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Abstract

This thesis is devoted to the study of flux vacua of string theory, with the ten-dimensional space-
time split into a four-dimensional maximally symmetric space-time, and a six-dimensional internal
manifold M , taken to be a solvmanifold (twisted torus). Such vacua are of particular interest when
trying to relate string theory to supersymmetric (SUSY) extensions of the standard model of particles,
or to cosmological models.

For SUSY solutions of type II supergravities, allowing for fluxes on M helps to solve the moduli
problem. Then, a broader class of manifolds than just the Calabi-Yau can be considered for M ,
and a general characterization is given in terms of Generalized Complex Geometry: M has to be a
Generalized Calabi-Yau (GCY).

A subclass of solvmanifolds have been proven to be GCY, so we look for solutions with such M .
To do so, we use an algorithmic resolution method. Then we focus on specific new solutions: those
admitting an intermediate SU(2) structure.

A transformation named the twist is then discussed. It relates solutions on torus to solutions
on solvmanifolds. Working out constraints on the twist to generate solutions, we can relate known
solutions, and find a new one. We also use the twist to relate flux vacua of heterotic string.

Finally we consider ten-dimensional de Sitter solutions. Looking for such solutions is difficult,
because of several problems among which the breaking of SUSY. We propose an ansatz for SUSY
breaking sources which helps to overcome these difficulties. We give an explicit solution on a solv-
manifold, and discuss partially its four-dimensional stability.

A long French summary of the thesis can be found in appendix D.

Résumé court

Nous étudions des solutions avec flux de la théorie des cordes, sur un espace-temps dix-dimensionnel
séparé en un espace-temps quatre-dimensionnel maximalement symétrique, et une variété interne six-
dimensionnelle M , étant ici une variété résoluble (un tore twisté). Ces solutions sont intéressantes
pour relier la théorie des cordes à une extension supersymétrique (SUSY) du modèle standard des
particules, ou à des modèles cosmologiques.

Pour des solutions SUSY des supergravités de type II, la présence de flux sur M aide à résoudre
le problème des moduli. Une classe plus large de variétés que le simple Calabi-Yau peut alors être
considérée pour M , et une caractérisation générale est donnée en terme de Géométrie Complexe
Généralisée: M doit être un Calabi-Yau Généralisé (GCY).

Il a été montré qu’une sous-classe de variétés résolubles sont des GCY, donc nous allons chercher
des solutions sur de telles M . Pour y parvenir, nous utilisons une méthode de résolution algorith-
mique. Nous étudions ensuite un certain type de solutions: celles qui admettent une structure SU(2)
intermédiaire.

Par la suite, nous considérons le twist, une transformation qui relie des solutions sur le tore à d’autres
sur variétés résolubles. En déterminant des contraintes sur le twist pour générer des solutions, nous
parvenons à relier des solutions connues, et nous en trouvons une nouvelle. Nous l’utilisons également
pour relier des solutions avec flux de la corde hétérotique.

Nous considérons finalement des solutions de de Sitter dix-dimensionnelles. Plusieurs problèmes,
dont la brisure de la SUSY, rendent la recherche de telles solutions difficile. Nous proposons un
ansatz pour des sources brisant la SUSY qui aide à surmonter ces difficultés. Nous donnons alors une
solution explicite sur variété résoluble, et discutons partiellement sa stabilité quatre-dimensionnelle.

Un résumé long en français de la thèse se trouve dans l’appendice D.
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Chapter 1

Introduction

The standard model of particle physics is now a paradigm to describe three of the four elementary
interactions of nature. This description of the electromagnetic, weak and strong interactions has
been successfully tested experimentally to very high accuracy, up to energies of a few hundred GeV.
Despite this situation, some aspects of this description are theoretically speaking unsatisfactory, and
led in the last decades to some more advances.

One of these aspects is the question of naturalness: the standard model contains a set of parameters
which are not fixed by the theory, and which can take very different values (different energy scales
appear for instance). Furthermore, the model has an impressive symmetry structure whose origin is
not explained. All this seems to indicate the existence of an underlying, more fundamental, structure,
which would have the standard model as an effective description. One proposal in this direction
have been Grand Unified Theories (GUT). From Newton and his description of gravitation, till the
electroweak interaction, the idea of unification has been fruitful in theoretical physics history. This
same idea is used here to unify the three interactions of the standard model into one. By extrapolating
the values of their coupling constants at higher energy, one can see they almost meet at a single point
around 1016 GeV. Therefore, one considers in the GUT models only one gauge group, which breaks
at this unification scale MU into the various gauge groups of the standard model. This is only one
among many possibilities to go beyond the standard model.

Another important question about the standard model is the Higgs boson. To start with, it is the
only unobserved particle in this whole picture. Accordingly, its mass is still unknown but has a lower
experimental bound of 114 GeV (obtained at the LEP). To fit properly with the description of the
electroweak breaking, this mass has also an upper bound of order 1 TeV. This tight window gives
hopes for its discovery at the newly starting LHC. Even if its mass could get fixed experimentally, the
one-loop corrections to it lead to the famous Higgs hierarchy problem. These quantum corrections
turn out to be of the same order as the Higgs mass scale itself, unless an important fine-tuning is
done. As we will see, this problem can be solved by supersymmetry, another possible step in the
direction of an underlying structure for the standard model.

Last but not least, the gravitational interaction is not included in the standard model of particles.
We know that considering gravitation is not relevant up to the Planck mass scale, Mp ∼ 1019 GeV,
where this interaction becomes of the same order as the quantum effects. A fully unified description
of nature including gravity is therefore not needed at the typical scales of the standard model (this
claim can be relaxed in some cases like low string scale scenarios). On the contrary, it is needed to
describe some extreme situations, like black holes, or early times of the universe, where microscopic
quantum effects are in presence of highly curved geometries. More dramatically, such situations raise
the question of quantum gravity. If gravity, viewed as a gauge theory with the Einstein-Hilbert action,
is not included in the standard model, it is not only a matter of scales, but because it cannot be
quantized as the other interactions are. This gauge theory is simply not renormalisable. A proper
quantum theory of gravity, and more generally a unified description of all four interactions is another
motivation to go beyond the standard model of particles.
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Another striking discrepancy in energy scales is that of the cosmological constant with respect to the
Planck mass (the so-called cosmological constant problem). Many precise cosmological measurements
have led to what is now known as the standard cosmology. One of the major results of recent mea-
surements is that our four-dimensional universe should be in accelerated expansion and be described
by a de Sitter space-time, with a cosmological constant Λ of mass scale given by MΛ =

√
Λ ∼ 10−12

GeV. That makes it more than 1030 order lower than the Planck mass. It is also a scale significantly
lower than the standard model scales. The reason of this value and the nature of a corresponding
“dark energy” are not explained, and would also require a further theoretical set-up, if not a quan-
tum theory of gravity. As we will see in this thesis, additional space dimensions could also help in
understanding the nature of this cosmological constant.

In trying to extend the standard model of particles, one often encounters supersymmetry (SUSY).
This global symmetry of field theories is one of the few possible extensions of the Poincaré group (it
circumvents the Coleman-Mandula no-go theorem). The corresponding (super Lie) algebra gets some
fermionic generators, whose number gives the number N of supersymmetries: in four-dimensions, one
can go from N = 1 to N = 4 for theories with spin one fields, and up to N = 8 if one allows for spin
two fields like the metric (the theory is then said to be maximally supersymmetric, it has 32 fermionic
generators). The fields of a supersymmetric theory are arranged in multiplets having equal number
of fermions and bosons, and same masses. Therefore, if such a theory was describing particle physics,
each particle should have a superpartner of spin different by one-half and of same mass. It is clearly
not the case at the scale of the standard model, and therefore, such a symmetry, if it exists, should
be broken at some higher energy scale MSUSY. Up to date, there exist many different scenarios to
break SUSY.

Because of the multiplets, the only theories admitting chiral fields are N = 1. Chirality is an
important feature of the standard model so the simplest supersymmetric extensions of the standard
model like the MSSM haveN = 1 SUSY. In spite of the complexity which seems to arise by allowing for
SUSY (non-observed superpartners, various breaking scheme, high number of new unfixed parameters,
etc.), such extensions have some important advantages. Because of this additional symmetry, the
supersymmetric gauge theories are highly constrained. In particular, the quantum corrections are
often much more under control, because of cancellations between bosonic and fermionic contributions.
This is the reason why SUSY solves the Higgs hierarchy problem. Another consequence of these
simpler quantum corrections is that the GUT models get refined: the three coupling constants meet
exactly at a single point when extrapolated at higher energy. These nice features motivated the
introduction of SUSY in extensions of the standard model, and the LHC will soon look for evidences
of its existence at higher energy. Note that MSUSY should not be much higher than the electroweak
breaking scale, in order for SUSY to solve the Higgs hierarchy problem. Therefore, this scale should
be in the scope of the LHC.

Another interesting feature of SUSY is to help towards the construction of a quantum gravity.
When considering this symmetry local, one can construct naturally supergravity theories (SUGRA).
These are supersymmetric field theories of gravity, more constrained than the standard gravity. In
particular, in an eleven-dimensional space-time, the theory is unique, completely determined by the
symmetries. It is a maximally supersymmetric theory, and one cannot construct any other in higher
dimensions. In lower dimensions, one can construct different supergravities, which may or may not
be related between them. Supergravity theories are a priori not more finite than the standard gravity,
except for N = 8 SUGRA in four dimensions. The finiteness of the latter is currently under study,
some impressive cancellations appear at higher loops, in part because of SUSY, but not only. Nev-
ertheless, the SUGRA theories play an important role in the question of quantum gravity, as they
appear to be low energy effective theories of string theories.

Extensions of the standard model of particles are a priori not directly related to the problem of
quantum gravity, at least from the scales point of view. As mentioned, the question of quantum
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gravity essentially arises at the Planck mass scale, while first extensions of the standard model are
considered around the electroweak breaking scale. Nevertheless, from the unification perspective,
these should be related at some point. Furthermore, if one can provide a theory of quantum gravity
containing additionally some gauge groups, one could ask whether at low energy some extension of
the standard model could be recovered. This is the point of view we will adopt in this thesis, the
theory of quantum gravity being string theory.

String theories consider one-dimensional extended elementary objects, the strings. Their embedding
in target space-time is given by their coordinates, which are taken as fields. These fields are governed
by a two-dimensional conformal field theory which turns out to be a sigma-model. A string can
oscillate in space-time, and these oscillation modes are quantized. A first important result of string
theory has been that among the massless modes, a rank two symmetric tensor is always present.
Considered as a metric, this has been a first hint of the possibility to construct a quantum theory of
gravity. When including fermionic modes in the sigma-model, it turns out that the whole massless
spectrum of string theory corresponds to the spectrum of some SUGRA. Furthermore, at one-loop in
the conformal field theory, to avoid a conformal anomaly, one has to impose some equations which
turn out to be the equations of motion of some SUGRA theory. Therefore, SUGRA corresponds
to a low energy effective theory for string theory. The answer to the divergences of SUGRA are in
turn given by a proper quantization in string theory. Indeed, string theory happens to be a quantum
theory of gravity, even if the quantization is background dependent.

String theory has been at first defined perturbatively, specifying a particular conformal theory at
each loop. When adding the fermions, anomaly cancellations at one-loop turn out to bring severe
constraints on the various possible string theories. Except for some exotic scenarios, the result
is that only a few string theories can be considered. Furthermore, all of them are found to be
space-time supersymmetric. In that sense, SUSY is predicted by string theory: by consistency of
the construction, only supersymmetric theories are allowed. The dimension of space-time is also
constrained by consistency and conformal symmetry: one gets an upper bound for it. But for technical
reasons, this upper bound is often preferred. This is the reason to say that superstrings live in a ten-
dimensional space-time, while purely bosonic strings live in twenty-six dimensions. Out of all these
constraints, only five superstring theories can be considered in ten dimensions. Two of them are
N = 2 (type IIA, IIB) and the others are N = 1 (heterotic strings, or type I). All of them give a
SUGRA theory (with the same name) at low energy in ten dimensions. In this thesis, we will mainly
consider type II supergravities. Note that the eleven-dimensional SUGRA is then considered as the
low energy effective theory of what is called M-theory, whose elementary objects cannot be strings,
but rather some more extended objects like membranes, called M-branes. All these theories have
been found to be related by dualities, and are now believed to be different aspects in different regimes
of a single bigger theory.

String theory, first defined perturbatively, has then included non-perturbative objects called branes
which can be thought of as solitons in usual field theory. They are again extended objects like mem-
branes. In type II, a Dp-brane is geometrically a hypersurface of p dimensions evolving in time. Their
discovery was much inspired by the interplay with SUGRA. At low energy, they appear as p-branes:
these are particular solutions to Einstein equations corresponding to generalizations of black-hole
solutions. In string theory, they turn out to be dynamical objects. Their dynamics are given pertur-
batively by oscillations of open strings with Dirichlet boundary conditions: the open strings end on
these hypersurfaces. The effective theory of a stack of N D3-branes in four-dimensional Minkowski
space-time is given by N = 4 super Yang-Mills theory with gauge group SU(N). D-branes have led
to huge advances in string theory, among which the famous AdS/CFT correspondence.

In attempts to extend the standard model, one usually adds a few ingredients at a time: SUSY,
additional space dimensions, branes, etc. Various models and predictions have been constructed this
way, and the LHC discoveries will hopefully help to discriminate among all these new theoretical
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possibilities. As discussed, we consider here a different approach: one starts from superstring the-
ory in ten dimensions, and tries to recover the four-dimensional physics of the standard model, or
some extension of it. On the way, one goes through several steps containing the additional ingre-
dients mentioned. In this thesis, we will only focus on a few steps in this vast program. Doing so,
we will also learn things from low energy theories, which may help to understand better string theory.

We mentioned that superstring theories are defined in ten-dimensional space-time. That gives six
additional spacelike dimensions with respect to our observed four-dimensional space-time. In the most
common scenario, these additional dimensions are said to be compact, meaning that they are not
extended as the observed ones are, but closed on themselves. These six dimensions are then assumed
to form a smooth compact manifold M . The simplest example is probably a product of six circles, or
equivalently a six-dimensional torus T 6. This six dimensions being unobserved, their typical scale (the
mean radius for instance) should be beyond the scope of our past experiments. Roughly speaking,
M is too small to be detected; this is the reason why we call it the internal space. Its size gives an
additional scale, the compactification scale Mc. Note that one could a priori consider several different
scales according to these different additional dimensions. For simplicity here we only consider one.
The ten-dimensional theory then has to go through a procedure known as the dimensional reduction,
or compactification, in order to provide a four-dimensional theory. Before describing this procedure
in more details, let us discuss further the various energy scales appearing.

Starting from string theory, we first consider ten-dimensional SUGRA as its low energy description.
For this to be valid, the massive modes of string theory have to be too heavy to contribute. Their
mass scale is typically given by the string length ls. Note that this parameter, the only one of string
theory, is unfixed. It is often taken to be the same as the Planck scale, but there is a priori no reason
for this choice. For the SUGRA approximation to be valid, the coupling constant of string theory gs
also needs to be small (for the description to stay perturbative).

Considering SUGRA in ten dimensions and lowering further the energy, one then has to dimen-
sionally reduce it as discussed. As discussed previously, obtaining in four dimensions an N = 1
supersymmetric theory could be a way to match with some extensions of the standard model. These
extensions have their own complexity, but they also present some advantages we mentioned. There-
fore, typical compactification schemes try to preserve some supersymmetry. This requirement gives
important constraints on the choice of the internal manifold M , as we will see in more details. In
terms of scales, it also means that the breaking of SUSY is chosen to occur at an energy lower than
the compactification scale.

To summarize, we have the following general hierarchy in energy scales, and accordingly the pro-
posed effective theories:

- E

SM + Grav.

MSUSY

MSSM + Grav. ?
4d SUGRA + . . . ?

Mc

10d SUGRA

Ms = 1
ls

?
= Mp

superstring
theory

Note that the unification scale MU is not present in this graph, even if it should be found between
the SUSY breaking scale MSUSY and the string scale Ms. Its absence is related to the undefined
description between those scales, or more precisely between MSUSY and Mc. The effective theory
in this range really depends on the model under consideration, and this is waiting for experimental
confrontation. Let us discuss particular cases of importance for us. Heterotic string contains non-
abelian gauge groups. These are big enough to be used in a GUT scenario and reproduce at the
end of the day the gauge interactions of the standard model, even if this program has not yet been
completed. On the contrary, type II SUGRA only contains abelian gauge fields in its (perturbative)
spectrum. As mentioned, the way to obtain non-abelian gauge groups is to add stacks of D-branes.
Therefore, there is in type II a whole expertise about how to add branes properly in order to construct
a model which will have the desired content in fields, gauge groups, couplings, etc. Nowadays, type
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II is considered more promising than the heterotic approach, even if it was not the case before the
AdS/CFT correspondence. Let us also mention the more recent approach of F-theory (related in
some extent to type II) which seems to lead to even more realistic models, by obtaining interesting
values for the Yukawa couplings.

In this thesis, we will remain a step before this model building. When one is interested in low en-
ergy effective theories, one should first find what are the light (or massless) modes of the full theory.
These are often determined around a background, meaning one considers the small (light) fluctuations
of the theory around a background, or equivalently around the vacuum of a potential. Then, these
modes only are considered, i.e. the theory is truncated to these modes, when this can be done consis-
tently. The theory obtained is a low energy effective theory. This is also the idea behind the model
building, where the construction is done over a given background, and the modes added are supposed
to be light. In this thesis, we will restrict ourselves to finding appropriate backgrounds of type II
ten-dimensional SUGRA. This means getting interesting solutions of the ten-dimensional equations
of motion. Further steps to be done would be to reconstruct the effective (four-dimensional) theory
over it, if not a whole model for phenomenology.

Let us now give more details about the dimensional reduction, where light modes play a crucial
role. The idea of additional dimensions and the dimensional reduction goes back the twenties, with
the work done by Kaluza and Klein. Let us consider a field theory on a four-dimensional space-time
times a fifth spacelike dimension given by a circle. One can expand the fields in a Fourier serie in
this fifth direction, the different terms in the expansion corresponding to quantized momenta along
the circle. These momenta are of the form n

R , where n is the integer of the serie, and R is the radius
of the circle. Suppose the fields expanded are massless in five dimensions. Then, each momentum
gives the four-dimensional mass for each of the modes of the expansion. One can then integrate
the action over the fifth direction, to get a four-dimensional action. The more the mass (the n) is
important, the less the term will contribute. Furthermore, the smaller R is, the less the n 6= 0 terms
will contribute. Therefore, if R is small compared to the four-dimensional scales, or if the mass 1

R is
big with respect to the other involved in the theory, one can neglect the non-zero modes. The theory
is truncated to the four-dimensional massless modes. This is called the Kaluza-Klein reduction: in
the five-dimensional action, one simply does not consider the dependence of the fields on the internal
dimensions, which is equivalent to considering the internal length scales to be small, or also keeping
only the four-dimensional massless modes. Note that in some cases, one has to be more careful: first
determine what are the light modes (which are not always massless), and then check whether it is
possible to get rid of interactions with massive modes, before truncating the spectrum. We will not
work out in details this dimensional reduction, but only determine interesting backgrounds, on which
one should further perform it. Nevertheless, note that out of this general procedure, one often gets
scalar fields in four dimensions. Indeed, each internal mode which has no four-dimensional vector or
spinor index simply gives a scalar after the integration over internal dimensions. Such massless scalar
fields are called moduli, we will come back to them.

We explained so far the general scheme of the approach considered. Motivated by the nice features
of string theory (in particular its answer to the quantum gravity question), one should first consider
the low energy effective theory given by SUGRA. Then one finds a ten-dimensional interesting back-
ground, determines the light modes over it, truncates the theory to them, and then dimensionally
reduces towards four-dimensions. One should finally extend this reduction by constructing a phe-
nomenologically viable model, giving a possibly supersymmetric extension of the standard model. In
this thesis, we focus only on one step of this program, which is to get a interesting background. To
do so, the choice of the internal manifold M is of particular importance. Let us now enter deeper in
the formalism, and give more details on this question.
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Chapter 2

Supersymmetric vacua and
Generalized Complex Geometry

The main part of this thesis is devoted to the study of supersymmetric solutions of type II supergrav-
ity with some non-trivial fluxes, corresponding to compactifications of ten-dimensional supergravity
to four dimensions. The conditions for having a supersymmetric vacuum constrains the geometry of
the internal manifold M . For the well-known case of fluxless compactifications, minimal supersym-
metry requires the internal manifold to be a Calabi-Yau. For flux backgrounds, the supersymmetry
conditions can be cast in a simple form [4, 5] using the formalism of Generalized Complex Geometry
(GCG), recently developed by Hitchin and Gualtieri [6, 7]: the internal manifold is then characterized
to be a Generalized Calabi-Yau (GCY).

In this chapter we briefly introduce the main ingredients we will need in the rest of the thesis to
explicitly look for flux vacua. We first discuss ten-dimensional type II supergravities (SUGRA). Then
we give the general ansatz for the solutions describing compactifications to four dimensions. Basics
of Generalized Complex Geometry are then introduced and in particular the notion of pure spinors.
Then we present the supersymmetry conditions for flux vacua rewritten in terms of pure spinors. We
end the chapter with an outline of the thesis. Conventions, and more details are given in appendix
A.

2.1 Type II supergravities

In this thesis, we will mainly consider type IIA and type IIB supergravities. These are the ten-
dimensional effective theories for the massless fields of type II string theories. The bosonic sector
consists of the Neveu-Schwarz Neveu-Schwarz (NSNS) and Ramond-Ramond (RR) fields. The NSNS
sector is the same for both theories: it contains the metric, the dilaton φ and the NSNS two-form
B. The latter is a U(1) gauge potential with field strength H = dB. The RR sector depends on the
theory. It contains odd forms in IIA, and even forms in IIB. These are again U(1) gauge potentials.
We will use the democratic formulation [8], which considers all RR potentials Cn with n = 1, . . . , 9
for IIA and Cn with n = 0, . . . , 8 for IIB. These potentials are not all independent: for instance C2 is
equivalent to C6 because of Hodge duality. Therefore to reduce to the independent degrees of freedom
we will impose a self-duality constraint on the field strengths

Fn = (−1)int[n/2] ∗̂F10−n . (2.1.1)

where ∗̂ is the ten-dimensional Hodge star and with

IIA : F2 = dC1 +B F0 , F4 = dC3 −H ∧ C1 +
1

2
B ∧B F0 , (2.1.2)

IIB : F1 = dC0 , F3 = dC2 −H C0 , F5 = dC4 −H ∧ C2 . (2.1.3)
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In a more compact notation
F = (d−H∧)C + eBF0 , (2.1.4)

where F and C are the sums of RR field strengths and potentials in each theory, and the F0 is the
Roman mass term that can be added in the IIA theory. The exponential has to be understood as
developed with the wedge product

eB = 1 +B +
1

2
B ∧B + . . . . (2.1.5)

The fermionic sector consists of two Majorana-Weyl spin 3/2 spinors, the gravitinos ψiM , and two
Majorana-Weyl spin 1/2 spinors, the dilatinos λ̃i. Gravitinos and dilatinos have opposite chirality.
In IIA the gravitinos (hence the dilatinos) have opposite chirality, while in two IIB the gravitinos
have the same chirality, which we choose positive. Correspondingly the dilatinos will have negative
chirality.

