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Résumé

Dans cette thèse, nous étudions quelques propriétés dynamiques des solutions de type soliton de
quelques équations dispersives nonlinéaires généralisées.

La première partie de ce travail est consacrée à l’étude de l’existence, de l’unicité et du compor-
tement global de solitons pour des équations de KdV généralisées, à variation lente. On donnera une
description détaillée de la dynamique pour tout temps et on montrera la non-existence de solitons
purs, ce qui est une très grande différence avec l’équation gKdV standard.

Dans une deuxième partie, on étudiera le cas de l’équation de Schrödinger nonlinéaire. Pour cette
équation, nous allons améliorer tous les résultats précédents en donnant une description précise pour
tout temps de la dynamique du soliton dans le régime à variation lente. En plus, sous des hypothèses
générales, on montrera ce résultat dans le cas 2-D.

Finalement, on considère le problème de collision de deux solitons pour l’équation de KdV géné-
ralisée. Complétant les résultats récents de Martel et Merle, concernant le cas quartique, nous mon-
trons que la seule possibilité d’avoir une collision de type élastique est donnée par les cas intégrables.

La preuve de tous ces résultats sont des développements et des améliorations de la théorie de
Martel et Merle pour la collision de deux solitons des équations gKdV sous différents régimes asymp-
totiques.

Mots-clefs : équation de Korteweg-de Vries généralisée, équation de Schrödinger nonlinéaire,
dynamique du soliton, potentiels à variation lente, collision de deux solitons, intégrabilité.

SOLITON DYNAMICS AND COLLISION FOR SOME NONLINEAR DISPERSIVE EQUATIONS

Abstract

This work deals with long time dynamics of soliton solutions for generalizations of well-known
dispersive equations.

The first part of this work is devoted to the study of existence, uniqueness and global behavior of
soliton-like solutions for slowly varying, but still large perturbations of generalized KdV equations.
We give an accurate description of the dynamics for all time and prove in addition the nonexistence
of pure soliton-like solutions, a big difference with the standard gKdV equations.

Next, the same kind of results are proven in the case of nonlinear Schrödinger equations. We
improve all the existing results by constructing a unique global soliton solution in this regime, and
studying in detail its behavior. In addition, under some mild assumptions we extend this result to the
two-dimensional case and under general incident velocities.

Finally, we consider the scenario of a 2-soliton collision between a small and a very small soliton,
for generalized KdV equations. We prove a classification result which completes the Martel-Merle re-
sults –concerning the quartic case– asserting that in a very general framework the unique possibilities
for having an elastic collision are given by the integrable cases.

The proof of all these results are reminiscent of the very recent Martel-Merle theory of 2-soliton’s
collision for gKdV equations under different asymptotic regimes.

Keywords : generalized Korteweg- de Vries and nonlinear Schrödinger equations, soliton
dynamics, slowly varying potentials, 2-soliton collision, integrability.
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1 Préliminaires

Dans cette thèse, nous considérons des propriétés qualitatives et en temps long de
quelques équations dispersives nonlinéaires, principalement les équations de Korteweg-de
Vries et Schrödinger nonlinéaires.

On parlera des équations dispersives pour désigner des équations sous la forme

ut = Lu+ F (u,Du, . . .),

où u(t, x) est une fonction à valeurs réelles ou complexes, et t ∈ R, x ∈ R
N . L’opérateur

linéaire L est supposé anti-adjoint, c’est-à-dire

F(Lu)(ξ) = ip(ξ)û(ξ), p(ξ) ∈ R,

en termes de transformées de Fourier. Enfin, F est un terme dit nonlinéaire, contenant pos-
siblement des dérivées d’ordre supérieur. De façon plus mathématique, l’équation est dite
dispersive si de plus la matrice D2p(ξ) est non singulière.

L’heuristique nous dit qu’une équation est plus ou moins dispersive en fonction de la
taille de p. Par exemple, l’équation linéaire d’Airy ut + uxxx = 0, qui satisfait p(ξ) = ξ3, est
plus dispersive que l’équation de Schrödinger linéaire iut + uxx = 0, qui satisfait p(ξ) = −ξ2.

Quelques autres exemples d’équations dispersives sont les équations du type Korteweg-
de Vries, les équations de Schrödinger nonlinéaires, l’équation de Benjamin-Ono, l’équation
BBM, KPI, KPII, etc.

Une fois que l’on a des résultats appropriés sur le caractère localement ou globalement
bien posé de l’équation, une liste de questions très intéressantes peuvent être envisagées.
L’une de ces questions est bien sûr la dynamique en temps long, ou bien une description
qualitative d’une classe de solutions, même des solutions très particulières.

Justement, ce travail se focalise sur l’étude d’un type très particulier de solutions d’une
classe d’équations nonlinéaires dispersives. Ces solutions sont appelées solitons, ou plus gé-
néralement ondes solitaires. Ce sont des concepts légèrement différents, mais l’esprit est le
même, et nous pensons qu’un exemple simple peut l’illustrer.

On considère l’un des plus simples cas d’équations dispersives, l’équation de Korteweg-
de Vries généralisée (gKdV). Elle est donnée par1

ut + (uxx + um)x = 0, u = u(t, x), (t, x) ∈ R
2, m = 2, 3 ou 4. (1.1)

L’équation de Korteweg-de Vries (KdV), c’est-à-dire le cas m = 2 au-dessus, apparaît en
physique comme un modèle de propagation des ondes dans des eaux peu profondes, comme
décrit par J. S. Russel en 1834 [48]. La formulation exacte de cette équation a été donnée par
Korteweg et de Vries (1895) [33]. Finalement, cette équation a été étudiée du point de vue
numérique par N. Zabusky et M. Kruskal en 1965 [34].

L’équation précédente a quelques propriétés surprenantes. Tout d’abord, notons que
si u = u(t, x) est une solution à cette équation, alors u(t − t0, x − x0) et uc(t, x) :=
c1/(m−1)u(ct,

√
cx) sont aussi des solutions, quels que soient c > 0 et t0, x0 ∈ R. Elles illustrent

l’invariance par translation et par scaling, respectivement. Les solitons sont précisément des
solutions localisées de (1.1) de la forme

u(t, x) := Qc(x− ct),

1Le fait de considérer uniquement des puissances m < 5 sera plus clair ci-dessous.
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avec Qc(s) := c1/(m−1)Q(
√
cs). Si cette classe de solutions existe bien, alors elle a un pro-

fil invariant et se propage vers la droite au cours du temps. De plus, elle est une solution
globalement bien définie.

D’après ces considérations, il est clair que la fonctionQ doit être une solution de l’équation
nonlinéaire de deuxième ordre suivante

Q′′ −Q+Qm = 0 dans R, Q > 0, (1.2)

laquelle a une unique solution dans H1(R) modulo des translations en espace. Cette solution
est donnée par la formule suivante

Q(x) =

[
m+ 1

2 cosh2( (m−1)
2 x)

] 1
m−1

.

Notons que la solution Qc(s) nous donne l’heuristique suivante : les solitons petits sont plus
plats que les grands solitons, mais en même temps plus lents. Il s’agit de l’équivalence taille-
vitesse dans l’équation gKdV. La figure suivante décrit deux solitons avec deux tailles diffé-
rentes :

Q2

Q1/2

De plus, comme Q est une fonction positive, solution d’une équation elliptique nonli-
néaire, elle peut être vue comme la solution d’un problème de minimisation dans H1(R),
dontQ représente l’état fondamental, avec la quantité d’énergie minimale. Pour montrer l’exis-
tence de cette solution de façon générale, il est nécessaire d’utiliser des méthodes du type
concentration-compacité [6], car l’espace H1(R) ne contient pas des propriétés de compacité
évidentes.

Un deuxième exemple important est donné par l’équation de Schrödinger nonlinéaire
(NLS)

iut + uxx + |u|m−1u = 0, dans Rt × Rx, m ∈ [2, 5), (1.3)

où u = u(t, x) est une fonction à valeurs complexes. Le cas cubique est connu en physique
comme un modèle de propagation des ondes en fibre optique dans un milieu nonlinéaire. En
deux dimensions, la cas cubique est aussi très important.

Étant données c0 > 0, v0, x0, φ0 ∈ R, cette dernière équation a des solutions de la forme

Qc0(x− v0t− x0)e
i
2
v0xei(c0−

1
4
v2
0)teiφ0 ,

où Qc0 est le soliton déjà mentionné. Cette solution – localisée – est appelée onde solitaire, et
son module est un profil invariant, traversant l’espace dans la direction du signe de la vitesse
v0. Derrière cette solution, il y a deux symétries additionnelles que satisfont les solutions de
(1.3) : phase et invariance galiléenne.

Ces deux types de solutions, solitons et ondes solitaires, partagent une propriété très im-
portante : elles sont pures, dans le sens où aucun terme supplémentaire n’est nécessaire pour
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satisfaire l’équation. Ce phénomène est assez étrange dans une solution générale quelconque,
en raison du caractère dispersif de l’équation considérée, et il peut être expliqué par un équi-
libre délicat entre la dispersion donnée par le terme de la dérivée et la nonlinéarité de l’équa-
tion.

Au début de ce paragraphe, nous avons mentionné les notions de localement et globale-
ment bien posé (LWP-GWP) comme un élément-clé pour étudier les propriétés qualitatives
en temps long pour les solutions des équations dispersives. Voici quelques raisons à cela.

À partir des solitons, on peut considérer l’étude analytique ou numérique de petites per-
turbations de ceux-ci, ou encore plus difficile, le comportement de solutions composées de
plusieurs solitons. Si l’on considère deux solitons ou plus, il est naturel de penser aux pos-
sibles collisions entre eux, ce qui est une question très difficile à résoudre en raison du ca-
ractère nonlinéaire de l’équation. Dans les deux cas, on commence près de solutions du type
solitons, et pour décrire les deux problèmes, les propriétés LWP-GWP nous donnent l’exis-
tence d’une solution à ce problème pour une période de temps.

Ainsi, dans les prochaines lignes, nous allons donner une compte rendu informel sur la
théorie LWP-GWP pour les équations gKdV et NLS.

On suppose m = 2, 3 ou 4 dans (1.1). L’existence locale pour gKdV est maintenant un
résultat standard. D’après les travaux de Kenig, Ponce et Vega [31], (1.1) est localement bien
posée dans H1(R) et donc de façon globale grâce à la conservation de la masse et de l’énergie

M [u](t) :=
1

2

∫

R

u2(t, x) dx =
1

2

∫

R

u2
0(x) dx = M [u](0), (Masse), (1.4)

E[u](t) :=
1

2

∫

R

u2
x(t, x) dx− 1

m+ 1

∫

R

um+1(t, x) dx (1.5)

=
1

2

∫

R

(u0)
2
x(x) dx− 1

m+ 1

∫

R

um+1
0 (x) dx = E[u](0), (Énergie)

et l’inégalité de Gagliardo-Nirenberg suivante :

∫

R

up+1 ≤ K(p)

( ∫

R

u2

) p+3
4

( ∫

R

u2
x

) p−1
4

. (1.6)

Rappelons que, pour m = 5, le problème de Cauchy pour l’équation gKdV a des solutions
qui explosent en temps fini, voir [?, 42, 38] et les références citées à l’intérieur. On pense que
pour m > 5 la situation est la même. Pour les deux équations, gKdV et NLS, le cas m = 5 est
noté comme le cas L2-critique, car tous les solitons ont la même taille :

‖Qc‖L2(R) = ‖Q‖L2(R), pour tout c > 0.

Toutefois, dans le cas surcritique (m > 5), les solitons de taille petite (par rapport à la norme
L∞) sont plus grands que les solitons grands (par rapport à la norme L2).

La preuve de Kenig, Ponce et Vega utilise un argument de point fixe dans un sous-espace
de C([0, T ], H1(R)) en fonction de la nonlinéarité, pour un petit temps T > 0. La preuve
d’un effet régularisant de l’opérateur linéaire d’Airy e−t∂3

x , associé à l’équation linéaire, dans
l’esprit de Kato, est l’une des étapes-clés pour boucler la procédure itérative.
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Dans le cas NLS pour 2 ≤ m < 5, le problème de Cauchy est localement bien posé pour
des données u0 ∈ H1(R) (voir Ginibre et Velo [17]), et donc globalement bien posé grâce à la
conservation de la masse et de l’énergie

M [u](t) :=
1

2

∫

R

|u|2(t, x) dx = M [u](0), (Masse), (1.7)

et

E[u](t) :=
1

2

∫

R

|ux|2(t, x) dx− 1

m+ 1

∫

R

|u|m+1(t, x) dx = E[u](0), (Énergie). (1.8)

La preuve de Ginibre et Velo est basée sur l’utilisation des estimations de Strichartz (dans
des espaces Lp

tL
q
x appropriés) et un argument de point fixe dans une petite boule de l’espace

C((−T, T ), H1(R)), pour T > 0 petit, comme dans le cas gKdV. Nous renvoyons à [8] pour
une preuve plus détaillée.

Finalement, rappelons que l’équation NLS a une troisième quantité conservée, appelée
moment :

P [u](t) :=
1

2
Im

∫

R

ūux(t, x) dx. (1.9)

Cette quantité est bien définie pour des solutions dansH1(R). Comme dans le cas gKdV, pour
m ≥ 5, le problème de Cauchy pour cette équation a des solutions explosives en temps fini,
voir [8] et les références à l’intérieur.

L’étude des perturbations des ondes solitaires ou solitons conduit à l’introduction des
concepts de stabilité orbitale et asymptotique. Par stabilité orbitale, nous entendons la propriété
suivante. Prenons, par exemple, l’équation gKdV (1.1) et un soliton fixeQc(x−x0) pour c > 0
, x0 ∈ R données. Supposons qu’il existe une solution u = u(t) de (1.1), globale en temps, et
telle que

‖u(t0) −Qc(· − x0)‖H1(R) ≤ α,

pour une petite constante α > 0. On dit que Qc est stable s’il existe K,α0 > 0 et une fonction
régulière ρ = ρ(t) définie pour tout t ≥ 0 telles que, pour tout 0 < α < α0,

‖u(t) −Qc(· − ρ(t))‖H1(R) + |ρ′(t) − c| ≤ Kα, |ρ(t0) − x0| ≤ α. (1.10)

Autrement dit, une petite perturbation d’une solution de type soliton reste assez proche d’un
soliton avec un paramètre de translation corrigé à chaque temps. La stabilité orbitale des
ondes solitaires de (1.1) est par exemple vraie sous l’hypothèse sous-critique m < 5.

On peut donner quelques idées de la preuve de (1.10). On va suivre la méthode proposée
par Weinstein : s’il existe une constante µ > 0 telle que, pour toute fonction v ∈ H1(R) qui
satisfait ∫

R

Q′
cv = 0,

on a
F [v](t) :=

∫

R

(v2
x + cv2 −mQm−1

c v2) ≥ µ

∫

R

(v2
x + v2) − |

∫

R

Qcz|2, (1.11)

alors (1.10) est satisfait. En effet, par le théorème des fonctions implicites, il existe une fonction
ρ(t) et une constante c̄ > 0 telles que z(t) := u(t) −Qc̄(· − ρ(t)) satisfait pour tout temps

∫

R

Q′
c̄z = 0,

∫

R

Q2
c̄ =

∫

R

u2(t0).
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D’après la définition de la masse et l’énergie, on obtient

E[u](t) + c̄M [u](t) = E[Qc̄](t) + c̄M [Qc̄](t) + F [z](t) +O(‖z(t)‖3
H1(R)).

Par la conservation de la masse et de l’énergie, et par l’équation que satisfait Qc̄, on a

F [z](t) . ‖z(t0)‖2
H1(R).

Finalement, d’après (1.11), on a

‖z(t)‖2
H1(R) . ‖z(t0)‖2

H1(R) + |
∫

R

Qc̄z|2.

Enfin, d’après la conservation de la masse, on a
∫

R

Qc̄z = O(‖z(t)‖2
L2(R)),

et par suite le résultat.

La stabilité orbitale de petites perturbations de solitons pour gKdV a été considérée dans
[3, 5, 9, 45]. De façon similaire, dans le cas NLS, on a les travaux de Cazenave et Lions [9],
Weinstein [62, 63], Grillakis, Shatah et Strauss [18, 19], Cuccagna [10], et Martel, Merle et Tsai
[45]. Voir les références à l’intérieur de ces articles pour une bibliographie plus détaillée.

D’autre part, la stabilité asymptotique étudie le petit résidu donné par le résultat de
stabilité ci-dessus. Il est légitime de se demander si u(t) devrait en fait converger vers un
soliton dans un certain sens.

Tout d’abord, quelques remarques. Notons que deux solitons Qc et Qc̃, avec c ∼ c̃ mais
différentes, et ayant la même trajectoire, sont toujours à une distance positive dans H1(R).
D’autre part, un résultat de classification standard affirme que si ‖u(t)−Qc(·−x(t))‖H1(R) → 0
lorsque t → +∞, pour une certaine fonction x(t), alors u(t) est un soliton pur. Ces deux
arguments suggèrent la non existence d’une convergence générale dans H1 vers un soliton
pour une petite perturbation d’un soliton.

Afin de résoudre cette problématique, il faut reformuler la propriété de stabilité asympto-
tique, soit en introduisant des espaces adaptés [56], soit en considérant des normes localisées
[41]. Dans cette dernière formulation, on a l’existence d’une constante β > 0, et c+ > 0 avec
|c+ − c| . α, telles que

‖u(t) −Qc+(· − ρ(t))‖H1(x>βt) → 0,

lorsque t → +∞. De plus, limt→+∞ ρ′(t) = c+. Autrement dit, on a convergence H1 fort
autour du soliton. Ce résultat peut être résumé par le schéma suivant :

∼ Qc

Qc+

t = 0

x = βt

x = c+t

t→ +∞ .
défaut ?
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Derrière la preuve de cette propriété se trouve l’identité de Kato, que nous allons fré-
quemment utiliser dans ce travail. Dans sa forme la plus simple, elle indique que, pour
u(t) ∈ H1(R) solution de (1.1) satisfaisant la propriété de stabilité orbitale (1.10), on a

∂t

∫

R

ϕ(x− βt)u2(t, x) . 0, (1.12)

pour 0 < β < c et pour toute fonction positive, croissante et bornée ϕ telle que ϕ′ ∼ Q.
Formellement, cette dernière inégalité implique que la masse près du soliton est déplacée
vers la gauche quand il avance, ce qui donne finalement le résultat. Une autre application
intéressante de cette inégalité est l’effet régularisant associé aux équations du type gKdV.

Finalement, on remarquera que cette propriété et des résultats de scattering ont été étudiés
dans [59, 60, 7, 57, 11, 58].

Revenons à l’équation gKdV considérée en (1.1), dans un cadre encore plus général. On
suppose maintenant qu’on a une nonlinéarité quelconque f , ne dépendant que de u = u(t, x),
et on considère l’équation

ut + (uxx + f(u))x = 0, dans Rt × Rx. (1.13)

Rappelons que f(s) = s2 correspond au cas de KdV. D’autres cas physiquement importants
sont le cas cubique f(s) = s3, et la nonlinéarité quadratique-cubique, c’est-à-dire f(s) = s2 −
µs3, µ ∈ R+. Dans le premier cas, l’équation (1.13) est souvent désignée comme l’équation
de KdV modifiée (mKdV), et dans le second, elle est connue comme l’équation de Gardner.
Ces trois équations sont des modèles complètement intégrables. L’équation de Schrödinger
cubique est aussi intégrable [64]. Finalement, la complète intégrabilité implique l’existence
d’un nombre infini de quantités conservées pour l’équation associée.

Dans la forme générale (1.13), gKdV a seulement deux quantités H1(R) conservées : la
masse et l’énergie. Cette dernière est maintenant donnée par la formule

E[u](t) :=
1

2

∫

R

u2
x(t, x) dx−

∫

R

F (u(t, x)) dx,

où on a noté

F (s) :=

∫ s

0
f(σ) dσ. (1.14)

Dans ce travail, on ne va considérer que des nonlinéarités f ∈ C3(R) de la forme

f ∈ Cm+2(R), f(u) := um + f1(u), m = 2, 3, 4, avec lim
s→0

|f1(s)|
|s|m = 0. (1.15)

Le signe positif devant f permet l’existence [4] de solitons pour (1.13) de la forme

u(t, x) := Qc(x− x0 − ct),

avec c > 0 petit et x0 ∈ R. La fonction Qc est maintenant solution de l’équation elliptique

Q′′
c + f(Qc) = cQc, Qc ∈ H1(R). (1.16)

Pour tout c > 0, s’il existe une solution Qc > 0 de (1.16) alors elle peut être choisie paire sur R

et exponentiellement décroissante sur R
+ (de même si Qc < 0).
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L’un des problèmes les plus intéressants du point de vue physique est la collision de so-
litons. Le problème dynamique de la collision de solitons est un problème classique dans la
propagation des ondes nonlinéaires (voir [39] pour plus de références), bien que mathéma-
tiquement loin d’être compris. À présent, nous réduisons notre recherche au problème des
collisions de 2-soliton.

Par collision de 2-soliton, nous entendons le problème suivant : étant donnés deux soli-
tons, solutions de (1.13), bien séparés à l’instant initiale et ayant des vitesses différentes, nous
attendons à ce qu’ils croisent à un temps fini. La solution obtenue après la collision est préci-
sément l’objet de l’étude. En particulier, on s’intéresse à tout changement de taille, de position
ou de forme, ou même à la destruction des solitons, après un certain temps ensemble.

Les premiers travaux dans cette direction ont été les résultats numériques de Fermi, Pasta
et Ulam [?], et Zabusky et Kruskal [34], qui ont montré le caractère élastique de la collision
entre deux solitons. Par élastique, on veut dire que les solitons restent inchangés et qu’il n’y a
pas de défaut de masse positive pour des temps longs. La seule conséquence de la collision
sont des shifts sur chaque soliton, en fonction de leurs tailles. Ensuite, le travail de Lax [35] et
la méthode de scattering inverse (voir [1] et [48] pour plus de détails) ont fourni des formules
explicites pour des N -solitons (Hirota [24]) ne présentant pas de termes résiduels avant et
après la collision. En d’autres termes, la collision est élastique, et le N-soliton est pur, comme
le montre le schéma ci-dessous pour le cas n = 2 :

Qc1

Qc1

c1

Qc2

Qc2

c2

t = 0

t→ +∞

t→ −∞ (pur)

(pur)

Ces propriétés sont aussi valables pour l’équation cubique mKdV (voir [1], p. 390), et pour
l’équation de Gardner (voir [16, 61] et les références citées). En particulier, la collision de deux
solitons est élastique. On doit remarquer que, pour l’équation de Gardner

ut + (uxx + u2 − µu3)x = 0, (1.17)

étant donné µ ∈ R, il existe une solution de type soliton pour tout c > 0 dans le cas µ < 0,
et si c < 2

9µ dans le cas µ > 0. Ces solutions sont explicites, et sont données par u(t, x) =
Qµ,c(x− ct), où Qµ,c est la fonction [61]

Qµ,c(x) :=
3c

1 + ρ cosh(
√
cx)

; ρ := (1 − 9

2
µc)1/2. (1.18)
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En particulier, il n’existe pas de soliton dans le cas µ > 0 et c > 0 assez grand.

Nous rappelons que ces techniques sont connues pour être trop rigides pour être appli-
quées à des modèles plus généraux, et n’ont pas d’équivalent dans le cas de l’équation gKdV
(1.13) avec une nonlinéarité générale. Le but est de confirmer que la collision de deux soli-
tons n’est pas élastique en général, à l’exception des équations KdV, mKdV et des équations
de Gardner.

Notons que même l’existence d’une solution 2-soliton pour des équations non intégrables
était une question ouverte. Dans [37, 36], les auteurs ont construit une solution du type 2-
soliton, pure à l’infini, ne dépendant que de quelques paramètres donnés, dans les cas gKdV
sous-critique et critique, et pour NLS. Dans le cas gKdV, cette solution est aussi unique, en
raison d’une propriété de monotonie similaire à (1.12). La preuve de ces résultats sera adaptée
plusieurs fois dans ce travail pour obtenir l’existence et l’unicité de certaines solutions de type
soliton.

Nous finissons ce paragraphe avec quelques remarques sur la littérature déjà existante. La
propriété d’intégrabilité a été étudiée dans de nombreuses équations différentielles, comme
l’équation NLS cubique, KPI, Benjamin-Ono, etc., voir par exemple [1]. En particulier, lorsque
cette propriété est perdue, il n’existe que très peu de résultats. Nous mentionnons les récents
travaux de Perelman [57], Holmer, Marzuola et Zworski [26, 27, 28] et Abou Salem, Fröhlich
et Sigal [2] sur le problème de la collision de deux solitons pour l’équation de Schrödinger
nonlinéaire sous l’action d’un potentiel ou bien avec des vitesses assez grandes.

2 Résultats principaux

Nous avons examiné en détail le comportement des solitons pour les équations gKdV ou
NLS, et la collision de deux solitons dans les cas intégrables. Dans cette thèse, nous avons
considéré quelques généralisations non triviales de ces équations et nous avons donné une
description précise de certains phénomènes intéressants, via des calculs explicites, dans des
régimes asymptotiques particuliers. Les résultats au cœur de ce travail peuvent être divisés
en trois parties, que nous décrivons maintenant.

La première partie traite de la dynamique d’une solution de type soliton pour l’équa-
tion gKdV à coefficients variables et de variation lente. Cette solution peut être considérée
comme un exemple d’interaction soliton-potentiel. Premièrement, nous étudions l’existence
et l’unicité d’une telle solution, puis nous décrivons complètement la dynamique à l’intérieur
de la région d’interaction. Il apparaît que la dynamique induit de très intéressants effets de
dispersion, qui ne sont pas présents dans le régime de coefficients constants. Ensuite, nous
décrivons le comportement asymptotique de cette solution pour des temps longs et, enfin,
nous montrons que cette solution possède un petit défaut, différent de zéro à l’infini.

La deuxième partie de ce travail porte sur des questions similaires pour une équation
généralisée de type NLS. Comme ci-dessus, nous décrivons avec beaucoup de détails la dy-
namique d’une solution de type soliton pour une large classe de potentiels. Nous en démon-
trons l’existence et l’unicité et en établissons le comportement global pour tout temps, ce qui
est une amélioration considérable de tous les résultats précédents existant dans la littérature.

Enfin, dans la troisième partie, nous traitons le cas de la collision de deux solitons pour
une équation de KdV généralisée, avec une nonlinéarité générale. Plus précisément, nous
considérons la collision d’un soliton petit contre un très petit. Nous montrons que pour tous
les cas non intégrables la collision n’est plus élastique, et aucune solution pure 2-soliton
n’existe dans ce régime. Notre preuve est basée sur des résultats récents de Martel-Merle
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concernant le cas gKdV quartique. Nous généralisons ces résultats dans un cadre général
complet.

Dans ces cas, une propriété-clé est perdue : les solutions ne sont jamais complètement
pures, et des termes dispersifs non nuls sont toujours présents au long de la dynamique.

Les trois parties susmentionnées font partie des articles suivants :

1. Muñoz C., On the soliton dynamics under slowly varying medium for generalized Korteweg-de
Vries equations, arXiv :0912.4725. To appear, Analysis and PDE.

2. Muñoz C., On the soliton dynamics under slowly varying medium for Nonlinear Schrödinger
equations, arXiv :1002.1295.

3. Muñoz C., On the inelastic 2-soliton collision for gKdV equations with general nonlinearity,
arXiv :0903.1240, accepté dans IMRN.

Des résultats complémentaires seront bientôt disponibles dans [52, 53, 54].

2.1 Première partie : dynamique d’un soliton pour le cas gKdV

La première partie de notre travail a été consacrée à l’étude de la dynamique des soli-
tons pour des perturbations des équations gKdV sous-critiques. En effet, nous étudions la
dynamique des solitons pour l’équation de KdV généralisée suivante :

{
ut + (uxx − λu+ a(εx)um)x = 0 dans Rt × Rx,

m = 2, 3 ou 4 ; 0 < ε ≤ ε0, 0 ≤ λ < 1,
(2.1)

avec a une fonction régulière (le potentiel), satisfaisant des hypothèses raisonnables, comme

a′(r) > 0, lim
r→−∞

a(r) = 1, et lim
r→+∞

a(r) = 2.

Nous supposons aussi ε0 > 0 assez petit.

Le problème que nous considérons dispose d’une littérature physique étendue, qui com-
mence par les travaux de Kaup et Newell [30] et Karpman et Maslov [29]. La motivation
physique était l’étude de perturbations en temps de modèles intégrables.

Les auteurs ci-dessus ont effectué une analyse perturbative de la théorie de scattering
inverse pour décrire la dynamique d’un soliton (de l’équation intégrable) dans ce régime
variable. Curieusement, l’existence d’une queue dispersive sous la forme d’un plateau derrière
le soliton a été formellement décrite. Ce phénomène est en fait lié à l’absence de conservation de
l’énergie dans l’équation.

Ultérieurement, le problème a été considéré dans plusieurs travaux pour différents mo-
dèles intégrables, voir par exemple [32, 15, 20, 21]. On peut aussi consulter le manuscrit de
Newell [55], pp. 87–97, pour une exposition plus détaillée du problème.

Notons qu’une solution de (2.1) non nulle peut perdre ou gagner de la masse, selon le
signe de la fonction u, d’après l’identité

∂tM [u](t) = − ε

m+ 1

∫

R

a′(εx)um+1. (2.2)

De plus, l’énergie est donnée par la formule (λ ≥ 0)

Ea[u](t) :=
1

2

∫

R

u2
x(t, x) dx+

λ

2

∫

R

u2(t, x) dx− 1

m+ 1

∫

R

aε(x)u
m+1(t, x) dx, (2.3)
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et reste conservée pour tout temps.

Le problème de la description analytique de la dynamique des solitons pour différents mo-
dèles intégrables dans un milieu à variation lente a reçu une attention croissante au cours des
dernières années. En ce qui concerne l’équation de KdV, notre conviction est que le premier
résultat dans cette direction a été donné par Dejak et Sigal, et récemment amélioré par Hol-
mer, dans [13, 25]. Ils ont estimé la dynamique en temps long des ondes solitaires (solitons)
de perturbations plus lentement variables des équations KdV et mKdV suivantes :

ut + (uxx − b(εt, εx)u+ u2)x = 0 dans Rt × Rx, (2.4)

où b est une fonction bornée et régulière. Avec ces hypothèses, les auteurs ont montré que
dans le cas de données initiales suffisamment proches d’un soliton, on obtient que pour tout
temps t . ε−1 la solution peut être décomposée comme

u(t, x) = Qc(t)(x− ρ(t)) + w(t, x),

où ‖w(t)‖H1(R) ≤ Kε1/2 et ρ(t), c(t) satisfont un système dynamique particulier.

Pour obtenir de meilleurs résultats dans cette direction, et passer la barrière ε−1 en temps,
il a été nécessaire de prendre des potentiels moins généraux. Cette hypothèse nous permet
de comprendre, pour encore une très grande classe de potentiels, la complète dynamique des
solitons généralisés.

Afin de présenter les résultats dans la forme la plus claire possible, nous avons choisi
d’énoncer notre résultat concernant le cas cubique. Pour un compte rendu plus détaillé des
résultats, y compris les cas quadratique et quartique, voir Partie 2, Théorème 1.1.

Théorème 2.1 (Dynamique d’interaction soliton-potentiel pour des équations gKdV).

Soit m = 3, et soit 0 ≤ λ ≤ 1
3 un paramètre fixe. Il existe une petite constante ε0 > 0 telle que,

pour tout 0 < ε < ε0, on a les propriétés suivantes.

1. Existence d’une solution de type soliton. Il existe une unique solution u ∈ C(R, H1(R))
de (2.1), globale en temps, telle que

lim
t→−∞

‖u(t) −Q(· − (1 − λ)t)‖H1(R) = 0.

2. Interaction soliton-potentiel et stabilité. Il existe K > 0, c+ ≥ 1 et une fonction C1 ρ(t)
définie pour tout t≫ 1

ε , telles que

w+(t, ·) := u(t, ·) − 1√
2
Qc+(· − ρ(t))

satisfait, pour tout t≫ 1
ε ,

‖w+(t)‖H1(R) + |ρ′(t) − c+ + λ| ≤ Kε1/2.

La preuve de ce résultat est basée sur la construction d’une solution approchée de (2.1)
dans la région d’interaction, satisfaisant certaines symétries. Cette solution approximative
comporte essentiellement un soliton modulé plus un petit terme de correction. Un des pre-
miers points importants est le fait que la position et le scaling du soliton suivent un système
dynamique en la variable lente εt. D’après la nature des potentiels considérés, et sous la
condition de petitesse λ ≤ 1

3 , nous pouvons montrer que le soliton sort par la droite, en
temps de l’ordre de ε−1. Cependant, à un moment donné, nous obtenons formellement que
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la correction a un terme de masse infinie, voir aussi [43] pour un problème similaire. Il appa-
raît que, pour obtenir une solution localisée, nous avons besoin de casser la symétrie de cette
solution, ce qui est une différence essentielle par rapport au soliton de gKdV. Ce manque de
symétrie conduit à l’erreur ε1/2 indiquée dans le théorème ci-dessus. À ce prix, nous avons
une description complète de la dynamique dans la région d’interaction, un résultat tout à fait
nouveau.

Une question fondamentale d’après ces résultats est de savoir si le soliton est pur à l’infini.
Cette question est équivalente à décider si

lim sup
t→+∞

‖w+(t)‖H1(R) = 0.

Notre dernier résultat montre que ce comportement n’existe pas.

Théorème 2.2 (Non existence d’une solution de type soliton pur).

Sous le contexte du dernier résultat, on suppose 0 < λ ≤ 1
3 . Il existe ε0 > 0 tel que, pour tout

0 < ε < ε0,
lim sup
t→+∞

‖w+(t)‖H1(R) > 0. (2.5)

La preuve de ce résultat est basée sur une idée très simple. En effet, si l’on suppose que
la solution est un soliton pur en +∞, alors par unicité elle converge à vitesse exponentielle
vers une solution de type soliton. Par l’utilisation de cette décroissance en temps, nous pou-
vons obtenir la décroissance en espace et donc que la solution est effectivement dans L1, et
conserve l’intégrale. Du fait que le scaling varie largement, et en utilisant la précédente loi de
conservation, nous obtenons la contradiction souhaitée.

Le deux derniers résultats peuvent être schématisés par la figure suivante :

Q, a ≡ 1

1√
2
Qc+ , a ≡ 2

c+ > c∞

défaut non nul

queue dispersive, OH1 (
√
ε)

t ∼ 0

t→ +∞

t→ −∞

Quel est le comportement de la solution pour des coefficients 1
3 < λ < 1 ? Nous avons

inclus un paragraphe à la fin de la Partie 3 (voir Addendum) qui décrit formellement le com-
portement de la solution dans ce cas. Pour un compte rendu détaillé de ce problème, voir la
dernière section ci-dessous.

2.2 Deuxième partie : le cas Schrödinger

Un problème non trivial est de traiter de questions similaires pour le cas Schrödinger. Tel
est l’objectif de la deuxième partie de ce travail : l’étude de la dynamique des solitons pour
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l’équation NLS dans le cas d’un potentiel à variation lente.

En effet, on considère l’équation de Schrödinger nonlinéaire généralisée (NLS)

iut + uxx + a(εx)|u|m−1u = 0, dans Rt × Rx, m ∈ [2, 5). (2.6)

Ici u = u(t, x) est une fonction à valeurs complexes, ε > 0 est un paramètre petit et a satisfait
les mêmes hypothèses qu’avant.

La littérature dans ce cas est beaucoup plus développée, commençant à partir de travaux
physiques de Kaup et Newell [30] et Grimshaw [21]. D’un point de vue mathématique, le
premier résultat dans cette direction a été donné par Bronski et Jerrard [6]. Gustafson et al.
[22, 23] et Holmer et al. [26, 27, 28] ont examiné la dynamique d’un soliton pour des poten-
tiels généraux, et pour des périodes t ∼ 1

ε . Voir aussi [12] pour un résultat similaire dans
le cas d’une équation généralisée de Hartree. D’après ces résultats, il semble évident qu’une
meilleure compréhension de la dynamique des solitons pour des temps longs dépend forte-
ment du caractère spécifique du potentiel considéré. Comme ci-dessus, l’idée est de consi-
dérer des potentiels un peu plus simples, mais encore très généraux afin de comprendre le
comportement de la solution.

Maintenant, une solution non nulle de (2.6) peut gagner du moment, dans le sens où, au
moins de façon formelle, la quantité P [u](t) définie en (1.9) satisfait l’identité suivante :

∂tP [u](t) =
ε

m+ 1

∫

R

a′(εx)|u|m+1 ≥ 0. (2.7)

Par conséquent, le moment est toujours une quantité croissante. Ce simple fait a des consé-
quences importantes dans nos résultats ; en particulier, nous obtiendrons de cette propriété
la stabilité et l’unicité de notre solution.

D’autre part, la masse M [u](t) définie en (1.7) et la nouvelle énergie

Ea[u](t) :=
1

2

∫

R

|ux|2(t, x) dx− 1

m+ 1

∫

R

aε(x)|u|m+1(t, x) dx

sont formellement conservées.

Notre résultat principal est une description complète, pour tout temps, de l’interaction
soliton-potentiel pour l’équation NLS (2.6). Comme ci-dessus, afin de simplifier l’exposition,
nous allons présenter le cas le plus simple, m = 3. Pour en savoir plus, voir le Théorème A 1
dans la Partie 3.

Théorème 2.3 (Dynamique de solutions de type soliton pour des équations NLS généralisées).

On suppose que a(·) satisfait les mêmes hypothèses que dans le cas gKdV. Soit v0 > 0. Il existe
une petite constante ε0 > 0 telle que, pour tout 0 < ε < ε0, on a les propriétés suivantes.

1. Existence d’un soliton.
Il existe une unique solution u ∈ C(R, H1(R)) de (2.6), globale en temps, telle que

lim
t→−∞

‖u(t) −Q(· − v0t)e
i(·)v0/2ei(1−

1
4
v2
0)t‖H1(R) = 0. (2.8)

2. Stabilité de l’interaction soliton-potentiel. Soit v∞ := (v2
0 + 4)

1
2 (> v0). Il existe K > 0, et

des fonctions C1 ρ(t), γ(t) ∈ R définies pour tout t≫ 1
ε , telles que la fonction

w(t, x) := u(t, x) − 1√
2
Q4(x− v∞t− ρ(t))e

i
2
xv∞eiγ(t)
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satisfait, pour tout t≫ 1
ε ,

‖w(t)‖H1(R) + |ρ′(t)| + |γ′(t) − 4 +
1

4
v2
∞| ≤ Kε2. (2.9)

Les deux derniers résultats peuvent être illustrés par le schéma suivant :

Q, v0 > 0

1√
2
Q4, v∞ > v0

OH1(ε2), défaut

OH1 (ε2)
t ∼ 0

a ≡ 2
t→ +∞

t→ −∞, a ≡ 1

On peut comparer ce résultat avec les résultats pour le cas gKdV, où une borne de l’ordre
de ε1/2 a été trouvée. Notre résultat présent est meilleur en raison de l’absence d’une queue
dispersive derrière le soliton, précisément d’ordre ε1/2 dans H1(R), et présente dans le cas
gKdV. Rappelons enfin que ces éléments dispersifs ne sont pas présents dans le cas d’un
soliton pur de NLS ou gKdV.

De plus, ce résultat est aussi vrai dans le cas deux dimensionnel, si l’on considère le
potentiel ne dépendant que d’une seule variable, et pour une vitesse d’arrivée quelconque
(voir Théorème 1.24 de la Partie 3). La restriction à la dimension deux est une conséquence
de la perte de régularité pour les puissances dans les dimensions supérieures.

Ces résultats peuvent être aussi généralisés au cas de potentiels décroissants pour des
temps pas trop longs, mais encore beaucoup plus grands que ε−1. Le point important ici est
que la construction d’une solution de type soliton ne dépend pas du signe de a, mais de la
platitude de a(·) à l’infini. La dynamique dans la région d’interaction peut être décrite de
la même manière que dans le cas croissant, avec une différence essentielle : pour de petites
vitesses initiales, la solution est réfléchie. Pour de grandes vitesses initiales, le soliton sort de
la région d’interaction toujours par la droite, mais la stabilité dans ce cas n’est pas connue, et
donc le comportement de cette solution pour des temps longs est encore inconnu. Toutefois,
si la vitesse est assez petite (mais indépendante de ε), nous pouvons décrire la solution pour
tout temps. En effet, supposons que le potentiel a(·) décroît strictement d’un état initial a ≡ 1
à un état final a0 ∈ (0, 1). Alors, si v2

0 < 4
3(1 − a2

0), il existe une solution de type soliton
satisfaisant (2.8) et

sup
t≫ 1

ε

‖u(t) −Q(· + v0t− ρ(t))e−i(·)v0/2eiγ(t)‖H1(R) ≤ Kε2,

avec ρ′(t) petit (voir Addendum 1 dans la Partie 3 pour plus de détails). Autrement dit, le
comportement dans ce régime est très similaire à la dynamique exprimée dans la figure sui-
vante :
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défaut non nul ?

Q1, v0 > 0

Q1, −v0

t→ −∞

cas v2
0 <

4

3
(1 − a2

0)

OH1 (ε2)

t ∼ 0

t→ +∞

Voir [54] pour plus d’informations. Comme expliqué plus haut, le comportement de cette
solution dans le régime v2

0 > 4
3(1 − a2

0) et pour des temps assez grands est une question
ouverte. Dans le cas limite v2

0 = 4
3(1 − a2

0) les choses sont apparemment plus compliquées.

2.3 Troisième partie : dynamique de la collision pour deux solitons

La troisième partie de ce travail est consacrée à l’étude de la collision de deux solitons
pour les équations gKdV avec une nonlinéarité générale.

Nous rappelons que la théorie de scattering inverse est inutile dans le cas d’une équation
non intégrable. Ici, notre but est de confirmer que sous des hypothèses raisonnables sur la
nonlinéarité, la collision de deux solitons n’est pas élastique en général, sauf par les cas KdV,
mKdV et les équations de Gardner.

On considère ce problème pour (1.13) avec une nonlinéarité f(u), et deux solitons Qc1 ,
Qc2 , 0 < c2 < c1 < c∗(f), et on suppose c2 plus petit que c1.

Sous ces hypothèses, Martel et Merle [39] ont considéré la collision pour (1.13) dans le
cas de nonlinéarité quartique, f(s) = s4. Ils ont montré que la collision est presque élastique,
mais inélastique.

La question qui suit dans ce cas est de généraliser ces résultats à (1.13) sous l’hypothèse
(1.15). Dans ce cas, Martel et Merle [40] ont montré que la collision est toujours stable, en
donnant des bornes supérieures sur la taille du défaut figurant après la collision. Dans [40], la
question de savoir si la collision est élastique ou pas dans ce cas général – et donc l’inexistence
de purs 2-solitons – a été laissée ouverte, voir [40], Remarque 1.

On a été capable de donner une réponse satisfaisante à cette question à partir de l’amélio-
ration des techniques développées dans [39, 40] et de nouveaux calculs.

Théorème 2.4 (Non existence de solution 2-soliton pure, cas général).

Soit f comme dans (1.15), avec m = 2 ou 3, et

f ∈ Cp+1(R), f (p)(0) 6= 0 pour un p ≥ 4. (2.10)

Pour 0 < c2 ≪ c1 ≪ 1, l’équation (1.13) n’a pas de solution 2-soliton pure de tailles c1 et c2.
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La condition f (p)(0) 6= 0 pour un p ≥ 4 n’inclut pas les cas intégrables f(s) = sm, m = 2
ou 3 et la nonlinéarité de Gardner f(s) = s2 − µs3.

Notre preuve suit l’approche décrite par Martel, Merle et Mizumachi [39, 40, 44]. L’hypo-
thèse c2 petite permet de linéariser autour de c2, et donc de réduire la non existence d’une so-
lution 2-soliton pure au calcul d’un coefficient ne dépendant que de c1. Ce coefficient est une par-
tie d’une solution approchée de (1.13) avec un ordre de précision élevé, et il est évidemment
nul dans le cas intégrable. Pour des fonctions f et des coefficients c1 > 0 généraux, calculer
ce coefficient est une question ouverte. D’après cette étude, nous calculons les asymptotiques
de ce coefficient quand c1 est petit. C’est le seul endroit où c1 petit est nécessaire.

La dynamique de cette solution peut être décrite à l’aide du schéma suivant (avec l’auto-
risation de Y. Martel).

Qc−
1

Qc+

1

c+1 > c−1

Qc−
2

Qc+

2

c+2 < c−2
défaut non nul

t = 0

t→ +∞

t→ −∞

Pour finir, quelques mots sur la littérature du problème. La collision du 2-soliton a été
considérée pour le cas NLS par Perelman [57], Holmer, Marzuola et Zworski [26, 27, 28] et
Abou Salem, Fröhlich et Sigal [2].

3 Perspectives

Dans cette section finale, nous parlons de quelques problèmes ouverts qui n’ont pas été
abordés dans ce travail.

3.1 Borne inférieure dans la taille du défaut à l’infini pour les équations gKdV et
NLS

Une des questions ouvertes de ce travail est la preuve d’une borne inférieure sur le défaut
à l’infini pour une solution de type soliton. La solution à ce problème est probablement posi-
tive, au moins dans le cas λ > 0, après quelques calculs formels. Nous supposons que pour
le cas gKdV, on a

lim inf
t→+∞

‖w+(t)‖H1(R) ≥
ε

K
, pour m = 2, 4,
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et de façon surprenante à l’ordre ε2 pour le cas cubique (voir [53] pour plus de détails).

Dans le cas Schrödinger, nous conjecturons l’existence d’une constante K > 0 telle que,
pour tout ε > 0 assez petit,

lim inf
t→+∞

‖w(t)‖H1(R) ≥
1

K
ε2.

Autrement dit, la borne (2.9) est optimale. Ces estimations sont dans un certain sens équiva-
lentes aux résultats de non existence de solutions 2-soliton pour les équations gKdV, comme
cela a été montré dans [39, 44, 49, 43].

3.2 Dynamique du soliton pour gKdV, cas 1
3

< λ < 1

Un autre problème intéressant est de comprendre le comportement de la solution décrite
dans le Théorème 2.1 pour un coefficient 1

3 < λ < 1. Ici, la principale différence avec le
cas précédent est que formellement le scaling décroît avec le temps. Par conséquence, une
première tâche non triviale est de montrer l’existence d’un état final du scaling, positif et
loin de zéro, de manière uniforme en ε. Toutefois, si l’échelle est petite par rapport à λ, la
solution peut être réfléchie vers la gauche par le potentiel. En effet, nous pensons qu’il existe
une constante explicite λ̃ ∈ (1

3 , 1) telle que, pour tout ε > 0 suffisamment petit et pour tout
1
3 < λ < λ̃, le soliton sort toujours de la région d’interaction par le côté droit, et si λ̃ < λ < 1,
alors la solution est réfléchie par le potentiel. Cette hypothèse est formellement soutenue
par nos calculs dans la partie 2 (cf. Addendum). La figure suivante décrit le comportement
possible dans le cas 1

3 < λ < 1.

défaut non nul

Q1

1√
2
Qc+ , λ < c+ < 1Qc− , 0 < c− < λ

t→ −∞

cas 1

3
< λ < λ̃

cas λ̃ < λ < 1

t ∼ 0

t→ +∞

OH1 (
√
ε)

Voir [52] pour plus de détails.

Enfin, quelques résultats annoncés avant dans cette introduction seront bientôt dispo-
nibles sur la page web http ://www.math.uvsq.fr/∼munoz.
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1 Preliminaries

In this Ph.D. thesis we deal with long time and qualitative properties of some nonlinear
dispersive equations, mainly Korteweg-de Vries and semilinear Schrödinger equations.

By dispersive equations we mean equations of the form

ut = Lu+ F (u,Du, . . .),

where u(t, x) is real or complex valued, and t ∈ R, x ∈ R
N . The linear operator L is assumed

anti-adjoint, that is
F(Lu)(ξ) = ip(ξ)û(ξ), p(ξ) ∈ R,

in terms of Fourier transform. Finally, F is a nonlinear term, possibly containing high or-
der derivatives. Mathematically speaking, the equation is dispersive if in addition D2

ξp(ξ) is
nonsingular.

Heuristically, an equation is more or less dispersive depending on the size and bounded-
ness of p. For example, the linear Airy equation ut + uxxx = 0, which satisfies p(ξ) = ξ3,
is more dispersive than the linear Schrödinger equation iut + uxx = 0, which satisfies
p(ξ) = −ξ2.

Examples of (nonlinear) dispersive equations are the Korteweg-de Vries equation, the
nonlinear Schrödinger equation, the Benjamin-Ono equation, the BBM equation, KPI, KPII,
etc.

Once suitable local and/or global well-posedness results are valid for a given evolution
equation, a list of very interesting questions can be considered. One of these questions is
the long-time dynamics, or qualitative description of a class of solutions, even some very
particular solutions.

Precisely, this work is focused on a special type of solutions for a wide class of hamiltonian
and nonlinear dispersive equations. These solutions are called solitons, or more generally
solitary waves. These concepts slightly vary from one equation to another, but the spirit is the
same, and we think that a simple example can illustrate it.

So, let us consider one of the simplest cases of dispersive equations, the generalized
Korteweg-de Vries equation (gKdV). It reads2

ut + (uxx + um)x = 0, u = u(t, x), (t, x) ∈ R
2, m = 2, 3 or 4. (1.1)

The Korteweg-de Vries equation (KdV), that is, the case m = 2 above, arises in Physics as a
model of propagation of dispersive long waves, as was pointed out by J. S. Russel in 1834
[48]. The exact formulation of the KdV equation comes from Korteweg and de Vries (1895)
[33]. This equation was studied in a numerical work by N. Zabusky and M. Kruskal in 1965
[34].

In addition, the above equation enjoys some surprising properties. First of all, note that
if u = u(t, x) is solution of the above equation, then also are u(t − t0, x − x0) and uc(t, x) :=
c1/(m−1)u(ct,

√
cx), for any c > 0 and t0, x0 ∈ R. These are examples of translation and scaling

invariance, respectively. Solitons are precisely localized solutions of (1.1) of the form

u(t, x) := Qc(x− ct),

with Qc(s) := c1/(m−1)Q(
√
cs). If this class of solutions exists, then it has an invariant profile

and moves to the right as time increases. Moreover, they are globally defined solutions.

2The fact that we only consider the cases satisfying m < 5 will be clear below.
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From the above considerations, it is clear that Q must satisfy the second order nonlinear
differential equation

Q′′ −Q+Qm = 0, (1.2)

which has a unique positive H1(R) solution modulo translations. This solution is given by

Q(x) =
[ m+ 1

2 cosh2( (m−1)
2 x)

] 1
m−1

.

Note that the scaled function Qc(s) gives us the following heuristic: small solitons are wider
than large solitons, but at the same time slower. This is the equivalence scaling-velocity
present in the gKdV equation. The following figure describes two different solitons:

Q2

Q1/2

In addition, since Q is a positive function, solution of a nonlinear elliptic equation, it can
be related to a minimization problem on H1(R), for which Q represents the ground state, the
minimum level of energy. In order to obtain the existence of such a solution in a general
framework, one needs to apply concentration-compactness methods [6], due to the lack of
compactness on the entire space.

Another important example is given by the Nonlinear Schrödinger equation (NLS)

iut + uxx + |u|m−1u = 0, in Rt × Rx, m ∈ [2, 5). (1.3)

Here u = u(t, x) is a complex-valued function. The cubic nonlinear Schrödinger equation
(namely the case m = 3) arises in Physics as a model of wave propagation in fiber optics in
a nonlinear medium, and also describes the evolution of the envelope of modulated wave
groups in water waves. In two dimensions, the cubic NLS also possesses an important phys-
ical meaning.

Given c0 > 0, v0, x0, φ0 ∈ R, this equation has solutions of the form

Qc(x− v0t− x0)e
i
2
v0xei(c−

1
4
v2
0)teiφ0 ,

with Qc the aforementioned soliton solution. This localized solution is called solitary wave,
and its module has an invariant profile. Behind this solution, there are two more additional
symmetries satisfied by solutions of (1.3): phase and Galilean invariances.

These two types of solutions, solitons and solitary waves, share an important property:
they are pure, in the sense that no additional terms are required to satisfy the equation. This
phenomenon is rather strange in a completely general solution, considering the dispersive
character of the considered equation, and it can be explained via a delicate balance between
the dispersive member given by the derivative term and the nonlinearity included in the
equation.
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At the beginning of this paragraph we have mentioned the concepts of local and global
well-posedness as a key element to investigate qualitative or long-time properties for solu-
tions of dispersive equations. Let us see some reasons of this.

Once one has soliton solutions, one may consider the analytical or numerical study of
small perturbations, or even harder, the behavior of several soliton solutions. If one consid-
ers two or more solitons, it is natural to think about possible collisions among themselves, a
difficult question to answer due to the nonlinear character of the equation. In both cases one
begins near solitons solutions, and in order to describe both problems, local and/or global
well-posedness (LWP-GWP) ensure the existence of such a solution for a period of time.

So, in the next lines we would like to give an informal account of the –by now– well-
known LWP and GWP theory for gKdV and NLS.

Let us suppose m = 2, 3 or 4 in (1.1). Local well-posedness for gKdV is by now a standard
issue. From the work of Kenig, Ponce and Vega [31], (1.1) is locally well-posed in H1(R) and
then globally due to the mass and energy conservation laws

M [u](t) :=
1

2

∫

R

u2(t, x) dx =
1

2

∫

R

u2
0(x) dx = M [u](0), (Mass), (1.4)

E[u](t) :=
1

2

∫

R

u2
x(t, x) dx− 1

m+ 1

∫

R

um+1(t, x) dx (1.5)

=
1

2

∫

R

(u0)
2
x(x) dx− 1

m+ 1

∫

R

um+1
0 (x) dx = E[u](0), (Energy),

and the Gagliardo-Nirenberg inequality
∫

R

up+1 ≤ K(p)
( ∫

R

u2
) p+3

4
( ∫

R

u2
x

) p−1
4 . (1.6)

Let us emphasize that for m = 5, the Cauchy problem for the corresponding gKdV equation
has finite-time blow-up solutions, see [47, 42, 38] and references therein. It is believed that
for m > 5 the situation is the same. For both gKdV and NLS equations, the case m = 5 is
denoted as the L2-critical case, in the sense that every soliton has the same size:

‖Qc‖L2(R) = ‖Q‖L2(R), for all c > 0.

However, in the supercritical case (m > 5), small solitons (with respect to the L∞-norm) are
larger than big solitons (with respect to the L2-norm).

The proof of Kenig, Ponce and Vega uses a fixed point argument in a subspace of
C([0, T ], H1(R)) depending on the nonlinearity, for a small but fixed time T > 0. The proof
of a smoothing effect for the linear Airy operator e−t∂3

x , in the spirit of Kato, is one of the key
steps to close the iterative procedure.

In the NLS case, 2 ≤ m < 5, the Cauchy problem is locally well-posed for u0 ∈ H1(R) (see
Ginibre and Velo [17]) and then globally well-posed due to the mass and energy conservation
laws

M [u](t) :=
1

2

∫

R

|u|2(t, x) dx = M [u](0), (Mass), (1.7)

and

E[u](t) :=
1

2

∫

R

|ux|2(t, x) dx− 1

m+ 1

∫

R

|u|m+1(t, x) dx = E[u](0), (Energy). (1.8)



34 PRELIMINARIES

The proof of Ginibre and Velo is based on a tough use of Strichartz estimates (in suitable
Lp

tL
q
x-spaces) and a fixed point argument in a small ball of C((−T, T ), H1(R)), for T > 0

small, as in the gKdV case. We refer to [8] for a detailed proof.

Finally, let us recall that NLS possesses a third conserved quantity, called Momentum

P [u](t) :=
1

2
Im

∫

R

ūux(t, x) dx = P [u](0). (1.9)

This quantity is well defined for H1(R) solutions. Similarly to the gKdV case, for m ≥ 5, the
Cauchy problem for the corresponding NLS equation has finite-time blow-up solutions, see
[8] and references there in.

The study of perturbations of solitons or solitary waves lead to the introduction of the
concepts of orbital and asymptotic stability. By orbital stability we mean the following prop-
erty. Consider the gKdV equation (1.1), and a soliton solution Qc(x− x0), for c, x0 given. Let
us suppose that there exists a solution u = u(t) of (1.1), global in time and such that

‖u(t0) −Qc(· − x0)‖H1(R) ≤ α,

for some constant α > 0 small. Then we say that Qc is orbitally stable if there exist K,α0 > 0
and a smooth ρ = ρ(t) defined for all t ≥ 0 such that for all 0 < α < α0,

‖u(t) −Qc(· − ρ(t))‖H1(R) + |ρ′(t) − c| ≤ Kα, |ρ(0) − x0| ≤ α. (1.10)

In other words, a small perturbation of a soliton solution stays close enough to a soliton with
a corrected translation parameter. Orbital stability of solitary waves of (1.3) holds under the
subcritical assumption m < 5.

Let us give some ideas of one of the known proofs of (1.10). We follow the Weinstein
method, stated as follows: if there exists a constant µ > 0 such that for all v ∈ H1(R) satisfying

∫

R

Q′
cv = 0,

one has
F [v](t) :=

∫

R

(v2
x + cv2 −mQm−1

c v2) ≥ µ

∫

R

(v2
x + v2) −K|

∫

R

Qcv|2, (1.11)

then (1.10) holds. Indeed, by the Implicit Function Theorem there exist c̄ > 0, ρ(t) such that
z(t) := u(t) −Qc̄(· − ρ(t)) satisfies for all time

∫

R

Q′
c̄z = 0,

∫

R

u2(t0) =

∫

R

Q2
c̄ , |ρ′(t) − c̄| + |c̄− c| ≤ Kα.

Using the definition of mass and energy, and the equation of Qc̄, we have

E[u](t) + c̄M [u](t) = E[Qc̄](t) + c̄M [Qc̄](t) + F [z](t) +O(‖z(t)‖3
H1(R)),

From the energy and mass conservation, we finally have

F [z](t) . ‖z(t0)‖2
H1(R) +O(‖z(t)‖3

H1(R)).

Finally, using the mass conservation, one has
∫

R
Qc̄z = O(supt ‖z(t)‖2

L2(R)), so from (1.11), we
get the final result.
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Orbital stability of small perturbations of solitons for gKdV have been considered in par-
ticular in [3, 5, 9, 45]. Similarly, orbital stability of ground states for NLS equations has been
widely studied during last decades; we mention the works of Cazenave and Lions [9], We-
instein [62, 63], Grillakis, Shatah and Strauss [18, 19], Cuccagna [10], and Martel, Merle and
Tsai [45]. See references therein for a more detailed bibliography.

On the other hand, asymptotic stability concerns with the small residue given by the
stability result above mentioned. It is legitimate to wonder whether u(t) should actually
converge to a soliton in some sense.

First, some remarks. Note that two solitons Qc(x − ρ(t)) and Qc̃(x − ρ(t)), with c ∼ c̃
but different are always at a positive distance in H1(R). In addition, a standard classification
result tells you that if ‖u(t) − Qc(· − x(t))‖H1(R) → 0 as t → +∞, for some x(t), then u(t) is
a pure soliton solution. These two arguments suggest the non existence of a completely and
general H1 convergence to a soliton solution of a small perturbation of a soliton.

In order to solve this problem, one needs to reformulate the asymptotic stability property,
either by introducing some suitable weighted spaces [56], or by considering only local norms
[41]. In this last formulation, one has the existence of β > 0 depending of α small enough and
c+ > 0 with |c+ − c| . α such that

‖u(t) −Qc+(· − ρ(t))‖H1(x>βt) → 0,

as t → +∞. Moreover, limt→+∞ ρ′(t) = c+. In other words, there is strong H1-convergence
near the soliton. This result can be schematized by the following design

∼ Qc

Qc+

t = 0

x = βt

x = c+t

t→ +∞ .
residue?

Behind the proof of the asymptotic stability is the Kato identity, that we will frequently
use in this work. In its simplest form, it states that for a H1(R) solution u(t) of (1.1) satisfying
the orbital stability property (1.10), one has

∂t

∫

R

ϕ(x− βt)u2(t, x) . 0, (1.12)

for 0 < β < c and for any positive, increasing and bounded function ϕ such that ϕ′ ∼ Q.
Formally, this last inequality implies that the mass near the soliton is moving to the left as the
soliton advances, which finally gives the desired result. We recall that the historical applica-
tion of this inequality is the so-called local smoothing effect associated to gKdV equations.

Finally, let us remark that asymptotic stability of solitary waves and related scattering
results have been studied in [59, 60, 7, 57, 11, 58].
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Let us come back to the gKdV equation considered in (1.1), but now in complete gener-
ality. We suppose the nonlinearity being a general function f depending on u = u(t, x), as
follows

ut + (uxx + f(u))x = 0, in Rt × Rx. (1.13)

Let us recall that f(s) = s2 corresponds to the well-known KdV equation. Other physically
important cases are the cubic one f(s) = s3, and the quadratic-cubic nonlinearity, namely
f(s) = s2 − µs3, µ ∈ R. In the former case, the equation (1.13) is often called the (focusing)
modified KdV equation (mKdV), and in the latter, it is known as the Gardner equation. These
three equations are completely integrable models. Cubic NLS is also integrable [64]. The
complete integrability implies the existence of an infinite number of conserved quantities for
the associated equation.

In the general form (1.13), gKdV possesses only two H1(R) conserved quantities: mass
and energy. The energy is now given by

E[u](t) :=
1

2

∫

R

u2
x(t, x) dx−

∫

R

F (u(t, x)) dx,

where we have denoted

F (s) :=

∫ s

0
f(σ) dσ. (1.14)

In this thesis, we will consider nonlinearities f ∈ C3(R) of the form

f ∈ Cm+2(R), f(u) := um + f1(u), m = 2, 3, 4, with lim
s→0

|f1(s)|
|s|m = 0. (1.15)

The positive sign leading in front of f allows the existence [4] of solitons for (1.1) of the form

u(t, x) := Qc(x− x0 − ct),

with c > 0 small enough and x0 ∈ R, and where the function Qc satisfies the elliptic equation

Q′′
c + f(Qc) = cQc, Qc ∈ H1(R). (1.16)

For all c > 0, if a solution Qc > 0 of (1.16) exists, then it can be chosen even on R and
exponentially decreasing on R

+ (and similarly if Qc < 0).

Finally we consider only nonlinear stable solitons in the sense of Weinstein [63], i.e. such
that

d

dc′

∫
Q2

c′(x)dx
∣∣∣
c′=c

> 0. (1.17)

Note that since m = 2, 3, 4 in (1.10), this condition is automatically satisfied for c > 0 small
enough (in the pure power case f(s) = sm, this condition is satisfied for any c > 0 provided
m < 5, see [63]).

One of the most interesting problems from the physical point of view is the solitons colli-
sion. The dynamical problem of N-soliton collision is a classical problem in nonlinear wave
propagation (see [39] for a review and references therein), although mathematically speaking
is far from being understood. By now we reduce our research to the problem of 2-soliton
collisions.

By 2-soliton collision we mean the following problem: given two solitons, solutions of
(1.13), well separated at some early time and having different velocities, we expect that they
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have to collide at some finite time. The resulting solution after the collision is precisely the
object of study. In particular, one considers if any change in size, position, or shape, even
destruction of the solitons, after some large time, may be present.

The first works under this direction were the numerical works of Fermi, Pasta and Ulam
[14] and Zabusky and Kruskal [34], showing the elastic character of the collision between two
solitons. By elastic we mean that the collision keeps the solitons unchanged and does not
produce any residual term of positive mass for large times. The unique consequence of the
collision is a shift translation on each soliton, depending on their sizes. Next, the work of
Lax [35] and the inverse scattering method (we refer e.g. to [1] and [48] for a review) provided
explicit formulas for N -soliton solutions (Hirota [24]), showing no residual terms before and
after the collisions. In other words, the collision is elastic, and the N -soliton is pure, as shows
the following schema for the case N = 2:

Qc1

Qc1

c1

Qc2

Qc2

c2

t = 0

t→ +∞

t→ −∞ (pure)

(pure)

These properties are also valid for the cubic mKdV, (see [1], p. 390) and for the Gardner
equation (see [16, 61] and references therein). In particular, complete integrability and elastic
collisions are still present. Let us recall that for the Gardner equation

ut + (uxx + u2 − µu3)x = 0, (1.18)

given µ ∈ R, soliton solutions exist for all c > 0 in the case µ < 0, and provided c < 2
9µ

if µ > 0. These solutions are explicit and given by u(t, x) = Qµ,c(x − ct), where Qµ,c is the
Schwartz function [61]

Qµ,c(x) :=
3c

1 + ρ cosh(
√
cx)

; ρ := (1 − 9

2
µc)1/2. (1.19)

In particular, no soliton-solution exists provided µ > 0, and c > 0 large enough, where the
character of the equation becomes defocusing.

We point out that these techniques are known to be too rigid to be applied to more general
models, and have no equivalent for the case of the gKdV equation (1.13) with a general non-
linearity. The purpose of this thesis is to confirm this belief under reasonable hypotheses on
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the nonlinearity: the collision of two solitons is not elastic in general, except for KdV, mKdV
and the Gardner equations.

Let us emphasize that even the existence of a 2-soliton solution for non integrable equa-
tions was an open issue. In [37, 36], the authors constructed a 2-soliton solution, pure at
infinity, for suitable given parameters, in the case of subcritical and critical gKdV and NLS
equations. For the gKdV case, this solution turns out to be unique, due to a monotonicity
property similar to (1.12). The proof of these results will be adapted throughout this work to
obtain existence and uniqueness of suitable soliton solutions.

2 Main results

We have reviewed in some detail the behavior of soliton solutions for gKdV or NLS equa-
tions, and the 2-soliton collision in the integrable cases. In this thesis, we have considered
non trivial generalizations of these equations and we have given a precise description of
some interesting phenomena via explicit computations in special asymptotic regimes. In an
operative level, the results inside this work can be split in three parts, that we describe now.

The first part deals with the dynamics of a soliton-like solution for a variable coefficients
and slowly varying gKdV equation. This soliton solution can be seen as an example of
soliton-potential interaction. First we study existence and uniqueness of such a solution,
and next we completely describe the dynamics inside the interaction region. It turns out
that the dynamics induces some very interesting dispersive effects, which are not present in
the constant coefficients case. Finally, we describe the asymptotic of this solution for large
times, and finally we prove that this solution possesses an additional small defect, nonzero
at infinity for all the considered cases.

The second part of this work is concerned with similar questions for a generalized NLS
equation. As above, we describe in detail the dynamics of a soliton-like solution for a large
class of potentials. We prove existence and uniqueness, and global behavior for all time,
improving all the preceding results in the literature.

Finally, in the third part, we treat the case of a two-soliton collision for generalized KdV
equations, with general nonlinearity. More precisely, we consider a small soliton colliding
against a very small one. We prove that, for all the non integrable cases, the collision is not
elastic anymore, and no pure 2-soliton solution exists in this regime. Our proof is based in the
recent Martel-Merle results concerning the quartic gKdV case, but now we generalize their
results to a complete general nonlinearity.

In these cases a key property is lost: solutions are not pure anymore, and nonzero disper-
sive terms are always present throughout the dynamics.

The three parts before mentioned represent precisely the following three articles:

1. Muñoz C., On the soliton dynamics under slowly varying medium for generalized Korteweg-de
Vries equations, arXiv:0912.4725. To appear, Analysis and PDE.

2. Muñoz C., On the soliton dynamics under slowly varying medium for Nonlinear Schrödinger
equations, arXiv:1002.1295.

3. Muñoz C., On the inelastic 2-soliton collision for gKdV equations with general nonlinearity,
arXiv:0903.1240. To appear, IMRN.

Further developments, not included in this thesis, will be available in [52, 53, 54].
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2.1 First part: one-soliton dynamics in the gKdV case

The first part of our work is devoted to the study of the soliton dynamics for small perturba-
tions of subcritical gKdV equations. Indeed, we study the soliton dynamics for the following
generalized Korteweg-de Vries equation (gKdV) on the real line

{
ut + (uxx − λu+ a(εx)um)x = 0 in Rt × Rx,

m = 2, 3 and 4; 0 < ε ≤ ε0, 0 ≤ λ < 1,
(2.1)

with a a smooth function (= the potential) satisfying suitable hypotheses, the most important
fact being that

a′(r) > 0, lim
r→−∞

a(r) = 1 and lim
r→+∞

a(r) = 2.

We also assume ε0 small enough. we have chosen 1, 2 as initial and final states, but our results
do not depend on these values and can be replaced by any pair of numbers 0 < a(−∞) <
a(+∞) < +∞.

The problem we consider possesses a long and large physical literature, starting from the
works of Kaup and Newell [30] and Karpman and Maslov [29]. The physical motivation was
the study of time perturbation of integrable models.

The above authors performed a perturbative analysis of the inverse scattering theory to
describe the dynamics of a soliton (for the integrable equation) in this variable regime. In-
terestingly enough, the existence of a dispersive shelf-like tail behind the soliton was formally
described. This phenomenon is indeed related to the lack of energy conservation.

Subsequently, this problem has been addressed in several other works and for different in-
tegrable models, see for example [32, 15, 20, 21]. The reader may consult e.g. the monograph
by Newell [55], pp. 87–97, for a more detailed account of the problem.

Note that a nonzero solution of (2.1) might lose or gain some mass, depending on the sign of
u, in the sense that, at least formally, the mass satisfies the identity

∂tM [u](t) = − ε

m+ 1

∫

R

a′(εx)um+1. (2.2)

On the other hand, the novel energy (λ ≥ 0)

Ea[u](t) :=
1

2

∫

R

u2
x(t, x) dx+

λ

2

∫

R

u2(t, x) dx− 1

m+ 1

∫

R

aε(x)u
m+1(t, x) dx (2.3)

remains formally constant for all time.

The problem of describing analytically the soliton dynamics of different integrable models
under a slowly varying medium has received some increasing attention during the last years.
Concerning the gKdV equation, our belief is that the first result in this direction was given by
Dejak and Sigal, and recently by Holmer in [13, 25]. They considered the long time dynamics
of solitary waves (solitons) over a slowly varying perturbation of the gKdV equation

ut + (uxx − b(εt, εx)u+ u2)x = 0 on Rt × Rx, (2.4)

and where b is a bounded and smooth function. With these hypotheses, the authors show that
if the initial condition u0 is close to a soliton solution, then for any time t . ε−1, the solution
can be decomposed as

u(t, x) = Qc(t)(x− ρ(t)) + w(t, x),

where ‖w(t)‖H1(R) ≤ Kε1/2 and ρ(t), c(t) satisfy a related dynamical system.
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In order to obtain improved results in this direction, and to overpass the barrier ε−1 in
time, it is necessary to pick less general potentials. This assumption allows to understand,
for a still large class of potentials, the complete dynamics of the corresponding soliton-like
solution.

In order to present the results in the clearest possible form, we have chosen to state the
result concerning the cubic case. For a detailed account of results, including the quadratic
and quartic cases, see Part 1, Theorem 1.1.

Theorem 2.1 (Dynamics of interaction of solitons for mKdV equations under variable
medium).

Let m = 3, and let 0 ≤ λ ≤ λ0 := 1
3 be a fixed number. There exists a small constant ε0 > 0 such

that for all 0 < ε < ε0 the following holds.

1. Existence of a soliton-like solution. There exists a unique solution u ∈ C(R, H1(R)) of
(2.1), global in time, such that

lim
t→−∞

‖u(t) −Q(· − (1 − λ)t)‖H1(R) = 0.

2. Interaction soliton-potential and stability. There exist K > 0, c+ ≥ 1 and a C1-function
ρ(t) defined for all t≫ ε−1 such that

w+(t, ·) := u(t, ·) − 1√
2
Qc+(· − ρ(t))

satisfies, for any t≫ ε−1,

‖w+(t)‖H1(R) + |ρ′(t) − c+ + λ| ≤ Kε1/2.

The proof of this result is based on the construction of an approximate solution of (2.1) in
the interaction region, satisfying certain symmetries. This approximate solution is basically
composed of a modulated soliton plus a small correction term. One of the first important
points is the fact that the soliton’s position and scaling follow a dynamical system in the slow
variable εt. From the nature of the potential considered, and under the smallness condition
λ ≤ 1

3 , we can show that the soliton exits by the right hand side, at time of order ε−1. How-
ever, at some point we formally obtain that the correction term possesses an infinite mass,
see also [43] for a similar problem. It turns out that, to obtain a localized solution, we need
to break the symmetry of this solution, a key difference with respect to the soliton solution of
gKdV. This lack of symmetry leads to the error ε1/2 in the theorem above stated. At this price,
we completely describe the interaction region, a completely new result.

A fundamental question arises from the above results, namely is the final solution an
exactly pure soliton for the gKdV equation (2.1) with aε ≡ 2? This question is equivalent to
decide whether

lim sup
t→+∞

‖w+(t)‖H1(R) = 0.

Our last result shows that indeed this behavior cannot happen.

Theorem 2.2 (Non-existence of pure soliton-like solution for generalized gKdV equations).

Under the context of the preceding result, suppose 0 < λ ≤ 1
3 . There exists ε0 > 0 such that, for

all 0 < ε < ε0,
lim sup
t→+∞

‖w+(t)‖H1(R) > 0. (2.5)
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The proof of this result follows a very simple idea. Indeed, if we suppose that the soliton
solution is pure at +∞, then by uniqueness it converges at exponential rate to a soliton solu-
tion. Using this decay in time we can obtain space decay and therefore the solution is actually
in L1, and conserves the L1-integral. From the fact that the scaling varies in a nontrivial way,
and using the integral conservation law, we obtain the desired contradiction.

The last two results can be schematized in the following figure:

Q, a ≡ 1

1√
2
Qc+ , a ≡ 2

c+ > c∞

non zero residual

dispersive tail, OH1 (
√
ε)

t ∼ 0

t→ +∞

t→ −∞

What is the behavior of the solution for a coefficient 1
3 < λ < 1? We have included a

paragraph at the end of Part 2 (see Addendum) where we formally describe the behavior of
the soliton solution for this case. For a detailed account of this problem, see the last section
below.

2.2 Second part: the Schrödinger case

A basic but non trivial question is to deal with similar questions for the Schrödinger case.
This is the objective of the second part of this work: the study of the soliton dynamics for the
NLS equation in the case of a slowly varying medium.

Indeed, we considered the following subcritical generalized nonlinear Schrödinger equation
(NLS)

iut + uxx + a(εx)|u|m−1u = 0 in Rt × Rx, m ∈ [2, 5). (2.6)

Here u = u(t, x) is a complex-valued function, ε > 0 a small parameter and a satisfies the
same hypotheses as above.

The literature in this case is by far larger, starting from the physical works of Kaup and
Newell [30] and Grimshaw [21]. Mathematically speaking, the first result in this direction
was given by Bronski and Jerrard [6]. Gustafson et al. [22, 23] and Holmer et al. [26, 27, 28]
have considered the dynamics of a soliton under general potentials, for short times, namely
t ∼ 1

ε . See also [12] for a similar result in the case of a generalized Hartree equation. From
these results, it seems clear that a deeper understanding of the soliton dynamics for large
times strongly depends on the specific character of the considered potential. As above, the
idea is to consider simple but still general potentials in order to understand the complete
behavior of the soliton solution.
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Now, a nonzero solution of (2.6) might gain momentum, in the sense that, at least formally,
the quantity P [u](t) defined in (1.9) now satisfies the identity

∂tP [u](t) =
ε

m+ 1

∫

R

a′(εx)|u|m+1 ≥ 0. (2.7)

Therefore the momentum is always a non decreasing quantity. This simple fact will have
important consequences in our results, in particular we will obtain from this property the
stability and uniqueness of our solution. On the other hand, the mass M [u](t) defined in (1.7)
and the novel energy

Ea[u](t) :=
1

2

∫

R

|ux|2(t, x) dx− 1

m+ 1

∫

R

aε(x)|u|m+1(t, x) dx

remain formally constant for all time.

Our main result is a complete description, for all time, of the interaction soliton-potential
for the aNLS equation 2.6. As above, in order to simplify the exposition, we present the
simplest case, m = 3. For the complete result, see Theorem 1 1 in Part 3.

Theorem 2.3 (Dynamics of a generalized soliton-solution for the cubic NLS equation).

Let m = 3 in (2.6). Assume that a(·) satisfies the same hypotheses as above. Let v0 > 0. There
exists a small constant ε0(v0) > 0 such that for all 0 < ε < ε0 the following holds.

1. Existence of a soliton-like solution.

There exists a unique solution u ∈ C(R, H1(R)) of (2.6), global in time, such that

lim
t→−∞

‖u(t) −Q(· − v0t)e
i(·)v0/2ei(1−

1
4
v2
0)t‖H1(R) = 0. (2.8)

2. Stability of interaction soliton-potential. Let v∞ := (v2
0 + 4)

1
2 (> v0). There exist K > 0,

and C1- functions ρ(t), γ(t) ∈ R defined for all t≫ 1
ε such that the function

w(t, x) := u(t, x) − 1√
2
Q4(x− v∞t− ρ(t))e

i
2
xv∞eiγ(t)

satisfies, for all t≫ 1
ε ,

‖w(t)‖H1(R) + |ρ′(t)| + |γ′(t) − 4 +
1

4
v2
∞| ≤ Kε2. (2.9)

The last two results can be schematized in the following figure:

Q, v0 > 0

1√
2
Q4, v∞ > v0

OH1(ε2), residual

OH1 (ε2)
t ∼ 0

a ≡ 2
t→ +∞

t→ −∞, a ≡ 1
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One may compare the above result with the results for the gKdV case, where a bound
of order ε1/2 is showed. Our present result is better due to the absence of a dispersive tail
behind the soliton, precisely of order ε1/2 in H1(R), and present in the gKdV case. A first
mathematical treatment of this phenomenon can be found in [43]. Let us finally recall that
such dispersive elements in a soliton solution are not present in the case of a pure NLS or
gKdV equation.

In addition, this result is also true for the two dimensional case, if we consider a potential
depending only on one variable, and for any incident velocity (see Theorem B 1 and Corollary
C 1). The restriction to the two dimensional case is a consequence of the lack of smoothness
for the power nonlinearity in higher dimensions.

These results can also be generalized to decreasing potentials for not too large times. The
important point here is that the construction of a soliton-like solution does not depend on
the sign of a′, but on the flatness at infinity. The dynamics on the interaction region can be
described in the same way as in the increasing case, with a key difference: for small initial
velocities, the soliton solution is reflected. For large initial velocities, the soliton exits the in-
teraction region by the right hand side, but stability is not known in this case, so the behavior
of this solution for large times is by now unknown. However, if the velocity is small enough
(but still independent of ε), we can describe the soliton solution for all time. Indeed, let us
suppose that the potential a(·) strictly decreases from an initial state a ≡ 1 to a final state
a0 ∈ (0, 1). Then, if v2

0 <
4
3(1 − a2

0), there exists a soliton solution satisfying (2.8) and

sup
t≫ 1

ε

‖u(t) −Q(· + v0t− ρ(t))e−i(·)v0/2eiγ(t)‖H1(R) ≤ Kε2,

with ρ′(t) small (see Addendum 1 in Part 3 for more details.) In other words, the behavior in
this regime is very similar to the dynamics expressed by the following figure:

non zero residual?

Q1, v0 > 0

Q1, −v0

t→ −∞

case v2
0 <

4

3
(1 − a2

0)

OH1 (ε2)

t ∼ 0

t→ +∞

See [54] for more details. As above expressed, the behavior of this solution in the regime
v2
0 > 4

3(1 − a2
0) and for large times is an open problem. What happens in the limiting case

v2
0 = 4

3(1 − a2
0) seems to be a hard open problem.

2.3 Third part: two-soliton dynamics

The third part of this work concerns the study of the 2-soliton collision for gKdV equations
with a general nonlinearity.
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We emphasize that inverse scattering theory is useless in the case of a non integrable
equation. Here, our purpose is to confirm that under reasonable hypotheses on the nonlin-
earity, the collision of two solitons is not elastic in general, except for the KdV, mKdV and the
Gardner equations.

We deal with this problem for (1.13) with a general nonlinearity f(u) in a particular set-
ting: we consider two positive solitons Qc1 , Qc2 , 0 < c2 < c1 < c∗(f), and we assume c2 is
smaller than c1.

Under these assumptions, Martel and Merle [39] considered the collision problem for
(1.13) in the quartic case, f(s) = s4. They showed that the collision is almost elastic, but
inelastic, by showing the nonexistence of a pure 2-soliton solution.

The next question arising from this result is to generalize these results to (1.13) under
assumption (1.15). In this case, Martel and Merle [40] proved that the collision is still stable,
giving upper bounds on the residual terms appearing after the collision. In [40], the question
of whether the collision is elastic or inelastic in the general case –and thus the nonexistence
of pure 2-soliton solutions– was left open, see [40], Remark 1.

By extending some techniques from [39, 40] and developing new computations, we are
able to provide a satisfactory answer to this open question.

Theorem 2.4 (Non-existence of pure 2-soliton solution, general case).

Let f be as in (1.15), with m = 2 or 3, and

f ∈ Cp+1(R), f (p)(0) 6= 0 for some p ≥ 4. (2.10)

For 0 < c2 ≪ c1 ≪ 1, equation (1.13) has no pure 2-soliton solution of sizes c1, c2.

The nonzero condition f (p)(0) 6= 0 for some p ≥ 4 rules out the integrable cases f(s) = sm,
m = 2 or 3 and the Gardner nonlinearity f(s) = s2 − µs3.

