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Mécanique linéaire élastique de la rupture tridimensionnelle: de la
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Front page figures from the left to the right:

• A tunnel-crack under tensile and shear remote loading, slightly perturbed in its plane. It is the
simpliest model allowing to introduce a finite length and still to obtain analytical results about
crack front deformation (ch. 2, p. 76, p. 92).

• PlaneCracks numerical simulations: Successive front positions of an initial elliptical crack when
it propagates under remote tensile loading (§2.4.2, p. 111). Extension to the interaction between
several cracks is in progress (PhD of L. Legrand).

• Directional drying 2D simulations (C. Maurini, IJLRDA) using the regularized minimization
approach of Bourdin et al. (2008).

• Twisting of a crack loaded in fatigue by mixed mode 1+2+3. The material is PMMA. In
memory of F. Buchholz of Paderborn University (Germany) that performed those experiments
in Paderborn University (Germany). The twisting rate can be predicted by supposing that the
whole front twists around the direction of propagation to annihilate mode III (p. 64).

• Star shaped cracks obtained during directional drying of colloidal suspension in a circular cap-
illary tube. Experiments realized by my colleague G. Gauthier. Facture mechanics energy
minimisation principle allows to retrieve the experimental shapes (§3.2, p. 181, p. 186).

• Septaria crack into concretions formed within mudstones. Their origin is still badly explained,
they may be shrinkage cracks? Rock and picture from J. Gargani, B. Saint-Bezar, P. Vergely
of the lab “Interactions et Dynamique des Environnements de Surface”, Orsay. Application of
fracture mechanics energy minimisation principle is planed in collaboration with them (p. 47).

• Basalt columns of the Giant Causeway, Ireland. Those intriguing regular patterns are formed
by directional cooling of a lava layer. Courtesy of my colleague Anne Davaille. Application of
fracture mechanics energy minimisation principle on polygonal patterns is planed in collaboration
with her (p. 47, p. 181).

• Hierarchical shrinkage crack pattern in thin layer of colloidal suspension solidified by drying.
Experiments of my colleague L. Pauchard (§3.3, p. 194). We are working on crack morphology
and on the mechanical characterization of the solidified suspension (PhD of M. Chekchaki).
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Introduction

Après ma thèse de doctorat en Mécanique réalisée à l’université Pierre et Marie Curie (1994-1997),
j’ai eu la chance d’intégrer cette même université en tant que mâıtre de conférences dès 1998. C’est
au sein de l’UFR de mécanique récemment intégré dans l’UFR d’ingénierie que j’ai depuis réalisé mes
enseignements. C’est au sein du Laboratoire de Modélisation en Mécanique, intégré aujourd’hui dans
l’Institut Jean Le Rond d’Alembert puis au sein du laboratoire Fluides Automatique et Systèmes Ther-
miques que j’ai réalisé mes travaux de recherche. Mes intérêts de recherche concernent principalement
la mécanique linéaire élastique de la rupture d’un point de vue théorique avec un souci croissant pour
la validation expérimentale et les interactions avec la physique ou les géosciences.
Cette habilitation à diriger les recherches se veut une synthèse de mes activités d’enseignement et de
recherche. Le rapport est subdivisé de la façon suivante:

Le chapitre 1 concerne mon Curriculum Vitae. Après une vue générale de mon parcours, mes ac-
tivités d’enseignement et d’encadrement y sont plus amplement décrits.

Dans le chapitre 2, j’ai choisi de développer, parmi mes activités de recherches, les résultats les plus
aboutis, que j’ai obtenus en collaboration notamment avec J.B. Leblond et nos doctorants (E.
Favier, N. Pindra, L. Legrand) concernant la déformation du front de fissures. Ces résultats sont
présentés en anglais sous la forme d’un article de synthèse avec le souci d’être compréhensible à
la fois par la communauté mécanique et physique de la rupture fragile.

Le chapitre 3 contient un aperçu des projets de recherche en cours et à venir. Cela concerne les
prolongements du chapitre 2 ainsi que la prédiction des morphologies de fissures par minimisation
d’énergie et enfin la caractérisation de suspensions collöıdales lors de leur séchage.

Le chapitre 4 contient une liste des mes publications ainsi qu’une sélection d’articles représentative
des mes principaux domaines de recherche: les critères permettant de définir le trajet de prop-
agation de fissures, les approches perturbatives du front de fissures (théorie, application à la
détermination de la forme du front de fissures lors de la propagation dans un milieu homogène
ou hétérogène), la fissuration de suspensions collöıdales consolidées par séchage.
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Chapter 1

Curriculum vitae

Résumé

Etat civil et coordonnées

Lazarus Véronique. Mâıtre de conférences à l’UPMC Université Paris 6.
Née le 23 mars 1971 à Sarreguemines (France). Nationalité française. 39 ans.
Mariée, 2 enfants (2000, 2002, 6 mois de congé parental en 2005).
Adresse personnelle: 5 rue de Lattre de Tassigny, 91400 Orsay, France.
Adresse professionnelle: Laboratoire FAST (UMR 7108), Bât. 502, Campus universitaire, 91400 Orsay,
France.
Tel: +33 1 69 15 80 39. Fax : +33 1 69 15 80 60.
Email : veronique.lazarus@upmc.fr
Page web: http://www.fast.u-psud.fr/∼lazarus/

Formations

2008 Formation continue ”De l’encadrement du projet doctoral à l’évolution de carrière
du docteur” à l’Institut de Formation Doctorale de l’UPMC (5 journées).

1997 Doctorat de l’université Paris 6 (spécialité Mécanique).
Mention Très Honorable avec Félicitations.

1994 Ingénieur de l’Ecole Nationale Supérieure de Techniques Avancées. Option Mé-
canique.

1994 DEA de Mécanique (Paris 6). Filière Solides. Mention Bien.
1989–91 Mathématiques supérieures, spéciales P’ au lycée Kléber (Strasbourg).
1989 Baccalauréat C (Sarreguemines), mention Très Bien.

Expériences professionnelles

1998– Mâıtre de Conférences à l’Université Paris 6.

2008– Laboratoire Fluides, Automatique et Systèmes Thermiques (FAST,
UMR 7108). Equipe Milieux Poreux et Fracturés.

1997–2008 Laboratoire de Modélisation en Mécanique (LMM) intégré depuis
2007 à l’Institut Jean Le Rond d’Alembert (IJLRDA, UMR 7190).
Equipe Mécanique et Ingénierie des Solides Et des Structures.

Fév-Jul 2008 Délégation au CNRS au laboratoire FAST.
Fév-Jul 2007 Délégation au CNRS au laboratoire FAST.
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Fév-Jul 2006 Congé pour Recherche et Conversion Thématique (CRCT) au lab-
oratoire FAST.

1997–98 Attachée Temporaire d’Enseignement et de Recherche à l’Université Paris 6.
1995–97 Vacataire à l’Ecole Nationale Supérieure de Techniques Avancées.
1994–97 Doctorante au Laboratoire de Modélisation en Mécanique sous la direction de J.B.

Leblond. “Quelques problèmes tridimensionnels de mécanique de la rupture fragile”.
1994–97 Moniteur à l’Université Paris 6.
1994 Stage de fin d’études de six mois au centre d’Etudes et de Recherches des Renardières

d’EDF sous la responsabilité de C. Eripret: ”Interprétation à l’aide d’un calcul aux
Eléments Finis, d’un essai de choc thermique sur une enceinte de réacteur nucléaire”.

Thèmes de Recherche

Mécanique Linéaire Elastique de la Rupture bi- et tridimensionnelle. Approches théoriques et numériques.

Outils: Méthodes perturbatives du front de fissures (formulation des fonctions de poids de
Bueckner-Rice): calculs analytiques (petites perturbations) ou numériques (grandes
perturbations).
Approche énergétique à la rupture.
Eléments finis bi- et tridimensionnels.

Applications: Prédiction du chemin de propagation de fissures à partir des données mécaniques
(chargement, comportement) et problème inverse dans des milieux fragiles homogènes
et hétérogènes, des milieux de la matière molle consolidée (collöıdes, suspensions,
peintures, gels), des milieux géologiques.

Publications et communications

21 Publications dans des revues à comité de lecture (7 J Mech Phys Solids, 4 Int J Solids Struct, 3 Cr
Acad Sci II B, 2 Int J Fracture, 1 Phys Rev E, 1 EPL-Europhys Lett, 1 Langmuir, 1 J Appl Mech-T
ASME, 1 Reflets de la Physique).
13 Congrès Internationaux avec actes, 3 sans actes. 1 Congrès Français avec actes.
2 projets ANR et 2 projets Triangle de la Physique acceptés.
Contribution à une exposition scientifique Grand public. ”Ruptures: ça casse ou ça coule” (en cours
de construction).

Encadrement de projets

Post-doc

04/2010-03/2012 S. Patinet (co-encadrement D. Vandembroucq, PMMH, ESPCI). Postdoctorant
dans le cadre de l’ANR MEPHYSTAR sur la “Propagation de fissures dans des mi-
lieux hétérogènes de taille finie”.

Thèses

09/2001-10/2005 E. Favier (co-direction J.B. Leblond). “Déformation du front de fissures planes au
cours de leur propagation”. Actuellement, mâıtre de conférences à l’Université Paris
Est, Marne-La-Vallée.

09/2005-07/2009 N. Pindra (co-direction J.B. Leblond). ”Etude du désordre de la forme du front de
fissure au cours de leur propagation”. Actuellement, ATER à l’UPMC.
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2007 C. Bousquet (encadrement du chap. Fracturation, direction S. Faure). Thèse CEA
Marcoule. ”Rôle des pluronics sur les propriétés rhéologiques de séchage et de frac-
turation des gels aspirables de décontamination ”.

10/2007– M. Chekchaki (co-direction L. Pauchard). ”Caractérisation mécanique du séchage de
suspensions collöıdales.”

09/2008– L. Legrand (co-direction J.B. Leblond). ”Etude linéaire et non-linéaire de la défor-
mation du front de fissures planes au cours de leur propagation et en particulier lors
de leur coalescence”.

Stages de Licence et Mâıtrise

01-06/2000 W. Berger et B. Guillaume (codirection P.Y. Lagree), Projet Personnel en Labora-
toire en 2ème année de l’ENSTA, “Modèle simplifié de la glotte”.

04-09/2001 E. Favier. Stage du DEA de mécanique de Paris 6. “Etude de la stabilité de la
forme rectiligne du front d’une fissure en forme de fente infinie - simulation de la
propagation d’un front légèrement perturbé”.

05-09/2002 L. Dufay et M. Guéniot (codirection A. Bioget, P.Y. Lagree). Stage de Mâıtrise de
Mécanique réalisé au Palais de la Découverte. “Le problème de Kepler et les forces
de marées”.

02/2007 E. Provost (codirection L. Pauchard, G. Gauthier ). Stage L3. “Etude expérimentale
et numérique des réseaux de fissures”.

05-09/2007 A.C. Cochez. Stage M1. ”Etude numérique de la propagation d’un réseau de frac-
tures”.

01-10/2008 C. Valdivia (codirection C. Maurini). Etudiant de master de Mechanical Engineer
Universidad Tecnica Federico Santa Maria Valparaiso - Chili (Niveau français équiv-
alent: Bac+6). SCAT Mobility Grant Report. ”Numerical Simulation of the crack-
pattern during the drying process using a variational approach”.

05/2009 L. Swiecicki, S. Bennani, C. Gosselin. Travail d’Intiative Personnelle Encadrée,
classes préparatoires aux grandes écoles. “Modélisation des craquelures de peinture
par séchage de mäızena”.

Enseignement

Environ 2200 heures d’enseignement principalement à l’université Paris 6.
20 % cours, 60% TD, 20% TP numériques, 20% TP expérimentaux.
20% Master, 80% Licence.

Thermomécanique des milieux continus. Niveau L3 au M2.
Mécanique des solides (Statique et dynamique, Résistance des matériaux, Elasticité, Comportement
des milieux solides, Endommagement, Rupture fragile, Méthode des éléments finis). Niveau L1 au
M2.
Mécanique des fluides (Statique et dynamique des fluides parfaits, Méthode des différences finies, TP
expérimentaux). Niveau L1 au L3.
Thermique (Transferts de chaleur). Niveau L2.
Mathématique (Intégration, Analyse de Fourier et de Laplace, équations aux dérivées partielles).
Niveau L3.
Histoire des sciences (Module de découverte). Niveau L1.
Informatique (C, Matlab). Niveau L3 et M2.
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Activités administratives et collectives

2001-08 Membre de la Commission de Spécialistes, section 60, Université de Basse-Normandie,
Caen.

2004-07 Membre de la Commission de Spécialistes, section 60, Université Paris 6.
2009- Comité de sélection Univ. Paris 7 section 60/62-28.

2009- Membre du Conseil de Laboratoire du FAST.
2009- Membre du Conseil de l’école doctorale SMAER (ed 391), univ Paris 6.

2006-08 Organisation du groupe de travail des doctorants de l’Institut Jean le Rond d’Alembert.
1999- Rapporteur pour les journaux J Mech Phys Solids, Int J Solids Struct, Int J Fracture,

Eng Fract Mech, Proc. R. Soc. A.
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Activités d’enseignement

Depuis le début de ma carrière universitaire, j’ai enseigné en tant que vacataire à l’ENSTA de 1995 à
1997 et en tant que moniteur (1994-98), ATER (1998-99) puis mâıtre de conférences (depuis 1998) à
l’UPMC. Depuis 1998, j’ai effectué un service plein soit 192 heures d’équivalent TD par an, sauf en
2000/2001 et 2002/2003 (congé de maternité), 2004/05 (congé parental), 2005/06 (CRCT), 2006/08
(délégation au CNRS), années durant lesquelles j’ai bénéficié d’une décharge d’un demi-service. Les
différents modules auxquels j’ai participé sont décrits ci-dessous:

Thermomécanique des milieux continus. Niveau L3 au M2.

1. Bases de la Mécanique des Milieux Continus (L3). TD du cours de F. Léné et P. Chal-
lande, et de R. Pradeilles-Duval à l’ENSTA.

Introduction aux concepts de base (calcul tensoriel, cinématique, déformation, contraintes de
Cauchy, lois de bilans) de la mécanique des milieux continus et illustration sur des exemples de
comportements simples de milieux fluides (visqueux newtoniens) et solides (élastique linéaire).

2. Thermomécanique des milieux continus (M2). TD du cours de R. Gatignol.

Présentation sous forme synthétique des notions de mécanique des milieux continus abordées en
L3 et en M1 en y incorporant des cinématiques plus complexes (grandes déformations, milieux
diphasiques, polarisés par ex.) et des généralités plus complexes sur les lois de comportement
(objectivité, symétries matérielles). Illustrations de ces notions sur des exemples de comporte-
ment complexes: milieux hyper-élastiques, poroélastiques, fluides newtoniens et non-newtoniens,
de Cosserat, mélanges, granulaires, par exemple.

Mécanique des solides. Niveau L2 au M2.

1. Statique et dynamique des solides indéformables (L2). TD des cours de Mme Metellus,
M. Rigolot et M. Alliche.

Description et modélisation des actions mécaniques pour le solide rigide : liaisons parfaites,
efforts transmissibles, frottement, torseurs (cinématiques, cinétiques, dynamiques, des efforts).
Principe fondamental de la statique et de la dynamique d’un système de solides indéformables.

2. Résistance des matériaux (L2). TD du cours de M. Billardon.

Cours d’introduction à la résistance des matériaux. Introduction des notions de déformations,
d’efforts intérieurs, de loi de comportement, de chargement limite par l’étude d’une barre élas-
tique en équilibre.

3. Elasticité linéaire. TD du cours de Mme Léné (L3) et de Mme Pradeilles-Duval (ENSTA1).

Introduction de la loi de comportement thermoélastique, en insistant sur le cas particulier des
matériaux isotropes. Résolution du problème thermoélastique dans les cas particuliers où l’on
peut exhiber des solutions exactes : méthode des déplacements et méthode des contraintes. Illus-
tration par plusieurs exemples types: traction -compression, flexion plane, torsion. Introduction
aux méthodes variationnelles et aux éléments finis.

4. Comportement des milieux solides, Endommagement, Rupture fragile (M2). Cours
et TD. Responsable: M. Lemâıtre.

Introduction par séance de cours/TD aux lois de comportement solide et aux notions d’analyse
limite, d’endommagement et de rupture fragile.
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5. Travaux Pratiques de mécanique des solides (L3-M1).

Les différentes manips que j’ai eu l’occasion d’encadrer concernent la traction/compression d’une
éprouvette cylindrique à l’aide d’une machine de traction, une barre en flexion, un cylindre sous
pression, la mesure acoustique des constantes élastiques, la déformation d’un treillis à l’aide de
jauges de déformation, la vibration de ressorts (phénomène de résonance), la visualisation des
déformations par photoélasticité.

Les notions de mesures de déplacements/déformation, de mesures d’effort par calibration, d’incertitudes
de mesures y sont abordées.

J’ai eu l’occasion d’encadrer conjointement les TD et les TP du même module. Cela fut bénéfique
à la fois pour les étudiants et pour moi car les TP m’ont permis d’illustrer les TD par des exemples
concrets et les échanges avec les étudiants, de mieux appréhender les difficultés qu’ils avaient en
cours et en TD.

Mécanique des fluides. Niveau L2 au L3.

1. Statique et dynamique des fluides parfaits (L2). TD des cours de V. Nguyen, L. Gottes-
diener et J.D. Polack.

Introduction à la notion de pression, de description eulérienne/lagrangienne du mouvement.
Utilisation du théorème de Bernoulli et du théorème des efforts globaux.

2. Travaux Pratiques en Mécanique des Fluides (L3).

Les différentes manips que j’ai eu l’occasion d’encadrer concernent le tube de Venturi, la réaction
d’un jet sur un obstacle, l’écoulement laminaire en conduite, l’écoulement turbulent en conduite,
l’écoulement autour d’un cylindre, étude du comportement dynamique de fluides (newtoniens et
non-newtoniens) par l’utilisation d’un rhéomètre de Couette.

Ces TP sont l’occasion d’échanges scientifiques plus informels qu’en cours ou TD, riches d’enseignements
avec les étudiants. Ils sont l’occasion d’aborder la méthode scientifique de façon plus réaliste que
lors des TD.

Transferts thermiques (L2)

TD des cours de Mme Metellus.
Introduction aux transferts thermiques : généralités sur les différents modes de propagation de la
chaleur (conduction, convection, rayonnement), conduction thermique en régime stationnaire, résis-
tance thermique.

Mathématique (L3)

TD des cours de M. Larchevêque.
Théorie de l’intégration, série de Fourier, transformation de Fourier, transformation de Laplace, équa-
tions aux dérivées partielles.

Méthodologie du travail universitaire (L1)

Cette UE a pour but d’introduire les étudiants aux méthodes de travail et au monde universitaire
scientifique. Elle se propose de les amener à réfléchir sur leur projet professionnel, leurs méthodes
de travail et les outils extra-scientifiques nécessaires à leur bonne intégration à l’université (fonction-
nement de la mémoire, travail en équipe, gestion du temps, gestion d’un projet, recherche et synthèse
d’informations, prise de note, expression orale et écrite).
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Ces objectifs sont abordés en laissant une relative liberté à l’enseignant, ce qui permet d’aborder
l’enseignement sous un angle différent du traditionnel cours/TD et de faire des expériences péda-
gogiques nouvelles et enrichissantes. Les thèmes que j’ai choisis sont les suivants:

1. Histoire des sciences.

Les outils méthodologiques sont introduits à travers la réalisation d’une chronologie générale de
l’histoire des sciences, la présentation sous forme de poster de biographies de savants, l’étude de
la Révolution scientifique et de textes originaux.

2. Les outils de la Mécanique: de la modélisation à la conception.

Les outils méthodologiques sont abordés à travers (i) une introduction à la mécanique statique
(notion de forces, moment de forces, pression, résistance des matériaux) et (ii) la réalisation
(type bureau d’étude) et la présentation orale d’un mini-projet technologique (ex: F1, avion,
sous-marin, mongolfière, “Là-Haut”) .

Méthodes numériques (L3-M2)

1. Méthodes numériques pour la mécanique (L3).

Encadrements de mini-projets simples de mécanique (poutre en flexion, conduction de la chaleur,
écoulement dans une canalisation) réalisés en Fortran.

2. Matlab, méthodes spectrales et des différences finies (M2). Responsable: J. J. Marigo.

Apprentissage de Matlab par la résolution de différents problèmes de mécanique et d’acoustique
(vibration d’une corde, équation de la chaleur, équation de transport) par des méthodes spec-
trales ou de différences finies.

3. Méthode des éléments finies. Cours H. Dumontet.

Programmation des éléments finis en Matlab. Réalisation et encadrement d’une série de TPs
avec comme objectifs (i) d’apprendre à utiliser Matlab, (ii) d’aider à comprendre le cours et
(iii) de savoir coder la méthode des éléments finis. Les différentes étapes de la programmation
(maillage, construction des matrices de rigidité et du second membre élémentaires, assemblage
des matrices globales, prise en compte des conditions limites, résolution du système linéaire,
post-traitement et visualisation) sont traitées en partant d’un problème 1D avec un degré de
liberté par noeud en allant progressivement vers un problème 2D à deux degrés de liberté par
noeud.

Encadrement d’étudiants/Postgraduate students

Concernant les problèmes de déformation de front de fissures planes, j’ai coencadré avec J.B. Leblond,
deux thèses: celle de Elie Favier qui est actuellement mâıtre de conférences à l’université de Marne La
Vallée et celle de Nadjime Pindra actuellement ATER à l’UPMC. J’ai également activement participé à
la partie “fracture”de la thèse CEA (responsable Sylvain Faure) de Cécile Bousquet concernant les gels
aspirables (procédé de décontamination nucléaire). Actuellement, je coencadre deux thèses: celle de
Laurène Legrand sur la coalescence de deux fissures avec J. B. Leblond et celle de Mourad Chekchaki
concernant les méthodes de caractérisation des suspensions collöıdales consolidées par séchage avec
L. Pauchard. J’ai aussi le plaisir depuis peu d’encadrer avec Damien Vandembroucq (PMMH) un
post-doctorant, Sylvain Patinet sur la propagation des fissures dans des interfaces patternées.
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Par ailleurs, j’ai suivi il y a peu une formation sur l’encadrement des doctorants à l’Institut de For-
mation des Doctorants de Paris 6. Cela m’a permis de prendre conscience (i) des difficultés liées à la
recherche d’emploi après la thèse, (ii) de l’importance d’anticiper leur avenir professionnel, (iii) des
compétences développées pendant la thèse et qui peuvent être valorisées lors de la recherche d’emploi.



Chapter 2

Perturbation approaches of a planar
crack in linear elastic fracture
mechanics: a review

Among my research interests, I have chosen to present in this report the results I have obtained on the
crack front shape deformations with my colleague and former PhD advisor, J.B. Leblond and our PhD
students E. Favier, N. Pindra, L. Legrand. I have chosen to write it in the spirit of a review paper,
with the hope to publish it and to be comprehensible by both mechanical engineering and statistical
physics community to further be able to develop this topic in common (in particular, during the ANR
project MEPHYSTAR). To emphasize my own contribution, the papers I took part in are in bold fonts.

Consider a crack embedded in an elastic solid that is loaded quasistatically (fig. 2.1). (i) Under which
conditions of loading, (ii) in which direction and (iii) along which distance will this crack propagate?
Linear Elastic Fracture Mechanics (LEFM) aims at answering these questions. It is widely applied in
several fields, for instance: in engineering applications (Anderson, 1991) for obvious safety reasons;
in geological applications (Aydin and Pollard, 1988; Atkinson, 1987) as earthquakes (Liu and Rice,
2005; Fisher et al., 1997; Grob et al., 2009; Bonamy, 2009), basalt columns (Goehring et al., 2009) or
in the soft matter domain (Gauthier et al., 2010). The principal aim of this review, in addition to
a brief overview of the answers to the first two questions, is linked to the third question and concerns
the crack front deformation of a three-dimensional planar crack during its propagation.

Nowadays, several different approaches are developed within LEFM. Traditional approach, in the con-
tinuity of the pioneer works of Griffith (1920) and Irwin (1958), is based on the local mechanical
and energetic fields near the crack front and uses propagation criterions based on the Stress Inten-
sity Factors K1, K2, K3 or the elastic energy release rate G. This approach aims at predicting the
propagation conditions (loading, path) of a preexisting crack, but is unable to deal with the crack ini-
tiation problem. Recently new approaches have been developed that are able, in theory, to deal with
both the crack initiation and propagation paths: the energetic variational minimisation approach to
fracture and the phase-field method. The first (i) has been shown to include the traditional approach
(Francfort and Marigo, 1998; Bourdin et al., 2008), (ii) has been approximated for numerical purposes
by non-local damage first-gradient model (Bourdin et al., 2000) and (iii) has been applied to several
brittle fracture problems as stability problems (Benallal and Marigo, 2007), the deterioration of the
French Panthéon (Lancioni and Royer-Carfagni, 2009), the propagation direction in presence of mode
2 (Chambolle et al., 2009). The second, first developed for solidification front (Caginalp and Fife, 1986;
Collins and Levine, 1986) was further extended to brittle fracture (Karma et al., 2001) and has shown
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Figure 2.1: An example of three-dimensional LEFM problem: a three-dimensional planar crack (in
grey) embedded in an arbitrary body loaded by external load ~T p, ~up on ∂ΩT , ∂Ωu. The dashed line
corresponds to the position of the initial front F after an in-plane δ(s)~e2(s) advance.

their efficiency to resolve problems of path determination in 2D (Henry and Levine, 2004; Hakim and
Karma, 2009; Corson et al., 2009) and 3D (Pons and Karma, 2010). But the traditional approach has
still its place thanks to the maturity acquired by its longer history: in particular, to deal with the
crack front shape deformations an efficient perturbation method of the crack front, pioneered by Rice
(1985), has been used. The method allows to update the stress intensity factors (that are prerequisite
to any crack propagation prediction) for any small perturbation of the crack front without resolving
the whole elasticity problem. On the one hand, the initial method of Rice (1985) has been applied to
the propagation of cracks in disordered heterogeneous by the statistical physics community. On the
other, it has be extended and applied to more and more complex problems by the fracture mechanics
community. A review concerning the roughening of the front in disordered heterogeneous materials
from a statistical physics point of view, has recently be done by Bonamy (2009). Here, the aim is to
do a review of the crack front perturbation approaches from a mechanical point of view. After a brief
overview of the traditional LEFM approach (section 2.1), the perturbation method is presented in the
general case (section 2.2) and then for some model selected problems (section 2.3). Application to
crack propagation in homogeneous media (section 2.4), crack trapping by tougher obstacles (section
2.5), propagation in disordered media (section 2.6) are then developed.

2.1 Overview of the traditional LEFM approach

2.1.1 Definition of the SIFs

Let F denote the crack front and s some curvilinear abscissa along it. At each point s of F , we define
a local basis of vectors (~e1(s), ~e2(s), ~e3(s)) in the following way :

1. ~e3(s) is tangent to F and oriented in the same direction as the curvilinear abscissa s;

2. ~e2(s) is in the crack plane, orthogonal to F and oriented in the direction of propagation;
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3. ~e1(s) ≡ ~e1 is orthogonal to the crack plane and oriented in such a way that the basis (~e2(s), ~e1,
~e3(s)) is direct1.

The SIFs Kj(s), j = 1, 2, 3 at point s are then defined by the following formula, where Einstein’s
summation convention is employed :

lim
r→0

√
2π
r

J~u(s, r)K ≡ 8ΛijKj(s)~ei(s). (2.1)

In this expression J~u(s, r)K denotes the displacement discontinuity across the crack plane, oriented by
the vector ~e1, at the distance r behind the point s of F , in the direction of the vector −~e2(s). Also,
(Λij)1≤i≤3,1≤j≤3 ≡ Λ is the diagonal matrix defined by

Λ ≡ 1
E

 1− ν2 0 0
0 1− ν2 0
0 0 1 + ν

 (2.2)

where E denotes Young’s modulus and ν Poisson’s ratio2.

2.1.2 Crack advance versus loading criterions

A crack propagates instantaneously if the loading reaches a certain threshold (brittle fracture, but
also continuously at a slower rate proportional to the loading (subcritical propagation due for instance
to stress-corrosion or fatigue propagation due to cyclic loading). Concerning brittle fracture, Griffith
(1920)’s criterion is extensively used: it states that the crack propagates if the elastic energy released
by the crack propagation G is sufficient to counterbalance the fracture energy Γ necessary to create
new surfaces.

G < Γ ⇒ no propagation, (2.3)
G = Γ ⇒ possible propagation. (2.4)

SIFs and energy release rate G are linked by Irwin (1957)’s formula (Einstein summation convention
is used):

G = KiΛijKj , (2.5)

so that, in mode 1 (K2 = 0, K3 = 0), Griffith (1920)’s criterion is equivalent to Irwin (1958)’s criterion
which states that the crack propagates if the Stress Intensity Factor K1 at the crack tip exceeds the
local toughness Kc:

K1 < Kc ⇒ no propagation, (2.6)
K1 = Kc ⇒ possible propagation. (2.7)

Concerning the subcritical or fatigue propagation, Paris’ law (Paris et al., 1961; Erdogan and Paris,
1963) with a threshold G0 or without (G0 = 0) is often used. It states that the crack velocity ∂a(t)/∂t
goes as a power-law with the excess energy release rate G:

∂a(t)
∂t

= C(G − G0)β, (2.8)

1 the order of the vectors may seem a little surprising but this definition of the local basis presents the advantage that
the mode 1, (resp. 2 and 3) corresponds to the displacement jump along the vector with the same numbering, that is ~e1

(resp. ~e2 and ~e3)
2A similar formula holds for an arbitrary anisotropic medium but the matrix Λ is then no longer diagonal.
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and to a power of K1 in mode 1:

∂a(t)
∂t

= C(K1 −K0)N (2.9)

For subcritical propagation, t represents time. For fatigue, t must conventionally be re-interpreted as
number of cycles and G as variation of the energy release rate during one cycle. An overview of the
values of β or N and C for engineering materials can be found in Fleck et al. (1994). It’s physical
background (Vieira et al., 2008) and its validity field (Ciavarella et al., 2008) are still the subject of
many research papers. Interestingly for numerical simulations, Paris’ law may also be considered, in
the case of very large Paris’ exponent (Lazarus, 2003) or Paris’ constant (Gao and Rice, 1989), as
a kind of “viscous-plastic regularisation” of Griffith’s propagation law for brittle fracture.

2.1.3 Crack propagation direction criterions

In homogeneous isotropic elastic media, except in some special conditions, it is well known that
whatever the external loading, the crack front bifurcates in order to reach a situation of pure tension
loading as the crack propagates (Hull, 1993). Hence, planar crack propagation is generally stable
under mode 1 loading and unstable under mode 2 or 3. A literature survey of mixed mode crack
growth can be found in Qian and Fatemi (1996). Under mode (1+2) conditions, the crack kinks to
make mode 2 vanish. The value of the corresponding kink angle can be obtained, for instance, by the
Principle of Local Symmetry (PLS) of Goldstein and Salganik (1974) or by the maximum tangential
stress criterion (MTS; Erdogan and Sih 1963). The difference between these two criterions has been
discussed by Amestoy and Leblond (1992). In presence of mode 3, to reach a situation of mode 1, the
crack front twists around the direction of propagation. Seldom papers deals with the prediction of the
propagation path in this condition. Among them, Lazarus and Leblond (1998a), Lazarus et al.
(2001b), Lazarus et al. (2008) consider the particular case of 3 or 4 point bending experiments and
Cooke and Pollard (1996), Lin et al. (2010), Pons and Karma (2010) the segmentation of the front.
In some particular situations, even in presence of mode 2 or 3, planar crack propagation may be stable.
It is the case for instance when the crack is channelled along a planar surface of low fracture resistance,
which can be the case for instance along a geological fault or in composite materials. It may also be
the case in fatigue due to the presence of friction (Doquet and Bertolino, 2008).

2.1.4 Crack perturbation approaches

To predict the propagation path applying crack advance and propagation criterions described above,
perturbation methods have been used. A first set of papers considers the out-of-plane perturbation of
the faces of a planar crack: the first order variation of the SIF are given in Movchan et al. (1998) and
applied by Obrezanova et al. (2002) to generalise the Cotterell and Rice (1980)’s stability analysis of
a crack to small out-of-plane deviation of its path. A second set of papers gives the expressions of the
SIFs along the front of an arbitrary kinked and curved infinitesimal extension of some arbitrary crack:
Leblond (1989) and Amestoy and Leblond (1992) in 2D, and Leblond (1999) and Leblond et al.
(1999) in 3D. These expressions have been applied for instance, to show that the PLS and the MTS
yield very close but distinct kink angles (Amestoy and Leblond, 1992) or to the crack front rotation
and segmentation in mixed mode 1+3 or 1+2+3 (Lazarus and Leblond, 1998a; Lazarus et al.,
2001a,b). A third set of papers consider the same problem then the second in the particular case of
a planar crack with a coplanar extension. They are the main object of this review and are developed
below.
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2.2 In-plane crack front perturbation approaches for an arbitrary
planar crack

Consider a plane crack of arbitrary shape embedded in some isotropic elastic medium subjected to
some arbitrary loading: given forces ~T p along ∂ΩT and given displacements ~up along ∂Ωu (Figure 2.1).
The aim of this section is to give the first order variation of the stress intensity factors due to small in-
plane perturbation of the crack front. Such formulae have first been derived in several particular cases
notably by Rice and coworkers, and then generalised to more arbitrary problems. Here the historical
chronology is not respected: first, in the present section, the most general formulae are recalled by
relying on the paper of Favier et al. (2006a). They are then particularised to some model problems
in section 2.3.

2.2.1 Definitions and elementary properties of weight functions

Definitions Let kij(F ; s′; s, r) denote the i-th SIF at the point s′ of the crack front F resulting from
application of a pair of opposite unit point forces equal to ±~ej(s) on the upper (+) and lower (−)
crack surfaces at a distance r behind the point s of the crack front the other loading being supposed
to be zero (~T p = ~0 along ∂ΩT and ~up = ~0 along ∂Ωu). These nine scalar functions are called the crack
face weight functions (CFWFs).
The functions kij(F ; s′; s, r)/

√
r are known to have a well-defined limit for r → 0 (see for instance

Leblond et al. (1999)). We then define the matrix (Wij(s′, s))1≤i≤3,1≤j≤3 ≡W(s′, s) by the formula

Wij(s′, s) ≡ π

√
π

2
D2(s, s′) lim

r→0

kij(F ; s′; s, r)√
r

(2.10)

where D(s, s′) denotes the cartesian distance between points s and s′. The functions Wij(s′, s) in
fact depend on the crack front shape, just like the CFWFs, but the argument F is omitted here for
conciseness. They will be called the fundamental kernels (FKs) or more shortly the kernels.
Although the SIFs depends on the loading intensity and position, the CFWFs, hence the FKs depend
on it only through the definitions of ∂ΩT and ∂Ωu.

Properties The CFWFs are positively homogeneous of degree −3/2; that is, if all distances are
multiplied by some positive factor λ, the CFWFs are multiplied by λ−3/2. The definition (2.10) of the
functions Wij(s′, s) then implies that they are positively homogeneous of degree 0:

W(λs′, λs) = W(s′, s) ∀λ > 0 (2.11)

Since tensile and shear problems are uncoupled for a planar crack in an infinite body, whatever the
shape of the crack front, the components k12, k13, k21 and k31 of the CFWFs are zero, so that by
equation (2.10),

W12(s′, s) ≡W13(s′, s) ≡W21(s′, s) ≡W31(s′, s) ≡ 0. (2.12)

Considering two problems, one with point forces equal to ±~ei exerted on the crack faces at (s, r) and
one with point forces equal to ±~ej exerted on the crack faces at (s′, r′), applying Betti’s theorem, and
using equations (2.1) and (2.10), one sees that the kernels obey the following “symmetry” property :

ΛimWmj(s, s′) = ΛjmWmi(s′, s). (2.13)

Finally, Leblond et al. (1999) have shown that the limit of W(s, s′) when s′ → s is universal, i.e.
that it does not depend on the geometry. It is linked to the behaviour of the weight-functions when
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the point of application of the loading tends toward the point of observation of the SIF which is a
local property independent of the far geometry. The values of this limit are:

lims′→sW11(s, s′) = 1

lims′→sW22(s, s′) =
2− 3ν
2− ν

lims′→sW33(s, s′) =
2 + ν

2− ν
lims′→sW23(s, s′) = 0

(2.14)

2.2.2 First order variation of the stress intensity factors

Let us now assume that the crack advances, under constant loading, by a small distance δ(s) within
its plane in the direction perpendicular to its front (fig. 2.1). It has been shown in Favier et al.
(2006a) that, for any loading, if δ(s0) = 0,

δK(s0) = N ·K(s0)δ′(s0) +
1
2π

PV
∫
F

W(s0, s)
D2(s0, s)

·K(s)δ(s)ds. (2.15)

The condition δ(s0) = 0 ensures the existence of the Principal Value integral PV
∫

. The quantities

K(s) ≡ (Ki(s))1≤i≤3 and δK(s) ≡ (δKi(s))1≤i≤3 here are the column vectors of initial SIFs and
variations of these SIFs, and N ≡ (Nij)1≤i≤3,1≤j≤3 is the matrix defined by

N ≡ 2
2− ν

 0 0 0
0 0 −1
0 1− ν 0

 . (2.16)

Equation (2.15) is identical to Leblond et al. (1999)’s general equation (30) (with the notation
1
2π

W(s0, s)
D2(s0, s1)

instead of Z(s0, s)), in the special case of a planar crack with coplanar extension (and

zero crack advance at the point s0). It shall be noticed that the variation of the SIFs at a particular
point s0 depends in an non-local manner on the crack perturbation along all the front. It is due to
long-range elastic interactions.
The restriction δ(s0) = 0 will now be removed by two methods:

1. Using a trick of Rice (1989), that consists of decomposing an arbitrary motion of the crack front
defined by the normal advance δ(s) into two steps :

(a) A translatory motion of displacement vector δ(s0)~e2(s0). This motion brings the point s0 to
its correct final position while leaving the crack front shape unchanged. The corresponding
normal advance δ∗(s) is given, to first order in δ(s), by

δ∗(s) = δ(s0) ~e2(s0) · ~e2(s). (2.17)

The associated variation of K(s) will be denoted δ∗K(s).

(b) A motion with normal advance given by δ(s)−δ∗(s). This advance is zero at point s0 so that
the corresponding variation of K(s0) is given by equation (2.15), with δ′(s0)−δ′∗(s0) = δ′(s0)
since δ′∗(s0) = 0 by equation (2.17).
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Adding up the contributions from these two motions, one gets the final expression of the variation
of the SIFs under constant loading in the general case:

δK(s0) = δ∗K(s0) + N ·K(s0)δ′(s0)

+
1
2π

PV
∫
F

W(s0, s)
D2(s0, s)

·K(s) [δ(s)− δ∗(s)] ds.
(2.18)

This expression allows to update the SIFs knowing the initial SIFs, FK and the displacement
provided that the quantity δ∗K can be calculated. The unknown quantity δ∗K(s0) is equal to
zero if the translatory motion δ(s0)~e2(s0) leaves the problem unchanged. It is for instance the
case if the crack front is far from any boundary so that the media can be assumed to be infinite
submitted to remote stress loading. Then, the first order formula simply becomes:

δK(s0) = N ·K(s0)δ′(s0) +
1
2π

PV
∫
F

W(s0, s)
D2(s0, s)

·K(s) [δ(s)− δ(s0) ~e2(s0) · ~e2(s)] ds.

(2.19)

2. Another possibility is to proceed as Leblond et al. (1999) and to decompose the normal
advance δ(s) into a uniform advance δ(s0) (denote [δK(s0)]δ(s)≡δ(s0) the corresponding first
order variation of the SIFs) and the advance δ(s) − δ(s0) for which the equation (2.15) can be
used. The final expression then reads:

δK(s0) = [δK(s0)]δ(s)≡δ(s0) + N ·K(s0)δ′(s0) +
1
2π

PV
∫
F

W(s0, s)
D2(s0, s)

·K(s) [δ(s)− δ(s0)] ds.

(2.20)

This expression is useful if one can calculate [δK(s0)]δ(s)≡δ(s0). It is the case for instance if the uniform
advance δ(s) ≡ δ(s0) doesn’t change the geometry of the problem as for a circular, straight half-plane
or tunnel crack.

Formula (2.15) and its corollaries (2.18), (2.19), (2.20) have been derived for homogeneous isotropic
elastic solids. For cracks at the interface between two elastic solids, such a formula exists in the sole
case of a half-plane crack: the first order variation of the SIFs can be found in Lazarus and Leblond
(1998b), c and using an other formalism (Wiener-Hopf analysis) in Bercial-Velez et al. (2005), the
connection between the two methods having been done by Piccolroaz et al. (2007).

2.2.3 First order variation of the fundamental kernel

To derive higher order variation of the SIFs, the first order variation of the fundamental kernel is
necessary. It has been shown by Rice (1989) in mode 1 and Favier et al. (2006a) in modes 2+3
that:

δW(s0, s1) = N ·W(s0, s1)δ′(s0)−W(s0, s1) · N δ′(s1)

+
D2(s0, s1)

2π
PV

∫
F

W(s0, s) · W(s, s1)
D2(s0, s)D2(s1, s)

δ(s)ds,
(2.21)

if δ(s0) = δ(s1) = 0. In order to get rid of these conditions, one must imagine a motion δ∗∗(s) such
as δ∗∗(s0) = δ(s0) and δ∗∗(s1) = δ(s1). Denote δ∗∗W(s0, s1) the corresponding variation of the kernel.
Equation (2.21) then becomes:

δW(s0, s1) = δ∗∗W(s0, s1) + N ·W(s0, s1) [δ′(s0)− δ′∗∗(s0)]−W(s0, s1) · N [δ′(s1)− δ′∗∗(s1)]

+
D2(s0, s1)

2π
PV

∫
F

W(s0, s) · W(s, s1)
D2(s0, s)D2(s1, s)

[δ(s)− δ∗∗(s)]ds.

(2.22)
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A difficulty is to be able to define δ∗∗(s) such as δ∗∗W (s0, s1) can be calculated. This problem has
not been solved at present in the general case. In the particular case of an infinite body subjected to
uniform remote loading, one can always find a combination of a translatory motion, a rotation and a
homothetical transformation bringing two distinct points s0, s1 from any initial positions to any final
positions (This is obvious using a complex variable formalism and noting that such transformations
are of the form f(z) = az + b where a and b are arbitrary complex parameters). Such a combination
leaves the kernels unaffected so that δ∗∗W (s0, s1) = 0. Equation (2.22) then yields:

δW(s0, s1) = N ·W(s0, s1) [δ′(s0)− δ′∗∗(s0)]
−W(s0, s1) · N [δ′(s1)− δ′∗∗(s1)]

+
D2(s0, s1)

2π
PV

∫
F

W(s0, s) · W(s, s1)
D2(s0, s)D2(s1, s)

[δ(s)− δ∗∗(s)]ds.
(2.23)

Note that quantities δ′∗∗(s0) and δ′∗∗(s1) here are nonzero, unlike quantity δ′∗(s0) in equation (2.18).

2.2.4 Some expressions of the fundamental kernel W

To initiate the perturbation approach, the FKs must be known for the unperturbed configurations. It
is the case for some seldom geometries that are depicted in figures 2.2, 2.3, 2.4. In those figures, the
crack front are coloured in blue and the faces in grey.

2.2.4.1 Circular cracks
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Figure 2.2: Several problems involving a circular crack.

Two cases are considered, an internal and an external crack:

• For the internal circular crack such as ∂Ωu = ∅, for instance loaded by remote stresses (fig.
2.2(a)), the value of the non-zero components of the kernel W are (Kassir and Sih, 1975; Tada
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et al., 1973; Bueckner, 1987; Gao and Rice, 1987b; Gao, 1988):

W11(θ0, θ1) = 1

W22(θ0, θ1) =
2 cos(θ0 − θ1)− 3ν

2− ν
W33(θ0, θ1) =

2(1− ν) cos(θ0 − θ1) + 3ν
2− ν

W23(θ0, θ1) =
1

1− ν
W32(θ1, θ0) =

2 sin(θ0 − θ1)
2− ν

.

(2.24)

• For the external circular crack (fig. 2.2(b)), only the value in mode 1 is known (Stallybrass,
1981; Gao and Rice, 1987a; Rice, 1989) for several cases of remote boundary conditions:

– when remote points are clamped (given U∞0 = 0, Ω∞ = 0):

W11(θ0, θ1) = 1 (2.25)

– when remote points can not rotate but can move in the ~e1 direction (given F∞ = 0,
Ω∞ = 0):

W11(θ0, θ1) = 1 + 4 sin2

(
θ0 − θ1

2

)
(2.26)

– when remote points can not move in the ~e1 direction, but can rotate (given U∞0 = 0,
M∞

0 = 0):

W11(θ0, θ1) = 1 + 24 sin2

(
θ0 − θ1

2

)
cos(θ0 − θ1) (2.27)

– when remote points are constrained against any motion (given F∞ = 0, M∞
0 = 0):

W11(θ0, θ1) = 1 + 4 sin2

(
θ0 − θ1

2

)
[1 + 6 cos(θ0 − θ1)] (2.28)

2.2.4.2 Half-plane crack

In the case of a half-plane crack with ∂Ωu = ∅, loaded for instance by remote stresses (fig. 2.3(a))
or line (fig. 2.3(b)) or surface traction (fig. 2.3(c)), the kernel is (Meade and Keer, 1984; Bueckner,
1987; Rice, 1985; Gao and Rice, 1986):

W11(z1, z0) = 1

W22(z1, z0) =
2− 3ν
2− ν

W33(z1, z0) =
2 + ν

2− ν
W23(z1, z0) = 0

(2.29)

2.2.4.3 Tunnel-cracks

The model of half-plane crack is widely used due to its simplicity, but it lacks a lengthscale. To
introduce a lengthscale, Leblond and coauthors have studied several cases involving a tunnel-crack
(fig. 2.4) with ∂Ωu = ∅: Leblond et al. (1996) for the tensile tunnel-crack, Lazarus and Leblond
(2002c) for the shear tunnel-crack (fig. 2.4(a)), Pindra et al. (In prep) for two coplanar tensile
tunnel-cracks (fig. 2.4(b)), Legrand and Leblond (In prep.) for an external tunnel-crack (fig. 2.4(c))3.

3External cracks give rise to traditional ambiguities on the external load, since they cannot withstand uniform tractions
exerted at infinity. Here the situation considered unambiguously consists of two tunnel-cracks (fig. 2.4(b)) in the limiting
case where b� a.
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Figure 2.3: Several problems involving a half-plane crack

2.3 Particular model case of tensile straight crack fronts

The aim here is to introduce formulas that are useful further on for the study of some crack propagation
problems involving an initially straight crack front (for sections 2.4.1 and 2.6 in particular).

2.3.1 Unperturbed geometries and loading

For simplicity, only mode 1 is considered and K1 is re-noted K. To study the propagation of a straight
crack front, the most natural and simple model is the half-plane crack loaded by remote stresses (fig.
2.3(a)). Even if a certain number of results can be obtained with this model, it lacks crucially a
lengthscale. To fill this gap, this simple model has progressively be enriched. Here, the following
models are considered more specifically:

1. a half-plane crack loaded by remote stresses (fig. 2.3(a)), then K(s) = K is a constant due to
the lack of any lengthscale in this problem;

2. a half-plane crack with uniform line tractions P at a distance a of the front (fig. 2.3(b)), then

K(z) =
√

2
πPa

−1/2;

3. a half-plane crack with uniform surface tractions σ in a band of width a (fig. 2.3(c)), then
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Figure 2.4: Several problems involving a tunnel-crack.

K(z) = 2
√

2
πσ a

1/2;

4. a tunnel-crack loaded by remote stresses (fig. 2.4(a)) then K(z) = σ
√
πa1/2;

All these problems can be included in the more general framework for which the initial SIF can be
written under the form:

K(a) = kaα (2.30)

where k depends on the loading level but is independent of a. The value of α are 0 in the case 1, −1/2
in case 2, 1/2 in cases 3 and 4. The sign of α is of uppermost importance in the sequel. If α < 0 the
propagation is stable under constant loading and if α > 0 unstable4.

2.3.2 Fourier transform of the first order variation of the SIF

Define the Fourier Transform φ̂(k) of some arbitrary function φ(z) by

φ̂(k) ≡
∫ +∞

−∞
φ(z)eikzdz ⇔ φ(z) ≡ 1

2π

∫ +∞

−∞
φ̂(k)e−ikzdk. (2.31)

4This terminology makes an implicit reference to Irwin’s propagation law (2.7) for which crack propagation occurs
when the SIF reaches some critical value. For such a law and under constant loading, after the onset of crack propagation,
the velocity of the crack goes immediately down to zero if the SIF decreases with distance, but continuously increases in
the opposite case; hence the expressions ”stable propagation“, ”unstable propagation“.
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Using this definition and equation (2.20) applied to the geometries listed in section 2.3.1, Fourier
components δK̂(k) of the first order variation of the mode 1 SIF δK(z) can be written under the
following form:

δK̂(k, a)
K(a)

=

[
dK(a)

da

K(a)
− a−1F (p)

]
δ̂(k) = (α− F (p))

δ̂(k)
a

(2.32)

Here, k is the wavenumber and p = ka the dimensionless one. In the case of the tunnel-crack geometry,
we have supposed that the perturbations are the same for all the fronts for simplicity, so that if we
denote δn(z) the perturbation of Fn, it exists a function δ(z) such as δn(z) = δ(z) whatever n = 1, N .
F (p) can be derived from the expressions of the fundamental kernels listed in section 2.2.4. For
instance, for the half-plane crack it reads:

F (p) =
p

2
(2.33)

and for all the geometries of §2.3.1, it can be verified that (i) F (0) = 0 and (ii) F (p) increases
monotonically to finally behaves as p/2 for p → ∞. This last behaviour is closely linked to the
universal behaviour of W11(s, s′) for s′ → s (eq. 2.14).
The general formulas for the tunnel-crack, without the symmetry hypothesis δn = δ of the crack
advance, can be found in Favier et al. (2006b). A formula similar to (2.32) can be find in Gao and
Rice (1987b) (resp. Gao and Rice (1987a)) for an internal (resp. external) circular crack, in Pindra
et al. (In prep) for two tunnel-cracks and in Legrand and Leblond (2010) for an external tunnel-
crack. For shear loading, see Gao and Rice (1986) for the half-plane crack, Pindra et al. (2008a)
for the interfacial half-plane crack, Pindra et al. (2010) for the tunnel-crack.

2.4 Crack propagation in an homogeneous media

The aim of this section is to study the crack front shape changes arising from the propagation in
an homogeneous media. First the problem of crack shape bifurcation and stability (section 2.4.1) is
studied analytically by linear approaches, then large scale deformations (section 2.4.2) are presented
using incremental non linear numerical simulations.

2.4.1 Crack front shape linear bifurcation and stability analysis

First order perturbation approaches are extensively used in linear bifurcation and stability analysis
in various problems (Drazin, 1992; Bazant and Cedolin, 2003; Nguyen, 2000). Here the problem of
configurational bifurcation and stability of a straight crack front is considered.

2.4.1.1 Bifurcation

Consider one of the model problems of section 2.3 and suppose that K(z) = Kc for all z. The
configurational bifurcation problem aims at answering the following unicity question: can one find any
configuration satisfying the condition that the SIF be equal to a constant along the crack front, other
than the initial straight one?
The linear bifurcation problem amounts to search for a crack front perturbation δ(s) 6= 0 such as the
first order variation δK(s) of the SIF is zero. By equation (2.32), this reads:

[α− F (p)] δ̂(k) = 0, (2.34)

so that non-zero solution exists if [α− F (p)] = 0 ∀p. Since F (p) ≥ 0, it exists only if α ≥ 0 that
is if the propagation is unstable under constant loading. The bifurcation corresponds to a sinusoidal
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perturbation of critical wavelength λc solution of (α has been introduced in 2.30):

λc = λ∗c a, where λ∗c =
2π

F−1 (α)
(2.35)

For the half-plane crack, it corresponds to Rice (1985)’s result:

λc =
πK(a)
dK(a)

da

, (2.36)

which gives λc = 2πa ∼ 6.283 a in the case of surface tractions (fig. 2.3(c)). For the single tunnel-
crack under remote loading, λc = 6.793 a (Leblond et al., 1996) and two interacting tunnel cracks
λc = 18.426 a when a� (b+ a) (fig. 2.4(b)).

a

B

Aλ

(a) Small wavelength λ� a

B

A

a

λ

(b) Large wavelength
λ� a

Figure 2.5: Sinusoidal perturbation of the crack front

The existence of a bifurcation if dK(a)
da > 0 and the nonexistence if dK(a)

da < 0 has still been noticed by
Nguyen (2000) in the case of thin films. It may be rationalised as follows:

1. Consider first a perturbation of the crack fronts of small wavelength, λ� a (Figure 2.5(a)). The
crack advance is maximum at point A and minimum at point B. Draw small circles centred at
these points. That part of the interior of the circle occupied by the unbroken ligament (hatched
in Figure 2.5(a)) is larger at point A than at point B, so that the opening of the crack is more
hindered near the first point than near the second. Thus the stress intensity factors K(A), K(B)
at points A and B obey the inequality K(A) < K(B).

2. Consider now a perturbation of large wavelength, λ � a, and again points A and B where
the crack advance is respectively maximum and minimum (Figure 2.5(b)). The stress intensity
factors at points A and B are almost the same as for ligaments of uniform width equal to the
local width at these points (indicated by dashed double arrows in Figure 2.5(b)). It follows that
K(A) > K(B) if dK(a)

da > 0 and that K(A) < K(B) if dK(a)
da < 0.

This implies:

• In the case dK(a)
da > 0, the difference K(A)−K(B) is negative for small λ and positive for large

λ, and obviously varies continuously with this parameter. Hence some special value λc such that
K(A)−K(B) = 0 must necessarily exist.
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• In the case dK(a)
da < 0, the difference K(A) −K(B) is negative for all λ, so that no bifurcation

is possible.

In the case of shear loading, the results are more complex and can be found in Gao and Rice (1987b)
for the internal circular crack, in Gao and Rice (1986) for the half-plane crack and in Lazarus and
Leblond (2002b) for the tunnel-crack. For thin films, crack front bifurcation has also be studied
by Nguyen (2000); Adda-Bedia and Mahadevan (2006) and observed in experiments (Ghatak and
Chaudhury, 2003).

2.4.1.2 Stability

The question here is as follows: if the crack front is slightly perturbed within the crack plane, will
the perturbation increase (instability) or decay (stability) in time? Equivalently, will the crack front
depart more and more from its initial configuration or tend to keep it? We restrict our attention
here to the cases listed in section 2.3 for which the SIF K(z) in the initial configuration are uniform
independent of z.