Both IIA and IIB theories are maximally supersymmetric, meaning they have 32 supercharges and
so have N = 2 supersymmetries. They differ in their chirality: type IIA is non-chiral while type IIB
is chiral.

Let us give here simply the bosonic sector of the type IIA action, which we will need in chapter
5. We mostly follow the conventions of [9, 10]; we differ in the definition of the Hodge star (see
convention in appendix A.1) where we have an extra sign depending on the parity of the forms1. The
bosonic action of type IIA in string frame is given by

S =
1

2κ2

∫
d10x

√
|g10| [e−2φ(R10 + 4|∇φ|2 − 1

2
|H|2)− 1

2
(|F0|2 + |F2|2 + |F4|2)] , (2.1.6)

where 2κ2 = (2π)7(α′)4, α′ = l2s , and

Fk ∧ ∗̂Fk = d10x
√
|g10|(−1)(10−k)k Fµ1...µkF

µ1...µk

k!
= d10x

√
|g10|(−1)(10−k)k |Fk|2 . (2.1.7)

|g10| denotes the determinant of the ten-dimensional metric and ∗̂ the ten-dimensional Hodge star,
reserving the symbol ∗ for its six-dimensional counterpart.

To this action we could add a topological part called the Chern-Simons term, but also possible
source actions Ss. For a discussion of these terms, we refer to chapter 5.

Let us now give the equations of motion (e.o.m.) of type IIA supergravity in string frame. The
ten-dimensional Einstein and dilaton equations are given by

RMN −
gMN

2
R10 = −4∇Mφ∇Nφ+

1

4
HMPQH

PQ
N +

e2φ

2

(
F2 MPF

P
2 N +

1

3!
F4 MPQRF

PQR
4 N

)

−gMN
2

(
−4|∇φ|2 +

1

2
|H|2 +

e2φ

2
(|F0|2 + |F2|2 + |F4|2)

)
+ eφ

1

2
TMN , (2.1.8)

8(∇2φ− |∇φ|2) + 2R10 − |H|2 = −eφ T0

p+ 1
, (2.1.9)

where M,N,P,Q,R are ten-dimensional space-time indices. TMN and T0 are the source energy
momentum tensor and its partial trace, respectively2, with p + 1 being the worldvolume dimension

1In IIA, the sign is always positive on RR fields, but not on the odd forms, H and dφ, hence the sign difference
with respect to [10] for the corresponding terms in the action, when expressed with the Hodge star. The sign difference
is related to the fact we use the Mukai pairing, defined in (2.4.14), to give the norm (see below equation (2.4.13) and
appendix B.3): for a real form α, we have 〈∗λ(α), α〉 = |α|2 × vol, where λ is defined in (2.2.3), and vol is the volume
form.

2In our conventions
1√
|g10|
δSs
δφ

= −e
−φ

2κ2

T0

p+ 1
,

1√
|g10|

δSs
δgMN

= −e
−φ

4κ2
TMN . (2.1.10)
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of the source. The e.o.m. of the fluxes are given by

d(e−2φ∗̂H) + F0 ∧ ∗̂F2 + F2 ∧ ∗̂F4 +
1

2
F4 ∧ F4 = source term

(d +H∧)(∗̂F ) = 0 , (2.1.11)

We will come back in chapter 5 to the source term in the H e.o.m. (see [11]).

The fluxes of type II supergravities are also subject to the Bianchi identities (BI), given by (we will
not consider any NS5-brane)

dH = 0

(d−H∧)F = δ(source) , (2.1.12)

where δ(source) is the charge density of RR sources: these are D-branes or orientifold planes (O-
planes).

2.2 The internal manifold

In this thesis we are interested in compactifications to four dimensions, where the four dimensional
space in maximally symmetric: Minkowski, Anti de Sitter or de Sitter spaces. To this extent, we can
make some hypothesis on the form of the solutions we are looking for.

2.2.1 Supersymmetric vacuum on four plus six dimensions

Splitting in four plus six

We will consider the ten-dimensional space-time to be a warped product of a maximally symmetric
four-dimensional space-time and a six-dimensional compact space M . Then, for the ten-dimensional
metric, we take

ds2
(10) = e2A(y) gµνdx

µdxν + gmn(y)dymdyn , (2.2.1)

where e2A is the warp factor depending on the internal dimensions ym. The four-dimensional metric
of signature (−1,+1,+1,+1) will have Poincaré, SO(1, 4) or SO(2, 3) symmetry for M4, AdS4 or dS4,
respectively.

For the RR and NSNS fluxes, we can a priori allow them to have non-zero background values.
Nevertheless, maximal symmetry in four-dimensions requires the fluxes be non-trivial only on the
internal manifold

F
(10)
k = Fk + vol4 ∧ λ(∗F6−k) . (2.2.2)

Here vol4 is the warped four-dimensional volume form and λ acts on any p-form Ap by a complete
reversal of its indices

λ(Ap) = (−1)
p(p−1)

2 Ap . (2.2.3)

We define the total internal RR field F as

IIA : F = F0 + F2 + F4 + F6 , (2.2.4)

IIB : F = F1 + F3 + F5 , (2.2.5)

with Fk the internal k-form RR field strength. With this ansatz the flux equations of motion and
Bianchi identities become

d(e4A−2φ ∗H)± e4A
∑

k

Fk ∧ ∗Fk+2 = source term , dH = 0 ,

(d +H∧)(e4A ∗ F ) = 0 , (d−H∧)F = δs , (2.2.6)
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where the upper/lower sign is for IIA/B, and now d and ∗ are internal. δs denotes the contribution
from sources. Flux compactifications to four-dimensional Minkowski or de Sitter are not possible
without sources with negative tensions, O-planes. These are needed to cancel the positive flux con-
tribution to the trace of the energy-momentum tensor [12, 13]. In particular, because of maximal
symmetry in four dimensions we will consider space-filling D-branes or O-planes.

Finally, imposing maximal symmetry also sets all the vacuum expectation values of the fermionic
fields to zero. So we will look for purely bosonic solutions.

Supersymmetric solutions

We will actually restrict even more the form of our solutions by imposing that they have minimal
supersymmetry, namely N = 1 in four dimensions.

From a physical point of view this choice corresponds to the hypothesis that supersymmetry is
spontaneously broken at low energies (see chapter 1). From a technical point of view, looking for
supersymmetric solutions simplifies the resolution. Indeed, for Minkowski backgrounds, it has been
proven in [14, 15, 11] that all equations of motion are implied once the Bianchi identities and the
ten-dimensional SUSY conditions are satisfied. So, instead of solving the equations of motion, which
are second order differential equations, one can solve a set of first order equations.

For a purely bosonic background, the conditions for unbroken supersymmetry is that the variations
of the fermionic fields vanish. Then, in type II supergravity we have to set to zero the bosonic part
of the gravitino and dilatino SUSY variations

δψM = 0 , δλ̃ = 0 . (2.2.7)

We work in string frame and use the democratic formulation. If we write the two gravitino and the
two dilatino as doublets ψM = (ψ1

M , ψ
2
M ) and λ̃ = (λ̃1, λ̃2), then their supersymmetry variations read

δψM = (DM +
1

4
HMP)ǫ+

1

16
eφ
∑

n

6F (2n) ΓMPn ǫ , (2.2.8)

δλ̃ = (6∂φ+
1

2
6HP)ǫ+

1

8
eφ
∑

n

(−1)2n(5− 2n) 6F (2n) Pnǫ , (2.2.9)

where the supersymmetry parameter ǫ = (ǫ1, ǫ2) is also a doublet of Majorana-Weyl spinors. The
matrices P and Pn are different in IIA and IIB. For IIA P = Γ11 and Pn = Γ11σ1, while in IIB
P = −σ3, Pn = σ1 for n+ 1/2 even and iσ2 for n+ 1/2 odd.

In our ansatz for the metric and fluxes we took the space-time to be the product of four plus six
dimensions. Then the ten-dimensional SUSY parameters ǫ1 and ǫ2 have to be decomposed accordingly.
With the metric (2.2.1), the Lorentz group is broken to SO(1, 3) × SO(6) and the parameters ǫi=1,2

are decomposed as

ǫ1 = ζ1 ⊗
∑

a

α1
aη

1
a + c.c. ,

ǫ2 = ζ2 ⊗
∑

a

α2
aη

2
a + c.c. . (2.2.10)

ζi are the four-dimensional chiral spinors corresponding to the SUSY parameters in four dimensions.
Similarly ηia are SO(6) Weyl spinors. The six-dimensional (internal) spinors can be seen, from the
four-dimensional point of view, as internal degrees of freedom of the ζi. So the number N of four-
dimensional SUSYs is given by the number of components of the internal spinors satisfying the SUSY
equations. In six dimensions, there can be at most (on a parallelizable manifold) four solutions η1

a for
each chirality. So the maximum N is clearly N = 8. To get an N = 1 vacuum as we want, one needs
a pair (η1, η2) of internal spinors that satisfy the SUSY conditions (and for N = 1 one also needs
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ζ1 = ζ2). Given the chiralities of the two theories, let us then consider the following decomposition
in IIA

ǫ1 = ζ1
+ ⊗ η1

+ + ζ1
− ⊗ η1

− ,

ǫ2 = ζ2
+ ⊗ η2

− + ζ2
− ⊗ η2

+ , (2.2.11)

and this one in IIB

ǫi=1,2 = ζi+ ⊗ ηi+ + ζi− ⊗ ηi− , (2.2.12)

where the complex conjugation changes the chirality: (η+)∗ = η−.

Typically one further requires the internal spinors to be globally defined. A justification for this as-
sumption comes from the computation of the four-dimensional effective actions obtained by reducing
the ten-dimensional theory on the internal manifold. In order to have supersymmetry in four dimen-
sions, we need a globally defined basis of internal spinors on which to reduce the SUSY parameters.
This topological requirement can be translated in terms of G-structures that we will now discuss.

2.2.2 Internal spinors and G-structures

For a manifold M , the structure group is the group in which take values the structure functions. In
six dimensions, the structure group is a priori GL(6). The existence of globally defined tensors or
spinors leads to a reduction of the structure group. The manifold is said to admit a G-structure when
its structure group is reduced to the subgroup G. For instance, given a metric and an orientation,
it is reduced to SO(6) ∼ SU(4). In presence of one globally defined spinor, it is further reduced to
SU(3), and to SU(2) if a second (independent) globally defined spinor exists. In this thesis we will
often consider SU(3) and SU(2) structures.

In six dimensions, an SU(3) structure is defined by a globally defined Weyl spinor η+. Here we
take η+ of positive chirality and of unitary norm. The complex conjugation changes the chirality:
(η+)∗ = η−. A G-structure is equivalently defined in terms of G-invariant globally defined forms.
These can be obtained as bilinears of the globally defined spinors. For an SU(3) structure, one can
define a holomorphic three-form Ω and a Kähler form J given by3

Ωµνρ = −iη†−γµνρη+ ,

Jµν = −iη†+γµνη+ , (2.2.13)

satisfying the structure conditions

J ∧Ω = 0
4

3
J3 = iΩ ∧ Ω 6= 0 . (2.2.14)

Similarly, an SU(2) structure is defined by two orthogonal globally defined spinors η+ and χ+ (we
take them of unitary norm). In terms of invariant forms, an SU(2) structure is given by a holomorphic
one-form4 z (we take ||z||2 = 2), a real two-form j and a holomorphic two-form ω

zµ = η†−γµχ+ ,

jµν = −iη†+γµνη+ + iχ†+γµνχ+ ,

ωµν = η†−γµνχ− , (2.2.15)

satisfying the following structure conditions

j2 =
1

2
ω ∧ ω 6= 0 , (2.2.16)

j ∧ ω = 0 , ω ∧ ω = 0 , (2.2.17)

zxω = 0 , zxj = 0 . (2.2.18)

3The indices µ, ν, ρ are real.
4Note that it is possible to rewrite the spinor χ+ as χ+ = 1

2
zη−.
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The definition of the contraction x is given in appendix A.1. We give one possible derivation of these
structure conditions in appendix A.2.1.

Note that the SU(2) structure is naturally embedded in the SU(3) structure defined by η+:

J = j +
i

2
z ∧ z , Ω = z ∧ ω ⇒ j = J − i

2
z ∧ z , ω =

1

2
zxΩ . (2.2.19)

The topological requirement given by the existence of the two globally defined internal spinors
ηi=1,2

+ is then equivalent to the existence of globally defined forms, satisfying the structure conditions.
Similarly, the relation between globally defined spinors and globally defined forms provides a useful
alternative way to express the differential requirement given by the SUSY conditions in terms of the
structure forms. As an example we will first discuss the case of fluxless compactifications, where
supersymmetry leads to the Calabi-Yau condition.

2.2.3 Calabi-Yau manifold

Let us consider solutions where no flux is present: Fk = 0, H = 0. Moreover we assume that the
manifold only admits a single globally defined spinor η1

+ = η2
+ = η+. Then one can a priori get an

N = 2 theory in four dimensions with ζ1,2. With these hypothesis, by decomposing the spinors and
the SUSY conditions (2.2.8) and (2.2.9) into four and six-dimensional parts, one gets

∂µζ+ = 0 , Dmη
1
+ = 0 , (2.2.20)

where m is an internal index. This means the internal manifold requires not only the existence of a
globally defined spinor, but the latter needs to be covariantly constant. This means that the holonomy
group of M is reduced to SU(3) and therefore M must be a CY three-fold CY3 [16].

In terms of the G-structures, we get an SU(3) structure. In addition, the closure of the spinor
translates into differential conditions for the forms defining the SU(3) structure. The structure forms
are closed:

dJ = 0 , dΩ = 0 . (2.2.21)

These conditions give the integrability of both the almost complex and symplectic structures, mean-
ing the internal manifold needs to be Kähler. This is indeed the case of a CY. Another property of
a Calabi-Yau manifold is that it admits a Ricci-flat metric5 Rmn = 0.

In absence of fluxes, looking for a SUSY vacuum requires to consider a CY3 manifold as the internal
manifold. By reducing the type II actions on the Calabi-Yau will give an N = 2 effective theory in four
dimensions (a similar reduction for the heterotic string leads to an N = 1 effective four-dimensional
theory). We will not dwell into the details of the four-dimensional effective actions. There are two
aspects we would like to stress. The first is the fact that the geometry of the internal manifold
is crucial to determine the field content and symmetries of four-dimensional theory. The second is
that the effective theories constructed by reducing on a Calabi-Yau manifold suffer of the presence
of massless fields which are not constrained by any potential. These are the so-called moduli. In
supersymmetric theories massless scalar fields are not a problem, the trouble is if some of them stay
massless after SUSY breaking: massless scalar fields would provide long range interactions which
should be observed, except for a confinement scenario.

5This can be seen from the integrability condition on the internal spinor

0 = [Dm,Dn]η+ =
1

4
R pq
mn γpqη+ ⇒ γnγpqRmnpqη+ = 0 . (2.2.22)

Using the gamma matrix identity γiγjk = γijk + gijγk − gikγj and Rijkl +Riklj +Riljk = 0, we have

0 = γnγpqRmnpqη+ = γnpqRmnpqη − 2Rmnγ
nη . (2.2.23)

This equation reduces Rmn = 0, since the first term is zero because of the symmetries of the curvature tensor.
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The idea is then to look for mechanisms allowing to stabilise at least some of the moduli already
in the supersymmetric theory. Suppose that scalar fields ϕ appearing in the effective theory have a
potential V (ϕ). If it admits a minimum for some value ϕ0, then the action and the potential can be
developed around it as

V (ϕ) ≈ V (ϕ0) + V ′′(ϕ0)(∂ϕ)2 . (2.2.24)

Therefore, giving a vacuum value to the scalar (fixing it) gives a mass (term) to it. Provided this
mass is sufficiently high, one could integrate the scalar fields out, and so get rid of them. As already
mentioned, CY compactifications do not generate a potential for the scalars.

2.2.4 Flux vacua

The moduli problem led in years 2000’ to the development of flux compactifications: finding solu-
tions in presence of non-trivial values for the background fluxes. Background fluxes on the internal
manifold are interesting because they are known to generate a potential which can fix some, if not
all (in some AdS compactifications) the moduli. The remaining moduli are most of the time fixed by
non-perturbative contributions. See [17] for reviews on the subject.

The presence of fluxes drastically changes the properties of the solutions. Basically, fluxes on
the internal manifold back react via their energy density, and therefore, M can a priori not be flat
anymore. In particular, the internal space is no longer Calabi-Yau: Rmn 6= 0. The presence of fluxes
also modifies the SUSY conditions, as we can see from (2.2.8) and (2.2.9). When going to the internal
space, one typically gets non-zero right handsides in (2.2.20) or in (2.2.21) that depend on the fluxes.
For instance the internal components of the gravitino become

δψ1
m = (Dm +

1

4
Hm)η1

++ 6Fmη1
++ 6Fmη2

+ , (2.2.25)

δψ2
m = (Dm +

1

4
Hm)η2

++ 6Fmη2
++ 6Fmη1

+ . (2.2.26)

One of the oldest example of flux vacua is given by heterotic backgrounds with non-zero H-flux
[18, 19]. Already in this context one can see that, in presence of fluxes, the manifold turned out to
be only complex since J is not closed anymore (see (2.2.21)). For certain flux solutions, the manifold
does not differ much from a CY: it can be only a conformal CY, where the conformal factor can be
taken in some limit to 1. But in other cases like the heterotic example, the deviation from the CY
can be more dramatic. The topology can differ, which makes no smooth limit to the CY possible.
The typical example is the twisted tori: a non-trivial fibration of circles over a torus. We will study
some of them (nilmanifolds, solvmanifolds) in more details.

It is therefore natural to ask if, for flux backgrounds, it is still possible to say something about the
geometry of the internal manifold. A mathematical characterisation of the internal manifold has been
given for type II compactifications to Minkowski [4, 5]: in presence of fluxes, the internal manifold
has to be a Generalized Calabi-Yau (GCY). This definition relies on the formalism of Generalized
Complex Geometry (GCG), a mathematical framework recently developed by Hitchin and Gualtieri
[6, 7]. The Generalized Calabi-Yau condition is obtained by a rewriting of the SUSY conditions in
presence of fluxes in terms GCG objects. This condition on M is unfortunately only necessary, on
the contrary to the CY condition. As we will see later on, the remaining conditions are mainly due
to the presence of RR fields, which are not really incorporated in this formalism. Note that further
developments to include them have been proposed [20, 21, 22].

GCG can describe manifolds which are complex, symplectic, or partially complex and partially
symplectic. One can define a more general structure, the generalized complex structure, which incor-
porates all the previous cases in one formalism and this helps to understand the zoology of manifolds
appearing in presence of fluxes. For instance, nilmanifolds, even if they do not always have a complex
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or symplectic structure, are proved to be all GCY (which is a subcase of generalized complex) [23].
So they will be of particular interest for us.

As we will see in more details, this formalism has the advantage to incorporate in a natural way
an O(6, 6) action which includes the T-duality group. We would like to mention that Generalized
Complex Geometry has interesting applications, not only in supergravity, but also in the world-sheet
approach to string theory. For these applications see for instance [24, 25, 26].

2.3 Basics of Generalized Complex Geometry

In this section, we give basic notions of GCG that will be needed in the rest of the thesis. We will
particularly discuss the O(d, d) action, generalized vielbein and pure spinors. The latter will then be
used to rewrite the SUSY conditions and show that a necessary condition for N = 1 SUSY vacua is
for the internal manifold to be a Generalized Calabi-Yau.

2.3.1 Generalized tangent bundle and O(d, d) transformations

Generalized complex geometry is the generalization of complex geometry to the sum of the tangent
and cotangent bundle of a manifold

TM ⊕ T ∗M (2.3.1)

Thus it treats vectors and one-forms on the same footing. Sections of TM⊕T ∗M are called generalized
vectors and we will denote them as

V = (v + ξ) ∈ TM ⊕ T ∗M (2.3.2)

In fact it is possible to include a two-form potential B by defining a connective structure of a gerbe.
Then one considers the generalized tangent bundle E of a d-dimensional manifold M , where E is a
non-trivial fibration of T ∗M over TM

T ∗M →֒ E
↓
TM

(2.3.3)

The sections of E are called generalized vectors and can be written locally as the sum of a vector and
a one-form

V = v + ξ =

(
v
ξ

)
∈ TM ⊕ T ∗M . (2.3.4)

The patching of the generalized vectors between two coordinate patches Uα and Uβ is given by

v(α) + ξ(α) = A(αβ)v(β) +
[
A−T(αβ)ξ(β) + ιA(αβ)v(β)

dΛ(αβ)

]
. (2.3.5)

or in vector notation (
v
ξ

)

(α)

=

(
A 0

−dΛ A A−T

)

(αβ)

(
v
ξ

)

(β)

. (2.3.6)

A(αβ) is an element of GL(d,R), and gives the usual patching of vectors and one-forms. To simplify

notations we set A−T = (A−1)T . We denote by ι a contraction. dΛ(αβ) is a two-form which gives an
additional shift to the one-form. It is due to the non-trivial fibration of T ∗M over TM . The one-form
Λ(αβ) satisfies

Λ(αβ) + Λ(βγ) + Λ(γα) = g(αβγ)dg(αβγ) (2.3.7)

on Uα ∩ Uβ ∩ Uγ and g(αβγ) is a U(1) element. Therefore, the shift dΛ(αβ) corresponds to a gauge
transformation of the B-field, when going from Uα to Uβ.
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From the string theory point view, it is very natural to consider such a connective structure: the
two-form B will correspond to the B-field of SUGRA.
E is equipped with a natural metric, defined by the coupling of vectors and one-forms

η(V, V ) = ιvξ ⇔ V T ηV =
1

2

(
v ξ

) (0 1
1 0

) (
v
ξ

)
. (2.3.8)

The metric is left invariant by O(d, d) transformations

OT ηO = η . (2.3.9)

where O is a 2d× 2d matrix

O =

(
a b
c d

)
(2.3.10)

satisfying

aT c+ cTa = 0 (2.3.11)

bTd+ dT b = 0 (2.3.12)

aTd+ cT b = I . (2.3.13)

O(d, d) transformations act on the generalized vectors in the fundamental representation

V ′ = OV =

(
a b
c d

)(
v
ξ

)
. (2.3.14)

The O(d, d) group can generated by GL(d) transformations, B-transforms, and β-transforms, re-
spectively given by (

A 0
0 A−T

)
,

(
I 0
B I

)
,

(
I β
0 I

)
, (2.3.15)

where A ∈ GL(d), and B and β are d × d antisymmetric matrices. When acting on forms, the last
two elements correspond respectively to a two-form and a bi-vector (acting with two contractions),
as we will see with the spinorial representation.

A famous example of O(d, d) transformation in string theory or supergravity is T-duality. For a
manifold with n isometries, the T-duality group is given by O(n, n) and it can be embedded trivially
in the O(d, d) group acting here. In particular, the T-duality group element corresponding to Buscher
rules is given by

OT =




0n In

Id−n 0d−n
In 0n

0d−n Id−n


 . (2.3.16)

Even if O(d, d) preserves the metric η, the structure group of E is only a subgroup Ggeom ⊂ O(d, d).
It is given by the patching conditions (2.3.6), so it is the semi-direct product Ggeom = GL(d) ⋉GB ,
generated by the GL(d) transformations and the B-transforms. The embedding of Ggeom ⊂ O(d, d)
is fixed by the projection π : E → TM . It is the subgroup which leaves the image of the related
embedding T ∗M → E invariant.