Our proof follows the approach described by Martel, Merle and Mizumachi [39, 40, 44].
The assumption c2 small allows to linearize in c2, and then to reduce the non-existence of
a pure 2-soliton solution to the computation of a coefficient depending only on c1. This co-
efficient is part of an approximate solution of (1.13) with high order of accuracy, and it is
evidently zero in the integrable cases. For general f and general c1 > 0, it is an open question
to compute this coefficient. According to this, we compute the asymptotic of this coefficient
as c1 is small. This is the only place where c1 small is needed.

The behavior of this solution can be represented schematically by the following picture
(by courtesy of Y. Martel).
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Finally, some words about related literature. The 2-soliton collision has been considered
for the case of NLS equation very recently. We mention the recent works of Perelman [57],
Holmer, Marzuola and Zworski [26, 27, 28] and Abou Salem, Fröhlich and Sigal [2].

3 Perspectives

In this section, we describe some interesting open problems following in this work.

3.1 Lower bound on the defect at infinite for gKdV and NLS equations

One of the questions left open in this work is the obtention of a quantitative lower bound
on the defect at infinity for a soliton-like solution. The answer to this question is probably
positive, at least in the case λ > 0, after some formal computations. We believe that in the
gKdV case one has

lim inf
t→+∞

‖w+(t)‖H1(R) ≥
ε

K
, for m = 2, 4,

and surprisingly of order ε2 in the cubic case (cf. [53] for more details).

In the Schrödinger case, we conjecture the existence of a constant K > 0 such that, for all
ε > 0 small enough,

lim inf
t→+∞

‖w(t)‖H1(R) ≥
1

K
ε2.

In other words, the behavior in (2.9) is sharp.

These estimates are in a certain sense equivalent to the results of nonexistence of pure
2-soliton solution for gKdV equations and BBM equations outside the integrable cases, as
showed in [39, 44, 49, 43].
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3.2 Dynamics of soliton solutions for gKdV, case 1
3

< λ < 1

Another interesting problem is to understand the behavior of the solution described in The-
orem 2.1 for values of the coefficient 1

3 < λ < 1. Here the main difference with the preceding
case is that formally the scaling decreases in time. Therefore a first non trivial task is to show
the existence of a final state for the scaling, positive and far from zero, uniformly in ε. How-
ever, if the scaling is smaller compared with λ, the soliton solution may be reflected to the
left by the potential. Indeed, we believe that there exists a explicit constant λ̃ ∈ (1

3 , 1) such
that, for any ε > 0 small enough and any 1

3 < λ < λ̃, the soliton still exits the interaction
region by the right hand side, and if λ̃ < λ < 1 then the soliton solution is reflected by the
potential. This claim is formally supported by our computations in Part 2 (cf. Addendum).
The following figure describes the conjectured behavior in the case 1

3 < λ < 1.

non zero residual

Q1

1√
2
Qc+ , λ < c+ < 1Qc− , 0 < c− < λ

t→ −∞

case 1

3
< λ < λ̃

case λ̃ < λ < 1

t ∼ 0

t→ +∞

OH1 (
√
ε)

We refer to the work [52], in preparation.

Let us finally remark that some of the results announced in this introduction are available
in the web page http://www.math.uvsq.fr/∼munoz.
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Abstract

We consider the problem of the soliton propagation, in a slowly varying medium, for a
generalized Korteweg - de Vries equations (gKdV). We study the effects of inhomogeneities
on the dynamics of a standard soliton. We prove that slowly varying media induce on the
soliton solution large dispersive effects at large time. Moreover, unlike gKdV equations, we
prove that there is no pure-soliton solution in this regime.

Keywords : generalized Korteweg- de Vries equation, soliton dynamics, slowly varying po-
tentials.

1 Introduction and Main Results

In this work we consider the following generalized Korteweg-de Vries equation (gKdV) on the
real line

ut + (uxx + f(x, u))x = 0, in Rt × Rx. (1.1)

Here u = u(t, x) is a real-valued function, and f : R × R → R a nonlinear function. This
equation represents a mathematical generalization of the Korteweg-de Vries equation (KdV),
namely the case f(x, s) ≡ s2,

ut + (uxx + u2)x = 0, in Rt × Rx; (1.2)

another physically important case is the cubic one, f(x, s) ≡ s3. In this case, the equation (1.1)
is often refered as the (focusing) modified KdV equation (mKdV). In general, mathematicians
denote by generalized Korteweg-de Vries (gKdV) the following equation

ut + (uxx + um)x = 0, in Rt × Rx; m ≥ 2 integer. (1.3)

Concerning the KdV equation, it arises in Physics as a model of propagation of dispersive
long waves, as was pointed out by J. S. Russel in 1834 [62]. The exact formulation of the KdV
equation comes from Korteweg and de Vries (1895) [41]. This equation was re-discovered in
a numerical work by N. Zabusky and M. Kruskal in 1965 [42].

After this work, a great amount of literature has emerged, physical, numerical and math-
ematical, for the study of this equation, see for example [8, 7, 75, 63, 62]. This continuous,
focused research on the KdV (and gKdV) equation can be in part explained by some striking
algebraic properties. One of the first properties is the existence of localized, exponentially
decaying, stable and smooth solutions called solitons. Given two real numbers x0 and c > 0,
solitons are solutions of (1.3) of the form

u(t, x) := Qc(x− x0 − ct), Qc(s) := c
1

m−1Q(c1/2s), (1.4)

and where Q is a explicit Schwartz function satisfying the second order nonlinear differential
equation

Q′′ −Q+Qm = 0, Q(x) =
[ m+ 1

2 cosh2( (m−1)
2 x)

] 1
m−1

. (1.5)

In particular, this solution represents a solitary wave defined for all time moving to the right
without any change in shape, velocity, etc.
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In addition, equation (1.3) remains invariant under space and time translations. From the
Noëther theorem, these symmetries are related to conserved quantities, invariant under the
gKdV flow, usually called mass and energy:

M [u](t) :=

∫

R

u2(t, x) dx =

∫

R

u2
0(x) dx = M [u](0), (Mass), (1.6)

and

E[u](t) :=
1

2

∫

R

u2
x(t, x) dx− 1

m+ 1

∫

R

um+1(t, x) dx (1.7)

=
1

2

∫

R

(u0)
2
x(x) dx− 1

m+ 1

∫

R

um+1
0 (x) dx = E[u](0). (Energy)

Let us now review some facts about the gKdV equation (1.3), with m ≥ 2 integer. The
Cauchy problem for equation (1.3) (namely, adding the initial condition u(t = 0) = u0) is
locally well-posed for u0 ∈ H1(R) (see Kenig, Ponce and Vega [39]). In the case m < 5, any
H1(R) solution is global in time thanks to the conservation of mass and energy (1.6)-(1.7),
and the Galiardo-Nirenberg inequality

∫

R

up+1 ≤ K(p)
( ∫

R

u2
) p+3

4
( ∫

R

u2
x

) p−1
4 . (1.8)

For m = 5, solitons are shown to be unstable and the Cauchy problem for the corresponding
gKdV equation has finite-time blow-up solutions, see [61, 56, 50] and references therein. It is
believed that for m > 5 the situation is the same. Consequently, in this work, we will discard
high-order nonlinearities, at leading order.

In addition, there exists another conservation law, formally valid only for L1(R) solutions:
∫

R

u(t, x)dx = constant. (1.9)

The problem to consider in this paper possesses a long and extense physical literature.
In the next subsection we briefly describe the main results concerning the propagation of
solitons in slowly varying medium.

1.1 Statement of the problem, historical review

The dynamical problem of soliton interaction with a slowly varying medium is by now a
classical problem in nonlinear wave propagation. By soliton-medium interaction we mean,
loosely speaking, the following problem: In (1.1), consider a nonlinear function f = f(t, x, s),
slowly varying in space and time, possibly of small amplitude, of the form

f(t, x, s) ∼ sm as x→ ±∞, for all time;

(namely (1.1) behaves like a gKdV equation at spatial infinity.) Consider a soliton solution
of the corresponding variable coefficient equation (1.1) with this nonlinearity, at some early
time. Then we expect that this solution does interact with the medium in space and time,
here represented by the nonlinearity f(t, x, s). In a slowly varying medium this interaction,
small locally in time, may be significantly important on the long time behavior of the solution.
The resulting solution after the interaction is precisely the object of study. In particular, one
considers if any change in size, position, or shape, even creation or destruction of solitons,
after some large time, may be present.
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Let us review some relevant works in this direction. After the works of Fermi, Pasta and
Ulam [19], Zabusky and Kruskal [42] (see [62] for a review), where complete integrability
was established for KdV and other equations, a new branch of research emerged to study
the dynamics of solitons solutions of KdV under a slowly varying (in time) medium. Kaup
and Newell [38] and after Karpman and Maslov [37] considered the study of perturbations of
integrable equations, in particular, they considered the perturbed (in time τ ) gKdV equation

uτ + (β(ετ)uxx + α(ετ)um)x = 0, m = 2, 3; α, β > 0. (1.10)

This last equation models, for example, the propagation of a wave governed by the KdV
equation along a canal of varying depth, among many other physical situations, see [37, 4] and
references therein.

Note that this equation leaves invariant (1.6) and (1.9), but the corresponding energy for
this equation is not conserved anymore. After the transformation t :=

∫ τ
0 β(εs)ds, ũ(t, x) :=

(
α
β

) 1
m−1 (ετ)u(τ, x), the above equation becomes

ũt + (ũxx + ũm)x = εγ(εt)ũ, where εγ(εt) :=
1

m− 1
∂t

[
log(

α

β
)(ετ(t))

]
. (1.11)

The authors then performed a perturbative analysis of the inverse scattering theory to de-
scribe the dynamics of a soliton (for the integrable equation) in this variable regime. In-
terestingly enough, the existence of a dispersive shelf-like tail behind the soliton was formally
described. This phenomena is indeed related to the lack of energy conservation (1.7) for the
equation (1.11).

Subsequently, this problem has been addressed in several other works and for different
integrable models, see for example [40, 20, 25, 26]. Moreover, using inverse-scattering tech-
niques, the production of a second –small– solitary wave was pointed out in [85], see also [27],
but an analytical and satisfactory mathematical proof of this phenomenon is by now out of
reach of the current technology. The reader may consult e.g. the monograph by Newell [70],
pp. 87–97, for a more detailed account of the problem.

In addition, another important motivation for the study of this problem comes from an
interesting point of view, given in Lochak [45], see also [46] for a more detailed description.
Based in formal conservation laws, the author points out that, in the case of equation (1.11),
well-modulated solitons are good candidates to be adiabatically stable objects for this infinite
dimensional dynamical system. See [45, 46] for more details.

In this paper we address the problem of soliton dynamics in the case of a slowly varying,
inhomogeneous medium, but constant in time. This model, from the mathematical point of
view, introduces several difficulties to the study of the dynamical problem, as we will see
below; but at the same time reproduces the production of a shelf-like tail behind the soliton,
formally seen by physicists. Our main result states that, as a consequence of this tail, there is
no pure soliton-solution (unlike gKdV) for this regime. This result illustrates the lack of pure
solutions of non-trivial perturbations of gKdV equations.

Now let us explain in detail the model we will study along this paper.

1.2 Setting and hypotheses

Let us come back to the general equation (1.1), and consider ε > 0 a small parameter. Fol-
lowing equation (1.10), along this work we will assume that the nonlinearity f is a slowly
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varying x-dependent function of the power cases, independent of time, plus a (possibly zero)
linear term: {

f(x, s) := −λs+ aε(x)s
m, λ ≥ 0, m = 2, 3 and 4.

aε(x) := a(εx) ∈ C3(R).
(1.12)

We will suppose the parameter λ fixed, independent of ε. Concerning the function a we will
assume that there exist constants K, γ > 0 such that





1 < a(r) < 2, a′(r) > 0 for all r ∈ R,

0 < a(r) − 1 ≤ Keγr, for all r ≤ 0, and

0 < 2 − a(r) ≤ Ke−γr for all r ≥ 0.

(1.13)

In particular, limr→−∞ a(r) = 1 and limr→+∞ a(r) = 2. We emphasize that the special choice
(1 and 2) of the limits are irrelevant for the results of this paper. The only necessary conditions
are that

0 < a−∞ := lim
r→−∞

a(r) < lim
r→+∞

a(r) =: a∞ < +∞.

Of course the decay hypothesis on a in (1.13) can be relaxed, and the results of this paper
still should hold, with more difficult proofs; but for brevity and clarity of the exposition these
issues will not be considered in this work.

Finally, to deal with a special stability property of the mass in Theorems 3.1 and 6.1 (cf.
also (6.22)), we will need the following additional (but still general) hypothesis: there exists
K > 0 such that for m = 2, 3 and 4,

|(a1/m)(3)(s)| ≤ K(a1/m)′(s), for all s ∈ R. (1.14)

This condition is generally satisfied, however a′ must not be a compact supported function.

Recapitulating, given 0 ≤ λ < 1 , we will consider the following aKdV equation
{
ut + (uxx − λu+ aε(x)u

m)x = 0 in Rt × Rx,

m = 2, 3 and 4; 0 < ε ≤ ε0; aε satisfying (1.13)-(1.14).
(1.15)

The main issue that we will study in this paper is the interaction problem between a
soliton and a slowly varying medium, here represented by the potential aε. In other words,
we intend to study for (1.15) whether it is possible to generalize the well-known soliton-like
solution Q of gKdV. Of course, it is by now well-known that in the case f(t, x, s) = f(s), and
under reasonable assumptions (see for example Berestycki and Lions [6]), there exist soliton-
like solutions, constructed via ground states of the corresponding elliptic equation for a bound
state. However, in this paper our objective will be the study of soliton solutions under a
variable coefficient equation, where no evident ground state is present.

To support our beliefs, note that at least heuristically, (1.15) behaves at infinity as a gKdV
equation: {

ut + (uxx − λu+ 1um)x = 0 as x→ −∞,

ut + (uxx − λu+ 2um)x = 0 as x→ +∞.
(1.16)

In particular, one should be able of to construct a soliton-like solution u(t) of (1.15) such that

u(t) ∼ Q(· − (1 − λ)t), as t→ −∞,

in some sense to be defined. Here Q is the soliton of the standard gKdV equation given by
(1.5). Indeed, note that Q(· − (1 − λ)t) is an actual solution for the first equation in (1.16), but
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on the whole real line, going to the left , to the right or being a steady state depending on
λ > 1, λ < 1 or λ = 1 respectively.

On the other hand, after passing the interaction region, by stability properties, this solu-
tion should behave like (for small ε)

1

2
1

m−1

Qc∞(x− (c∞ − λ)t) + lower order terms in ε, as t→ +∞, (1.17)

where c∞ is a unknown, positive number, a kind of limiting scaling parameter. In fact, note

that if v = v(t) is a solution of (1.3) then u(t) := 2−
1

m−1 v(t) is a solution of

ut + (uxx − λu+ 2um)x = 0 in Rt × Rx. (1.18)

In conclusion, this heuristic suggests that even if the potential varies slowly, the soliton will
experiment non trivial transformations on its scaling and shape, of the same order that of the
amplitude variation of the potential a.

Before stating our results, some important facts are in order. First, unfortunately equation
(1.15) is not anymore invariant under scaling and spatial translations. Moreover, a nonzero
solution of (1.15) might lose or gain some mass, depending on the sign of u, in the sense that, at
least formally, the quantity

M [u](t) =
1

2

∫

R

u2(t, x) dx (1.19)

satisfies the identity

∂tM [u](t) = − ε

m+ 1

∫

R

a′(εx)um+1. (1.20)

Another key observation is the following: in the cubic case m = 3, with our choice of aε,
the mass is always non increasing. This simple fact will have important consequences in our
results, at the point of saying that the cubic case corresponds to a well-behaved problem, a
sort of good generalization of the pure power case.

On the other hand, the novel energy (λ ≥ 0)

Ea[u](t) :=
1

2

∫

R

u2
x(t, x) dx+

λ

2

∫

R

u2(t, x) dx− 1

m+ 1

∫

R

aε(x)u
m+1(t, x) dx (1.21)

remains formally constant for all time. Moreover, a simple energy balance at ±∞ allows to
determine heuristically the limiting scaling in (1.17), for example in the case λ = 0, if we
suppose that the lower order terms are of zero mass at infinity. Indeed, from (1.17) we have

Ea≡1[u](−∞) = E[Q] ∼ 2−
2

m−1 c
2

m−1
+ 1

2
∞ E[Q] = Ea≡2[u](+∞), E[Q] 6= 0,

(cf. Appendix G.1). This implies that c∞ ∼ 2
4

m+3 > 1. These formal arguments suggest the
following definition.

Definition 1.1 (Pure generalized soliton-solution for aKdV).

Let 0 ≤ λ < 1 be a fixed number. We will say that (1.15) admits a pure generalized soliton-
like solution (of scaling equals 1) if there exist a C1 real valued function ρ = ρ(t) defined for
all large times and a global in time H1(R) solution u(t) of (1.15) such that

lim
t→−∞

‖u(t) −Q(· − (1 − λ)t)‖H1(R) = lim
t→+∞

∥∥u(t) − 2−
1

m−1Qc∞(· − ρ(t))
∥∥

H1(R)
= 0,

with limt→+∞ ρ(t) = +∞, and where c∞ = c∞(λ) is the scaling suggested by the energy
conservation law (1.21).
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Remark 1.1. Note that the existence of a translation parameter ρ(t) is a necessary condition:
it is even present in the orbital stability of small perturbations of solitons for gKdV, see e.g.
[5, 9, 13]. Note that we have not included the case ρ(t) → −∞ as t → +∞ (= a reflected
soliton), but we hope to consider this case elsewhere.

1.3 Previous analytic results on the soliton dynamics under slowly varying
medium

The problem of describing analytically the soliton dynamics of different integrable models
under a slowly varying medium has received some increasing attention during the last years.
Concerning the KdV equation, our belief is that the first result in this direction was given
by Dejak, Jonsson and Sigal in [17, 18]. They considered the long time dynamics of solitary
waves (solitons) over slowly varying perturbations of KdV and mKdV equations

ut + (uxx − b(t, x)u+ um)x = 0 on Rt × Rx, m = 2, 3, (1.22)

and where b is assumed having small size and small variation, in the sense that for ε small,

|∂n
t ∂

p
xb| ≤ εn+p+1, for 0 ≤ n+ p ≤ 2.

(Actually their conclusions hold in more generality, but for our purposes we state the closest
version to our approach, see [17] for the detailed version.) With these hypotheses the authors
show that if m = 2 and the initial condition u0 satisfies the orbital stability condition

inf
0<c0<c<c1

a∈R

‖u0 −Qc(· − a)‖H1(R) ≤ ε2s, s <
1

2
, c0, c1 given,

then for any for time t ≤ Kε−s the solution can be decomposed as

u(t, x) = Qc(t)(x− ρ(t)) + w(t, x),

where ‖w(t)‖H1(R) ≤ Kεs and ρ(t), c(t) satisfies the following differential system

ρ′(t) = c(t) − b(t, a(t)) +O(ε2s), c′(t) = O(ε2s);

during the above considered interval of time. In the cubic case (m = 3) their results are
slightly better, see [17].

Note that our model can be written as a generalized, time independent Dejak-Jonsson-

Sigal equation of the type (1.22), after writting v(t, x) := ã(εx)u(t, x), with ã(εx) := a
1

m−1 (εx).
From these considerations we expect to recover and to improve the results that they have
obtained.

Recently Holmer [32] have announced some improvements on the Dejak-Jonsson-Sigal
results, without assuming b small. In this paper, in order to achieve a deep understanding of
the phenomenon we have preferred to avoid the inclusion of a time depending potential, and
to treat the infinite time prescribed and pure data, instead of the standard Cauchy problem.
This election will be positively reflexed in the main Theorem, where we will describe with
accuracy the dynamical problem, including its asymptotics as t→ +∞.

The interaction soliton-potential can be also considered in the case of the nonlinear
Schrödinger equation

iut + uxx − V (εx)u+ |u|2u = 0, on Rt × Rx. (1.23)

We mention the recent works of Holmer, Marzuola and Zworski [33, 34, 35] and Gustafson
et al. [28, 29], where similar results to the above one were obtained. Finally we point out the
very recent work of Perelman [73], concerning the critical quintic NLS equation.
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1.4 Main Results

Let
Tε :=

1

1 − λ
ε−1− 1

100 > 0. (1.24)

This parameter can be understood as the interaction time between the soliton and the potential.
In other words, at time t = −Tε the soliton should remain almost unperturbed, and at time
t = Tε the soliton should have completely crossed the influence region of the potential. Note
that the asymptotic λ ∼ 1 is a degenerate case and it will be discarded for this work.

In this paper we will prove (cf. Theorems 1.1, 1.2 and 1.3) that for a suitable general case a
pure soliton-like solution as in Definition 1.1 does not exist, in the sense that the lower order
terms appearing after the interaction have always positive mass. This phenomenon will be a
consequence of the dispersion produced during the crossing of the soliton with the main core
of the potential aε.

In what follows, we assume the validity of above hypotheses, namely (1.12), (1.13) and
(1.14). As has been previously claimed, our first result describes in accuracy the dynamics of
the pure soliton-like solution for aKdV (1.15).

Theorem 1.1 (Dynamics of interaction of solitons for gKdV equations under variable
medium).

Let m = 2, 3 and 4, and let 0 ≤ λ ≤ λ0 := 5−m
m+3 be a fixed number. There exists a small constant

ε0 > 0 such that for all 0 < ε < ε0 the following holds.

1. Existence of a soliton-like solution. There exists a solution u ∈ C(R, H1(R)) of (1.15), global
in time, such that

lim
t→−∞

‖u(t) −Q(· − (1 − λ)t)‖H1(R) = 0, (1.25)

with conserved energy Ea[u](t) = (λ − λ0)M [Q] ≤ 0. This solution is unique in the cases
m = 3; and m = 2, 4 provided λ > 0.

2. Interaction soliton-potential. There exist K > 0 and numbers c∞(λ) ≥ 1, ρε, T̃ε ∈ R such
that the solution u(t) above constructed satisfies

∥∥u(T̃ε) − 2−1/(m−1)Qc∞(x− ρε)
∥∥

H1(R)
≤ Kε1/2. (1.26)

Moreover,
c∞(λ = 0) = 2

4
m+3 , and c∞(λ = λ0) = 1. (1.27)

Finally we have the bounds

|Tε − T̃ε| ≤
Tε

100
; (1 − λ)Tε ≤ ρε ≤ (2c∞(λ) − λ− 1)Tε. (1.28)

Remark 1.2. Let us say some words about the special parameter λ0 from above. First, note
that λ0 = λ0(m) is always less than 1 for m = 2, 3 and 4; with λ0(m = 5) = 0 (= the L2-critical
case). In addition, note that for λ = λ0 we have Ea[u](t) = (λ − λ0)M [Q] = 0; and if λ < λ0

one has Ea[u](t) < 0, for all t ∈ R. For more details about the consequences of this property,
and a detailed study of c∞(λ) see Lemma 4.4.

Remark 1.3. The proof of this result is based on the construction of an approximate solution
of (1.15) in the interaction region, satisfying certain symmetries. However, at some point we
formally obtain an infinite mass term, see also [57] for a similar problem. It turns out that to
obtain a localized solution we need to break the symmetry of this solution (see Proposition
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4.6 for the details), a key difference with respect to the soliton solution of gKdV and the recent
result of Holmer et al. [36], up to ε2

−
for the cubic case. This lack of symmetry leads to the

error ε1/2 in the theorem above stated. At this price we overtake the interaction region, a
completely new result.

The next step is the understanding of the long time behavior of our generalized soliton
solution.

Theorem 1.2 (Long time behavior).

Under the assumptions of Theorem 1.1, suppose now in addition that 0 < λ ≤ λ0 for the cases
m = 2, 4, and 0 ≤ λ ≤ λ0 if m = 3. Let 0 < β < 1

2(c∞(λ)− λ). There exists a constant ε0 > 0 such
that for all 0 < ε ≤ ε0 the following hold.

There exist K, c+ > 0 and a C1-function ρ2(t) defined in [Tε,+∞) such that

w+(t, ·) := u(t, ·) − 2−1/(m−1)Qc+(· − ρ2(t))

satisfies

1. Stability. For any t ≥ Tε,

‖w+(t)‖H1(R) + |c+ − c∞(λ)| + |ρ′2(t) − (c∞(λ) − λ)| ≤ Kε1/2. (1.29)

2. Asymptotic stability.
lim

t→+∞
‖w+(t)‖H1(x>βt) = 0. (1.30)

3. Bounds on the parameters. Define θ := 1
m−1 − 1

4 > 0. The limit

lim
t→+∞

Ea[w
+](t) =: E+ (1.31)

exists and satisfies the identity

E+ =
(c+)2θ

22/(m−1)
(λ0c

+ − λ)M [Q] + (λ− λ0)M [Q], (1.32)

and for all m = 2, 3, 4 and 0 < λ ≤ λ0 there exists K(λ) > 0 such that

1

K
lim sup
t→+∞

‖w+(t)‖2
H1(R) ≤ E+ ≤ Kε. (1.33)

Furthermore, in the case m = 3, λ = 0, we have 3
2E

+ = ( c+

c∞

)3/2 − 1, and for all λ > 0,

1

K
lim sup
t→+∞

‖w+(t)‖2
H1(R) ≤

( c+
c∞

)2θ − 1 ≤ Kε. (1.34)

Remark 1.4. Stability and asymptotic stability of solitary waves for generalized KdV equations
have been widely studied since the ’80s. The main ideas of our proof are classical in the
literature. For more details, see e.g. [5, 13, 9, 59, 71].

Remark 1.5. The sign of a′(·) is a sufficient condition to ensure stability; however, it can be
relaxed by assuming for example the weaker condition a′(s) > 0 for all s > s0. In this
paper we will not pursue on these assumptions. It is not known whether under more general
potentials stability still holds true, see also below.
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Remark 1.6 (Decreasing potential). Pick now a potential a(·) satisfying a′(s) < 0 and

1 = lim
s→−∞

a(s) > a(s) > lim
t→+∞

a(s) =
1

2
.

Let us explain the main changes in the above theorems. First of all, Theorem 1.1 part (1)
holds true, however we do not know whether the solution constructed is unique. On the

other hand, part (2) holds true with the coefficient 2
1

m−1 in front of Qc∞ , λ
λ0

< c∞(λ) < 1,
and c∞(λ = 0) = 2−p (see Lemma 4.4 to see this). (1.28) holds true with the obvious changes.
Finally, Long time stability (=Theorem 1.2) for this case is an open question.

A fundamental question arises from the above results, namely is the final solution an
exactly pure soliton for the aKdV equation with aε ≡ 2? (cf. Definition 1.1.) This question is
equivalent to decide whether

lim sup
t→+∞

‖w+(t)‖H1(R) = 0.

Our last result shows that indeed this behavior cannot happen.

Theorem 1.3 (Non-existence of pure soliton-like solution for aKdV).

Under the context of Theorems 1.1 and 1.2, suppose m = 2, 3, 4 with 0 < λ ≤ λ0. There exists
ε0 > 0 such that for all 0 < ε < ε0,

lim sup
t→+∞

‖w+(t)‖H1(R) > 0. (1.35)

Remark 1.7. We have been unable to solve several questions related to these results. In addi-
tion to the classical problem of the extension of these results to more general potentials a(·),
we have the following questions in mind:

1. A first basic question is to decide if every solution of (1.15) with H1(R) data is globally
bounded in time. In Proposition 2.2 we prove that every solution is globally well de-
fined for all positive times, and uniformly bounded if λ > 0 or m = 3. However, for the
cases m = 2, 4 and λ = 0 we only have been able to find an exponential upper bound
on the H1-norm of the solution. Is every solution described in Theorem 1.1 globally
bounded?

2. In the cases m = 2, 4 and λ = 0, is the solution constructed in Theorem 1.1 unique? Is it
stable for large times? (cf. Theorem 6.1).

3. What is the behavior of the solution for a coefficient λ0 < λ < 1? We believe in this
situation the soliton still survives, but becomes reflected to the left by the potential.

4. It is possible to obtain in Theorem 1.3 a quantitative lower bound on the defect at infin-
ity?

5. Is there scattering modulo the soliton solution, at infinity?

Remark 1.8. The case of the Schrödinger equation considered in (1.23) will be treated in an-
other publication (see [65].)

Remark 1.9 (Case of a time dependent potential). As expected, our results are also valid, with
easier proofs, for the following time dependent gKdV equation:

ut + (uxx − λu+ a(εt)um)x = 0, in Rt × Rx. (1.36)
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Here a satisfies (1.13)-(1.14) now in the time variable. Note that this equation is invariant
under scaling and space translations. In addition, the L1 integral and the mass M [u] remain
constants and the energy

Ẽ[u](t) :=
1

2

∫

R

u2
x +

λ

2

∫

R

u2 − a(εt)

m+ 1

∫

R

um+1

satisfies

∂tẼ[u](t) = −εa
′(εt)

m+ 1

∫

R

um+1.

Furthermore, Theorems 1.1 and 1.2 still hold with c∞(λ = 0) = 24/(5−m) (because of the mass
conservation), for any λ ≥ 0, m = 2, 3 and 4 (follow Lemma 4.4 to see this). We left the details
to the reader.

Before starting the computations, let us explain how the proof of the main results work.

1.5 Sketch of proof

Our arguments are an adaptation of a series of works by Martel, Merle and Mizumachi [49,
53, 58, 52, 57], and some new computations. The idea is as follows: we separate the analysis
among three different time intervals: t ≪ −ε−1, |t| ≤ ε and ε−1 ≪ t. On each interval the
solution possesses a specific behavior which we briefly describe:

1. (t ≪ −ε−1). In this interval of time we prove that u(t) remains very close to a soliton-
solution with no change in the scaling and shift parameters (cf. Theorem 3.1). This
result is possible for negative very large times, where the soliton is still far from the
interacting region |t| ≤ ε−1.

2. (|t| ≤ ε−1). Here the soliton-potential interaction leads the dynamics of u(t). The nov-
elty here is the construction of an approximate solution of (1.15) with high order of ac-
curacy such that (a) at time t ∼ −ε−1 this solution is close to the soliton solution and
therefore to u(t); (b) it describes the soliton-potential interaction inside this interval, in
particular we show the existence of a remarkable dispersive tail behind the soliton; and
(d) it is close to u(t) in the whole interval [−ε−1, ε−1], uniformly on time, modulo a
modulation on a translation parameter (cf. Theorem 4.1).

3. (t ≫ ε−1) Here some stability properties (see Theorem 6.1) will be used to establish the
convergence of the solution u(t) to a soliton-like solution with modified parameters.

Additionally, by using a contradiction argument, it will be possible to show that the
residue of the interaction at time t ∼ ε−1 is still present at infinity. This gives the conclu-
sion of the main Theorems 1.1, 1.3. Indeed, recall the L1 conserved quantity from (1.9). This
expression is in general useless when the equation is considered on the whole real line R,
however it has some striking applications in the blow-up theory (see [61]). In our case, it will
be useful to discard the existence of a pure soliton-like solution.

Remark 1.10 (General nonlinearities). We believe that the main results of this paper are also
valid for general, subcritical nonlinearities, with stable solitons. In this case the scaling prop-
erty of the soliton is no longer valid, so in order to construct an approximate solution one
should modify the main argument of the proof.
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Finally, some words about the organization of this paper, according to the sketch above
mentioned. First in Section 2 we introduce some basic tools to study the interaction and
asymptotic problems. Next, Section 3 is devoted to the construction of the soliton like solution
for negative large time. Sections 4.1 and 5 deal with the proof of Theorem 1.1. In Section 6 we
proof the asymptotic behavior as t → +∞, namely Theorem 1.2. Finally we prove Theorem
1.3 (Section 7).

2 Preliminaries

In this section we will state several basic but important properties needed in the course of
this paper.

2.1 Notation

Along this paper, both C,K, γ > 0 will denote fixed constants, independent of ε, and possibly
changing from one line to the other.

Finally, in order to treat the case λ > 0 we need to extend the energy (1.7) by adding a
mass term. Let us define

E1[u](t) :=
1

2

∫

R

u2
x(t) +

λ

2

∫

R

u2(t) − 1

m+ 1

∫

R

um+1(t), (2.1)

namely E1[u] = Ea≡1[u].

2.2 Cauchy Problem

First we develop a suitable local well-posedness theory for the Cauchy problem associated to
(1.15).

Let u0 ∈ Hs(R), s ≥ 1, λ ≥ 0. We consider the following initial value problem
{
ut + (uxx − λu+ aε(x)u

m)x = 0 in Rt × Rx

u(t = 0) = u0,
(2.2)

where m = 2, 3 or 4. The equivalent problem for the generalized KdV equations (1.3) has
been extensively studied, but for our purposes, in order to deal with (2.2), we will follow
closely the contraction method developed in [39]. We have the following result.

Proposition 2.1 (Local well-posedness in Hs(R), see also [39]).

Suppose u0 ∈ Hs(R), s ≥ 1. Then there exist a maximal interval of existence I (with 0 ∈ I), and
a unique (in a certain sense) solution u ∈ C(I,Hs(R)) of (2.2). Moreover, the following properties
hold:

1. Blow-up alternative. If sup I < +∞, then

lim
t↑sup I

‖u(t)‖Hs(R) = +∞. (2.3)

The same conclusion holds in the case inf I > −∞.
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2. Energy conservation. For any t ∈ I the energy Ea[u](t) from (1.21) remains constant.

3. Mass variation. For all t ∈ I the mass M [u](t) defined in (1.19) satisfies (1.20).

4. Suppose u0 ∈ L1(R) ∩H1(R). Then (1.9) is well defined and remains constant for all t ∈ I .

Proof. The proof is standard, and it is based in straightforward application of the Picard iter-
ation procedure and the tools developed in [39]. We skip the details.

Once a local-in-time existence theory is established, the next step is to ask for the possibil-
ity of a global well-posedness theorem. In many cases the proof reduces to the use of conservation
laws to obtain some bounds on the norm of the solution for every time. In the case of gKdV
equations (m ≤ 4) this was proved in [39] by using the mass and energy conservation; how-
ever, in our case relation (1.20) is not enough to control the L2 norm of the solution. As we
had stated in the Introduction, the global existence for cubic case m = 3 follows from the
mass decreasing property. However, to deal with the remaining cases, we will modify our
arguments by introducing a perturbed mass, almost decreasing in time, in order to prove
global existence. Indeed, define for each t ∈ I , m = 2, 3 and 4,

M̂ [u](t) :=
1

2

∫

R

a1/m
ε (x)u2(t, x)dx. (2.4)

It is clear that M̂ [u](t) is a well defined quantity, for any time t ∈ I and u solution of (2.2)
in H1(R). Note also that for all t ∈ I we have the equivalence relation M [u](t) ≤ M̂ [u](t) ≤
21/mM [u](t).

This modified mass enjoys of a striking property, as is showed in the following

Proposition 2.2 (Global existence in H1(R)).

Consider u(t) the solution of the Cauchy problem (2.2) with u(0) = u0 ∈ H1(R) and maximal
interval of existence I . Then u(t) is continuously well defined inH1(R) for any t ≥ 0. More precisely,
the following properties hold.

1. Cubic case. Suppose m = 3, λ ≥ 0. Then I = (t̃0,+∞) for some −∞ ≤ t̃0 < 0 and there
exists K = K(‖u0‖H1(R)) > 0 such that

sup
t≥0

‖u(t)‖H1(R) ≤ K. (2.5)

2. Almost monotony of the modified mass M̂ and global existence. For any m = 2, 3 and 4,
and for all t ∈ I we have

∂tM̂ [u](t) = −3

2
ε

∫

R

(a1/m)′(εx)u2
x − ε

2

∫

R

[λ(a1/m)′ − ε2(a1/m)(3)](εx)u2. (2.6)

In particular,

(a) I is of the same form as above;

(b) If λ > 0 there exists ε0 > 0 small such that (2.5) holds;

(c) if λ = 0 and m = 2, 4, then we have for all t ≥ 0 the exponential bound

‖u(t)‖H1(R) ≤ KeKε3t, (2.7)

for some K = K(‖u0‖H1(R)).
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Proof of Proposition 2.2. First we consider the cubic case, namely m = 3. From (1.20) we have
for any t ∈ I , t ≥ 0

M [u](t) ≤M [u](0).

This bound implies the global existence for positive times. Indeed, the above bound rules out
the L2 blow-up in (positive) finite and infinite time scenario, namely (2.3). In order to control
theH1(R) norm, we use the energy conservation, the Galiardo-Nirenberg inequality (1.8) and
the preceding bound on the mass. Indeed, for any t ∈ I , t ≥ 0, and redefining the constant K
if necessary, we have

1

2

∫

R

u2
x = Ea[u](0) − 1

2
λ

∫

R

u2 +
1

m+ 1

∫

R

aεu
m+1

≤ Ea[u](0) + λM [u](0) +K‖u(t)‖(m+3)/2
L2(R)

‖ux(t)‖(m−1)/2
L2(R)

.

Noticing that 1
4(m− 1) < 1 for m = 2, 3 and 4, we have that

∫

R

u2
x ≤ K(λ, ‖u0‖H1(R));

for a large constant K. This bound implies the H1(R) global existence for all positive times
and the uniform bound in time (2.5). The bound (2.5) is direct.

In order to prove (2.6), we proceed by formally taking the time derivative. Every step can
be rigorously justified by introducing mollifiers. From the equation (1.15) we have

∂tM̂ [u](t) =

∫

R

a1/m
ε uut =

∫

R

(a1/m
ε u)x(uxx − λu+ aεu

m)

= ε

∫

R

((a1/m)′(εx)uuxx − 1

2
(a1/m)′(εx)u2

x) − λ

2
ε

∫

R

(a1/m)′(εx)u2

+ε

∫

R

aε(a
1/m)′(εx)um+1 − ε

m+ 1

∫

R

(a1/m+1)′(εx)um+1

= −1

2
ε

∫

R

[λ(a1/m)′(εx) − ε2(a1/m)(3)(εx)]u2 − 3

2
ε

∫

R

(a1/m)′(εx)u2
x.

This proves (2.6). Now, in order to establish global H1(R) existence for positive times, we
first control the L2 norm using M̂ [u](t). Let us consider the case λ > 0. In this case, taking ε0
small enough, and thanks to (1.14), we have

∂tM̂ [u](t) ≤ 0,

and thus M̂ [u](t) ≤ M̂ [u](0) for all t ∈ I , t ≥ 0. The rest of the proof is identical to the cubic
case.

Now we consider the last case, namely m = 2, 4 and λ = 0. Here the above argument is
not valid anymore and then we have only the existence of K > 0 independent of ε such that

∂tM̂ [u](t) ≤ Kε3M̂ [u](t).

This implies that for any t ∈ I , t ≥ 0,

M [u](t) ≤ M̂ [u](t) ≤ KM̂ [u](0)eKε3t.

This bound rules out the L2 blow-up in finite time scenario for positive times. To control the
H1(R) norm, we use the same argument from the preceding case. Indeed, for any t ∈ I ,
redefining the constant K if necessary, we have

∫

R

u2
x ≤ KeKε3t,
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for some large constant K. This bound implies the H1(R) global existence for positive times.
The proof is now complete.

Remark 2.1 (Mass monotony). A conclusion of the above Proposition is the following. Con-
sider u(t) ∈ H1(R) a solution of (1.15). Define de following modified mass

M̃ [u](t) :=

{
M [u](t), if m = 3,

M̂ [u](t), if m = 2, 4 and λ > 0.
(2.8)

Then there exists ε0 > 0 such that for all 0 < ε ≤ ε0 and for all t ∈ R, t ≥ t0, one has
M̃ [u](t) − M̃ [u](t0) ≤ 0.

We will also need some properties of the corresponding linearized operator of (1.15). All
the results here presented are by now well-known, see for example [53].

2.3 Spectral properties of the linear gKdV operator

In this paragraph we consider some important properties concerning the linearized KdV op-
erator associated to (1.15). Fix c > 0, m = 2, 3 or 4, and let

Lw(y) := −wyy + cw −mQm−1
c (y)w, where Qc(y) := c

1
m−1Q(

√
cy). (2.9)

Here w = w(y). We also denote L0 := Lc=1.

Lemma 2.3 (Spectral properties of L, see [54]).

The operator L defined (on L2(R)) by (2.9) has domain H2(R), it is self-adjoint and satisfies the
following properties:

1. First eigenvalue. There exist a unique λm > 0 such that LQ
m+1

2
c = −λmQ

m+1
2

c .

2. The kernel of L is spawned by Q′
c. Moreover,

ΛQc := ∂c′Qc′
∣∣
c′=c

=
1

c

[ 1

m− 1
Qc +

1

2
xQ′

c

]
, (2.10)

satisfies L(ΛQc) = −Qc. Finally, the continuous spectrum of L is given by σcont(L) =
[c,+∞).

3. Inverse. For all h = h(y) ∈ L2(R) such that
∫

R
hQ′

c = 0, there exists a unique ĥ ∈ H2(R)

such that
∫

R
ĥQ′

c = 0 and Lĥ = h. Moreover, if h is even (resp. odd), then ĥ is even (resp. odd).

4. Regularity in the Schwartz space S. For h ∈ H2(R), Lh ∈ S implies h ∈ S.

5. Coercivity.

(a) There exists K,σc > 0 such that for all w ∈ H1(R)

B[w,w] :=

∫

R

(w2
x + cw2 −mQm−1

c w2) ≥ σc

∫

R

w2 −K|
∫

R

wQc|2 −K|
∫

R

wQ′
c|2.

In particular, if
∫

R
wQc =

∫
R
wQ′

c = 0, then the functional B[w,w] is positive definite in
H1(R).

(b) Now suppose that
∫

R
wQc =

∫
R
wxQc = 0. Then the same conclusion as above holds.
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Now we introduce some notation, taken from [53]. We denote by Y the set ofC∞ functions
f such that for all j ∈ N there exist Kj , rj > 0 such that for all x ∈ R we have

|f (j)(x)| ≤ Kj(1 + |x|)rje−|x|.

Now we recall the following function to describe the effect of dispersion on the solution.
Let c > 0 and

ϕ(x) := −Q
′(x)

Q(x)
, ϕc(x) := −Q

′
c

Qc
=

√
cϕ(

√
cx). (2.11)

Note that ϕ is an odd function. Moreover, we have

Claim 1 (See [54]). The function ϕ above defined satisfies:

1. limx→−∞ ϕ(x) = −1; limx→+∞ ϕ(x) = 1.

2. For all x ∈ R, we have |ϕ′(x)| + |ϕ′′(x)| + |ϕ(3)(x)| ≤ Ce−|x|.

3. Both ϕ′, (1 − ϕ2) ∈ Y .

Remark 2.2. The function ϕ has been already used to describe the main order effect of the
collision of two solitons for the quartic KdV equation (see [53]). In that case, ϕ represented
the nonlinear effect on the shift of solitons due to the collision. In this paper, ϕ will describe
the dispersive tail behind the soliton product of the interaction with the potential aε. For
more details, see Lemma 4.3.

We finish this section with a preliminary Claim taken from [53].

Claim 2 (Non trivial kernel, see [53]). There exists a unique even solution of the problem

L0V0 = mQm−1, V0 ∈ Y.

Moreover, this solution is given by the formula (cf. Lemma 2.3 for the definitions)

V0(y) =





−1
2ΛQ(y), for m = 2,

−Q2(y), for m = 3, and
1
3 [Q′(y)

∫ y
0 Q

2 − 2Q3(y)], for m = 4.

Finally, this solution satisfies (L0(1 + V0))
′ = (1)′ = 0.

3 Construction of a soliton-like solution

3.1 Statement of the result

Our first effort concerns with the proof of existence of a pure soliton-like solution for (1.15)
for t → −∞. Indeed, we prove that, at exponential order in time, there exists a solution u(t)
of the form

u(t) ∼H1(R) Q(· − (1 − λ)t), t→ −∞,

and where Q is a soliton for the gKdV equation.

Theorem 3.1 (Existence and uniqueness of a pure soliton-like solution).

Suppose 0 ≤ λ < 1 fixed. There exists ε0 > 0 small enough such that the following holds for any
0 < ε < ε0.
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1. Existence. There exists a solution u ∈ C(R, H1(R)) of (1.15) such that

lim
t→−∞

‖u(t) −Q(· − (1 − λ)t)‖H1(R) = 0, (3.1)

and energy Ea[u](t) = (λ − λ0)M [Q]. Moreover, there exist constants K, γ > 0 such that for
all time t ≤ −1

2Tε and s ≥ 1,

‖u(t) −Q(· − (1 − λ)t)‖Hs(R) ≤ Kε−1eεγt. (3.2)

In particular,

‖u(−Tε) −Q(· + (1 − λ)Tε)‖H1(R) ≤ Kε−1e−γε−
1

100 ≤ Kε10, (3.3)

provided 0 < ε < ε0 small enough.

2. Uniqueness. In addition, this solution is unique in the following cases: (i) m = 3; and (ii)
m = 2, 4 and 0 < λ < 1.

Remark 3.1. This result follows basically from the fact that inside the region x ≤ −1
2Tε the

potential aε is constant (≡ 1) at exponential order (see (1.13)). In other words, the equation
(1.15) behaves asymptotically as a gKdV equation, for which soliton solutions exist globally.

Remark 3.2. Note that the energy identity in (1) above follows directly from (3.1), Appendix
G.1 and the energy conservation law from Proposition 2.1.

Remark 3.3. The uniqueness of u(t) in the general case is an interesting open question.

The proof of this Theorem is standard and follows closely [49], where the existence of a
unique N-soliton solution for gKdV equations was established. Although there exist possible
different proofs of this result, the method employed in [49] has the advantage of giving an
explicit uniform bound in time (cf. (3.2)). This bound is indeed consequence of compactness
properties. For the sake of completeness, we sketch the proof in Appendix B.

Remark 3.4. An easy consequence of the above result is the following. Consider u(t) the
solution constructed in Theorem 3.1. Then from the negativity of the energy Ea and the
Galiardo-Nirenberg inequality (1.8) there exists a constant K > 0 such that for all time t ∈ R,

1

K
‖u(t)‖H1(R) ≤ ‖u(t)‖L2(R) ≤ K‖u(t)‖H1(R). (3.4)

Moreover, if m = 3 or m = 2, 4 and λ > 0, then we have

sup
t∈R

‖u(t)‖H1(R) ≤ K‖u(−1

2
Tε)‖H1(R). (3.5)

This last estimate shows that, in order to understand the limiting behavior at large times of
u(t), we may consider only the L2-norm.

4 Description of interaction soliton-potential

Once we have proven the existence (and uniqueness) of a pure soliton-like solution for early
times, the next step consists on the study of the interaction soliton-potential. In this sense,
note that the region [−Tε, Tε] can be understood as this nonlinear interaction regime, because
of aε(−Tε) ∼ 1 and aε(Tε) ∼ 2 (cf. (1.12)-(1.13)).
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The next result shows explicitly that perturbations induced by the potential aε are sig-
nificative, of order one, mainly focused in the scaling and shift parameters. Moreover, the
soliton exits the interaction region as a first order solution of the aKdV equation (1.15) with
aε ≡ 2, and a small error, dispersive term, of order ε1/2 in H1(R).

Before state the main result of this section, let us recall λ0 the parameter introduced in
Theorem 1.1. These coefficients have a crucial role to distinguish different asymptotic behav-
iors.

Theorem 4.1 (Dynamics of the soliton in the interaction region).

Suppose 0 ≤ λ ≤ λ0. There exist constants ε0 > 0, and c∞(λ) > 1 such that the following holds
for any 0 < ε < ε0. Let u = u(t) be a globally defined H1 solution of (1.15) such that

‖u(−Tε) −Q(· + (1 − λ)Tε)‖H1(R) ≤ Kε1/2. (4.1)

Then there exist K0 = K0(K) > 0 and ρ(Tε), ρ1(Tε) ∈ R such that

‖u(Tε + ρ1(Tε)) − 2−1/(m−1)Qc∞(· − ρ(Tε))‖H1(R) ≤ K0ε
1/2. (4.2)

In addition, c∞(λ = 0) = 2p, p = 4
m+3 , and c∞(λ = λ0) = 1. Finally, we have the bounds

|ρ1(Tε)| ≤
Tε

100
, (1 − λ)Tε ≤ ρ(Tε) ≤ (2c∞(λ) − λ− 1)Tε, (4.3)

valid for ε0 sufficiently small.

Remark 4.1. The above theorem is a stability result ensuring that, under the hypotheses of
Theorem 1.1, the soliton survives the interaction, with the scaling predicted by the conserva-
tion of energy.

Remark 4.2. Even if from Theorem 3.1 we have an exponential decay on the error term at
time t = −Tε (cf. (3.3) and (4.1)), we are unable to get a better estimate on the solution at
time t = Tε. This problem is due to the emergency of some order ε1/2 dispersive terms, hard
to describe using soliton based functions. This new phenomenon has high similarity with a
recent description obtained by Martel and Merle for the collision of two solitons of similar
sizes for the BBM and KdV equations, see [57].

Remark 4.3. We do not know whether the above result is still valid in the range λ > λ0. Formal
computations suggest that in this regime the soliton might be reflected after the interaction. We
hope to consider this regime in a forthcoming publication.

The proof of this Theorem requires several steps, in particular this Section and Section 5
deal with the proof of this result. As we have mentioned in the introduction of this paper, we
will construct an approximate solution of (1.15). In the next section we prove that the actual
solution describing the interaction of the soliton and the potential aε is sufficiently close to
our approximate solution.

4.1 Construction of an approximate solution describing the interaction

Let us remark that, after the time −Tε, the interaction begins to be nontrivial and must be
considered in our computations. The objective of the following sections is to construct an
approximate solution of (1.15), which describes the first order interaction between the soliton
and the potential on the interval of time [−Tε, Tε]. The final conclusion of this construction is
presented in Proposition 4.6 below.

Our first step towards the proof of Proposition 4.6 is the introduction of a suitable nota-
tion.
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4.2 Decomposition of the approximate solution

We look for ũ(t, x), the approximate solution for (1.1), carring out a specific structure. In
particular, we construct ũ as a suitable modulation of the soliton Q(x− (1 − λ)t), solution of
the KdV equation

ut + (uxx − λu+ um)x = 0. (4.4)

Let c = c(εt) ≥ 1 be a bounded function to be chosen later and

y := x− ρ(t) and R(t, x) :=
Qc(εt)(y)

ã(ερ(t))
, (4.5)

where

ã(s) := a
1

m−1 (s), ρ(t) := −(1 − λ)Tε +

∫ t

−Tε

(c(εs) − λ)ds. (4.6)

The parameter ã intends to describe the shape variation of the soliton along the interac-
tion.

The form of ũ(t, x) will be the sum of the soliton plus a correction term:

ũ(t, x) := R(t, x) + w(t, x), (4.7)

w(t, x) := εAc(εt; y), (4.8)

where Ac := Ac(εt)(εt; y) = c
1

m−1A(εt;
√
cy) and A is a unknown function to be determined.

We want to measure the size of the error produced by inserting ũ as defined in (4.8) in the
equation (1.1). For this, let

S[ũ](t, x) := ũt + (ũxx − λũ+ aεũ
m)x. (4.9)

Finally, let us recall the definition of the linear operator L given in (2.9). Our first result is
the following

Proposition 4.2 (First decomposition of S[ũ]).

For every t ∈ [−Tε, Tε], the following nonlinear decomposition of the error term S[ũ] holds:

S[ũ](t, x) = ε[F1 − (LAc)y](εt; y) + ε2[(Ac)t + c′(εt)ΛAc](εt; y) + ε2E(t, x),

where ΛAc(y) := 1
c (

1
m−1Ac(y) + 1

2y(Ac)y(y)) (cf. Lemma 2.3) and

F1(εt; y) :=
c′(εt)
ã(ερ(t))

ΛQc(y) +
a′(ερ(t))
ãm(ερ(t))

[
− 1

m− 1
(c(εt) − λ)Qc(y) + (yQm

c (y))y

]
, (4.10)

and E(t, x) is a bounded function in [−Tε, Tε] × R.

Proof. We prove this result in Appendix C.

Note that if we want to improve the approximation ũ, the unknown function Ac must be
chosen such that

(Ω) (LAc)y(εt; y) = F1(εt; y), for all y ∈ R.

Then the error term will be reduced to the second order quantity S[ũ] = ε2[(Ac)t +
c′(εt)ΛAc](εt; y) + ε2E(t, x). We prove such a solvability result in a new section, of inde-
pendent interest.
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4.3 Resolution of (Ω)

When solving problem (Ω), we will see below that it is not always possible to find a solu-
tion of finite mass. In fact, we will look for solutions such that time and space variables are
separated:

Ac(t, y) = b(εt)ϕc(y) + d(εt) + h(εt)Âc(y); (4.11)

where b(s), d(s) and h(s) are exponentially decreasing in s, ϕc is the bounded function defined
in (2.11) and Âc ∈ Y (recall that lim±∞ ϕc = ±√

c.)

This choice gives us a crucial property. Recall that c ≥ 1. We say that Ac satisfies the (IP)
property (IP = important property) if and only if

(IP)

{
Any spatial derivative of Ac(εt, ·) is a localized Y-function,

and there exists K, γ > 0 such that ‖Ac(εt, ·)‖L∞(R) ≤ Ke−γε|t| for all t ∈ R.

Note that a solution of the form (4.11) satisfies the (IP) property.

4.3.1 Resolution of a time independent model problem

In this subsection we address the following existence problem. Let us recall from (2.9), L0 :=
−∂2

yy + 1 −mQm−1(y).

Given a bounded and even function F = F (y), we look for a bounded solution A = A(y)
of the following model problem

(L0A)′ = F. (4.12)

satisfying A bounded. The following result deals with the solvability theory for problem
(4.12), in the same spirit that Proposition 2.1 in [53] and Proposition 3.2 in [64].

Lemma 4.3 (Existence theory for (4.12)).

Suppose F ∈ Y even and satisfying the orthogonality condition
∫

R

FQ = 0. (4.13)

Let β = 1
2

∫
R
F . For any δ ∈ R, problem (4.12) has a bounded solution A of the form

A(y) = βϕ(y) + δ +A1(y), with A1(y) ∈ Y. (4.14)

Finally, this solution is unique in L2(R) modulo the addition of a constant times Q′.

Proof. Let us writeA := βϕ+δ(1+V0)+A1, where β, δ ∈ R andA1 ∈ Y are to be determined.
Inserting this decomposition in (4.12), we have (L0A1)

′ = F − β(L0ϕ)′, namely

L0A1 = H − βL0ϕ+ γ, H(y) :=

∫ y

−∞
F (s)ds, (4.15)

and where γ := L0A1(0) −
∫ 0
−∞H(s)ds. Without loss of generality we can suppose the con-

stant term γ = −β, because from Claim 2 L0(1 + V0) = 1, thus any constant term can be
associated to the free parameter δ.

Now, from Lemma 2.3 the problem (4.12) is solvable if and only if
∫

R

(H − β(L0ϕ+ 1))Q′ =

∫

R

HQ′ =

∫

R

FQ = 0,
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namely (4.13) (recall that L0Q
′ = 0.) Thus there exists a solution A1 of (4.15) satisfying∫

R
A1Q

′ = 0. Moreover, since

lim
y→−∞

(H − β(L0ϕ+ 1))(y) = 0, lim
y→+∞

(H − β(L0ϕ+ 1))(y) =

∫

R

F − 2β,

we get A1 ∈ Y provided β = 1
2

∫
R
F , by Lemma 2.3. This finishes the proof.

4.3.2 Existence of dynamical parameters

Our first result concerns to the existence of a dynamical system involving the evolution of
first order scaling and translation parameters on the main interaction region. This system is
related to the orthogonality condition

∫
R
F1Qc = 0, see proof of Lemma 4.5.

Lemma 4.4 (Existence of dynamical parameters).

Suppose m = 2, 3 or 4. Let λ0, p, a(·) be as in Theorem 4.1 and (1.13). There exists a unique
solution (ρ, c), with c bounded positive, monotone, defined for all t ≥ −Tε, with the same regularity
than a(ε·), of the following system

{
c′(εt) = p c(εt)

[
c(εt) − λ

λ0

]
a′

a (ερ(t)), c(−εTε) = 1,

ρ′(t) = c(εt) − λ, ρ(−Tε) = −(1 − λ)Tε.
(4.16)

In addition,

1. If λ = λ0, one has c ≡ 1.

2. If 0 ≤ λ < λ0 then for all t ≥ −Tε one has c(εt) > 1 and limt→+∞ c(εt) = c∞ + O(ε10),
where c∞ = c∞(λ) > 1 is the unique solution of the following algebraic equation

cλ0
∞(c∞ − λ

λ0
)1−λ0 = 2p(1 − λ

λ0
)1−λ0 , c∞ > 1. (4.17)

Moreover, λ ∈ [0, λ0] 7→ c∞(λ) ≥ 1 is a smooth decreasing application, and c∞(λ = 0) = 2p.

Remark 4.4 (Case λ = 0). In this situation, there exists a simple implicit expression for c(εt):

ρ′(t) = c(εt) =
ap(ερ(t))

ap(−εTε)
.

Using the strict monotony of a, from this identity we can find explicitly c(εt).

Remark 4.5. Note that the critical value λ0 can be seen as the exact value of λ such that the
solution u(t) constructed in Theorem 3.1 has zero energy. Indeed, note that from Theorem
3.1 we have Ea[u] = (λ − λ0)M [Q]. This implies that Ea[u] = 0 (> 0, < 0 resp.) if λ = λ0

(λ > λ0, λ < λ0 resp.). Because of this phenomenon the study of the soliton dynamics for
λ > λ0 is an open question.

Proof of Lemma 4.4. The local existence of a solution (c, ρ) of (4.16) is a direct consequence of
the Cauchy-Lipschitz-Picard theorem.

Now we use (4.16) to prove a priori estimates on the solution c. Note that

(c(εt) − λ)

c(εt)(c(εt) − λ
λ0

)
c′(εt) = p(c(εt) − λ)

a′

a
(ερ) = pρ′(t)

a′

a
(ερ).
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In particular,

(1 − λ0)∂t log(c(εt) − λ

λ0
) + λ0∂t log c(εt) = p∂t log a(ερ).

By integration on [−Tε, t], using c(−εTε) = 1, we obtain

cλ0(εt)(c(εt) − λ

λ0
)1−λ0 = (1 − λ

λ0
)1−λ0

ap(ερ(t))

ap(−ε(1 − λ)Tε)
. (4.18)

Since 1 ≤ a ≤ 2, c is bounded and ρ is bounded on compact sets and consequently we obtain
the global existence. One proves in particular c′ > 0 and

cλ0(εt) < ap(ερ), and thus 1 ≤ c(εt) ≤ 2
4

5−m . (4.19)

Moreover, limt→+∞ c(εt) exists and satisfies limt→+∞ c(εt) = c∞ + O(ε10), where c∞ is a
solution of (4.17), after passing to the limit in (4.18). In order to prove the uniqueness of the
solution of (4.17), consider for µ ≥ 1 the smooth function

g(µ;λ) := µλ0(µ− λ

λ0
)1−λ0 − 2p(1 − λ

λ0
)1−λ0 .

Note that in the case λ < λ0 we have g(1;λ) < 0 and

∂µg(µ;λ) = µλ0−1(µ− λ

λ0
)−λ0(µ− λ) ≥ (1 − λ

λ0
)−λ0 > 0.

This implies that there exists a unique c∞(λ) > 1 such that g(c∞(λ);λ) = 0. This proves the
uniqueness. The smoothness of the application λ ∈ [0, λ0] 7→ c∞(λ) is an easy consequence of
the Implicit Function Theorem.

Finally we prove that λ 7→ c∞(λ) is a decreasing map. To do this, we take derivative in
(4.17). We obtain

c∞(λ)λ0−1(c∞(λ) − λ)

(c∞(λ) − λ
λ0

)λ0
c′∞(λ) = (

1

λ0
− 1)

[ cλ0∞(λ)

(c∞(λ) − λ
λ0

)λ0
− 2p

(1 − λ
λ0

)λ0

]

≤ (
1

λ0
− 1)(1 − λ

λ0
)−λ0(1 − 2p) < 0.

4.3.3 Conclusion of resolution of (Ω)

Lemma 4.5 (Resolution of (Ω)).

Suppose 0 ≤ λ ≤ λ0 and c(εt) given by (4.16). There exists a solution Ac = Ac(εt; y) of

(LAc)
′(εt; y) = F1(εt; y), (4.20)

satisfying (IP) and such that

1. For every t ∈ [−Tε, Tε],
{
Ac(εt; ·) ∈ L∞(R), Ac(εt; y) = b(εt)(ϕc(y) − c1/2) + h(εt)Âc(y),

Âc ∈ Y, |b(εt)| + |h(εt)| ≤ Ke−γε|t|.

2. limy→+∞Ac(y) = 0.
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Remark 4.6. The function Ac models, at first order in ε, the shelf-like tail behind the soliton, a
dispersive effect of the interaction soliton-potential.

Proof. We prove this lemma in three steps.

Step 1. Reduction to a time independent problem. We suppose c given as in Lemma 4.4. Note
that F1 in (4.10) can be written as follows

F1(εt; y) =
a′

ãm

[
pc(c− λ

λ0
)ΛQc −

1

m− 1
(c− λ)Qc + (yQm

c )′
]
(y).

Consider now the functions

F̃1(y) := pΛQ− 1

m− 1
Q+ (yQm)′; F̂1(y) :=

1

m− 1
Q− p

λ0
ΛQ =

1

m− 1
Q− 4

5 −m
ΛQ.

We claim that if c(εt) satisfies (4.16) then every term in F1 has the correct scaling, as shows
the following result.

Claim 3. Suppose Ã(y), Â(y) solve the stationary problems

(L0Ã)′ = F̃1, (L0Â)′ = F̂1. (4.21)

Then for all t ∈ R,

Ac(εt; y) :=
a′(ερ)
ãm(ερ)

c
1

m−1 (εt)
[
Ã+ λc−1(εt)Â

]
(c1/2(εt)y)

is a solution of (4.20).

Proof. Note that

(LAc)
′ =

a′(ερ)
ãm(ερ)

c
1

m−1
+1[ − Ã′′ + Ã−mQm−1Ã

]′
(c1/2y)

+λ
a′(ερ)
ãm(ερ)

c
1

m−1
[
− Â′′ + Â−mQm−1Â

]′
(c1/2y)

=
a′(ερ)
ãm(ερ)

c
1

m−1
+1F̃1(c

1/2y) + λ
a′(ερ)
ãm(ερ)

c
1

m−1 F̂1(c
1/2y)

=
a′(ερ)
ãm(ερ)

[pc2ΛQc −
1

m− 1
cQc + (yQm

c )′] + λ
a′(ερ)
ãm(ερ)

[
1

m− 1
Qc −

p

λ0
cΛQc]

= F1(εt; y).

This finishes the proof.

The above Claim reduces to time independent problems.

Step 2. Resolution of (4.21).

Claim 4. There exists Ã, Â solutions of (4.21) satisfying (4.14).

Proof. According to Lemma 4.3 it suffices to verify the orthogonality conditions

∫

R

F̃1Q =

∫

R

F̂1Q = 0.
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Indeed, using Lemma G.1 in Appendix G
∫

R

F̃1Q = p

∫

R

ΛQQ− 1

m− 1

∫

R

Q2 +

∫

R

Q(yQm)y

= p

∫

R

ΛQQ− 1

m− 1

∫

R

Q2 +
1

m+ 1

∫

R

Qm+1

=
(5 −m)

4(m− 1)
[p− 4

m+ 3
]

∫

R

Q2 = 0.

Similarly
∫

R

F̂1Q = − 4

5 −m

∫

R

ΛQQ+
1

m− 1

∫

R

Q2

= − 4

5 −m
× 5 −m

4(m− 1)

∫

R

Q2 +
1

m− 1

∫

R

Q2 = 0.

Thus, by invoking Lemma 4.3 there exist solutions Ã, Â of (4.21) of the form
{
Ã(y) = β̃ϕ(y) + δ̃ + Ã1(y), Ã1 ∈ Y,
Â(y) = β̂ϕ(y) + δ̂ + Â1(y), Â1 ∈ Y,

and where β̃, β̂, δ̃, δ̂ ∈ R. Moreover, β̃, β̂ are given by the formulae

β̃ :=
1

2

∫

R

F̃1 =
1

2

∫

R

(pΛQ− 1

m− 1
Q) =

1

2
[p(

1

m− 1
− 1

2
) − 1

m− 1
]

∫

R

Q

= − 3

2(m+ 3)

∫

R

Q < 0,

for each m = 2, 3 and 4. On the other hand

β̂ :=
1

2

∫

R

F̂1 =
1

2

∫

R
(

1

m− 1
Q− 4

5 −m
ΛQ)

=
1

2
[

1

m− 1
− 4

5 −m
× 3 −m

2(m− 1)
]

∫

R

Q =
1

2(5 −m)

∫

R

Q > 0,

for each m = 2, 3 and 4.

Final step. Finally, to get limy→+∞ Ã(y) = limy→+∞ Â(y) = 0 we choose δ̃ = −β̃ and
δ̂ = −β̂. This proves the last part of the lemma. With this choice we have

Ã(y) = β̃(ϕ(y) − 1) + Ã1(y), Â(y) = β̂(ϕ(y) − 1) + Â1(y), Ã1, Â1 ∈ Y.

Using Claim 3, an actual solution Ac(εt; y) of (4.20) is obtained by considering

Ac(εt; y) :=
a′(ερ)
ãm(ερ)

c
1

m−1 (εt)
[
Ã+ λc−1(εt)Â

]
(c1/2y)

=: b(εt)(ϕc(y) − c1/2) + h(εt)Âc(y), Âc ∈ Y, .

where

b(εt) :=
a′(ερ)c

1
m−1

− 1
2

ãm(ερ)
(β̃ + λc−1(εt)β̂), h(εt) :=

a′(ερ)
ãm(ερ)

.

This finishes the proof of Lemma 4.5.
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Remark 4.7. We emphasize that in any case Ac ∈ L2(R), even if it is exponentially decreas-
ing in time. This non summable solution must be modified in order to obtain a finite mass
solution.

Before continuing with the construction of the approximate solution, we need some cru-
cial estimates on the parameter c(εt).

Remark 4.8 (Bounds for c(εt)). From the bound on c(εt) in (4.18) we conclude that for all
t ∈ [−Tε, Tε]

1 ≤ c(εt) ≤ 2
4

5−m .

4.4 Correction to the solution of Problem (Ω)

Consider the cutoff function η ∈ C∞(R) satisfying the following properties:
{

0 ≤ η(s) ≤ 1, 0 ≤ η′(s) ≤ 1, for any s ∈ R;

η(s) ≡ 0 for s ≤ −1, η(s) ≡ 1 for s ≥ 1.
(4.22)

Define
ηε(y) := η(εy + 2), (4.23)

and for Ac = Ac(εt; y) solution of (4.20) constructed in Lemma 4.5, denote

A#(εt; y) := ηε(y)Ac(εt; y). (4.24)

Now redefine
ũ := R+ w = R+ εA#. (4.25)

where R is the modulated soliton from (4.5).

The following Proposition, which deals with the error associated to this cut-off function
and the new approximate solution ũ, is the principal result of this section.

Proposition 4.6 (Construction of an approximate solution for (1.15)).

There exist constants ε0,K > 0 such that for all 0 < ε < ε0 the following holds.

1. Consider the localized function A# defined in (4.23)-(4.24). Then we have

(a) New behavior. For all t ∈ [−Tε, Tε],
{

A#(εt, y) = 0 for all y ≤ −3
ε ,

A#(εt, y) = Ac(εt, y) for all y ≥ −1
ε .

(4.26)

(b) Integrable solution. For all t ∈ [−Tε, Tε], A#(εt, ·) ∈ H1(R) with

‖εA#(εt, ·)‖H1(R) ≤ Kε
1
2 e−γε|t|. (4.27)

2. The error associated to the new function ũ satisfies

‖S[ũ](t)‖H2(R) ≤ Kε
3
2 e−γε|t|, (4.28)

and the following integral estimate holds
∫

R

‖S[ũ](t)‖H2(R)dt ≤ Kε1/2.
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Proof. The proof of (4.26) is direct from the definition. To prove (4.27) it is enough to recall
that

‖η′c‖L2(R) ≤ Kε−1/2.

For the proof of (4.28), see Appendix D.

4.5 Recomposition of the solution

In this subsection we present some important estimates concerning our approximate solution.
More precisely, we will show that ũ at time ±Tε behaves as a modulated soliton with the
scaling given by the formal computations at infinity. We start out with some model H1-
estimates.

Lemma 4.7 (First estimates on ũ).

1. Decay away from zero. Suppose f = f(y) ∈ Y . Then there exist K, γ > 0 constants such that
for all t ∈ [−Tε, Tε]

‖a′(εx)f(y)‖H1(R) ≤ Ke−γε|t|. (4.29)

2. Almost soliton solution. The following estimates hold for all t ∈ [−Tε, Tε].

‖ũt + (c− λ)ũx‖H1(R) ≤ Kεe−γε|t|, ‖ũt + (c− λ)ũx‖L∞(R) ≤ Kεe−γε|t|, (4.30)

ũxx − λũ+ aεũ
m = (c− λ)ũ+OL2(R)(εe

−γε|t|), (4.31)

and
‖(ũxx − cũ+ aεũ

m)x‖H1(R) ≤ Kεe−γε|t| +Kε2. (4.32)

Proof. The proof of (4.29) is a direct consequence of (1.13) and the fact that ρ′(t) = c(εt)− λ ≥
1 − λ, for all t ∈ R.

Now let us prove (4.30). From (4.25) we obtain

ũt + (c− λ)ũx = ε
c′

ã
ΛQc − ε

ã′

ã2
(c− λ)Qc + ε[(A#)t + c(A#)x]

= ε[(A#)t + c(A#)x] +OH1(R)(εe
−γε|t|).

Now, from (D.3) in Appendix D, we know that

ε[(A#)t + c(A#)x] = ε2(c− λ)η′cAc +OH1(R)(ε
3
2 e−γε|t|) = OH1(R)(ε

3
2 e−γε|t|).

This estimate completes the proof of the H1-estimate. The L∞-estimate follows directly from
the continuous Sobolev embedding H1(R) →֒ L∞(R).

Concerning (4.31), note that from (4.27)

ũxx − λũ+ aεũ
m = (c− λ)ũ+ ε[(A#)xx +maεR

m−1A#]

+OL2(R)(εe
−γε|t|) +O(ε2|A#|2)

= (c− λ)ũ+OL2(R)(εe
−γε|t|).

Finally we deal with (4.32). Note that [ũxx − cũ + aεũ
m]x = S[ũ] − ((c − λ)ũx + ũt); the

conclusion follows directly from (4.28) and (4.30).
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The next result describes the behavior of the almost solution ũ at the endpoints t =
−Tε, Tε.

Proposition 4.8 (Behavior at t = ±Tε).

There exist constants K, ε0 > 0 such that for every 0 < ε < ε0 the approximate solution ũ
constructed in Proposition 4.6 satisfies

1. Closeness to Q at time t = −Tε.

‖ũ(−Tε) −Q(· + (1 − λ)Tε)‖H1(R) ≤ Kε10. (4.33)

2. Closeness to 2−1/(m−1)Qc∞ at time t = Tε. Let c∞(λ) > 1 be as defined in Lemma 4.4. Then

‖ũ(Tε) − 2−1/(m−1)Qc∞(· − ρ(Tε))‖H1(R) ≤ Kε10. (4.34)

Proof. By definition,

ũ(−Tε) −Q(· − ρ(−Tε)) = R(−Tε) −Q(· + (1 − λ)Tε) + w(−Tε).

From Lemma 4.6 we have

‖w(±Tε)‖H1(R) = ‖εA#(±Tε)‖H1(R) ≤ Kε1/2e−γε−
1

100 ≤ Kε10,

for ε small enough. On the other hand, from ρ(−Tε) = −(1 − λ)Tε and using the monotony
of a, we have

1 ≤ c(−εTε) ≤ a
4

5−m (ερ(−Tε)) ≤ 1 + ε10.

In conclusion we have

‖R(−Tε) −Q(· + (1 − λ)Tε)‖H1(R) ≤ Kε10,

as desired. Estimate (4.34) is totally analogous, and we skip the details.

In concluding this section, we have constructed and approximate solution ũ describing, at
least formally, the interaction soliton-potential. In the next section we will show that the solu-
tion u constructed in Theorem 3.1 actually behaves like ũ inside the interaction box [−Tε, Tε].

5 First stability results

In this section our objective is to prove that the approximate solution ũ describes the actual
dynamics of interaction in the interval [−Tε, Tε]. The next proposition is the principal result
of this section.

Proposition 5.1 (Exact solution close to the approximate solution ũ).

Let κ > 1
100 . There exists ε0 > 0 such that the following holds for any 0 < ε < ε0. Suppose that

‖S[ũ](t)‖H2(R) ≤ Kε1+κe−γε|t|,
∫

R

‖S[ũ](t)‖H2(R) dt ≤ Kεκ, (5.1)

and
‖u(−Tε) − ũ(−Tε)‖H1(R) ≤ Kεκ, (5.2)

with u = u(t) a H1(R) solution of (1.15) in a vicinity of t = −Tε. Then u(t) is defined for any
t ∈ [−Tε, Tε] and there exist K0 = K0(κ,K) and a C1-function ρ1 : [−Tε, Tε] → R such that, for all
t ∈ [−Tε, Tε],

‖u(t+ ρ1(t)) − ũ(t)‖H1(R) ≤ K0ε
κ, |ρ′1(t)| ≤ K0ε

κ. (5.3)
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Before the proof, we clarify some important details about the statement of the proposition.

Remark 5.1. Note that u has to be modulated in order to get the correct result. However, in this
case we have not modulated on the scaling and spatial translation parameters because (1.15)
is not invariant under these transformations. Nevertheless, we still have another degeneracy,
due to time translations, which fortunately allows to control the dynamics of the solution
u for every t ∈ [−Tε, Tε]. In this sense, the new time s(t) := t + ρ1(t) can be interpreted as
a retarded (or advanced) time of the actual solution with respect to the approximate solution.
Moreover, note that for ε small enough,

s′(t) = 1 + ρ′(t) >
99

100
> 0,

for all t ∈ [−Tε, Tε]. This means that we can inverse s(t) on s([−Tε, Tε]) ⊆ 99
100 [−Tε, Tε].

From the proof we do not know the sign of ρ′1(t), so in particular we do not know if the
solution u is retarded or in advance with respect to the approximate solution ũ.

Proof of Proposition 5.1. Let K∗ > 1 be a constant to be fixed later. Let us recall that from
Proposition 2.2 we have that u(t) is globally well-defined in H1(R). Since ‖u(−Tε) −
ũ(−Tε)‖H1(R) ≤ Kεκ, by continuity in time in H1(R), there exists −Tε < T ∗ ≤ Tε with

T ∗ := sup
{
T ∈ [−Tε, Tε], such that for all t ∈ [−Tε, T ], there exists r(t) ∈ R with

‖u(t+ r(t)) − ũ(t)‖H1(R) ≤ K∗εκ
}
.

The objective is to prove that T ∗ = Tε for K∗ large enough. To achieve this, we argue by
contradiction, assuming that T ∗ < Tε and reaching a contradiction with the definition of T ∗

by proving some independent estimates for ‖u(t+r(t))− ũ(t)‖H1(R) on [−Tε, T
∗], for a special

modulation parameter r(t).

5.1 Modulation

By using the Implicit function theorem we will construct a modulation parameter and to
estimate its variation in time:

Lemma 5.2 (Modulation in time). Assume 0 < ε < ε0(K
∗) small enough. There exists a unique

C1 function ρ1(t) such that, for all t ∈ [−Tε, T
∗],

z(t) = u(t+ ρ1(t)) − ũ(t) satisfies
∫

R

z(t, x)Q′
c(y)dx = 0. (5.4)

Moreover, we have, for all t ∈ [−Tε, T
∗],

|ρ1(−Tε)| + ‖z(−Tε)‖H1(R) ≤ Kεκ, ‖z(t)‖H1(R) ≤ 2K∗εκ. (5.5)

In addition, z(t) satisfies the following equation

zt + (1 + ρ′1)
{
zxx − λz + aε[(ũ+ z)m − ũm]

}
x
− ρ′1ũt + (1 + ρ′1)S[ũ] = 0. (5.6)

Finally, there exist K, γ > 0 independent of K∗ such that for every t ∈ [−Tε, T
∗]

|ρ′1(t)| ≤
K

c(εt) − λ

[
‖z‖L2(R) + εe−γε|t|‖z(t)‖L2(R) + ‖z(t)‖2

L2(R) + ‖S[ũ]‖L2(R)

]
. (5.7)
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Proof. The proof of (5.4)-(5.5) is by now well-know and it is a consequence of the Implicit
Function Theorem. See e.g. [53] for a detailed proof. On the other hand, the proof of (5.6)
follows after a simple calculation using (1.15).

Finally, we prove (5.7). From (5.4)-(5.6) we take time derivative and replace zt to obtain

0 = (1 + ρ′1)
∫

R

{
zxx − cz + aε[(ũ+ z)m − ũm]

}
Q′′

c

+ρ′1

∫

R

(ũt − (c− λ)zx)Q′
c − (1 + ρ′1)

∫

R

S[ũ]Q′
c + εc′(εt)

∫

R

zΛQ′
c.

First, note that

ρ′1

∫

R

(ũt − (c− λ)zx)Q′
c = −ρ

′
1

ã

[
(c− λ)

∫

R

Q′2
c +O(ε+ ‖z(t)‖L2(R))

]
.

On the other hand,
∫

R

{
zxx − cz + aε[(ũ+ z)m − ũm]

}
Q′′

c = −
∫

R

zLQ′′
c +O(εe−γε|t|‖z(t)‖L2(R))

+ O(‖z(t)‖2
L2(R)).

Collecting these estimates, and using the fact that ‖z(t)‖H1(R) is small, we get desired result.

5.2 Control on the Qc direction

We recall from (1.7) that the energy of the function u(t+ρ1(t)) is conserved, moreover,Ea[u(t+
ρ1(t))] = Ea[u](t) for any t ∈ [−Tε, T

∗]. In what follows, we will made use of this identity to
estimate z against the degenerate direction Qc. First we prove that the approximate solution
ũ has almost conserved energy.

Lemma 5.3 (Almost conservation of energy).

Consider ũ the approximate solution constructed in Proposition 4.6. Then

∂tEa[ũ](t) = −
∫

R

(ũxx − λũ+ aεũ
m)S[ũ]. (5.8)

In particular, there exists K > 0 independent of K∗ such that

|Ea[ũ](t) − Ea[ũ](−Tε)| ≤ Kεκ. (5.9)

Proof. We start by showing (5.8). From (4.9) we have
∫

R

S[ũ](ũxx − λũ+ aεũ
m) =

∫

R

ũt(ũxx − λũ+ aεũ
m)

= −∂t
1

2

∫

R

ũ2
x − ∂t

λ

2

∫

R

ũ2 +
1

m+ 1
∂t

∫

R

aεũ
m+1

= −∂tEa[ũ](t),

as desired.

Now we consider (5.9). From Cauchy-Schwarz inequality, we have

|∂tEa[ũ](t)| ≤ K‖S[ũ](t)‖L2(R),

for some constant K > 0. After integration and considering (5.1), we get the result.
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Lemma 5.4 (Control in the Qc direction).

There exists K, γ > 0, independent of K∗ such that for 0 < ε < ε0 small enough,

|
∫

R

Qc(y)z| ≤
K

c(εt) − λ

[
εκ + ε1/2e−εγ|t|‖z(t)‖L2(R) + ‖z(t)‖2

H1(R)

]
.

Proof. Consider the conserved energy Ea[u(t+ρ1)]; we expand this term and make use of the
identity u(t+ ρ1) = ũ(t) + z(t) to obtain

Ea[ũ+ z](t) = Ea[ũ](t) −
∫

R

z(ũxx − λũ+ aεũ
m) +

1

2

∫

R

z2
x +

λ

2

∫

R

z2

− 1

m+ 1

∫

R

aε[(ũ+ z)m+1 − ũm+1 − (m+ 1)ũmz].

First, note that
∫

R

z(ũxx − λũ+ aεũ
m)(t) =

∫

R

z(ũxx − λũ+ aεũ
m)(−Tε) +

{
Ea[ũ](t) − Ea[ũ](−Tε)

}

+ O(‖z(t)‖2
H1(R)).

We use now (4.31):
∫

R

z(ũxx − λu+ aεũ
m) = (c− λ)

∫

R

ũz +O(εe−γε|t|‖z(t)‖L2(R))

The conclusion follows from the above identity and (5.9).

5.3 Energy functional for z

Consider the functional

F(t) :=
1

2

∫

R

(z2
x + c(εt)z2) − 1

m+ 1

∫

R

aε[(ũ+ z)m+1 − ũm+1 − (m+ 1)ũmz]. (5.10)

Lemma 5.5 (Modified coercivity for F , second version).

There exist K, ν0 > 0, independent of K∗ and ε such that for every t ∈ [−Tε, Tε]

F(t) ≥ ν0‖z(t)‖2
H1(R) − |

∫

R

Qc(y)z|2 −K(εe−γε|t| + ε2)‖z(t)‖2
L2(R) −K‖z(t)‖3

L2(R).

Proof. We write

F(t) =
1

2

∫

R

(z2
x + cz2 −maεũ

m−1z2) (5.11)

− 1

m+ 1

∫

R

aε[(ũ+ z)m+1 − ũm+1 − (m+ 1)ũmz − 1

2
m(m+ 1)ũm−1z2]. (5.12)

In the case m = 2 the term (5.12) above is identically zero, and for m = 3, 4 we have |(5.12)| ≤
K‖z(t)‖3

L2(R).

On the other hand, the first term above looks as follows

(5.11) =
1

2

∫

R

(z2
x + c(εt)z2 −mQm−1

c z2) − ε
ma′(ερ)
2a(ερ)

∫

R

yQm−1
c z2 +O(ε2‖z(t)‖2

L2(R)).