When the extrema of δ(z) and δG(z) coincide, stability or instability prevails according to whether the
maxima of δG(z) correspond to the minima or maxima of δ(z) (Rice, 1985; Gao and Rice, 1986, 1987b;
Gao, 1988; Leblond et al., 1996; Lazarus and Leblond, 1998b; Legrand and Leblond, 2010). Hence
the answer to the question can simply be derived from the above bifurcation discussion: sinusoidal
perturbations are stable if α−F (p) < 0 that is for wavelength smaller than the bifurcation wavelength
λc (eq. 2.35) and unstable for λ > λc. In the case of non-existence of a bifurcation (stable propagation
α < 0), stability is thus achieved whatever the wavelength. In the case α > 0, the critical wavelength
is proportional to a, thus continuously increases during propagation, stability ultimately prevails for
all wavelengths.

But when the extrema of δ(z) and δG(z) do not coincide, as is for instance the case of the tunnel-
crack under shear loading (Lazarus and Leblond, 2002b), it appears quite desirable to then discuss
the stability issue in full generality, without enforcing such a coincidence (Lazarus and Leblond,
2002a). It is then necessary to introduce a time dependent advance law.
Let us use here the Paris law (2.9) with K0 = 0. Its leading term reads:

da(t)
dt

= CKN (2.37)

where a(t) is the mean position of the crack front at instant t. Considering henceforward all perturba-
tions as functions of the mean position a of the crack instead of time t, one gets the first order advance
equation:

∂δ(k, a)
∂a

= N
δK(k, a)

K
, (2.38)

which yields (Favier et al., 2006b) after use of FT (2.32) and integration (a0 denotes the initial value
of a):

δ̂(k, a)

δ̂(k, a0)
= exp

[
N

∫ ka

ka0

(α− F (p))
dp
p

]
(2.39)

or using the property F (0) = 0:

δ̂(k, a)

δ̂(k, a0)
=

(
a

a0

)Nα (
ψ(ka)
ψ(ka0)

)Nα

, (2.40)
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where ψ(p) is defined by:

ψ(p) = exp
[
−

∫ p

0

F (q)
q

dq
]

(2.41)

For the half-plane crack, its value is ψ(p) = exp
(
−p

2

)
, for the tunnel-crack it can be found in Favier

et al. (2006b). For the sequel, it is useful to note that whatever the geometry (half-plane or tunnel),
this function ψ(p) decreases from 1 to 0 when p varies from 0 to +∞.
From equation (2.39), it is clear that:

• If dK(a)
da < 0, then α−F (p) < 0 so that all Fourier components of any wavelength decrease with

crack growth a.

• If dK(a)
da > 0, for any given k,

∣∣∣δ̂(k, a)∣∣∣2 increases as long as a remains smaller than 2π
kλ∗

c
and

decreases afterwards.

For t→∞, one can show that:
For k = 0,

∣∣∣∣∣ δ̂(0, a)δ̂(k, a0)

∣∣∣∣∣
2

=
(
a

a0

)2Nα

For k 6= 0,

∣∣∣∣∣ δ̂(k, a)δ̂(k, a0)

∣∣∣∣∣
2

∼
(
a

a0

)2Nα

exp(−N |k| a) → 0

(2.42)

so that:

• If dK(a)
da < 0, any initial perturbation disappears.

• If dK(a)
da > 0, the moduli of all Fourier components ultimately decay, except for k = 0 which

continuously increases. This phenomenon is due to the fact that for all values of λ except +∞, λ
always ultimately becomes smaller than λc(a) since the former wavelength is fixed whereas the
latter increases in proportion with a.

Thus, one can conclude that whatever the small perturbation of crack front, the initial configuration
is finally retrieved5. In the case of stable crack propagation dK(a)

da < 0, the stability prevails at all
lengthscales from the beginning. In the case of unstable crack propagation dK(a)

da > 0, instability first
prevails for all lengthscales such as λ > λc, but since λc is a growing function of the crack advance
a, all wavelengths finally becomes stable so that the perturbation finally disappears. This is true for
all the problems listed in section 2.3 provided that the first order study stays valid. To extend them
to large perturbations, higher order terms must be taken into account. This is the subject of next
section.

2.4.2 Largescale propagation simulations

In the previous sections, the perturbation approach was applied to small perturbations of the crack
front. Following an original idea of Rice (1989), Bower and Ortiz (1990) first extended the method to
the study of arbitrary large propagation of a tensile crack leading the way to the numerical resolution of
some complex three dimensional crack problems. It consists in applying numerically the perturbation
approach described in section 2.2, to a succession of small perturbations arising in arbitrary large ones.
The media is assumed to be infinite loaded by remote stresses so that the SIF can be updated using
formula (2.19) and the FKs using formula (2.23). The crack front shape at each instant is obtained by

5 the wavelength k = 0 corresponds indeed to a infinite wavelength that is an almost straight crack front.
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the inversion of heavily implicit systems of equations resulting from the direct application of Irwin’s
criterion (2.7). The method was then extended and simplified by Lazarus (2003); notably a unified
Paris’ type law (2.9) formulation for fatigue and brittle fracture (N → +∞) is proposed that gives
the advance of the crack front in explicit form once the SIF is known. Extension to shear loading is
performed in Favier et al. (2006a).
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Figure 2.6: Successive crack fronts of pure tensile mode cracks in brittle fracture (eq. 2.9 with
N = 50, K0 = 0). Similar figures for fatigue can be found in Lazarus (2003) and show the same
circular stationnary crack shape.
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Concerning propagation in an homogeneous media, Lazarus (2003) studied the asymptotic behaviour
of the SIF near an angular point of the front and retrieved the theoretical results of Leblond and
Leguillon (1999) about the SIF singularity around a corner point of the front, the fatigue and brittle
propagation paths of some special crack shapes (elliptical, rectangular, heart shaped ones) (fig. 2.6)
loaded by remote tensile stresses. It appears that in all the cases studied, the crack becomes and stays
circular after a certain time emphasizing that among all the configurations studied only the circular
crack shape is stationnary. In the case of shear loading (Favier et al., 2006a), it appears (fig. 2.8)
that the stationnary shape is nearly elliptic, the ratio of the axes being well approximated by:

a

b
= (1− ν)

β
β+1 , (2.43)

β is the Paris law exponent in mixed mode loading (2.8), b corresponds to the axis in the direction
of the shear loading. Whether all embedded plane cracks tend toward a configuration with uniform
value of G(s) is a general result, has however, to my best knowledge, not been demonstrated, even if
one guess that energy minimisation is the physical ground.

2.5 Crack trapping by tougher obstacles

In previous section, all the material constants (elasticity coefficients, fracture toughness) were supposed
to be homogeneous throughout the media. In the sequel, the toughness becomes heterogeneous, but
the elasticity coefficients are supposed to remain constant so that the perturbation approach of section
2.2 remains valid. If the toughness is heterogeneous, the crack advance changes from point to point
and the crack front shape changes during propagation even if the SIFs were initially uniform. In this
section, the propagation of the front through well defined tougher obstacles is studied. In section 2.6,
the toughness is supposed to be disordered so that a statistical approach is necessary.
Tougher inclusions may prevent or hinder the final breaking of a solid by two mechanisms: crack
bridging and crack front trapping. The mechanism of toughening referred to as bridging occurs when
unbroken inclusions lag behind a main crack front hindering its opening by pinning or friction; and
as trapping when the crack front is deformed when it penetrates into the tougher zone or bows out it
(Lange, 1970).
Whereas some aspects of crack bridging can be studied by 2D elasticity problems (Budiansky et al.,
1988), crack trapping induces crack front shape deformations that makes the elasticity problem fully
3D. To understand the mechanism, let us consider a tunnel-crack loaded by remote tensile loading σ
(fig. 2.4(a)) . The SIF for the straight-crack front then reads:

K = σ
√
πa (2.44)

In the absence of obstacles, the propagation is unstable under constant loading so that the breakdown
of the solid occurs as soon as the threshold is reached, unless the loading is decreased to ensure that
K(s) ≤ Kc at each instant: σ = Kc/

√
πa. In the presence of tougher (Kp

c > Km
c , Kp

c , Km
c being resp.

the matrix and particles toughness), the crack propagation of a tunnel-crack of width 2a0 starts when
σ = σ0, where σ0 = Km

c /
√
πa0. Then,

• either the spacing between the obstacles is large enough, so the SIF in the matrix still increases
at constant loading. The final breakdown then occurs for σ = σ0.

• either the spacing is small enough, so the SIF in the matrix decreases at constant loading.
Then a transient period of stable propagation at constant loading exists, so that the unstable
propagation loading, that is the breakdown one, is increased.

In this last case, the breakdown may appear in two different situations:
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Figure 2.7: Successive crack fronts of pure shear mode cracks in brittle fracture (eq. 2.8 with β = 25,
G0 = 0). Shear is along the x−axis. Similar figures for fatigue can be found in Favier et al. (2006a)
and show also a quasielliptic stationnary crack shape.

1. The crack front has penetrated under a stable manner into the obstacles until reaching a con-
figuration such as K(s) = Kc(s) for all s at unstable breakdown instant. The corresponding
loading level σc can then be determined by the following relation derived by Rice (1988); Gao
and Rice (1989):

σ2
c

σ2
0

=
< K2

c >

(Km
c )2

(2.45)
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This situation is called ”regular“ by Gao and Rice (1989). It appears for not too large toughness
differences (to ensure not too large crack front deformations) and particles that are large enough
in the direction of propagation (to have the time to reach the equilibrium position). First order
simulations of this regime have been performed by Gao and Rice (1989) using the perturbation
approach described in section 2.2.2. The results have been compared to simulations of the same
problem performed using a Boundary Element Method showing the accuracy and the limits of
the first order approach. They have also been compared to experiments by Dalmas et al. (2009):
good agreement between the theoretical and experimental crack shapes have been shown. The
work of Gao and Rice (1989) realized in mode 1 is extended to modes 2 and 3 in Gao et al.
(1991).

2. The unstable breakdown occurs before K(s) = Kc(s) is reached for all s, so that only a part of
the front propagates at the breakdown instant, K(s) being lower than Kc(s) on the other part.
In this situation, called ”irregular“ by Gao and Rice (1989) and ”unstable“ by Bower and Ortiz
(1991), the value of σc can only be determined numerically in each particular case. It has been
done by Bower and Ortiz (1990, 1991, 1993), using the incremental method described in section
2.4.2, for a half plane crack propagating through an array of particles. Their results concerning
the bow out of the crack front segments beyond an unbroken particle when the toughness of the
particles is high enough to prevent the penetration of the front in the particle are compared to
experiments by Mower and Argon (1995) and show good agreement in general.

2.6 Crack propagation in a disordered media

In the last two decades, a number of works have been devoted to the study of the evolution in time of
the shape of the front of planar cracks propagating in mode 1 in an elastic solid with randomly variable
fracture toughness. These works can be roughly divided into three groups. The first group includes
the works of Perrin and Rice (1994), Ramanathan and Fisher (1997) and Morrissey and Rice (1998,
2000). They were devoted to the theoretical study of some statistical features of the geometry of
the front of a tensile half-plane crack propagating dynamically. The second group of papers consists
of some experimental studies of the evolution in time of the deformation of the front propagating
quasistatically; see e.g. Schmittbuhl and Mȧløy (1997), Delaplace et al. (1999), Schmittbuhl and
Vilotte (1999), Schmittbuhl et al. (2003a). The third group studied statistical properties of the shape
of crack fronts for a straight crack (half-plane or tunnel-crack) propagating quasistatically: on the
one hand, Schmittbuhl et al. (1995a) and Katzav and Adda-Bedia (2006) focusing notably on self-
affine properties of the crack front shape and on the other hand Favier et al. (2006b), Pindra
et al. (2008a), Pindra et al. (2010), Legrand and Leblond (2010) focusing essentially on the time
evolution of the statistical properties (correlation functions and power spectra).
The main results of this last set of somewhat complex papers, in particular of Favier et al. (2006b)
and Pindra et al. (2008a), are recalled in this section under a new simplified form in the spirit to
be comprehensible by a broader audience. The model problems listed in section 2.3 are considered,
first in the case of brittle fracture (§2.6.1), than in the case of subcritical or fatigue growth (§2.6.2). In
§2.6.3 a synthetic table is presented showing the main results. Comparison with experiments is done
in section 2.6.4.

2.6.1 Brittle fracture: case K(x, z) = Kc(x, z)

Let us consider a half-plane or tunnel crack. We suppose that the SIF for the straight configuration is
given by equation (2.30). The aim of this paragraph is to describe the crack front shape corresponding
to K(x, z) = Kc(x, z) for all points of the front when Kc(x, z) is varying randomly.
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2.6.1.1 Fourier transforms of the crack front fluctuations versus toughness fluctuations

If the toughness Kc(x, z) is uniformly equal to a constant Kc, the crack front remains straight during
propagation. Then the loading k(t) corresponding to position a(t) of the front at time t verifies:

k(t) = Kca(t)−α (2.46)

The parameter t, called ”time” for convenience, appearing in this equation is not a physical time but
a purely kinematical time, enabling us to locate the equilibrium position corresponding to a given
loading k(t). Remember that the propagation is stable (resp. unstable) if α < 0 (resp. α > 0), in the
sense that the loading has to be increased (resp. decreased) for the crack to advance (a increases).

Now introduce some small fluctuations of the toughness :

Kc(z, x) = Kc(1 + κ(z, x)), |κ| � 1 (2.47)

It produces small fluctuations δ(z, a(t)) and δK(z, a(t)) of the crack front position a(z, t) and of the
SIF K(z, t) around its mean values a(t) and K(a(t)) so that :{

a(z, t) ≡ a(t) + δ(z, a(t)), |δ(z, a(t))| � a(t)
K(z, a(t)) ≡ K(a(t)) + δK(z, a(t)), |δK(z, a(t))| � K(a(t))

(2.48)

Expanding Irwin’s criterion (2.7) to first order, identifying terms of order 0 and 1 and replacing the
kinematical time t by the mean crack position a, one gets :

K(a) = Kc

δK(z, a)
K(a)

= κ(z, a)
(2.49)

Taking the Fourier transform of the equation (2.49.2) and using equation (2.32) giving the first order
variation of the SIF as a function of the crack perturbation, one gets:

δ̂(k, a) =
aκ̂(k, a)
α− F (ka)

(2.50)

Unfortunately, if α > 0, the expression (2.50) is meaningless because the FT is divergent for p such
as α− F (p) = 0. This is linked to the existence of bifurcations (see section 2.4.1). We shall therefore
consider the sole case of stable 2D crack propagation (α < 0) henceforward. Eq. (2.50) then takes the
form:

δ̂(k, a) = − aκ̂(k, a)
|α|+ F (p)

(2.51)

This equation allows to obtain the first order crack front fluctuations δ for any given small toughness
fluctuation κ. Notice that it is entirely determined by the instantaneous distribution of the toughness.
It may be used to study the shape deformations during trapping by tougher obstacles. In the sequel,
however we suppose the material to be disordered so that only statistical properties of κ are known
and statistical study becomes necessary.
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2.6.1.2 Power spectrum of the crack front fluctuations versus toughness fluctuations

From equation (2.51), one gets for the power spectrum Â(k, a) of the fluctuation δ(z) of the crack
front:

Â(k, a) = a2 K̂(k)
(|α|+ F (p))2

(2.52)

where K̂(k) is the power spectrum associated with the toughness fluctuations κ supposed statistical
homogeneous so that K̂(k) is independent of a. This expression is quiet general. Some properties of
it, in the particular case of uncorrelated fluctuations are given in the sequel.

In the case of white noise K̂(k, a) = K̂0, equation (2.52) gives
bA(k,a)bK0a2

under an analytical form:

Â(k, a)

K̂0a2
=

1
(|α|+ F (p))2

(2.53)

It is plotted as a function of p = ka in figure 2.8(a) for several values of α and a tunnel or a half-
plane crack. In all these cases, one can notice the presence of two regimes, with a transition between
them depending on the crack geometry and on the loading: one universal regime (independent of the

geometry) for p = ka � 1 that is small wavelengths λ � a where
bA(k,a)bK0a2

decreases with ka and a
second, geometry dependent one, for p = ka� 1 that is large wavelengths λ� a corresponding to a
saturation. The existence of this second regime is closely linked to the finite size of the system and can
not be obtained by the model of a half-plane crack loaded by remote tensile stresses that, we recall,
lacks any lengthscale.
One can notice that such a behaviour (see Barabási and Stanley (1995)) corresponds to a Family
and Vicsek (1985) scaling defined by Â(k, a) = a

1+2ζ
τ G(ka1/τ ) where G(x) is constant for x � 1 and

G(x) ∼ x−1−2ζ for x� 1. Comparison with (2.53) gives indeed:

G(x) = K̂0 (|α|+ F (x))−2 , ζ = 0.5 (roughness exponent) and τ = 1 (dynamic exponent). (2.54)

To better understand the Family and Vicsek (1985) scaling, let us study the dependence over k and

a of
bA(k,a)bK0

and consider the particular case of a half-plane crack with α = −1/2. One can notice on
figure 2.8(b), that for a given value of the mean position a:

• The large wavelength components are more developed than the small ones and are constant
above a certain threshold.

• When a increases, the large wavelength components increases, but the small ones are steadystate
and more and more components are in this last steadystate regime.

One can notice on figure 2.8(c), that for a given value of k, that is λ:

• The components increases with a until reaching a saturation.

• The increasing regime rate is similar whatever the wavelength, but when k decreases, that is λ
increases, the increasing regime lasts longer so that the final amplitude increases with wavelength.

One can also derive the asymptotic expressions of the power spectrum Â(k, a):

Â(k) =
4K̂(k)
k2

for k 6= 0 and Â(0) =
K̂(0)a2

α2
for k = 0 (2.55)
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Figure 2.8: Power spectrum of the crack front fluctuations for white noise toughness fluctuations.

One shall notice that the convergence is not uniform so that the asymptotic behaviour of the autocor-
relation function can not be obtained by simply inversion of the asymptotic behaviour of its Fourier
transform. For the results concerning the autocorrelation or related function as the square fluctuations,
the reader is invited to reefer at Pindra et al. (2008a) or to the table 2.1. One shall however notice
that relation (2.52) is the cornerstone for such a derivation. It shall also allow to perform numerical
simulations of the evolution of the power spectrum or the functions related to the autocorrelation by
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inverse Fourier Transform if the toughness fluctuation power spectrum is given. Such developments is
left for further work.
Similar results for an interfacial half-plane crack have been derived by Pindra et al. (2008a): the
mismatch of elastic properties between the materials introduces oscillations in the longtime behaviour
but no significant difference in the mean behaviour. The case of a shear tunnel-crack has been consid-
ered by Pindra et al. (2010): the results are rather similar to those previously obtained for mode 1;
one novelty, however, is that, the fronts no longer tend to become symmetrical in time as in mode 1
(Favier et al., 2006b), so that correlations between crack front fluctuations at two points are higher
for points located on the same front than for points located on distinct ones.

2.6.2 Subcritical or fatigue propagation

Let us suppose now that the crack advance is given by Paris’ law (2.9) withK0 = 0. The inhomogeneity
of the material is modelled by assuming the Paris constant to slightly fluctuated around its mean value;
the Paris exponent N being considered as uniform for simplicity:

C(z, x) = C(1 + δc(z, x)), |δc(z, x) � 1| (2.56)

It produces small fluctuations δ(z, a(t)) and δK(z, a(t)) of the crack position and the SIF around its
mean position a (eq. 2.48).

2.6.2.1 Evolution of the perturbation of the crack front

Expanding first the propagation law to first order in δ(z, t), δK(z, t) and identifying terms of order 0
and 1, one gets 

da

dt
(t) = C [K(t)]N

∂δ

∂t
(z, t) = C[K(t)]N

[
N
δK(z, a(t))

K(t)
+ δc(z, a(t))

]
.

Eliminating dt between these expressions and considering henceforward all perturbations as functions
of the mean position a(t) ≡ a of the crack instead of time, one gets

∂δ

∂a
(z, a) = N

δK(z, a)
K(a)

+ δc(z, a).

Upon use of the Fourier decompositions of δ(z, a), δK(z, a), δc(z, a) and equation (2.32), this finally
yields the evolution equation of the Fourier transform δ̂(k, a) of the perturbation of the crack front:

∂δ̂

∂a
(k, a) =

N

a
[α− F (ka)] δ̂(k, a) + δ̂c(k, a). (2.57)

Assuming the crack to be initially straight and integrating the linear, inhomogeneous, first-order
differential equation (2.57) by standard methods, one gets

δ̂(k, a) =
∫ a

a0

( a
a′

)Nα
[
ψ(ka)
ψ(ka′)

]N

δ̂c(k, a′) da′ (2.58)

where a0 denotes the initial value of a and ψ the function defined by equation (2.41).
Notice that contrary to the brittle case (eq. 2.51), this equation is valid whatever the sign of α and
that an effect of memory of previous configurations of the crack front is present here. This equation
allows to obtain the crack front fluctuations δ for any given Paris’ constant fluctuation δc. This shall
be done numerically and is leaved for a further work. In the sequel, however only statistical properties
of δc are known, so that statistical study becomes necessary.
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2.6.2.2 General formula for the power spectrum of the perturbation of the crack front

By the expression (2.58) of δ̂(k, a), one gets for the power spectrum of the crack front fluctuations:

Â(k, a) =
∫ a

a0

∫ a

a0

(
a2

a1a2

)Nα (
[ψ(ka)]2

ψ(ka1)ψ(ka2)

)N

Ĉ(k, a2 − a1) da1 da2 , (2.59)

where Ĉ(k, a2 − a1) is the power spectrum of the Paris’ constant fluctuations δc.
Due to the memory effect, this equation is more complex than the equivalent (2.52) one in brittle
fracture. Its properties for any value of a has not at present been studied. Its asymptotic behaviour
for a → ∞ has however be obtained by Favier et al. (2006b) and Pindra et al. (2008a). For
k = 0, one gets:

Â(0, a) ∼


C̃(0, 0)

2Nα− 1
a0

(
a

a0

)2Nα

if α >
1

2N
,

C̃(0, 0)
1− 2Nα

a if α <
1

2N
,

(2.60)

and for k 6= 0:

Â(k, a) ∼ C̃(k, 0)
N |k|

(2.61)

where C̃(k, k′) is the double z, x-Fourier transform of the function C.
One can notice, like in brittle fracture that the large wavelengths are preferentially selected by the
system and that ultimately only the zero wavenumber k = 0 component still evolves with a, the other
components being in a steadystate (independent of a) rough regime. It seems however that the first
order study is not sufficient to determine the roughness exponent in this case (it gives indeed ζ = 0).
This is probably linked to the memory effect that delay the development of this regime. A second
order study is then necessary. It has been performed by Katzav and Adda-Bedia (2006) who obtains
a roughness exponent of ζ = 0.5.

2.6.3 Synthesis of the theoretical results

The previous results derived for the half-plane or tunnel crack, with additional ones derived from
Favier et al. (2006b) and Pindra et al. (2008a) are summarized in table 2.1. We recall that in
this table F (p) is the function introduces in 2.3.2. This function is such as F (0) = 0 and increases
monotonically to finally behaves as p/2 for p → ∞. The function ψ is defined by eq. (2.41) and
decreases from 1 to 0 when p varies from 0 to +∞.
One notices that in all the cases the system preferentially ”selects“ perturbations of the crack front
with small wavenumbers k, that is, large wavelengths λ = 2π/|k|. Physically it is link to the process
explained in §2.4.1. One can also easily discuss, using the table 2.1, the differences between brittle
fracture and fatigue, the role of the loading type (sign of α) and of the crack geometry (function F (p)
and ψ):

• Concerning the crack advance law, one can notice by comparison of columns 3 and 4, that the
relations are less complex in brittle fracture than in fatigue since their is no time dependence
of the response in the first case contrary to the second. One can also notice that the disorder
grows faster in brittle fracture than in fatigue, the development being slowed down by a memory
effect. And finally, for α > 0, the treatment is possible only in fatigue, since in brittle fracture
the appearance of bifurcation renders the problem ill-posed.

• Thus, the dependence upon the sign of α can be considered only in fatigue. Comparison of
columns 2 and 3 shows that the disorder grows faster for α > 1

2N than for α < 1
2N . It is



2.6. Crack propagation in a disordered media 37

Table 2.1: Main results concerning the propagation in a disordered media

fatigue α > 1
2N fatigue α < 1

2N brittle α < 0

For any a:

δ̂

∫ a

a0

(
ψ(ka)
ψ(ka′)

)N ( a
a′

)Nα
δ̂c(k, a′)da′ idem − aκ̂(k, a)

|α|+ F (ka)

Â
∫ a

a0

∫ a

a0

(
a2

a1a2

)Nα (
[ψ(ka)]2

ψ(ka1)ψ(ka2)

)N

Ĉ(k, a2 − a1) da1 da2 idem a2 K̂(k)
(|α|+ F (ka))2

For a→∞:

Â(k, a)
C̃(k, 0)
N |k|

C̃(k, 0)
N |k|

4K̂(k)
k2

Â(0, a)
C̃(0, 0)

2Nα− 1
a0

(
a

a0

)2Nα C̃(0, 0)
1− 2Nα

a K̂(0)
a2

α2

A(z)
C̃(0, 0)

π(2Nα− 1)

(
a

a0

)2Nα−1 ∫ +∞

−∞
ψ(p)2Ndp

C̃(0, 0)
πN

ln a
2aK̂(0)
π|α|

obvious since instable wavelengths exists for α > 0 and not for α < 0. The selection of the large
wavelengths remains however since the large ones grow faster than the small ones.

• Concerning the crack geometry, one can notice that the asymptotic behaviour for a → ∞ is
independent of F , that is the same for the half-plane and tunnel cracks. Moreover, we have seen
in section 2.6.1.2, that in brittle fracture, the power spectrum satisfies a Family-Vicsek scaling
in both cases and the geometry introduces a difference only for the transition toward the large
wavelength saturation regime.

2.6.4 Comparison with the experiments

Due to the difficulty of observation of the crack front during the propagation, few different experi-
ments exist at present, that allow to study the crack front deformations. Among them Daguier et al.
(1995) used ink injections to follow the crack front in brittle fracture and fatigue. Schmittbuhl and
Mȧløy (1997) studied the in-plane propagation through a transparent plexiglas block, the toughness
fluctuations being obtained by sand blasting the surface of two plexiglas plates before to weld them
together. This last setup has vastly been used since this pioneer work to study several properties of
the crack advance: the crack front roughness (Schmittbuhl and Mȧløy (1997); Delaplace et al. (1999);
Schmittbuhl et al. (2003a), Pindra et al. (2009)), the time development of the crack front fluctu-
ations (Maloy and Schmittbuhl, 2001), the intermittent pinning/depinning dynamics (Mȧløy et al.,
2006; Grob et al., 2009). All these papers conclude that the front roughness is self-affine with an ex-
ponent ζ = 0.5− 0.6. Interestingly, Maloy and Schmittbuhl (2001) noticed that the front fluctuations
satisfies a Family-Vicsek scaling, the roughness exponents being ζ = 0.5− 0.6 and τ = 1.1− 1.2.
Two different explications of the experimental results can been given:

1. Schmittbuhl et al. (1995a); Rosso and Krauth (2002); Schmittbuhl and Vilotte (1999) have
obtained numerically, using the perturbation approach for a half-plane crack of Rice (1985),
the condition K(z) ≤ Kc(z) and quenched noise, a different value of the roughness exponent:
ζ ∼ 0.4. The discrepancy between this value and the experiments has emulated the commu-
nity: percolation damage models have been proposed (Schmittbuhl et al., 2003b; Hansen and
Schmittbuhl, 2003) that yields a roughness exponent of ζ = 0.62± 0.05 that seems in agreement
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with the experiment. Finally, recently Santucci et al. (2009) conciliate the two values obtained
theoretically and numerically by more precise experimental crack front position measures: they
find ζ = 0.57 at small lengthscales (< size of the sandblasting particles) that is in agreement
with the damage percolation model and ζ = 0.38 at larger lengthscales that is in agreement with
the numerical perturbation approach.

2. Maloy and Schmittbuhl (2001)’s experimental result seems in agreement with the Family-Vicsek
scaling (2.54) obtained by assuming K(z) = Kc(z) and white noise toughness fluctuations. In
this view, the exponent ζ = 0.38 observed by Santucci et al. (2009) at larger lengthscales may
correspond to the crossover from the rough to the saturation regimes of the Family-Vicsek scaling.

At present, none of this view seems plainly satisfactory. We hope that the present review will help
to clarify the discrepancies. In this aim, we emphasize that for any comparison with experiments,
attention must be paid to:

• The lengthscales involved in the experiments: brittle fracture results are valid only beyond the
process zone and uncorrelated toughness fluctuations only beyond the correlation length. The
influence of the plate thickness shall also be considered.

• The crack advance law: dynamic or quasistatic? Brittle or subcritical (table 2.1 shows different
behaviour for each case)? If brittle, does the crack front position satisfy K(z) = Kc(z) for all
z or does it exist some points where K(z) < Kc(z) (Roux et al., 2003)? In the experiments of
Maloy and Schmittbuhl (2001), the intermittent pinning/depinning dynamics militates rather
for the second case.

• The first order perturbation approaches: check its validity domain in term of |δ| � a but also
in term of d|δ|

dz � 1.

• The toughness fluctuations nature: annealed or quenched, correlated or uncorrelated? Indeed,
annealed or quenched noise may give different results (Kardar, 1998): annealed noise corresponds
to the first order study of section 2.6.1, quenched noise is accessible only by numerical simulations
(Schmittbuhl et al., 1995b) and introduces second order terms in the model that have not
been considered at present properly. Correlated or uncorrelated noise gives different toughness
fluctuation power spectrums and may influence the response (see equation 2.52 and Schmittbuhl
and Vilotte (1999)).

2.7 Conclusion

Crack front small perturbation approach initiated by Rice (1985) and later extended to more complex
cases has been recalled. This approach allows to update the stress intensity factors when the crack
front is slightly perturbed in its plane. Applications concerning the deformation of the crack front
when it propagates in an homogeneous or heterogeneous media have been considered in brittle fracture
or fatigue/subcritical propagation. Only the case of one crack propagating in an infinite plane without
interaction with a boundary has been considered. The stable shapes corresponding to uniform SIF
have been derived: straight or circular, but also when bifurcations exists, wavy crack fronts. For a
straight crack, it has been shown that perturbation of all lengthscales progressively disappears unless
disordered fracture properties yields Family and Vicsek (1985) roughness of the crack front.
This approach has recently be extended to interaction between several cracks: the FK for two tunnel-
cracks has been derived (Pindra et al. (In prep), Legrand and Leblond (In prep.)) and the disorder
during their coalescence studied (Legrand and Leblond, 2010). Interestingly, they show that, stability
first prevails for all lengthscales such as λ < λc, but since λc is this time a decreasing function of the
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crack advance, all wavelengths finally become unstable so that the perturbation does not vanish. This
underlines that stability results depend on the interaction of the crack with other cracks and more
generally also, with obstacles or solid boundaries. Such a conclusion has still been obtained by Gao
et al. (1991) who studied the stability issue when the front approaches a stress free plate boundary:
when the crack is far enough from the boundary, the critical wavelength λc increases with crack growth
(the model of infinite solid is then valid) and when it approaches the boundary, λc decreases with crack
growth.
Besides, comparison with experiments have to be deepened in terms of crack shape but also macro-
scopic loading.
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Chapter 3

Research project: From the theory to
the practice

Two current challenges of Linear Elastic Fracture Mechanics (LEFM) are (i) to take into account the
non-linearities induced by the crack front deformations and (ii) to better understand the mechanism
of fracture initiation. For these purposes, two promising tools can be used: the Rice (1985) crack front
perturbation theory for predicting the crack front deformation (see chap. 2) and the energetic approach
of Francfort and Marigo (1998, 2000, 2008) for determining the crack initiation and propagation path.
However, these theoretical approaches have been validated mainly only qualitatively by experiments.
Further effort is required to make quantitative comparisons and to render these tools useful in practice,
e.g. to improve the safety predictions or to create tougher materials.
My current research is motivated by this long-term vision, and by my increasing interest in applying
LEFM to physical problems. In this context, I propose to develop three specific directions. First, I
plan to extend crack perturbation approach exposed in chapter 2 to more realistic geometries, and
quantitatively compare its predictions for both homogeneous and heterogeneous media with 3D fi-
nite element simulations and with experiments designed for this purpose. Second, I plan to apply
the energetic approach to fracture mechanics to different physical problems involving drying, impact,
indentation and geological phenomena (basalt columns, polygonal patterns on Earth and on Mars,
martian spiders, septarias, continental break up above mantle plumes) using the energy-minimization
either directly or using a regularized form by a non-local damage model. While the first two directions
are generally applicable to any brittle material, the third direction will be to apply the LEFM to the
specific case of fracture in drying colloidal suspensions. A prerequisite for this, that is render diffi-
cult by the time dependence of the drying process, is the precise characterization of the mechanical
properties of the consolidated suspension, which will require extension of recently developed experi-
mental tools (indentation tests, estimation of the mechanical stresses by measuring the deflection of
a plate, estimation of mechanical characteristics by measuring some geometrical features of the crack
morphologies).

3.1 Deformations of a plane crack during its propagation

The propagation path of cracks are routinely predicted by the engineers using two-dimensional LEFM.
However in three dimensions, the problem arises still many open questions even for coplanar propaga-
tion of plane cracks. The path depends in general on both the specimen and crack geometries (position,
size, shape). Classical tools such as finite elements or its more sophisticated X-FEM extension are able
to predict the path more or less accurately if the specimen and the crack size scales are all of the same
order. When the scales are disparate, however, it becomes extremely difficult to reconcile the crack
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microscopic and the specimen macroscopic aspects of the problem. One possibility is to simplify the
structural aspects and to concentrate on the local deformation of the crack front by assuming that the
medium is infinite subjected to remote loading. The crack perturbation approach initiated by Rice
(1985) and reviewed in chapter 2, allows then to determine the stress intensity factors (SIF).

(a) PlaneCracks simulation (Lazarus, 2003) (b) Blister experiments (Dupeux et al., 1998)

Figure 3.1: Successive positions (top view) during the propagation of an initially rectangular crack in
an homogeneous medium. The crack propagates first at the edges where the stress intensity factors
are higher. The shape finally becomes and remains circular.

With the aim of obtaining quantitative predictions of both crack front shapes and macroscopic loading,
the theoretical studies exposed in chapter 2 will be extended in several directions and compared to
experiments designed for this purpose.

• As mentioned in section 2.2.2, the perturbation approach is only applicable in practice if the
precise specimen boundary conditions can be neglected. It is therefore necessary to determine
to what extent this approximation is valid in practice. 3D finite element simulations will be
performed in order to determine the range of validity of the perturbation approach in term
of specimen/crack size scales. The aim is to determine the precise conditions under which
the specimen boundary conditions can be neglected. Later on, the possibility of reconciling
the microscopic and macroscopic aspects by using the matched asymptotic expansions, will be
studied.

• Recent comparisons with experiments using plates (§2.6.4) have shown the potential importance
of the plate thickness on the results. Thus, the perturbation approach will be extended to some
more complex and realistic geometries than those listed in section 2.2.4, namely a tunnel-crack
in a finite-thickness specimen (thesis of L. Legrand, in collaboration with J.B. Leblond, IJLRDA
Univ Paris 6 and M. Adda-Bedia, LPS, ENS Paris). The predictions of this more realistic
model will be compared to the experiments (§2.6.4) initiated by Schmittbuhl and Mȧløy (1997)
(collaboration J. Schmittbuhl, IPG Strasbourg).

• Using equations (2.51) and (2.58) giving the crack front shape evolution knowing the local
fracture properties, simulations of the crack front shape evolution will be performed. Comparison
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with the experiments of Dalmas et al. (2009) and new designed experiments of M. Adda-Bedia
is planed in collaboration with the author.

• The predictions of the numerical code PlaneCracks corresponding to (Lazarus, 2003) (§2.4.2)
concerning the propagation of circular, elliptical, rectangular and heart shape (fig. 2.6) cracks
will be compared to blister-tests similar to those of Dupeux et al. (1998) (fig. 3.1(b)) in terms
of shape and loading (collaboration M. Braccini, SIMAP, Univ Grenoble).

• The code PlaneCracks will be extended to two embedded crack fronts to study large crack de-
formation during coalescence (thesis of L. Legrand). Blister test experiments on two cracks are
also envisaged (collaboration M. Braccini). For thicker specimen (for which our model is more
realistic), the set up of Bunger and Detournay (2008) may be used. Contact has been established
for this purpose with A. Bunger (CSIRO Petroleum Resources, Australia).

• The code PlaneCracks will also be extended to tunnel-cracks with periodic crack front shape
perturbations and its predictions compared to experiments performed in the SVI laboratory of
Saint-Gobain Recherche (collaboration D. Dalmas, Lab. SVI, Aubervilliers and D. Vandem-
broucq, Lab PMMH, ESPCI, Paris).

• The above points concern only the in-plane crack front deformations. Crack out of plane per-
turbations resulting from the propagation in heterogeneous media (Ponson et al., 2007) are
difficult to tackle theoretically, and will instead be approached using model experiments. In
particular, the size effects will be considered. I will take part to the design and interpretation of
those experiments with D. Bonamy (Lab. SPCSI, CEA Saclay) and M. Francois and H. Auradou
(FAST).

Parts of this work are supported by the ANR MEPHYSTAR (”MEchanics and STAtistical PHYsics of
Rupture in heterogeneous materials”, 2010-2013). The project involves the laboratories SPCSI (CEA
Saclay), SVI (Saint-Gobain Recherche), PMMH (ESPCI Paris), and FAST.

3.2 Predictions of crack patterns using energy minimization

The energetic variational approach to fracture mechanics proposed by Francfort and Marigo (1998)
is an extension of the Griffith postulate that a crack propagates if the elastic energy released by
propagation counterbalances the energy needed to create the crack. It is based on the principle that
the quasi-static crack evolution is obtained by minimizing the sum of the elastic energy of the cracked
body and the crack energy. The advantage of the method over the classical Griffith approach is that it
can predict, without additional ingredients, both the crack initiation and the crack propagation path.
For numerical simulations, the approach can be regularized by a non-local damage model (Bourdin
et al., 2008).
In the last ten years, efforts have mainly focused on theoretical and numerical developments. As
a result, few of the numerical simulations presented in Bourdin et al. (2000, 2008) have yet been
compared directly with experiments. Recently, in collaboration with C. Maurini (IJLRDA, Univ Paris
6) for the theory and G. Gauthier and L. Pauchard (FAST) for the experiments, the theoretical
approach has been tested against experiments on fractures that form during directional drying of
colloidal suspensions (fig. 3.2). The regularized form of the approach (Lazarus et al., 2009a)
yields qualitative agreement between the experimental (fig. 3.2a) and numerical crack patterns (fig.
3.2c), while the direct approach (Gauthier et al., 2010) successfully predicts the number of cracks
emerging from a star-shaped crack (fig. 3.2b). These first promising results will be extended in the
future in several directions.
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(a) Directional drying ex-
periments

(b) Number nc of radial cracks obtained by the energy mini-
mization principle (Gauthier et al., 2010). Lc is the Griffith
length (ratio between the energy needed to create cracks and
to deform the material elastically), R the tube radius.

(c) Crack patterns obtained by
the regularized energetic approach
(Lazarus et al., 2009a)

Figure 3.2: Crack patterns in directional drying experiments. Capillary tubes are filled with a colloidal
suspension. The open bottom boundary allows for evaporation of the solvent. Cracks appear following
the compaction front (front of the bottom-up growing gel). Their cross-sectional shape depends on
the tube shape and the drying rate.

(a) Port Arthur rect-
angular tessellated
pavement, Tasmania
(picture of C. Foscan)

(b) Giant’s Causeway hexagonal tessel-
lated pavement, Ireland (picture of A.
Davaille)

Figure 3.3: Examples of natural polygonal patterns
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• In collaboration with G. Gauthier and L. Pauchard, further directional drying experiments are
planned. With C. Maurini and B. Bourdin (Dept of Math., Louisiana State Univ), we will perform
FE simulations of the experiments, using both the energetic and the classical Griffith approaches.
Contacts has also been established with the team of H. Balke (Institut fur Festkörpermechanick,
TU Dresden), which is working on similar problems (Hofmann et al., 2006).

• Star-shaped cracks are observed in many situations, especially during the time shortly after
crack initiation. Such cracks therefore provide an interesting test case for approaching the
initiation problem and verifying the validity of the energetic approach. Accordingly, we propose
to extend the method used by Gauthier et al. (2010) for directional drying experiments, to
crack nucleation arising during the drying of some thin films, during some indentation (Rhee
et al., 2001), and impact problems (collaboration N. Vandenberghe, IRPHE, Marseille).

• Natural polygonal pavements formed by shrinkage cracking are often hexagonal in planform (e.g.,
Giant’s Causeway, Ireland; fig. 3.3(b); DeGraff and Aydin (1987)), but can also have square
planforms in some cases (e.g., Port Arthur, Tasmania; fig. 3.3(a); Branagan and Cairns (1993)).
Several aspects of their formation are still poorly understood. Possible scenarios include creation
of star-shaped cracks followed by progressive formation of the self-organized pavements, sequential
formation of channelling cracks leading to craquelures followed by maturation toward a regular
pavement (Goehring et al., 2010) or the formation spaced in time of two orthogonal networks of
parallel cracks. We propose to simulate these scenarios by energy minimization and apply the
results to polygons on Earth (with A. Davaille, FAST) and eventually on Mars. Complementary
discussions have also been initiated with other geophysicists, including L. Goehring (Dept of
Mat Sci and Metal, Univ Cambridge) and N. Mangold (Lab de planétologie et géodynamique de
Nantes UMR 6112).

3.3 Characterization of the consolidation of drying colloidal suspen-
sions

Figure 3.4: Crack patterns at the final stage of the drying process of a nanolatex suspension for
different layer thicknesses hf . Uniform layer (a), cracks in the film thickness (b), delamination (c),
spiral crack (d).

During the drying of colloidal suspensions (particle size < 1µm), the initially stable solution destabi-
lizes, and the particles agglomerate to form a solid porous material that shrinks as the liquid evaporates.
When the contraction is constrained by adhesion to a wall or substrate, tensile stresses develop that
can give rise to various crack patterns. Some examples are shown in fig. 3.2 for directional drying and
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in fig. 3.4 for isotropic thin film drying. Various qualitative explanations for the crack morphologies
have been proposed (Bohn et al., 2005), (Gauthier et al., 2007) but quantitative predictions of the
formation dynamics, shape and sizes of the cracks are still lacking.
A prerequisite for understanding crack formation in such situations is a good characterization of the
mechanical properties of the porous medium (e..g., the fracture toughness, which is required to apply
LEFM). Such characterization is rendered difficult by the time-dependence of the problem and by the
impossibility of using classical techniques like traction tests. As a result, only two measured values of
the toughness have been published , one by Zarzycki (1988), the other by ourselves (Gauthier et al.,
2010), and moreover the two disagree. A further prerequisite is the determination of the mechanical
stresses level. It can be measured by depositing the suspension on a cantilever plate (Tirumkudulu
and Russel, 2004): during drying, contraction stresses induce a deflection of the plate, from which the
magnitude of the stresses can be inferred using Stoney’s formula.
During the past two years, we have made significant advances towards achieving these characterization
prerequisites. We have developed and improved the cantilever plate method. We have also applied,
not without difficulties, indentation techniques to consolidated drying suspensions. And, we have
developed less conventional methods based on the fracture morphologies themselves. All these methods
are described below.

3.3.1 Estimation of the mechanical stresses by measuring the deflection of a plate
and indentation techniques

With M. Chekchaki (Ph. D. student) and L. Pauchard, we have extended and developed two techniques
for characterizing partially dried colloidal suspensions: the cantilever technique of Tirumkudulu and
Russel (2004), and micro-indentation testing. In the former case, the Stoney stress-deflection formula,
is based on assumptions (small film/substrate thickness ratio, uniform film stress state) that are
often not valid in drying experiments. To extend this relation to the conditions of our experiments
(Chekchaki et al., 2010) we have used 3D FE simulations. Besides, we have designed, not without
difficulties, an experimental procedure that gives reproducible results. We are also engaged in an
ongoing effort to adapt the classical indentation test (widely used for metal and ceramic films; Oliver
and Pharr (1992)) so that it can be used to characterize the film at the end of the drying process. The
feasibility of these extended characterization methods has been demonstrated by the Ph. D. thesis
research and further work in this direction is envisaged.

• We have used until now a traditional Vickers (sharp) indenter. We have noticed that it generates
significant damage and plastic deformations. Hence, spherical indenter will be purchased and
used. We will improve the experimental procedure to allow humidity control. We will use it for
different drying conditions, suspensions and layer thicknesses.

• In addition to the indentation performed at the end of the drying process, tests will be done during
the drying process and coupled with the stress evolution measured by the cantilever technique, in
order to better understand the consolidation process.

• During the drying process, different time scales associated with evaporation, viscosity, and porous
media diffusivity may be important. An effort will be made to estimate these time scales in order
to determine the dominant effect.

3.3.2 Estimation of some mechanical characteristics by measuring some geomet-
rical features of the crack morphologies

If one can predict, for instance using the models of section 3.2, the crack patterns as a function of
the formation conditions (loading, material behaviour), inversely quantitative measurements of some
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geometrical aspects of the pattern (such as crack spacing e.g.) can be used to deduce quantitative
information on the consolidation (such as material toughness and the level of the loading). This idea
has already been used in Gauthier et al. (2010) in conjunction with the LEFM approach (section
3.2) in one particular case. We propose to extend it to other systems and compare it with other
methods.

• In addition to the crack spacing, other geometrical parameters (critical thicknesses, distance
between the crack tips and the solidification front, angles...) will also be used.

• For validation purposes, the values of the toughness obtained by this method will be compared
with values obtained by indentation.

• In conjunction with our geophysicist colleagues (section 3.2), we will apply our method to derive
qualitative and quantitative information on the conditions of formation of geological patterns
on Earth and other planets, such as the cooling rate during the formation of basalt columns
(with A. Davaille and L. Goehring), the pressure level responsible for martian spiders (Thomas
et al., 2010) in the Kieffer (2007) model (with F. Schmidt, lab IDES, Interactions et Dynamique
des Environnements de Surface, Orsay), the formation mechanism of septarias (Seilacher, 2001)
(with J. Gargani, B. Saint-Bezar, P. Vergely, IDES), the 3 branches continental break up (Storey,
1995) above mantle plumes (with A. Davaille).

• From the value of the toughness, information on the consolidation of the porous matrix can be
obtained. Porosity and Young’s modulus will be measured to obtain an estimate of the effective
fracture energy of the solid links between the particles. The influence on the porous solid structure
of the rate and conditions (directional/isotropic) of drying will also be studied (collaboration G.
Gauthier).

• In parallel to the previous point, “visualization” of the consolidate porous matrix is envisaged.
Due to the nanometric size of the particles, this requires to use sophisticated methods. Hence,
a proposal has been submitted to the ILL (Institut Laue-Langevin, Grenoble) to obtain neutron-
beam time (principal proposer B. Cabanne, PMMH). Another is envisaged to the neighbouring
synchrotron SOLEIL to obtain photonbeam time.

3.4 Summary

My research interests concern two- and three-dimensional problems in Linear Elastic Fracture Mechan-
ics. My approach is primarily theoretical and numerical, but with an increasing interest in experimental
validation and physical applications since my first sojourn at the FAST laboratory in 2006. Among
the tools I use are the crack front perturbation approaches (see chap. 2), finite-element simulations,
and the energetic approach to fracture. I apply them, with some colleagues, to the determination
of the crack initiation and propagation paths in homogeneous and heterogeneous brittle media, soft
condensed matter in particular colloidal suspensions, and geological materials. The research directions
I would enjoy pursuing can be summarized as follows1:

• Concerning the crack front deformation, the perturbation approaches will be extended to pro-
gressively more realistic geometries. Their domain of validity in terms of crack/specimen size
ratios will be determined by 3D FE simulations. Their predictions will be compared with exper-
iments with increasing emphasis on quantitative comparison. Later on, the reconciliation of the
different length scales is envisaged using the matched asymptotic expansions method.

1the framework is slightly different than outlined above to emphasize the links between parts of sections 3.2 and 3.3.
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• Concerning the crack initiation and propagation path prediction, our efforts to apply and validate
the energetic approach to fracture will be continued. It will be applied to cracks resulting
from shrinkage (drying, cooling), impact and indentation process. Inversely, information on the
material constants and loading will be derived from the crack patterns. The inverse method will
be applied to the characterization of consolidated colloidal suspensions and to several geological
problems on Earth and on other planets.

• Concerning the drying of colloidal suspensions, we will continue to develop methods for character-
izing the consolidated solid matrix. Additional directional and isotropic drying experiments will
be performed to determine the influence of the drying conditions (rate, directional vs. film) and
the characteristics of both the solvent and the particles (size, material, mono/polydispersion) on
the structure of the porous medium. Visualisation using neutron or Xray beams is also envisaged.

This research project aims at making useful the Linear Elastic Fracture Mechanics in new fields
related to the engineering sciences, the physicochemistry of the soft matter and the geosciences. The
interdisciplinary character of my research, so as my growing interest in experimental validation of the
theory, allow me to form PhD student to a vast set of competences. This may be useful for them to
find a job in both academic and industrial worlds.
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The 3D LEFM problems I have considered until now, can be divided in two groups: the determination
of the out-of-plane propagation of a crack loaded in shear and the determination of the crack front
deformations during the coplanar propagation of plane cracks. Concerning the out of plane propaga-
tion, criterions allowing to predict the crack front twisting in presence of mode 3 have been proposed
and compared to experiments. Concerning the in-plane propagation, small deformations of the crack
front during its propagation have been studied analytically and large deformations numerically. Both
homogeneous and heterogeneous materials have been considered. All these studies use perturbation
of the crack front approaches, presented in chapter 2, initiated by Rice (1985), the development of
which I took part for more complex cases. Since my arrival at the laboratory FAST, in addition
to these theoretical studies, I become also interested in the fractures appearing during the drying of
suspensions of colloidal particles (size of 1 nm to 1 µm). The first studies have shown the potential of
these experiments to bring new insights into the energetic principles used in fracture mechanics, the
physico-chemistry of the consolidation process and some geological crack patterns.
To summarize, the research fields I considered until now can be divided as follows (in this list, the
papers that are included in the sequel are in bold):

1. Crack propagation path in presence of mode 3. Whatever the external loading, in an
homogeneous solid, a crack tries to reach mode 1 (tensile) loading conditions. In mode 1+2,
the crack kinks to annihilate mode 2, the angle can be obtained by 2D considerations using for
instance the Principle of Local Symmetry (Goldstein and Salganik, 1974). In presence of mode 3,
the crack front twists around the direction of propagation, this renders the problem 3D. During
my PhD a criterion able to predict the crack rotation rate has been proposed in the particular
case of 3 or 4 PB experiments and experiments have been performed in Sheffield (Lazarus and
Leblond, 1998a; Lazarus et al., 2001b). The criterion uses the expression of stress intensity factors
resulting from a little 3D arbitrary extension of the crack front, the development of which I took
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part (Leblond et al., 1999; Lazarus et al., 2001a). Additional works done in collaboration with
the University of Paderborn (Germany) have shown that 3 or 4 PB experiments yield strong
coupling of the modes 2 and 3 and hence, are inadequate to clearly separate the criterions based
on the presence of mode 3, and more conventional mode 2 based criterions (Lazarus et al.,
2008).

2. Three-dimensional perturbation of the crack front approaches. This approach, initiated
by Rice (1985) and reviewed in chapter 2, gives the formulas to update the stress intensity factors
for a small in-plane crack front increment. I participate to the derivation of those formulas in
the case of an interfacial half-plane crack (Lazarus and Leblond, 1998c) and the tunnel-crack
under shear loading (Lazarus and Leblond, 2002c).

3. PlaneCracks: Numerical simulations of large scale propagation of planar cracks.
Following an idea of Bower and Ortiz (1990), I developed a code, named PlaneCracks, to simulate
the brittle or fatigue propagation of a plane crack of arbitrary closed crack fronts. The code
was first written in mode 1 (Lazarus, 1999), (Lazarus, 2003) and than extended to mode 2+3
(Favier et al., 2006a).

4. Analytical studies of the crack front deformation. Using the perturbation approach of
chapter 2, we have performed the configurational bifurcation and stability analysis (see §2.4.1)
for an interfacial half-plane crack (Lazarus and Leblond, 1998b) and for a tunnel-crack under
shear loading (Lazarus and Leblond, 2002a), (Lazarus and Leblond, 2002b). Further on,
these studies have been extended to the study of the crack front deformation when it propagates
in an heterogeneous media (§2.6) for a tunnel-crack under tensile (Favier et al., 2006b) and shear
loading (Pindra et al., 2010), but also the interfacial half-plane crack (Pindra et al., 2008a).

5. Fracture during drying of colloidal suspensions. Since my first sojourn at lab FAST
(2006), I extended my research interests to shrinkage cracks and in particular to the fracture
arising during the drying of suspensions of colloidal particles. I consider both the drying of thin
films (Pauchard et al., 2007) and directional drying in capillary tubes (Gauthier et al., 2007).
The application of LEFM minimisation principle to those last experiments has underlined the
importance of the Griffith length (Gauthier et al., 2010). Comparison of directional drying
experiments with a regularized form of the energetic approach by a non-local damage model (fig.
3.2(c)) has also been performed for different cell shapes and have shown qualitative agreement
(Lazarus et al., 2009a). Experimental characterization techniques are also currently developed
(Chekchaki et al., 2010).
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Abstract Whatever the external loading, a crack
front in a solid tries to reach mode I loading condi-
tions after propagation. In mode I + II, the crack kinks
to annihilate mode II, kinking angle being well pre-
dicted by the principle of local symmetry (PLS) or by
the maximum tangential stress criterion (MTS). In pres-
ence of mode III, the problem becomes three-dimen-
sional and the proposed propagation criterion are not
yet well proved and established. In particular in three
point bending experiments (3PB) with an initially
inclined crack, the crack twists around the direction of
propagation to finally reach a situation of pure mode I.
The aim of the paper is to compare the propagation
paths predicted by two different criteria for 3PB fatigue
experiments performed on PMMA. The first criterion
developed by Schollmann et al. (Int J Fract 117(2):129–
141, 2002), is a three-dimensional extension of the
MTS criterion and predicts the local angles that anni-
hilates mode II and III at each point of the front.
The second one developed by Lazarus et al. (J Mech

V. Lazarus (B)
UPMC Univ Paris 6, Univ Paris-Sud, CNRS, UMR 7608,
Lab FAST, Bat 502, Campus Univ, 91405 Orsay, France
e-mail: veronique.lazarus@upmc.fr

F.-G. Buchholz · M. Fulland · J. Wiebesiek
Institute of Applied Mechanics, University of Paderborn,
Pohlweg 47-49, 33098 Paderborn, Germany
e-mail: fus.buchholz@t-online.de

M. Fulland
e-mail: fulland@fam.upb.de

Phys Solids 49(7):1421–1443, 2001b), predicts an
abrupt and then progressive twisting of the front to anni-
hilate mode III. Due to presence of sign changing mode
II and almost uniform mode III in the experiments, both
criteria give good results. However, since mode III is
predominant over mode II in the case under consider-
ation, the global criterion gives better results. Never-
theless, the local type criterion seems to be of greater
universality for practical engineering applications.

