T. Lindahl and R. D. Wood, Quality Control by DNA Repair, Science, vol.286, issue.5446, pp.1897-905, 1999.
DOI : 10.1126/science.286.5446.1897

J. Cadet, T. Douki, and C. Badouard, Oxidative Damage to Nucleic Acids, 2007.

G. Guetens, D. Boeck, G. Highley, and M. , Oxidative DNA Damage: Biological Significance and Methods of Analysis, Critical Reviews in Clinical Laboratory Sciences, vol.16, issue.4878, pp.4-5, 2002.
DOI : 10.1080/09553008514550201

A. Favier, Le stress oxydant ; Intérêt conceptuel et expérimental dans la compréhension des mécanismes des maladies et potentiel thérapeutique, pp.102-109, 2003.

H. E. Krokan, R. Standal, and G. Slupphaug, DNA glycosylases in the base excision repair of DNA, Biochemical Journal, vol.325, issue.1, pp.1-16, 1997.
DOI : 10.1042/bj3250001

P. C. Blainey, A. M. Van-oijen, and A. Banerjee, A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA, Proceedings of the National Academy of Sciences, vol.103, issue.15, pp.103-5752, 2006.
DOI : 10.1073/pnas.0509723103

G. W. Buchko, K. Mcateer, and S. S. Wallace, Solution-state NMR investigation of DNA binding interactions in Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg): a dynamic description of the DNA/protein interface, DNA Repair, vol.4, issue.3, pp.327-366, 2005.
DOI : 10.1016/j.dnarep.2004.09.012

H. M. Nash, S. D. Bruner, and O. D. Scharer, Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily, Current Biology, vol.6, issue.8, pp.968-80, 1996.
DOI : 10.1016/S0960-9822(02)00641-3

D. O. Zharkov, A. A. Ishchenko, and K. T. Douglas, Recognition of damaged DNA by Escherichia coli Fpg protein: insights from structural and kinetic data, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.531, issue.1-2, pp.141-56, 2003.
DOI : 10.1016/j.mrfmmm.2003.09.002

S. Maynard, S. H. Schurman, and C. Harboe, Base excision repair of oxidative DNA damage and association with cancer and aging, Carcinogenesis, vol.30, issue.1, pp.2-10, 2009.
DOI : 10.1093/carcin/bgn250

B. Pascucci, G. Maga, and U. Hubscher, Reconstitution of the base excision repair pathway for 7,8-dihydro-8-oxoguanine with purified human proteins, Nucleic Acids Research, vol.30, issue.10, pp.30-2124, 2002.
DOI : 10.1093/nar/30.10.2124

M. Christmann, M. T. Tomicic, and W. P. Roos, Mechanisms of human DNA repair: an update, Toxicology, vol.193, issue.1-2, pp.3-34, 2003.
DOI : 10.1016/S0300-483X(03)00287-7

S. D. Bruner, D. P. Norman, and G. L. Verdine, Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA, Nature, issue.6772, pp.403-859, 2000.

T. Lindahl, Instability and decay of the primary structure of DNA, Nature, vol.362, issue.6422, pp.709-724, 1993.
DOI : 10.1038/362709a0

R. A. Rieger, E. I. Zaika, and W. Xie, Proteomic Approach to Identification of Proteins Reactive for Abasic Sites in DNA, Molecular & Cellular Proteomics, vol.5, issue.5, pp.858-67, 2006.
DOI : 10.1074/mcp.M500224-MCP200

J. S. Sung and B. Demple, Roles of base excision repair subpathways in correcting oxidized abasic sites in DNA, FEBS Journal, vol.26, issue.8, pp.273-1620, 2006.
DOI : 10.1016/S0960-9822(00)00245-1

S. S. Parikh, C. D. Mol, and G. Slupphaug, Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA, The EMBO Journal, vol.17, issue.17, pp.17-5214, 1998.
DOI : 10.1093/emboj/17.17.5214

E. Mullaart, P. H. Lohman, and F. Berends, DNA damage metabolism and aging, Mutation Research/DNAging, vol.237, issue.5-6, pp.5-6, 1990.
DOI : 10.1016/0921-8734(90)90001-8

P. J. Thornalley, Protecting the genome: defence against nucleotide glycation and emerging role of glyoxalase I overexpression in multidrug resistance in cancer chemotherapy, Biochemical Society Transactions, vol.31, issue.6, pp.1372-1379, 2003.
DOI : 10.1042/bst0311372

C. Helene and M. Charlier, Photosensitized reactions in nucleic acids. Photosensitized formation and splitting of pyrimidine dimers, Biochimie, issue.11, pp.53-1175, 1971.

S. Mouret, C. Baudouin, and M. Charveron, Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation, Proceedings of the National Academy of Sciences, vol.103, issue.37
DOI : 10.1073/pnas.0604213103

M. H. David-cordonnier, J. Laval, O. Neill, and P. , Clustered DNA Damage, Influence on Damage Excision by XRS5 Nuclear Extracts and Escherichia coli Nth and Fpg Proteins, Journal of Biological Chemistry, vol.275, issue.16
DOI : 10.1074/jbc.275.16.11865

T. Douki, Respective contributions of direct and indirect effects to high let heavy ions induced DNA damage, 7th Winter Research Conference, 2006.

E. C. Friedberg, How nucleotide excision repair protects against cancer, Nature Reviews Cancer, vol.1, issue.1, pp.22-33, 2001.
DOI : 10.1038/35094000

G. L. Verdine and D. P. Norman, Covalent Trapping of Protein-DNA Complexes, Annual Review of Biochemistry, vol.72, issue.1, pp.337-66, 2003.
DOI : 10.1146/annurev.biochem.72.121801.161447

C. Li, L. E. Wang, W. , and Q. , DNA repair phenotype and cancer susceptibility-A mini review, International Journal of Cancer, vol.12, issue.182
DOI : 10.1002/ijc.24126

S. S. David and S. D. Williams, Chemistry of Glycosylases and Endonucleases Involved in Base-Excision Repair, Chemical Reviews, vol.98, issue.3, pp.98-1221, 1998.
DOI : 10.1021/cr980321h

A. Chollat-namy, Nouvelles sondes nucléiques pour la mesure d'activités enzymatiques de réparation des dommages de l'ADN par un test de fluorescence, 2006.

G. Slupphaug, B. Kavli, and H. E. Krokan, The interacting pathways for prevention and repair of oxidative DNA damage, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.531, issue.1-2, pp.231-51, 2003.
DOI : 10.1016/j.mrfmmm.2003.06.002

H. Maki and M. Sekiguchi, MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis, Nature, vol.355, issue.6357, pp.355-273, 1992.
DOI : 10.1038/355273a0

J. Y. Mo, H. Maki, and M. Sekiguchi, Hydrolytic elimination of a mutagenic nucleotide, 8-oxodGTP, by human 18-kilodalton protein: sanitization of nucleotide pool., Proceedings of the National Academy of Sciences, vol.89, issue.22, pp.89-11021, 1992.
DOI : 10.1073/pnas.89.22.11021

S. C. Trewick, T. F. Henshaw, and R. P. Hausinger, Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage, Nature, vol.32, issue.6903, pp.419-174, 2002.
DOI : 10.1006/jmbi.2000.4046

G. B. Sancar, Enzymatic photoreactivation: 50 years and counting, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.451, issue.1-2, pp.25-37, 2000.
DOI : 10.1016/S0027-5107(00)00038-5

D. Averbeck, Mechanisms of repair and radiation-induced mutagenesis in higher eukaryotes, Cancer Radiother, issue.45, pp.335-54, 2000.