5.3 - Energy functional for z 83

It is clear that

|εma
′(ερ)

2a(ερ)

∫

R

yQm−1
c z2| ≤ Kεe−γε|t|‖z(t)‖2

L2(R).

Finally, from Lemma 2.3, we have the existence of constants K, ν0 > 0 such that for all t ∈
[−Tε, T

∗]
1

2

∫

R

(z2
x + c(εt)z2 −mQm−1

c z2) ≥ ν0‖z(t)‖2
H1(R) −K

∣∣∣
∫

R

Qcz
∣∣∣
2
.

Now we use a coercivity argument to obtain independent estimates for F(T ∗).

Lemma 5.6 (Estimates on F(T ∗)).

The following properties hold for any t ∈ [−Tε, T
∗].

1. First time derivative.

F ′(t) = −
∫

R

zt
{
zxx − cz + aε[(ũ+ z)m − ũm]

}
+

1

2
εc′(εt)

∫

R

z2

−
∫

R

aεũt[(ũ+ z)m − ũm −mũm−1z]. (5.13)

2. Integration in time. There exist constants K, γ > 0 such that

F(t) −F(−Tε) ≤ K(K∗)4ε4κ− 1
100 +K(K∗)3ε3κ− 1

100 +KK∗ε2κ

+K

∫ t

−Tε

εe−εγ|t|‖z(t)‖2
H1(R)dt.

Proof. First of all, (5.13) is a simple computation. Let us consider (5.14). Replacing (5.6) in
(5.13) we get

F ′(t) = (c(εt) − λ)(1 + ρ′1)
∫

R

aε[(ũ+ z)m − ũm]zx (5.14)

−ρ′1
∫

R

ũt

{
zxx − cz + aε[(ũ+ z)m − ũm]

}
(5.15)

+(1 + ρ′1)
∫

R

S[ũ]
{
zxx − cz + aε[(ũ+ z)m − ũm]

}
(5.16)

+
1

2
εc′(εt)

∫

R

z2 −
∫

R

aεũt[(ũ+ z)m − ũm −mũm−1z]. (5.17)

Now we consider separate cases. First let us suppose m = 2. After some simplifications, we
get

(5.14) = (c− λ)(1 + ρ′1)
∫

R

aε[2ũz + z2]zx

= −(c− λ)(1 + ρ′1)
∫

R

[aεũxz
2 + εa′(εx)ũz2 +

1

3
εa′(εx)z3].

From this

|(5.14) + (c− λ)(1 + ρ′1)
∫

R

aεũxz
2| ≤ Kεe−γε|t|‖z(t)‖2

L2(R) +Kε‖z(t)‖3
H1(R).
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On the other hand,

(5.15) = −ρ′1
∫

R

(ũt + (c− λ)ũx)
{
zxx − cz + aε[2ũz + z2]

}
+ (c− λ)ρ′1

∫

R

aεũxz
2

+(c− λ)ρ′1

∫

R

z[ũxx − cũ+ aεũ
2]x − (c− λ)ρ′1ε

∫

R

a′(εx)ũ2z.

In particular, using estimates (4.29), (4.32) and (4.30) we obtain

|(5.15) − (c− λ)ρ′1

∫

R

aεũxz
2| ≤ Kε|ρ′1|e−γε|t|‖z(t)‖H1(R)

We also have

(5.16) = (1 + ρ′1)
∫

R

z[S[ũ]xx − cS[ũ] + 2aεũS[ũ] + aεzS[ũ]],

thus using (5.7)

|(5.16)| ≤ K‖z(t)‖L2(R)‖S[ũ](t)‖H2(R).

Finally,

(5.17) =
1

2
εc′(εt)

∫

R

z2 −
∫

R

aε(ũt + (c− λ)ũx)z2 + (c− λ)

∫

R

aεũxz
2.

We get then from (4.30)

|(5.17) − (c− λ)

∫

R

aεũxz
2| ≤ Kεe−γε|t|‖z(t)‖2

L2(R).

Collecting the above estimates and (5.7), and after an integration, we finally get

|F(t) −F(−Tε)| ≤ K(K∗)3ε3κ− 1
100 +KK∗ε2κ +K

∫ t

−Tc

εe−γε|s|‖z(s)‖2
L2(R)ds.

The cases m = 3, 4 are similar, but more involved. From (5.14)-(5.17), and after some
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integration by parts, the result is the following:

F ′(t) = (c− λ)(1 + ρ′1) ×[ ∫

R

aε

{
(ũ+ z)m − ũm −mũm−1z − m

2
(m− 1)ũm−2z2

}
zx (5.18)

−m
2
ε

∫

R

a′(εx)ũm−1z2 − ε

6
m(m− 1)

∫

R

a′(εx)ũm−2z3

−m
2

∫

R

aε(ũ
m−1)xz

2 − m

6
(m− 1)

∫

R

aε(ũ
m−2)xz

3
]

(5.19)

−ρ′1
∫

R

(ũt + (c− λ)ũx)
{
zxx − cz + aε[(ũ+ z)m − ũm]

}

+(c− λ)ρ′1
[ ∫

R

z(ũxx − cũ+ aεũ
m)x − ε

∫

R

a′(εx)ũmz
]

+(c− λ)(1 + ρ′1)
∫

R

ũxaε

{
(ũ+ z)m − ũm −mũm−1z

−m
2

(m− 1)ũm−2z2 − m

6
(m− 1)(m− 2)ũm−3z3

}
(5.20)

+
m

2
(c− λ)ρ′1

[ ∫

R

aε(ũ
m−1)xz

2 +
1

3
(m− 1)

∫

R

aε(ũ
m−2)xz

3
]

(5.21)

+(1 + ρ′1)
∫

R

z
{
S[ũ]xx − cS[ũ] +maεũ

m−1S[ũ]
}

+(1 + ρ′1)
∫

R

aε

{
(ũ+ z)m − ũm −mũm−1z

}
S[ũ]

+
ε

2
c′

∫

R

z2 −
∫

R

aε(ũt + (c− λ)ũx)[(ũ+ z)m − ũm −mũm−1z]

+
m

2
(c− λ)

[ ∫

R

aε(ũ
m−1)xz

2 +
1

3
(m− 1)

∫

R

aε(ũ
m−2)xz

3
]
. (5.22)

Note that (5.19), (5.21) and (5.22) disappear. With (5.18) and (5.20), we need a little more
care. Indeed, for m = 3,

|(5.18) + (5.20)| = |1
4
ε(c− λ)(1 + ρ′1)

∫

R

a′(εx)z4| ≤ ε‖z(t)‖4
L2(R);

In the case m = 4,

(5.18) + (5.20) = (c− λ)(1 + ρ′1)
∫

R

aε[zx(4ũz3 + z4) + ũxz
4]

= −ε(c− λ)(1 + ρ′1)
∫

R

a′(εx)(ũz4 + z5).

Consequently we have

|(5.18) + (5.20)| ≤ Kεe−γε|t|‖z(t)‖4
L2(R) +Kε‖z(t)‖5

L2(R).

Finally, using (4.29), (4.32), (4.30) we obtain

F ′(t) ≤ Kε‖z(t)‖4
H1(R) +Kεe−γε|t|‖z(t)‖2

L2(R) +Kε‖z(t)‖3
H1(R)

+K|ρ′1(t)|εe−γε|t|‖z(t)‖H1(R) +K‖S[ũ](t)‖H2(R)‖z(t)‖L2(R).

Integrating and using (5.7), we obtain

F(t) −F(−Tε) ≤ K(K∗)4ε4κ− 1
100 +K(K∗)3ε3κ− 1

100 +KK∗ε2κ

+K

∫ t

−Tε

εe−γε|s|‖z(s)‖2
H1(R)ds.

This finishes the proof.
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We are finally in position to show that T ∗ < Tε leads to a contradiction.

5.4 End of proof of Proposition 5.1

From Lemma 5.2, F(−Tε) ≤ Kc2κ, and from Lemmas 5.5, 5.4 and (5.14) we get

‖z(t)‖2
L2(R) ≤ K|

∫

R

zQc(y)|2 +Kε2κ +K(K∗)4ε4κ− 1
100 +K(K∗)3ε3κ− 1

100

+KK∗ε2κ +K

∫ t

−Tε

εe−γε|t|‖z(t)‖2
L2(R)dt

≤ K|εκ +K∗ε
1
2
+κe−γε|t| + (K∗)2ε2κ + ‖S[ũ]‖L2(R)|2 +Kε2κ

+K(K∗)4ε4κ− 1
100 +K(K∗)3ε3κ− 1

100 +KK∗ε2κ

+K

∫ t

−Tε

εe−γε|s|‖z(s)‖2
L2(R)ds

≤ Kε2κ +K(K∗)4ε4κ− 1
100 +K(K∗)3ε3κ− 1

100 +KK∗ε2κ

+K

∫ t

−Tε

εe−γε|s|‖z(s)‖2
L2(R)ds.

Using Gronwall’s inequality (see e.g. [81]) we conclude that for some large constant K >
0, but independent of K∗ and ε,

‖z(t)‖2
H1(R) ≤ Kε2κ +K(K∗)4ε4κ− 1

100 +K(K∗)3ε3κ− 1
100 +KK∗ε2κ.

From this estimate and taking ε small, and K∗ large enough, we obtain that for all t ∈
[−Tε, T

∗],

‖z(t)‖2
H1(R) ≤

1

2
(K∗)2ε2κ.

This estimate contradicts the definition of T ∗, and concludes the proof of Proposition 5.1.

5.5 Proof of Theorem 4.1

Now we prove the main result of this section, which describes the core of interaction soliton-
potential.

Proof of Theorem 4.1. Consider u(t) the solution constructed in Theorem 3.1. We first compare
u(t) with the approximate solution ũ(t) constructed in Proposition 4.6 at time t = −Tε.

Behavior at t = −Tε. From (3.3), Proposition 4.8 and more specifically (4.33) we have that

‖u(−Tε) − ũ(−Tε)‖H1(R) ≤ Kε10.

Behavior at t = Tε. Thanks to the above estimate and (4.28) we can invoke Proposition 5.1
with κ := 1

2 to obtain the existence of K0, ε0 > 0 such that for all 0 < ε < ε0

‖u(Tε + ρ1(Tε)) − ũ(Tε)‖H1(R) ≤ K0ε
1/2, |ρ1(Tε)| ≤ K0ε

− 1
2
− 1

100 ≤ Tε

100
.

Therefore from (4.34) and triangular inequality,

‖u(Tε + ρ1(Tε)) − 2−1/(m−1)Qc∞(· − ρ(Tε))‖H1(R) ≤ K0ε
1/2.

(cf. also (4.5).) Finally note that (1 − λ)Tε ≤ ρ(Tε) ≤ (2c∞(λ) − λ − 1)Tε. This finishes the
proof.
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Next step will be the study of long time properties, on the interval [Tε,+∞).

6 Asymptotic for large times

6.1 Statement of the results

The purpose of this Section is to prove the asymptotic behavior of the solution u(t) as de-
scribed in Theorem 1.2. Recall the parameters λ0 and c∞(λ) from Theorems 1.1 and 4.1.

Theorem 6.1 (Stability and Asymptotic stability in H1).

Suppose m = 2, 4 with 0 < λ ≤ λ0; or m = 3 with 0 ≤ λ ≤ λ0. Let 0 < β < 1
2(c∞(λ) − λ).

There exists ε0 > 0 such that if 0 < ε < ε0 the following hold. Suppose that for some time t1 ≥ 1
2Tε

and t1 ≤ X0 ≤ 2t1 ∥∥u(t1) − 2−1/(m−1)Qc∞(x−X0)
∥∥

H1(R)
≤ ε1/2. (6.1)

where u(t) is a H1-solution of (1.15). Then u(t) is defined for every t ≥ t1 and there exists K, c+ > 0
and a C1-function ρ2(t) defined in [t1,+∞) such that

1. Stability.
sup
t≥t1

∥∥u(t) − 2−1/(m−1)Qc∞(· − ρ2(t))
∥∥

H1(R)
≤ Kε1/2, (6.2)

where

|ρ2(t1) −X0| ≤ Kε1/2, and for all t ≥ t1, |ρ′2(t) − c∞(λ) + λ| ≤ Kε1/2.

2. Asymptotic stability. One has

lim
t→+∞

∥∥u(t) − 2−1/(m−1)Qc+(· − ρ2(t))
∥∥

H1(x>βt)
= 0. (6.3)

In addition,
lim

t→+∞
ρ′2(t) = c+ − λ, |c+ − c∞| ≤ Kε1/2. (6.4)

Remark 6.1. We do not know if stability results are valid in the cases m = 2, 4 and λ = 0. In
particular, note that the stability property as stated above is false if we have

lim sup
t→+∞

‖u(t)‖L2(R) = +∞.

Remark 6.2. Let us recall that for any 0 < λ < λ0 the asymptotic stability property (6.3) holds
for any β > −λ, provided ε0 small enough, however we will not pursue on this improve-
ment.3

We shall split the proof in two different parts, according with the proof of stability (cf.
(6.2)) and asymptotic stability (cf. (6.3)).

The proof of the stability result is standard and similar to Proposition 5.1, see also [5, 59].
For this reason, our proof will be in some sense very sketchy. We invite to the reader to
consult the references above mentioned for the original proof. Concerning the asymptotic
stability result, the proof will follow closely the papers [55, 52].

3In [66] we made use of this property.
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Let us recall that for large times (t ≥ Tε) the soliton-like solution is expected to be far
away from the region where aε varies. In particular, from (1.13), the stability and asymptotic
stability properties will follow from the fact that in this region (1.13) behaves like the gKdV
equation

ut + (uxx − λu+ 2um)x = 0, in {t ≥ Tε} × Rx.

Of course, this formal argument must be stated in a rigorous way.

6.2 Stability

Proof of Theorem 6.1, stability part. Let us prove (6.2). Let us assume that for someK > 0 fixed,

‖u(t1) − 2−1/(m−1)Qc∞(· −X0)‖H1(R) ≤ Kε1/2. (6.5)

From the local and global Cauchy theory exposed in Proposition 2.1 and Theorems 3.1 and
4.1, we know that the solution u is well defined for all t ≥ t1.

In order to simplify the calculations, note that from (1.18) the function v := 21/(m−1)u
solves

vt + (vxx − λv +
aε

2
vm)x = 0 on Rt × Rx,

and (6.5) now becomes
‖v(t1) −Qc∞(· −X0)‖H1(R) ≤ K̃ε1/2. (6.6)

With a slight abuse of notation we will rename v := u and K̃ := K, and we will assume the
validity of (6.6) for u. The parameters X0 and c∞ remains unchanged.

Let D0 > 2K be a large number to be chosen later, and set

T ∗ := sup
{
t ≥ t1 | ∀ t′ ∈ [t1, t), ∃ ρ̃2(t

′) ∈ R smooth s.t. |ρ̃′2(t′) − c∞ + λ| ≤ 1

100
,

|ρ̃2(t1) −X0| ≤
1

100
, and ‖u(t′) −Qc∞(· − ρ̃2(t

′))‖H1(R) ≤ D0ε
1/2

}
.(6.7)

Observe that T ∗ > t1 is well-defined since D0 > 2K, (6.5) and the continuity of t 7→ u(t)
in H1(R). The objective is to prove T ∗ = +∞, and thus (6.2). Therefore, for the sake of
contradiction, in what follows we shall suppose T ∗ < +∞.

The first step to reach a contradiction is now to decompose the solution on [t1, T
∗] using

modulation theory around the soliton. In particular, we will find a special ρ2(t) satisfying the
hypotheses in (6.7) but with

sup
t∈[t1,T ∗]

‖u(t) −Qc∞(· − ρ2(t))‖H1(R) ≤
1

2
D0ε

1/2, (6.8)

a contradiction with the definition of T ∗.

Lemma 6.2 (Modulated decomposition).

For ε > 0 small enough, independent of T ∗, there exist C1 functions ρ2, c2, defined on [t1, T
∗],

with c2(t) > 0 and such that the function z(t) given by

z(t, x) := u(t, x) −R(t, x), (6.9)

where R(t, x) := Qc2(t)(x− ρ2(t)), satisfies for all t ∈ [t1, T
∗],

∫

R

R(t, x)z(t, x)dx =

∫

R

(x− ρ2(t))R(t, x)z(t, x)dx = 0, (Orthogonality), (6.10)

‖z(t)‖H1(R) + |c2(t) − c∞| ≤ KD0ε
1/2, and (6.11)

‖z(t1)‖H1(R) + |ρ2(t1) −X0| + |c2(t1) − c∞| ≤ Kε1/2, (6.12)



6.2 - Stability 89

whereK is not depending onD0. In addition, z(t) now satisfies the following modified gKdV equation

zt +
{
zxx − λz +

aε

2
[(R+ z)m −Rm] + (

aε(x)

2
− 1)Qm

c2

}
x

+ c′2(t)ΛQc2 + (c2 − λ− ρ′2)(t)Q
′
c2 = 0. (6.13)

Furthermore, for some constant γ > 0 independent of ε, we have the improved estimates:

|ρ′2(t) + λ− c2(t)| ≤ K(m− 3)
[ ∫

R

e−γ|x−ρ2(t)|z2(t, x)dx
] 1

2

+K

∫

R

e−γ|x−ρ2(t)|z2(t, x)dx+Ke−γεt; (6.14)

and
|c′2(t)|
c2(t)

≤ K

∫

R

e−γ|x−ρ2(t)|z2(t, x)dx+Ke−γεt‖z(t)‖H1(R) +Kεe−εγt. (6.15)

Remark 6.3. Note that from (6.11) and taking ε small enough we have an improved the bound
on ρ2(t). Indeed, for all t ∈ [t1, T

∗],

|ρ′2(t) − c∞ + λ| + |ρ2(t1) −X0| ≤ 2D0ε
1/2.

Thus, in order to reach a contradiction, we only need to show (6.8).

Proof of Lemma 6.2. As in Lemma B.4 and 5.2, the proof of (6.9)-(6.12) are based in a Implicit
Function Theorem application, and is very similar to the proof of Lemma A.1 in appendix A
of [52].

On the other hand, equation (6.13) is a simple computation, completely similar to (B.11)
and (5.6).

Now we claim that from the definition of T ∗ we can obtain an extra estimate on the pa-
rameter ρ2(t). We claim that for any t ≥ t1,

ρ2(t) ≥
1

10
(c∞(λ) − λ)t1. (6.16)

Indeed, from (6.7) and after integration between t1 and t ∈ [t1, T
∗] we have the bound

|ρ2(t) − ρ2(t1) − (c∞ − λ)(t− t1)| ≤
1

100
(t− t1), |ρ2(t1) −X0| ≤

1

100
.

Thus we have

|ρ2(t) − (c∞ − λ)t| ≤ 1

100
(t− t1 + 1) + |(c∞ − λ)t1 −X0|.

In particular, for any t ∈ [t1, T
∗] (recall that ρ2(t1) ∼ X0 > 0)

ρ2(t) ≥ (c∞ − λ)t− 1

100
(t− t1 + 1) ≥ 1

10
c∞t.

This inequality implies that the soliton position is far away from the potential interaction
region.

Now we prove the estimates in (6.14) and (6.15). For this, first denote y := x − ρ2(t).
Taking time derivative in the first orthogonality condition in (6.10) and using the equation
(6.13) we obtain

0 = −c′2(t)
∫

R

ΛQc2(Qc2 − z) + (c2 − λ− ρ′2)(t)
∫

R

Q′
c2z −

1

2

∫

R

Qm
c2 [(aε − 2)z]x

− ε

2(m+ 1)

∫

R

a′(εx)Qm+1
c2 (y) +

1

2

∫

R

Q′
c2aε[(R+ z)m −Rm −mRm−1z]..
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First of all, note that by scaling arguments
∫

R

ΛQc2Qc2 = θc2θ−1
2 (t)

∫

R

Q2. (6.17)

Secondly, by redefining γ if necessary,

|ε
∫

R

a′(εx)Qm+1
c2 (y)| ≤ Kεe−γεc2(t)ρ2(t) ≤ Kεe−γεt.

Similarly, from (6.16) and following (B.13) we have

|
∫

R

Qm
c2 [(aε − 2)z]x| ≤ K‖z(t)‖H1(R)e

−γεt.

Finally, note that for γ > 0 independent of ε,

|
∫

R

Q′
c2aε[(R+ z)m −Rm −mRm−1z]| ≤ K

∫

R

e−γ|y|z2.

Collecting the above estimates, we have

|c′2(t)|
c2(t)

≤ K

∫

R

e−γ|y|z2 +K|c2(t) − λ− ρ′2(t)|
[ ∫

R

e−γ|y|z2
] 1

2

+Ke−γεt‖z(t)‖H1(R) +Kεe−γεt. (6.18)

On the other hand, by using the second orthogonality condition in (6.10), we have

0 = (c2 − λ− ρ′2)(t)
∫

R

z(yR)x + c′2(t)
∫

R

yΛQc2z +
1

2
(c2 − λ− ρ′2)(t)

∫

R

Q2
c2

+

∫

R

(yR)x

{1

2
aε[(R+ z)m −Rm −mRm−1z] + (

aε(x)

2
− 1)Qm

c2

}

+

∫

R

(yR)x(zxx − c2z +mRm−1z) +
m

2

∫

R

(yR)x(aε − 2)Rm−1z.

Note that by integration by parts,
∫

R

(yR)x(zxx − c2z +mRm−1z) =

∫

R

z(2R+ (m− 3)Rm) = (m− 3)

∫

R

zRm.

Using the same arguments as in the precedent computations, we have

|(c2 − λ− ρ′2)(t)| ≤ K(m− 3)(1 +
|c′2(t)|
c2(t)

)
[ ∫

R

z2e−γ|y|
] 1

2

+K

∫

R

z2e−γ|y| + |
∫

R

Qm
c2(y)(aε − 2)|.

From (6.16) and following (B.13) we have

|
∫

R

Qm
c2(y)(aε − 2)| ≤ Ke−γεt.

Putting together (6.18) and the last estimates, we finally obtain the bounds in (6.11), and
further we obtain (6.14) and (6.15), as desired.
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6.2.1 Almost conserved quantities and monotonicity

We continue with a complete analogous proof to Proposition B.1 from Section 3. Recall from
(2.8) the definition of the modified mass M̃ .

Lemma 6.3 (Almost conservation of modified mass and energy).

Consider M̃ = M̃ [R] and Ea = Ea[R] the modified mass and energy of the soliton R (cf. (6.9)).
Then for all t ∈ [t1, T

∗] we have

M̃ [R](t) =
1

2
c2θ
2 (t)

∫

R

Q2 +O(e−εγt); (6.19)

Ea[R](t) =
1

2
c2θ
2 (t)(λ− λ0c2(t))

∫

R

Q2 +O(e−εγt). (6.20)

Furthermore, we have the bound

|Ea[R](t1) − Ea[R](t) + (c2(t1) − λ)(M̃ [R](t1) − M̃ [R](t))|

≤ K|
[ c2(t)
c2(t1)

]2θ
− 1|2 +Ke−εγt1 . (6.21)

Proof. We start by showing the first identity, namely (6.19). We consider the casem = 2, 4, the
case m = 3 being easier. First of all, note that from (2.8),

M̃ [R](t) = M̂ [R](t) =
1

2

∫

R

(aε

2

)1/m
R2 =

1

2
c2θ
2 (t)

∫

R

Q2 +
1

2

∫

R

[
(
aε(x)

2
)1/m − 1

]
R2.

From (6.16)-(6.17) and following the calculations in (B.13),

|
∫

R

(a1/m
ε (x) − 21/m)R2| ≤ Ke−γεt,

for some constants K, γ > 0. Now we consider (6.20). Here we have

Ea[R](t) =
1

2

∫

R

R2
x +

λ

2

∫

R

R2 − 1

2(m+ 1)

∫

R

aεR
m+1

= c2θ
2 (t)

[
c2(t)(

1

2

∫

R

Q′2 − 1

m+ 1

∫

R

Qm+1) +
λ

2

∫

R

Q2
]

+
1

m+ 1

∫

R

(1 − aε

2
)Rm+1.

Similarly to a recent computation, we have

|
∫

R

(2 − aε(x))R
m+1| ≤ Ke−γεt,

for some constants K, γ > 0. On the other hand, from Appendix G we have that 1
2

∫
R
Q′2 −

1
m+1

∫
R
Qm+1 = −λ0

2

∫
R
Q2, λ0 = 5−m

m+3 , and thus

Ea[R](t) =
1

2
c2θ
2 (t)(λ− λ0c2(t))

∫

R

Q2 +O(e−γεt).

Adding both identities we have

Ea[R](t) + (c2(t1) − λ)M̂ [R](t) = c2θ
2 (t)(c2(t1) − λ0c2(t))M [Q] +O(e−εγt).

In particular,

Ea[R](t1) − Ea[R](t) + (c2(t1) − λ)(M̂ [R](t1) − M̂ [R](t)) =

= λ0M [Q]
[
c2θ+1
2 (t) − c2θ+1

2 (t1) −
c2(t1)

λ0
[c2θ

2 (t) − c2θ
2 (t1)]

]
+O(e−εγt1).
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To obtain the last estimate (6.21) we perform a Taylor development up to the second order
(around y = y0) of the function g(y) := y

2θ+1
2θ ; and where y := c2θ

2 (t) and y0 := c2θ
2 (t1). Note

that 2θ+1
2θ = 1

λ0
and y1/2θ

0 = c2(t1). The conclusion follows at once.

In order to establish some stability properties for the function u(t) we recall the mass M̃ [u]
introduced in (2.8). We have that for m = 3 and 0 ≤ λ ≤ λ0; and for m = 2, 4 and 0 < λ ≤ λ0,

M̃ [u](t) − M̃ [u](t1) ≤ 0. (6.22)

for any t ∈ [t1, T
∗]. This result is a consequence of Remark 2.1.

Now our objective is to estimate the quadratic term involved in (6.21). Following [59],
we should use a “mass conservation” identity. However, since the mass is not conserved,
estimate (6.22) is not enough to obtain a satisfactory estimate. In order to avoid this problem,
we shall introduce a virial-type identity.

6.2.2 Virial estimate

First, we define some auxiliary functions. Let φ ∈ C(R) be an even function satisfying the
following properties

{
φ′ ≤ 0 on [0,+∞); φ(x) = 1 on [0, 1],

φ(x) = e−x on [2,+∞) and e−x ≤ φ(x) ≤ 3e−x on [0,+∞).
(6.23)

Now, set ψ(x) :=
∫ x
0 φ. It is clear that ψ an odd function. Moreover, for |x| ≥ 2,

ψ(+∞) − ψ(|x|) = e−|x|. (6.24)

Finally, for A > 0, denote

ψA(x) := A(ψ(+∞) + ψ(
x

A
)) > 0; e−|x|/A ≤ ψ′

A(x) ≤ 3e−|x|/A. (6.25)

Note that limx→−∞ ψ(x) = 0. We are now in condition of state the following

Lemma 6.4 (Virial-type estimate).

There exist K,A0, δ0 > 0 such that for all t ∈ [t1, T
∗] and for some γ = γ(c∞, A0) > 0,

∂t

∫

R

z2(t, x)ψA0(x− ρ2(t)) ≤

≤ −δ0
∫

R

(z2
x + z2)(t, x)e

− 1
A0

|x−ρ2(t)|
+KA0‖z(t)‖H1(R)e

−γεt. (6.26)

Proof. See Appendix E.

From Lemma 6.4 we can improve the estimate (6.21) to obtain

Corollary 6.5 (Quadratic control on the variation of c2(t)).

|Ea[R](t1) − Ea[R](t) + (c2(t1) − λ)(M̃ [R](t1) − M̃ [R](t))|
≤ K‖z(t)‖4

H1(R) +K‖z(t1)‖4
H1(R) +Ke−εγt1 . (6.27)

Proof. From (6.15) and taking A0 large enough (but fixed and independent of ε) in Lemma
6.4, we have after an integration of (6.26) that

|c2(t) − c2(t1)| ≤ KA0‖z(t)‖2
L2(R) +KA0‖z(t1)‖2

L2(R) +KA0D0ε
−1/2e−γεt1 .

Plugin this estimate in (6.21) and taking γ even smaller, we get the conclusion.
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6.2.3 Energy estimates

Let us now introduce the second order functional

F2(t) :=
1

2

∫

R

{
z2
x + [λ+ (c2(t1) − λ)(

aε

2
)1/m]z2

}

− 1

2(m+ 1)

∫

R

aε[(R+ z)m+1 −Rm+1 − (m+ 1)Rmz].

This functional, related to the Weinstein functional, have the following properties.

Lemma 6.6 (Energy expansion).

Consider Ea[u] and M̃ [u] the energy and mass defined in (1.21)-(2.8). Then we have for all t ∈
[t1, T

∗],

Ea[u](t) + (c2(t1) − λ)M̃ [u](t) = Ea[R] + (c2(t1) − λ)M̃ [R] + F2(t)

+ O(e−γεt‖z(t)‖H1(R)).

Proof. Using the orthogonality condition (6.10), we have

Ea[u](t) = Ea[R] −
∫

R

z(aε − 2)Rm +
1

2

∫

R

z2
x +

λ

2

∫

R

z2

− 1

m+ 1

∫

R

aε[(R+ z)m+1 −Rm+1 − (m+ 1)Rmz].

Moreover, following (B.13), we easily get

|
∫

R

z(aε − 2)Rm| ≤ Ke−γεt‖z(t)‖H1(R).

Similarly,

M̂ [u](t) = M̂ [R] + M̂ [z] +

∫

R

((
aε

2
)1/m − 1)Rz = M̂ [R] + M̂ [z] +O(e−εγt‖z(t)‖H1(R)).

Collecting the above estimates, we have

Ea[u](t) + (c2(t1) − λ)M̃ [u](t) =

Ea[R] + (c2(t1) − λ)M̃ [R] +
1

2

∫

R

{
z2
x + [(c2(t1) − λ)(

aε

2
)1/m + λ]z2

}

− 1

2(m+ 1)

∫

R

aε[(R+ z)m+1 −Rm+1 − (m+ 1)Rmz] +O(e−γεt‖z(t)‖H1(R)).

This concludes the proof.

Lemma 6.7 (Modified coercivity for F2).

There exists ε0 > 0 such that for all 0 < ε < ε0 the following hold. There exist K, λ̃0 > 0,
independent of K∗ such that for every t ∈ [t1, T

∗]

F2(t) ≥ λ̃0‖z(t)‖2
H1(R) −Kεe−γεt‖z(t)‖2

L2(R) +O(‖z(t)‖3
L2(R)). (6.28)

Proof. First of all, note that

F2(t) =
1

2

∫

R

{
z2
x + [(c2(t1) − λ)(

aε

2
)1/m + λ]z2

}

−m
2

∫

R

Qm−1
c2 z2 +O(‖z(t)‖3

H1(R)) +O(e−γεt‖z(t)‖2
H1(R)).



94 ASYMPTOTIC FOR LARGE TIMES

Now takeR0 > 0 independent of ε, to be fixed later. Consider the function φR0(t, x) := φ((x−
ρ2(t))/R0), where φ is defined in (6.23). We split the analysis according to the decomposition
1 = φR0 + (1 − φR0). Inside the region |x− ρ2(t)| ≤ R0, we have

2 − aε(x) ≤ Ke−γε|x| ≤ KeγεR0e−γερ2(t).

This last estimate is a consequence of (1.13). Outside this region, we have φR0 ≥ e−R0 . We
have then

∫

R

φR0 [(c2(t1) − λ)(
aε

2
)1/m + λ]z2 ≥ [c2(t1) −KeγεR0e−γερ2(t)]

∫

R

φR0z
2;

for some fixed constants K, γ > 0.

On the other hand, |(1 − φR0)Qc2 | ≤ Ke−γR0 , and thus
∫

R

(1 − φR0)[(c2(t1) − λ)(
aε

2
)1/m + λ]z2 − m

2

∫

R

(1 − φR0)Q
m−1
c2 z2

≥ [(c2(t1) − λ)(
1

2
)1/m + λ−Ke−γR0 ]

∫

R

(1 − φR0)z
2, (6.29)

for some fixed K, γ > 0. Taking R0 = R0(m,λ) large enough, we have

(6.29) ≥ 1

21/m
c2(t1)

∫

R

(1 − φR0)z
2.

Therefore,

F2(t) ≥ 1

2

∫

R

φR0

{
z2
x + c2(t1)z

2 −mQm−1
c2 z2

}
+

1

2

∫

R

(1 − φR0)
{
z2
x +

1

21/m
c2(t1)z

2
}

−KeγεR0e−γερ2(t)

∫

R

φR0z
2 +O(‖z(t)‖3

H1(R)) +O(e−γεt‖z(t)‖2
H1(R)).

Taking R0 even large if necessary (but independent of ε), and using a localization argument
as in [56], we obtain that there exists λ̃0 > 0 such that

F2(t) ≥ λ̃0

∫

R

(z2
x + z2) −KeγεR0e−γερ2(t)

∫

R

φR0z
2 +O(‖z(t)‖3

H1(R))

+O(e−γεt‖z(t)‖2
H1(R)).

Finally, taking ε0 smaller if necessary, we have

F2(t) ≥ λ̃0

∫

R

(z2
x + z2) +O(‖z(t)‖3

H1(R)) +O(e−γεt‖z(t)‖2
H1(R)),

for a new constant λ̃0 > 0.

6.2.4 Conclusion of the proof

Now we prove that our assumption T ∗ < +∞ leads inevitably to a contradiction. Indeed,
from Lemmas 6.6 and 6.7, we have for all t ∈ [t1, T

∗] and for some constant K > 0,

‖z(t)‖2
H1(R) ≤ KF2(t1) + Ea[u](t) − Ea[u](t1) + (c2(t1) − λ)[M̃ [u](t) − M̃ [u](t1)]

+Ea[R](t1) − Ea[R](t) + (c2(t1) − λ)[M̃ [R](t1) − M̃ [R](t)]

+Kε sup
t∈[t1,T ∗]

e−γεt‖z(t)‖L2(R) +K sup
t∈[t1,T ∗]

‖z(t)‖3
L2(R).
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From Lemmas 6.2 and 6.3, Corollary 6.5 and the energy conservation we have

‖z(t)‖2
H1(R) ≤ Kε+ (c2(t1) − λ)[M̃ [u](t) − M̃ [u](t1)]

+K sup
t∈[t1,T ∗]

‖z(t)‖4
H1(R) +Ke−εγt1(1 +D0ε

1/2) +KD3
0ε

3/2.

Finally, from (6.22) we have M̃ [u](t) − M̃ [u](t1) ≤ 0. Collecting the preceding estimates we
have for ε > 0 small and D0 = D0(K) large enough

‖z(t)‖2
H1(R) ≤

1

4
D2

0ε,

which contradicts the definition of T ∗. The conclusion is that

sup
t≥t1

∥∥u(t) − 2−1/(m−1)Qc2(t)(· − ρ2(t))
∥∥

H1(R)
≤ Kε1/2.

Using (6.11), we finally get (6.2). This finishes the proof.

6.3 Asymptotic stability

Now we prove (6.3) in Theorem 6.1.

Proof of Theorem 6.1, Asymptotic stability part. We continue with the notation introduced in the
proof of the stability property (6.2). We have to show the existence of K, c+ > 0 such that

lim
t→+∞

‖u(t) −Qc+(· − ρ2(t))‖H1(x> 1
10

c∞t) = 0; |c∞ − c+| ≤ Kε1/2.

From the stability result above stated it is easy to check that the decomposition proved in
Lemma 6.2 and all its conclusions hold for any time t ≥ t1.

6.3.1 Monotonicity for mass and energy

The next step in the proof is to prove some monotonicity formulae for local mass and energy.

Let K0 > 0 and

φ(x) :=
2

π
arctan(ex/K0). (6.30)

It is clear that limx→+∞ φ(x) = 1 and limx→−∞ φ(x) = 0. In addition, φ(−x) = 1 − φ(x), for
all x ∈ R, and

0 < φ′(x) =
2

πK0

ex/K

1 + e2x/K0
; φ(3)(x) ≤ 1

K2
0

φ′(x).

Moreover, we have 1 − φ(x) ≤ Ke−x/K0 as x→ +∞, and φ(x) ≤ Kex/K0 as x→ −∞.

Let σ, x0 > 0. We define, for t, t0 ≥ t1, and ỹ(x0) := x− (ρ2(t0) + σ(t− t0) + x0),

Ix0,t0(t) :=

∫

R

u2(t, x)φ(ỹ(x0))dx, Ĩx0,t0(t) :=

∫

R

u2(t, x)φ(ỹ(−x0))dx, (6.31)

and

Jx0,t0 :=

∫

R

[u2
x + u2 − 2aε

m+ 1
um+1](t, x)φ(ỹ(x0))dx.
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Lemma 6.8 (Monotonicity formulae).

Suppose 0 < σ < 1
2(c∞(λ) − λ) and K0 >

√
2
σ . There exists K, ε0 > 0 small enough such that

for all 0 < ε < ε0 and for all t, t0 ≥ t1 with t0 ≥ t we have

Ix0,t0(t0) − Ix0,t0(t) ≤ K
[
e−x0/K0 + ε−1e−γεTεe−εγx0/K0

]
. (6.32)

On the other hand, if t ≥ t0 and ρ2(t0) ≥ t1 + x0,

Ĩx0,t0(t) − Ĩx0,t0(t0) ≤ K
[
e−x0/K0 + ε−1e−εγρ2(t0)eεγx0/K0

]
, (6.33)

and finally if t0 ≥ t,

Jx0,t0(t0) − Jx0,t0(t) ≤ K
[
e−x0/K0 + ε−1e−γεTεe−εγx0/K0

]
. (6.34)

Proof. For the sake of brevity we prove this Lemma in Appendix F.

6.3.2 Conclusion of the proof

Now we finally sketch the proof of the asymptotic stability theorem, namely (6.3). Consider
0 < ε < ε0 and u(t) satisfying (6.1). From Lemma 6.2, we can decompose u(t) for all t ≥ t1
such that u(t, x) = 2−1/(m−1)Qc2(t)(x − ρ2(t)) + z(t, x), where z satisfies (6.10), (6.11), (6.12),
(6.14) and (6.15). We claim that there exists K = K(D0) > 0 such that

∫ +∞

t1

∫

R

(z2
x + z)(t, x)e

− 1
A0

|x−ρ2(t)| ≤ K(D0)ε. (6.35)

This last estimate is a simple consequence of Lemma 6.4 and an integration in time.

Now we claim that

c+ := lim
t→+∞

c2(t) < +∞, and |c+ − c∞| ≤ Kε1/2. (6.36)

In fact, note that from (6.35) there exists a sequence tn ↑ +∞, tn ∈ [n, n+ 1) such that

lim
n→+∞

∫

R

(z2
x + z)(tn, x)e

− 1
A0

|x−ρ2(tn)|
= 0. (6.37)

From this and (6.14)-(6.15), and taking A0 > 0 large such that 1
A0

< γ, we get

|c′2(t)| ≤ K

∫

R

z2(t, x)e
− 1

A0
|x−ρ2(t)|

+Ke−γεt.

This inequality combined with (6.35) and (6.12) allow us to conclude (6.36). Note that this
proves the first part of (6.4).

The next step is to prove that

lim sup
t→+∞

∫

R

(z2
x + z2)(t, x+ ρ2(t))φ(x− x0) ≤ Ke−x0/2K0 +Kε−1e−εγTεe−εγx0/K0 .

First of all, note that the above assertion follows directly from the decay properties of R and
the estimate

lim sup
t→+∞

∫

R

(u2
x + u2)(t, x+ ρ2(t))φ(x− x0) ≤ Ke−x0/2K0 +Kε−1e−εγTεe−εγx0/K0 . (6.38)
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So we are now reduced to prove this last estimate. We start from (6.34): we have for t0 ≥ t1,

Jx0,t0(t0) ≤ Jx0,t0(t1) +Ke−x0/K0 +Kε−1e−εγTεe−εγx0/K0 .

From the equivalence between the energy and H1-norm (we are in a subcritical case), we
have

∫

R

(u2
x + u2)(t0, x+ ρ2(t0))φ(x− x0) ≤ K

∫

R

(u2
x + u2)(t1, x+ ρ2(t1))φ(x− y0)

+Ke−x0/2K +Kε−1e−εγTεe−εγx0/K0 ,

where y0 := ρ2(t0)− ρ2(t1) + σ(t1 − t0) + x0. Now we send t0 → +∞ noticing that y0 → +∞.
This gives (6.38), as desired.

The next step in the proof is to prove that

lim
n→+∞

∫

R

(z2
x + z2)(tn, x)φ(x− ρ2(tn) + x0)dx = 0. (6.39)

where (tn)n∈N is the sequence from (6.39). Indeed, note that for any x1 > 0,

∫

R

(z2
x + z2)(tn, x+ ρ2(tn))φ(x+ x0) ≤ K(e

x0
A0 + e

x1
A0 )

∫

R

(z2
x + z2)(tn, x+ ρ2(tn))e

− |x|
A0

+K

∫

R

(z2
x + z2)(tn, x+ ρ2(tn))φ(x− x1).

Thus, using (6.39) we are able to take in the above inequality the limit n → +∞ with x0, x1

fixed. Next, we send x1 → +∞ to obtain the conclusion.

We finally prove that the above result holds for any sequence tn → +∞. Let β < c∞(λ)−λ
to be fixed. We want to prove that for ε small enough,

lim
t→+∞

∫

R

(z2
x + z2)(t, x)φ(x− βt)dx = 0.

First, we claim that for any t2, t3 > t1 with t2 < t3 and ρ2(t2) > x0 + t1, we have

∫

R

u2(t3, x)φ(x−y3)dx ≤
∫

R

u2(t2, x)φ(x−y2)dx+Ke−x0/K0 +Kε−1e−γερ2(t2)eγεx0/K0 , (6.40)

where y3 := ρ2(t2) + 1
2β(t3 − t2) − x0 and y2 := ρ2(t2) − x0. In fact, the left hand side of

the above inequality corresponds to Ĩx0,t2(t3) and the right one is Ĩx0,t2(t2), with σ := 1
2β (cf.

(6.31) for the definitions). Thus the above inequality is a consequence of Lemma 6.8, more
specifically of (6.33).

Now the rest of the proof is similar to [55]. Since
∫

R
z(t, x+ ρ2(t))R(x) = 0, we have

∣∣∣
∫

R

z(t, x+ ρ2(t))R(x)φ(x+ x0)
∣∣∣ ≤ Kε1/2e−x0/2K0

Second, we use the decomposition u(t, x) = 2−1/(m−1)Qc2(t)(x−ρ2(t))+ z(t, x) in (6.40) to get

∫

R

z2(t3, x)φ(x− y3)dx ≤
∫

R

z2(t2, x)φ(x− y2)dx+Ke−x0/2K0 (6.41)

+Kε−1e−γερ2(t2)eγεx0/K0 +K|c2(t2) − c2(t3)|.
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Third, consider t > t1 large, and define t′ ∈ (t1, t) such that βt := ρ2(t
′) + β

2 (t− t′) − x0. Note
that t′ → +∞ as t → +∞. Since tn ∈ [n, n+ 1) there exists n = n(t) such that 0 < t− tn ≤ 2,
and then

βt := ρ2(tn) +
β

2
(t− tn) − x̃0, with |x̃0 − x0| ≤ 10.

Now we apply (6.41) between t3 = t and t2 = tn. We get

∫

R

z2(t, x)φ(x− βt)dx ≤
∫

R

z2(tn, x)φ(x− ρ2(tn) + x̃0)dx+Ke−x0/2K0

+Kε−1e−γερ2(tn)eγεx0/K0 +K|c2(t) − c2(tn)|.

Since n(t) → +∞ as t→ +∞, by (6.39) and (6.36) we obtain

lim sup
t→+∞

∫

R

z2(t, x)φ(x− βt)dx ≤ Ke−x0/2K0 ,

and since x0 is arbitrary (because of limt→+∞ ρ2(tn) = +∞), we get the desired result. The
same result is still valid for zx. We have

lim sup
t→+∞

∫

R

z2
x(t, x)φ(x− βt)dx ≤ Ke−x0/2K0 .

Finally, letw+(t, x) := u(t, x)−2−1/(m−1)Qc+(x−ρ2(t)) = z(t, x)+2−1/(m−1)[Qc2(t)(x−ρ2(t))−
Qc+(x− ρ2(t))]. From (6.36) and the above result we finally obtain (6.3).

7 Proof of the Main Theorems

In this section we prove the Main Theorems of this work, namely Theorems 1.1, 1.2 and 1.3.

For the proof of Theorem 1.1, we essentially combine Theorems 3.1, and 4.1 to produce
the global solution u(t) with the required properties. This method had also been employed
in [53, 58, 64]. The proof of Theorem 1.2 is a consequence of Theorem 6.1. Finally, Theorem
1.3 will require several additional arguments, in particular the fundamental Lemma 7.5.

7.1 Proof of Theorem 1.1

From Theorem 3.1 there exists a solution u of (1.15) satisfying u ∈ C(R, H1(R)) and (3.1). This
solution also satisfies, from (3.3),

‖u(−Tε) −Q(· + (1 − λ)Tε)‖H1(R) ≤ Kε10,

for ε small enough. In addition, u is unique in the cases λ > 0 andm = 2, 4; andm = 3, λ ≥ 0.
This proves the part (1) in Theorem 1.1.

Next, we invoke Theorem 4.1 to obtain part (2) in Theorem 1.1. In particular, we have (4.2)
and (4.3). We define T̃ε := Tε+ρ1(Tε), and ρε := ρ(Tε). Then (1.27) - (1.28) are straightforward.
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7.2 Proof of Theorem 1.2

The proof of Theorem 1.2 is a consequence of Theorem 6.1. Indeed, suppose m = 2, 3, 4 with
λ > 0 for m = 2, 4. Define t1 := Tε + ρ1(Tε) and X0 := ρ(Tε). Then, from the above estimates
and Theorem 6.1 we have stability and asymptotic stability at infinity. In other words, there
exists a constant c+ > 0 and a C1 function ρ2(t) ∈ R such that

w+(t) := u(t) − 2−1/(m−1)Qc+(· − ρ2(t))

satisfies (6.2) and (6.3). This proves (1.29) and (1.30).

We finally prove (1.32) and (1.33). From the energy conservation, we have for all t ≥ t1,

Ea[u](−∞) = Ea

[
2−1/(m−1)Qc+(· − ρ2(t)) + w+(t)

]

In particular, from (6.3) and Appendix G.1 we have as t→ +∞

(λ− λ0)M [Q] =
(c+)2θ

22/(m−1)
(λ− λ0c

+)M [Q] + E+. (7.1)

From this identity E+ := limt→+∞Ea[w
+](t) is well defined. This proves (1.32). To deal with

(1.33), note that from the stability result (6.2) and the Morrey embedding we have that for any
λ > 0

E[w+](t) =
1

2

∫

R

(w+
x )2(t) +

λ

2

∫

R

(w+)2(t) − 1

m+ 1

∫

R

aε(w
+)m+1(t)

≥ 1

2

∫

R

(w+
x )2(t) +

λ

2

∫

R

(w+)2(t) −Kε(m−1)/2

∫

R

aε(w
+)2(t)

≥ µ‖w+(t)‖2
H1(R)

for some µ = µ(λ) > 0. Passing to the limit we obtain (1.33).

Now we prove the bound (1.34). First, the treat the cubic case with λ = 0. Here, from (7.1)
we have

E+ = λ0(
(c+)3/2

22/(m−1)
− 1)M [Q].

Since in this case we have 22/(m−1) = 2 = c
3/2
∞ , M [Q] = 2 and λ0 = 1/3, we obtain 3

2E
+ =

(
c+

c∞

)3/2 − 1.

Now we deal with the case λ > 0. First of all, note that after an algebraic manipulation
the equation for c∞ in (4.17) can be written in the following form:

c2θ
∞

22/(m−1)
(λ0c∞ − λ)M [Q] = (λ0 − λ)M [Q].

On the other hand, note that from (7.1) and (1.33) we have

µ lim sup
t→+∞

‖w+(t)‖2
H1(R) ≤

(c+)2θ

22/(m−1)
(λ0c

+ − λ)M [Q] − (λ0 − λ)M [Q].

Putting together both estimates, we get

µ̃ lim sup
t→+∞

‖w+(t)‖2
H1(R) ≤ (c+)2θ+1 − c2θ+1

∞ − λ

λ0
((c+)2θ − c2θ

∞),

for some µ̃ > 0. Using a similar argument as in Lemma 6.3 we have

µ̃ lim sup
t→+∞

‖w+(t)‖2
H1(R) ≤

1

λ0
(c∞ − λ)((c+)2θ − c2θ

∞) +O(|(c+)2θ − c2θ
∞|2).
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From this inequality and the bound |c+ − c∞| ≤ Kε we get

( c+
c∞

)2θ − 1 ≥ µ̃ lim sup
t→+∞

‖w+(t)‖2
H1(R),

as desired.

7.3 Proof of Theorem 1.3

In this section we prove that there is no pure soliton at infinity. To obtain this result we will
use a contradiction argument, together with a monotonicity formula which provides polyno-
mial decay of the solution and L1-integrability, something contradictory with the change of
scaling of the soliton.

Proof of Theorem 1.3. By contradiction, we suppose that (1.35) is false. In particular,

lim
t→+∞

‖w+(t)‖H1(R) = 0.

First of all, note that from the above limit and the sub-criticality we have E+ = 0. There-
fore, by using (7.1), and after some basic algebraic manipulations we have that c+ must satisfy
the following algebraic equation (compare with (4.17)):

(c+)λ0(c+ − λ

λ0
)1−λ0 = 2p(1 − λ

λ0
)1−λ0 .

This relation and the uniqueness of c∞ gives

c+ = c∞(λ). (7.2)

In other words, the soliton-solution is pure (cf. Definition 1.1).

Let us consider now the decomposition result for u(t) from Lemma 6.2. We claim that z(t)
also vanishes at infinity. Indeed, from Lemma 6.2, the fact that for t ≥ t1

u(t) = R(t) + z(t) = w+(t) + 2−1/(m−1)Qc∞(· − ρ2(t)),

and estimates (6.11)-(6.36), we have

lim
t→+∞

‖z(t)‖H1(R) = 0, (7.3)

and

u(t, · + ρ2(t)) → 2−1/(m−1)Qc∞ in H1(R) as t→ +∞, lim
t→+∞

ρ′2(t) − (c∞(λ) − λ) = 0.

In order to prove the following results, we need a simple but important result.

Lemma 7.1 (Monotonicity of mass backwards in time).

Suppose u(t) solution of (1.15) constructed in Theorem 3.1, satisfying (6.2) and (6.3). Define

M[u](t) :=

∫

R

u2(t, x)

aε(x)
dx. (7.4)

Then, under the additional hypothesis λ > 0 form = 2, 3, 4, we have that for all t, t′ ≥ t1, with t′ ≥ t,

M[u](t) −M[u](t′) ≤ Ke−εγt. (7.5)
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Proof. First of all, a simple computation tell us that the time derivative of M[u](t) is given by

∂t

∫

R

u2

aε
= 2ε

∫

R

u2
x

a′ε
a2

ε

+ ε

∫

R

u2
[
λ
a′ε
a2

ε

− ε2(
a′ε
a2

ε

)′′
]
− 2ε

∫

R

a′ε
aε
um+1.

Replacing the decomposition u = R + z given by Lemma 6.2, assumption (1.14), and using
similar estimates to (B.13), and the smallness of ‖z(t)‖H1(R), we get

∂tM[u](t) ≥ −Kεe−εγt,

for some K, γ > 0. The final conclusion is direct after integration.

Remark 7.1. Note that estimate (7.5) in Lemma 7.4 is valid under the additional assumption
0 < λ ≤ λ0. This extra hypothesis unfortunately does not hold for the case m = 3, λ = 0.

The last result allows to prove a new version of Theorem 3.1, for positive times.

Proposition 7.2 (Backward uniqueness).

Suppose m = 2, 3, 4. Let β ∈ R and 0 < λ ≤ λ0. There exist constants K, γ, ε0 > 0 and a unique
solution v = vβ ∈ C([12Tε,+∞), H1(R)) of (1.15) such that

lim
t→+∞

∥∥v(t) − 2−1/(m−1)Qc∞(· − (c∞(λ) − λ)t− β)
∥∥

H1(R)
= 0. (7.6)

Furthermore, for all t ≥ 1
2Tε and s ≥ 1 the function v(t) satisfies

∥∥v(t) − 2−1/(m−1)Qc∞(· − (c∞(λ) − λ)t− β)
∥∥

Hs(R)
≤ Kε−1e−εγt. (7.7)

Finally, suppose that there exists ṽ(t) ∈ H1(R) solution of (1.15) such that

lim
t→+∞

‖ṽ(t) − 2−1/(m−1)Qc∞(· − ρ2(t))‖H1(R) = 0. (7.8)

Then ṽ ≡ vβ for some β ∈ R.

Proof. Given β ∈ R, the proof of existence and uniqueness of the solution vβ satisfying (7.6)
and (7.7) is identical the proof of Theorem 3.1 in Section 3 and Appendix B. Indeed, first
we construct a sequence of functions vn as in (B.1) for times t ∼ Tn. Next, we prove a de-
composition lemma as in Lemma B.4. This decomposition allows to prove a version of (7.5)
for M[vn](t). The main difference is given in estimates (B.14)-(B.15), where now we intro-
duce the modified mass M[vn](t) defined in (7.4). The energy functional in B.18 is now given
by Ea[vn](t) + (c∞(λ) − λ)M[vn](t). The rest of the proof, including the uniqueness, adapts
mutatis mutandis.

Now consider ṽ a solution of (1.15) satisfying (7.8). Using monotonicity arguments, simi-
lar to the proof of Lemma B.5, we have the existence of β ∈ R such that

∥∥ṽ(t) − 2−1/(m−1)Qc∞(· − (c∞(λ) − λ)t− β)
∥∥

H1(R)
≤ Kε−1e−εγt,

for some K, γ > 0. This implies that there exists β ∈ R such that ṽ satisfies (7.6). The
conclusion follows from the uniqueness of v(t).

As a consequence of this result together with (7.3), the solution u(t) constructed in Theo-
rem 3.1 satisfies the following exponential decay at infinity: there exist K, γ > 0 and β ∈ R

such that, for all t ≥ t1, if ρ̃2(t) := (c∞(λ) − λ)t+ β, then

z̃(t) := u(t) − 2−1/(m−1)Qc∞(· − ρ̃2(t)), satisfies ‖z̃(t)‖H2(R) ≤ Kε−1e−εγt. (7.9)

Now we prove that this strong H1-convergence gives rise to strange localization proper-
ties.
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Lemma 7.3 (L2-exponential decay on the left the soliton solution).

There exist K, x̃0 > 0 large enough such that for all t ≥ T0 and for all x0 ≥ x̃0

‖u(t, · + ρ̃2(t))‖2
L2(x≤−x0) ≤ Ke−x0/K . (7.10)

Proof. Suppose x0 > 0, t, t0 ≥ t1 and σ > 0 from (6.3). Consider the modified mass

Ĩt0,x0(t) :=
1

2

∫

R

u2(t, x)

aε(x)
(1 − φ(y))dx,

with y := x− (ρ̃2(t0) + σ(t− t0)− x0) and φ defined in (6.30). For this quantity we claim that
for x0 > x̃0 and for all t ≥ t0,

Ĩt0,x0(t0) − Ĩt0,x0(t) ≤ Ke−x0/K(1 + e−
1
2
σ(t−t0)/K). (7.11)

Let us assume this result for a moment. After sending t → +∞ and using (6.3), we have
limt→+∞ Ĩt0,x0(t) = 0 and thus

Ĩt0,x0(t0) ≤ Ke−x0/K .

From this last estimate (7.10) is a direct consequence of the fact that t0 ≥ t1 is arbitrary.

Finally, let us prove (7.11). A direct calculation tell us that

1

2
∂t

∫

R

(1 − φ(y))

aε
u2 =

3

2

∫

R

φ′

aε
u2

x +
3

2
ε

∫

R

a′ε
a2

ε

(1 − φ)u2
x − m

m+ 1

∫

R

φ′um+1

+
1

2

∫

R

u2
[
(σ + λ)

φ′

aε
− φ(3)

aε
+ 3εφ′′

a′ε
a2

ε

+ 3ε2φ′(
a′ε
a2

ε

)′
]

+
ε

2

∫

R

u2
[
λ
a′ε
a2

ε

− ε2(
a′ε
a2

ε

)′′
]
(1 − φ) − ε

∫

R

a′ε
aε
um+1(1 − φ).

Using the decomposition (7.9), we have

|
∫

R

φ′um+1| ≤ Kε(m−1)/2

∫

R

φ′z̃2 +Ke−
1
2
σ(t−t0)e−x0/K ,

and

|
∫

R

a′ε
aε
um+1(1 − φ)| ≤ Ke−

1
2
σ(t−t0)e−x0/K +Kε(m−1)/2

∫

R

a′ε
aε
z̃2(1 − φ).

After these two estimates, it is easy to conclude that

1

2
∂t

∫

R

(1 − φ(y))

aε
u2 ≥ −Ke− 1

2
σ(t−t0)e−x0/K .

The conclusion follows after integration in time.

The proof of decay on the right hand side of the soliton requires more care, and is valid
under the assumption lim supt→+∞ ‖w+(t)‖H1(R) = 0 and λ > 0. We do not expect to have
exponential decay in a general situation, but for our purposes we only need a polynomial
decay. The following result is due to Y. Martel.

Lemma 7.4 (L2-polynomial decay on the right the soliton solution).

There exist K, x̃0 > 0 large enough but independent of ε, such that for all t ≥ T0 and for all
x0 ≥ x̃0 ∫

R

(x− x0)
2
+z̃

2(t, x+ ρ̃2(t))dx ≤ K,

where x+ := max{x, 0}.
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Proof. Take x0 > 0, t0, t ≥ t1 and define

Ît0,x0(t) :=

∫

R

z̃2(t, x)φ(ỹ)dx; ỹ := x− (ρ̃2(t0) + σ̃(t− t0) + x0),

and
Ĵt0,x0(t) :=

∫

R

z̃2
x(t, x)φ(ỹ)dx.

Here φ is the cut-off function defined in (6.30), and σ̃ is a fixed constant satisfying σ̃ >
2(c∞(λ) − λ). First of all we claim that there exists K > 0 such that (for simplicity we omit
the dependence if no confusion is present)

|∂tÎt0,x0(t)| ≤ K

∫

R

(z̃2
x + z̃2)[φ′ + εa′(εx)φ]dx+K‖z̃(t)‖H1(R)e

−ε(t−t0)/Ke−εx0/K , (7.12)

and

|∂tĴt0,x0(t)| ≤ K

∫

R

(z̃2
xx + z̃2

x + z̃2)[φ′ + εa′(εx)φ]dx+K‖z̃(t)‖H2(R)e
−ε(t−t0)/Ke−εx0/K . (7.13)

Indeed, these estimates are proved in the same way as in Lemma 6.4 and Appendix E. For
the sake of brevity we skip the details.

From Proposition 7.2 and the exponential decay of z we have that both right-hand sides
in (7.12)-(7.13) are integrable between t0 and +∞. We get

Ît0,x0(t0) ≤ K

∫ +∞

t0

∫

R

(z̃2
x + z̃2)[φ′ + εa′(εx)φ]dxdt+Kε−1 sup

t≥t0

‖z̃(t)‖H1(R)e
−εx0/K . (7.14)

In the same line, we have

Ĵt0,x0(t0) ≤ K

∫ +∞

t0

∫

R

(z̃2
xx + z̃2

x + z̃2)[φ′+εa′(εx)φ]dxdt+Kε−1 sup
t≥t0

‖z̃(t)‖H2(R)e
−εx0/K . (7.15)

Note that both quantities above are integrable with respect to x0.

Let us denote ξ0(ỹ) := φ(ỹ), and ξj(ỹ) :=
∫ ỹ
−∞ ξj−1(s)ds, for j = 1, 2. Recall that ξj are

positive and increasing functions on R, with ξj(ỹ) → 0 as ỹ → −∞, and ξj(ỹ) − ỹj → 0 as
ỹ → +∞. Integrating between x0 and +∞ in (7.14), and using Fubini’s theorem we obtain

∫

R

ξ1(ỹ(t0))z̃
2(t0) ≤ K

∫ +∞

t0

∫

R

(z̃2
x + z̃2)[ξ0 + εa′(εx)ξ1]+Kε−2 sup

t≥t0

‖z̃(t)‖H1(R)e
−εx0/K , (7.16)

and similarly, from (7.15)
∫

R

ξ1(ỹ(t0))z̃
2
x(t0, x)dx ≤ Kε−3e−2εγt0 +Kε−2 sup

t≥t0

‖z̃(t)‖H2(R)e
−εx0/K . (7.17)

In conclusion, thanks to the exponential decay of z̃ and (7.16)-(7.17), we have

∫ +∞

t0

∫

R

ξ1(x− ρ̃2(t) − x0)(z̃
2
x + z̃2)(t, x)dxdt < +∞.

Furthermore, note that for all t ≥ t0 one has ρ̃2(t) ≤ ρ̃2(t0) + σ(t− t0). Thus we have

∫ +∞

t0

∫

R

ξ1(ỹ(t))(z̃
2
x + z̃2)(t, x)dxdt < +∞. (7.18)
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In addition, an easier calculation gives us

∫ +∞

t0

∫

R

a′(εx)ξ2(ỹ(t))(z̃
2
x + z̃2)(t, x)dxdt < +∞. (7.19)

From (7.18) and (7.19), we can perform a second integration with respect to x0 in (7.16) to
obtain ∫

R

ξ2(ỹ(t0))z̃
2(t0, x)dx ≤ K(ε),

uniformly for x0 large. Since t0 is arbitrary, this last estimate gives the conclusion.

Lemma 7.5 (L1-integrability and smallness).

Under the assumption (7.3) the following holds. There exists K,T0 > 0 large enough such that for
all t ≥ T0 one has u(t, · + ρ̃2(t)) ∈ L1(R). Moreover,

|
∫

R

z(t)| ≤ 1

100
. (7.20)

Finally, from the L1 conservation law (1.9), we have u(t) ∈ L1(R) for all t ∈ R and

∫

R

u(t) =

∫

R

Q. (7.21)

Proof. Let x0 ≥ x̃0 to be fixed below. First of all, note that if |x| ≥ x0 we have
2−1/(m−1)Qc∞(x) ≤ Ke−

√
c∞|x|. In particular, since z̃(t, x + ρ̃2(t)) = u(t, x + ρ̃2(t)) −

2−1/(m−1)Qc∞(x), by using Lemma 7.3 and the stability bound (6.2), in addition to a Galiardo-
Nirenberg type inequality, we get

|z̃(t, x+ ρ̃2(t))| ≤ K‖z̃(t, · + ρ̃2(t))‖
1
2

L2(y≥x)
‖z̃y(t, · + ρ̃2(t))‖

1
2

L2(R)

≤ Kε1/4ex/K ,

for all x ≤ −x0.

On the other hand, inside the interval [−x0, x0] one has

∫

[−x0,x0]
z̃(t, x+ ρ̃2(t)) ≤ Kx

1/2
0 ‖z̃(t, x+ ρ̃2(t))‖1/2

L2(R)
≤ Kx

1/2
0 ε1/4.

The case x ≥ x0 requires more care. From Lemma 7.4 and the Cauchy-Schwarz inequality,
we have (for clarity we drop the dependence on x+ ρ̃2(t))

|
∫

x≥x0

z(t)| ≤ K

(x0 − x̃0)1/2−
[ ∫

x≥x0

(1 + (x− x̃0)
2)z2(t)

]1/2 ≤ K

x
1/2−
0

,

for x0 large enough, independent of ε. From the above estimates we finally obtain the small-
ness condition (7.20).

The final assertion, namely u(t) ∈ L1(R) for all t ∈ R, is a consequence of Proposition 2.1.
It is clear that from this last fact (1.9) remains constant for all time and (7.21) holds. The proof
is now complete.
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7.3.1 Conclusion of the proof

From the above lemma we can use (7.21) to get the desired contradiction. Indeed, from (7.2)
and Appendix G.1 we have

lim
t→+∞

∫

R

z(t) = [1 − (c+)θ− 1
4

21/(m−1)
]

∫

R

Q = (1 − κm)

∫

R

Q 6= 0; κm :=
c

3−m
2(m−1)
∞

21/(m−1)
,

a contradiction with (7.20). Indeed, for the cases m = 3, 4 we easily have 1 − κm > 1
10 . In

the case m = 2 we have κ2 = 1
2c

1/2
∞ ; but from (4.19) we know that c∞ ≤ 2

4
3 . Thus we have

1 − κm > 1
10 for every m. In concluding,

| lim
t→+∞

∫

R

z(t)| ≥ 1

10

∫

R

Q,

a contradiction with (7.20). This finishes the proof of (1.35).

Appendices

A Proof of Proposition 2.1

In this section we deal with the proof of the local well-posedness result from Proposition 2.1.
As above mentioned, the proof is basically an adaptation of the original proof from [39]. In
particular, we will follow the standard notation used in that paper.

First of all, note that for any λ ≥ 0 we have that u = u(t, x) is a solution of (1.15) if and
only if û(t, x) := u(t, x − λt) is a corresponding solution of the following time-dependent
coefficient gKdV equation

ût + (ûxx + aε(x− λt)ûm)x = 0, on Rt × Rx.

In what follows, in order to profit of the Kenig-Ponce-Vega machinery, the local existence
theorem will be proved for this last equation. Consequently, to avoid some useless notation,
we will drop the hat on û and we will assume that aε means aε(x − λt). In addition, and
without loss of generality, we may suppose t0 = 0.

Let W (t) be the unitary group generated by the linear Airy operator, namely W (t) :=

e−t∂3
x . By using the Duhamel formula,

u(t) = Φ(u)(t) := W (t)u0 −
∫ t

0
W (t− s)[aεu

m]x ds, (A.1)

we will construct a unique solution of the fixed point problem u = Φ(u) in the ball (centered
at 0 and of radius a > 0) BXs

T
(a), where, for T > 0 to be chosen,

Xs
T (a) := {w ∈ C([−T, T ], Hs(R)), ΛT

ρ (v) < a}.

Here ΛT
ρ (·), ρ > 3

4 is the specific Kenig-Ponce-Vega norm for the quadratic case, but with the
corresponding adaptation to the Hs(R)-case, s ≥ 1 (see (A.3) for the details).
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Denote v(t, x) := m
1
ma

1
m
ε (x−λt)u(t, x),m = 2, 3 and 4, such that (aεu

m)x = vm−1vx. From
(4.11) in [39] we have that

ΛT
ρ (Φ(u)) ≤ K‖u0‖Hs

x(R) +K

∫ T

−T
‖vm−1vx‖Hs

x(R)

≤ K‖u0‖Hs
x(R) +K‖v‖m−2

L∞
T

Hs
x(R)

∫ T

−T
‖vvx‖Hs

x(R)

≤ K‖u0‖Hs
x(R) +KT 1/2‖v‖m−2

L∞
T

Hs
x(R)‖vvx‖L2

T
Hs

x(R).

The second inequality is an easy consequence of the following estimate. Suppose f ∈ Hs(R),
s > 1

2 . Then

‖f‖L∞(R) ≤ C‖f‖1− 1
2s

L2(R)
‖f‖

1
2s

Ḣs(R)
≤ C‖f‖Hs(R). (A.2)

On the other hand, note that it a standard calculation shows that

‖v(t)‖Hs
x(R) ≤ K(1 + εs)‖u(t)‖Hs

x(R),

so that the final conclusion comes from the following fact.

Claim 5. There exists K > 0 such that for all u with ΛT
ρ (u) < +∞, we have

‖vvx‖L2
T

Hs
x(R) ≤ K(1 + T )ρ(ΛT

ρ (u))2.

Proof. From (4.11) in [39] we have

ΛT
ρ (v) := max

{
‖v‖L∞

T
Hs

x
, ‖vx‖L4

T
L∞

x
, ‖Ds

xvx‖L∞
x L2

T
, (1 + T )−ρ‖v‖L2

xL∞
T

}
. (A.3)

Now, note that vvx ∼ εa′εu
2 + uux, so that by using estimate (A.2) and the estimates in pp.

581 and 582 from [39], we get

‖vvx‖L2
T

Hs
x(R) ≤ K(1 + T )ρ(ΛT

ρ (u))2.

We are done.

It is clear that from this Lemma and following the arguments from [39], the rest of the
proof of the local well-posedness result is straightforward.

Now we prove the properties (1), (2) and (3). First, the blow-up alternative (2.3) is a
standard consequence of the definition of maximal interval of existence. Next, the proof of
the energy conservation and mass variation in (2), (3) is also a well-known fact. Indeed, after
having H3(R) local well-posedness, a density argument allows to pass to the limit to obtain
the result. See for example Appendix A in [18] for a complete proof.

Finally, the L1-conservation law is a consequence of a density argument and a formal
computation with Hs(R) solutions, for s large. This finishes the proof.

B Proof of Theorem 3.1

In this section we sketch the proof of Theorem 3.1, for the complete proof, see [49].
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Let (Tn)n∈N ⊆ R an increasing sequence with Tn ≥ 1
2Tε for all n and limn→+∞ Tn = +∞.

For notational simplicity we denote by T̃n the sequence (1−λ)Tn. Consider un(t) the solution
of the following Cauchy problem

{
(un)t + ((un)xx − λun + aεu

m
n )x = 0, in Rt × Rx,

un(−Tn) = Q(· − T̃n).
(B.1)

In other words, un is a solution of (aKdV) that at time t = −Tn corresponds to the soliton
Q(· − T̃n). It is clear that Q(· − T̃n) ∈ Hs(R) for every s ≥ 0; moreover, there exists a uniform
constant C = C(s) > 0 such that

‖Q(· − T̃n)‖Hs(R) ≤ C.

According to Proposition 2.1 and Proposition 2.2, we have that un is locally well-defined in
time, and global for positive times in H1(R). Let In be its maximal interval of existence.

Following [49], the next step is to establish uniform estimates starting from a fixed time
t = −1

2Tε < 0 large enough such that the soliton is sufficiently away from the region where
the influence of the potential aε is present. This is the purpose of the following

Proposition B.1 (Uniform estimates in Hs for large times, see also [49]).

There exist constants K, γ > 0 and ε0 > 0 small enough such that for all 0 < ε < ε0 and for all
n ∈ N we have

[−Tn,−
1

2
Tε] ⊆ In, (namely un ∈ C([−Tn,−

1

2
Tε], H

s(R))),

and for all t ∈ [−Tn,−1
2Tε],

‖un(t) −Q(· − (1 − λ)t)‖Hs(R) ≤ Kε−1eγεt. (B.2)

In particular, there exists a constant Cs > 0 such that for all t ∈ [−Tn,−1
2Tε]

‖un(t)‖Hs(R) ≤ Cs. (B.3)

Using Proposition B.1 we will obtain the existence of a critical element u0,∗ ∈ Hs(R), with
several good compact properties, non dispersive and uniformly close to the desired soliton.

Indeed, consider the sequence (un(−1
2Tε))n∈N ⊆ Hs(R). We claim the following result.

Lemma B.2 (Compactness property).

Given any number δ > 0, there exist ε0 > 0 and a constant K0 > 0 large enough such that for all
0 < ε < ε0 and for all n ∈ N, ∫

|x|>K0

u2
n(−1

2
Tε) < δ. (B.4)

Proof. The proof is by now a standard result. See [49] for the details.

Let us come back to the proof of Theorem 3.1. From (B.3) we have that

‖un(−Tε/2)‖H1(R) ≤ C0,

independent of n. Thus, up to a subsequence we may suppose un(−1
2Tε) ⇀ u∗,0 in the H1(R)

weak sense, and un(−1
2Tε) → u∗,0 in L2

loc(R), as n→ +∞. In addition, from (B.4) we have the
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strong convergence in L2(R). Moreover, from interpolation and the bound (B.3) we have the
strong convergence in Hs(R) for any s ≥ 1.

Let u∗ = u∗(t) be the solution of (1.1) with initial data u∗(−1
2Tε) = u∗,0. From Proposition

2.1 we have u∗ ∈ C(I,Hs(R)), where −1
2Tε ∈ I , the corresponding maximal interval of

existence. Thus, using the continuous dependence of un and u∗, we obtain un(t) → u∗(t) in
Hs(R) for every t ≤ −1

2Tε ⊆ I . Passing to the limit in (B.2) we obtain for all t ≤ −1
2Tε,

‖u∗(t) −Q(· − (1 − λ)t)‖Hs(R) ≤ Kε−1eεγt,

as desired. This finish the proof of the existence part of Theorem 3.1.

B.1 Uniform H1 estimates. Proof of Proposition B.1

In this paragraph we explain the main steps of the proof of Proposition B.1 in the H1 case; for
the general case the reader may consult [49].

The first step in the proof is the following bootstrap property:

Proposition B.3 (Uniform estimates with and without decay assumption).

Let m = 2, 3 or 4, and 0 ≤ λ ≤ λ0 < 1. There exist constants K, γ, ε0 > 0 such that for all
0 < ε < ε0 the following is true.

1. Suppose m = 3 or m = 2, 4 with λ > 0. Then there exists α0 > 0 such that for all 0 < α < α0,
if for some −Tn,∗ ∈ [−Tn,−1

2Tε] and for all t ∈ [−Tn,−Tn,∗] we have

‖un(t) −Q(· − (1 − λ)t)‖H1(R) ≤ 2α, (B.5)

then, for all t ∈ [−Tn,−Tn,∗]

‖un(t) −Q(· − (1 − λ)t)‖H1(R) ≤ Kε−1eεγt. (B.6)

2. Suppose now m = 2, 4 and λ = 0. Then the same conclusion (B.6) holds if for some −Tn,∗ ∈
[−Tn,−1

2Tε] and for all t ∈ [−Tn,−Tn,∗] one has

‖un(t) −Q(· − (1 − λ)t)‖H1(R) ≤ 2Kε−1eεγt, (B.7)

Proof of Proposition B.1, assuming the validity of Proposition B.3. We prove the first case, the sec-
ond one being similar. Firstly note that from (B.1) we have

‖un(−Tn) −Q(−(1 − λ)Tn)‖H1(R) = 0,

so there exists t0 = t0(n, α) > 0 such that (B.5) holds true for all t ∈ [−Tn,−Tn + t0]. Now let
us consider (we adopt the convention T∗,n > 0)

−T̃∗,n := sup{t ∈ [−Tn,−
1

2
Tε] | for all t′ ∈ [−Tn, t], ‖un(t′) −Q(· − (1 − λ)t′)‖H1(R) ≤ 2α}.

Assume, by contradiction, that −T̃∗,n < −1
2Tε. From Proposition B.3, we have

‖un(t′) −Q(· − (1 − λ)t′)‖H1(R) ≤ Kε−1eγεt ≤ α,

for ε small enough (recall that t ≤ −1
2Tε = − 1

2(1−λ)ε
−1− 1

100 ), a contradiction with the defini-

tion of T̃∗,n.
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Now we are reduced to prove Proposition B.3.

Proof of Proposition B.3. The first step in the proof is to decompose the solution preserving a
standard orthogonality condition. To obtain this fact, and without loss of generality, by taking
Tn,∗ even large we may suppose that for all t ∈ [−Tn,−Tn,∗]

‖un(t) −Q(· − (1 − λ)t− rn(t))‖H1(R) ≤ 2α, (B.8)

for all smooth rn = rn(t) satisfying rn(−Tn) = 0 and |r′n(t)| ≤ 1
t2

. A posteriori we will prove
that this condition can be improved and extended to any time t ∈ [−Tn,−1

2Tε].

For notational simplicity, in what follows we will drop the index n on −T∗,n and un, if no
confusion is present.

Lemma B.4 (Modulation).

There exist K, γ, ε0 > 0 and a unique C1 function ρ0 : [−Tn,−T∗] → R such that for all
0 < ε < ε0 the function z defined by

z(t, x) := u(t, x) −R(t, x); R(t, x) := Q(x− (1 − λ)t− ρ0(t)) (B.9)

satisfies for all t ∈ [−Tn,−T∗],
∫

R

z(t, x)Rx(t, x)dx = 0, ‖z(t)‖H1(R) ≤ Kα, ρ0(−Tn) = 0. (B.10)

Moreover, z satisfies the following modified gKdV equation,

zt +
{
zxx − λz + aε[(R+ z)m −Rm] + (1 − aε)R

m
}

x
− ρ′0(t)Rx = 0, (B.11)

and
|ρ′0(t)| ≤ K

[
eεγt + ‖z(t)‖H1(R) + ‖z(t)‖2

L2(R)

]
. (B.12)

Proof of Lemma B.4. The proof of (B.10) is a standard consequence of the Implicit Function
Theorem, the definition of T∗ (= T∗,n), and the definition of un(−Tn) given in (B.1), see for
example [49] for a detailed proof. Similarly, the proof of (B.11) follows after a simple compu-
tation.

Now we deal with (B.12). Taking time derivative in (B.9) and using (B.11), we get

0 =

∫

R

ztRx − (1 − λ+ ρ′0)
∫

R

zRxx

=

∫

R

{
zxx − z + aε[(R+ z)m −Rm] + (1 − aε)R

m
}
Rxx + ρ′0

∫

R

Rx(Rx + zx).

First of all, note that ∫

R

Rx(Rx + zx) =

∫

R

Q′2 +O(‖z(t)‖L2(R)).

On the other hand, from (1.13), (B.10), the uniform bound on ρ′0(t) in the definition of T∗ and
the exponential decay of R, we have

|
∫

R

(1 − aε)R
mRxx| ≤ Keεγt. (B.13)

Indeed, first note that from (B.8), by integrating between −Tn and t and using (B.10) we get

ρ0(t) ≤ − 1

Tn
− 1

t
≤ 2

Tε
≤ Kε1+

1
100 .
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Thus t+ ρ0(t) ≤ t+Kε1+
1

100 ≤ 9
10 t. Therefore, by possibly redefining γ, we have from (1.13),

|
∫

R

(1 − aε)R
mRxx| ≤ K

∫ 0

−∞
eγεxe−(m+1)|x−(t+ρ0(t))|dx

+Ke(m+1)(t+ρ0(t))

∫ ∞

0
e−(m+1)xdx

≤ K exp
[
γε(t+ ρ0(t))

]
+K exp

[
γ(m+ 1)(t+ ρ0(t))

]
≤ Keγεt.

Finally,
∫

R

Rxx

{
zxx − z + aε[(R+ z)m −Rm]

}
= O(‖z(t)‖L2(R) + ‖z(t)‖2

L2(R)).

Collecting the above estimates we obtain (B.12).

B.1.1 Almost conservation of mass and energy

Now let us recall that from remark 2.1 the modified mass defined in (2.8) satisfies

M̃ [u](t) ≤ M̃ [u](−Tn). (B.14)

for all −Tn ≤ t ≤ −1
2Tε. Moreover, in the case m = 2, 4 and λ = 0, since (1.20) and (B.7) hold,

there exist K, γ > 0 such that

M [u](t) ≤M [u](−Tn) +Kεeγεt, (B.15)

for ε small enough. By extending the definition of M̃ [u] to the latter case, we have almost
conservation of mass, with exponential loss for all cases.

Similarly, note that in the region considered the solitonR(t) is an almost solution of (1.15),
in particular it must conserve mass M̃ (2.8) and the energyEa (1.21), at least for large negative
time. Indeed, arguing as in Lemma 6.3 (but with easier proof), one has

Ea[R](−Tn) − Ea[R](t) + (1 − λ)
[
M̃ [R](−Tn) − M̃ [R](t)

]
≤ Keγεt. (B.16)

for some constant K > 0 and all time t ∈ [−Tn, T∗]

The next step is the use the energy conservation law to provide a control of the R(t)
direction (note that R(t) is a essential direction to control in order to obtain some coercivity
properties, see Lemma 2.3). Following e.g. Lemma 5.4, one has

|
∫

R

Rz(t)| ≤ K

1 − λ

[
eγεt + ‖z(t)‖2

L2(R) + eγεt‖z(t)‖L2(R)

]
. (B.17)

for some constants K, γ > 0, independent of ε.

Now, consider Ea[u] and M̃ [u] the energy and mass defined in (1.21)-(2.8). Then one has

Ea[u](t) + (1 − λ)M̃ [u](t) = Ea[R](t) + (1 − λ)M̃ [R](t) −
∫

R

z(aε − 1)Rm + F0(t), (B.18)

where F0 is the quadratic functional

F0(t) :=
1

2

∫

R

(z2
x + λz2) + (1 − λ)M̃ [z] − 1

m+ 1

∫

R

aε[(R+ z)m+1 −Rm+1 − (m+ 1)Rmz].
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In addition, for any t ∈ [−Tn,−T∗],

|
∫

R

z(aε − 1)Rm| ≤ Keγεt‖z(t)‖L2(R). (B.19)

The proof of this identity is essentially an expansion of the energy-mass functional using the
relation u(t) = R(t) + z(t). The proof of (B.19) is similar to (B.13).

On the other hand, the functional F0(t) above mentioned enjoys the following coercivity
property: there exist K,λ0 > 0 independent of ε such that for every t ∈ [−Tn,−T∗]

F0(t) ≥ λ0‖z(t)‖2
H1(R) − |

∫

R

R(t)z(t)|2 −Keγεt‖z(t)‖2
L2(R) −K‖z(t)‖3

L2(R). (B.20)

This bound is simply a consequence of the inequality λ + (1 − λ)a
1/m
ε (x) ≥ 1, (B.10) and

Lemma 2.3.

B.1.2 End of proof of Proposition B.3

Now by using (B.18), (B.20), and the estimates (B.14)-(B.15) and (B.17) we finally get (B.6).
Indeed, note that

Ea[u](t) − Ea[u](−Tn) + (1 − λ)[M̃ [u](t) − M̃ [u](−Tn)] ≤ Keεγt.

On the other hand, from (B.18) and (B.10),

Ea[u](t) − Ea[u](−Tn) + (1 − λ)[M̃ [u](t) − M̃ [u](−Tn)]

≥ F0(t) −Keγεt −Keγεt‖z(t)‖L2(R).