Keywords Brittle fracture · Mode II · Mode III ·
Maximum tangential stress criterion · 3D crack
propagation path · 3D fracture criteria · LEFM

1 Introduction

In homogeneous isotropic elastic media, except in some
special conditions, it is well known that whatever the
external loading, the crack front bifurcates in order to
reach a situation of pure mode I as the crack propagates
(Hull 1993). A literature survey of mixed mode crack
growth can be found in Qian and Fatemi (1996). Under
mode (I + II) conditions, the crack kinks to annihilate
mode II, as depicted in Fig. 5c. The value of the corre-
sponding kink angle can be obtained, for instance, by
the Principle of local Symmetry (PLS) of Goldstein and
Salganik (1974) or by the maximum tangential stress
criterion (MTS; Erdogan and Sih 1963). In presence
of mode III, to reach a situation of mode I, the crack
front twists around the direction of propagation. The
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(a)

(b)

(c)

(d)

Fig. 1 Several basic propagation possibilities in presence of
mode III. a Gradual one-piece twisting; b Abrupt one-piece twist-
ing; c Gradual piecewise twisting; d Abrupt piecewise twisting

way this twisting occurs is case dependent: in some
cases, it occurs gradually (Fig. 1a, c), in some other
cases abruptly (Fig. 1b, d); sometimes the whole front
twists in one-piece (see Fig. 1a, b) and in some other
cases, the front twists piecewise leading to a factory

roof pattern (see Fig. 1c, d). The conditions of tran-
sition between these several crack patterns remain an
open question. For instance, gradually piecewise rota-
tion has been observed by Sommer (1969), Hourlier
and Pineau (1979); abruptly piecewise rotation
by Palaniswamy and Knauss (1975). In Makabe et al.
(2006), depending on the loading conditions, both pro-
gressive and abrupt rotation have been observed.
Abrupt piecewise twisting at a small, mesoscopic,
length-scale and progressive rotation of the whole crack
front at a macroscopic length-scale, has been observed
in three or four points bending (3PB or 4PB) experi-
ments. Such experiments and observations have been
made by Yates and Mohammed (1996) on steel spec-
imens in fatigue, by Cooke and Pollard (1996),
Buchholz et al. (1998, 2005) on PMMA blocks in
fatigue, by Lazarus and Leblond (1998), Lazarus et al.
(2001b) on PMMA specimens under monotonic
increasing loading. These patterns can also be recog-
nized on geological materials (Pollard et al. 1982; Aydin
and Pollard 1988) at different length-scales.

The qualitative way of crack propagation is well
explained by its tendency to reach mode I conditions
(Hull 1993; Pook 1995). But it is not sufficient to pre-
dict the propagation path quantitatively and a few frac-
ture criteria have been proposed so far. Concerning the
abrupt rotation of the crack front, several criteria have
been proposed. But the only paper we are aware of,
that compares the results with experimental findings is
Cooke and Pollard (1996), who showed that all the cri-
teria overestimate the real value. Lazarus et al. (2001b)
proposed the following fit:

ψ = 1

4
arctan

2KIII

(1 − 2ν)KI
(1)

by interpolation of their experimental data. In the spe-
cial case of 3 or 4PB experiments, the gradually rota-
tion of the front, has been predicted, on the one hand,
by Gravouil et al. (2002) and Buchholz et al. (2004)
using MTS-criteria and by Lazarus and Leblond (1998),
Lazarus et al. (2001b) using a criterion predicting the
twisting rate of the whole crack front. Whereas the
kink angles given by MTS criteria lead to the anni-
hilation of mode II, the twisting rate of Lazarus and
Leblond (1998), Lazarus et al. (2001b) leads to the
annihilation of mode III. Hence it may be surprising that
both criteria manage to find the experimental propaga-
tion path. Also the aim of this paper is to discriminate
these two kind of criteria by comparing the predictions
of the MTS criterion (Erdogan and Sih 1963) or its
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3D extension (Schollmann et al. 2002) and those of
the criterion proposed by Lazarus and Leblond (1998),
Lazarus et al. (2001b) to 3PB fatigue experiments
performed on PMMA.

These experiments are presented in Sect. 2. Both
modes II and III are present in the experiments. By
symmetry, mode II Stress Intensity Factor (SIF) takes
opposite signs at each side of the front, hence MTS
criterion (or equivalent 3D ones, see Sect. 3.1) predicts
an opposite sign of the kink angle. Mode III yields a
uniform twisting of the whole front by Lazarus et al.
criterion (Sect. 3.2). Hence, at least qualitatively, the
same kind of twisting propagation path is expected and
the quantitative comparison (Sect. 4) with the experi-
ments shows that both criteria allow to recover quite
well the experimental values. Nevertheless, two facts
shall limit the extensive use of MTS criterion (or equiv-
alent ones such as PSL or 3DMTS generalization) in
presence of mode III although MTS criteria seem to be
sufficient for any practical engineering purposes. The
first fact is that increasing mode III over mode II rate,
gives advantage to Lazarus et al. criterion toward the
MTS one, and the second that MTS criterion predicts
well the kink angle near the free surfaces but too low
ones near the center of the front.

2 Experiments

2.1 Setup

The experiments are 3PB experiments performed on
PMMA specimens containing an initial inclined slit
(Fig. 2). The geometrical parameters of the 3PB-speci-
mens are as follows: length L = 260 mm, 2Le =
240 mm, thickness t = 10 mm, width W = 60 mm, nor-
malized crack length a/w= 1/3, angles of the inclined
planes of the initial cracks or notches with γ = 75◦,
60◦ and 45◦. For the simulation the material param-
eters are given by the experi-mental specimens from
PMMA with Young modulus E = 2, 800 N/mm2 and
Poisson ratio ν= 0.38. The specimens are subject to a
cyclic lateral force of F = 2.4 kN and the stress ratio of
the cyclic loading is R = 0.1.

2.2 Propagation paths

For γ = 90◦, the initial notch is located in the mid-
dle (x, z) plane of the specimen. Due to symmetry

LeLe

x3

F

x
w O

a

L

y
z

y zt γ

x2

x=x 1

Fig. 2 3PB-specimen with an inclined initial notch

Fig. 3 Gradual one-piece crack twisting. a Global view for
γ = 45◦; b Final view for several angles γ = 45◦, 60◦, 75◦, 90◦

reasons, the crack is then loaded in mode I only and
crack propagates straight and breaks the specimen in
two equivalent pieces. For γ less than 90◦ the initial
notch is loaded in both tension and out-of-plane shear,
and the crack bifurcates during propagation. Pictures
of the propagation path (Fig. 3) show that, at a mac-
roscopic length-scale, the crack front gradually twists
around the direction of propagation to finally reach the
middle mode I plane (x, z) of the specimen. Hence,
crack propagates to annihilate shear loading. One can
notice in Fig. 3b, that the rotation becomes more impor-
tant with decreasing value of γ . By observing the crack
facies postmortem, one can also notice that the inter-
section between the crack surface and a plane (y, z) is
always straight (one can adjust a straight ruler on this
intersection). This will be of importance for the geo-
metric description of this macroscopic crack surface.
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Fig. 4 Different stages of the crack propagation path. a Three
different stages of propagation: initial facets (on the left), gradual
one-piece twisting (two ones on the right) (γ = 45◦); b Zoom
on the initial facets formed by abrupt piecewise twisting

On a smaller mesoscopic length-scale, one can notice
on the pictures of Fig. 4, some little facets looking like
abrupt factory roofs or echelon cracks, the plane of
each facet being obtained by abrupt rotation of angle
ψ about the x-direction of propagation (Fig. 1d). Our
principal aim in this paper is not to determine the angle
ψ locally for positions along the crack front (although
it will be needed in one of the criteria) but the geometry
of the macroscopic smoothly twisting crack extension.

2.3 Quantitative description of the macroscopic
crack extension

Figure 5a schematically shows the whole extension
of the crack obtained experimentally, and Fig. 5b–d this

(a)

(b)

(c)

(d)

Fig. 5 Schematic view of the crack surface and local kinking.
a Whole surface; b 3D view of the local kinking; c In a plane
x3 = Cst.; d In a plane x1 = δ

same extension but restricted to a distance of propa-
gation δ from the initial slit, δ being supposed small
enough so that crack extension in each plane x3 = Cst .
coincide with its tangent (Fig. 5c). Let us denote d the
half-length of the initial front, ϕ(x3) the kink angle

123

68 Mes publications/My publications



Comparison of predictions by mode II or mode III criteria 145

(rotation angle of the crack extension around Ox3) at
the point of coordinate x3 of the front, ϕm the kink
angle for x3 = d. The intersection of the crack and a
plane x1 = δ being observed to be a straight line, one
can use Thales’ theorem (see Fig. 5d) to obtain:

δ tan ϕm

d
= δ tan ϕ(x3)

x3

which yields:

ϕ(x3) = arctan
( x3

d
tan ϕm

)
(2)

so that one can derive the kink angle all along the crack
front by simply performing the measure of the kink
angle ϕm at the external surface. Here care must be
taken that ϕm is defined in the plane x3 = d normal to
the crack front hence is different from the “kink” angle
α measured on the free surface plane z = t/2. They are
linked by:

cosϕm = cosα√
sin2 γ + cos2 γ cos2 α

(3)

Since some experimenters give values of the rota-
tion rate dγ /dδ rather than the kink angle, we give also
the following relation between ϕm and dγ /dδ, which
can easily be derived from Fig. 5d:

dγ

dδ
= tan ϕm

d
(4)

In the sequel we will focus our attention on the deter-
mination of the kink angle. The value of the rotation
rate can then be deduced from Eq. 4.

2.4 Quantitative description of the mesoscopic facets

The initial facets have not at the moment be studied
precisely and shall be the subject of a further work.
For the purpose of this paper (the study of the mac-
roscopic extension), we will use a simplified descrip-
tion by assuming that all the initial facets are deduced
from the initial slit by rotation of a same angle ψ
about the Ox1 axis. They disappear when they merge
into the global crack surface which gradually rotates
about the same axis with the rotation rate dγ

dδ . Hence,
their length δc is linked to the rotation rate by the
following formula:

dγ

dδ
δc = ψ (5)

3 Propagation criteria

For the determination of the kink angle, two types of
criteria are proposed in the sequel. The first type pre-
dicts independently the kink angle at each point x3 of
the crack front by using the values of the SIFs at the
same point x3, hence will be called local type criteria
in the sequel. These criteria are the PLS (Goldstein and
Salganik 1974), the MTS (Erdogan and Sih 1963) and
its 3D extension (Schollmann et al. 2002). The second
type of criteria supposes that the kink angle is of the
form of Eq. 2 and predicts the maximum kink angle ϕm

or equivalently the rotation rate dγ /dδ considering the
mean value of the SIFs along the whole crack front.
They will be called global type criteria in the sequel.
These criteria consist in maximizing the mean value of
KI (mode I SIF) or the mean value of G (total energy
release rate). All these criteria are described in the
following sections.

3.1 Local type criteria

Consider a point of the crack front and denote KI, KII,

KIII the SIFs at this point. After propagation the crack
has kinked by an angle ϕ. We will consider three crite-
ria giving this kink angle versus the initial SIFs (before
propagation): the Principle of Local Symmetry (PLS),
The Maximum Tangential Stress criterion (MTS), and
a 3D extension of the MTS (3DMTS).1

The Principle of Local Symmetry states that after
propagation the mode II SIF shall become zero. This
yields:

KI FII,I(ϕ)+ KII FII,II(ϕ) = 0 (6)

where functions Fi, j have been derived in Amestoy and
Leblond (1992).

The Maximum Tangential Stress criterion states that
the crack propagates in the direction where the circum-
ferential tensile stress σθθ is maximum. This yields:

KI sin ϕ + KII(3 cosϕ − 1) = 0 (7)

The 3D extension of the MTS (3DMTS) developed
by Schollmann et al. (2002) states that the crack will
grow radially from the crack front into the direction
which is perpendicular to maximum principal stress σ ′

1.

1 Other criteria exist, see Qian and Fatemi (1996), but the aim
here is not to make a systematic review of these local criteria but
to compare two types (local and global) of criteria.
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This direction corresponds to an abrupt twist angle ψ
of the front around the direction of propagation and a
kink angle ϕ which is linked to the SIFs by:

6 KI tan
(ϕ

2

)
+ KII

(
6 − 12 tan2

(ϕ
2

))

+
{

24
[

KI − 3 KII tan
(ϕ

2

)]

·
[

KI tan
(ϕ

2

)
+ KII

(
1 − 2 tan2

(ϕ
2

))]

+ 32 K 2
III tan

(ϕ
2

)
·
(

1 + tan2
(ϕ

2

))2
}

·
{[

4 KI − 12 KII tan
(ϕ

2

)]2

+ 64 K 2
III

(
1 + tan2

(ϕ
2

))2
}−1/2

= 0 (8)

Since PLS and MTS criterion give nearly the same
value of the kink angle,2 we will only consider in the
sequel the MTS and 3DMTS criterion.

3.2 Global type criterion of Lazarus and Leblond

Starting from the idea that the twisting of the crack front
is due to the presence of mode III, a criterion linked to
the disappearance of mode III has to be derived. This
criterion is necessary of global type (that is involving
all the points of the front) since this twisting around
the direction of propagation can only be achieved if all
the points twist together. Lazarus and Leblond (1998),
Lazarus et al. (2001b) proposed two such criteria:

MVG: maximize the Mean Value of G(x3, δ) along the
front with respect to ϕm

MVK: maximize the Mean Value of K I (x3, δ) along
the front with respect to ϕm

where G(x3, δ) denotes the total energy release rate and
KI(x3, δ) the mode I SIF, both after a propagation over
a distance δ and at the point of coordinate x3 of the
front. One has:

G(x3, δ) = 1 − ν2

E

[
K 2

I + K 2
II

]
(x3, δ)

+1 + ν

E
K 2

III(x3, δ) (9)

Applying these criteria for a vanishing δ, that is, a
vanishing crack extension length, one gets a zero value
for ϕm .

2 Indeed Amestoy and Leblond (1992) have shown that the dif-
ference is of order m6 with m = ϕ/π

This implies that the criteria must be applied after a
non-zero propagation length. On picture 4b, one
observes the presence of little facets at the beginning
of the propagation. During the formation of the facets,
the points of the crack front propagate in an “individ-
ual” manner. Afterward, as soon as the facets have dis-
appeared and the entire front twists as a whole, their
behaviour becomes “collective”. From there derives the
idea to fix δ in the criteria to the length δc of these little
facets.

In order to apply the criteria, let us suppose the length
δc of the extension to be small enough for the expan-
sion of the stress intensity factors KI(x3, δ), KII(x3, δ),

KIII(x3, δ) in powers of the crack extension length δ
obtained by Leblond (1989) and Lazarus et al. (2001a)
to be applicable. These expressions give the SIFs after
propagation K p(x3, δ) in function of the initial SIFs
K p(x3), p = I, II, III. Denote kp the mean value of these
quantities:

kp = 1

2d

d∫

−d

K p(x3)dx3 (10)

If |kIII/kI| � 1 and |kII/kI| � 1, the criteria MVK and
MVG then give respectively the following formulas for
ϕm :

ϕm =
8
δc

d

1 + 16
√

2

3π

√
δc

a
− 5

12

δc

a
+ 6

π

2 − 3ν

2 − ν

δc

d

kIII

kI
(11)

ϕm =
4
δc

d

(2 − ν)

(
1

3
+ 4

3π

√
2δc

a
− 16

3π2

δc

a
+ 2

π

2 − 3ν

2 − ν

δc

d

)

× kIII

kI
(12)

These theoretical expressions of ϕm were obtained ana-
lytically for |kIII/kI| � 1 and |kII/kI| � 1. However,
ϕm can be computed numerically for arbitrary values of
KIII/KI(x3) and KII/KI(x3). The results show that the
analytic formulae are valid even for kIII/kI and kII/kI

of order unity.
Equations 11 and 12 give ϕm in function of the given

specimen geometry a, d, material ν and the loading
kIII/kI and of the length δc of the facets. Hence, to
apply these criterions, we have to determine theoreti-
cally the length of the facets in function of the geometry
and the loading of the specimen. Yet, the length of the
facets δc is linked to the orientation ψ of the facets and
to the rotation rate dγ

dδ of the macroscopic extension by
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Eq. 5. In this expression, ψ may be estimated through
Eq. 1. After use of Eq. 4, this yields:

tan ϕm

d
δc = 1

4
arctan

2kIII

(1 − 2ν)kI
(13)

The couple of Eqs. 11, 13 or 12, 13 forms two equa-
tions with two unknown factors ϕm and δc that can be
solved numerically to obtain δc and ϕm as a function of
a, d, ν, kIII/kI.

4 Comparison with the experiments

4.1 Determination of the SIF

The Stress Intensity Factors are computed using the
program ADAPCRACK3D developed at the Institute
of Applied Mechanics at University of Paderborn
(Fulland et al. 2000; Schollmann et al. 2003). It is a
Finite-Element based tool for simulation of crack prop-
agation processes in three-dimensional structures. The
program delegates the determination of the mechanical
fields to the commercial FE-Solver ABAQUS. Using
these fields, the SIFs for all three fracture modes are
then determined by the module NETCRACK3D by
the use of the MVCCI-method (Rybicki and Kanninen
1977; Buchholz 1984). They are given in Fig. 6 for one
half of the front (the other part can be deduced from
the fact that due to symmetry considerations, KII/KI

is an odd function of x3 and KIII/KI is an even one).
Results for the points located at points x3 = ±d shall be
disregarded since the classical SIFs cannot be defined
at these free surface points (Bazant and Estenssoro
1979) due to the corner singularity, which differs from
−1/2. One observes that KIII predominates over KII,
that KIII/KI is nearly uniform and increases while γ
decreases (more inclined notch).

4.2 Comparison between MTS, 3DMTS, MVK
and MVG

By measuring the “kink” angle α at the free surfaces
z = ±t/2, using Eq. 3 the kink angle ϕm for x3 = ±d
is obtained and using Eq. 2 their values for the interior
points of the front. Figs. 7 and 8 compare the experi-
mental kink angle along the front with the ones obtained
by, on the one hand, MTS and 3DMTS criteria and on
the other hand, MVK and MVG criteria (again only
the values for one half of the front is plotted thanks
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Fig. 6 Stress Intensity Factors for the initial slit. a KII/K I ;
b KIII/K I

to symmetry and external points shall be disregarded
since SIF are not defined at these points).

The following observations become apparent:
1. Despite the two concepts rely on totally different

aspects of the loading situation of the crack front
both predictions of the kinking angle are quite sat-
isfactory.

2. For the MTS and 3DMTS criteria, an excellent
agreement is found near the free surfaces. But the
kink angles are notably underestimated in the mid-
dle of the front. This is not surprising, since the small
initial facets, which could be observed in the exper-
iments, suggest that the twisting linked to mode III,
is of relevance in those cases. Due to its omission,
the twisting of the whole crack front is underesti-
mated.

3. For the MVK and MVG criteria an excellent agree-
ment with the experiments can be found. The rela-
tive errors are less than 5% for γ = 75◦, 60◦ which
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Fig. 7 Comparison of MTS, 3DMTS and MVK, MVG. a γ =
75◦; b γ = 60◦; c γ = 45◦

may be explicated by the uncertainties of measure
that can be estimated to be ∼ 10%. For γ = 45◦,
the error is about 20%. The error increase may be
due to the lack of taking KII into account and to the
use of a first order expression of ϕm with respect to
KIII/K I which is less valid for smaller values of γ .
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Fig. 8 Relative error. a γ = 75◦; b γ = 60◦; c γ = 45◦

4. For γ = 75◦, 60◦ MTS and 3DMTS give very sim-
ilar results, but for γ = 45◦, MTS seems to be more
accurate. It seems that the kink angle is better pre-
dicted by maximize the opening stress on facets con-
taining the crack front (MTS) than on any facets in
front of the tip (3DMTS). Hence even in presence
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of mode III, MTS or equivalently PSL shall be used
rather than 3DMTS.

5. Criteria MVK and MVG yield very similar values,
hence are difficult to discriminate by the experi-
ments. Nevertheless, a more precise estimation of
the errors gives a slight advantage to MVK. It was
still the case in Lazarus et al. (2001b) for similar
experiments made on steel.

4.3 Propagation path by ADAPCRACK3D

Even if global type criteria give better prediction for the
initial kink angle, application of the local type ones ite-
ratively during propagation gives a crack surface very
similar to the experiments (see Fig. 9 compared to 3a).
This demonstrates the ability of ADAPCRACK3D to
perform simulations of 3D crack propagation paths,
even if the initial kink angle is slightly underestimated.
The mesh and the deformation of the specimen during
computation is depicted in Fig. 10.

(a) (b)

(c)

Fig. 9 Computed crack paths. a γ = 75◦; b γ = 60◦; c γ = 45◦

Fig. 10 Deformed FE-model of the 3PB-specimens (γ = 45◦,
displacement magnification factor DMF = 50). a With initial
crack; b After 20 steps of simulated incremental fatigue crack
growth

5 Conclusion

By comparison of the criteria with the experiments, one
can notice that:

– The presence of both mode II and mode III along
the crack front implies that both investigated criteria
give good results concerning the development of the
crack front in 3PB specimen under notable mode III
influence.

– The global type criteria by Lazarus and Leblond,
which was especially designed for those crack cases,
predict the macroscopic deflection of the crack front
by supposing that the whole front twists around the
direction of propagation to annihilate mode III. Its
results match the experimentally obtained crack
development with excellent accuracy. But the crite-
rion, specially designed for these experiments, seems
difficult to be extended to any other configuration.

– The local type MTS criteria predict crack growth
by definition of a local kinking angle that annihi-
late mode II. They differ more from the experimen-
tal findings than the predictions of the criterion by
Lazarus and Leblond, since they disregard the local
twisting ψ due to mode III. But they are of greater
universality, as it is applicable to arbitrary 3D-crack
problems.

– Moreover from a global point of view the smaller
rotation rate resulting from the underestimation of
the crack front twisting due to the disregard of the
twisting angle does not notably change the overall
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shape of the final crack surface. Hence MTS crite-
rion seems sufficient for any practical engineering
purposes.

It can finally be concluded, that obviously the crack
front rotation, which is observed under notable mode III
influence in 3PB specimens, can be described by both
local and global type criteria. Hence, it is not possible
to definitely conclude whether the twisting observed in
3PB or 4PB is a mode II or a mode III effect. But since
the global type criterion gives better results, one shall
conclude that it is rather a mode III one.

Now, a more extensive experimental study of crack
propagation paths in presence of mode III shall be
done. The conditions of transition between these seve-
ral crack patterns (abrupt or progressive, one-piece or
piecewise twisting, see Fig. 1) shall be lightened. The
size effects, loading conditions on the spacing and rota-
tion angle of the factory-roof patterns shall be
studied. Extensive comparison of the twisting angle ψ
of 3DMTS criterion or the empiric formula (1) with the
twisting of the facets are envisaged in a near
future.
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In-plane perturbation of the tunnel-crack under shear
loading I: bifurcation and stability of the straight
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Abstract

One considers a planar tunnel-crack embedded in an infinite isotropic brittle solid and loaded in mode 2þ 3 through
some uniform shear remote loading. The crack front is slightly perturbed within the crack plane, from its rectilinear

configuration. Part I of this work investigates the two following questions: Is there a wavy ‘‘bifurcated’’ configuration of

the front for which the energy release rate is uniform along it? Will any given perturbation decay or grow during

propagation? To address these problems, the distribution of the stress intensity factors (SIF) and the energy release rate

along the perturbed front is derived using Bueckner–Rice’s weight function theory. A ‘‘critical’’ sinusoidal bifurcated

configuration of the front is found; both its wavelength and the ‘‘phase difference’’ between the fore and rear parts of

the front depend upon the ratio of the initial (prior to perturbation of the front) mode 2 and 3 SIF. Also, it is shown

that the straight configuration of the front is stable versus perturbations with wavelength smaller than the critical one

but unstable versus perturbations with wavelength larger than it. This conclusion is similar to those derived by Gao and

Rice and the authors for analogous problems.

� 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Tunnel-crack; Shear loading; Mode 2; Mode 3; Crack front; In-plane perturbation; Bifurcation; Stability; Bueckner–Rice

theory; Weight functions

1. Introduction

Consider a plane crack with arbitrary contourF, embedded in an arbitrary isotropic elastic body X. Let
M denote the generic point ofF. If the crack advances, under constant loading, by a small distance daðMÞ
within the plane in the direction perpendicular to the front F, the variations dKmðMÞ, m ¼ 1, 2, 3 of the
stress intensity factors (SIF) at point M are given, to first order in the perturbation, by the following
formulae:
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dKmðMÞ ¼ ½dKmðMÞ�daðM 0Þ�daðMÞ þ NmnKnðMÞ ddaðMÞ
ds

þ PV
Z
F

ZmnðX;M ;M 0ÞKnðM 0Þ½daðM 0Þ 	 daðMÞ�ds0;

ð1Þ
where s, s0 denote the curvilinear abscissae along the front of points M and M 0 respectively, and Einstein’s
implicit summation convention is employed for the index n ¼ 1; 2; 3. In these equations, the KnðMÞ are the
initial SIF (prior to perturbation of the crack front). The ½dKmðMÞ�daðM 0Þ�daðMÞ are the values of the dKmðMÞ
for a uniform advance equal to daðMÞ (daðM 0Þ � daðMÞ; 8M 0 2 F). The Nmn are the components of a
universal (geometry-independent) operator. They are given by (other components being zero):

N23 ¼ 	 2

2	 m
; N32 ¼

2ð1	 mÞ
2	 m

; ð2Þ

where m denotes Poisson’s ratio. The ZmnðX;M ;M 0Þ are the components of a non-universal (geometry de-
pendent, whence the argument ‘‘X’’) operator Z called the fundamental kernel in the sequel, since it appears
as the kernel of the principal value (PV) integral. Some general properties of these functions are as follows:

ZmnðX;M ;M 0Þ ¼ ZnmðX;M 0;MÞ; ðm; nÞ ¼ ð1; 1Þ; ð2; 2Þ; ð3; 3Þ; ð1; 2Þ;
Z3nðX;M ;M 0Þ ¼ ð1	 mÞZn3ðX;M 0;MÞ; n ¼ 1; 2;

ð3Þ

lim
M 0!M

Z11ðX;M ;M 0ÞD2ðM ;M 0Þ ¼ 1

2p
;

lim
M 0!M

Z22ðX;M ;M 0ÞD2ðM ;M 0Þ ¼ 2	 3m
2pð2	 mÞ ;

lim
M 0!M

Z33ðX;M ;M 0ÞD2ðM ;M 0Þ ¼ 2þ m
2pð2	 mÞ ;

lim
M 0!M

ZmnðX;M ;M 0ÞD2ðM ;M 0Þ ¼ 0; m 6¼ n;

ð4Þ

where DðM ;M 0Þ denotes the Cartesian distance between the points M and M 0. Note that Eq. (4) warrant
that the integral in Eq. (1) makes sense as a Cauchy principal value.
Eq. (1) was first established by Gao and Rice for various particular cases: the half-plane crack in mode 1

(Rice, 1985) and 1þ 2þ 3 (Gao and Rice, 1986), the circular connection in mode 1 (Gao and Rice, 1987a),
the penny-shaped crack in mode 1 (Gao and Rice, 1987b) and 1þ 2þ 3 (Gao, 1988). In all these papers, the
fundamental kernel did not appear in the generic name Z but in an explicit form depending on the con-
figuration studied. Eq. (1) was then extended by Rice (1989) and Nazarov (1989) to arbitrary planar crack
shapes in mode 1, and finally by Mouchrif (1994) and Leblond et al. (1999) to cracks of completely ar-
bitrary, non-planar shapes including possible kink angles and arbitrary combinations of modes. In these
more general cases, since the fundamental kernel depends on the geometry which was supposed to be more
or less arbitrary, it appeared under a generic form; Z is the notation used in Leblond et al. (1999). The
values of the Nmn given by (2) can be deduced from the works of Rice (1985), Gao and Rice (1986, 1987a,b)
and Gao (1988). Finally, properties (3) and (4) were proved for arbitrary plane cracks loaded in pure mode
1 by both Rice (1989) and Nazarov (1989), and for arbitrary curved crack geometries and mixed mode
conditions by Mouchrif (1994) and Leblond et al. (1999). All these works heavily relied on the use of
Bueckner–Rice’s weight-function theory (Bueckner, 1970; Rice, 1972; Rice, 1985).
In all the above-mentioned special cases, the problems of configurational bifurcation and stability of the

crack front during in-plane propagation, under uniform remote loading, could be addressed by using
the explicit expression of Z in Eq. (1) to calculate the energy release rate along a slightly perturbed front.
The bifurcation problem was the following one: is there, in addition to the trivial, initial (straight or circular)
configuration of the crack front, some non-trivial, wavy configuration for which the energy release rate
is still uniform? The stability problem was as follows: if the crack front is slightly perturbed within the crack

4422 V. Lazarus, J.-B. Leblond / International Journal of Solids and Structures 39 (2002) 4421–4436
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plane, will the perturbation decay or increase as propagation proceeds? This issue could be addressed by
considering that the perturbation decayed if the energy release rate was lowest at the most advanced parts
of the crack front, and that it grew if the opposite held true.
For half-plane cracks and internal circular cracks under mixed mode loadings, and for circular con-

nections under mode 1 loading, Rice (1985), Gao and Rice (1986, 1987a,b) and Gao (1988) have shown that
there is a sinusoidal bifurcated configuration of ‘‘critical’’ wavelength kc, and that stability prevails for
perturbations of wavelength smaller than kc and instability for wavelengths larger than it. An analogous
result has been established for interface half-plane cracks by Lazarus and Leblond (1998). However, for half-
plane cracks, as pointed out by Gao and Rice (1986) because of the lack of a characteristic lengthscale in the
problem, the somewhat deceiving conclusion is only that ‘‘planar crack growth should be configurationally
stable to perturbations involving wavelengths that are small compared to overall body or crack dimensions’’.
Leblond et al. (1996) have introduced a characteristic lengthscale by studying the tunnel-crack under mode 1
loading. They have shown that the critical wavelength kc is a characteristic multiple of the crack width and
that the critical bifurcated configuration is symmetric with respect to the middle axis of the crack.
The aim of Part I of this work is to consider the same bifurcation and stability problems for the tunnel-

crack as Leblond et al. (1996), but for mixed mode (2þ 3) shear loadings. Propagation is assumed to be
coplanar; this is reasonable provided that the crack is channeled along a planar surface of low fracture
resistance, which can be the case for instance for a geological fault. Also, propagation is considered to be
governed by the local energy release rate, the critical value of which is assumed to be independent of mode
combination. Again, this is reasonable (Rice, private communication) for coplanar propagation along a
weak surface, since energy dissipation occurs through the same physical mechanisms (shear and friction) in
both modes 2 and 3.
Bifurcation and stability issues of course depend on the geometry considered. Therefore some general

properties of the operator Z for a tunnel-crack, are needed as a prerequisite. These properties are ex-
pounded in Section 2. They allow us to derive, in Section 3, an expression of the variation of the energy
release rate due to a small wavy perturbation of the crack front that forms the basis of our discussion of
bifurcation and stability problems. In Section 4, it is then shown that there is a critical, sinusoidal bifur-
cated configuration of the front. Its wavelength is a multiple of the width of the crack and depends upon the
ratio of the mode 2 and 3 initial SIF (prior to perturbation of the front). Also, the bifurcated configuration
is symmetric with respect to the middle axis of the crack only for initial conditions of pure mode 2 or 3; for
mixed mode conditions, there is a ‘‘phase difference’’ between the bifurcated configurations of the fore and
rear parts of the crack front. The stability issue is addressed, in Section 5, only in some simple, special cases
where the extrema of the perturbation and the energy release rate coincide. It is shown that in the most
interesting case, stability prevails for perturbations of wavelength smaller than the critical one.
It should be noticed that a significant part of the analysis of bifurcation and stability can be carried out

using only the properties of the fundamental kernel Z expounded in Section 2, that is without explicitly
knowing its components. However, such an explicit knowledge is of course necessary for a fully quanti-
tative analysis. But the calculation of Z is long and complex; for reasons of compactness of the present
paper, we shall therefore merely accept its results here and postpone its detailed presentation to Part II.

2. General properties of the fundamental kernel Z

2.1. Definitions and notations

The situation considered is depicted in Fig. 1. The crack lies on the plane y ¼ 0 and the fore and rear
parts of the front are parallel straight lines of equation ðx ¼ aÞ and ðx ¼ 	aÞ respectively. The position of a
point M of the front is specified through the Cartesian coordinate z�, where the upper index indicates
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whether the point considered belongs to the fore ðx ¼ aÞ or rear part ðx ¼ 	aÞ of the front. The SIF at a
pointM of the front are defined with respect to the local set of axes ðx; y; zÞ ifM belongs to the line ðx ¼ aÞ
and ð	x;	y; zÞ if it belongs to the line ðx ¼ 	aÞ.
The only geometric parameter in the problem is the half-width a of the crack; it follows that the influence

of the argument ‘‘X’’ upon the fundamental kernel ZðX;M ;M 0Þ in fact reduces to a dependence of this
operator upon a. Furthermore, the problem is invariant in the direction z of the crack front and simple
dimensional considerations in Eq. (1) show that ZðX;M ;M 0Þ � Zða; z�; z0�Þ is positively homogeneous of
degree 	2 with respect to its three arguments. Combining these features with the obvious symmetry with
respect to the central axis Oz, one concludes that the fundamental kernel can be written in the following
form:

Zða; zþ; z0þÞ ¼ Zða; z	; z0	Þ � fððz0 	 zÞ=aÞ
ðz0 	 zÞ2

; ð5Þ

Zða; zþ; z0	Þ ¼ Zða; z	; z0þÞ � gððz0 	 zÞ=aÞ
a2

; ð6Þ

where, in virtue of Eq. (4), the components of operators f and g are bounded for z0 ! z and verify the
following properties:

lim
z0!z

f11ððz0 	 zÞ=aÞ ¼ 1

2p
;

lim
z0!z

f22ððz0 	 zÞ=aÞ ¼ 2	 3m
2pð2	 mÞ ;

lim
z0!z

f33ððz0 	 zÞ=aÞ ¼ 2þ m
2pð2	 mÞ ;

lim
z0!z

fmnððz0 	 zÞ=aÞ ¼ 0; m 6¼ n:

ð7Þ

Another basic property of f and g is that:

f12 ¼ f21 ¼ f13 ¼ f31 ¼ g12 ¼ g21 ¼ g13 ¼ g31 � 0: ð8Þ
This is because, as is well-known, tensile and shear problems are uncoupled for a planar crack with an
arbitrary contour in an infinite body; that is, if K2 � 0 and K3 � 0 (tensile problem), the variations dK2 and
dK3 are zero when the crack propagates within its plane; and similarly if K1 � 0 (shear problem), dK1 � 0.

Fig. 1. Tunnel-crack of width 2a.
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Furthermore, elementary considerations of symmetry with respect to the plane z ¼ 0 show that f11, f22,
f33, g11, g22, g33 are even, and f23, g23, f32 and g32 are odd functions. Eqs. (3), (5) and (6) then imply that (with
u � ðz0 	 zÞ=a):

f32ðuÞ ¼ ð1	 mÞf23ð	uÞ ¼ 	ð1	 mÞf23ðuÞ;
g32ðuÞ ¼ ð1	 mÞg23ð	uÞ ¼ 	ð1	 mÞg23ðuÞ:

ð9Þ

Therefore, the fundamental kernel Z is entirely determined by the eight components 11, 22, 33, 23 of the
operators f and g.

2.2. Expressions of the dKm, m ¼ 2; 3 in terms of f and g

As already mentioned, for the tunnel-crack under shear loading, dK1 � 0. Furthermore, for m ¼ 2, 3,
with the notations (5) and (6) and because of properties (8) and (9), the fundamental Eq. (1) reads for a
point MþðzþÞ belonging to the line ðx ¼ aÞ:

dK2ðzþÞ ¼ ½dK2ðzþÞ�daðz0�Þ�daðzþÞ 	
2

2	 m
K3ðzþÞ

dda
dz

ðzþÞ

þ PV
Z þ1

	1
f22

z0 	 z
a

� �
K2ðz0þÞ

�
þ f23

z0 	 z
a

� �
K3ðz0þÞ

�
daðz0þÞ 	 daðzþÞ

ðz0 	 zÞ2
dz0

þ
Z þ1

	1
g22

z0 	 z
a

� �
K2ðz0	Þ

�
þ g23

z0 	 z
a

� �
K3ðz0	Þ

�
daðz0	Þ 	 daðzþÞ

a2
dz0; ð10Þ

dK3ðzþÞ ¼ ½dK3ðzþÞ�daðz0�Þ�daðzþÞ þ
2ð1	 mÞ
2	 m

K2ðzþÞ
dda
dz

ðzþÞ

þ PV
Z þ1

	1
f33

z0 	 z
a

� �
K3ðz0þÞ

�
	 ð1	 mÞf23

z0 	 z
a

� �
K2 z0þ

� �� daðz0þÞ 	 daðzþÞ
ðz0 	 zÞ2

dz0

þ
Z þ1

	1
g33

z0 	 z
a

� �
K3ðz0	Þ

�
	 ð1	 mÞg23

z0 	 z
a

� �
K2ðz0	Þ

�
daðz0	Þ 	 daðzþÞ

a2
dz0: ð11Þ

The values of dK2ðz	Þ and dK3ðz	Þ, for a point M	ðz	Þ belonging to the line ðx ¼ 	aÞ, are given by the same
expressions with the obvious substitutions zþ ! z	, z0� ! z0�.

3. Perturbation of the tunnel-crack under uniform remote shear loading

Let the tunnel-crack be subjected to some uniform remote plane (sp) and antiplane (sa) shear loading so
that Cauchy stress tensor at infinity reads r1 ¼ spðey!� ex!þ ex!� ey!Þ þ saðey!� ez!þ ez!� ey!Þ. Then the
SIF, prior to any perturbation of the front, are given by:

K1ðz�Þ ¼ 0; K2ðz�Þ ¼ sp
ffiffiffiffiffiffi
pa

p
� K2; K3ðzþÞ ¼ sa

ffiffiffiffiffiffi
pa

p
� Kþ

3 ; K3ðz	Þ ¼ 	sa
ffiffiffiffiffiffi
pa

p
¼ 	Kþ

3 � K	
3 :

ð12Þ
The variation of the SIF will be studied for three types of perturbation of the front: translation, rotation
and sinusoidal undulation (Fig. 2). The study of the translation will serve to simplify (in the case of a
uniform remote loading), the expressions (10) and (11) of dK2ðzþÞ and dK3ðzþÞ. The study of the rotation
will allow the calculation of some integrals involving operators f and g. These integrals are given here
although they will be needed only in Part II, because the reasoning is similar to that for the translation. The
study of the sinusoidal undulation is a necessary prerequisite for that of the bifurcation and stability
problems.
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3.1. Translation of the front

If both parts of the front move by a uniform amount da as in Fig. 2(a), the new SIF are those of a tunnel-
crack of width 2ðaþ daÞ subjected to the remote loading r1. Hence to first order in da=a:

½dK2ðz�Þ�daðz0�Þ�da ¼ K2
da
2a

;

½dK3ðzþÞ�daðz0�Þ�da ¼ Kþ
3

da
2a

; ½dK3ðz	Þ�daðz0�Þ�da ¼ K	
3

da
2a

:

ð13Þ

If now the sole rear part of the front moves by an amount da as in Fig. 2(b), the new SIF are those of a
tunnel-crack of width 2aþ da subjected to the remote loading r1. Thus dK2ðz�Þ ¼ ðK2daÞ=ð4aÞ and
dK3ðz�Þ ¼ ðK�

3 daÞ=ð4aÞ. Eqs. (10) and (11) then yield:Z þ1

	1
g22ðuÞdu ¼ 	

Z þ1

	1
g33ðuÞdu ¼ 1

4
;

Z þ1

	1
g23ðuÞdu ¼ 0: ð14Þ

The last relation was obvious a priori since g23 is odd.

Fig. 2. In-plane perturbations of the tunnel-crack under uniform remote shear loading. (a) Translation of both parts of the front. (b)

Translation of the rear part of the front. (c) Rotation about the Oy axis. (d) Wavy front.
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By using Eqs. (13) and (14), the relations (10) and (11) can be rewritten in the following slightly sim-
plified form (for a uniform remote loading):

dK2ðzþÞ ¼
K2
4

daðzþÞ
a

	 2

2	 m
Kþ
3

dda
dz

ðzþÞ þ K2PV
Z þ1

	1
f22

z0 	 z
a

� �
daðz0þÞ 	 daðzþÞ

ðz0 	 zÞ2
dz0

þ Kþ
3

Z þ1

	1
f23

z0 	 z
a

� �
daðz0þÞ 	 daðzþÞ

ðz0 	 zÞ2
dz0 þ K2

Z þ1

	1
g22

z0 	 z
a

� �
daðz0	Þ

a2
dz0

þ K	
3

Z þ1

	1
g23

z0 	 z
a

� �
daðz0	Þ

a2
dz0; ð15Þ

dK3ðzþÞ ¼
Kþ
3

4

daðzþÞ
a

þ 2ð1	 mÞ
2	 m

K2
dda
dz

ðzþÞ þ Kþ
3 PV

Z þ1

	1
f33

z0 	 z
a

� �
daðz0þÞ 	 daðzþÞ

ðz0 	 zÞ2
dz0

	 ð1	 mÞK2
Z þ1

	1
f23

z0 	 z
a

� �
daðz0þÞ 	 daðzþÞ

ðz0 	 zÞ2
dz0 þ K	

3

Z þ1

	1
g33

z0 	 z
a

� �
daðz0	Þ

a2
dz0

	 ð1	 mÞK2
Z þ1

	1
g23

z0 	 z
a

� �
daðz0	Þ

a2
dz0; ð16Þ

where the ‘‘PV’’ symbols have been canceled in the integrals involving f23 since this function is odd.
The expressions of dK2ðz	Þ and dK3ðz	Þ are similar with the substitutions zþ ! z	, z0� ! z0�, K�

3 ! K�
3 .

3.2. Rotation of the front

Let us suppose that the perturbation is a rotation of both parts of the front about ey! as in Fig. 2(c) so
that daðzþÞ ¼ dh:z and daðz	Þ ¼ 	dh:z, jdhj � 1. Then to first order in dh, the new SIF are those of a
tunnel-crack of width 2a subjected to the uniform remote loading ðsp 	 dh:saÞðey!� eu!þ eu!� ey!Þþ
ðsa þ dh:spÞðey!� ew!þ ew!� ey!Þ where eu! and ew! are defined in Fig. 2(c). Thus dK2ðz�Þ ¼ 	dh:Kþ

3 and
dK3ðz�Þ ¼ �dh:K2. Relations (15) and (16) then yield a system of two equations in the two unknown in-
tegrals

Rþ1
	1 f23ðuÞðdu=uÞ and

Rþ1
	1 ug23ðuÞdu, the solution of which reads:

Z þ1

	1
f23ðuÞ

du
u

¼ 	 m2

2ð2	 mÞð1	 mÞ ; ð17Þ

Z þ1

	1
ug23ðuÞdu ¼ m

2ð1	 mÞ : ð18Þ

3.3. Wavy perturbation of the crack front

Let us now suppose that, as in Fig. 2(d):

daðzþÞ ¼ aþ cosðkþzþ /þÞ
daðz	Þ ¼ a	 cosðk	zþ /	Þ
jaþj
a

� ja	j
a

� 1:

8>>><
>>>:

ð19Þ
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Then, by substituting Eq. (19) in (15) and (16) and using the notation

p� � k�a; ð20Þ

(pþ, p	 are ‘‘reduced’’, dimensionless wavevectors), one finds to first order in ða�=aÞ, after a lengthy but
straightforward calculation:

dK2ðzþÞ ¼
aþ

a
cosðkþzþ /þÞK2�ff22ðpþÞ þ

aþ

a
sinðkþzþ /þÞKþ

3 i
�ff23ðpþÞ þ

a	

a
cosðk	zþ /	ÞK2ĝg22ðp	Þ

þ a	

a
sinðk	zþ /	ÞK	

3 iĝg23ðp	Þ; ð21Þ

dK3ðzþÞ ¼
aþ

a
cosðkþzþ /þÞKþ

3
�ff33ðpþÞ 	 ð1	 mÞ aþ

a
sinðkþzþ /þÞK2i�ff23ðpþÞ

þ a	

a
cosðk	zþ /	ÞK	

3 ĝg33ðp	Þ 	 ð1	 mÞ a	

a
sinðk	zþ /	ÞK2iĝg23ðp	Þ; ð22Þ

the expressions of dK2ðz	Þ and dK3ðz	Þ being given by the same formulae with the obvious substitutions
� $ � for the superscripts of a, k, p, / and K3. In these expressions, the functions �ffmn are defined as:

�ffmnðpÞ ¼
1

4
þ PV

Z þ1

	1
fmnðuÞ

eipu 	 1
u2

du ¼ 1
4
þ 2

Z þ1

0

fmnðuÞ
cos pu	 1

u2
du; ðm; nÞ ¼ ð2; 2Þ; ð3; 3Þ;

�ff23ðpÞ ¼ 	 2

2	 m
ip þ PV

Z þ1

	1
f23ðuÞ

eipu 	 1
u2

du ¼ 	 2

2	 m
ip þ 2i

Z þ1

0

f23ðuÞ
sin pu
u2

du;

ð23Þ

(where use has been made of the parity properties of the fmn). Also, the functions ĝgmn are the Fourier
transforms of the gmn defined as:

ĝgmnðpÞ ¼
Z þ1

	1
gmnðuÞeipu du;

)
ĝgmnðpÞ ¼ 2

Z þ1

0

gmnðuÞ cos pudu; ðm; nÞ ¼ ð2; 2Þ; ð3; 3Þ

ĝg23ðpÞ ¼ 2i
Z þ1

0

g23ðuÞ sin pudu;

8>>><
>>>:

ð24Þ

(where use has been made of the parity properties of the gmn).
Notice that �ff22, �ff33, ĝg22, ĝg33, i�ff23, iĝg23 are real so that the expressions (21) and (22) of dK2ðzþÞ and dK3ðzþÞ

are real in spite of the presence of the imaginary number i.

4. Study of the bifurcation problem

Any sinusoidal perturbation of the crack front may be written, for a suitable choice of the origin, in the
form (19) with /þ ¼ 0, /	 ¼ / 2 ½	p; pÞ, and aþ, a	, pþ, p	 > 0. The bifurcation problem consists in
looking whether there are some constants (aþ, a	, pþ, p	, /) for which the variation of energy release rate dG
due to the perturbation (19) vanishes. (In fact, what is really to be investigated is dG	 dGc where Gc denotes
the critical value of G; but this is equivalent to studying dG since Gc is assumed to be a constant, independent
of mode combination). Such a set of variables (aþ, a	, pþ, p	, /) will be called a bifurcation mode.
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4.1. Expression of the variation of the energy release rate

Expanding Irwin’s formula to first order in ða�=aÞ, one finds that the variation of the energy release rate
due to the perturbation (19) is:

dGðz�Þ ¼ 2 1	 m2

E
K2dK2ðz�Þ

�
þ 1

1	 m
K�
3 dK3ðz�Þ

�
; ð25Þ

where E is Young’s modulus and dK2ðz�Þ and dK3ðz�Þ are given by Eqs. (21) and (22). Hence, substituting 0
for /þ and / for /	 in these equations, one finds that

dGðzþÞ ¼ 2 1	 m2

E
K22
a

aþF ðpþÞ cosðkþzÞf þ a	½Gðp	Þ cos/ þ Hðp	Þ sin/� cosðk	zÞ

þ a	½Hðp	Þ cos/ 	 Gðp	Þ sin/� sinðk	zÞg; ð26Þ

dGðz	Þ ¼ 2 1	 m2

E
K22
a

a	F ðp	Þ cos k	zðf þ /Þ þ aþ½GðpþÞ cos/ þ HðpþÞ sin/� cosðkþzþ /Þ

þ aþ½ 	 HðpþÞ cos/ þ GðpþÞ sin/� sinðkþzþ /Þg: ð27Þ

In these expressions F ðpÞ � F ðp;Kþ
3 =K2Þ, GðpÞ � Gðp;Kþ

3 =K2Þ, HðpÞ � Hðp;Kþ
3 =K2Þ are the quantities given

by:

F ðpÞ ¼ �ff22ðpÞ þ
1

1	 m
Kþ2
3

K22
�ff33ðpÞ;

GðpÞ ¼ ĝg22ðpÞ 	
1

1	 m
Kþ2
3

K22
ĝg33ðpÞ;

HðpÞ ¼ 	2iK
þ
3

K2
ĝg23ðpÞ:

ð28Þ

It was noticed by Gao and Rice (1986), Gao (1988), Lazarus and Leblond (1998) that the extrema of the
perturbation of the front and of the energy release rate coincide for a half-plane or a penny-shaped crack in
an homogeneous body, and for an interface half-plane crack. One could therefore speculate that this was a
‘‘general property’’. However, since the terms proportional to sinðk	zÞ and sinðkþzþ /Þ do not vanish in
the expressions (26) and (27) of dGðz�Þ, this property does not hold for the tunnel-crack.

4.2. Graphs of functions �ff22, �ff33, ĝg22, ĝg33, ĝg23

Knowledge of the functions �ff22, �ff33, ĝg22, ĝg33, ĝg23 now becomes necessary to pursue the discussion. For the
sake of shortness of the present paper, the rather involved calculation of these functions is postponed to
Part II and we shall only give here the results obtained, for the value m ¼ 0:3 of Poisson’s ratio, in the form
of graphs. (see Figs. 3 1 and 4.)

4.3. Case where pþ 6¼ p	

If pþ 6¼ p	, for dGðz�Þ to be zero for all zþ and z	, the terms proportional to cosðkþzÞ, cosðk	zÞ, sinðk	zÞ
in the expression (26) of dGðzþÞ, and those proportional to cosðk	zþ /Þ, cosðkþzþ /Þ, sinðkþzþ /Þ in the

1 Since �ff23 does not appear in expressions (26) and (27) for dGðz�Þ, this function is not given in Fig. 3.
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expression (27) of dGðz	Þ must be individually zero. Since we are looking for non-trivial solutions, one of
the coefficients aþ, a	, say aþ, must be non-zero. The preceding conditions then implies:

F ðpþÞ ¼ 0; GðpþÞ cos/ þ HðpþÞ sin/ ¼ 0; HðpþÞ cos/ 	 GðpþÞ sin/ ¼ 0
and thus F ðpþÞ ¼ GðpþÞ ¼ HðpþÞ ¼ 0. Now it is clear from definitions (28) and Figs. 3 and 4 that F ðpþÞ
only vanishes for some pþ 6¼ 0 whereas HðpþÞ only vanishes for pþ ¼ 0. Thus these conditions cannot be
satisfied for a single pþ. Hence:

There is no bifurcation mode with pþ 6¼ p	: ð29Þ

4.4. Case where pþ ¼ p	 � p

If pþ ¼ p	 � p, for dGðz�Þ to be zero for all zþ and z	, the terms proportional to cosðkzÞ and sinðkzÞ in
the expression of dGðzþÞ, and those proportional to cosðkzþ /Þ and sinðkzþ /Þ in the expression of dGðz	Þ
must be zero. This implies that:

Fig. 3. Functions �ffmnðpÞ.

Fig. 4. Functions ĝgmnðpÞ.
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aþF ðpÞ þ a	ðGðpÞ cos/ þ HðpÞ sin/Þ ¼ 0
a	F ðpÞ þ aþðGðpÞ cos/ þ HðpÞ sin/Þ ¼ 0
HðpÞ cos/ 	 GðpÞ sin/ ¼ 0:

8<
:

The first two equations imply that aþ=a	 ¼ a	=aþ ) aþ ¼ �a	. Since we have chosen aþ and a	 to be
positive:

aþ ¼ a	 � a 6¼ 0
F ðpÞ þ GðpÞ cos/ þ HðpÞ sin/ ¼ 0
HðpÞ cos/ 	 GðpÞ sin/ ¼ 0:

8<
: ð30Þ

Using second and third equations of (30), one gets cos/ ¼ 	F ðpÞGðpÞ=ðG2ðpÞ þ H 2ðpÞÞ, sin/ ¼
	F ðpÞHðpÞ=ðG2ðpÞ þ H 2ðpÞÞ. Use of the relation cos2 / þ sin2 / ¼ 1 then yields

F ðpÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2ðpÞ þ H 2ðpÞ

p
cos/ ¼ 	GðpÞ=F ðpÞ; sin/ ¼ 	HðpÞ=F ðpÞ:

�
ð31Þ

For a given ratio Kþ
3 =K2, first relation of (31) is an equation on p the solution of which represents the

‘‘critical reduced wavevector’’. It can be solved numerically for each value of Kþ
3 =K2 using values of the

functions �ffmn and ĝgmn given in Figs. 3 and 4. The second equation of Eq. (31) then define the corresponding
‘‘critical phase difference’’ between the configurations of the fore and rear parts of the front.
Since �ff22ð0Þ ¼ �ff33ð0Þ ¼ ĝg22ð0Þ ¼ 	ĝg33ð0Þ ¼ 1=4 and ĝg23ð0Þ ¼ 0 (see Eqs. (14), (23) and (24)), F ð0Þ ¼

Gð0Þ ¼ ð1þ ð1=ð1	 mÞÞðKþ2
3 =K22 ÞÞ=4 and Hð0Þ ¼ 0 (see Eq. (28)). Therefore, if one chooses the sign þ in

first equation of (31), one finds that p ¼ 0, / ¼ 	p is a solution. This is a trivial bifurcation mode which
merely corresponds to some translation of the crack in the x-direction. One can check numerically that this
is the only one for the choice of the sign þ in first equation of (31).
However, if one chooses the sign 	, the resolution gives another unique, non-zero solution pc and a

corresponding angle /c, which define a non-trivial bifurcation mode. Hence there is a single such mode
defined by the following equations:

F ðpcÞ ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2ðpcÞ þ H 2ðpcÞ

p
cos/c ¼ 	GðpcÞ=F ðpcÞ; sin/c ¼ 	HðpcÞ=F ðpcÞ:

�
ð32Þ

Fig. 5. Critical reduced wavelength versus the ratio of the initial SIF.
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Figs. 5 and 6 2 represent the ‘‘critical reduced wavelength’’ kc=a � 2p=pc and the critical phase difference /c
of the bifurcated mode as functions of Kþ

3 =K2, for m ¼ 0:3. Kþ
3 =K2 is assumed here to be positive; it is

obvious that if it changes sign, kc remains unchanged and /c changes sign. One sees that the critical
wavelength is larger in pure mode 3 than in pure mode 2. Also, the critical phase difference vanishes in pure
mode 2 and mode 3, that is, the bifurcated configuration becomes symmetric with respect to the middle axis
Oz of the crack in these cases (see Fig. 7(a)). It is recalled that the bifurcation mode was also found to be
symmetric for a pure mode 1 loading (Leblond et al., 1996). Moreover /c 2 ð	p=2; p=2Þ, hence the bi-
furcated mode is always closer to a symmetric configuration (/ ¼ 0, Fig. 7(a)) than to an antisymmetric one
(/ ¼ 	p, Fig. 7(b)).