GCG, via the generalized tangent bundle E, gives a geometric picture of the whole NSNS sector
of supergravity (we will discuss the dilaton further on). In addition, it incorporates naturally the
T-duality action in a covariant way. These are arguments in favour of the use of this formalism in
supergravity.
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2.3.2 Generalized metric and vielbein

In addition to η, one can introduce the generalized metric on E which combines the metric g on M
and the B-field into a single object

H =

(
g −Bg−1B Bg−1

−g−1B g−1

)
. (2.3.17)

One way to justify this definition is to introduce a split of the bundle E into two orthogonal d-
dimensional sub-bundles E = C+ ⊕ C− such that the metric η decomposes into a positive-definite
metric on C+ and a negative-definite metric on C−. The two sub-bundles are defined as

C± = {V ∈ TM ⊕ T ∗M : V± = v + (B ± g)v} , (2.3.18)

and have a natural interpretation in string theory compactified in a six-dimensional manifold as the
right and left mover sectors. Then the generalized metric is defined by

H = η|C+
− η|C− . (2.3.19)

The gluing conditions on the double overlaps for the metric and B-field are

g(α) = g(β), B(α) = B(β) − dΛ(αβ) . (2.3.20)

A length (square) element would be given by dXTHdX, where

dXM =

(
dym

∂m

)
. (2.3.21)

The generalized metric H transforms under O(d, d) as

H 7→ H′ = OTHO . (2.3.22)

Actually expression (2.3.17) is well known from the study of T-duality, where it parametrizes the
moduli of d-dimensional toroidal compactifications, and indeed its transformation under O(d, d) is
the same as in standard T-duality O(n, n).

We can also introduce generalized vielbein E . They parametrize the coset O(d, d)/O(d) × O(d),
where the local O(d) × O(d) transformations play the same role as the local Lorentz symmetry for
ordinary vielbein. There are many different conventions one could use to define the generalized
vielbein, which are connected by local frame transformations. Here we define them as

E =

(
e 0

−e−TB e−T

)
, (2.3.23)

where e are the ordinary vielbein, eT e = g, and the E are such that

η = ET
(

0 I

I 0

)
E , H = ET

(
I 0
0 I

)
E . (2.3.24)

In terms of indices, it is clear that the generalized vielbein are written as EAM , where A are generalized
frame indices, while M are the space E indices.

The generalized vielbein parametrize the coset O(d, d)/O(d)×O(d). From the previous expressions,
it is clear that the O(d, d) transformation O acts on the right, while the O(d)×O(d) acts on the left:

E 7→ E ′ = KEO , O ∈ O(d, d) , K ∈ O(d)×O(d) . (2.3.25)
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Note that the choice of generalized vielbein (2.3.23) is invariant under the Ggeom subgroup of O(d, d)
transformations. Furthermore, note that the B-field enters in E exactly as an ordinary connection
one-form would enter, in the off-diagonal part, and transforms under Ggeom as a connection would,
with a gauge transformation.

One can a priori choose a different set of vielbein for the left and right mover sectors, or equivalently
for C±

g = eT±e± or gmn = ea±me
b
±nδab , (2.3.26)

g−1 = ê±ê
T
± or gmn = êm±aê

n
±bδ
ab , (2.3.27)

and e±ê± = ê±e± = I. Each of the two sets is acted upon by one of the local O(d) groups. The
expression for the generalized vielbein then becomes

E =
1

2

(
(e+ + e−) + (êT+ − êT−)B (êT+ − êT−)
(e+ − e−)− (êT+ + êT−)B (êT+ + êT−)

)
. (2.3.28)

Since the supergravity spinors transform under one or the other of the O(d) groups, it is natural to
use the local frame transformations to set e+ = e− so that the same spin-connections appear, for
instance, in the derivatives of the two gravitini. Explicitly, the O(d)×O(d) action has the form

E 7→ KE , K =
1

2

(
O+ +O− O+ −O−
O+ −O− O+ +O−

)
, (2.3.29)

where O± are the O(d) transformation acting on the vielbein e±. With this choice the generalized
vielbein reduce to those in (2.3.23). Notice that locally it is always possible to put the generalized
vielbein in standard lower triangular form (2.3.23). A different issue is whether this can be done
globally. In [27], such a distinction has been used to propose a criterion for non-geometry [27].
Suppose that for a given background the generalized vielbein E has the generic structure (2.3.28)
(T-duality for instance gives vielbein of this form). Then if the transformation (2.3.29) bringing
a generic E into the lower triangular form is not globally defined the corresponding background is
non-geometric. See appendix C.2 for an illustration.

2.3.3 Spinors in GCG

One can define spinors on E. Given the metric η, the Clifford algebra on E is Cliff(d, d)

{Γm,Γn} = {Γm,Γn} = 0 , {Γm,Γn} = δmn , (2.3.30)

with m, n = 1 . . . d. The Spin(d, d) spinors are Majorana–Weyl. The positive and negative chirality
spin bundles, S±(E), are isomorphic to even and odd forms on E. It is easy to see that, locally, the
Clifford action of V = (v, ξ) ∈ E on the spinors can indeed be realized as an action on forms

V ·Ψ = (vmΓm + ξmΓm)Ψ = ιvΨ + ξ ∧Ψ , (2.3.31)

with Γn = dxn∧ and Γm = ι∂m . One gets

(V1V2 + V2V1) ·Ψ = 2η(V1, V2)Ψ , (2.3.32)

as required. Therefore, these O(d, d) spinors can be understood as polyforms, i.e. sums of forms of
different degrees

Ψ± ∈ L⊗ Λeven/oddT ∗M
∣∣∣
Uα

. (2.3.33)
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The isomorphism is determined by the trivial line bundle L, whose sections are given in terms of the
10-dimensional dilaton, e−φ ∈ L. L is needed in order for the spinors to transform correctly6 under
GL(d).

The spinors are not globally defined on E. At the overlap of two patches they transform as

Ψ±(α) = e−dΛ(αβ)Ψ±(β) . (2.3.35)

We define the O(d, d) generators in the spinorial representation as

σMN = [ΓM ,ΓN ] , (2.3.36)

with M,N d+ d indices. Then the group element in the spinorial representation is

O = e−
1
4

ΘMNσ
MN

. (2.3.37)

The matrix ΘMN is antisymmetric and reads

ΘMN =

(
amn βmn

Bmn −a nm

)
, (2.3.38)

where amn, Bmn and βmn parametrize the generators of the GL(d) transformations, B-transform and
β-transform, respectively. In particular, the GL(d) action is given by [7]

Oa = e−
1
4

(amn[Γm,Γn]−a n
m [Γm,Γn])

= e−
1
2

Tr(a)+amndxn∧ ι∂m

=
1√

detA
ea
m
ndxn∧ ι∂m . (2.3.39)

Similarly, for B and β-transforms, we obtain

OB = e−
1
2
BmnΓmn = e−

1
2
Bmndxm∧dxn∧ , (2.3.40)

Oβ = e−
1
2
βmnΓmn = e−

1
2
βmnιmx ιnx, (2.3.41)

that we write loosely as
OB = e−B , Oβ = e−βx . (2.3.42)

The last three transformations are actually connected to the identity. Therefore, working out their
spinorial representation is easy. Indeed, in principle, they can be written as an exponential, so one
can read the parameters of the transformation ΘMN out of it. It is not the case of the T-duality, as
one can see from (2.3.16). Nevertheless, a spinorial operator can still be worked out, and according
to [28, 29, 27], it is given by

T = dt ∧+ιtx , (2.3.43)

for a T-duality in the t direction.
Elements connected to the identity are Spin(d, d) elements. As we act on complex spinors, if one

wants to perform a general Pin(d, d) transformation, one could also allow for a phase transformation

O±c = eiθ
±
c O , (2.3.44)

where the indices ± will used further when acting on Ψ±. This phase can be can understood equiv-
alently the following way. The isomorphism (2.3.33) is defined up to a multiplication by a complex

6The dilaton transforms under O(d, d) as

eφ
′

= eφ
[

det(g′)

det(g)

] 1
4

. (2.3.34)
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number and, in general, defines line bundles of spinors (the line L can be understood as complex,
i.e. does not contain only the dilaton). On symplectic or complex manifolds, this line bundle can be
trivialized, so we can fix this phase and have global spinors (these are manifolds with vanishing first
Chern-class). In general this condition is not satisfied. When transforming the spinors, one could
a priori change the section of this complex line bundle L, and so one can allow for a phase as in
(2.3.44). By a slight abuse of language, we will refer to the lines of spinors as simply spinors.

2.4 Pure spinors of GCG and SUGRA vacua

An important observation that allows to connect GCG with supersymmetry compactifications in
string theory is that Cliff(6, 6) pure spinors can be written as tensor product of Cliff(6) spinors. In
this section we will see that it is possible to translate the topological requirement of having globally
defined spinors on M to the requirement that the structure group on E must be SU(3) × SU(3).
Similarly the closure of the SUSY spinors is equivalent to a set of differential equations on the pure
spinors.

2.4.1 Internal spinors and GCG pure spinors

Let us first consider spinors on TM ⊕ T ∗M . As discussed, these are Majorana-Weyl Cliff(d, d)
spinors, and they can be seen as polyforms: sums of even/odd differential forms, which correspond
to positive/negative chirality spinors. We will be interested in pure spinors. These are vacua of the
Cliff(d, d): a Cliff(d, d) spinor is pure if it is annihilated by half of the Cliff(d, d) gamma matrices.

Cliff(6, 6) pure spinors on TM ⊕ T ∗M can be obtained as tensor products of Cliff(6) spinors, since
bispinors are isomorphic to forms via the Clifford map

C =
∑

k

1

k!
C

(k)
i1...ik

dxi1 ∧ . . . ∧ dxik ↔ C =
∑

k

1

k!
C

(k)
i1...ik

γi1...ik , (2.4.1)

and in six dimensions, any Cliff(6) spinor is pure.
In the supergravity context, it is therefore natural to define the Cliff(6, 6) pure spinors on TM⊕T ∗M

as a bi-product of the internal supersymmetry parameters

Φ+ = η1
+ ⊗ η2†

+ ,

Φ− = η1
+ ⊗ η2†

− . (2.4.2)

They can be seen as polyforms via the Fierz identity

η1
+ ⊗ η2†

± =
1

8

6∑

k=0

1

k!

(
η2†
± γµk ...µ1η

1
+

)
γµ1...µk . (2.4.3)

The explicit expressions of the two pure spinors depend on the form of the spinors η1 and η2. We
choose to parametrize these spinors as

η1
+ = aη+ ,

η2
+ = b(k||η+ + k⊥

zη−
2

) . (2.4.4)

η+ and χ+ = 1
2zη− in (2.4.4) define an SU(2) structure (see section 2.2.2). k|| is real and 0 ≤ k|| ≤ 1,

k⊥ =
√

1− k2
||. a and b are complex numbers related to the norms of the spinors ηi+

a = ||η1
+|| eiα , b = ||η2

+|| eiβ . (2.4.5)
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In the following, we will always take |a| = |b|, so that ||η1
+|| = ||η2

+||. This condition is implied by the
presence of supersymmetric sources, or equivalently by the orientifold projection [30, 29].

Depending on the values of the parameters k|| and k⊥, one can define different G-structures on the
internal manifold. k|| and k⊥ can be related to the “angle” between the spinors. Let us introduce the
angle ϕ

k|| = cos(ϕ), k⊥ = sin(ϕ), 0 ≤ ϕ ≤ π

2
. (2.4.6)

For k⊥ = 0, the spinors become parallel, so there is only one globally defined spinor, and this
corresponds to an SU(3) structure. When k⊥ 6= 0, the two spinors are genuinely independent, so we
get an SU(2) structure [31]. In that case, we will need to further distinguish the two cases k|| = 0
and k|| 6= 0. We call them orthogonal SU(2) structure and intermediate SU(2) structure respectively,

in reference to the angle between the spinors. We get the following pictures7:

η1
+

η2
+

η1
+

η2
+

ϕ

η1
+

η2
+

SU(3) structure: Intermediate SU(2) structure: Orthogonal SU(2) structure:
k|| = 1, k⊥ = 0 k|| 6= 0, k⊥ 6= 0 k|| = 0, k⊥ = 1

Figure 2.1: The different structures

Given the parametrization (2.4.4) of the internal spinors, we can obtain explicit expressions for the
pure spinors as polyforms [32]

Φ+ =
|a|2
8
eiθ+e

1
2
z∧z(k||e

−ij − ik⊥ω) ,

Φ− = −|a|
2

8
eiθ−z ∧ (k⊥e

−ij + ik||ω) , (2.4.9)

where the forms are defined in section 2.2.2 and the phases θ± are related to the phases of the spinors
ηi: θ+ = α− β, θ− = α+ β.

A pure spinor can always be written as [7] ωk ∧ eb̃+iω̃ where ωk is a holomorphic k-form, and b̃ and
ω̃ are real two-forms. The rank k of ωk is called the type of the spinor. For the intermediate SU(2)
structure where both k|| and k⊥ are non-zero, it is possible to “exponentiate” ω and get from (2.4.9)

Φ+ =
|a|2
8
eiθ+k|| e

1
2
z∧z−ij−i k⊥

k||
ω
,

Φ− = −|a|
2

8
eiθ−k⊥ z ∧ e−ij+i

k||
k⊥
ω
, (2.4.10)

7As a comparison to (2.2.19), one can work out the embedding of the defined SU(2) structure in the SU(3) structure

defined by
η2

+

||η2
+
|| (J̃ and Ω̃). It is given by the previous U(1) parameter ϕ [31]:

J̃ = cos(2ϕ)j +
i

2
z ∧ z + sin(2ϕ) Re(ω) , (2.4.7)

Ω̃ = − sin(2ϕ)z ∧ j + z ∧ (cos(2ϕ) Re(ω) + i Im(ω)) . (2.4.8)
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so that the spinors have definite types: 0 and 1. In the case of the SU(3) structure (k⊥ = 0), we get
that pure spinors are of type 0 and 3

Φ+ =
|a|2
8
eiθ+e−iJ , Φ− = −ieiθ− |a|

2

8
Ω , (2.4.11)

while in the case of the orthogonal SU(2) structure (k|| = 0), the types are 1 and 2:

Φ+ = −i |a|
2

8
eiθ+ω ∧ e 1

2
z∧z̄ , Φ− = −|a|

2

8
eiθ−z ∧ e−ij . (2.4.12)

If a pure spinor is closed, its type k serves as a convenient way of characterising the geometry. The
manifold then admits a complex structure along 2k real directions, and a symplectic structure along
d− 2k directions.

So far, we discussed Φ± defined in (2.4.2): these are pure spinors on TM ⊕ T ∗M [7]. Out of these,
one can get pure spinors on E. The latter are the proper ones to act on with an O(d, d) transformation,
as discussed in the previous section. To get them, one should insert the proper dependence in B-field
(brings to E) and dilaton (gives the line bundle L). So we define the “normalized” pure spinors8 Ψ±
on E as

Ψ± = 8 e−φe−B
Φ±
||Φ±||

, (2.4.13)

where we define the norm of a polyform via the Mukai pairing9, as 8〈Φ±,Φ±〉 = −i||Φ±||2V , and V

is the volume form. Out of (2.4.2), we get
〈

Φ±,Φ±
〉

= − i8 ||η1
+||2||η2

±||2V , i.e. ||Φ±|| = |ab|. So we

get for instance for an SU(3) structure

Ψ+ = eiθ+e−φe−B e−iJ , (2.4.15)

Ψ− = −ieiθ−e−φe−BΩ . (2.4.16)

The existence of a pure spinor reduces the structure group of E from O(d, d) to U(d/2, d/2). If the
associated line bundle of complex differential forms can be trivialized, the structure group is reduced
to SU(d/2, d/2). It can be further reduced in presence of a second compatible pure spinor. Two pure
spinors are said to be compatible when they have d/2 common annihilators. This can be rephrased
in a set of compatibility conditions the spinors must satisfy. Given the action of a generalized vector
on a polyform (2.3.31), the compatibility conditions of two pure spinors Φ1 and Φ2 read

〈
Φ1,Φ1

〉
=
〈
Φ2,Φ2

〉
6= 0 ,

〈Φ1, V · Φ2〉 =
〈
Φ1, V · Φ2

〉
= 0, ∀ V ∈ TM ⊕ T ∗M . (2.4.17)

The existence of a second compatible pure spinor reduces the structure group from U(d/2, d/2) to
U(d/2)×U(d/2) (or equivalently from SU(d/2, d/2) to SU(d/2)×SU(d/2) when the line bundles of
the complex differential forms can be trivialized).

In our case, the pure spinors Φ± (2.4.2) are compatible, so such a pair defines an SU(3) × SU(3)
structure on TM ⊕ T ∗M . Depending on the relation between the spinors η1,2

+ , this translates on
TM into the SU(3), orthogonal SU(2) or intermediate SU(2) structures discussed above. So the
formalism of GCG provides a unified topological requirement for the manifold M : for a N = 1

8They are also called twisted pure spinors, because of the B-field.
9The Mukai pairing for two polyforms Zi is defined as

〈Z1, Z2〉 = (Z1 ∧ λ(Z2))top , (2.4.14)

where top selects the top-form, and λ has been defined in (2.2.3).
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vacuum, one should find on TM ⊕ T ∗M an SU(3)× SU(3) structure (equivalent to having a pair of
internal spinors).

In practice, we will verify that our vacua admit a pair of compatible pure spinors. One can actually
show (see appendix A.2.2) that the “wedge” structure conditions (2.2.14), or (2.2.16) and (2.2.17),
imply the compatibility conditions in any of the three cases, so one can verify these conditions instead.

2.4.2 SUSY conditions

The SUSY conditions are given by the annihilation of the fermionic variations (2.2.8) and (2.2.9) of
type II SUGRA. According to the decomposition of the ten-dimensional supersymmetry parameters
(2.2.11) and (2.2.12), into a four and six dimensional factors, we can split the SUSY variations into
external (4d) and internal (6d) components. In [5] it was shown that such a system of equations can
be rewritten as a set of differential conditions on the pair (2.4.2) of compatible pure spinors

(d−H∧)(e2A−φΦ1) = 0 , (2.4.18)

(d−H∧)(eA−φRe(Φ2)) = 0 , (2.4.19)

(d−H∧)(e3A−φ Im(Φ2)) =
|a|2
8
e3A ∗ λ(F ) , (2.4.20)

with λ defined in (2.2.3), and with

Φ1 = Φ± , Φ2 = Φ∓ , (2.4.21)

for IIA/IIB (upper/lower). Later on, we will take |a|2 = eA. These SUSY conditions generalize the
Calabi-Yau condition for fluxless compactifications. Indeed, the first of these equations implies that
one of the two pure spinors (the one with the same parity as the RR fields) must be twisted (because
of the −H∧) conformally closed. A manifold admitting a twisted closed pure spinor is a twisted
Generalized Calabi-Yau (GCY, see the precise definition in [6, 7] or [29]). So we will look for vacua
on such manifolds.

We recall from section 2.2.1 that the SUSY conditions and the BI imply together the e.o.m. (for
Minkowski). For intermediate SU(2) structures (for which k⊥k|| is constant) in the large volume limit,

we will get from our SUSY conditions that the H BI is automatically satisfied. So only the RR BI
will have to be checked.

2.5 Outline of the thesis

In chapter 1 and in this chapter, we motivated our search of supersymmetric vacua of ten-dimensional
type II SUGRA and we showed that Generalized Complex Geometry provides a natural formalism
to use to study N = 1 flux vacua. Here is now the outline of the rest of the thesis.

Chapter 3 discusses Minkowski supersymmetric ten-dimensional solutions on solvmanifolds (twisted
tori). These manifolds are interesting candidates for such solutions (some subclasses of them are
proved to be GCY), and also provide an easy set-up to explicitly solve the SUSY equations for the
pure spinors and Bianchi identities for the fluxes. After a brief review of their geometric properties
(a more detailed account is provided in appendix B.1), we present the resolution method to look for
solutions, and give a list of known solutions on these manifolds. Then we focus on a particular type
of solutions: those admitting an intermediate SU(2) structure. In order to find them, we have to
adapt slightly the method described, and introduce a particular basis of forms, which simplifies the
orientifold projection conditions, and the SUSY conditions. Appendix B.2 contains details on these
points. Then, we present three solutions found. By taking a limit on these solutions, we are able
to recover known solutions with either SU(3) or orthogonal SU(2) structure, and also find a new
one. Finally, we derive conditions for intermediate SU(2) structure solutions to be β-transforms of
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an SU(3) solution, and show it is the case for one of the solutions found. This chapter is based on
the paper [1] and further unpublished work.

Chapter 4 deals with a particular type of O(d, d) transformation, named the twist, that can be used
to generate new supersymmetric solutions on Minkowski. The idea is first to propose a transformation
which constructs the one-forms of a solvmanifold out of those of a torus. This transformation is then
embedded and extended in GCG as a local O(d, d) transformation, to relate solutions on torus to
solutions on nil- and solvmanifolds. The conditions to generate new supersymmetric solutions are
discussed and used to recover known solutions on nilmanifolds and find a new one on a solvmanifold.
We also present a new, fully localized, solution on a solvmanifold, and discuss the possibility of
obtaining non-geometric backgrounds out of the twist. Finally, we discuss how to write the SUSY
conditions for the heterotic string in terms of pure spinors, and then use the twist to relate some
torsional solutions found in the literature. In the associated appendix C, we come back to the
definition of the twist as a way to construct one-forms, give a list of solvmanifolds, discuss possible
non-geometric T-duals of solvmanifold solutions, and explain a possible extension of the local O(d, d)
transformation to the gauge bundle of heterotic string. This chapter is based on the two papers [2]
and [3].

Chapter 5 discusses the possibility to obtain non-SUSY solutions on a four-dimensional de Sitter
space. The main motivation for such solutions is cosmological, as discussed in chapter 1. We first
explain what are the major difficulties in obtaining supergravity solutions with a positive cosmological
constant. Then we propose an ansatz for SUSY breaking sources, which can help to lift the value
of Λ. This ansatz is based on the idea of preserving some sort of first order equations based on the
SU(3) structure, despite the breaking of SUSY conditions. This idea has already been used to find
non-SUSY solutions. We then provide an example of a de Sitter solution where the internal manifold
is a solvmanifold. This solution can be understood as a deviation from the new SUSY solution found
on a solvmanifold in chapter 4. We also discuss the possibility of generalize the ansatz to find a first
order formalism which would imply, together with BI, the e.o.m., as the SUSY conditions do in the
SUSY case. We end the chapter by a partial four-dimensional analysis of the stability of the solution
found. This chapter is based on the paper [3].

In chapter 6, we summarize the results of this thesis, and present further ideas to be studied.
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Chapter 3

Solutions on solvmanifolds

3.1 Introduction

In the previous chapter, we showed how Generalized Complex Geometry provides an interesting set-up
where to study supersymmetric flux vacua of type II SUGRA, where the ten-dimensional space-time
is split in four-dimensional Minkowski and a six-dimensional internal manifold M . In particular, in
order to have N = 1 Minkowski flux vacua, the internal space must be a Generalized Calabi-Yau
(GCY) manifold.

In this chapter, we discuss whether one can provide explicit examples of GCY flux backgrounds. The
simplest examples of flux vacua consist of a warped CY in type IIB (in the simplest case a warped T 6)
with O3-plane and imaginary self-dual three-form flux. Then a successful approach [33] to produce
new flux vacua is to T-dualise the warped CY solutions. The resulting manifolds are twisted tori, i.e.
fibrations of circles over torus base. Mathematically, these are solvmanifolds: manifolds constructed
out of particular Lie groups called solvable groups. A subset is given by nilpotent groups, out of
which one gets nilmanifolds. The latter have been proved to be all GCY [23], and indeed, some SUSY
vacua on them have been found via T-duality.