Finally, from (B.20) and B.17 we get

‖z(t)‖H1(R) ≤ Keγεt.

Plugging this estimate in (B.12), we obtain that |ρ′0(t)| ≤ Keγεt, and thus after integration we
get the final uniform estimate (B.6) for the H1-case. Note that we have also improved the
estimate on ρ′0(t) assumed in (B.8). This finishes the proof.

B.2 Proof of Uniqueness

First of all let us recall that the solution u above constructed is in C(R, Hs(R)) for any s ≥ 1,
and satisfies the exponential decay (3.2). Moreover, every solution converging to a soliton
satisfies this property.

Proposition B.5 (Exponential decay, see also [49]).

Letm = 3, orm = 2, 4 with 0 < λ ≤ λ0. Let v = v(t) a C(R, H1(R)) solution of (1.1) satisfying

lim
t→−∞

‖v(t) −Q(· − (1 − λ)t)‖H1(R) = 0.

Then there exist K, γ, ε0 > 0 such that for every t ≤ −Tε we have

‖v(t) −Q(· − (1 − λ)t)‖H1(R) ≤ Kε−1eγεt.
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Proof. Fix α > 0 small. Let ε0 = ε0(α) > 0 small enough such that for all ε ≤ ε0 and t ≤ −Tε

‖v(t) −Q(· − (1 − λ)t)‖H1(R) ≤ α.

Possibly choosing ε0 even smaller, we can apply the arguments of Proposition B.5 to the
function v(t) on the interval (−∞,−1

2Tε] to obtain the desired result.

Remark B.1. For the proof of the above result a key ingredient is the monotony of mass from
remark 2.1; this property apparently does not hold in the cases λ = 0, m = 2, 4.

Now we are ready to prove the uniqueness part.

Sketch of proof of uniqueness. Let w(t) := v(t) − u(t). Then w(t) ∈ H1(R) and satisfies the
equation {

wt + (wxx − λw + aε[(u+ w)m − um])x = 0, in Rt × Rx,

‖w(t)‖H1(R) ≤ Kε−1eγεt for all t ≤ −1
2Tε.

(B.21)

The idea is to prove that w(t) ≡ 0 for all t ∈ R. For this purpose, one defines the second order
functional

F0(t) :=
1

2

∫

R

w2
x +

1

2

∫

R

w2 − 1

m+ 1

∫

R

aε(x)[(u+ w)m+1 − um+1 − (m+ 1)umw].

It is easy to verify that

1. Lower bound. There exists K > 0 such that for all t ≤ −1
2Tε,

F0(t) ≥
1

2

∫

R

(w2
x + w2 −mQm−1w2)(t) −Kε−1eγεt sup

t′≤t
‖w(t′)‖2

H1(R).

2. Upper bound. There exists K, γ > 0 such that

F0(t) ≤ Kε−2eγεt sup
t′≤t

‖w(t′)‖2
H1(R).

These estimates are proved similarly to the proof of Lemma 5.6. However, this functional is
not coercive; so in order to obtain a satisfactory lower bound, one has to modify the function
w in (−∞,−1

2Tε] as follows. Let

w̃(t) := w(t) + b(t)Q′(· − t), b(t) :=

∫
R
w(t)Q′(· − t)∫

R
Q′2 ,

This modified function satisfies

1. Orthogonality to the Q′ direction:
∫

R

w̃(t)Q′(· − t) = 0.

2. Equivalence. There exists C1, C2 > 0 independent of ε such that

C1‖w(t)‖H1(R) ≤ ‖w̃(t)‖H1(R) + |b(t)| ≤ C2‖w(t)‖H1(R).

Moreover,

1

2

∫

R

(w2
x + w2 −mQm−1w2)(t) =

1

2

∫

R

(w̃2
x + w̃2 −mQm−1w̃2)(t) +O(e−εγ|t|).
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3. Control on the Q direction:

|
∫

R

w̃(t)Q(· − t)| ≤ Kε−1eεγt sup
t′≤t

‖w(t′)‖H1(R).

This property is proved similarly to the proof of (6.15): We use the fact that variation in
time of the above quantity is of quadratic order on w̃.

4. Coercivity. There exists λ > 0 independent of t such that

1

2

∫

R

(w̃2
x + w̃2 −mQm−1w̃2)(t) ≥ λ‖w̃(t)‖2

H1(R) −K|
∫

R

w̃(t)Q(· − t)|2.

5. Sharp control. From the equivalence w-w̃ and the coercivity property we obtain

‖w̃(t)‖H1(R) + ε|b(t)| ≤ Kε−2eεγt/2 sup
t′≤t

‖w(t′)‖H1(R). (B.22)

Note that the bound on b(t) is proved similarly to (6.14).

The proof of these affirmations follows closely the argument of Proposition 6 in [49], with
easier proofs. Finally, from (B.22) we have for ε small enough and t ≤ −1

2Tε,

‖w(t)‖H1(R) ≤ Kε−2eεγt sup
t′≤t

‖w(t′)‖H1(R) <
1

2
sup
t′≤t

‖w(t′)‖H1(R).

This inequality implies w ≡ 0, and in conclusion the uniqueness.

C Proof of Proposition 4.2

The proof is similar to Proposition 2.2 in [54] and Appendix in [53].

Proof. First of all, we recall the error term S[ũ] introduced in (4.9), subsection 4.2.

We easily verify that
S[ũ] = I + II + III, (C.1)

where (we omit the dependence on t, x)

I := S[R], II = II(w) := wt + (wxx − λw +m aεR
m−1w)x, (C.2)

and
III :=

{
aε[(R+ w)m −Rm −mRm−1w]

}
x
. (C.3)

In the next lemmas, we expand the terms in (C.1).

Lemma C.1. Suppose m = 2, 3 or 4. We have

I = εF1(εt; y) +
ε2a′′

2ãm
(y2Qm

c )y + ε3fI(εt)F
I
c (y), (C.4)

where

F1(εt; y) :=
c′

ã
ΛQc −

ã′

ã2
(c− λ)Qc +

a′

ãm
(yQm

c )y ∈ Y,

and |fI(εt)| ≤ K, F I
c ∈ Y . Finally, for every t ∈ [−Tε, Tε]

‖ε3fI(εt)F
I
c (y)‖H2(R) ≤ Kε3.
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Proof of Lemma C.1. Recall that ã := a
1

m−1 and

R(t, x) =
Qc(εt)(y)

ã(ερ(t))
, y = x− ρ(t), ∂tρ(t) = c(εt) − λ.

Thus we have

I = Rt + (Rxx − λR+ aεR
m)x

=
εc′

ã
ΛQc −

(c− λ)

ã
Q′

c − ε
ã′(c− λ)

ã2
Qc +

1

ã
Q(3)

c − λ

ã
Q′

c +
1

ãm
(a(εx)Qm

c )x.

Note that via a Taylor expansion,

(a(εx)Qm
c )x = a(ερ)(Qm

c )x + εa′(ερ)(yQm
c )x +

1

2
ε2a′′(ερ)(y2Qm

c )x +OH2(R)(ε
3).

Therefore,

I =
εc′

ã
ΛQc −

(c− λ)

ã
Q′

c −
ε

m− 1

a′(c− λ)

ãm
Qc +

1

ã
Q(3)

c − λ

ã
Q′

c +
1

ã
(Qm

c )′ +
εa′

ãm
(yQm

c )x

+
ε2a′′

2ãm
(y2Qm

c )x + ε3fI(εt)F
I
c (y)

=
1

ã
(Q′′

c − cQc +Qm
c )′ +

εc′

ã
ΛQc − ε

ã′

ã2
(c− λ)Qc +

εa′

ãm
(yQm

c )y

+
ε2a′′

2ãm
(y2Qm

c )y + ε3fI(εt)F
I
c (y)

= ε
[c′
ã

ΛQc −
ã′

ã2
(c− λ)Qc +

a′

ãm
(yQm

c )y

]
+
ε2a′′

2ãm
(y2Qm

c )y + ε3fI(εt)F
I
c (y).

Moreover |fI(εt)| ≤ K, F I
c (y) ∈ Y and

‖ε3fI(εt)F
I
c (y)‖H2(R) ≤ Kε3.

This finishes the proof.

Lemma C.2 (Decomposition of II). We have

II = −ε(LAc)y(εt; y) + ε2[(Ac)t + c′(εt)ΛAc](εt; y)

+mε2
a′(ερ)
a(ερ)

(yQm−1
c (y)Ac(εt; y))y + ε3F II

c (εt; y).

with F II
c (εt; ·) ∈ Y , uniformly in time. In addition, suppose (IP) holds for Ac. Then

‖ε3F II

c (εt; y)‖H2(R) ≤ Kε3e−γε|t|.

Proof. We compute:

II = ε(Ac(εt; y))t + ε
[
(Ac)yy(εt; y) − λAc(εt; y) +

aε

a(ερ)
mQm−1

c (y)Ac(εt; y)
]
x

= −ε(LAc)y(εt; y) + ε2(Ac)t(εt; y) + ε2c′(εt)ΛAc(εt, y)

+mε2
a′(ερ)
a(ερ)

(yQm−1
c (y)Ac(εt; y))y + ε3F II

c (εt; y),

where F II
c (εt; y) = O(y2Qm−1

c (y)Ac(εt; y))y) ∈ Y and thus, thanks to the (IP) property,

‖ε3F II

c (εt; y)‖H2(R) ≤ Kε3e−γε|t|.

This concludes the proof.
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Lemma C.3 (Decomposition of III). Suppose (IP) holds for Ac. Then we have

III = ε3a′(εx)[εm−2Am
c (εt; y) + F̃ III

c (εt; y)] + ε2aεG
III

c (εt; y),

with F̃ III
c (εt; ·), GIII

c (εt; ·) ∈ Y , uniformly for every t ∈ [−Tε, Tε]. Moreover, we have the estimate

‖III‖H2(R) ≤ Kε2e−γε|t|, (C.5)

for every t ∈ [−Tε, Tε].

Proof. Define ˜III := aε[(R + w)m − Rm −mRm−1w]. We consider separate cases. First, note
that for m = 2, ˜III = aεw

2 = ε2aεA
2
c ; thus taking derivative

III = ε3a′(εx)A2
c + ε2aε(A

2
c)

′.

Note that (A2
c)

′ ∈ Y because (IP) property holds for Ac.

Suppose now m = 3. We have ˜III = ε2aε[3QcA
2
c + εA3

c ]. From this we get

III = ε3a′(εx)[3QcA
2
c + εA3

c ] + ε2aε[3(QcA
2
c)

′ + ε(A3
c)

′].

Finally, for the case m = 4

III =
{
aεε

2[6Q2
cA

2
c + 4εQcA

3
c + ε2A4

c ]
}

x

= ε3a′(εx)[6Q2
cA

2
c + 4ε2QcA

3
c + ε2A4

c ] + ε2aε[6(Q2
cA

2
c)

′ + 4ε(QcA
3
c)

′ + ε2(A4
c)

′].

Under the (IP) property, for each m = 2, 3 and 4, we can estimate III as follows

‖III‖H2(R) ≤ Kε2e−γε|t|.

Now we collect the estimates from Lemmas C.1, C.2 and C.3. We finally get

S[ũ] = I + II + III

= ε[F1 − (LAc)y](εt; y) + ε2[(Ac)t + c′(εt)ΛAc](εt; y) +O(ε2e−γε|t|),

provided (IP) holds for Ac.

D End of Proof of Lemma 4.6

In this section we will show that for all t ∈ [−Tε, Tε] (cf. (4.28))

‖S[ũ](t)‖H2(R) ≤ Kε
3
2 e−γε|t|, (D.1)

where ũ is the modified approximate solution defined in (4.25).

Proof of (D.1). Similarly to the proof of Proposition 4.2 in Appendix C, we claim that we can
decompose

S[ũ] = I + ĨI + ˜III,

(cf. the definitions in (C.1)-(C.3)).

First of all, note that the conclusions of Lemma C.1 in Appendix C remains unchanged.
In particular, (C.4) holds without any variation.

Concerning the term ˜III, we have the following
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Claim 6 (Decomposition of ˜III revisited). We have

˜III = ε3a′(εx)[εm−2ηm
c A

m
c (εt; y) + F̃ III

c (εt; y)] + ε2aε[G
III

c (εt; y) + εm−1(ηm
c )′Am

c ],

with F̃ III
c (εt; ·), GIII

c (εt; ·) ∈ Y , uniformly for every t ∈ [−Tε, Tε]. Moreover, we have the
estimate

‖ ˜III‖H2(R) ≤ Kε2e−γε|t|, (D.2)

for every t ∈ [−Tε, Tε].

Proof. The proof is identical to Lemma C.3, being the unique new element in the proof the
emergency of the term

εm+1aε(η
m
c )′Am

c , with ‖εm+1aε(η
m
c )′Am

c ‖H2(R) ≤ Kεm+ 1
2 e−γε|t|.

The other terms and their respective estimates remain unchanged. This finishes the proof.

Finally we consider the term ĨI.

Claim 7 (Decomposition of ĨI revisited). We have

ĨI = −εηc(y)(LAc)y(εt; y) +OH2(R)(ε
3
2 e−γε|t|).

Proof. We follow on the lines of the proof of Lemma C.2: First we have

(εA#(εt; y))t = −(c− λ)ε2η′εAc(εt; y) − (c− λ)εηε(Ac)y(εt; y)

+ε2ηε(Ac)t(εt; y) + ε2c′(εt)ηεΛAc(εt; y).

We use now Lemma 4.5 and (4.27) to estimate this last term. We get

(εA#(εt; y))t = −(c− λ)εηε(y)(Ac)y(εt; y) +OH2(R)(ε
3
2 e−γε|t|). (D.3)

On the other hand,

ε((A#)xx − λA# +
aε

a(ερ)
mQm−1

c (y)A#)x

= ε
{
ηε[(Ac)yy − λAc +

aε

a(ερ)
mQm−1

c (y)Ac] + 2εη′ε(Ac)y + ε2η′′εAc

}
x

= εηε

[
(Ac)yy − λAc +

aε

a(ερ)
mQm−1

c (y)Ac

]
x

+ε2
[
3η′ε(Ac)yy − λη′εAc + aεmη

′
εQ

m−1
c Ac + 3εη′′ε (Ac)y + ε2η(3)

ε Ac

]

= εηε

[
(Ac)yy − λAc +mQm−1

c (y)Ac

]
y

+ ε2ηεm
a′(ερ)
a(ερ)

(yQm−1
c Ac)y

+ε2
[
3η′ε(Ac)yy − λη′εAc + aεmη

′
εQ

m−1
c Ac + 3εη′′ε (Ac)y + ε2η(3)

ε Ac

]

+O(ε3ηε(y
2Qm−1

c Ac)y).

We use now Lemma 4.5 and the (IP) property to estimate as follows

mε2|a
′(ερ)
a(ερ)

|‖ηε(yQ
m−1
c Ac)y‖H2(R) ≤ Kε2e−γε|t|,

‖O(ε3ηε(y
2Qm−1

c Ac)y)‖H2(R) ≤ Kε3, ε4‖η(3)
c Ac‖H2(R) ≤ ε

7
2 e−γε|t|,

‖ε2λη′εAc‖H2(R) ≤ Kλε
3
2 e−γε|t|,
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and
ε2‖3η′ε(Ac)yy + aεmη

′
εQ

m−1
c Ac + 3εη′′ε (Ac)y‖H2(R) ≤ Kε2e−γε|t|.

Therefore

ε[(A#)xx − λA# +
aε

a(ερ)
mQm−1

c (y)A#]x =

εηε

[
(Ac)yy − λAc +mQm−1

c (y)Ac

]
y

+OH2(R)(ε
2e−γε|t| + ε3). (D.4)

The conclusion follows from (D.3) and (D.4).

We return to the global estimate on S[ũ]. From (C.4), Claims 6 and 7 and Lemma 4.5 we
get

S[ũ] = ε[F1(εt, y) − ηc(y)(LAc)y)(εt, y)] +OH2(R)(ε
3
2 e−γε|t|)

= ε(1 − ηc(y))F1(εt; y) +OH2(R)(ε
3
2 e−γε|t|).

The final conclusion of this appendix is a straightforward consequence of the following fact:
For every t ∈ [−Tε, Tε]

‖ε(1 − ηc(y))F1(εt; y)‖H2(R) ≤ Kεe−
1
ε
−γε|t| ≪ Kε10.

for ε small enough. Indeed, note that supp(1 − ηc(·)) ⊆ (−∞,−1
ε ]. From (C.4),

|F1(εt; y)| ≤ Ke−γ|y|−γε|t|.

From this estimate the desired estimate follows directly.

E Proof of Lemma 6.4

E.1 Proof of Lemma 6.4

Our proof of the Virial inequality (6.26) follows closely to the proof of Lemma 2 in [55].

Proof. Take t ∈ [t1, T
∗], and denote y := x − ρ2(t). Replacing the value of zt given by (6.13),

we have

∂t

∫

R

z2ψA0(y) = 2

∫

R

zztψA0(y) − ρ′2(t)
∫

R

z2ψ′
A0

(y)

= 2

∫

R

(zψA0(y))x(zxx − λz +mQm−1
c2 (y)z) (E.1)

−(c2(t) − λ)

∫

R

z2ψ′
A0

(y) − 2(c2(t) − λ− ρ′2)(t)
∫

R

zQ′
c2ψA0(y)(E.2)

+2

∫

R

(zψA0(y))x[(R+ z)m −Rm −mRm−1z] (E.3)

−2c′2(t)
∫

R

zΛQc2ψA0(y) + (c2 − λ− ρ′2)(t)
∫

R

z2ψ′
A0

(y) (E.4)

+

∫

R

(zψA0(y))x(aε − 2)(R+ z)m. (E.5)
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Now, following [55] and by using (6.14) and (6.15) it is easy to check that forA0 large enough,
and some constants δ0, ε0 small

|(E.3) + (E.4)| ≤ δ0
100

∫

R

(z2
x + z2)(t)e

− 1
A0

|y|
.

On the other hand, the terms (E.1) and (E.2) goes similarly to the termsB1 andB2 in Appendix
B of [55]. We get

(E.1) + (E.2) ≤ − δ0
10

∫

R

(z2
x + z2)(t)e

− 1
A0

|y|
.

Finally, the term (E.5) can be estimated as follows. First, from (6.11) and (6.12) we have for
t ≥ t1

c2(t) = c∞ +O(ε1/2), ρ2(t) = (c∞ − λ)t+O(ε1/2(t− t1)),

and then
9

10
c∞ ≤ c2(t) ≤

11

10
c∞; ρ2(t) ≥

9

10
(c∞ − λ)t. (E.6)

On the other hand, we can write (E.5) in the following way

(E.5) =

∫

R

(zψA0)x(aε − 2)[(R+ z)m − zm] +

∫

R

(zψA0)x(aε − 2)zm

=

∫

R

(ψA0)x(aε − 2)[(R+ z)m − zm]z +

∫

R

ψA0(aε − 2)[(R+ z)m − zm]zx

+
m

m+ 1

∫

R

(ψA0)x(aε − 2)zm+1 − ε

m+ 1

∫

R

ψA0a
′(εx)zm+1.

Then, from (1.13), (6.25) and by using that t ≥ t1 ≥ 1
2Tε, we get for some constant γ =

γ(A0, c∞, λ) > 0 independent of ε and D0, (cf. (B.13) for a similar computation)

|
∫

R

(ψA0)x(aε − 2)[(R+ z)m − zm]z| ≤ KA0e
−ερ2(t)/A0‖z(t)‖H1(R)

≤ KA0e
−γεt‖z(t)‖H1(R).

Similarly

|
∫

R

ψA0(aε − 2)[(R+ z)m − zm]zx| ≤ KA0e
−γεt‖z(t)‖H1(R);

and

|
∫

R

(ψA0)x(aε − 2)zm+1| ≤ KA0e
−γεt‖z(t)‖m+1

H1(R)
.

Finally, from (6.24) and (E.6),

|ε
∫

R

ψA0(y)a
′(εx)zm+1| ≤ KA0e

−γεt‖z(t)‖m+1
H1(R)

.

In conclusion, (E.5) = O(A0e
−γεt‖z(t)‖H1(R)), for ε small enough.

From (E.6) we obtain the second term in (6.26). Collecting the above estimates we con-
clude the proof.
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F Proof of Lemma 6.8

The proof of this result is very similar to Lemma 3 in [55].

Proof. First of all, recall that φ = φ(ỹ(x0)), with ỹ(x0) = x− (ρ2(t0) + σ(t− t0) + x0). Then we
have

∂t

∫

R

u2φ = −
∫

R

(
3u2

x + (σ + λ)u2 − 2maε

m+ 1
um+1

)
φ′ +

∫

R

u2φ(3) − 2ε

m+ 1

∫

R

a′(εx)um+1φ,

and

∂t

∫

R

(
u2

x − 2aε(x)

m+ 1
um+1

)
φ =

∫

R

(
− (uxx + aεu

m)2 − 2u2
xx + 2maεu

2
xu

m−1
)
φ′

+

∫

R

u2
xφ

(3) − σ

∫

R

(
u2

x − 2aε

m+ 1
um+1

)
φ′

− ε

m+ 1

∫

R

a′εu
m+1φ′′ − ε2

m+ 1

∫

R

a′′εu
m+1φ′. (F.1)

(see for example Appendix C in [55]). The conclusion follows from the arguments in [55],
after we estimate the unique new different term. In particular, we have

−
∫

R

(
3u2

x + (σ + λ)u2 − 2maε(x)

m+ 1
um+1

)
φ′ +

∫

R

u2φ(3) ≤ Ke−(t0−t)/2K0e−x0/K0 . (F.2)

Indeed, using that 1/K2
0 ≤ σ/2, we have (we discard the term with λ)

−
∫

R

(
3u2

x + σu2 − 2maε(x)

m+ 1
um+1

)
φ′ +

∫

R

u2ψ(3) ≤ −
∫

R

(
3u2

x +
σ

2
u2 − 2maε(x)

m+ 1
um+1

)
φ′.

Now we estimate the nonlinear term. Let R0 > 0 to be chosen later. Consider the region
t ≥ t1, |x−ρ2(t)| ≥ R0. In this region we have from the stability and the Morrey’s embbeding

|u(t, x)| ≤ ‖u(t) −R(t)‖L∞(R) +R(t, x) ≤ Kε1/2 +Ke−γR0 ,

with γ > 0 a fixed constant. Taking 0 < ε ≤ ε0 sufficiently small and R0 large enough, we
have |maε(x)u

m−1| ≤ σ/4, in the considered region. Now we deal with the complementary
region, |x− ρ2(t)| ≤ R0. From (6.11) and the hypothesis σ < 1

2(1 − λ0) we have

|ỹ(x0)| ≥ |ρ2(t0) − ρ2(t) − σ(t0 − t) + x0| − |x− ρ2(t)| ≥
1

2
σ(t0 − t) + x0 −R0. (F.3)

Thus we have |φ′(ỹ)| ≤ Ke−γ(t0−t)/K0e−x0/K0 . Collecting the above estimates we obtain (F.2).
Now we claim that

| 2ε

m+ 1

∫

R

a′(εx)um+1φ| ≤ Ke−εγTεe−εγ(t0−t)/K0e−γεx0/K0 . (F.4)

Indeed, denote x̃(t) := ρ2(t0) + σ(t− t0) + x0. Then from σ < 1
2(1 − λ0) and (6.11) we have

x̃(t) = ρ2(t0) − ρ2(t) − σ(t0 − t) + (x0 + ρ2(t))

≥ 1

2
σ(t0 − t) + ρ2(t0) + x0 ≥ 1

2
σ(t0 − t) +

1

2
Tε + x0,

and thus for ε small,

| 2ε

m+ 1

∫

R

a′(εx)um+1φ| ≤ Kε

∫ x̃

−∞
e−εγ|x|e(x−x̃)/K0dx+Kε

∫ ∞

x̃
e−εγx

≤ Kεe−x̃/K0 +Ke−εγx̃

≤ Ke−γεTεe−γε(t0−t)/K0e−γεx0/K0 .
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This last estimate proves (F.4). Integrating between t and t0 we get (6.32).

On the other hand, by following the same kind of calculations (see [55]), we have

∂t

∫

R

(
u2

x + u2 − 2aε(x)

m+ 1
um+1

)
φ ≤ Ke−γ(t0−t)/K0e−x0/K0

+Ke−γεTεe−γε(t0−t)/K0e−γεx0/K0 .

In consequence, after integration we get (6.34).

Now we prove (6.33). The procedure is analogous to (6.32); the main differences are in
(F.3) and (F.4). For the first case we have that ỹ(−x0) = x− (ρ2(t0) + σ(t− t0) − x0) satisfies

|ỹ| ≥ |ρ2(t) − ρ2(t0) − σ(t− t0) + x0| − |x− ρ2(t)| ≥
1

2
σ(t− t0) + x0 −R.

From the hypothesis we have that x̂(t) := ρ2(t0) + σ(t − t0) − x0 > t1 ≥ 1
2Tε. Therefore (F.4)

can be bounded as follows

| 2ε

m+ 1

∫

R

a′(εx)um+1φ| ≤ Kε

∫ x̂

−∞
e−εγ|x|e(x−x̂)/K0dx+Kε

∫ ∞

x̂
e−εγx

≤ Kεe−x̂/K0 +Ke−εγx̂

≤ Ke−γερ2(t0)e−γε(t−t0)/K0eγεx0/K0 .

Collecting the above estimates and integrating between t0 and t, we obtain the conclusion.

G Some identities related to the soliton Q

This section has been taken from Appendix C in [53].

Lemma G.1 (Identities for the soliton Q). Suppose m > 1 and denote by Qc := c
1

m−1Q(
√
cx) the

scaled soliton. Then

1. Energy.

E1[Q] =
1

2
(λ− λ0)

∫

R

Q2 = (λ− λ0)M [Q], with λ0 =
5 −m

m+ 3
.

2. Integrals. Recall θ = 1
m−1 − 1

4 . Then
∫

R

Qc = cθ−
1
4

∫

R

Q,

∫

R

Q2
c = c2θ

∫

R

Q2, E1[Qc] = c2θ+1E1[Q].

and finally
∫

R

Qm+1
c =

2(m+ 1)c2θ+1

m+ 3

∫

R

Q2,

∫

R

ΛQcQc = θc2θ−1

∫

R

Q2.
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8 Addendum. Formal dynamics in the case λ0 < λ < 1

An important question left open in the preceding pages was the behavior of the soliton solu-
tion u(t) in the case of positive energy, namely λ0 < λ < 1. The analysis in this case requires
more attention due to the fact that the scaling of the soliton solution decreases as long as the
interaction region is being crossed. In this occasion our main objective is to describe in some
detail this case. Indeed, in the next paragraph we formally state the following surprising
result: given a fixed λ close to 1, for any small ε > 0 the soliton may be reflected by the po-
tential a(ε·). This result is basically a consequence of the fact that given 0 < λ < 1 and c > 0
fixed, with c < λ, the small soliton Qc(· − (c− λ)t), solution of

ut + (uxx − λu+ um)x = 0, in Rt × Rx,

moves towards the left direction.

This section is devoted to the study of the approximate dynamical system involving the
evolution of first order scaling and translation parameters (C(t), P (t)) on the main interaction
region. This system shares many properties with the nonlinear dynamical system considered
in [65] for 0 ≤ λ ≤ λ0 (see Lemma 4.4above), however the large time behavior in the case
λ0 < λ < 1 may differ radically from the previous case.

We start with some basic properties. First of all, let us define, for m = 2, 3 and 4, and
λ0 < λ < 1,

µ(λ) := (1 − λ0

λ
)

1−λ0
λ0 > 0, (8.1)

and recall that
λ0 =

5 −m

m+ 3
, p =

4

m+ 3
.

Lemma 8.1 (Existence and basic properties of dynamical parameters, case λ0 < λ < 1).

Suppose m = 2, 3 or 4. Let λ0, p be as above and a(·) as in (1.13). Then the following holds.

1. Existence. There exists a unique solution (P (t), C(t)), with C bounded positive, monotone
decreasing, defined for all t ≥ −Tε, with the same regularity than a(ε·), of the following system

{
C ′(t) = −pεC(t)

[
λ
λ0

− C(t)
]

a′

a (εP (t)), C(−Tε) = 1,

P ′(t) = C(t) − λ, P (−Tε) = −(1 − λ)Tε.
(8.2)

In addition for all t ≥ −Tε one has 0 < C(t) ≤ 1 and

Cλ0(t)(
λ

λ0
− C(t))1−λ0 = (

λ

λ0
− 1)1−λ0

ap(εP (t))

ap(−ε−1/100)
. (8.3)

Moreover, limt→+∞C(t) exists and satisfies limt→+∞C(t) > µ(λ) > 0, for all λ0 < λ < 1.

2. Asymptotic behavior. Let λ0 < λ̃ < 1 be the unique number satisfying

λ̃(
1 − λ0

λ̃− λ0

)1−λ0 = 2p. (8.4)

Then one has

(a) For all λ0 < λ ≤ λ̃, one has limt→+∞C(t) > λ and limt→+∞ P (t) = +∞.

(b) For all λ̃ < λ < 1, there exists a unique t0 ∈ (−Tε,+∞) such that C(t0) = λ, with
limt→+∞C(t) < λ. Moreover, limt→+∞ P (t) = −∞. Finally, one has the bounds −Tε <
t0 ≤ K(λ)Tε.
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Proof of Lemma 8.1.

1. The local existence of a solution (C,P ) of (8.2) is a direct consequence of the Cauchy-
Lipschitz-Picard theorem. In addition, C ≡ 0, λ

λ0
are constant solutions. Since C(−Tε) = 1

and λ > λ0, we have C globally defined, strictly decreasing and satisfying 0 < C(t) < λ
λ0

for
all t ≥ −Tε.

2. Now we use (8.2) to obtain some a priori estimates on the solution C. Note that

(C(t) − λ)

C(t)( λ
λ0

− C(t))
C ′(t) = −εp(C(t) − λ)

a′

a
(εP (t)) = −εpP ′(t)

a′

a
(εP (t)).

In particular,

(1 − λ0)∂t log(
λ

λ0
− C(t)) + λ0∂t logC(t) = p∂t log a(εP (t)).

By integration on [−Tε, t], and by using C(−Tε) = 1, we obtain (8.3).

Since 1 ≤ a ≤ 2 and c is bounded we have P bounded on compact sets and consequently
we obtain global existence. Using C > 0 and (8.3) one proves for ε small

Cλ0(t) ≥ 99

100
(1 − λ0

λ
)1−λ0 =⇒ C(t) > µ(λ).

Moreover, limt→+∞C(t) exists and is always far from zero, as long as λ0 < λ < 1.

3. Now, given λ0 < λ < 1, we study the existence of a point t0 > −Tε such that C(t0) = λ. A
priori, replacing this condition in (8.3), we have

λ(
1

λ0
− 1)1−λ0 = (

λ

λ0
− 1)1−λ0

ap(εP (t0))

ap(−ε−1/100)
. (8.5)

By choosing λ := λ0(1 + δ), with δ > 0 any small enough number, we obtain a contradiction
in the above identity. In conclusion, such a t0 does not exist if λ = λ0(1+ δ), with δ > 0 small.
Moreover, let λ̃ ∈ (λ0, 1) be the unique solution of (8.4). Since the function

λ ∈ (λ0, 1) 7→ f(λ) := λ(
1 − λ0

λ− λ0
)1−λ0 ∈ (0,+∞)

is strictly decreasing4, we have f(λ) ≥ 2p provided λ0 < λ ≤ λ̃. Therefore, from (8.5) we have

2p ≤ f(λ) =
ap(εP (t0))

ap(−ε−1/100)
< 2p.

In conclusion, since f(λ) is independent of ε, there is no t0 ∈ R such that C(t0) = λ. Thus, by
continuity we haveC(t) > λ for all t ≥ −Tε and lim+∞C(·) ≥ λ. Moreover, if lim+∞C(·) = λ,
we have from (8.3) after passing to the limit

f(λ) ≤ lim sup
t→+∞

ap(εP (t))

ap(−ε−1/100)
< 2p, λ ≤ λ̃,

4More precisely, one has

f
′(λ) = −

(1 − λ)(1 − λ0)
1−λ0

(λ − λ0)2−λ0
.



E.1 - Proof of Lemma 6.4 123

a contradiction. Thus, lim+∞C(·) > λ. Moreover, from the equation for P in (8.2) one has for
all t ≥ 0

P (t) = P (−Tε) +

∫ 0

−Tε

(C(s) − λ)ds+

∫ t

0
(C(s) − λ)ds ≥ P (−Tε) + (C(0) − λ)t;

therefore limt→+∞ P (t) = +∞.

4. Now, let us prove that for all λ ∈ (λ̃, 1) there exists t0 ∈ R such that C(t0) = λ (and
therefore lim+∞C(·) < λ.) By contradiction, let us suppose C(t) > λ for all t ≥ −Tε, with
c̃∞ := lim+∞C(·) ≥ λ.

First let us suppose c̃∞ > λ. Thus we have lim+∞ P (·) = +∞ and from (8.3) we have

c̃λ0
∞(

λ

λ0
− c̃∞)1−λ0 = (

λ

λ0
− 1)1−λ0

2p

ap(−ε−1/100)
. (8.6)

Since c̃∞ > λ one has

c̃λ0
∞(

λ− λ0c̃∞
λ− λ0

)1−λ0 ≤ max
r∈(0,1)

rλ0(
λ− λ0r

λ− λ0
)1−λ0 = f(λ) < 2p,

a contradiction with (8.6) for small ε.

Now we suppose c̃∞ = λ. Here we have two possibilities: either P∞ := limt→+∞ P (t) =
+∞, or P∞ < +∞. For the first case, by following the preceding analysis, we have

c̃λ0
∞(

λ− λ0c̃∞
λ− λ0

)1−λ0 = f(λ) < 2p,

a contradiction with (8.6), for small ε. Otherwise, computing C ′′(t) in (8.2) we have

C ′′(t) = −pε2C(t)(
λ

λ0
− C(t))

[
(C − λ)

a′′

a
(εP (t)) +

a′2

a2
(εP (t))(C(t)λ0 − λ(

p

λ0
− 1))

]
;

and thus

lim
t→+∞

C ′′(t) = −pε2λ3(
1

λ0
− 1)

a′2

a2
(P∞)(λ0 −

p

λ0
+ 1) 6= 0,

for all m = 2, 3 and 4. This last result contradicts the fact that lim+∞C(·) exists.

In conclusion, we have that there exists at least one t0 > −Tε such that C(t0) = λ. From
C ′ < 0 we have that such a t0 is unique.

5. We finally prove some properties of P (t) in the case λ̃ < λ < 1. From (8.3), one has

f(λ) =
ap(εP (t0))

ap(−ε−1/100)
.

Since f(λ) ∈ (1, 2p) for fixed λ ∈ (λ̃, 1), and it is independent of ε, one has, for small ε,

|εP (t0)| ≤ K(λ);

(the constant K becomes singular as λ approaches λ̃ or 1.) Therefore, from (8.2) one has

C ′(t0) = −εpλ2(
1

λ0
− 1)

a′(εP (t0))

a(εP (t0))
≤ −κ(λ)ε, κ(λ) > 0;

and thus, for α > 0 small enough (but independent of ε), since C ′′(t) = OL∞(ε2),

C(t0 −
α

ε
) ≥ λ+ κ(λ)α+O(α2) ≥ λ+

9

10
κ(λ)α. (8.7)
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We use this identity to obtain

P (t0) = −(1 − λ)Tε +

∫ t0−α
ε

−Tε

(C(s) − λ)ds+

∫ t0

t0−α
ε

(C(s) − λ)ds

≥ −(1 − λ)Tε +
9

10
κ(λ)α(t0 −

α

ε
+ Tε) −

Kα

ε
,

and therefore t0 ≤ K(λ)Tε.

Finally, note that P (t) is strictly decreasing for all t > t0. Therefore, for all t ≥ t0 + 1 one
has C(t0 + 1) < λ and

P (t) = P (t0) +

∫ t0+1

t0

(C(s) − λ)ds+

∫ t

t0+1
(C(s) − λ)ds ≤ P (t0) + (C(t0 + 1) − λ)(t− t0 − 1);

thus limt→+∞ P (t) = −∞. The proof is complete.

The last properties obtained in the above Lemma lead to the following definition.

Definition 8.1 (Exit time).

Suppose λ0 < λ ≤ λ̃. Let us define T̃ε ≥ −Tε such that P (T̃ε) = (1 − λ)Tε. Otherwise, if
λ̃ < λ < 1, let us consider T̃ε > t0 such that P (T̃ε) = −(1 − λ)Tε.

The next result states that in the interval λ0 < λ < λ̃ the soliton leaves the potential zone
by the right hand side, with a well determined scaling 0 < c∞(λ) < 1. Moreover, the exit time
is bounded by K(λ)Tε, with K becoming unbounded as λ approaches λ̃.

Lemma 8.2 (Asymptotic behavior, case λ0 < λ < λ̃).

Suppose now λ0 < λ < λ̃. There exists a unique solution c∞(λ) of the following algebraic equation

cλ0
∞(

λ− λ0c∞
λ− λ0

)1−λ0 = 2p, λ < c∞ < 1. (8.8)

In addition, λ 7→ c∞(λ) is a strictly decreasing map with c∞(λ0) = 1 and c∞(λ) > c∞(λ̃) = λ̃.
Furthermore, one has C(T̃ε) = c∞(λ), and T̃ε ≤ K(λ)Tε, with K(λ) ∼ (c∞(λ) − λ)−1.

Remark 8.1. Note that the condition c∞ > λ is essential, because there exists another minimal
branch of solutions c∗∞(λ) < λ increasing in λ with c∗∞(λ0) = 0 and c∗∞(λ̃) = λ̃.

Proof. The proof of existence and uniqueness of a solution c∞(λ) of (8.8) is similar to Lemma
4.4 in [65]. We skip the details.

Let c̃∞(λ, ε) := lim+∞C. From (8.3) and lim+∞ P = +∞ one has

c̃λ0
∞(

λ− λ0c̃∞
λ− λ0

)1−λ0 =
2p

ap(−ε−1/100)
, λ < c̃∞ < 1. (8.9)

Now let us define for r ∈ (0, 1)

g(r) := rλ0(
λ− λ0r

λ− λ0
)1−λ0 .
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Note that g(r) is strictly decreasing in the interval (λ, 1). In addition, from (8.8) and (8.9) we
have c∞ < c̃∞. Moreover, from the behavior of a in (1.13) we have c̃∞ = c∞ + O(ε10), for all
ε small. This implies that

c̃∞(λ, ε) − λ > c∞(λ) − λ > 0,

uniformly for all ε small enough. On the other hand, at time t = T̃ε one has

C(T̃ε)
λ0(

λ− λ0C(T̃ε)

λ− λ0
)1−λ0 =

ap(ε−1/100)

ap(−ε−1/100)
, 0 < C(T̃ε) < λ,

therefore C(T̃ε) = c∞(λ) +O(ε10). Moreover,

(1 − λ)Tε = P (T̃ε) = P (−Tε) +

∫ T̃ε

−Tε

(C(s) − λ)ds ≥ −(1 − λ)Tε + (c∞ − λ)(T̃ε + Tε).

From this inequality we obtain, for all λ0 < λ < λ̃, the upper bound T̃ε ≤ K(λ)Tε, with
K(λ) ∼ (c∞(λ) − λ)−1. Note that K(λ) becomes singular as λ ↑ λ̃.

Now we consider the case λ̃ < λ < 1. Here we obtain the following striking result:
the soliton is formally reflected by the potential. The final scaling is given by a modified
parameter 0 < c∞(λ) < 1, away from zero provided λ ∈ (λ̃, 1).

Lemma 8.3 (Asymptotic behavior, case λ̃ < λ < 1).

Suppose λ̃ < λ < 1. There exists a unique solution c∞(λ) of the following algebraic equation

cλ0
∞(

λ− λ0c∞
λ− λ0

)1−λ0 = 1, 0 < c∞ < λ. (8.10)

In addition, the map λ 7→ c∞(λ) is strictly increasing with c∞(λ) ≥ c∞(λ̃) > µ(λ̃), and
limλ↑1 c∞(λ) = 1. Finally, one has C(T̃ε) = c∞(λ), and T̃ε ≤ K(λ)Tε.

Proof. The proof of existence and uniqueness of a solution c∞(λ) of (8.10) is similar to Lemma
4.4 in [65]. We skip the details.

Let c̃∞(λ, ε) := lim+∞C. From (8.3) and lim+∞ P = −∞ one has

c̃λ0
∞(

λ− λ0c̃∞
λ− λ0

)1−λ0 =
1

ap(−ε−1/100)
.

with 0 < c̃∞ < λ. From the behavior of a in (1.13) we have c̃∞ = c∞(λ) + O(ε10), for all ε
small. This implies that

λ− c̃∞(λ, ε) ≥ 99

100
(λ− c∞(λ)) > 0,

uniformly for all ε small enough. On the other hand, at time t = T̃ε one has

C(T̃ε)
λ0(

λ− λ0C(T̃ε)

λ− λ0
)1−λ0 =

ap(−ε(1 − λ)Tε)

ap(−ε−1/100)
= 1, 0 < C(T̃ε) < λ,

therefore by uniqueness C(T̃ε) = c∞(λ).

Finally, we prove the upper bound on T̃ε. We have

P (−Tε) = −(1 − λ)Tε = −(1 − λ)Tε +

∫ T̃ε

−Tε

(C(s) − λ)ds.
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From here we have for β > 0

0 =

∫ t0−β
ε

−Tε

(C(s) − λ)ds+

∫ t0+β
ε

t0−β
ε

(C(s) − λ)ds−
∫ T̃ε

t0+β
ε

(λ− C(s))ds

≤ (1 − λ)(t0 +
β

ε
+ Tε) +

Kβ

ε
−

∫ T̃ε

t0+β
ε

(λ− C(s))ds.

Similarly to estimate (8.7), one has for β > 0 small, but independent of ε,

C(t0 +
β

ε
) ≤ λ− ν(λ)β +O(β2), ν(λ) > 0.

Inserting this estimate above, and using the estimate on t0, one has

T̃ε ≤ K(λ)Tε,

as desired.
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130 INTRODUCTION AND MAIN RESULTS

Abstract

We consider the problem of the soliton propagation, in a slowly varying medium, for a
generalized, variable-coefficients nonlinear Schrödinger equation. We prove global existence
and uniqueness of soliton-like solutions for a large class of slowly varying media. Moreover,
we describe for all time the behavior of this new generalized soliton solution.

Keywords : Nonlinear Schrödinger equations, soliton dynamics, slowly varying potentials.

1 Introduction and Main Results

In this work we continue our study of soliton-propagation under an inhomogeneous
medium, started in [65]. Now we consider the following generalized nonlinear Schrödinger
equation (NLS)

iut + uxx + f(x, |u|2)u = 0, in Rt × Rx. (1.1)

Here u = u(t, x) is a complex-valued function, and f : R × R → R a nonlinear function.
This equation is a generalization of the –one dimensional– semilinear nonlinear Schrödinger
equation (NLS)

iut + uxx + |u|m−1u = 0, in Rt × Rx; m > 1. (1.2)

Concerning the cubic nonlinear Schrödinger equation (namely the case m = 3), it arises in
Physics as a model of wave propagation in fiber optics in a nonlinear medium, and also
describes the evolution of the envelope of modulated wave groups in water waves. In two
dimensions, the cubic NLS also possesses an important physical meaning.

The Cauchy problem for equation (1.2) (namely, adding the initial condition u(t = 0) =
u0) is locally well-posed for u0 ∈ H1(R) (see Ginibre and Velo [22]). In addition, solutions of
(1.2) are invariant under translations in space, time and phase. From the Noëther theorem,
these symmetries are related to conserved quantities, invariant under the NLS flow, usually
called mass, energy and momentum:

M [u](t) :=

∫

R

|u|2(t, x) dx =

∫

R

|u0|2(x) dx = M [u](0), (Mass), (1.3)

E[u](t) :=
1

2

∫

R

|ux|2(t, x) dx− 1

m+ 1

∫

R

|u|m+1(t, x) dx (1.4)

=
1

2

∫

R

|(u0)x|2(x) dx− 1

m+ 1

∫

R

|u0|m+1(x) dx = E[u](0), (Energy)

and

P [u](t) :=
1

2
Im

∫

R

ūux(t, x) dx =
1

2
Im

∫

R

ū0(u0)x(x) dx = P [u](0), (Momentum). (1.5)

In the case 1 < m < 5, any H1(R) solution is global in time thanks to the conservation of
mass and energy (1.3)-(1.4), and the Galiardo-Nirenberg inequality

∫

R

up+1 ≤ K(p)
( ∫

R

u2
) p+3

4
( ∫

R

u2
x

) p−1
4 . (1.6)
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One of the main properties of NLS equations is the existence of localized, exponentially
decaying, stable and smooth solutions called solitons, or traveling waves. Given four real num-
bers x0, v0, γ0 and c0 > 0, traveling waves are solutions of (1.2) of the form

u(t, x) := Qc0(x− x0 − v0t)e
i(c0− 1

4
v2
0)teiγ0e

i
2
v0x, (1.7)

with Qc(s) := c
1

m−1Q(c1/2s), where Q is the explicit Schwartz function satisfying the second
order nonlinear differential equation

Q′′ −Q+Qm = 0, Q > 0, Q(x) =
[ m+ 1

2 cosh2( (m−1)
2 x)

] 1
m−1 ∼ e−|x|. (1.8)

In particular, for v0 > 0, this solution represents a solitary wave, with invariant profile, defined
for all time moving to the right with constant velocity.

For m ≥ 5, solitons are shown to be orbitally unstable and the Cauchy problem for the
corresponding NLS equation has finite-time blow-up solutions, see [12] and references there
in. In this work, in order to guarantee the stability of soliton solutions, we will discard high-
order nonlinearities. In other words, we will only consider the case 1 < m < 5.

The study of perturbations of solitary waves lead to the introduction of the concepts of or-
bital and asymptotic stability. Orbital stability of ground states for NLS equations has been
widely studied during last decades; we mention the works of Cazenave and Lions [13],
Weinstein [83, 84], Grillakis, Shatah and Strauss [23, 24], Cuccagna [14], and Martel, Merle
and Tsai [60]. See references therein for a more detailed bibliography. On the other hand,
asymptotic stability of solitary waves and related scattering results have been studied in
[78, 80, 11, 72, 15, 74].

The problem we consider in this paper possesses a large physical and mathematical liter-
ature. In the next subsection we briefly describe the main results concerning the propagation
of solitons in slowly varying medium.

1.1 Statement of the problem, historical review

The dynamical problem of soliton interaction with a slowly varying medium is by now a clas-
sical problem in nonlinear wave propagation, representing a simple model of several physical
applications. By soliton-medium interaction we mean, loosely speaking, the following prob-
lem: In (1.1), consider a nonlinear function f = f(t, x, s), slowly varying in space and time,
possibly of small amplitude, of the form

f(t, x, s2) ∼ |s|m−1 as x→ ±∞, for all time;

(namely (1.1) behaves like a NLS equation at spatial infinity.) Consider a solitary wave solution
(note that this assertion must be actually proved) of the corresponding variable coefficient
equation (1.1) with this nonlinearity, at some early time. Then we expect that this solution
does interact with the medium, here represented by the nonlinearity f(t, x, s). In a slowly
varying medium this interaction, small locally in time, may be significantly important for the
long time behavior of the solution. The emerging solution after the interaction is precisely
the object of study. In particular, one considers if any change in size, position, or shape, even
creation or destruction of solitons, if any, after some large time, may be present.

Let us review some relevant works in this direction. Kaup and Newell [38] studied, via in-
verse scattering methods, slowly varying perturbations of integrable equations. In particular,
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they considered the following perturbed NLS equation

iut + uxx + |u|2u = a(εx)ux. (1.9)

Here the additional term a(εx)ux is intended to describe e.g. depth variations on a surface
gravity wave packet. The authors studied the case where a(εx) := εx2 and showed that, for
a small ε, the soliton shape remains unchanged, but both velocity and position parameters
evolve following a trapped trajectory of an harmonic oscillator at leading order.

Subsequently, this problem has been addressed in several other works and for different
integrable models. In [26], the author considered the time dependent NLS equation

iut + uxx + a(εt)|u|2u = 0, in Rt × Rx.

(See [26] for the physical description associated to this model.) Using a perturbative analysis
the author found an approximate solution up to second order in ε. This approximate solution
is less dispersive than the corresponding solution for the generalized KdV equation studied
in [38], in the sense that it does not present a tail behind the soliton solution as in the gKdV
case (see also [25, 65] for more details).

In this paper we address the problem of soliton dynamics in the case of a slowly varying,
inhomogeneous medium, but constant in time.

1.2 Setting and hypotheses

Let us come back to the general equation (1.1), and consider ε > 0 a small parameter. Along
this work we will assume that the nonlinearity f is sufficiently smooth and slowly varying
x-dependent function of the power cases, independent of time:

{
f(x, s2) := aε(x)|s|m−1, 2 ≤ m < 5,

aε(x) := a(εx); a ∈ C3(R) if m < 3, a ∈ C4(R) if m ≥ 3.
(1.10)

Concerning the function a we will assume that there exist constants K,µ > 0 such that




1 < a(r) < 2, a′(r) > 0, |a(k)(r)| ≤ Ke−µ|r| for all r ∈ R, k = 1, 2, 3, (4);

0 < a(r) − 1 ≤ Keµr, for all r ≤ 0, and

0 < 2 − a(r) ≤ Ke−µr for all r ≥ 0.

(1.11)

In particular, limr→−∞ a(r) = 1 and limr→+∞ a(r) = 2. We emphasize that the special choice
(1 and 2) of the limits is irrelevant for the results of this paper. The only necessary conditions
are that

0 < a−∞ = lim
r→−∞

a(r) < lim
r→+∞

a(r) =: a∞ < +∞.

Of course the decay hypothesis on a in (1.11) can be relaxed, and the results of this paper still
should hold, with more difficult proofs, for asymptotically flat potentials; but for brevity and
clarity of the exposition these issues will not be considered in this work.

Recapitulating, we will consider the following 1D aNLS equation
{
iut + uxx + aε(x)|u|m−1u = 0 in Rt × Rx,

2 ≤ m < 5; 0 < ε ≤ ε0; aε satisfying (1.11).
(1.12)

The main issue that we will study in this paper is the interaction problem between a
soliton and a slowly varying medium, here represented by the potential aε. In other words,
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we intend to study for (1.12) whether it is possible to generalize the well-known soliton-like
solution Q of NLS. Of course, it is by now well-known that in the case f(t, x, s2) = f(s2), and
under reasonable assumptions (see for example Berestycki and Lions [6]), there exist soliton-
like solutions, but our objective here will be the study of soliton solutions under a variable
coefficient equation.

To support our beliefs, note that at least heuristically, (1.12) behaves at infinity as similar
NLS equations: {

iut + uxx + |u|m−1u = 0 as x→ −∞,

iut + uxx + 2|u|m−1u = 0 as x→ +∞.
(1.13)

In particular, given v0 > 0, one should be able to construct a soliton-like solution u(t) of (1.12)
such that

u(t, x) ∼ Q(x− v0t)e
i
2
v0xei(1−

1
4
v2
0)t, as t→ −∞,

in some sense to be defined. Here Q is the standard soliton solution introduced in (1.8).

On the other hand, after passing the interaction region, by stability of the soliton, this
solution should behave like

∼ 2−
1

m−1Qc∞(x− v∞t− ρ∞(t))e
i
2
v∞xeiγ∞(t) + lower order terms in ε, as t→ +∞, (1.14)

for ε small enough. Here c∞ > 0, v∞ are unknown parameters, and ρ∞(t), γ∞(t) are small
perturbations. In fact, note that if v = v(t) is a solution of (1.2) then u(t) := 2−1/(m−1)v(t) is a
solution of

iut + uxx + 2|u|m−1u = 0 in Rt × Rx. (1.15)

In conclusion, this heuristic suggests that even if the potential varies slowly, the soliton
should experiment non trivial transformations on its shape, scaling and phase, of the same
order that of the amplitude of the potential a.

Before stating our main results, some important facts are in order. First, unfortunately
equation (1.12) is in general not anymore invariant under scaling and spatial translations.
Moreover, a nonzero solution of (1.12) might gain momentum, in the sense that, at least for-
mally, the quantity P [u](t) defined in (1.5) now satisfies the identity

∂tP [u](t) =
ε

m+ 1

∫

R

a′(εx)|u|m+1 ≥ 0. (1.16)

Therefore the momentum is always a non decreasing quantity. This simple fact will have
important consequences in our results, in particular we will obtain from this property the
stability and uniqueness of our solution. The hypothesis a′(·) > 0 is crucial in our arguments,
although we think it can be relaxed by considering for example a potential satisfying a′(r) > 0
for all |r| > r0. We will not pursue on these issues.

On the other hand, the mass M [u](t) defined in (1.3) and the novel energy

Ea[u](t) :=
1

2

∫

R

|ux|2(t, x) dx− 1

m+ 1

∫

R

aε(x)|u|m+1(t, x) dx (1.17)

remain formally constant for all time. Moreover, a simple balance of mass and energy at ±∞
allows to determine heuristically the limiting scaling and velocity parameters in (1.14), if we
suppose that the lower order terms in (1.14) are of zero mass at infinity. Indeed, we have (cf.
Appendix K)

M [Q] ∼ c
2

m−1
− 1

2
∞

2
2

m−1

M [Q], (1.18)
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and

E[Q] +
1

4
v2
0M [Q] ∼ c

2
m−1

+ 1
2

∞

2
2

m−1

E[Q] +
1

4
v2
∞
c

2
m−1

− 1
2

∞

2
2

m−1

M [Q], E[Q] 6= 0, (1.19)

This implies that c∞ ∼ 2
4

5−m > 1 and v∞ ∼ (v2
0 + 4 (5−m)

m+3 (c∞ − 1))1/2.

These formal arguments suggest the following definition.

Definition 1.1 (Pure generalized soliton-solution for aNLS).

Let v0 > 0 be a fixed number. We will say that (1.12) admits a pure generalized soliton-like
solution (of scaling equals 1 and velocity equals v0), if there exist C1 real valued functions
ρ = ρ(t), γ = γ(t) defined for all large times and a global in time H1(R) solution u(t) of (1.12)
such that

lim
t→−∞

‖u(t) −Q(· − v0t)e
i
2
(·)v0ei(1−

1
4
v2
0)t‖H1(R) = 0,

lim
t→+∞

‖u(t) − 2−
1

m−1Qc∞(· − v∞t− ρ(t))e
i
2
(·)v∞eiγ(t)‖H1(R) = 0,

with |ρ′(t)| ≪ v0 for all large times, and where c∞, v∞ > 0 are the scaling and velocity
predicted by the mass and energy conservation law, as in (1.18)-(1.19).

As we will see below, a standard method allows us to construct a generalized soliton
solution as t → −∞, as required in the above definition; however, it is expected that any
reasonable soliton-like solution would not be able to satisfy the second assertion, because of
some very small dispersive effects produced by the potential aε.

1.3 Previous analytic results on the soliton dynamics under slowly varying
medium

The problem of describing analytically the soliton dynamics of different integrable models
under a slowly varying medium has received some increasing attention during the last years.
In the framework of NLS equations with non constant potential, the first result in this direc-
tion was given by Bronski and Jerrard [10]. In this paper it is proved that in the semiclassical
limit, the soliton’s mass center obeys the Newton’s second law with external force given by
the potential’s gradient. Gustafson et al. [28, 29] and Holmer et al. [33, 34, 35] have consid-
ered the dynamics of a soliton under general potentials, for short times, namely t ∼ 1

ε . See
also [16] for a similar result in the case of a generalized Hartree equation. From these results it
seems clear that a deeper understanding of the soliton dynamics for very large times strongly
depends on the specific character of the considered potential, as we will see below.

A related problem is the study of the interaction soliton-medium for a generalized
Korteweg- de Vries equation, following the physical literature [42, 38, 37, 70]. Dejak, Jons-
son and Sigal in [17, 18] considered the long time dynamics of solitary waves (solitons) over
slowly varying perturbations of KdV and mKdV equations. Recently Holmer et al. have
improved these results, up to quadratic order in ε. Finally, we recall that in the case of the
generalized Korteweg- de Vries equation

ut + (uxx − λu+ aε(x)u
m)x = 0, in Rt × Rx, λ ≥ 0,

we have described in [65] the dynamics of a generalized soliton solution. We proved, among
other things, that no pure soliton solution is present for any small ε > 0 and λ > 0. In this
paper, our main objective is to extend some of these results to (1.12).
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1.4 Main Results

Let
Tε :=

1

v0
ε−1− 1

100 > 0, (1.20)

and

pm :=

{
1, if m ∈ [2, 3),

2, if m ∈ [3, 5).
(1.21)

The first parameter can be understood as the interaction time between the soliton and the
potential. In other words, at time t = −Tε the soliton should remain almost unperturbed,
and at time t = Tε the soliton should have completely crossed the influence region of the
potential. Note that the asymptotic v0 ∼ 0 depending on ε is a degenerate case and it will be
discarded for this work.

Second, the parameter pm measures the degree of accuracy of the main result, based in a
Taylor expansion of the nonlinearity involved. In other words, the smoother the nonlinearity,
the more accurate the main result.

In what follows, we assume the validity of above hypotheses, namely (1.10) and (1.11).
Our first result is a complete description, for all times, of the interaction soliton-potential for
the aNLS equation (1.12).

Theorem A 1 (Dynamics of a generalized soliton-solution for aNLS equation).

Assume that a(·) satisfies (1.11). Let 2 ≤ m < 5, v0 > 0, λ0 := 5−m
m+3 and pm be as in (1.21).

There exists a small constant ε0 > 0 such that for all 0 < ε < ε0 the following holds.

1. Existence of a soliton-like solution.

There exists a unique solution u ∈ C(R, H1(R)) of (1.12), global in time, such that

lim
t→−∞

‖u(t) −Q(· − v0t)e
i(·)v0/2ei(1−

1
4
v2
0)t‖H1(R) = 0, (1.22)

with conserved mass M [u](t) = M [Q] and energy Ea[u](t) = (1
4v

2
0 − λ0)M [Q].

2. Stability of interaction soliton-potential. Let

λ∞ := 2−
1

m−1 , c∞ := 2
4

5−m (> 1), v∞ := (v2
0 + 4λ0(c∞ − 1))

1
2 (> v0). (1.23)

There exist K > 0, and C1- functions ρ(t), γ(t) ∈ R defined for all t ≥ 1
2Tε such that the

function
w(t, x) := u(t, x) − λ∞Qc∞(x− v∞t− ρ(t))e

i
2
xv∞eiγ(t),

satisfies for all t ≥ 1
2Tε,

‖w(t)‖H1(R) + |ρ′(t)| + |γ′(t) − c∞ +
1

4
v2
∞| ≤ Kεpm . (1.24)

Remark 1.1. One may compare the above result with Theorems 1.1 and 1.2 in [65], where a
bound of order ε1/2 was showed (note that pm ≥ 1). Our present result is better due to the
absence of a dispersive tail behind the soliton, precisely of order ε1/2 in H1(R), and present in
the gKdV case. A first mathematical treatment this phenomenon can be found in [57]. Let us
finally recall that such dispersive elements in a soliton solution are not present in the case of
a pure NLS or gKdV equation.
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Remark 1.2. We do not discard the existence of very small solitons after the interaction, with
size of order at most εpm in H1(R). This question is also related to the question of scattering
modulo-solitons.

One may wonder whether Theorem A is available for other potentials. A first answer in
that direction, is the following remark.

Remark 1.3 (Decreasing potential). Pick now a potential a(·) and an initial velocity v0 > 0
satisfying e.g. a′(s) < 0,

1 = lim
s→−∞

a(s) > a(s) > lim
t→+∞

a(s) =
1

2
,

and v2
0 > 4λ0(1 − 2−

4
5−m ). Then there exists a solution u#(t) satisfying (1.22), and (1.24) for

times t ∼ Tε (and a little bit more), with the following minor modifications:

λ∞ := 2
1

m−1 (> 1), c∞ := 2−4/(5−m)(< 1), and v∞ := (v2
0 + 4λ0(c∞ − 1))1/2.

The uniqueness and stability for large times of this solution is not known, mainly due to the
fact that the momentum law has now the opposite sign:

∂tP [u](t) =
ε

m+ 1

∫

R

a′(εx)|u|m+1 ≤ 0.

What happens in the regime v2
0 ≤ 4λ0(1 − c∞) is also an interesting open question. Formal

computations suggest a possible reflection of the soliton in the case of small initial velocity.
We hope to consider some of these situations in a forthcoming publication.

We believe that the analysis in the interaction region can be carried out in a general situ-
ation, under asymptotically flat potentials. However, stability and uniqueness properties are
probably highly dependent on the nonlinearity considered.

Remark 1.4 (Non existence of pure soliton-like solution). An important problem arises from
the above results. Is the solution u(t) constructed in Theorem A above an exactly pure soli-
tary wave for the aNLS equation? (cf. Definition 1.1.) This question is equivalent to decide
whether

lim
t→+∞

‖w(t)‖H1(R) = 0.

We have been unable to solve this problem, due to the lack of backwards stability for large
times5. In other words, if we suppose ‖w(T )‖H1(R) ≤ α for small α and very large time
T ≫ Tε, we do not know if a suitable modulation of w(t) is still small (of order α) at time
Tε. This result is equivalent to obtain stability for a decreasing potential a(εx), also an open
question (see Remark 1.3).

Let us recall that Theorem 1.3 in [65] puts in evidence the following conjecture: the pres-
ence of a non constant potential induces on any generalized solitary wave nontrivial disper-
sive effects, contrary to the standard NLS and gKdV equations. We believe that the same
phenomenon is present in the Schrödinger case.

Remark 1.5 (Time depending potentials). As expected, our results are also valid, with easier
proofs, for the following time dependent gKdV equation:

iut + uxx + a(εt)|u|m−1u = 0, in Rt × Rx. (1.25)

5Note that in [65] one has backward stability for all λ > 0.
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Here a satisfies (1.11) now in the time variable. Note that this equation is invariant under scal-
ing and space translations. In addition, the massM [u] and momentum P [u] remain constants
and the energy

Ẽ[u](t) :=
1

2

∫

R

|ux|2 −
a(εt)

m+ 1

∫

R

|u|m+1

satisfies

∂tẼ[u](t) = −εa
′(εt)

m+ 1

∫

R

|u|m+1.

Furthermore, Theorem A still holds with λ∞ = 2−1/(m−1), and c∞ = 24/(5−m). We left the
details to the reader.

1.5 The two dimensional case

A natural question arising from the above results is their extension to higher dimensions.
Very few results are valable on this topic, apart from the aforementioned works [29, 28].

Here we shall consider the two dimensional case with a potential a(·) depending only on
one spatial variable. Indeed, let x = (x1, x2) ∈ R

2. For ε > 0 small, consider the following
aNLS equation

iut + ∆u+ a(εx1)|u|m−1u = 0 in Rt × R
2
x, 2 ≤ m < 3. (1.26)

We assume a = a(r) satisfying (1.11). The exponentm is chosen to ensure a subcritical regime
in L2 and global wellposedness with L2 and H1 data (cf. [22]). The mass M(t), energy Ea(t)
and –vectorial– momentum P (t) in (1.3)-(1.5) are defined in the usual way. From the above
assumptions we have mass and energy formally conserved, and

∂tP [u](t) =
εe1
m+ 1

∫

R

a′(εx1)|u|m+1(t, x)dx ≥ 0. (1.27)

Here e1 is the first unitary vector in R
2.

Concerning solitons solutions, given x0, ṽ0 ∈ R
2, γ0 ∈ R and c0 > 0, there exists a solution

of the two-dimensional version of (1.2) of the form

u(t, x) := Qc0(x− x0 − ṽ0t)e
i(c0− 1

4
|ṽ0|2)teiγ0e

i
2
ṽ0·x, (1.28)

with Qc(s) := c
1

m−1Q(c1/2s). Here Q is the unique (modulo translations) Schwartz function
satisfying the second order nonlinear elliptic equation

∆Q−Q+Qm = 0, Q > 0, |Q(x)| ≤ Ke−|x|. (1.29)

For this case, we have the following positive result.

Theorem B 1 (Dynamics of a two-dimensional generalized soliton-solution).

Assume the preceding hypotheses. Let 2 ≤ m < 3, and v0 > 0. There exists a small constant
ε0 > 0 such that for all 0 < ε < ε0 the following holds.

1. Existence of a soliton-like solution.

There exists a unique solution u ∈ C(R, H1(R2)) of (1.26), global in time, such that

lim
t→−∞

‖u(t) −Q(· − v0e1t)e
i(·)v0e1/2ei(1−

1
4
v2
0)t‖H1(R2) = 0.
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2. Stability of interaction soliton-potential.

Let λ∞ = 2−
1

m−1 , c∞ := 22/(3−m), and

v∞ = v∞(v0) := (v2
0 + α0(c∞ − 1))

1
2 , with α0 :=

4(3 −m)

m+ 1
×

∫
Qm+1

∫
Q2

. (1.30)

There exist K > 0 and C1- functions γ(t) ∈ R, ρ(t) ∈ R
2 defined for all t ≥ 1

2Tε such that the
function

w(t, x) := u(t, x) − λ∞Qc∞(x− v∞e1t− ρ(t))e
i
2
x·v∞e1eiγ(t)

satisfies for all t ≥ Tε,

‖w(t)‖H1(R2) + |ρ′(t)| + |γ′(t) − c∞ +
1

4
v2
∞| ≤ Kε. (1.31)

Remark 1.6. The proof of this theorem is close the proof of Theorem A. Note that uniqueness
and stability follow from the fact that for any constant v > 0,

∂t{ve1 · P [u](t)} ≥ 0. (1.32)

In section 4 we sketch the main lines of the proof.

Remark 1.7. The restriction to the two dimensional case is a consequence of the lack of smooth-
ness for the power nonlinearity in higher dimensions. We believe that the above results re-
main valid for a sufficiently smooth nonlinearity of the form f(x, |u|2)u (e.g. f(x, s2) :=
aε(x)(s

2 + a0s
4), with a0 small enough in the one dimensional case.)

Last, thanks to the invariance of (1.26) with respect to Galilean boosts on the x2 direction
we obtain the following striking result.

Corolary C 1 (Description of the soliton dynamics for a general incident velocity).

Let ṽ = (ṽ1, ṽ2) ∈ R
2 be an initial velocity such that ṽ · e1 > 0. Then Theorem B holds with

the obvious modifications, and with ε0 independent of ṽ2. Moreover, the final velocity is given by
ṽ∞ := (v∞(ṽ1), ṽ2).

Remark 1.8. Note that in this situation one has the following refraction law among the two
velocities and the angles of incidence (θ−∞) and refraction (θ+∞):

|ṽ| sin θ−∞ = |ṽ∞| sin θ+∞.

Proof of Corolary C. Note that ṽ1 > 0. Since any solution of (1.26) is invariant under the
Galilean transformation

G[u](t, x) = G[u](t, x1, x2) = u(t, x1, x2 − ṽ2t)e
i
2
x2ṽ2e−

i
4
ṽ2
2t,

we may suppose without loss of generality that ṽ = v0e1, for v0 = |ṽ| > 0. We apply Theorem
B with this new data. The conclusion follows at once.

Remark 1.9. The proof of non existence of pure soliton-like solutions for this case remains an
open problem.

Before starting the computations, let us explain the main ideas behind the proof of Theo-
rems A and B.
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1.6 Main ideas of the proof

Similarly to [65], the proof of our results are mainly based on the construction of a new ap-
proximate solution of (1.12) in the interaction region, see e.g. [49, 53, 58, 57, 64] for similar
computations. The construction requires several new computations, up to second order in
ε in the best cases, in order to describe with enough accuracy the behavior of the soliton
solution.

The idea is as follows: one separates the analysis among three different time intervals:
t ≪ −ε−1, |t| ≤ K

ε and ε−1 ≪ t. On each interval the solution possesses a specific behavior,
as is now described.

Indeed, in the first interval of time we prove that u(t) remains very close to a soliton-
solution with no change in the scaling, velocity, phase and shift parameters. This result is
possible for negative very large times, where the soliton is still far from the interacting region
|t| ≤ ε−1, and the potential is essentially a ≡ 1. The idea is to use a compactness property of
the soliton solution to get exponential decay in time of the convergence at infinity in (1.22).

For the second regime, namely |t| ≤ ε−1, the soliton-potential interaction leads the dy-
namics of u(t). The novelty here is the construction of an approximate solution of (1.12) with
high order of accuracy such that (a) at time t ∼ −ε−1 this solution is close to a modulated
soliton solution and therefore to u(t); (b) it describes the soliton-potential interaction inside
this interval; and (c) it is close to u(t) in the whole interval [−ε−1, ε−1], uniformly on time,
modulo a modulation on some degenerate directions.

Finally, for times t ≫ ε−1, some well known stability properties allow to establish the
stability of the solution u(t) as a soliton-like solution, and therefore the proof of Theorem A.
These arguments are easy to extrapolate to higher dimensions, giving the proof of Theorem
B.

Notation. Along this paper, both C,K, µ > 0 will denote fixed constants, independent of ε,
and possibly changing from one line to the other.

Finally, some words about the organization of this paper. First in Section 2 we sketch the
proof of Theorem A. Section 3 is devoted to the proof of the main ingredients of Theorem A.
In Section 4 we prove Theorem B. Finally Appendices H and I are devoted to the construction
of the soliton-like solution for negative large times and to prove the asymptotic behavior as
t→ +∞.

2 Proof of Theorem A

The proof is very similar to the proof of Theorem 1.2 in [65], and it is based in three indepen-
dent results: Propositions 2.1, 2.2 and 2.3. Assuming these three results, the proof of Theorem
A is straightforward. For the proof of each Proposition, we did as follows. In Section 3 we
prove Proposition 2.2, and in Appendices H and I we prove Propositions 2.1 and 2.3.

Step 1. Construction of a soliton-like solution at infinity. First we prove the existence and
uniqueness of a pure soliton-like solution for (1.12) for t→ −∞. See e.g. [65], Theorem 1.1 for
a related result.

Proposition 2.1 (Existence and uniqueness of a pure soliton-like solution).
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There exists ε0 > 0 such that for any 0 < ε < ε0, there exists a unique solution u ∈ C(R, H1(R))
of (1.12) such that

lim
t→−∞

‖u(t) −Q(· − v0t)e
i
2
(·)v0ei(1−

1
4
v2
0)t‖H1(R) = 0, (2.1)

with massM [u](t) = M [Q] and energy Ea[u](t) = (1
4v

2
0 −λ0)M [Q].Moreover, there exist constants

K,µ > 0 such that for all t ≤ −1
2Tε,

‖u(t) −Q(· − v0t)e
i
2
(·)v0ei(1−

1
4
v2
0)t‖H1(R) ≤ Keεµt. (2.2)

In particular,

‖u(−Tε) −Q(· + v0Tε)e
i
2
(·)v0e−i(1− 1

4
v2
0)Tε‖H1(R) ≤ Ke−µε−

1
100 ≤ Kε10, (2.3)

provided 0 < ε < ε0 small enough.

Proof. See Appendix H.

Note that the mass and energy identities above follow directly from (2.1), Appendix K
and the energy conservation law from Proposition 3.1. Hereafter, we consider the solution
u(t) given by the above Proposition.

Step 2. Interaction soliton-potential. The next step in the proof consists on the study of the
region of time [−Tε, Tε], which is the zone where the interaction soliton-potential governs the
dynamics.

Recall the definition of λ∞, c∞ and v∞ in (1.23), and pm in (1.21).

Proposition 2.2 (Dynamics of the soliton in the interaction region).

Suppose v0 > 0. There exist a constant ε0 > 0 such that the following holds for any 0 < ε < ε0.
Let u = u(t) be a globally defined H1(R) solution of (1.12) such that

‖u(−Tε) −Q(· + v0Tε)e
1
2
i(·)v0e−i(1− 1

4
v2
0)Tε‖H1(R) ≤ Kεpm . (2.4)

Then there exist K0 = K0(K) > 0, and ρε, γε ∈ R such that

‖u(Tε) − λ∞Qc∞(· − ρε)e
i
2
(·)v∞eiγε‖H1(R) ≤ K0ε

pm , (2.5)

and
99

100
v0Tε ≤ ρε ≤

101

100
(2v∞ − v0)Tε. (2.6)

Proof. See Section 3 for a proof of this Proposition and some additional but not less important
properties related to this result.

We apply the above Proposition as follows. From (2.3), one has directly (2.4). Then the
solution u(t) satisfies (2.5) and (2.6). We are done.

Last step. Long time behavior. The final step of the proof is the use of the following result.

Proposition 2.3 (Stability in H1(R)).

Suppose 2 ≤ m < 5. There exists ε0 > 0 such that if 0 < ε < ε0 the following hold. Suppose that
for some time t1 ≥ 1

2Tε, v0t1 ≤ X0 and γ0 ∈ R and K > 0,

‖u(t1) − λ∞Qc∞(· −X0)e
i
2
xv∞eiγ0‖H1(R) ≤ Kεpm . (2.7)
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where u(t) is a global H1-solution of (1.12).

Then there exist K0 > 0 and C1-functions ρ2(t), γ2(t) ∈ R defined in [t1,+∞) such that

w(t) := u(t) − λ∞Qc∞(· − v∞t− ρ2(t))e
i
2
(·)v∞eiγ2(t),

satisfies for all t ≥ t1,

‖w(t)‖H1(R) + |ρ′2(t)| + |γ′2(t) − c∞ +
1

4
v2
∞| ≤ K0ε

pm , (2.8)

where, for some K > 0,

|ρ2(t1) + v∞t1 −X0| + |γ2(t1) − γ0| ≤ Kεpm .

Proof. For the proof, see Appendix I.

End of proof of Theorem A.

We conclude in the following form: define t1 := Tε,X0 := ρε and γ0 := γε. From (2.5)-(2.6)
we have (2.7) and therefore (2.8). By renaming ρ(t) := ρ2(t), γ(t) := γ2(t), we have that from
(2.8) and (1.23) we obtain (1.24). The proof is now complete, provided Propositions 2.1, 2.2
and 2.3 are valid.

3 Proof of Proposition 2.2

The proof of Proposition 2.2 is divided in four steps. In the first part, we introduce some basic
notation. Next, in Step 2 we construct an approximate solution ũ solving (1.12) up to second
order in ε in the best cases. Then in Step 3 we prove that ũ is close to an actual solution up to
order εpm in the whole interval [−Tε, Tε]. Finally, in Step 4 we conclude.

Step 1. Preliminaries.

3.1 Cauchy Problem

First we recall the local well-posedness theory for the Cauchy problem associated to (1.12).

Let u0 ∈ H1(R). We consider the following initial value problem
{
iut + uxx + aε(x)|u|m−1u = 0 in Rt × Rx, 2 ≤ m < 5,

u(t = 0) = u0.
(3.1)

Following [12], thanks to the subcritical character of the nonlinearity and the bounds on the
potential, we have the following result.

Lemma 3.1 (Local and global well-posedness in H1(R), see [12]).

Suppose u0 ∈ H1(R). Then there exist a unique solution u ∈ C(R, H1(R)) of (3.1). Moreover, for
any t ∈ R the massM [u](t) and the energy Ea[u](t) from (1.17) remain constant, and the momentum
P [u](t) defined in (1.5) obeys (1.16). The same result is valid for L2(R) data.

Proof. The proof is standard, and it is based in a Picard iteration procedure. For the proof see
Example 3.2.11, Theorem 4.3.1, Corollary 4.3.3 and Corollary 6.1.2 in [12].
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We will also need some properties of the corresponding linearized operator of (1.12). For
the proofs, see e.g. [53].

3.2 Spectral properties of the linear NLS operator

Fix c > 0, m = 2, 3 or 4, and let

L+w(y) := −wyy + cw −mQm−1
c (y)w, and L−w(y) := −wyy + cw −Qm−1

c (y)w; (3.2)

where w = w(y). Then one has

Lemma 3.2 (Spectral properties of L±, see [54]).

The operators L± defined (on L2(R)) by (2.9) have as domain of definition the space H2(R). In
addition, they are self-adjoint and satisfy the following properties:

1. First eigenvalue. There exist a unique λm > 0 such that L+Q
m+1

2
c = −λmQ

m+1
2

c .

2. The kernel of L+ and L− is spawned by Q′
c and Qc respectively. Moreover,

ΛQc := ∂c′Qc′
∣∣
c′=c

=
1

c

[ 1

m− 1
Qc +

1

2
xQ′

c

]
, (3.3)

satisfies L+(ΛQc) = −Qc. Finally, the continuous spectrum of L± is given by σcont(L±) =
[c,+∞).

3. Inverse. For all h = h(y) ∈ L2(R) such that
∫

R
hQ′ = 0 (resp.

∫
R
hQ = 0), there exists a

unique h+ ∈ H2(R) (resp. h− ∈ H2(R)) such that
∫

R
h+Q

′ = 0 (resp.
∫

R
h−Q = 0) and

L+h+ = h (resp L−h− = h). Moreover, if h is even (resp. odd), then h± is even (resp. odd).

4. Regularity in the Schwartz space S. For h ∈ H2(R), L±h ∈ S implies h ∈ S.

5. Coercivity. There exists ν0 > 0 such that the following is satisfied.

(a) For w = w(y) ∈ H1(R), define

B[w,w] :=
1

2

∫

R

(|wy|2 + |w|2 −Qm−1
c |w|2 − (m− 1)Qm−1

c (Rew)2)

Suppose that Im
∫

R
w̄Qc = Re

∫
R
w̄Q′

c = 0. Then one has

B[w,w] ≥ ν0

∫

R

|w|2 −K|Re

∫

R

w̄Qc|2.

for some K > 0.

(b) Suppose now that for v 6= 0, and θ ∈ R one has

Re

∫

R

w̄Q′
ce

iyv/2eiθ = Im

∫

R

w̄Qce
iyv/2eiθ = 0.

Then
B̃[w,w] ≥ ν0

∫

R

|w|2 −K|Re

∫

R

w̄Qce
iyv/2eiθ|2,

where B̃[w,w] := B[weiyv/2eiθ, weiyv/2eiθ].
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We finish this paragraph with a last definition. We denote by Y the set of C∞ functions f
such that for all j ∈ N there exist Kj , rj > 0 such that for all x ∈ R we have

|f (j)(x)| ≤ Kj(1 + |x|)rje−
1
2
|x|. (3.4)

Recall that Qc is a function in Y , for c ≥ 1
4 .

Step 2. Construction of the approximate solution.

We look for ũ(t, x), an approximate solution for (1.1), carrying out a specific structure. We
want ũ as a suitable modulation of a solitary wave, solution of the NLS equation

iut + uxx + |u|m−1u = 0, (3.5)

plus some extra terms, of small order in ε. Indeed, for t ∈ [−Tε, Tε], let

ρ(t), γ(t) ∈ R, c(t), v(t) > 0,

to be fixed later. Consider

y := x− ρ(t), and R̃(t, x) :=
Qc(t)(y)

ã(ερ(t))
eiΘ(t,x), (3.6)

where

ã := a
1

m−1 , Θ(t, x) :=

∫ t

0
c(s)ds+

1

2
v(t)x− 1

4

∫ t

0
v2(s)ds+ γ(t). (3.7)

In addition, we will search for bounded parameters (c, v, ρ, γ) satisfying the following con-
straints:

1

2
≤ c(t) ≤ 25,

1

2
v0 ≤ v(t) ≤ v0 + 25, |ρ′(t) − v(t)| ≤ v0

100
, γ(t) ∈ R. (3.8)

By now we only need these hypotheses. Later we will construct a quadruplet (c, v, γ, ρ) with
better estimates, see (3.63)-(3.64).

On the other hand, the form of the ansatz ũ(t, x) is the sum of the soliton plus a small
correction term:

ũ(t, x) := R̃(t, x) + w(t, x), (3.9)

where the correction term depends on the nonlinearity we consider:

w(t, x) :=





ε(A1,c(t, y) + iB1,c(t, y))e
iΘ, in the case 2 ≤ m < 3,∑

k=1,2

εk(Ak,c(t, y) + iBk,c(t, y))e
iΘ, for the case 3 ≤ m < 5, (3.10)

where Ak,c(t, y) := Ak(t,
√
c(t)y), and Ak, Bk are unknown real valued functions to be deter-

mined.

Let us be more precise. Given k = 1 (for m < 3), or k = 1 or 2 for m ≥ 3, we will search
for functions (Ak,c(t, y), Bk,c(t, y)) such that for all t ∈ [−Tε, Tε] and for some fixed constants
K,µ > 0,

‖Ak,c(t, ·)‖L∞(R) + ‖Bk,c(t, ·)‖L∞(R) ≤ Ke−µε|ρ(t)|, Ak,c(t, ·), Bk,c(t, ·) ∈ Y. (3.11)

We want to measure the size of the error produced by inserting ũ as defined in (3.10) in
the equation (1.1). For this purpose, let

S[ũ](t, x) := iũt + ũxx + aε(x)|ũ|m−1ũ. (3.12)

The next result gives the error associated to such an approximated solution.
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Proposition 3.3 (Decomposition of S[ũ]).

Let ΛAc := ∂cAc. For every t ∈ [−Tε, Tε], one has the following nonlinear decomposition of the
error term S[ũ].