Fig. 6. Critical phase difference versus the ratio of the initial SIF.

Fig. 7. Symmetric and antisymmetric modes.

2 Note that, in spite of appearances, the curve in Fig. 6 is not symmetric with respect to the vertical line Kþ
3 =K2 ¼ 1; for instance

/c ’ 7:89� for Kþ
3 =K2 ¼ 0:1 and /c ’ 7:38� for Kþ

3 =K2 ¼ 10.
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5. Study of the stability problem

The question here is as follows: if the crack front is slightly perturbed within the crack plane, will the
perturbation increase (instability) or decay (stability) in time? Equivalently, will the crack front depart
more and more from straightness or tend to again become straight? But since not only the amplitude but
also the shape of the perturbation change during propagation, the very notions of ‘‘increase’’ and ‘‘decay’’
of the perturbation are ambiguous and prone to problems of definition, so that the stability issue is
complex.
In fact, we shall deal with it only in a special case for which the discussion becomes very easy and in line

with previous ones of Gao and Rice cited above. This case corresponds to wavy perturbations with
pþ ¼ p	 � p, aþ ¼ a	 � a and / given by third equation of (30). Indeed the terms proportional to sinðkzÞ
and sinðkzþ /Þ in the expressions (26) and (27) of dGðzþÞ and dGðz	Þ then vanish so that the extrema of
dGðzþÞ coincide with those of daðzþÞ, and similarly for those of dGðz	Þ and daðz	Þ. One then simply gets
stability if the maxima of dGðzþÞ and dGðz	Þ correspond to the minima of daðzþÞ and daðz	Þ, and instability
if they correspond to the maxima of daðzþÞ and daðz	Þ. This holds true whatever the propagation law
governed by the energy release rate provided that it is independent of mode combination, and in particular
for brittle fracture governed by the criterion G ¼ Gc if Gc is independent of Kþ

3 =K2.
Stability then prevails if the cofactors of cosðkzÞ and cosðkzþ /Þ in the expressions of dGðzþÞ and dGðz	Þ

are negative 3:

Stability() S � F þ G cos/ þ H sin/ < 0; tan/ ¼ H=G: ð33Þ

Now,

tan/ ¼ H=G ) ðcos/; sin/Þ ¼ �ðG;HÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
) F þ G cos/ þ H sin/ ¼ F �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
:

Therefore the stability condition (33) may be written as follows:

Stability()
S � F þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
< 0 and ðcos/; sin/Þ ¼ ðG;HÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2 þ H 2
p

or

S � F 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
< 0 and ðcos/; sin/Þ ¼ 	 ðG;HÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2 þ H 2
p :

8>>><
>>>:

ð34Þ

Thus we should distinguish between the cases ðcos/; sin/Þ ¼ ðG;HÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
and ðcos/; sin/Þ ¼

	ðG;HÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
:

• The more interesting case corresponds to ðcos/; sin/Þ ¼ ðG;HÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
. Then, for each ratio Kþ

3 =K2,
using the values of the functions �ffmn and ĝgmn given in Figs. 3 and 4, one can check that S is positive for
p < pc and negative for p > pc: for instance, for p ¼ 0, F ¼ G ¼ ð1þ ð1=ð1	 mÞÞðKþ2

3 =K22 ÞÞ=4 > 0 and
H ¼ 0 (see above) so that S ¼ F þ G > 0, and for p ! þ1, F ! 	1, G ! 0, H ! 0, so that
S � F < 0; also for p ¼ pc, S ¼ 0 by first equation of (32). Hence stability prevails for p > pc.

• In the less interesting case where ðcos/; sin/Þ ¼ 	ðG;HÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
, S is negative for all ratios Kþ

3 =K2
and values of p; for instance, for p ¼ 0, S ¼ F 	 G ¼ 0, for p ! þ1, S � F < 0, and for p ¼ pc,
S ¼ 	2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
< 0 by first equation of (32). Thus stability always prevails.

3 In these equations and the sequel, indications of dependence of functions F, G, H and S upon p are left out for the sake of

simplicity.
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Now consider an unstable configuration, having thus p < pc and ðcos/; sin/Þ ¼ ðG;HÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
.

Then k=a � 2p=p > kc=a � 2p=pc > 4:5 (see Fig. 5)) p < 1:4) 	ĝg33 > 0 (see Fig. 4)) G > 0 (see second
equation of (28) and Fig. 4) ) cos/ > 0) / 2 ð	p=2; p=2Þ. On the other hand, consider a (stable)
configuration having also p < pc but ðcos/; sin/Þ ¼ 	ðG;HÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
. Then, by the same reasoning,

cos/ < 0 ) / 2 ½	p;	p=2� [ ðp=2; pÞ. Thus, among configurations having p < pc, unstable ones are
characterized by the fact that they have / 2 ð	p=2; p=2Þ. Since configurations having p > pc are stable,
unstable configurations are completely characterized, among all possible ones, by the fact that they have both
p < pc and / 2 ð	p=2; p=2Þ; that is, their wavelength is larger than the critical one (k > kc) and they are
closer to a symmetric configuration (/ ¼ 0, Fig. 7(a)) than to an antisymmetric one (/ ¼ 	p, Fig. 7(b)). In
more discursive terms:

• If the configuration of the front is closer to a symmetric one than to an antisymmetric one, stability pre-
vails for wavelengths smaller than the critical value and instability for wavelengths greater than it. This find-
ing is similar to those of Leblond et al. (1996) in pure mode 1, Gao and Rice (1986) and Gao (1988) for
half-plane and penny-shaped cracks in mode 1 and 2þ 3, and Lazarus and Leblond (1998) for interface
half-plane cracks in mode 1þ 2þ 3.

• If the configuration of the front is closer to an antisymmetric one than to a symmetric one, stability pre-
vails for all wavelengths.

Two final remarks are in order. First, what was considered above was (just like in previous works of Gao
and Rice cited above) the question of stability versus perturbations of fixed, prescribed wavelength. One
may also raise the question of stability versus arbitrary perturbations. In this respect, the straight config-
uration of the front is inherently unstable, since whatever the crack width, any perturbation having
pþ ¼ p	, aþ ¼ a	, ðcos/; sin/Þ ¼ ðG;HÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ H 2

p
and k > kc is bound to develop in time, as discussed

above.
Second, in the case of pure mode 1, for the same geometrical configuration, Leblond et al. (1996) have

studied the stability problem without any restrictions on a� and /, thus in the absence of coincidence of the
extrema of daðz�Þ and dGðz�Þ. It is probably possible to extend their approach to mixed mode 2þ 3. But
the study is then much more involved, and furthermore feasible only for fatigue or subcritical propagation
laws but not for brittle fracture. These were the two reasons for considering only a simple special case here,
leaving the extension of Leblond et al. (1996)’s study to mode 2þ 3 for future work.

6. Conclusions and perspectives

It has been shown that the only non-trivial bifurcated mode has the same amplitude and wavelength kc
on both parts of the front. However, for mixed mode 2þ 3 loading conditions, there is a ‘‘phase difference’’
/c between the configurations of the two parts of the front depending upon the ratio of the initial mode 2
and 3 SIF. In contrast, in pure mode 2 or 3, the bifurcated mode is symmetric with respect to the central
axis Oz of the crack.
The stability problem of the rectilinear configuration of the crack front has been studied only for some

simple, special wavy perturbations for which the extrema of the perturbation and the energy release rate
coincide. It has been shown that instability prevails for wavelengths larger than the critical one kc if the
configuration of the front is close to a symmetric one and stability in the other cases, in particular if the
configuration of the front is close to an antisymmetric one.
The wavy bifurcated configuration of the front may recall, although the problem is not of same nature,

the telephone cord blisters appearing in thin films, observed for instance by Gille and Rau (1984) or
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Thouless (1993). But the fore and rear parts of the front of the blister are in an antisymmetric mode and
cannot therefore correspond to our bifurcated mode or instability domain.
This work is liable to extensions along three lines:
(1) The first one would be to discuss stability versus wavy perturbations of fixed wavelength without

any restrictive condition ensuring coincidence of their extrema and those of the energy release rate. This
seems feasible through extension of the work of Leblond et al. (1996) pertaining to the same geomet-
ric configuration but pure mode 1 conditions, to general loading conditions. However, this implies drop-
ping the brittle-type criterion G ¼ Gc and adopting some subcritical growth or fatigue propagation law
instead.
(2) The second one would be to consider the more general stability problem against arbitrary pertur-

bations. The purpose here would be to study the evolution of the crack front toward ‘‘smoothness’’, or
contrarily ‘‘disorder’’. This could be achieved by taking the Fourier transform of the perturbation so as to
reduce the problem to the study of the evolution of sinusoidal perturbations, following the line just sket-
ched. The previous study suggests that Fourier components of wavelength longer than kc will grow and the
other ones decrease; that is, perturbations of short wavelength will disappear and only those of long
wavelength will develop. But it is difficult to say a priori if the resulting crack front will become more
‘‘smooth’’ or more ‘‘disordered’’. Clearly, these ambiguous notions need to be given an accurate mathe-
matical definition before any discussion is possible.
(3) The third one is related to non-linear effects disregarded in the first-order perturbation analysis. More

specifically, the following problem arises. The critical wavelength evidenced here is proportional to the
width of the crack. Thus, let us consider a wavy perturbation of the crack front of wavelength larger than
the critical one. Then the amplitude of the oscillations will grow, but the width of the crack and therefore
the critical wavelength will do just the same. Therefore the wavelength of the perturbation will become
smaller than the critical one, and stability again prevail, after a certain distance of propagation. But if this
distance is too large, the first-order perturbation method used in this paper may become invalid and non-
linear effects important. It is improbable that this topic can be addressed analytically, but it may be handled
using numerical methods (see for instance, Bower and Ortiz (1990) and Lazarus (1999)).
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Abstract

For any plane crack in an infinite isotropic elastic body subjected to some constant loading, Bueckner–Rice’s weight

function theory gives the variation of the stress intensity factors due to a small coplanar perturbation of the crack front.

This variation involves the initial SIF, some geometry independent quantities and an integral extended over the front,

the ‘‘fundamental kernel’’ of which is linked to the weight functions and thus depends on the geometry considered. The

aim of this paper is to determine this fundamental kernel for the tunnel-crack. The component of this kernel linked to

purely tensile loadings has been obtained by Leblond et al. [Int. J. Solids Struct. 33 (1996) 1995]; hence only shear

loadings are considered here. The method consists in applying Bueckner–Rice’s formula to some point-force loadings

and special perturbations of the crack front which preserve the crack shape while modifying its size and orientation.

This procedure yields integrodifferential equations on the components of the fundamental kernel. A Fourier transform

in the direction of the crack front then yields ordinary differential equations, that are solved numerically prior to final

Fourier inversion.

� 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Tunnel-crack; Shear loading; Mode 2; Mode 3; Crack front; In-plane perturbation; Fundamental kernel; Bueckner–Rice

theory; Weight functions; Integrodifferential equations; Fourier transform

1. Introduction

Consider a plane crack embedded in an infinite isotropic elastic solid subjected to some arbitrary,
constant loading. Eq. (1) of Part I gives the variation of the SIF resulting from any small, in-plane per-
turbation of the crack front. This equation notably involves an integral extended over the front. As will be
detailed below, the ‘‘fundamental kernel’’ Z in this integral is linked to the weight functions of the crack, i.e.
to the SIF induced on the crack front by unit point forces exerted on the crack lips, in the limit when the
points of application of these forces get infinitely close to the crack front. Therefore, it depends upon the
entire geometry of the crack. It can be deduced for instance from the works of Bueckner (1987) or Meade
and Keer (1984) on weight functions for a half-plane crack, from those of Kassir and Sih (1975), Tada et al.
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(1973) and Stallybrass (1981) for a circular connection and from that of Bueckner (1987) for a penny-
shaped crack. This has been done by Rice (1985) and Gao and Rice (1986) for a half-plane crack, by Gao
and Rice (1987a) for a circular connection and by Gao and Rice (1987b) and Gao (1988) for a penny-
shaped crack. The weight functions and the fundamental kernel are also known for an interface half-plane
crack (Lazarus and Leblond, 1998). For the tunnel-crack, the component Z11 linked to tensile loadings has
been derived by Leblond et al. (1996). The aim of Part II of this work is to derive the other components Zmn,
m; n ¼ 2; 3 linked to shear loadings. 1
The method used is based on both works of Leblond et al. (1996) and Lazarus and Leblond (1998). It is

of ‘‘special’’ rather than ‘‘general’’ nature in the terminology employed by Bueckner (1987). This means
that it avoids the calculation of the entire solution of the elasticity problems implied, but concentrates
instead on the sole feature of interest, namely the distribution of the SIF along the crack front. Considering
the complexity of the equations obtained even with such a ‘‘reduction’’, one may reasonably conjecture that
any ‘‘general’’ method of solution would be intractable.
The principle of our method is to apply Eq. (1) of Part I to some special loadings and perturbations of

the front. The loadings considered consist of point forces applied close to the crack front, so that the SIF
prior to the perturbation are just components of the fundamental kernel Z. The perturbations envisaged
consist of a small translation of the rear part of the front and a small rotation of both parts about an axis
normal to the crack plane. Since the shape of the crack is preserved in these transformations, the new SIF
are still connected to Z. One thus obtains integrodifferential equations on the components of Z which can
be solved through Fourier transform along the direction of the crack front.
The paper is organized as follows. Necessary elements from Part I are recalled in Section 2 for com-

pleteness. The integrodifferential equations on the components of Z are presented in Section 3. The Fourier
transform of these equations in the direction of the crack front yields second order ordinary differential
equations, duly completed by suitable ‘‘initial’’ conditions. This complete system of equations is presented
in Section 4, and the necessary subsequent Fourier inversion is sketched in Section 5. As could be forecast
in view of the complexity of the problem, this system does not have any simple analytical solution and must
be solved numerically. The numerical procedure and results are presented in the final Section 6.

2. Preliminaries

2.1. Elements of Part I

For ease of reference, indispensable elements of Part I are briefly recalled here.
For the tunnel-crack of width 2a, the fundamental kernel Z, which depends a priori on three parameters,

a, z, z0, can be expressed in terms of two operators f and g depending only on one parameter through the
following relations:

Zða; zþ; z0þÞ ¼ Zða; z�; z0�Þ � fððz0 � zÞ=aÞ
ðz0 � zÞ2

ð1Þ

Zða; zþ; z0�Þ ¼ Zða; z�; z0þÞ � gððz0 � zÞ=aÞ
a2

ð2Þ

Moreover, the following relations hold:

1 As will be seen, all other remaining components are zero.
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4.2. Sélection de publications/Selected publications 93



f12 ¼ f21 ¼ f13 ¼ f31 ¼ g12 ¼ g21 ¼ g13 ¼ g31 � 0 ð3Þ

f32 ¼ �ð1� mÞf23; g32 ¼ �ð1� mÞg23 ð4Þ

Hence, the determination of the fundamental kernel is reduced to that of eight scalar functions of one
variable: f11, f22, f33, f23, g11, g22, g33, g23.
The functions f11 and g11 pertaining to mode 1 loadings have been calculated by Leblond et al. (1996).

The aim of this work is to determine the six other functions, pertaining to shear mode 2þ 3 loadings.
Among them, f22, f33, g22, g33 are even and f23, g23 odd functions.
Our starting point is Eq. (1) of Part I, which takes the form (10) and (11) for dK2 and dK3 in the case of a

tunnel-crack. In a compact form more suitable here, these equations read:

dKmðzþÞ ¼ ½dKmðzþÞ	daðz0
Þ�daðzþÞ þ NmnKnðzþÞ
dda
dz

ðzþÞ þ PV
Z þ1

�1
fmn

z0 � z
a

� �
Knðz0þÞ

daðz0þÞ � daðzþÞ
ðz0 � zÞ2

dz0

þ
Z þ1

�1
gmn

z0 � z
a

� �
Knðz0�Þ

daðz0�Þ � daðzþÞ
a2

dz0; m; n ¼ 2; 3 ð5Þ

where Einstein’s implicit convention is used for the index n and

N23 ¼ � 2

2� m
; N32 ¼

2ð1� mÞ
2� m

ð6Þ

m denoting Poisson’s ratio and other components of N being zero. The values of the dKmðz�Þ for a point
M�ðz�Þ belonging to the line ðx ¼ �aÞ are given by the same expression with the obvious substitutions
zþ ! z�, z0
 ! z0
.

2.2. Relations between functions fmn, gmn and crack-face weight functions

Let kmiða; z
; x0; z0Þ (m ¼ 1; 2; 3, i ¼ x; y; z) denote the mth SIF generated at the point z
 of the front of a
tunnel-crack of width 2a by unit point forces 
~eei exerted on the points ðx0; 0
; z0Þ of the crack faces. Leblond
et al. (1999) have shown that the fundamental kernel Z is linked to these crack-face weight functions by the
following formula:

Zmnða; z
; z0

Þ ¼ Dniðz0


Þkmiða; z
; z0

Þ ð7Þ

where Einstein’s implicit summation convention is employed for the index i. In this equation,

kmiða; z
; z0
þ Þ � lim

x0!a

kmiða; z
; x0; z0Þffiffiffiffiffiffiffiffiffiffiffiffi
a� x0

p ; kmiða; z
; z0
�Þ � lim

x0!�a

kmiða; z
; x0; z0Þffiffiffiffiffiffiffiffiffiffiffiffi
aþ x0

p ð8Þ

and the coefficients Dniðz0

Þ depend on the orientation of the local set of axes chosen to define the SIF (see

Leblond et al., 1999). One verifies that for the choice made in Part I (set of axes ðx; y; zÞ for the line ðx ¼ aÞ
and set of axes ð�x;�y; zÞ for the line ðx ¼ �aÞ),

D1yðz0
þÞ ¼ D2xðz0

þÞ ¼ D3zðz0
þ Þ ¼

ffiffiffiffiffiffi
2p

p

4
;

D1yðz0
�Þ ¼ D2xðz0

�Þ ¼ �D3zðz0
� Þ ¼

ffiffiffiffiffiffi
2p

p

4
;

ð9Þ

other components being zero.
Combination of Eqs. (1), (2), (7) and (9) then yields the following formulae relating the components of f

and g and the crack-face weight functions:
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4ffiffiffiffiffiffi
2p

p f11ðz=aÞ ¼ z2k1yða; zþ; 0þÞ ¼ z2k1yða; z�; 0�Þ

4ffiffiffiffiffiffi
2p

p f22ðz=aÞ ¼ z2k2xða; zþ; 0þÞ ¼ z2k2xða; z�; 0�Þ

4ffiffiffiffiffiffi
2p

p f33ðz=aÞ ¼ z2k3zða; zþ; 0þÞ ¼ �z2k3zða; z�; 0�Þ

4ffiffiffiffiffiffi
2p

p f23ðz=aÞ ¼ �z2k2zða; zþ; 0þÞ ¼ z2k2zða; z�; 0�Þ ¼
z2

1� m
k3xða; zþ; 0þÞ ¼

z2

1� m
k3xða; z�; 0�Þ

ð10Þ

and

4ffiffiffiffiffiffi
2p

p g11ðz=aÞ ¼ a2k1yða; zþ; 0�Þ ¼ a2k1yða; z�; 0þÞ

4ffiffiffiffiffiffi
2p

p g22ðz=aÞ ¼ a2k2xða; zþ; 0�Þ ¼ a2k2xða; z�; 0þÞ

4ffiffiffiffiffiffi
2p

p g33ðz=aÞ ¼ �a2k3zða; zþ; 0�Þ ¼ a2k3zða; z�; 0þÞ

4ffiffiffiffiffiffi
2p

p g23ðz=aÞ ¼ a2k2zða; zþ; 0�Þ ¼ �a2k2zða; z�; 0þÞ ¼
a2

1� m
k3xða; zþ; 0�Þ ¼

a2

1� m
k3xða; z�; 0þÞ

ð11Þ

(where parity properties of the fmn and gmn have been used).

3. Integrodifferential equations on the functions f22, f33, f23, g22, g33, g23

3.1. Overview of the method

Let us consider a tunnel-crack of width 2a, assuming a ¼ 1 without any loss of generality, subjected to a
pair of unit point forces 
~eei exerted on the crack faces. Then the SIF Kn before any perturbation of the
crack front are the weight functions kni. If now the perturbation consists of a translation of one part of the
front or a rotation of both parts, the crack shape is preserved so that the SIF after perturbation are also
linked to the weight functions. Eq. (5) then yields equations on the weight functions. Applying the forces
close to the front, one thus obtains equations on the functions kmiða; z
; z0
Þ defined by (8). By using re-
lations (10) and (11) connecting the functions kmiða; z
; z0
Þ and the operators f and g, one finally obtains six
integrodifferential equations on the six unknown functions f22, f33, f23, g22, g33, g23.
In practice, the point forces will be applied close to the point ð1; 0; 0Þ of the fore part of front. The index i

will be taken as x or z since the choice i ¼ y would yield equations on the already known functions f11 and
g11. Two motions of the crack front will be studied:

• a translatory motion of the sole rear part of the front, the variations dKm of the SIF being observed at the
point zþ of the fore part of the front (Fig. 1(a));

• an in-plane rotation, by an angle e � 1, of the fore part of the front around the point ð1; 0; 0Þ and of the
rear part of the front around the point ð�1; 0; zÞ, the variations dKm of the SIF being then observed at the
point z� of the rear part of the front (Fig. 1(b)).

3.2. Equations on the weight functions

Let us consider the unperturbed crack and suppose that some unit point forces 
~eei, i ¼ x or z are applied
at points ðx; 0
; 0Þ of the crack faces. Then the SIF before any perturbation of the crack front are given by:
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Knðz0
Þ ¼ knið1; z0
; x; 0Þ ð12Þ
Let us now consider (Fig. 1(a)) a simple translatory motion of the sole rear part of the front, defined by
daðz0þÞ � 0, daðz0�Þ � e where e denotes a small parameter. Then the new SIF are those of a tunnel-crack of
width 2a0 with a0 ¼ 1þ e=2, subjected to point forces exerted at the points ðx0; 0
; 0Þ with x0 ¼ xþ e=2 (see
Fig. 1(a)). Thus

dKmðzþÞ ¼ kmið1þ e=2; zþ; xþ e=2; 0Þ � kmið1; zþ; x; 0Þ ð13Þ

so that, by Eq. (5):

kmið1þ e=2; zþ; xþ e=2; 0Þ � kmið1; zþ; x; 0Þ ¼ e
Z þ1

�1
gmnðz0 � zÞknið1; z0�; x; 0Þdz0 ð14Þ

Next consider a rotation of the fore and rear parts of the front, defined by daðz0þÞ � ez0, daðz0�Þ � eðz� z0Þ
where e again denotes a small parameter (Fig. 1(b)). The axes adapted to the new front are ðu; y;wÞ (see Fig.
1(b)). Since

ex
! ¼ eu

! þ eew
!
; ez

! ¼ ew
! � eeu

! ð15Þ
the SIF after perturbation at point z� are kmxða0;w�; u; 0Þ þ ekmzða0;w�; u; 0Þ for i ¼ x and
kmzða0;w�; u; 0Þ � ekmxða0;w�; u; 0Þ for i ¼ z, where a0 again denotes the new half-width of the crack. It is easy
to show that

a0 ¼ 1þ z
2
e; u ¼ xþ z

2
e; w ¼ z� ð1þ xÞe ð16Þ

Hence, Eq. (5) applied at point z� yields for m ¼ 2, 3: for i ¼ x,

kmx 1
�

þ z
2

e; ½z� ð1þ xÞe	�; xþ z
2
e; 0

�
� kmxð1; z�; x; 0Þ þ ekmzð1; z�; x; 0Þ ¼ �eNmnknxð1; z�; x; 0Þ

þ ePV
Z þ1

�1
fmnðz0 � zÞknxð1; z0�; x; 0Þ

dz0

z� z0
þ e

Z þ1

�1
gmnðz0 � zÞknxð1; z0þ; x; 0Þz0 dz0 ð17Þ

Fig. 1. Special motions of the crack front.
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and for i ¼ z:

kmz 1
�

þ z
2
e; ½z� ð1þ xÞe	�; xþ z

2
e; 0

�
� kmzð1; z�; x; 0Þ � ekmxð1; z�; x; 0Þ ¼ �eNmnknzð1; z�; x; 0Þ

þ ePV
Z þ1

�1
fmnðz0 � zÞknzð1; z0�; x; 0Þ

dz0

z� z0
þ e

Z þ1

�1
gmnðz0 � zÞknzð1; z0þ; x; 0Þz0 dz0 ð18Þ

3.3. Equations on the functions kmiða; z
; z0

 Þ, m ¼ 2; 3, i ¼ x; z

These equations are obtained by dividing Eqs. (14), (17), (18) by
ffiffiffiffiffiffiffiffiffiffiffi
1� x

p
and then taking the limit x ! 1,

using the definition (8) of the kmiða; z
; z0

Þ.

For m ¼ 2, 3 and i ¼ x, z, one obtains:

lim
x!1

Z þ1

�1
gmnðz0 � zÞ knið1; z

0�; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p dz0 ¼
Z þ1

�1
gmnðz0 � zÞknið1; z0�; 0þÞdz0 ð19Þ

lim
x!1
PV

Z þ1

�1
fmnðz0 � zÞ knið1; z

0�; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p dz0

z� z0
¼ PV

Z þ1

�1
fmnðz0 � zÞknið1; z0�; 0þÞ

dz0

z� z0
ð20Þ

These equations mean that the symbols limx!1 and (PV)
Rþ1
�1 simply commute. This is because when x ! 1,

the points ðx; 0
; 0Þ of application of the forces do not approach the point of observationM�ðz0�Þ of the SIF
knið1; z0�; x; 0Þ so that these SIF remain bounded for all z0.
However, when x ! 1, the points ðx; 0
; 0Þ of application of the forces do approach the point of ob-

servation Mþðz0þÞ of the SIF knið1; z0þ; x; 0Þ for the special value z0 ¼ 0. Thinks then become more intricate.
It is thus shown in Appendix A that

lim
x!1

Z þ1

�1
gm2ðz0 � zÞ k2xð1; z

0þ; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p z0 dz0 ¼ PV
Z þ1

�1
gm2ðz0 � zÞk2xð1; z0þ; 0þÞz0 dz0; ð21Þ

a similar result holding with the substitutions gm2 ! gm3, k2x ! k3z; also,

lim
x!1

Z þ1

�1
gm2ðz0 � zÞ k2zð1; z

0þ; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p z0 dz0 ¼ PV
Z þ1

�1
gm2ðz0 � zÞk2zð1; z0þ; 0þÞz0 dz0 þ

4ffiffiffiffiffiffi
2p

p m
2� m

gm2ð�zÞ;

ð22Þ
and similarly with the substitutions gm2 ! gm3, k2z ! k3x.
Combination of Eqs. (14), (17), (18) and (19)–(22) then yields the following equations on the functions

kmiða; z
; z0

 Þ, for m ¼ 2; 3:

kmið1þ e=2; zþ; 0þÞ � kmið1; zþ; 0þÞ ¼ e
Z þ1

�1
gmnðz0 � zÞknið1; z0�; 0þÞdz0 ð23Þ

for i ¼ x; z, and

kmx 1
�

þ z
2
e; ½z� 2e	�; 0þ

�
� kmxð1; z�; 0þÞ þ ekmzð1; z�; 0þÞ

¼ �eNmnknxð1; z�; 0þÞ þ e
4ffiffiffiffiffiffi
2p

p m
2� m

gm3ð�zÞ þ ePV
Z þ1

�1
fmnðz0 � zÞknxð1; z0�; 0þÞ

dz0

z� z0

þ ePV
Z þ1

�1
gmnðz0 � zÞknxð1; z0þ; 0þÞz0 dz0 ð24Þ
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kmz 1
�

þ z
2
e; ½z� 2e	�; 0þ

�
� kmzð1; z�; 0þÞ � ekmxð1; z�; 0þÞ

¼ �eNmnknzð1; z�; 0þÞ þ e
4ffiffiffiffiffiffi
2p

p m
2� m

gm2ð�zÞ þ ePV
Z þ1

�1
fmnðz0 � zÞknzð1; z0�; 0þÞ

dz0

z� z0

þ ePV
Z þ1

�1
gmnðz0 � zÞknzð1; z0þ; 0þÞz0 dz0 ð25Þ

3.4. Equations on the functions f22, f33, f23, g22, g33, g23

Using relations (10) and (11) and identifying terms of order e in Eqs. (23)–(25), one obtains the following
integrodifferential equations on the functions:

f 0
22ðzÞ ¼ �2z

Z þ1

�1
½g22ðz� z0Þg22ðz0Þ � ð1� mÞg23ðz� z0Þg23ðz0Þ	dz0 ð26Þ

f 0
33ðzÞ ¼ �2z

Z þ1

�1
½g33ðz� z0Þg33ðz0Þ � ð1� mÞg23ðz� z0Þg23ðz0Þ	dz0 ð27Þ

f 0
23ðzÞ ¼ �2z

Z þ1

�1
g23ðz� z0Þ g22ð þ g33Þðz0Þdz0 ð28Þ

1

��
þ z2

4

�
g22ðzÞ

	0
þ 2ð1� mÞ

2� m
g23ðzÞ ¼ ð1� mÞ

Z þ1

�1
g23ðz� z0Þ f23ðz

0Þ
z0

dz0

� PV
Z þ1

�1
g22ðz� z0Þ f22ðz

0Þ
z0

dz0 ð29Þ

1

��
þ z2

4

�
g33ðzÞ

	0
þ 2ð1� mÞ

2� m
g23ðzÞ ¼ ð1� mÞ

Z þ1

�1
g23ðz� z0Þ f23ðz

0Þ
z0

dz0

� PV
Z þ1

�1
g33ðz� z0Þ f33ðz

0Þ
z0

dz0 ð30Þ

1

��
þ z2

4

�
g23ðzÞ

	0
� 1

2� m
ðg22 þ g33ÞðzÞ ¼ �

Z þ1

�1
g22ð þ g33Þðz� z0Þ f23ðz

0Þ
2z0

dz0

� PV
Z þ1

�1
g23ðz� z0Þ ðf22 þ f33Þðz0Þ

2z0
dz0 ð31Þ

where use has been made of relations (6) and parity properties of the fmn and gmn (see Section 2.1).

4. Differential equations and initial conditions on the functions bFF22, bFF33, bFF23, ĝg22, ĝg33, ĝg23

The definition adopted for the Fourier transform ûuðpÞ of some function uðzÞ is the same as in Part I:

ûuðpÞ �
Z þ1

�1
uðzÞeipz dz ð32Þ
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Note that since f22, f33, g22, g33 are even and f23, g23 odd, f̂f22, f̂f33, ĝg22, ĝg33 are even and real, and f̂f23, ĝg23 odd
and purely imaginary.

4.1. Differential equations

Taking the Fourier transform of Eqs. (26)–(31) is elementary except for terms of the form

ðPVÞ
Z þ1

�1
gmnðz� z0Þ frsðz

0Þ
z0

dz0;

which are envisaged in Appendix B. The resulting equations read as follows:

bFF 0
22 ¼ �2

p½ĝg
2
22 � ð1� mÞĝg223	

0 ð33Þ

bFF 0
33 ¼ �2

p½ĝg
2
33 � ð1� mÞĝg223	

0 ð34Þ

bFF 0
23 ¼ �2

p½ĝg23ðĝg22 þ ĝg33Þ	
0 ð35Þ

ĝg22 �
ĝg0022
4

¼ 1
p½bFF22ĝg22 � ð1� mÞbFF23ĝg23	 ð36Þ

ĝg33 �
ĝg0033
4

¼ 1
p½bFF33ĝg33 � ð1� mÞbFF23ĝg23	 ð37Þ

ĝg23 �
ĝg0023
4

¼ 1
p

bFF22 þ bFF33
2

ĝg23

"
þ bFF23 ĝg22 þ ĝg33

2

#
ð38Þ

In these expressions, the functions bFFmn are the definite integrals of the functions f̂fmn defined by

bFFmnðpÞ �
Z p

0

f̂fmnðqÞdqþ
0; ðm; nÞ ¼ ð2; 2Þ; ð3; 3Þ
i 2�m
2ð1�mÞ ; ðm; nÞ ¼ ð2; 3Þ



ð39Þ

Note that since f̂f22, f̂f33 are even and f̂f23 odd, bFF22, bFF33 are odd and bFF23 even. Because of these parity
properties and those of the ĝgmn, it suffices to determine all functions on the interval ð0;þ1Þ. Also, note that
functions bFF22, bFF33 are real and bFF23 purely imaginary.
Eqs. (33)–(38) form a system of six non-linear differential equations (on the interval ð0;þ1Þ), on the six

unknown functions bFF22, bFF33, bFF23, ĝg22, ĝg33, ĝg23, of order 1 with respect to the bFFmn and order 2 with respect to
the ĝgmn. Hence, to (numerically) get these functions on any interval ½p0; p1	 with 0 < p0 � 1 and p1 � 1,
one may proceed in two ways:

• integrate ‘‘forwards’’, from p0 to p1; this requires knowing the values of the bFFmn, ĝgmn and ĝg
0
mn at p0, that is

near 0;
• integrate ‘‘backwards’’, from p1 to p0; the values of the bFFmn, ĝgmn and ĝg0mn are then needed at p1, that is
near þ1.

The next sections are therefore devoted to the necessary asymptotic study of the functions near 0 and
þ1.
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4.2. Values of bFF22ð0Þ, bFF33ð0Þ, bFF23ð0Þ, ĝg22ð0Þ, ĝg33ð0Þ, ĝg23ð0Þ
From the definition (39) of the bFFmn, it is clear that:

bFF22ð0Þ ¼ bFF33ð0Þ ¼ 0; bFF23ð0Þ ¼ i 2� m
2ð1� mÞ ð40Þ

Moreover, values of ĝg22ð0Þ, ĝg33ð0Þ, ĝg23ð0Þ are given by relations (14) of Part I, recalled here for the sake of
completeness:

ĝg22ð0Þ ¼ �ĝg33ð0Þ ¼
1

4
; ĝg23ð0Þ ¼ 0 ð41Þ

Finally, the derivatives ĝg0mnð0Þ are given by ĝg0mnð0Þ ¼ i
Rþ1
�1 zgmnðzÞdz. For ðm; nÞ ¼ ð2; 3Þ, this integral is

given by Eq. (18) of Part I. For ðm; nÞ ¼ ð2; 2Þ; ð3; 3Þ, it is zero since ĝgmn is even. In conclusion,

ĝg022ð0Þ ¼ ĝg033ð0Þ ¼ 0; ĝg023ð0Þ ¼ i
m

2ð1� mÞ ð42Þ

4.3. Asymptotic behavior of bFF22ðpÞ, bFF33ðpÞ, bFF23ðpÞ, ĝg22ðpÞ, ĝg33ðpÞ, ĝg23ðpÞ for p ! 0þ

As a first approximation, the values of the bFFmnðp0Þ, ĝgmnðp0Þ and ĝg0mnðp0Þmay be taken equal to those of thebFFmnð0Þ, ĝgmnð0Þ and ĝg0mnð0Þ. However, more refined values can be found by studying the asymptotic behavior
of the functions near 0. Such a study will also be needed to derive asymptotic formulae for the fmnðzÞ and
gmnðzÞ for z ! þ1, which will nicely supplement the numerical values found over some necessary finite
interval.
Let us suppose that just as the function ĝg11ðpÞ (Leblond et al., 1996), ĝg22ðpÞ, ĝg33ðpÞ, ĝg23ðpÞ admit, for

p ! 0þ, a development involving terms of the form pa lnb p, a, b 2 N. With this hypothesis, it is shown in
Appendix C that:

ĝg22ðpÞ ¼
1

4
þ 1� 2m

4
p2 ln p þOðp2Þ ð43Þ

ĝg33ðpÞ ¼ � 1
4
� 1þ m
4ð1� mÞ p

2 ln p þOðp2Þ ð44Þ

ĝg23ðpÞ ¼ i
m

2ð1� mÞ p þ i
mðm2 � 2m þ 2Þ
4ð1� mÞ2

p3 ln p þOðp3Þ ð45Þ

bFF22ðpÞ ¼ � 1� 2m
2

p ln p þOðpÞ ð46Þ

bFF33ðpÞ ¼ � 1þ m
2ð1� mÞ p ln p þOðpÞ ð47Þ

bFF23ðpÞ ¼ i 2� m
2ð1� mÞ þ i

3m2ð2� mÞ
4ð1� mÞ2

p2 ln p þOðp2Þ ð48Þ

for p ! 0þ.
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4.4. Asymptotic behavior of bFF22ðpÞ, bFF33ðpÞ, bFF23ðpÞ, ĝg22ðpÞ, ĝg33ðpÞ, ĝg23ðpÞ for p ! þ1

For p ! þ1, the set of Eqs. (33)–(38) approximately reads as follows:

bFF 0
mn ¼ 0; ĝgmn �

ĝg00mn
4

¼ 0; ðm; nÞ ¼ ð2; 2Þ; ð3; 3Þ; ð2; 3Þ ð49Þ

Eq. (49)1 strongly suggests that the bFFmnðpÞ tend toward some finite limits for p ! þ1. The determination of
these limits, noted bFF 1

mn, is expounded in Appendix D. The results are as follows:

bFF 1
22 ¼ 2� 3m

2ð2� mÞ ;
bFF 1
33 ¼ 2þ m

2ð2� mÞ ;
bFF 1
23 ¼ i 2

2� m
ð50Þ

Eq. (49)2 shows that the ĝgmnðpÞ behave like e
2p for p ! þ1. However, the increasing component e2p is
obviously physically inadmissible, so that the ĝgmnðpÞ must behave like e�2p. Unfortunately, Eq. (49)2 fails to
provide the values of the pre-exponential factors here.

5. Determination of functions f22, f33, f23, g22, g33, g23

Prior to giving numerical results, we briefly discuss here how the functions fmn and gmn can be obtained
from the bFFmn and ĝgmn.

5.1. Inverse Fourier transform

The gmn are readily deduced from the ĝgmn through Fourier inversion:

gmnðzÞ ¼
1

2p

Z þ1

�1
ĝgmnðpÞe�ipz dp ¼ 1

p

Z þ1

0

ĝgmnðpÞ cos pzdp; ðm; nÞ ¼ ð2; 2Þ; ð3; 3Þ ð51Þ

g23ðzÞ ¼
1

2p

Z þ1

�1
ĝg23ðpÞe�ipz dp ¼ � 1

p

Z þ1

0

iĝg23ðpÞ sin pzdp ð52Þ

where parity properties of the ĝgmn have been used.
Also, f̂fmn ¼ bFF 0

mn, so that:

fmnðzÞ ¼
1

2p

Z þ1

�1
bFF 0
mnðpÞe�ipz dp ¼ 1

p

Z þ1

0

bFF 0
mnðpÞ cos pzdp; ðm; nÞ ¼ ð2; 2Þ; ð3; 3Þ ð53Þ

f23ðzÞ ¼
1

2p

Z þ1

�1
bFF 0
23ðpÞe�ipz dp ¼ � 1

p

Z þ1

0

ibFF 0
23ðpÞ sin pzdp ð54Þ

where parity properties have again been used.
The functions fmn and gmn will be determined numerically from these formulae over some finite interval,

say for 06 z6 z1, z1 � 1. For values of z > z1, one may use the asymptotic expressions given below.

5.2. Asymptotic behavior of f22, f33, f23, g22, g33, g23 for z ! þ1

The derivation of these behaviors is a little complex and hence relegated to Appendix E. Only the final
results are given below:
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g22ðzÞ �
1� 2m
4z3

; g33ðzÞ � � 1þ m
4ð1� mÞz3 ; g23ðzÞ �

3mðm2 � 2m þ 2Þ
4ð1� mÞ2z4

ð55Þ

f22ðzÞ �
1� 2m
4z

; f33ðzÞ �
1þ m

4ð1� mÞz ; f23ðzÞ � � 3m2ð2� mÞ
4ð1� mÞ2z2

ð56Þ

6. Numerical procedure and results

6.1. Calculation of bFF22, bFF33, bFF23, ĝg22, ĝg33, ĝg23
As mentioned above, the set of differential equations (33)–(38) can be solved on any interval ½p0; p1	 with

0 < p0 � 1 and p1 � 1, by integrating ‘‘forwards’’, from p0 to p1, or ‘‘backwards’’, from p1 to p0. Let us
compare these two methods:

• Integrating ‘‘forwards’’ seems, a priori, more suitable since the values of the bFFmnðp0Þ, ĝgmnðp0Þ, ĝg0mnðp0Þ are
known (Eqs. (43)–(48)), in contrast to the precise asymptotic behavior of the ĝgmnðpÞ and ĝg0mnðpÞ for
p ! þ1. However, due to the behavior in e
2p of the ĝgmnðpÞ at infinity, any (inevitable) numerical error
in the initial conditions or the integration method will yield a spurious component in e2p in the ĝgmnðpÞ
that will quickly ‘‘blow up’’, thus prohibiting to reach large values of p.

• Hence the only possibility is to integrate ‘‘backwards’’. The values of the bFFmnðp1Þ, ĝgmnðp1Þ, ĝg0mnðp1Þ are
then needed, but only these of the bFFmnðp1Þ are known (Eq. (50)). To determine those of the ĝgmnðp1Þ and
ĝg0mnðp1Þ, one can use a Newton method aimed at matching the values of the ĝgmnðp0Þ and ĝg0mnðp0Þ given by
Eqs. (43)–(45). (One can show that the values obtained for the bFFmnðp0Þ necessarily then match conditions
(46)–(48).) This task is not straightforward because one must first find good ‘‘initial values’’ for the
ĝgmnðp1Þ and ĝg0mnðp1Þ in the Newton method, ensuring convergence of the algorithm. Indeed, for many
choices of these initial values, the functions diverge toward infinity when p approaches p0, due to the sin-
gularity in 1=p of the differential equations.

In practice, the Runge–Kutta method of order four is used to integrate from p1 ¼ 50 to p0 ¼ 10�6 with
an accuracy of 10�5. The solutions obtained for m ¼ 0:1 and m ¼ 0:3 are given in Figs. 2–5.

Fig. 2. Functions bFF22ðpÞ, bFF33ðpÞ.
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Fig. 3. Function bFF23ðpÞ.

Fig. 4. Functions ĝg22ðpÞ, ĝg33ðpÞ.

Fig. 5. Function ĝg23ðpÞ.
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6.2. Calculation of �ff22, �ff33

Functions �ff22, �ff33 (in addition to ĝg22, ĝg33 and ĝg23) were needed in Part I for the study of the bifurcation
and stability problems. They are defined by Eq. (23) of Part I. One can easily show that �ffmnð0Þ ¼ 1=4,
�ff 0
mn ¼ �bFFmn, ðm; nÞ ¼ ð2; 2Þ; ð3; 3Þ. Thus �ff22 and �ff33 can be obtained numerically through integration of bFF22
and bFF33. The results are given in Fig. 3 of Part I.
6.3. Calculation of operators f and g

It is recalled that the operators f and g are linked to the fundamental kernel Z by relations (1) and (2),
that their components 11 are given in Leblond et al. (1996) and that their components 12, 21, 13, 31 are
zero. The other components are obtained by using Eqs. (51)–(54) and (4). In practice, the integration in-
terval ½0;þ1Þ is replaced by the interval ½10�6; 50	, and calculations are performed for z 2 ½0; 50	. Functions
f22, f33, f23 are presented in Figs. 6 and 7 for z 2 ½0; 20	, and functions g22, g33, g23 in Figs. 8 and 9 for
z 2 ½0; 6	. Beyond these limits, the asymptotic expressions (55) and (56) are found to fit very well to the
numerical results.

Fig. 6. Functions f22ðzÞ, f33ðzÞ.

Fig. 7. Function f23ðzÞ.
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One can observe that components 23 of operators f and g, which represent the coupling effect between
modes 2 and 3, are all the smaller as Poisson’s ratio m is low. Also, it is somewhat surprising that for m ¼ 0:3,
g33ðzÞ, which is tied to the 3rd SIF at point z� of the rear part of the front when point forces 
~eez are applied
close to the point 0þ of the fore part of the front, is not maximum for z ¼ 0. Note, however, that a similar
phenomenon is known to occur for the half-plane crack: the mode 3 SIF generated by point forces 
~eez
exerted on the crack faces is not maximum at that point of the crack front located closest to the points of
application of the forces. Also, this effect can be observed to vanish for sufficiently small Poisson’s ratios.

Appendix A. Justification of formulae (21), (22)

To calculate limx!1
Rþ1
�1 gmnðz0 � zÞððknið1; z0þ; x; 0ÞÞ=ð

ffiffiffiffiffiffiffiffiffiffiffi
1� x

p
ÞÞz0 dz0, split the integration domain

ð�1;þ1Þ into ð�1;�gÞ [ ðg;þ1Þ and ½�g; g	, g being a momentarily fixed arbitrary positive number.
For z0 2 ð�1;�gÞ [ ðg;þ1Þ, ððknið1; z0þ; x; 0ÞÞ=ð

ffiffiffiffiffiffiffiffiffiffiffi
1� x

p
ÞÞ has a finite limit for x ! 1, equal to knið1; z0þ; 0þÞ

by definition, since the observation point z0þ of the SIF differs from the limit-points ðx ¼ 1; y ¼ 0
; z ¼ 0Þ of
application of the point forces. Hence

Fig. 8. Functions g22ðzÞ, g33ðzÞ.

Fig. 9. Function g23ðzÞ.
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4.2. Sélection de publications/Selected publications 105



lim
x!1

Z
ð�1;�gÞ[ðg;þ1Þ

gmnðz0 � zÞ knið1; z
0þ; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p z0 dz0 ¼
Z
ð�1;�gÞ[ðg;þ1Þ

gmnðz0 � zÞknið1; z0þ; 0þÞz0 dz0 ðA:1Þ

To evaluate the limit, for x ! 1, of the integral over ½�g; g	, let us perform a first order Taylor expansion of
the quantity gmnðz0 � zÞ around the point z0 ¼ 0:Z g

�g
gmnðz0 � zÞ knið1; z

0þ; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p z0 dz0 ¼ gmnð�zÞ
Z g

�g

knið1; z0þ; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p z0 dz0 þ
Z g

�g
Oðz0Þ knið1; z

0þ; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p z0 dz0

ðA:2Þ
The examples of the semi-infinite crack, the penny-shaped crack and the tunnel-crack in mode 1 strongly
suggest that ðknið1; z0þ; x; 0Þ=

ffiffiffiffiffiffiffiffiffiffiffi
1� x

p
Þ is bounded by Cst:z0�2 for z0 ! 0. Therefore the integrand in the second

term of the right-hand side of Eq. (A.2) is Oð1Þ, so that this equation may be rewritten as:Z g

�g
gmnðz0 � zÞ knið1; z

0þ; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p z0 dz0 ¼ gmnð�zÞ
Z g

�g

knið1; z0þ; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p z0 dz0 þOðgÞ ðA:3Þ

The integral in the right-hand side of (A.3) is zero if knið1; z0þ; x; 0Þ is even with respect to z0, that is for
ðn; iÞ ¼ ð2; xÞ; ð3; zÞ. On the other hand, if knið1; z0þ; x; 0Þ is odd, i.e. for ðn; iÞ ¼ ð2; zÞ; ð3; xÞ, one gets upon use
of the homogeneity property of knið1; z0þ; x; 0Þ and the change of variable z00 ¼ z0=ð1� xÞ:Z g

�g

knið1; z0þ; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p z0 dz0 ¼
Z g=ð1�xÞ

�g=ð1�xÞ
knið1=ð1� xÞ; z00þ ; x=ð1� xÞ; 0Þ z00 dz00

The knið1=ð1� xÞ; z00þ ; x=ð1� xÞ; 0Þ are the weight functions of the tunnel-crack of width 2=ð1� xÞ at point
z00

þ
when the forces are applied at a distance 1=ð1� xÞ � x=ð1� xÞ ¼ 1 from the fore part of the front. Since

when x ! 1, this width becomes infinity, the knið1=ð1� xÞ; z00þ ; x=ð1� xÞ; 0Þ behave as the weight functions
of a half-plane crack when the forces are applied at a distance of unity from the front. Using the well-
known expressions of these weight functions (see for instance Gao and Rice (1986)), one then gets for
ðn; iÞ ¼ ð2; zÞ; ð3; xÞ:

lim
x!1

Z g=ð1�xÞ

�g=ð1�xÞ
knið1=ð1� xÞ; z00þ ; x=ð1� xÞ; 0Þz00 dz00 ¼

ffiffiffiffiffiffi
1

2p

r
4m
2� m

It follows from these elements that (A.3) finally reads, in the limit x ! 1:

lim
x!1

Z g

�g
gmnðz0 � zÞ knið1; z

0þ; x; 0Þffiffiffiffiffiffiffiffiffiffiffi
1� x

p z0 dz0 ¼
OðgÞ if ðn; iÞ ¼ ð2; xÞ or ð3; zÞffiffiffiffi

1
2p

q
4m
2�m gmnð�zÞ þOðgÞ if ðn; iÞ ¼ ð2; zÞ or ð3; xÞ

(
ðA:4Þ

Combination of Eqs. (A.1) and (A.4), in the limit g ! 0, finally yields relations (21) and (22).

Appendix B. Calculation of some Fourier transforms

By definition, the symbol FT denoting the Fourier transform:

FT PV

Z þ1

�1
gmnðz

�
� z0Þ frsðz

0Þ
z0

dz0
	
ðpÞ ¼ lim

g!0

Z þ1

�1
eipz dz

Z
ð�1;�gÞ[ðg;þ1Þ

gmnðz� z0Þ frsðz
0Þ

z0
dz0

ðz00 ¼ z� z0Þ ¼ lim
g!0

Z þ1

�1
gmnðz00Þeipz

00
dz00:

Z
ð�1;�gÞ[ðg;þ1Þ

frsðz0Þ
z0

eipz
0
dz0

� ĝgmnðpÞPV
Z þ1

�1

frsðzÞ
z
eipz dz ðB:1Þ
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Now,

d

dp
PV

Z þ1

�1

frsðzÞ
z
eipz dz ¼

Z þ1

�1
frsðzÞieipz dz ¼ if̂frsðpÞ ) PV

Z þ1

�1

frsðzÞ
z
eipz dz

¼ i
Z p

0

f̂frsðqÞdqþ PV
Z þ1

�1

frsðzÞ
z

dz ðB:2Þ

Now, for ðr; sÞ ¼ ð2; 2Þ or ð3; 3Þ, frs is even. Eqs. (B.1) and (B.2) then yield:

FT PV

Z þ1

�1
gmnðz

�
� z0Þ frsðz

0Þ
z0

dz0
	
ðpÞ ¼ i ĝgmnðpÞ bFFrsðpÞ; ðB:3Þ

bFFrsðpÞ �
Z p

0

f̂frsðqÞdq ðB:4Þ

for ðr; sÞ ¼ ð2; 2Þ, ð3; 3Þ.
Similarly, for ðr; sÞ ¼ ð2; 3Þ, Eqs. (B.1) and (B.2) yield:

FT

Z þ1

�1
gmnðz

�
� z0Þ f23ðz

0Þ
z0

dz0
	
ðpÞ ¼ ĝgmnðpÞ i

Z p

0

f̂f23ðqÞdq
�

þ
Z þ1

�1

f23ðzÞ
z
dz
	

But
Rþ1
�1 ðf23ðzÞ=zÞdz is given by Eq. (17) of Part I. Thus,

FT

Z þ1

�1
gmnðz

�
� z0Þ f23ðz

0Þ
z0

dz0
	
ðpÞ ¼ ĝgmnðpÞ ibFF23ðpÞ�

þ 2

2� m

	
; ðB:5Þ

bFF23ðpÞ � Z p

0

f̂f23ðqÞdqþ i
2� m
2ð1� mÞ ðB:6Þ

The choice of the additive constant iðð2� mÞ=ð2ð1� mÞÞÞ in the definition of bFF23 here was made in order to
simplify the differential equations (33)–(38) as much as possible.

Appendix C. Determination of the asymptotic behavior of bFF22ðpÞ, bFF33ðpÞ, bFF23ðpÞ, ĝg22ðpÞ, ĝg33ðpÞ, ĝg23ðpÞ for

p ! 0þ

It is assumed that ĝg22ðpÞ, ĝg33ðpÞ, ĝg23ðpÞ admit, for p ! 0þ, expansions involving terms of the form pa lnb p
(a; b 2 N). By Eqs. (41) and (42), these expansions read

ĝg22ðpÞ ¼ 1=4þ a2 p2 ln
b2 p þOðp2 lnb2�1 pÞ ðC:1Þ

ĝg33ðpÞ ¼ �1=4þ a3 p2 ln
b3 p þOðp2 lnb3�1 pÞ ðC:2Þ

ĝg23ðpÞ ¼ i
m

2ð1� mÞ p þ a4 p3 ln
b4 p þOðp3 lnb4�1 pÞ ðC:3Þ

The absence of a term of the form p2 lnb p in ĝg23ðpÞ here can be checked to be compatible with the dif-
ferential equations (33)–(38).
Inserting these equations into the set of differential equations (33)–(38) and identifying principal terms,

one first gets

b2 ¼ b3 ¼ b4 ¼ 1 ðC:4Þ
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To next determine the constants a2, a3, a4, one must consider the terms proportional to p2 in the expansions
of ĝg22ðpÞ and ĝg33ðpÞ, since the derivatives of both expressions p2 ln p and p2 involve terms of the same order
p. Thus, let us write these expansions in the form

ĝg22ðpÞ ¼ 1=4þ a2 p2 ln p þ b2p2 þOðp3 lnc2 pÞ

ĝg33ðpÞ ¼ �1=4þ a3 p2 ln p þ b3p2 þOðp3 lnc3 pÞ

Eqs. (33)–(35) then yield, account being taken of (39):

bFF22ðpÞ ¼ �2a2 p ln p � 2b2

�
� a2 þ

m2

1� m

�
p þOðp2 lnc2 pÞ ðC:5Þ

bFF33ðpÞ ¼ 2a3 p ln p þ 2b3

�
� a3 �

m2

1� m

�
p þOðp2 lnc3 pÞ ðC:6Þ

bFF23ðpÞ ¼ i 2� m
2ð1� mÞ � i

3m
2ð1� mÞ ða2 þ a3Þp2 ln p þOðp2Þ ðC:7Þ

Inserting these expressions into (36)–(38), we finally get, after a long but straightforward calculation, by
identifying terms of identical order:

a2 ¼
1� 2m
4

; a3 ¼ � 1þ m
4ð1� mÞ ; a4 ¼ i

mðm2 � 2m þ 2Þ
4ð1� mÞ2

ðC:8Þ

Although the introduction of coefficients b2, b3 in the reasoning was necessary for the reason explained
above, they are found to finally cancel out in the calculation, which therefore fails to yield their values.
Eqs. (C.1)–(C.4) and (C.8) justify Eqs. (43)–(45) of the text, and Eqs. (C.5)–(C.8) justify Eqs. (46)–(48).