Using Generalized Complex Geometry, instead of using dualities, one can actually try to find
vacua on a GCY (like one of the nilmanifolds) by directly solving the SUSY constraints and Bianchi
identities for the fluxes. This is the strategy used in [29] to determine flux vacua on nil- and (some)
solvmanifolds. The authors recovered some known solutions, that had been already obtained by
T-duality from a conformal CY, but also found new, non T-dual, flux vacua. These solutions were
obtained after performing a scan on all six-dimensional nilmanifolds, and among some solvmanifolds.

A scan was possible because the resolution method on these manifolds is rather algorithmic. In
particular, the manifolds considered are parallelizable so they provide through their Maurer-Cartan
forms a six-dimensional basis of globally defined one-forms. Out of these one-forms, one can construct
pure spinors and try to tune their free parameters to get a solution.

Before giving more details on the resolution method and the solutions found, let us first review
briefly the geometric properties of nil- and solvmanifolds. We will be interested in these manifolds
in the rest of this thesis. The rest of the chapter will be dedicated to a particular type of solutions,
those admitting intermediate SU(2) structure. To find such solutions, one has to adapt slightly the
resolution method. We will then give three solutions found, and discuss some relations between them
and solutions with SU(3) or orthogonal SU(2) structure.

3.2 Nil- and solvmanifolds

In this thesis we are interested in string backgrounds where the internal manifold is a nil- or a solv-
manifold. We give in this section an account on their geometric properties.

Nil- and solvmanifolds are homogeneous spaces constructed from nilpotent or solvable groups G,
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nilpotent being actually a particular case of solvable. When the group G is not compact, the manifold
can be made compact by quotienting G by a lattice Γ, i.e. a discrete co-compact subgroup of G. The
dimension of the resulting manifold is the same as that of the group1 G. Here we will focus on mani-
folds of dimension six. It can be proven [34] that a lattice Γ can always be found for nilpotent groups,
while for generic solvable ones its existence is harder to establish. We refer to appendix B.1 for a
detailed discussion of the algebraic aspects and the compactness properties of nil- and solvmanifolds.
Here, we focus on their geometry.

Given a d-dimensional Lie algebra g expressed in some vector basis {E1, . . . , Ed} as

[Eb, Ec] = fa bcEa , (3.2.1)

where fa bc are the structure constants, we can define the dual space of one-forms g∗ with basis
{e1, . . . , ed}. They satisfy the Maurer-Cartan equation

dea = −1

2
fa bce

b ∧ ec = −
∑

b<c

fa bc e
b ∧ ec , (3.2.2)

with the exterior derivative d. Since g∗ ≈ TeG
∗, {e1, . . . , ed} provide, by left invariance, a basis

for the cotangent space TxG
∗ at every point x ∈ G and, thus, are globally defined one-forms on the

manifold. When the manifold is obtained as a quotient with a lattice Γ, the one-forms will have
non-trivial identification through the lattice action2. Nil- and solvmanifolds, as we define them here,
are always parallelizable [36], even if they are not necessarily Lie groups.

The Maurer-Cartan equations reflect the topological structure of the corresponding manifolds. For
example, nilmanifolds all consist of iterated fibrations of circles over tori, where the iterated structure
is related to the descending or ascending series of the algebra (see [23, 37, 38]). This can be easily
seen on a very simple example, the three-dimensional nilmanifold obtained from the three-dimensional
Heisenberg algebra

[E2, E3] = E1 ⇔ de1 = −e2 ∧ e3 . (3.2.3)

The Maurer-Cartan equation is solved by the one-forms

e1 = dx1 − x2dx3 , e2 = dx2, e3 = dx3 . (3.2.4)

From the connection form, −x2dx3 , one can read the topology of the corresponding nilmanifoldM,
which is a non-trivial fibration of the circle in direction 1 on the two-torus in directions 2, 3:

S1
{1} →֒ M

↓
T 2
{23}

(3.2.5)

A nilpotent group is particular case of a solvable group for which the question of compactness
(existence of a lattice) and then the topology of the corresponding nilmanifold (iterated fibrations
of circles) are simpler than for generic solvable groups. Let us now focus on non-nilpotent solvable

1This definition of solvmanifold it is not the most general: one could consider cases where the d-dimensional solv-
manifold is the quotient of a higher dimensional group with a continuous subgroup Γ. This is the case for the Klein
bottle, for instance.

2In general there is a natural inclusion (Λg∗, δ) → (Λ(G/Γ), d) between the Chevalley-Elienberg complex on G and
the de Rham complex of differential forms on G/Γ. This inclusion induces an injection map between cohomology groups
H∗(g)→ H∗dR(G/Γ) which turns out to be an isomorphism for completely solvable groups. We recall that a Lie group
G with Lie algebra g is said to be completely solvable if the linear map adX : g → g only has real roots ∀X ∈ g. Note
that all nilmanifolds are completely solvable and thus the injection is an isomorphism (Nomizu’s theorem [35]), the
extension to non-nilpotent completely solvable groups being the so-called Hattori theorem [36]. For more details and
for a list of Betti numbers of solvmanifolds up to dimension six see [37].
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groups.

Solvable groups are classified according to the dimension of the nilradical n (the largest nilpotent
ideal) of the corresponding algebra. In six dimensions, n can have dimension from 3 to 6. If dim n = 6,
then n = g and the algebra is nilpotent. At the level of the group3 we have that, if dimN < 6, then
G contains an abelian subgroup of dimension k [39, 40]. This means we have G/N = R

k. When the
group admits a lattice Γ, one can show that ΓN = Γ ∩ N is a lattice in N , ΓN = NΓ is a closed
subgroup of G, and so G/(NΓ) = T k is a torus. The solvmanifold is a non-trivial fibration of a
nilmanifold over the torus T k

N/ΓN = (NΓ)/Γ →֒ G/Γ
↓

T k = G/(NΓ)
(3.2.6)

This bundle is called the Mostow bundle [41]. As we shall see, the corresponding fibration can be
more complicated than in the nilmanifold case. In general, Mostow bundles are not principal.

Let us focus on a particular case of non-nilpotent solvable groups, called almost abelian solvable
groups, for which the construction of the Mostow bundle is particularly simple. Consider first almost
nilpotent solvable groups. These are solvable groups that have nilradical of dimension dim N =
dim G− 1. As discussed in appendix B.1.1, the group is then given by the semi-direct product

G = R ⋉µ N (3.2.7)

of its nilradical with R, where µ is some action on N depending on the direction R

(t1, n1) · (t2, n2) = (t1 · t2, n1 · µt1(n2)) ∀(t, n) ∈ R×N . (3.2.8)

In general, we label by t the coordinate on R and by ∂t the corresponding vector of the algebra. From
a geometrical point of view, µ(t) encodes the fibration of the Mostow bundle.

An almost abelian solvable group is an almost nilpotent group whose nilradical is abelian

N = R
dimG−1 . (3.2.9)

In this case, the action of R on N is given by

µ(t) = Ad∂t(n) = et ad∂t (n). (3.2.10)

Another nice feature of almost abelian solvable groups is that a simple criterion exists to determine
whether the associated solvmanifold is compact: the group admits a lattice if and only if there exists
a t0 6= 0 for which µ(t0) can be conjugated to an integer matrix.

As an example, we can consider two three-dimensional almost abelian solvable algebras

ε2 : [E2, E3] = E1 ⇔ de1 = −e2 ∧ e3

[E1, E3] = −E2 ⇔ de2 = e1 ∧ e3 (3.2.11)

ε1,1 : [E1, E3] = E1 ⇔ de1 = −e1 ∧ e3

[E2, E3] = −E2 ⇔ de2 = e2 ∧ e3 . (3.2.12)

In the following, we will label the algebras according to their Maurer-Cartan equations. For instance,
ε2 is denoted by (−23, 13, 0), where each entry i gives the result of dei.

3We denote by n the ideal in the algebra and with N the corresponding normal subgroup.
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For the algebra ε2 : (−23, 13, 0), the nilradical is given by n = {E1, E2} and ∂t = E3. In this basis,
the restriction of the adjoint representation to the nilradical is

ad∂t(n) =

(
0 −1
1 0

)
, (3.2.13)

which gives a µ matrix of the form

µ(t) = et ad∂t (n) =

(
cos(t) − sin(t)
sin(t) cos(t)

)
. (3.2.14)

It is easy to see that, for t0 = nπ2 , with n ∈ Z
∗, µ(t0) is an integer matrix and hence the corresponding

manifold is compact.
For the algebra ε1,1 : (−13, 23, 0) the analysis is less straightforward. The nilradical is n = {E1, E2}

and again ∂t = E3. Then, in the (E1, E2) basis,

ad∂t(n) =

(
−1 0
0 1

)
, µ(t) = et ad∂t (n) =

(
e−t 0
0 et

)
, (3.2.15)

and it is clearly not possible to find a t0 6= 0 such that µ(t0) is an integer. To see whether the group
admits a lattice, we then have to go to another basis. In other words, µ(t0) will be conjugated to an
integer matrix. As in [42], we can define a new basis

E1 →
√
q2

q1

E1 − E2√
2

, E2 →
E1 +E2√

2
, E3 →

√
q1q2E3 , (3.2.16)

with q1, q2 strictly positive constants, such that the algebra reads

[E1, E3] = q2E2 [E2, E3] = q1E1 . (3.2.17)

In this new basis

ad∂t(n) =

(
0 −q1

−q2 0

)
, µ(t) =




cosh(
√
q1q2t) −

√
q1
q2

sinh(
√
q1q2t)

−
√
q2
q1

sinh(
√
q1q2t) cosh(

√
q1q2t)


 , (3.2.18)

so that µ(t) can be made integer with the choice of parameters

t0 6= 0 , cosh(
√
q1q2t0) = n1 ,

q1

q2
=
n2

n3
, n2n3 = n2

1 − 1 , n1,2,3 ∈ Z
∗ . (3.2.19)

Thus also the algebra ε1,1 can be used to construct compact solvmanifolds. Notice that the values
q1 = q2 = 1 are not allowed by the integer condition (3.2.19).

t2µ( )

t1( )µ

t

Figure 3.1: Mostow bundle for the solvmanifolds ǫ2 and ǫ1,1. The base is the circle in the t direction,
and due to the nilradical being abelian the fiber is T 2. The fibration is encoded in µ(t) which is either
a rotation or a “hyperbolic rotation” twisting the T 2 when moving along the base.
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3.3 Resolution method and known solutions

As discussed in the introduction, nil- and solvmanifolds (twisted tori) are interesting candidates as
internal manifolds, to find Minkowski supersymmetric flux backgrounds of type II SUGRA. In par-
ticular, all nilmanifolds are proved to be GCY [23], a necessary requirement on the internal manifold.
In section 2.4, the constraints to get a supersymmetric solution were rewritten in terms of GCG. One
can now look for solutions on these non-CY manifolds, by performing a direct resolution of these
constraints, instead of using dualities. Let us give this algorithmic resolution method.

We recall that to obtain a Minkowski SUSY flux background, it is enough to solve the SUSY condi-
tions and the BI of the fluxes: the e.o.m. are then automatically satisfied. Having a supersymmetric
background implies both a topological requirement and a differential requirement. The first one is
equivalent to the existence of a pair of compatible pure spinors, which gives an SU(3)×SU(3) struc-
ture on E. The second asks this pair to satisfy the SUSY conditions of section 2.4.2. Furthermore,
to find a solution the flux must satisfy the BI. For SUSY solutions, the BI are equivalent to the tad-
pole cancellation conditions. In particular, for a compact internal manifold, the tadpole cancellation
requires the presence in the sources of an O-plane. Then the solution must be invariant under the
projection defining the O-plane.

For nil- and solvmanifolds, the search for flux vacua is basically algorithmic. The method goes as
follow. Given the algebra defining the manifold, one first looks at the O-planes that are compatible
with the algebra. Since nil- or solvmanifold are parallelizable manifolds, they admit a basis of real
globally defined one-forms em, m = 1 . . . 6, that satisfy the Maurer-Cartan equation (3.2.2). The
orientifold projection should leave the set of Maurer-Cartan equations invariant.

For a given O-plane, the first step consists in obtaining general expressions (in terms of the em) for
the two compatible pure spinors which are also compatible with the orientifold projection. To write
compatible pure spinors we will use the properties of SU(3) and SU(2) structures. In particular, once
we have written the pure spinors in terms of the forms defining a given structure (2.4.9), the com-
patibility of the pure spinors is assured by the structure conditions on the forms. The compatibility
with the O-plane still has to be satisfied.

The second step consists in solving the SUSY conditions of section 2.4.2

(d−H∧)(e2A−φΦ1) = 0 , (3.3.1)

(d−H∧)(eA−φRe(Φ2)) = 0 , (3.3.2)

(d−H∧)(e3A−φ Im(Φ2)) =
|a|2
8
e3A ∗ λ(F ) . (3.3.3)

More precisely, we solve for a closed pure spinor, (3.3.1), and impose the closure of half of the second
one (3.3.2). Then we use the third equation, (3.3.3), as a definition of the RR fluxes. Moreover, from
the two first equations, one is allowed also to determine the H flux and the dilaton.

To solve the first two equations, one simply has to tune the coefficients in the general expression
for the pure spinors. Note that this resolution is greatly simplified if one considers all the coefficients
to be constant. This is also means that we work in the large volume limit, where the warp factor is
equal to one and the sources are smeared. Even if this approximation can be justified, one can try to
reintroduce the warp factor afterwards to localize the solution. Techniques to do so were proposed in
[29], and these are successful for solutions with one source. Two intersecting sources are not easy to
fully localize. In that case, one can still try partial smearing [43, 44].

In the third step, one asks whether the RR fluxes obtained by equation (3.3.3) can solve the Bianchi
identities (2.1.12) with allowed sources. Since (2.4.20) gives the Hodge dual of the fluxes, we need the
metric to explicitly use the Hodge star. The metric is defined by the two pure spinors, or equivalently
by the structure forms. Out of the holomorphic forms, one deduces the holomorphic directions.
Then, the hermitian metric is given in terms of the Kähler form and the almost complex structure
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(J λ
µ = iδ λµ , J λ

µ = −iδ λµ ) by

gµν = −J λ
µ Jλν gµν = −J λ

µ Jλν . (3.3.4)

The metric in the em basis is obtained by a simple change of basis. Given the metric, one can compute
the RR fluxes explicitly. Then we act with the exterior derivative on the RR fluxes, and determine
what sources are present. As we consider smeared sources, the BI give directly the directions of the
covolumes V i of the cycles wrapped by the sources. So we write the BI generically as

(d−H∧)F =
∑

i

QiV
i , (3.3.5)

where Qi is the charge of the source i. To compute the correct normalisation of the covolumes, we
use the fact the covolume can be understood as the Poincaré dual of the form calibrating the source.
This yields the following identity (see appendix B.3) [45, 30, 46, 11] in the large volume limit:

〈
V i, e−φ Im(Φ2)

〉
=

1

8gs
V . (3.3.6)

Once we have identified V i, we read the source charge out of (3.3.5). If it is negative, we conclude
we have an orientifold. We should first check that the orientifold initially considered is present. For
the other sources, we check whether their directions, read out of the covolumes, are allowed by the
calibration conditions. Furthermore, in the case of an unexpected O-plane, we have to verify that the
manifold and the solution forms are compatible with its projection. If there appear sources that are
not allowed for one of these two reasons, one has to further tune the coefficients if possible, to get rid
of them.

Using this method, the authors of [29] found the following solutions on nilmanifolds with non-trivial
fluxes.

IIA

M Algebras O4 O6

t:12 t:30 t:12

n 3.5 (0, 0, 0, 12, 13, 23) 456
n 5.1 (0, 0, 0, 0, 0, 12 + 34) 6
n 5.2 (0, 0, 0, 0, 0, 12) 6

IIB

Algebras O5

t:30 t:12

n 3.14 (0, 0, 0, 12, 23, 14 − 35) 45 + 26
n 4.4 (0, 0, 0, 0, 12, 14 + 23) 56 56
n 4.5 (0, 0, 0, 0, 12, 34) 56 56
n 4.6 (0, 0, 0, 0, 12, 13) 56 56
n 4.7 (0, 0, 0, 0, 13 + 42, 14 + 23) 56 56
n 5.1 (0, 0, 0, 0, 0, 12 + 34) 56 56

Table 3.1: Solutions on nilmanifolds, out of [29]

In the first column is given the name of the manifold, associated to the name of the algebra, out
of the labelling of [29]. In the second column, the algebra is given in some basis of one-forms. Each
entry m of the algebra gives the result of dem (notation of section 3.2). For instance for n 3.14, we
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have de1 = de2 = de3 = 0, de4 = e1 ∧ e2, etc. In the other columns are indicated the directions
wrapped by the O-plane in terms of this basis. The types of the pair of pure spinors are specified
(t:ĳ), giving equivalently the kind of G-structure considered (see section 2.4.1). In particular, note
that no intermediate SU(2) structure solution is given, which will be the main subject of the rest of
the chapter.

Similarly, few solutions are known on non-nilpotent solvmanifolds [47, 29, 1]:

IIA

M Algebras O6

t:30 t:12

s 2.5 (25,−15, r45,−r35, 0, 0)
136 + 246
146 + 236

136 + 246
146 + 236

g
1,−1,−1
5.7 ⊕ R (q125, q215, q245, q135, 0, 0)

136 + 246
146 + 236

IIB

Algebras O5

t:30 t:12

s 2.5 (25,−15, r45,−r35, 0, 0)
13 + 24
14 + 23

13 + 24
14 + 23

Table 3.2: Solutions on non-nilpotent solvmanifolds

Among all these solutions, the only ones not T-dual to a warped T 6 configuration are those on
n 3.14, s 2.5 and g

1,−1,−1
5.7 ⊕ R. They all have two intersecting sources4. We will come back in more

details to these solutions.

In the rest of the thesis, we will construct new solutions with non-trivial fluxes, that are not in
these tables. First we will present intermediate SU(2) structure solutions on n 3.14 and s 2.5. The
analysis of [29] did not take into account the possibility of such a structure in presence of an O-plane.
Some examples of intermediate SU(2) structure solutions were found in [11] via T-dualities from a
warped T 6 with an O3. Here we extend the analysis of [29]: using a similar method, we find new
vacua with intermediate SU(2) structure that cannot be T-dualized back to a warped T 6 with an
O3.

In chapter 4, we present two other new solutions. One is fully localized with one O6-plane on
s 2.5. To find it, the method described here is modified: the warp factor is introduced back before
computing the RR fluxes. The localisation proposal of [29] would not work because the solution is
fluxless in the large volume limit. The other solution presented in chapter 4 is found in IIA on a
solvmanifold not considered so far. It is given by the algebra g

p,−p,r
5.17 ⊕R which can be understood as

the sum

g
p,−p,r
5.17 ⊕ R ≈ s 2.5 + p(̇g1,−1,−1

5.7 ⊕ R) , (3.3.7)

where p is a real parameter. Therefore, the solution found can be seen as a sum of the two solutions of
the previous table. This solution is found by using another method than the one presented here. As
we will discuss in the next chapter, this solution is found by using a particular O(d, d) transformation,
the twist transformation.

4The solutions on n 3.14 and g
1,−1,−1
5.7 ⊕R have two O-planes, while those on s 2.5 have one O-plane and one D-brane.
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3.4 Intermediate SU(2) structure solutions

The method just described allows to find solutions which cannot be obtained by T-duality from
a warped T 6 solution. This is the strategy used in [29], where such solutions were obtained on a
nilmanifold n 3.14 and a solvmanifold s 2.5 (see previous tables). On these manifolds, only SU(3) or
orthogonal SU(2) structure solutions were looked for, because only those seemed to be compatible
with the orientifold projection. Actually, intermediate SU(2) structures5 can also be compatible with
the orientifold projection, when one allows a mixing of the usual SU(2) structure forms [11]. Solutions
with such a structure have then been constructed [11], starting from a warped T 6 with an O3 and
performing some specific T-dualities. Here, we rather apply the method described in the previous
section to find non T-dual solutions with intermediate SU(2) structure.

The orientifold projection conditions are not easy to solve for a generic intermediate SU(2) struc-
ture. Therefore, we introduce different variables6 which help to rewrite them in a more tractable
way. The SUSY conditions also get simplified in terms of these new variables. This allows us to find
new SUSY four-dimensional Minkowski flux vacua of type II string theory with intermediate SU(2)
structure. These vacua are not T-dual to a warped T 6 with an O3 because the manifolds on which
we find them, the same as in [29], do not have the appropriate isometries.

In addition, by going to the limit in which the two internal spinors are parallel or orthogonal, we
recover the solutions of [29], and find a new one with SU(3) structure. Finally, we also look at the
conditions for an intermediate SU(2) structure solution to be the β-transform of an SU(3) structure
solution, and show that it is the case for one of our solutions.

More details on technical aspects of the resolution are given in appendix B.2.

3.4.1 Orientifold projection conditions

When we consider fluxes on compact manifolds, tadpole cancellation requires the inclusion in the
solutions of O-plane sources. The presence of O-planes implies that the solution has to be invariant
under the action of the orientifold. This imposes some projection conditions on the fields: one has to
mod out by ΩWS(−1)FLσ for O3/O7 and O6, and by ΩWSσ for O5/O9 and O4/O8. ΩWS is a world-
sheet reflection, FL is the left-movers fermion number, and σ is an involution on the target space.
The orientifold action on the GCG pure spinors were worked-out in [50, 29]. It was concluded in [29]
that the orientifold projections are only compatible with SU(3) or orthogonal SU(2) structures. As
shown in [11], intermediate SU(2) structures are also compatible with O5-, O6- and O7-planes, if one
allows a mixing between the two-forms specifying the structure. Here, we will only consider O5- and
O6-planes.

We first repeat the derivation of the orientifold projection conditions of [11] for O5- and O6-planes.
The resulting conditions on the SU(2) structure forms (j, ω and z) appear to be not very tractable.
We then show that it is possible to rewrite these conditions in a more tractable manner, thanks to the
introduction of the projection (eigen)basis. We write the pure spinors in these variables, and discuss
their relation to the dielectric ones [48, 49]. Finally, we also give the supersymmetry conditions in the
projection basis (details on the derivation are in appendix B.2.2), and do the same for some structure
conditions in appendix B.2.1.

5Intermediate SU(2) structures were presented in section 2.4.1. They correspond to type 01 pure spinors, and so
can provide a different geometry.

6We call these new variables the projection basis, i.e. the set of structure forms which are “eigenvectors” for the
projection. These forms define a new SU(2) structure, obtained by a rotation from the usual one. We show that this
SU(2) structure is nothing (modulo a rescaling) but the one appearing with the dielectric pure spinors. These are a
rewriting of the GCG pure spinors, used to study the deformations of four-dimensional N = 4 Super Yang-Mills in the
context of AdS/CFT [48, 49].
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The orientifold projection

As shown in [11], the first step to derive the orientifold projection on the pure spinors is to compute
those for the internal SUSY parameters. This can be done starting from the projection on the ten-
dimensional SUSY spinorial parameters ǫi, and then reducing to the internal spinors ηi±. In our
conventions, we get

O5 : σ(η1
±) = η2

± σ(η2
±) = η1

± , (3.4.1)

O6 : σ(η1
±) = η2

∓ σ(η2
±) = η1

∓ . (3.4.2)

σ is the target space reflection in the directions transverse to the O-plane. Using the expressions for
the internal spinors given in (2.4.4), we obtain the following projection conditions at the orientifold
plane locus:

SU(3) Intermediate SU(2) Orthogonal SU(2)
O5 O6 O5 O6 O5 O6

eiθ+ ±1 free ±1 free free

eiθ− free free Re(eiθ−zµ) || free Re(eiθ−zµ) ||
z free z ⊥ Im(eiθ−zµ) ⊥ z ⊥ Im(eiθ−zµ) ⊥

Table 3.3: Parameters properties at the O-plane locus, according to the source and the G-structure

where µ is a real index, and we assumed that |a| = |b| is invariant under the involution.