G. A. Cromie, J. C. Connelly, and D. R. Leach, Recombination at Double-Strand Breaks and DNA Ends, Molecular Cell, vol.8, issue.6, pp.1163-74, 2001.
DOI : 10.1016/S1097-2765(01)00419-1

R. Scully and N. Puget, BRCA1 and BRCA2 in hereditary breast cancer, Biochimie, vol.84, issue.1, pp.95-102, 2002.
DOI : 10.1016/S0300-9084(01)01359-1

M. Lobrich and P. A. Jeggo, Harmonising the response to DSBs: a new string in the ATM bow, DNA Repair, vol.4, issue.7, pp.749-59, 2005.
DOI : 10.1016/j.dnarep.2004.12.008

D. O. Zharkov, G. Shoham, and A. P. Grollman, Structural characterization of the Fpg family of DNA glycosylases, DNA Repair, vol.2, issue.8, pp.839-62, 2003.
DOI : 10.1016/S1568-7864(03)00084-3

A. B. Robertson, A. Klungland, and T. Rognes, DNA Repair in Mammalian Cells, Cellular and Molecular Life Sciences, vol.66, issue.6, pp.66-981, 2009.
DOI : 10.1007/s00018-009-8736-z

M. S. Cooke, M. D. Evans, and M. Dizdaroglu, Oxidative DNA damage: mechanisms, mutation, and disease, The FASEB Journal, vol.17, issue.10, pp.17-1195, 2003.
DOI : 10.1096/fj.02-0752rev

G. Frosina, Prophylaxis of oxidative DNA damage by formamidopyrimidine-DNA glycosylase, International Journal of Cancer, vol.435, issue.1
DOI : 10.1002/ijc.21793

M. L. Hegde, T. K. Hazra, M. , and S. , Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells, Cell Research, vol.10, issue.1, pp.27-47, 2008.
DOI : 10.1074/jbc.M505526200

G. Frosina, CommentaryDNA Base Excision Repair Defects in Human Pathologies, Free Radical Research, vol.187, issue.10, pp.1037-54, 2004.
DOI : 10.1080/10715760400011445

J. Lanuszewska, A. Cudak, and J. Rzeszowska-wolny, Detection of damage-recognition proteins from human lymphocytes

S. Boiteux, T. R. O-'connor, and F. Lederer, Homogeneous Escherichia coli FPG protein. A DNA glycosylase which excises imidazole ring-opened purines and nicks DNA at apurinic/apyrimidinic sites

M. L. Dodson, M. L. Michaels, L. , and R. S. , Unified catalytic mechanism for DNA glycosylases

T. K. Hazra, A. Das, and S. Das, Oxidative DNA damage repair in mammalian cells: A new perspective, DNA Repair, vol.6, issue.4, pp.470-80, 2007.
DOI : 10.1016/j.dnarep.2006.10.011

A. W. Francis and S. S. David, Escherichia coli MutY and Fpg utilize a processive mechanism for target location, Biochemistry, issue.3, pp.42-801, 2003.

J. H. Miller, C. C. Fan-chiang, and T. P. Straatsma, 8-Oxoguanine Enhances Bending of DNA that Favors Binding to Glycosylases, Journal of the American Chemical Society, vol.125, issue.20, pp.125-6331, 2003.
DOI : 10.1021/ja029312n

Y. Kubota, R. A. Nash, and A. Klungland, Reconstitution of DNA base excision-repair with purified human proteins : interaction between DNA polymerase beta and the XRCC1 protein, EMBO J, issue.23, pp.15-6662, 1996.

R. J. Graves, I. Felzenszwalb, and J. Laval, Excision of 5'-terminal deoxyribose phosphate from damaged DNA is catalyzed by the Fpg protein of Escherichia coli

J. C. Fromme, A. Banerjee, and G. L. Verdine, DNA glycosylase recognition and catalysis, Current Opinion in Structural Biology, vol.14, issue.1, pp.43-52, 2004.
DOI : 10.1016/j.sbi.2004.01.003

V. Simonelli, L. Narciso, and E. Dogliotti, Base excision repair intermediates are mutagenic in mammalian cells, Nucleic Acids Research, vol.33, issue.14, pp.33-4404, 2005.
DOI : 10.1093/nar/gki749

J. Cadet, A. G. Bourdat, and C. Ham, Oxidative base damage to DNA: specificity of base excision repair enzymes, Mutation Research/Reviews in Mutation Research, vol.462, issue.2-3, pp.121-129, 2000.
DOI : 10.1016/S1383-5742(00)00022-3

S. Boiteux, T. R. O-'connor, and J. Laval, Formamidopyrimidine-DNA glycosylase of Escherichia coli : cloning and sequencing of the fpg structural gene and overproduction of the protein, EMBO J, issue.610, pp.3177-83, 1987.

B. Castaing, A. Geiger, and H. Seliger, Cleavage and binding of a DNA fragment containing a single 8-oxoguanine by wild type and mutant FPG proteins, Nucleic Acids Research, vol.21, issue.12, pp.21-2899, 1993.
DOI : 10.1093/nar/21.12.2899

O. Connor, T. R. Graves, R. J. De-murcia, and G. , Fpg protein of Escherichia coli is a zinc finger protein whose cysteine residues have a structural and

A. A. Ishchenko, N. L. Vasilenko, and O. I. Sinitsina, Thermodynamic, kinetic, and structural basis for recognition and repair of 8-oxoguanine in DNA by Fpg protein from Escherichia coli, Biochemistry, issue.24, pp.41-7540, 2002.

V. V. Koval, N. A. Kuznetsov, and D. O. Zharkov, Pre-steady-state kinetics shows differences in processing of various DNA lesions by Escherichia coli formamidopyrimidine-DNA glycosylase, Nucleic Acids Research, vol.32, issue.3, pp.32-926, 2004.
DOI : 10.1093/nar/gkh237

D. Gasparutto, A. G. Bourdat, and C. Ham, Repair and replication of oxidized DNA bases using modified oligodeoxyribonucleotides, Biochimie, vol.82, issue.1, pp.19-24, 2000.
DOI : 10.1016/S0300-9084(00)00347-3

B. Castaing, J. L. Fourrey, and N. Hervouet, AP site structural determinants for Fpg specific recognition, Nucleic Acids Research, vol.27, issue.2, pp.608-623, 1999.
DOI : 10.1093/nar/27.2.608

B. Castaing, S. Boiteux, and C. Zelwer, formamidopyrimidine-DNA glycosyiase, Nucleic Acids Research, vol.20, issue.3, pp.389-94, 1992.
DOI : 10.1093/nar/20.3.389

J. Tchou, V. Bodepudi, and S. Shibutani, Substrate specificity of Fpg protein

M. Rogacheva, A. Ishchenko, and M. Saparbaev, High resolution characterization of formamidopyrimidine-DNA glycosylase interaction with its substrate by chemical crosslinking and mass spectrometry using substrate analogs

R. P. Cunningham and B. Weiss, Endonuclease III (nth) mutants of Escherichia coli., Proceedings of the National Academy of Sciences, vol.82, issue.2, pp.474-78, 1985.
DOI : 10.1073/pnas.82.2.474

M. Dizdaroglu, J. Laval, and S. Boiteux, Substrate specificity of the Escherichia coli endonuclease III: Excision of thymine- and cytosine-derived lesions in DNA produced by radiation-generated free radicals, Biochemistry, vol.32, issue.45, pp.32-12105, 1993.
DOI : 10.1021/bi00096a022

J. Pouget, Effet du rayonnement ionisant sur l'ADN cellulaire : mesure des bases puriques et pyrimidiques modifiées, 2000.

J. H. Back, J. H. Chung, and Y. I. Park, Endonuclease IV enhances base excision repair of endonuclease III from Methanobacterium thermoautotrophicum, DNA Repair, vol.2, issue.5, pp.455-70, 2003.
DOI : 10.1016/S1568-7864(02)00243-4

T. Paz-elizur, Z. Sevilya, and Y. Leitner-dagan, DNA repair of oxidative DNA damage in human carcinogenesis: Potential application for cancer risk assessment and prevention, Cancer Letters, vol.266, issue.1, pp.60-72, 2008.
DOI : 10.1016/j.canlet.2008.02.032

T. K. Hazra, T. Izumi, and L. Maidt, The presence of two distinct 8-oxoguanine repair enzymes in human cells: their potential complementary roles in preventing mutation, Nucleic Acids Research, vol.26, issue.22, pp.26-5116, 1998.
DOI : 10.1093/nar/26.22.5116

A. Banerjee, W. Yang, and M. Karplus, Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA, Nature, vol.21, issue.7033, pp.434-612, 2005.
DOI : 10.1021/bi00238a003

D. Errico, M. Parlanti, E. Dogliotti, and E. , Mechanism of oxidative DNA damage repair and relevance to human pathology, Mutation Research/Reviews in Mutation Research, vol.659, issue.1-2, pp.4-14, 2008.
DOI : 10.1016/j.mrrev.2007.10.003

I. Morland, L. Luna, and E. Gustad, Product inhibition and magnesium modulate the dual reaction mode of hOgg1, DNA Repair, vol.4, issue.3, pp.381-388, 2005.
DOI : 10.1016/j.dnarep.2004.11.002

J. W. Hill, T. K. Hazra, and T. Izumi, Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair, Nucleic Acids Research, vol.29, issue.2, pp.29-430, 2001.
DOI : 10.1093/nar/29.2.430