Appendix D. Determination of constants bFF1
22 ,

bFF1
33 ,

bFF1
23

Eqs. (B.2) and (B.4) yield, since f22 is an even function:

bFF 1
22 � lim

p!þ1
bFF22ðpÞ ¼ lim

p!þ1
2

Z þ1

0

sin pz
z

f22ðzÞdz

¼pz�u
lim

p!þ1
2

Z þ1

0

sin u
u

f22ðu=pÞdu ¼ pf22ð0Þ

It then follows from Eq. (7) of Part I that:

bFF 1
22 ¼ 2� 3m

2ð2� mÞ ðD:1Þ

A similar reasoning for bFF33 yields:
bFF 1
33 ¼ 2þ m

2ð2� mÞ ðD:2Þ

Finally, Eqs. (B.2), (B.6) and (17) of Part I yield, since f23 is odd:

bFF 1
23 � lim

p!þ1
bFF23ðpÞ ¼ � lim

p!þ1
2i

Z þ1

0

f23ðzÞ
z

cos pzdzþ i 2

2� m
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Now Riemann–Lebesgue’s theorem, applied to the function ðf23ðzÞ=zÞ (which is regular at z ¼ 0 since f23 is
odd), implies that the limit here is 0. The value of bFF 1

23 follows:

bFF 1
23 ¼ i 2

2� m
ðD:3Þ

Appendix E. Determination of the asymptotic behavior of f22ðzÞ, f23ðzÞ, f33ðzÞ, g22ðzÞ, g23ðzÞ, g33ðzÞ for

z ! þ1

These asymptotic behaviors can be deduced from those of bFF22ðpÞ, bFF33ðpÞ, bFF23ðpÞ, ĝg22ðpÞ, ĝg33ðpÞ, ĝg23ðpÞ for
p ! 0þ. Indeed, with regard to ĝg22ðpÞ for instance, repeated integration by parts of Eq. (51) yields:

g22ðzÞ ¼
1

p
ĝg22ðpÞ

sin pz
z

� 	þ1

0

� 1
p

Z þ1

0

ĝg022ðpÞ
sin pz
z
dp

¼ 1

pz
ĝg022ðpÞ

cos pz
z

� 	þ1

0

� 1

pz

Z þ1

0

ĝg0022ðpÞ
cos pz

z
dp

¼ � 1

pz2
ĝg0022ðpÞ

sin pz
z

� 	þ1

0

þ 1

pz2

Z þ1

0

ĝg00022ðpÞ
sin pz
z
dp ¼ 1

pz4

Z þ1

0

ĝg00022ðu=zÞ sin udu ðpz � uÞ

The bracketed terms here vanish because of the behavior of ĝg22 near 0
þ and þ1 (see Sections 4.2 and 4.4).

Now Eq. (43) implies that for p ! 0þ,

ĝg00022ðpÞ �
1� 2m
2p

Insertion of this result into the preceding expression yields:

g22ðzÞ �
1� 2m
4z3

for z ! þ1
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Abstract. Fatigue and brittle fracture propagation paths of arbitrary plane cracks, loaded in mode I, embedded
in an infinite isotropic elastic body, are investigated. The crack advance is supposed to be governed by the stress
intensity factor, for instance through Paris’ law in fatigue or Irwin’s criterion in brittle fracture. The method used
is based on successive iterations of the three-dimensional weight-function theory of Bueckner-Rice, that gives the
variation of the stress intensity factor along the crack front arising from some small arbitrary coplanar perturbation
of the front. Its main advantage is that only one dimensional integrals along the crack front are involved so that only
the one dimensional meshing of the crack front is needed, and not the 3D meshing of the whole body as in the finite-
element method. It is closely linked to previous works of Bower and Ortiz (1990, 1991, 1993). The differences
lie on the one hand, in the simplified numerical implementation; on the other hand, in the simplified treatment
of brittle fracture, Irwin’s criterion being regularized by Paris’ law by a procedure analogous to the ‘viscoplastic
regularization’ in plasticity; and finally in the applications studied: propagation paths of an initially elliptical,
rectangular or heart shaped crack in an homogeneous media and of a penny shape crack in an heterogeneous one.

Key words: Linear elasticity, stress intensity factor, mode I crack, tridimensional, weight function, plane/flat
crack, perturbation method, angular point, fatigue, brittle fracture, propagation path, hydraulic fracturing.

1. Introduction

Let us consider a plane crack, such as the one depicted in Figure 1, contained in plane (O, x, z)

with arbitrary contour F , embedded in an infinite isotropic elastic body. The aim of this paper
is to study the in-plane propagation path of this crack when it is subjected to mode I loading
by uniform tensile stress σ∞ at infinity in both fatigue and brittle fracture. For instance, this
model may be of practical interest for the study of hydraulic fracturing problems. In fatigue,
the crack propagation rate is supposed to be given by Paris’ law; in brittle fracture, by Irwin’s
criterion. Hence the determination of the stress intensity factor along the front for all the stages
of propagation is necessary. A classical method would be to use the finite element method but
then a three-dimensional meshing of the body at each step of propagation is necessary. This
may be very tedious if the propagation is studied over a long distance. Nevertheless, recently
Sukumar et al. (2000), Stolarska et al. (2001), Sukumar et al. (2003) by coupling the level
set method and the eXtended FEM for three-dimensional crack problems have limited the
meshing operations to that of the initial three dimensional geometry. An other possibility is to
use surface integral formulations as in Fares (1989) or Xu and Ortiz (1993). Two dimensional
meshings of the crack surfaces are then necessary. Here an alternative method is used whose
further advantage is to restrict the meshing operations to that of the one-dimensional initial
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Figure 1. Arbitrary plane tensile crack and small (magnified on the figure for the sake of visibility) inplane
perturbation of its crack front F .

crack front. It is based on the three-dimensional weight-function theory derived by Rice (1985,
1989) and first adapted for numerical purposes by Bower and Ortiz (1990).

This three-dimensional theory is the extension of the bidimensional weight-function theory
introduced by Bueckner (1970) and Rice (1972). The variation of the stress intensity factor
along the crack front arising from some small arbitrary coplanar perturbation of the front is
given by an integral along the initial front involving among other simple geometrical quantit-
ies, a function W linked to the weight-function. This variation was first derived by Rice (1985)
for the half-plane crack, then by Gao and Rice (1987a) for the circular connection and Gao
and Rice (1987b) for the penny-shaped crack. In all these papers, the weight-function of the
initial crack was known and thus function W appears in the variation of the SIF in an explicit
form. Finally Rice (1989) generalized these works to the case of any planar crack; in addition
to the variation of the SIF, he gave the variation of the function W arising from the same
coplanar perturbation, also in the form of an integral along the initial front.

In the previous mentioned papers, Gao and Rice applied the theory to small perturbations
of the crack front. Bower and Ortiz (1990) extended the method to the study of arbitrary large
perturbations of the front leading the way to the numerical resolution of some complex three-
dimensional crack problems. It consists in applying numerically the three-dimensional weight-
function theory to a succession of small perturbations arising in arbitrary large ones. As
applications, they studied several problems involving half plane cracks propagating through
heterogeneous media: fatigue crack propagating through a particle, crack trapped by an array
of particles in brittle fracture, and crack growing through a material of decreasing toughness.
Bower and Ortiz (1991) performed a more precise study of crack trapping and bridging by
tough particles based on the same method. Bower and Ortiz (1993) extended the method to
cracks loaded by non uniform remote stresses.

The aim of this paper is to study fatigue and brittle propagation paths under uniform remote
loading by using the same method as Bower and Ortiz (1990). However, the originality of
our work lies in three facets. First, the numerical implementation is different and notably
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simplified. Secondly, for brittle fracture, a formulation is proposed that gives the advance
of the crack front in explicit form once the stress intensity factor is known and so avoids
the inversion of heavily implicit systems of equations as the ones used in Bower and Ortiz
(1990, 1991, 1993). And finally, the originality lies in the applications studied: the asymptotic
behavior of the SIF near an angular point of the front, the fatigue and brittle propagation paths
of some special crack shapes (elliptical, rectangular, heart shaped ones) in an homogeneous
material, brittle fracture of a penny shaped crack in a material with heterogeneous toughness.
In homogeneous materials, it appears that in all the cases studied, the crack becomes circular
after a certain time and that it advances slightly faster in fatigue and for a slightly lower loading
in brittle fracture, than the penny-shaped one. In materials of heterogeneous toughness, the
circular crack first propagates at points where the tenacity is lower. Then either, the SIF at the
other points increases to attain themselves the threshold so that the crack front shape reaches
a stable configuration for which the SIF equals the tenacity along all the front, or there exists
some points of the front where the SIF decreases so that the tenacity is never attained and the
crack front propagates by changing continuously its shape. It appears in the examples studied,
that a stable crack front shape configuration is always reached.

2. Principle of the method

2.1. BUECKNER-RICE WEIGHT FUNCTION THEORY

Let us denote KF (M) the SIF at point M of the crack front F when the body is subjected to
uniform tensile stress σ∞ at infinity and write, to separate the contributions of the loading and
of the geometry:

KF (M) = σ∞ K̂F (M). (1)

Then, by linearity, K̂F (M) corresponds to the SIF with loading unity at infinity and hence
depends only on the geometry of the crack front F .

Let us suppose now that the crack geometry is slightly perturbed in its plane, that is that
the crack front advances, by a small distance δa(M) in the direction perpendicular to the front
F like in Figure 1. Rice (1989) has shown that to first order in δa, the SIF K̂F ′(N0) at point
N0 of the new front F ′ defined by

−−−→
M0N0 = δa(M0)�n(M0), (2)

is given by K̂F (M0) + δK̂F (M0) where

δK̂F (M0) = 1

2π
PV

∫
F

WF (M,M0)

D2(M,M0)
K̂F (M)[δa(M) − δ∗a(M)]ds(M). (3)

In this expression, s(M) is some curvilinear abscissa along the crack front, D(M,M0) is the
distance between the points M and M0, WF (M,M0) is a two-variable function linked to the
weight function of the crack F , more exactly to the SIF at the point M of F induced by unit
point forces exerted on the point M ′ of the crack lips in the direction ±�y, when M ′ approaches
M0 (see Rice, 1989 for the exact definition). WF depends only on the crack geometry F and
not on the loading. The quantity δ∗a(M) will be described further.

The function WF ′ along the new crack front F ′ can be itself updated as WF ′(N0, N1) =
WF (M0,M1) + δWF (M0,M1) where the variation of WF is given, also to first order in δa,
by:
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δWF (M0,M1)= D2(M0,M1)

2π
PV

∫
F

WF (M,M0) WF (M,M1)

D2(M,M0) D2(M,M1)
[δa(M) − δ∗∗a(M)]ds(M).

(4)

Formulae (3) and (4) are legitimate for special normal advances δ∗a(M) and δ∗∗a(M) that
preserve the shape of the front and such that δ∗a(M0) = δa(M0), δ∗∗a(M0) = δa(M0) and
δ∗∗a(M1) = δa(M1) so as to ensure the existence of the integrals in Principal Value (PV).
It can easily be shown, that one can always define a unique transformation, combination of
translation, rotation and scaling that verifies all these conditions. It yields:

δ∗a(M) = δa(M0)
−→
n (M0).

−→
n (M) (5)

and

δ∗∗a(M) = 1

2

(
(z′ − z)zn + (z′ − z)zn

)
(6)

with,

z′ = z′
0(z1 − z) + z′

1(z − z0)

z1 − z0
, (7)

where z, z0, z1, are the affixes1 of points M, M0, M1; z′
0, z′

1, the affixes of points N0, N1; zn

the affix of the normal vector −→
n (M), z the complex conjugate of z.

Suppose now that the SIF K̂F and the function WF are known for a given front F . Since
the quantities in the right-hand side of Equations (3) and (4) concern only the front F , this
theory allows to calculate the SIF K̂F ′ and function WF ′ along any crack front F ′ close to F .

Numerically, one can repeat this procedure to any succession of crack fronts very close to
each other. This can be applied to:
− the determination of the SIF and the function W along some arbitrary crack front (stage

denoted step I in the sequel), starting from some crack shape for which they are known,
− the determination of the propagation path of any arbitrary crack (stage denoted step II in

the sequel), the initial crack being that corresponding to the end of step I.
Instead of working on the couple of functions K̂F and WF , Bower and Ortiz (1990, 1991,

1993) have worked with the couple of functions K̂F and WF /D. The expression replacing
Equation (4), giving δ(WF /D) is however a little more complicated since, in addition to the
PV integral term, a supplementary term due to the normal advance δ∗∗a(M) then appears.
This term is zero in Equation (4) since WF is homogeneous of degree 0, hence is not changed
by any scaling, that is by the composition of translation, rotation, scaling defining δ∗∗a(M).
But this term is not zero for δ(WF /D) since D homogeneous of degree 2 is changed by any
scaling hence for the normal advance δ∗∗a(M).

2.2. STEP I: DETERMINATION OF THE SIF K̂F AND OF THE FUNCTION WF ALONG

SOME ARBITRARY CRACK FRONT F

Consider any crack front F subjected to uniform remote loading σ∞. To determine the SIF
and the function W along this front, one may proceed as follows:
1. Take as starting point a crack front C for which functions K̂C(M) and WC(M,M0) are

known and as close as possible to the front F studied.
2. Construct a succession of intermediate cracks very close to each other Fk, k = 0 . . . n,

such that F0 = C and Fn = F , between C and F .
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3. Apply Equations (3) and (4) iteratively between Fk and Fk+1, for k = 0 to n − 1 to obtain
the SIF K̂Fk

and the function WFk
for k = 1 to n hence finally along the desired front

Fn = F .
In practice, the SIF K̂ and the function W are known in a simple form only for some simple
geometries: the half-plane crack (see for instance, Meade and Keer, 1984), the circular internal
(see for instance, Tada et al., 1973) and external cracks (see for instance, Stallybrass, 1981)
and the tunnel-crack (see Leblond et al., 1996). In the examples studied by Bower and Ortiz
(1990, 1991, 1993) the half plane crack has been taken as starting point. The examples studied
in the present paper can all be derived from circular internal ones C for which K̂C(M) =
2
√

R/π and WC(M,M0) = 1 where R denotes the radius of the crack (see for instance, Rice,
1989). Examples derived from the tunnel-crack are left for further work.

2.3. STEP II: DETERMINATION OF THE PROPAGATION PATH OF ANY ARBITRARY CRACK

One can now study crack propagation from that configuration corresponding to the end of
step I. For numerical purposes, the crack advance is described stepwise each time that the
maximum of the crack advance equal a given small quantity δamax. Let us consider the crack
front in the position F and denote δaF (M) the normal advance of the point M corresponding
to one such step.

Suppose that the crack advance is governed by the SIF hence that δaF (M) can be expressed
as a function of the SIF along the front by a law of the form:

δaF (M) = δamaxLM

(
K̂F (N),N ∈ F

)
with LM

(
K̂F (N),N ∈ F

) ≤ 1 (8)

Then, once the SIF K̂F and function WF are known for a given front F , one can determine
the propagation path of this crack by
1. applying law (8) to determine the displacement δaF (M) of the front F and update its

position,
2. using equations (3) and (4) to update the SIF K̂F and function WF ,
3. repeat, as many times as required, the two preceding operations to the new fronts obtained.

Examples of propagation laws (8) are given in Sections 2.4 for fatigue and 2.5 for brittle
fracture.

2.4. PROPAGATION LAW IN FATIGUE

The crack is now subjected to some uniform and constant cyclic loading of amplitude �σ∞.
Suppose that the crack propagation rate da(M)

dnc
, nc denoting the number of loading cycles, at

the point M of the front F is given by Paris’ law, that is

da(M)

dnc

= C(M) [�K(M)]β(M) , (9)

where �K(M) is the amplitude of the SIF at the point M. By Equation (1),

�K(M) = �σ∞K̂(M). (10)

C(M) and β(M) are material constants that depend on point M if the fracture properties of
the material are heterogenous.

Now, consider the front at a given position F and suppose that during the advance δaF (M)

defined in the previous Section 2.3, K̂(M) can be considered as constant equal to K̂F (M).
Then using (10) and integrating equation (9), one gets:
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δaF (M) = nc C(M)�σβ(M)
∞ K̂F (M)β(M), (11)

where nc is the number of cycles necessary to have max
M∈F

δaF (M) = δamax; by (11), this

number is given by:

nc = δamax

max
M∈F

(
C(M)�σβ(M)

∞ K̂F (M)β(M)
) . (12)

Notice, that since C(M)�σ
β(M)∞ K̂F (M)β(M) depends on the front position F , nc may change

during propagation.
By introducing equation (12) into (11), it is easy to show that (11) can be written in the

generic form (8) with:

LM

(
K̂F (N),N ∈ F

) = C(M)�σ
β(M)
∞ K̂F (M)β(M)

max
N∈F

(
C(N)�σβ(N)

∞ K̂F (N)β(N)
) . (13)

If C(M) = Cst. ≡ C and β(M) = Cst. ≡ β, this simplifies into:

LM

(
K̂F (N),N ∈ F

) =
 K̂F (M)

max
N∈F

K̂F (N)

β

. (14)

2.5. PROPAGATION LAW IN BRITTLE FRACTURE

In brittle fracture, it is assumed that the propagation law is given by Irwin’s criterion:{
δaF (M) = 0 if KF (M) < Kc(M)

δaF (M) ≥ 0 if KF (M) = Kc(M),
(15)

where Kc(M) is the fracture toughness at point M.
The crack is supposed to advance quasi-statically under remote loading σ∞ varying in order

to have at each moment maxM∈F
KF (M)

Kc(M)
= 1. This condition ensures that KF (M) ≤ Kc(M)

for all points M of the front and that there is always a part of the front that propagates. By
using Equation (1), this implies that the loading verifies:

σ∞ = 1

max
M∈F

K̂F (M)

Kc(M)

, (16)

hence, changes during propagation. Increasing σ∞ means that one should increase the loading
in order that the crack advances, in other word that the crack advances in a stable manner.
Decreasing σ∞ means that the crack advances in an unstable manner.

It is easy to show that the criterion (15) is satisfied by:

δaF (M) = δτ

(
KF (M)

Kc(M)

)β

, β → ∞, (17)
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where δτ denotes the kinematical time increment corresponding to the advance δaF (M).

Indeed, if KF (M) < Kc(M) then limβ→∞
(

KF (M)

Kc(M)

)β = 0 that is δaF (M) = 0, if KF (M) =
Kc(M) then

(
KF (M)

Kc(M)

)β = 1, that is δaF (M) = δτ ≥ 0 is undefined, and if KF (M) > Kc(M)

then δaF (M) = +∞ hence this case is not admissible. Same trick is used for writing per-
fect plastic constitutive laws as viscoplastic ones for FEM applications. An other possible
viscoplastic-type regularization was used by Gao and Rice (1989), but the advantage of ours
is that, as will be more detailed below, fatigue and brittle fracture can both be treated by a
Paris-type law.

Choosing the time increment δτ to have maxM∈F δaF (M) = δamax implies by Equa-
tion (17):

δτ = δamax

max
M∈F

(
KF (M)

Kc(M)

)β
,

so that:

δaF (M) = δamax

 K̂F (M)

Kc(M) max
N∈F

K̂F (N)

Kc(N)


β

, β → ∞. (18)

Equation (18) can be identified to the law (8) by taking:

LM

(
K̂F (N),N ∈ F

) =

 K̂F (M)

Kc(M) max
N∈F

K̂F (N)

Kc(N)


β

, β → ∞. (19)

If the toughness Kc(M) is independent of point M this simplifies into:

LM

(
K̂F (N),N ∈ F

) =
 K̂F (M)

max
N∈F

K̂F (N)

β

, β → ∞. (20)

One advantage of this formulation is that in fact, Irwin’ criterion can be formally seen as a
Paris-type law. Hence the fatigue law (9) and the brittle fracture law (15) can be described by
the same explicit law:

δaF (M) = δamax

[
f (M)K̂F (M)

]α(M)

max
M∈F

([
f (M)K̂F (M)

]α(M)
) (21)

with α(M) = β(M) and f (M) = C(M)1/β(M)�σ∞ in fatigue and, α(M) = β � 1 and
f (M) = 1/Kc(M) in brittle fracture.

Bower and Ortiz (1990, 1991, 1993) proposed an other way to satisfy Irwin’s criterion
(15). They search by an iterative procedure the ‘active’ zone of the crack front where the crack
advance is not zero. On each postulated ‘active’ zone, the crack advance δa(M) is obtained by
inversion of a linear equations system derived from the condition K(M)+δK(M) = Kc(M)+
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Figure 2. Intermediate cracks between the reference front C and the final one F .

δKc(M). This makes their procedure quiet heavy. In contrary, our formulation presents the
advantage to give explicitly δaF (M) along the front once the SIF are known, without any
iteration nor linear system inversion.

3. Numerical Procedure

3.1. MESHING OPERATIONS AND DETERMINATION OF THE NORMAL ADVANCE δa(M)

3.1.1. During step I
The initial crack front F is meshed with N points Pi , i = 0 . . . N − 1. The N nodes P 0

i of the
reference circle C of center O are constructed through intersection of C with the lines (OPi).
The segments [P 0

i Pi] are then cut into n subsegments to create n − 1 intermediate meshes
P k

i,i=0...N−1 of the crack fronts Fk, k = 1 . . . n − 1.

As the vector
−−−−→
P k

i P k+1
i is not in general, normal to the front Fk (see Figure 2), the equa-

tions (3) and (4) don’t give the SIF and function W at points P k+1
i,i=0...N−1 as a function of

their values on nodes P k
j,j=0...N−1 of Fk. Therefore a second set of meshes Mk

i,i=0...N−1 of Fk,
k = 0 . . . n, where the SIF and function W are computed, is constructed by recurrence, by
normal projection of the nodes Mk

i of Fk onto the front Fk+1 with, as initialization, M0
i = P 0

i ,
i = 0 . . . N − 1.

More precisely, suppose that the nodes Mk
i are known for the crack front Fk. At this stage,

the front Fk+1 is known only by its nodes P k+1
j . Two alternatives, depicted in Figure 3, are

envisaged:
1. the linear one: the nodes P k+1

j=0...N−1 are supposed to be linked by straight lines and for each

i, the node Mk+1
i is constructed by normal projection of the node Mk

i on these straight lines
(depicted by black arrows in Figure 3);
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Figure 3. Computation of the normal advance.

2. the more precise quadratic one: the nodes P k+1
j=0...N−1 are supposed to be linked by arcs of

circle and the node Mk+1
i (denoted M ′k+1

i in Figure 3) is constructed by projection of the
node Mk

i on these arcs of circle (depicted by white arrows in Figure 3);

The normal advance δa(Mk
i ) is then simply given by δa(Mk

i ) = ||−−−−−→
Mk

i Mk+1
i ||.

Linear approximation is of course simpler but unfortunately appears to be numerically
unstable so that in practice only the quadratic solution can be used. More precisely, the miss-
ing contribution in δa(M) arising from the linear approximation may generate some corners
even in smooth crack fronts, for instance at points Mk

i for which the projected point Mk+1
i

is at the middle of a segment [P k+1
j−1 P k+1

j ] (see Figure 3, black arrows). Now Leblond and
Leguillon (1999) have shown that at these points, the SIF may become infinite giving rise
to numerical peaks in function K̂(M) which develop due to the incremental nature of the
calculations making any further computation impossible. Thus it is necessary to use the more
precise quadratic solution. Then, one verifies that irregularities just mentioned no more appear
(see for instance Figure 3, white arrows).

It should be noticed that the SIF and function W along front F are not finally computed at
the nodes Pi,i=0...N−1 constructed by the user but at the nodes Mn

i,i=0...N−1. Never mind, since
Mn

i,i=0...N−1 is a meshing of the final front as acceptable than Pi,i=0...N−1.
For some simple crack shapes, one can construct a set of intermediate cracks analytically,

so that the normal crack advance can also be known analytically. It is the case for instance
for the elliptical crack. The results are then, of course, more precise. But in general, such
a construction is not possible and has to be done numerically. Also, in all the results given
below, except if the contrary is mentioned, it is always the numerical construction that is used,
even in the few cases where analytical determination would be possible.
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3.1.2. During step II
For the calculation of the propagation path, δa(Mk

i ), k ≥ n is given by the propagation law
(8). Nodes Mk

i=0...N−1 of the further fronts Fk, k > n are then simply obtained by the relation−−−−−→
Mk

i M
k+1
i = δa(Mk

i )
−→
n (Mk

i ). Here a second set of meshes is not necessary since (3) and (4)
give K̂ and W directly at the nodes Mk

i .
During both step I and II, if the meshes become too distorted, re-meshing is done. Nev-

ertheless, it should be mentioned that re-meshing also introduces numerical errors. Hence, it
should not be done at each step of calculation, but only when the meshes become too distorted.

3.2. COMPUTATION OF THE LINEAR ABSCISSA AND OF THE NORMALS

Linear abscissa and normals are simply computed by assuming that the points Mk
i are linked

by straight lines. In particular, the normal −→
n (Mk

i ) is constructed to be normed, directed toward
the exterior of the crack along the bisector of lines (Mk

i−1,M
k
i ) and (Mk

i ,M
k
i+1).

An alternative is to consider that the nodes are linked by arc of circles instead of straight
lines. But computations have then shown that the results are not significantly improved.

3.3. CALCULATION OF THE SIF K̂ AND OF THE FUNCTION W

Let us recall that K̂ and W are computed on the set of meshes Mk
i,i=0...N−1. The process is

incremental. Suppose that for a given k, these functions are known at nodes Mk
i,i=0...N−1. Then

the SIF at nodes Mk+1
i,i=0...N−1 of crack front Fk+1 are given by K̂(Mk+1

i ) = K̂(Mk
i )+ δK̂(Mk

i )

where δK̂(Mk
i ) is derived from (3) with F = Fk, M0 = Mk

i . Besides, W(Mk+1
i ,Mk+1

j ) =
W(Mk

i ,Mk
j ) + δW(Mk

i ,Mk
j ) where δW(Mk

i ,Mk
j ) is given by (4) with F = Fk, M0 = Mk

i

and M1 = Mk
j .

To calculate each δK̂(Mk
i ), the PV part on segment [Mk

i−1M
k
i+1] around Mk

i is extracted
from Equation (3). The quantity W(M,Mk

i )K̂(M)[δa(M) − δ∗a(M)] is approximated by a
quadratic function. Since δa(Mk

i ) − δ∗a(Mk
i ) = 0 (see Equation (5)), this function is zero at

point Mk
i hence takes the form a(s(M) − s(Mk

i ))(s(M) − b). In the neighborhood of Mk
i , the

distance D(M,Mk
i ) ∼ |s(M) − s(Mk

i )| so that:

PV

∫
[Mk

i−1M
k
i+1]

W(M,Mk
i )

D2(M,Mk
i )

K̂(M)[δa(M) − δ∗a(M)]ds(M) =

PV

∫
[Mk

i−1Mk
i+1]

a
(s(M) − s(Mk

i ))(s(M) − b)

(s(M) − s(Mk
i ))2

ds(M) =

a

[
s(Mk

i+1) − s(Mk
i−1) + (s(Mk

i ) − b) ln
s(Mk

i+1) − s(Mk
i )

s(Mk
i ) − s(Mk

i−1)

] (22)

Over the rest of the front, since D2(M,Mk
i ) does not become zero, the integrand is regular.

On each intervals [Mk
j Mk

j+1], j 
= i − 1, i the integrand
W(M,Mk

i )

D2(M,Mk
i )

K̂(M)[δa(M) − δ∗a(M)]
is approximated by quadratic interpolation on nodes Mk

j , Mk
j+1 and Mk

h , the third node Mk
h

being either the previous one Mk
j−1 if it is different from Mk

i , either the next one Mk
j+2.

To calculate δW(Mk
i ,M

k
j ), a similar procedure is employed. Nevertheless, attention must

be paid to the fact that the PV concerns both points Mk
i and Mk

j .
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Figure 4. Double nodes.

Figure 5. Elliptical crack.

Linear interpolation on nodes Mk
j , Mk

j+1, for the calculation of these integrals on each
segment [Mk

j Mk
j+1] is also possible, but then one verifies that one should increase the number

of nodes to obtain comparable errors.
The procedure is less sophisticated, hence less complicated than the one developed by

Bower and Ortiz (1990). For instance, no difference is made between collocation points (noted
tj in Bower and Ortiz (1990)) where δK̂ and δW are computed, and the nodes (noted si)
used to evaluate the integrals. Besides, the procedure used to calculate the PV integrals is
clearly outlined. Moreover, the regular integrals are computed by quadratic interpolation of
all the integrand, no distinction is done in the choice of the interpolation functions between
W(M,Mk

i )

D2(M,Mk
i )

K̂(M) and [δa(M) − δ∗a(M)] as in Bower and Ortiz (1990). Nevertheless, our

procedure gives comparable results, as will be shown below in Section 4.1.

3.4. MANAGEMENT OF THE END OF MESHES NODES PROBLEMS

The closed front F has no beginning and no end, but the meshes begins at node 0 and finishes
at node N − 1. This discrepancy involves heavy management of exceptions in the writing of
the loops i = 0 to N − 1 on the nodes Mk

i . To avoid them, the meshes are extended, as in
Figure 4, by the creation of double nodes in the neighborhood of nodes 0 and N − 1.

3.5. CPU TIMES

At each step, the integrals (3) and (4) have to be computed for each nodes of the meshing,
that is N + N2 times. Roughly the calculation of one of those integrals corresponds to N

operations. Hence the CPU time is approximately proportional to N3. For instance, with a
CELERON processor 333 MHz, this time is about proportional to 10−5N3 seconds. Hence a
step of calculation involving 100 nodes takes approximately 10 sec, time that shrinks to 1 sec
for 50 nodes. This makes the method very economical in time versus the FEM one.
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Figure 6. SIF along elliptical cracks (s(B) = 0, B defined in Figure 5).

4. Validation

4.1. ELLIPTICAL CRACK

For an elliptic crack with major axis b and minor axis a (see Figure 5), it is well known that
(see for instance Irwin, 1962):

K̂(M) =
√

πa

E(k)

(
sin2(θ) + α4 cos2(θ)

sin2(θ) + α2 cos2(θ)

)1/4

(23)

where θ is the polar angle of M, α = a/b < 1, k = √
1 − α2 and E(k) denotes the complete

elliptic integral of the second kind. The numerical results obtained for different values of α are
shown in Figure 6. They are in good agreement with the analytical result (23). Nevertheless,
one should notice two obvious facts:
− the errors increase when α decreases, that is the crack studied is the more distant from

the circular starting circle of radius a;
− the error is the higher where the curvature of the front is the more important that is near

point B.
To compare our results to those of Bower and Ortiz (1990), the case α = 1/3 is considered.

Figure 7 shows the value of the error E, defined by :

E =
√√√√ 1

L

∫ L

0

(
K̂num(M) − K̂theo(M)

)2

K̂2
0

ds(M) (24)

as a function of the number of nodes N , a constant maximum step size of δamax = 0.005a

between the intermediate fronts Fk and Fk+1 being used. In formula (24), L is the perimeter
of the crack front and K̂0 = 2

√
a/π is the SIF for the initial circle of radius a. Figure 8 shows
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Figure 7. Error E obtained by different methods with δamax = 0.005a.

Figure 8. Error E obtained by different methods with N = 72.

the same error E as a function of δamax/a with N = 72. In Figures 7 and 8, the lines with key
‘Bower and Ortiz (1990)’ correspond to the results of Bower and Ortiz (1990) obtained by
giving the normal advance in analytical form. The others correspond to the results obtained
by ourselves: ‘Analytical δa(M)’ means that δa(M) has been given analytically by the same
formula as in Bower and Ortiz (1990) and ‘Numerical δa(M)’ that δa(M) has been computed
by the systematic method depicted in Section 3.1.1.

One may verify in Figures 7 and 8 that:
(1) when the advance of the front is given analytically like in the work of Bower and Ortiz

(1990), E is of the same order although our method is simpler. However, when the ad-
vance is computed numerically, the error is obviously slightly increased, but nevertheless
reasonable enough to allow us to study the propagation path of cracks with more complex
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Figure 9. Heart shaped cracks.

Figure 10. SIF along the heart shaped cracks depicted in Figure 9.

shapes as the ones studied below for which analytical determination of δa(M) is not
possible.

(2) the finer the discretization, that is the smaller δamax/a is and the higher N is, the more
the error decreases. Nevertheless, one is limited by the CPU time that, as has been seen in
Section 3.5, may become very high for high N or number of steps, that is small δamax/a.

One can also compare the results with some results obtained by other numerical methods.
For instance, for an elliptical crack of ratio b/a = 2, the error E obtained by Sukumar et al.
(2003) using the FEM is about of E = 0.02 and the error E obtained by Xu et al. (1997) using
a self-similar crack expansion method is about of E = 0.006. One can notice in Figures 7
and 8 that the error we obtained for a ratio b/a = 3 greater than theirs, is lower than 0.02
for relatively coarse discretization (for instance for N > 50 and δamax = 0.005a) and can be
reduced to 0.006 for a sufficiently refined discretization (N = 100 and δamax = 0.005a).
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Figure 11. Computed values of the exponent α.

4.2. SIF IN THE VICINITY OF CORNER POINTS

The stress intensity factor K̂ along the front of several ‘heart shaped cracks’, like the ones
depicted in Figure 9 (a denotes the minor width of the crack), with different opening angles
	 is given in Figure 10. It is normalized by the stress intensity factor K̂0 = √

2a/π along
the circle C of radius a/2 depicted in Figure 9. One can verify that in the vicinity of point A

(s = 0) where the crack shape is close to the circle C, K̂/K̂0 → 1 when 	 → 1800.
Leblond and Leguillon (1999) have shown that near the angular point O of the front, the

SIF behaves in the following manner:

K(M) ∝ |s(M) − s(O)|1/2+α when M → O, (25)

where α depends only on the opening angle 	 and verifies α < −1/2 so that the SIF becomes
infinite at the notch point. The peak in Figure 10 is the numerical expression of this propriety.
The scalar α can be computed by fitting the behavior (25) with the results of Figure 10 around
the corner point O. The values obtained are given in Figure 11 for several angles 	. Errors are
due to the dependence of the results upon the points chosen for the fitting operations and to
the numerical errors in the computation of the SIF. They are all the greater as the shape of the
crack is more different from the initial circle C, i.e., as 	 is smaller. Nevertheless, our values
are relatively close to the ones obtained by Leblond and Leguillon (1999) by a more precise
method in spite of the uncertainties linked to our method.

5. Some examples of propagation paths

Examples presented in Section 4.1, 4.2 have shown the efficiency of the method for com-
pute SIF along given crack fronts. Let us now apply the method to prediction of fatigue
(Section 5.1) and brittle fracture (Section 5.2) propagation paths of some particular cracks.

5.1. IN FATIGUE

Suppose now that the crack advance is governed by Paris’ law (9) described in Section 2.4,
fracture properties being homogeneous with C(M) ≡ C and β(M) ≡ β = 2.
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Figure 12. Penny shaped crack.

Figure 13. Elliptical crack.

Figures 12a, 13a, 14a, 15a show the propagation paths of a circular crack, an elliptical one
with b/a = 2.5, a rectangular with b/a = 1.5 and a heart shaped one with 	 = 1300. In all
these figures, a denotes the minimum width of the crack. The crack is chosen to be depicted
until the initial area of the crack as been multiplied approximately by 10 since then the crack
is circular and remains so in all the cases.

In Figures 12b, 13b, 14b, 15b, the quantity NcC(�σ∞)βaβ/2−1 that is the number Nc of
loading cycles between the initial and the actual configurations is given versus the advance of
some particular points. This quantity is derived by summation from Equation (12) that gives
the number of loading cycles between each numerical step.
The penny shaped crack is shown as a numerical test. Indeed, then K̂(M) = 2

√
x(A)/π for

all the points M of the crack front. Hence Paris’ law (9) rises a uniform advance so that the
crack remains circular and explicit integration of this law can be done. For β = 2, one obtains

NcC(�σ∞)βaβ/2−1 = NcC(�σ∞)2 = π

4
ln

x(A)

a
. (26)

One notices, in Figure 12, a very good adequacy between this theoretical result and the one
obtained numerically.

Several facts can be noticed in these figures:
(1) It appears, as could be anticipated, that the crack becomes and remains circular after a
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Figure 14. Rectangular crack.

Figure 15. Heart shaped crack.

certain time. Hence one may conclude that it is a general feature of the fatigue propagation
of bounded mode I cracks embedded in an infinite body propagating through a material of
homogeneous fracture properties. Analogous results were reported by Sukumar et al. (2003)
for fatigue propagation simulations of the elliptical crack, based on extended finite element
method and the fast marching method.
(2) The curves 12b, 13b, 14b, 15b are concave. This means that the crack grows faster and
faster. It is normal since when the crack growths, the SIF and the crack advance rate are, on
average, also growing.
(3) Consider that the crack has undergone Nc loading cycles such as, for instance, NcC(�σ∞)β

aβ/2−1 = 1. Then one can verify that the crack is, in all the cases considered, circular and that
the ratio r ≡ (Final Area)/(Initial Area) is r ∼ 12.7 for the circular crack, r ∼ 12.8 for the
elliptical crack, r ∼ 12.6 for the rectangular one, r ∼ 14 for the heart shaped one. Hence
the heart shaped crack has advanced slightly faster than the elliptical, the circular and the
rectangular ones. That means that 2D crack rate advance calculations on penny shaped cracks
instead of the real 3D shape may be not conservative. Nevertheless the value of r are very
similar so that if one takes into account the numerical errors, one may conclude that the initial
crack shape has no significant influence on the global crack advance rate. The differences
between the advance rates are probably due, for the heart shape crack to the infinite, that is the
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Figure 16. Penny shaped crack.

Figure 17. Elliptical crack.

high numerical value of the SIF at the corner point (see Section 4.2) generating a high crack
advance rate contribution; and oppositely, for the rectangular crack to the zero value of the
SIF at the corner points generating a very small crack advance rate contribution.

5.2. IN BRITTLE FRACTURE

The crack advances now in brittle fracture, in a material of homogeneous fracture toughness
Kc under conditions (15) and (16) described in Section 2.5. In practice, numerically, (15) is
replaced by (18) with β = 50.

Figures 16a, 17a, 18a, 19a show the propagation paths respectively of the circular, ellipt-
ical, rectangular, heart shaped cracks already studied in fatigue in Section 5.1. The crack is
chosen to be depicted until the initial area of the crack as been multiplied approximately by 4,
since then the crack is circular and subsequently, remains circular.

In Figures 16b, 17b, 18b, 19b, the normalized quantity σ∞
√

a/Kc giving the remote load-
ing σ∞ is plotted versus the advance of some particular points. This quantity is derived from
Equation (16).

Again, the example of the penny-shaped crack is given as a numerical example since then
the crack remains circular, and the SIF along the crack front is given by K̂(M) = 2

√
x(A)/π

so that (16) gives:
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Figure 18. Rectangular crack.

Figure 19. Heart shaped crack.

σ∞
√

a

Kc

=
√

πa

2
√

x(A)
(27)

One observes, in Figure 16, a good adequacy between this value and the computed ones.
Several things can be noticed in these figures:

(1) During a first stage where the SIF along the crack front is not uniform, one can verify
that, in agreement with the criterion (15), the crack advances only where K is maximum and
equal to Kc, that is for the elliptical and rectangular cracks, in the vicinity of points B defined
in Figures 17a, 18a, for the heart shaped one in the vicinity of the corner point. Nevertheless,
several numerical trials have shown that this is achieved only if β is high enough. In particular,
one can verify that it is achieved for β = 50 but not for β = 20.
(2) During a second stage, the crack becomes circular hence the SIF is uniform along the crack
front. The criterion then predicts a uniform advance of the front so that the crack remains
circular.
(3) The elliptical, rectangular and heart shaped cracks advance first under increasing loading
that is in a stable manner, then in an unstable manner. The stable phase is due to decreasing
value of maxM∈F K̂F (M) implying, according to (16), an increase in loading to have at each
moment maxM∈F KF (M) = σ∞ maxM∈F K̂F (M) = Kc. For the elliptical and rectangular
cracks, the decreasing value of maxM∈F K̂F (M) = K̂F (B) is due to the increase of curvature
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42 Véronique Lazarus

around the point B that causes some screen effect. For the heart shaped crack, it is caused by
the progressive vanishing of the corner.
(4) Among the loadings, the loading σ 0∞ above which the propagation begins is of particular
interest. To compare these loadings, one may consider cracks with same initial areas that is
such as a(ellipse)/a(circle) ∼ 0.63, a(rectangle)/a(circle) ∼ 0.72, a(heart)/a(circle) ∼
1.41. One founds

σ 0∞(circle)
√

a(circle)

Kc

∼ 0.89,

σ 0∞(ellipse)
√

a(circle)

Kc

∼ 0.82,
σ 0∞(rectangle)

√
a(circle)

Kc

∼ 0.78

Hence, the rectangular crack begins to propagate for a lower loading than the elliptical and
circular ones. Again, predictions made on circular cracks instead of the real crack shape may
be slightly not conservative. For the heart shape crack, it has no real significance to read such a
value since the value obtained numerically for the maximum SIF corresponds to a theoretical
infinite value of the SIF at the corner point (see Section 4.2) which means that the crack starts
to propagate theoretically instantaneously, that is with σ∞ = 0, so that in practice, the corner
never exists because it is instantaneously wiped out.
(5) The loading σ i∞ above which the crack starts to propagate in an unstable manner is also of
practical interest. Again for cracks with same initial areas, one obtains:

σ i∞(circle)
√

a(circle)

Kc

∼ 0.89,
σ i∞(ellipse)

√
a(circle)

Kc

∼ 0.83,

σ i∞(rectangle)
√

a(circle)

Kc

∼ 0.80,
σ i∞(heart)

√
a(circle)

Kc

∼ 0.82,

Again values are very close to each other showing a small effect of the initial crack shapes.
Nevertheless, the small effect is such that predictions made on circular cracks instead of the
real 3D shape may be not conservative. Indeed, it appears that if the body is loaded by an
increasing remote loading starting from zero, the crack begins to propagate unstably, that is
the body breaks, for a loading slightly smaller for the elliptical, rectangular, heart shaped
cracks than for the circular crack.

5.3. BRITTLE FRACTURE IN AN HETEROGENEOUS MEDIA

To illustrate the capacity of the regularized form of Irwin’s criterion to perform calculations
of propagation paths into heterogenous medias, let us consider a penny shaped crack of radius
a with a periodical toughness such as:

Kc(M) = Kc [1 + λ cos (k θ(M))] , (28)

where θ(M) denotes the polar angle of any point M.
Figures 20, 21, 22 show the propagation paths and the corresponding loading for k = 2,

k = 3, k = 6 respectively, λ being equal to 0.2.
One can distinguish several stages in the propagation paths:
(1) At the beginning of the propagation, the crack is circular hence K̂ is constant along the
crack front, so that only the points where Kc is minimum propagate (points denoted B in the
figures).
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Figure 20. Case k = 2.

Figure 21. Case k = 3.

Figure 22. Case k = 6.
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(2) Then, more and more points reach the critical threshold that is more and more points
propagate at the same time.
(3) Finally, the crack front attains a shape for which all of its points satisfy Irwin’s criterion.
From this stage, the crack propagates uniformly, hence the shape stays the same.

After stage 1, the same screen effect still mentioned in Sections 5.2, was susceptible to
produce around points A, a shrinking of the SIF so that propagation around these points may
have not occured. Hence, stage 2 was not obvious, a priori.

During the final stage 3, one can verify that the polar equation of the crack front is ap-
proximatively of the form r(θ) = a0 + A cos(kθ + π) and the SIF of the form K̂(θ) =
K0 + B2 cos(kθ), which imply in particular that the SIF at the more advanced points of the
fronts is lower than at the less advanced ones. These results agree with Gao and Rice (1987).

For k = 3, 6, one remarks that until the points A propagate, the loading has to be increased
for crack propagation to occur. This means, by Equation (16), that 1

maxM∈F
K̂F (M)

Kc(M)

= Kc(B)

K̂F (B)

increases, that is, since Kc(B) is constant during propagation that K̂F (B) decreases. This
effect is probably due to a shielding effect, the opening displacement at points B being
screened by the surrounding crack front. Then, once the crack front around the points B

becomes ‘open enough’ to see the average growing of the front, K̂F (B) increases, hence
the loading decreases. The same effect exists for k = 2, but the loading begins to decrease
before the point A begins to propagate. One can also notice that the higher the value of k, that
is the more heterogeneous the fracture toughness is, the more the screen effect is present, the
more the loading has to be increased to reach the instable phase. This means that the more
the material has irregular fracture properties, the more it resists to fracture. One may wonder
whether this a general rule?

6. Conclusion

Since only the meshing of the initial front is needed, the procedure depicted above is an
efficient tool for solving problems concerning a flat crack subjected to mode I loading.

Several properties, some of common knowledge, have been noticed on the cases studied:
(1) For closed cracks (that can be derived from the penny shaped one through continuous de-
formation) propagating in a material of homogeneous fracture properties, the crack propagates
to become circular.
(2) In material of heterogenous toughness, the crack appears to propagate to ensure the con-
dition K = Kc along the whole front.
(3) The influence of the initial crack shape on the loading seems to be small. Nevertheless,
it is outlined that calculations make on 2D penny shaped cracks instead of the real 3D shape
may be not conservative.
(4) In brittle fracture in the simple case studied, it appears that the more heterogenous the
toughness is, the more the loading has to be increased to reach unstable crack propagation.

One may ask if these properties applied to any crack shape, hence are universal properties?
One can reasonably answer yes for the two first ones even if no rigorous demonstration or
experimental result are known. To answer yes for the two last properties would be more
hazardous since it relies to some very particular examples that are moreover subjected to
numerical errors.
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Endnotes

1the affix z of a point M of the plane (0, �x, �z) is the complex number xM + izM where
(xM, 0, zM) are the cartesian coordinates of M and i the square root of −1.
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Abstract

Bower and Ortiz, recently followed by Lazarus, developed a powerful method, based on a theoretical work of Rice,
for numerical simulation of planar propagation paths of mode 1 cracks in infinite isotropic elastic bodies. The efficiency
of this method arose from the need for the sole 1D meshing of the crack front. This paper presents an extension of
Rice�s theoretical work and the associated numerical scheme to mixed-mode (2 + 3) shear loadings. Propagation is sup-
posed to be channeled along some weak planar layer and to remain therefore coplanar, as in the case of a geological
fault for instance. The capabilities of the method are illustrated by computing the propagation paths of cracks with
various initial contours (circular, elliptic, rectangular, heart-shaped) in both fatigue and brittle fracture. The crack
quickly reaches a stable, almost elliptic shape in all cases. An approximate but accurate analytic formula for the ratio
of the axes of this stable shape is derived.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: 3D fracture mechanics; Coplanar crack propagation paths; Mode 2 + 3; Brittle fracture; Fatigue; Stable shape; Perturb-
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1. Introduction

There are several more or less efficient methods for numerical simulation of propagation paths of
3D cracks in elastic media. The most classical and general one is the finite element method (FEM). A
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non-trivial example involving a complex, non-planar crack shape is provided in the work of Xu et al.
(1994). But the FEM requires meshing the whole 3D cracked body at each step of the crack propagation,
and it is difficult to do this automatically. A recent and efficient variant of the FEM consists of coupling the
level set method and the extended finite element method (XFEM); see for instance, Sukumar et al. (2003),
Moes et al. (2002), Gravouil et al. (2002).

The sole meshing of the initial geometry is then required. Another alternative consists of using the
boundary element method (BEM), which requires only 2D meshing of the crack surface and the outer
boundary. Several examples of such an approach are provided in Chapter 5 of Bonnet (1994)�s book. Meth-
ods based on integral equations are especially attractive for infinite bodies since the sole meshing of the
crack surface is then necessary; see for instance the examples provided by Fares (1989) and Xu and Ortiz
(1993). If, in addition, the crack propagates along a plane, compelling methods requiring the sole 1D mesh-
ing of the crack front are envisageable. Using an earlier theoretical work of Rice (1989) and Bower and
Ortiz (1990, 1991, 1993) proposed such an approach and applied it to various problems of practical interest.
Lazarus (2003) later defined a simplified variant of this method which resulted in no significant loss of
numerical accuracy.

More specifically, the basis of Bower and Ortiz� method and Lazarus� variant was Bueckner–Rice�s
weight function theory. The 2D version of this theory was expounded by Bueckner (1970) and Rice
(1972), and its extension to the 3D case by Rice (1972) (in the appendix of this reference) and Bueckner
(1973). It was applied by Rice (1989) to planar cracks with arbitrary contours loaded in mode 1. The theory
yielded, to first order, the variation of the mode 1 stress intensity factor (SIF) along the crack front arising
from some small but otherwise arbitrary coplanar perturbation of this front, under conditions of constant
prescribed loading. This variation was expressed as a line integral over the unperturbed front which in-
volved, in addition to the perturbation, some geometry-dependent ‘‘kernel’’ linked to the mode 1 weight
function. The theory also provided the variation of this kernel, again to first order, in a similar form. Bower
and Ortiz (1990, 1991, 1993)�s method consisted of applying Rice�s two formulae to some sequence of small
perturbations of the front resulting in arbitrary deformation of its initial shape. They applied it to the study
of the propagation paths of semi-infinite tensile cracks in heterogeneous media, in both fatigue and brittle
fracture.

In Lazarus (2003)�s variant, the numerical procedure was greatly simplified by using linear instead of
quadratic elements, calculating the crack advance and the various integrals at the same discretization
points instead of distinguishing between nodes and collocation points, etc. Validation tests based on
numerical calculation of SIFs for crack geometries for which some analytical solution existed showed that
such simplifications did not affect the overall numerical accuracy. In fact, the only point that was found to
really require special care was accurate evaluation of some integrals in principal value. Also, Lazarus re-
placed the Irwin–Griffith propagation law for brittle fracture used by Bower and Ortiz by that of Paris.
Nothing was lost by doing so since as noted by Lazarus, in addition to being a good propagation law for
fatigue, Paris� law ‘‘simulates’’ Irwin–Griffith�s law in the limit of very large Paris exponent. The advan-
tage of using Paris� law was that the crack advance at all time steps and discretization points was directly
provided by some explicit formula. In contrast, deducing the crack advance at the discretization points
from the Irwin–Griffith criterion, as was done by Bower and Ortiz, was more difficult in two respects.
First, iterations were required to determine the ‘‘active’’ part of the front, that is that portion which effec-
tively propagates at the instant considered. Second, for each iteration, it was necessary to solve a large
system of linear equations on the unknown values of the crack front advance at the discretization points
of this active part. Lazarus applied her method to the study of the propagation paths, in fatigue and brit-
tle fracture, of initially elliptic, rectangular and heart-shaped cracks loaded through some uniform remote
tensile stress. She found that for all of these initial configurations, the crack quickly reached a stable,
circular shape.
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Bower and Ortiz� method and Lazarus� variant were developed only for mode 1 cracks. The aim of this
paper is to extend Lazarus� method to mixed-mode (2 + 3) loadings, and to illustrate it through several
examples of simulation of propagation of shear mode cracks with simple initial shapes, in both fatigue
and brittle fracture. Propagation will be assumed to be coplanar; this is reasonable provided that the crack
is channeled along a weak planar layer, which is the case, for instance, for a geological fault.

The first step consists of extending Rice (1989)�s results to planar cracks with arbitrary contour loaded in
mode 2 + 3. This is done in Section 2. Our starting point here is Rice (1985)�s general formula (applicable to
all modes) for the first-order variation of the displacement discontinuity across the crack plane resulting
from some small coplanar advance of the front, under conditions of constant prescribed loading. The
first-order variation of the SIFs is deduced from there by letting the observation point of this discontinuity
tend toward the crack front. The treatment here extends both that of Rice (1989), which applied to planar
mode 1 cracks with arbitrary contour, and those of Gao and Rice (1986) and Gao (1988), which applied to
planar shear mode cracks with straight or circular contour. The first-order variation of the relevant kernels
is also derived in a similar way, using their relation to the weight functions. Section 3 then briefly presents
the extension of Lazarus (2003)�s numerical method to shear loadings. This extension is straightforward in
principle, but the extended method is notably heavier than the original one for mode 1, because of the inev-
itable coupling of modes 2 and 3. Section 4 expounds validation tests based on numerical calculation of the
distribution of SIFs along the front of elliptic cracks loaded in shear. Finally, Section 5 presents applica-
tions in the form of computation of planar propagation paths of shear mode cracks with simple (circular,
elliptic, rectangular and heart-shaped) initial contours, in fatigue and brittle fracture. It is found that the
crack front quickly reaches some stable, almost elliptic shape in all cases. An approximate but accurate ana-
lytic formula for the ratio of the axes of this stable shape is derived.

2. Extension of Rice�s formulae to modes 2 and 3

2.1. Definitions and notations—Elementary properties of weight functions

2.1.1. Stress intensity factors
Consider a plane crack of arbitrary shape embedded in some infinite isotropic elastic medium subjected

to some arbitrary loading (Fig. 1). LetF denote the crack front and s some curvilinear abscissa along it. At
each point s of F, define a local basis of vectors ð~e1ðsÞ;~e2ðsÞ;~e3ðsÞÞ in the following way:

(1) ~e3ðsÞ is tangent to F and oriented in the same direction as the curvilinear abscissa s;
(2) ~e2ðsÞ is in the crack plane, orthogonal to F and oriented in the direction of propagation;

Fig. 1. Notations for a planar crack with arbitrary contour.
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4.2. Sélection de publications/Selected publications 137



(3) ~e1ðsÞ �~e1 is orthogonal to the crack plane and oriented in such a way that the basis ð~e2ðsÞ,~e1,~e3ðsÞÞ is
direct.1

The SIFs Kj(s), j = 1,2,3 at point s are then defined by the following formula, where Einstein�s summa-
tion convention is employed:

lim
r!0

ffiffiffiffiffiffi
2p
r

r
s~uðs; rÞt � 8KijKjðsÞ~eiðsÞ ð1Þ

In this expression s~uðs; rÞt denotes the displacement discontinuity across the crack plane, oriented by the
vector ~e1, at the distance r behind the point s of F, in the direction of the vector �~e2ðsÞ. Also,
(Kij)16i63,16j63 � K is the diagonal matrix defined by

K � 1

E

1� m2 0 0

0 1� m2 0

0 0 1þ m

0
B@

1
CA ð2Þ

where E denotes Young�s modulus and m, Poisson�s ratio.2

2.1.2. Crack face weight functions and fundamental kernels
Let kijðF; s0; s; rÞ denote the ith SIF at the point s 0 of the crack front F resulting from application of a

pair of opposite unit point forces equal to �~ejðsÞ on the upper (+) and lower (�) crack surfaces at a dis-
tance r behind the point s of the crack front. These nine scalar functions are called the crack face weight

functions (CFWFs).
The functions kijðF; s0; s; rÞ=

ffiffi
r

p
are known to have a well-defined limit for r ! 0 (see for instance,

Leblond et al. (1999)). We then define the matrix (Wij(s
0, s))16i63,16j63 �W(s 0, s) by the formula

W ijðs0; sÞ � p

ffiffiffi
p
2

r
D2ðs; s0Þ lim

r!0

kijðF; s0; s; rÞffiffi
r

p ð3Þ

where D(s, s 0) denotes the cartesian distance between points s and s 0. The functions Wij(s
0, s) in fact depend

on the crack front shape, just like the CFWFs, but the argument F is omitted here for conciseness. They
will be called the fundamental kernels or more shortly the kernels.