As explained in [11], if the G-structures considered are constant, and if we work on nil- or solv-
manifolds, these conditions are valid everywhere, not only on the orientifold plane. We will assume
that the parameters are indeed constant. Furthermore, θ− is not directly fixed by the projection. In
the following, we will set it to zero: θ− = 0. Then, the conditions on the one-form z for an SU(2)
structure can be reexpressed as

O5 : σ(z) = −z ,
O6 : σ(z) = z . (3.4.3)

Following [11], starting from the projections on the ηi±, we derive the projections of the pure spinors
Φ±, and from them those for the SU(2) structure forms (using table 3.3). To do this last step, one has
to know that, as σ is only the reflection due to the orientifold, it can be distributed on every term of a
wedge product. Furthermore, λ(..) can also be distributed on wedge products of two forms, provided
that one of the two forms is even (see (A.2.10)). So we recover the same projection conditions on the
forms as in [11]7:

O5 : σ(j) = (k2
|| − k2

⊥)j + 2k||k⊥ Re(ω) ,

σ(ω) = −k2
||ω + k2

⊥ω + 2k||k⊥j , (3.4.4)

O6 : σ(j) = −(k2
|| − k2

⊥)j − 2k||k⊥Re(ω) ,

σ(ω) = k2
||ω − k2

⊥ω − 2k||k⊥j . (3.4.5)

7We use slightly different conventions than in [11] but actually one can start with the following general expressions
which cover both articles’ conventions:

Φ+ =
|a|2
8
eiθ+N2e

z∧z
||z||2 (k||e

−ij − ik⊥ω) ,

Φ− = −|a|
2

8
eiθ−N2

√
2
z

||z|| ∧ (k⊥e
−ij + ik||ω) ,

with |a|, θ±, ||z||, ||η+|| = N constant and non-zero, and k||, k⊥ constant, and then one gets the same projection
conditions.
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By introducing as in [11]:

O5 : k|| = cos(ϕ), k⊥ = sin(ϕ), 0 ≤ ϕ ≤ π

2
, (3.4.6)

O6 : k|| = cos(ϕ+
π

2
), k⊥ = sin(ϕ+

π

2
), −π

2
≤ ϕ ≤ 0 , (3.4.7)

we get in both cases the more convenient formulas:

σ(j) = cos(2ϕ)j + sin(2ϕ) Re(ω) ,

σ(Re(ω)) = sin(2ϕ)j − cos(2ϕ) Re(ω) ,

σ(Im(ω)) = − Im(ω) . (3.4.8)

The projection basis

The projection conditions (3.4.8) are not very tractable. A good idea is to work in the projection
(eigen)basis:

j|| =
1

2
(j + σ(j)) , j⊥ =

1

2
(j − σ(j)) ,

Re(ω)|| =
1

2
(Re(ω) + σ(Re(ω))) , Re(ω)⊥ =

1

2
(Re(ω)− σ(Re(ω))) . (3.4.9)

Using the property σ2 = 1 and applying it to the previous equations, we get these more tractable
equations:

j|| (1− cos(2ϕ)) = sin(2ϕ) Re(ω)|| ,

j⊥ (1 + cos(2ϕ)) = − sin(2ϕ) Re(ω)⊥ . (3.4.10)

We also get the following equations:

j|| sin(2ϕ) = (1 + cos(2ϕ)) Re(ω)|| ,

j⊥ sin(2ϕ) = −(1− cos(2ϕ)) Re(ω)⊥ , (3.4.11)

which are equivalent to the two equations (3.4.10) if k|| and k⊥ are non-zero. We now assume it is
the case, so we will not use them. Then, for O6/O5 (upper/lower), the projection conditions become:

σ(Re(z)) = ± Re(z) ,

σ(Im(z)) = − Im(z) ,

σ(Im(ω)) = − Im(ω) ,

j|| = ∓
(
k⊥
k||

)±1

Re(ω)|| ,

j⊥ = ±
(
k⊥
k||

)∓1

Re(ω)⊥ . (3.4.12)

In this form, the projection conditions are now much more tractable.

Pure spinors and dielectric variables

We now rewrite the pure spinors in terms of the variables of the projection basis. Let us first give these
relations (they are nothing but a rewriting of the two last projection conditions given in (3.4.12)):

IIA : k||j|| + k⊥ Re(ω)|| = 0 , −k⊥j⊥ + k||Re(ω)⊥ = 0 ,

IIB : −k⊥j|| + k||Re(ω)|| = 0 , k||j⊥ + k⊥ Re(ω)⊥ = 0 . (3.4.13)
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These allow to write the following relations valid for both theories:

− sin(ϕ)j + cos(ϕ) Re(ω) =
1

cos(ϕ)
Re(ω)⊥ = − 1

sin(ϕ)
j⊥ ,

cos(ϕ)j + sin(ϕ) Re(ω) =
1

sin(ϕ)
Re(ω)|| =

1

cos(ϕ)
j|| . (3.4.14)

These last relations (3.4.14) can also be found by using the definitions of j||, j⊥, Re(ω)||, and Re(ω)⊥.
One can notice in the previous relation a rotation. We will come back to it soon.

We can now rewrite the pure spinors in (2.4.10) using the projection basis and the relations (3.4.14):

IIA : Φ+ =
|a|2
8
eiθ+k|| e

1
2
z∧z− i

k||k⊥
Re(ω)⊥+

k⊥
k||

Im(ω)
,

Φ− = −|a|
2

8
k⊥ z ∧ e

i
k||k⊥

Re(ω)||−
k||
k⊥

Im(ω)
, (3.4.15)

IIB : Φ+ =
|a|2
8
eiθ+k|| e

1
2
z∧z− i

k||k⊥
Re(ω)||+

k⊥
k||

Im(ω)
,

Φ− = −|a|
2

8
k⊥ z ∧ e

i
k||k⊥

Re(ω)⊥−
k||
k⊥

Im(ω)
. (3.4.16)

Recently, an alternative parametrization of the internal supersymmetry parameters, and conse-
quently of the pure spinors, was given in [48] and further discussed in [49]

η1
+ = a

(
cos(Ψ)η+D − sin(Ψ)

zη−D
2

)
,

η2
+ = ae−iθ+

(
cos(Ψ)η+D + sin(Ψ)

zη−D
2

)
, (3.4.17)

where we still have θ+ as the difference of phase between η1
+ and η2

+, a and z are the same as before,
||η+D|| = 1 and Ψ is an angle such as 0 ≤ Ψ ≤ π

4 . This different choice was proposed in order
to study deformations of four-dimensional N = 4 Super Yang-Mills in the context of AdS/CFT.
Typically those deformations should describe the near horizon geometry of some sort of dielectric
branes, hence the name dielectric for the spinor η+D. Note that η+D is nothing but (once the phases
of the two spinors are equalled) the mean spinor between η1

+ and η2
+, i.e. somehow their bisector:

η+D = 1
2a cos(Ψ) (η1

+ + eiθ+η2
+). We have the corresponding picture:

Ψ

Ψ

η1
+

a

η2
+

aη+D zη−D
2

Figure 3.2: The different spinors and angles (with θ+ = 0)

One can relate the dielectric ansatz to the previous one, (2.4.4), with

k|| = cos(ϕ) = cos(2Ψ), k⊥ = sin(ϕ) = sin(2Ψ) , (3.4.18)

η+D = cos(
ϕ

2
)η+ + sin(

ϕ

2
)
zη−

2
. (3.4.19)
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Working with η+D and
zη−D

2 instead of η+ and zη−2 means working with a new SU(2) structure. The
latter is obtained by a rotation from the previous one, as one can also get by computing the relations
between the SU(2) structure two-forms:

jD = k||j + k⊥ Re(ω) ,

Re(ωD) = −k⊥j + k||Re(ω) ,

Im(ωD) = Im(ω) . (3.4.20)

The pure spinors obtained from (3.4.17) [48, 49] are the dielectric pure spinors8

Φ+ =
|a|2
8
eiθ+k|| e

1
2
z∧z− i

k||
jD+

k⊥
k||

Im(ωD)
,

Φ− = −|a|
2

8
k⊥ z ∧ e

i
k⊥

Re(ωD)−
k||
k⊥

Im(ωD)
. (3.4.21)

Comparing the definitions of the two-forms (3.4.14) and (3.4.20), or the expressions for the pure
spinors, (3.4.15), (3.4.16) and (3.4.21), we get (for IIA/IIB)

jD =
1

k⊥
Re(ω)⊥/|| ,

Re(ωD) =
1

k||
Re(ω)||/⊥ ,

Im(ωD) = Im(ω) . (3.4.22)

Thus the dielectric SU(2) structure variables are nothing but the eigenbasis of the orientifold projec-
tion (modulo a rescaling) ! Actually, this can be easily understood from the transformation properties
of η+D under the orientifold projection9

O5 : σ(η±D) = eiθ+η±D ,

O6 : σ(η±D) = η∓D . (3.4.23)

Then the SU(2) bilinears constructed from it will get at most a phase and a conjugation when being
applied σ, hence the three real two-forms jD, Re(ωD) and Im(ωD) are in the projection eigenbasis,
as given by (3.4.22).

Beside providing a tractable basis to solve the orientifold projection conditions, the dielectric vari-
ables/projection basis lead to simpler expressions of the pure spinors and so much simpler SUSY
conditions (see further). So this SU(2) structure is a better choice to solve our problem, and we will
express the equations to be solved in terms of these variables. We rewrite the SUSY conditions in
terms of the projection basis, and in appendix B.2.1, we rewrite similarly a set of SU(2) structure
conditions (implying the compatibility conditions, see appendix A.2.2).

3.4.2 SUSY equations in the projection basis

In appendix B.2.2, the SUSY equations (2.4.18), (2.4.19), and (2.4.20), are expanded in terms of
forms for general expressions of the pure spinors (2.4.9), with θ− = 0. The set of equations can be
simplified by using the SU(2) structure conditions. We consider more simplifications by choosing
|a|2 = eA, and going to the large volume limit, i.e. A = 0 and eφ = gs constant. This is indeed the
regime in which we will look for solutions. The freedom in θ+ is not fixed, except in IIB where we use
the O5 projection: eiθ+ = ±1. Moreover, we choose to look only for intermediate SU(2) structure

8The computation is the same as using (2.4.10) and introducing the dielectric SU(2) structure variables via (3.4.20).
9To get them, we recall that we have eiθ+ = ±1 for an O5, and one has to use (3.4.1) and (3.4.2).
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solutions, i.e. with k|| and k⊥ constant and non-zero. Here is the result in terms of the projection
basis variables.

IIA : gs ∗ F4 = −k⊥d(Im(z))

k||H = k⊥d(Im(ω))

gs ∗ F2 = −k||d(Im(z)) ∧ Im(ω) +
1

k||
d(Re(ω)||) ∧Re(z)− 1

k⊥
H ∧ Im(z)

gs ∗ F0 =
1

2
k⊥d(Im(z)) ∧ Im(ω)2 +

1

k||
H ∧ Re(z) ∧ Re(ω)||

d(Re(z)) = 0

d(Re(ω)⊥) = k||k⊥Re(z) ∧ d(Im(z))

H ∧Re(z) = −k⊥
k||

d(Im(z) ∧ Re(ω)||) , (3.4.24)

IIB : k||H = k⊥d(Im(ω))

k⊥e
−iθ+gs ∗ F3 = d(Re(ω)||)

k⊥e
−iθ+gs ∗ F1 = H ∧ Re(ω)||

d(Re(z)) = 0

d(Im(z)) = 0

Re(z) ∧H = −k⊥
k||

Im(z) ∧ d(Re(ω)⊥)

Im(z) ∧H =
k⊥
k||

Re(z) ∧ d(Re(ω)⊥)

Re(z) ∧ Im(z) ∧ d(Re(ω)||) = −H ∧ Im(ω) . (3.4.25)

3.4.3 Intermediate SU(2) structure solutions

In order to find intermediate SU(2) structure solutions, we use the method described in section 3.3. As

we look for intermediate SU(2) structure, we take k||k⊥ 6= 0 and constant (we have k⊥ =
√

1− k2
||).

As discussed previously, the other coefficients in the solutions are also taken to be constant. In
particular, we choose |a|2 = eA, and go to the large volume limit, i.e. where A = 0 and eφ = gs is
constant.

To solve the SUSY conditions, we use the SU(2) structure defined by the projection basis. The
forms are determined by imposing the orientifold projection conditions given by (3.4.12) and the SU(2)
structure conditions (B.2.1) and (B.2.2). Then the pure spinors in the projection basis (3.4.15) or
(3.4.16) are compatible (see appendix A.2.2), and we impose the SUSY equations given by (3.4.24)
or (3.4.25).

The next step of the procedure is to compute the RR fields and, therefore the metric. This is
done in the initial basis for the SU(2) structure forms, which defines the local complex one-forms
(z1, z2, z, z1, z2, z). We identify one of them with the holomorphic one-form z of the SU(2) structure,
and write the real and the holomorphic two-forms of the SU(2) structure as

ω = z1 ∧ z2 j =
i

2
(t1z

1 ∧ z1 + t2z
2 ∧ z2 + bz1 ∧ z2 − bz1 ∧ z2) , (3.4.26)
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with b = br+ibi and t1, t2, br, bi real10. We will give our solutions in the previous form11. As discussed
in section 3.3, we can define trivially an almost complex structure in this basis, and compute from it
and the Kähler form (2.2.19) the hermitian metric. In this local complex basis, we obtain generically12

g =
1

2




0 0 0 t1 b 0

0 0 0 b t2 0
0 0 0 0 0 1
t1 b 0 0 0 0
b t2 0 0 0 0
0 0 1 0 0 0




(3.4.27)

Its definite-positiveness is given by gµµ > 0 for any µ. It is equivalent to t1 > 0 and t2 > 0. Consider
now the volume form. This can be generically written as

V =
√
|g| e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6 , (3.4.28)

where we chose the orientability convention ǫ123456 = 1 (see appendix A.1). Comparing this expression
from the volume for obtained from the Mukai pairing of the pure spinors (see below equation (2.4.13))
sets other constraints on the signs of the parameters of the solution. Note that here, using (2.4.9) for
the pure spinors, and then the form (3.4.26) of the solutions, we get for the volume form

V =
1

8i
z ∧ z ∧ ω ∧ ω = −Re(z1) ∧ Im(z1) ∧ Re(z2) ∧ Im(z2) ∧ Re(z) ∧ Im(z) . (3.4.29)

The last step of the procedure, once the RR fluxes are computed, is to get the BI (3.3.5). The
identification of the covolumes of the sources is given by the formula (3.3.6), which can be rewritten
here using (2.4.9) as

IIA : V i ∧
(
Re(z) ∧Re(ω)|| − k2

|| Im(z) ∧ Im(ω)
)

= k|| V ,

IIB : V i ∧
(
Re(ω)|| + k⊥k|| Re(z) ∧ Im(z)

)
= k⊥e

−iθ+ V . (3.4.30)

Our search, on nil- or solvmanifolds, for solutions with intermediate SU(2) structure is not meant
to be exhaustive. Our interest is to verify the possibility of having solutions of this kind that are not
obtainable via T-duality. We look at the manifolds for which non T-dual solutions with SU(3) or or-
thogonal SU(2) structure were found in [29]: the nilmanifold n 3.14 of algebra (0, 0, 0, 12, 23, 14−35),
and the solvmanifold s 2.5 of algebra (25,−15, r45,−r35, 0, 0). We had the intuition that some in-
termediate SU(2) structure might be found on them, which might give back solutions of [29] in the
limits k⊥/|| → 0. We indeed find three new solutions, and in section 3.4.4, we discuss their limits to
the solutions of [29].

On the manifolds considered, the compatible directions for an O5 or an O6 are given by

Manifold O5 O6

n 3.14 13, 15, 26, 34, 45 none

s 2.5 13, 14, 23, 24, 56 125, 136, 146, 236, 246, 345

Table 3.4: Directions of the possible O5 and O6 on the manifolds considered

10Note that the choice of this basis is not unique. In particular, this freedom will appear when taking the limits, see
section 3.4.4.

11Note that the metric we will then compute from it will be block diagonal, so the remaining SU(2) structure
conditions, namely the contractions with z and z, are clearly satisfied by these expressions.

12Note that we give here the coefficients of the metric tensor: they are symmetric, but do not have to be real, since
only the tensor has to be real. In practice, one needs the metric in the real basis (em, m = 1..6). To get it, one has
first to perform a change of basis.
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Among these possibilities, we look for solutions only for one set of directions on each manifold.

Let us now give the solutions found. For more general parametrisation of these solutions, look at
the corresponding paper [1].

First solution

We look for a type IIB solution on the nilmanifold n 3.14. We start with only one O5 in the 45
directions, but it will turn out to be a second one, along 26. The solution is first given by

z = τ0(e1 − ie3) ,

Re(ω)|| =
k2
⊥r1r2

r3
e4 ∧ e5 − r3e

2 ∧ e6 ,

Re(ω)⊥ = k2
||r1e

2 ∧ e4 − r2e
5 ∧ e6 ,

Im(ω) = r1e
2 ∧ e5 + r2e

4 ∧ e6 . (3.4.31)

where r3 > 0 , r1r2 > 0 are real parameters, and τ0 is a non-zero complex one. The solution is clearly
compatible with the projections of both sources (under the involutions σ45 and σ26). After finding
the solutions, we expressed them as in (3.4.26)

z = τ0(e1 − ie3) , z1 = −r1(k2
||e

4 + ie5) + r3e
6 , z2 = e2 − r2

r3
i(e4 + ie5) ,

br = 0 , bi = − k||
k⊥

, t1 =
r2

k||k⊥r1r3
, t2 =

k||r1r3

k⊥r2
. (3.4.32)

The metric is diagonal in the ei basis, its coefficients are given by13

g = diag

(
|τ0|2,

k||r1r3

k⊥r2
, |τ0|2,

k||k⊥r1r2

r3
,
k⊥r1r2

k||r3
,
r2r3

k⊥k||r1

)
, (3.4.33)

and out of the volume form we get √
|g| = |τ0|2r1r2 . (3.4.34)

Then, we get the following fluxes:

H =
k⊥r2

k||

(
−e3 ∧ e4 ∧ e5 + e1 ∧ e2 ∧ e6

)
,

gsF3 =
eiθ+r2

r1

(
k⊥r1r2

r3
(e3 ∧ e4 ∧ e6 +

1

k2
||
e1 ∧ e5 ∧ e6)− r3

k⊥
(− 1

k2
||
e3 ∧ e5 ∧ e6 + e1 ∧ e4 ∧ e6)

)
,

gsF1 =
eiθ+

k||r1

(
r3e

1 − k2
⊥r1r2

r3
e3

)
. (3.4.35)

We then compute the Bianchi identities:

d(F1) = 0 , H ∧ F3 = 0 ,

gsd(F3)−H ∧ gsF1 = − 2r2

k2
||r1

√
|g|

(
(k⊥r1r2)2

r2
3

V 1 +
r2

3

k2
⊥
V 2

)
. (3.4.36)

13Note that our convention ||z||2 = zµzµ = 2 is already implemented in the metric, by its construction from the
Kähler form in which this norm appears. One can verify this point by computing this norm using either the hermitian
or the real basis metric. Then, |τ0|2 has nothing to do with this norm, but is only the measure related to the metric
coefficients, in the real basis.
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The only sources are those of F3. There are two of them, one along the directions 45 and the other
along 26, of covolumes given by

V 1 =
k⊥e−iθ+ |τ0|2r3

k2
⊥

e1 ∧ e2 ∧ e3 ∧ e6 , V 2 =
k⊥e−iθ+ |τ0|2r1r2

r3
e1 ∧ e3 ∧ e4 ∧ e5 . (3.4.37)

One can read directly the charges (see (3.3.5)) and see that Q1 < 0, Q2 < 0, hence we have two
O-plane sources. Both are compatible with the manifold and the solution.

Note that we will not find any T-dual solution to this first solution, while the two next solutions
are T-duals to one another. This can be understood from table 3.4 since no O6 is compatible with
n 3.14.

Second solution

We look for IIB solutions on the solvmanifold s 2.5. Its algebra admits a parameter r ∈ Z. We
consider an O5 in the 13 directions. Once again we will get a second source along 24. Our solution
is given by

z = rr5e
5 + ir6e

6 ,

Re(ω)|| =
k2
⊥rr

2
1

r3
e1 ∧ e3 + r3e

2 ∧ e4 ,

Re(ω)⊥ = r2e
1 ∧ e2 −

k2
||rr

2
1

r2
e3 ∧ e4 ,

Im(ω) = r1(e1 ∧ e4 − re2 ∧ e3) , (3.4.38)

where r1, r2, r3, r5, r6 are real parameters satisfying r1r2r3 > 0, and r5r6 > 0. Furthermore, we must
have r2 = 1. This solution is clearly compatible with the projections under σ13 and σ24. The solution
is then expressed with the following zi:

z = rr5e
5 + ir6e

6 , z1 = r2e
1 + irr1e

3 − r3e
4 , z2 = e2 +

k2
⊥rr

2
1

r2r3
e3 + i

r1

r2
e4 ,

br = 0 , bi =
k⊥
k||

, t1 =
k⊥r1

k||r2r3
, t2 =

r2r3

k⊥k||r1
. (3.4.39)

The metric is then

g = diag

(
k⊥r1r2

k||r3
,
r2r3

k⊥k||r1
,
k⊥k||r

3
1

r2r3
,
k||r1r3

k⊥r2
, r2

5 , r
2
6

)
,
√
|g| = r5r6r

2
1 . (3.4.40)

The fluxes are:

H = 0 , F1 = 0 ,

gsF3 =
eiθ+(−k2

⊥r
2
1 + r2

3) r6

k⊥r3r5
(e2 ∧ e3 ∧ e6 + r e1 ∧ e4 ∧ e6) , (3.4.41)

and the non-trivial BI

gsd(F3) = −2(r2
3 − k2

⊥r
2
1) r6r

2
1

r5

√
|g| (

1

k2
⊥r

2
1

V 1 − 1

r2
3

V 2) . (3.4.42)

We see that F3 has two sources, the one along 13 as expected, and we discover a second one along
24. As before, we compute the covolumes and get

V 1 = −k⊥e
−iθ+r5r6r

2
1

r3
e1 ∧ e3 ∧ e5 ∧ e6 , V 2 = −e

−iθ+rr5r6r3

k⊥
e2 ∧ e4 ∧ e5 ∧ e6 . (3.4.43)

The nature of the sources depends on the sign of their charges, which depends here on the value of
the parameters. But we can clearly see that there is one O-plane and one D-brane. In both cases,
the O-plane is compatible with the manifold. Note also that we clearly have

∑
iQi < 0.
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Third solution

We look for IIA solutions on the solvmanifold s 2.5, but now with an O6 in the 136 directions. We
will get a second source along 246. We are going to see that this solution is T-dual to the second one,
so there will be a lot of similarities between the two. The solution is given by:

z = −irr5e
5 + r6e

6 ,

Re(ω)|| = −
k2
||rr

2
1

r3
e1 ∧ e3 − r3e

2 ∧ e4 ,

Re(ω)⊥ = −r2e
1 ∧ e2 +

k2
⊥rr

2
1

r2
e3 ∧ e4 ,

Im(ω) = −r1(e1 ∧ e4 − re2 ∧ e3) , (3.4.44)

where r1, r2, r3, r5, r6 are real parameters satisfying r1r2r3 > 0 and r5r6 > 0, and r has to be ±1. The
solution is clearly compatible with the projections under σ136 and σ246. The general solution is then
expressed with the following zi:

z = −irr5e
5 + r6e

6 , z1 = −r2e
1 − irr1e

3 + r3e
4 , z2 = e2 +

k2
||rr

2
1

r2r3
e3 + i

r1

r2
e4 ,

br = 0 , bi = − k||
k⊥

, t1 =
k||r1

k⊥r2r3
, t2 =

r2r3

k⊥k||r1
. (3.4.45)

The metric is then:

g = diag

(
k||r1r2

k⊥r3
,
r2r3

k||k⊥r1
,
k||k⊥r

3
1

r2r3
,
k⊥r1r3

k||r2
, r2

5 , r
2
6

)
,
√
|g| = r5r6r

2
1 . (3.4.46)

The fluxes are:

H = 0 , F0 = 0 , F4 = 0 ,

gsF2 = −
(−k2

||r
2
1 + r2

3)

k||r3r5
(e2 ∧ e3 + r e1 ∧ e4) , (3.4.47)

and the only non-trivial BI is

gsd(F2) = −
2(r2

3 − k2
||r

2
1) r6r

2
1

r5

√
|g| (

1

k2
||r

2
1

V 1 − 1

r2
3

V 2) . (3.4.48)

We see that F2 has two sources, the one along 136 as expected, and we discover a second one along
246. As before, we compute the covolumes and get

V 1 =
k||r5r

2
1

r3
e1 ∧ e3 ∧ e5, V 2 =

rr5r3

k||
e2 ∧ e4 ∧ e5 . (3.4.49)

The nature of the sources depends on the sign of their charges, which depends here on the value of
the parameters. But we can clearly see that there is one O-plane and one D-brane. In both cases,
the O-plane is compatible with the manifold. Note also that we clearly have

∑
iQi < 0.