1. Case 2 ≤ m < 3.

S[ũ](t, x) := F0(t, y)e
iΘ + S̃[ũ](t, x)

:=
[
F0(t, y) + εF1(t, y) + ε2F2(t, y) + ε3f(t)Fc(y)

]
eiΘ, (3.13)

where

F0(t, y) := −1

2
(v′(t) − εf1(t))yũ+ i(c′(t) − εf2(t))∂cũ

−(γ′(t) +
1

2
v′(t)ρ(t))ũ+ i(ρ′(t) − v(t))∂ρũ, (3.14)

with f1(t) = f1(c(t), ρ(t)) and f2(t) = f2(c(t), v(t), ρ(t)) given by

f1(t) :=
8a′(ερ(t))c(t)

(m+ 3)a(ερ(t))
, f2(t) :=

4a′(ερ(t))c(t)v(t)
(5 −m)a(ερ(t))

; (3.15)

F1(t, y) := F1(t, y) + iG1(t, y) −
[
L+(A1,c) + iL−(B1,c)

]
, (3.16)

and

F1(t, y) :=
a′(ερ(t))
ãm(ερ(t))

yQc(y)
[
Qm−1

c (y) − 4c(t)

m+ 3

]
, (3.17)

G1(t, y) :=
a′(ερ(t))v(t)
ãm(ερ(t))

[ 4c(t)

5 −m
ΛQc(y) −

1

m− 1
Qc(y)

]
. (3.18)

Furthermore, suppose that (A1,c, B1,c) satisfy (3.11). Then

‖ε2(F2(t, ·) + εf(t)Fc)e
iΘ‖H1(R) ≤ Kε2(e−εµ|ρ(t)| + ε), (3.19)

uniformly in time.

2. Case 3 ≤ m < 5. Define ∂ρũ := ∂ρR̃− wy. Here one has the improved decomposition

S[ũ](t, x) := F0(t, y)e
iΘ + S̃[ũ](t, x)

:=
[
F0(t, y) + εF1(t, y) + ε2F2(t, y) + ε3F3(t, y) + ε4f(t)Fc(y)

]
eiΘ,(3.20)

with F0 given now by

F0(t, y) := −1

2
(v′(t) − εf1(t))yũ+ i(c′(t) − εf2(t))∂cũ

−(γ′(t) +
1

2
v′(t)ρ(t) − ε2f3(t))ũ+ i(ρ′(t) − v(t) − ε2f4(t))∂ρũ,(3.21)

with f1, f2 as in (3.15), and for α(·), β(·) ∈ R,

f3(t) = f3(c(t), v(t), ρ(t)) := (αI + αII
v2(t)

c(t)
)
a′′

a
(ερ(t)) + (αIII + αIV

v2(t)

c(t)
)
a′2

a2
(ερ(t)),

(3.22)
and

f4(t) = f4(c(t), v(t), ρ(t)) :=
{
βI
a′′

a
(ερ(t)) + βII

a′2

a2
(ερ(t))

}v(t)
c(t)

. (3.23)
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In addition,

Fk(t, y) := Fk(t, y) + iGk(t, y) −
[
L+(Ak,c) + iL−(Bk,c)

]
, k = 1, 2; (3.24)

with F1, G1 given by (3.17)-(3.18), and

F2 :=
a′′

2ãm
y2Qm

c +m
a′

a
Qm−1

c yA1,c −
1

2
f1yA1,c −

1

ε
(B1,c)t − f2ΛB1,c

+
1

2
(m− 1)ãQm−2

c (mA2
1,c +B2

1,c) −
f3(t)

ã
Qc, (3.25)

and

G2 :=
1

ε
(A1,c)t + f2ΛA1,c +

a′

a
Qm−1

c yB1,c −
1

2
f1yB1,c

+(m− 1)ãQm−2
c A1,cB1,c −

f4(t)

ã
Q′

c; (3.26)

Moreover, suppose that (Ak,c, Bk,c) satisfy (3.11) for k = 1 and 2. Then

‖ε3(F3(t, ·) + εf(t)Fc)e
iΘ‖H1(R) ≤ Kε3(e−εµ|ρ(t)| + ε), (3.27)

uniformly in time.

Proof. See Appendix J.

Remark 3.1 (Important notation). In what follows, and in order to simplify the notation, we
will assume that decomposition (3.20) is valid for all 2 ≤ m < 5, with the obvious modifi-
cations; in particular, we assume f3 ≡ f4 ≡ 0 in (3.22)-(3.23), for the case 2 ≤ m < 3. This
simplification will be useful in Proposition 3.10 below, where a stability results is proved.

From (3.13)-(3.20) we see that in order to improve the accuracy of ũ as a solution of (1.12),
we have to eliminate some terms Fk. The next subsection is devoted to the proof of the
following assertion: we can choose dynamical parameters (c, v, ρ, γ) in the interval [−Tε, Tε]
in such a way that F0(t, ·) ∼ 0.

3.3 Existence for a simplified dynamical system

Our first result concerns the existence of solutions of the differential system involving the
evolution of velocity, scaling and phase parameters. This system is given by imposing the
condition F0 ≡ 0.

We we are able to prove existence and long time behavior for an approximated differential
system given by F0 ≡ 0. Indeed,

Lemma 3.4 (Existence of approximated dynamical parameters, case 2 ≤ m < 5).

Let v0 > 0, λ0, a(s) be as in Theorem A and (1.11). There exists a unique solution (C, V, P,G)
defined for all t ≥ −Tε with the same regularity than a(ε·), of the following nonlinear system of
differential equations (cf. (3.14))





V ′(t) = εf1(C(t), U(t)), V (−Tε) = v0,

C ′(t) = εf2(C(t), V (t), U(t)), C(−Tε) = 1,

U ′(t) = V (t), U(−Tε) = −v0Tε,

H ′(t) = −1

2
V ′(t)U(t), H(−Tε) = 0.

(3.28)

In addition, for all t ∈ [−Tε, Tε],
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1. C(t) is strictly increasing with 1 ≤ C(t) ≤ C(Tε) andC(Tε) = c∞+O(ε10) = 2
4

5−m +O(ε10).

2. V (t) is strictly increasing with v0 ≤ V (t) ≤ V (Tε), and where

V (Tε) = v∞ +O(ε10) = (v2
0 + 4λ0(c∞ − 1))1/2 +O(ε10),

v0Tε ≤ U(Tε) ≤ (2v∞ − v0)Tε.

Remark 3.2. Note that (C(t), V (t), U(t), H(t)) satisfy (3.8) and therefore is a admissible set of
parameters for ũ.

Proof of Lemma 3.4. The existence of a local solution of (3.28) is consequence of the Cauchy-
Lipschitz-Picard theorem.

Now, in order to prove global existence of such a solution, we derive some a priori esti-
mates. Note that from the first equation in (3.28) we have C strictly increasing in time with
C(t) ≥ 1, t ∈ [−Tε, Tε]. Moreover, after integration, we have

C(t) =
a4/(5−m)(εU(t))

a4(5−m)(−εv0Tε)
= a4/(5−m)(εU(t))(1 +O(ε10)). (3.29)

Since 1 ≤ a ≤ 2, one has that C is bounded and globally well defined with

1 ≤ C(t) < c∞ = 2
4

5−m , t ≥ −Tε.

Moreover, from the hypothesis on a (cf. (1.11)), it is easy to see that C(Tε) = c∞ +O(ε10).

On the other hand, from the second equation in (3.28), we have V strictly increasing in
time. Replacing (3.29), and after multiplication by V (t), one has

V (t)V ′(t) =
8

m+ 3
a

m−1
5−m (εU(t))a′(εU(t))V (t)a−

4
5−m (−εv0Tε)).

After integration in [−Tε, t) we obtain V 2(t) = v2
0 + 4λ0[C(t) − 1]. This relation implies the

global existence of V and the uniform bound

v0 ≤ V (t) < v∞ := (v2
0 + 4λ0(c∞ − 1))1/2; t ≥ −Tε.

In addition, one has V (Tε) = v∞ +O(ε10).

Remark 3.3. Note that the parabola C(t) = (1 − v2
0

4λ0
) + V 2(t)

4λ0
and the bound (3.29) allow to

describe in great detail the dynamics of the soliton solution. In particular, in the case of a
decreasing potential a(εx) as in Remark 1.3, with initial velocity v0 > 0 small enough (de-
pending on minR a), one can predict the reflection of the soliton.

In order to construct a reasonable approximate solution describing the interaction we
need to improve the error term S[ũ] from Proposition 3.3 to the second order in ε. This is
the objective of the next subsection.
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3.4 Resolution of the first order system

In this paragraph we eliminate the term F1 in (3.13)-(3.20). According to Proposition 3.3, this
can be done for any 2 ≤ m < 5. We are then reduced to find (A1,c(t, y), B1,c(t, y)) satisfying,
for all (t, y),

(Ω1)

{
L+A1,c(t, y) = F1(t, y),

L−B1,c(t, y) = G1(t, y).

When solving problem (Ω1), a key property will be the separability between the variables t
and y on the source terms F,G. This is a surprising property, not necessarily true for more
complicated nonlinearities others than pure powers. Let us recall that this property is also
present in the case of generalized KdV equations, see [65].

3.4.1 Resolution of the linear problem (Ω1)

Recall that from Proposition 3.3 and (3.24) the system (Ω1) is more explicitly given by

(Ω1)





L+A1,c(t, y) =
a′

ãm
(ερ(t))yQc(y)(Q

m−1
c (y) − 4c(t)

m+ 3
),

L−B1,c(t, y) =
1

5 −m

a′

ãm
(ερ(t))v(t)(Qc(y) + 2yQ′

c(y)).
(3.30)

This system is solvable, as shows the following

Lemma 3.5 (Resolution of (Ω1)).

Suppose (c(t), v(t), ρ(t), γ(t)) satisfy (3.8) for t ∈ [−Tε, Tε]. Then both right hand sides in (3.30)
are in Y , and there exists a unique solution (A1,c(t, y), B1,c(t, y)) of (Ω1) satisfying (3.11), given by

A1,c(t, y) =
a′(ερ(t))

(m+ 3)ãm(ερ(t))c(t)

{
c(t)y(yQ′

c(y) −Qc(y)) + ξQ′
c(y)

}
,

B1,c(t, y) = − a′(ερ(t))v(t)
2(5 −m)ãm(ερ(t))c(t)

(c(t)y2 + χ)Qc(y). (3.31)

for ξ, χ given by6

ξ := −
∫

R
(1
2Q

2 + y2Q′2)∫
R
Q′2 = − m+ 7

2(m− 1)
+ χ, χ := −

∫
R
y2Q2

∫
R
Q2

.

Moreover, A1,c(t, ·) is odd and B1,c(t, ·) is even, and satisfy

∫

R

A1,c(t, y)Q
′
c(y)dy =

∫

R

A1,c(t, y)Qc(y)dy = 0,

∫

R

B1,c(t, y)Q
′
c(y)dy =

∫

R

B1,c(t, y)Qc(y)dy = 0. (3.32)

Proof. From (3.8) we have F1, G1 ∈ Y . Using Lemma 3.2, we have the existence of the required
solution provided the following two orthogonality conditions

∫

R

F1(t, y)Q
′
c(y)dy =

∫

R

G1(t, y)Qc(y)dy = 0,

6See Appendix K for more details on the computations.
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are valid for all t ∈ [−Tε, Tε]. This is an easy computation. Indeed, up to a function of time,
we have (cf. Appendix K)

∫

R

F1Q
′
c =

∫

R

yQ′
cQc(Q

m−1
c − 4c

m+ 3
) = c2θ+1

[
− 1

m+ 1

∫

R

Qm+1 +
2

m+ 3

∫

R

Q2
]

= 0.

On the other hand,
∫

R

G1Qc =

∫

R

Qc(
4c

5 −m
ΛQc −

1

m− 1
Qc) =

[ 4θ

5 −m
− 1

m− 1

]
c2θ

∫

R

Q2 = 0.

The fact that A1,c, B1,c in (3.31) solve (Ω1) is a simple verification. This finishes the proof.

Remark 3.4. Note that (3.31) can be written as follows (we skip the dependence on t of v and
c, and the dependence on ερ(t) of the function a)

A1,c(t, y) =
a′

ãm
c

1
m−1

− 1
2A1(

√
cy), B1,c(t, y) =

a′v
ãm

c
1

m−1
−1B1(

√
cy), (3.33)

for some A1, B1 ∈ Y not depending on c. More precisely,

A1(y) :=
1

m+ 3
(y(yQ′ −Q) + ξQ′), B1(y) := − 1

2(5 −m)
(y2 + χ)Q. (3.34)

3.5 Improvement of the approximate solution

In this paragraph we consider the case m ≥ 3. Our objective is to profit of the smoothness
of the nonlinearity in this case (see Proposition 3.3) to go beyond on the computations and
solve one more linear system –denoted by (Ω2)–, and equivalent to solve F2 ≡ 0 in (3.20). As
a consequence, the error term S[ũ] in (3.20) will become or order ∼ ε3 (see (3.27) and Lemma
3.7 below.)

3.5.1 Improved description of F2 and G2

Before solving the second order system F2 ≡ 0, we need to simplify some useless terms
appearing in the description of F2 and G2 given in (3.25)-(3.26). Indeed, note that terms like
(A1,c)t or (B1,c)t can be expressed by using the system of equations given by F0 ≡ 0, as we
state now.

Claim 8 (Simplified description of F2 and G2).

We have
F2(t, y) := F̃2(t, y) +OH1(R)(ε|ρ′ − v − ε2f4|e−εµ|ρ(t)|) (3.35)

and
G2(t, y) = G̃2(t, y) +OH1(R)(ε|ρ′ − v − ε2f4|e−εµ|ρ(t)|) (3.36)

where F̃2(t, ·) is even and G̃2(t, ·) is odd. More precisely, they have the form

F̃2(t, y) =
a′′

ãm
(F I

2,c(y) +
v2

c
F II

2,c(y)) +
a′2

ã2m−1
(F III

2,c (y) +
v2

c
F IV

2,c (y)) − f3

ã
Qc(y), (3.37)

G̃2(t, y) :=
a′′v
ãm

GI
2,c(y) +

a′2v
ã2m−1

GII
2,c(y) −

f4

ã
Q′

c(y); (3.38)

with F
(·)
2,c(y) = c

1
m−1F

(·)
2 (

√
cy), and G

(·)
2,c(y) = c

1
m−1

− 1
2G

(·)
2 (

√
cy). Finally, F (·)

2 and G
(·)
2 are

explicitly given below.
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Remark 3.5. Note that the small order terms in |ρ′ − v − ε2f4| above can be added to F0 in
Proposition 3.3. In what follows, we adopt this convention.

Proof. First, in order to simplify the notation, let ρ′1(t) := ρ′(t)− v(t)− ε2f4(t). Note that from
(3.33) we have

(A1,c)t =
ερ′

ãm

[
a′′ − ma′2

(m− 1)a

]
c

1
m−1

− 1
2A1(

√
cy)

=
εv

ãm

[
a′′ − ma′2

(m− 1)a

]
c

1
m−1

− 1
2A1(

√
cy) +OH1(R)(ε|ρ′1(t)|e−εµ|ρ(t)|),

and similarly, using (3.15),

(B1,c)t =
ε

ãm

[
a′′v2 + a′f1 −

m

m− 1

a′2v2

a

]
c

1
m−1

−1B1(
√
cy) +O(ε|ρ′1(t)|e−εµ|ρ(t)|)

=
ε

ãm

[
a′′v2 +

8a′2c
(m+ 3)a

− m

m− 1

a′2v2

a

]
c

1
m−1

−1B1(
√
cy) +O(ε|ρ′1(t)|e−εµ|ρ(t)|).

In addition, we replace (3.31) in F̃2, G̃2. We obtain

F̃2(t, y) =
a′′

ãm
(ερ(t))

[
F I

2,c(y) +
v2(t)

c(t)
F II

2,c(y)
]

+
a′2

ã2m−1
(ερ(t))

[
F III

2,c (y) +
v2(t)

c(t)
F IV

2,c (y)
]
− f3(t)

ã(ερ(t))
Qc(y),

with F (·)
2,c(y) = c

1
m−1F

(·)
2 (

√
cy), and F I

2 (y) := 1
2y

2Qm(y), F II
2 (y) := −B1(y),

F III
2 (y) := (mQm−1(y) − 4

m+ 3
)yA1(y) +

m

2
(m− 1)Qm−2(y)A2

1(y) −
8

(m+ 3)
B1(y);

F IV
2 (y) :=

1

2
(m− 1)Qm−2(y)B2

1(y) − 2

5 −m
yB′

1(y) −
m− 8

5 −m
B1(y).

Note that each term above is even and thus orthogonal to Q′.

On the other hand,

G̃2(y) := v(t)
[ a′′
ãm

(ερ(t))GI
2,c(y) +

a′2

ã2m−1
(ερ(t))GII

2,c(y)
]
− f4(t)

ã(ερ(t))
Q′

c(y);

with G(·)
2,c(y) = c

1
m−1

− 1
2G

(·)
2 (

√
cy) and GI

2(y) := A1(y),

GII
2 (y) :=

m− 6

5 −m
A1(y)+(Qm−1(y)− 4

m+ 3
)yB1(y)+

2

5 −m
yA′

1(y)+(m−1)Qm−2(y)A1(y)B1(y).

The proof is complete.

3.5.2 Resolution of a modified linear problem (Ω2)

From Proposition 3.3, more precisely (3.24), and the above Claim, we want to solve the mod-
ified system (Ω̃2) given by

(Ω̃2)

{
L+A2,c(t, y) = F̃2(t, y),

L−B2,c(t, y) = G̃2(t, y),
(3.39)
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where F̃2 and G̃2 are given in (3.35)-(3.36). The particular choice of f3(t) and f4(t) done in
(3.22)-(3.23) will allow us to find a unique solution of this linear system satisfying suitable
orthogonality conditions. Recall the terms F (·)

2 and G
(·)
2 introduced in the above Claim, and

θ = 1
m−1 − 1

4 .

Lemma 3.6 (Resolution of (Ω̃2)).

Suppose m ≥ 3 and f3(t), f4(t) given by (3.22)-(3.23), with

α(·) :=
1

2θM [Q]

∫

R

ΛQF
(·)
2 , β(·) := − 1

M [Q]

∫

R

yQG
(·)
2 . (3.40)

There exists a unique solution (Ac,2(t, y), Bc,2(t, y)) of (Ω̃2) satisfying (3.11). In addition, A2,c is
even and B2,c is odd and satisfy the following decomposition:

A2,c(t, y) =
a′′

ãm
(AI

2,c(y) +
v2

c
AII

2,c(y)) +
a′2

ã2m−1
(AIII

2,c (y) +
v2

c
AIV

2,c (y)) +
f3

ã
ΛQc, (3.41)

with A(·)
2,c(y) = c

1
m−1

−1A
(·)
2 (

√
cy), A(·)

2 even, and

B2,c(t, y) =
a′′v
ãm

BI
2,c(y) +

a′2v
ã2m−1

BII
2,c(y) +

f4

2ã
yQc, (3.42)

with B(·)
2,c(y) = c

1
m−1

− 3
2B

(·)
2 (

√
cy) and B(·)

2 odd. Moreover, both A2,c and B2,c satisfy
∫

R

A2,c(t, y)Q
′
c(y)dy =

∫

R

A2,c(t, y)Qc(y)dy = 0,

∫

R

B2,c(t, y)Q
′
c(y)dy =

∫

R

B2,c(t, y)Qc(y)dy = 0. (3.43)

Remark 3.6. Note that thanks to the introduction of f3(t) and f4(t) in (3.22)-(3.23), and from
(3.10), (3.32) and (3.43) one has

∫

R

w(t, x)Qc(y)e
−iΘ =

∫

R

w(t, x)Q′
c(y)e

−iΘ = 0. (3.44)

Let us remark that f3(t) and f4(t) formally represent the lack of symmetry of the soliton solu-
tion, with respect to the pure soliton solution considered in Definition 1.1. In this case, and
similarly to [57], the main order in the defect of the soliton solution is present on the trajectory
and phase, rather than in the scaling, as in [53, 58, 64].

Remark 3.7. The exact value of α(·) and β(·) can be computed explicitly but their are not nec-
essary for our purposes. Nevertheless, it is simple to see that from Claim 8, Lemma 3.2, (3.34)
and Appendix K one has

αI =
1

2(m+ 1)M [Q]

∫

R

y2Qm+1 > 0; αII = −(m− 1)

2M [Q]

∫

R

y2Q2 < 0;

and
βI =

1

(m+ 3)M [Q]

[5

2

∫

R

y2Q2 +
ξ

2

∫

R

Q2
]

=
−1

m+ 3
(

7 +m

2(m− 1)
+ 4χ) > 0,

for m ∈ [3, 5).

Proof. Note that F̃2(t, ·) is even and G̃2(t, ·) is an odd function, and both functions are in Y ,
uniformly in time. Therefore F̃2 is orthogonal toQ′

c, and G̃2 is orthogonal toQc. From Lemma
3.2 part (3), we obtain the conclusion.
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Moreover, note that L+ΛQc = −Qc, L−(yQc) = −2Q′
c. Thanks to the choice of f3 and f4

one has (see Appendix K for more details on the computations)
∫

R

A2,cQc = −
∫

R

L+A2,cΛQc = −
∫

R

F̃2ΛQc

= − a′′

ãm

∫

R

ΛQc(F
I
2,c +

v2

c
F II

2,c) −
a′2

ã2m−1

∫

R

ΛQc(F
III
2,c +

v2

c
F IV

2,c ) +
f3

ã

∫

R

ΛQcQc

= −c
2θ−1

ã

[a′′
a

(αI + αII
v2

c
) +

a′2

a2
(αIII + αIV

v2

c
) − f3

]

= 0.

Similarly,
∫

R

B2,cQ
′
c = −1

2

∫

R

L−B2,cyQc = −1

2

∫

R

G̃2yQc

= − a′′v
2ãm

∫

R

yQcG
I
2,c −

a′2v
2ã2m−1

∫

R

yQcG
II
2,c +

f4

2ã

∫

R

yQcQ
′
c

=
c2θ

2ã

[
(βI

a′′

a
+ βII

a′2

a2
)
v

c
− f4

]

= 0.

The proof is complete.

From Proposition 3.3 and the singular behavior of the nonlinearity |z|m−1z around z = 0
for 2 ≤ m < 4, m 6= 3, we cannot perform a new expansion to improve our estimates. We
stop here the search of an approximate solution for the case 3 ≤ m < 5.

3.6 Error estimates

As a consequence of Proposition 3.3 and Lemma 3.4 and Lemma 3.5, we have the following
estimates on the error associated to the approximate solution ũ. Recall the definition of S̃[ũ]
and pm given in (3.13)-(3.20) and (1.21) respectively.

Lemma 3.7 (Estimation of the error S̃[ũ]).

There exist constants ε0,K > 0 such that for all 0 < ε < ε0 the following holds. The error
associated to the function ũ satisfies

‖S̃[ũ](t)‖H1(R) ≤ Kεpm+1(ε+ e−εµ|ρ(t)|), (3.45)

and the following integral estimate holds
∫

R

‖S̃[ũ](t)‖H1(R)dt ≤ Kεpm . (3.46)

Proof. First we prove the case 2 ≤ m < 3. Here pm = 1. From Proposition 3.3 and Lemma 3.5
we have

S̃[ũ] = ε2[F2(t, y) + εf(t)Fc(y)]e
iΘ,

From estimate (3.19) we have (3.45) in this case.

Let us consider the casem ≥ 3, with pm = 2. Here we invoke Proposition 3.3 and Lemmas
3.5 and 3.6 to get

S̃[ũ] = ε4[F4(t, y) + εf(t)Fc(y)]e
iΘ,

From (3.27), the rest of the proof and (3.46) are direct since from (3.8) one has ρ′(t) ≥ 1
2v0 >

0.
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3.7 Recomposition of the solution

In this subsection we will show that ũ at time t = −Tε behaves as a modulated soliton. We
begin with some H1-estimates.

Lemma 3.8 (First estimates on ũ).

Suppose 0 < ε < ε0 small enough, and (c, v, ρ, γ) satisfying (3.8). Then the following auxiliary
estimates hold.

1. Decay away from zero. Suppose fc = fc(y) ∈ Y . Then there exist K,µ > 0 constants such
that for all t ∈ [−Tε, Tε]

‖a′(εx)fc(y)‖H1(R) ≤ Ke−µε|ρ(t)|. (3.47)

2. Almost soliton-solution. The following estimates hold for all t ∈ [−Tε, Tε].

ũxx − (c(t) +
1

4
v2(t))ũ+ aε|ũ|m−1ũ− iv(t)ũx = OH1(R)(εe

−µε|ρ(t)|), (3.48)

and

iũt + ivũx + (c(t) +
1

4
v2(t))ũ = OH1(R)(εe

−µε|ρ(t)|). (3.49)

Proof. (3.47) is a classical result, see [65] Lemma 4.7 for a complete proof. On the other
hand, to prove (3.48), note that after some simplifications, and by using (3.9)-(3.11) with
‖w(t)‖H1(R) ≤ Kεe−εµ|ρ(t)|, we have

ũxx − (c+
1

4
v2)ũ+ aε|ũ|m−1ũ− ivũx

=
1

ã
(Q′′

c − cQc +Qm
c )eiΘ + (

aε(x)

aε(ρ)
− 1)

Qm
c

ã
eiΘ +OH1(R)(εe

−µε|ρ(t)|)

= OH1(R)(εe
−µε|ρ(t)|).

Let us prove (3.49). From the definition of S[ũ] and estimate (3.45),

iũt + ivũx + (c+
1

4
v2)ũ = S[ũ] − {ũxx − (c+

1

4
v2)ũ+ aε|ũ|m−1ũ− ivũx}

= OH1(R)(εe
−µε|ρ(t)|).

The proof is complete.

The next result describes the behavior of the almost solution ũ at the endpoint t = −Tε.

Lemma 3.9 (Behavior at t = −Tε).

There exist constants K, ε0 > 0 such that for every 0 < ε < ε0 the following holds. Let
û(t) := ũ(t;C(t), V (t), U(t), H(t)) be the approximate solution constructed in Section 3 Step 2 with
modulation parameters (C, V, U,H) given by Lemma 3.4. Then one has

‖û(−Tε) −Q(· + v0Tε)e
i
2
(·)v0eiγ−1‖H1(R) ≤ Kε10, (3.50)

with

γ−1 := −
∫ 0

−Tε

C(s)ds+
1

4

∫ 0

−Tε

V 2(s)ds. (3.51)
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Proof. By definition,

û(−Tε) −Q(· + v0Tε)e
i
2
(·)v0eiγ−1 = R̃(−Tε) −Q(· + v0Tε)e

i
2
(·)v0eiγ−1 + w(−Tε).

From (3.10), (3.11) and Lemma 3.4 we have

‖w(±Tε)‖H1(R) ≤ Kεe−µε−
1

100 ≤ Kε10,

for ε small enough. Since from (3.62) U(−Tε) = v0Tε, V (−Tε) = v0 and C(−Tε) = 1, we have

‖R̃(−Tε) −Q(· + v0Tε)e
i
2
(·)v0eiγ−1‖H1(R) ≤ Kε10,

as desired.

Resuming, we have constructed an approximate solution ũ formally describing the inter-
action soliton-potential. In the next subsection we will show that a suitable modification of
the the solution u constructed in Theorem 2.1 actually behaves like ũ inside the interaction
region [−Tε, Tε].

Step 3. Stability results.

In this paragraph our objective is to prove that the approximate solution ũ(t) describes
the dynamics of the soliton in the interaction interval [−Tε, Tε]. We will prove the following
result, cf. Propositions 5.1 in [65] for a similar result for a gKdV equation.

Proposition 3.10 (Exact solution close to the approximate solution ũ).

Let 2 ≤ m < 5, pm defined in (1.21). There exists ε0 > 0 such that the following holds for any
0 < ε < ε0. Suppose that for û(−Tε) as defined in Lemma 3.9 one has

‖u(−Tε) − û(−Tε)‖H1(R) ≤ Kεpm , (3.52)

with u = u(t) the H1(R) solution of (1.12) constructed in Proposition 2.1. Then there exist K0 =
K0(m,K) > 0 and C1-functions c, v, ρ, γ : [−Tε, Tε] → R such that, for all t ∈ [−Tε, Tε],

‖u(t) − ũ(t; c(t), v(t), ρ(t), γ(t))‖H1(R) ≤ K0ε
pm , (3.53)

and

|ρ′(t) − v(t) − ε2f4(t)| + |γ′(t) − 1

2
v′(t)ρ(t) − ε2f3(t)| ≤ K0ε

pm , (3.54)

|v′(t) − εf1(t)| + |c′(t) − εf2(t)| ≤ K0(ε
2pm + εpm+1). (3.55)

Proof of Proposition 3.10. Let K∗ > 1 be a constant to be fixed later. Since ‖u(−Tε) −
û(−Tε)‖H1(R) ≤ Kεpm , by continuity in time in H1(R), there exists −Tε < T ∗ ≤ Tε with

T ∗ := sup
{
T ∈ [−Tε, Tε], such that for all t ∈ [−Tε, T ], there exists ρ(t), γ(t) ∈ R,

with ‖u(t) − ũ(t;C(t), V (t), ρ(t), γ(t))‖H1(R) ≤ K∗εpm
}
.

The objective is to prove that T ∗ = Tε for K∗ large enough. To achieve this, we argue by con-
tradiction, assuming that T ∗ < Tε and reaching a contradiction with the definition of T ∗ by
proving some independent estimates for ‖u(t) − ũ(t;C(t), V (t), ρ(t), γ(t))‖H1(R) on [−Tε, T

∗],
for a special modulation parameters ρ(t), γ(t).
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3.7.1 Modulation

By using the Implicit function theorem we will construct some modulation parameters and
estimate their variation in time:

Lemma 3.11 (Modulation in time).

Assume 0 < ε < ε0(K
∗) small enough. There exist unique C1 functions c(t), v(t), ρ(t), γ(t)

such that, for all t ∈ [−Tε, T
∗], the function

z(t) := u(t) − ũ(t; c(t), v(t), ρ(t), γ(t)), (3.56)

satisfies ∫

R

z̄(t, x)Qc(y)e
iΘdx =

∫

R

z̄(t, x)Q′
c(y)e

iΘdx = 0, (3.57)

and

|ρ(−Tε) − U(−Tε)| + |γ(−Tε) −H(−Tε)|
+|c(−Tε) − C(−Tε)| + |v(−Tε) − V (−Tε)| + ‖z(−Tε)‖H1(R) ≤ Kεpm . (3.58)

Moreover, we have, for all t ∈ [−Tε, T
∗],

‖z(t)‖H1(R) + |c(t) − C(t)| + |v(t) − V (t)| ≤ KK∗εpm . (3.59)

In addition, z(t) satisfies the following equation

izt + zxx + aε[|ũ+ z|m−1(ũ+ z) − |ũ|m−1ũ] + S̃[ũ] + i(c′ − εf2)∂cũ

−1

2
(v′ − εf1)yũ+ i(ρ′ − v − ε2f4)∂ρũ− (γ′ +

1

2
v′ρ− ε2f3)ũ = 0. (3.60)

Finally, there exist K,µ > 0 independent of K∗ such that for every t ∈ [−Tε, T
∗]

|ρ′(t) − v(t) − ε2f4(t)| + |γ′(t) − 1

2
v′(t)ρ(t) − ε2f3(t)| ≤

≤ K
[
‖z(t)‖L2(R) + εe−µε|ρ(t)|‖z(t)‖L2(R) + ‖z(t)‖2

L2(R) + ‖S̃[ũ](t)‖L2(R)

]
, (3.61)

and

|v′(t)−εf1(t)|+|c′(t)−εf2(t)| ≤ K
[
εe−µε|ρ(t)|‖z(t)‖L2(R)+‖z(t)‖2

L2(R)+‖S̃[ũ](t)‖L2(R)

]
. (3.62)

Proof. The proof of (3.56)-(3.59) is by now well-know and it is a consequence of an Implicit
Function Theorem application. See e.g. [53] for a detailed proof. On the other hand, the proof
of (3.60) follows after a simple calculation using (1.12).

The proof of (3.61) and (3.62) follow from (3.57)-(3.60) after taking time derivative and
replacing zt. We skip the details.

3.7.2 Improvement of (3.8)

In this paragraph we prove that the parameters (c(t), v(t), ρ(t), γ(t)) constructed in Lemma
3.11 satisfy the assumptions required in (3.8). Recall that under these hypotheses, all the
results of Section 3, Step 2 are valid. In particular, one has (3.45).
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First of all, from (3.58) we have

9

10
≤ c(t) ≤ 11

10
c∞ < 25,

9

10
v0 ≤ v(t) < v0 + 25. (3.63)

On the other hand, from (3.61) we have for ε small,

|ρ′(t) − v(t)| ≤ K∗εpm ≤ v0
100

. (3.64)

We are done.

3.7.3 Energy functional for z

Consider the H1(R) functional

F(t) :=
1

2

∫

R

|zx|2 +
1

2
(c+

1

4
v2)

∫

R

|z|2 − 1

2
v Im

∫

R

z̄zx

− 1

m+ 1

∫

R

aε(x)[|ũ+ z|m+1 − |ũ|m+1 − (m+ 1)|ũ|m−1 Re{ũz̄}]. (3.65)

Lemma 3.12 (Modified coercivity for F).

There exist K, ν0 > 0, independent of K∗ and ε such that for every t ∈ [−Tε, Tε]

F(t) ≥ ν0‖z(t)‖2
H1(R) −Kε(e−µε|ρ(t)| + 1)‖z(t)‖2

L2(R) −K‖z(t)‖3
L2(R).

In particular, for ε small enough, one has

F(t) ≥ 9

10
ν0‖z(t)‖2

H1(R).

Proof. The proof is similar to the proof of Lemma 5.5 in [65]. First of all it is easy to see that

F(t) =
1

2

∫

R

|zx|2 +
1

2
(c+

1

4
v2)

∫

R

|z|2 − 1

2
v Im

∫

R

zxz̄

−
∫

R

a(εx)

a(ερ)
Qm−1

c (y)[|z|2 + (m− 1)[Re(eiΘz̄)]2] +O(ε‖z(t)‖2
H1(R) + ‖z(t)‖3

H1(R))

On the other hand, it is clear that |εa′(ερ)
a(ερ)

∫
R
yQm−1

c |z|2| ≤ Kεe−µε|ρ(t)|‖z(t)‖2
L2(R). Thus we

have

F(t) =
1

2

∫

R

|zx|2 +
1

2
(c+

1

4
v2)

∫

R

|z|2 − 1

2
v Im

∫

R

zxz̄

−
∫

R

Qm−1
c (y)[|z|2 + (m− 1)[Re(eiΘz̄)]2]

+O(ε(1 + e−εµ|ρ(t)|)‖z(t)‖2
H1(R) + ‖z(t)‖3

H1(R)). (3.66)

Finally, from Lemma 3.2 and (3.57), we have the existence of constants K, ν0 > 0 such that for
all t ∈ [−Tε, T

∗]

(3.66) ≥ ν0‖z(t)‖2
H1(R) −Kε(1 + e−εµ|ρ(t)|)‖z(t)‖2

H1(R) −K‖z(t)‖3
H1(R).

The proof is now complete.

Now we use a coercivity argument, similar to Lemma 5.6 in [65] to obtain independent
estimates for F(T ∗).
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Lemma 3.13 (Estimates on F(T ∗)).

The following properties hold for any t ∈ [−Tε, T
∗].

1. First time derivative.

F ′(t) =

= Im

∫

R

izt
{
zxx − (c+

1

4
v2)z + aε[|ũ+ z|m−1(ũ+ z) − |ũ|m−1ũ] − ivzx

}
(3.67)

+ Im

∫

R

aεiũt[|ũ+ z|m−1(ũ+ z) − |ũ|m−1ũ− 1

2
(m+ 1)|ũ|m−1z − 1

2
(m− 1)|ũ|m−3ũ2z̄]

+(c′ +
1

4
v′v)

∫

R

|z|2 − 1

2
v′ Im

∫

R

z̄zx. (3.68)

2. Integration in time. There exist constants K,µ > 0 such that

F(t) −F(−Tε) ≤ K(K∗)4ε4pm−1− 1
100 +KK∗ε2pm +K

∫ t

−Tε

εe−εµ|ρ(s)|‖z(s)‖2
H1(R)ds.

(3.69)

Proof. First of all, (3.67) follows after derivation in time. Let us consider (3.69). In order to
simplify the computations, let v′1 := 1

2(v′ − εf1), c′1 := c′ − εf2, ρ′1 := ρ′ − v − ε2f4 and
γ′1 := γ′ + 1

2v
′ρ− ε2f3. In addition, consider

L[z] := zxx − (c+
1

4
v2)z +

1

2
aε[(m+ 1)|ũ|m−1z + (m− 1)|ũ|m−3ũ2z̄] − ivzx,

and

N [z] := aε(x)[|ũ+ z|m−1(ũ+ z) − |ũ|m−1ũ− 1

2
(m+ 1)|ũ|m−1z − 1

2
(m− 1)|ũ|m−3ũ2z̄].

Replacing (3.60) in (3.67) we get

F ′(t) =

= Im

∫

R

{(c+
1

4
v2)z + ivzx}{

1

2
aε[(m+ 1)|ũ|m−1z̄ + (m− 1)|ũ|m−3ũ

2
z] +N [z]} (3.70)

− Im

∫

R

S̃[ũ]L[z] − Im

∫

R

L[z][γ′1ũ+ v′1yũ− c′1i∂cũ− ρ′1i∂ρũ]

− Im

∫

R

N [z][iũt − S̃[ũ] + γ′1ũ+ v′1yũ− c′1i∂cũ− ρ′1i∂ρũ] (3.71)

+(c′ +
1

4
v′v)

∫

R

|z|2 − 1

2
v′ Im

∫

R

z̄zx. (3.72)

From (3.62),
|(3.72)| ≤ Kεe−εµ|ρ(t)|‖z(t)‖2

H1(R) +K‖z(t)‖4
H1(R).

On the other hand, note that L[z] = LQ[z] +O(εe−εµ|ρ(t)|‖z(t)‖H1(R)), with

LQ[z] := zxx − (c+
1

4
v2)z +

1

2
Qm−1

c (y)[(m+ 1)z + (m− 1)e2iΘz̄] − ivzx.

Therefore a simple computation using (3.57) and (3.62)-(3.61) gives us

|Im
∫

R

L[z][γ′1ũ+ v′1yũ− c′1i∂cũ− ρ′1i∂ρũ]| ≤ Kεe−εµ|ρ(t)|‖z(t)‖2
H1(R).
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We also have
|Im

∫

R

S̃[ũ]L[z]| ≤ K‖z(t)‖L2(R)‖S̃[ũ](t)‖H1(R). (3.73)

Next, note that from (3.12), Proposition 3.3 and (3.48) one has

iũt − S̃[ũ] + γ′1ũ+ v′1yũ− c′1i∂cũ− ρ′1i∂ρũ = −(c+
1

4
v2)ũ− ivũx +OH1(R)(εe

−εµ|ρ(t)|),

therefore we obtain

(3.70) + (3.71) =

= Im

∫

R

{(c+
1

4
v2)z + ivzx}{

1

2
aε[(m+ 1)|ũ|m−1z̄ + (m− 1)|ũ|m−3ũ

2
z] +N [z]}

+ Im

∫

R

{(c+
1

4
v2)ũ+ ivũx}N [z] +O(εe−εµ|ρ(t)|‖z(t)‖2

H1(R)).

Now we claim that

Im

∫

R

1

2
aεz[(m+ 1)|ũ|m−1z̄ + (m− 1)|ũ|m−3ũ

2
z] + Im

∫

R

ũN [z] = Im

∫

R

z̄N [z], (3.74)

and

Im

∫

R

1

2
aεizx[(m+ 1)|ũ|m−1z̄ + (m− 1)|ũ|m−3ũ

2
z] + Im

∫

R

iũxN [z] =

= − Im

∫

R

iz̄xN [z] +O(εe−εµ|ρ(t)|‖z(t)‖2
H1(R)). (3.75)

Assuming these two identities, we have finally

(3.70) + (3.71) = O(εe−εµ|ρ(t)|‖z(t)‖2
H1(R)).

Therefore

|F ′(t)| ≤ Kεe−εµ|ρ(t)|‖z(t)‖2
L2(R) +K‖S̃[ũ](t)‖H1(R)‖z(t)‖L2(R) +K‖z(t)‖4

L2(R)

≤ Kεe−εµ|ρ(t)|‖z(t)‖2
L2(R) +KK∗e−µε|ρ(t)|ε1+2pm +K(K∗)4ε4pm .

After integration between −Tε and t we obtain (3.69).

Let us prove (3.74) and (3.75). First of all, note that (3.74) is consequence of the identity

Im
{1

2
aεz[(m+ 1)|ũ|m−1z̄ + (m− 1)|ũ|m−3ũ

2
z] − ũN [z]

}
= Im{z̄N [z]}.

On the other hand, (3.75) is an easy consequence of the following identity

Re
{1

2
aεzx[(m+ 1)|ũ|m−1z̄ + (m− 1)|ũ|m−3ũ

2
z] + ũxN [z]

}
=

= −Re{zxN [z]} +
aε

m+ 1
∂x

{
|ũ+ z|m+1 − |ũ|m+1 − (m+ 1)|ũ|m−1 Re{ũz̄}

}
;

and integration by parts and (3.47).

End of proof of Proposition 3.10. Using Gronwall’s inequality (see e.g. [65] for more details)
in (3.69), the fact that ρ′(t) ≥ 1

2v0 > 0, estimate (3.59), and Lemma 3.12 we conclude that for
some large constant K > 0, but independent of K∗ and ε,

‖z(t)‖2
H1(R) ≤ Kε2pm +K(K∗)4ε4pm−1− 1

100 +KK∗ε2pm .
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From this estimate and taking ε small, and K∗ large enough, we obtain that for all t ∈
[−Tε, T

∗],

‖z(t)‖2
H1(R) ≤

1

2
(K∗)2ε2pm .

Next, from the mass conservation law and (3.58) one has

|c(t) − C(t)| ≤ Kεpm +K(K∗)2ε2pm ≤ Kεpm ,

and from the energy conservation law and once again (3.58)

|v(t) − V (t)| ≤ Kεpm +K(K∗)2ε2pm ≤ Kεpm .

Therefore, for K∗ large enough and all ε > 0 small,

‖u(T ∗) − ũ(C(T ∗), V (T ∗), ρ(T ∗), γ(T ∗))‖H1(R) ≤
2

3
K∗εpm .

This estimate contradicts the definition of T ∗, and therefore T ∗ = Tε. In addition, from (3.59)
we obtain (3.53). Finally (3.54) and (3.55) are consequence of (3.61)-(3.62). The proof of Propo-
sition 3.10 is now complete.

Final Step. Conclusion and Proof of Proposition 2.2. Now we prove the main result of this
section, which describes the core of interaction soliton-potential.

Proof of Proposition 2.2. Consider u(t) a solution of (1.12) satisfying (3.52). We first compare
u(t) with the approximate solution û(t) from Lemma 3.9, at time t = −Tε.

3.7.4 Behavior at t = −Tε

We claim that a suitable modification of u matches with our approximate solution û(t). In-
deed, for γ−1 introduced in (3.51), let

v(t, x) := u(t, x)eiγ̃ , γ̃ := (1 − 1

4
v2
0)Tε + γ−1,

which still satisfies (1.12). From (3.52) and (3.50) we have that

‖v(−Tε) − û(−Tε)‖H1(R) ≤ Kε10.

3.7.5 Behavior at t = Tε

Thanks to the above estimate we can invoke Proposition 3.10 to obtain the existence of
K0, ε0 > 0 such that for all 0 < ε < ε0

‖v(Tε) − ũ(Tε, c(Tε), v(Tε), ρ(Tε), γ(Tε))‖H1(R) ≤ K0ε
pm ,

with |c(Tε) − C(Tε)| + |v(Tε) − V (Tε)| ≤ K0ε
pm . On the other hand, note that from Lemma

3.4, (3.6), (3.9), (3.10), (3.11) and the last estimates

‖ũ(Tε, c(Tε), v(Tε), ρ(Tε), γ(Tε)) − λ∞Qc∞(· − ρ(Tε))e
i
2
(·)v∞eiγ̄(Tε)‖H1(R) ≤ KK0ε

pm ,

where

|ρ(Tε) − U(Tε)| ≤
Tε

100
, γ̄(Tε) :=

∫ Tε

0
c(s)ds− 1

4

∫ Tε

0
v2(s)ds+ γ(Tε).
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The proof of this last estimate is similar to the proof of Lemma 3.9. Therefore

‖v(Tε) − λ∞Qc∞(· − ρ(Tε))e
i
2
(·)v∞eiγ̄(Tε)‖H1(R) ≤ KK0ε

pm ,

Returning to the original function u, we obtain that

‖u(Tε) − λ∞Qc∞(· − ρ(Tε))e
i
2
(·)v∞ei(γ̄(Tε)−γ̃)‖H1(R) ≤ KK0ε

pm .

Finally, note that 99
100v0Tε ≤ ρ(Tε) ≤ 101

100(2v∞ − v0)Tε. By defining ρε := ρ(Tε), and γε :=
γ̄(Tε) − γ̃, we obtain (2.5)-(2.6). This finishes the proof.

4 The two dimensional case

In this section we sketch the proof of Theorem A for dimension 2, namely Theorem B. More
precisely, our objective is to adapt the proof of Propositions 2.1, 2.2 and 2.3 to the two dimen-
sional case. Recall that 2 ≤ m < 3.

Step 1. Proposition 2.1 revisited. The proof of this result is identical to the one dimensional
case (see Appendix H), with the novelty that ρ0(t) is now a R

2-valued vector. The uniqueness
follows essentially from (1.32). No additional modifications are required.

Step 2. Proposition 2.2 revisited. Here we need to introduce several modifications on the
computations.

First of all, the Cauchy problem (3.1) in the higher dimensional case is globally well posed
for 1 < m < 3 forL2 andH1 data, see [12, 22]. The conservations laws (1.3), (1.17) and identity
(1.27) hold without modifications.

On the other hand, (3.2) now reads

L+w(y) := −∆yw + cw −mQm−1
c (y)w, and L−w(y) := −∆yw + cw −Qm−1

c (y)w; (4.1)

where w = w(y). Lemma 3.2 is also valid in higher dimensions. In particular, one has the
following. Assume that v ∈ R

2, v 6= 0, θ ∈ R, and for k = 1, 2, one has

Re

∫

R2

w̄∂yk
Qce

iy·v/2eiθ = Im

∫

R2

w̄Qce
iy·v/2eiθ = Re

∫

R2

w̄Qce
iy·v/2eiθ = 0.

Then
B̃[w,w] ≥ σc

∫

R2

|w|2,

where B̃[w,w] is the standard 2-dimensional generalization of the functional B̃ defined in
Lemma 3.2. Finally, the space Y in (3.4) is easily generalizable to higher dimensions.

Let us consider now the approximate solution ũ. From the fact that the potential a de-
pends only on x1, the relevant dynamical system depends only on this variable. Indeed, for t
in [−Tε, Tε], let

c(t), γ(t) ∈ R, v(t) = (v1(t), v2(t)) ∈ R
2, ρ(t) = (ρ1(t), ρ2(t)) ∈ R

2,

to be fixed later. Consider y := (y1, y2), where

y := x− ρ(t), and R̃(t, x) :=
Qc(t)(y)

ã(ερ1(t))
eiΘ(t,x), (4.2)
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where, as in the one-dimensional case

ã := a
1

m−1 , Θ(t, x) :=

∫ t

0
c(s)ds+

1

2
v(t) · x− 1

4

∫ t

0
|v|2(s)ds+ γ(t). (4.3)

In addition, we will search for bounded parameters (c, v, γ) satisfying the same constraints
(3.8), with the obvious modifications.

By now we only need these hypotheses. As in Lemma 3.4 and Proposition 3.10, we will
construct a quadruplet (c, v, ρ, γ) with better estimates.

On the other hand, the form of the ansatz ũ(t, x) is given by (3.9), with

w(t, x) := ε(A1,c(t, y) + iB1,c(t, y))e
iΘ, (4.4)

with A1,c, B1,c satisfying condition (3.11) in R
2. Proposition 3.3 now reads

S[ũ](t, x) =
[
F0(t, y) + εF1(t, y) + ε2F2(t, y) + ε3f(t)Fc(y)

]
eiΘ(t,x), (4.5)

where F0 is given now by

F0(t, y) := −1

2
(v′(t) − εf1(t)) · yũ+ i(c′(t) − εf2(t))∂cũ

−(γ′(t) +
1

2
v′(t) · ρ(t))ũ+ i(ρ′(t) − v(t)) · ∂ρũ, (4.6)

f1(t) := (
4κa′(ερ1(t))c(t)

(m+ 1)a(ερ1(t))
, 0), f2(t) :=

2a′(ερ1(t))c(t)v1(t)

(3 −m)a(ερ1(t))
;

F1(t, y) := F1(t, y) + iG1(t, y) −
[
L+(A1,c) + iL−(B1,c)

]
, (4.7)

with

F1(t, y) :=
a′(ερ1(t))

ãm(ερ1(t))
y1Qc(y)

[
Qm−1

c (y) − 2κc(t)

m+ 1

]
,

G1(t, y) :=
a′(ερ1(t))v1(t)

ãm(ερ1(t))

[ 2c(t)

3 −m
ΛQc(y) −

1

m− 1
Qc(y)

]
,

and κ :=
R

Qm+1
R

Q2 . Furthermore

‖ε2F2(t, ·)‖H1(R2) ≤ Kε2e−εµ|ρ(t)|; ‖ε3f(t)Fc‖H1(R2) ≤ Kε3, (4.8)

uniformly in time, provided (A1,c, B1,c) satisfy (3.11).

Now, let us describe the main differences on the dynamical system concerning the es-
sentially important variables for the dynamics: c(t), v1(t), ρ(t) and γ(t). The result is the
following.

Lemma 4.1 (Existence of dynamical parameters).

Suppose 2 ≤ m < 3. Let v0 > 0, λ0, a(s) be as in Theorem C and (1.11). There exists a unique
solution (c, v, ρ, γ) defined for all t ≥ −Tε with the same regularity than a(ε·), of the following
nonlinear system of differential equations





C ′(t) =
2εa′(εU1(t))

(3 −m)a(εU1(t))
C(t)V1(t), C(−Tε) = 1,

V ′
1(t) =

4εκ

m+ 1

a′(εU1(t))

a(εU1(t))
C(t), V1(−Tε) = v0,

U ′
1(t) = V1(t), U1(−Tε) = −v0Tε,

H ′(t) = −1

2
V ′

1(t)U1(t), H(−Tε) = 0.

(4.9)

In addition,
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1. C(t) is strictly increasing with 1 ≤ C(t) ≤ C(Tε),, with

C(Tε) = c∞ +O(ε10) = 2
2

3−m +O(ε10).

2. V (t) is strictly increasing with v0 ≤ V (t) ≤ V (Tε), with

V (Tε) = v∞ +O(ε10) = (v2
0 + 4α0(c∞ − 1))1/2 +O(ε10),

with α0 given in (1.30).

On the other hand, the first linear system (Ω1) is easily solvable, because
∫

R2

F1∂yi
Qc(y) =

∫

R2

G1Qc(y) = 0.

Moreover, the solution (A1,c, B1,c) satisfies (3.11). In addition, Lemma 3.7 now reads

‖S̃[ũ](t)‖H1(R2) ≤ Kε2(e−εµ|ρ(t)| + ε).

Similarly Lemma 3.9 holds with no major modifications.

Let us sketch the proof of Proposition 3.10 in the higher dimensional case. As in Lemma
3.11 we consider

z(t) := u(t) − ũ(t, c(t), v(t), ρ(t), γ(t)),

satisfying for k = 1, 2, and for all t ∈ [−Tε, Tε],
∫

R2

z̄(t, x)Qc(y) =

∫

R2

z̄(t, x)∂yk
Qc(y) = 0,

and the equation

izt + ∆z + aε(x1)[|ũ+ z|m−1(ũ+ z) − |ũ|m−1ũ] + S̃[ũ]

−1

2
(v′ − εf1) · yũ+ i(c′ − εf2)∂cũ+ i(ρ′ − v) · ∂ρũ+ (γ′ +

1

2
v′ · ρ)ũ = 0,

in addition to (3.61)-(3.62).

Finally, the functional F in (3.65) remains the same, up to the obvious modifications: we
replace zx by ∇z and v by its vectorial version. Following these steps, we finally conclude
(3.53) and therefore the two dimensional version of Proposition 2.2.

Step 3. Proposition 2.3 revisited. The proof of this result is identical to the one dimensional
case. No additional modifications to the standard ones are required.

From this analysis we conclude the proof of Theorem B.

Appendices

H Proof of Proposition 2.1

In this section we sketch the proof of Proposition 2.1. For a similar proof, see e.g. [65].
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Let (Tn)n∈N ⊆ R an increasing sequence with Tn ≥ 1
2Tε for all n and limn→+∞ Tn = +∞.

Consider un(t) the solution of the following Cauchy problem
{
i(un)t + (un)xx + aε(x)|un|m−1un = 0, in Rt × Rx,

un(−Tn) = Q(· + v0Tn)e
i
2
(·)v0e−i(1− 1

4
v2
0)Tn .

(H.1)

In other words, un is a solution of aNLS that at time t = −Tn corresponds exactly to a solitary
wave. It is clear that this function is in H1(R); moreover, there exists a uniform constant
C = C(v0) > 0 such that

‖Q(· − v0t)e
i
2
(·)v0ei(1−

1
4
v2
0)t‖H1(R) ≤ C.

According to Lemma 3.1, we have that un is globally well-defined in H1(R).

The next step is to establish uniform estimates starting from a fixed time t = −1
2Tε < 0

large enough such that the soliton is sufficiently away from the region where the influence of
the potential aε is present. This is the purpose of the following

Proposition H.1 (Uniform estimates in H1 for large times, see also [47]).

There exist constants K,µ > 0 and ε0 > 0 small enough such that for all 0 < ε < ε0 and for all
n ∈ N we have and for all t ∈ [−Tn,−1

2Tε],

‖un(t) −Q(· − v0t)e
i
2
(·)v0ei(1−

1
4
v2
0)t‖H1(R) ≤ Keµεt. (H.2)

In particular, there exists a constant C > 0 such that for all t ∈ [−Tn,−1
2Tε],

‖un(t)‖H1(R) ≤ C. (H.3)

Using Proposition H.1 we will obtain the existence of a critical element u0,∗ ∈ H1(R), with
several interesting properties. Indeed, let us consider the sequence (un(−1

2Tε))n∈N ⊆ H1(R).
We claim the following result.

Lemma H.2 (Compactness property).

Given any number δ > 0, there exist ε0 > 0 and a constant K0 > 0 large enough such that for all
0 < ε < ε0 and for all n ∈ N, ∫

|x|>K0

|un|2(−
1

2
Tε) < δ. (H.4)

Proof. The proof is by now a standard result. See [49] for the details.

Let us come back to the proof of Theorem 2.1. From (H.3) we have that

‖un(−1

2
Tε)‖H1(R) ≤ C,

independent of n. Thus, up to a subsequence we may suppose un(−1
2Tε) ⇀ u∗,0 in the H1(R)

weak sense, and un(−1
2Tε) → u∗,0 in L2

loc(R), as n → +∞. In addition, from (H.4) we have
the strong convergence in L2(R).

Let u∗ = u∗(t) be the solution of (1.1) with initial data u∗(−1
2Tε) = u∗,0. From Proposition

3.1 we also have u∗ ∈ C(R, L2(R)) (that is, L2 local well-posedness plus conservation of
mass). Thus, using the continuous dependence of un and u∗, and the bound (H.3), we obtain
un(t) → u∗(t) in H1(R) for every t ≤ −1

2Tε. Passing to the limit in (H.2) we obtain for all
t ≤ −1

2Tε,

‖u∗(t) −Q(· − v0t)e
i
2
(·)v0ei(1−

1
4
v2
0)t‖H1(R) ≤ Keεµt,

as desired. This finish the proof of the existence part of Theorem 2.1.



H.1 - Uniform H1 estimates. Proof of Proposition H.1 163

H.1 Uniform H1 estimates. Proof of Proposition H.1

In this paragraph we explain the main steps of the proof of Proposition H.1 in the H1 case;
for the general case the reader may consult [49].

The first step in the proof is the following bootstrap property:

Proposition H.3 (Bootstrap).

There exist constants K,µ, ε0 > 0 such that for all 0 < ε < ε0 the following is true. There exists
α0 > 0 such that for all 0 < α < α0, if for some −Tn,∗ ∈ [−Tn,−1

2Tε] and for all t ∈ [−Tn,−Tn,∗]
one has

‖un(t) −Q(· − v0t)e
i
2
(·)v0ei(1−

1
4
v2
0)t‖H1(R) ≤ 2α, (H.5)

then, for all t ∈ [−Tn,−Tn,∗]

‖un(t) −Q(· − v0t)e
i
2
(·)v0ei(1−

1
4
v2
0)t‖H1(R) ≤ Keεµt. (H.6)

Proof of Proposition H.1, assuming the validity of Proposition H.3. Let 0 < α < α0. Note that
from (H.1) there exists t0 = t0(n, α) > 0 such that (H.5) holds true for all t ∈ [−Tn,−Tn + t0].
Now let us consider (we adopt the convention T∗,n > 0)

−T̃∗,n := sup{t ∈ [−Tn,−
1

2
Tε] | for all t′ ∈ [−Tn, t],

‖un(t′) −Q(· − v0t
′)e

i
2
(·)v0ei(1−

1
4
v2
0)t′‖H1(R) ≤ 2α}.

Assume, by contradiction, that −T̃∗,n < −1
2Tε. From Proposition H.3, we have

‖un(t′) −Q(· − v0t
′)e

i
2
(·)v0ei(1−

1
4
v2
0)t′‖H1(R) ≤ Keµεt ≤ α,

for ε small enough (recall that t ≤ −1
2Tε = − 1

2v0
ε−1− 1

100 ), a contradiction with the definition
of T̃∗,n.

Now we are reduced to prove Proposition H.3.

Proof of Proposition H.3. The first step in the proof is to decompose the solution preserving a
standard orthogonality condition. To obtain this, without loss of generality, by taking Tn,∗
larger we may suppose that for all t ∈ [−Tn,−Tn,∗]

‖un(t) −Q(· − v0t− rn(t))eite
i
2
v0(·)e−

1
4
iv2

0teign(t)‖H1(R) ≤ 2α, (H.7)

for all smooth rn, gn satisfying rn(−Tn) = gn(−Tn) = 0 and |r′n(t)| ≤ 1
t2

. A posteriori we will
prove that this condition can be improved and extended to any time t ∈ [−Tn,−1

2Tε].

For notational simplicity, in what follows we will drop the index n on −T∗,n and un, if no
confusion is present.

Lemma H.4 (Modulation).

There exist K,µ, ε0 > 0 and unique C1 functions ρ0, γ0 : [−Tn,−T∗] → R such that for all
0 < ε < ε0 the function z defined by

z(t, x) := u(t, x) − R̃v0(t, x); R̃v0(t, x) := Q(y)eiθ, (H.8)

with
y := x− v0t− ρ0(t), θ := t+

1

2
v0x− 1

4
v2
0t+ γ0(t), (H.9)
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satisfies for all t ∈ [−Tn,−T∗],

Re

∫

R

z̄(t, x)Q′(y)eiθdx = Im

∫

R

z̄(t, x)Q(y)eiθdx = 0, (H.10)

‖z(t)‖H1(R) ≤ Kα, ρ0(−Tn) = γ0(−Tn) = 0. (H.11)

In addition, z satisfies the following modified Schrödinger equation,

izt + zxx + aε(x)|R̃v0 + z|m−1(R̃v0 + z) − aε(x)|R̃v0 |m−1R̃v0

−iρ′0(t)Q′(y)eiθ − γ′0(t)R̃v0 + (aε(x) − 1)|R̃v0 |m−1R̃v0 = 0, (H.12)

and
|ρ′0(t)| + |γ′0(t)| ≤ K

[
eεµt + ‖z(t)‖H1(R) + ‖z(t)‖2

L2(R)

]
. (H.13)

Proof of Lemma H.4. The proof of (H.10) is a standard consequence of the Implicit Function
Theorem, the definition of T∗ (= T∗,n), and the definition of un(−Tn) given in (H.1), see
for example [49] for a detailed proof. Similarly, the proof of (H.12) follows after a simple
computation.

Now we deal with (H.13). Taking time derivative to the first identity in (H.10) and using
(H.12), we get

0 = − Im

∫

R

iztQ
′(y)eiθ + Re

∫

R

z̄(Q′(y)eiθ)t

= Im

∫

R

{
z̄xx + aε(x)|R̃v0 + z|m−1(R̃v0 + z) − aε(x)|R̃v0 |m−1R̃v0

}
Q′(y)eiθ

+ρ′0(t)
∫

R

Q′2 + Im

∫

R

(aε(x) − 1)|R̃v0 |m−1R̃v0Q
′(y)eiθ

+ Re

∫

R

z̄
{
− (v0 + ρ′0(t))Q

′′(y) + i(1 − 1

4
v2
0 + γ′0(t))Q

′(y)
}
eiθ

First of all, note that

Im

∫

R

{
zxx + aε(x)|R̃v0 + z|m−1(R̃v0 + z) − aε(x)|R̃v0 |m−1R̃v0

}
Q′(y)e−iθ =

= O(‖z(t)‖L2(R) + ‖z(t)‖2
L2(R)).

On the other hand, from (1.11), (H.10), the uniform bound on ρ′0(t) in the definition of T∗ and
the exponential decay of R, we have

|Im
∫

R

(aε(x) − 1)|R̃v0 |m−1R̃v0Q
′(y)eiθ| ≤ Keεµt. (H.14)

Indeed, first note that from (H.7), by integrating between −Tn and t and using (H.10) we get

ρ0(t) ≤ − 1

Tn
− 1

t
≤ 2

Tε
≤ Kε1+

1
100 .

Thus v0t + ρ0(t) ≤ v0t +Kε1+
1

100 ≤ 9
10v0t. Therefore, by possibly redefining µ > 0, we have

from (1.11),

|
∫

R

(aε(x) − 1)|R̃v0 |m−1R̃v0Q
′(y)eiθ| ≤ K

∫ 0

−∞
eµεxe−|x−v0t−ρ0(t)|dx

+Kev0t+ρ0(t)

∫ ∞

0
e−xdx

≤ K exp
[
µε(v0t+ ρ0(t))

]
+K exp

[
µ(v0t+ ρ0(t))

]

≤ Keµεt.
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Finally,

|Re

∫

R

z̄
{
− (v0 + ρ′0(t))Q

′′(y) + i(1 − 1

4
v2
0 + γ′0(t))Q

′(y)
}
eiθ|

≤ K‖z(t)‖L2(R)(1 + |ρ′0(t)| + |γ′0(t)|).

We arrive, for α small enough, to the following estimate

|ρ′0(t)| ≤ K(eεµt + ‖z(t)‖L2(R)(1 + |γ′0(t)|) + ‖z(t)‖2
L2(R)). (H.15)

Now we consider the second identity in (H.10). Proceeding in a similar way as above, we
obtain

|γ′0(t)| ≤ K(eεµt + ‖z(t)‖L2(R)(1 + |ρ′0(t)|) + ‖z(t)‖2
L2(R)). (H.16)

Collecting estimates (H.15)-(H.16) we obtain (H.13).

H.1.1 Almost conservation of mass, energy and momentum

Now let us recall that for all −Tn ≤ t ≤ −1
2Tε we have M [u](t) and Ea[u](t) conserved. In

addition, from (1.5) we have

∂tP [u](t) =
ε

m+ 1

∫

R

a′(εx)|u|m+1 ≥ 0.

Therefore

Ea[u](t)−Ea[u](−Tn)+(1+
1

4
v2
0)[M [u](t)−M [u](−Tn)]−v0[P [u](t)−P [u](−Tn)] ≤ 0. (H.17)

Similarly, note that in the considered region the solitary wave R̃v0(t) is an almost solution of
(1.12), in particular it must almost conserve the massM (1.3) and the energyEa (1.17), at least
for large negative time. Indeed, arguing as in Lemma I.2 (but with easier proof), one has

Ea[R̃v0 ](−Tn) − Ea[R̃v0 ](t) + (1 +
1

2
v2
0)

[
M [R̃v0 ](−Tn) −M [R̃v0 ](t)

]

−v0
[
P [R̃v0 ](−Tn) − P [R̃v0 ](t)

]
≤ Keµεt, (H.18)

for some constant K > 0 and all time t ∈ [−Tn, T∗].

The next step is the use the mass conservation law to provide a control of the R̃v0(t)
direction. Indeed, one has

|Re

∫

R

R̃v0 z̄(t)| ≤ K‖z(−Tn)‖2
L2(R) +K‖z(t)‖2

L2(R) ≤ K sup
t∈[−Tn,T∗]

‖z(t)‖2
L2(R). (H.19)

for a constant K > 0, independent of ε. On the other hand, note that

Ea[u](t) + (1 +
1

4
v2
0)M [u](t) − v0P [u](t) = Ea[R̃v0 ](t) + (1 +

1

4
v2
0)M [R̃v0 ](t) − v0P [R̃v0 ]

−Re

∫

R

(aε − 1)|R̃v0 |m−1R̃v0 z̄ + F0(t), (H.20)

where F0 is the following quadratic functional

F0(t) :=
1

2

∫

R

[
|zx|2 + (1 +

1

4
v2
0)|z|2

]
− v0

2
Im

∫

R

z̄zx

− 1

m+ 1

∫

R

aε(x)[|R̃v0 + z|m+1 − |R̃v0 |m+1 − (m+ 1)|R̃v0 |m−1 Re(R̃v0 z̄)].
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In addition, for any t ∈ [−Tn,−T∗],

|Re

∫

R

(aε − 1)|R̃v0 |m−1R̃v0 z̄| ≤ Keµεt‖z(t)‖L2(R). (H.21)

The proof of (H.20) is essentially an expansion of the energy-mass functional using the rela-
tion u(t) = R̃v0(t) + z(t). The proof of (H.21) is similar to (H.14).

On the other hand, the functional F0(t) above mentioned enjoys the following coercivity
property: there exist K,λ0 > 0 independent of ε such that for every t ∈ [−Tn,−T∗]

F0(t) ≥ λ0‖z(t)‖2
H1(R) −

∣∣∣ Re

∫

R

R̃v0(t)z̄(t)
∣∣∣
2
−Keµεt‖z(t)‖2

L2(R) −K‖z(t)‖3
L2(R). (H.22)

This bound is a consequence of (H.10) and Lemma 3.2.

H.1.2 End of proof of Proposition H.3

Now by using (H.20), (H.22), and the estimates (H.17)-(H.18) and (H.19) we finally get (H.6).
Indeed, note that

Keµεt ≥ Ea[R̃v0 ](−Tn) − Ea[R̃v0 ](t) + (1 +
1

2
v2
0)

[
M [R̃v0 ](−Tn) −M [R̃v0 ](t)

]

−v0
[
P [R̃v0 ](−Tn) − P [R̃v0 ](t)

]

≥ F0(t) −Keµεt −Keµεt‖z(t)‖L2(R) −K‖z(t)‖4
L2(R).

Finally, from (H.22) and H.19 we conclude that for some K,µ > 0,

‖z(t)‖H1(R) ≤ Keµεt.

Plugging this estimate in (H.13), we obtain that |ρ′0(t)| ≤ Keµεt, and thus after integration and
by taking µ > 0 smaller if necessary, we get the final uniform estimate (H.6) for the H1-case.
Note that we have also improved the estimate on ρ′0(t) assumed in (H.7). This finishes the
proof.

H.2 Proof of Uniqueness

First of all let us recall that the solution u above constructed is in C(R, H1(R)) and satisfies
the exponential decay (2.2). Moreover, every solution converging to a soliton satisfies this
property. This property is crucial to obtain the uniqueness.

Proposition H.5 (Exponential decay, see also [47, 65]).

There exists ε0 > 0 such that for all 0 < ε < ε0 the following holds. Let v be a C(R, H1(R))
solution of (1.1) satisfying

lim
t→−∞

‖v(t) −Q(· − v0t)e
i
2
(·)v0ei(1−

1
4
v2
0)t‖H1(R) = 0.

Then there exist K,µ > 0 such that for every t ≤ −Tε one has

‖v(t) −Q(· − v0t)e
i
2
(·)v0ei(1−

1
4
v2
0)t‖H1(R) ≤ Keµεt.
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Proof. Fix α > 0 small. Let ε0 = ε0(α) > 0 small enough such that for all 0 < ε ≤ ε0 and
t ≤ −Tε,

‖v(t) −Q(· − v0t)e
i
2
(·)v0ei(1−

1
4
v2
0)t‖H1(R) ≤ α.

Possibly choosing ε0 even smaller, we can apply the arguments of Proposition H.3 to the
function v(t) on the interval (−∞,−1

2Tε] to obtain the desired result. Recall that a key fact to
obtain this result is that

∂tP [v](t) ≥ 0,

which is not valid in the case of a pure soliton solution going to x ∼ +∞ as t→ +∞.

Now we are ready to prove the uniqueness part.

Sketch of proof of uniqueness. Let w(t) := v(t) − u(t). Then w(t) ∈ H1(R) and satisfies the
equation

{
iwt + wxx + aε(x)|u+ w|m−1(u+ w) − aε(x)|u|m−1u = 0, in Rt × Rx,

‖w(t)‖H1(R) ≤ Keµεt for all t ≤ −1
2Tε. (cf. Proposition H.5).

(H.23)

The idea is to prove that w(t) ≡ 0 for all t ∈ R. For this purpose, one defines the second order
functional

F0[w](t) :=
1

2

∫

R

|wx|2 +
1

2
(1 +

1

4
v2
0)

∫

R

|w|2 − 1

2
v0 Im

∫

R

wxw̄

− 1

m+ 1

∫

R

aε(x)[|u+ w|m+1 − |u|m+1 − (m+ 1)|u|m−1 Re(uw̄)].

It is easy to verify that

1. Asymptotic at −∞.
lim

t→−∞
F0[w](t) = 0. (H.24)

2. Lower bound. There exists K > 0 such that for all t ≤ −1
2Tε,

F0[w](t) ≥ F̃0[w](t) −Keµεt sup
t′≤t

‖w(t′)‖2
H1(R),

where

F̃0[w](t) :=
1

2

∫

R

|wx|2 +
1

2

∫

R

(1 +
1

4
v2
0)|w|2 −

1

2
v0 Im

∫

R

wxw̄

−
∫

R

aε(x)[(m− 1)|u|m−3(Re(uw̄))2 + |u|m−1|w|2].

3. First derivative.

F ′
0[w](t) = Im

∫

R

iwt

{
wxx − (1 +

1

4
v2
0)w + |u+ w|m−1(u+ w) − |u|m−1u− iv0wx

}

+ Im

∫

R

aε(x)iut

{
|u+ w|m−1(u+ w) − |u|m−1u− 1

2
(m+ 1)|u|m−1w − 1

2
(m− 1)|u|m−3u2w̄

}
.

4. Upper bound. There exists K,µ > 0 such that

F0[w](t) ≤ Keµεt sup
t′≤t

‖w(t′)‖2
H1(R).
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These estimates are proved similarly to the proof of Lemma 3.13, see also [47] for a similar
proof. However, the functional F0(t) is not necessarily coercive; so in order to obtain a sat-
isfactory lower bound on F0, one has to modify the function w in (−∞,−1

2Tε] as follows.
Let

w̃(t, x) := w(t, x) + b1(t)Q(x− v0t)e
i(1− 1

4
v2
0)te

i
2
v0x + b2(t)Q

′(x− v0t)e
i(1− 1

4
v2
0)te

i
2
v0x,

with

b1(t) := − 1

2M [Q]
Im

∫

R

w̄(t, x)Q(x− v0t)e
i(1− 1

4
v2
0)te

i
2
v0xdx;

b2(t) := − 1

2M [Q′]
Re

∫

R

w̄(t, x)Q′(x− v0t)e
i(1− 1

4
v2
0)te

i
2
v0xdx.

This new function satisfies

1. Orthogonality on the Q and Q′ directions:

Im

∫

R

w̃(t)Q(x− v0t)e
i(1− 1

4
v2
0)te

i
2
v0x = Re

∫

R

w̃(t)Q′(x− v0t)e
i(1− 1

4
v2
0)te

i
2
v0x = 0.

2. Equivalence. There exists C1, C2 > 0 independent of ε such that

C1‖w(t)‖H1(R) ≤ ‖w̃(t)‖H1(R) + |b1(t)| + |b2(t)| ≤ C2‖w(t)‖H1(R).

Moreover,
F̃0[w̃](t) = F̃0[w](t) +O(eεµt‖w(t)‖2

H1(R)).

3. Control on the Q direction: for some K,µ > 0,

|Re

∫

R

w̃(t, x)Q(x− v0t)e
i(1− 1

4
v2
0)te

i
2
v0x| ≤ Keεµt sup

t′≤t
‖w(t′)‖H1(R).

This property is proved similarly to the proof of (I.12): We use the fact that variation in
time of the above quantity is of quadratic order in w̃.

4. Coercivity. There exists λ > 0 independent of t such that

F̃0[w̃](t) ≥ λ‖w̃(t)‖2
H1(R) −K|Re

∫

R

w̃(t, x)Q(x− v0t)e
i(1− 1

4
v2
0)te

i
2
v0x|2.

5. Sharp control. From the equivalence w-w̃ and the coercivity property we obtain, for
some K,µ > 0,

‖w̃(t)‖H1(R) ≤ Keεµt/2 sup
t′≤t

‖w(t′)‖H1(R), (H.25)

and therefore
|b1(t)| + |b2(t)| ≤ Keεµt/2 sup

t′≤t
‖w(t′)‖H1(R). (H.26)

Note that the bounds on b1(t) and b2(t) are proved similarly to (I.11).

The proof of all these affirmations follows the argument of Proposition 6 in [47], with
easier proofs. Finally, from (H.25)-(H.26) we have for ε small enough and t ≤ −1

2Tε,

‖w(t)‖H1(R) ≤ Keεµt sup
t′≤t

‖w(t′)‖H1(R) <
1

2
sup
t′≤t

‖w(t′)‖H1(R).

This inequality implies w ≡ 0, which gives the uniqueness.
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I Proof of Proposition 2.3

The proof of the stability result (2.8) is based in a standard Weinstein argument. Let us assume
that for some K > 0 fixed,

‖u(t1) − λ∞Qc∞(· −X0)e
i
2
v∞xeiγ0‖H1(R) ≤ Kεpm , (I.1)

with λ∞, v∞, c∞ defined in Theorem A, pm defined in (1.21), and γ0 ∈ R. From the local and
global Cauchy theory (cf. Lemma 3.1), we know that u is well defined for all t ≥ t1.

Step 0. Preliminaries. In order to simplify the calculations, note that from (1.15) the function
v(t, x) := λ−1

∞ u(t, x) solves

ivt + vxx +
aε

2
|v|m−1v = 0 on Rt × Rx.

The energy is now given by

Ẽa[v] :=
1

2

∫

R

|vx|2 −
1

m+ 1

∫

R

aε

2
|v|m+1; (I.2)

the mass (1.3) and momentum (1.5) remain unchanged. In addition (I.1) now becomes

‖v(t1) −Qc∞(· −X0)e
i
2
xv∞eiγ0‖H1(R) ≤ K̃εpm . (I.3)

With a slight abuse of notation we will rename v := u, K̃ := K, and we will assume the
validity of (I.3) for u. In addition, and if no confusion is present, we will drop the tilde in
(I.2). The parameters X0 and c∞ remain unchanged.

Let D0 > 2K be a large number to be chosen later, and set

T ∗ := sup
{
t ≥ t1 | for all t′ ∈ [t1, t), there exist r2(t′), g2(t′) ∈ R smooth

such that |r′2(t′)| + |r2(t1) + v∞t1 −X0| ≤
v∞
100

, and

‖u(t′) −Qc∞(· − v∞t− r2(t
′)) exp

{ i
2
xv∞ − i

4
v2
∞t+ ig2(t)

}
‖H1(R) ≤ D0ε

pm

}
.(I.4)

Observe that T ∗ > t1 is well-defined since D0 > 2K, (I.1) and the continuity of t 7→ u(t) in
H1(R). The objective is to prove that T ∗ = +∞, and thus (2.8). Therefore, for the sake of
contradiction, in what follows we shall suppose T ∗ < +∞.

The first step to reach a contradiction is now to decompose the solution on [t1, T
∗] using

modulation theory around the soliton. In particular, we will find some special ρ2(t), γ2(t)
satisfying the hypothesis in (I.4) but with

sup
t∈[t1,T ∗]

∥∥u(t) −Qc∞(· − v∞t− ρ2(t)) exp
{ i

2
xv∞ − i

4
v2
∞t+ iγ2(t)

}∥∥
H1(R)

≤ 1

2
D0ε

pm , (I.5)

a contradiction with the definition of T ∗.

Step 1. Modulation on the degenerate directions. We will prove the following

Lemma I.1 (Modulated decomposition).

For ε > 0 small enough, independent of T ∗, there exist C1 functions ρ2, c2, γ̃2, defined on [t1, T
∗],

with c2(t) > 0 and such that the function z(t) given by

z(t, x) := u(t, x) − R̃(t, x), (I.6)
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where R̃(t, x) := Qc2(t)(y)e
iΓ, with

y := x− v∞t− ρ2(t) and Γ :=
1

2
xv∞ +

∫ t

t1

c2(s)ds−
1

4
v2
∞t+ γ̃2(t),

satisfies for all t ∈ [t1, T
∗],

Re

∫

R

R̃(t)z̄(t) = Im

∫

R

R̃(t)z̄(t) = Re

∫

R

Q′
c2(t)(y)e

iΓz̄(t) = 0, (I.7)

‖z(t)‖H1(R) + |c2(t) − c∞| ≤ KD0ε
pm , and (I.8)

‖z(t1)‖H1(R) + |ρ2(t1) + v∞t1 −X0| + |c2(t1) − c∞| + |γ̃2(t1) −
1

4
v∞t1 − γ0| ≤ Kεpm , (I.9)

where K is not depending on D0. In addition, z(t) now satisfies the following modified NLS equation

izt + zxx +
1

2
aε(x)

[
|R̃+ z|m−1(R̃+ z) − |R̃|m−1R̃

]

+ ic′2(t)ΛQc2e
iΓ − γ̃′2(t)Qc2e

iΓ − iρ′2(t)Q
′
c2e

iΓ + (
1

2
aε(x) − 1)Qm

c2e
iΓ = 0. (I.10)

Furthermore, for some constant µ > 0 independent of ε, we have the following estimates:

|ρ′2(t)| ≤ K
[ ∫

R

e−µ|y||z|2(t, x)dx
] 1

2
+K

∫

R

e−µ|y||z|2(t, x)dx+Ke−µεt; (I.11)

|c′2(t)|
c2(t)

≤ K

∫

R

e−µ|y||z|2(t, x)dx+Ke−µεt‖z(t)‖H1(R), (I.12)

and finally

|γ̃′2(t)| ≤ K
[ ∫

R

e−µ|y||z|2(t, x)dx
] 1

2
+K

∫

R

e−µ|y||z|2(t, x)dx+Ke−µεt‖z(t)‖H1(R) +Ke−εµt.

(I.13)

Remark I.1. Note that from (I.8) and taking ε small enough we have an improved the bound
on ρ2(t). Indeed, for all t ∈ [t1, T

∗],

|ρ′2(t)| + |ρ2(t1) + v∞t1 −X0| ≤ 2D0ε
pm .

Thus, in order to reach a contradiction, we only need to show (I.5). Observe that these in-
equalities impliy that the soliton position is far away from the interaction region.

Proof of Lemma I.1. As in Lemma H.4 and 3.11, the proof of (I.6)-(I.9) are based in a Implicit
Function Theorem application.

On the other hand, equation (I.10) is a simple computation, completely similar to (H.12)
and (3.60). Finally, estimates (I.11)-(I.13) are similar to the proof of (H.13). We skip the details.

Step 2. Almost conserved quantities and monotonicity.

Lemma I.2 (Almost conservation of modified mass, energy and momentum).

Consider M = M [R̃], Ea = Ea[R̃] and P [R̃] the mass, energy and momentum of the soliton R̃
(cf. (I.6)). Then for all t ∈ [t1, T

∗] we have

M [R̃](t) = c2θ
2 (t)M [Q]; (I.14)

Ea[R̃](t) = c2θ
2 (t)(

1

4
v2
∞ − λ0c2(t))M [Q] +O(e−εµt); (I.15)

P [R̃](t) =
1

2
v∞c

2θ
2 (t)M [Q]. (I.16)
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Furthermore, we have the bound

∣∣Ea[R̃](t1) − Ea[R̃](t) + (c2(t1) +
1

4
v2
∞)(M [R̃](t1) −M [R̃](t)) − v∞(P [R̃](t1) − P [R̃](t))

∣∣

≤ K|
[ c2(t)
c2(t1)

]2θ
− 1|2 +Ke−εµt1 . (I.17)

Proof. The first and third identities, namely (I.14) and (I.16), are direct computations. We
consider (I.15). Here we have

Ea[R̃](t) =
1

2

∫

R

|R̃x|2 −
1

2(m+ 1)

∫

R

aε(x)|R̃|m+1

= c2θ
2 (t)

[
c2(t)(

1

2

∫

R

Q′2 − 1

m+ 1

∫

R

Qm+1) +
1

8
v2
∞

∫

R

Q2
]

+
1

m+ 1

∫

R

(1 − aε

2
)|R̃|m+1.

Similarly to (H.21), we have

|
∫

R

(1 − 1

2
aε)|R̃|m+1| ≤ Ke−µεt,

for some constants K,µ > 0. On the other hand, from Appendix K we have that

1

2

∫

R

Q′2 − 1

m+ 1

∫

R

Qm+1 = −λ0

2

∫

R

Q2, λ0 =
5 −m

m+ 3
,

and thus
Ea[R̃](t) = c2θ

2 (t)(
1

4
v2
∞ − λ0c2(t))M [Q] +O(e−µεt).