The CFWFs are positively homogeneous of degree �3/2; that is, if all distances are multiplied by some
positive factor k, the CFWFs are multiplied by k�3/2. The definition (3) of the functions Wij(s

0, s) then im-
plies that they are positively homogeneous of degree 0.

Since tensile and shear problems are uncoupled for a planar crack in an infinite body, whatever the shape
of the crack front, the components k12, k13, k21 and k31 of the CFWFs are zero, so that by Eq. (3):

W 12ðs0; sÞ � W 13ðs0; sÞ � W 21ðs0; sÞ � W 31ðs0; sÞ � 0. ð4Þ
Finally, considering two problems, one with point forces equal to �~ei exerted on the crack faces at (s, r) and
one with point forces equal to �~ej exerted on the crack faces at (s 0, r 0), applying Betti�s theorem, and using
Eqs. (1) and (3), one sees that the kernels obey the following ‘‘symmetry’’ property:

KimW mjðs; s0Þ ¼ KjmW miðs0; sÞ ð5Þ

1 This choice differs from the usual one but coincides with that made by Rice (1989). Its advantage is that the basis vectors are
labelled to agree with mode number designations for the SIFs, and this simplifies the reasoning below leading to the expressions of the
variations of these SIFs when the crack front is perturbed.
2 A similar formula holds for an arbitrary anisotropic medium but the matrix K is then no longer diagonal.
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2.2. Principle of the derivation of the variations of the stress intensity factors and fundamental kernels

Let us now assume that the crack advances, under constant loading, by a small distance da(s) within its
plane in the direction perpendicular to its front. The variation of the displacement discontinuity ds~uðs0; rÞt
at point (s0, r) is given, to first order in the perturbation, by the following formula Rice (1985):

ds~uðs0; rÞt ¼ 2Kjm~eiðs0Þ
Z
F

kjiðF; s; s0; rÞKmðsÞdaðsÞds. ð6Þ

The variations of the SIFs will be obtained from there by taking the limit r ! 0 in this expression, using
their relation to the variation of the displacement discontinuity. In fact, the formula for dK1(s0) was given
by Rice (1989) for a planar crack with arbitrary contour, and those for dK2(s0) and d K3(s0), which are of
more interest here, by Leblond et al. (1999) for arbitrary, not necessarily planar initial crack geometries,
and arbitrary, even possibly kinked, small crack extensions. (Leblond et al. (1999)�s formula in fact ex-
tended previous formulae of Gao and Rice (1986) and Gao (1988) which applied to planar shear mode
cracks with coplanar extension and straight or circular contour.) However we shall re-derive Leblond
et al. (1999)�s formulae here, for two reasons.

(1) The hypothesis of coplanar crack extension makes it possible to greatly simplify Leblond et al.
(1999)�s intricate reasoning. Presenting the simple3 reasoning proposed below offers the advantage
that the paper is self-contained at little additional cost.

(2) It will also be necessary to calculate the variations of the kernels since these kernels appear in the for-
mulae for the variations of the SIFs. The derivation of these additional formulae will use a similar,
albeit somewhat more complex reasoning, based on the fact that the kernels are related to the CFWFs
and thus to some SIFs generated by special loadings. The presentation of the derivation of the for-
mulae for the variations of the SIFs will serve as a useful introduction there.

The formulae for dW22(s0, s1), dW33(s0, s1), dW23(s0, s1) and dW32(s0, s1) provided below are new. In con-
trast, it has already been mentioned in Section 1 that the formula for dW11(s0, s1) was provided by Rice
(1989). We shall however re-derive it at no additional cost, since the reasoning presented below applies
indifferently to all modes.

2.3. Variation of the stress intensity factors

In a first step, we assume that da is zero at that point s0 where the dKi are to be evaluated (Fig. 2). The
basis ð~e�1ðs0Þ �~e1;~e

�
2ðs0Þ;~e

�
3ðs0ÞÞ ‘‘adapted’’ to the perturbed crack front at this point is obtained, to first

order in the perturbation, through rotation of the old one ð~e1ðs0Þ �~e1;~e2ðs0Þ;~e3ðs0ÞÞ by an angle dda(s0)/
ds � da 0(s0) about the vector ~e1. Hence

~e�i ðs0Þ ¼~eiðs0Þ þ da0ðs0Þ~e1 �~eiðs0Þ ð7Þ
where the symbol · denotes the vector product. (Note that since the basis ð~e1;~e2ðs0Þ;~e3ðs0ÞÞ is left-handed,
~e1 �~e2ðs0Þ ¼ �~e3ðs0Þ and~e1 �~e3ðs0Þ ¼~e2ðs0Þ).

Let s~u�ðs0; r�Þt denote the displacement discontinuity across the crack plane in the perturbed crack con-
figuration, at a small distance r� behind the point s0 in the direction of the vector �~e�2ðs0Þ (Fig. 2). By Eq. (1),

lim
r�!0

ffiffiffiffiffiffi
2p
r�

r
s~u�ðs0; r�Þt ¼ 8Kij½Kjðs0Þ þ dKjðs0Þ�~e�i ðs0Þ ð8Þ

3 In principle, less so in details.
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Now, by definition,

ds~uðs0; rÞt � s~u�ðs0; rÞt� s~uðs0; rÞt ð9Þ
where s~u�ðs0; rÞt is the displacement discontinuity in the perturbed crack configuration at a distance r be-
hind the point s0 in the direction of the vector �~e2ðs0Þ, not �~e�2ðs0Þ (Fig. 2). However the vector �~e2ðs0Þ here
may be replaced by �~e�2ðs0Þ because the resulting displacement of the observation point is of second order in
the perturbation, as is obvious from Fig. 2. Using Eqs. (7) and (8), one then gets

lim
r!0

ffiffiffiffiffiffi
2p
r

r
ds~uðs0; rÞt ¼ 8 KijdKjðs0Þ þ e1ijKjmKmðs0Þda0ðs0Þ

� �
~eiðs0Þ ð10Þ

where the eijm denote the permutation symbols.4

We shall now use Eq. (6) in the limit r ! 0. It is shown in Appendix A that in this limit, the asymptotic
behaviour of the integrals in the right-hand side is given by the following formula:ffiffiffiffiffiffi

2p
p

4
lim
r!0

1ffiffi
r

p
Z
F

kjiðF; s; s0; rÞKmðsÞdaðsÞds

¼ m
2� m

ðdj2di3 þ dj3di2ÞKmðs0Þda0ðs0Þ þ
1

2p
PV

Z
F

W jiðs; s0Þ
D2ðs0; sÞ

KmðsÞdaðsÞds ð11Þ

where the dij denote Kronecker�s symbols and the integral in the right-hand side is to be understood as a
Cauchy principal value (PV). Dividing then Eq. (6) by

ffiffi
r

p
and taking the limit r ! 0 using Eqs. (10) and

(11), one obtains after some algebraic manipulations the following formula:

dKðs0Þ ¼ N � Kðs0Þda0ðs0Þ þ
1

2p
PV

Z
F

Wðs0; sÞ
D2ðs0; sÞ

� KðsÞdaðsÞds ð12Þ

The quantities K(s) � (Ki (s))16i63 and dK(s) � (dKi (s))16i63 here are the column vectors of initial SIFs and
variations of these SIFs, and N � (Nij)16i63,16j63 is the matrix defined by

Fig. 2. Motion of the crack front around the immobile point s0.

4 eijm = 0 if two indices are equal, 1 if {i, j,m} is a positive permutation of {1,2,3}, �1 if it is a negative permutation.
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N � 2

2� m

0 0 0

0 0 �1

0 1� m 0

0
B@

1
CA ð13Þ

Eq. (12) is identical to Leblond et al. (1999)�s general equation (30)� (with the notation 1
2p

Wðs0;sÞ
D2ðs;s0Þ

instead of

Z(s0, s)), in the special case of a planar crack with coplanar extension (and zero crack advance at the point

s0).
The restriction da(s0) = 0 will now be removed by using a trick of Rice (1989). This trick consists of

decomposing an arbitrary motion of the crack front defined by the normal advance da(s) into two steps:

(1) A translatory motion of displacement vector daðs0Þ~e2ðs0Þ. This motion brings the point s0 to its correct
final position while leaving the crack front shape unchanged. The corresponding normal advance
d*a(s) is given, to first order in da(s), by
d�aðsÞ ¼ daðs0Þ~e2ðs0Þ �~e2ðsÞ ð14Þ
The associated variation of K(s) will be denoted d*K(s).

(2) A motion with normal advance given by da(s) � d*a(s). This advance is zero at point s0 so that the
corresponding variation of K(s0) is given by Eq. (12), with da 0(s0) � d*a

0(s0) = da 0(s0) since
d*a

0(s0) = 0 by Eq. (14).

Adding up the contributions from these two motions, one gets the final expression of the variation of the
SIFs under constant loading in the general case:

dKðs0Þ ¼ d�Kðs0Þ þN � Kðs0Þda0ðs0Þ þ
1

2p
PV

Z
F

Wðs0; sÞ
D2ðs0; sÞ

� KðsÞ½daðsÞ � d�aðsÞ�ds ð15Þ

2.4. Variation of the fundamental kernels

The method of derivation of the first-order formula for dW(s0, s1) consists of applying Eq. (12) to those
special loadings defining the kernels, that is, pairs of opposite, unit point forces exerted on the crack faces
close to the crack front.

We first make the assumption that the crack advance da is zero at points s0 and s1. We also define the
following CFWFs pertaining to the perturbed crack configuration:

(1) k�ijðF�; s0; s1; r�Þ is the ith SIF at point s0 on the perturbed crack front F� when point forces equal to
�~e�j ðs1Þ are applied at a distance r* behind point s1 on this front in the direction of the vector �~e�2ðs1Þ;

(2) k�ijðF�; s0; s1; rÞ is defined in the same way except that the forces are exerted at a distance r behind
point s1 in the direction of the vector �~e2ðs1Þ instead of �~e�2ðs1Þ;

(3) kijðF�; s0; s1; rÞ is defined in the same way as k�ijðF�; s0; s1; rÞ except that the forces are equal to �~ejðs1Þ
instead of �~e�j ðs1Þ.

Suppose that forces equal to �~ejðs1Þ are applied at a distance r behind point s1 in the direction of the
vector �~e2ðs1Þ, and compare the ith resulting SIFs at point s0 in the initial and perturbed configurations
of the crack. Eq. (12) yields, in this specific case:

kijðF�; s0; s1; rÞ � kijðF; s0; s1; rÞ

¼ NimkmjðF; s0; s1; rÞda0ðs0Þ þ
1

2p
PV

Z
F

W imðs0; sÞ
D2ðs0; sÞ

kmjðF; s; s1; rÞdaðsÞds ð16Þ
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Now, by definition,

dW ijðs0; s1Þ ¼ p

ffiffiffi
p
2

r
D2ðs0; s1Þ lim

r�!0

k�ijðF�; s0; s1; r�Þffiffiffiffi
r�

p � lim
r!0

kijðF; s0; s1; rÞffiffi
r

p
� �

ð17Þ

In the first limit here, k�ijðF�; s0; s1; r�Þ may be replaced by k�ijðF�; s0; s1; rÞ since the error thus introduced on
the position of the point of application of the forces is of second order in the perturbation; thus

dW ijðs0; s1Þ ¼ p

ffiffiffi
p
2

r
D2ðs0; s1Þ lim

r!0

k�ijðF�; s0; s1; rÞ � kijðF; s0; s1; rÞffiffi
r

p ð18Þ

Using now linearity with respect to the loading and Eq. (7) to express the k�ijðF�; s0; s1; rÞ in terms of the
kijðF�; s0; s1; rÞ, one gets after some manipulations

dW ijðs0; s1Þ ¼ p

ffiffiffi
p
2

r
D2ðs0; s1Þ lim

r!0

kijðF�; s0; s1; rÞ � kijðF; s0; s1; rÞffiffi
r

p

þ dj3W i2ðs0; s1Þ � dj2W i3ðs0; s1Þ
� �

da0ðs1Þ ð19Þ

Inserting Eq. (16) in this result and taking the limit r! 0 in the same way as in Section 2.3, using in par-
ticular equation (11), one then obtains

dWðs0; s1Þ ¼ N �Wðs0; s1Þda0ðs0Þ �Wðs0; s1Þ �Nda0ðs1Þ

þ D2ðs0; s1Þ
2p

PV

Z
F

Wðs0; sÞ �Wðs; s1Þ
D2ðs0; sÞD2ðs1; sÞ

daðsÞds ð20Þ

In order to finally get rid of the hypothesis da(s0) = da(s1) = 0, we use another trick of Rice (1989). This
trick consists of now decomposing an arbitrary motion of the crack front, defined by the normal advance
da(s), into a motion corresponding to some advance d**a(s) and bringing points s0 and s1 to their correct
final positions while leaving the kernels unchanged, plus a motion corresponding to the advance
da(s) � d**a(s), which is zero at s0 and s1. More specifically, one can always find a combination of a trans-
latory motion, a rotation and a homothetical transformation bringing two distinct points s0, s1 from any
initial positions to any final positions. (This is obvious using a complex variable formalism and noting that
such transformations are of the form f(z) = az + b, where a and b are arbitrary complex parameters.) Such
a combination does leave the kernels unaffected because they are independent of the position of the crack in
its plane, its orientation and its size. Application of Eq. (20) to the second motion then yields the final
expression of the variation of the kernels under constant loading in the general case:

dWðs0; s1Þ ¼ N �Wðs0; s1Þ½da0ðs0Þ � d��a0ðs0Þ� �Wðs0; s1Þ �N½da0ðs1Þ � d��a0ðs1Þ�

þ D2ðs0; s1Þ
2p

PV

Z
F

Wðs0; sÞ �Wðs; s1Þ
D2ðs0; sÞD2ðs1; sÞ

½daðsÞ � d��aðsÞ�ds ð21Þ

Note that quantities d**a
0(s0) and d**a

0(s1) here are nonzero, unlike quantity d*a
0(s0) in Eq. (15). The for-

mula for the component dW11(s0, s1) is identical to that derived by Rice (1989).

3. Numerical procedure

3.1. General hypotheses

Formula (15) provides the first-order variation dK(s0) of K(s0) arising from some small coplanar pertur-
bation of the crack front under conditions of constant prescribed loading, provided that the variation
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d*K(s0) of K(s0) for a translatory motion of the crack front is known. Such is notably the case for a loading
consisting of uniform stresses applied at infinity; indeed d*K(s0) � 0 then. Attention is focused on this case
in the sequel, and more specifically on shear loadings, since tensile ones have already been considered by
Lazarus (2003).

Crack propagation is assumed to be coplanar, which is reasonable (for the shear loadings envisaged) if it
is channeled along some weak planar layer. Such is the case for geological faults and certain cracks in com-
posite materials. Propagation is assumed to be governed by the following Paris-type law:

oa
ot

ðs; tÞ ¼ C½Gðs; tÞ�b=2 ð22Þ

In this expression oa(s, t)/ot denotes the normal velocity of the crack front and Gðs; tÞ the local energy re-
lease rate, related to the SIFs through Irwin�s formula

Gðs; tÞ ¼ KijKiðs; tÞKjðs; tÞ ð23Þ
Also, C and b are material parameters called the Paris constant and the Paris exponent, respectively. Paris�
law is adequate for sub-critical crack growth and fatigue, ‘‘t’’ being re-interpreted as ‘‘number of cycles’’
and ‘‘G’’ as ‘‘DG’’ in the latter case. Following a remark of Lazarus (2003), it may also be considered, in
the case of very large Paris exponent, as a kind of ‘‘regularization’’ of Griffith�s propagation law for brittle
fracture, just as, for instance, Norton�s viscoplastic flow rule may be considered as a ‘‘viscoplastic regular-
ization’’ of the Prandtl–Reuss plastic flow rule in the case of very large Norton exponent.

3.2. Lazarus� numerical procedure and its adaptation to shear mode cracks

If K(s0) and W(s0, s1) are known for all points s0, s1 of some crack front, formula (15) (with d*K(s0) � 0)
and (21) provide their values on any nearby front. Iterating the process, one can calculate them numerically
for any arbitrarily deformed crack front. This is the common basis of Bower and Ortiz (1990)�s method for
computation of the evolution of tensile cracks, of Lazarus (2003)�s variant of this method, and of the pres-
ent extension to shear mode cracks.

Each simulation consists of two successive steps:

(1) Determination of the SIFs and kernels for the initial crack front considered. This is done using the
incremental procedure just sketched, starting from a ‘‘reference’’ penny-shaped crack, for which they
are known (see Section 3.3 below), and using a systematic automatic procedure to generate a sequence
of successive crack front shapes ending up with that desired.

(2) Determination of the subsequent propagation path. The procedure is basically the same. However
successive crack front shapes are no longer arbitrary but deduced sequentially from one another
by using the propagation law (22) in the following time-discretized form:

daðs; tiÞ ¼ damax

Gðs; tiÞ
GmaxðtiÞ

� �b=2

ð24Þ

The quantity damax here denotes the maximum crack advance imposed between consecutive steps, and
GmaxðtiÞ the maximum instantaneous value of the energy release rate along the crack front.5 (Inciden-
tally, Eq. (24) makes it clear why Paris� propagation law ‘‘simulates’’ that of Griffith in the case of
very large exponent b; indeed in such a case da(s, ti) is nonzero only if Gðs; tiÞ is equal to GmaxðtiÞ).

5 Some information is lost in Eq. (24) with respect to Eq. (22), namely the instants corresponding to the successive configurations of
the crack front. It is of course possible to calculate these instants, as was done by Lazarus (2003) in the case of tensile loadings, but we
shall concentrate here on the sole sequence of successive crack front configurations and forget about the corresponding instants.
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Details of the numerical procedure for shear loadings are quite similar to those of the procedure for ten-
sile loadings, as expounded by Lazarus (2003), and will not be repeated here. The only significant difference
is that the procedure for shear loadings is notably heavier, due to the inevitable coupling of modes 2 and 3.
Advantage is however taken of the symmetry property (5), which relates W23(s, s

0) to W32(s
0, s) and thus

allows to compute and store only W23.

3.3. Initialization: stress intensity factors and fundamental kernels for a penny-shaped crack

The SIFs and kernels for a penny-shaped crack are needed as initial conditions for the numerical pro-
cedure just explained. Fig. 3 shows a top view of such a crack, of radius a. (An elliptic crack is also repre-
sented for future purposes.) We consider a global right-handed frame Oxyz with origin O at the centre of
the crack and axis Oz perpendicular to its plane, together with the associated polar angle h in the Oxy

plane. The curvilinear abscissa s � ah along the crack front is oriented in the same way as the polar angle
h. Fig. 3 also shows the local left-handed basis of vectors ð~e1;~e2ðsÞ;~e3ðsÞÞ (on the elliptic crack front for leg-
ibility), as defined in Section 2.1.1. Note that with the convention adopted, the normal vectors~e1;~ez to the
crack plane are not equal but opposite, so that s~utðx; yÞ �~uðx; y; z ¼ 0�Þ �~uðx; y; z ¼ 0þÞ. The loading con-
sists of some uniform shear stress rxz � s imposed at infinity.

The SIFs and CFWFs for this geometry and loading were given by Tada et al. (1973) and Bueckner
(1987), respectively. With the sign conventions adopted, they read as follows:

K2ðhÞ ¼ � 4

2� m
s

ffiffiffi
a
p

r
cos h

K3ðhÞ ¼ 4ð1� mÞ
2� m

s

ffiffiffi
a
p

r
sin h

8>>>><
>>>>:

ð25Þ

W 22ðh1; h2Þ ¼
2 cosðh1 � h2Þ � 3m

2� m

W 33ðh1; h2Þ ¼
2ð1� mÞ cosðh1 � h2Þ þ 3m

2� m

W 23ðh1; h2Þ ¼
1

1� m
W 32ðh2; h1Þ ¼

2 sinðh1 � h2Þ
2� m

8>>>>>><
>>>>>>:

ð26Þ

Fig. 3. Top views of penny-shaped and elliptic cracks.
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4. Validation: calculation of shear mode stress intensity factors for an elliptic crack

In order to assess the accuracy of the numerical procedure proposed, we shall apply it to the calculation
of the SIFs along the front of some elliptic crack obtained through gradual deformation of an initially pen-
ny-shaped crack, and compare the results with the known analytic solution. This solution was provided by
Kassir and Sih (1966). For an elliptic crack of minor axis a, parallel to the Oy axis, and major axis b, par-
allel to the Ox axis (see Fig. 3), loaded through some uniform remote shear stress rxz � s, it reads as
follows:

K2ðhÞ ¼ � a2f ðk; mÞ cos h
ðsin2hþ a4cos2hÞ1=4ðsin2hþ a2cos2hÞ1=4

s
ffiffiffiffiffiffi
pa

p

K3ðhÞ ¼
ð1� mÞf ðk; mÞ sin h

ðsin2hþ a4cos2hÞ1=4ðsin2hþ a2cos2hÞ1=4
s

ffiffiffiffiffiffi
pa

p

8>>><
>>>:

ð27Þ

In these expressions h denotes the polar angle as above (not the angle of the classical parametric equations
of the ellipse, x ¼ b cos/, y ¼ a sin/); also, a, k and f(k,m) are defined by

a � a
b
; k �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
; f ðk; mÞ � k2

ðk2 � mÞEðkÞ þ mð1� k2ÞKðkÞ
ð28Þ

where K(k) and E(k) are the complete elliptic integrals of the first and second kinds (Gradsteyn and Ryzhik,
1965).

Fig. 4 shows theoretical and numerical results for elliptic cracks of various shapes, for a Poisson�s ratio
of 0.25. The origin of the curvilinear abscissa here is taken at the right endpoint of the major axis. In the
numerical calculations, each ellipse is discretized with 200 points, and the maximum stepsize for each incre-
ment of deformation of the crack front is damax = 2.5 · 10�3a.

Table 1 also displays the mean errors E2, E3 defined as

Ei �
1

L

Z L

0

ðKnum
i ðsÞ � K theor

i ðsÞÞ2

4s2a=p
ds

( )1=2

ði ¼ 2; 3Þ ð29Þ

where L is the perimeter of the ellipse.

(a) (b)

Fig. 4. Shear mode SIFs along the front of various elliptic cracks—Lines: analytical formulae (27); discrete points: numerical results.
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Fig. 4 and Table 1 exhibit a good agreement between numerical and theoretical results, even though the
errors of course increase with the eccentricity of the ellipse. Also, these errors are larger than those found by
Lazarus (2003) when performing similar calculations in mode 1. This can rationalized by the fact that more
calculations, introducing more inaccuracies, are required in mode 2 + 3: indeed for mode 1 two integrals
must be evaluated at each step (one for dK1 plus one for dW11), versus ten for mode 2 + 3 (two for each
dKi, i = 2,3, plus two for each dWij, (i, j) = (2,2), (3,3), (2,3)).

The errors in Fig. 4 and Table 1 are comparable to those made using the FEM for ellipses with large
eccentricities, and notably smaller for ellipses with moderate eccentricities. For instance Sukumar et al.
(2003), using the level set method coupled with the XFEM, reported a relative error of 2 · 10�2 in the cal-
culation of K1 for an elliptic crack with a�1 = 2. This is notably larger than the error reported in Table 1 for
mode 2 + 3, which is itself larger than that reported by Lazarus (2003) for mode 1.

5. Application to simulation of propagation of shear mode cracks

5.1. Propagation of initially circular, elliptic, rectangular and heart-shaped cracks in fatigue and brittle
fracture

We have computed the successive shapes of initially circular, elliptic, rectangular and heart-shaped
cracks obeying the propagation law (22). The value of Poisson�s ratio used was m = 0.25, and that of Paris�
exponent was b = 2 for fatigue and b = 50 (�+1) for brittle fracture. The simulations were stopped when
the crack reached a stable shape. Figs. 5 and 6 show the successive crack configurations obtained. The
quantity a here denotes a typical dimension of the initial crack shape, the precise definition of which de-
pends on this shape and is conspicuous on the figures.

The difference between successive crack fronts in fatigue and brittle fracture clearly appears in these fig-
ures. In fatigue, all points of the crack front move simultaneously. In brittle fracture, propagation occurs
only on some ‘‘active’’ part of the front. This active part starts from those points where the energy release
rate is initially maximum, and gradually extends over the crack front. The stable crack shape is reached as
soon as the whole front has become active.

The stable shape can be observed to be approximately elliptic in all cases; this question will be examined
in more detail in the next section. However, in the cases of initially rectangular and heart-shaped cracks,
which are numerically tricky because of the presence of angular points on the crack front, one can observe
some slight perturbation of the regular shape of the front in the vicinity of these points. This perturbation is
due to numerical errors, and therefore provides an appreciation of the accuracy of the method. It clearly
appears here that numerical errors accumulate and cannot be corrected for once they are made. This un-
happy feature of the numerical procedure of course arises from its incremental nature, and is in clear con-
trast with those of more classical procedures such as the FEM. It is a counterpart of the simplicity and
efficiency of the method.

It is also interesting to note that in the case of propagation of an initially heart-shaped crack in brittle
fracture (last diagram of Fig. 6), even when the crack front has reached its stable shape, it does not move
symmetrically with respect to its vertical axis of symmetry; the propagation rate is larger on its right part
than on its left one. The explanation of this apparent paradox is that in brittle fracture, the motion of the

Table 1
Mean errors made in the numerical calculation of shear mode SIFs for elliptic cracks

a�1 = 1.5 a�1 = 3 a�1 = 5

E2 5.7 · 10�4 8.7 · 10�3 4.6 · 10�2

E3 3.3 · 10�4 4.3 · 10�3 3.2 · 10�2
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crack front is not defined in a unique way, because the distribution of the energy release rate along the crack
front is insensitive to global translational motions of this front; the simulation thus ‘‘selects’’ some possible
solution among the very many envisageable, in which the left and right parts of the crack front happen to
propagate at different rates. The selection of this specific solution is governed by the initial crack front
shape, which is itself not symmetric. A subtle difference appears here between Griffith�s original propaga-
tion law and its ‘‘regularized’’ variant used here, that is Paris� law with a very large exponent: Griffith�s law
implies some bifurcation, but this bifurcation is erased by the regularization, just as bifurcations occurring
in plasticity are erased by viscoplastic regularizations of the flow rule.

5.2. Theoretical study of the stable shape of the crack front

The aim of this section is to show that the stable shape of the crack front is only approximately elliptic,
and also to derive an approximate, but accurate analytical formula for the ratio of the axes of this stable
shape based on the approximation that it is elliptic.

Let h # r0(h) denote the polar representation of the stable shape. Since this shape is preserved in time,
the polar representation of the crack front is of the form h # r(h, t) � k(t)r0(h) at each instant. For such a
propagation path, the normal velocity of the crack front is given by

oa
ot

ðh; tÞ � or
ot

ðh; tÞ~erðh; tÞ �~e2ðh; tÞ ¼ k0ðtÞ r20ðhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r00

2ðhÞ þ r20ðhÞ
q ð30Þ

Fig. 5. Successive crack fronts of shear mode cracks in fatigue (b = 2).
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4.2. Sélection de publications/Selected publications 147



Paris� propagation law (22) then implies that

Gðh; tÞ / r20ðhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r00

2ðhÞ þ r20ðhÞ
q

0
B@

1
CA

2=b

ð31Þ

Now, for an elliptic crack,

rðhÞ ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2hþ a2cos2h

p ð32Þ

and, by Eqs. (23) and (27)

EGðhÞ
ð1� m2Þs2pa ¼ ½f ðk; mÞ�2 a4cos2hþ ð1� mÞsin2h

ðsin2hþ a4cos2hÞ1=2ðsin2hþ a2cos2hÞ1=2
ð33Þ

Eq. (31), with r0(h) given by an expression of type (32), and Eq. (33) stipulate different types of dependence
of G upon h, whatever the value of Paris� exponent b. Hence the stable shape cannot be elliptic.

However, it has already been noted upon inspection of Figs. 5 and 6 that the elliptic shape is a good
approximation to the true stable shape. Accepting this approximation, one can derive an again approxi-
mate but accurate formula for the ratio of the axes of the stable shape. Indeed, since this ratio does not
vary in time,

ðoa=otÞðh ¼ p=2; tÞ
ðoa=otÞðh ¼ 0; tÞ ¼ a

b
ð34Þ

Fig. 6. Successive crack fronts of shear mode cracks in brittle fracture (b = 50).
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Also, Paris� propagation law (22) implies that

ðoa=otÞðh ¼ p=2; tÞ
ðoa=otÞðh ¼ 0; tÞ ¼ Gðh ¼ p=2; tÞ

Gðh ¼ 0; tÞ

� �b=2

ð35Þ

Now if the crack is nearly elliptic,

Gðh ¼ p=2Þ
Gðh ¼ 0Þ � ð1� mÞ b

a
ð36Þ

by Eq. (33). Combining Eqs. (34)–(36), one gets

a
b
� ð1� mÞ

b
bþ2 ð37Þ

The special case where b = +1 (brittle fracture) was considered by Gao (1988), using a first-order pertur-
bation approach based on the assumption of a nearly circular stable shape. He found that for this stable
shape,

a
b
� 1� 2A; A � mð2� mÞ

2ð2� 2m� m2Þ ð38Þ

The deviation from a circular shape in this formula is proportional to A and therefore to m. Thus the per-
turbation approach is valid only provided that Poisson�s ratio is much smaller than unity, and only zeroth-
and first-order terms in m must in fact be retained in formula (38).6 This formula then reduces to

a
b
� 1� m ð39Þ

and this agrees with Eq. (37) for b = +1.
Figs. 7 and 8 show the evolution of the ratio a/b as a function of Damax/a, Damax denoting the maximum

crack advance, for the various initial crack shapes envisaged, in both fatigue and brittle fracture. This ratio

Fig. 7. Evolution of the ratio of the axes of the crack in fatigue (b = 2).

6 This point seems to have been overlooked by Gao (1988).
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can be observed to tend toward some limit independent of the initial crack shape and in acceptable agree-
ment with the theoretical value provided by Eq. (37).

Table 2 allows to better appreciate the convergence of numerical values of a/b toward their theoretical
limit given by Eq. (37). It shows the relative gap between this theoretical limit value and that obtained
numerically after an maximum advance of 5a in the case of fatigue, and 4a in the case of brittle fracture.
It can be observed that convergence is slowest for the initially heart-shaped crack in both fatigue and brittle
fracture. The obvious explanation is that this is the initial crack shape that differs most markedly from the
stable, quasi-elliptic crack shape. Also, the agreement between numerical and theoretical limit values of a/b
is better for b = 2 than for b = 50. This is again no surprise because for very large values of b, the local
propagation rate is very sensitive to the local value of the energy release rate, and this enhances the impact
of numerical errors.

6. Summary and conclusion

This paper was devoted to numerical simulation of coplanar propagation (channeled along some weak
planar layer) of shear mode cracks with arbitrary contour. The crack was assumed to be embedded in some
infinite body loaded through uniform remote stresses. Propagation laws pertaining to both brittle fracture
and fatigue were envisaged.

Fig. 8. Evolution of the ratio of the axes of the crack in brittle fracture (b = 50).

Table 2
Values of

jða=bÞnum � ða=bÞlimj
ða=bÞlim

in fatigue and brittle fracture

b = 2 (%) b = 50 (%)

Circular 0.3 0.7
Elliptic 4 2.8
Rectangular 1.3 4.8
Heart-shaped 6.8 11.6
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We first derived formulae providing, to first order, the variations of the three stress intensity fac-
tors resulting from a small but otherwise arbitrary coplanar perturbation of the crack front, under
conditions of constant prescribed loading. The expressions of these variations consisted of integrals
along the crack front involving some matrix ‘‘kernel’’ linked to the crack face weight functions, plus some
‘‘local’’ terms. The first-order expressions of the variations of the components of this kernel were also
derived.

These results were then used to extend Lazarus (2003)�s simplified variant of Bower and Ortiz (1990,
1991, 1993)�s method for numerical simulation of coplanar propagation of mode 1 cracks to mixed-mode
(2 + 3) cracks. The propagation paths of initially circular, elliptic, rectangular and heart-shaped shear mode
cracks were studied in both fatigue and brittle fracture. These simulations evidenced the existence of some
almost elliptic stable crack front shape, toward which all the crack fronts considered were observed to
evolve. An approximate but accurate formula providing the ratio of the axes of this stable shape as a func-
tion of Poisson�s ratio and Paris� exponent was finally derived.

Appendix A. Justification of formula (11)

The aim of this appendix is to calculate the limit in the left-hand side of Eq. (11) of the text.
It is recalled that the crack advance da in this formula is assumed to be zero at the point s0. Without any

loss of generality, we can assume that s0 = 0. Also, we split the integration domain (�1,+1) into
[(�1,�g) [ (g,+1)] [ [�g,g], g being an arbitrary positive number. This number is fixed for the moment
but will go to zero at the end of the reasoning.

Consider the integral over (�1,�g) [ (g,+1) first. For any fixed s in this domain, the quantity
kjiðF; s; s0; rÞ=

ffiffi
r

p
� kjiðF; s; 0; rÞ=

ffiffi
r

p
has a finite limit for r ! 0 given by Eq. (3). Hence

lim
r!0

1ffiffi
r

p
Z
ð�1;�gÞ[ðg;þ1Þ

kjiðF; s; 0; rÞKmðsÞdaðsÞds ¼
1

p

ffiffiffi
2

p

r Z
ð�1;�gÞ[ðg;þ1Þ

W jiðs; 0Þ
D2ðs; 0Þ

KmðsÞdaðsÞds ðA:1Þ

Note that the term D2(s, 0) in the denominator here does not raise any problem of convergence of the inte-
gral since it never becomes zero in the domain (�1,�g) [ (g,+1).

Taking the limit of the integral over [�g,g] is more difficult because D2(s, 0) vanishes on this interval at
the point s0 = 0. Performing a first-order Taylor expansion of the quantity Km(s)da(s) around this point in
this integral, one gets

1ffiffi
r

p
Z g

�g
kjiðF; s; 0; rÞKmðsÞdaðsÞds

¼ Kmð0Þda0ð0Þ
Z g

�g

kjiðF; s; 0; rÞffiffi
r

p sdsþ
Z g

�g

kjiðF; s; 0; rÞffiffi
r

p Oðs2Þds ðA:2Þ

Now in the special cases where the CFWFs are known explicitly, that is for a semi-infinite crack (Gao and
Rice, 1986), a penny-shaped crack (Gao, 1988) and an external circular crack loaded in mode 1 (Gao and
Rice, 1987), the quantities kjiðF; s; 0; rÞ=

ffiffi
r

p
are bounded by a constant times s�2 for s ! 0. Making the

reasonable assumption that this is true in general, we conclude that the integrand in the second term of
the right-hand side of Eq. (A.2) is O(1) for s ! 0, so that this equation may be rewritten as

1ffiffi
r

p
Z g

�g
kjiðF; s; 0; rÞKmðsÞdaðsÞds ¼ Kmð0Þda0ð0Þ

Z g

�g

kjiðF; s; 0; rÞffiffi
r

p sdsþOðgÞ ðA:3Þ
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In order to calculate the limit of the integral in the right-hand side of Eq. (A.3), let us use the property of
positive homogeneity of degree �3/2 of the CFWFs and the change of variable s 0 � s/r; we thus getZ g

�g

kjiðF; s; 0; rÞffiffi
r

p sds ¼
Z g=r

�g=r
kjiðF=r; s0; 0; 1Þs0 ds0 ðA:4Þ

The kjiðF=r; s0; 0; 1Þ here represent the CFWFs at the observation point s 0, when unit point forces are ex-
erted on the crack faces at a distance of unity from the point s0 = 0 of the crack front F, this front being
‘‘dilated’’ by a factor of 1/r. In the limit r! 0, the curvature of this dilated front becomes zero, so that the
kjiðF=r; s0; 0; 1Þ become identical to the CFWFs of a half-plane crack. Also, the lower and upper bounds
±g/r of the integral go to ±1. Using the well-known expressions of the CFWFs for a half-plane crack
(Gao and Rice, 1986), one then gets

lim
r!0

Z g

�g

kjiðF; s; 0; rÞffiffi
r

p sds ¼
0 if ðj; iÞ ¼ ð2; 2Þ or ð3; 3Þffiffiffiffiffiffi

1

2p

r
4m

2� m
if ðj; iÞ ¼ ð2; 3Þ or ð3; 2Þ

8<
: ðA:5Þ

Combination of Eqs. (A.3) and (A.5) then yields

lim
r!0

1ffiffi
r

p
Z g

�g
kjiðF; s; 0; rÞKmðsÞdaðsÞds ¼

ffiffiffiffiffiffi
1

2p

r
4m

2� m
ðdj2di3 þ dj3di2ÞKmð0Þda0ð0Þ þOðgÞ ðA:6Þ

Combining Eqs. (A.1) and (A.6), and then letting g go to zero, one finally gets Eq. (11) of the text (with
s0 = 0).
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Abstract

One studies the evolution in time of the deformation of the front of a semi-infinite 3D interface crack propagating
quasistatically in an infinite heterogeneous elastic body. The fracture properties are assumed to be lower on the interface
than in the materials so that crack propagation is channelled along the interface, and to vary randomly within the crack
plane. The work is based on earlier formulae which provide the first-order change of the stress intensity factors along the
front of a semi-infinite interface crack arising from some small but otherwise arbitrary in-plane perturbation of this front.
The main object of study is the long-time behavior of various statistical measures of the deformation of the crack front.
Special attention is paid to the influences of the mismatch of elastic properties, the type of propagation law (fatigue or
brittle fracture) and the stable or unstable character of 2D crack propagation (depending on the loading) upon the
development of this deformation.
r 2007 Elsevier Ltd. All rights reserved.

Keywords: Crack mechanics; Inhomogeneous material; Asymptotic analysis; 3D interface crack

1. Introduction

Three-dimensional interfacial fracture mechanics is not an easy subject, and the literature devoted to this
topic is still very scarce. The first contributions in this field were due to Willis (1971, 1972) and contained
solutions for internal and external circular interface cracks subjected to polynomial (not necessarily
axisymmetric) loads. Then almost 30 years elapsed before Lazarus and Leblond (1998a, b) considered the
problem of small coplanar perturbation of the front of a semi-infinite interface crack.

Lazarus and Leblond (1998a) first analyzed the variation of the stress intensity factors (SIFs) along the front
of such a crack. Their method of solution was, in Bueckner’s (1987) terminology, ‘‘special’’ rather than
‘‘general’’ since it did not yield the full solution of the elasticity problem implied but concentrated on the sole
distribution of the SIFs along the crack front, at the expense of completeness but with the advantage of
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(relative) simplicity and elegance. This method basically stood as an extension of that devised in the work of
Rice (1985), and used there and in the work of Gao and Rice (1986) to analyze the same problem but for an
ordinary crack in an elastically homogeneous medium. The basis of Rice’s (1985) method was a reformulation
of Bueckner’s weight function theory; Bueckner’s 3D weight functions for a semi-infinite ordinary crack in an
infinite body have been known for a long time, and this allowed Rice (1985) and Gao and Rice (1986) to derive
explicit formulae for the perturbation of the SIFs for such a crack. In contrast, the 3D weight functions for a
semi-infinite interface crack in an infinite body were unknown in 1998, and this prevented Lazarus and
Leblond (1998a) from deriving similar fully explicit formulae for this type of crack. They nevertheless
succeeded in establishing formulae containing only five unknown constants gþ, g", gIII , gz, g depending on the
elastic properties of the materials, thus reducing the problem to the evaluation of these constants.

Lazarus and Leblond (1998b) then tried to calculate the ‘‘g’’ constants, with mitigated success. The method
they used was similar to that already employed by Leblond et al. (1996) to evaluate the 3D weight function of
a tensile tunnel-crack embedded in an infinite body. The basic idea was to apply the formulae established
previously to special motions of the crack front preserving its shape while modifying its position and
orientation, namely translatory motions and rotations. The output of this procedure consisted of differential
equations on the Fourier transforms of the weight functions in the direction of the crack front which, in
theory, allowed to evaluate these functions, together with the ‘‘g’’ constants. Unfortunately, these differential
equations were too complex to be solvable analytically in general. As a consequence, analytical expressions of
the weight functions and the ‘‘g’’ constants could be found only for small values of the ‘‘bielastic constant’’ !,
to first order in this constant. For arbitrary values of !, the weight functions and the ‘‘g’’ constants could only
be calculated numerically.

A few years later, the problem of the semi-infinite interface crack with a slightly wavy front was re-
investigated completely independently by Bercial-Velez et al. (2005), using some techniques devised by Willis
(1971, 1972), Willis and Movchan (1995) and Antipov (1999). Their elaborate method of solution was
‘‘general’’ in Bueckner’s (1987) terminology since it yielded, in principle, the full solution of the elasticity
problem implied, and in particular did not involve any unknown quantities analogous to Lazarus and
Leblond’s ‘‘g’’ constants. Unfortunately the format in which the solution was expressed was not very explicit
and did not allow for a comparison with Lazarus and Leblond’s (1998a, b) results.

Very recently, the problem was again revisited by Piccolroaz et al. (2007) with the idea of filling this gap.
The new work was inspired by that of Bercial-Velez et al. (2005), but rather than concentrating again on the
perturbed crack problem, Piccolroaz et al. directly calculated the 3D weight functions of a semi-infinite
interface crack. The formulae they obtained were sufficiently explicit to yield the exact analytic expressions of
all ‘‘g’’ constants, for arbitrary values of the bielastic constant !. Detailed comparison with the numerical
values of these constants obtained by Lazarus and Leblond (1998b) revealed an excellent agreement, thus
validating the results obtained in both works.

It is therefore now possible to supplement Lazarus and Leblond’s (1998a) formulae for the SIFs of a slightly
perturbed semi-infinite interface crack with Piccolroaz et al.’s (2007) expressions of the ‘‘g’’ constants
appearing in these formulae. One thus gets fully explicit, analytic formulae for these SIFs, which be called the
LLPMM formulae1 in the sequel.

The aim of the present paper is to apply the LLPMM formulae to the study of the evolution in time of the
deformation of the front of a semi-infinite interface crack propagating quasistatically in a medium whose
fracture properties are random functions of position. These properties will be assumed to be lower on the
interface than in the materials, thereby channelling crack propagation along the interface. Two types of
propagation laws will be envisaged: fatigue governed by a Paris-type law and brittle fracture governed by a
Griffith-type law. Several types of loadings will also be considered.

This work comes as a natural complement to a number of papers published in the past 15 years, which
were devoted to similar studies of the deformation of the front of a crack propagating in a material
with spatially variable fracture properties, but with different geometrical and mechanical hypotheses.
All of these papers bore potential applications in the context of propagation of geological faults and cracks
in composites.
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Perrin and Rice (1994) and Wolfries and Willis (1999) first considered the case of a semi-infinite mode I
crack propagating dynamically in a homogeneous elastic solid obeying a model scalar wave equation.
Propagation was assumed to be governed by some Griffith-type law with a spatially variable fracture
toughness. Using a previous work of Rice et al. (1994), Perrin and Rice (1994) studied several statistical
measures of the deformation of the crack front. These measures were found to grow without bound at a
moderate rate proportional to the logarithm of time. The emphasis of Wolfries and Willis’s (1999) subsequent
work was on the effect of the ‘‘next’’ term (proportional to the square root of the distance to the crack front) in
the expansion of the tensile stress ahead of the crack front, which had been disregarded in the previous work.
The conclusion was that this term has a major influence upon the rate of development of the ‘‘wavyness’’ of
the crack front.

Perrin and Rice’s (1994) work was also extended to true elastic solids obeying the vectorial equations of
elastodynamics by Morrissey and Rice (1998, 2000), using Willis and Movchan’s (1995) recent discovery of the
exact expression of the 3D mode I dynamic weight function for a semi-infinite crack. They found that the
deformation of the crack front increased proportionally to time. This implied a larger rate of growth of this
deformation for the true equations of elastodynamics than for the model scalar equation, which was
interpreted as being due to the existence of persistent ‘‘crack front waves’’.

The same problem but for quasistatic crack propagation was studied by Schmittbuhl et al. (1995) and
Katzav and Adda-Bedia (2006), using some results of Rice (1985). The focus of these two works was on self-
affine properties of the crack front.

One shortcoming of the semi-infinite crack geometry considered in all of these works was the lack of any
characteristic lengthscale. This was the motivation for Favier et al.’s (2006) study of the same problem but for
a tunnel-crack of finite width. This work was based on Leblond et al.’s (1996) earlier study of coplanar
perturbation of such a crack. For technical reasons, propagation had to be assumed to be quasistatic and the
problem could only be treated in the case of fatigue, using a Paris-type propagation law. The ‘‘wavyness’’ of
the crack front was found to increase much more quickly than in the case of a semi-infinite crack. This
phenomenon was interpreted as being due to an effect of instability of sinusoidal perturbations of the front of
large wavelength typical of such finite crack geometries.

In the present work, the focus will again be on the development of the ‘‘wavyness’’ of the crack front, with
special emphasis on the influences of the following factors:

# The mismatch of elastic properties between the two materials, for an interface crack. This factor was not
envisaged at all in previous studies which considered only ordinary cracks in elastically homogeneous
materials.

# The type of loading. We shall consider a typical class of loadings depending on a parameter whose sign will
govern the stable or unstable character of 2D crack propagation2 under constant loading. There will be a
strong connection here with the work of Wolfries and Willis (1999) in spite of the differences in the
hypotheses made.

# The type of propagation law (fatigue versus brittle fracture). Previous works did consider different
propagation laws, but there were other differences in the hypotheses made so that it was difficult to separate
the influences of the various factors.

The paper is organized as follows. Section 2 is devoted to preliminaries and notations for 3D interface cracks.
Section 3 provides the LLPMM formulae for the variation of the SIFs arising from some slight coplanar
perturbation of a semi-infinite interface crack. These formulae are used in Section 4 to determine the
distribution of the energy release rate along the perturbed front for the class of loadings considered. From
there, Section 5 studies the statistical evolution in time of the deformation of the front of a semi-infinite crack
propagating in fatigue along some heterogeneous interface. Section 6 re-considers the same problem but in
brittle fracture. Finally Section 7 provides a synthesis of the results obtained.
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2. Preliminaries and notations

The notations adopted are similar to those in the work of Hutchinson et al. (1987). We consider an infinite
heterogeneous body made of two isotropic elastic materials bonded together on their planar interface.
Materials ‘‘þ’’ and ‘‘"’’, with shear moduli mþ and m" and Poisson ratios nþ and n", occupy the half-spaces
y40 and yo0 respectively. The ‘‘bielastic constant’’ ! and the ‘‘equivalent Poisson ratio’’ n are defined by

! $
1

2p
ln
ð3" 4nþÞ=mþ þ 1=m"
ð3" 4n"Þ=m" þ 1=mþ

;

1" n $
ð1" nþÞ=mþ þ ð1" n"Þ=m"
ð1=mþ þ 1=m"Þ cosh

2ðp!Þ
:

8
>>><

>>>:
(1)

The definition of the bielastic constant is classical. That of the equivalent Poisson ratio, which was introduced
by Lazarus and Leblond (1998a), is less standard but will reveal very convenient for the problem considered
here. The notation n is logical in the sense that for a homogeneous body (mþ ¼ m", nþ ¼ n", ! ¼ 0), this
quantity is identical to the common Poisson ratios of the materials. Also, it is shown in Appendix A that it
satisfies the inequalities (which will be needed in the sequel)

0ono1
2, (2)

analogous to those satisfied by the individual Poisson ratios.
Now consider, within the interface, a crack with arbitrary smooth contour and some arbitrary point M on

this contour (Fig. 1). Define a frame Mxyz with origin at this point and axes Mx, My, Mz parallel to the
direction of crack propagation, perpendicular to the crack plane and coincident with the local tangent to the
crack front, respectively.

The SIFs at the point M are defined via the local expressions of the displacement discontinuity across the
crack faces and the stresses on the interface ahead of the crack front. The displacement discontinuity 1uU $
uþ " u" across the crack faces, in the planeMxy locally perpendicular to the crack front and near the pointM,
is given by the following asymptotic formulae:

1uy þ iuxUðxo0; z ¼ 0Þ(2ð1" nÞ
coshðp!Þ
1þ 2i!

1

mþ
þ

1

m"

! "
KðMÞ

ffiffiffiffiffiffi
jxj
2p

r
jxji!;

1uzUðxo0; z ¼ 0Þ(2
1

mþ
þ

1

m"

! "
KIII ðMÞ

ffiffiffiffiffiffi
jxj
2p

r
:

8
>>>><

>>>>:

(3)

In these expressions,

KðMÞ $ KI ðMÞ þ iKII ðMÞ (4)

is the local complex SIF (KI ðMÞ and KII ðMÞ are the local mode I and mode II SIFs), and KIII ðMÞ is the local
mode III SIF. The asymptotic expressions of the stress components syx, syy and syz on the interface ahead of
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Fig. 1. Planar interface crack with arbitrary contour in an infinite body.
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the crack front, in the plane Mxy and near the point M, are given by

ðsyy þ isyxÞðx40; y ¼ 0; z ¼ 0Þ(
KðMÞxi!ffiffiffiffiffiffiffiffi

2px
p ;

syzðx40; y ¼ 0; z ¼ 0Þ(
KIII ðMÞffiffiffiffiffiffiffiffi

2px
p :

8
>>><

>>>:
(5)

Finally the energy release rate GðMÞ at the point M is given by Irwin’s formula:

GðMÞ ¼
1

4

1

mþ
þ

1

m"

! "
fð1" nÞjKðMÞj2 þ ½KIII ðMÞ*2g. (6)

3. The LLPMM formulae

We now envisage, within some infinite heterogeneous elastic body, a semi-infinite interface crack lying in the
Ozx plane, with a straight front parallel to the Oz axis (Fig. 2). Let a denote the distance from the reference Oz
axis to the crack front. Let the crack be loaded through some arbitrary system of forces exerted anywhere
in the body and/or on the crack faces. This loading generates a distribution of SIFs KðMÞ $ KðzÞ $
KI ðzÞ þ iKII ðzÞ, KIII ðMÞ $ KIII ðzÞ along the crack front.

Consider first translatory motions of the crack front in the direction x under constant loading (Fig. 2). For
such motions, let dK

da ðzÞ $
dKI

da ðzÞ þ idKII

da ðzÞ and
dKIII

da ðzÞ denote the derivatives of the SIFs at the point z with
respect to the position of the front.

Consider now small, non-uniform motions of the crack front in the direction x under constant loading;
let daðzÞ denote the local distance from the original front to the new one at the point z (Fig. 3). Then, to first
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Fig. 3. Semi-infinite interface crack with slightly perturbed front.
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order in the perturbation, the variations of the SIFs dKðzÞ, dKIII ðzÞ are given by the following formulae
(Lazarus and Leblond, 1998a):

dKðzÞ ¼
dK

da
ðzÞdaðzÞ þ

1þ 2i!
8 coshðp!Þ

PV
Rþ1
"1

gþ
jz0 " zj2i!

Kðz0Þ þ g"Kðz0Þ
$ %

daðz0Þ " daðzÞ
ðz0 " zÞ2

dz0
&

þ
2gIII
1" n

FP
Rþ1
"1 sgnðz0 " zÞKIII ðz0Þ

daðz0Þ " daðzÞ
jz0 " zj2þi! dz0

'
;

dKIII ðzÞ ¼
dKIII

da
ðzÞdaðzÞ þ

g
4
PV

Rþ1
"1 KIII ðz0Þ

daðz0Þ " daðzÞ
ðz0 " zÞ2

dz0

þ
1" n
4

Re gzFP
Rþ1
"1 sgnðz0 " zÞKðz0Þ

daðz0Þ " daðzÞ
jz0 " zj2þi!

dz0
$ %

:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

(7)

In these expressions the symbols PV
R
and FP

R
denote the Cauchy principal value and Hadamard finite part

of the integral considered, respectively, and gþ, g", gIII , gz, g are quantities which depend only on the bielastic
constant ! and the equivalent Poisson ratio n. Note that for a translatory motion of the front
(daðzÞ $ Cst: $ da), dKðzÞ and dKIII ðzÞ reduce to dK

da ðzÞda and dKIII

da ðzÞda, as desired.
The values of the ‘‘g’’ constants, as provided by Piccolroaz et al. (2007), are

gþ ¼ "
4ffiffiffi
p

p
Gð1þ i!Þ

Gð1=2þ i!Þ
coshðp!Þ

coshðp!Þ " 1=ð1" nÞ
coshðp!Þ þ 1=ð1" nÞ

;

g" ¼
8

pð1þ 2i!Þ
cosh2ðp!Þ

coshðp!Þ þ 1=ð1" nÞ
;

gIII ¼ "
22"i!

ffiffiffi
p

p
!ð1þ i!Þ
1þ 2i!

Gð1=2" i!Þ
Gð1" i!Þ

cosh2ðp!Þ
coshðp!=2Þ½coshðp!Þ þ 1=ð1" nÞ*

;

gz ¼ "
1þ 2i!

ð1" nÞ coshðp!Þ
gIII ;

g ¼ "
2

p
coshðp!Þ " 3=ð1" nÞ
coshðp!Þ þ 1=ð1" nÞ

;

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

(8)

where the notation n introduced in Eq. (1)2 is used and G is the gamma function.

