtraction algorithm introduced in
this thesis, to help EGMM to detect strong shadow in outdoor scene.

7.2 Discussion
In chapter 1, we set up three main objectives for our adaptive object detection frame-
work: real-time, working with various scene types, and autonomy. In this section,
we discuss about what the thesis has achieved compared with these objectives.
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7.2.1 Real - time requirement

Although designed with real time objective, our background subtraction algorithm
is still 1.5 times slower than GMM. Therefore, on a machine with 4 GB Ram and
CPU Intel Core 2 Duo P8600, together with algorithms such as shadow removal,
morphology, our background subtraction algorithm can process 10 frames/s if the
video size is 640x480 and the scene is simple without background motion. When
the scene contains background motion such as outdoor scene, the processing time
reduces to 5 frames/s. Therefore, we must strive to improve the speed of the system.

7.2.2 Working with various scene types

This requirement means that our algorithms have to deal with various problems
of various scene types. To achieve this objective, we have studied di�erent scene
types and we have discovered several problems which have not been dealt with in
the literature such as white balance e�ect, shadow in saturated regions. To solve
the problems of these scene types, for the foreground detection algorithms, we have
proposed some interesting contributions such as a chromaticity constraint taking
into account white balance e�ect, a homogeneity constraint working at three neigh-
bouring pixels which satis�es the physical shadow characteristics, a background
subtraction algorithm taking into account the scene characteristics, a better updat-
ing rule for means and variances. The controller for the background subtraction
algorithm also helps to solve problems such as removing noise, handling sudden illu-
mination changes, managing stationary objects, keeping track of objects when they
stop moving. With these improvements, we achieve better foreground detection
results.

However, the removal of strong shadow for outdoor scenes still remains a di�cult
problems.

7.2.3 Autonomous requirement

To ensure that the object detection framework can work autonomously, our con-
troller for the background subtraction algorithm continuously monitors the state
of the framework. As soon as the scene characteristic changes or the foreground
detection results are not consistent with the feedback of the classi�cation task, the
controller tries to tune the parameter values of the background subtraction algo-
rithm to make the system stable again. Therefore, human operators do not have to
interfere frequently.

7.3 Future works

Our future works can be classi�ed into short-term and long-term future works.
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7.3.1 Short-term future works

For the chromaticity features to remove shadow / highlight, we would like to improve
the algorithm to automatically estimate the parameters for white balance e�ect. The
current algorithm may be a�ected badly by parts of objects of interest misclassi�ed
as shadow / highlight. To overcome this problem, we can use the feedback of the
classi�cation task about the size of objects of interest compared with object model.
If the size of detected objects is too small, maybe parts of objects are misclassi�ed
as shadow or background. Therefore, we do not use the information in the current
frame to estimate the parameters of white balance.

We also want to �nd a better method to combine the chromaticity features with
homogeneity features to overcome the weakness of each type of features. Particu-
larly, we can loosen the chromaticity constraint so that we can improve the precision
of foreground detection. Then, the homogeneity constraint will help to recover er-
rors of chromaticity constraint. This solution may overcome the confusion problem
of chromaticity constraint and the speed problem of homogeneity constraint. For
the homogeneity features, we would like to study method to overcome the problem
of edges in the shadow. For the homogeneity constraint 3PC which works on three
neighbouring pixels, we would like to study methods to learn online or o�ine the
region not satisfying the constraint 3C (curve regions, rough regions). For example,
if after applying 3PC on a shadow region, the detection results on this region contain
too much small noise, we may not apply 3PC on this region in the future.

Beside that, we want to combine chromaticity and homogeneity features to better
remove strong shadow in outdoor scene videos. For the chromaticity constraint, we
will re�ne this constraint to re�ect the characteristics of shadow in outdoor scene.
We can apply online or o�ine learning method to solve this problem. For the
online method, we can use the homogeneity constraint to �nd possible shadow pixels
�rst. Then from the detected shadow pixels, we can learn the chromaticity changes
under shadow and apply it to the chromaticity constraint. For the o�ine method,
we can sample shadow region and study the chromaticity changes and apply this
knowledge if the current video is similar to the video we have learned. For the
homogeneity constraints, we would like to study the problem of shadow edges so
that the homogeneity constraint can be useful to remove shadow in outdoor scene.