Summing up (I.14), (I.15) and (I.16), we obtain

Ea[R̃](t) + (c2(t1) +
1

4
v2
∞)M [u](t) − v∞P [R̃](t) = c2θ

2 (t)(c2(t1) − λ0c2(t))M [Q] +O(e−εµt).

In particular,

Ea[R̃](t1) − Ea[R̃](t) + (c2(t1) +
1

4
v2
∞)(M [R̃](t1) −M [R̃](t)) − v∞[P [R̃](t1) − P [R̃](t)] =

= λ0M [Q]
[
c2θ+1
2 (t) − c2θ+1

2 (t1) −
c2(t1)

λ0
[c2θ

2 (t) − c2θ
2 (t1)]

]
+O(e−εµt1).

To obtain the last estimate (I.17) we perform a Taylor development up to the second order
(around y = y0) of the function g(y) := y

2θ+1
2θ ; and where y := c2θ

2 (t) and y0 := c2θ
2 (t1). Note

that 2θ+1
2θ = 1

λ0
and y1/2θ

0 = c2(t1). The conclusion follows at once.

Now our objective is to estimate the quadratic term involved in (I.17). Following [59], we
use the mass conservation law identity. From (I.6) -(I.7) we have

c2θ
2 (t)M [Q] +

1

2

∫

R

|z(t)|2 = c2θ
2 (t1)M [Q] +

1

2

∫

R

|z(t1)|2. (I.18)

From here we obtain

(I.17) ≤ K‖z(t)‖4
L2(R) + ‖z(t1)‖4

L2(R) +Ke−εµt, (I.19)

for some K,µ > 0, independent of D0 and ε.
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Step 3. Energy estimates. Let us now introduce the second order functional

F2(t) :=
1

2

∫

R

{
|zx|2 + (c2(t1) +

1

4
v2
∞)|z|2

}
− 1

2
v∞ Im

∫

R

zxz̄

− 1

2(m+ 1)

∫

R

aε(x)[|R̃+ z|m+1 − |R̃|m+1 − (m+ 1)|R̃|m−1 Re(R̃z̄)].

This functional have the following properties.

Lemma I.3 (Energy expansion).

Consider M [u], Ea[u] and P [u] the mass, energy and momentum defined in (1.3), (I.2) and (1.5).
Then we have for all t ∈ [t1, T

∗],

Ea[u](t) + (c2(t1) +
1

4
v2
∞)M [u](t) − v∞P [u](t) =

Ea[R̃](t) + (c2(t1) +
1

4
v2
∞)M [R̃](t) − v∞P [R̃](t) + F2(t) +O(e−µεt‖z(t)‖H1(R)).

Proof. Using the orthogonality condition (I.7), we have

Ea[u](t) = Ea[R̃] + Re

∫

R

z̄[−R̃xx − |R̃|m−1R̃] +
1

2

∫

R

|zx|2 + Re

∫

R

(1 − aε

2
)|R̃|m−1R̃z̄

− 1

2(m+ 1)

∫

R

aε(x)[|R̃+ z|m+1 − |R̃|m+1 − (m+ 1)|R̃|m−1 Re(R̃z̄)].

Moreover, following (H.14), we easily get

|Re

∫

R

z̄(1 − 1

2
aε)|R̃|m−1R̃| ≤ Ke−µεt‖z(t)‖H1(R).

Similarly, by using (I.7),

M [u](t) = M [R̃] +
1

2

∫

R

|z|2,

and
P [u](t) = P [R̃](t) + Im

∫

R

R̃xz̄ +
1

2
Im

∫

R

zxz̄.

Collecting the above estimates, we have

Ea[u](t) + (c2(t1) +
1

4
v2
∞)M [u](t) − v∞P [u](t) =

Ea[R̃](t) + (c2(t1) +
1

4
v2
∞)M [R̃](t) − v∞P [R̃](t) + F2(t) +O(e−µεt‖z(t)‖H1(R)).

Here we have used (I.7), the equation satisfied by Qc2 and the identity

Re

∫

R

z̄[−R̃xx − |R̃|m−1R̃+ iv∞R̃x] = 0.

This concludes the proof.

Lemma I.4 (Modified coercivity for F2).

There exists ε0 > 0 such that for all 0 < ε < ε0 the following hold. There exist K, ν, µ > 0,
independent of K∗ such that for every t ∈ [t1, T

∗]

F2(t) ≥ ν‖z(t)‖2
H1(R) −Ke−µεt‖z(t)‖2

L2(R) +O(‖z(t)‖3
L2(R)). (I.20)
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Proof. First of all, note that

F2(t) =
1

2

∫

R

{
z2
x + (c2(t1) +

1

4
v2
∞)z2

}
− 1

2
v∞ Im

∫

R

z̄zx

−
∫

R

[|R̃|m−1|z|2 + (m− 1)|R̃|m−3[Re(R̃z̄)]2]

−1

2

∫

R

(aε(x) − 2)[|R̃|m−1|z|2 + (m− 1)|R̃|m−3[Re(R̃z̄)]2] +O(‖z(t)‖3
H1(R))

Since (aε(x)−2) is exponentially decreasing along the region where the soliton R̃ is supported,
we have

|
∫

R

(aε(x) − 2)[|R̃|m−1|z|2 + (m− 1)|R̃|m−3[Re(R̃z̄)]2]| ≤ Ke−εµt‖z(t)‖L2(R).

(cf. (H.14 for a similar computation.) From Lemma 3.2 and (I.7) we have for t ≥ t1,

F2(t) ≥ ν‖z(t)‖2
H1(R) −Ke−εµt‖z(t)‖2

L2(R) −K‖z(t)‖3
H1(R),

as desired.

End of the proof. Now we prove that our assumption T ∗ < +∞ leads inevitably to a con-
tradiction. Indeed, from Lemmas I.3 and I.4, the mass and energy conservation, and the
positivity of (1.16), we have for all t ∈ [t1, T

∗] and for some constant K > 0,

‖z(t)‖2
H1(R) ≤ KF(t1) +Ke−µεt1 sup

t∈[t1,T ∗]
‖z(t)‖L2(R) +K sup

t∈[t1,T ∗]
‖z(t)‖3

L2(R)

+
∣∣Ea[R̃](t1) − Ea[R̃](t) + (c2(t1) +

1

4
v2
∞)(M [R̃](t1) −M [R̃](t)) − v∞(P [R̃](t1) − P [R̃](t))

∣∣.

From Lemmas I.1 and I.19 we have

‖z(t)‖2
H1(R) ≤ Kε2pm +K sup

t∈[t1,T ∗]
‖z(t)‖4

H1(R) +Ke−εµt1D0ε
pm .

Collecting the preceding estimates we have for ε > 0 small and D0 = D0(K) large enough

‖z(t)‖2
H1(R) ≤

1

4
D2

0ε
2pm .

This estimate together with (I.18) and (I.9) gives us |c2(t) − c∞| ≤ Kεpm , independent of D0,
which contradicts the definition of T ∗. The conclusion is that

sup
t≥t1

∥∥u(t) −Qc∞(· − v∞t− ρ2(t)) exp
{ i

2
xv∞ − i

4
v2
∞t+ iγ2(t)

}∥∥
H1(R)

≤ Kεpm .

This finishes the proof of (2.8).

J Proof of Proposition 3.3

In this section we prove the decomposition result for the error S[ũ] associated to the approxi-
mate solution ũ. First of all, it is easy to verify that

S[ũ] = S[R̃] + L[w] + Ñ [w],
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where

L[w] := iwt + wxx +
a(εx)

2a(ερ)
Qm−1

c (y)[(m+ 1)w + e2iΘ(m− 1)w̄],

and

Ñ [w] := a(εx)
{
|R̃+ w|m−1(R̃+ w) − |R̃|m−1R̃− Qm−1

c (y)

2a(ερ)
[(m+ 1)w + e2iΘ(m− 1)w̄]

}
.

In the next Claim we expand the first term, S[R̃].

Claim 9 (Decomposition of S[R̃]).

1. Suppose 2 ≤ m < 3. Then one has

S[R̃] =
[
FR

0 (t, y) + εFR
1 (t, y) + ε2FR

2 (t, y) + ε3fR(t)FR
c (y)

]
eiΘ, (J.1)

where

FR
0 (t, y) := −1

2
(v′(t) − εf1(t))

yQc(y)

ã(ερ(t))
+ i(c′(t) − εf2(t))

ΛQc(y)

ã(ερ(t))

−(γ′(t) +
1

2
v′(t)ρ(t))

Qc(y)

ã(ερ(t))

−i(ρ′(t) − v(t))[
Q′

c(y)

ã(ερ(t))
− εã′(ερ(t))
ã2(ερ(t))

Qc(y)] ∈ Y, (J.2)

f1, f2 are given by (3.15),

FR
1 (t, y) :=

a′(ερ(t))
ãm(ερ(t))

yQc(y)
[
Qm−1

c (y) − 4c(t)

m+ 3

]

+
ia′(ερ(t))v(t)
ãm(ερ(t))

[ 4c(t)

5 −m
ΛQc(y) −

1

m− 1
Qc(y)

]
, (J.3)

and |fR(t)| ≤ K, FR
c ∈ Y . Finally, for every t ∈ [−Tε, Tε]

‖ε2FR
2 (t, y) + ε3fR(t)FR

c (y)‖H1(R) ≤ Kε2(e−εµ|ρ(t)| + ε).

2. Now suppose 3 ≤ m < 5. Then one has

S[R̃] =
[
FR

0 (t, y) + εFR
1 (t, y) + ε2FR

2 (t, y) + ε3FR
3 (t, y) + ε4f(t)FR

c (y)
]
eiΘ, (J.4)

where FR
0 , is given now by the expression

FR
0 (t, y) := −1

2
(v′(t) − εf1(t))

yQc(y)

ã(ερ(t))
+ i(c′(t) − εf2(t))

ΛQc(y)

ã(ερ(t))

−(γ′(t) +
1

2
v′(t)ρ(t) − ε2f3(t))

Qc(y)

ã(ερ(t))

−i(ρ′(t) − v(t) − ε2f4(t))[
Q′

c(y)

ã(ερ(t))
− εã′(ερ(t))
ã2(ερ(t))

Qc(y)] ∈ Y, (J.5)

FR
1 is given by (J.3),

FR
2 (t, y) :=

a′′(ερ(t))
2ãm(ερ(t))

y2Qm
c (y) − f3(t)

ã(ερ(t))
Qc(y) − i

f4(t)

ã(ερ(t))
Q′

c(y), (J.6)

and |fR(t)| ≤ K, FR
c ∈ Y . Moreover, for every t ∈ [−Tε, Tε]

‖ε3FR
3 (t, y) + ε4f(t)FR

c (y)‖H1(R) ≤ Kε3(e−εµ|ρ(t)| + ε).
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Proof of Claim 9. We prove the worst case, namely 3 ≤ m < 5. The remaining case is easier to
handle and we skip the details.

Recall the definitions of R̃, y and Θ from (3.6)-(3.7). We have

S[R̃] = iR̃t + R̃xx + aε(x)|R̃|m−1R̃

= −
[1

2
xv′ + c+ γ′ − 1

4
v2

]1

ã
Qc(y)e

iΘ − iρ′

ã
Q′

c(y)e
iΘ +

ic′

ã
ΛQce

iΘ

+
1

ã

[
Q′′

c + ivQ′
c −

1

4
v2Qc +

a(εx)

a(ερ)
Qm

c

]
eiΘ − iεa′ρ′

(m− 1)ãm
Qce

iΘ. (J.7)

Now we perform a Taylor expansion of the term a(εx) based at x = ρ(t), as in [65]. From (J.7),

S[R̃] =
1

ã

[
ε
a′

a
Qm−1

c − 1

2
v′

]
yQce

iΘ +
i

ã

[
c′ΛQc −

εa′v
(m− 1)a

Qc

]
eiΘ − 1

ã
(γ′ +

1

2
v′ρ)Qce

iΘ

− i

ã
(ρ′ − v)

[
Q′

c(y) +
εa′

(m− 1)a
Qc

]
eiΘ +

ε2a′′

2ãm
y2Qm

c e
iΘ

+
ε3a(3)

6ãm
y3Qm

c e
iΘ + ε4f(t)Fc(y)e

iΘ

=:
[
FR

0 (t, y) + εFR
1 (t, y) + ε2FR

2 (t, y) + ε3FR
3 (t, y) + ε4fR(t)FR

c (y)
]
eiΘ.

Additionally, we have |f(t)| ≤ K and FR
c (y) ∈ Y . In conclusion,

‖ε3F4(t, y) + ε4fR(t)FR
c (y)‖H1(R) ≤ Kε4(e−εµ|ρ(t)| + ε).

This finishes the proof.

Next, we consider the linear term. As above, we need to consider three different cases.
Recall that ΛAc(t, y) = ∂cAc(t, y).

Claim 10 (Decomposition of L[w]).

1. Suppose 2 ≤ m < 3. Then

L[w] = −ε
[
L+(A1,c) + iL−(B1,c)

]
eiΘ − (γ′ +

1

2
v′ρ)w − 1

2
(v′ − εf1)yw

−i(ρ′ − v)wy + iε(c′ − εf2)∂cw + ε2fL(t)FL
c (y)eiΘ. (J.8)

Furthermore, suppose that (A1,c, B1,c) satisfy (3.11). Then there exist K,µ > 0 such that

‖ε2fL(t)FL
c e

iΘ‖H1(R) ≤ Kε2(e−εµ|ρ(t)| + ε). (J.9)

2. Consider now the case 3 ≤ m < 5. Here one has

L[w] = −
2∑

k=1

εk
[
L+(Ak,c) + iL−(Bk,c)

]
eiΘ − 1

2
(v′ − εf1)yw + i(c′ − εf2)∂cw

−(γ′ +
1

2
v′ρ− ε2f3)w − i(ρ′ − v − ε2f4)wy

+ε2[FL
2 (t, y) + iGL

2 (t, y)]eiΘ + ε3fL(t)FL
c (y)eiΘ. (J.10)

Here

FL
2 (t, y) := m

a′

a
Qm−1

c yA1,c −
1

2
f1yA1,c −

1

ε
(B1,c)t − f2ΛB1,c, (J.11)
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and

GL
2 (t, y) :=

1

ε
(A1,c)t + f2ΛA1,c +

a′

a
Qm−1

c yB1,c −
1

2
f1yB1,c. (J.12)

In addition, suppose that (Ak,c(t, y), Bk,c(t, y)), satisfy (3.11) k = 1, 2. Then there exist
K,µ > 0 such that

‖ε3fL(t)FL
c e

iΘ‖H1(R) ≤ Kε3(e−εµ|ρ(t)| + ε). (J.13)

Proof. From the linear character of w we are reduced to handle only two different kind of
terms: L[Ac(t, y)e

iΘ] and L[iBc(t, y)e
iΘ]. In addition, we expand in several order of ε to con-

sider the case m ∈ [3, 5). Otherwise, the computations are simpler and one does not need an
accurate expression for these terms. We left the details to the reader.

First we compute L[Ac(t, y)e
iΘ], for a given smooth real valued function A. We have (the

subscript ()t means derivative on the first variable)

L[Ac(t, y)e
iΘ] = i(Ac)te

iΘ + ic′ΛAce
iΘ − (

1

2
xv′ + c− 1

4
v2 + γ′)Ace

iΘ − iρ′(Ac)xe
iΘ

+
[
(Ac)xx + iv(Ac)x − 1

4
v2Ac

]
eiΘ +

ma(εx)

a(ερ)
Qm−1

c Ace
iΘ

= −L+(Ac)e
iΘ + (ε

ma′

a
Qm−1

c − 1

2
v′)yAce

iΘ − (γ′ +
1

2
v′ρ)Ace

iΘ

−i(ρ′ − v)(Ac)ye
iΘ + i((Ac)t + c′ΛAc)e

iΘ +
mε2a′′

2a
y2Qm−1

c Ace
iΘ

+
mε3a(3)

6a
y3Qm−1

c Ace
iΘ + ε4f(t)y4Qm−1

c Ace
iΘ

= −L+(Ac)e
iΘ − 1

2
(v′ − εf1)yAce

iΘ − (γ′ +
1

2
v′ρ− ε2f3)Ace

iΘ

−i(ρ′ − v − ε2f4)(Ac)ye
iΘ + i(c′ − εf2)ΛAce

iΘ

+
εa′

a
mQm−1

c yAce
iΘ − ε

2
f1yAce

iΘ + i
[
(Ac)t + εf2ΛAc

]
eiΘ

+
mε2a′′

2a
y2Qm−1

c Ace
iΘ − ε2f3Ace

iΘ − iε2f4(Ac)ye
iΘ

+ε3
ma(3)

6a
y3Qm−1

c Ace
iΘeiΘ + ε4f(t)F II

c (y)eiΘ,

where F II
c (y) ∈ Y and f(t) is exponentially decaying in time. Therefore,

‖ε4f II(t)F II

c (y)‖H1(R) ≤ Kε4e−µε|ρ(t)|.

With a similar computation,

L[iBc(t, y)e
iΘ] = −iL−(Bc)e

iΘ − i

2
(v′ − εf1)yBce

iΘ − i(γ′ +
1

2
v′ρ− ε2f3)Bce

iΘ

+(ρ′ − v − ε2f4)(Bc)ye
iΘ − (c′ − εf2)ΛBce

iΘ

+
iεa′

a
Qm−1

c yBce
iΘ − i

2
εf1yBce

iΘ −
[
(Bc)t + εf2ΛBc

]
eiΘ

+i
ε2a′′

2a
y2Qm−1

c Bce
iΘ + iε3

a(3)

6a
y3Qm−1

c Bce
iΘ

+ε2f4(t)(Bc)ye
iΘ − iε2f3Bce

iΘ + iε4gII(t)GII
c (y)eiΘ,

with ‖ε4gII(t)GII
c (y)eiΘ‖H1(R) ≤ Kε4e−µε|ρ(t)|. Collecting the above calculations, we finally

obtain (J.10). Estimate (J.13) can be directly verified.
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For the final term Ñ [w] we have the following

Claim 11 (Decomposition of Ñ [w]).

1. Suppose that 2 ≤ m < 3 and (3.11) holds for (A1,c, B1,c). Then there exists K,µ > 0
such that

‖Ñ [w]‖H1(R) ≤ Kε2e−µε|ρ(t)|,

uniformly for every t ∈ [−Tε, Tε].

2. Suppose now 3 ≤ m < 5, and that (3.11) holds for each (Ak,c, Bk,c), k = 1, 2. Then one
has

Ñ [w] = ε2(N2,1(t, y) + iN2,2(t, y))eiΘ +OH1(R)(ε
3e−εµ|ρ(t)|),

with

N2,1 :=
1

2
(m−1)ã(ερ)Qm−2

c (mA2
1,c +B2

1,c), N2,2 := (m−1)ã(ερ)Qm−2
c A1,cB1,c. (J.14)

Proof. First we prove the case 2 ≤ m < 3. Recall that w = ε[A1,c(t, y) + iB1,c(t, y)]e
iΘ, with

the functions Ac(t, ·), Bc(t, ·) ∈ Y , real valued. Here we have

Ñ [w] = O(Qm−2
c |w|2 + |w|3) = OH1(R)(ε

2e−εµ|ρ(t)|),

uniformly in time.

Finally, let us consider the case 3 ≤ m < 5. From (3.9) we have w(t, x) =∑2
k=1 ε

k(Ak,c(t, y) + iBk,c(t, y))e
iΘ. In order to simplify the computations, we assume

(Ak,c, Bk,c)k=1,2 satisfy (3.11) on the interval [−Tε, Tε] (which is indeed the case). We have

Ñ [w] =
(m− 1)a(εx)

2a
m−2
m−1 (ερ)

Qm−2
c (y)

{
eiΘ|w|2 + 2 Re(eiΘw̄)w + (m− 3)eiΘ(Re(eiΘw̄))2

}

+OH1(R)(ε
3e−εµ|ρ(t)|). (J.15)

Now we replace w in the above expression and we arrange the terms obtained according to
the power of ε and between real and imaginary parts. We perform this computation in several
steps. First, note that

a(εx) = a(ερ) +O(εy).

On the other hand,
|w|2 = ε2{A2

1,c +B2
1,c} +OH1(R)(ε

3e−εµ|ρ(t)|).

Similarly Re(eiΘw̄) = εA1,c + ε2A2,c. Therefore

Re(eiΘw̄)w = ε2(A2
1,c + iA1,cB1,c)e

iΘ +OH1(R)(ε
3e−εµ|ρ(t)|),

and
eiΘ(Re(eiΘw̄))2 = ε2A2

1,ce
iΘ +OH1(R)(ε

3e−εµ|ρ(t)|).

Collecting these expansions and replacing in (J.15) we obtain

Ñ [w] =
1

2
ε2(m− 1)ã(ερ)Qm−2

c

{
mA2

1,c +B2
1,c + 2iA1,cB1,c

}
eiΘ +OH1(R)(ε

3e−εµ|ρ(t)|).

We are done.

Collecting the estimates from Claims 9, 10 and 11, we obtain Proposition 3.3. The proof is
now complete.
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K Some identities related to the soliton Q

This section has been taken in part from Appendix C in [53].

Lemma K.1 (Identities for the soliton Q).

Suppose m > 1 and denote by Qc := c
1

m−1Q(
√
cx) the scaled soliton, with Q solution of −Q′′ +

Q−Qm = 0 in R. Then

1. Energy. Let E1[u] := Ea≡1[u]. Then

E1[Q] = −1

2
λ0

∫

R

Q2 = −λ0M [Q], with λ0 =
5 −m

m+ 3
.

2. Integrals. Recall θ = 1
m−1 − 1

4 . Then
∫

R

Qc = cθ−
1
4

∫

R

Q,

∫

R

Q2
c = c2θ

∫

R

Q2, E1[Qc] = c2θ+1E1[Q].

and finally
∫

R

Qm+1
c =

2(m+ 1)c2θ+1

m+ 3

∫

R

Q2,

∫

R

ΛQc = (θ−1

4
)cθ−

5
4

∫

R

Q,

∫

R

ΛQcQc = θc2θ−1

∫

R

Q2.

3. Integrals with powers.
∫

R

Q′2 =
m− 1

m+ 3

∫

R

Q2,

∫

R

y2Qm+1 =
m+ 1

m+ 3

[
2

∫

R

y2Q2 −
∫

R

Q2
]
,

and
∫

R

y4Qm+1 =
m+ 1

m+ 3

[
2

∫

R

y4Q2−6

∫

R

y2Q2
]
,

∫

R

y2Q′2 =
2

m+ 3

∫

R

Q2+
m− 1

m+ 3

∫

R

y2Q2.
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5 Addendum: decreasing potential and reflection

In this section we address the case of the soliton dynamics for the equation NLS (1.12) in the
case of a slowly varying, strictly decreasing potential, constant in time. Indeed, we assume
that the function a is smooth enough and there exist constants K,µ > 0 and 0 < a0 < 1 such
that





a0 < a(r) < 1, a′(r) < 0, |a(k)(r)| ≤ Ke−µ|r| for all r ∈ R, k = 1, 2, 3, (4);

0 < a(r) − a0 ≤ Ke−µr, for all r ≥ 0, and

0 < 1 − a(r) ≤ Keµr for all r ≤ 0.

(5.1)

In particular, limr→−∞ a(r) = 1 and limr→+∞ a(r) = a0.

Note that P [u](t) defined in (1.5) now satisfies (1.16) with the opposite sign, therefore the
momentum is always a non increasing quantity. In this section we will sketch the proof of the
following
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Theorem 5.1 (Dynamics of a reflected soliton-solution for aNLS equation).

Assume that a(·) now satisfies (5.1). Let 2 ≤ m < 5, v0 > 0, λ0 := 5−m
m+3 and pm be as in (1.21).

Suppose in addition that

v2
0 < 4λ0(1 − a

4
5−m

0 ). (5.2)

There exists a small constant ε0 > 0 such that for all 0 < ε < ε0 the following holds.

1. Existence of a soliton-like solution.

There exists a solution u ∈ C(R, H1(R)) of (1.12), global in time, such that

lim
t→−∞

‖u(t) −Q(· − v0t)e
i(·)v0/2ei(1−

1
4
v2
0)t‖H1(R) = 0, (5.3)

with conserved mass M [u](t) = M [Q] and energy Ea[u](t) = (1
4v

2
0 − λ0)M [Q] < 0.

2. Reflection and stability of soliton-solution.

There exist K = K(v0) > 0 and C1- functions ρ(t), γ(t) ∈ R defined for all t ≥ KTε such that
the rest function

w(t, x) := u(t, x) −Q(x+ v0t− ρ(t))e−
i
2
xv0eiγ(t),

satisfies for all t ≥ KTε,

‖w(t)‖H1(R) + |ρ′(t)| + |γ′(t) − 1 +
1

4
v2
0| ≤ Kεpm . (5.4)

Remark 5.1. Let us clarify this last result. Under small but still fixed velocities, the soliton
solution is reflected by the potential, and modulo a small defect of order OH1(R)(ε

pm), it has
the same scaling and opposite velocity to the initially provided.

Let us remark that the extension of this result to the two dimensional case is direct, after
the preceding results (cf. Theorem 1). In addition, the constant K(v0) becomes unbounded
as v0 approaches the equality in (5.2).

The proof of this result is just an extension of the previous sections. First of all, it is not
difficult to prove the following result.

Proposition 5.2 (Existence of a pure soliton-like solution).

There exists ε0 > 0 such that for any 0 < ε < ε0, there exists a solution u ∈ C(R, H1(R)) of
(1.12) such that

lim
t→−∞

‖u(t) −Q(· − v0t)e
i
2
(·)v0ei(1−

1
4
v2
0)t‖H1(R) = 0, (5.5)

with mass M [u](t) = M [Q] and energy Ea[u](t) = (1
4v

2
0 − λ0)M [Q] < 0. Moreover, there exist

constants K,µ > 0 such that for all t ≤ −1
2Tε,

‖u(t) −Q(· − v0t)e
i
2
(·)v0ei(1−

1
4
v2
0)t‖H1(R) ≤ Keεµt. (5.6)

In particular,

‖u(−Tε) −Q(· + v0Tε)e
i
2
(·)v0e−i(1− 1

4
v2
0)Tε‖H1(R) ≤ Ke−µε−

1
100 ≤ Kε10, (5.7)

provided 0 < ε < ε0 small enough.
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Let us remark that the uniqueness of this solution is an open issue.

The next step is the study of the interaction soliton-potential. This is the part of the proof
where we need some completely new computations. Our objective is to prove the following
result.

Proposition 5.3 (Dynamics of the soliton in the interaction region).

Suppose v0 > 0 satisfying (5.2). There exist a constant ε0 > 0 such that the following holds for
any 0 < ε < ε0. Let u = u(t) be a globally defined H1(R) solution of (1.12) such that

‖u(−Tε) −Q(· + v0Tε)e
1
2
i(·)v0e−i(1− 1

4
v2
0)Tε‖H1(R) ≤ Kεpm .

Then there exist K0 = K0(K) > 0, and ρε, γε ∈ R such that

‖u(Tε) −Q(· − ρε)e
− i

2
(·)v0eiγε‖H1(R) ≤ K0ε

pm ,

and ρε ∼ −v0Tε.

The proof is based in a deep study of the formal dynamical system governing the dynam-
ics of the soliton, see Lemma 5.4. From this result, the conclusion of the above result is direct,
by following the lines of the proof of Proposition 2.2.

Remark 5.2. From the proof of this result it will be clear that in the case v2
0 > 4λ0(1−a

4
5−m

0 ) the
soliton exits by the right hand side of the potential. However, no stability result for large time
is known in the regime “decreasing potential”, so we do not know the asymptotic behavior
of this solution. The proof of this result will require some new ideas.

5.1 Study of a dynamical system, revisited

Similarly to [66], the dynamics of a soliton soliton is mainly described by its velocity V (t),
position U(t), scaling C(t) and phase H(t). The dynamical system governing these variables
is completely analogous to that of [66], Lemma 3.4, with the key difference on the sign of the
derivative of the potential a. Indeed, let

f1(C,U) :=
8a′(εU)C

(m+ 3)a(εU)
, f2(C, V, U) :=

4CV a′(εU)

(5 −m)a(εU)
. (5.8)

Our first result is as follows:

Lemma 5.4 (Existence of approximated dynamical parameters, case 2 ≤ m < 5).

Let v0 > 0, λ0, a(s) be as in Theorem 5.1 and (5.1). There exists a unique solution (C, V, P,G)
defined for all t ≥ −Tε with the same regularity than a(ε·), of the following nonlinear system of
differential equations





V ′(t) = εf1(C(t), U(t)), V (−Tε) = v0,

C ′(t) = εf2(C(t), V (t), U(t)), C(−Tε) = 1,

U ′(t) = V (t), U(−Tε) = −v0Tε,

H ′(t) = −1

2
V ′(t)U(t), H(−Tε) = 0.

(5.9)

In addition, for all t ≥ −Tε, C(t), V (t) are strictly decreasing with

C(t) =
a4/(5−m)(εU(t))

a4(5−m)(−εv0Tε)
=

a4/(5−m)(εU(t))

a4(5−m)(−ε−1/100)
, (5.10)
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and satisfy the parabola

C(t) = c0 +
V 2(t)

4λ0
, c0 := 1 − v2

0

4λ0
< 1. (5.11)

Proof. The existence of a local solution of (5.9) is consequence of the Cauchy-Lipschitz-Picard
theorem.

Now, in order to prove global existence of such a solution, we derive some a priori esti-
mates. Note that from the first equation in (4.16) we have C strictly decreasing in time with
C(t) ≤ 1, t ≥ −Tε. Moreover, after integration, we have (5.10). Since 1

2 < a < 1, one has that
C is bounded and globally well defined with

a
4/(5−m)
0

a4(5−m)(−ε−1/100)
≤ C(t) < 1, t ≥ −Tε. (5.12)

On the other hand, from the second equation in (5.9), we have V strictly decreasing in time.
Replacing (5.10), and after multiplication by V (t), one has

V (t)V ′(t) =
8

m+ 3
a

m−1
5−m (εU(t))a′(εU(t))V (t)a−

4
5−m (−ε−1/100).

After integration in [−Tε, t) we obtain (5.11). This last relation and the fact that C(t) ≤ 1
implies the global existence of V and the uniform bound

|V (t)| ≤ v0, t ≥ −Tε.

The proof is complete.

Now we describe the behavior of (C, V, U) for large times. Interestingly enough, here
the long time behavior may be different depending on the initial velocity v0. Recall that

c0 = 1 − v2
0

4λ0
.

Lemma 5.5 (Long time behavior, refracting case).

Suppose c0 ≤ a
4

5−m

0 . Then limt→+∞(C(t), V (t), U(t)) = (c∞, v∞,+∞), with

c∞ = a
4

5−m

0 (1 +O(ε10)), and v∞ = [4λ0(c∞ − c0)]
1/2 > 0.

In addition, there exists −Tε < T̃ε < K(v0)Tε such that U(T̃ε) = −U(−Tε).

Proof. We prove that for ε small limt→+∞C(t) = a
4

5−m

0 (1 + O(ε10)). Indeed, note that from
(5.10) and (5.11) we have

0 ≤ a
4

5−m

0 − c0 <
V 2(t)

4λ0
;

thus V (t) > 0 for all t ≥ −Tε. Moreover, if lim+∞ V (t) = 0, we have lim+∞C(t) = c0 ≤ a
4

5−m

0

and thus from (5.10)

lim
t→+∞

C(t) ≤ a
4

5−m

0 ,

a contradiction with (5.12) (after taking lim sup). In concluding we have lim+∞ V (t) > 0.
Therefore we have lim+∞ U(t) = +∞. Passing to the limit in (5.10), one obtains

lim
t→+∞

C(t) =
a

4/(5−m)
0

a4/(5−m)(−ε−1/100)
> a

4/(5−m)
0 .
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From (5.11) we obtains

V (+∞) = [4λ0( lim
t→+∞

C(t) − c0)]
1/2 > 0.

Next, we prove that U(+∞) = +∞. Indeed,

U(t) = U(−Tε) +

∫ t

−Tε

v(t)dt ≥ U(−Tε) + V (+∞)(t+ Tε),

and thus U(+∞) = +∞.

Now, let us define the exit time T̃ε > −Tε such that U(T̃ε) = −U(−Tε). We have

−U(−Tε) = U(−Tε) +

∫ T̃ε

−Tε

v(t)dt ≥ U(−Tε) + V (+∞)(T̃ε + Tε),

then, if c0 < a
4

5−m

0 we have T̃ε ≤ KTε.

Lemma 5.6 (Long time behavior, reflecting case).

Suppose now c0 > a
4/(5−m)
0 . Then there exists a unique t0 > −Tε, satisfying V (t0) = 0 and

t0 ≤ K(v0)Tε for some constant K(v0) > 0 but independent of ε. Moreover, one has

lim
t→+∞

(C(t), V (t), U(t)) = (1, v0,−∞).

In addition, there exist T̃ε > −Tε and K(v0) > 0 such that U(T̃ε) = U(−Tε), with T̃ε ≤ K(v0)Tε.

Proof. First we prove the existence of t0 > −Tε such that V (t0) = 0. Note that its existence
implies its uniqueness. By contradiction, let us suppose that V (t) > 0 for all t > −Tε. Then
U(t) is strictly increasing. Here we have two cases. First, suppose lim+∞ V (t) > 0. Then we
have U(+∞) = +∞ and therefore C(t) is strictly decreasing with

lim
t→+∞

C(t) =
a

4/5−m
0

a4/(5−m)(−ε−1/100)
.

Passing to the limit in (5.11), one has

a
4/5−m
0

a4/(5−m)(−ε−1/100)
= c0 > a

4
5−m

0 ,

a contradiction for ε small enough.

Now suppose limt→+∞ V (t) = 0. Here we have two cases: either limt→+∞ U(t) = +∞, or
U(−Tε) ≤ limt→+∞ U(t) =: U∞ < +∞. For the first case, similarly to the recent analysis, one
has

lim
t→+∞

C(t) =: C∞ =
a

4/5−m
0

a4/(5−m)(−ε−1/100)
≥ c0 > a

4
5−m

0 .

This is a contradiction for ε small enough.

In the second case, one has

C∞ =
a4/(5−m)(εU∞)

a4(5−m)(−ε−1/100)
> 0,
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and
lim

t→+∞
V ′(t) = εf1(C∞, U∞) < 0,

a contradiction with limt→+∞ V (t) = 0 (since limt→+∞ V ′(t) = limt→+∞
V (t)

t = 0.)

Therefore, there exists t0 ∈ R such that V (t0) = 0, with V (t) < 0 for t > t0. In addition,
C(t0) = c0 and U ′(t0) = 0. From (5.10) one has |εU(t0)| ≤ K(v0).

Moreover, limt→+∞ U(t) = −∞. Indeed, note that for ν > 0 small, since V ′′(t) = O(ε2),

V (t0 ±
ν

ε
) = ±V ′(t0)

ν

ε
+O(ν2) = ±νf1(c0, U(t0)) +O(ν2) = ±κ0ν +O(ν2).

with κ0 := f1(c0, U(t0)) = 8c0
(m+3)

a′(εU(t0))
a(εU(t0)) < 0. Then for t > t0 + ν

ε ,

U(t) = U(−Tε) +

∫ t0− ν
ε

−Tε

v(t)dt+

∫ t0+ ν
ε

t0− ν
ε

v(t)dt+

∫ t

t0+ ν
ε

v(t)dt

≤ U(−Tε) + v0(Tε + t0 −
ν

ε
) + v0

ν

ε
+ νκ0(t− t0 −

ν

ε
).

and thus limt→+∞ U(t) = −∞. In addition, limt→+∞C(t) = a−
4

5−m (−ε−1/100) = 1 + O(ε10)
and limt→+∞ V (t) = −v0 +O(ε10).

Similarly,

U(t0) = U(−Tε) +

∫ t0− ν
ε

−Tε

v(t)dt+

∫ t0

t0− ν
ε

v(t)dt

≥ U(−Tε) − νκ0(t0 −
ν

ε
+ Tε) −K

ν

ε
.

This inequality implies that t0 ≤ KTε, with K = K(v0) > 0 independent of ε. Note that K
becomes singular as v0 approaches c(v0) = a

4/(5−m)
0 .

Let us define T̃ε > −Tε such that U(T̃ε) = U(−Tε). Then we have C(T̃ε) = 1 and V (T̃ε) =
−v0. We finally have

0 =

∫ T̃ε

−Tε

v(t)dt =

∫ t0− ν
ε

−Tε

v(t)dt+

∫ t0+ ν
ε

t0− ν
ε

v(t)dt−
∫ T̃ε

t0+ ν
ε

|v(t)|dt

≤ v0(t0 −
ν

ε
+ Tε) + v0

ν

ε
+ v(t0 +

ν

ε
)(T̃ε − t0 +

ν

ε
).

In conclusion T̃ε ≤ KTε.

Proof of Proposition 5.3. The proof of this result is straightforward, just follow the lines of the
proof of Proposition 2.2. The main modification is in the a priori assumptions (3.8). Now we
assume that

|c(t) − C(t)| + |v(t) − V (t)| + |ρ′(t) − U ′(t)| ≤ ε1/100.

It is clear that these estimates are improved in the new version of Lemma 3.11. The last issue is
the integrability of the term εe−εγ|ρ(t)|, since ρ′(t) ∼ v(t) changes of sign during the dynamics.
However, from the last assumptions, and a correct splitting of the interval of integration as in
the proof of Lemma 5.6, it is easy to see that

∫

R

εe−εγ|ρ(t)|dt ≤ K,

with K independent of ε. We left the details to the reader.



184 ADDENDUM: DECREASING POTENTIAL AND REFLECTION

5.2 Stability of the reflected soliton solution

The final step towards the proof of Theorem 5.1 is a stability result for a reflected soliton. Let
us recall that this result is consequence of the good sign of the following derivative:

∂t{(−v0)P [u](t)} ≥ 0,

which does not hold for the normal case of final velocity v∞ > 0.

Proposition 5.7 (Stability in H1(R), reflected case).

Suppose 2 ≤ m < 5. There exists ε0 > 0 such that if 0 < ε < ε0 the following hold. Suppose that
for some time t1 ≥ 1

2Tε, X0 ≤ −v0t1 and γ0 ∈ R and K > 0,

‖u(t1) −Q(· −X0)e
− i

2
xv0eiγ0‖H1(R) ≤ Kεpm . (5.13)

where u(t) is a global H1-solution of (1.12).

Then there exist K0 > 0 and C1-functions ρ(t), γ(t) ∈ R defined in [t1,+∞) such that

w(t) := u(t) −Q(· + v0t− ρ2(t))e
− i

2
(·)v0eiγ(t),

satisfies for all t ≥ t1,

‖w(t)‖H1(R) + |ρ′2(t)| + |γ′2(t) − 1 +
1

4
v2
0| ≤ K0ε

pm , (5.14)

where, for some K > 0,

|ρ2(t1) − v0t1 −X0| + |γ2(t1) − γ0| ≤ Kεpm .

End of proof of Theorem 5.1. Define ρ(t) := ρ2(t) and γ(t) := γ2(t). The conclusion follows at
once.

Proof of Proposition 5.7. The proof of this result is based in a standard Weinstein argument.
Let us assume that for some K > 0 fixed,

‖u(t1) −Q(· −X0)e
− i

2
v0(·)eiγ0‖H1(R) ≤ Kεpm , (5.15)

with pm defined in (1.21), and γ0 ∈ R.

Step 0. Preliminaries.

Let D0 > 2K be a large number to be chosen later, and set

T ∗ := sup
{
t ≥ t1 | for all t′ ∈ [t1, t), there exist r2(t′), g2(t′) ∈ R smooth

such that |r′2(t′)| + |r2(t1) + v0t1 −X0| ≤
v0
100

, and

‖u(t′) −Q(· + v0t− r2(t
′)) exp

{
− i

2
xv0 −

i

4
v2
0t+ ig2(t)

}
‖H1(R) ≤ D0ε

pm

}
.(5.16)

Observe that T ∗ > t1 is well-defined since D0 > 2K, (5.15) and the continuity of t 7→ u(t) in
H1(R). The objective is to prove that T ∗ = +∞, and thus (5.14). Therefore, for the sake of
contradiction, in what follows we shall suppose T ∗ < +∞.
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The first step to reach a contradiction is now to decompose the solution on [t1, T
∗] using

modulation theory around the soliton. In particular, we will find some special ρ2(t), γ2(t)
satisfying the hypothesis in (5.16) but with

sup
t∈[t1,T ∗]

∥∥u(t) −Qc0(· + v0t− ρ2(t)) exp
{
− i

2
xv0 −

i

4
v2
0t+ iγ2(t)

}∥∥
H1(R)

≤ 1

2
D0ε

pm , (5.17)

a contradiction with the definition of T ∗.

Step 1. Modulation on the degenerate directions. The following result is similar to Lemma
I.1.

Lemma 5.8 (Modulated decomposition).

For ε > 0 small enough, independent of T ∗, there exist C1 functions ρ2, c2, γ̃2, defined on [t1, T
∗],

with c2(t) > 0 and such that the function z(t) given by

z(t, x) := u(t, x) − R̃(t, x), (5.18)

where R̃(t, x) := Qc2(t)(y)e
iΓ, with

y := x+ v0t− ρ2(t) and Γ := −1

2
xv0 +

∫ t

t1

c2(s)ds−
1

4
v2
0t+ γ̃2(t),

satisfies for all t ∈ [t1, T
∗],

Re

∫

R

R̃(t)z̄(t) = Im

∫

R

R̃(t)z̄(t) = Re

∫

R

Q′
c2(t)(y)e

iΓz̄(t) = 0, (5.19)

‖z(t)‖H1(R) + |c2(t) − 1| ≤ KD0ε
pm , and (5.20)

‖z(t1)‖H1(R) + |ρ2(t1) − v0t1 −X0| + |c2(t1) − 1| + |γ̃2(t1) +
1

4
v0t1 − γ0| ≤ Kεpm , (5.21)

where K is not depending on D0. In addition, z(t) now satisfies the following modified NLS equation

izt + zxx + aε(x)
[
|R̃+ z|m−1(R̃+ z) − |R̃|m−1R̃

]

+ ic′2(t)ΛQc2e
iΓ − γ̃′2(t)Qc2e

iΓ − iρ′2(t)Q
′
c2e

iΓ + (aε(x) − 1)Qm
c2e

iΓ = 0. (5.22)

Furthermore, for some constant µ > 0 independent of ε, we have the following estimates:

|ρ′2(t)| ≤ K
[ ∫

R

e−µ|y||z|2(t, x)dx
] 1

2
+K

∫

R

e−µ|y||z|2(t, x)dx+Ke−µεt; (5.23)

|c′2(t)|
c2(t)

≤ K

∫

R

e−µ|y||z|2(t, x)dx+Ke−µεt‖z(t)‖H1(R), (5.24)

and finally

|γ̃′2(t)| ≤ K
[ ∫

R

e−µ|y||z|2(t, x)dx
] 1

2
+K

∫

R

e−µ|y||z|2(t, x)dx+Ke−µεt‖z(t)‖H1(R) +Ke−εµt.

(5.25)

Remark 5.3. Note that from (5.20) and taking ε small enough we have an improved the bound
on ρ2(t). Indeed, for all t ∈ [t1, T

∗],

|ρ′2(t)| + |ρ2(t1) + v0t1 −X0| ≤ 2D0ε
pm .

Thus, in order to reach a contradiction, we only need to show (5.17). Observe that these
inequalities imply that the soliton position is far away from the interaction region.
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Step 2. Almost conserved quantities and monotonicity.

Lemma 5.9 (Almost conservation of modified mass, energy and momentum).

Consider M = M [R̃], Ea = Ea[R̃] and P [R̃] the mass, energy and momentum of the soliton R̃
(cf. (5.18)). Then for all t ∈ [t1, T

∗] we have

M [R̃](t) = c2θ
2 (t)M [Q]; (5.26)

Ea[R̃](t) = c2θ
2 (t)(

1

4
v2
0 − λ0c2(t))M [Q] +O(e−εµt); (5.27)

P [R̃](t) = −1

2
v0c

2θ
2 (t)M [Q]. (5.28)

Furthermore, we have the bound

∣∣Ea[R̃](t1) − Ea[R̃](t) + (c2(t1) +
1

4
v2
0)(M [R̃](t1) −M [R̃](t)) + v0(P [R̃](t1) − P [R̃](t))

∣∣

≤ K|
[ c2(t)
c2(t1)

]2θ
− 1|2 +Ke−εµt1 . (5.29)

Proof. The first and third identities, namely (5.26) and (5.28), are just direct computations. We
consider (5.27). Here we have

Ea[R̃](t) =
1

2

∫

R

|R̃x|2 −
1

(m+ 1)

∫

R

aε(x)|R̃|m+1

= c2θ
2 (t)

[
c2(t)(

1

2

∫

R

Q′2 − 1

m+ 1

∫

R

Qm+1) +
1

8
v2
0

∫

R

Q2
]

+
1

m+ 1

∫

R

(1 − aε)|R̃|m+1.

Similarly to (H.21), we have

|
∫

R

(1 − aε)|R̃|m+1| ≤ Ke−µεt,

for some constants K,µ > 0. On the other hand, from Appendix K we have that

1

2

∫

R

Q′2 − 1

m+ 1

∫

R

Qm+1 = −λ0

2

∫

R

Q2, λ0 =
5 −m

m+ 3
,

and thus
Ea[R̃](t) = c2θ

2 (t)(
1

4
v2
0 − λ0c2(t))M [Q] +O(e−µεt).

Summing up (5.26), (5.27) and (5.28), we obtain

Ea[R̃](t) + (c2(t1) +
1

4
v2
0)M [u](t) + v0P [R̃](t) = c2θ

2 (t)(c2(t1) − λ0c2(t))M [Q] +O(e−εµt).

In particular,

Ea[R̃](t1) − Ea[R̃](t) + (c2(t1) +
1

4
v2
0)(M [R̃](t1) −M [R̃](t)) + v0[P [R̃](t1) − P [R̃](t)] =

= λ0M [Q]
[
c2θ+1
2 (t) − c2θ+1

2 (t1) −
c2(t1)

λ0
[c2θ

2 (t) − c2θ
2 (t1)]

]
+O(e−εµt1).

To obtain the last estimate (5.29) we perform a Taylor expansion up to the second order
(around y = y0) of the function g(y) := y

2θ+1
2θ ; and where y := c2θ

2 (t) and y0 := c2θ
2 (t1).

Note that 2θ+1
2θ = 1

λ0
and y1/2θ

0 = c2(t1). The conclusion follows at once.
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Now our objective is to estimate the quadratic term involved in (5.29). Following [59], we
use the mass conservation law identity. From (6.9) -(6.10) we have

c2θ
2 (t)M [Q] +

1

2

∫

R

|z(t)|2 = c2θ
2 (t1)M [Q] +

1

2

∫

R

|z(t1)|2. (5.30)

From here we obtain

(6.21) ≤ K‖z(t)‖4
L2(R) + ‖z(t1)‖4

L2(R) +Ke−εµt, (5.31)

for some K,µ > 0, independent of D0 and ε.

Step 3. Energy estimates. Let us now introduce the second order functional

F2(t) :=
1

2

∫

R

{
|zx|2 + (c2(t1) +

1

4
v2
0)|z|2

}
+

1

2
v0 Im

∫

R

zxz̄

− 1

(m+ 1)

∫

R

aε(x)[|R̃+ z|m+1 − |R̃|m+1 − (m+ 1)|R̃|m−1 Re(R̃z̄)].

This functional have the following properties.

Lemma 5.10 (Energy expansion).

Consider M [u], Ea[u] and P [u] the mass, energy and momentum defined in (1.3), (I.2) and (1.5).
Then we have for all t ∈ [t1, T

∗],

Ea[u](t) + (c2(t1) +
1

4
v2
0)M [u](t) + v0P [u](t) =

Ea[R̃](t) + (c2(t1) +
1

4
v2
0)M [R̃](t) + v0P [R̃](t) + F2(t) +O(e−µεt‖z(t)‖H1(R)).

Proof. Using the orthogonality condition (6.10), we have

Ea[u](t) = Ea[R̃] + Re

∫

R

z̄[−R̃xx − |R̃|m−1R̃] +
1

2

∫

R

|zx|2 + Re

∫

R

(1 − aε)|R̃|m−1R̃z̄

− 1

(m+ 1)

∫

R

aε(x)[|R̃+ z|m+1 − |R̃|m+1 − (m+ 1)|R̃|m−1 Re(R̃z̄)].

Moreover, following (B.13), we easily get

|Re

∫

R

z̄(1 − aε)|R̃|m−1R̃| ≤ Ke−µεt‖z(t)‖H1(R).

Similarly, by using (6.10),

M [u](t) = M [R̃] +
1

2

∫

R

|z|2,

and
P [u](t) = P [R̃](t) + Im

∫

R

R̃xz̄ +
1

2
Im

∫

R

zxz̄.

Collecting the above estimates, we have

Ea[u](t) + (c2(t1) +
1

4
v2
0)M [u](t) + v0P [u](t) =

Ea[R̃](t) + (c2(t1) +
1

4
v2
0)M [R̃](t) + v0P [R̃](t) + F2(t) +O(e−µεt‖z(t)‖H1(R)).

Here we have used (6.10), the equation satisfied by Qc2 and the identity

Re

∫

R

z̄[−R̃xx − |R̃|m−1R̃− iv0R̃x] = 0.

This concludes the proof.
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Lemma 5.11 (Modified coercivity for F2).

There exists ε0 > 0 such that for all 0 < ε < ε0 the following hold. There exist K, ν, µ > 0,
independent of K∗ such that for every t ∈ [t1, T

∗]

F2(t) ≥ ν‖z(t)‖2
H1(R) −Ke−µεt‖z(t)‖2

L2(R) +O(‖z(t)‖3
L2(R)). (5.32)

Proof. First of all, note that

F2(t) =
1

2

∫

R

{
z2
x + (c2(t1) +

1

4
v2
0)z

2
}

+
1

2
v0 Im

∫

R

z̄zx

−
∫

R

[|R̃|m−1|z|2 + (m− 1)|R̃|m−3[Re(R̃z̄)]2]

−
∫

R

(aε(x) − 1)[|R̃|m−1|z|2 + (m− 1)|R̃|m−3[Re(R̃z̄)]2] +O(‖z(t)‖3
H1(R))

Since (1−aε(x)) is exponentially decreasing along the region where the soliton R̃ is supported,
we have

|
∫

R

(1 − aε(x))[|R̃|m−1|z|2 + (m− 1)|R̃|m−3[Re(R̃z̄)]2]| ≤ Ke−εµt‖z(t)‖L2(R).

(cf. (B.13 for a similar computation.) From Lemma 2.3 and (6.10) we have for t ≥ t1,

F2(t) ≥ ν‖z(t)‖2
H1(R) −Ke−εµt‖z(t)‖2

L2(R) −K‖z(t)‖3
H1(R),

as desired.

End of the proof. Now we prove that our assumption T ∗ < +∞ leads inevitably to a con-
tradiction. Indeed, from Lemmas 5.10 and 5.11, the mass and energy conservation, and the
negativity of (1.16), we have for all t ∈ [t1, T

∗] and for some constant K > 0,

‖z(t)‖2
H1(R) ≤ KF(t1) +Ke−µεt1 sup

t∈[t1,T ∗]
‖z(t)‖L2(R) +K sup

t∈[t1,T ∗]
‖z(t)‖3

L2(R)

+
∣∣Ea[R̃](t1) − Ea[R̃](t) + (c2(t1) +

1

4
v2
0)(M [R̃](t1) −M [R̃](t)) + v0(P [R̃](t1) − P [R̃](t))

∣∣.

From Lemmas 6.2 and 5.31 we have

‖z(t)‖2
H1(R) ≤ Kε2pm +K sup

t∈[t1,T ∗]
‖z(t)‖4

H1(R) +Ke−εµt1D0ε
pm .

Collecting the preceding estimates we have for ε > 0 small and D0 = D0(K) large enough

‖z(t)‖2
H1(R) ≤

1

4
D2

0ε
2pm .

This estimate together with (5.30) and (6.12) gives |c2(t) − 1| ≤ Kεpm , independent of D0,
which contradicts the definition of T ∗. The conclusion is that

sup
t≥t1

∥∥u(t) −Q(· + v0t− ρ2(t)) exp
{
− i

2
xv0 −

i

4
v2
0t+ iγ2(t)

}∥∥
H1(R)

≤ Kεpm .

This finishes the proof.
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Abstract

We study the problem of 2-soliton collision for the generalized Korteweg-de Vries equa-
tions, completing some recent works of Y. Martel and F. Merle [53, 54]. We classify the non-
linearities for which collisions are elastic or inelastic. Our main result states that in the case of
small solitons, with one soliton smaller than the other one, the unique nonlinearities allow-
ing a perfectly elastic collision are precisely the integrable cases, namely the quadratic (KdV),
cubic (mKdV) and Gardner nonlinearities.7

Keywords : generalized Korteweg- de Vries equations, 2-soliton collision, integrability.

1 Introduction and Main Results

In this work we consider the generalized Korteweg-de Vries equation (gKdV) on the real line

ut + (uxx + f(u))x = 0, in Rt × Rx. (1.1)

Here u = u(t, x) is a real-valued function, and f : R → R a nonlinear function, often
refered as the nonlinearity of (1.1). This equation represents a mathematical generalization of
the Korteweg-de Vries equation (KdV), namely the case f(s) = s2,

ut + (uxx + u2)x = 0, in Rt × Rx; (1.2)

other physically important cases are the cubic one f(s) = s3, and the quadratic-cubic nonlin-
earity, namely f(s) = s2 − µs3, µ ∈ R. In the former case, the equation (1.1) is often refered
as the (focusing) modified KdV equation (mKdV), and in the latter, it is known as the Gardner
equation.

Concerning the KdV equation, it arises in Physics as a model of propagation of dispersive
long waves, as was pointed out by J. S. Russel in 1834 [62]. The exact formulation of the KdV
equation comes from Korteweg and de Vries (1895) [41]. This equation was re-discovered in
a numerical work by N. Zabusky and M. Kruskal in 1965 [42].

After this work, a great amount of literature has emerged, physical, numerical and math-
ematical, for the study of this equation, see for example [8, 7, 75, 44, 30, 63, 62]. Although
under different points of view, among the main topics treated are the following: existence
of explicit solutions and their stability, local and global well posedness, long time behavior
properties and, of course, related generalized models, hierarchies and their properties.

This continuous, focused research on the KdV equation can be in part explained by some
striking algebraic properties. One of the first properties is the existence of localized, rapidly
decaying, stable and smooth solutions called solitons. Given three real numbers t0, x0 and
c > 0, solitons are solutions of (1.2) of the form

u(t, x) := Qc(x− x0 − c(t− t0)), Qc(s) := cQ(c1/2s), (1.3)

and where Q satisfies the second order nonlinear differential equation

Q′′ −Q+Q2 = 0, Q(x) =
3

2 cosh2(1
2x)

.

7To appear in IMRN.
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The 3-parameter family of solitons (1.3) contains three important symmetries of the equa-
tion, namely scaling and translation in space and time invariances. From the Noëther theorem,
these two last symmetries are related to conserved quantities, invariant under the KdV flow,
usually called Mass and Energy, represented below in (1.7)-(1.8) (in a general form). More-
over, due to the mass and energy conservation, the Sobolev space H1(R) appears as an ideal
space to study long time properties of KdV.

Even more striking is the fact that KdV, mKdV and the Gardner equation, being infinite di-
mensional dynamical systems, possess an infinity number of conserved quantities, a consequence
of the so-called complete integrability property. This one is closely related to the existence of
a Lax pair for these equations (see Lax, [43]). Another important property is the following
well known fact: given any Schwartz initial data, the corresponding solution to the Cauchy
problem for (1.2) exists globally in time and decouples, as t→ +∞, into a radiation part going
leftward plus a nonlinear multisoliton component going to the right, see [76].

The dynamical problem of 2-soliton collision is a classical problem in nonlinear wave
propagation (see [53] for a review and references therein). By 2-soliton collision we mean
the following problem: given two solitons, solutions of (1.1), largely separated at some early
time and having different velocities, we expect that they have to collide at some finite time.
The resulting solution after the collision is precisely the object of study. In particular, one
considers if any change in size, position, or shape, even destruction of the solitons, after
some large time, may be present.

Let us review some relevant works in this direction. First, the works of Fermi, Pasta
and Ulam [19] and Zabusky and Kruskal [42] exhibited numerical results showing a remark-
able phenomena related to solitons collision. More precisely, they put in evidence the elastic
character of the collision between two solitons. By elastic we mean that collision keeps the
solitons unchanged and does not produce any residual term of positive mass for large times.
The unique consequence of the collision is a shift translation on each soliton, depending on
their sizes. Next, the work of Lax [43] developed a mathematical framework to study these
problems. After this, the inverse scattering method (we refer e.g. to [1] and [62] for a review)
provided explicit formulas for N -soliton solutions (Hirota [31]). Indeed, let c1 > c2 > 0 and
δ1, δ2 ∈ R be arbitrary given numbers. There exists an explicit solution U = Uc1,c2(t, x) of (1.2)
which satisfies

∥∥∥U(t, ·)−
2∑

j=1

Qcj
(·−cjt−δj)

∥∥∥
H1(R)

−→
t→−∞

0,
∥∥∥U(t, ·)−

2∑

j=1

Qcj
(·−cjt−δ′j)

∥∥∥
H1(R)

−→
t→+∞

0, (1.4)

for some δ′j such that the shifts ∆j = δ′j − δj depend only on c1, c2. This solution, called 2-
soliton, represents the pure collision of two solitons, with no residual terms before and after
the collision. In other words, the collision is elastic.

These properties are also valid for the cubic mKdV, (see [1], p. 390) and for the Gardner
equation (see [21, 82] and references there in). In particular, complete integrability and elastic
collisions are still present. Let us recall that for the Gardner equation

ut + (uxx + u2 − µu3)x = 0, (1.5)

given µ ∈ R, soliton solutions exist for all c > 0 in the case µ < 0, and provided c < 2
9µ

if µ > 0. These solutions are explicit and given by u(t, x) = Qµ,c(x − ct), where Qµ,c is the
Schwartz function [82]

Qµ,c(x) :=
3c

1 + ρ cosh(
√
cx)

; ρ := (1 − 9

2
µc)1/2. (1.6)
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In particular, no soliton-solution exists provided µ > 0, and c > 0 large enough, where the
character of the equation becomes defocusing.

We point out that these techniques are known to be too rigid to be applied to more general
models, and have no equivalent for the case of the gKdV equation (1.1) with a general nonlin-
earity. The first purpose of this paper is to confirm this belief under reasonable hypothesis on
the nonlinearity: the collision of two solitons is not elastic in general, except by KdV, mKdV
and the Gardner equations. Before establishing our main result we explain the framework
where the problem must be posed.

The complete integrability property has been studied in many other differential equa-
tions, as NLS, KPI, Benjamin-Ono, etc.; see for example [1]. In particular, when complete
integrability is lost, very little is known. We mention the recent works of Perelman [72],
Holmer, Marzuola and Zworski [33, 34, 35] and Abou Salem, Fröhlich and Sigal [3] on the
problem of 2-soliton collision for the nonlinear Schrödinger equation (NLS) under the action
of a potential and considering higher velocities.

1.1 Setting and hypothesis

Let us come back to the general equation (1.1). Assume that the nonlinearity f ∈ C3(R). The
Cauchy problem for equation (1.1) (namely, adding the initial condition u(t = 0) = u0) is
locally well-posed for u0 ∈ H1(R) (see Kenig, Ponce and Vega [39]).

For H1(R) solutions, in the general case, unlike the integrable cases, only the following
two quantities are conserved by the flow:

M(t) :=

∫

R

u2(t, x) dx =

∫

R

u2
0(x) dx = M(0), (Mass), (1.7)

and

E(t) :=
1

2

∫

R

u2
x(t, x) dx−

∫

R

F (u(t, x)) dx

=
1

2

∫

R

(u0)
2
x(x) dx−

∫

R

F (u0(x)) dx = E(0), (Energy) (1.8)

where we have denoted

F (s) :=

∫ s

0
f(σ) dσ. (1.9)

In the case of a pure power f(s) = sm, m < 5, any H1(R) solution is global in time
thanks to the conservation of energy (1.8). For m = 5, solitons are shown to be unstable and
the Cauchy problem for the corresponding gKdV equation has finite-time blow-up solutions,
and see [50] and references there in. It is believed that form > 5 the situation is the same. The
origin grosso modo of this instability comes from the lack of control for the injection H1(R) →
Lp(R) for p ≥ 5. Indeed, from the Galiardo-Nirenberg inequality

∫

R

|v|p+1 ≤ C(p)
( ∫

R

v2
) p+3

4
( ∫

R

v2
x

) p−1
4 ,

valid for any v ∈ H1(R), one can see that the energy (1.8) cannot be controlled by the usual
H1-norm. Consequently, in this work, we will discard high-order nonlinearities at leading
order. Indeed, we will consider nonlinearities f of the form

f ∈ Cm+2(R), f(u) := um + f1(u), m = 2, 3, 4, with lim
s→0

|f1(s)|
|s|m = 0. (1.10)
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Moreover, using stability properties of the solitons, we will have only global in time solutions,
namely u(t) ∈ H1(R) for all time t ∈ R.

The positive sign leading in front of f (see (1.10)) allows the existence of solitons for (1.21)
of the form

u(t, x) := Qc(x− x0 − ct),

with c > 0 small enough and x0 ∈ R, where the function Qc satisfies the elliptic equation

Q′′
c + f(Qc) = cQc, Qc ∈ H1(R). (1.11)

From Berestycki and Lions [6] and (1.1), it follows that there exists c∗(f) > 0 (possibly +∞)
defined by

c∗(f) := sup{c > 0 such that for all c′ ∈ (0, c), exists Qc′ positive solution of (1.11)}.

For all c > 0, if a solution Qc > 0 of (1.11) exists then it can be chosen even on R and ex-
ponentially decreasing on R

+ (and similarly if Qc < 0). Moreover, in [51], the authors have
showed that 0 < c < c∗(f) is a sufficient condition for asymptotic stability in the energy space
H1 around the soliton Qc, see also Proposition 3.3 for details.

Finally, in this paper, we consider only nonlinear stable solitons in the sense of Weinstein
[84], i.e. such that

d

dc′

∫
Q2

c′(x)dx
∣∣∣
c′=c

> 0. (1.12)

Note that since m = 2, 3, 4 in (1.10), this condition is automatically satisfied for c > 0 small
enough (in the pure power case f(s) = sm, this condition is satisfied for any c > 0 provided
m < 5, see [84]).

1.2 Previous analytic results on 2-soliton collision in non-integrable cases

As pointed out in [53], the problem of describing the collision of two traveling waves or
solitons is a general problem for nonlinear PDEs, which is almost completely open, except in
the integrable cases described above. On the other hand, these problems have been studied
since the 60’s from both experimental and numerical points of view.

We deal with these questions for (1.1) with a general nonlinearity f(u) in a particular
setting: we consider two positive solitons Qc1 , Qc2 , 0 < c2 < c1 < c∗(f), and we assume c2
small compared with c1.

Under these assumptions, Martel and Merle [53] considered the collision problem for (2.1)
in the quartic case, f(s) = s4, with one soliton small with respect to the other. They showed
that the collision is almost elastic, but inelastic, by showing the nonexistence of pure 2-soliton
solution.

Theorem 1.1 (Non-existence of a pure 2-soliton solution, quartic case [53]). Let f(s) := s4 and
0 < c := c2

c1
< 1. There exists a constant c0 > 0 such that if c < c0 then the following holds. Let

u(t) ∈ H1(R) be the unique solution of (1.1) such that

lim
t→−∞

‖u(t) −Qc1(· − c1t) −Qc2(· − c2t)‖H1(R) = 0. (1.13)

Then there exist x+
1 , x

+
2 , c+1 > c+2 > 0 and constants T0,K > 0 large enough such that

w+(t, ·) := u(t, ·) −Qc+1
(· − x+

1 − c+1 t) −Qc+2
(· − x+

2 − c+2 t)

satisfies
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1. Support on the left of solitons.

lim
t→+∞

‖w+(t)‖H1(x> 1
10

c2t) = 0.

2. Parameters perturbation. The limit scaling parameters c+1 and c+2 satisfy

1

K
c

17
6 ≤ c+1

c1
− 1 ≤ Kc

11
6 , and

1

K
c

8
3 ≤ 1 − c+2

c
≤ Kc

1
3 .

In particular, c+1 > c1 and c+2 < c2.

3. Non zero residual term. For every t ≥ T0, the adapted H1-norm of w+(t) satisfies

1

K
c

7
12
1 c

17
12 ≤ ‖w+

x (t)‖L2(R) +
√
c1c‖w+(t)‖L2(R) ≤ Kc

7
12
1 c

11
12 .

Remark 1.1. The existence and uniqueness of the solution of (1.1) satisfying (1.13) was proved
in [49].

Remark 1.2. Note that ‖Qc2‖H1(R) ∼ c
1
12 ≫ Kc

5
12 ≥ ‖w+(t)‖L2(R) for c small. In other words

the defect w+ is really small compared with Qc2 .

The next question arising from this result is to generalize these results to (1.1) under as-
sumption (1.10). In this case, Martel and Merle [54] proved that the collision is still stable,
giving upper bounds on the residual terms appearing after the collision. In particular, their
result extends the positive part of Theorem 1.1.

Theorem 1.2 (Behavior after collision of a pure 2-soliton solution, [54]).
Let f satisfying (1.10). Let 0 < c2 < c1 < c∗(f) be such that the positive solution Qc1 of (1.11)
satisfies (1.12). Then there exists c0 = c0(c1) ∈ (0, c1) such that if c2 < c0(c1) then the following
holds. Let u(t) be the solution of (1.21) satisfying

lim
t→−∞

‖u(t) −Qc1(· − c1t) −Qc2(· − c2t)‖H1(R) = 0. (1.14)

Then, there exist ρ1(t), ρ2(t), c+1 > c+2 > 0 and K > 0 such that

w+(t, x) := u(t, x) −Qc+1
(x− ρ1(t)) −Qc+2

(x− ρ2(t))

satisfies supt∈R ‖w+(t)‖H1(R) ≤ Kc
1

m−1

2 and for q = qm := 2
m−1 + 1

4 ,

lim
t→+∞

‖w+(t)‖H1(x> 1
10

c2t) = 0, lim sup
t→+∞

‖w+(t)‖H1(R) ≤ Kc
q− 1

2
− 1

100
2 , (1.15)

lim
t→+∞

|ρ′1(t) − c+1 | + |ρ′2(t) − c+2 | = 0. (1.16)

Moreover, limt→+∞E(w+(t)) =: E+ and limt→+∞
∫

R
(w+)2(t) =: M+ exist and the following

bounds hold

1

2
lim sup
t→+∞

∫

R

((w+
x )2 + c2(w

+)2)(t) ≤ 2E+ + c2M
+ ≤ lim inf

t→+∞

∫

R

((w+
x )2 + 2c2(w

+)2)(t). (1.17)

Finally, the limit parameters c+1 and c+2 satisfy the following bounds

1

K
(2E+ + c2M

+) ≤ c+1
c1

− 1 ≤ K(2E+ + c2M
+), (1.18)

and
1

K
c
q− 3

4
2 (2E+ + c1M

+) ≤ 1 − c+2
c2

≤ Kc
q− 3

4
2 (2E+ + c1M

+). (1.19)
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Remark 1.3. In Theorem 1.2, if c+1 = c1 and c+2 = c2 (or equivalently E+ = M+ = 0), then the
solution u(t) is a pure 2-soliton solution and the collision is elastic.

In [54], the question of whether the collision is elastic or inelastic in the general case –and
thus the nonexistence of pure 2-soliton solutions– was left open, see [54], Remark 1. More pre-
cisely, the authors conjectured a classification result concerning the nonlinearities f(s) allowing
small stable solitons. This affirmation asserts that under reasonable stability properties, the
unique nonlinearities for which any 2-soliton collision is pure are the integrable cases, f(s) = s2,
f(s) = s3 and a linear combination of both nonlinearities. Theorem 1.1 from [53] was the first
step in this direction. By extending some techniques from [53], [54] and developping new
computations, we are able to provide a satisfactory answer to this open question.

1.3 Main results

Consider the framework introduced in Theorem 1.2. In addition to this result, we have the
following

Theorem 1.3 (Non-existence of pure 2-soliton solution, general case). Let f be as in (1.10), with
m = 2 or 3, and

f ∈ Cp+1(R), f (p)(0) 6= 0 for some p ≥ 4. (1.20)

For 0 < c2 ≪ c1 ≪ 1 equation (1.1) has no pure 2-soliton solution of sizes c1, c2. In particular
Theorem 1.2 holds with c+1 > c1 and c+2 < c2.

Remark 1.4. The nonzero condition f (p)(0) 6= 0 for some p ≥ 4 rules out the integrable cases
f(s) = sm, m = 2 or 3 and the Gardner nonlinearity f(s) = s2 − µs3.

Remark 1.5. We do not treat the degenerate cases f(s) = sm +f1(s), for f1(s) 6= 0 but f (p)
1 (0) =

0 for all p ≥ 4. These cases seem to be not physically relevant.

Remark 1.6. The result of Theorem 1.3 in the quartic casem = 4 follows directly from the proof
of Theorem 1.1 in [53] together with the techniques used in the present paper. This remark
and Theorem 1.3 allow to classify the nonlinearities for which 2-soliton collision is elastic. In
particular, with the restriction mentioned in Remark 1.5, we obtain that pure 2-soliton solutions
are present for any pair of solitons with different velocities if and only if f corresponds to the integrable
cases, f(s) = s2, s3 and linear combinations. We recall that form ≥ 5 in (1.10), solitons have been
shown to be unstable (see [9]). It is believed that collision may produce blow-up solutions in
finite time.

Theorem 1.3 is a consequence of the following reduction of the problem. Let p be the
smallest integer greater or equal than 4 satisfying (1.20). Let c1 > 0 small. Consider the
transformation

ũ(t, x) := c
− 1

m−1

1 u(c
− 3

2
1 t, c

− 1
2

1 x),

which maps Qc1(x− c1t) to Q(x− t) and Qc2(x− c2t) to Qc(x− ct), with c := c2
c1

. If u = u(t, x)
is solution of (1.1) then ũ is solution of the equation

{
ũt + (ũxx + f̃(ũ))x = 0,

with f̃(ũ) := ũm + f̃1(ũ), f̃1(ũ) := c1
− m

m−1 f1(c
1

m−1

1 ũ).

Note that f̃1 satisfies (1.10). Then, for the case m = 3, f̃1 can be expanded as

f̃1(ũ) = c
− 3

2
1

[ 1

p!
f

(p)
1 (0)(c

1
2
1 ũ)

p +O((c
1
2
1 ũ)

p+1)
]

=: εũp + |ε|1+
1

p−3 f̂1(ũ),
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where ε := 1
p!f

(p)
1 (0)c

p−3
2

1 is small and f̂1 satisfies the decay relation lims→0 |s|−pf̂1(s) = 0.

For the quadratic case, we need more care because of the Gardner nonlinearity. We have

f̃1(ũ) = c−2
1

[1

6
f

(3)
1 (0)(c1ũ)

3 +
1

p!
f

(p)
1 (0)(c1ũ)

p +O((c1ũ)
p+1)

]

=
1

6
f

(3)
1 (0)c1ũ

3 +
1

p!
f

(p)
1 (0)cp−2

1 ũp +O(cp−1
1 ũp+1)

=: µ(ε)ũ3 + εũp + |ε|1+
1

p−2 f̂1(ũ),

where ε := 1
p!f

(p)
1 (0)cp−2

1 6= 0 by hypothesis, and µ(ε) := 1
6f

(3)
1 (0)c1 = µ̂ε

1
p−2 , µ̂ ∈ R. Here both

ε and µ are small (depending on c1) and f̂1 satisfies the decay relation lims→0 |s|−pf̂1(s) = 0.
Note that in this framework, the quadratic case can be seen as a particular case of the Gardner
nonlinearity, for which µ̂ = 0.

Finally, we drop the tilde on ũ and f̃ and the hat on f̂1. We are now reduced to the ε-
dependent equation

ut + (uxx + f(u))x = 0, (1.21)

where µ(ε) = µ̂ε
1

p−2 , µ̂ ∈ R,

f = fε ∈ Cp+1(R), f(u) =

{
u2 + µ(ε)u3 + εup + ε

1+ 1
p−2 f1(u), m = 2,

u3 + εup + ε
1+ 1

p−3 f1(u), m = 3,
lim
s→0

f1(s)

|s|p = 0,

(1.22)
and ε is small, and p ≥ 4. For notational commodity we will skip the ε-dependence on the
functions considered along this work, except in some computations performed in Appendix
M. Lastly, note that for ε small Q and Qc satisfy (1.12), see also Remark 3.2.

In this framework, we now claim the main result of this paper:

Theorem 1.4 (Non-existence of pure 2-soliton solution, general case).
Suppose m = 2, 3 and f satisfying (1.22) for p ≥ 4. There exists a constant ε0 > 0 such that if

0 < |ε| < ε0, and 0 < c ≤ |ε|m−1+ 1
25 , (1.23)

then the following holds. Let u(t) be solution of (1.21) satisfying

lim
t→−∞

‖u(t) −Q(· − t) −Qc(· − ct)‖H1(R) = 0, (1.24)

there exist K,T0 > 0 such that

1. Non zero residual term. There exist ρ1(t), ρ2(t), c+1 > c+2 > 0 such that

w+(t) := u(t, x) −Qc+1
(x− ρ1(t)) −Qc+2

(x− ρ2(t))

satisfies, for every t ≥ T0,
lim

t→+∞
‖w+(t)‖H1(x> 1

10
ct) = 0, (1.25)

and for q = 2
m−1 + 1

4 ,

1

K
|ε|cq+ 1

2 ≤ ‖w+
x (t)‖L2(R) +

√
c‖w+(t)‖L2(R) ≤ K|ε|cq. (1.26)
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2. The asymptotic scaling parameters c+1 and c+2 satisfy

1

K
ε2c2q+1 ≤ c+1 − 1 ≤ Kε2c2q, and

1

K
ε2c3q+ 1

4 ≤ 1 − c+2
c

≤ Kε2c3q− 7
4 . (1.27)

Before sketching the proof of this Theorem, some remarks are in order.

Remark 1.7 (Comments on the assumptions). In the present paper, as in [53, 54], we study the
collision of two solitons Qc1 and Qc2 . The assumption c2 small allows to linearize in c2, and
then to reduce the non existence of a pure 2-soliton solution to the computation of a coefficient
depending only on c1. For general f , as in (1.10), and general c1 > 0, it is an open question
to compute this coefficient, see Remark 2.7 (for p = 4, a special algebraic structure allowed to
compute this coefficient, see [53]).

According to this, we compute the asymptotics of this coefficient as c1 is small (or equiv-
alent, ε is small), see Appendix M. This is the only place where ε small is needed. This
asymptotic allows us to conclude under the additional restriction 0 < c < |ε|m−1+ 1

25 (see
Proposition 2.11 and estimate (4.6)). The exponent 1

25 has no special meaning, and can be
taken as small as we want, as long as c is taken even smaller.

Two open questions then arise:

1. Can we relax in (1.23) the second condition on c?

2. For general f , do there exist special values of c1 for which the coefficient is zero? The
residue from the collision would then be of smaller order in c2.

Remark 1.8. For m = 2, the smoothness condition (1.22) allows nonlinearities of type f(s) =
s2 + νεp−2sp, with p ≥ 4 (possibly non integer). For m = 3, the same conclusion follows for
nonlinearities of the type f(s) = s3 + εsp, p = 4 and p ≥ 5 (possibly non integer). See also
Appendix L and final remarks in Appendix M.

Remark 1.9. Although this theorem asserts that collision is indeed inelastic, near-elastic, the
appearance of smaller solitons on the left of the solitons is not discarded by our proof, and
(1.25). However, we believe that, at least under the condition of Theorem 1.4, there are no
such small solitons.

1.4 Sketch of the proof

Our proof will follow closely the approach described by Martel, Merle and Mizumachi [53,
54, 58]. The argument is as follows: we consider the solution (unique, see [49]) u(t) of (1.21)
satisfying (1.14) at time t ∼ −∞. Then, we separate the analysis among three different time
intervals: t≪ −c− 1

2 , |t| ≤ c−
1
2 and c−

1
2 ≪ t. On each interval the solution possesses a specific

behavior which we briefly describe:

1. (t ≪ −c− 1
2 ). In this interval of time we prove that u(t) remains close to a 2-soliton

solution with no changes on scaling and shift parameters. This result is possible for
negative long enough times, such that both solitons are still far from each other, and is
a consequence of [49].

2. (|t| ≤ c−
1
2 ). This is the interval where solitons collision leads the dynamic of u(t). The

novelty in the method is the construction of an approximate solution of (1.21) with high
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order of accuracy such that (a) at time t ∼ −c− 1
2 this solution is close to a 2-soliton

solution and therefore to u(t), (b) it describes the 2-soliton collision in this interval, (c)

at time t ∼ c−
1
2 , when solitons are sufficiently separated, it possesses an extra, nonzero,

residual term product of the collision, and characterized by a number d(ε) 6= 0 (cf.
(2.29)-(2.30)), and (d) it is possible to extend the solution u(t) to the whole interval
[−c 1

2 , c
1
2 ] being still close to our approximate solution, uniformly on time, modulo mod-

ulation on a translation parameter. This property confirms that our Ansatz is indeed the
correct approximate solution describing the collision.

3. (t ≫ c−
1
2 ) Here some stability properties (see Proposition 3.3) will be used to establish

the convergence of the solution u(t) to a 2-soliton solution with modified parameters.
Moreover, by using a monotony argument, it will be possible to show that the residue
appearing after the collision at time t ∼ c−

1
2 is still present at infinity. This gives the

conclusion of the Theorem.

The plan of this paper is as follows. In Section 2 we construct the aforementioned ap-
proximate solution and compute the error term produced in terms of a set of linear problems.
Then we solve such linear systems and finally we give the first basic estimates concerning
this solution. We finally prove that it is indeed close to a 2-soliton solution. In section 3 we
construct an actual solution u close to the approximate solution for small times, and state
some stability results to study the long time behavior of the solution u. Finally, in section 4,
we prove Theorem using above results.

2 Construction of an approximate 2-soliton solution

The objective of this section is to construct an approximate solution of the gKdV equation
(1.21), which will precisely describe the collision of two solitons. Hereafter, we assume the
hypothesis of Theorem 1.4. We suppose both solitons are positive (the negative case, for
m = 3, can be treated in the same way).

Secondly, note that Q and Qc have velocity (and size) 1 and c respectively; so that working
with u(t, x+ t) instead of u(t, x) we can assume that the great soliton Q is fixed at x = 0 and
the small soliton has velocity c − 1 < 0. Of course, v(t, x) := u(t, x + t) satisfies now the
translated equation

vt + (vxx − v + f(v))x = 0 on Rt × Rx. (2.1)

Finally, denote

Tc := c−
1
2
− 1

100 > 0. (2.2)

This quantity can be understood as the time of interaction between the two solitons. The
exponent 1

100 can be replaced by any small positive number without relevant modifications.

The following result deals with the problem of describing the collision in the interval of
time [−Tc, Tc]:

Proposition 2.1 (Construction of an approximate solution of the gKdV equation). Letm = 2, 3
and f as in (1.22). There exist constants c0 = c0(f) > 0 andK0 = K0(f) such that for all 0 < c < c0
there exists a function ũ = ũ1,c(t, x) such that the following hold:
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1. Approximate solution on [−Tc, Tc]. For all t ∈ [−Tc, Tc],

‖ũt + (ũxx − ũ+ f(ũ))x‖H2(R) ≤ K0c
3

m−1
+ 3

4 .

2. Closeness to the sum of two solitons: For all time t ∈ [−Tc, Tc], the function ũ belongs toH1(R)
and satisfies

‖ũ(t) −Q(x− α) −Qc(x+ (1 − c)t)‖H1(R) ≤ K0c
1

m−1 ,

where α = α(t, x) is a smooth bounded function, to be defined below, see (2.4).

Remark 2.1. The proof of this proposition requires several steps, starting in Subsection 2.1 to
finally ending in Subsection 2.3, Proposition 2.10. However, the proof is intuitively clear to
describe: our approximate solution will consists of a linear combination of a nonlinear basis well
behaved under the gKdV flow, together a variable decomposition resembling the classical
separation of variables from second order linear PDEs. This description was first introduced
by Martel and Merle [53], [54].

First of all we explain how the approximate solution is composed. We follow [53].

2.1 Decomposition of the approximate solution

We look for ũ(t, x), the approximate solution for (2.1), carring out a specific structure. We first
introduce a set of indices, depending on the cases we deal with. Let

Σ2 := {(k, l) = (1, 0), (1, 1), (2, 0), (2, 1), (1, 2), (3, 0)},

for the quadratic case (m = 2), and

Σ3 := {(k, l) = (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (4, 0)},

for the cubic one (m = 3).

We recall now an order relation for indices (k, l), (k′, l′) ∈ Σm introduced in [53]. We say
that

(k′, l′) < (k, l) if and only if

{
k′ < k and l′ ≤ l, or

k′ ≤ k and l′ < l.
(2.3)

We set two variables denoting the position of each soliton. For the small soliton, let

yc := x+ (1 − c)t and Rc(t, x) := Qc(yc),

and for the great soliton,

y := x− α(yc) and R(t, x) := Q(y),

where for (ak,l)(k,l)∈Σm
,

α(s) :=

∫ s

0
β(s′)ds′, β(s) :=

∑

(k,l)∈Σm

ak,l c
lQk

c (s). (2.4)

The correction term α is intended to describe the shift on the position of the great soliton.
Note that α might be nonzero even in the integrable case, see (1.4). Moreover, in the quartic
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case m = 4, ε = 0, one has |α| → +∞ as c→ 0, see [51]. Along this work α will be a bounded
function, uniformly on c.