Let us now show that this solution is T-dual to the previous one, by a T-duality along the e6

direction as can be seen from the sources. As discussed in section 2.3.3, in order to perform T-duality
on the second solution pure spinors, we should act on the normalized pure spinors (2.4.13) with the
operator T = e6 ∧+ι6. As there is no B-field involved here, it means

e−φTΦT = e−φ T · Φ , (3.4.50)
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where ΦT is the T-dual pure spinor, and φT the T-dual dilaton. Let us apply this operator on the
second solution pure spinors. The T-duality is applied along one direction, so we go from IIB to IIA,
and Φ± of the second and third solutions should roughly be exchanged. The T-duality direction is a
component of z, hence according to the SU(2) structure contraction properties (A.2.3) and (A.2.6),
it easy to see that the pure spinors (3.4.15) and (3.4.16) will indeed be exchanged, provided

Re(ω)||T = −Re(ω)|| , Re(ω)⊥T = −Re(ω)⊥ , Im(ω)T = − Im(ω) , k||T = k⊥ . (3.4.51)

This is clearly verified when comparing the second and third solution forms (3.4.38) and (3.4.44).
Furthermore, the z and dilaton are transformed as

zT = −eiθ+i(rr5e
5 − i 1

r6
e6) , e−φT =

r6

gs
, (3.4.52)

where gs, r, r5, r6, θ+ are parameters of the starting solution. The transformation of the dilaton is
standard, and is due to the inversion of the radius in the 6-direction. The gs of the third solution is
then slightly redefined with respect to that of the second solution. About z, we recall that eiθ+ = ±1
since we start from an O5. The T-dual phase is given by eiθ+T = −i, and it is free, because not fixed
by the O6. Furthermore, to be precise, the zT can be identified with z, the conjugate of z of the third
solution. In the end, we do get the third solution (same fields), provided we take a slightly different
SU(3) structure: J = j − i2z ∧ z, Ω = z ∧ ω.

Note that the exchange of k|| and k⊥ for such a T-duality explains why an SU(3) structure is then
dual to a orthogonal SU(2) structure, as it is the case for the solutions in [29], and as we will see
now, taking the limit of our solutions.

3.4.4 SU(3) or orthogonal SU(2) structures limits

In [29], SU(3) or orthogonal SU(2) structure solutions were found on the manifolds we have just
studied. So it is interesting to see what happens to our solutions when we take one of those two
limits: it would be somehow natural to recover the solutions of [29]. It was at first the kind of
intuition that led us to look for intermediate SU(2) solutions on these manifolds. To take the limit
on our solutions, one has two options: taking the limit of the pure spinors, or taking the limit of the
structure forms. Taking the limit of the pure spinors might not be a good idea. Indeed, we know
pure spinors have different types for each G-structure, so there might be a problem when taking the
limit14. More precisely, only one of the two spinors keeps the same type in the limit, so this pure
spinor might transform smoothly, while the other might not. This is summed-up in this table:

SU(3) Int. SU(2) Orth. SU(2)
Φ+ 0 ←− 0 99K 2
Φ− 3 L99 1 −→ 1

(3.4.53)

with the numbers indicating the types of the pure spinors, the plain arrows indicating the smooth
limits and the dashed ones indicating the limits where there might be a problem. We recover this
point when considering the dielectric pure spinors expressions (3.4.21): when one replaces first in
(3.4.21) jD and Re(ωD) by their expressions (3.4.20), and then takes the limit, one does not get
the correct expressions for the limit pure spinors. To get them right, one has to use the following
prescription: first take the limit of jD and Re(ωD), and then the limit of the corresponding expression
for (3.4.21).

This prescription is more in favour of the second option: taking the limit of the structure forms,
and that is what we will do. Looking at the expressions of the dielectric forms jD and ωD in (3.4.20),

14In particular, the type of the closed pure spinor determines the geometry (see section 2.4.1), so if this type changes
when taking the limit, the geometry gets modified, which does seem not very smooth.

42



we see that their limits give straightforwardly the forms of the limit structures. Actually, we prefer
to use the projection basis Re(ω)||, Re(ω)⊥ and Im(ω), as we gave our solutions with these variables.

More precisely, we are going to take the limit of Im(ω) and 1
k..

Re(ω).., where .. stands for || or ⊥.
Doing so, we also recover the forms of the limit structures, as one can see from (3.4.22) or (3.4.14).
We get15

SU(3) Orthogonal SU(2)
k⊥ → 0 k|| → 0

IIA 1
k||

Re(ω)|| → Re(ω) 1
k⊥

Re(ω)⊥ → Re(ω)
1
k⊥

Re(ω)⊥ → j − 1
k||

Re(ω)|| → j

IIB 1
k||

Re(ω)⊥ → Re(ω) 1
k⊥

Re(ω)|| → Re(ω)
1
k⊥

Re(ω)|| → j − 1
k||

Re(ω)⊥ → j

It is clear that 1
k..

Re(ω).. is not the best choice for taking the limit since k|| or k⊥, assumed non-zero,

have to go to zero16. Indeed, one can see from the previous arrays that ω is always recovered smoothly
while j is not recovered very easily. For instance in the case IIA and SU(3) limit, k⊥ and Re(ω)⊥
both go to zero, and only their ratio is supposed to give back j. To get a well-defined limit, we
should have a non-zero j, so we must have in this example Re(ω)⊥ ∼ k⊥f2 → 0, where f2 stands
for a constant real two-form. Imposing this last condition will give us the behaviour of some of our
parameters. It can also sometimes lead to inconsistencies such as the volume form going to zero, and
then we can say that there is no limit solution.

By first studying the limit to j, we then get conditions on the behaviour of our parameters: some
go to zero in a specific way. Using them, we work out the limit to ω (extrapolated to Ω3 in the
SU(3) case), and manage to get the zi of [29] solutions, noted zis, by factorizing the form as they
do. Then we work out completely the limit to j (extrapolated to J in the SU(3) case), and find the
corresponding tis and bs as in (3.4.26) to get their solution. Finally, we verify that we have the same
fluxes as they do when taking the limit on ours.

The validity of this procedure could be discussed further. In particular, we do recover the structure
forms found in [29] (modulo global normalisation factors) as we find maps between their parameters
and ours. But there is a possible mismatch for the H flux in the orthogonal SU(2) limit, as one can
see from its definition in the SUSY conditions (3.4.24) or (3.4.25). Indeed, if we did not find any H in
the intermediate case, we cannot take its limit to recover an H in the orthogonal SU(2) limit, while
the SUSY conditions allow for a non-trivial H in this limit. This situation will happen for our third
solution, as they do find a possible H in [29] while we do not. For our second solution, this problem
could also have occurred, but no H was found in [29]. Note that if there is a mismatch with H, then
there is possibly one with the other fluxes, as they can be defined out of H.

Limits of the first solution

Let us first consider the SU(3) limit of the first solution which should correspond to “Model 1” of [29]
(same theory, same manifold, same orientifold(s)). Imposing that Re(ω)|| goes to zero (∼ k⊥) and
comparing with their Js gives this behaviour for our parameter: r3 ∼ k⊥ (with a possible positive
constant that we will not consider for simplicity). Note that a priori in our solution r3 could not be
zero, so can we put it to zero in this limit? One criterion to verify that the limit is well-defined is
that the six-form volume must not go to zero. And r3 actually does not appear in it, as one can see
from the determinant of the metric, so it is fine (furthermore none of the metric coefficients goes to

15Note that we recover in these limits the fact that j, Re(ω) and Im(ω) of the limit structures are the projection
eigenbasis.

16The difficulties that can occur are related to the one just explained for the pure spinors, since they both are related
to the assumption of k|| and k⊥ being non-zero.
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zero). So using this behaviour of our parameter and the limits given in the array, we get their Ω3s

and Js with a global normalisation difference. The normalisation factor affects both Ω3 and J so that
the normalisation condition (2.2.14) is still satisfied. One just have to rescale some of the zis and the
tis to match the one we have when taking the limit. We get17

z1 = τ0(e1 − ie3), z2 = e2 + iτe6, z3 = r1(e4 + ie5), with τ = −r2

r1
,

t1 = 1, t2 = −1

τ
, t3 = −τ . (3.4.54)

Looking at our fluxes, we get that H → 0 as in [29], and we deduce that F1 → 0 from the SUSY
conditions (3.4.25). Moreover, taking the limit on our F3, we recover the solution of [29], once the tis
are rescaled.

Let us now consider the SU(2) limit. Looking at the condition Re(ω)⊥ → 0, one gets at least
r2 → 0. But this is not allowed, because the volume form would go to zero (see the determinant
of the metric). Note that allowing for r1 to diverge to maintain a finite volume is not appropriate,
since Im(ω) would then diverge. So we recover the statement of [29]: there is no orthogonal SU(2)
limit. Note that a T-dual on this manifold to the SU(3) limit would have been a orthogonal SU(2)
structure with an O6. Then, the fact that there is no orthogonal SU(2) on this manifold can also be
understood by the fact that there is no O6 compatible, according to table 3.4.

Limits of the second solution

For more general parametrisations of the limit structure forms, look at the corresponding paper [1].

Let us first consider the SU(3) limit of the second solution. We mention first that no corresponding
solution is mentioned in [29]. There can be several reasons for this, among them one can be that
there is no solution with fluxes which is non T-dual to a warped T 6 with an O3. We actually do find
such a solution, which should be the T-dual to the orthogonal SU(2) limit of our third solution (see
further). So we will use similar notations. Considering as usual Re(ω)|| → 0 (∼ k⊥), we get r3 ∼ xk⊥
with x a real constant. As for the previous solution, r3 → 0 is not allowed for an intermediate SU(2)
structure. With the same arguments as before, it can actually be allowed in the SU(3) limit (see the
determinant of the metric and the metric components). Using this behaviour, we get:

ΩSU(3) = r2 (rr5 e
5 + ir6 e

6) ∧ (e1 − τe3) ∧ (e2 − rτe4) , (3.4.55)

with τ = −i rr1r2 (clearly of the same form as the orthogonal SU(2) limit of the third solution).

Let us now consider the fluxes. We get H = 0 and then F1 = 0. In the simpler case chosen for the
parameters, we get a non-trivial F3 in the SU(3) limit:

gsF3 SU(3) =
eiθ+(−r2

1 + x2) r6

xr5
(e2 ∧ e3 ∧ e6 + r e1 ∧ e4 ∧ e6) . (3.4.56)

The solution obtained in the limit is compatible with the two sources appearing when computing the
BI.

Let us now consider the orthogonal SU(2) limit of the second solution, which should correspond to
“Model 2” in [29] (taking r = 1). Our z is clearly the same as theirs. By imposing that Re(ω)⊥ goes
to zero (∼ k||) and comparing its limit with their js, we get this behaviour for one of our parameters:

17Note that we have here an example of a different choice for the zi, mentioned in footnote 10. The way we recovered
their solution is then a reparametrization: we computed the two-form in the limit and then refactorized it in the way
they did.
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r2 ∼ −xk|| where x is a real constant. It was forbidden in our solution to put this parameter to zero
but when one looks at the metric components and its determinant, one sees it can be allowed in the
orthogonal SU(2) limit. The solution given in [29] is the following:

ωs = (e1 + i(−τ2
2 e

2 + τ1
2 e

4 + τ1
3 e

5)) ∧ (e3 + i(τ2
2 e

4 + τ2
3 e

5 + (2
bs
t2s
τ2

2 +
t1s
t2s
τ1

2 )e2)) , (3.4.57)

with all parameters real, and t2s = 1+b2s
t1s

. When taking the limit on our forms, we get the same
result, with a global normalisation factor difference: our ω orthogonal SU(2) and our j orthogonal SU(2)

are obtained by multiplying theirs by l =
r21
r3

. Apart from this normalisation, we manage to recover

their solution with18

τ1
2 = τ1

3 = τ2
3 = 0 , τ2

2 =
rr3

r1
, t1s = − x

rr1
, bs = 0 . (3.4.58)

We recover both their js and their ωs with a factor l difference, so that the normalisation condition
(2.2.16) stays correct for us and for them. As this normalisation condition involves l2, we have the
choice on the sign of the factor in j (we took +l), which is related to the sign of r3. It is then related
to the sign of the ti appearing.

Let us now look at the fluxes. We have only an F3 as they do. By taking the limit of our d(F3),
we exactly get theirs, multiplied by l as it should be.

Limits of the third solution

For more general parametrisations of the limit structure forms, look at the corresponding paper [1].

We already mentioned that this solution was the T-dual of the second one. In [29], they also
mention this point for the limit structures: their “Model 3”, which should be the SU(3) limit of our
solution (with r = 1), is mentioned to be the T-dual of their “Model 2”, which is the orthogonal
SU(2) limit of our second solution. So this SU(3) limit of our solution must match their “Model 3”,
and we do not have to consider further the SU(3) limit. Note for instance that we get the “same”
(T-dual) limit behaviour of our parameter: r2 ∼ −xk⊥ where x is a real constant.

Let us now consider the orthogonal SU(2) limit of our third solution, which corresponds to the
“Model 4” in [29]. With the same reasoning, it is probably the T-dual to the SU(3) limit of our
second solution, that did not match to any solution found in [29]. We first note that our z matches
theirs, modulo a global i factor. This difference is due to a different phase convention for the O6. Let
us look at the other forms. As usual, considering the limit of Re(ω)|| and comparing it to js imposes
r3 ∼ xk|| with x a real constant. Once again, r3 going to zero can be allowed in this limit (see the
determinant of the metric). Using this behaviour, we get the solution of [29] by taking the limit on
our forms. In [29] they have:

ωs = (τ1
1 e

1 + τ1
2 e

3) ∧ (τ2
1 e

2 +
τ1

2

τ1
1

τ2
1 e

4 + τ2
3 e

5) , (3.4.59)

with complex parameters, and we match it and js with:

τ2
3 = 0 , τ1

1 = − r2

τ2
1

, τ1
2 = −ir r1

τ2
1

,

t1s = r
r1|τ2

1 |2
r2x

=
1

t2s
, (3.4.60)

18Note that the complicated expressions for the parameters are related to the freedom left in choosing different
expressions for the zi (we did not take the same as them) as mentioned in footnote 10, and our ti are different for the
same reason. Note also that we manage to recover this general expression with non-zero coefficients, with the more
general parametrisation of structure forms given in [1].
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where τ2
1 is not fixed. Note t1st2s = 1 is here the normalisation condition (2.2.16).

Let us now look at the fluxes. There are slight differences, due to H and z. As explained previously,
we do not get any H, while they do: this is an artefact of our procedure. Note nevertheless that their
H is more constrained than it appears to be in [29], once one imposes it to be real. By taking the
limit on our d(F2), we get exactly theirs, modulo the factor coming from z (related to the difference
between our z and theirs), and the following map we have to impose: |τ2

1 |4 = r2
1. This last condition

can seem surprising, but this difference is probably related to the absence of H in our limit. Besides,
note that the solution obtained is clearly compatible with the sources appearing.

3.5 β-transform

In [51], a dynamical SU(2) structure solution is presented on a non-compact manifold. This solution
is obtained by a local β-transform (see section 2.3 for a definition) of an SU(3) structure solution.
Since a dynamical SU(2) structure solution is at most points an intermediate SU(2) structure solu-
tion, one can ask whether the solutions found previously are as well obtainable by β-transforms, in
particular from their SU(3) limit that we discussed. We will first discuss the conditions under which
this would be possible, provided some assumptions. Then we will give one example where these
assumptions and conditions are verified: the intermediate SU(2) structure solution found previously
on n 3.14.

We use the SU(3) pure spinors given in (2.4.11), with a particular SU(3) structure given by
Jl = jl +

i
2zl ∧ zl, and Ωl = zl ∧ ωl. For the intermediate SU(2) structure, we use the dielectric pure

spinors given in (3.4.21). For both, we take θ± = 0, where the value for θ+ can be understood from
the O5 projection. We also work in the large volume limit, i.e. A = 0 and |a|2 = 1.

One of the SUSY equations ((2.4.18) in IIA, (2.4.19) in IIB), with previous values taken for the
parameters, fixes the value for the dilaton (see appendix B.2.2 about these different integration
constants)

eφ = gsk|| for int. SU(2) , eφ = gs for SU(3) . (3.5.1)

Given one solution with SU(3) structure, and another one with an intermediate SU(2) structure,
a β transformation relating the two means

eβxΨ± SU(3) = Ψ± Interm SU(2) . (3.5.2)

where we use the normalised pure spinors Ψ± (2.4.13) of E to act with an O(d, d) transformation like
the β-transform. Here, these spinors take the following form for an intermediate SU(2) structure

Ψ+ =
1

gs
e
−B+ 1

2
z∧z− i

k||
jD+

k⊥
k||

Im(ωD)

Ψ− = − k⊥
gsk||

z ∧ e−B+ i
k⊥

Re(ωD)−
k||
k⊥

Im(ωD)
, (3.5.3)

and for an SU(3) structure

Ψ+ =
1

gs
e−i(jl+

i
2
zl∧zl)

Ψ− = − i

gs
zl ∧ ωl , (3.5.4)

where we take BSU(3) = 0 (particular case).

Provided some assumptions we are now going to give, the equation (3.5.2) can be rewritten as a
simpler set of conditions.
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3.5.1 Assumptions and conditions

In order to derive the conditions equivalent to (3.5.2), we are going to make the following (simplifying)
assumptions. Note that only the first one is satisfied in [51], even if (3.5.2) is satisfied there.

1. We take β to be real, β2 = 0, and β to be orthogonal to zl (meaning it does not act on zl).

2. We already chose ||z|| = ||zl|| (=
√

2) since we took the previous formulas for the pure spinors.
It is not the case in [51] where there is a “

√
h” difference.

3. We take jl, ωl and jD, ωD (and the new B-field) to span the same four-dimensional space,
orthogonal to the one-forms zl, z. It is not the case in [51] because of some non-trivial fibration
(connection terms modify the one-forms, as discussed in [2]). This assumption enables us to
give a simple relation between ωl and ωD, B. Furthermore, the SU(2) structure conditions
(B.2.3) are then more easily satisfied.

4. We take i βxωl to be real. There is no such phase in [51].

Given these assumptions, one develops (3.5.2) and gets the following set of conditions:

iβxωl =
k⊥
k||

, z = zl ,

jD = k||jl , Re(ωD) = k||Re(ωl) , Im(ωD) = k2
|| Im(ωl)−

k||k⊥
2

βxj2
l ,

B =
k⊥
k||

Im(ωD) +
1

2
βxj2
l = k||k⊥ Im(ωl) +

k2
||
2
βxj2
l ,

βxjl = 0 ,
(
βxj2
l

)2
= 0 , jl ∧ (βxj2

l ) = 0 . (3.5.5)

Let us note that the SUSY conditions for intermediate SU(2) structures give H = d
(
k⊥
k||

Im(ωD)
)
, so

we have a solution if βxj2
l is closed.