For the background subtraction algorithm, we want to validate the proposed
background subtraction algorithm with more complex and long videos of various
scene types. Based on the detection results on these videos, we can re�ne the
classi�cation of scene types. Then, for each new scene type, we shall analyze its
characteristics and propose appropriate background model as well as corresponding
classi�cation rules speci�c to this scene type. By doing this way, we hope to improve
the detection results of the background subtraction algorithm.

For the algorithm to remove visual artifacts in the detection results, we would like
to study practical problems such as removing displacements of contextual objects
or handling the open / close of wardrobe by o�ine learning methods.

For the adaptation method to update background representation, we would like
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to validate the algorithm performance with long and complex video where many
objects may interact with one another, occlusion may occur frequently. Based on
the results on these videos, we will re�ne our algorithms to have better detection
results.

For the algorithm to verify the classi�cation results, because the current method
only have a weak constraint on the object size, we would like to exploit more infor-
mation from the object model. For example, we can have a higher threshold for the
distance between two edges at the middle of person.

For the online tuning algorithm, up to now, we only use the level of small noise
level as an indicator for the sensitivity of the background subtraction algorithm.
We have not used other symptom such as object sizes, unknown blobs because these
symptoms may be in�uenced by other factors. For example, object size might be
altered by shadow or occlusion or merging objects. In the future we will try to
incorporate these symptoms as supplement symptoms to evaluate the state of the
background subtraction algorithm.

7.3.2 Long-term future works
Combining background subtraction algorithm with other approach to
detect foreground pixels

We would like to study the combination of the background subtraction algorithm
with other approach to detect foreground pixels. For example, the background sub-
traction algorithm often has di�culties in detecting shadow in region with saturated
illumination. However, the transition between shadow and background could be
smooth. In this case, there is no edge between shadow and background. Therefore,
we can apply the edge based foreground detection approach to verify if the detected
foreground region has edges or not. If this foreground region does not have edges,
we can classify this region as shadow. However, we cannot use the edge based ap-
proach alone because sometime it is di�cult to detect the whole edge and sometime
it is di�cult to split two people standing close to each other. With the background
subtraction algorithm, we can determine the space between the two people and we
can use this space to split the two people easily.

Probabilistic output of the foreground detection task
For the foreground detection task, we would like to go further than the pixel

level. One way to do this is to produce probabilistic output of the foreground
detection task. It means that for each pixel, we produce a list of possible labels.
Each label is associated with the probability that the pixel can receive this label.
With this probability, we can use statistical algorithms such as Markov Random
Field to model the relationship between adjacent pixels having the same label. This
method can help to remove noisy isolated small regions to improve the accuracy of
the foreground detection task.

Modeling objects of interest
The background subtraction algorithm inside the foreground detection task only

model the background, not objects of interest. However, modeling objects of interest
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could help to better detect the objects of interest as in [Sheikh 2005]. Once an object
of interest is detected in the current frame, in the next frame this object is likely to
appear at a position near the current position. Therefore, the surrounding region
can be adjusted to better detect this object. However, the problem is how to speed
up the detection in crowded scenes and how to solve the problem of object crossing.

Tuning parameters
One drawback of the proposed evaluation-based parameter tuning algorithm

RBT is that this algorithm cannot handling the relationships between parameters.
Therefore, RBT cannot �nd good parameter values if it has to tune many parameters
and these parameters depend on one another. Therefore, in the future, we would
like to study evaluation-based tuning algorithms which are capable of handling pa-
rameter relationships so that these algorithm can work with various parameters of
various algorithm.

Beside that, the controller still has many parameters and it is di�cult to evaluate
the e�ect of changing these parameters using the consistency criteria. Therefore, we
would like to construct context-based tuning methods speci�c to these parameters
to improve the autonomy of the system.