4. Distribution of the energy release rate along the crack front

4.1. Class of loadings considered

For simplicity, we shall only consider distributions of forces invariant in the direction z. For such
loadings and a straight crack front, the distributions of the SIFs and the energy release rate are uniform along
the front. Thus, if the fracture properties are uniform and the crack front is initially straight, it remains
straight at all instants. We shall then speak of 2D crack propagation (in the plane perpendicular to the
crack front). This kind of propagation is said to be ‘‘stable’’ or ‘‘unstable’’, under constant loading,
according to whether the energy release rate is a decreasing or an increasing function of the distance of
propagation.3

The loading being invariant in the direction z and the crack front being straight and located at the distance a
from the reference Oz axis, let the (uniform) SIFs be denoted KðaÞ and KIII ðaÞ, or simply K and KIII . Similarly,
let the (uniform) energy release rate be denoted GðaÞ or simply G. For definiteness, we introduce the extra
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assumption that KðaÞ and KIII ðaÞ vary according to the formulae

KðaÞ $ kaa"i!;

KIII ðaÞ $ kIIIa
a;

(

(9)

where k and kIII are constants independent of a and a some real exponent. Such dependences can be
achieved, for various values of the exponent a, through suitable distributions of forces exerted on the
crack faces:

# The value a ¼ "1
2 is obtained by exerting uniform line tractions +P on the lines x ¼ 0; y ¼ 0+ (Fig. 4).

Indeed the SIFs are then given by (Hutchinson et al., 1987)

KðaÞ ¼ ðPy þ iPxÞ coshðp!Þ
ffiffiffiffiffiffi
2

pa

r
a"i!;

KIII ðaÞ ¼ Pz

ffiffiffiffiffiffi
2

pa

r
:

8
>>><

>>>:
(10)

# The value a ¼ 1
2 is obtained by exerting uniform surface tractions +p on the regions 0oxoa; y ¼ 0+ of the

crack faces (Fig. 5). Indeed integration of formulae (10), immediately shows that the SIFs are then given by

KðaÞ ¼ 2ðpy þ ipxÞ
coshðp!Þ
1" 2i!

ffiffiffiffiffi
2a

p

r
a"i!;

KIII ðaÞ ¼ 2pz

ffiffiffiffiffi
2a

p

r
:

8
>>><

>>>:
(11)

# More generally, all values of a larger than "1
2 can be obtained by exerting surface tractions of the form

+pðxÞ ¼ +Cxa"1=2 on the regions 0oxoa; y ¼ 0+ of the crack faces. Indeed use of formulae (10) and the
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Fig. 4. Semi-infinite interface crack with uniform line tractions (the picture is 2D in the plane Oxy and the tractions are drawn parallel to
the direction y).
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Fig. 5. Semi-infinite interface crack with uniform surface tractions (the picture is 2D in the plane Oxy and the tractions are drawn parallel
to the direction y).
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change of variable u $ x=a then yields

KðaÞ ¼
R a
0 ðCy þ iCxÞxa"1=2 coshðp!Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pða" xÞ

r
ða" xÞ"i! dx

¼ ðCy þ iCxÞ coshðp!Þ
ffiffiffi
2

p

r
aa"i!

R 1
0 u

a"1=2ð1" uÞ"1=2"i! du;

KIII ðaÞ ¼
R a
0 Cz x

a"1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pða" xÞ

r
dx

¼ Cz

ffiffiffi
2

p

r
aa
R 1
0 u

a"1=2ð1" uÞ"1=2 du:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

(12)

The practical realization of the majority of loadings belonging to the class considered would obviously
be problematic, but this is of little importance since they only serve as typical examples. One advantage
of this class is that it encompasses loadings leading to stable propagation (for ao0) as well as unstable
propagation (for a40) of the crack. Note also that although the semi-infinite crack geometry considered
does not involve any characteristic lengthscale, such a lengthscale comes into play via the loading, as
clearly appears in Eq. (9) (except for a ¼ 0). The importance of introduction of some characteristic
lengthscale in studies of the development of the deformation of crack fronts has been underlined by
Leblond et al. (1996).

4.2. Calculation of the energy release rate

We shall use Fourier transforms of various functions in the direction z of the crack front. The Fourier
transform bfðkÞ of an arbitrary function fðzÞ is defined by

bfðkÞ $
Z þ1

"1
fðzÞ eikz dz 3 fðzÞ $

1

2p

Z þ1

"1

bfðkÞ e"ikz dk. (13)

A few double Fourier transforms, denoted with a tilde instead of a hat, will also be encountered.
As a prerequisite to the discussion of crack propagation, one must calculate the distribution of the local

energy release rate along the perturbed crack front for an arbitrary perturbation daðzÞ, "1ozoþ1. The
first task consists of taking the Fourier transforms of Eq. (7). The elements required to do so have been
provided by Lazarus and Leblond (1998a) and will not be repeated here. The final expressions of the Fourier
transforms cdKðkÞ, ddKIII ðkÞ of the perturbations of the SIFs dKðzÞ, dKIII ðzÞ are

cdKðkÞ ¼
dK

da
"

1þ 2i!
8 coshðp!Þ

gþ
sinhðp!Þ

!
Gð1" 2i!Þ

jkj1þ2i!

1þ 2i!
K þ pg"jkjK

$&

"
4gIII
1" n

coshðp!=2Þ
!

Gð1" i!Þ sgnðkÞ
jkj1þi!

1þ i!
KIII

%'
cdaðkÞ;

ddKIII ðkÞ ¼
dKIII

da
"

pg
4
jkjKIII

&

þi
1" n
2

coshðp!=2Þ
!

sgnðkÞ Im gzGð1" i!Þ
jkj1þi!

1þ i!
K

$ %'
cdaðkÞ:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

(14)

The next step consists of evaluating the Fourier transform cdGðkÞ of the perturbation of the energy release rate
dGðzÞ from Eqs. (6) and (14). The calculation is lengthy but straightforward. Using Eqs. (8) and (9) and
formulae (8.332.3) and (8.335.1) of Gradshteyn and Ryzhik (1980), one gets

cdGðkÞ
G

¼
2

a
½a" f ðkaÞ*cdaðkÞ, (15)

ARTICLE IN PRESS
N. Pindra et al. / J. Mech. Phys. Solids 56 (2008) 1269–12951276
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where G is recalled to denote the energy release rate for a straight front and f is the function defined by

f ðpÞ $ Ajpj þReðBjpj1þ2i!Þ; (16)

in this expression A and B are constants given by

A $ H"1 ð1" nÞ coshðp!Þjkj2 þ
1

2

3

1" n
" coshðp!Þ

$ %
k2III

& '
;

B $ H"1½1" ð1" nÞ coshðp!Þ*
Gð1=2" i!Þ
Gð1=2þ i!Þ

k
2

21þ2i!
;

8
>>>><

>>>>:

(17)

where,

H $ ½1þ ð1" nÞ coshðp!Þ* jkj2 þ
k2III
1" n

! "
. (18)

It is shown in Appendix B that the constants A and B defined by Eq. (17) satisfy the inequality (will be
needed in the sequel)

A4jBð1þ 2i!Þj ¼ jBj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4!2

p
. (19)

5. Deformation of the crack front in fatigue

5.1. Paris-type propagation law

Let aðz; tÞ denote the distance from the Oz axis to the perturbed crack front at location z along this axis
and time t. Also, let Gðz; tÞ denote the energy release rate at the point ðx ¼ aðz; tÞ; y ¼ 0; zÞ of the perturbed
crack front at time t. In this section, propagation of this front is assumed to be governed by the following
Paris-type law4:

qa
qt
ðz; tÞ ¼ Cðz; tÞ½Gðz; tÞ*N=2, (20)

where Cðz; tÞ (the Paris constant) and N (the Paris exponent) are material parameters. The inhomogeneity of
the interface is modelled by assuming the Paris constant to be a function of position, the Paris exponent being
considered as uniform for simplicity. The simple notation Cðz; tÞ in fact represents the value of the Paris
constant at the position ðx ¼ aðz; tÞ; y ¼ 0; zÞ; it is assumed to vary only slightly so that it can be written as

Cðz; tÞ $ C½1þ dcðz; tÞ*; jdcðz; tÞj51, (21)

where C represents its mean value and dcðz; tÞ its ‘‘normalized’’, dimensionless fluctuation.
The fluctuations of the position of the crack front and the energy release rate arising from the fluctuations of

the Paris constant are also naturally assumed to be small at each instant, so that

aðz; tÞ $ aðtÞ þ daðz; tÞ; jdaðz; tÞj5aðtÞ;
Gðz; tÞ $ GðtÞ þ dGðz; tÞ; jdGðz; tÞj5GðtÞ;

(

(22)

where the quantities aðtÞ and GðtÞ denote the mean position of the crack and the mean energy release rate at
time t.

5.2. Evolution of the perturbation of the crack front

The evolution of the perturbation daðz; tÞ of the crack front will now be obtained by combining the
expression (15) of the perturbed energy release rate and the propagation law (20).
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N. Pindra et al. / J. Mech. Phys. Solids 56 (2008) 1269–1295 1277

162 Mes publications/My publications



Expanding first the propagation law to first order in daðz; tÞ, dcðz; tÞ, dGðz; tÞ and identifying terms of order 0
and 1, one gets

da

dt
ðtÞ ¼ C½GðtÞ*N=2;

qda
qt

ðz; tÞ ¼ C½GðtÞ*N=2 N

2

dGðz; tÞ
GðtÞ

þ dcðz; tÞ
$ %

:

8
>>><

>>>:

Eliminating then dt between these expressions and considering henceforward all perturbations as functions of
the mean position aðtÞ $ a of the crack instead of time, one gets

qda
qa

ðz; aÞ ¼
N

2

dGðz; aÞ
GðaÞ

þ dcðz; aÞ.

Upon use of the Fourier decompositions of daðz; aÞ, dGðz; aÞ, dcðz; aÞ and Eq. (15), this yields the evolution
equation of the Fourier transform cdaðk; aÞ of the perturbation of the crack front:

qcda
qa

ðk; aÞ ¼
N

a
½a" f ðkaÞ*cdaðk; aÞ þ bdcðk; aÞ. (23)

Assuming the crack to be initially straight and integrating the linear, inhomogeneous, first-order differential
Eq. (23) by standard methods, one gets

cdaðk; aÞ ¼
Z a

a0

a

a0

( )Na cðkaÞ
cðka0Þ

$ %N
bdcðk; a0Þda0, (24)

where a0 denotes the initial value of a and c the function defined by

cðpÞ $ exp "
Z p

0
f ðp0Þ

dp0

p0

$ %
¼ exp "Ajpj "Re B

jpj1þ2i!

1þ 2i!

! "$ %
(25)

(where Eq. (16) has been used).

5.3. Statistical hypotheses

Using Eq. (24) for the perturbation of the crack front, we shall now study some features of this perturbation
for a statistical ensemble of possible ‘‘realizations’’ of the heterogeneous interface. Basic elements of the
mathematical description of such an ensemble are provided in Appendix C. These elements include precise
definitions of the mathematical expectation E½F ðzÞ* of any observable F ðzÞ defined on the crack front
(Eq. (C.1)) and of its two-point autocorrelation function E½F ðz1ÞF ðz2Þ* (Eq. (C.2)).

If the observable is statistically invariant in the direction z of the crack front, its two-point autocorrelation
function depends only on the relative distance between points z1 and z2:

E½F ðz1ÞF ðz2Þ* $ Fðz2 " z1Þ. (26)

The function F here is obviously even and is called the autocorrelation function of F. It is shown in
Appendix C that the following relations then hold:

gE½F1F2* ðk1; k2Þ ¼ E½bF ðk1ÞbF ðk2Þ* ¼ 2pdðk1 þ k2ÞcFðk2Þ, (27)

where d is Dirac’s function and gE½F 1F 2*ðk1; k2Þ the double Fourier transform of the function E½F ðz1ÞF ðz2Þ*.
The functioncF in Eq. (27)2 is called the power spectrum of the observable and is the Fourier transform of its
autocorrelation function.

We shall make the hypothesis of statistical homogeneity and isotropy of the distribution of the Paris
constant within the interface. This implies that its two-point autocorrelation function is of the form

E½dcðz1; a1Þdcðz2; a2Þ* $ Cðz2 " z1; a2 " a1Þ. (28)

The function Cðz2 " z1; a2 " a1Þ here depends only on the distance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2 " z1Þ2 þ ða2 " a1Þ2

q
, which notably

implies that it is even in its first argument. It is assumed to decrease down to zero over some characteristic
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distance b (the ‘‘fluctuation distance’’ of the Paris constant) much smaller than the characteristic lengthscale a
introduced by the loading.

Since the perturbation of the crack front arises from the fluctuations of the Paris constant, hypothesis (28)
implies that is also statistically invariant in the direction of this front, which means that

E½daðz1; aÞdaðz2; aÞ* $ Aðz2 " z1; aÞ. (29)

The function A here is obviously even in its first argument.

5.4. General formula for the power spectrum of the perturbation of the crack front

The first task is to derive the general expression, valid for all times, of the power spectrum cAðk; aÞ of the
perturbation of the crack front. By the expression (24) of cdaðk; aÞ and the definition (C.2) of the two-point
autocorrelation function,

E½cdaðk1; aÞcdaðk2; aÞ*

¼
Z a

a0

Z a

a0

a2

a1a2

! "Na cðk1aÞcðk2aÞ
cðk1a1Þcðk2a2Þ

$ %N
E½ bdcðk1; a1Þ bdcðk2; a2Þ*da1 da2

¼ 2pdðk1 þ k2Þ
Z a

a0

Z a

a0

a2

a1a2

! "Na ½cðk2aÞ*2

cðk2a1Þcðk2a2Þ

! "N

bCðk2; a2 " a1Þda1 da2.

Use has been made here of Eq. (27)2 for the observable dc. Also, since the right-hand side is nonzero only for
k1 þ k2 ¼ 0 and the function c defined by Eq. (25) is even, we have safely replaced cðk1aÞ=cðk1a1Þ by
cð"k2aÞ=cð"k2a1Þ ¼ cðk2aÞ=cðk2a1Þ.

On the other hand, Eq. (27)2 for the observable da implies that

E½cdaðk1; aÞcdaðk2; aÞ* ¼ 2pdðk1 þ k2ÞcAðk2; aÞ.

Comparison between these two expressions of E½cdaðk1; aÞcdaðk2; aÞ* reveals that

cAðk; aÞ ¼
Z a

a0

Z a

a0

a2

a1a2

! "Na ½cðkaÞ*2

cðka1Þcðka2Þ

! "N

bCðk; a2 " a1Þda1 da2, (30)

which is the expression looked for.

5.5. Asymptotic expression of the power spectrum of the perturbation of the crack front

We shall now derive the asymptotic expression of the power spectrum cAðk; aÞ of the perturbation of the
crack front for large times, that is for aba0. Just like in the works of Perrin and Rice (1994) and Favier et al.
(2006), the treatment will basically rely on some argument of domination of the diagonal a1 ¼ a2 in
integration over the square ½a0; a* , ½a0; a*.

Use of the change of variables defined by

r $ 1
2ða1 þ a2Þ; s $ a2 " a1 (31)

in Eq. (30) yields

cAðk; aÞ ¼
Z a

a0

Z smðrÞ

"smðrÞ

a2

r2 " s2=4

! "Na ½cðkaÞ*2

c½kðr" s=2Þ*c½kðrþ s=2Þ*

! "N

bCðk; sÞds

" #

dr, (32)

where "smðrÞ and smðrÞ are the minimum and maximum values of s allowed by the inequalities a0pa1 ¼
r" s=2pa, a0pa2 ¼ rþ s=2pa. Now the function bCðk; sÞ takes non-negligible values only when jsjtb. On
the other hand rXa0bb. Therefore, the integrand in Eq. (32) takes non-negligible values only when jsj5r
(domination of the diagonal). One may therefore safely replace r2 " s2=4, c½kðr" s=2Þ*, c½kðrþ s=2Þ* by r2,
cðkrÞ, cðkrÞ in the integral. Also, if aba0, smðrÞ(abb for almost every r 2 ½a0; a*, so that jsj5smðrÞ for those

ARTICLE IN PRESS
N. Pindra et al. / J. Mech. Phys. Solids 56 (2008) 1269–1295 1279

164 Mes publications/My publications



values of s for which the integrand is non-negligible; hence the integral over the interval ½"smðrÞ; smðrÞ* may
safely be extended to the entire real line. The integral of bCðk; sÞ then becomes identical to eCðk; 0Þ where eCis the
double Fourier transform of the function C, so that, Eq. (32) becomes

cAðk; aÞ(eCðk; 0Þa2Na½cðkaÞ*2NIðaÞ; IðaÞ $
Z a

a0

r"2Na ½cðkrÞ*"2N dr. (33)

It now becomes necessary to distinguish between the cases k ¼ 0 and ka0.

# Special case: k ¼ 0.
Then cðkrÞ ¼ cð0Þ ¼ 1 so that

IðaÞ ¼
a1"2Na " a1"2Na

0

1" 2Na
.

Therefore, there are two sub-cases according to whether the exponent 1" 2Na here is negative or
positive:

- If a4 1
2N,

cAð0; aÞ(
eCð0; 0Þ
2Na" 1

a0
a

a0

! "2Na

. (34)

- If ao 1
2N,

cAð0; aÞ(
eCð0; 0Þ
1" 2Na

a. (35)

# General case: ka0.
It is clear, by Eq. (25) and inequality (19), that the function cðpÞ goes to zero for jpj ! þ1 not less quickly
than expð"CjpjÞ where C $ A" jBj=j1þ 2i!j40. Therefore ½cðkrÞ*"2N goes to infinity for r ! þ1 not less
quickly than expð2NCjkjrÞ. Since r"2Na varies much less quickly, it may safely be replaced by a"2Na in the
expression (33)2 of IðaÞ which thus becomes

IðaÞ(a"2Na
Z a

a0

½cðkrÞ*"2N dr ¼ a"2Na
Z a

a0

exp 2NAjkjrþ 2NRe B
jkrj1þ2i!

1þ 2i!

! "$ %
dr.

Integration by parts of this integral now yields

IðaÞ(a"2Na expð2NAjkjaÞ
2NAjkj

exp 2NRe B
jkaj1þ2i!

1þ 2i!

! "$ %&

"
Z a

a0

expð2NAjkjrÞ
Ajkj

exp 2NRe B
jkrj1þ2i!

1þ 2i!

! "$ %
ReðBjkj1þ2i!r2i!Þdr

'
.

Replacing the term r2i! in the expression Reð. . .Þ here by a2i! since it varies much less quickly than the
exponentials, one gets

IðaÞ(a"2Na
exp 2NAjkjaþ 2NRe B

jkaj1þ2i!

1þ 2i!

! "$ %

2NAjkj
"

ReðBjkj1þ2i!a2i!Þ
Ajkj

IðaÞ,

which implies that

IðaÞ(a"2Na
exp 2NAjkjaþ 2NRe B

jkaj1þ2i!

1þ 2i!

! "$ %

2N½Ajkj þReðBjkj1þ2i!a2i!Þ*
¼

a"2Na½cðkaÞ*"2N

2Njkj½AþReðBjkaj2i!Þ*
.
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Insertion of this result into Eq. (33)1 finally yields

cAðk; aÞ(
eCðk; 0Þ

2Njkj½AþReðBjkaj2i!Þ*
; ðka0Þ. (36)

Note that the denominator here does not vanish, since AþReðBjkaj2i!ÞXA" jBj40 by inequality (19).

Eqs. (34)and (35) show that in the limit of large times, cAð0; aÞ goes to infinity in all cases; the larger the
value of a, the quicker the divergence. In contrast, Eq. (36) shows that for ka0, cAðk; aÞ asymptotically
oscillates indefinitely between finite values (except if ! ¼ 0, in which case it tends toward a constant), and
therefore remains bounded. This means that Fourier components of the perturbation of the crack front with
small wavenumbers (large wavelengths) gradually develop in time at the expense of Fourier components with
large wavenumbers (small wavelengths); the higher the value of a, the larger the effect. This phenomenon
will be referred to as the gradual selection of Fourier components of the perturbation of large wavelength in
the sequel.

5.6. Comments

Some useful qualitative understanding of the phenomenon just evidenced can be gained by considering the
evolution Eq. (23) of cdaðk; aÞ.

# Assume first that 2D crack propagation is unstable, that is, a40.
The function f defined by Eq. (16) is even and its derivative is given, for positive values of its argument, by
f 0ðpÞ ¼ AþRe½Bð1þ 2i!Þp2i!*XA" jBð1þ 2i!Þj40 by inequality (19). Therefore f is an increasing function
over the interval ½0;þ1Þ. Also, f ð0Þ ¼ 0 and limp!þ1 f ðpÞ ¼ þ1 since f 0 is bounded from below by a
positive constant. Therefore the equation f ðpÞ ¼ a has a unique solution p0 over the interval ð0;þ1Þ.5 The
quantity a" f ðkaÞ is positive for jkjop0=a and negative for jkj4p0=a. In the first case, that is if the
wavelength l $ 2p=jkj is larger than l0 $ 2pa=p0, the Fourier component cdaðk; aÞ tends to ‘‘explode’’
because of the term N

a ½a" f ðkaÞ*cdaðk; aÞ in its evolution equation (23). In the second case, that is if l is
smaller than l0, this term tends to reduce the value of cdaðk; aÞ, which therefore remains bounded. In other
words, there is a effect of unstable growth of Fourier components of the perturbation of wavelength greater
than the ‘‘critical’’ wavelength l0.
However, the picture is made a bit more complex by the fact that for any given ka0, the wavelength l is
fixed and finite, and thus always ultimately becomes smaller than l0 which increases proportionally to a.
The implication is that if ka0, unstable growth of cdaðk; aÞ always stops after a certain time. This is why
cdaðk; aÞ diverges only for k ¼ 0.

# Assume now that 2D crack propagation is stable, that is, ao0.
Then the equation f ðpÞ ¼ a has no solution. The quantity a" f ðkaÞ is negative for all values of k, and does
not generate any dramatic ‘‘explosion’’ of cdaðk; aÞ. In other words, there is no effect of unstable growth of
Fourier components of the perturbation of wavelength greater than the critical wavelength, because such a
critical wavelength no longer exists. However the phenomenon of gradual selection of Fourier components
of large wavelength is still present, although less spectacular. Indeed the term N

a ½a" f ðkaÞ*cdaðk; aÞ in
Eq. (23) tends to reduce the value of cdaðk; aÞ, and the effect is maximum for large jkj (small l) since
a" f ðkaÞ goes to "1 then; hence Fourier components of the perturbation of small wavelength are more
attenuated in time than components of large wavelength.

The conclusion is that the selection of Fourier components of the perturbation of large wavelength occurs for
all values of the coefficient a characterizing the stability or instability of 2D crack propagation. However it is
more dramatic in the unstable case, because it is enhanced then by an effect of ‘‘explosion’’ of Fourier
components of wavelength greater than some critical value proportional to the characteristic lengthscale a.
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Similar phenomena have been reported at least twice in the literature. Favier et al. (2006) recently performed
a similar study of the deformation of the front of a tensile tunnel-crack propagating in some elastically
homogeneous medium with random fracture properties. This study evidenced both gradual selection of
Fourier components of the perturbation of large wavelength and unstable development of components of
wavelength greater than some critical value. However, a single loading consisting of uniform stresses at infinity
was considered; the value of a, namely 1

2 (implying unstable 2D crack propagation) was fixed, and this
precluded any study of the influence of this parameter.

There is also a strong connection with the work of Wolfries and Willis (1999), in spite of the fact that the
situation considered by these authors (dynamic crack propagation of an ordinary crack governed by a
Griffith-type law) was somewhat different from that studied here (quasistatic propagation of an interface
crack governed by a Paris-type law). Wolfries and Willis’s (1999) major conclusion was that the sign of the
quantityM appearing in the ‘‘next’’ term (proportional to the square root of the distance to the crack front) in
the expansion of the tensile stress ahead of the front had a paramount influence on the evolution of Fourier
components of the perturbation of large wavelength. This is in line with our own observations on the influence
of the exponent a, since for an ordinary mode I crack, as considered by Wolfries and Willis (1999), the
parameter M is directly related to the derivative dKI=da of the SIF for a uniform advance of the crack front6

and hence to the exponent a.
The strong influence of the sign of M or a, which governs the stable or unstable character of 2D crack

propagation, upon the possible ‘‘explosion’’ of Fourier components of the perturbation of sufficiently large
wavelength, obviously arises from the fact that when this wavelength goes to infinity, the perturbation
ultimately becomes uniform along the front so that the problem becomes 2D in the perpendicular plane.

In contrast, the fact that the gradual selection of Fourier components of the perturbation of large
wavelength has been found to occur for both the tensile tunnel-crack and the semi-infinite interface crack for
all values of a, even in the absence of dramatic ‘‘explosion’’ of such components, strongly suggests that it must
be a pretty general phenomenon. This conclusion is confirmed by the following qualitative reasoning.
Consider Fourier components of the perturbation of the crack front of small wavelength. For such
components, the front oscillates over distances much smaller than the characteristic lengthscales of the
geometry and the loading. Therefore, the distributions of the SIFs and the energy release rate along the
perturbed front, which govern the evolution in time of the Fourier component considered, are determined
by the local geometry of the front and do not depend much on the details of the far geometry and the
loading. A simple argument presented in Appendix D confirms that independently of the far geometry
and loading, for sinusoidal undulations of the crack front of short wavelength, the energy release rate is
larger at these points where the crack advance is minimum than at those points where it is maximum;
the smaller the wavelength, the larger the difference. The implication is that such undulations tend to
disappear in time at a rate which increases when the wavelength decreases, independently of the far geometry
and loading.

5.7. Asymptotic expression of the autocorrelation function of the perturbation

We shall now derive the asymptotic expression of the autocorrelation functionAðz; aÞ of the perturbation of
the crack front for large times. This will be done by taking the inverse Fourier transform of the power
spectrumcAðk; aÞ. Unfortunately it does not suffice here to simply replacecAðk; aÞ by its asymptotic expression
(36) for a ! þ1. Indeed the fact that this expression goes to infinity when k goes to 0 makes it clear that the
convergence ofcAðk; aÞ toward its asymptotic expression is non-uniform with respect to k. It is thus necessary
to come back to the original form (30) of cAðk; aÞ. Following then the same steps as at the beginning of
Section 5.5, based on the inequalities b5a05a, one gets

Aðz; aÞ(
1

2p

Z þ1

"1

eCðk; 0Þ e"ikz

Z a

a0

a

r

( )2Na cðkaÞ
cðkrÞ

$ %2N
dr

( )

dk.
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This expression is readily transformed, upon use of the change of variables defined by

u $
r

a
; p $ ka (37)

and change of the order of integration, into

Aðz; aÞ(
1

2p

Z 1

a0=a
u"2Na

Z þ1

"1

eC p

a
; 0

( )
e"ipz=a cðpÞ

cðpuÞ

$ %2N
dp

( )

du. (38)

Detailed inspection of the integral on u here reveals that both its lower and upper bounds can generate
divergent behaviors, depending on the value of a, in the limit a ! þ1. It is thus necessary to express Aðz; aÞ
in the form

Aðz; aÞ(J1ðaÞ þJ2ðaÞ, (39)

where7

J1ðaÞ $
1

2p
R 1=2
a0=a

u"2Na
Rþ1
"1

eC p

a
; 0

( )
e"ipz=a cðpÞ

cðpuÞ

$ %2N
dp

( )

du;

J2ðaÞ $
1

2p
R 1
1=2 u

"2Na
Rþ1
"1

eC p

a
; 0

( )
e"ipz=a cðpÞ

cðpuÞ

$ %2N
dp

( )

du;

8
>>>>><

>>>>>:

(40)

and to study the behavior of the integrals J1ðaÞ and J2ðaÞ separately.

# Study of the integral J1ðaÞ.
This integral may or may not, depending on the value of a, go to infinity in the limit a ! þ1 because
of its lower bound on u. Indeed, replacing eCðp=a; 0Þ by eCð0; 0Þ and e"ipz=a by unity in the limit
a ! þ1 and using the fact that the function cðpÞ is even, one gets

J1ðaÞ(
eCð0; 0Þ

p

Z 1=2

a0=a
u"2Na

Z þ1

0

cðpÞ
cðpuÞ

$ %2N
dp

( )

du.

There are again two cases here according to whether the exponent "2Na of u is larger or smaller than
"1:
- If a4 1

2N, considering the integral as a function of the small parameter x $ a0=a instead of a and
differentiating it, one gets

dJ1

dx
("

eCð0; 0Þ
p

x"2Na
Z þ1

0

cðpÞ
cðpxÞ

$ %2N
dp("

eCð0; 0Þ
p

x"2Na
Z þ1

0
½cðpÞ*2N dp

(since cð0Þ ¼ 1), which yields upon integration

J1ðaÞ(
eCð0; 0Þ

pð2Na" 1Þ
a

a0

! "2Na"1 Z þ1

0
½cðpÞ*2N dp. (41)

Therefore J1ðaÞ goes to infinity in this case.
- If ao 1

2N, J1ðaÞ goes to a finite limit:

J1ðaÞ !
eCð0; 0Þ

p

Z 1=2

0
u"2Na

Z þ1

0

cðpÞ
cðpuÞ

$ %2N
dp

( )

du. (42)

# Study of the integral J2ðaÞ.
We shall see, at the expense of a somewhat elaborate reasoning, that this integral goes to infinity in all
cases in the limit a ! þ1 because of its upper bound on u.
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One difficulty is that eCðp=a; 0Þ cannot simply be replaced by eCð0; 0Þ in Eq. (40)2. Indeed it is easy to check,
using the definition (25) of the function c, that what is obtained then is a divergent (infinite) integral on u,
because of the upper bound of unity. It becomes necessary here to account for the fact that it is the
decrease of the function eCðk; 0Þ down to zero at infinity which ensures the convergence of the integral on u
in Eq. (40)2. It will be assumed more precisely, for definiteness, that this function is of the form

eCðk; 0Þ $ eCð0; 0Þe"bjkj, (43)

where b is recalled to denote the ‘‘fluctuation distance’’ of the Paris constant. Inserting this expression into
Eq. (40)2 and using the fact that the function c is even, one gets

J2ðaÞ ¼
eCð0; 0Þ

p
Re

Z 1

1=2
u"2Na

Z þ1

0
e"Zð1þiyÞp cðpÞ

cðpuÞ

! "2N

dp

" #

du

( )

,

where

Z $
b

a
; y $

z

b
. (44)

Note that Z is a small parameter whereas y is fixed and finite. To study the singular behavior of this
integral in the limit Z ! 0þ due to the upper bound of unity on u, one may safely replace u"2Na by unity,
define v $ 1" u and expand cðpuÞ $ c½pð1" vÞ* to first order in v using the definition (25) of the
function c. This leads to

J2ðaÞ(
eCð0; 0Þ

p
Re

Z 1=2

0

Z þ1

0
e"Zð1þiyÞp exp½"2NvAp" 2NvReðBp1þ2i!Þ*dp

$ %
dv

( )

¼
eCð0; 0Þ
2pN

Re

Z þ1

0
e"Zð1þiyÞp1" exp½"NAp"N ReðBp1þ2i!Þ*

ApþReðBp1þ2i!Þ
dp

& '
.

Considering now J2ðaÞ as a function of the small parameter Z, differentiating it, and using the change of
variable q $ Zp, one gets

dJ2

dZ
(
eCð0; 0Þ
2pN

Re

Z þ1

0
ð1þ iyÞ e"ð1þiyÞqexp½"NAq=Z"N ReðBðq=ZÞ1þ2i!Þ* " 1

AþReðBðq=ZÞ2i!Þ
dq

Z

( )

.

The exponential in the ratio here can be discarded in the limit Z ! 0þ, so that

dJ2

dZ
("

eCð0; 0Þ
2pNZ

Re

Z þ1

0

ð1þ iyÞ e"ð1þiyÞq

AþReðBðq=ZÞ2i!Þ
dq

" #

. (45)

To study the behavior of the integral here in the limit Z ! 0þ, let us define the function (depending upon
the parameter y)

FyðlÞ $
Z þ1

0

ð1þ iyÞe"ð1þiyÞq

AþReðBe"2i!lq2i!Þ
dq. (46)

This function is periodic of period p=j!j. It may therefore be written in the form FyðlÞ $ F þfFyðlÞ where
F denotes its mean value and the functionfFyðlÞ is periodic with zero mean value. The calculation of F is
presented in Appendix E, and the result is

F ¼

1

AþReðBÞ
if ! ¼ 0;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 " jBj2

p if !a0:

8
>>><

>>>:
(47)

Note that F is real and independent of the parameter y. We also denote fFyðlÞ some indefinite integral of
the function fF yðlÞ. Since fFyðlÞ is periodic and its mean value is zero, fFyðlÞ is periodic.
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With these notations, Eq. (45) yields

dJ2

dZ
("

eCð0; 0Þ
2pNZ

Re½F yðln ZÞ*

) dJ2("
eCð0; 0Þ
2pN

fF þRe½fF yðln ZÞ*gdðln ZÞ

) J2ðaÞ( "
eCð0; 0Þ
2pN

fF ln ZþRe½fFyðln ZÞ*g þ Cst.

Since the function fFyðlÞ is periodic, the term Re½fFyðln ZÞ* here is bounded, like the constant, and
therefore both are negligible compared to the term F ln Z which goes to infinity in the limit Z ! 0þ. It
follows that

J2ðaÞ( "
eCð0; 0Þ
2pN

F ln
b

a

! "
(
eCð0; 0Þ
2pN

F ln a. (48)

Combining Eqs. (39), (41), (42) and (48), we see that there are two cases:

# If a4 1
2N, the integral J2ðaÞ is negligible compared to the integral J1ðaÞ, so that

Aðz; aÞ(J1ðaÞ(
eCð0; 0Þ

pð2Na" 1Þ
a

a0

! "2Na"1 Z þ1

0
½cðpÞ*2N dp. (49)

# If ao 1
2N, the integral J1ðaÞ is negligible compared to the integral J2ðaÞ, so that

Aðz; aÞ(J2ðaÞ(
eCð0; 0Þ
2pN

F ln a, (50)

where the quantity F is recalled to be given by Eq. (47).

Several comments are in order here. The first observation is that the autocorrelation function Aðz; aÞ of
the perturbation of the crack front goes to infinity in the limit a ! þ1 in all cases; the larger the value of the
parameter a, the quicker the divergence. These effects obviously arise from similar features apparent in the
behavior of the Fourier componentcAð0; aÞ (see Eqs. (34) and (35)). The role of the other Fourier components
cAðk; aÞ, ka0, is less important since they remain bounded (see Eq. (36)).

It is also worth noting in this context that the decomposition of Aðz; aÞ into J1ðaÞ þJ2ðaÞ followed by
separate study of the behavior of these integrals in the limit a ! þ1, far from being a mere mathematical
procedure, possesses a nice physical interpretation. Indeed we have noted that the divergence of Aðz; aÞ in the
limit a ! þ1 arises from the lower bound of a0=a in the expression (40)1 of J1ðaÞ for large values of a, but
from the upper bound of unity in the expression (40)2 of J2ðaÞ for small values of a. This means that this
divergence is due to the far past (r ’ a0, see Eq. (37)1) if a is large, but from the near past (r ’ a) if a is small.
In other words, quite naturally, the influence of the far past upon the development of the perturbation of the
crack front is more important when 2D crack propagation is unstable (a large) than when it is stable (a small).

Another observation is that Aðz; aÞ becomes independent of z in the limit a ! þ1. Thus correlations
between values of da at different points of the crack front ultimately become independent of the distance
between these points, that is exactly as strong as if they coincided. The explanation lies in the gradual selection
of Fourier components of da of large wavelength evidenced in Section 5.6, which implies that long-range
correlations develop in time at the expense of short-range ones.

5.8. Asymptotic expression of the autocorrelation function of the slope of the perturbation

Although the autocorrelation function of da does provide informations about the geometric evolution of the
crack front, it is not a good measure of its ‘‘wavyness’’, because it depends on all Fourier components of da,
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including that corresponding to k ¼ 0 which represents a mere translatory motion of the front. It is thus
interesting to study the autocorrelation function of the ‘‘slope’’ qda=qz, which is independent of this particular
Fourier component.

By Eqs. (27)1 and (29),

E
qda
qz

ðz1; aÞ
qda
qz

ðz2; aÞ
$ %

¼
1

4p2

Z þ1

"1

Z þ1

"1
E
dqda
qz

ðk1; aÞ
dqda
qz

ðk2; aÞ

" #

e"ik1z1"ik2z2 dk1 dk2

¼ "
1

4p2

Z þ1

"1

Z þ1

"1
k1k2 E½cdaðk1; aÞcdaðk2; aÞ* e"ik1z1"ik2z2 dk1 dk2

¼
1

2p

Z þ1

"1
k2cAðk; aÞ e"ikðz2"z1Þ dk. ð51Þ

From this point, the reasoning is basically similar to that made in Section 5.7 for the autocorrela-
tion function of da, so that a mere sketch of the procedure will be sufficient. One first gets, in the limit
a ! þ1,

E
qda
qz

ðz1; aÞ
qda
qz

ðz2; aÞ
$ %

(K1ðaÞ þK2ðaÞ, (52)

where,

K1ðaÞ $
1

2pa2
R 1=2
a0=a

u"2Na
Rþ1
"1 p2 eC p

a
; 0

( )
e"ipðz2"z1Þ=a cðpÞ

cðpuÞ

$ %2N
dp

( )

du;

K2ðaÞ $
1

2pa2
R 1
1=2 u

"2Na
Rþ1
"1 p2 eC p

a
; 0

( )
e"ipðz2"z1Þ=a cðpÞ

cðpuÞ

$ %2N
dp

( )

du:

8
>>>>><

>>>>>:

(53)

Detailed study of the integral K1ðaÞ reveals that

# If a4 1
2N,

K1ðaÞ(
eCð0; 0Þ

pð2Na" 1Þ a20

a

a0

! "2Na"3 Z þ1

0
p2½cðpÞ*2N dp. (54)

# If ao 1
2N,

K1ðaÞ(
eCð0; 0Þ
pa2

Z 1=2

0
u"2Na

Z þ1

0
p2

cðpÞ
cðpuÞ

$ %2N
dp

( )

du. (55)

The study of the integral K2ðaÞ is again based on hypothesis (43) on the function eCðk; 0Þ. It is similar
to that of the integral J2ðaÞ except that no derivation with respect to the parameter Z $ b=a is needed.
The result is

K2ðaÞ(
eCð0; 0Þ
2pNb2

Re Gy
a

b

( )2i!$ %& '
; GyðzÞ $

Z þ1

0

qe"ð1þiyÞq

AþReðBzq2i!Þ
dq; y $

z2 " z1
b

. (56)

Combinating Eqs. (52), (54)–(56), one sees that there are again two cases:

# If a4 3
2N,

E
qda
qz

ðz1; aÞ
qda
qz

ðz2; aÞ
$ %

(K1ðaÞ(
eCð0; 0Þ

pð2Na" 1Þ a20

a

a0

! "2Na"3 Z þ1

0
p2½cðpÞ*2N dp. (57)
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# If ao 3
2N,

E
qda
qz

ðz1; aÞ
qda
qz

ðz2; aÞ
$ %

(K2ðaÞ(
eCð0; 0Þ
2pNb2

Re Gy
a

b

( )2i!$ %& '
. (58)

Note that the term RefGy½ða=bÞ2i!*g here is a periodic function of ln a of period p=j!j. It cannot be expressed
in a simple analytical form except if ! ¼ 0, in which case its value is 1

AþReðBÞ
1"y2

ð1þy2Þ2
¼ b2

AþReðBÞ
b2"ðz2"z1Þ2

½b2þðz2"z1Þ2*2
.

Thus, for large values of a, E½qdaqz ðz1; aÞ
qda
qz ðz2; aÞ* goes to infinity in the limit a ! þ1, but the divergence is less

quick than that of Aðz; aÞ (compare Eqs. (49) and (57)). For small values of a, E½qdaqz ðz1; aÞ
qda
qz ðz2; aÞ* oscillates

indefinitely between finite values for a ! þ1 (except if ! ¼ 0, in which case it tends toward a finite limit),
whereas Aðz; aÞ goes to infinity (compare Eqs. (50) and (58)). Thus E½qdaqz ðz1; aÞ

qda
qz ðz2; aÞ* evolves less quickly

than Aðz; aÞ in all cases. The obvious explanation is that as noted in Section 5.7, the divergence of Aðz; aÞ for
a ! þ1 essentially arises from that of the Fourier component cAð0; aÞ, and E½qdaqz ðz1; aÞ

qda
qz ðz2; aÞ* does not

depend upon this particular component.
Another observation is that in the limit a ! þ1, E½qdaqz ðz1; aÞ

qda
qz ðz2; aÞ* depends upon the distance z2 " z1

between the points of observation of the slope for small values of a, but not for large ones. The explanation is
that as noted in Section 5.7, the phenomenon responsible for the disappearance of the dependence upon this
distance is the selection of Fourier components of da of large wavelength, which is maximum for large
values of a, as was explained in Section 5.6. The fact that for small values of a, E½qdaqz ðz1; aÞ

qda
qz ðz2; aÞ*

depends on z2 " z1 whereas Aðz; aÞ is independent of z (compare Eqs. (50) and (58)) can be rationalized
in a similar way: Aðz; aÞ is more sensitive than E½qdaqz ðz1; aÞ

qda
qz ðz2; aÞ* to the selection of Fourier components

of da of large wavelength, since the former quantity depends upon the Fourier component cAð0; aÞ contrary
to the latter.

5.9. Asymptotic expression of the distance of correlation of the perturbation

The ‘‘distance of correlation’’ L of the perturbation of the crack front characterizes the distance over which
correlations between values of da at different points of this front can be felt. It can be given several definitions,
the simplest being

L $

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRþ1
"1

cAðk; aÞdk
Rþ1
"1 k2cAðk; aÞdk

vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að0; aÞ

Ef½ðqda=qzÞðz; aÞ*2g

s

. (59)

There are three cases here in the limit a ! þ1:

# If a4 3
2N, by Eqs. (49) and (57),

L(a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRþ1
0 ½cðpÞ*2N dp

Rþ1
0 p2½cðpÞ*2N dp

vuut . (60)

# If 1
2Noao 3

2N, by Eqs. (49) and (58),

L(b
a

a0

! "Na"1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N

2Na" 1

Rþ1
0 ½cðpÞ*2N dp

RefG0½ða=bÞ2i!*g

s

. (61)

# If ao 1
2N, by Eqs. (50) and (58),

L(b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ln a

RefG0½ða=bÞ2i!*g

s

. (62)
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In Eqs. (61) and (62), G0 is the function defined by Eq. (56)2 with y $ 0.
Eqs. (60)–(62) show that the correlation distance of the perturbation goes to infinity in the limit a ! þ1 in

all cases (with superimposed oscillations if !a0 and ao 3
2N); the larger the value of a, the quicker the

divergence. This again illustrates the selection of Fourier components of the perturbation of large wavelength
and the dependence of this phenomenon upon the value of a.

6. Deformation of the crack front in brittle fracture

6.1. Generalities

In this section, we assume that crack propagation is governed by Griffith’s law:

Gðz; aÞ ¼ Gcðz; aÞ $ Gc½1þ dgcðz; aÞ*; jdgcðz; aÞj51. (63)

In this equation the x-coordinate of the point of the crack front considered is denoted a as above, and dgcðz; aÞ
represents the ‘‘normalized’’, dimensionless fluctuation of the critical energy release rate Gcðz; aÞ. The
distribution of this fluctuation is assumed to be statistically homogeneous and isotropic within the interface, so
that its two-point autocorrelation function is given by

E½dgcðz1; aÞ dgcðz2; aÞ* $ Gcðz2 " z1Þ, (64)

where Gc is an even function. The fluctuations of the crack advance resulting from those of the critical energy
release rate are also statistically invariant in the direction of the crack front, so that Eq. (29) still applies.

Taking the Fourier transform of Eq. (63) and identifying terms of order 0 and 1 in the perturbation, one gets

GðaÞ ¼ Gc;
cdGðk; aÞ
GðaÞ

¼ cdgcðk; aÞ:

8
><

>:
(65)

Note that Eq. (65)1 implies that GðaÞ must remain invariable, which requires a continuous adjustment in time
of the quantities k and kIII of Eq. (9), that is of the loading. This condition being assumed to be fulfilled,
combination of Eqs. (15) and (65)2 yields

cdaðk; aÞ ¼ a

2

cdgcðk; aÞ
a" f ðkaÞ

) daðz; aÞ ¼
a

4p

Z þ1

"1

cdgcðk; aÞ
a" f ðkaÞ

e"ikz dk. (66)

Unfortunately, if a40, the expression (66)2 of daðz; aÞ is meaningless because the integral is divergent. Indeed,
referring to Section 5.6 above, one sees that for such values of a, the denominator has simple poles at the points
k ¼ +p0=a. This means that the problem is intractable in brittle fracture in the case of unstable 2D crack propagation.

The origin of the problem can be best understood by considering the special case of a uniform distribution
of the critical energy release rate within the interface. The condition of uniformity of G is then obviously met
by a straight front. But if a40, this is not the sole solution, because by Eq. (15), a sinusoidal perturbation of
the front having k ¼ +p0=a, that is of wavelength l0 $ 2pa=p0, generates a zero perturbation of G. The
implication is existence of a bifurcation. Worse, new bifurcations continuously appear, since the reasoning just
made applies at every instant. The consequence is that the problem is ill-posed, resulting in the divergent
integral of Eq. (66)2.

We shall therefore consider the sole case of stable 2D crack propagation (ao0) henceforward. Eq. (66) then
takes the form

cdaðk; aÞ ¼ "
a

2

cdgcðk; aÞ
jaj þ f ðkaÞ

) daðz; aÞ ¼ "
a

4p

Z þ1

"1

cdgcðk; aÞ
jaj þ f ðkaÞ

e"ikz dk, (67)

where the integral is convergent. It is important to note that there is no integral from a0 to a here, that is, the
values of cdaðk; aÞ and daðz; aÞ depend on the distribution of dgc at the sole position x ¼ a. In other words, the
shape of the crack front is entirely determined by the instantaneous distribution of the critical energy release
rate; there is no memory of its past distributions or the past shapes of the crack front. This characteristic
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feature of Griffith’s propagation law will considerably simplify the mathematical treatment and bear
important physical consequences, as will be seen.

6.2. Asymptotic expression of the power spectrum of the perturbation of the crack front

By the expression (67)1 of cdaðk; aÞ, the definition (C.2) of the two-point autocorrelation function, Eq. (27)2
for the observable dgc and the fact that the function f ðpÞ is even,

E½cdaðk1; aÞcdaðk2; aÞ* ¼
a2

4

E½cdgcðk1; aÞ cdgcðk2; aÞ*
½jaj þ f ðk1aÞ*½jaj þ f ðk2aÞ*

¼
a2

4

2pdðk1 þ k2ÞcGcðk2Þ
½jaj þ f ðk2aÞ*2

.

Comparison with Eq. (27)2 for the observable da then reveals that

cAðk; aÞ ¼
a2

4

cGcðkÞ
½jaj þ f ðkaÞ*2

. (68)

Now consider the limit a ! þ1. There are again two cases:

# If k ¼ 0, since f ð0Þ ¼ 0, Eq. (68) reduces to

cAð0; aÞ ¼
cGcð0Þ
4a2

a2. (69)

# If ka0, using Eq. (16) and the fact that the term jaj in Eq. (68) is negligible compared to the term f ðkaÞ
which goes to infinity, one gets

cAðk; aÞ(
cGcðkÞ

4k2½AþReðBjkaj2i!Þ*2
; ðka0Þ. (70)

Eqs. (69) and (70) show that in the limit of large times,cAð0; aÞ goes to infinity, whereascAðk; aÞ remains bounded
for ka0. These features are analogous to those found in Section 5.5 in the case of fatigue, and again symptomatic
of a gradual selection in time of Fourier components of the perturbation of the crack front of large wavelength.

However the divergence of cAð0; aÞ for a ! þ1 is quicker in brittle fracture than in fatigue (compare
Eqs. (35) and (69)), and similarly the asymptotic formula for cAðk; aÞ; ka0 goes to infinity in the limit k ! 0
more quickly in brittle fracture (compare Eqs. (36) and (70)).8 This means that the selection of Fourier
components of da of large wavelength is stronger in brittle fracture. The explanation lies in the presence, in
fatigue, of an effect of memory of previous configurations of the crack front, which is absent in brittle fracture, as
was noted above. Such a memory effect delays the elimination of Fourier components of da of short wavelength.

6.3. Asymptotic expression of the autocorrelation function of the perturbation

Fourier inversion of Eq. (68) and use of the change of variable p $ ka yields

Aðz; aÞ ¼
a

8p

Z þ1

"1

cGcðp=aÞ
jaj þ f ðpÞ½ *2

e"ipz=a dp.

It follows that in the limit a ! þ1,

Aðz; aÞ(
cGcð0Þ
4p

a

Z þ1

0

dp

½jaj þ ApþReðBp1þ2i!Þ*2
, (71)

where use has been made of Eq. (16).
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Comparison of Eqs. (50) and (71) shows that the divergence ofAðz; aÞ for a ! þ1 is quicker in brittle fracture
than in fatigue. This is obviously because it essentially arises from the divergence of the Fourier componentcAð0; aÞ
(other Fourier components remaining bounded), which was noted above to be stronger in brittle fracture.

6.4. Asymptotic expression of the autocorrelation function of the slope of the perturbation

By Eqs. (51) and (68),

E
qda
qz

ðz1; aÞ
qda
qz

ðz2; aÞ
$ %

¼
a2

8p

Z þ1

"1

cGcðkÞ
½jaj þ f ðkaÞ*2

k2 e"ikðz2"z1Þ dk.

Discarding the term jaj which becomes negligible compared to f ðkaÞ in the limit a ! þ1 and using Eq. (16),
one gets from there

E
qda
qz

ðz1; aÞ
qda
qz

ðz2; aÞ
$ %

(
1

8p

Z þ1

"1

cGcðkÞ
½AþReðBjkaj2i!Þ*2

e"ikðz2"z1Þ dk. (72)

This expression cannot be simplified further, except if ! ¼ 0, in which case it reduces to Gcðz2"z1Þ
4½AþReðBÞ*2.

Thus in the limit a ! þ1, E½qdaqz ðz1; aÞ
qda
qz ðz2; aÞ* oscillates indefinitely between finite values (except if ! ¼ 0,

in which case it tends toward a constant). Also, it depends upon the distance z2 " z1 between the points of
observation of the slope, unlike Aðz; aÞ which is independent of z. Both of these features are analogous to
those observed in fatigue for negative values of a (see Section 5.8).

6.5. Asymptotic expression of the distance of correlation of the perturbation

Using the definition (59) of the distance of correlation and Eqs. (71) and (72), one gets, in the limit
a ! þ1:

L(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a

Rþ1
0

bGcð0Þdp
½jaj þ ApþReðBp1þ2i!Þ*2

Rþ1
0

cGcðkÞdk
½AþReðBðkaÞ2i!Þ*2

vuuuuuut
. (73)

Thus L diverges for a ! þ1 more quickly than in fatigue (compare to Eq. (62)). This is again connected to
the fact that the selection of Fourier components of the perturbation of large wavelength is stronger in brittle
fracture than in fatigue.

7. Synthesis

The main findings of this work can be summarized as follows:

# General observations:
- Although the mismatch of elastic properties between the materials introduces oscillations in the long-
time behavior of many of the quantities studied, its overall role is relatively minor. It never changes the
basic, bounded or divergent character of these quantities.

- The problem can be treated in fatigue for all values of the parameter a characterizing the stability or
instability of 2D crack propagation. In brittle fracture, however, it can be treated only if 2D crack
propagation is stable (ao0), because some apparently intractable bifurcation problem arises in the case
of unstable 2D crack propagation (a40).

# In fatigue:
- There is an effect of gradual selection in time of Fourier components of the perturbation of the crack
front of large wavelength. The effect is present for all values of a, but is enhanced for a40 by a dramatic
‘‘explosion’’ of Fourier components of large wavelength.
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4.2. Sélection de publications/Selected publications 175



- The ‘‘wavyness’’ of the crack front, as measured by the autocorrelation function of the slope (derivative
of the perturbation in the direction of the front), grows in time without bound for large values of a and
tends toward a constant or oscillates for small ones.

- The distance of correlation of the perturbation of the crack front increases in time without bound in all
cases.

# In brittle fracture:
- The gradual selection of Fourier components of the perturbation of the crack front of large wavelength
is stronger than in fatigue. This is because in fatigue, it is mitigated by an effect of ‘‘memory’’ of previous
configurations of the crack front which delays the elimination of Fourier components of short
wavelength.

- The autocorrelation function of the slope tends toward a constant or oscillates in time, like in fatigue.
- The distance of correlation of the perturbation of the crack front diverges in time more quickly than in
fatigue.
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Appendix A. Inequalities on the equivalent Poisson ratio

The aim of this Appendix is to establish inequalities (2) of the text on the constant n (the ‘‘equivalent
Poisson ratio’’) defined by Eq. (1)2. Of course, the individual Poisson ratios nþ, nþ will be assumed to verify the
inequalities 0onþo1

2, 0on"o1
2.

Inequality (2)1 is quite trivial; indeed, since nþ and n" are positive, ð1" nþÞ=mþo1=mþ, ð1" n"Þ=m"o1=m"
so that, by Eq. (1)2,

1" no 1

cosh2ðp!Þ
p1 ) n40.

To establish inequality (2)2, one needs an explicit expression of coshðp!Þ. By Eq. (1)1,

ep! ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3" 4nþ

mþ
þ

1

m"
3" 4n"

m"
þ

1

mþ

vuuuuut ) coshðp!Þ ¼ 2

1" nþ
mþ

þ
1" n"
m"ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3" 4nþ
mþ

þ
1

m"

! "
3" 4n"

m"
þ

1

mþ

! "s .

It then follows from Eq. (1)2 that

1" n ¼
1

4

3" 4nþ
mþ

þ
1

m"

! "
3" 4n"

m"
þ

1

mþ

! "

1

mþ
þ

1

m"

! "
1" nþ
mþ

þ
1" n"
m"

! " .

Let us now write nþ and n" in the form

nþ $ 1
2 " aþ; n" $ 1

2 " a".
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Then aþ40, a"40 and

1" n ¼
1

4

1þ 4aþ
mþ

þ
1

m"

! "
1þ 4a"

m"
þ

1

mþ

! "

1

mþ
þ

1

m"

! "
1=2 þ aþ

mþ
þ

1=2 þ a"
m"

! "

¼
1

2

1

mþ
þ

1

m"
þ

4aþ
mþ

! "
1

mþ
þ

1

m"
þ

4a"
m"

! "

1

mþ
þ

1

m"

! "
1

mþ
þ

1

m"
þ

2aþ
mþ

þ
2a"
m"

! "

¼
1

2

1

mþ
þ

1

m"

! "2

þ 4
1

mþ
þ

1

m"

! "
aþ
mþ

þ
a"
m"

! "
þ 16

aþ
mþ

a"
m"

1

mþ
þ

1

m"

! "2

þ 2
1

mþ
þ

1

m"

! "
aþ
mþ

þ
a"
m"

! " .

The big ratio here is obviously larger than unity, so that 1" n41
2, which implies that no1

2.

Appendix B. Inequality on the constants A and B

The aim of this appendix is to establish inequality (19) of the text on the constants A and B defined by
Eqs. (17). The proof will rely on inequalities (2) on the equivalent Poisson ratio n.

The following preliminary remark is in order: since 1" no1=cosh2ðp!Þ, as noted at the beginning of
Appendix A, and since 1" n40 by inequality (2)2,

ð1" nÞ coshðp!Þpð1" nÞ cosh2ðp!Þo1.

Now since 1" n40, the quantity H defined by Eq. (18) is positive. Also, 3
1"n " coshðp!Þ ¼ 1

1"n½3" ð1" nÞ
coshðp!Þ*4 2

1"n40 by the preliminary remark. Eq. (17)1 then implies that

AXH"1jkj2ð1" nÞ coshðp!Þ.

Also, Eq. (17)2, combined with the preliminary remark, implies that

jBj ¼ H"1 jkj
2

2
½1" ð1" nÞ coshðp!Þ*.

It follows from there that

A" jBj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4!2

p
XH"1 jkj2 ð1" nÞ coshðp!Þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4!2

p

2

 !

"
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4!2

p

2

" #

.