As a simple example, let us consider the following solution on T 6:

ei = dxi , dz1 = e1 + ie2 , dz2 = e3 + ie4 , dz3 = e5 + ie6 ,

zl = dz3 , jl =
i

2
(dz1 ∧ dz1 + dz2 ∧ dz2) = e1 ∧ e2 + e3 ∧ e4 ,

ωl = dz1 ∧ dz2 = e1 ∧ e3 − e2 ∧ e4 + i(e1 ∧ e4 + e2 ∧ e3) . (3.5.6)

Choosing

β =
k⊥
k||
ι∂1xι∂4

x , (3.5.7)

all assumptions and conditions are satisfied with the following dielectric forms:

z = e5 + ie6 , jD = k||(e
1 ∧ e2 + e3 ∧ e4) , B = k||k⊥e

1 ∧ e4 ,

Re(ωD) = k||(e
1 ∧ e3 − e2 ∧ e4) , Im(ωD) = k2

||e
1 ∧ e4 + e2 ∧ e3 . (3.5.8)

This set should be an intermediate SU(2) solution, since this β is an element of the T-duality group.
This example is interesting to see how things work, and in particular, that the condition

j2
D = Re(ωD)2 = Im(ωD)2 6= 0 (3.5.9)

can be satisfied. This is not obvious from the generic formulas (3.5.5). Note as well that we get
H = 0.
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3.5.2 Solutions on n 3.14

Let us now check that the SU(3) solution found in [29], and the intermediate SU(2) solution of [1]
presented previously, can be mapped via a β-transform. Considering a simple region of the moduli
space (i.e. taking some simple values for some solution parameters), it was possible in section 3.4.4
to recover solutions of [29] by taking the SU(3) limit of the intermediate SU(2) solutions. So we will
consider the SU(3) structure solution via the limit obtained previously, i.e.

zl = τ0(e1 − ie3) , jl = −r2
1τe

4 ∧ e5 − e2 ∧ e6 ,

Re(ωl) = r1(e2 ∧ e4 + τe5 ∧ e6) , Im(ωl) = r1(e2 ∧ e5 − τe4 ∧ e6) , (3.5.10)

where τ = − r2r1 . The intermediate SU(2) structure solution is given in (3.4.31). We rewrite it thanks
to (3.4.22) as

z = τ0(e1 − ie3) , jD = −k⊥r
2
1τ

r3
e4 ∧ e5 − r3

k⊥
e2 ∧ e6

Re(ωD) = r1(k||e
2 ∧ e4 +

τ

k||
e5 ∧ e6) , Im(ωD) = r1(e2 ∧ e5 − τe4 ∧ e6) (3.5.11)

where τ = − r2r1 . In the intermediate SU(2) structure solution, a priori one cannot distinguish the
constants r1, r2, r3 from k|| and k⊥ which are just other constants. But when taking the SU(3) limit,
it is important to know if there is any relation between them. In particular, it was realised that one
has to choose r3 ∼ k⊥ to get correct limits. The dependence in k⊥ cannot be missed because it goes
to 0. We did not try so far to work out the dependence in k||, which is more subtle since it goes to
1. Though we can always redefine the parameters with some dependence in k||, this will not change
the intermediate SU(2) solution, and will give the same limit. Therefore, let us redefine

r3 = k⊥k|| , r2 = k2
||r̃2 , τ̃ = − r̃2

r1
. (3.5.12)

Now the two solutions are rewritten as

z = τ0(e1 − ie3) , jD = −k||(r2
1 τ̃ e

4 ∧ e5 + e2 ∧ e6) ,

Re(ωD) = k||r1(e2 ∧ e4 + τ̃ e5 ∧ e6) , Im(ωD) = r1(e2 ∧ e5 − k2
||τ̃ e

4 ∧ e6) ,

zl = τ0(e1 − ie3) , jl = −r2
1 τ̃ e

4 ∧ e5 − e2 ∧ e6 ,

Re(ωl) = r1(e2 ∧ e4 + τ̃ e5 ∧ e6) , Im(ωl) = r1(e2 ∧ e5 − τ̃ e4 ∧ e6) . (3.5.13)

Now we can satisfy the conditions for the β-transform. In particular we have

z = zl , jD = k||jl , Re(ωD) = k||Re(ωl) . (3.5.14)

Furthermore, choosing

β =
k⊥
k||r1τ̃

ι6xι4x , (3.5.15)

all conditions (3.5.5) and the assumptions are satisfied. In addition, we get the correct H-field because
βxj2
l ∝ e2 ∧ e5 is closed on this manifold. So the two solutions are indeed mapped by a β-transform.
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Chapter 4

Twist transformation in type II and
heterotic string

4.1 Introduction

In the previous chapter, we discussed explicit examples of Minkowski supersymmetric flux back-
grounds on solvmanifolds. In section 3.3, we gave a list of known solutions.

The solutions found on non-nilpotent solvmanifolds are not T-duals to a warped T 6 configuration.
Among the solutions on nilmanifolds, only those corresponding to the algebra n 3.14 are also not
T-duals to a warped T 6. Notice also that, in type IIB, starting from a T 6 with an O3-plane and a
non-trivial B-field, and performing two (independent) T-dualities, one ends-up in the same theory
on a nilmanifold with the first Betti number being equal to 5 or 4 [33, 52]. On the contrary, n 3.14
has its first Betti number b1(M) = 3. One can ask whether all these solutions, T-duals or not, could
be related by some more general transformation. We present in this chapter such a transformation,
that we call the twist.

The idea is to construct a GL(d) operator that maps the basis of one-forms of the torus into the
Maurer-Cartan one-forms of a given solvmanifold. The Maurer-Cartan one-forms reflect the topology
of the manifold. Therefore, such an operator should encode the topology of the solvmanifold reached
by the transformation. In a way, the matrix µ(t) of almost abelian solvmanifolds (see section 3.2)
is already an example of a GL(d) operator encoding the topology of the manifold. It encodes the
fibration of the Mostow bundle. Our operator will actually be very close to the µ(t) matrices of such
solvmanifolds.

If one is able to relate forms on the torus to forms on the solvmanifolds, it is tempting to try
to relate whole solutions. In the GCG formalism, a natural way to transform a solution is to act
on its pure spinors with an O(d, d) element (see section 2.3.3). A well-known example is the action
of the T-duality group O(n, n) (see [53] for a review) on a manifold with n isometries. Therefore,
it is natural to embed the topology changing GL(d) transformation into an O(d, d) transformation,
acting equivalently on forms and on vectors of the generalized tangent bundle. Given this embedding,
we can extend the transformation with other ingredients. These will transform the B-field with a
B-transform, the metric with some scalings, and the dilaton will be shifted accordingly. We can
additionally allow for a pair of U(1) actions given by the phases discussed in (2.3.44). This way, we
will be able to transform the whole NSNS sector as desired. The O(d, d) action being done on the
generalized tangent bundle, the RR fluxes are not transformed directly, but via the pure spinors and
the SUSY equation defining them1.

Thus we propose to use the twist transformation to relate solutions on the torus to solutions on

1The general transformation we deduce for the RR fields mixes NSNS and RR sectors, which is not the case of
T-duality. One way to do this kind of mixing is via U-duality, but our transformation does not seem related to it.
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solvmanifolds. Differently from T-duality, the twist is a local O(d, d) transformation. Then, while the
former is a symmetry of the equations of motion, the twist in general is not. Nevertheless, we can work
out general constraints for it to preserve the SUSY conditions. In some cases, these constraints are
simple enough to be solved. Then, one can use the transformation as a solution generating technique.
For instance, we are able to relate all type IIB solutions on nilmanifolds presented in section 3.3,
including the seemingly isolated non T-dual solution on n 3.14. For solvmanifolds, we can as well
recover the type IIB non T-dual solution on s 2.5. We also use the twist to construct a new solution
on a new solvmanifold. We discuss as well the possibility to get non-geometric solutions.

Twist transformations can also be applied in the heterotic string to connect two supersymmetric
flux solutions recently discovered on manifolds with different topologies2. To so, we discuss how to
formulate the heterotic SUSY conditions in terms of GCG.

Before entering the details, let us mention the content of the related appendix C. We first give a
more detailed construction of one-forms of solvmanifolds, and give a list of solvmanifolds in terms of
these globally-defined one-forms. Then we discuss the possible non-geometric T-duals of solvmanifold
solutions. Finally, in the heterotic context, we extend the generalized tangent bundle to include the
gauge bundle, in order to transform the gauge fields directly via a subset of local O(d + 16, d + 16)
transformations.

4.2 Twist construction of globally defined one-forms on a solvman-
ifold

In this section we show how to construct the globally defined one-forms of a given six-dimensional
solvmanifold3 from those of a torus T 6. We name this construction the twist. To start with, we
do not bother about global issues related to the compactness of the manifold and we focus on the
one-forms of the corresponding solvable group. Given such a group G, we want to relate one-forms
on T ∗R6 to those of T ∗G = g∗

A




dx1

...
dx6


 =



e1

...
e6


 . (4.2.1)

A is a local matrix that should contain the bundle structure of G. Indeed, the one-forms em=1...6

constructed from A should verify the Maurer-Cartan equation (3.2.2) which describes the topology of
G. In addition, these forms should be globally defined, but we will come back later to this question.

In appendix C.1.1, we show how the construction works in general for almost nilpotent and nilpotent
groups. Here we focus on two simple cases: a nilpotent group with only one fibration, and an almost
abelian solvable group, defined in section 3.2.

• Nilpotent group with only one fibration:

For nilpotent groups, there is no particular difficulty with compactness: one can always find
a lattice that takes the group into a nilmanifold. So with some abuse of language, we rather
talk here of a nilmanifold. We consider the case where the nilmanifold is simply one fibration
of F = T kF over the base B = T kB . In that case, we take4

A = e−
1
2
adB(g) = e−

1
2

∑
l∈B x

ladEl (g) , (4.2.2)

2These solutions have been related before by the so-called Kähler/non-Kähler transition: the relation is established
via a complicated and indirect chain of dualities involving a lift to M-theory [54, 55, 56, 57, 58, 59, 60, 61, 62].

3We refer to section 3.2 for a general discussion on solvmanifolds.
4This formula does correspond to a subcase of the one (C.1.9) given in appendix C.1.1 for the general case. Indeed,

for only one fibration, adB(X) is zero if X ∈ F as we can see from the Lie bracket definition. Furthermore, adB(X) ∈ F
for X ∈ B since there is only one fibration. So the two formulas for AN match.
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where the xl are coefficients parametrizing generic elements of B, and that we can consider as
coordinates, i.e. El = ∂xl . The forms constructed this way verify the Maurer-Cartan equation
(see appendix C.1.1).

Let us give an example: the Heisenberg algebra considered in section 3.2. As we can see from
the Maurer-Cartan equation, the base and fiber are given by the following basis: B = {E2, E3},
F = {E1}. A generic element E of B is then parametrized as: E = x2E2 + x3E3. So the action
is given by5

adB(g) =




0 0 0
0 0 0
−x3 x2 0


 in the basis (E2, E3, E1) ⇒ A =




1 0 0
0 1 0

1
2x

3 −1
2x

2 1


 .

Out of this A we construct the one-forms, and we can verify that the Maurer-Cartan equation
is satisfied:

de1 = −e2 ∧ e3 .

From (4.2.2) it follows that the generic form of A for one fibration is always given by

A =

(
1kB 0

A 1kF

)
, (4.2.3)

where the A block gives the connection of the fibration. For instance for the Heisenberg algebra,
the connection one-form is given by 1

2(x3dx2 − x2dx3). We will come back to (4.2.3) and give
further examples.

• Almost abelian solvable group:

From the Mostow bundle (3.2.6), it is natural to identify x6 with the coordinate t parametrising
the R subalgebra and to take the corresponding one-form as dx6 = dt. Then the matrix A takes
the form

A =

(
AM 0

0 1

)
, (4.2.4)

where AM is a five-dimensional matrix given by

AM = µ(−t) = µ(t)−1 = e−t ad∂t (n) . (4.2.5)

It is not surprising to use the operator µ(t): as discussed in section 3.2, this operator provides
the structure of the Mostow bundle, and the criterion for the compactness of the manifolds.
These two properties are those we expect to find in the A map (4.2.1). It is straightforward to
show that the forms constructed this way verify the Maurer-Cartan equation (see (C.1.7)):

dei = d(e−t ad∂t )i k ∧ dxk = · · · = −f i tj dt ∧ ej . (4.2.6)

Note that taking for instance µ(t) as in (3.2.14), the corresponding A is not a diffeomorphism
and therefore can change topology.

Before giving explicit examples of the construction for the almost abelian case, let us come back
to the problem of compactness, which is less straightforward than for nilmanifolds. To this end we
need to investigate the monodromy properties of the matrix AM and the related one-forms under a
complete turn around the base circle.

5We recall the adjoint action of E is given by [E, · ], see appendix B.1.1.

51



Let us consider the following identification: t ∼ t+t0 where t0 is the periodicity of the base circle. To
obtain a consistent construction (having globally defined one-forms) we must preserve the structure
of the torus we are fibering over the t direction. This amounts to asking that an arbitrary point of
the torus is sent to an equivalent one after we come back to the point t from which we started. The
monodromies of the fiber are fixed, thus the only allowed shifts are given by their integer multiples.
The way points in the torus are transformed when we go around the base circle is encoded in a matrix
MF which has then to be integer valued. The identification along the t direction is given by

T6 :

{
t→ t+ t0
xi → (MF )i jx

j i, j = 1, . . . , 5 , (4.2.7)

while those along the remaining directions are trivial

Ti :





xi → xi + 1
xj → xj

t→ t
i, j = 1, . . . , 5 ; i 6= j . (4.2.8)

Let us now consider the one-forms (4.2.1) we have constructed via the twist AM . It is straightfor-
ward to see that (4.2.1) are invariant under the trivial identifications, while under the non-trivial T6,
we have for i, j = 1, . . . , 5

ẽi = AM (t + t0)i jdx̃
j = [AM (t)AM (t0)MF ]i jdx

j . (4.2.9)

The one-forms are globally defined if they are invariant under this identification:

ẽi = ei = AM (t)i jdx
j . (4.2.10)

Therefore, in the construction, we have to satisfy the following condition:

AM (t0)MF = I5 ⇔MF = A−1
M (t0) = AM (−t0) . (4.2.11)

Consistency requires the matrix AM to be such that AM (−t0) is integer valued for at least one
t0 6= 0. This will impose a quantization condition on the period of the base circle, which can take
only a discrete set of values (in general it will be a numerable set, as we will see in the examples).
Once we fix t0, the integer entries of AM (−t0) will provide the set of identifications.

It is worth stressing that being able to give the correct identifications of the one-forms of the man-
ifold is the same as having a lattice: the identifications (4.2.11) express the lattice action, and give
globally defined one-forms only if AM (−t0) = µ(t0) is integer valued for some t0. As already discussed
in section 3.2, this is the condition to have a lattice (as stated in [37], see also appendix B.1.2). Let
us emphasize that the one-forms (4.2.1), constructed via the twist, are globally defined only if we
start from a basis of the Lie algebra where AM (t) is integer valued for some value of t. We give a list
of algebras in such a basis in Appendix C.1.2.

As an example, we write the explicit form of the twist matrix for two almost abelian six-dimensional
algebras6 (we already mentioned these two algebras in section 3.3: the corresponding solvmanifolds
provide supersymmetric solutions). We also discuss the consistency condition (4.2.11) (globally de-
finedness) for each of these algebras. In the basis where the one-forms are globally defined the two
algebras are

g
1,−1,−1
5.7 ⊕ R : (q125, q215, q245, q135, 0, 0) , (4.2.12)

g
p,−p,±1
5.17 ⊕ R : (q1(p25 + 35), q2(p15 + 45), q2(p45− 15), q1(p35− 25), 0, 0) . (4.2.13)

6We use the same notation as in the standard classification of solvable algebras [63, 64, 37]: the number 5 indicates
the dimension of the (indecomposable) algebra, while the second simply gives its position in the list of indecomposable
algebras of dimension 5.
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In both cases the parameters q1 and q2 are strictly positive. This is not the most general form of
these algebras, which in general contain some free parameters7 p, q and r. Here we wrote the values
of the parameters for which we were able to find a lattice: p = −q = −r = 1 for the first algebra and
r = ±1 for the second.

In the following, by abuse of notation, we will denote the algebra and the corresponding solvmani-
fold with the same name.

The algebra (4.2.12) being a direct product of a trivial direction and a five-dimensional indecom-
posable algebra, the adjoint matrix ad∂x5 (n) is block-diagonal, with the non-trivial blocks given by
−ad∂t(n) in (3.2.18) and its transpose. Then the twist matrix is

A =

(
AM

I2

)
AM =




α̃ −β̃
−γ̃ α̃

α̃ −γ̃
−β̃ α̃


 , (4.2.14)

where, not to clutter notation, we defined

α̃ = cosh(
√
q1q2x

5) , β̃ =

√
q1

q2
sinh(

√
q1q2x

5) , γ̃ =

√
q2

q1
sinh(

√
q1q2x

5) . (4.2.15)

The forms obtained by the twist (4.2.14) are globally defined [42]. Indeed they are invariant under
constant shifts of each xi for i = 1, 2, 3, 4 and 6, with the other variables fixed, and the following
non-trivial identification under shifts for x5

(x1, . . . , x6) = (α̃x1 + β̃x2, γ̃x1 + α̃x2, α̃x3 + γ̃x4, β̃x3 + α̃x4, x5 + l, x6) , (4.2.16)

where in α̃, β̃, γ̃ we took x5 = l. For the above identifications to be discrete [42] α̃, β̃, and γ̃ must be
all integers. This is equivalent to having the matrix µ(x5 = l) integer and, hence, it is the same as
the compactness criterion. The existence of a lattice was also discussed in [29]. There the parameters
α̃, β̃ and γ̃ were set to α̃ = 2, β̃ = 3, γ̃ = 1.

For the second algebra, g
p,−p,r
5.17 ⊕R, we will consider separately the cases p = 0 and p 6= 0. For p = 0

it reduces to (q135, q245,−q215,−q125, 0, 0) with r2 = 1. This algebra and the associated manifold
have been already mentioned in the previous chapter where it was called s 2.5. For p 6= 0 the algebra
can be seen as the direct sum

g
p,−p,r
5.17 ⊕ R ≈ s 2.5 + p(̇g1,−1,−1

5.7 ⊕ R) . (4.2.17)

The twist matrix is given by

A =

(
A1A2

I2

)
, (4.2.18)

where the two matrices A1 and A2 commute and give the two parts of the algebra

A1 =




ch −η0 sh
− 1
η0

sh ch

ch − 1
η0

sh

−η0 sh ch


 , A2 =




c −η0s
c − 1

η0
s

1
η0

s c

η0s c


 , (4.2.19)

7The general form for g
p,q,r
5.7 is

1

2

(
− β0(1 + r)15 + q1(1− r)25,−β0(1 + r)25 + q2(1− r)15,−β0(q+ p)35 + q2(p− q)45,−β0(q+ p)45 + q1(p− q)35, 0

)
,

where we set β0 =
√
q1q2. Similarly, for g

p,−p,r
5.17 we have

(
q1p25 +

1

2
[q1(r2 + 1)35 + β0(r2 − 1)45], q2p15 +

1

2
[q2(r2 + 1)45 + β0(r2 − 1)35], q2(−15 + p45), q1(−25 + p35), 0

)
.
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where now we define η0 =
√
q1
q2

and

ch = cosh(p
√
q1q2x

5) c = cos(
√
q1q2x

5)

sh = sinh(p
√
q1q2x

5) s = sin(
√
q1q2x

5) .

In this case, imposing that the forms given by the twist (4.2.18) are globally defined under discrete
identifications fixes the parameters in the twist to (with x5 = l)

ch c = n1 , η0 sh c = n2 ,
1

η0
sh c = n3

sh s = n4 , η0 ch s = n5 ,
1

η0
ch s = n6 , ni ∈ Z . (4.2.20)

The equations above have no solutions if the integers ni are all non-zero. The only possibilities are
either n1 = n2 = n3 = 0 or n4 = n5 = n6 = 0 (plus the case where all are zero, which is of no interest
here). If one also imposes that the constraints must be solved both for p = 0 and p 6= 0, the first
option, n1 = n2 = n3 = 0, has to be discarded and the only solution is

n4 = n5 = n6 = 0 , s = 0 , l =
k π√
q1q2

, c = (−1)k , ñ1 = (−1)kn1 > 0 , k ∈ Z

ch = ñ1 , sh2 = n2n3 , n3η
2
0 = n2 , n2n3 = ñ2

1 − 1 , p =
cosh−1(ñ1)

k π
. (4.2.21)

p is quantized by two integers, but one can show that it can be as close as we want to any real value
(the ensemble is dense in R). It can be restricted to be positive for the cosh−1 to be defined.

4.3 Embedding the twist in GCG

In section 2.3, we introduced some notions of GCG and discussed O(d, d) transformations in this
context. We showed that, given a manifold M with a metric g and a B-field, one can introduce the
generalized metric H, or equivalently the generalized vielbein E , on the generalized tangent bundle
E. A length element on E is given by EdX, where

dXM =

(
dxm

∂m

)
, m = 1 . . . d . (4.3.1)

So, in this formalism, it is natural to extend a transformation acting on the forms dxm to a trans-
formation acting on the full dX. Therefore, we naturally embed the twist transformation given in
(4.2.1) into an O(d, d) transformation given by

O =

(
A 0
0 A−T

)
. (4.3.2)

We will now rather act on the generalized vielbein

E 7→ E ′ = EO . (4.3.3)

As discussed in the introduction, the twist transformation can be further extended. The transfor-
mation (4.3.2) being local, let us consider a more general local O(d, d) transformation. We should
restrict ourselves to the full subgroup of O(d, d) transformations that preserve the lower triangular
form (2.3.23) of the generalized vielbein, as discussed in section 2.3. Therefore, the transformation
O also has to be lower triangular:

O =

(
A 0
C D

)
, (4.3.4)
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where A, C, and D are d× d blocks. The O(d, d) constraints reduce in this case to

ATC + CTA = 0 ATD = I . (4.3.5)

This fixes the matrix D to be the inverse of AT : D = A−T . The resulting transformation can be
written as

O =

(
A 0
C A−T

)
=

(
I 0
X I

)(
A 0
0 A−T

)(
I 0
−Y I

)
, (4.3.6)

with Y = ATXA−ATC for any X. So the general twist transformation is a product of B-transforms
(given by X and Y ) and a GL(d) transformation given by A. The A matrix can correspond to the
topological transformation discussed previously as the action on one-forms8, or could contain some
additional ingredients like diagonal blocks which will rescale the metric. The purely topological twist
transformations previously discussed all had det(A) = 1. Therefore, according to (2.3.34), only a
scaling of the metric would transform the dilaton.

Let us now be more specific, and consider the case where M is a torus fibration (with connection),
T n →֒M

π−→ B, and a twist transformation of the type

O =

(
A 0
C D

)
=




AB 0 0 0
AC AF 0 0
CB CC DB DC
CC′ CF 0 DF


 . (4.3.7)

In the second matrix, we split the base (B), fiber (F) and mixed elements. As discussed previously,
the O(d, d) constraints fix D as

D = A−T =

(
A−TB −A−TB ATCA

−T
F

0 A−TF

)
, (4.3.8)

and in addition allow to parametrize C in terms of three unconstrained matrices C̃B, C̃F , C̃C ,

C =

(
A−TB (C̃B −ATCA−TF C̃C) −A−TB (C̃TC +ATCA

−T
F C̃F )

A−TF C̃C A−TF C̃F

)
, (4.3.9)

with C̃B and C̃F anti-symmetric.
Later on, we shall study when and how the transformation (4.3.7) maps one string background

to another. In general, two internal manifolds connected in this way will have different topologies.
Typically such topology changes are associated with large transformations, while (4.3.7) is connected
to the identity. The topological properties of related backgrounds are determined by the global
properties of the matrices C and AC .

Actually, the off-diagonal piece AC of the GL(d) part corresponds to the topological transformation
discussed for nilmanifolds with only one fibration, as one can see in formula (4.2.3). The diagonal
pieces AB and AF will then give additional scalings of the metric as discussed.

4.3.1 Action on the generalized vielbein

One reason to introduce the transformation (4.3.7) is to relate spaces that are direct products of two
manifolds, for instance T 4 × T 2, into spaces that are non-trivial fibrations with connection. To see
how this is achieved we can look at the O(d, d) transformations of the generalized vielbein.