A. E. Vidal, I. D. Hickson, and S. Boiteux, Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step, Nucleic Acids Research, vol.29, issue.6, pp.29-1285, 2001.
DOI : 10.1093/nar/29.6.1285

T. Hirano, Repair System of 7, 8-Dihydro-8-Oxoguanine as a Defense Line against Carcinogenesis, Journal of Radiation Research, vol.49, issue.4
DOI : 10.1269/jrr.08049

H. E. Krokan, H. Nilsen, and F. Skorpen, Base excision repair of DNA in mammalian cells, FEBS Letters, vol.435, issue.1-2, pp.73-80, 2000.
DOI : 10.1016/S0014-5793(00)01674-4

I. Dianova, V. A. Bohr, and G. L. Dianov, Interaction of Human AP Endonuclease 1 with Flap Endonuclease 1 and Proliferating Cell Nuclear Antigen Involved in Long-Patch Base Excision Repair, Biochemistry, vol.40, issue.42, pp.40-12639, 2001.
DOI : 10.1021/bi011117i

Y. Masuda, R. A. Bennett, and B. Demple, Rapid Dissociation of Human Apurinic Endonuclease (Ape1) from Incised DNA Induced by Magnesium, Journal of Biological Chemistry, vol.273, issue.46
DOI : 10.1074/jbc.273.46.30360

P. J. Brooks, D. S. Wise, and D. A. Berry, The Oxidative DNA Lesion 8,5'-(S)-Cyclo-2'-deoxyadenosine Is Repaired by the Nucleotide Excision Repair Pathway and Blocks Gene Expression in Mammalian Cells, Journal of Biological Chemistry, vol.275, issue.29
DOI : 10.1074/jbc.M002259200

R. M. Costa, V. Chigancas, and S. Galhardo-rda, The eukaryotic nucleotide excision repair pathway, Biochimie, vol.85, issue.11, pp.85-1083, 2003.
DOI : 10.1016/j.biochi.2003.10.017

J. Millau, K. Sugasawa, J. M. Ng, and C. Masutani, Test fonctionnel de mesure des activités enzymatiques de réparation de l'ADN par excision resynthèse sur support miniaturisé : mise au point et applications Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair, Mol Cell, vol.88, issue.22, pp.223-255, 1998.

V. Rapic-otrin, M. P. Mclenigan, and D. C. Bisi, Sequential binding of UV DNA damage binding factor and degradation of the p48 subunit as early events after UV irradiation, Nucleic Acids Research, vol.30, issue.11, pp.30-2588, 2002.
DOI : 10.1093/nar/30.11.2588

J. Tang and G. Chu, Xeroderma pigmentosum complementation group E and UV-damaged DNA-binding protein, DNA Repair, vol.1, issue.8, pp.601-617, 2002.
DOI : 10.1016/S1568-7864(02)00052-6

G. Villani, T. Le-gac, and N. , Interactions of DNA Helicases with Damaged DNA: Possible Biological Consequences, Journal of Biological Chemistry, vol.275, issue.43
DOI : 10.1074/jbc.R000011200

F. R. Salsbury, . Jr, J. E. Clodfelter, and M. B. Gentry, The molecular mechanism of DNA damage recognition by MutS homologs and its consequences for cell death response, Nucleic Acids Research, vol.34, issue.8, pp.34-2173, 2006.
DOI : 10.1093/nar/gkl238

A. Gerard, S. E. Polo, and D. Roche, Methods for Studying Chromatin Assembly Coupled to DNA Repair, Methods Enzymol, vol.409, pp.358-74, 2006.
DOI : 10.1016/S0076-6879(05)09021-X

D. T. Goodhead, The Initial Physical Damage Produced by Ionizing Radiations, International Journal of Radiation Biology, vol.35, issue.5
DOI : 10.1080/09553008914551841

L. Harrison, Z. Hatahet, W. , and S. S. , In vitro repair of synthetic ionizing radiationinduced multiply damaged DNA sites

B. M. Sutherland, P. V. Bennett, and O. Sidorkina, Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation, Proceedings of the National Academy of Sciences, vol.97, issue.1, pp.97-103, 2000.
DOI : 10.1073/pnas.97.1.103

S. Malyarchuk, R. Castore, H. , and L. , Apex1 can cleave complex clustered DNA lesions in cells, DNA Repair, vol.8, issue.12, pp.1343-54, 2009.
DOI : 10.1016/j.dnarep.2009.08.008

C. G. Pearson, N. Shikazono, and J. Thacker, Enhanced mutagenic potential of 8-oxo-7,8-dihydroguanine when present within a clustered DNA damage site, Nucleic Acids Research, vol.32, issue.1, pp.32-263, 2004.
DOI : 10.1093/nar/gkh150

M. H. David-cordonnier, S. Boiteux, O. Neill, and P. , Efficiency of Excision of 8-Oxo-guanine within DNA Clustered Damage by XRS5 Nuclear Extracts and Purified Human OGG1 Protein, Biochemistry, vol.40, issue.39, pp.40-11811, 2001.
DOI : 10.1021/bi0112356

G. Eot-houllier, M. Gonera, and D. Gasparutto, Interplay between DNA Nglycosylases/AP lyases at multiply damaged sites and biological consequences, Nucleic Acids Res, issue.10, pp.35-3355, 2007.

D. Souza, D. , I. Harrison, and L. , Repair of clustered uracil DNA damages in Escherichia coli, Nucleic Acids Res, issue.15, pp.31-4573, 2003.

M. H. David-cordonnier, J. Laval, O. Neill, and P. , Recognition and kinetics for excision of a base lesion within clustered DNA damage by the Escherichia coli proteins Fpg and Nth, Biochemistry, pp.40-5738, 2001.

F. Barone, E. Dogliotti, and L. Cellai, Influence of DNA torsional rigidity on excision of 7,8-dihydro-8-oxo-2'-deoxyguanosine in the presence of opposing abasic sites by human OGG1 protein, Nucleic Acids Research, vol.31, issue.7, pp.31-1897, 2003.
DOI : 10.1093/nar/gkg289

S. Byrne, S. Cunniffe, and P. O-'neill, 5,6-Dihydrothymine Impairs the Base Excision Repair Pathway of a Closely Opposed AP Site or Single-Strand Break, Radiation Research, vol.172, issue.5, pp.172-537, 2009.
DOI : 10.1667/RR1830.1

M. E. Lomax, H. Salje, and S. Cunniffe, 8-OxoA Inhibits the Incision of an AP Site by the DNA Glycosylases Fpg, Nth and the AP Endonuclease HAP1, Radiation Research, vol.163, issue.1, pp.79-84, 2005.
DOI : 10.1667/RR3284

S. M. Cunniffe, M. E. Lomax, O. Neill, and P. , An AP site can protect against the mutagenic potential of 8-oxoG when present within a tandem clustered site in E. coli, DNA Repair, vol.6, issue.12, pp.1839-1888, 2007.
DOI : 10.1016/j.dnarep.2007.07.003

M. M. Ali, T. K. Hazra, and D. Hong, Action of human endonucleases III and VIII upon DNA-containing tandem dihydrouracil, DNA Repair, vol.4, issue.6, pp.679-86, 2005.
DOI : 10.1016/j.dnarep.2005.03.004

L. J. Eccles, M. E. Lomax, O. Neill, and P. , Hierarchy of lesion processing governs the repair, double-strand break formation and mutability of three-lesion clustered DNA damage, Nucleic Acids Research, vol.38, issue.4, pp.1123-1157, 2010.
DOI : 10.1093/nar/gkp1070

J. Yang, Y. Yu, and H. E. Hamrick, initiators of the cellular genotoxic stress responses, Carcinogenesis, issue.10, pp.24-1571, 2003.