We also want to apply the program supervision approach to the tuning process
in the controller. Particularly, we would like to externalize the knowledge used to
evaluate the performance of the background subtraction algorithm, the knowledge
to adjust parameter values so that human experts can easily modify, add, or remove
knowledge.

In a further future, we would like to extend the parameter tuning algorithms to
work with other tasks such as classi�cation and tracking tasks. To do this, we have
to de�ne consistency criteria based on the feedback of higher level task such as event
recognition. But at these levels, the feedback information should be associated with
o�ine learning information. For example, in [Hall 2006], in an o�ine phase, Hall
learns the clusters of object trajectories. Then, in an online phase, if a detected
trajectory is far from the learned clusters, this trajectory might not be good.
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Implementation

We have implemented the algorithms presented in chapter 4 and 5 and integrated
them into the platform SUP (Scene Understanding Platform) of our team PULSAR.
These algorithms are grouped into a module called ABE (Adaptive Background
Estimation). ABE does not use external library. The development environment is
shown in table A.1.

Operating system Linux Fedora core 10
Programming language C++
Compiler gcc version 4.3.2
Hardware CPU Intel Core 2 Duo P8600 2.4GHz, 4GB RAM

Table A.1: The development environment of the proposed algorithms

In the subsequent sections, we brie�y present the platform SUP, the interface of
the module ABE, and the functionalities of the module ABE.

A.1 Platform SUP
Our team PULSAR has constructed a generic video understanding platform SUP
(Scene Understanding Platform, the new version of VSIP platform [Avanzi 2005])
to facilitate the construction of new video analysis systems. This platform provides
full functionalities of a typical video analysis system to recognize pre-de�ned events
by detecting and analyzing the behavior of objects of interest moving in the scene
static. As other video analysis platform, SUP has the following tasks:

• Foreground pixel detection task: this task detects the foreground pixels which
may correspond to objects of interest.

• Blob construction task: this task combines adjacent foreground pixels to form
a bigger structure call Blob.

• Blob classi�cation task: this task classi�es the detected blobs into di�erent
types of objects.

• Object tracking task: this task �rst determines the correspondence between
objects in consecutive frames. Then it has to identify the trajectory of each
object of interest in the scene.
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• Event recognition task: based on the type of mobile objects and their tra-
jectories, this task analyzes the behavior of mobile objects and recognizes
pre-de�ned events.

The module ABE provides the functionality of the foreground pixel detection
task. Platform SUP provides image acquisition, and the feedback from the classi�-
cation task for the module ABE.

A.2 Interface of ABE
To easily integrate ABE into various platforms, we have de�ned generic structures
for the input and output of ABE. All the algorithms inside ABE only work on these
generic structures, not the structures de�ned by the platform. Then, to include
ABE into one particular platform, we only need to write conversion functions to
convert the structures de�ned by the platform into the generic structure de�ned by
ABE. With the help of these generic structures, we have easily integrated ABE into
the platform SUP as well as the platform VSIP, the ancient version of SUP, even
the structures of these two platforms are very di�erent.

ABE de�nes the following generic structures:

• A generic color image structure. This structure provides the functionalities
to get / set the value of each pixel in the image. Each pixel is accessed using
the position of the pixel (column and line).

• A generic blob structure. This structure stores the bounding box of the blob,
the 3D size (width and height), and the blob type (person, vehicle, or noise).

• A generic matrix to store the foreground pixel detection results. The size of
this matrix is equal to the size of the input image. Each element in the matrix
stores the foreground detection results of one pixel.

Beside converting the structure speci�c to one platform to the generic structure
de�ned by ABE, the platform also has to provide mechanism to enable ABE to read
its parameters.

The following scenario shows how a platform P can use ABE:

1. P reads the current frame from the video.

2. P converts the current frame into the image structure of ABE and sends it to
ABE.

3. ABE analyzes the current frame and sends back the foreground pixel detection
results in the form of the generic matrix to P .

4. P converts back the foreground detection results and sends it to higher level
tasks.
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5. After the classi�cation task in P �nishes classifying all the blobs in the current
frame, P converts all the detected blobs into the blobs with the structure
de�ned by ABE. Then P sends the list of converted blobs to ABE.