The form of ũ(t, x) is, as it should be expected, the sum of the two soliton plus a correction
term:

ũ(t, x) := Q(y) +Qc(yc) +W (t, x), (2.5)

W (t, x) :=
∑

(k,l)∈Σm

cl
(
Qk

c (yc)Ak,l(y) + (Qk
c )

′(yc)Bk,l(y)
)
, (2.6)

where ak,l, Ak,l, Bk,l are unknowns to be determined.

The motivation in [53] for choosing W of the form (2.6) is precisely the closeness of the
family of functions {

clQk
c , c

l(Qk
c )

′, k ≥ 1, l ≥ 0
}

(2.7)

under multiplication and differentiation, due to the specific form of the equation of Qc (see
Lemma 2.1 in [53]). In the case of equation (2.1), for a general nonlinearity this structure is
preserved up to a lower order term (see Lemma L.2).

We want to measure the size of the error produced by inserting ũ as defined in (2.5)-(2.6)
in the equation (2.1). For this, let

S[ũ](t, x) := ũt + (ũxx − ũ+ f(ũ))x. (2.8)

Our first result in the above direction is the following

Proposition 2.2 (Decomposition of S(ũ)). Let

Lw := −wyy + w − f ′(Q)w. (2.9)

Then,

S[ũ](t, x) =
∑

(k,l)∈Σm

clQk
c (yc)

[
ak,l(−3Q+ 2f(Q))′(y) − (LAk,l)

′(y) + Fk,l(y)
]

+
∑

(k,l)∈Σm

cl(Qk
c )

′(yc)
[
ak,l(−3Q′′)(y) +

(
3A′′

k,l + f ′(Q)Ak,l

)
(y) − (LBk,l)

′(y) +Gk,l(y)
]

+ E(t, x)

where Fk,l, Gk,l and E satisfy, for any (k, l) ∈ Σm,

(i) Dependence property of Fk,l and Gk,l: The expressions of Fk,l and Gk,l depend only on (ak′,l′),
(Ak′,l′), (Bk′,l′) for (k′, l′) < (k, l).

(ii) Parity property of Fk,l and Gk,l: Assume that for any (k′, l′) such that (k′, l′) < (k, l) Ak′,l′ is
even and Bk′,l′ is odd, then Fk,l is odd and Gk,l is even.

Moreover, F1,0 = (f ′(Q))′ and G1,0 = f ′(Q), and higher order terms are given in Appendix L.

(iii) Estimate on E : Assume both (Ak,l) and (Bk,l) bounded, and (A′
k,l), (B

′
k,l) ∈ Y for (k, l) ∈ Σm.

Then there exists κ > 0 such that for all j = 0, 1, 2, and for every (t, x) ∈ [−Tc, Tc] × R,

|∂j
xE(t, x)| ≤ κcm−1Qc(yc).

Remark 2.2. Note that (Lw)y, as defined in (2.9), represents the linear operator associated to
the gKdV equation (2.1). Thus, the expression for S[ũ] above stated can be seen as a general-
ization of the linearized gKdV equation, with the addition of some correction terms.
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Proof. We postpone the proof of the Proposition 2.2, merely calculative, to Appendix L. We
note that this Proposition has been already stated in [54], but here we will need an improved
version, describing explicitly every term Fk,l, Gk,l up to a fixed high order. For the details, see
Appendix L.

Note that if we want to improve the approximation ũ, the unknown functions Ak,l and
Bk,l for a fixed (k, l) must be chosen satisfying a sort of modified linear gKdV system where
the source terms are composed of preceding, well-known, Ak′,l′ and Bk′,l′ functions. Indeed,
if we choose (formally) Ak,l and Bk,l such that for any (k, l) ∈ Σm

(Ωk,l)

{
(LAk,l)

′ + ak,l(3Q− 2f(Q))′ = Fk,l,

(LBk,l)
′ + 3ak,lQ

′′ − 3A′′
k,l − f ′(Q)Ak,l = Gk,l,

then the error term will be reduced to the quantity

S[ũ] = E(t, x).

Of course the solvability theory for the linear systems (Ωk,l) and the measure of this error
term must be stated in a rigorous form. This will be established in the following section.

2.2 Resolution of linear systems (Ωk,l)

First, we recall some preliminary notation and results from [53]. We denote by Y the set of
C∞ functions f such that

∀j ∈ N, ∃Kj , rj > 0, ∀x ∈ R, |f (j)(x)| ≤ Kj(1 + |x|)rje−|x|. (2.10)

We recall some well-known results concerning a resonance function and the operator L.

Claim 12 ([54]). The function ϕ(x) = −Q′(x)
Q(x) is odd and satisfies:

(i) limx→−∞ ϕ(x) = −1; limx→+∞ ϕ(x) = 1;

(ii) ∀x ∈ R, |ϕ′(x)| + |ϕ′′(x)| + |ϕ(3)(x)| ≤ Ce−|x|.

(iii) ϕ′ ∈ Y , (1 − ϕ2) ∈ Y .

Lemma 2.3 (Properties of L, see [54]). The operator L defined in L2(R) by (2.9) has domainH2(R),
is self-adjoint and satisfies the following properties:

(i) There exist a unique λ0 > 0, χ0 ∈ H1(R), χ0 > 0 such that Lχ0 = −λ0χ0.

(ii) The kernel of L is {λQ′, λ ∈ R}. Let ΛQ := d
dcQc|c=1, then L(ΛQ) = −Q.

(iii) (Inverse) For all h ∈ L2(R) such that
∫

R
hQ′ = 0, there exists a unique h̃ ∈ H2(R) such that∫

R
h̃Q′ = 0 and Lh̃ = h; moreover, if h is even (resp. odd), then h̃ is even (resp. odd).

(iv) For h ∈ H2(R), Lh ∈ Y implies h ∈ Y .

(v) (Coercivity) If d
dec

∫
R
Q2

ec |ec=c
> 0 then there exists λc > 0 such that if

∫

R

wQc =

∫

R

wQ′
c = 0 then

∫

R

(w2
x + cw2 − f ′(Qc)w

2) ≥ λc

∫

R

w2.
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(vi) There exist unique even solutions P and P̄ of the ordinary differential equations

LP = 3Q′′ + f ′(Q)Q, P ∈ Y, (2.11)

LP̄ = f ′(Q), P̄ ∈ Y. (2.12)

Moreover, P := −(xQ′ + ΛQ+Q).

Remark 2.3. Item (vi) from above Lemma is new; the proof follows directly from (ii), (iii) and
(iv). On the other hand, for general nonlinearities P̄ is not explicit.

2.2.1 Existence theory for a model problem

We recall that linear systems (Ωk,l) are very similar and then proving existence reduces to
prove the result for a model problem. This idea comes from [53], but we will need a simplified
version, from [58].

Proposition 2.4 (Existence for a model problem, see [54]). Let F ∈ Y , odd, and G ∈ Y , even.
Let γ, κ ∈ R. Then, there exist a, b ∈ R, Ã ∈ Y even, and B̃ ∈ Y odd, such that

A = Ã+ γ, and B = B̃ + bϕ+ κQ′

satisfy

(Ω)

{
(LA)′ + a(3Q− 2f(Q))′ = F,

(LB)′ + 3aQ′′ − 3A′′ − f ′(Q)A = G

Moreover,

a =
−1∫

R
ΛQQ

{
γ

∫

R

P +

∫

R

GQ−
∫

R

F

∫ x

0
P

}
(2.13)

and

b =
1

2

[
γ

∫

R

P̄ + a

∫

R

ΛQ−
∫

R

F

∫ x

0
P̄ +

∫

R

G
]
. (2.14)

Proof. We give a sketch of the proof for the sake of completeness. The original result comes
from [54], and here it is even simpler since we deal only with F,G ∈ Y .

Set A := Ã + γ, B := B̃ + bϕ, where γ is given, while b is a parameter to be found. Since
(L1)′ = (1 − f(Q))′ = −(f(Q))′, we obtain the following system for Ã, B̃:

{
(LÃ)′ + a(3Q− 2f(Q))′ = F + γ(f(Q))′,

(LB̃)′ + 3aQ′′ − 3Ã′′ − f ′(Q)Ã = G+ γf ′(Q) − b(Lϕ)′.

Note that F ∈ Y is odd, therefore H(x) =
∫ x
−∞ F (z)dz + γf(Q) belong to Y and is even. By

integration of the first line, we are reduced to solve
{
LÃ+ a(3Q− 2f(Q)) = H,
(LB̃)′ + 3aQ′′ − 3Ã′′ − f ′(Q)Ã = G+ γf ′(Q) − b(Lϕ)′.

Since
∫

R
HQ′ = 0 (by parity) and H ∈ Y , by Lemma 2.3, there exists H ∈ Y , even, such that

LH = H.

Define P̂ to be the unique even solution of

LP̂ = 3Q− 2f(Q), P̂ ∈ Y.
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Indeed, P̂ has an explicit formula

P̂ = −(xQ′ + ΛQ), with L(ΛQ) = −Q. (2.15)

It follows that Ã := −aP̂ + H is even, belongs to Y and solves the first line of the previous
system. Note that at this stage, the parameters a and b are still free.

Now, we only need to find B̃ ∈ Y , odd, such that (LB̃)′ = −aZ0 +D − b(Lϕ)′, where

D := 3H
′′

+ f ′(Q)H +G+ γf ′(Q) ∈ Y, even, Z0 := 3Q′′ + 3P̂ ′′ + f ′(Q)P̂ ∈ Y, even.

Let

E :=

∫ x

0
(D − aZ0)(z)dz − bLϕ.

This function a priori is in L∞(R), independent of a, b.

Claim 13. There exist numbers a and b such that E ∈ Y and
∫

R

EQ′ = 0.

Assuming Claim 13, we fix a, b so that E ∈ Y and
∫

R
EQ′ = 0. It follows from Lemma 2.3

that there exists B̃ ∈ Y , odd, such that LB̃ = E. The final solution is then given byA := Ã+γ

and B := B̃ + bϕ+ κQ′, where κ is a free parameter, because LQ′ = 0 (see Lemma 2.3, (ii)).

Proof of Claim 13. First, we check a sort of non-degeneracy condition, namely that
∫

R
Z0Q 6= 0.

Indeed, by (2.11)

∫

R

Z0Q = −3

∫

R

Q′2 +

∫

R

LPP̂ = −3

∫

R

Q′2 +

∫

R

P (3Q− 2f(Q)).

We recall now the following auxiliary result.

Claim 14 ([54], Claim 2.2). We have

3

∫

R

Q′2 −
∫

R

(3Q− 2f(Q))P =

∫

R

ΛQQ 6= 0.

Remark 2.4. Indeed, ∫

R

ΛQQ =
1

2
∂c

∫

R

Q2
c

∣∣∣
c=1

> 0,

thanks to (1.12) provided ε small enough (independent of c).

Let us continue with the proof of Claim 13. By the preceding result, it suffices to choose

a :=

∫
R
DQ∫

R
Z0Q

, and b :=

∫ +∞

0
(D − aZ0)(z)dz (note that lim±∞ Lϕ = lim±∞ ϕ = ±1). This

finishes the proof of Claim 13.

We return to the proof of Proposition 2.4. Now we find the constants a and b in terms of
known quantities in (Ω). First, we multiply the equation of B by Q and use LQ′ = 0. We get

−3a

∫

R

Q′2 =

∫

R

(3Q′′ + f ′(Q)Q)A+

∫

R

GQ

=

∫

R

(LA)P +

∫

R

GQ.
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Second, we multiply the equation of A by
∫ x
0 P (s) ds. We obtain

∫

R

(LA)′
∫ x

0
P = −

∫

R

(LA)P + γ

∫

R

P

= a

∫

R

(3Q− 2f(Q))P +

∫

R

F

∫ x

0
P.

Thus, combining the two identities, we get:

− a

{
3

∫

R

Q′2 −
∫

R

(3Q− 2f(Q))P

}
= γ

∫

R

P +

∫

R

GQ−
∫

R

F

∫ x

0
P.

and the expression for a follows from Claim 14.

To find out b, we integrate the equation for B in (Ω) over R to obtain

2b =

∫

R

f ′(Q)A+

∫

R

G. (2.16)

Now we consider P̄ the function defined in (2.12). We multiply the equation for A by∫ x
0 P̄ (s) ds and then we integrate. We get

∫

R

f ′(Q)A = γ

∫

R

P̄ − a

∫

R

P̄ (3Q− 2f(Q)) −
∫

R

F

∫ x

0
P̄ .

Now, note that
∫

R

P̄ (3Q− 2f(Q)) =

∫

R

LP̂ P̄ =

∫

R

P̂ f ′(Q) =

∫

R

P̂ (1 − L1) =

∫

R

P̂ −
∫

R

(3Q− 2f(Q)).

From (2.15) we replace the explicit value of P̂ and we use the equation satisfied by Q, namely
Q′′ −Q+ f(Q) = 0, to obtain

∫

R

P̄ (3Q− 2f(Q)) = −
∫

R

ΛQ.

With a previously known we replace this quantity in (2.16) to obtain (2.14). This finishes the
proof.

We have now a good solvability theory for the linear systems (Ωk,l), that avoids the emer-
gency of linearly growing solutions at this order. As an example, the general theory con-
structed in [53] for the quartic KdV equation deals with possibly growing solutions, see [53]
Proposition 2.3.

Here, for each system (Ωk,l), (k, l) ∈ Σm, we will look for solutions such that

Ak,l = Ãk,l + γk,l, Bk,l = B̃k,l + bk,lϕ+ κk,lQ
′, ak,l, bk,l, κk,l ∈ R; (2.17)

where Ãk,l ∈ Y is even and B̃k,l ∈ Y is odd. (see Proposition 2.10 for a justification of this
choice).

This election will have several good properties, but we will emphasize a crucial one. Let
(k, l) ∈ Σm fixed. We say that (k, l) satisfies the (IP) property (IP = important property) if and
only if

(IP)

{
Any derivative of Ak,l or Bk,l is a localized Y-function.

Moreover, for (k, l) = (1, 0) we have A1,0 ∈ Y .
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This property, although depending on the specific pair (k, l), will be useful to quickly
discard localized terms composing Fk,l, Gk,l, and seeing essentially the bounded but non lo-
calized terms. Indeed, note that thanks to Claim 12 any solution as in (2.17) satisfies this
property. For the details, see Appendix L.

We start by solving the first system.

2.2.2 Resolution of the system (Ω1,0)

From Proposition 2.2 (ii) the system (Ω1,0) is given by

(LA1,0)
′ = −a1,0(3Q− 2f(Q))′ + (f ′(Q))′, (2.18)

(LB1,0)
′ = 3A′′

1,0 + f ′(Q)A1,0 − 3a1,0Q
′′ + f ′(Q) (2.19)

This first system is easily solvable, as shows the following

Lemma 2.5 (Resolution of (Ω1,0)). There exists a solution (A1,0, B1,0, a1,0) of (2.18)-(2.19) of the
form (2.17) and such that A1,0 ∈ Y is even (and γ1,0 = 0), B1,0 is odd and a1,0, b1,0 are given by the
formulae

a1,0 =

∫
R

ΛQ∫
R

ΛQQ
, b1,0 =

1

2
a1,0

∫

R

ΛQ+
1

2

∫

R

P̄ . (2.20)

Moreover, A1,0 is given by
A1,0 = P̄ − a1,0P̂ . (2.21)

(cf. (2.18), (2.15) and (2.12)). Finally, we choose B1,0 such that
∫

R

Q′B1,0 = 0.

Remark 2.5. Note that from the value of P̂ = −(xQ′ + ΛQ) and (2.21) we get

b1,0 =
1

2

[
a1,0

∫

R

Q+

∫

R

A1,0

]
. (2.22)

Proof. Note that both (f ′(Q))′ and f ′(Q) are odd and even Y-functions respectively, so thanks
to Proposition 2.4, a solution with the desired properties does exist. We will chose γ1,0 := 0.
The value of a1,0 and b1,0 comes from (2.13)-(2.14), after some simple computations. These
computations have been carried out in [54], but by completeness we rewrite them. Indeed,
note that we only need to verify that

∫

R

f ′(Q)(Q+ P ) = −
∫

R

ΛQ.

In fact, from (2.11), the explicit value of P and Claim 2.3 (ii), we have
∫

R

f ′(Q)(Q+P ) = −
∫

R

f ′(Q)(xQ′+ΛQ) =

∫

R

f(Q)−
∫

R

(1−L1)ΛQ =

∫

R

(f(Q)−Q)−
∫

R

ΛQ,

but f(Q) −Q = −Q′′, so we are done.

On the other hand, note that L(1 + P̄ ) = 1, thus
∫

R

f ′(Q)(P̄ + 1) =

∫

R

LP̄ (1 + P̄ ) =

∫

R

P̄1.
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This give finally the expected value of b1,0.

Finally, the constant κ1,0 in the expression of B1,0 is a free parameter that we will fix such
that

∫
R
B1,0Q

′ = 0 for convenience in some future computations (see Proposition 2.4 and
(M.43) in Appendix M). We have

0 =

∫

R

Q′B1,0 =

∫

R

B̃1,0Q
′ + b1,0

∫

R

ϕQ′ + κ1,0

∫

R

Q′2.

where we can obtain κ1,0.

2.2.3 Resolution of the system (Ω2,0)

From Proposition L.1 (iii) in Appendix L, the system (Ω2,0) is given by

(LA2,0)
′ = a2,0(3Q− 2f(Q))′ + F2,0, (2.23)

(LB2,0)
′ = 3A′′

2,0 + f ′(Q)A2,0 − 3a2,0Q
′′ +G2,0 (2.24)

where the source terms are given by

1. Case m = 2,

F2,0 = −(3A′
1,0 + 3B′′

1,0 + f ′(Q)B1,0) +
1

2
(f ′′(Q)(2A1,0 +A2

1,0))
′

−a1,0(3A
′′
1,0 −Q+ f ′(Q)(1 +A1,0))

′ + 3a2
1,0Q

(3) +
1

2
(f ′′(Q) − 2)′,(2.25)

and

G2,0 =
1

2
(f ′′(Q) − 2) − (A1,0 + 3B′

1,0) +
1

2
f ′′(Q)(2A1,0 +A2

1,0) +
3

2
a2

1,0Q
′′

−1

2
a1,0(9A

′
1,0 + 3B′′

1,0 + f ′(Q)B1,0)
′ +

1

2
(f ′′(Q)(B1,0 +A1,0B1,0))

′. (2.26)

2. Case m = 3,

F2,0 = (
1

2
f ′′(Q)(1 +A1,0)

2)′ + 3a2
1,0Q

(3) − a1,0(f
′(Q) + 3A′′

1,0 + f ′(Q)A1,0)
′ (2.27)

and

G2,0 =
1

2
f ′′(Q)(1 +A1,0)

2 +
3

2
a2

1,0Q
′′ − 1

2
a1,0(9A

′
1,0 + 3B′′

1,0 + f ′(Q)B1,0)
′

+
1

2
(f ′′(Q)(1 +A1,0)B1,0)

′. (2.28)

Proposition 2.6 (Resolution of (Ω2,0)). Let f be as in (1.22). There exists a constant ε0 > 0 not
depending on c such that the following holds.

1. (Case m = 2) There exists a solution (A2,0, B2,0, a2,0) of (Ω2,0) satisfying (2.17) and such that

lim
+∞

A2,0 = −1

2
b21,0 = γ2,0, A2,0 − γ2,0 ∈ Y,

lim
+∞

B2,0 = b2,0, B2,0 − b2,0ϕ ∈ Y,

but for all |ε| ∈ (0, ε0)

d(ε) := b2,0(f) +
1

6
b31,0(f) = c2,pε+ o(ε), with c2,p 6= 0 for all p ≥ 4. (2.29)
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2. (Case m = 3) There exists a solution (A2,0, B2,0, a2,0) of (Ω2,0) such that A2,0 ∈ Y is even,
B2,0 is bounded, odd and

lim
+∞

B2,0 = b2,0, B2,0 − b2,0ϕ ∈ Y,

but for all |ε| ∈ (0, ε0),

d(ε) := b2,0(f) = c3,pε+ o(ε), and c3,p 6= 0 for all p ≥ 4. (2.30)

Moreover, in both cases the solution found satisfies (IP).

Remark 2.6. Note that in the casem = 2, one has c2,p = 0 for p = 3 (see (2.33)). This cancelation
is consequence of the complete integrability of the Gardner equation.

Proof. Note that in both cases, m = 2 and m = 3 the source terms F2,0, G2,0 belongs to Y , with
the former being an odd function and the last one being even. Thus the existence of solutions
to (2.23)-(2.24) with the desired properties follows directly from Proposition 2.4 above.

In particular we will choose γ2,0 := −1
2b

2
1,0 for the quadratic case and γ2,0 := 0 in the cubic

one.

Let us now check that, being fixed γ1,0, a1,0, b1,0 and γ2,0, the value of a2,0 and b2,0 is
uniquely determined. Indeed, from (2.13)-(2.14)

a2,0 = − 1∫
R

ΛQQ

[
γ2,0

∫

R

P +

∫

R

G2,0Q−
∫

R

F2,0

∫ x

0
P

]
, (2.31)

and
b2,0 =

1

2

[
γ2,0

∫

R

P̄ + a2,0

∫

R

ΛQ−
∫

R

F2,0

∫ x

0
P̄ +

∫

R

G2,0

]
. (2.32)

We claim (2.29) and (2.30) with

c2,p := −
[(p− 3)(2p− 1)(24 − 23p+ 3p2 + 2p3)

36(p2 − 1)(p− 2)

] ∫

R

[ 3

2 cosh2(1
2x)

]p
, (2.33)

and

c3,p := −
[(p− 1)(p− 3)(p2 − 3p+ 8)

8(p− 2)(p+ 1)

] ∫

R

[ √
2

coshx

]p
. (2.34)

The end of the proof of (2.29)-(2.30), and (2.33)-(2.34) is a lengthy but straightforward com-
putation. For the sake of continuity we postpose the proof to Appendix M.

Remark 2.7. An explicit expression for d(ε) for any nonlinearity has escaped to us (see Claim
22), and we only have in our hands an asymptotic expression for small values of ε. We believe,
however, that it may exist a –necessarily– large ε0 for which d(ε0) = 0, and even more, a pure
2-soliton solution may exist at any order.
Remark 2.8. The expressions (2.29)-(2.30) above say roughly speaking that the second order
linear system (Ω2,0) has a solution that does not obey (at third order derivatives) the Taylor
expansion of a small soliton shifted. Indeed,

Qc(yc + b1,0ϕ) ∼ Qc(yc) + b1,0ϕQ
′
c(yc) +

1

2
b21,0Q

′′
c (yc) +

1

6
b31,0Q

(3)
c (yc).

Note that (cf. (L.4) and (L.5))

Q′′
c (yc) ∼ cQc(yc) −Qm

c (yc), Q(3)
c (yc) ∼ cQ′

c(yc) − (Qm
c )′(yc),

and thus for a perfect collision we should have b2,0 = −1
6b

3
1,0 form = 2 and b2,0 = 0 form = 3,

as in the integrable cases. This formal discussion will be justified in the proof of Proposition
2.10.
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2.2.4 Resolution of system (Ω1,1), cases m = 2, 3

Now we consider the first mixed system, (Ω1,1). Note that this system has a different order
depending on the power of leading nonlinearity: for m = 2, cQc is of quadratic order in Qc,
meanwhile, in the cubic one, cQc is a term of cubic order.

From Proposition L.1 the system (Ω1,1) is given by

(LA1,1)
′ = a1,1(3Q− 2f(Q))′ + (3A′

1,0 + 3B′′
1,0 + f ′(Q)B1,0), (2.35)

(LB1,1)
′ = 3A′′

1,1 + f ′(Q)A1,1 − 3a1,1Q
′′ + 3B′

1,0. (2.36)

For this system, we recall its source terms

F1,1 := 3A′
1,0 + 3B′′

1,0 + f ′(Q)B1,0, G1,1 := 3B′
1,0. (2.37)

Note that as (k, l) = (1, 0) satisfies the (IP) property, we have both F1,1, G1,1 ∈ Y .

Lemma 2.7 (Resolution of (Ω1,1),m = 2, 3). There exists a solution (A1,1, B1,1, a1,1) of (Ω1,1) such
that A1,1 is even, B1,1 is odd and

lim
+∞

A1,1 = γ1,1 :=
1

2
b21,0, A1,1 − γ1,1 ∈ Y,

lim
+∞

B1,1 = b1,1, B1,1 − b1,1ϕ ∈ Y.

Besides, this solution implies that (IP) holds for (k, l) = (1, 1).

Proof. From Proposition 2.2, it is clear that F1,1 andG1,1 given in (2.37) satisfy the assumptions
of Proposition 2.4. The choice of γ1,1 will be justified in Proposition 2.10. In the rest of this
paper, we will not need the expression of b1,1 (note that it would be possible to compute it as
in the proof of Proposition 2.6).

2.2.5 Resolution of high order systems, quadratic case

From now on, we consider the triplet

(Ak,l, Bk,l, ak,l)

defined for all (k, l) ∈ Σm, 1 ≤ k + l ≤ 2 in Lemma 2.5, Proposition 2.6 and Lemma 2.7. We
now solve the systems (Ωk,l) for k + l = 3 . Denote δ33 := 1 and δp3 := 0 for p ≥ 4.

Lemma 2.8 (Resolution of (Ωk,l) for k+ l = 3 and m = 2). For all (k, l) ∈ Σ2 such that k+ l = 3,
Fk,l is odd and Gk,l even; both are in the class Y , and there exists a solution (Ak,l, Bk,l, ak,l) of (Ωk,l)
such that Ak,l is even, Bk,l is odd and

lim
+∞

Ak,l = γk,l, Ak,l − γk,l ∈ Y,

lim
+∞

Bk,l = bk,l, Bk,l − bk,lϕ ∈ Y.

Moreover, we will choose the particular values

γ3,0 :=
5

36
b41,0 +

10

3
d(ε)b1,0 +

1

2
µ(ε)b21,0, γ2,1 :=

1

24
b41,0 − b1,0b1,1 − 4d(ε)b1,0,

γ1,2 := − 3

24
b41,0 + b1,0b1,1,

where d(ε) satisfies (2.29)-(2.30).
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Proof. The proof of this result is easy after the validity of the following claim:

For all (k, l) ∈ Σ2 such that k + l = 3, we have Fk,l ∈ Y is odd, Gk,l ∈ Y is even. (2.38)

Assuming (2.38), Lemma 2.8 is a direct consequence of Proposition 2.4.

Let us prove (2.38). From the Appendix L and Proposition L.1 several (bounded but)
nonlocalized terms appear in the expression of Fk,l and Gk,l for k + l = 3, but all these terms
eventually cancel.

Indeed, thanks to the (IP) property, terms containing derivatives ofB1,0, A1,1 and A2,0 are
in Y as well as terms of the kind f ′(Q)B1,0 and so on. Thus, we focus on the terms containing
only B1,0, A1,1 and A2,0 without derivatives nor multiplication by functions of Q. Note also
that A1,0 ∈ Y , so we also discard it. For simplicity of notation, we will skip the variables yc

and y.

Now, we recollect all the non-localized terms (due to B1,0, A1,1 and A2,0) in S[ũ] of order
clQk

c or cl(Qk
c )

′ with k+ l = 3. We have only three cases: the pairs (3, 0), (2, 1) and (1, 2). From
Proposition L.1 we obtain

1. (Case (3, 0)). Here

F3,0 = F̃3,0, G3,0 = G̃3,0 −
2

3
(B2

1,0 + 2A2,0), with F̃3,0, G̃3,0 ∈ Y;

2. (Case (2, 1)). Here

F2,1 = F̃2,1, G2,1 = G̃2,1 + (B2
1,0 +A1,1 + 3A2,0), with F̃2,1, G̃2,1 ∈ Y;

3. (Case (1, 2)). Here F1,2, G1,2 ∈ Y .

Using the following relations among the limits of A2,0, A1,1 and B2
1,0 at ±∞ (see Proposi-

tion 2.6 and Lemma 2.7):

lim
±∞

A2,0 = −1

2
lim
±∞

B2
1,0, lim

±∞
A1,1 = − lim

±∞
A2,0,

we observe that the source functions in (Ωk,l) are in fact all localized. This proves (2.38).

2.2.6 Resolution of high order systems, cubic case

Finally we claim the existence of bounded solutions for the third and fourth order systems in
the cubic case. The proof of these results is identical to the previous Lemma.

Lemma 2.9 (Resolution of (Ω3,0), (Ω4,0) and (Ω2,1) for m = 3). For all (k, l) ∈ Σ3 with k ≥ 2
there exists a solution (Ak,l, Bk,l, ak,l) of (Ωk,l) such that Ak,l is even, Bk,l is odd and

lim
+∞

Ak,l = γk,l, Ak,l − γk,l ∈ Y,

lim
+∞

Bk,l = bk,l, Bk,l − bk,lϕ ∈ Y.

In particular, we choose

γ3,0 := −1

2
b21,0, γ2,1 := −4b1,0d(ε), γ4,0 := 3d(ε)b1,0 +

1

2
εb21,0δp4. (2.39)

In this case d(ε) := b2,0(ε) (cf. (2.30)).
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Proof. We note that, thanks to the (IP) property and Proposition L.1, the only a priori non
localized source term is

G2,1 = 3A2,0 + G̃2,0, with G̃2,0 ∈ Y.

Then the conclusion of the Lemma follows from the fact that, from Proposition 2.6, in the
cubic case, we have a priori chosen A2,0 ∈ Y .

For further purposes, we recall the important quantities (see (2.2) and (2.29)-(2.30))

Tc = c−
1
2
− 1

100 , d(ε) = b2,0(ε) +
1

6
b31,0(ε)δm2, (2.40)

with δm2 = 0 for m = 3, and δ22 = 1.

2.3 Recomposition of the approximate solution. Proof of Proposition 2.1

Having solved several linear systems we now are able to prove Proposition 2.1. Indeed, we
have now the enough knowlegde about the notation, so we can go further and claim the
following improved result on ũ.

Proposition 2.10 (Construction of a symmetric approximate solution of gKdV, improved ver-
sion). The solution ũ above constructed satisfies, for any 0 < c < c0, the following properties:

1. For all (t, x) ũ(t, x) = ũ(−t,−x).

2. For every time t ∈ [−Tc, Tc],

‖S[ũ](t)‖H2(R) ≤ Kc
3

m−1
+ 3

4 . (2.41)

3. Closeness to the sum of two soliton solution: For all time t ∈ [−Tc, Tc], the function ũ is in
H1(R) and satisfies the estimate

‖ũ(t) −Q(y) −Qc(yc)‖H1(R) ≤ K0c
1

m−1 . (2.42)

4. Closeness to a shifted two soliton solution plus a strange term: Denote

∆1 :=
∑

(k,l)∈Σm

ak,l c
l

∫

R

Qk
c , b̃1,1 := b1,1 −

1

6
b31,0, ∆2 := 2(b1,0 + cb̃1,1δm2). (2.43)

Then ũ satisfies at time ±Tc

‖ũ(±Tc) −Q(· ∓ 1

2
∆1) −Qc(· ± (1 − c)Tc ∓

1

2
∆2)

± d(ε)(Q2
c)

′(· ± (1 − c)Tc ∓
1

2
∆2)}‖H1(R) ≤ Kc

3
m−1

+ 1
4 ,

(2.44)

provided for each (k, l) ∈ Σm, the constants γk,l must be chosen as in Lemma 2.5, Proposition
2.6, Lemmas 2.7, 2.8 and 2.9. Recall that d(ε) satisfies (2.29)-(2.30).

Remark 2.9. The quantity b̄1,1 in (2.43) represents the difference between the expected value
of b1,1 given by the integrable case and the actual one; namely, for ε = 0 we have b̄1,1 = 0.
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Proof. Let us start by proving (2.41). This follows from from Proposition L.1, and the choice
of ak,l, Ak,l, Bk,l for (k, l) ∈ Σm, solving each linear system (Ωk,l), so that

S[ũ] = E(t, x).

Now we deal with (2.42). This is an easy consequence of the fact that y = x − α, yc =
x+ (1 − c)t, and

ũ(t) −Q(y) −Qc(yc) = W (t, x), ‖W (t)‖H1(R) ≤ K0c
1

m−1 .

Proof of (2.44). We begin with some preliminary estimates.

Claim 15.
‖α‖L∞ ≤ Kc

1
m−1

− 1
2 , ‖α′‖L∞ ≤ Kc

1
m−1 . (2.45)

Suppose f = f(y) ∈ Y . Then for all t ∈ [−Tc, Tc],

‖f(y)Qk
c (yv)‖L2(R) +

1√
c
‖f(y)(Qk

c )
′(yv)‖L2(R) ≤ Kc

k
m−1 e−(1−c)

√
c|t|, (2.46)

and for g = g(y) ∈ L∞(R),

‖g(y)Qk
c (yv)‖L2(R) +

1√
c
‖g(y)(Qk

c )
′(yv)‖L2(R) ≤ Kc

k
m−1

− 1
4 . (2.47)

In particular, if t = Tc and f ∈ Y , we have, for c > 0 small,

‖f(y)Qc(yc)‖H1(R) ≤ Kc10, (2.48)

‖Q(y) −Q(x− 1
2∆1)‖H1(R) ≤ Kc10. (2.49)

Proof. The proof of these estimates are similar to Claim C.1 in the Appendix C of [58]. See
also Claim 2.6 in [53]. In particular for the proof we use Lemma L.2 from Appendix L. We
skip the details.

We continue the proof of (2.44).

For the sake of brevity, we will prove only the case m = 3. The case m = 2 is identical to
Lemma 2.6 in [58].

Note that from Claim 15,

‖Qc(yc − b1,0) −Qc + b1,0Q
′
c −

1

2
b21,0Q

′′
c‖H1(R) ≤ Kc

7
4 , (2.50)

and
‖(Q2

c)
′(yc − b1,0) − (Q2

c)
′ + b1,0(Q

2
c)

′′‖H1(R) ≤ Kc
9
4 , (2.51)

(here we have used the fact ‖Q(3)
c ‖H1(R) ≤ Kc

7
4 and ‖(Q2

c)
(3)‖H1(R) ≤ Kc

9
4 ). From the identi-

ties
Q′′

c = cQc −Q3
c − εQp

c +O(Qp+1
c ), (Q2

c)
′′ = 4cQ2

c − 3Q4
c +O(Q5

c),

we obtain
∥∥Qc(yc − b1,0) − d(ε)(Q2

c)
′(yc − b1,0)

− [Qc − b1,0Q
′
c +

1

2
b21,0cQc −

1

2
b21,0Q

3
c −

1

2
εb21,0δp4Q

4
c ]

+ d(ε)[(Q2
c)

′ − 4b1,0cQ
2
c + 3b1,0Q

4
c ]

∥∥
H1(R)

≤ Kc
7
4 .

(2.52)



2.4 - Existence of the approximate pure 2-soliton collision solution 213

On the other hand, using the fact that lim+∞Ak,l = γk,l, lim+∞Bk,l = bk,l, and Claim 15 we
get

∥∥ũ(Tc) −Q−Qc − b1,0Q
′
c − γ2,0Q

2
c − b2,0(Q

2
c)

′ − γ1,1cQc

−γ2,1cQ
2
c − γ3,0Q

3
c − γ4,0Q

4
c

∥∥
H1(R)

≤ Kc7/4.

Combining this estimate and (2.52), we find
∥∥ũ(Tc) − {Q(y) +Qc(yc − b1,0) − d(ε)(Q2

c)
′(yc − b1,0)}

+ (γ1,1 −
1

2
b21,0)cQc + γ2,0Q

2
c + (b2,0 − d(ε))(Q2

c)
′ + (γ2,1 + 4d(ε)b1,0)cQ

2
c

+ (γ3,0 +
1

2
b21,0)Q

3
c + (γ4,0 − 3d(ε)b1,0 −

1

2
εb21,0δp4)Q

4
c

∥∥
H1(R)

≤ Kc
7
4 .

It follows that with the choice

γ1,1 =
1

2
b21,0, γ2,0 = 0, γ3,0 = −1

2
b21,0, b2,0 = d(ε),

γ2,1 = −4d(ε)b1,0 and γ4,0 = 3d(ε)b1,0 +
1

2
εb21,0δp4.

we obtain

‖ũ(Tc) −Q(y) −Qc(yc − b1,0) + d(ε)(Q2
c)

′(yc − b1,0)‖H1(R) ≤ Kc
7
4 . (2.53)

The case t = −Tc is similar and we left the proof to the reader.

Together with (2.49), we complete the proof of (2.44). This justifies in particular the choices
of γk,l, (k, l) ∈ Σm done in preceding Lemmas.

2.4 Existence of the approximate pure 2-soliton collision solution

The fact that d(ε) 6= 0 (see Proposition 2.6) in Proposition 2.10 means formally that the col-
lision is not elastic and that the residue due to the collision is of order (Q2

c)
′. However, the

approximate solution ũ(t, x) given in Lemma 2.10 being symmetric, it contains the residue at
both −Tc and Tc (see (2.44)). To match the solution u(t) considered in Theorem 1.4, which is
pure at −∞, we need to introduce a modified approximate solution, which, at main order,
will contain a residue only at time t = Tc. This will be clear after the following

Proposition 2.11. There exists a function û = û(t, x), of the form given by (2.6) such that for some
constants K, c0 > 0 and 0 < c < c0, the following estimates hold:

1. û(t, x) 6≡ û(−t,−x) for every t, x.

2. Almost solution. For any t ∈ [−Tc, Tc],

‖S[û](t)‖H1(R) ≤ Kc
2

m−1
+ 3

4 [c
1

m−1 + |d(ε)|c 1
4 ], (2.54)

(recall that d(ε) measures the residue after the collision, introduced in (2.29)-(2.30)).

3. Closeness to a two-soliton solution at time t = −Tc. With the defintions of shifts given in (2.43),
the modified function û is close to a two solitons solution at time −Tc:

‖û(−Tc) − {Q(· + 1
2∆2) +Qc(· + (1 − c)Tc + 1

2∆2)}‖H1(R) ≤ Kc
2

m−1
+ 1

4 [c
1

m−1 + |d(ε)|c 1
2 ].

(2.55)
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4. Non-matching with a two-soliton solution at time t = Tc:

‖û(Tc) −Q(· − 1

2
∆1) −Qc(· + (1 − c)Tc −

1

2
∆2)

+ 2d(ε)(Q2
c)

′(· + (1 − c)Tc −
1

2
∆2)‖H1(R) ≤ Kc

2
m−1

+ 1
4 [c

1
m−1 + |d(ε)|c 1

2 ].

(2.56)

where, from (2.29)-(2.30),

∀0 < |ε| ≤ ε0, d(ε) = cm,pε+ o(ε),

and
|∆1 − a1,0

∫

R

Qc| ≤ Kc
2

m−1
− 1

2 , |∆2 − 2b1,0| ≤ Kc. (2.57)

5. Comparison residue versus error terms: The residue in (2.56) satisfies

∥∥2d(ε)(Q2
c)

′(· + (1 − c)Tc −
1

2
∆2)

∥∥
H1(R)

∼ |d(ε)|c
2

m−1
+ 1

4

≫ c
2

m−1
+ 1

4 [c
1

m−1 + |d(ε)|c 1
2 ],

provided c
1

m−1 ≪ |d(ε)|.
Remark 2.10. The approximate solution û above mentioned describes the collision of two pure

solitons that at time t ∼ Tc (after colliding) differ by a term of order |d(ε)|c
2

m−1
+ 1

4 of the
ingoing solitons before the collision, at time t ∼ −Tc, provided (1.23) holds.

For even small values of ε such that condition (1.23) does not hold, we need to go further
in our approximate solution and solve even more linear systems. We believe that in this case,
more involved, the conclusions of this paper are the same.

Let us return to the proof of Proposition 2.11.

Proof. Let û := ũ+ w#, where

w#(t, x) := −d(ε)(Q2
c)

′(yc)(1 + P̄ (y)), (2.58)

and P̄ was defined in (2.12). Now w# can be expressed in the form

w#(t, x) = Q(y) +Qc(yc) +
∑

(k,l)∈Σm

cl{Âk,l(y)Q
k
c (yc) + B̂k,l(y)(Q

k
c )

′(yc)},

where Âk,l = Ak,l, B̂k,l = Bk,l + w#δ(k,l),(2,0). Here δ(2,0),(2,0) = 1 and δ(k,l),(2,0) = 0 otherwise.

Let us prove (2.56). Replacing ũ = û− w# in (2.44), we have

‖û(Tc) −Q(· − 1

2
∆1) −Qc(· + (1 − c)Tc −

1

2
∆2)

+ d(ε)(Q2
c)

′(· + (1 − c)Tc −
1

2
∆2) − w#(Tc)‖H1(R) ≤ Kc

3
m−1

+ 1
4 .

Thus, using (2.48) (note that P̄ ∈ Y)

‖û(Tc) −Q(· − 1

2
∆1) −Qc(· + (1 − c)Tc −

1

2
∆2) + 2d(ε)(Q2

c)
′(· + (1 − c)Tc −

1

2
∆2)‖H1(R)

≤ Kc
3

m−1
+ 1

4 + ‖d(ε)(Q2
c)

′(· + (1 − c)Tc −
1

2
∆2) + w#(Tc)‖H1(R)

≤ Kc
3

m−1
+ 1

4 +K|d(ε)|‖(Q2
c)

′(· − 1

2
∆2) − (Q2

c)
′‖H1(R)

≤ Kc
3

m−1
+ 1

4 +K|d(ε)|c
2

m−1
+ 3

4 .
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Similarly, at time t = −Tc

‖û(−Tc) −Q(· + 1

2
∆1) −Qc(· − (1 − c)Tc +

1

2
∆2)

−d(ε)(Q2
c)

′(· − (1 − c)Tc +
1

2
∆2) − w#(−Tc)‖H1(R) ≤ Kc

3
m−1

+ 1
4 ,

so that

‖û(−Tc) −Q(· + 1

2
∆1) −Qc(· − (1 − c)Tc +

1

2
∆2)‖H1(R)

≤ Kc
3

m−1
+ 1

4 +K|d(ε)|‖(Q2
c)

′(· + 1

2
∆2) − (Q2

c)
′‖H1(R)

≤ Kc
3

m−1
+ 1

4 +K|d(ε)|c
2

m−1
+ 3

4 .

Note that (2.57) is clearly a consequence of (2.43).

Finally, we prove (2.54). Note that (cf. Appendix B for the definitions)

S[û] = S[ũ+ w#]

= S[ũ] + III(w#) + [f(ũ+ w#) − f(ũ) − f ′(Q)w#]x

The following estimates allow to conclude (2.54). We claim

Claim 16. With the choice of w# given in (2.58),

‖III(w#)‖H1(R) ≤ K|d(ε)|c1+
2

m−1 . (2.59)

and
‖[f(ũ+ w#) − f(ũ) − f ′(Q)w#]x‖H1(R) ≤ K|d(ε)|c

1
2
+ 3

m−1 (2.60)

Proof. The proof is similar to the proof of Proposition L.1 above. We only sketch the main
ideas.

Let us prove (2.59). First, note that for P̄ defined in (2.12)

(L(1 + P̄ ))′ = (1 − f ′(Q) + f ′(Q))′ = 0. (2.61)

This property will be useful in what follows. From the calculations performed in (L.14), (2.61)
and the fact that (1 + P̄ )′ ∈ Y , we note that (cf. (L.7) and (L.13) for the definition of III(·) and
Σ′

m respectively)

III((1 + P̄ )(Q2
c)

′) = −(L(1 + P̄ ))′(Q2
c)

′ − c(1 + P̄ )(Q2
c)

′′ + (1 + P̄ )(Q2
c)

(3)

+
∑

(k,l)∈Σ′
m

cl[F̃k,lQ
k
c + G̃k,l(Q

k
c )

′] +O(cQ3
c +Q5

c + c2Qc)

=
∑

(k,l)∈Σ′
m

cl[F̃k,lQ
k
c + G̃k,l(Q

k
c )

′] +O(c(Q2
c)

′ + cQ3
c +Q5

c + c2Qc),

where both F̃k,l and G̃k,l are in Y . Moreover, F̃3,0 = 0. From here, the definition of w# in
(2.58) and Claim 15, we obtain

‖III(w#)‖H2(R) ≤ K|d(ε)|c
2

m−1
+1.
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Now, we deal with (2.60). We note that

(2.60) = [f(ũ+ w#) − f(ũ) − f ′(ũ)w#]x + [(f ′(ũ) − f ′(Q))w#]x

[
1

2
f ′′(ũ)w2

# +O(w3
#)]x + [f ′′(Q)(ũ−Q)w# +

1

2
f (3)(Q)(ũ−Q)2w# +O((ũ−Q)3w#)]x.

From here, using the expresion for w# and Claim 15, we obtain

‖(2.60)‖H2 ≤ K|d(ε)|[|d(ε)|c
3
2
+ 4

m−1 + c
1
2
+ 4

m−1 + c
1
2
+ 3

m−1 ] ≤ K|d(ε)|c
1
2
+ 3

m−1 .

This finishes the proof.

This Claim allows us to finish the proof of the Proposition.

3 Preliminary results for stability of the 2-soliton structure

In this section several stability results will allow to study the long time behavior of the 2-
soliton soliton solution. First of all, we recall a general result proved in [54] concerning the
existence and properties of an actual function u = u(t, x), solution of (2.1) in the interval
[−Tc, Tc] and close enough to our approximate solution û. This will be done in the next
subsection.

Next, we study the stability of a solution u(t) of (1.21) for long time, namely t ≥ Tc. These
results have been proved in great generality by Martel and Merle in [51], [54], and [52]. In
particular, we will use the stability and asymptotic stability of the two solitons (Proposition 3.3)
to show the persistence of the 2-soliton structure for long time.

Finally, a key result is the decomposition result from Lemma 3.4, which will be essential to
show the persistence of the residual term (cf. (2.56)) at infinity.

3.1 Dynamic stability in the interaction region

For any c > 0 sufficiently small, we will consider the function û(t) of the form

û(t, x) = Q(y) +Qc(yc) +
∑

(k,l)∈Σm

cl
{
Qk

c (yc)Âk,l(y) + (Qk
c )

′(yc)B̂k,l(y)
}

defined in Proposition 2.11 (the notation was introduced in (2.5) and (2.6)). Recall the error
term

S[û](t) = ût + (ûxx − u+ f(û))x.

Proposition 3.1 (Exact solution close to the approximate solution û, [54]). Let θ > 1
m−1 and ε

small enough such that (1.12) holds for Q. There exists c0 > 0 such that the following holds for any
0 < c < c0. Suppose that for all t ∈ [−Tc, Tc]

‖S[û](t)‖H2(R) ≤ K
cθ

Tc
, (3.1)
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and for some T0 ∈ [−Tc, Tc],
‖u(T0) − û(T0)‖H1(R) ≤ Kcθ, (3.2)

where u(t) is an H1 solution of (2.1). Then, there exist K0 = K0(θ,K, f) and a C1 function ρ :
[−Tc, Tc] → R such that, for all t ∈ [−Tc, Tc],

‖u(t) − û(t, · − ρ(t))‖H1(R) ≤ K0c
θ, |ρ′(t) − 1| ≤ K0c

θ. (3.3)

Remark 3.1. The proof of the above Proposition is nontrivial and requires some refined tech-
niques such as modulation theory, coercivity properties and the introduction of a modified
energy functional adapted to a two soliton collision. It is necessary to emphasize that one of
the key elements in the proof is the smallness of the error term S[û] along the collision. For
the sake of completeness, we will draw the main lines of the argument, see [54] for the actual
complete proof.

Proof. It suffices to show the result on the interval [T0, Tc]. By using the transformation x →
−x, t→ −t, the proof is the same on [−Tc, T0].

Let K∗ > 1 be a constant to be fixed later. Since ‖u(T0) − û(T0)‖H1(R) ≤ cθ, by continuity
in time in H1(R), there exists T0 < T ∗ ≤ Tc such that

T ∗ = sup
{
T ∈ [T0, Tc] such that for all t ∈ [T0, T ], there exists r(t) ∈ R with

‖u(t) − û(t, · − r(t))‖H1(R) ≤ K∗cθ
}
.

The objective is to prove that T ∗ = Tc for K∗ large. For this, we argue by contradiction,
assuming that T ∗ < Tc and reaching a contradiction with the definition of T ∗ by proving
some independent estimates on ‖u(t) − û(t, · − r)‖H1(R) on [T0, T

∗].

An argument using the Implicit function theorem allows to construct a modulation pa-
rameter and to estimate its variation in time:

Claim 17. Assume that 0 < c < c(K∗) small enough. There exists a unique C1 function ρ(t)
such that, for all t ∈ [T0, T

∗],

z(t, x) = u(t, x+ ρ(t)) − û(t, x) satisfies
∫

R

z(t, x)Q′(y)dx = 0.

Moreover, we have, for all t ∈ [T0, T
∗],

|ρ(T0)| + ‖z(T0)‖H1(R) ≤ Kcθ, ‖z(t)‖H1(R) ≤ 2K∗cθ,

zt + (zxx − z + f(z + û) − f(û))x = −S[û](t) + (ρ′(t) − 1)(û+ z)x.

|ρ′(t) − 1| ≤ K‖z(t)‖H1(R) +K‖S[û](t)‖H1(R),

The purpose of the modulation theory is to establish a lower bound in the following en-
ergy functional for z(t):

F(t) :=
1

2

∫

R

(
(∂xz)

2 + (1 + α′(yc))z
2
)
−

∫

R

(F (û+ z) − F (û) − f(û)z).

Indeed, this functional enjoys two useful properties: it has a very small time variation and
it is coercive up to the direction Q:

Lemma 3.2 (Coercivity of F). Assume that 0 < c < c(K∗) small enough. There exists K > 0
(independent of K∗ and c) such that
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1. Coercivity of F under orthogonality conditions:

∀t ∈ [T0, T
∗], ‖z(t)‖2

H1(R) ≤ KF(t) +K

∣∣∣∣
∫

R

z(t)Q(y)

∣∣∣∣
2

.

2. Control of the direction Q:

∀t ∈ [T0, T
∗],

∣∣∣∣
∫

R

z(t)Q(y)

∣∣∣∣ ≤ Kcθ +Kc
1

p−1
− 1

4 ‖z(t)‖L2 +K‖z(t)‖2
L2 .

3. Control of the variation of the energy functional:

F(T ∗) −F(T0) ≤ Kc2θ
(
(K∗)2(1 +K∗)c

1
2(m−1)

− 1
8 +K∗

)
.

These estimates allow us, after fixingK∗ large enough and possibly taking c even smaller,
to show that actually

‖z(T ∗)‖2
H1(R) ≤

1

2
(K∗)2c2θ.

contradicting the definition of T ∗, thus proving that T ∗ = Tc.

Once the existence of an actual solution (close to our approximate solution û in the inter-
val [−Tc, Tc]) is established, one would like to investigate the behavior in long time of this
solution. We treat this problem in the next subsection.

3.2 Stability and asymptotic stability for large time

Here we consider the stability of the 2-soliton structure after the collision, and for a long time.
Let Tc be defined in (2.2). We start with an important
Remark 3.2. Since (1.12) holds for f(s) = sm, m = 2, 3, it is clear by a perturbation argument
that (1.12) holds also for f as in (1.22) for all 0 < c < 1, provided 0 < |ε| < ε0 is small enough.

Proposition 3.3 (Stability of two decoupled solitons, [51], [52]). Let ε small enough such that
(1.12) holds for Q. Then there exist constants c0,K > 0, such that for any 0 < c < c0 and for any
ω > 0, the following holds. Let u(t) be an H1 solution of (2.1) such that for some time t1 ∈ R and
1
2Tc ≤ X0 ≤ 3

2Tc,

‖u(t1) −Q−Qc(· +X0)‖H1(R) ≤ c
1
4
+ 1

m−1
+ω. (3.4)

Then there exist C1-functions ρ1(t), ρ2(t) defined on [t1,+∞) such that

1. Stability:

sup
t≥t1

‖u(t) −Q(· − ρ1(t)) −Qc(· − ρ2(t))‖H1(R) ≤ Kc−
1
4
+ 1

m−1
+ω, (3.5)

and for all t ≥ t1,

1

2
≤ ρ′1(t) − ρ′2(t) ≤

3

2
, |ρ1(t1)| ≤ Kc

1
4
+ 1

m−1
+ω, |ρ2(t1) +X0| ≤ Kcω. (3.6)

2. Asymptotic stability: There exist c+1 , c
+
2 > 0 such that on the right hand side limit

lim
t→+∞

‖u(t) −Qc+1
(x− ρ1(t)) −Qc+2

(x− ρ2(t)))‖H1(x> 1
10

ct) = 0, (3.7)

with
∣∣c+1 − 1

∣∣ ≤ Kc
1
4
+ 1

m−1
+ω,

∣∣∣
c+2
c

− 1
∣∣∣ ≤ Kcω. (3.8)
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3.3 A decomposition result

Recall a more precise decomposition of u(t) used in the proof of Proposition 3.3 in [51], [52].

Lemma 3.4 (Decomposition of the solution, [52]). Suppose (1.12) holds for Q. Let u = u(t) be a
solution of the gKdV equation (1.21) such that the estimate (3.4) holds. Then there exist C1-functions
ρ1(t), ρ2(t), c1(t), c2(t), defined on [t1,+∞), such that the function

η(t, x) := u(t, x) −R1(t, x) −R2(t, x),

where, for j = 1, 2, Rj(t, x) := Qcj(t)(x− ρj(t)), satisfies for all t ≥ t1,

∫

R

Rj(t)η(t) =

∫

R

(x− ρj(t))Rj(t)η(t) = 0, j = 1, 2, (3.9)

‖η(t)‖H1(R) + |c1(t) − 1| + c
1

m−1
− 1

4

∣∣∣∣
c2(t)

c
− 1

∣∣∣∣ ≤ Kcω+ 1
m−1

− 1
4 , (3.10)

and for all t ≥ t1 |ρ′2(t)| + |ρ′1(t) − 1| ≤ 1

10
, ρ1(t) − ρ2(t) ≥

1

2
t+

1

4
Tc. (3.11)

Moreover, we have the convergence limt→+∞ c̄j(t) = c+j for j = 1, 2.

At this moment we have all the necessary information about the 2-soliton solution of (2.1).
Indeed, recall from the sketch of proof (Subsection 1.4) that the asymptotic in long time will
be treated using the tools from this section, more precisely using Proposition 3.3 and Lemma
3.4. On the other hand the collision region will be described by Proposition 3.1. This is the
purpose of the next section.

4 Proof of the Theorem 1.4

Now we are in a position to prove the main Theorem of this work.

Proof of Theorem 1.4. Let 1 = c1 < c∗(f) such that (1.12) holds and 0 < c < c0(ε) small enough
(depending on ε). Let u(t) be the unique solution of (1.21) such that (see Theorem 1 and
Remark 2 in [49])

lim
t→−∞

‖u(t) −Q(x− t) −Qc(x− ct)‖H1(R) = 0.

1. Behavior at −Tc. We claim that for all t < − 1
32Tc,

‖u(t) −Q(· − t) −Qc(· − ct)‖H1(R) ≤ Ke
1
4

√
c(1−c)t. (4.1)

This is a consequence of the proof of existence of u(t) in [49]. See Proposition 5.1 in [53] for a
proof in the power case.

Now, using (4.1), we will match the function u with the collision solution û constructed in
Proposition 2.11. For this, we will translate u in time and space, as follows.

Let ∆1, ∆2 be defined in Proposition 2.10 and

T−
c := Tc +

1

2

∆1 − ∆2

1 − c
, a :=

1

2
∆1 − T−

c .
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Since from (2.57)
|∆1| ≤ Kc

1
m−1

− 1
2 , and |∆2| ≤ K,

we have −T−
c ≤ − 1

32Tc, and thus, from (4.1) for c small enough, and after a translation by a,
we get

‖u(−T−
c , · + a) −Q(· + ∆1

2
) −Qc(· − (1 − c)Tc +

∆2

2
)‖H1(R) ≤ Ke−

1
4

√
c(1−c)T−

c ≤ Kc10.

By translation invariance, we may assume T−
c = Tc and a = 0, such that

‖u(−Tc) −Q(· + ∆1

2
) −Qc(· − (1 − c)Tc +

∆2

2
)‖H1(R) ≤ Kc10. (4.2)

2. Behavior at +Tc. Now, possibly taking a smaller c, consider û = û1,c constructed in
Proposition 2.11. By (2.55) and (4.2), we have

‖u(−Tc) − û(−Tc)‖H1(R) ≤ Kc
2

m−1
+ 1

4 [c
1

m−1 + |d(ε)|c 1
2 ].

Applying Proposition 3.1 with

T0 = −Tc, cθ := c
2

m−1
+ 1

4
− 1

100 [c
1

m−1 + |d(ε)|c 1
4 ],

it follows that there exists a function ρ(t) such that for all t ∈ [−Tc, Tc],

‖u(t) − û(t, · − ρ(t))‖H1(R) ≤ Kcθ.

In particular, for r := ρ(Tc), we have

‖u(Tc) − û(Tc, · − r)‖H1(R) ≤ Kcθ.

Using (2.56) and triangular inequality , we obtain

‖u(Tc) −Q(· − r1) −Qc(· − r2) − 2d(ε)(Q2
c)

′(· − r2)‖H1(R) ≤ Kcθ. (4.3)

Here,

r1 :=
1

2
∆1 + r, r2 := (c− 1)Tc +

1

2
∆2 + r,

so that r1 − r2 = (1 − c)Tc + 1
2(∆1 − ∆2) satisfies

1

2
(1 − c)Tc ≤ r1 − r2 ≤ 32(1 − c)Tc. (4.4)

Moreover, note that
‖(Q2

c)
′‖H1(R) ≤ Kc

2
m−1

+ 1
4 ,

so that

‖u(Tc) −Q(· − r1) −Qc(· − r2)‖H1(R) ≤ Kc
2

m−1
+ 1

4 [|d(ε)| + c
1

m−1 ] ≤ K|d(ε)|c
2

m−1
+ 1

4 , (4.5)

provided

|d(ε)| ≥ κ0c
1

m−1
− 1

100 , (4.6)

for some κ0 > 0 large enough but fixed. We have thus arrived to time t = +Tc with a stability
property of the 2-soliton structure, namely (4.5).
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3. Behavior as t→ +∞. From (4.5), it follows that we can apply Proposition 3.3 to u(t, ·+ r1)
for t ≥ Tc (that is, t1 := Tc), with X0 := r1 − r2, and

cω := |d(ε)|c
1

m−1 .

It follows that there exist ρ1(t), ρ2(t), c+1 > 0, c+2 > 0 so that

w+(t, x) := u(t, x) −Qc+1
(x− r1 − ρ1(t)) −Qc+2

(x− r1 − ρ2(t)) (4.7)

satisfies

sup
t≥Tc

‖w+(t)‖H1(R) ≤ K|d(ε)|c
2

m−1
− 1

4 , lim
t→+∞

‖w+(t)‖H1(x> c
10

t+r1) = 0, (4.8)

and
|c+1 − 1| ≤ K|d(ε)|c

2
m−1

+ 1
4 , |c+2 − c| ≤ K|d(ε)|c1+

1
m−1 . (4.9)

In particular, the behavior of the 2-soliton structure remains stable at infinity, modulo the
emergency of a possible H1-nonzero residual term. This proves the upper bound in (1.26).
At this stage, we do not know if this residual term (that is, w+) can be bounded by below
uniformly in time. This is the purpose of the following key step.

4. Lower bound on w+(t) for t > Tc large. Consider the decomposition of u(·, ·+ r1) defined
in Lemma 3.4, i.e. the center of mass ρ̄1(t), ρ̄2(t), the scaling parameters c̄1(t), c̄2(t) such that,
for t > Tc,

η(t, x) := u(t, x) −Qc̄1(t)(x− r1 − ρ̄1(t)) −Qc̄2(t)(x− r1 − ρ̄2(t)) (4.10)

satisfies

sup
t≥Tc

‖η(t)‖H1(R) ≤ K|d(ε)|c
2

m−1
− 1

4 , |c̄1(Tc) − 1| ≤ K|d(ε)|c
2

m−1
− 1

4 ,

ρ̄1(t) − ρ̄2(t) ≥
1

2
t+

1

4
Tc, |c̄2(t) − c| ≤ K|d(ε)|c

1
m−1

+ 3
2 ,

(4.11)

and
|ρ̄2(Tc) + r1 − r2| ≤ K|d(ε)|c

1
m−1 . (4.12)

Moreover, we have for j = 1, 2
lim

t→+∞
c̄j(t) = c+j . (4.13)

First, as a consequence of (4.3), we claim the following lower bound at t = Tc: for K0 > 0,
independent of c > 0,

∫

x<ρ̄2(Tc)+r1+ 1
4
Tc

η2(Tc, x)dx ≥ K0|d(ε)|2c
4

m−1
+ 1

2 . (4.14)

Proof of (4.14). The proof will proceed by a contradiction argument. Indeed, suppose that
for any α > 0 there exists c > 0 small enough such that (4.14) does not hold properly, namely

‖η(Tc)‖L2(x<ρ̄2(Tc)+r1+ 1
4
Tc)

≤ α|d(ε)|c
2

m−1
+ 1

4 . (4.15)

Replacing

u(Tc, x) = Qc̄1(T )(x− r1 − ρ̄1(Tc)) +Qc̄2(Tc)(x− r1 − ρ̄2(Tc)) + η(Tc, x)
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in (4.3), we find
∥∥[Qc̄1(Tc)(· − r1 − ρ̄1(Tc)) −Q(· − r1)] + [Qc̄2(Tc)(· − r1 − ρ̄2(Tc)) −Qc(· − r2)]

+ η(Tc) + 2d(ε)(Q2
c)

′(· − r2)
∥∥

H1(R)
≤ Kc

2
m−1

+ 1
4 [c

1
m−1 + |d(ε)|c 1

2 ].

By the decay properties of Q, (4.11) at time t = Tc and r1 − r2 ≥ 1
2(1 − c)Tc (see (4.4)), we

obtain

‖[Qc̄2(Tc)(· − r1 − ρ̄2(Tc)) −Qc(· − r2)] + η(Tc) + 2d(ε)(Q2
c)

′(· − r2)‖L2(x<ρ̄2(Tc)+r1+ 1
4
Tc)

≤ Kc
2

m−1
+ 1

4 [c
1

m−1 + |d(ε)|c 1
2 ].

Then, using (4.15) and (4.6),

‖[Qc̄2(Tc)(· − r1 − ρ̄2(Tc)) −Qc(.− r2)] + 2d(ε)(Q2
c)

′(· − r2)‖L2(x<ρ̄2(Tc)+r1+ 1
4
Tc)

≤ c
2

m−1
+ 1

4
[
Kc

1
2 + 2α+

K

κ0
c

1
100

]
|d(ε)|.

By scaling and translation, and decay of Q, we obtain

‖Q̄−Q+ 2d(ε)c
1
2
+ 1

m−1 (Q2)′‖L2(R) ≤ c
1

m−1
+ 1

2
[
Kc

1
2 + 2α+

K

κ0
c

1
100

]
|d(ε)|

+‖Q̄−Q+ 2d(ε)c
1
2
+ 1

m−1 (Q2)′‖L2(x>β),

where Q̄(x) = λQ (µx− ξ) , and

λ :=
[ c̄2(Tc)

c

] 1
m−1

, µ :=

√
c̄2(Tc)

c
,

(do not be confused with µ of Theorem 1.4), and

ξ =
√
c̄2(Tc)(ρ̄2(Tc) + r1 − r2), β :=

√
c(

1

4
Tc + ρ̄2(Tc) + r1 − r2).

Note that from (4.11) and (4.12),

β ≥ 1

8

√
cTc ≥

1

8
c−

1
100 , ‖Q̄−Q+ 2d(ε)c

1
2
+ 1

m−1 (Q2)′‖L2(x>β) ≤ Kc10.

Moreover, note that Q̄(x) = Qµ(x− ξ
µ), and that by (4.11), we have

|µ− 1| ≤ K|d(ε)|c
1
2
+ 1

m−1 , |ξ| ≤ K|d(ε)|c
1
2
+ 1

m−1 .

Expanding Q̄ in µ− 1, and ξ/µ, and using parity properties, we find

‖ξQ′ + 2d(ε)c
1
2
+ 1

m−1 (Q2)′‖L2(R) ≤
[
Kc

1
2 + 3α+

K

κ0
c

1
100

]
|d(ε)|c

1
2
+ 1

m−1 ,

so that for some constant ξ̄ ∈ R,

‖ξ̄Q′ + 2d(ε)(Q2)′‖L2(R) ≤
[
Kc

1
2 + 4α+

K

κ0
c

1
100

]
|d(ε)|.

Note that exists κ1 > 0, independent of ε and c, such that

inf
ξ̄∈R

‖ξ̄Q′ + 2d(ε)(Q2)′‖L2(R) ≥ κ1|d(ε)|,

since Q′ 6= γ(Q2)′ for all γ ∈ R. By choosing κ0 large enough in (4.6), depending only on κ1,
and c small enough, we find a contradiction for α small. This contradiction proves (4.14).

Now, we finish the proof of the lower bound by proving the following
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Lemma 4.1. There exists K0 > 0 such that

lim inf
t→+∞

‖w+(t)‖H1
c (R) ≥ K0|d(ε)|c

3
4
+ 2

m−1 . (4.16)

Note that (4.16) combined with (2.29)-(2.30) prove the lower bound in (1.26). Thus, we are
now reduced to prove (4.16).

Proof. We argue by contradiction. Assume that for any α > 0, there exist arbitrarily large T0

and c arbitrarily close to 0 such that

‖w+(T0)‖H1
c (R) ≤ α|d(ε)|c

3
4
+ 2

m−1 . (4.17)

By (4.13), we can choose T0 > Tc large enough so that

‖η(T0)‖H1
c (x<m(T0)+

T0
4

)
≤ 2α|d(ε)|c

3
4
+ 2

m−1 . (4.18)

Here m(t) := r1 + 1
2(ρ̄1(t) + ρ̄2(t)) is the middle point between the two solitons at time t.

We need to estimate some local in space conservation laws. For this reason we introduce
a sort of cutoff function supported on the small soliton. Let

ψ(x) =
2

π
arctan(exp(x/κ)), so that lim

−∞
ψ = 0, lim

∞
ψ = 1, and for all x ∈ R,

ψ(−x) = 1 − ψ(x), ψ′(x) =
1

πκ cosh(x/κ)
, |ψ′′′(x)| ≤ 1

κ2
|ψ′(x)|.

(4.19)

Let

a :=
E(Qc̄(T0)) − E(Qc̄(Tc))

M(Qc̄(Tc)) −M(Qc̄(T0))
.

We set

G(t) :=
1

2
a

∫

R

u2(t, x)(1 − ψ(x−m(t)))dx+
1

2

∫

R

(u2
x − 2F (u))(t, x)(1 − ψ(x−m(t)))dx

= aM(u(t)) + E(u(t)) − (aM1(t) + E1(t)),

where

M1(t) :=
1

2

∫

R

u2(t, x)ψ(x−m(t))dx, E1(t) :=
1

2

∫

R

(u2
x − 2F (u))(t, x)ψ(x−m(t))dx.

We claim the following results on m(t), a and G(t).

Claim 18. The following estimates hold

1

2
≤ m′(t) ≤ 3

2
. (4.20)

and for a positive constant km,
a = kmc+ o(c). (4.21)

(Here o(c) means |c−1o(c)| → 0 as c→ 0.)

Proof. To prove (4.20), it is enough to consider Lemma 3.4 on the interval [Tc, T0] to have

m′(t) ≥ 1 − 1

10
≥ 1

2
; m′(t) ≤ 1 +

1

10
≤ 3

2
.
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Let us now treat (4.21). It is easy to show that

M(Qc) = c
2

m−1
− 1

2

∫

R

Q2 + o(c
2

m−1
− 1

2 ).

On the other hand,

E(Qc) =
1

2
c

2
m−1

+ 1
2

[ ∫

R

Q′2 − 2

m+ 1

∫

R

Qm+1
]

+ o(c
m+1
m−1

+ 1
2 ).

Thus, from (4.11) and the fact that E(Q) < 0, a Taylor expansion and L’Hopital rule gives

a = − ∂cE(Qc)

∂cM(Qc)

∣∣∣
c=c̄(Tc)

+O(|c̄(T0) − c̄(Tc)|) = − E(Q)

M(Q)
c̄(Tc) + o(c) = kmc+ o(c). (4.22)

where km := − E(Q)
M(Q) > 0 is a constant depending on m.

Lemma 4.2. For 0 < c < c0 small enough,

G(Tc) − G(T0) ≤ Kc10.

Proof. We will need the following

Claim 19. Define h := uxx + f(u), such that ut = −hx. Then

M′
1(t) = −3

2
a

∫

R

u2
xψ

′ +
a

2

∫

R

u2(ψ′′′ −m′ψ′) + a

∫

R

(uf(u) − F (u))ψ′,

and

E ′
1(t) = −3

2

∫

R

h2ψ′ − 1

2

∫

R

u2
x(m′ψ′ − ψ′′′) +

∫

R

F (u)(m′ψ′ + ψ′′′)

+

∫

R

f2(u)ψ′ −
∫

R

u2
xf

′(u)ψ′.

Proof. A direct computation, see for example [58].

Now, we follow the proof contained in Appendix D, [58]. From above Claim, we have

G′(t) =
3

2

∫

R

h2ψ′ +
1

2

∫

R

u2
x(m′ψ′ − ψ′′′ + 3aψ′) +

a

2

∫

R

u2(m′ψ′ − ψ′′′)

−a
∫

R

(uf(u) − F (u))ψ′ −
∫

R

F (u)(m′ψ′ + ψ′′′) −
∫

R

f2(u)ψ′ +
∫

R

u2
xf

′(u)ψ′.

From Claim 18 we choose κ > 0 large enough such that m′ψ′ − ψ′′′ ≥ 1
4ψ

′. From here,

3

2

∫

R

h2ψ′ +
1

2

∫

R

u2
x(m′ψ′ − ψ′′′ + 3aψ′) +

a

2

∫

R

u2(m′ψ′ − ψ′′′) ≥ c

4

∫

R

(u2
x + u2)ψ′

Let us consider now the nonlinear terms in the second row of G′(t). For this, let

I := [r1 + ρ̄2(t) +
1

8
Tc, r1 + ρ̄1(t) −

1

8
Tc]

an interval between the two solitons. We have two cases: x ∈ I and x 6∈ I .

In the first case, from (4.10) we have for all t ≥ Tc

|u(t)| ≤ |Qc̄1 |(t) + |Qc̄2 |(t) + |η|(t) ≤ K|d(ε)|c
2

m−1
− 1

4 .
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Thus,

|−a
∫

I
(uf(u) − F (u))ψ′ −

∫

I
F (u)(m′ψ′ + ψ′′′) −

∫

I
f2(u)ψ′ +

∫

I
u2

xf
′(u)ψ′|

≤ K
[
‖u(t)‖m−1

L∞(I) + ‖u(t)‖2(m−1)
L∞(I)

] ∫

R

(u2 + u2
x)ψ′

≤ K|d(ε)|m−1c2−
1
4
(m−1)

[
|d(ε)|m−1c2−

1
4
(m−1) + 1

] ∫

R

(u2 + u2
x)ψ′

≤ Kc
3
2

∫

R

(u2 + u2
x)ψ′.

In the second case, we have |x−m(t)| ≥ t
4 and thus ψ′(x−m(t)) ≤ Ke−γt, with γ > 0 a fixed

constant. From here,

|−a
∫

x 6∈I
(uf(u) − F (u))ψ′ −

∫

x 6∈I
F (u)(m′ψ′ + ψ′′′) −

∫

x 6∈I
f2(u)ψ′ +

∫

x 6∈I
u2

xf
′(u)ψ′| ≤ Ke−γt.

In conclusion, putting together above estimates, we get for all t ∈ [Tc, T0],

G′(t) ≥ −Ke−γt,

and after integration we obtain the desired result. The proof is now complete.

Now, define

H(t) :=

∫

R

[
aη2 + η2

x − f ′(R2)η
2
]
(1 − ψ).

We have the

Lemma 4.3. For 0 < c < c0 small enough,

1. Small variation:

G(Tc) − G(T0) =
1

2
(H(Tc) −H(T0)) +O(α2|d(ε)|3c

6
m−1

+ 1
4 c

m−2
m−1 )

+O(|d(ε)|c
2

m−1
− 1

4 c
m−2
m−1

∫

R

η2(Tc)(1 − ψ)) +O(c10), (4.23)

2. Coercivity:

H(t) ≥ σ0

∫

R

[
cη2 + η2

x

]
(t, x)(1 − ψ)dx. (4.24)

for some σ0 > 0 independent of c.

Proof. Let us first prove (4.23). We replace u = R1 +R2 + η in the definition of G. We obtain

M(t) =
1

2

∫

R

(R1 +R2 + η)2(1 − ψ)

=
1

2

∫

R

R2
2(1 − ψ) +

∫

R

ηR2(1 − ψ) +
1

2

∫

R

η2(1 − ψ) +O(c10).

Here we have used the estimate for t ≥ Tc

|
∫

R

R1(t)(1 − ψ)| ≤ Ke−
1
2
t ≤ Kc10,

among other similar estimates.
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In the same way,

1

2

∫

R

u2
x(1 − ψ) =

1

2

∫

R

(R2)
2
x(1 − ψ) +

∫

R

ηx(R2)x(1 − ψ) +
1

2

∫

R

η2
x(1 − ψ) +O(c10).

Finally, using the character exponentially decreasing of R1 where 1 − ψ is away from zero,
∫

R

F (u)(1 − ψ) =

∫

R

F (R1 +R2 + η)(1 − ψ)

=

∫

R

[F (R1 +R2 + η) − F (R2 + η)](1 − ψ)

+

∫

R

[F (R2 + η) − F (R2) − f(R2)η −
1

2
f ′(R2)η

2](1 − ψ)

+

∫

R

[F (R2) + f(R2)η +
1

2
f ′(R2)η

2](1 − ψ)

=

∫

R

[f(R2 + η)R1 +O(R2
1)](1 − ψ) +O(‖R2‖m−2

L∞(R)

∫

R

|η(t)|3(1 − ψ))

+

∫

R

[F (R2) + f(R2)η +
1

2
f ′(R2)η

2](1 − ψ)

=

∫

R

[F (R2) + f(R2)η +
1

2
f ′(R2)η

2](1 − ψ)

+O
[
‖R2‖m−2

L∞(R)‖η(t)‖H1

∫

R

η2(t)(1 − ψ)
]
+O(c10).

From this,

G(t) = G[R2](t) + H(t) +O
[
‖R2‖m−2

L∞(R)‖η(t)‖H1

∫

R

η2(t)(1 − ψ)
]
+O(c10).

Putting together these estimates, using the value of a, evaluating at times t = Tc and t = T0

and using (4.18) and (4.11), we obtain the desired result.

The proof of (4.24) is standard, see e.g. [52] Appendix B.3.

Combining Lemmas 4.2 and 4.3, we find
∫

R

[
cη2 + η2

x

]
(Tc)(1 − ψ) ≤ KH(Tc)

≤ KH(T0) +K|d(ε)|c
1

m−1
+ 3

4

∫

R

η2(Tc)(1 − ψ)

+ Kα2|d(ε)|3c
5

m−1
+ 5

4 +O(c10) +K(G(Tc) − G(T0))

≤ Kα2|d(ε)|2c
4

m−1
+ 3

2 +Kα2|d(ε)|3c
5

m−1
+ 5

4 +Kc10. (4.25)

The last inequality is consequence of

|d(ε)|c
1

m−1
+ 3

4 ≪ c

K
, m = 2, 3 and 4;

therefore the term

K|d(ε)|c
1

m−1
+ 3

4

∫

R

η2(Tc)(1 − ψ)
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can be sent to the left hand side of (4.25). Using (4.14) we finally get

|d(ε)|2c
4

m−1
+ 3

2 ≤ Kα2|d(ε)|2c
4

m−1
+ 3

2 +Kα2|d(ε)|3c
5

m−1
+ 5

4 .

But this estimate is a contradiction for α > 0 small enough and 0 < c < c0 small enough (it is
enough to put ε even smaller). The proof of Claim 4.1 is now complete.

5. Lower bounds on the parameters. We finally prove (1.27). This result is a consequence
of Theorem 1.2, (1.17), (1.18) and (1.19), see also [54] for the proof. Indeed, from (1.17) and
(1.26), we have

1

K
|d(ε)|2c

3
2
+ 4

m−1 ≤ 2E+ + cM+ ≤ 1

K
|d(ε)|2c

1
2
+ 4

m−1 .

The final conclusion follows from (1.18), (1.19) and (2.29)-(2.30).

This finishes the proof of the Theorem 1.4.

Appendices

L Proof of Proposition 2.2

The proof is similar to Proposition 2.2 in [54] and Appendix in [53]. The main difference
consists in the fact that we need to know explicitly all linear systems up to order m + 1 to
show the nonexistence of growing solutions. We will discard several trivial terms by using
the property (IP). For this purpose it is better to state an improved version of Proposition 2.2.
Before that we introduce a useful notation.

Definition L.1. Consider f, g : R → R given functions. We say that f = g mod Y if there
exists h ∈ Y such that f = g + h.

In our case, this definition will be useful to discard localized functions in the source terms.
Indeed,

Proposition L.1 (Decomposition of S(ũ), improved version). Assume that f is of class Cm+2.
Let

Lw = −wyy + w − f ′(Q)w. (L.1)

Then,

S[ũ](t, x) =
∑

(k,l)∈Σm

clQk
c (yc)

[
ak,l(−3Q+ 2f(Q))′(y) − (LAk,l)

′(y) + Fk,l(y)
]

+
∑

(k,l)∈Σm

cl(Qk
c )

′(yc)
[
ak,l(−3Q′′)(y) +

(
3A′′

k,l + f ′(Q)Ak,l

)
(y) − (LBk,l)

′(y) +Gk,l(y)
]

+ E(t, x) (L.2)

where Fk,l, Gk,l and E satisfy, for any (k, l) ∈ Σm,

(i) Dependence property of Fk,l and Gk,l: The expressions of Fk,l and Gk,l depend only on (ak′,l′),
(Ak′,l′), (Bk′,l′) for (k′, l′) < (k, l).
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(ii) Parity property of Fk,l and Gk,l: Assume that for any (k′, l′) such that (k′, l′) < (k, l) Ak′,l′ is
even and Bk′,l′ is odd, then Fk,l is odd and Gk,l is even.

(iii) Explicit source terms: We have F1,0 = (f ′(Q))′ and G1,0 = f ′(Q),

F2,0 = −(3A′
1,0 + 3B′′

1,0 + f ′(Q)B1,0) +
1

2
(f ′′(Q)(2A1,0 +A2

1,0))
′

−a1,0(3A
′′
1,0 −Q+ f ′(Q)(1 +A1,0))

′ + 3a2
1,0Q

(3) +
1

2
(f ′′(Q) − 2)′,

and

G2,0 =
1

2
(f ′′(Q) − 2) − (A1,0 + 3B′

1,0) +
1

2
f ′′(Q)(2A1,0 +A2

1,0) +
3

2
a2

1,0Q
′′

−1

2
a1,0(9A

′
1,0 + 3B′′

1,0 + f ′(Q)B1,0)
′ +

1

2
(f ′′(Q)(B1,0 +A1,0B1,0))

′.

for the case m = 2, and

F2,0 = (
1

2
f ′′(Q)(1 +A1,0)

2)′ + 3a2
1,0Q

(3) − a1,0(f
′(Q) + 3A′′

1,0 + f ′(Q)A1,0)
′

and

G2,0 =
1

2
f ′′(Q)(1 +A1,0)

2 +
3

2
a2

1,0Q
′′ − 1

2
a1,0(9A

′
1,0 + 3B′′

1,0 + f ′(Q)B1,0)
′

+
1

2
(f ′′(Q)(1 +A1,0)B1,0)

′.

in the case m = 3. If property (IP) holds for (k, l) = (1, 0), then each term above is in Y .

(iv) Explicit high order source terms modulo Y : Suppose property (IP) holds for (k, l) ∈ Σm with
k + l ≤ 2. Then, for the quadratic case,

F1,2, G1,2, F2,1 and F3,0 ∈ Y; G3,0 = −2

3
(B2

1,0 + 2A2,0) mod Y,

and
G2,1 = B2

1,0 +A1,1 + 3A2,0 mod Y.
For the cubic case,

F3,0, G3,0, F2,1, F4,0 and G4,0 ∈ Y, G2,1 = 3A2,0 mod Y.

(v) Improved estimate on E : Suppose in addition that property (IP) holds for any (k, l) ∈ Σm, then
for all j = 0, 1, 2

‖∂j
xE(t, x)‖H1(R) ≤ Kc

3
4
+ 3

m−1 .

Proof. Expansion (L.2), and items (i) and (ii) were proven in [54], so in what follows we deal
with (iii)-(v). For this it is necesary to improve the computation done in [54].

We start with an important lemma concerning the algebra of Qc.

Lemma L.2 (Properties of Qc, see Lemma 2.1 in [54]). Suppose 0 < c ≤ 1, 0 < ε ≤ ε0 small,
k ∈ {1, . . . , k0}, and m = 2, 3. Then

1. There exists a positive constant K = K(ε) > 0 such that

1

K
c

1
m−1 e−

√
c|x| ≤ Qc(x) ≤ Kc

1
m−1 e−

√
c|x|, |Q′

c(x)| ≤ Kc
1

m−1
+ 1

2 e−
√

c|x|. (L.3)
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2. For F defined in (1.9) and any k ≥ 1,

Q′′
c = cQc − f(Qc), Q′2

c = cQ2
c − 2F (Qc). (L.4)

(Qk
c )

′′ = ck2Qk
c − 2k(k − 1)Qk−2

c F (Qc) − kf(Qc)Q
k−1
c . (L.5)

We recall the notation introduced in Subsection (2.1):

S[ũ] = ũt + (ũxx − ũ+ f(ũ))x.