P. M. Garber, G. M. Vidanes, and D. P. Toczyski, Damage in transition, Trends in Biochemical Sciences, vol.30, issue.2, pp.63-69, 2005.
DOI : 10.1016/j.tibs.2004.12.004

K. Bishay, K. Ory, and M. F. Olivier, DNA damage-related RNA expression to assess individual sensitivity to ionizing radiation, Carcinogenesis, vol.22, issue.8, pp.22-1179, 2001.
DOI : 10.1093/carcin/22.8.1179

A. Sesto, M. Navarro, and F. Burslem, Analysis of the ultraviolet B response in primary human keratinocytes using oligonucleotide microarrays, Proceedings of the National Academy of Sciences, vol.99, issue.5, pp.99-2965, 2002.
DOI : 10.1073/pnas.052678999

T. Mammone, M. Ingrassia, and D. Gan, The Cytoprotective Effects of Exogenous DNA Fragments, Skin Pharmacology and Physiology, vol.15, issue.1, pp.26-34, 2002.
DOI : 10.1159/000049386

E. T. Sakamoto-hojo, S. S. Mello, and E. Pereira, Gene expression profiles in human cells submitted to genotoxic stress, Mutation Research/Reviews in Mutation Research, vol.544, issue.2-3, pp.403-416, 2003.
DOI : 10.1016/j.mrrev.2003.07.004

F. Hazane, K. Valenti, and S. Sauvaigo, Ageing effects on the expression of cell defence genes after UVA irradiation in human male cutaneous fibroblasts using cDNA arrays, Journal of Photochemistry and Photobiology B: Biology, vol.79, issue.3, pp.79-171, 2005.
DOI : 10.1016/j.jphotobiol.2005.02.001

URL : https://hal.archives-ouvertes.fr/inserm-00410563

M. A. Chaudhry, Base excision repair of ionizing radiation-induced DNA damage in G1 and G2 cell cycle phases, Cancer Cell International, vol.7, issue.1, pp.1-11, 2007.
DOI : 10.1186/1475-2867-7-15

S. Kamiuchi, M. Saijo, and E. Citterio, Translocation of Cockayne syndrome group A protein to the nuclear matrix: Possible relevance to transcription-coupled DNA repair, Proceedings of the National Academy of Sciences, vol.99, issue.1, pp.99-201, 2002.
DOI : 10.1073/pnas.012473199

M. Christmann and B. Kaina, Nuclear Translocation of Mismatch Repair Proteins MSH2 and MSH6 as a Response of Cells to Alkylating Agents, Journal of Biological Chemistry, vol.275, issue.46
DOI : 10.1074/jbc.M005377200

K. K. Wu, Analysis of Protein-DNA Binding by Streptavidin-Agarose Pulldown, Methods Mol Biol, vol.338, pp.281-90, 2006.
DOI : 10.1385/1-59745-097-9:281

A. Campalans, R. Amouroux, and A. Bravard, UVA irradiation induces relocalisation of the DNA repair protein hOGG1 to nuclear speckles, Journal of Cell Science, vol.120, issue.1, pp.23-32, 2007.
DOI : 10.1242/jcs.03312

URL : https://hal.archives-ouvertes.fr/hal-00169632

T. H. Kang, J. T. Reardon, and M. Kemp, Circadian oscillation of nucleotide excision repair in mammalian brain, Proceedings of the National Academy of Sciences, vol.106, issue.8
DOI : 10.1073/pnas.0812638106

T. Lu, Y. Pan, and S. Y. Kao, Gene regulation and DNA damage in the ageing human brain, Nature, vol.34, issue.6994, pp.429-883, 2004.
DOI : 10.1038/nm0602-600

B. Szczesny, K. K. Bhakat, and S. Mitra, Age-dependent modulation of DNA repair enzymes by covalent modification and subcellular distribution, Mechanisms of Ageing and Development, vol.125, issue.10-11, pp.10-11, 2004.
DOI : 10.1016/j.mad.2004.07.005

S. Z. Imam, B. Karahalil, and B. A. Hogue, Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an age-dependent manner, Neurobiology of Aging, vol.27, issue.8, pp.27-1129, 2006.
DOI : 10.1016/j.neurobiolaging.2005.06.002

T. J. Mcbride, B. D. Preston, and L. A. Loeb, Mutagenic spectrum resulting from DNA damage by oxygen radicals, Biochemistry, vol.30, issue.1, pp.207-220, 1991.
DOI : 10.1021/bi00215a030

K. C. Cheng, D. S. Cahill, and H. Kasai, 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes GT and AC substitutions

M. L. Wood, M. Dizdaroglu, and E. Gajewski, Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome, Biochemistry, vol.29, issue.30, pp.29-7024, 1990.
DOI : 10.1021/bi00482a011

S. Chevillard, J. P. Radicella, and C. Levalois, Mutations in OGG1, a gene involved in the repair of oxidative DNA damage, are found in human lung and kidney tumours, Oncogene, vol.16, issue.23, pp.16-3083, 1998.
DOI : 10.1038/sj.onc.1202096

X. Xu, M. J. Stower, and I. N. Reid, A hot spot for p53 mutation in transitional cell carcinoma of the bladder : clues to the etiology of bladder cancer, Cancer Epidemiol Biomarkers Prev, issue.68, pp.611-617, 1997.

N. F. Lowndes and J. R. Murguia, Sensing and responding to DNA damage, Current Opinion in Genetics & Development, vol.10, issue.1, pp.17-25, 2000.
DOI : 10.1016/S0959-437X(99)00050-7

S. Adimoolam, C. X. Lin, and J. M. Ford, The p53-regulated cyclin-dependent kinase inhibitor, p21 (cip1, waf1, sdi1), is not required for global genomic and transcriptioncoupled nucleotide excision repair of UV-induced DNA photoproducts

M. Wakasugi, A. Kawashima, and H. Morioka, DDB Accumulates at DNA Damage Sites Immediately after UV Irradiation and Directly Stimulates Nucleotide Excision Repair, Journal of Biological Chemistry, vol.277, issue.3
DOI : 10.1074/jbc.C100610200

J. Shen, E. C. Gilmore, and C. A. Marshall, Mutations in PNKP cause microcephaly, seizures and defects in DNA repair, Nature Genetics, vol.101, issue.3, pp.245-254, 2006.
DOI : 10.1038/ng.526

B. N. Ames, R. L. Saul, R. Alan, and . Liss, Genetic Toxicology of Environmental Chemicals, Part A : Basic Principles and Mechanisms of Action, 1988.

R. Adelman, R. L. Saul, and B. N. Ames, Oxidative damage to DNA: relation to species metabolic rate and life span., Proceedings of the National Academy of Sciences, vol.85, issue.8, pp.85-2706, 1988.
DOI : 10.1073/pnas.85.8.2706

A. R. Collins, C. M. Gedik, and B. Olmedilla, Oxidative DNA damage measured in human lymphocytes : large differences between sexes and between countries, and correlations with heart disease mortality rates, FASEB J, issue.13, pp.12-1397, 1998.

L. Marchand, L. Donlon, T. Lum-jones, and A. , Association of the hOGG1 Ser326Cys polymorphism with lung cancer risk, Cancer Epidemiol Biomarkers Prev, vol.11, issue.4, pp.409-421, 2002.

H. S. Jeon, K. M. Kim, and S. H. Park, Relationship between XPG codon 1104 polymorphism and risk of primary lung cancer, Carcinogenesis, vol.24, issue.10, pp.24-1677, 2003.
DOI : 10.1093/carcin/bgg120

W. M. Gao, M. Romkes, and R. D. Day, Association of the DNA repair gene XPD Asp312Asn polymorphism with p53 gene mutations in tobacco-related non-small cell lung cancer Differences in base excision repair capacity may modulate the effect of dietary antioxidant intake on prostate cancer risk : an example of polymorphisms in the XRCC1 gene, Carcinogenesis Cancer Epidemiol Biomarkers Prev, vol.24, issue.1011, pp.1671-1677, 2002.

Z. H. Wang, X. P. Miao, and W. Tan, Single nucleotide polymorphisms in XRCC1 and clinical response to platin-based chemotherapy in advanced non-small cell lung cancer

S. Jacob and F. Praz, DNA mismatch repair defects: role in colorectal carcinogenesis, Biochimie, vol.84, issue.1, pp.27-47, 2002.
DOI : 10.1016/S0300-9084(01)01362-1

G. Achanta and P. Huang, Role of p53 in Sensing Oxidative DNA Damage in Response to Reactive Oxygen Species-Generating Agents, Cancer Research, vol.64, issue.17, pp.64-6233, 2004.
DOI : 10.1158/0008-5472.CAN-04-0494

M. L. Fishel and M. R. Kelley, The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target, Molecular Aspects of Medicine, vol.28, issue.3-4, pp.3-4, 2007.
DOI : 10.1016/j.mam.2007.04.005

Y. Yamayoshi, E. Iida, and Y. Tanigawara, Cancer pharmacogenomics: international trends, International Journal of Clinical Oncology, vol.10, issue.1
DOI : 10.1007/s10147-004-0467-4

C. J. Herring, C. M. West, and D. P. Wilks, Levels of the DNA repair enzyme human apurinic/apyrimidinic endonuclease (APE1, APEX, Ref-1) are associated with the intrinsic radiosensitivity of cervical cancers, British Journal of Cancer, vol.78, issue.9
DOI : 10.1038/bjc.1998.641

T. Riedl, F. Hanaoka, and J. M. Egly, The comings and goings of nucleotide excision repair factors on damaged DNA, The EMBO Journal, vol.22, issue.19, pp.22-5293, 2003.
DOI : 10.1093/emboj/cdg489

R. Rosell, R. V. Lord, and M. Taron, DNA repair and cisplatin resistance in non-small-cell lung cancer, Lung Cancer, vol.38, issue.3, pp.217-244, 2002.
DOI : 10.1016/S0169-5002(02)00224-6

R. V. Lord, J. Brabender, and D. Gandara, Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer, Clin Cancer Res, issue.87, pp.2286-91, 2002.