Since ð1" nÞ coshðp!ÞX1" n41
2, this implies that

A" jBj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4!2

p
4H"1 jkj

2

2
1"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4!2

p

2

 !

.

The problem is reduced to proving that the term ð. . .Þ here is non-negative, i.e. that j!jp
ffiffiffi
3

p
=2.

To show that this is indeed true, write Eq. (1)1 defining ! in the form

e2p! ¼
3" 4nþ þ

mþ
m"

ð3" 4n"Þ
mþ
m"

þ 1
.

The denominator in the right-hand side here does not vanish since 3" 4n"40, so that this right-hand side is a
monotone function of the ratio mþ=m". Hence its extremal values are 3" 4nþ, for mþ=m" ¼ 0, and 1

3"4n"
, for
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mþ=m" ¼ þ1. Since 0onþo1
2 and 0on"o1=2, they are in the interval ð13; 3Þ. Hence 1

3oe2p!o3, which implies

that j!joln 3
2po

ffiffi
3

p

2 . This concludes the proof.

Appendix C. Statistical description of an ensemble of cracked media

We consider a statistical ensemble of possible ‘‘realizations’’ of a medium made of two elastic half-spaces
bonded together except on a semi-infinite interface crack. The elastic properties are the same for all
realizations, but the fracture properties of the interface and the geometry of the crack front vary from one
realization to another. To each realization is attached a specific real number o, which is a random variable
spanning some domain O of the real line. The density of probability of the variable o is denoted pðoÞ. The
probability that this variable lie in some neighborhood of o of measure do is thus pðoÞdo. The integral of
pðoÞ over O is unity by definition.

The mathematical expectation E½F ðzÞ* of any observable F ðz;oÞ defined on the crack front (depending upon
the specific realization considered) is defined as

E½F ðzÞ* $
Z

O
F ðz;oÞ pðoÞdo. (C.1)

Its two-point autocorrelation function E½F ðz1ÞF ðz2Þ* is similarly defined as

E½F ðz1ÞF ðz2Þ* $
Z

O
F ðz1;oÞF ðz2;oÞ pðoÞdo. (C.2)

Similar formulae hold for functions defined in Fourier’s space.
Let gE½F 1F 2* ðk1; k2Þ denote the double Fourier transform of the function E½F ðz1ÞF ðz2Þ*. Then

gE½F 1F2* ðk1; k2Þ $
Z þ1

"1

Z þ1

"1
E½F ðz1ÞF ðz2Þ* eik1z1 eik2z2 dz1 dz2

¼
Z þ1

"1

Z þ1

"1
eik1z1 eik2z2

Z

O
F ðz1;oÞF ðz2;oÞpðoÞdo

! "
dz1 dz2

¼
Z

O
pðoÞ

Z þ1

"1
F ðz1;oÞ eik1z1 dz1

! " Z þ1

"1
F ðz2;oÞ eik2z2 dz2

! "
do

¼
Z

O

bF ðk1;oÞ bF ðk2;oÞ pðoÞdo

¼ E½bF ðk1ÞbF ðk2Þ*.

This establishes Eq. (27)1 of the text.
Moreover, if the observable is statistically invariant in the direction of the crack front, in which case its two-

point autocorrelation function is of the form (26), one also gets

gE½F 1F2* ðk1; k2Þ ¼
Z þ1

"1
Fðz2 " z1Þeik1z1 eik2z2 dz1 dz2

¼
Z þ1

"1
Fðz2 " z1Þ eiðk1þk2Þz1 eik2ðz2"z1Þ dz1 dz2

¼
Z þ1

"1
2pdðk1 þ k2ÞFðzÞ eik2z dz

¼ 2pdðk1 þ k2ÞcFðk2Þ,

where d denotes Dirac’s function. This establishes Eq. (27)2.
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Appendix D. Qualitative analysis of the evolution in time of a sinusoidal perturbation of the crack front of short
wavelength

Fig. D.1 shows a picture of an interface crack with a sinusoidal front, as seen from above. The hatched
region represents the still unbroken part of the interface. The crack advance is maximum at point A and
minimum at point B.

Now draw small circles centered at points A and B. Because the sign of the curvature of the crack
front is different at these two points, the relative proportion of the interior of the circle occupied by the
unbroken interface is larger at point A than at point B. Thus relative motions of the crack faces are
more hindered near point A than near point B. The implication is that the SIFs, and consequently the energy
release rate, tend to be larger at point B than at point A. This phenomenon will be referred to as the
‘‘curvature effect’’.

The curvature effect is present whatever the value of the wavelength of the undulation. However,
when this wavelength is large, the crack front is only weakly curved so that the curvature effect is small and
bound to be overcome by other effects arising from the far geometry and loading. On the other hand,
when the wavelength of the undulation is small, the crack front is strongly curved so that the curvature
effect is important and must dominate over other ones. The implication is that for sinusoidal perturbations of
the crack front of short wavelength, these points of the front where the crack advance is minimum
will propagate more quickly than those where the crack advance is maximum. In other words, the
amplitude of the perturbation will decrease in time; the smaller the wavelength, the larger the difference
between the values of the energy release rate at points A and B, and therefore the faster the decay of the
perturbation.

Appendix E. Calculation of the mean value of the function FyðlÞ

The purpose of this appendix is to establish Eq. (47) of the text, which provides the mean value F of the
function F yðlÞ defined by Eq. (46).

# If ! ¼ 0, the function F yðlÞ is constant and therefore identical to F , and its value is
Z þ1

0

ð1þ iyÞe"ð1þiyÞq

AþReðBÞ
dq ¼

1

AþReðBÞ
.

This establishes Eq. (47)1.
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# If !a0, the function FyðlÞ is periodic of period p=j!j. Therefore,

F $
!
p

Z p=!

0

Z þ1

0

ð1þ iyÞ e"ð1þiyÞq

AþReðBq2i!e"2i!lÞ
dq

$ %
dl

¼
!
p

Z þ1

0
ð1þ iyÞ e"ð1þiyÞq

Z p=!

0

dl
AþReðBq2i!e"2i!lÞ

" #

dq.

Instead of integrating on l from 0 to p=! here, one may integrate from l0 to l0 þ p=! where l0 is an
arbitrary number, and then use the change of variable m $ l" l0. The integral on l is then replaced by

Z p=!

0

dm
AþReðBq2i!e"2i!l0e"2i!mÞ

.

Choose l0 in such a way that Bq2i!e"2i!l0 ¼ jBj. This integral then reduces to
Z p=!

0

dm
Aþ jBj cosð2!mÞ

,

the value of which is readily shown by standard methods to be p
!
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A2"jBj2

p . Inserting this value into the

preceding expression of F and performing the integration on q, one gets Eq. (47)2 of the text.
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Abstract – Contraction due to drying or cooling of materials yields various self-organized crack
patterns. The junctions between the cracks are complex and form in some conditions, star-shaped
cracks with mostly 90 degrees or 120 degrees intersection angles. Any physical explanation of
the selection of the angle is lacking. Here, we report directional drying of colloids experiments in
capillary tubes allowing to obtain a reversible transition between 90 degrees and 120 degrees. We
show that the transition is governed by a linear elastic fracture mechanics energy minimization
principle hence by only one dimensionless parameter: the ratio between the Griffith length (balance
between the energy needed to create cracks and to deform the material elastically) and the cell
size. We give a straightforward characterization technique to estimate Griffith’s length by changing
the cell geometry. As a bonus, we deduce from it the toughness of drying colloidal suspensions. We
underline that the method may be applied to a broad area of materials, from suspensions (colloids,
paints or mud) to engineering (ceramics, coatings) and geological materials (basalt, sediments).

Copyright c© EPLA, 2010

Introduction. – Giant’s Causeway [1,2], Port Arthur
tessellated pavement [3], Bimini Road [4], Mars poly-
gons [5,6], septarias [7,8], fracture networks in muds,
permafrost [9], paintings [10], gels [11], concrete [12],
coatings are some more or less known examples of
self-organized crack patterns that have intrigued people
throughout history. These patterns are formed by
constrained shrinking of the medium due, for instance, to
cooling or drying leading to fracture. The crack networks
form mostly 90 ◦ or 120 ◦ angles. Intersections at 90 ◦

angles form � or + shaped connections. � intersections
are present in fracture networks formed in thin films due
to sequential formation of the cracks [13]. The horizontal
bar of the � is formed first and the vertical one later.
On the other hand, + shaped connections are necessarily
mostly formed simultaneously, since a crack cannot cross
the free surface formed by another. They can be observed
on Bimini Road formed by contraction of sedimentary
rocks [4] or Port Arthur tessellated pavement (Eaglehawk
Neck, Tasmania) (fig. 1(a)) whose formation is poorly

(a)E-mail: veronique.lazarus@upmc.fr

understood but may be due to evaporation or cooling
shrinkage of sedimentary rocks [3]. Intersections at 120◦

can be observed during the cooling of basalt [2]. They
are formed simultaneously and appear as � star-shaped
connections. The Giant’s Causeway, forming at some
places a regular hexagonal tessellation (fig. 1(b)), is an
example of such connections.
Intersections formed simultaneously, that is � or +

intersections, can be reproduced experimentally in differ-
ent kinds of experiments. In experiments on drying of corn
starch [14–16] or on cooling of ice [17], the fracture network
is complex and forms a polygonal pattern with mainly
� intersections. + intersections have been observed in
directional-drying experiments of colloidal suspensions in
capillary tubes [18]. But to date, no experiments exist that
allow to control the transition from � to + intersections.
In the lack of such experiments, previous theoretical
predictions focused mainly on quasi-hexagonal crack
patterns, in particular on their scaling [19–21] or the
maturation of their shape [22–25]. In general, the hexag-
onal crack pattern is believed to be the solution of the
energy minimization principle as in foams [22,26].
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Fig. 1: (Colour on-line) Examples of polygonal patterns:
(a) Port Arthur rectangular tessellated pavement, Tasmania
(Courtesy of Wayne Bentley); (b) Giant’s Causeway hexagonal
tessellated pavement, Ireland (Courtesy of A. Davaille).

In this letter, we report directional-drying experiments
of colloidal suspensions in capillary tubes that allow to
control the transition from � to + intersections. We show
that the transition is governed by a Linear Elastic Fracture
Mechanics (LEFM) energy minimization principle [27],
hence by only one dimensionless parameter: the ratio
between an internal length, the Griffith length, depending
on the loading and the material, and an external length,
the diameter of the tube. A straightforward method to
estimate this parameter is given. This method is applied
to the determination of the toughness of drying colloids
(it seems that to date, only one such data exists [28]).

Experiments. – Directional-drying experiments are
performed in circular capillary tubes [18], of length 12 cm
and inner radius R= 0.5mm, with an aqueous colloidal

Fig. 2: The capillary tubes are filled with a colloidal suspen-
sion. The single bottom open edge allows for evaporation of the
solvent. Cracks appear following the compaction front (front of
the bottom-up growing gel). Their sectional shape depends on
the controlled drying rate: (a,c) + intersection (v≈ 64 nm s−1);
(b,d) � intersection (v≈ 31 nm s−1). (e,f) Pictures of the capil-
lary tube at different times showing the reversible transition
from � to + configuration: (e) the transition from � to +
observed when the drying rate changes from v≈ 31 nm s−1
to v≈ 64 nm s−1; (f) followed by the transition + to � observed
when the drying rate changes from v≈ 64 nm s−1 to v≈
31 nm s−1 again (on this picture, the first secondary cracks have
appeared explaining the finite observation scale).

suspension (cf. fig. 2); namely Ludox R© SM30 which is
made of 30% in mass of silica spheroids particles of average
diameter 2r= 7nm (data given by the manufacturer Grace
Davison). To ensure an unidirectional drying, the top
extremity of each tube is closed. To balance the loss
of water volume, tubes are only partially filled (≈ 7 cm
high) with suspension, so that the air trapped in the
tube expands during the drying. After filling, the tubes
dry in ambient condition for two hours, in order to form
a 1 cm plug at the drying extremity, and then put in
an airtight chamber. The drying rate is controlled either
by the relative humidity RH or by the temperature T
of the airtight chamber: changing T modifies the water
viscosity and, according to Darcy’s law, changes the water
velocity through the porous medium formed by the gel.
Experiments are performed at either 20 ◦C or 3 ◦C; the
humidity rate is fixed either smaller than 10% using
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From 90◦ to 120◦ shrinkage star-shaped cracks

desiccant or larger than 90% introducing water in the
chamber.
Above the plug, vertical cracks appear that

propagate following the compaction front (front of the
bottom-up growing gel). These cracks are organized
and clearly observable during a distance of propagation
smaller than 3 cm. After this distance, the propaga-
tion becomes disordered and secondary cracks appear
(fig. 2(f)). Experiments performed at T = 20 ◦C and
RH < 10% give rise to 4 crack surfaces (fig. 2(a)), while
drying at T = 20 ◦C and RH > 90% or at T = 3 ◦C and
RH < 10% gives 3 crack surfaces. Changing the drying
conditions changes the average velocity v of the crack
tips. The velocities of the cracks tips are measured using a
digital camera and are almost constant during the obser-
vation scale of the cracks (< 3 cm). Drying at T = 20 ◦C
and RH < 10% corresponds to v= 64± 10 nm s−1, while
drying at T = 20 ◦C and RH > 90% or at T = 3 ◦C and
RH < 10% gives v= 31± 5 nm s−1. Errors on the velocity
correspond to the scattering during one experiment and
to the reproducibility on typically 10 experiments. Due to
symmetry, the four cracks form a + connection. To check
this point, the capillary tubes have been cut, at the crack
tips, along a plane perpendicular to the tube axis (see
fig. 2(c)). Similar cuts of tubes (fig. 2(d)) for slow-drying
conditions (v≈ 31 nm s−1) reveal a � shaped connection
(fig. 2(b)). Changing the drying rate from v≈ 31 nm s−1
to v≈ 64 nm s−1 results in a reversible transition from +
to � shape connections (fig. 2(e),(f)).

Fracture mechanics model. – From a mechanical
point of view, the stationary behavior of the crack pattern
in the crack tips reference frame allows to approximate
the problem by using 2D plane strain linear elastic
fracture mechanics. The medium is assumed to evolve
quasistatically and to be subjected to a uniform isotropic
tensile prestress σ0 so that the Cauchy stress tensor σ is
linked to the strain tensor ε by

σ=
Eν

(1+ ν)(1− 2ν) trε1+
E

(1+ ν)
ε+σ01, (1)

where E denotes the Young modulus and ν the Pois-
son ratio. The prestress σ0 arises from the contraction of
the medium due to capillary pore pressure in poro-elastic
media during the drying process [29,30] and from thermal
contraction during the cooling process [31]. Furthermore,
our model assumes purely radial cracks, a perfect adhe-
sion of the gel on the walls and traction-free boundary
conditions on the cracks.
Then the local strain energy density U(n) depends

on the number n of radial cracks and is given as a
function of the strain components εij by (Einstein’s
implicit summation convention is employed for the indexes
i, j = 1, 2, 3, see [31])

U(n) =
Eν

2(1+ ν)(1− 2ν)ε
2
ii+

E

2(1+ ν)
εijεij +σ0εii. (2)

The total energy E(n), corresponding to the sum of the
local strain energy and the crack energy, per unit height
is

E(n) =
∫
S

U(n) dS+nGcR . (3)

It depends on n, R, E, σ0 and on Gc, which is the
energy needed to create one unit area of crack [32]. Let
us introduce the Griffith length Lc defined as

Lc =
GcE

σ20
. (4)

The dimensionless form [21] of E(n) reads
E(n)E
σ20R

2
=

∫
S̄

Ū(n)dS̄+n
Lc

R
, (5)

where S̄ is a the cross-sectional surface with R= 1 and
Ū(n) is the local strain energy density in the presence
of n radial cracks for a constraint elastic medium of
unitary prestress σ0 = 1, unitary Young’s modulus E = 1
and radius R= 1.
Now we search among the radial crack configurations,

the one that minimizes the total energy E(n) (some
theoretical considerations about the principle can be found

in [27,33]). Since the dimensionless form E(n)E
σ20R

2 of E(n)
depends only on n and Lc/R (5), this minimization yields
nc as a function of a single dimensionless parameter
Lc/R. Lc gives the ratio between the energy needed to
create cracks (∝Gc) and to deform the material elastically
(∝ σ20/E). The larger the critical energy release rate Gc
(i.e. large value of Lc), the fewer the cracks. Hence the
minimization of E in terms of n yields the critical number
nc as a decreasing function of Lc/R. This minimization is
done numerically. For each given value of n, the mechanical
stress and displacement fields, and then the strain energy
density

∫
S̄
Ū(n)dS̄ corresponding to E = 1, R= 1 and

σ0 = 1 are calculated by finite elements using CAST3M.
Minimization of (5) in terms of n yields nc as a function
of Lc
R
. This function is plotted in fig. 3 for the typical value

ν = 0.3. It is a stairlike curve since the number of cracks
can only be an integer.

Comparison with the experiments. – To compare
numerical predictions with experiments, one needs to
estimate Griffith’s length Lc. For this, we use directional-
drying experiments in flat (aspect ratio of w/e=20, w
being the width of the cell) Hele-Shaw cells [30,34], in the
same drying conditions as above (cf. inset of fig. 4). The
cells are 2 cm long for the 50, 100 and 200µm thick, and
4 cm long for the ones of thickness 300 and 400µm. The
cells are half-filled with the suspension. During drying,
a parallel array of cracks appears, with a crack spacing
l which depends on the cell thickness e and the drying
conditions. Applying again the minimization principle on
these crack patterns, we obtain by 2D finite-elements
computations, l= a

√
Lce with a= 3.1 for ν = 0.3. The

linear fit of l as a function of e gives the value of Lc
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Fig. 3: (Colour on-line) Number of radial cracks in a capillary
tube nc as a function of Griffith’s length Lc normalized with
the radius of the capillary tube R (n= 1 is not present for
symmetry reasons) for ν = 0.3. The values are obtained by
finite-element simulations: for each value Lc/R, the pattern
with nc radial cracks corresponds to the minimum of the total
energy, which is the sum of the strain energy and the crack
energy. Adhesion of the gel on the wall is supposed. The
Lc/R and cross-section view of the experiments realized with
Ludox R©SM30 are shown.

for each suspension and drying condition: Lc = 60± 18µm
for v≈ 31 nm s−1 and Lc = 34± 10µm for v≈ 64 nm s−1.
Now reporting the corresponding values of Lc/R (0.12 and
0.068, respectively) on fig. 3 allows for the determination
of nc (3 and 4, respectively.) for the tube experiments.
The predicted values are in good agreement with the
experiments.
Moreover, the model predicts, for a fixed length Lc,

that an increase of the radius R from 0.5mm to 0.75mm
is expected to give rise to 5 radial cracks in the case
v≈ 64 nm s−1: this transition is indeed observed (Lc/R=
0.045 in fig. 3). The model also works for experiments

on Ludox R© HS40 (2r≈ 12 nm). The values of Lc are
then Lc � 40 µm when drying rapidly and Lc � 45µm in
cases of slow drying, and yield by minimization nc = 4
(Lc/R= 0.08–0.09 in fig. 3) for both drying rates, that
is a + shape intersection for R� 0.5mm, in agreement
with the experiments. All these results allow to conclude
that the transition between � and + (and also 5 cracks)
intersections is governed by energy minimization hence by
the ratio of Griffith’s length to the size of the cell.

Discussion. – Our study demonstrates that Lc
depends on the drying rate. Several explanations can be
proposed. The first explanation is that the stress σ0 in
the area of the crack tips is dependent on v because of
diffusion effects [20]. The second explanation is that the
porous medium formed by agglomeration of particles on
the drying front has a different structure [35] as a function
of v that induces a change of the values of E and Gc. The
precise determination of the dependence of σ0, E and Gc

Fig. 4: (Colour on-line) Distance between cracks as a function of
the thickness of the Hele-Shaw cell for drying of Ludox R©SM30
at T = 3 ◦C (◦) and at T = 20 ◦C (�). Griffith’s length Lc
is obtained by interpolation (lines) with the solution of the
minimum-energy principle, that is l= a

√
Lce, a= 3.1 (obtained

by FE for ν = 0.3). The linear fit is done systematically, in
a least-square sense weighted by the error bars. The large
scattering in the data points is due to the high variations in the
crack spacing and the error bars correspond to the variability
of l over more than 10 experiments.

on the drying rate raises fundamental difficulties that are
behind the scope of this article. We emphasize that by
estimating directly Lc, we overcome these difficulties.
To simply derive Lc from Hele-Shaw experiments, the

dependence of σ0, that is Lc on the cell geometry, in
particular on e, linked to 3D diffusion effects [25,36], has
been neglected. The thicker the cells, the more important
these effects are (fig. 4). Since [34], l∝ e2/3, Lc varies
as e−1/3 which explains that the the slopes appear to
be off in particular for larger values of e. But it can
been disregarded here, e ranging from 50µm to 400µm,
especially in the absence of more rigorous methods. For
instance, the method consisting in translating measure
of Gc and E from film measurements into directional
drying is questionable, particularly since Gc and E are
position and time dependent. Measuring Lc in the same
kind of experiments overcomes these difficulties and allows
to show that the transition between + and � intersections
is governed by the ratio of Griffith’s length to the size of
the cell.
The model can be used to estimate Griffith’s length

Lc. Since Lc depends on three parameters Gc, E and σ0
(or two if one considers the mode I toughness defined by
K2Ic =

E
1−ν2Gc), this gives a method to obtain one parame-

ter when the others are still known. For instance consid-

ering Ludox R©SM30, assuming σ0 =−2γ/r� 40MPa,
where γ � 0.07N/m is the air-water surface tension [30]
and 2r= 7nm the particles diameter, the value of KIc
can be derived from the measure of Lc: KIc = σ0

√
Lc �

0.2–0.3MPam1/2. This value seems reasonable compared
to fused silica [37] for which KIc � 1MPam1/2. It shall
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however be noticed that it is significantly higher than
the one often used in the literature for such mater-
ial (KIc � 102 Pam1/2 [28]). The discrepancy may be
explained by the fact that the toughness seems to corre-
spond to the fracture of solid/liquid interfaces in their
experiments, and to the fracture of solid/solid ones in ours.
Further discussion of this point is devoted to another
article.

Conclusion. – We have observed a reversible transi-
tion � and + during directional-drying experiments in
capillary tubes. We show that the selection between �

and + intersections is controlled by the ratio of Griffith’s
length Lc to the diameter of the cell. It corresponds to
a local minimum of the total energy, i.e. the sum of the
elastic and crack energies. This is an experimental dem-
onstration that the crack pattern satisfies the often used
[21,22] principle of energy minimization. Directional-
drying experiments in capillary tubes can be used to
estimate Griffith’s length Lc. Since Lc depends on three
parameters Gc, E and σ0 (or two if one considers the
toughness defined by K2Ic =

E
1−ν2Gc), this gives a method

to obtain one parameter when the others are still known.
We applied it to estimate the toughness of consolidated

Ludox R©SM30. Extension from bounded to unbounded
conditions is not straightforward and is the subject of fur-
ther developments to infer new information on tessellated
pavements formation on Earth or on other planets, as
Mars where polygons are widely studied.
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Basalt Columns and Crack Formation during Directional Dryi ng of
Colloidal Suspensions in Capillary Tubes
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Abstract: Formation of basalt columns during cooling of lava may be modeled
by the drying of colloidal silica suspension confined in capillary cells (Allain and
Limat 1995, Gauthier et al. 2007). During the drying process, particles aggre-
gate at the open edge forming a growing drained gelled porousmedium. High
negative capillary pressure in the draining fluid (Dufresneet al., 2003) and adhe-
sion to the walls of the cells generates high tensile stresses in the gel leading to
crack formation. Depending on the experimental conditionsand the shape of the
cell (rectangular or circular), several crack morphologies appear. Here the aim
is to compare the experimental morphologies with the ones predicted by fracture
mechanics. For this purpose, the drained gelled porous medium is modeled by a
linear elastic medium subjected to tensile prestresses andthe cracks by the varia-
tional approach to fracture of Bourdin, Francfort and Marigo (1998, 2000, 2008).

1 Introduction

The basalt columns are formed during the directional cooling of a lava flow.
Cooling can be simulated advantageously by experiments of drying, cooling like
drying inducing similar fields of prestresses. Nevertheless the pilot experiments
used until now, on nontransparent materials (cornstarch inparticular, cf Goehring,
Morris al. [11]) do not make it possible to observe the dynamics of formation of
the fractures. On the other hand, experiments of directional drying carried out
on transparent colloidal suspensions in circular capillary tubes (Gauthieret al
[10]) allowed to reproduce and observe some of the still badly explained aspects
of the columns: facies presenting a smooth and rough alternation, dynamics of
propagation by jumps [13]. In this paper, we will consider such directional dry-
ing experiments and study the influence of the capillary tubecross section shape
on the crack morphologies. The experimental morphologies obtained in circu-
lar, square and rectangular tubes will be retrieved by two dimensional non local

1
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damage model simulations. In the present paper, we will concentrate on a quali-
tative comparison. A more quantitative study is underway but remains still to be
completed.
Experiments of directional drying of colloidal suspensionin flat rectangular capil-
lary tubes have been performed first by Allain and Limat [1] and then by Dufresne
et al. [7, 8]. For thin cells, they observed an array of parallel cracks perpendicu-
lar to the flat direction of the cell. In circular tubes, Gauthier et al [10] observed
the formation of two perpendicular cracks containing the axis of the cylinder. In
both cases, the cracks grows along the drying direction. In this paper, some new
experiments on thick rectangular cells and on square ones will be presented. In
the thick ones, some cracks parallel to the flat direction appear in addition to the
array of parallel cracks; in the square ones, we observe two cracks cutting the
cross-section along the diagonals.
For the numerical analysis, we will use the energetic approach to brittle fracture
of Francfort and Marigo [9], which is able to approach the phenomena of initia-
tion, multicracking and complex crack paths. In order to usethe traditional finite
elements, our work will be based on a regularized version of the energetic for-
mulation, which may be mechanically interpreted as a non-local gradient damage
model [5]. Two dimensional simulations on the cross sectionof the tubes allow
us to retrieve qualitatively the experimental observed morphologies.

2 Experiments

Experiments are carried out, at room temperature, us-
air saturated by water

suspension

fracturated gel

evaporation surface

cross section
(view under microscope)

d
ry
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n

d
 c

ra
c
k
in

g
 d

ire
c
ti
o

n

Figure 1: Experimental
setup

ing aqueous suspensions of mono disperse silica spher-
ical particles (Ludox HS 40) of radiusr = 15 ± 2
nm and volume fractionφ ≃ 0.2. To investigate uni-
directional drying, vertical glass capillary tubes are
used; the top of the tube is closed and the bottom one
is placed in a surrounding maintained at a constant
humidity rate using a desiccant. The tube is only par-
tially filled with the suspension so that the air and sol-
vent vapor, located above the suspension can expand
to compensate the loss of solvent during desiccation.
As the sample loses solvent, particles aggregate at the
open edge forming a growing drained gelled porous
medium (fig. 1). High negative capillary pressure in
the draining fluid generates high tensile stresses in the
gel. This causes crack formation [7] following the

drying direction. Depending on the tube morphology, several crack morphologies
appear (see fig. 2):

• for circular cells (diameter∼ 1 mm), two vertical perpendicular cracks;

• for square cells (diagonal∼ 1 mm), two vertical perpendicular cracks along

2
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the diagonals of the square (see also picture of figure 1);

• for flat rectangular cells (thickness< 100µm, aspect ratio> 20), an array
of parallel cracks perpendicular to the largest walls;

• for more thick rectangular cells (thickness> 200µm, aspect ratio> 20),
two sets of perpendicular cracks: as before, an array of parallel cracks and
some crack parallel to the large walls. For technical reasons, it is difficult
for the moment, to determine if this last crack corresponds to delamination
between the porous medium and the wall or to a crack that is located inside
the porous medium. Several clues indicates that the crack islocated inside:
if delamination occurs at both sides, the medium under tensile stresses be-
comes unloaded and cracks shall no more propagate, but this is not the
case; the dynamics of crack propagation is the same as in circular or square
tubes where the cracks are inside the medium; the numerical calculations
predicts the presence of a crack at mid wall (see below).

solid

liquid

evaporation surface

air saturated with water

bottom view

Figure 2: Different cells and cracks (in greyscale) morphologies

The dynamics of crack propagation undergoes an intriguing jerky crack motion
described in [8, 10]. But the analysis of this interesting motion is not the aim
of this paper. In the sequel, we will focus on the two dimensional problem of
the crack morphologies in a cross section; hence we will try to retrieve the crack
patterns depicted on the bottom view of figure 2.

3
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3 A simplified model of drying during directional
drying

3.1 A simplified mechanical model of drying

For the present qualitative study, the two dimensional horizontal cross sectionS
problem is considered (bottom of figure 2). We suppose the material elastic and
isotropic. We replace the loading due to high negative pressure that appears at the
liquid meniscus formed by the particles at the bottom air/water evaporation inter-
face [7] by a given tensile isotropic prestressσ0 > 0 or an equivalent mismatch
strainǫ0 > 0, so that:

σ = λtrǫ 1 + 2µǫ + σ01 ⇔ ǫ =
1 + ν

E
σ −

1

E
trσ 1− ǫ01 (1)

whereλ andµ are the material Lamé coefficients,E is the Young modulus andν
is the Poisson coefficient. The gel adheres to the wall, so that the displacement is
zero at the boundary of the section:u = 0.

3.2 Variational approach to fracture

Following the energetic approach of Francfort and Marigo [9], the fracture prob-
lem consists in finding the displacement fieldu satisfying the boundary condi-
tions and the crack patternΓ that minimizes the total energyEt defined as the sum
of the potential energy of the system, sayEp, and the surface energy associated to
the crack, sayEs:

Et(u, Γ) = Ep(u, Γ) + Es(Γ) (2)

where:

Ep(u, Γ) =

∫

S/Γ

[

λ

2
(trǫ(u))2 + µ ǫ(u) : ǫ(u) + σ0 trǫ(u)

]

dS (3)

Es(Γ) = Gc length(Γ), (4)

Gc denoting the energy required to create a unit length crack.

The functional (2) should be minimized among all admissibledisplacement fields
and crack surfaces. The associated minimization problem isreferred to [2] as a
free discontinuity problem. To solve it numerically by using standard finite ele-
ments we used a regularization technique originally developed for analog prob-
lems in image segmentation [12] and adapted to fracture mechanics by Bourdin
et al. [4]. The energy functional (2) is approximated by the following family of
elliptic functional depending on a regularized displacement field u and an addi-

4
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tional scalar fieldα ∈ [0, 1]:

E
ℓ
t (u, α) =

∫

S

[

(1− α)2
λ

2
(trǫ(u))2 + µ ǫ(u) : ǫ(u) + σ0trǫ(u)

]

dS+

+Gc

∫

S

[

α2

4ℓ
+ ℓ∇α · ∇α

]

dS

(5)

Forℓ → 0, the minimizers of (5) are characterized by bands withα close to 1 and
high displacement gradients. Those bands, whose thicknessis of the order ofℓ,
are a regularized approximation of the cracks lines. Mathematically, it is possible
to show (see [6]) that the global minimizers of (5) tends to the global minimizers
of (2) whenℓ → 0. From the mechanical point of view, the functional (2) may be
interpreted as the energy functional of a non-local gradient damage model, where
α stays for the damage field andℓ for the internal length.
For a given value of the loading parameterσ0, we solved the regularized mini-
mization problem for (5) by using standard linear triangular finite elements and
the alternate minimization strategy detailed in [3]. The prestressσ0 is assumed
to be constant; the damage fieldα is set equal to zero at the boundary to simulate
perfect bonding.

4 Qualitative comparison between experiments and
numerical simulations

(a) Circular tube (b) Flat rectangular tube

(c) Squared tube (d) More thick rectangular tube

Figure 3: Non local damage model with gradient. Elastic medium with tensile
prestresses.

5
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Figure 3 reports the results of the numerical simulations for the cross sectional
shapes of figure 2. All the patterns observed experimentally(bottom of figure
2) can be retrieved by the numerical model. In the case of thick rectangular
cells, a crack at mid distance of the largest walls appears inthe simulations. This
leads to interpret the secondary cracks that appears in the experiments as a crack
inside the medium and not a delamination crack. But this point merits further
investigations.
By the moment, we are able to report only qualitative agreement between the
numerical and experimental results. The challenge now is toperform more quan-
titative comparisons. This suppose a large amount of theoretical, experimental
and numerical work. Experimentally, the control parameterof the experiments
have to be varied (temperature, hygrometry, particle nature and size...) and the
material has to be characterized mechanically. Numerically, the influence of the
small parameterℓ, which may be interpreted as an internal length, has to be an-
alyzed in details. This will demand also a further theoretical groundwork for the
analysis of the behavior of the underlying non-local damagemodel. This study is
the subject of ongoing works.

5 Conclusion

By using the regularized formulation of the variational approach to fracture me-
chanics proposed by Bourdin, Francfort and Marigo and a simplified 2D mechan-
ical model of directional drying of colloidal suspensions,we are able to retrieve,
at least qualitatively, the crack morphologies. This first study is encouraging and
will be completed by more quantitative experimental and numerical results. The
experiments shall shed some new light on the basalt column formations. The nu-
merical simulations may be complementary to the experiments by highlighting
the pertinent experimental parameters.

6
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Abstract

The mechanical system considered is a bilayer cantilever plate. The substrate and the film

are linear elastic. The film is subjected to isotropic uniform prestresses due for instance to

volume variation associated with cooling, heating or drying. This loading yields deflection

of the plate. We recall Stoney’s analytical formula linkingthe total mechanical stresses to

this deflection. We also derive a relationship between the prestresses and the deflection. We

relax Stoney assumption of very thin films. The analytical formulas are derived by assuming

that the stress and curvature states are uniform and biaxial. To quantify the validity of these

assumptions, finite element calculations of the three-dimensional elasticity problem are per-

formed for a wide range of plate geometries, Young’s and Poisson’s moduli. One purpose is to

∗e-mail:mourad.chekchaki@etu.upmc.fr
†Corresponding author: e-mail:veronique.lazarus@upmc.fr
‡e-mail:joel.frelat@upmc.fr
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help any user of the formulas to estimate their accuracy. In particular, we show that for very

thin films, both formulas written either on the total mechanical stresses or on the prestresses,

are equivalent and accurate. Error associated with the misfit between our theorical study and

numerical results are also presented. For thicker films, theobserved deflection is satisfactorily

reproduced by the expression involving the prestresses, not the total mechanical stresses.

1 Introduction

Substrat

Film

L

A

W

ex

ey

ez

t f
t s

Figure 1: Bilayer cantilever plate

Thin films coated on a plate are currently used to perform several functions in thermal, tribo-

logical, mechanical or biological areas. Paintings or micro-electro-mechanical systems (MEMS)

are other interesting examples of bilayers. They appear from the nano to the macro scale. In all

these systems, undesirable consequences such as folds, cracking or delamination may occur due to

the internal residual stresses that appear during the deposition process. It is thus crucial to evaluate

these stresses. The cornerstone methodology used to infer them is to measure the deformation of

a bilayer plate and to use Stoney’s type [1] stress-deformation relations. Two methodologies are
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currently used: the measure of thelocal curvature of a circular plate or the measure of theglobal

deflection of a cantilever. While the first method requires sophisticated experimental set-up [2],

the second method is very simple thus extensively used by different communities [3, 4, 5]. More-

over, the cantilever geometry often appears in MEMS and has recently be used in new nanoscale

testing machines [6]. Thus the precise knowledge of the equations linking the free end deflection

and the stresses in the film for this cantilever geometry is important. The main goal of the current

work is to present such equations and to validate them by solving the 3D elasticity problem using

finite element computations. One purpose is to give a practical guideline to anyone that uses the

equation, so that one is able to answer questions such as “CanI use the formula for my framework

and if yes, what is the accuracy of it?”

Several equations describing the relationship stress-deflection can be found in the literature.

Stoney [1] was the first to propose such a formula for the cantilever setup. The underlying assump-

tions are that (i) the substrate is homogeneous, isotropic and linearly elastic (Young modulusEs,

Poisson’s ratioνs); (ii) the film and substrate thicknessestf andts are small compared to the lateral

extent of the system; (iii)tf andts are uniform; (iv) the film thicknesstf is small relative to the

thicknessts of the substrate; (v) the displacements are infinitesimal incomparison with the plate

width W and lengthL; (vi) edge effects are inconsequential; (vii) the curvature is uniform and

uniaxial around thez-direction; (viii) the total stress state is uniform and uniaxialσ = σf ex × ex.

It reads, using the notations of figure 1:

δ =
3σf tfL

2

Est2s

whereδ is the deflection at the free standing endx = L of the plate. The uniaxial curvature

(vii) and stress state (viii) is however, are not verified in practice as soon asW ≫ ts and shall
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be replaced by the assumption of (vii) uniform biaxial curvature and (viii) uniform stress states

σ = σf (ex × ex + ez × ez). The formula then becomes (see for instance [7, 8]):

δ =
3(1− νs)σf tfL

2

Est2s
(1)

Numerous papers deal with extensions of this last formula toless restrictive assumptions. A nice

overview can be found in [8] and [9]. All the points (i) to (vi)cited above have been less or

more relaxed: see for instance [10] for nonuniform substrate thickness, [11, 12] for discontinuous

films, [13, 14] for large displacements, [15] for non-uniform curvature, and [16] for anisotropic

films. Points (vii) and (viii) of uniform biaxial curvature and stress states in the film have been

relaxed keeping the assumption (iv) of thin films, for bilayer [17, 18, 19] and multilayer systems

[20, 21]. The case of arbitrary film thickness (relaxation ofpoint (iv)) has been addressed by

[22, 23, 8], keeping the assumption (viii) of uniform biaxial stress state in the film, assumption that

can be anticipated to be no longer valid in general. Here, both the assumptions (iv) of thin film

and (viii) of uniform stress state are relaxed by considering the particular problem of an elastic

bilayer, the film being subjected to uniform isotropic prestressesσ0 (e.g due to thermal or drying

processes.). It is worth noting here the distinction between the mechanical stressesσ and the

prestressesσ01: the prestressesσ01 corresponds to the loading and are imposed to be isotropic and

uniform, whereasσ are the resulting stresses, hence are point dependant and not generally isotropic

or biaxial. In previous cited papers, the film is supposed to be subjected to uniform biaxial stresses

σ = σf (ex × ex + ey × ey) and the plate deformations are linked to the single parameter σf such

defined. Here, we link the deflection to the given prestressσ0. Analytical equations are solved

for the assumption of a uniform biaxial stress state, thus neither the boundary conditions and nor

the stress inhomogeneities are taken into account. In the case of thin films as compared to the

V. Lazarus CND- 4
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substrate, the stress inhomogeneities in the film can be neglected and the boundary conditions can

be taken into account using plate model finite element simulations [14, 24]. For thicker films,

the plate approach is questionable since it consists in replacing the stresses state through the plate

thickness by equivalent membrane forces and moments, so that possible stress inhomogeneities in

the thickness due to the structural effect can not be studied. To determine the full displacement and

stress fields in both the film and the substrate without any assumption on the shape of these fields,

we solve the 3D complete elasticity problem, with perfect adhesion conditions on the interface, by

Finite Element (FE) calculations. This approach permits consideration of the effect of boundary

conditions on the deflection profile. It is the first time, to the best of our knowledge, that the

Stoney formula is verified by 3D FE computations. Several plate geometries and layer materials

properties are considered. We show that for very thin films, both formulas written either on the

total mechanical stresses or on the prestresses, are equivalent and accurate; the error made on

the formulas are also given. For thicker films, we show that only the formula based upon the

prestresses is accurate.

2 Analytical approach

2.1 Material behavior

Let us suppose that the substrate and the film are linearly elastic both with Young’s moduliEs,

Ef and Poisson’s ratiosνs, νf respectively. The film is loaded by uniform isotropic prestresses

σ0 = σ01, so that the constitutive laws between the stressσ and the strainε tensors is at any point
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of the film:

σ = Λf(ε) + σ01 (2)

and at any point of the substrate:

σ = Λs(ε) (3)

whereΛi(ε), i = f, s is defined by:

Λi(ε) =
Eiνi

(1 + νi)(1− 2νi)
trε 1 +

Ei

(1 + νi)
ε (4)

2.2 Energy density

The infinitesimal internal work is in the film and in the substrate:

dU = σ : dε =















Λf(ε) : dε + σ0 : dε

Λs(ε) : dε

so that, by integration, the strain energy density is at any point of the film (using (2)),

U =
1

2
Λf(ε) : ε + σ0 : ε =

1

2
(σ : ε + σ0 : ε)

and at any point of the substrate (using (3)):

U =
1

2
Λs(ε) : ε =

1

2
σ : ε

2.3 Boundary conditions

The elasticity problem with a clamped plate is, to our knowledge, not tractable analytically. In

particular, it is obvious that the curvature is uniaxial near the clamped boundary but overall rather
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biaxial. We search for an approximate solution by assuming that the stress and curvature states are

uniform and biaxial around any direction in the(x, z)-plane : σ = σf (ex × ex + ez × ez) and

ε = ε (ex × ex + ez × ez) + εyyey × ey. This implies:

σf =
Ef

1− νf
ε +

1− 2νf

1− νf
σ0. (5)

The strain energy density in the film then becomes (the constant term proportional toσ2
0 has

been omitted since it disappears finally in the minimizationprocess):

U =
Ef

1− νf

ε2 + 2
1− 2νf

1− νf

σ0ε (6)

and in the substrate:

U =
Es

1− νs
ε2 (7)

2.4 Kinematic hypothesis and resolution

Now, supposing that the curvatureκ is uniform in the plane(x, z), we searchε under the following

form:

ε = ε0 − yκ (8)

and we determine the stationary point of the total potentialenergyV towardε0 andκ. Using the

relationδ = 1
2
κL2, it yields1 for δ:

δ =
3(1− 2νf)σ0tfL

2

(

1−νf

1−νs

)

Est2s

1 + t

1 + 2M(2t + 3t2 + 2t3) + M2t4
(9)

whereM =
(1−νs)Ef

(1−νf )Es
andt = tf/ts.

1We choosey = 0 corresponding to the mid plane of the bilayer plate. Any other choice, would change the value

of ε0 but not the value ofκ andδ which are of interest here.
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If Ef ≪ Es andtf ≪ ts, one has

δ =
3(1− 2νf )σ0tfL

2

(

1−νf

1−νs

)

Est2s

. (10)

And in this case, the partEf

1−νf
ε of the stresses linked to the in-plane deformationsε can be ne-

glected in comparison withσ0 so thatσf ∼
1−2νf

1−νf
σ0 (equations (5), (8), (9)). Introducing this

relation in (9), yields the classical Stoney formula (1).

If Ef tf/Ests ≪ 1 but not necessarilytf ≪ ts, the following formula, sometimes used in the

literature (see [3]) holds:

δ =
3(1− 2νf)σ0tfL

2(1 + tf/ts)
(

1−νf

1−νs

)

Est2s

(11)

One may also be tempted to make the assumption that the mean biaxial stress is uniform and

satisfiesσf ∼
1−2νf

1−νf
σ0 in order to express the deflection as a function of the stress state. This

supposes that the termEf

1−νf
ε in equation (5) can be neglected in comparison toσ0. Equation (9)

then becomes:

δ =
3(1− νs)σf tfL

2

Est2s

1 + t

1 + 2M(2t + 3t2 + 2t3) + M2t4
(12)

which can also be found using the results derived in [22, 8] between the curvatureκ and the

mismatch strainεm using the relationsδ = 1
2
κL2 andεm = σf (1 − νf )/Ef . The validity of this

formula is discussed in the next section.

3 3D Finite Element calculations

The 3D equilibrium elasticity problem, with perfect adhesion on the interface between the substrate

and the film (zero displacementJuK = 0 and stress vectorJσK.n = 0 jumps), zero displacements

conditions for the clamped boundary (u = 0) and traction free ones on the remain boundary
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(σ.n = 0), has been solved by FE with Cast3M2 using cubic elements (P2) containing 20 nodes

each. The total number of degrees of freedom (number of nodes× 3) is approximately 40000.

Two elements are put in the thickness of each layer (we have verified that more elements does not

bring more accuracy).

The prestressσ0 is the loading and the mechanical displacement and stress fields correspond-

ing to this loading, are obtained by the FE calculation. The deflectionδ is taken as the vertical

displacement of the extremity mid point of the plate (pointA, fig. 1). By taking into account the

linearity of the problem, we can present the results in the following dimensionless form:

δ =
σ0L

2

Ests
f

(

tf
ts

,
Ef

Es
,
W

L
,
ts
L

, νs, νf

)

.

It is then easy to perform the comparison between the analytical formula onδ-σ0 and the nu-

merical results. It is less straightforward to work on the formula written onδ-σf since numerically

σf is point dependent whereas analytically it is assumed to be uniform. Also, to perform the com-

parison,σf is taken as the mean value of the normal stress in the x-direction 〈σxx〉 over all the film,

that is, whereVf is the film volume:

σf = 〈σxx〉 =
1

Vf

∫∫∫

Vf

σxxdV (13)

The validity of the formulas is demonstrated for a wide rangeof Ef/Es, tf/ts, W/L. Finally, the

influence of the Poisson’s ratio is considered including thecase of auxetics films3.

2finite element code developed by the French Commissariat à l’Energie Atomique http://www-cast3m.cea.fr.
3materials with negative Poisson modulus.

V. Lazarus CND- 9

202 Mes publications/My publications



3.1 Using the total stresses or the prestresses in the Stoneyformulas ?

To compare complete Stoney formulas (9) written forδ andσ0 and (12) written forδ andσf , we

introduce the relative errors∆Rδ =
δ(9) − δFE

δFE
and∆Rδf =

δ(12) − δFE

δFE
between the valuesδ(9)

andδ(12) of δ obtained using equation (9) and (12) resp. and the ones obtained by FE calculations

for a given value ofσ0, σf being obtained by eq. (13). The results are given in figure 2 for

Ef/Es = 10−2, tf/ts = 10−2 andW/L = 0.1.

 0

 10

 20

 30

 40

 50

 60

 70

 0  0.5  1  1.5  2  2.5  3  3.5  4

∆Rδf (%)

∆Rδ (%)

tf /ts

Figure 2: Relative error between the deflection obtained through the formulas (9) and (12) and the

numerical values (Ef/Es = 10−2, ts/L = 10−2, W/L = 0.1, ν = 0.3)

To understand the large disparity in error between the equations, in figure 3 we plot quantities

relevant to the biaxiality state and uniformity of the stresses in the film : the biaxiality ratio defined

by the ratio between the meanxx component of the stress tensor and the meanzz component; and

the meanxx stress component divided by its value1−2νf

1−νf
σ0 when the term Ef

1−νf
ε in equation (5)

can be neglected. When their value is near1, it means that the stress state is biaxial and uniform

equal to1−2νf

1−νf
σ0; when their values depart from1, the stress state is no longer biaxial and uniform.
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One can notice that:

• for small enoughtf/ts (heretf/ts < 0.5), both formulas (9) and (12) agree with the nu-

merical values. This means that they can both be used equivalently. This is because the

component of the stress field in the film linked to the inplane deformation can be neglected

so that the film stresses are nearly uniform satisfyingσf ∼
1−2νf

1−νf
σ0 (see figure 3 for small

values oftf/ts).

• for tf/ts ≪ 1, since (1) and (10) are then equivalent to formula (9) and (12) resp., previous

points implies that (1) and (10) can both be used equivalently.

• for biggertf/ts (in the limit ts,f ≪ L), only formula (9) (and not (12)) can be used. This

is not surprising. Since the stress state in the layer is thenno more uniform (see figure 3 for

arbitrary values oftf/ts), it is unreasonable to use only one scalarσf to describe the stress

state in the film, even if one takesσf = 〈σxx〉. If a determination of the stress state in the

film is desired, only a local approach using the local curvatures and the local stress state [9]

may be used, but such a calculations is outside of the scope ofthe current work.

These results have been obtained in the caseW/L = 0.1. For larger plates, it will be shown

in the sequel that results are less accurate. One can conclude from these results, that only the

formula written on the prestresses can be used for film thicknesses of the same order as the substrate

thickness whatever the plate width. We will focus on those formula, namely (9) and (11), in the

sequel.
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Figure 3: Increasing non uniformity of the film stresses withthe film thickness (Ef/Es = 10−2,

ts/L = 10−2, W/L = 0.1, ν = 0.3).

3.2 Deflection versus film thickness

3.2.1 General case

In this section, we study the accuracy of formula (9) and (11)in the case of identical Poisson’s

ratio in the substrate and the film (νf = νs = ν = 0.3). The dependence onν is considered in

next part. In figure 4, the dimensionless deflectionsδEsts/σ0L
2 are plotted as a function oftf/ts

for ts/L = 10−2, W/L = 1 and different values ofEf/Es. The dashed lines correspond to the

FE computations and the solid ones to the analytical equations (9). Some computations performed

for smaller values ofts/L show a weak dependence of the plot on this value, hence the influence

of this parameter is not shown. The dependence onW/L is also weak, so that among the curves

corresponding toW/L = 0.1 or W/L = 1 we have chosen to represent only the worst, that is

W/L = 1. More details on the dependence of the results on the width ofthe plate is considered

further.
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Figure 4:Completeanalytical formula (9) (solid lines) compared with the FE computations (dashed

lines) obtained forts/L = 10−2, W/L = 1, ν = 0.3 .

One can notice several things on these curves:

• Good agreement is found between the Stoney formula (9) including the ratio of Young mod-

ulus influence even for a film much thicker than the substrate.The agreement is better for

small ratio ofEf/Es than for larger ones.

• The “mountain like” curve is due to the competition of two effects: whentf/ts increases,

(i) as the membrane force proportional toσ0tf exerted by the film increases, the deflection

increases, (ii) however, as the bending rigidity of the film proportional tot3f increases, the

deflection decreases. For thin films, the membrane force effect is predominant, and for

thicker films, the rigidity effect.
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Figure 5: Relative error between the deflection obtained through thesimplifiedequation (11) and

the FE computations one forts/L = 10−2, W/L = 1, ν = 0.3.

3.2.2 CaseEf tf/Ests ≪ 1

In practice, the Young modulusEf of the film may be not known exactly [3], so that only the

simplified Stoney formula (11) is useful. It is thus praticalto evaluate∆Rδ(11) ≡
δ(11)−δF E

δF E
. Good

agreement is found between this simplified formula and the numerical values only for not too thick

films and not too stiff films. ForEf/Es = 1, tf/ts = 0.05, W/L = 1, the relative error is still

∆Rδ(11) = 15% , so that we consider in fig. 5 only the most favorable cases corresponding to

Ef/Es ≤ 1.

The maximum film/substrate thickness for which the agreement is acceptable depends on the

ratio Ef/Es: the smallerEf/Es the thicker the film can be. More precisely, figure 6 gives the

domain for which the relative error between the simplified Stoney formula (11) and the numerical

solution is less than 10%. The solid curve corresponds to the relative error between the simplified

(11) and complete (9) Stoney formula, which has been shown tomatch the numerical values. It
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4.2. Sélection de publications/Selected publications 207



is obtained by determiningM =
(1−νs)Ef

(1−νf )Es
for each value oft ≡ tf/ts satisfying the equation

∆RδStoney ≡
δ(11)−δ(9)

δ(9)
= 0.1, that is:

M2t4 + 2M(2t + 3t2 + 2t3) = ∆RδStoney (14)

with ∆RδStoney = 0.1. Some numerical points have been added corresponding to∆Rδ(11) = 10%

which confirm the good agreement between formula (9) and the numerical results. Moreover it

shows that the analytical graph obtained using equation (14) underestimates the maximum thick-

ness ratio that can be considered so that the relative error∆Rδ(11) made using simplified equation

(11) can safely be estimated using∆RδStoney that is equation (14).
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 0  0.5  1  1.5  2  2.5  3  3.5

E
f

E
s

tf/ts

ts/L = 150.10−4 , W/L = 0.1

ts/L = 150.10−4 , W/L = 1

ts/L = 25.10−4 , W/L = 0.1

ts/L = 25.10−4 , W/L = 1

Er < 10%

Figure 6: Thickness and Young’s modulus ratios influence on the relative error. To the left of the

solid line, the relative error between the simplified (11) and complete (9) Stoney formula is less

than 10%. The points correspond to values oftf/ts, Ef/Es for which the relative error between

the simplified (11) formula and the numerical result is 10% (each point corresponds to different

values ofts/L andW/L).
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3.3 Influence of Poisson’s modulus

We have verified, in the previous section, that (9) is accurate if νs = νf = 0.3. To verify that the

dependence of (9) onνf andνs is accurate, we considerνs = 0.3 andνf ∈ (−1; 0.5) including

auxetics [25, 26, 27] and the corresponding relative error between formula (9) and the FE values

(figure 7, 8). These results allow moreover a quantified assesment of the error associated with the

formula (9).

We see on figure 7 and 8 that:

• Formula (9) gives good results in a wide range ofνf . In particular forνf ∈ [0; 0.4], the error

are less than 10% in all the cases considered.

• The discrepancy becomes higher for larger values ofEf/Es andtf/ts.

• The agreement is poorer for wide plates than for slender ones. Thanks to Saint-Venant’s

principle, the boundary conditions become negligible at distances which are large compared

with the dimensions of the plate and notablyW/L. Moreover, the anticlastic curvature effect

becomes more important for wide plates [28, 29];

• For νf < 0 the error is larger than forνf > 0, probably because the anticlastic curvature

effect is amplified in these cases.

4 Conclusion

By performing full 3D finite elements calculations we have shown that:

• For tf/ts ≪ 1 andEf/Es ≪ 1, the stress state in the film is biaxial and uniform with

σf ∼
1−2νf

1−νf
σ0. The deflection then verifies both formulas (1) and (10-11) written onσf and
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Figure 7: Relative error between equation (9) and numericalresults forEf/Es = 0.01.
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σ0 respectively. Their validity limit of (11) ontf/ts is given in figure 6 as a function of

Ef/Es.

• For arbitrarytf/ts in the limit ts,f ≪ L, only formula (9) accurately estimates the deflection

since the stress state is no longer uniform. Any formula invoking a uniform stress state

does not yield reasonable estimates. This formula is accurate to less than 10% error for

νf ∈ [0; 0.4] (νs = 0.3).

• The formulas are more accurate for slender plates than for square plates. This is due to the

fact that for wider plates, the clamped boundary condition and anticlastic curvature have a

greater influence on the stress state and the deflection.

In some film/substrate systems, the misfit strain may damage the film/substrate interface. For

instance, delamination may appear [4]. Our analysis supposing perfect adhesion at the interface

is then no more valid. Moreover, these formulas are valid only in the limit of the small pertur-

bations hypothesis. For large perturbations, bifurcations may appear. Freund [14], by performing

finite elements calculations based on plate models, gives the following upper bound for the small

perturbations approach to be valid:

3(1− νs)σf tfL
2

2Est3s
< 0.3 (15)

His approach assumes that the plate boundary is traction free. Guyotet al. [24] have recently show

that bifurcation arises later for slender plates. It may be interesting to verify whether the clamped

boundary condition, which has a rigidifying effect, also results in a higher upper bound.
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