We easily verify that
S[ũ] = I + II + III + IV, (L.6)

where (we omit the dependence on t, x)

I := S[R], II := (f(R+Rc) − f(R) − f(Rc))x,

and

L = −∂2
x + 1 − f ′(Q),

III = III(W ) := Wt − (LW )x,

IV := {f(R+Rc +W ) − f(R+Rc) − f(R)W}x .

(L.7)

Since Qc(yc) is a solution to (1.11), we have S(Qc) = 0.

Claim 20. Let A = A(y) and q = q(yc) be C3-functions with y, yc defined in Section 2.1. Then

III(Aq) = −q(LA)′ + q′(3A′′ + f ′(Q)A)

+q(−3βA(3) − βA′ − 3βxA
′′ −A′βxx + βA′ − β(f ′(Q)A)′)

+q(3β2A(3) + 3ββxA
′′ − β3A(3) + cβA′)

+q′(−cA− 6A′′β − 3A′βx + 3A′′β2)

+q′′(3A′ − 3A′β) +Aq(3).

Proof. Direct differentiation, see [54], Proposition 2.2.

Claim 21. Recall from (2.4),
β =

∑

(k,l)∈Σm

ak,lc
lQk

c (yc) (L.8)

Then, for some fixed numbers â1
k,l, â

2
k,l, āk,l, ãk,l with (k, l) ∈ Σm, depending only on ak′,l′ with

(k′, l′) ≤ (k, l), we have




βx =
∑

(k,l)∈Σm
ak,lc

l(Qk
c )

′(yc),

βxx =
∑

(k,l)∈Σm

l≥1

â1
k,lc

lQk
c (yc) +

∑
(k,l)∈Σm

k≥m

â2
k,lc

lQk
c (yc) +O(Q5

c + cQ3
c),

β2 =
∑

(k,l)∈Σm

k≥2

āk,lc
lQk

c (yc) +O(Q5
c + cQ3

c)

(β2)x =
∑

(k,l)∈Σm

k≥2

āk,lc
l(Qk

c )
′(yc) +O(Q5

c + cQ3
c), and

β3 =
∑

(k,l)∈Σm

k≥3

ãk,lc
lQk

c (yc) +O(Q5
c + cQ3

c).

Proof. The proof follows by elementary calculations from (2.4).

In the next lemmas, we expand the terms in (L.6).
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Lemma L.3.

I =
∑

(k,l)∈Σm

cl
[
Qk

c (yc)ak,l(2f(Q) − 3Q)′(y) + (Qk
c )

′(yc)(−3ak,lQ
′′(y))

]

+
∑

(k,l)∈Σm

cl
(
Qk

c (yc)F
I
k,l(y) + (Qk

c )
′(yc)G

I
k,l(y)

)
+ c3O(Qc(yc)),

(L.9)

where

F I
1,0 = GI

1,0 = F I
1,1 = GI

1,1 = 0,

F I
2,0 = 3a2

1,0Q
(3) + a1,0Q

′δm2, GI
2,0 =

3

2
a2

1,0Q
′′,

and for all (k, l) ∈ Σm, F I
k,l ∈ Y is odd, GI

k,l ∈ Y is even and depend only on ak′,l′ for (k′, l′) < (k, l).

Proof of Lemma L.3. We have (here ′ denotes derivative with respect to y)

I = Rt + (Rxx −R+ f(R))x

= −(1 − c)βQ′ + (f(Q))′(1 − β) −Q′(1 − β) + (Q′′(1 − β)2 −Q′βx)x

= (Q′′ −Q+ f(Q))′ +Q(3)(−3β + 3β2 − β3) − 3Q′′(βx − ββx) − βxxQ
′ − β(f(Q))′ + cβQ′

= −[3βQ(3) + 3Q′′βx + β(f(Q))′] + 3β2Q(3) + 3ββxQ
′′ − βxxQ

′ + cβQ′ − β3Q(3).

Hence using Claim 21, we obtain

I = a1,0(2f(Q) − 3Q)′Qc(yc) + a1,0(−3Q′′)Q′
c(yc)

+
(
a2,0(2f(Q) − 3Q)′ + 3a2

1,0Q
(3) + a1,0Q

′δm2

)
Q2

c(yc)

+
(
a2,0(−3Q′′) + 3

2a
2
1,0Q

′′)(Q2
c)

′(yc)

+
∑

k+l=3,4

cl
(
ak,l(2f(Q) − 3Q)′(y)Qk

c (yc) + ak,l(−3Q′′)(y)(Qk
c )

′(yc)
)

+
∑

k+l=3,4

cl
(
F I

k,lQ
k
c (yc) +GI

k,l(Q
k
c )

′(yc)
)

+ c3O(Qc),

where for all k + l = 3, F I
k,l ∈ Y and GI

k,l ∈ Y , as claimed in the statement of the Lemma.

Lemma L.4.

II =
∑

(k,l)∈Σm

cl
(
Qk

c (yc)F
II
k,l(y) + (Qk

c )
′(yc)G

II
k,l(y)

)
+O(Qm+2

c ),

where for all (k, l) ∈ Σm and for all p ≥ m + 1, F II
k,l , G

II
k,l ∈ Y and are odd and even respectively.

Moreover, for m = 2,

F II
1,0 = (f ′(Q))′, GII

1,0 = f ′(Q), F II
1,1 = GII

1,1 = 0,

F II
2,0 = (

1

2
f ′′(Q) − a1,0f

′(Q))′, GII
2,0 =

1

2
f ′′(Q) − 1.

Finally, if m = 3,

F II
1,0 = (f ′(Q))′, GII

1,0 = f ′(Q), F II
1,1 = GII

1,1 = 0,

F II
2,0 = (

1

2
f ′′(Q) − a1,0f

′(Q))′, GII
2,0 =

1

2
f ′′(Q).
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Proof. First define ĨI := f(R+Rc) − f(R) − f(Rc). Note that

ĨI = f ′(R)Rc +
1

2
f ′′(R)R2

c +
1

6
f (3)(R)R3

c − f(Rc) +
1

24
f (4)(R)R4

c +O(R5
c),

Thus taking derivative

II = (f ′(Q))′(1 − β)Qc + f ′(Q)Q′
c +

1

2
(f ′′(Q))′(1 − β)Q2

c +
1

2
f ′′(Q)(Q2

c)
′ +

1

6
(f (3)(Q))′(1 − β)Q3

c

+
1

6
f (3)(Q)(Q3

c)
′ +

1

24
(f (4)(Q))′Q4

c +
1

24
f (4)(Q)(Q4

c)
′ − (f(Qc))

′ +O(Q5
c). (L.10)

Here we have to identify two different results, depending on the value of m. For m = 2,
namely, the quadratic case, we will need only up to third order terms. After replacing the
value of β given by (L.8), we will obtain (recall that p ≥ 3)

II = (f ′(Q))′Qc + f ′(Q)Q′
c + (

1

2
f ′′(Q) − a1,0f

′(Q))′Q2
c + (

1

2
f ′′(Q) − 1)(Q2

c)
′ − a1,1(f

′(Q))′cQ2
c

+(
1

6
f (3)(Q) − 1

2
a1,0f

′′(Q) − a2,0f
′(Q))′Q3

c +
1

6
f (3)(Q)(Q3

c)
′ − ε(Qp

c)
′ − (f1(Qc))

′ +O(Q4
c).

It is easy to check that every term depending on y up to order Q3
c , (Q

3
c)

′ is indeed in the class
Y . Even in the worst case, p = 3, we will have the cancelation

1

6
f (3)(Q)(Q3

c)
′ − ε(Qp

c)
′ =

1

6
f

(3)
1 (Q)(Q3

c)
′,

with 1
6f

(3)
1 (Q) ∈ Y .

Let us consider now the cubic case, m = 3. The procedure is completely similar, although
we must keep the fourth order terms. We start by replacing β in (L.10) and collecting similar
terms

II = (f ′(Q))′(1 − β)Qc + f ′(Q)Q′
c +

1

2
(f ′′(Q))′(1 − β)Q2

c +
1

2
f ′′(Q)(Q2

c)
′ +

1

6
(f (3)(Q))′(1 − β)Q3

c

+
1

6
f (3)(Q)(Q3

c)
′ +

1

24
(f (4)(Q))′Q4

c +
1

24
f (4)(Q)(Q4

c)
′ − (f(Qc))

′ +O(Q5
c).

= (f ′(Q))′Qc + f ′(Q)Q′
c + (

1

2
f ′′(Q) − a1,0f

′(Q))′Q2
c +

1

2
f ′′(Q)(Q2

c)
′

(
1

6
f (3)(Q) − 1

2
a1,0f

′′(Q) − a2,0f
′(Q))′Q3

c + (
1

6
f (3)(Q) − 1)(Q3

c)
′ − a1,1(f

′(Q))′cQ2
c

+(
1

24
f (4)(Q) − 1

6
a1,0f

(3)(Q) − 1

2
a2,0f

′′(Q) − a3,0f
′(Q))′Q4

c +
1

24
f (4)(Q)(Q4

c)
′

−(εQp
c + f1(Qc))

′ +O(cQ3
c + cQ4

c +Q5
c).

It is straightforward to check that every function depending on y is indeed in Y . The only
complicated terms are (note that p ≥ 4)

1

6
f (3)(Q) − 1 =

1

6
p(p− 1)(p− 2)εQp−3 +

1

6
f

(3)
1 (Q) ∈ Y,

which is in front of (Q3
c)

′; and for p = 4, facing (Q4
c)

′ we have

1

24
f (4)(Q) − ε = ε+

1

24
f

(4)
1 (Q) − ε =

1

24
f

(4)
1 (Q) ∈ Y.
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Lemma L.5.

III =
∑

(k,l)∈Σm

cl
(
Qk

c (yc)(−LAk,l)
′(y) + (Qk

c )
′(yc)((−LBk,l)

′ + 3A′′
k,l + f ′(Q)Ak,l)(y)

)

+
∑

(k,l)∈Σm

cl
(
Qk

c (yc)F
III
k,l (y) + (Qk

c )
′(yc)G

III
k,l (y)

)
+O(Qm+2

c ),

where

F II
1,0 = 0, GII

1,0 = 0, F II
1,1 = 3A′

1,0 + 3B′′
1,0 + f ′(Q)B1,0, GII

1,1 = 3B′
1,0,

F II
2,0 = −a1,0(3A

′′
1,0 + f ′(Q)A1,0)

′ − (3A′
1,0 + 3B′′

1,0 + f ′(Q)B1,0)δm2

GII
2,0 = −1

2
a1,0

(
9A′

1,0 + 3B′′
1,0 + f ′(Q)B1,0

)′ − (A1,0 + 3B′
1,0)δm2,

and for (k, l) ∈ Σm, F II
k,l , G

II
k,l depend on Ak′,l′ , Bk′,l′ such that (k′, l′) < (k, l). Moreover, if Ak′,l′

are even and Bk′,l′ are odd then F II
k,l are odd and GII

k,l are even.

Finally, the following important property holds. Suppose (IP) holds for any (k, l) ∈ Σm with
k + l ≤ 2. Then we have a sharp decomposition for each high order source term:

1. For m = 2,

F III
3,0 = 0, GIII

3,0 = −10

3
A2,0, F III

2,1 = 0, GIII
2,1 = −A1,1+3A2,0, F III

1,2 = GIII
1,2 = 0 mod Y.

(L.11)

2. For m = 3,

F III
3,0 , G

III
3,0 , F

III
2,1 ∈ Y, GIII

2,1 = 3A2,0, F III
4,0 = 0, GIII

4,0 = −3A2,0 mod Y. (L.12)

Proof. We have, thanks to the linearity of the operator III(·),

III(W ) =
∑

(k,l)∈Σm

cl
(
III(Ak,l(y)Q

k
c (yc)) + III(Bk,l(y)(Q

k
c )

′(yc))
)
.

In what follows, for commodity of notation we omit the variables y, yc, if there is no related
confusion. First, we compute III(A1,0(y)Qc(yc)). By Claim 20 and the definition of β, we
have

III(A1,0Qc) = −Qc(LA1,0)
′ +Q′

c(3A
′′
1,0 + f ′(Q)A1,0)

+Qc(−3βA
(3)
1,0 − βA′

1,0 − 3βxA
′′
1,0 −A′

1,0βxx + βA′
1,0 − β(f ′(Q)A1,0)

′)

+Qc(3β
2A

(3)
1,0 + 3ββxA

′′
1,0 − β3A

(3)
1,0 + cβA′

1,0)

+Q′
c(−cA1,0 − 6A′′

1,0β − 3A′
1,0βx + 3A′′

1,0β
2)

+Q′′
c (3A

′
1,0 − 3A′

1,0β) +A1,0Q
(3)
c

= −(LA1,0)
′Qc + (3A′′

1,0 + f ′(Q)A1,0)Q
′
c + 3A′′

1,0cQc

−(3a1,0A
′′
1,0 + a1,0f

′(Q)A1,0 + 3A1,0δm2)
′Q2

c − (
9

2
a1,0A

′′
1,0 +A1,0δm2)(Q

2
c)

′

+
∑

3≤k+l≤4

cl(Fk,lQ
k
c +Gk,l(Q

k
c )

′) +O(cQ3
c +Q5

c + c2Qc).

Moreover, by hypothesis A1,0 ∈ Y so we have all the source terms Fk,l, Gk,l ∈ Y , as can be
verified directly.
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Now, we compute III(B1,0(y)Q
′
c(yc)) in a similar way:

III(B1,0Q
′
c) = −Q′

c(LB1,0)
′ +Q′′

c (3B
′′
1,0 + f ′(Q)B1,0)

+Q′
c(−3βB

(3)
1,0 − βB′

1,0 − 3βxB
′′
1,0 −B′

1,0βxx + βB′
1,0 − β(f ′(Q)B1,0)

′)

+Q′
c(3β

2B
(3)
1,0 + 3ββxB

′′
1,0 − β3B

(3)
1,0 + cβB′

1,0)

+Q′′
c (−cB1,0 − 6B′′

1,0β − 3B′
1,0βx + 3B′′

1,0β
2)

+Q(3)
c (3B′

1,0 − 3B′
1,0β) +B1,0Q

(4)
c

= −(LB1,0)
′Q′

c −Q2
c(3B

′′
1,0 + f ′(Q)B1,0)δm2 + (3B′′

1,0 + f ′(Q)B1,0)cQc

−(3a1,0A
′′
1,0 + a1,0f

′(Q)A1,0 + 3A1,0δm2)
′Q2

c − (
9

2
a1,0A

′′
1,0 +A1,0δm2)(Q

2
c)

′

+
∑

3≤k+l≤4

cl(Fk,lQ
k
c +Gk,l(Q

k
c )

′) +O(cQ3
c +Q5

c + c2Qc).

Suppose now that 2 ≤ k + l ≤ 4. Here we will use (IP) for k + l ≤ 2 to discard several
terms of a tedious but direct computation. Indeed, from Claim 20 we have

III(Ak,lQ
k
c ) = −Qk

c (LAk,l)
′ + (Qk

c )
′(3A′′

k,l + f ′(Q)Ak,l)

+Qk
c (−3βA

(3)
k,l − βA′

k,l − 3βxA
′′
k,l −A′

k,lβxx + βA′
k,l − β(f ′(Q)Ak,l)

′)

+Qk
c (3β

2A
(3)
k,l + 3ββxA

′′
k,l − β3A

(3)
k,l + cβA′

k,l)

+(Qk
c )

′(−cAk,l − 6A′′
k,lβ − 3A′

k,lβx + 3A′′
k,lβ

2)

+(Qk
c )

′′(3A′
k,l − 3A′

k,lβ) +Ak,l(Q
k
c )

(3)

= −Qk
c (LAk,l)

′ + (Qk
c )

′(3A′′
k,l + f ′(Q)Ak,l) +Ak,l(Q

k
c )

(3) −Ak,lc(Q
k
c )

′

+
∑

(k′,l′)∈Σ′
m

(k,l)≤(k′,l′)

cl
′
(Fk′,l′Q

k′

c +Gk′,l′(Q
k′

c )′) +O(cQ3
c +Q5

c + c2Qc).

Here Σ′
m ⊆ Σm is the set of indices of third order in Σm. More specificaly,

Σ′
2 := {(1, 2), (2, 1), (3, 0)}, Σ′

3 := {(2, 1), (3, 0), (4, 0)}. (L.13)

The terms describing Fk′,l′ and Gk′,l′ with (k′, l′) ∈ Σ′
m are in Y provided (IP) is satisfied for

every (k, l) ∈ Σm\Σ′
m.

Now note that from (L.5)

(Qk
c )

(3) = k2(cQk
c )

′ − k(2k +m− 1)

m+ 1
(Qk+m−1

c )′ − εk
k(2k + p− 1)

p+ 1
(Qk+p−1

c )′ +O(Qk+p
c ).

We can finally conclude that

III(Ak,lQ
k
c ) = −Qk

c (LAk,l)
′ + (Qk

c )
′(3A′′

k,l + f ′(Q)Ak,l) + (k2 − 1)Ak,lc(Q
k
c )

′

−k(2k +m− 1)

m+ 1
Ak,l(Q

k+m−1
c )′ +

∑

(k′,l′)∈Σ′
m

cl
′
(Fk′,l′Q

k′

c +Gk′,l′(Q
k′

c )′)

+O(cQ3
c +Q5

c + c2Qc),

where, as described above, the terms Fk′,l′ and Gk′,l′ with (k′, l′) ∈ Σ′
m are in Y provided (IP)

is satisfied for every (k, l) ∈ Σm\Σ′
m.
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On the other hand, the terms of the form

III(Bk,l(Q
k
c )

′), (k, l) ∈ Σm, 2 ≤ k + l ≤ 4, (L.14)

can be treated in the same way as above, and we only write the final result (see the computa-
tion of III(B1,0Q

′
c) for example):

III(Bk,l(Q
k
c )

′) = −(Qk
c )

′(LBk,l)
′ +Bk,l(Q

k
c )

(4) −Bk,l(cQ
k
c )

′′

+
∑

1≤k′≤4

cl
′
(Fk′,l′Q

k′

c +Gk′,l′(Q
k′

c )′) +O(cQ3
c +Q5

c + c2Qc)

= −(Qk
c )

′(LBk,l)
′ +

∑

(k′,l′)∈Σ′
m

(k,l)≤(k′,l′)

cl
′
(Fk′,l′Q

k′

c +Gk′,l′(Q
k′

c )′) +O(cQ3
c +Q5

c + c2Qc).

To obtain (L.11) and (L.12) we only evaluate the expressions for III(Ak,lQ
k
c ) and

III(Bk,l(Q
k
c )

′) for each (k, l) ∈ Σm with 2 ≤ k + l. The final result follows from the sum
of each term III(Ak,lQ

k
c ), III(Bk,l(Q

k
c )

′) for (k, l) ∈ Σm, discarding localized terms. This
concludes the proof.

The final term reads

Lemma L.6.

IV =
∑

(k,l)∈Σm

cl
(
Qk

c (yc)F
IV
k,l (y) + (Qk

c )
′(yc)G

IV
k,l (y)

)
+ c3O(Qc), (L.15)

where

F IV
1,0 = GIV

1,0 = 0, F IV
1,1 = GIV

1,1 = 0,

F IV
2,0 =

1

2
(f ′′(Q)(2A1,0 +A2

1,0))
′, GIV

2,0 =
1

2

[
f ′′(Q)(2A1,0 +A2

1,0) + (f ′′(Q)(B1,0 +A1,0B1,0))
′],

and for (k, l) ∈ Σ′
m (see (L.13)), F IV

k,l , GIV
k,l depend on Ak′,l′ , Bk′,l′ for (k′, l′) ∈ Σm with (k′, l′) <

(k, l). Moreover, if Ak′,l′ are even and Bk′,l′ are odd then F IV
k,l are odd and GIV

k,l are even.

Finally, suppose (IP) holds for (k, l) ∈ Σm with k + l ≤ 2. Then the only non localized terms for
(k, l) ∈ Σ′

m are given by

F IV
2,1 = 0, GIV

2,1 =
1

2
f ′′(Q)(2A1,1 +B2

1,0) mod Y, (L.16)

and

F IV
3,0 = 0, GIV

3,0 = f ′′(Q)(A2,0 −
1

3
B2

1,0) mod Y, (L.17)

for the quadratic case, and

GIV
4,0 =

1

2
f (3)(Q)A2,0 mod Y. (L.18)

in the cubic case.

Proof. As above, first define ˜IV := f(R + Rc +W ) − f(R + Rc) − f ′(R)W . Note that, using
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that R := Q(y) and Rc := Qc(yc),

˜IV = (f ′(Q+Qc) − f ′(Q))W +
1

2
f ′′(Q+Qc)W

2 +
1

6
f (3)(Q+Qc)W

3

+
1

24
f (4)(Q+Qc)W

4 +O(W 5)

= [f ′′(Q)Qc +
1

2
f (3)(Q)Q2

c +
1

6
f (4)(Q)Q3

c +O(Q4
c)]W

+
1

2
[f ′′(Q) + f (3)(Q)Qc +

1

2
f (4)(Q)Q2

c +O(Qc)
3]W 2

+
1

6
[f (3)(Q) + f (4)(Q)Qc +O(Q2

c)]W
3 +

1

24
f (4)(Q)W 4 +O(Q5

c)

= f ′′(Q)(QcW +
1

2
W 2) +

1

2
f (3)(Q)(Q2

cW +W 2Qc +
1

3
W 3)

+
1

2
f (4)(Q)(

1

3
Q3

cW +
1

2
Q2

cW
2 +

1

3
QcW

3 +
1

12
W 4) +O(Q5

c).

Now, the final value of IV depends on the different values ofm. We will proceed carefully
in both cases.

Case m = 2. Here we consider only up to third order, namely

˜IV =
1

2
f ′′(Q)(2QcW +W 2) +

1

2
f (3)(Q)(Q2

cW +W 2Qc +
1

3
W 3) +O(Q4

c)

=: ˜IV2 + ˜IV3 +O(Q4
c).

First of all let us consider the third order term ˜IV3. A quickly computation using (2.6) gives
us

Q2
cW = A1,0Q

3
c +

1

3
B1,0(Q

3
c)

′ +O(c3Qc),

and

W 2Qc = A2
1,0Q

3
c +

2

3
A1,0B1,0(Q

3
c)

′ +O(c3Qc), W 3 = A3
1,0Q

3
c +A1,0B1,0(Q

3
c)

′ +O(c3Qc).

If we suppose A1,0 ∈ Y and B1,0 bounded (this is actually the case), we will obtain

˜IV3 = F
˜IV 3

3,0 Q3
c + (G

˜IV 3
3,0 +

1

6
f (3)(Q)B1,0)(Q

3
c)

′ +O(c3Qc),

where F
˜IV 3

3,0 , G
˜IV 3

3,0 ∈ Y . Moreover, for p ≥ 4, actually f (3)(Q) − 6µ(ε) ∈ Y , because of

f (3)(Q) = 6µ(ε) + p(p− 1)(p− 2)εQp−3 + f
(3)
1 (Q).

Now, let us compute in detail the term ˜IV2. These terms above are important because they
will give us source terms of second order. Now from the definition of W in (2.6) it is easy to
check that, up to third order,

QcW = A1,0Q
2
c +

1

2
B1,0(Q

2
c)

′ +A1,1cQ
2
c +

1

2
B1,1c(Q

2
c)

′ +A2,0Q
3
c +

2

3
B2,0(Q

3
c)

′ +O(c3Qc),

and

W 2 = A2
1,0Q

2
c +A1,0B1,0(Q

2
c)

′ + (2A1,0A1,1 +B2
1,0)cQ

2
c + (A1,0B1,1 +B1,0A1,1)c(Q

2
c)

′

+(2A1,0A2,0 −
2

3
B2

1,0)Q
3
c +

2

3
(A1,0B2,0 +B1,0A2,0)(Q

3
c)

′.
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From here,

˜IV2 =
1

2
f ′′(Q)(2A1,0 +A2

1,0)Q
2
c +

1

2
f ′′(Q)(B1,0 +A1,0B1,0)(Q

2
c)

′

+
1

2
f ′′(Q)(F

˜IV 2
2,1 + 2A1,1 +B2

1,0)cQ
2
c +

1

2
f ′′(Q)(G

˜IV 2
2,1 +B1,1 +A1,1B1,0)c(Q

2
c)

′

+
1

2
f ′′(Q)(F

˜IV 2
3,0 + 2A2,0 −

2

3
B2

1,0)Q
3
c +

1

2
f ′′(Q)(G

˜IV 2
3,0 +

4

3
B2,0 +

2

3
A2,0B1,0)(Q

3
c)

′

+O(c3Qc),

where for k + l = 3 it is satisfied F
˜IV 2

k,l , G
˜IV 2

k,l ∈ Y , provided A1,0 ∈ Y and B1,0 is bounded
(namely (k, l) = (1, 0) satisfies (IP)).

Putting all this information together, and after derivation, we obtain (note that p ≥ 3 and
(f ′′(Q))′ ∈ Y)

IV = ( ˜IV2 + ˜IV3 +O(Q4
c))x

=
1

2
(f ′′(Q))′(1 − β)(2A1,0 +A2

1,0)Q
2
c +

1

2
f ′′(Q)(2A1,0 +A2

1,0)
′(1 − β)Q2

c

+
1

2
f ′′(Q)(2A1,0 +A2

1,0)(Q
2
c)

′ +
1

2
(f ′′(Q))′(1 − β)(B1,0 +A1,0B1,0)(Q

2
c)

′

+
1

2
f ′′(Q)(1 − β)(B1,0 +A1,0B1,0)

′(Q2
c)

′

+F IV
2,1 cQ

2
c + [GIV

2,1 +
1

2
f ′′(Q)(2A1,1 +B2

1,0)](cQ
2
c)

′

+
[
F IV

3,0 + f ′′(Q)(A2,0 −
1

3
B2

1,0)
]
(Q3

c)
′ +

[
GIV

3,0 + f ′′(Q)(
2

3
B2,0 +

1

3
A2,0B1,0)

]
(Q3

c)
′′

+O(c3Qc),

=
1

2

[
f ′′(Q)(2A1,0 +A2

1,0)
]′
Q2

c

+
1

2

[
f ′′(Q)(2A1,0 +A2

1,0) + (f ′′(Q)(B1,0 +A1,0B1,0))
′](Q2

c)
′

+F IV
2,1 cQ

2
c + [GIV

2,1 +
1

2
f ′′(Q)(2A1,1 +B2

1,0)](cQ
2
c)

′ + F IV
3,0Q

3
c

+
[
GIV

3,0 + f ′′(Q)(A2,0 −
1

3
B2

1,0)
]
(Q3

c)
′ +O(c3Qc),

where F IV
2,1 , G

IV
2,1, F

IV
3,0 andGIV

3,0 are Y-functions provided property (IP) holds for k+ l ≤ 2. We
finally get the Lemma in the quadratic case, the decomposition (L.15), (L.16) and (L.17), with
the desired properties.

Case m = 3. Here we consider up to fourth order in our computations. First of all, we write

˜IV =
1

2
f ′′(Q)(2QcW +W 2) +

1

2
f (3)(Q)(Q2

cW +W 2Qc +
1

3
W 3)

+
1

2
f (4)(Q)(

1

3
Q3

cW +
1

2
Q2

cW
2 +

1

3
QcW

3 +
1

12
W 4) +O(Q5

c)

=: ˜IV2 + ˜IV3 + ˜IV4 +O(Q5
c).

From now on, and for the sake of simplicity in our computations, we will consider that
property (IP) holds for any (k, l) ∈ Σ3 and that A1,0 ∈ Y . We recall that in the cubic case, our
correction term is given by

W = A1,0Qc +B1,0Q
′
c +A1,1cQc +B1,1cQ

′
c

+A2,0Q
2
c +B2,0(Q

2
c)

′ +A3,0Q
3
c +B3,0(Q

3
c)

′

+A2,1cQ
2
c +B2,1c(Q

2
c)

′ +A4,0Q
4
c +B4,0(Q

4
c)

′.
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Let us first consider the term ˜IV2. Note that

QcW = A1,0Q
2
c +

1

2
B1,0(Q

2
c)

′ +A1,1cQ
2
c +

1

2
B1,1c(Q

2
c)

′ +A2,0Q
3
c +

2

3
B2,0(Q

3
c)

′

+A3,0Q
4
c +

3

4
B3,0(Q

4
c)

′ +O(cQ3
c +Q5

c).

Using (L.4) we get

W 2 = A2
1,0Q

2
c +B2

1,0Q
′2
c +A4

2,0Q
4
c

+A1,0B1,0(Q
2
c)

′ + 2A1,0A1,1cQ
2
c +A1,0B1,1c(Q

2
c)

′

+2A1,0A2,0Q
3
c +

4

3
A1,0B2,0(Q

3
c)

′ + 2A1,0A3,0Q
4
c +

3

2
A1,0B3,0(Q

4
c)

′

+A1,1B1,0c(Q
2
c)

′ +
2

3
A2,0B1,0(Q

3
c)

′ +
1

2
A3,0B1,0(Q

4
c)

′ +O(cQ3
c +Q5

c)

= A2
1,0Q

2
c +A1,0B1,0(Q

2
c)

′ + (2A1,0A1,1 +B2
1,0)cQ

2
c

+(A1,1B1,0 +A1,0B1,1)c(Q
2
c)

′ + 2A1,0A2,0Q
3
c +

2

3
(2A1,0B2,0 +A2,0B1,0)(Q

3
c)

′

+(2A1,0A3,0 +A4
2,0 −

1

2
B2

1,0)Q
4
c +

1

2
(3A1,0B3,0 +A3,0B1,0)(Q

4
c)

′ +O(cQ3
c +Q5

c).

From here, and using the (IP) property, we get (note that f ′′(Q) ∈ Y)

˜IV2 =
1

2
f ′′(Q)(2A1,0 +A2

1,0)Q
2
c +

1

2
f ′′(Q)(B1,0 +A1,0B1,0)(Q

2
c)

′

+
∑

(k,l)∈Σ
′
3

cl(F
˜IV 2

k,l Qk
c +G

˜IV 2
k,l (Qk

c )
′) +O(cQ3

c +Q5
c),

where Σ
′

3 was introduced in (L.13), and F
˜IV 2

k,l , G
˜IV 2

k,l ∈ Y .

Now we deal with ˜IV3. Here we have

Q2
cW = A1,0Q

3
c +

1

3
B1,0(Q

3
c)

′ +A2,0Q
4
c +

1

4
B2,0(Q

4
c)

′ +O(cQ3
c +Q5

c).

and

QcW
2 = A2

1,0Q
3
c +

2

3
A1,0B1,0(Q

3
c)

′ + 2A1,0A2,0Q
4
c

+
1

2
(2A1,0B2,0 +A2,0B1,0)(Q

4
c)

′ +O(cQ3
c +Q5

c).

Finally

W 3 = W 2W

= A3
1,0Q

3
c +

2

3
A2

1,0B1,0(Q
3
c)

′ + 2A2
1,0A2,0Q

4
c +

1

2
(2A2

1,0B2,0 +A1,0A2,0B1,0)(Q
4
c)

′

+
1

3
B1,0A

2
1,0(Q

3
c)

′ +
1

2
A1,0B1,0A2,0(Q

4
c)

′

+A2,0A
2
1,0Q

4
c +

1

2
A2,0A1,0B1,0(Q

4
c)

′ +
1

2
A2

1,0B2,0(Q
4
c)

′ +O(cQ3
c +Q5

c)

= A3
1,0Q

3
c +A2

1,0B1,0(Q
3
c)

′ + 3A2
1,0A2,0Q

4
c +

3

2
(A2

1,0B2,0 +A1,0A2,0B1,0)(Q
4
c)

′

+O(cQ3
c +Q5

c).
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From here, and using the (IP) property, we get

˜IV3 =
1

2
f (3)(Q)[

1

3
B1,0(Q

3
c)

′ +A2,0Q
4
c +

1

4
(2A2,0B1,0 +B2,0)(Q

4
c)

′]

+
∑

(k,l)∈Σ
′
3

cl(F
˜IV 2

k,l Qk
c +G

˜IV 2
k,l (Qk

c )
′) +O(cQ3

c +Q5
c),

where Σ
′

3 was introduced in (L.13), and F
˜IV 3

k,l , G
˜IV 3

k,l ∈ Y .

Finally, fourth order terms are easy to compute:

Q3
cW = A1,0Q

4
c +

1

4
B1,0(Q

4
c)

′ +O(Q5
c + cQ3

c),

Q2
cW

2 = A2
1,0Q

4
c +

1

2
A1,0B1,0(Q

4
c)

′ +O(Q5
c + cQ3

c),

QcW
3 = A3

1,0Q
4
c +

3

4
A2

1,0B1,0(Q
4
c)

′ +O(Q5
c + cQ3

c),

and
W 4 = A4

1,0Q
4
c +A3

1,0B1,0(Q
4
c)

′ +O(Q5
c + cQ3

c).

As we have supposed A1,0 ∈ Y ((1, 0) satisfies (IP)), we will obtain

˜IV4 = F
˜IV 4

4,0 Q4
c + [G

˜IV 4
4,0 +

1

24
f (4)(Q)B1,0](Q

4
c)

′ +O(Q5
c + cQ3

c),

where F
˜IV 4

4,0 , G
˜IV 4

4,0 ∈ Y .

We finally collect the expansions of ˜IV2, ˜IV3 and ˜IV4. We derivate to obtain

IV = ( ˜IV2 + ˜IV3 + ˜IV4 +O(Q5
c))x

1

2
(f ′′(Q)(2A1,0 +A2

1,0))
′Q2

c +
1

2
f (3)(Q)A2,0(Q

4
c)

′

+
1

2

[
f ′′(Q)(2A1,0 +A2

1,0) + (f ′′(Q)(B1,0 +A1,0B1,0))
′](Q2

c)
′

+
∑

(k,l)∈Σ
′
3

cl(F
˜IV

k,l Q
k
c +G

˜IV
k,l (Q

k
c )

′) +O(cQ3
c +Q5

c),

where, as we have emphasized, F ˜IV
k,l , G

˜IV
k,l ∈ Y provided Ak′,l′ , Bk′,l′ satisfy the (IP) property

for (k′, l′) < (k, l), as is the case. Here we have also used that (f ′′(Q))′, (f (4)(Q))′ ∈ Y for all
p ≥ 4. The set Σ

′

3 was defined in (L.13).

Let us finally prove (v). From (i), the rest term E(t, x) is a finite sum of terms of the type
clQk

c (yc)f(y) or cl(Qk
c )

′(yc)f(y), where (k, l) 6∈ Σm. More specifically, this means k + l ≥ 4
for m = 2 and (k, l) = (1, 2), (3, 1) or higher order terms (excluding (k, l) = (4, 0)) in the case
m = 3 (see the definition of Σm in Section 2.1). Here f is a bounded function such that f ′ ∈ Y .
Thus, we easily conclude, using Claim 15,

‖E(t)‖H1(R) ≤ Kc3(
1

m−1
+ 1

4
),

as desired. This finishes the proof.

Putting together Lemmas L.3–L.6, we obtain Proposition L.1, in particular, the explicit
expressions of Fk,l and Gk,l for 1 ≤ k + l ≤ 2.



M.1 - General computations 239

M End of proof of Proposition 2.6

Continuing with the proof of Proposition 2.6, we show now the existence of a nonzero resid-
ual term appearing after the collision.

M.1 General computations

We proceed to compute the constants b2,0 more explicitly. In the course of the proof we will
made use several times of the equations satisfied by the functions Ak,l, Bk,l, ak,l for (k, l) =
(1, 0) and (2, 0), cf. (2.18)-(2.19) for the system (Ω1,0) and (2.23)-(2.24) for the second one.

Claim 22 (Explicit value of b2,0). Suppose f as in (1.10). Then the following expressions for
the b2,0 coefficient hold.

1. Case m = 2.

b2,0 = −1

2
b31,0 +

1

4

∫

R

(f ′′(Q) − 2)(1 +A1,0)
3 − 2b1,0 +

1

2

∫

R

A1,0(1 +A2
1,0)

−1

2
a1,0

∫

R

QA1,0 −
3

4
a3

1,0

∫

R

Q′2 +
1

2
a2

1,0

∫

R

Q[Q− f ′(Q)(1 +A1,0)]

−3

4
a1,0

∫

R

[f ′(Q)(1 +A1,0) + 3A′′
1,0]A1,0 +

1

2

∫

R

B1,0[3A
′
1,0 + f ′(Q)

∫ x

0
(A1,0 + a1,0Q)]

+3a2
1,0

∫

R

Q′′A1,0. (M.1)

2. Case m = 3.

b2,0 =
1

4

∫

R

f ′′(Q)(1 +A1,0)
3 − 3

4
a1,0

∫

R

f ′(Q)(1 +A1,0)A1,0 +
9

4
a1,0

∫

R

A′2
1,0

−1

2
a2

1,0

∫

R

f ′(Q)Q(1 +A1,0) + 3a2
1,0

∫

R

A1,0Q
′′ − 3

4
a3

1,0

∫

R

Q′2. (M.2)

Proof. We treat first the cubic case, being easier. Let us start with (2.31) and (2.32). In this case,
we have a priori chosen A2,0 ∈ Y , so that γ2,0 = 0, and then from (2.20)

b2,0 =
1

2

[
− a1,0

∫

R

G2,0Q− a1,0

∫

R

F̃2,0P +

∫

R

F̃2,0P̄ +

∫

R

G2,0

]
, (M.3)

where F̃ ′
2,0 = F2,0, F̃2,0 ∈ Y . More precisely,

F̃2,0 :=
1

2
f ′′(Q)(1 +A1,0)

2 + 3a2
1,0Q

′′ − a1,0(3A
′′
1,0 + f ′(Q)(1 +A1,0)).

First, it is easy to see from (2.28) by using the (IP) property for (k, l) = (1, 0), that

∫

R

G2,0 =
1

2

∫

R

f ′′(Q)(1 +A1,0)
2. (M.4)

Secondly, from (2.21), (2.11) and (2.15), P̄ − a1,0P = A1,0 + a1,0Q, and thus

b2,0 =
1

2

[
a1,0

∫

R

(F̃2,0 −G2,0)Q+

∫

R

F̃2,0A1,0 +
1

2

∫

R

f ′′(Q)(1 +A1,0)
2
]
.
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It is clear that

F̃2,0 −G2,0 =
3

2
a2

1,0Q
′′ + a1,0[

3

2
A′′

1,0 − f ′(Q)(1 +A1,0) +
3

2
B

(3)
1,0 +

1

2
(f ′(Q)B1,0)

′]

−1

2
(f ′′(Q)(1 +A1,0)B1,0)

′.

From here, after several integration by parts,
∫

R

(F̃2,0 −G2,0)Q = −3

2
a2

1,0

∫

R

Q′2 + a1,0

∫

R

[
3

2
A′′

1,0 − f ′(Q)(1 +A1,0)]Q

−1

2
a1,0

∫

R

B1,0[3Q
′′ + f(Q)]′ +

1

2

∫

R

B1,0(f
′(Q))′(1 +A1,0)

= −3

2
a2

1,0

∫

R

Q′2 + a1,0

∫

R

[
3

2
A′′

1,0 − f ′(Q)(1 +A1,0)]Q

+
1

2

∫

R

B1,0[(f
′(Q))′(1 +A1,0) − a1,0(3Q− 2f(Q))′]. (M.5)

But from (2.18), (L(1 + A1,0))
′ = (1 − f ′(Q) + LA1,0)

′ = −a1,0(3Q − 2f(Q))′. On the other
hand, expanding (L(1 +A1,0))

′, we get

(L(1 +A1,0))
′ = −A(3)

1,0 +A′
1,0 − (f ′(Q))′(1 +A1,0) − f ′(Q)A′

1,0.

From here, the quantity in front of B1,0 in (M.5) is nothing but LA′
1,0. Coming back to (M.5),

and using the equation for B1,0 (2.19), we obtain
∫

R

(F̃2,0 −G2,0)Q = −3

2
a2

1,0

∫

R

Q′2 + a1,0

∫

R

[
3

2
A′′

1,0 − f ′(Q)(1 +A1,0)]Q− 1

2

∫

R

A1,0(LB1,0)
′

= −3

2
a2

1,0

∫

R

Q′2 +
3

2

∫

R

A′2
1,0 + 3a1,0

∫

R

Q′′A1,0

−a1,0

∫

R

f ′(Q)Q(1 +A1,0) −
1

2

∫

R

f ′(Q)(1 +A1,0)A1,0. (M.6)

Finally, an easy computation shows that
∫

R

F̃2,0A1,0 =
1

2

∫

R

f ′′(Q)(1 +A1,0)
2A1,0 + 3a2

1,0

∫

R

A1,0Q
′′

−a1,0

∫

R

(3A′′
1,0 + f ′(Q)(1 +A1,0))A1,0 (M.7)

Collecting (M.6) and (M.7), we get

b2,0 =
1

4

∫

R

f ′′(Q)(1 +A1,0)
3 − 3

4
a1,0

∫

R

f ′(Q)(1 +A1,0)A1,0 +
9

4
a1,0

∫

R

A′2
1,0

−1

2
a2

1,0

∫

R

f ′(Q)Q(1 +A1,0) + 3a2
1,0

∫

R

A1,0Q
′′ − 3

4
a3

1,0

∫

R

Q′2.

as desired.

Let us treat now the quadratic case. The procedure is similar, but more involved. Now
we assume that γ2,0 = −1

2b
2
1,0 as in Proposition 2.6 (i), and consider (2.31)-(2.32). We get

b2,0 =
1

2

[
− 1

2
b21,0

∫

R

(P̄ − a1,0P ) +

∫

R

F2,0

∫ x

0
(a1,0P − P̄ ) +

∫

R

G2,0 − a1,0

∫

R

G2,0Q
]
.
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Now several remarks. Note that from (2.21) and the definition of P in (2.11) we have P̄ −
a1,0P = A1,0 + a1,0Q, and from (2.22),

∫

R

(P̄ − a1,0P ) = 2b1,0.

Second, note that from b1,0 = ± lim±∞B1,0 and lim±∞ f ′′(Q) = 2,
∫

R

G2,0 =
1

2

∫

R

(f ′′(Q) − 2) −
∫

R

A1,0 − 4b1,0 +
1

2

∫

R

f ′′(Q)(2A1,0 +A2
1,0).

On the other hand, from (2.25), F2,0 = F̃ ′
2,0 − f ′(Q)B1,0, where F̃2,0 ∈ Y and is given by

F̃2,0 := −(3A1,0 + 3B′
1,0) +

1

2
f ′′(Q)(2A1,0 +A2

1,0)

−a1,0(3A
′′
1,0 −Q+ f ′(Q)(1 +A1,0)) + 3a2

1,0Q
′′ +

1

2
(f ′′(Q) − 2).

Thus,
∫

R

F2,0

∫ x

0
(a1,0P − P̄ ) =

∫

R

F̃2,0(P̄ − a1,0P ) +

∫

R

f ′(Q)B1,0

∫ x

0
(P̄ − a1,0P )

=

∫

R

F̃2,0(A1,0 + a1,0Q) +

∫

R

f ′(Q)B1,0

∫ x

0
(A1,0 + a1,0Q).

Repeating the same computation for the cubic case, we obtain
∫

R

Q(F̃2,0 −G2,0) = −2

∫

R

QA1,0 −
3

2
a2

1,0

∫

R

Q′2 + a1,0

∫

R

Q(
3

2
A′′

1,0 +Q− f ′(Q)(1 +A1,0))

−1

2

∫

R

[f ′(Q)(1 +A1,0) + 3A′′
1,0 − 3a1,0Q

′′]A1,0,

and
∫

R

F̃2,0A1,0 = −
∫

R

A1,0(3A1,0 + 3B′
1,0) +

1

2

∫

R

f ′′(Q)(2A1,0 +A2
1,0)A1,0 + 3a2

1,0

∫

R

Q′′A1,0

−a1,0

∫

R

(3A′′
1,0 −Q+ f ′(Q)(1 +A1,0))A1,0 +

1

2

∫

R

(f ′′(Q) − 2)A1,0.

Collecting the above identities and after several simplifications we get

b2,0 = −1

2
b31,0 +

1

4

∫

R

(f ′′(Q) − 2)(1 +A1,0)
3 − 2b1,0 +

1

2

∫

R

A1,0(1 +A2
1,0)

−1

2
a1,0

∫

R

QA1,0 −
3

4
a3

1,0

∫

R

Q′2 +
1

2
a2

1,0

∫

R

Q(Q− f ′(Q)(1 +A1,0))

−3

4
a1,0

∫

R

[f ′(Q)(1 +A1,0) + 3A′′
1,0]A1,0 +

1

2

∫

R

B1,0[3A
′
1,0 + f ′(Q)

∫ x

0
(A1,0 + a1,0Q)]

+3a2
1,0

∫

R

Q′′A1,0.

The proof is now complete.

The objective is now to give the first order terms for the coefficient b2,0. For this, we
consider separate cases. It turns out that computations in the cubic case are easy to carry out.
We first deal with this case.
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M.2 Cubic case

The objective of this paragraph is to prove the following

Lemma M.1 (Asymptotic expansions, case m = 3). We have

b2,0 = b12,0ε+ o(ε).

where

b12,0 =: c3,p = −
[(p− 1)(p− 3)(p2 − 3p+ 8)

8(p− 2)(p+ 1)

] ∫

R

(Q0)p. (M.8)

In particular, for any p ≥ 4, b2,0(ε) 6= 0 provided 0 < |ε| ≤ ε0 for ε0 small.

First of all we start with an auxiliary

Claim 23 (Asymptotic expansions, basic functions). Suppose f as in (1.22), p ≥ 4. The follow-
ing asymptotic expansions hold.

1. The soliton solution Q can be expanded as

Q = Q0 + εQ1 + o(ε), o(ε) ∈ Y, (M.9)

where Q0 and Q1 satisfy the equations

−(Q0)′′ +Q0 − (Q0)3 = 0, L0Q1 := −(Q1)′′ +Q1 − 3(Q0)2Q1 = (Q0)p. (M.10)

Finally, 



f(Q) = (Q0)3 + ε(3(Q0)2Q1 + (Q0)p) + o(ε),

f ′(Q) = 3(Q0)2 + ε(6Q0Q1 + p(Q0)p−1) + o(ε),

f ′′(Q) = 6Q0 + ε(6Q1 + p(p− 1)(Q0)p−2) + o(ε),

(M.11)

where every term o(ε) ∈ Y uniformly in ε < ε0.

2. The operator L satisfies

L = L0 − ε[6Q0Q1 + p(Q0)p−1] + o(ε), L0 = −∂2
x + 1 − 3(Q0)2. (M.12)

3. From (2.11), (2.12) and (2.15), the test functions P, P̄ and P̂ satisfy the following relations
{

ΛQ = ΛQ0 + εΛQ1 + o(ε) ∈ Y where ΛQ0 := 1
2(x(Q0)′ +Q0), L0ΛQ0 = −Q0;

and L0ΛQ1 := (6Q0ΛQ0 − 1)Q1 + p(Q0)p−1ΛQ0.

(M.13)
Moreover, the following identities hold

∫

R

ΛQ0 = 0,

∫

R

ΛQ1 =

∫

R

[−1 + (Q0)2 + 6Q0ΛQ0 − 6(Q0)3ΛQ0]Q1

+p

∫

R

(Q0)p−1ΛQ0(1 − (Q0)2). (M.14)

4. Integrals. For any p ≥ 1,
∫

R

(Q0)p+2 =
2p

1 + p

∫

R

(Q0)p,

∫

R

(Q0)2 = 4. (M.15)
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5. Let D(ε) =
∫

R
ΛQQ. Then

D(ε) = 1 +O(ε). (M.16)

6. Inverse functions. The following identities hold

L0(−9

4
x(Q0)′ − 15

4
Q0 +

3

2
(Q0)3) =

9

2
Q0(1 − (Q0)2)2, (M.17)

L0(xQ0(Q0)′) = −4(Q0)2 + 3(Q0)4 − 3xQ0(Q0)′(1 − (Q0)2), (M.18)

L0((Q0)4) = −15(Q0)4 + 7(Q0)6. (M.19)

Proof. First of all, (M.9)-(M.12) follow by Taylor expansion in ε. Concerning (M.13), it fol-
lows from (M.9)-(M.12). Let us see (M.14). From the definition of L0ΛQ1 and the identity
L0(Q0)2 = −3(Q0)2, we have

∫

R

L0ΛQ1 =

∫

R

ΛQ1 +

∫

R

(Q0)2L0ΛQ1,

thus
∫

R

ΛQ1 =

∫

R

[1 − (Q0)2]L0ΛQ1 =

∫

R

[1 − (Q0)2][(6Q0ΛQ0 − 1)Q1 + p(Q0)p−1ΛQ0],

where we obtain (M.14).

To obtain (M.15) we use integration by parts and the explicit function Q0(x) :=
√

2
cosh x .

We prove (M.16). It follows from the fact that
∫

R

Q0ΛQ0 =
1

2

∫

R

(
1

2
x((Q0)2)′ + (Q0)2) =

1

4

∫

R

(Q0)2 = 1.

Finally, (M.17)-(M.19) are obtained by simple differentiation. We left the proof to the reader.

Claim 24 (Asymptotic expansions, case m = 3). The following expansion hold.




a1,0 = a0
1,0 + εa1

1,0 + o(ε), a0
1,0 = 0,

A1,0 = A0
1,0 + εA1

1,0 + o(ε), o(ε) ∈ Y, A0
1,0 = −(Q0)2,

B1,0 = B0
1,0 + εB1

1,0 + o(ε), B0
1,0 = −2ϕ0 − 3

4

√
2π(Q0)′.

(M.20)

Here a1
1,0 :=

∫
R

ΛQ1 and A1
1,0, B

1
1,0 satisfy the following linear system

{
(L0A1

1,0)
′ + a1

1,0(3Q
0 − 2(Q0)

3)′ = ((6Q0Q1 + p(Q0)p−1)(1 +A0
1,0))

′,

(L0B1
1,0)

′ + 3a1
1,0(Q

0)′′ − 3(A1
1,0)

′′ − 3(Q0)2A1
1,0 = (6Q0Q1 + p(Q0)p−1)(1 +A0

1,0).

(M.21)

Proof. We start with the zeroth order system. From (2.18)-(2.19) and using Claim 23 we get
{

(L0A0
1,0)

′ + a0
1,0(3Q

0 − 2(Q0)3)′ = (3(Q0)2)′.

(L0B0
1,0)

′ + 3a0
1,0(Q

0)′′ − 3(A0
1,0)

′′ − 3(Q0)2A0
1,0 = 3(Q0)2.

It is easy to verify that a0
1,0 = 0, A0

1,0 = −(Q0)2 ∈ Y and B0
1,0 = −2ϕ0 − 3

4

√
2π(Q0)′ satisfy this

system with the required properties. In particular,
∫

R

B0
1,0(Q

0)′ = 0.
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Concerning the system (M.21), it follows directly from (2.23)-(2.24) and using Claim 23. We
will not solve this system explicitly, but we only compute the constant a1

1,0.

Indeed, from (2.20) and Claim 23, we have a1,0 = a0
1,0 + a1

1,0ε+ o(ε), where

a0
1,0 :=

∫
R

ΛQ0

∫
R

ΛQ0Q0
= 0, and a1

1,0 :=

∫
R

ΛQ1

∫
R

ΛQ0Q0
=

∫

R

ΛQ1.

This finishes the proof.

We finally prove Lemma M.1.

Proof of Lemma M.1. From (M.2) and (M.20) we have b2,0 = b02,0 + εb12,0 + o(ε), where

b02,0 =
1

4

∫

R

6Q0(1 +A0
1,0)

3 =
1

4

∫

R

6Q0(1 − (Q0)2)3 = 0,

and

b12,0 =
1

4

∫

R

(6Q1 + p(p− 1)(Q0)p−2)(1 − (Q0)2)3 +
9

2

∫

R

Q0(1 − (Q0)2)2A1
1,0

+
9

4
a1

1,0

[ ∫

R

(Q0)2(1 − (Q0)2)(Q0)2 +

∫

R

4(Q0)2((Q0)2 − 1

2
(Q0)4)

]
.

From (M.17), the selfadjointness of the operator L0 and by using (M.21), we get

9

2

∫

R

Q0(1 − (Q0)2))2A1
1,0 =

3

4

∫

R

(−3x(Q0)′ − 5Q0 + 2(Q0)3)L0A1
1,0

=
3

4
a1

1,0

∫

R

(3x(Q0)′ + 5Q0 − 2(Q0)3)(3Q0 − 2(Q0)3)

−3

4

∫

R

(3x(Q0)′ + 5Q0 − 2(Q0)3)(6Q0Q1 + p(Q0)p−1)(1 − (Q0)2).

Therefore,

b12,0 =
3

2

∫

R

Q1(1 − (Q0)2)[1 − 2(Q0)2 + (Q0)4 − 3Q0(3x(Q0)′ + 5Q0 − 2(Q0)3)]

+
p

4

∫

R

(Q0)p−2(1 − (Q0)2)[(p− 1)(1 − 2(Q0)2 + (Q0)4) − 3Q0(3x(Q0)′ + 5Q0 − 2(Q0)3)]

+
3

4

∫

R

ΛQ1
[ ∫

R

(3x(Q0)′ + 5Q0 − 2(Q0)3)(3Q0 − 2(Q0)3) + 3

∫

R

(Q0)4(5 − 3(Q0)2)
]
.

Note that, from (M.15)
∫

R

(3x(Q0)′ + 5Q0 − 2(Q0)3)(3Q0 − 2(Q0)3) + 3

∫

R

(Q0)4(5 − 3(Q0)2) = 2,

thus from (M.14) we get

b12,0 =
3

2

∫

R

Q1(1 − (Q0)2)[−14(Q0)2 + 7(Q0)4 − 6xQ0(Q0)′]

+
p

4

∫

R

(Q0)p−2(1 − (Q0)2)[(p− 1)(1 − 2(Q0)2 + (Q0)4) − 3Q0(3x(Q0)′ + 5Q0 − 2(Q0)3)]

+
3

2
p

∫

R

(Q0)p−1ΛQ0(1 − (Q0)2)
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Finally, from (M.18), (M.19) and the identity L0(Q0)2 = −3(Q0)2, we have

L0[2(Q0)2 − (Q0)4 + 2xQ0(Q0)′] = (1 − (Q0)2)[−14(Q0)2 + 7(Q0)4 − 6xQ0(Q0)′].

Using the selfadjointness of L0 and the equation for Q1 in (M.10), and after integrating by
parts, we conclude that

b12,0 =
3

2

∫

R

(Q0)p(2(Q0)2 − (Q0)4 + 2xQ0(Q0)′) +
3

2
p

∫

R

(Q0)p−1ΛQ0(1 − (Q0)2)

+
p

4

∫

R

(Q0)p−2(1 − (Q0)2)[(p− 1)(1 − 2(Q0)2 + (Q0)4) − 3Q0(3x(Q0)′ + 5Q0 − 2(Q0)3)]

=
p

4
(p− 1)

∫

R

(Q0)p−2 − 3

4
(p2 + 3p− 2)

∫

R

(Q0)p +
3

4(p+ 2)
(p3 + 7p2 + 12p+ 4)

∫

R

(Q0)p+2

−1

4
(p2 + 5p+ 6)

∫

R

(Q0)p+4.

Finally, from (M.15), and after some simplifications,

b12,0 = −
[(p− 1)(p− 3)(p2 − 3p+ 8)

8(p− 2)(p+ 1)

] ∫

R

(Q0)p. (M.22)

The proof is now complete.

Remark M.1. Note that even though the higher regularity needed in our results (f ∈ C5 for
m = 3), we are able to take, at least formally, the limit p ↓ 3 in (M.22), recovering the results
from the integrable case (that is, b12,0 = 0). This gain of regularity comes from (2.27) and (M.2):
for these identities, we only need f ∈ C3(R).

M.3 Gardner and quadratic nonlinearities

These two nonlinearities are very similar to handle. Although computations are harder for
the Gardner nonlinearity, a simple trick will allow to link both results. As a consequence, we
are reduced to consider only the quadratic case.

Finally, recall the soliton Qµ̃,1 introduced in (1.6), well defined for µ̃ < 2
9 . Given µ̃, ν ∈ R,

µ̃ < 2
9 and ν small enough, let dµ̃,ν be the defect (possibly zero) associated the the nonlinearity

fµ̃,ν(s) := s2 − µ̃s3 + νsp, namely

dµ̃,ν := b2,0(fµ̃,ν) +
1

6
b31,0(fµ̃,ν). (M.23)

We following reduction Lemma is the key ingredient of the proof.

Lemma M.2.

Let d(ε) be the defect parameter introduced in (2.29) for the nonlinearity f(s) described in (1.22),
m = 2, and let dµ̃,ν be the defect introduced in (M.23), for µ̃, ν small. Then the following properties
are satisfied:

1. For all µ̃ < 2
9 , ν ∈ R small, dµ̃,ν is a smooth function of µ̃, ν and for all µ̃ < 2

9 ,

dµ̃,0 = 0. (M.24)
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2. Given ε small, let µ̃ = µ(ε) and ν = ε. Then the following expansion holds

dµ(ε),ε = −ε
[(p− 3)(2p− 1)(48 − 46p+ 6p2 + 4p3)

72(p2 − 1)(p− 2)

] ∫

R

[ 3

2 cosh2(x/2)

]p
+ o(ε), (M.25)

for all |ε| < ε0 and p ≥ 3.

3. The following expansion holds

d(ε) = dµ(ε),ε + o(ε), as ε→ 0. (M.26)

Proof of (M.26). This is an easy consequence of the definition of f in (1.21), and the fact
that f(Q) = fµ(ε),ε(Q) + o(ε), with o(ε) ∈ Y . In particular, the soliton Q and each term
a1,0, b1,0, A1,0, B1,0 and b2,0 depends smoothly in ε and can be expanded in a similar way.

Proof of (M.24). The smoothness is a direct consequence of the formula for b2,0 in Claim 22
and b1,0 in (2.22). We have to prove that for all µ̃ < 2

9 ,

b2,0(fµ̃,0) +
1

6
b31,0(fµ̃,0) = 0,

In order to prove this identity, we claim the following

Claim 25 (Basic functions). Let Q0 := Qµ̃,1 be the soliton for the Gardner equation. Then we
have

1. The soliton solution Q0 satisfies

−(Q0)′′ +Q0 − (Q0)2 + µ̃(Q0)3 = 0, L0(Q0)′ = 0,

where L0 := −∂xx + 1 − (2Q0 − 3µ̃(Q0)2).

2. From the definition of Q0, we have

ΛQ0 :=
1

2
(x(Q0)′ + 2Q0) +

3µ̃

4ρ2
(3Q0 − (Q0)2), L0ΛQ0 = −Q0. (M.27)

Moreover, ∫

R

ΛQ0 =
3

ρ2
,

∫

R

ΛQ0Q0 =
9

2ρ2
.

3. Resonance functions. Define ϕ0 := − (Q0)′

Q0 . Then

(ϕ0)′ =
1

3
Q0 − µ̃

2
(Q0)2, (ϕ0)2 = 1 − 2

3
Q0 +

µ̃

2
(Q0)2. (M.28)

4. Integrals. For any p ≥ 1,

µ̃

∫

R

(Q0)p+2 =
2(2p+ 1)

3(1 + p)

∫

R

(Q0)p+1 − 2p

p+ 1

∫

R

(Q0)p. (M.29)

Proof. A direct computation, see e.g. Claim 23 for a similar proof.

Now we proceed to give the explicit value the constants and functions related to system
(Ω1,0), see (2.18)-(2.19).
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Claim 26 (Resolution of (Ω1,0) for the Gardner equation). Denote by (a0
1,0, A

0
1,0, B

0
1,0) the solu-

tion of the linear system (Ω1,0), for the Gardner nonlinearity. Then we have




a0
1,0 = 2

3 ,

A0
1,0 = −4

3Q
0 + µ̃(Q0)2, B0

1,0 = −2ϕ0 + κ0
1,0(Q

0)′,

b01,0 = lim+∞B0
1,0 = −2,

with

κ0
1,0 =

3µ̃(
∫

R
(Q0)2 − 3

∫
R
Q0)

(3µ̃− 1)
∫

R
(Q0)2 +

∫
R
Q0

= −10

3
+ oµ̃(1). (M.30)

Remark M.2. It is remarkable the similarity among the functions solution of the Gardner sys-
tem (Ω1,0) and the corresponding ones for the quadratic nonlinearity (let µ̃→ 0).

Proof. First of all, the explicit value of (a0
1,0, A

0
1,0, B

0
1,0) comes from a straightforward verifica-

tion. More precisely, this triplet is a solution of the zeroth order system
{

(L0A0
1,0)

′ + a0
1,0(3Q

0 − 2(Q0)2 + 2µ̃(Q0)3)′ = (2Q0 − 3µ̃(Q0)2)′,

(L0B0
1,0)

′ + 3a0
1,0(Q

0)′′ − 3(A0
1,0)

′′ − (2Q0 − 3µ̃(Q0)2)A0
1,0 = 2Q0 − 3µ̃(Q0)2,

which comes from (2.18)-(2.19). In particular, we choose κ1,0 such that
∫

R
B0

1,0(Q
0)′ = 0. The

value of b01,0 comes from the fact that b01,0 = −2 lim+∞ ϕ0 = −2. On the other hand, from
(2.22), one has

b01,0 = −1

3

∫

R

Q0 +
1

2
µ̃

∫

R

(Q0)2 = −2.

Now we are able to prove (M.24). (Note that this is also a consequence of the integrability
of the Gardner equation.) First, we claim that

3(A0
1,0)

′ + (2Q0 − 3µ̃(Q0)2)

∫ x

0
(A0

1,0 + a0
1,0Q

0) = 3(A0
1,0)

′ − 2(2Q0 − 3µ̃(Q0)2)ϕ0 = 0.

This is an easy consequence of (M.28) and the values of ofA0
1,0 and a0

1,0. Consider now the ex-
pression for b2,0,m = 2 in Claim 22. Note that the term containingB0

1,0 disappears. Replacing
the values of a0

1,0 and A0
1,0, and using the recursive formula (M.29), we have

dµ̃,0 = −1

3
(b01,0)

3 − 3

2
µ̃

∫

R

Q0(1 +A0
1,0)

3 − 2b01,0 +
1

2

∫

R

A0
1,0(1 + (A0

1,0)
2) − 1

3

∫

R

Q0A0
1,0

−2

9

∫

R

(Q0)′2 +
2

9

∫

R

(Q0)2[1 − (2 − 3µ̃Q0)(1 +A0
1,0)] +

4

3

∫

R

(Q0)′′A0
1,0

−1

2

∫

R

[(2Q0 − 3µ̃(Q0)2)(1 +A0
1,0) + 3(A0

1,0)
′′]A0

1,0

= −1

3
(b01,0)

3 − 3

2
µ̃

∫

R

Q0 + (
11

2
µ̃− 28

9
)

∫

R

(Q0)2 + (−9

2
µ̃2 +

2

3
µ̃+

20

9
)

∫

R

(Q0)3

+µ̃(
15

2
µ̃− 13

3
)

∫

R

(Q0)4 − 9

2
µ̃3

∫

R

(Q0)5 +
7

2
µ̃3

∫

R

(Q0)6 − 3

2
µ̃4

∫

R

(Q0)7

= −1

3
(b01,0)

3 − 4

9

∫

R

Q0 +
2

3
µ̃

∫

R

(Q0)2

=
1

3
b01,0(4 − (b01,0)

2) = 0.

This proves (M.24).
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Proof of (M.25). The proof of (M.25) is a consequence of (M.24) and the simple relationship

dµ̃,ν = dµ̃,0 + ν∂νdµ̃,ν + oν(ν) = ν(∂νd0,ν + oµ̃(1)) + oν(ν),

valid for any µ̃, ν ∈ R small enough. This result says that, in order to prove (M.25), we
only need to compute the defect for first order expansion in ν of the quadratic nonlinearity
f(s) = s2 + νsp, p ≥ 3. Then we use the fact that µ̃ = µ(ε) ∼ ε1/(p−2) and ν = ε to conclude.
Consequently, in what follows we are reduced to prove that ∂νd0,ν 6= 0 for all ν small enough.

Claim 27 (Asymptotic expansions, casem = 2, basic functions). Suppose now f(s) = f0,ν(s) =
s2 + νsp. Let Q0(x) = 3

2 cosh2(x/2)
be the soliton solution for the quadratic case. Then the

following asymptotic expansions hold.

1. The soliton solution Q for the nonlinearity f can be expanded as

Q = Q0 + νQ1 + o(ν), o(ν) ∈ Y, (M.31)

where Q1 satisfies the equation L0Q1 := −(Q1)′′ +Q1 − 2Q0Q1 = (Q0)p. We also have





f(Q) = (Q0)2 + ν((Q0)p + 2Q0Q1) + o(ν),

f ′(Q) = 2Q0 + ν(2Q1 + p(Q0)p−1) + o(ν),

f ′′(Q) = 2 + νp(p− 1)(Q0)p−2 + o(ν),

(M.32)

where every term o(ν) ∈ Y uniformly in ν < ν0 small.

2. The operator L satisfies

L = L0 − ν[2Q1 + p(Q0)p−1] + o(ν).

3. From the definition of Q, we have

ΛQ = ΛQ0 + νΛQ1 + o(ν), L0ΛQ1 = −Q1 + (2Q1 + p(Q0)p−1)ΛQ0. (M.33)

4. Let D(ν) :=
∫

R
ΛQQ. Then

D(ν) =
9

2
+ ν(

∫

R

ΛQ1Q0 +

∫

R

ΛQ0Q1) + o(ν). (M.34)

5. Inverse functions. We have

L0
[
1 − 4

3
ΛQ0

]
= 1 − 2

3
Q0. (M.35)

L0
[
(1 −Q0)(1 +

1

3
x2Q0) −Q0

]
= 1 − 8

3
ΛQ0 +

8

3
(ΛQ0)2. (M.36)

L0
[
− 5 +

68

9
Q0 − 6ΛQ0

]
= −5 + 16Q0 − 68

9
(Q0)2. (M.37)

L0
[
2 +

20

3
ΛQ0 − 170

27
Q0

]
= 2 − 32

3
Q0 +

170

27
(Q0)2. (M.38)
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Proof. First of all, (M.31)-(M.33) are a direct consequence of a Taylor expansion of the consid-
ered functions. The expression for (ΛQ0)2 comes from a simple computation.

The expansion of D(ν) in (M.34) follows from a Taylor expansion and the fact that
∫

R

ΛQ0Q0 =
3

4

∫

R

(Q0)2 =
9

2
.

Finally we prove (M.36), (M.37) and (M.38). These follow from the identities L01 = 1 −
2Q0, L0Q0 = −(Q0)2, L0ΛQ0 = −Q0, L0(x2Q0) = −2Q0 − 4x(Q0)′ − x2(Q0)2, and

L0(x2(Q0)2) = −2(Q0)2 − 8xQ0(Q0)′ − 3x2(Q0)2 +
4

3
x2(Q0)3.

This finishes the proof.

Now we proceed to give an asymptotic expansion of the constants and functions related
to system (Ω1,0), see (2.18)-(2.19).
Claim 28 (Asymptotic expansions II, case m = 2). There exists ν0 small enough such that for
all |ν| ≤ ν0, the following holds. Let f(s) = s2 + νsp, then the corresponding solution to the
system (Ω1,0) for this case can be expanded as follows:

a1,0 =
2

3
+νa1

1,0 +o(ν), A1,0 = −4

3
Q0 +νA1

1,0 +o(ν) ∈ Y, b1,0 = −2+ b11,0ν+o(ν), (M.39)

where ν−1o(ν) → 0 as ν → 0 and A1
1,0 ∈ Y is a solution of the following linear equation

(L0A1
1,0)

′ + a1
1,0(3Q

0 − 2(Q0)2)′ = [p(Q0)p−1 − 4

3
(p− 1)(Q0)p]′, (M.40)

Finally, the following two expressions are satisfied

a1
1,0 = −1

9

[(p− 3)(2p− 1)

p+ 1

] ∫

R

(Q0)p, (M.41)

and
b11,0 =

1

2

∫

R

A1
1,0 +

1

2
a1

1,0

∫

R

Q0 +
1

3

∫

R

Q1. (M.42)

Proof. The proof of (M.39) and (M.40) is direct from Claim 27 and (2.18)-(2.19). To prove
(M.41), first note that from Claim 27

a1
1,0 =

2

9

[ ∫

R

(1 − 2

3
Q0)ΛQ1 − 2

3

∫

R

Q1ΛQ0
]

=
2

9

∫

R

[1 − 4

3
ΛQ0][−Q1 + (2Q1 + p(Q0)p−1)ΛQ0] − 4

27

∫

R

Q1ΛQ0

= −2

9

∫

R

Q1[1 − 8

3
ΛQ0 +

8

3
(ΛQ0)2] +

2p

9

∫

R

(Q0)p−1ΛQ0[1 − 4

3
ΛQ0].

Thus from (M.36) and Claim 27 (i), we get after integration by parts

a1
1,0 =

2

9

∫

R

(Q0)p−1
[
pΛQ0(1 − 4

3
ΛQ0) −Q0(1 −Q0)(1 +

1

3
x2Q0) + (Q0)2

]

=
2

9

[ ∫

R

(Q0)p−1
[
(p− 1)Q0 + (2 − 4

3
p)(Q0)2 +

p

2
x(Q0)′ − 4

3
pxQ0(Q0)′

]

−1

3

∫

R

x2(Q0)p+1
[
(p+ 1) − (1 +

2

3
p)Q0

]]

=
2

9

[
(p− 3

2
)

∫

R

(Q0)p + (
10

3
− 4

3
p− 4

3

1

p+ 1
)

∫

R

(Q0)p+1

−1

3

∫

R

x2(Q0)p+1
[
(p+ 1) − (1 +

2

3
p)Q0

]]
.
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Now, recall that from the equation satisfied by Q0, [(Q0)p+1]′′ = (p+ 1)(Q0)p+1[(p+ 1)− (1 +
2
3p)Q

0], so that
∫

R

x2(Q0)p+1[(p+ 1) − (1 +
2

3
p)Q0] =

1

p+ 1

∫

R

x2[(Q0)p+1]′′ =
2

p+ 1

∫

R

(Q0)p+1.

In conclusion, from (M.29),

a1
1,0 =

2

9

[
(p− 3

2
)

∫

R

(Q0)p + (
10

3
− 4

3
p− 2

p+ 1
)

∫

R

(Q0)p+1
]

= −1

9

[(p− 3)(2p− 1)

p+ 1

] ∫

R

(Q0)p,

as desired. Finally, from (2.22) we obtain (M.42).

Now we deal with the second order system (Ω2,0) written in (2.23), (2.24), (2.25) and (2.26).

Claim 29 (Asymptotic expansions III, case m = 2). The following identity holds

∂νd0,ν |ν=0 = −
[(p− 3)(2p− 1)(24 − 23p+ 3p2 + 2p3)

36(p2 − 1)(p− 2)

] ∫

R

(Q0)p,

for all p ≥ 3.

Proof. The proof of the above result is equivalent to prove that for the nonlinearity f0,ν(s) =
s2 + µsp, p ≥ 3 and ν small, we have

d0,ν = b2,0(f0,ν) +
1

6
b31,0(f0,ν) = −ν

[(p− 3)(2p− 1)(24 − 23p+ 3p2 + 2p3)

36(p2 − 1)(p− 2)

] ∫

R

(Q0)p + o(ν).

First of all, note that we can expand b2,0 = b02,0 + νb12,0 + o(ν), with b02,0 = 4
3 (cf. [53], Lemma

3.1). By considering (M.1) in Claim 22, Claim 27 and expanding at first order in ν, we get

b12,0 = −8b11,0 +
1

4
p(p− 1)

∫

R

(Q0)p−2(1 +A0
1,0)

3 +
1

2

∫

R

A1
1,0(1 + 3(A0

1,0)
2) − 1

2
a1

1,0

∫

R

Q0A0
1,0

−1

3

∫

R

Q1A0
1,0 −

1

3

∫

R

Q0A1
1,0 − a1

1,0

∫

R

(Q0)′2 − 4

9

∫

R

(Q0)′(Q1)′

+
2

3
a1

1,0

∫

R

(Q0)2(1 − 2(1 +A0
1,0)) +

2

9

∫

R

Q0Q1(1 − 2(1 +A0
1,0))

+
2

9

∫

R

Q0[Q1 − 2Q0A1
1,0 − (2Q1 + p(Q0)p−1)(1 +A0

1,0)]

−3

4
a1

1,0

∫

R

[2Q0(1 +A0
1,0) + 3(A0

1,0)
′′]A0

1,0 −
1

2

∫

R

[2Q0(1 +A0
1,0) + 3(A0

1,0)
′′]A1

1,0

−1

2

∫

R

[(2Q1 + p(Q0)p−1)(1 +A0
1,0) + 2Q0A1

1,0 + 3(A1
1,0)

′′]A0
1,0

+
1

2

∫

R

B0
1,0(2Q

1 + p(Q0)p−1)

∫ x

0
(A0

1,0 +
2

3
Q0) +

1

2

∫

R

B0
1,0[3(A1

1,0)
′

+2Q0

∫ x

0
(A1

1,0 + a1
1,0Q

0 +
2

3
Q1)] + 4a1

1,0

∫

R

(Q0)′′A0
1,0 +

4

3

∫

R

(Q1)′′A0
1,0 +

4

3

∫

R

(Q0)′′A1
1,0.

Now we arrange the above expression according to a1
1,0, A1

1,0, Q1, b11,0, B1
1,0 and the rest terms.

We obtain,

b12,0 = −8b11,0 +
1

4
p(p− 1)

∫

R

(Q0)p−2(1 +A0
1,0)

3 − p

3

∫

R

(Q0)p−1(1 +A0
1,0)(

3

2
A0

1,0 +
2

3
Q0)

+p

∫

R

B0
1,0(Q

0)p−2(Q0)′ +
∫

R

B0
1,0Q

0

∫ x

0
A1

1,0 +
1

2

∫

R

A1
1,0FA + δa1

1,0 +

∫

R

Q1FQ

+
2

3

∫

R

B0
1,0Q

0

∫ x

0
Q1,
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where

FA := 1 + 3(A0
1,0)

2 − 2

3
Q0 − 8

9
(Q0)2 − (2Q0 + 2Q0A0

1,0 + 3(A0
1,0)

′′) − (2Q0A0
1,0 + 3(A0

1,0)
′′)

−3(B0
1,0)

′ +
8

3
(Q0)′′;

δ := −1

2

∫

R

Q0A0
1,0 +

∫

R

Q0(Q0)′′ − 2

3

∫

R

(Q0)2(1 + 2A0
1,0)

−3

4

∫

R

(2Q0 + 2Q0A0
1,0 + 3(A0

1,0)
′′)A0

1,0 + 4

∫

R

(Q0)′′A0
1,0;

and

FQ := −1

3
A0

1,0 +
4

9
(Q0)′′ − 4

9
Q0(1 + 2A0

1,0) − (1 +A0
1,0)A

0
1,0 − 2ϕ0B0

1,0 +
4

3
(A0

1,0)
′′.

Note that we have used that∫

R

B0
1,0(Q

0)′ = 0,

∫ x

0
(A0

1,0 +
2

3
Q0) = −2ϕ0. (M.43)

Now we use the expressions (M.41) and (M.42) in Claim 28 to have

b12,0 + 2b11,0 = −12

5
a1

1,0 +
1

4
p(p− 1)

∫

R

(Q0)p−2(1 − 4

3
Q0)3 +

4p

9

∫

R

(Q0)p(1 − 4

3
Q0)

+p

∫

R

(Q0)p−1
[
2 − 14

3
Q0 +

20

9
(Q0)2

]
+

1

2

∫

R

A1
1,0

[
− 5 + 16Q0 − 68

9
(Q0)2

]

+

∫

R

Q1
[
2 − 32

3
Q0 +

170

27
(Q0)2

]
.

Note that we have also made use of (M.29) with µ̃ = 0 to obtain

−3

∫

R

Q0 − 1

2

∫

R

Q0A0
1,0 +

∫

R

Q0(Q0)′′ − 2

3

∫

R

(Q0)2(1 + 2A0
1,0)

−3

4

∫

R

(2Q0 + 2Q0A0
1,0 + 3(A0

1,0)
′′)A0

1,0 + 4

∫

R

(Q0)′′A0
1,0 = −12

5
.

Using (M.37), (M.38) and (M.40), we have

b12,0 + 2b11,0 = −12

5
a1

1,0 +
1

4
p(p− 1)

∫

R

(Q0)p−2(1 − 4

3
Q0)3 +

4p

9

∫

R

(Q0)p(1 − 4

3
Q0)

+
1

2

∫

R

[
− a1

1,0(3Q
0 − 2(Q0)2) + p(Q0)p−1 − 4

3
(p− 1)(Q0)p

][
− 5 − 6ΛQ0 +

68

9
Q0

]

+

∫

R

(Q0)p
[
2 +

20

3
ΛQ0 − 170

27
Q0

]
+ p

∫

R

(Q0)p−1
[
2 − 14

3
Q0 +

20

9
(Q0)2

]
.

A simple computation using (M.33) and (M.29) with µ̃ = 0 shows that
∫

R

(3Q0 − 2(Q0)2)(−5 − 6ΛQ0 +
68

9
Q0) = −59

5
.

Thus, replacing the value of a1
1,0 given by (M.41),

b12,0 + 2b11,0 = − 7

18

[(p− 3)(2p− 1)

p+ 1

] ∫

R

(Q0)p +
4p

9

∫

R

(Q0)p(1 − 4

3
Q0)

+
1

4
p(p− 1)

∫

R

(Q0)p−2(1 − 4

3
Q0)3 + p

∫

R

(Q0)p−1
[
2 − 14

3
Q0 +

20

9
(Q0)2

]

+
1

2

∫

R

[
p(Q0)p−1 − 4

3
(p− 1)(Q0)p

][
− 5 − 6ΛQ0 +

68

9
Q0

]

+2

∫

R

(Q0)p +
10

3

2p+ 1

p+ 1

∫

R

(Q0)p+1 − 170

27

∫

R

(Q0)p+1.
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Simplifiying, we get

b12,0 + 2b11,0 = − 7

18

(p− 3)(2p− 1)

p+ 1

∫

R

(Q0)p +
1

4
p(p− 1)

∫

R

(Q0)p−2 − p(p− 1

2
)

∫

R

(Q0)p−1

+(
1

6
− 13

9
p+

4

3
p2)

∫

R

(Q0)p + (−16

27
+

32

27
p+

2

3

1

p+ 1
− 16

27
p2)

∫

R

(Q0)p+1.

Using (M.29) with µ̃ = 0 and the fact that p ≥ 3, we finally obtain

b12,0 + 2b11,0 =
[
− 7

18

(p− 3)(2p− 1)

p+ 1
+

1

36
p
(2p− 1)(2p− 3)

p− 2
− 1

3
p(p− 1

2
)
(2p− 1)

p− 1
+

+(
1

6
− 13

9
p+

4

3
p2) +

3p

1 + 2p
(−16

27
+

32

27
p+

2

3

1

p+ 1
− 16

27
p2)

] ∫

R

(Q0)p

= −(p− 3)(2p− 1)(24 − 23p+ 3p2 + 2p3)

36(p2 − 1)(p− 2)

∫

R

(Q0)p.

Let us define, for p real, f(p) := 24 − 23p+ 3p2 + 2p3. Then we have

f(p) ≥ 36 for all p ≥ 3. (M.44)

It is clear that this last affirmation allows us to conclude the proof. Let us prove (M.44). Note
that f(3) = 36 and f ′(p) is given by f ′(p) = 6p2 + 6p − 23 > 0 for all p ≥ 3. This implies
(M.44). The proof is complete.

Remark M.3. First of all, note that in the above expression we recover the integrability con-
dition of the Gardner equation (p = 3). Furthermore, note that this term is divergent when
we formally take the limit p ↓ 2 and the equation approaches the integrable case. This can
be explained by the higher regularity needed in our results (f ∈ C4 for m = 2), to justify the
asymptotics. Indeed, from (2.25) and (M.1) we need at least f ∈ C3(R), and f(s) := s2 + εsp

is not C3 at zero as p ↓ 2, p > 2. In addition, the terms in (2.25), (2.26)

1

2
(f ′′(Q) − 2)′,

1

2
(f ′′(Q) − 2),

vanish in the integrable case m = p = 2. For the computation in the quadratic case, see
Proposition 2.1 and Lemma 3.1 in [53].
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SOLITON DYNAMICS AND COLLISION FOR SOME NONLINEAR DISPERSIVE EQUATIONS

Abstract

This work deals with long time dynamics of soliton solutions for generalizations of well-
known dispersive equations.

The first part of this work is devoted to the study of existence, uniqueness and global
behavior of soliton-like solutions for slowly varying, but still large perturbations of general-
ized KdV equations. We give an accurate description of the dynamics for all time and prove
in addition the nonexistence of pure soliton-like solutions, a big difference with the standard
gKdV equations.

Next, the same kind of results are proven in the case of nonlinear Schrödinger equations.
We improve all the existing results by constructing a unique global soliton solution in this
regime, and studying in detail its behavior. In addition, under some mild assumptions we
extend this result to the two-dimensional case and under general incident velocities.

Finally, we consider the scenario of a 2-soliton collision between a small and a very small
soliton, for generalized KdV equations. We prove a classification result which completes the
Martel-Merle results –concerning the quartic case– asserting that in a very general framework
the unique possibilities for having an elastic collision are given by the integrable cases.

The proof of all these results are reminiscent of the very recent Martel-Merle theory of
2-soliton’s collision for gKdV equations under different asymptotic regimes.

Keywords : generalized Korteweg-de Vries and nonlinear Schrödinger equations, soliton
dynamics, slowly varying potentials, 2-soliton collision, integrability.