O. Toussaint, E. E. Medrano, V. Zglinicki, and T. , Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes, Experimental Gerontology, vol.35, issue.8, pp.35-927, 2000.
DOI : 10.1016/S0531-5565(00)00180-7

E. H. Dirksen, M. W. Pinkse, and D. T. Rijkers, Investigating the Dynamic Nature of the Interactions between Nuclear Proteins and Histones upon DNA Damage Using an Immobilized Peptide Chemical Proteomics Approach, Journal of Proteome Research, vol.5, issue.9
DOI : 10.1021/pr060278b

W. Liao, M. A. Mcnutt, and W. G. Zhu, The comet assay: A sensitive method for detecting DNA damage in individual cells, Methods, vol.48, issue.1, pp.46-53, 2009.
DOI : 10.1016/j.ymeth.2009.02.016

J. Cadet, T. Douki, R. , and J. L. , Oxidatively generated base damage to cellular DNA, Free Radic Biol Med, 2010.

Y. W. Kow and A. Dare, Detection of Abasic Sites and Oxidative DNA Base Damage Using an ELISA-like Assay, Methods, vol.22, issue.2, pp.164-173, 2000.
DOI : 10.1006/meth.2000.1057

M. Ali, M. Kurisu, S. Yoshioka, and Y. , Detection of endonuclease III-and 8- oxoguanine glycosylase-sensitive base modifications in gamma-irradiated DNA and cells by the aldehyde reactive probe (ARP) assay

F. Guillonneau, A. L. Guieysse, and J. P. Le-caer, Selection and identification of proteins bound to DNA triple-helical structures by combination of 2D-electrophoresis and MALDI-TOF mass spectrometry, Nucleic Acids Research, vol.29, issue.11, pp.29-2427, 2001.
DOI : 10.1093/nar/29.11.2427

M. Oda and H. Nakamura, Thermodynamic and kinetic analyses for understanding sequence-specific DNA recognition, Genes to Cells, vol.90, issue.5, pp.319-345, 2000.
DOI : 10.1107/S0907444999005041

J. B. Doyon, T. M. Snyder, and D. R. Liu, Highly Sensitive in Vitro Selections for DNA-Linked Synthetic Small Molecules with Protein Binding Affinity and Specificity, Journal of the American Chemical Society, vol.125, issue.41, pp.125-12372, 2003.
DOI : 10.1021/ja036065u

M. Yaneva and P. Tempst, Affinity Capture of Specific DNA-Binding Proteins for Mass Spectrometric Identification, Analytical Chemistry, vol.75, issue.23, pp.75-6437, 2003.
DOI : 10.1021/ac034698l

S. R. Bischoff, M. B. Kahn, and M. D. Powell, SELDI-TOF-MS Analysis of Transcriptional Activation Protein Binding to Response Elements Regulating Carcinogenesis Enzymes, International Journal of Molecular Sciences, vol.3, issue.10, pp.1027-1038, 2002.
DOI : 10.3390/i3101027

S. Nocentini, F. Coin, and M. Saijo, DNA Damage Recognition by XPA Protein Promotes Efficient Recruitment of Transcription Factor II H, Journal of Biological Chemistry, vol.272, issue.37
DOI : 10.1074/jbc.272.37.22991

M. M. Garner and A. Revzin, A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system, Nucleic Acids Research, vol.9, issue.13, pp.3047-60, 1981.
DOI : 10.1093/nar/9.13.3047

M. A. Laniel, A. Beliveau, and S. L. Guerin, Electrophoretic Mobility Shift Assays for the Analysis of DNA-Protein Interactions, Methods Mol Biol, vol.148, pp.13-30, 2001.
DOI : 10.1385/1-59259-208-2:013

K. Larouche, M. J. Bergeron, and S. Leclerc, Optimization of competitor poly(dIdC ).poly(dI-dC) levels is advised in DNA-protein interaction studies involving enriched nuclear proteins, Biotechniques, issue.3, pp.20-439, 1996.

M. J. Guille and G. G. Kneale, Methods for the analysis of DNA-protein interactions, Molecular Biotechnology, vol.258, issue.1, pp.35-52, 1997.
DOI : 10.1007/BF02762338

E. Muller, Synthèse d'oligonucléotides modifiés pour l'étude de la réparation et de la réplication de lésions radio-induites simples et doubles de l'ADN, 2002.

V. Duarte, D. Gasparutto, and M. Jaquinod, Repair and Mutagenic Potential of Oxaluric Acid, a Major Product of Singlet Oxygen-Mediated Oxidation of 8-Oxo-7,8-dihydroguanine, Chemical Research in Toxicology, vol.14, issue.1, p.8
DOI : 10.1021/tx0001629

H. M. Ge, D. Stoll, and M. Schrenk, UPA, a universal protein array system for quantitative detection of protein-protein, protein-DNA, protein-RNA and protein-ligand interactions, Nucleic Acids Research, vol.28, issue.2, pp.160-166, 2000.
DOI : 10.1093/nar/28.2.e3

H. J. Lee, Y. Yan, and G. Marriott, Quantitative functional analysis of protein complexes on surfaces, The Journal of Physiology, vol.7, issue.1
DOI : 10.1113/jphysiol.2004.081117

S. Sauvaigo, V. Guerniou, and D. Rapin, An oligonucleotide microarray for the monitoring of repair enzyme activity toward different DNA base damage, Analytical Biochemistry, vol.333, issue.1, pp.182-92, 2004.
DOI : 10.1016/j.ab.2004.06.046

A. I. Dragan and P. L. Privalov, Chapter 9 Use of Fluorescence Resonance Energy Transfer (FRET) in Studying Protein???induced DNA Bending, Methods Enzymol, vol.450, pp.185-99, 2008.
DOI : 10.1016/S0076-6879(08)03409-5

S. Madhusudan, F. Smart, and P. Shrimpton, Isolation of a small molecule inhibitor of DNA base excision repair, Nucleic Acids Research, vol.33, issue.15, pp.33-4711, 2005.
DOI : 10.1093/nar/gki781

Y. Sadakane and Y. Hatanaka, Photochemical Fishing Approaches for Identifying Target Proteins and Elucidating the Structure of a Ligand-binding Region Using Carbene-generating Photoreactive Probes, Analytical Sciences, vol.22, issue.2, pp.209-227, 2006.
DOI : 10.2116/analsci.22.209

M. S. Cooke and A. Robson, Immunochemical Detection of UV-Induced DNA Damage and Repair, Methods Mol Biol, vol.314, pp.215-243, 2006.
DOI : 10.1385/1-59259-973-7:215

J. Wang and J. Liu, Directly fishing out subtle mutations in genomic DNA with histidine-tagged Thermus thermophilus MutS, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.547, issue.1-2, pp.41-48, 2004.
DOI : 10.1016/j.mrfmmm.2003.11.008

F. Darain, C. Ban, and Y. B. Shim, Development of a new and simple method for the detection of histidine-tagged proteins, Biosensors and Bioelectronics, vol.20, issue.4, pp.857-63, 2004.
DOI : 10.1016/j.bios.2004.03.028

C. K. Ho, A. F. Lam, L. S. Symington, O. Connor, and T. R. , Identification of nucleases and phosphatases by direct biochemical screen of the Saccharomyces cerevisiae proteome DNA glycosylase activity assay based on streptavidin paramagnetic bead substrate capture, PLoS One Anal Biochem, vol.4, issue.92, pp.298-322, 2001.

M. L. Bulyk, E. Gentalen, and D. J. Lockhart, Quantifying DNA-protein interactions by double-stranded DNA arrays, Nat Biotechnol, issue.6, pp.17-573, 1999.