We see that to integrate ABE into one particular platform is quite easy. How-
ever, with this approach, the conversion from the structures of the platform to the
structures of ABE can slow down a little bit the system.

A.3 Functionalities of ABE
A.3.1 Background subtraction algorithm
We have implemented EGMM, the background subtraction algorithm proposed in
this thesis. We also implement GMM [Stau�er 1999] and GMM with shadow re-
moval. To remove shadow, we use NC, the chromaticity constraint proposed in this
thesis.

To clean up noise from the foreground detection results, we have implemented
the morphology operation �Opening�. Beside that, we have also implemented the
blob size �lter to remove small noise regions from the foreground detection results.

A.3.2 Removal of shadow and highlight
We have implemented the homogeneity constraints 2PC [Toth 2004] and 3PC (the
one proposed in this thesis). We have also implemented the classi�er to detect
shadow in region with saturated illumination.

A.3.3 Updating background representation
We have implemented the algorithms to quickly integrate noise into the background,
to handle sudden illumination changes, to manage stationary objects, and to keep
detecting objects of interest when they stop moving. Up to now, EGMM considers
that the type of stationary objects is vehicle and the type of the objects that the
background subtraction algorithm has to keep detecting is people. However, by
changing the function to convert blobs, the platform can easily change these default
types.

A.3.4 Tuning parameter values of the background subtraction al-
gorithm

To evaluate the consistency of the foreground detection task with the feedback
from classi�cation, we have implemented the function to compute error indicators
presented in chapter 5.

We have implemented two evaluation-based parameter tuning algorithms PBT
and RBT presented in chapter 5. To use these algorithms to tune parameter values
of the background subtraction algorithms, we de�ne a general structure describing
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characteristics of the parameter. For example, the parameter T of GMM is described
as follows:

• Name: �T�

• Value: Pmin = 0.2, Pmax = 0.8, δ = 0.05.

• Error indicator: Inoise

• Preference: Low

With this interface, the two tuning algorithms can work with various background
subtraction algorithms. We have tested these tuning algorithms with EGMM and
GMM.

For the contex-based parameter tuning method to tune the parameters of the
background subtraction algorithm EGMM to detect strong shadow in outdoor scenes,
we are developing and have not �nished it yet. We will �nish this functionality in
the near future.
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Adaptive algorithms for background estimation to detect moving
objects in videos

Abstract: Detecting foreground pixels is the �rst step to detect objects of interest
in videos. The objective of this thesis is to propose a new background estimation
method to detect foreground pixels. The proposed method can adapt the estimated
background to various changes of environment (e.g. changes of illumination or of
contextual objects).

The proposed background estimation method consists of a new background sub-
traction algorithm to detect foreground pixels, post-processing algorithms to remove
shadow and highlight, and a controller to adapt the background subtraction algo-
rithm to the current scene conditions.

The new background subtraction algorithm takes into account the scene char-
acteristics such as dynamic background (e.g. tree leave motion), displacement of
contextual objects to improve the foreground detection results. It also proposes a
new updating method to better adapt its background representation to the current
scene conditions.

The algorithms to remove shadow and highlight employ new chromaticity and
homogeneity (texture) constraints which are robust to illumination changes. These
constraints are constructed based on the illumination model and the camera model.

The controller has two adaptation methods for the background subtraction al-
gorithm. The �rst method is to selectively update the background representation of
the background subtraction algorithm. With this updating method, the background
subtraction algorithm can solve various problems such as managing stationary ob-
jects, keeping track of objects when they stop moving. The second method is to
tune the parameter values of the background subtraction algorithm. To ful�ll these
two tasks, the controller extensively uses the feedback from the classi�cation task
and the information about the background subtraction algorithm and the scene.

This method has been validated using the public database ETISEO and one
hour video from the project GERHOME.
Keywords: background subtraction algorithm, chromaticity, homogeneity, tex-
ture, managing stationary objects, keeping track of objects, tuning parameter