N. F. Visser, A. Scholten, and R. H. Van-den-heuvel, Surface-Plasmon-Resonance-Based Chemical Proteomics: Efficient Specific Extraction and Semiquantitative Identification of Cyclic Nucleotide-Binding Proteins from Cellular Lysates by Using a Combination of Surface Plasmon Resonance, Sequential Elution and Liquid Chromatography???Tandem Mass Spectrometry, ChemBioChem, vol.76, issue.3, pp.298-305, 2007.
DOI : 10.1002/cbic.200600449

B. Catimel, J. Rothacker, and J. Catimel, Biosensor-Based Micro-Affinity Purification for the Proteomic Analysis of Protein Complexes, Journal of Proteome Research, vol.4, issue.5
DOI : 10.1021/pr050132x

M. Yaneva and P. Tempst, Isolation and Mass Spectrometry of Specific DNA Binding Proteins, Methods Mol Biol, vol.338, pp.291-303, 2006.
DOI : 10.1385/1-59745-097-9:291

J. A. Mello, J. G. Moggs, A. , and G. , Analysis of DNA Repair and Chromatin Assembly In Vitro Using Immobilized Damaged DNA Substrates, Methods Mol Biol, vol.314, pp.477-87, 2006.
DOI : 10.1385/1-59259-973-7:477

N. Hegarat, G. M. Cardoso, and F. Rusconi, Analytical biochemistry of DNA protein assemblies from crude cell extracts, Nucleic Acids Research, vol.35, issue.13, pp.35-92, 2007.
DOI : 10.1093/nar/gkm490

S. Barker, D. Murray, and J. Zheng, A method for the isolation of covalent DNA???protein crosslinks suitable for proteomics analysis, Analytical Biochemistry, vol.344, issue.2, pp.204-219, 2005.
DOI : 10.1016/j.ab.2005.06.039

T. Voss and P. Haberl, Observations on the reproducibility and matching efficiency of two-dimensional electrophoresis gels: Consequences for comprehensive data analysis, Electrophoresis, vol.18, issue.16, pp.3345-50, 2000.
DOI : 10.1002/1522-2683(20001001)21:16<3345::AID-ELPS3345>3.0.CO;2-Z

A. Gorg, C. Obermaier, and G. Boguth, The current state of two-dimensional electrophoresis with immobilized pH gradients, Electrophoresis, vol.20, issue.6, pp.1037-53, 2000.
DOI : 10.1002/(SICI)1522-2683(20000401)21:6<1037::AID-ELPS1037>3.0.CO;2-V

J. L. Harry, M. R. Wilkins, and B. R. Herbert, Proteomics: Capacity versus utility, Electrophoresis, vol.21, issue.6, pp.1071-81, 2000.
DOI : 10.1002/(SICI)1522-2683(20000401)21:6<1071::AID-ELPS1071>3.3.CO;2-D

R. M. Leimgruber, J. P. Malone, and M. R. Radabaugh, Development of improved cell lysis, solubilization and imaging approaches for proteomic analyses, Proteomics, issue.22, pp.135-179, 2002.

M. M. Shaw and B. M. Riederer, Sample preparation for two-dimensional gel electrophoresis, PROTEOMICS, vol.3, issue.8, pp.1408-1425, 2003.
DOI : 10.1002/pmic.200300471

M. Mann, R. C. Hendrickson, and A. Pandey, Analysis of Proteins and Proteomes by Mass Spectrometry, Annual Review of Biochemistry, vol.70, issue.1, pp.437-73, 2001.
DOI : 10.1146/annurev.biochem.70.1.437

G. L. Corthals, V. C. Wasinger, and D. F. Hochstrasser, The dynamic range of protein expression: A challenge for proteomic research, Electrophoresis, vol.17, issue.6, pp.1104-1119, 2000.
DOI : 10.1002/(SICI)1522-2683(20000401)21:6<1104::AID-ELPS1104>3.0.CO;2-C

J. D. Wulfkuhle, L. A. Liotta, and E. F. Petricoin, Early detection: Proteomic applications for the early detection of cancer, Nature Reviews Cancer, vol.3, issue.4, pp.267-75, 2003.
DOI : 10.1038/nrc1043

T. K. Bane, J. F. Leblanc, and T. D. Lee, DNA affinity capture and protein profiling by SELDI-TOF mass spectrometry: effect of DNA methylation, Nucleic Acids Research, vol.30, issue.14, pp.30-69, 2002.
DOI : 10.1093/nar/gnf068

W. C. Lee and K. H. Lee, Applications of affinity chromatography in proteomics, Analytical Biochemistry, vol.324, issue.1, pp.1-10, 2004.
DOI : 10.1016/j.ab.2003.08.031

T. T. Yip and L. Lomas, SELDI ProteinChip?? Array in Oncoproteomic Research, Technology in Cancer Research & Treatment, vol.359, issue.4, pp.273-80, 2002.
DOI : 10.1038/35015709

F. Von-eggeling, K. Junker, and W. Fiedle, Mass spectrometry meets chip technology: A new proteomic tool in cancer research?, ELECTROPHORESIS, vol.12, issue.14, pp.22-2898, 2001.
DOI : 10.1002/1522-2683(200108)22:14<2898::AID-ELPS2898>3.0.CO;2-A

P. R. Srinivas, S. Srivastava, and S. Hanash, Proteomics in early detection of cancer, Clin Chem, issue.10, pp.47-1901, 2001.

C. E. Forde and S. L. Mccutchen-maloney, Characterization of transcription factors by mass spectrometry and the role of SELDI-MS, Mass Spectrometry Reviews, vol.20, issue.6
DOI : 10.1002/mas.10040

J. Majka and C. Speck, Analysis of Protein???DNA Interactions Using Surface Plasmon Resonance
DOI : 10.1007/10_026

V. V. Koval, N. A. Kuznetsov, and A. A. Ishchenko, Real-time studies of conformational dynamics of the repair enzyme E. coli formamidopyrimidine-DNA glycosylase and its DNA complexes during catalytic cycle, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.685, issue.1-2, pp.3-10, 2010.
DOI : 10.1016/j.mrfmmm.2009.08.018

K. Bondeson, A. Frostell-karlsson, and L. Fagerstam, Lactose Repressor-Operator DNA Interactions: Kinetic Analysis by a Surface Plasmon Resonance Biosensor, Analytical Biochemistry, vol.214, issue.1, pp.245-51, 1993.
DOI : 10.1006/abio.1993.1484

M. Saparbaev, J. C. Mani, and J. Laval, Interactions of the human, rat, Saccharomyces cerevisiae and Escherichia coli 3-methyladenine-DNA glycosylases with DNA containing dIMP residues, Nucleic Acids Research, vol.28, issue.6, pp.28-1332, 2000.
DOI : 10.1093/nar/28.6.1332

E. Maillart, K. Brengel-pesce, and D. Capela, Versatile analysis of multiple macromolecular interactions by SPR imaging: application to p53 and DNA interaction, Oncogene, vol.23, issue.32, pp.23-5543, 2004.
DOI : 10.1038/sj.onc.1207639

URL : https://hal.archives-ouvertes.fr/hal-00664871

J. Q. Chen, M. Eshete, and W. L. Alworth, Binding of MCF-7 cell mitochondrial proteins and recombinant human estrogen receptors alpha and beta to human mitochondrial DNA estrogen response elements, J Cell Biochem, issue.2, pp.93-358, 2004.

E. Nordhoff and H. Lehrach, Identification and Characterization of DNA-Binding Proteins by Mass Spectrometry
DOI : 10.1007/10_2006_037

P. R. Srinivas, M. Verma, and Y. Zhao, Proteomics for cancer biomarker discovery, Clin Chem, issue.8, pp.48-1160, 2002.

J. S. Becker and N. Jakubowski, The synergy of elemental and biomolecular mass spectrometry: new analytical strategies in life sciences, Chemical Society Reviews, vol.23, issue.7, pp.38-1969, 2009.
DOI : 10.1039/b818367h

S. D. Patterson and R. H. Aebersold, Proteomics: the first decade and beyond, Nature Genetics, vol.33, issue.3s, pp.311-334, 2003.
DOI : 10.1038/ng1106

C. L. Himeda, J. A. Ranish, and S. D. Hauschka, Quantitative Proteomic Identification of MAZ as a Transcriptional Regulator of Muscle-Specific Genes in Skeletal and Cardiac Myocytes, Molecular and Cellular Biology, vol.28, issue.20, pp.28-6521, 2008.
DOI : 10.1128/MCB.00306-08

K. Chapman, Biomarker System from Ciphergen Biosystems: a novel proteomics platform for rapid biomarker discovery and validation, Biochemical Society Transactions, vol.30, issue.2, pp.82-89, 2002.
DOI : 10.1042/bst0300082

W. Pusch, M. T. Flocco, and S. M. Leung, Mass spectrometry-based clinical proteomics, Pharmacogenomics, vol.4, issue.4, pp.463-76, 2003.
DOI : 10.1517/phgs.4.4.463.22753

E. Bouffartigues, H. Leh, and M. Anger-leroy, Rapid coupling of Surface Plasmon Resonance (SPR and SPRi) and ProteinChip based mass spectrometry for the identification of proteins in nucleoprotein interactions, Nucleic Acids Res, issue.6, pp.35-39, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00277436

M. P. Font, M. Cubizolles, and H. Dombret, Repression of transcription at the human Tcell receptor Vbeta2.2 segment is mediated by a MAX/MAD/mSin3 complex acting as a scaffold for HDAC activity, Biochem Biophys Res Commun, issue.3, pp.325-1021, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00277443

J. R. Krone, R. W. Nelson, and D. Dogruel, BIA/MS: Interfacing Biomolecular Interaction Analysis with Mass Spectrometry, Analytical Biochemistry, vol.244, issue.1, pp.124-156, 1997.
DOI : 10.1006/abio.1996.9871

R. W. Nelson, J. R. Krone, and O. Jansson, Surface Plasmon Resonance Biomolecular Interaction Analysis Mass Spectrometry. 2. Fiber Optic-Based Analysis, Analytical Chemistry, vol.69, issue.21, pp.69-4369, 1997.
DOI : 10.1021/ac9705374

F. Lopez, C. Pichereaux, and O. Burlet-schiltz, Improved sensitivity of biomolecular interaction analysis mass spectrometry for the identification of interacting molecules, PROTEOMICS, vol.3, issue.4, pp.402-414, 2003.
DOI : 10.1002/pmic.200390055

D. Nedelkov and R. W. Nelson, Surface plasmon resonance mass spectrometry: recent progress and outlooks, Trends in Biotechnology, vol.21, issue.7, pp.301-306, 2003.
DOI : 10.1016/S0167-7799(03)00141-0

D. Nedelkov and R. W. Nelson, Analysis of native proteins from biological fluids by biomolecular interaction analysis mass spectrometry (BIA/MS): exploring the limit of detection, identification of non-specific binding and detection of multi-protein complexes, Biosensors and Bioelectronics, vol.16, issue.9-12, pp.9-12, 2001.
DOI : 10.1016/S0956-5663(01)00229-9

R. W. Nelson, D. Nedelkov, and K. A. Tubbs, Biosensor chip mass spectrometry: A chip-based proteomics approach, Electrophoresis, vol.96, issue.6, pp.1155-63, 2000.
DOI : 10.1002/(SICI)1522-2683(20000401)21:6<1155::AID-ELPS1155>3.0.CO;2-X

D. Nedelkov, K. A. Tubbs, N. , and R. W. , Surface plasmon resonance-enabled mass spectrometry arrays, ELECTROPHORESIS, vol.77, issue.18, pp.27-3671, 2006.
DOI : 10.1002/elps.200600065

T. Natsume, H. Nakayama, and T. Isobe, BIA-MS-MS : biomolecular interaction analysis for functional proteomics, Trends Biotechnol, pp.19-28, 2001.

S. Scarano, M. Mascini, and A. P. Turner, Surface plasmon resonance imaging for affinity-based biosensors, Biosensors and Bioelectronics, vol.25, issue.5, pp.957-66, 2010.
DOI : 10.1016/j.bios.2009.08.039

G. Hayashi, M. Hagihara, and K. Nakatani, Genotyping by allele-specific l-DNA-tagged PCR, Journal of Biotechnology, vol.135, issue.2, pp.157-60, 2008.
DOI : 10.1016/j.jbiotec.2008.03.011

Y. Li, H. J. Lee, and R. M. Corn, Fabrication and characterization of RNA aptamer microarrays for the study of protein???aptamer interactions with SPR imaging, Nucleic Acids Research, vol.34, issue.22, pp.34-6416, 2006.
DOI : 10.1093/nar/gkl738

E. J. Jeong, Y. S. Jeong, and K. Park, Directed immobilization of DNA-binding proteins on a cognate DNA-modified chip surface, Journal of Biotechnology, vol.135, issue.1, pp.16-21, 2008.
DOI : 10.1016/j.jbiotec.2008.02.019

I. Garcia, B. H. Goodman, and R. M. , Use of surface plasmon resonance imaging to study viral RNA : protein interactions

J. Ladd, A. D. Taylor, and M. Piliarik, Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging, Analytical and Bioanalytical Chemistry, vol.9, issue.4, pp.1157-63, 2009.
DOI : 10.1007/s00216-008-2448-3

C. F. Grant, V. Kanda, and H. Yu, Optimization of Immobilized Bacterial Disaccharides for Surface Plasmon Resonance Imaging Measurements of Antibody Binding, Langmuir, vol.24, issue.24, pp.24-14125, 2008.
DOI : 10.1021/la8026489

R. B. Schasfoort, Handbook of Surface Plasmon Resonance Cambridge, 2008.

J. Fiche, Etudes thermiques des puces à ADN par imagerie de résonance des plasmons de surface (SPRi) : vers la détection de mutations ponctuelles, 2006.

F. A. Tanious, B. Nguyen, W. , and W. D. , Biosensor???Surface Plasmon Resonance Methods for Quantitative Analysis of Biomolecular Interactions, Methods Cell Biol, vol.84, pp.53-77, 2008.
DOI : 10.1016/S0091-679X(07)84003-9

T. Livache, A. Roget, and E. Dejean, Preparation of a DNA matrix via an electrochemically directed copolymerization of pyrrole and oligonucleotides bearing a pyrrole group, Nucleic Acids Res, issue.15, pp.22-2915, 1994.

G. Bidan, M. Billon, and K. Galasso, Electropolymerization as a Versatile Route for Immobilizing Biological Species onto Surfaces, Applied Biochemistry and Biotechnology, vol.89, issue.2-3
DOI : 10.1385/ABAB:89:2-3:183

L. Grosjean, B. Cherif, and E. Mercey, A polypyrrole protein microarray for antibody???antigen interaction studies using a label-free detection process, Analytical Biochemistry, vol.347, issue.2, pp.193-200, 2005.
DOI : 10.1016/j.ab.2005.09.033

URL : https://hal.archives-ouvertes.fr/inserm-00144353

E. Mercey, R. Sadir, and E. Maillart, Polypyrrole Oligosaccharide Array and Surface Plasmon Resonance Imaging for the Measurement of Glycosaminoglycan Binding Interactions, Analytical Chemistry, vol.80, issue.9, pp.80-3476, 2008.
DOI : 10.1021/ac800226k

URL : https://hal.archives-ouvertes.fr/hal-00274459

D. Bryan, S. J. Aylwin, and D. J. Newman, Steroidogenic factor 1-DNA binding: a kinetic analysis using surface plasmon resonance, Journal of Molecular Endocrinology, vol.22, issue.3
DOI : 10.1677/jme.0.0220241

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.549.137

C. I. Webster, M. A. Cooper, and L. C. Packman, Kinetic analysis of high-mobility-group proteins HMG-1 and HMG-I/Y binding to cholesterol-tagged DNA on a supported lipid monolayer, Nucleic Acids Research, vol.28, issue.7, pp.28-1618, 2000.
DOI : 10.1093/nar/28.7.1618

M. Pacek, G. Konopa, and I. Konieczny, DnaA Box Sequences as the Site for Helicase Delivery during Plasmid RK2 Replication Initiation in Escherichia coli, Journal of Biological Chemistry, vol.276, issue.26
DOI : 10.1074/jbc.M100255200

A. Renodon-corniere, L. H. Jensen, and J. L. Nitiss, Interaction of human DNA topoisomerase II alpha with DNA : quantification by surface plasmon resonance, Biochemistry, issue.45, pp.41-13395, 2002.

P. Gruz, M. Shimizu, and F. M. Pisani, Processing of DNA lesions by archaeal DNA polymerases from Sulfolobus solfataricus, Nucleic Acids Research, vol.31, issue.14, pp.31-4024, 2003.
DOI : 10.1093/nar/gkg447

C. Maesawa, T. Inaba, and H. Sato, A rapid biosensor chip assay for measuring of telomerase activity using surface plasmon resonance, Nucleic Acids Research, vol.31, issue.2, pp.31-35, 2003.
DOI : 10.1093/nar/gng004

A. V. Grinberg and T. Kerppola, Both Max and TFE3 cooperate with Smad proteins to bind the plasminogen activator inhibitor-1 promoter

C. Leontiou, R. Lightowlers, and J. H. Lakey, Kinetic analysis of human topoisomerase II?? and ?? DNA binding by surface plasmon resonance, FEBS Letters, vol.361, issue.1-2, pp.206-216, 2003.
DOI : 10.1016/S0014-5793(03)01172-4

L. E. Schaufler and R. E. Klevit, Mechanism of DNA Binding by the ADR1 Zinc Finger Transcription Factor as Determined by SPR, Journal of Molecular Biology, vol.329, issue.5
DOI : 10.1016/S0022-2836(03)00550-3

D. Hao, M. Ohme-takagi, Y. , and K. , A modified sensor chip for surface plasmon resonance enables a rapid determination of sequence specificity of DNA-binding proteins, FEBS Letters, vol.2, issue.1-3, pp.1-3, 2003.
DOI : 10.1016/S0014-5793(03)00045-0

P. Y. Tsoi and M. Yang, Surface plasmon resonance study of the molecular recognition between polymerase and DNA containing various mismatches and conformational changes of DNA???protein complexes, Biosensors and Bioelectronics, vol.19, issue.10, pp.19-1209, 2004.
DOI : 10.1016/j.bios.2003.11.004

H. F. Teh, W. Y. Peh, and X. Su, Characterization of Protein???DNA Interactions Using Surface Plasmon Resonance Spectroscopy with Various Assay Schemes, Biochemistry, vol.46, issue.8, pp.46-2127, 2007.
DOI : 10.1021/bi061903t

E. Moyroud, M. C. Reymond, and C. Hames, The analysis of entire gene promoters by surface plasmon resonance, The Plant Journal, vol.4, issue.5, pp.59-851, 2009.
DOI : 10.1111/j.1365-313X.2009.03903.x

URL : https://hal.archives-ouvertes.fr/hal-00400910

B. Nguyen, F. A. Tanious, W. , and W. D. , Biosensor-surface plasmon resonance: Quantitative analysis of small molecule???nucleic acid interactions, Methods, vol.42, issue.2, pp.42-150, 2007.
DOI : 10.1016/j.ymeth.2006.09.009

G. Panayotou, T. Brown, and T. Barlow, Direct Measurement of the Substrate Preference of Uracil-DNA Glycosylase, Journal of Biological Chemistry, vol.273, issue.1
DOI : 10.1074/jbc.273.1.45

K. A. Johnson, M. L. Mierzwa, and S. P. Fink, MutS Recognition of Exocyclic DNA Adducts That Are Endogenous Products of Lipid Oxidation, Journal of Biological Chemistry, vol.274, issue.38
DOI : 10.1074/jbc.274.38.27112

K. Purnapatre, P. Handa, and J. Venkatesh, Differential effects of single-stranded DNA binding proteins (SSBs) on uracil DNA glycosylases (UDGs) from Escherichia coli and mycobacteria, Nucleic Acids Research, vol.27, issue.17, pp.27-3487, 1999.
DOI : 10.1093/nar/27.17.3487

L. Fourrier, P. Brooks, and J. M. Malinge, Binding discrimination of MutS to a set of lesions and compound lesions (base damage and mismatch) reveals its potential role as a cisplatindamaged DNA sensing protein

C. V. Privezentzev, M. Saparbaev, and J. Laval, The HAP1 protein stimulates the turnover of human mismatch-specific thymine-DNA-glycosylase to process 3,N4-ethenocytosine residues, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.480, issue.481, pp.480-481, 2001.
DOI : 10.1016/S0027-5107(01)00186-5

V. Hegde, M. Wang, and W. A. Deutsch, Characterization of human ribosomal protein S3 binding to 7,8-dihydro-8-oxoguanine and abasic sites by surface plasmon resonance, DNA Repair, vol.3, issue.2, pp.121-127, 2004.
DOI : 10.1016/j.dnarep.2003.10.004

L. Gros, A. V. Maksimenko, and C. V. Privezentzev, Hijacking of the human alkyl-Npurine-DNA glycosylase by 3, p.4

S. Adhikari, A. Uren, R. , and R. , Excised damaged base determines the turnover of human N-methylpurine-DNA glycosylase, DNA Repair, vol.8, issue.10, pp.1201-1207, 2009.
DOI : 10.1016/j.dnarep.2009.06.005

J. Fuchs, Physicochemical study of DNA biochips. DNA duplex stability, point mutation detection and beyond, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00433465

N. P. Gerry, N. E. Witowski, and J. Day, Universal DNA microarray method for multiplex detection of low abundance point mutations, Journal of Molecular Biology, vol.292, issue.2
DOI : 10.1006/jmbi.1999.3063

C. Marietta, H. Gulam, and P. J. Brooks, A single 8,5???-cyclo-2???-deoxyadenosine lesion in a TATA box prevents binding of the TATA binding protein and strongly reduces transcription in vivo, DNA Repair, vol.1, issue.11, pp.967-75, 2002.
DOI : 10.1016/S1568-7864(02)00148-9

A. Romieu, D. Gasparutto, and J. Cadet, Synthesis and characterization of oligonucleotides containing 5',8-cyclopurine 2'-deoxyribonucleosides : (5'R)-5',8-cyclo-2'-deoxyadenosine, (5'S)-5',8-cyclo-2'-deoxyguanosine, and, pp.8-10

V. S. Sidorenko, G. V. Mechetin, and G. A. Nevinsky, Ionic strength and magnesium affect the specificity of Escherichia???coli and human 8-oxoguanine-DNA glycosylases, FEBS Journal, vol.33, issue.15, pp.275-3747, 2008.
DOI : 10.1111/j.1742-4658.2008.06521.x

A. W. Vermeer, C. E. Giacomelli, and W. Norde, Adsorption of IgG onto hydrophobic teflon. Differences between the F(ab) and F(c) domains

P. Y. Tsoi and M. Yang, Kinetic study of various binding modes between human DNA polymerase ?? and different DNA substrates by surface-plasmon-resonance biosensor, Biochemical Journal, vol.361, issue.2, pp.317-342, 2002.
DOI : 10.1042/bj3610317

S. Adhikari, S. J. Kennel, and G. Roy, Discrimination of lesion removal of N-methylpurine-DNA glycosylase revealed by a potent neutralizing monoclonal antibody, DNA Repair, vol.7, issue.1, pp.31-40, 2008.
DOI : 10.1016/j.dnarep.2007.07.012

C. A. Minetti, D. P. Remeta, and D. O. Zharkov, Energetics of lesion recognition by a DNA repair protein : thermodynamic characterization of formamidopyrimidine-glycosylase (Fpg)

C. E. Piersen, A. K. Mccullough, L. , and R. S. , AP lyases and dRPases: commonality of mechanism, Mutation Research/DNA Repair, vol.459, issue.1, pp.43-53, 2000.
DOI : 10.1016/S0921-8777(99)00054-3

S. M. Kerins, R. Collins, and T. V. Mccarthy, Characterization of an Endonuclease IV 3'-5' Exonuclease Activity, Journal of Biological Chemistry, vol.278, issue.5
DOI : 10.1074/jbc.M210750200

H. Budworth, G. Matthewman, and P. O-'neill, Repair of Tandem Base Lesions in DNA by Human Cell Extracts Generates Persisting Single-strand Breaks, Journal of Molecular Biology, vol.351, issue.5
DOI : 10.1016/j.jmb.2005.06.069

J. D. Levin, A. W. Johnson, and B. Demple, Homogeneous Escherichia coli endonuclease IV. Characterization of an enzyme that recognizes oxidative damage in DNA

E. S. Motta, P. T. Souza-santos, and T. R. Cassiano, Endonuclease IV Is the Main Base Excision Repair Enzyme Involved in DNA Damage Induced by UVA Radiation and Stannous Chloride, Journal of Biomedicine and Biotechnology, vol.84, issue.10
DOI : 10.1073/pnas.0508582103

T. Saitoh, K. Shinmura, and S. Yamaguchi, 2010: 376218. 283 Enhancement of OGG1 protein AP lyase activity by increase of APEX protein, J Biomed Biotechnol Mutat Res, issue.1, pp.486-517, 2001.