8Note that the transformations considered as examples of (4.2.1) were all connected to the identity, so are indeed
elements of GL(d).
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We will be interested in solutions where the manifold M is a n-dimensional torus fibration (with
coordinates ym) over a base B (with coordinates xm̃)

ds2 = gm̃ñdx
m̃dxñ + gmn(dy

m +Amr̃dx
r̃)(dyn +An s̃dx

s̃) . (4.3.10)

where A is here the connection of the fibration. The corresponding vielbein and one-forms are

eã = eã m̃dxm̃ (4.3.11)

ea = ea m(dym +Amñdx
ñ) = ea mΘm , (4.3.12)

where ã and a are the local Lorentz indices on the base and the fiber respectively, while m̃ and m are
the corresponding target-space indices. We take also a non-trivial B-field of the form

B = B(2) +B(1) +B(0)

=
1

2
Bm̃ñ dxm̃ ∧ dxñ +Bm̃m dxm̃ ∧Θm +

1

2
Bmn Θm ∧Θn , (4.3.13)

where B(2) is the component entirely on the base, B(1) has one component on the base and one on
the fiber, and B(0) is on the fiber

B(2) =
1

2
(Bm̃ñ − 2Bm[m̃A

m
ñ] +BmnA

m
m̃A
n
ñ) dxm̃ ∧ dxñ , (4.3.14)

B(1) = (Bm̃m −BmnAn m̃) dxm̃ ∧ dym , (4.3.15)

B(0) =
1

2
Bmn dym ∧ dyn . (4.3.16)

The generalized vielbein in (2.3.24) then take the form

EAMdXM =

(
e 0
−êB ê

) (
dx
∂

)
=




eãm̃ 0 0 0
Aam̃ eam 0 0

−Bãm̃ −Bãm êã
m̃ Âã

m

−Bam̃ −Bam 0 êa
m







dxm̃

dym

∂m̃
∂m


 , (4.3.17)

where ê = (e−1)T . To simplify the notation we defined the connections Aañ = eamA
m
ñ and Âã

m =
−êãm̃Am̃m. Similarly the components of the B-field are

Bãn = êã
m̃Bm̃n Bãñ = êã

m̃(Bm̃ñ +Bm̃mA
m
ñ −Am̃mBmñ) , (4.3.18)

Ban = êã
mBmn Bañ = êa

m(BmnA
n
ñ +Bnñ) . (4.3.19)

As an example of the transformation (4.3.7), consider now a manifold which is a direct product of
a base and a “fiber” and with no B-field. The generalized vielbein take the simple form

E =




eB 0 0 0
0 eF 0 0
0 0 êB 0
0 0 0 êF


 , (4.3.20)

where with obvious notation eB and eF denote the vielbein on the base and the fiber. After the
transformation (4.3.7), it becomes

E ′ =




eBAB 0 0 0
eFAC eFAF 0 0
êBCB êBCC êBDB êBDC
êFCC′ êFCF 0 êFDF


 . (4.3.21)
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Comparing the previous expression with (4.3.17), it is easy to see that the new background has a
non-trivial B-field

B′ = −ATC = −
(
C̃B −C̃TC
C̃C C̃F

)
, (4.3.22)

and a non-trivial fibration structure with connection9 A′ = A−1
F AC . The transformed metric is then

ds2 = g′m̃ñdx
m̃dxñ + g′mn(dy

m +A′mr̃dx
r̃)(dyn +A′ns̃dx

s̃) , (4.3.23)

where g′m̃ñ = (ATB gB AB)m̃ñ and g′mn = (ATF gF AF )mn. From the explicit form of the metrics g and
g′, (4.3.23), the transformed dilaton (2.3.34) becomes

eφ
′

= eφ|det(AB) det(AF )| 12 . (4.3.24)

The matrices AB, AF , AC , C̃B, C̃F , and C̃C are completely arbitrary, and hence the transformation
(4.3.7) allows to go from whatever metric, dilaton andB-field, to any other metric, dilaton, connection,
and B-field.

4.3.2 Action on pure spinors

In section 2.3.3 we discussed the action of an O(d, d) in the spinorial representation on the pure
spinors Ψ± (2.4.13) of E. The twist transformation discussed previously can be written in this way.
If we consider only a GL(d) transformation as in (4.3.2), and furthermore consider for A only the
action on the forms discussed in the almost abelian case (4.2.5), then the twist action on the spinor
reads

O ·Ψ =
1√

detA
e−t [ad∂t (n)]mne

n∧ ιm ·Ψ , (4.3.25)

where em=1...6 is a given basis of one-forms on M , and ιm the associated contraction.

Let us consider the more general action given by the triple product (4.3.6). It can be seen as a
succession of a B-transform, a GL(d) action and another B-transform. This leads to the following
expression for the O(d, d) action on the spinors

O =
1√

detA
e−

1
2
ymndxm∧dxn ea

m
ndxn∧ ι∂m e

1
2
xmndxm∧dxn . (4.3.26)

Since O(d, d) acts on the generalized vielbein from the right and on pure spinors from the left, we
have exchanged the order of the transformations with respect to (4.3.6). From this expression, we
can easily read the transformation of the dilaton which is present in the pure spinors Ψ± (2.4.13): it
is transformed by the factor

√
detA as required in an O(d, d) transformation.

We recall that Y = ATXA− ATC for any given X. In the transformation of the generalized viel-
bein, we showed that the B-field of the transformed background is B′ = ATBA−ATC. Therefore we
can interpret X as the B-field of the original solution and Y as the new one. Then we can read from
the definition of pure spinors Ψ± (2.4.13) that the action (4.3.26) will simply erase the old B-field B
and replace it by the new one B′ after the GL(d) transformation.

Let us now apply this twist transformation to six-dimensional manifolds M which are T 2 fibration
(with connection) over a four-dimensional base B

B × T 2 ⇒ T 2 →֒M
π−→ B . (4.3.27)

The GL(d) part of the transformation is that of (4.3.7). Depending on the particular example, we
take B to be T 4, or K3. We will denote the holomorphic coordinate on the fiber by z = θ1 + iθ2.

9We recover the fact that the off-diagonal piece AC provides a connection when starting from none, as in (4.2.3).
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Then the torus generators are defined as ∂z and ∂z̄, and the connection one-forms by ΘI = dθI +AI ,
with Θ = Θ1 + iΘ2 and α = A1 + iA2. The fibration will be in general non-trivial, and the curvature
two-forms F I ∈ Ω2

Z
(B) are given by dΘI = π∗F I .

Our starting point is a trivial T 2 fibration. For simplicity, we set the B-field to zero and the dilaton
to a constant. The pure spinors are as in (2.4.15) and (2.4.16), with the SU(3) structure defined by

J = JB +
i

2
gzzdz ∧ dz̄ (4.3.28)

Ω =
√
|g| ωB ∧ dz , (4.3.29)

where |g| is the determinant of the metric on the torus fiber, JB and ωB the Kähler and holomorphic
two-forms on the base.

In the transformation (4.3.26) we set xmn = 0 since there is no initial B-field, and take ymn an
arbitrary antisymmetric matrix. This will act as a standard B-transform giving the new B-field. Here
we will concentrate on the GL(6) part. For simplicity, we take the action on the base to be trivial

A =

(
14 0
AC AF

)
=

(
14 0
0 AF

)(
14 0
A′ 12

)
(4.3.30)

and

AF =

(
eλ1 0
0 eλ2

)
, A′ = A−1

F AC =

(
A1
m̃

A2
ñ

)
. (4.3.31)

Note that we take an action as those constructing the nilmanifolds (4.2.3), and additionally a scaling
of the metric. With this choice, the GL(6) factor in (4.3.26) becomes

Oa =
1√

detAF
eA

1 ι∂1
+A2 ι∂2 eλ1 dx1∧ ι∂1

+λ2dx2∧ ι∂2 , (4.3.32)

with AI = AI m̃dxm̃ for I = 1, 2. In terms of the complex connection α, the off-diagonal block
becomes

AI ι∂I = α ∧ i∂z + α ∧ i∂z
eA
I ι∂I = 1 + (α ∧ i∂z + α ∧ i∂z) + α ∧ α ∧ i∂z i∂z = 1 + o· , (4.3.33)

where o· sends a form to another form with same degree. The diagonal blocks give

eλIdx
I∧ ι∂I =

∏

I=1,2

[
1 + (eλI − 1)dxI ∧ ι∂I

]
. (4.3.34)

To derive (4.3.34) we used the fact the operators dxI ∧ ι∂I commute for different values of I, and
(dxI ∧ ι∂I )

k = dxI ∧ ι∂I .

The effect of (4.3.34) on Ω and J is to rescale the fiber components, while (4.3.33) introduces the
shift of the fiber direction by the connections α and α

J ′ = JB +
i

2
g′zz Θ ∧Θ (4.3.35)

Ω′ =
√
|g′| ωB ∧Θ , (4.3.36)

where g′zz = e2λgzz and Θ = dz + α. In order not to change the complex structure, we have to set
λ1 = λ2 = λ. Finally, from (4.3.33) and (4.3.34), it is straightforward to compute the new pure
spinors

Ψ+ = eiθ+e−φ e−iJ −→ Ψ′+ = eiθ+e−φ
′
e−B

′
e−iJ

′
,

Ψ− = −ieiθ−e−φ Ω −→ Ψ′− = −ieiθ−e−φ′e−B′Ω′ . (4.3.37)
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Here we took the normalized pure spinors and we did not transform the phases (this possibility was
mentioned in section 2.3.3 and will be used later). The new B-field is clearly B′ = 1

2ymndx
m ∧ dxn

and the dilaton is transformed by the trace part of the GL(6) transformation

e−φ
′

= (detAF )−1/2e−φ = e−λe−φ . (4.3.38)

4.4 Type II transformations

We would like to use the O(6, 6) transformation discussed in the previous section as a solution
generating technique in type II SUGRA: starting from a known solution, we would like to get a
new one. Instead of studying when the transformation preserves the equations of motion, we will
focus on the supersymmetry conditions and derive the constraints imposed by SUSY on the O(6, 6)
transformation in order for the latter to map solutions to new ones. We will not solve these constraints
in full generality. Here we concentrate on an explicit application of our transformation to the context
of SU(3) structure compactifications on T 6 or six-dimensional twisted tori.

4.4.1 Generating solutions: constraints in type II and RR fields transformations

We consider type II backgrounds corresponding to warp products of four-dimensional Minkowski
times a six-dimensional compact manifold, as described in section 2.2.1 and we use the pure spinors
Ψ± on E defined in (2.4.13). The supersymmetry conditions (2.4.18), (2.4.19), and (2.4.20) can be
rewritten in terms these pure spinors as

d(e3AΨ1) = 0 ,

d(e2A Re Ψ2) = 0 ,

d(e4A Im Ψ2) = e4Ae−B ∗ λ(F ) = R , (4.4.1)

where we introduce the notation R for later use, and we took |a|2 = eA. Obviously, Ψ1 = Ψ+/− and
Ψ2 = Ψ−/+ in IIA/B.

Consider now a solution of the supersymmetry equations and Bianchi identities, and apply to the
associated pure spinors the complex transformation (2.3.44)

O±c = eiθ
±
c O ⇒ Ψ′± = O±c Ψ± , (4.4.2)

where O is a real O(d, d) transformation in the spinorial representation. We want to determine what
are the conditions on Oc in order to get a new solution (at least to the SUSY equations). The
preservation of the closure equations will provide at least N = 1 supersymmetry, while the action of
the transformation on the rest of the fields is then used to define the transformed RR fields. Indeed,
we do not know how to transform directly the RR fields under O(d, d), so we will read the new ones
out of the new SUSY equations.

The conditions to get new solutions are easily determined by imposing that the transformed pure
spinors are again solutions of the SUSY equations

d(e3AΨ′1) = 0

d(e2AReΨ′2) = 0

d(e4AImΨ′2) = R′ , (4.4.3)

where R′ gives the new RR fields. Then expanding into real and imaginary parts, we obtain

d(O) Ψ1 = 0

cos θ+
c d(O) e2A Re Ψ2 − sin θ+

c d(e−2AO) e4A Im Ψ2 = e−2A sin θ+
c OR

sin θ+
c d(e2AO) e2A Re Ψ2 + cos θ+

c d(O) e4A Im Ψ2 = R′ − cos θ+
c OR . (4.4.4)
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The last equation defines the transformed RR field

R′ = cos(θ+
c )OR+ sin(θ+

c )d(e2AO) e2A Re Ψ2 + cos(θ+
c )d(O) e4A Im Ψ2 . (4.4.5)

Because of the phase, the last equations are actually correct in IIB. In IIA, one has to replace θ+
c by

θ−c . The first two equations of (4.4.4) are the constraints the Oc transformation has to fulfill in order
to map solutions to new solutions of type II supergravity. Out of the third equation, one still has to
check the BI. As already mentioned at the beginning of this section, we do not analyse in general the
system of constraints above, but we will do it for particular kinds of operator O.

An interesting feature of this transformation is the possible mixing between the NSNS and RR
sectors, as we can see in (4.4.5). This is due to the locality of the operator O, and to the complexi-
fication of the O(6, 6) transformation by the U(1) action on the line of pure spinors. Note also that
such a complexification is necessary to relate different types of sources.

4.4.2 Relating solutions on nilmanifolds

In this section, we will use our twist transformation (4.3.7) to relate compactifications on T 6 to
nilmanifolds that are fibrations of T 2 over T 4

T 4 × T 2 ⇒ T 2 →֒M
π−→ T 4 . (4.4.6)

At the end of the section, we will consider a further twist to construct a second fibration.
The construction of a nilmanifold from a torus (4.2.3) could be extended in GCG into (4.3.7), which

transforms, in addition to the topology, the metric, the B-field and the dilaton. As shown in section
4.3.2, the same transformation can be performed on the pure spinors and then the transformation
of the RR sector is read indirectly from the SUSY equation (4.4.5). The main result of our analysis
is to show that the nilmanifold solutions listed in section 3.3 correspond to the only possible twists
from a T 6.

Nilmanifolds with only one fibration

We will first consider the nilmanifolds wich consist of a single fibration. We will denote as previously
the torus generators by ∂z and ∂z̄, the connection one-forms by ΘI = dθI + AI and the curvature
two-forms by F I with I = 1, 2.

The twist transformations necessarily relate manifolds with different topological properties. This
can be seen by computing the Betti numbers of the different manifolds. For the direct product of T 2

with a generic base B, the Betti numbers are

b1 = b1(B) + 2 ,

b2 = b2(B) + 2b1(B) + 1 ,

b3 = b3(B) + 2b2(B) + b1(B) . (4.4.7)

Clearly the Betti numbers for generic M are smaller than for B×T 2 and will depend on the topological
properties of the curvature F I . Indeed as dθI is mapped to ΘI = dθI +AI and dΘI = π∗F I , the two
one-forms dθI, which were non-trivial in cohomology, are replaced by forms that are not closed. At
the same time the two closed two-forms F I , while being non-trivial in cohomology on B, are trivial in
cohomology on M . When the base is T 4, we find b1(M) = b1(T 4) = 4. There are only seven classes of
nilmanifolds with b1 = 4. It is not hard to check that three of them are actually affine T 2 fibrations
over T 4 (circle fibrations over five-manifolds which are in turn circle fibrations over T 4)

n 4.1 (0, 0, 0, 0, 12, 15+ 34) M = I6

n 4.2 (0, 0, 0, 0, 12, 15) M = T 2 × I4

n 4.3 (0, 0, 0, 0, 12, 14+ 25) M = S1 × I5
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where In+2 is a sequence of two circle fibrations over T n. This leaves us with four topologically
distinct cases of two commuting U(1) fibrations10 over T 4

n 4.5 (0, 0, 0, 0, 12, 34) M = N3 ×N3 b2(M) = 8 b3(M) = 10
n 4.6 (0, 0, 0, 0, 13, 14) M = S1 ×N5 b2(M) = 9 b3(M) = 12

n 4.4 (0, 0, 0, 0, 2 × 13, 14 + 23) M = N
(1)
6 b2(M) = 8 b3(M) = 10

n 4.7 (0, 0, 0, 0, 13 + 42, 14 + 23) M = N
(2)
6 b2(M) = 8 b3(M) = 10

where N3 is a circle fibration over T 2, N5 is a T 2 fibration over T 3 and N
(1)
6 and N

(2)
6 are two distinct

T 2 fibrations over T 4.

Type C solutions, i.e. solutions with a non-trivial RR F3 with O5/D5 sources, can be obtained on
some of these manifolds by two T-dualities along the fiber from a type B solution on T 6. The latter
has a non-trivial five-form which is related to the warp factor and an imaginary anti-self dual complex
three-form flux gsF3 = − ∗H. According to standard Buscher rules, the components of the B-field
with one leg along the fiber give, after T-duality, the non-trivial connections. Under T-duality the
O3 planes are mapped to O5 planes.

Here we shall show that solutions on such manifolds can also be related via our twist transformation
(4.3.7) to T 6 with O3 planes, a non-trivial five-form flux F5 and a trivial NSNS flux (and therefore
not T-dual). In this background the five-form flux is related to the warp factor

gsF5 = e4A ∗ d(e−4A) , (4.4.8)

while the dilaton is constant eφ = gs. All other fluxes are zero. The complex structure is chosen as

χ1 = e1 + ie2 ,

χ2 = e3 + ie4 ,

χ3 = e5 + ie6 , (4.4.9)

where χi are one-forms and the one-forms on the torus are em = e−Adxm with m = 1, . . . , 6. Then
the SU(3) structure and the corresponding pure spinors are

Ω = χ1 ∧ χ2 ∧ χ3 Ψ− = − i

gs
Ω (4.4.10)

J =
i

2
χi ∧ χi Ψ+ =

i

gs
e−iJ . (4.4.11)

The O3 projection fixes one phase θ+ = π
2 , while we choose for the other θ− = 0.

The idea is now to apply the transformations (2.3.44) and (4.3.32) to the previous solution and see
under which conditions we can reproduce the nilmanifolds n 4.4, n 4.5, n 4.6, n 4.7. We choose the
T 2 torus fiber in the directions x5 and x6. Since we are connecting solutions with zero NSNS flux,
we do not bother to consider the contribution of the B-transform. The new pure spinors are given
by (4.3.37)

Ψ′− = −ieiθ−c e−φ′Ω′

Ψ′+ = ieiθ
+
c e−φ

′
e−iJ

′
, (4.4.12)

where the SU(3) structure takes the form (4.3.35)

J ′ = JB +
i

2
g′zzΘ ∧Θ (4.4.13)

Ω′ =
√
|g′|ωB ∧Θ , (4.4.14)

10Note that here we label the nilmanifolds as in section 3.3, but for n 4.4, n 4.6 and n 4.7 we have used isomorphisms
of the nilpotent algebras to cast the individual entries in a convenient form, yielding simple solutions for the same choice
of complex structure on the base T 4. The same isomorphism applied to n 4.5 gives the algebra (0, 0, 0, 0, 2× (14− 13) +
23− 24, 23− 13 + 2× (24− 14)).
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with JB = i
2(χ1 ∧ χ1̄ + χ2 ∧ χ2̄), ωB = χ1 ∧ χ2 and Θ = dz + α.

Note that in order to obtain a geometric background, we need to perform the twist along isometries.
As in standard T-duality, this implies a smearing in the fiber directions, especially for the warp factor.
Then we expect to have O5 planes in the directions 56.

To determine the connection, as well as the other fields in the solution, we can require that the
transformed background satisfies the supersymmetry conditions (4.4.1) for O5 compactifications with
type 3 - type 0 pure spinors [29]

eφ
′

= gse
2A′

d(eA
′
Ω′) = 0

d(J ′)2 = 0

d(e2A′J ′) = gse
4A′ ∗ F ′3

H = 0 . (4.4.15)

Also, the O5 projection sets θ+ = 0 and we choose again θ− = 0, hence θ−c = 0 and θ+
c = −π/2.

Equivalently, we can use the constraints worked out in (4.4.4). It is straightforward to verify that
from the equation for the real part of Ψ′+, it follows that indeed eφ

′
= gse

2A′ and

g′zz = e2A′ F ∧ JB = 0 ,
F ∧ JB = 0 ,

(4.4.16)

where we introduced the curvature F as dΘ = π∗F . Similarly, the imaginary part of Ψ′+ can be used
to define the RR three-form as in (4.4.15) (see also (4.4.5)). Finally, the equation for Ψ′− sets A′ = A
and

F ∧ ωB = 0 . (4.4.17)

Using the form (4.4.16) for the new metric on the fiber and the fact that the warp factor does not
change, we can write the metric on M as

ds2
6 = e−2A

4∑

m̃=1

(dxm̃)2 + e2A
∑

I=1,2

(dxI +AI)2 , (4.4.18)

which is indeed what one expects for O5 compactifications. As a transformation on the generalized
vielbein, (4.3.7), the twist acts as

AB = I4 , AF = I2 × e2A′ , A z
C m̃ = e2A′αm̃ , A z

C m̃ = e2A′αm̃ , (4.4.19)

and we can check the dilaton is transformed as expected.

Let us go back to the form of the constraints on the curvature F . From (4.4.16) and (4.4.17), we
see that demanding that the twist preserves supersymmetry is equivalent to the requirement that F
does not have a purely anti-holomorphic part and its contraction with the Kähler form on B vanishes

F = F 2,0 + F 1,1
− . (4.4.20)

Using the diagonal metric on T 4 associated to the Kähler form JB, it is convenient to define an
orthogonal set of two-forms

j1
± = e1 ∧ e2 ± e3 ∧ e4 ,

j2
± = e1 ∧ e3 ∓ e2 ∧ e4 ,

j3
± = e1 ∧ e4 ± e2 ∧ e3 , (4.4.21)

such that ji± = ±∗ ji± (for i = 1, 2, 3) and ji±∧ jj± = ±1
2δ
ij vol(T 4). Then JB = j1

+ and ωB = j2
+ + ij3

+.
The decomposition (4.4.20) becomes

F = f+(j2
+ + ij3

+) + fi j
i
− (4.4.22)
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for a set of complex f+, fi. It is not hard to verify now that f+ = 1, fi = (0, 0, 0) for n 4.7, f+ =
1, fi = (0, 1, 0) for n 4.4, f+ = 1

2 , fi = (0, 1
2 ,
i
2) for n 4.6, and f+ = −1+3i

2 , fi = (0, i−3
2 , 1−3i

2 ) for n 4.5.
Hence the curvatures for these four cases satisfy the conditions needed to preserve supersymmetry.

When F is purely imaginary (real) we get a special case of a single non-trivial circle fibration.
Indeed after setting to zero f+ and the real part of fi, the algebra n 4.6 becomes (0,0,0,0,0,1

2× (14-
23)), which is isomorphic to n 5.1. Similarly, either by setting to zero f+ and the imaginary part of fi
in n 4.6 (modulo the factor 1

2), or by simply setting to zero f+ in n 4.4, one gets a nilpotent algebra
(0,0,0,0,13+24,0) which is again isomorphic to n 5.1. For n 4.5 one of the two U(1)’s can also be
chosen trivial; the non-trivial fibration will be in a direction that is a linear combination of x5 and
x6.

So the twist transformation enables us to recover all but one type IIB solutions with SU(3) structure
mentioned in section 3.3. Out of the constraints, we understand better why these manifolds only do
provide solutions. We recall again that all the type C solutions on these nilmanifolds can also be
obtained by ordinary T-duality from a type B solution with a specific choice of NSNS flux. We are
now going to study the remaining solution, the one which has not been recovered yet. On the contrary
to the other solutions, this one does not admit such a type B T-dual solution.

Iterating the twist for a second fibration

The list of IIB SU(3) structure solutions with O5/D5 sources on nilmanifolds given in section 3.3
includes only one case which is not related by a sequence of T-dualities to flux compactifications on
straight T 6. The existence of such isolated solution is somewhat puzzling, and, as we shall see, it is
related to the rest of nilmanifold compactifications by the twist transformation.

The manifolds n 4.3 and n 4.6 have trivial S1 factors. These can be twisted as well, moving us in
the table of nilmanifolds into the domain of lower b1. In particular n 4.6 has the form M = S1 ×N5

where N5 is a T 2 fibration over T 3. The second cohomology of N5 is non-trivial (b2(N5) = 6) and
hence it can support non-trivial U(1) bundles. A priori there can be up to six different ways of
constructing a U(1) fibration and there are several topologically distinct ways to produce a manifold
with b1(M)=3 out of n 4.6. However we will see that one of them is singled out by supersymmetry.

In the previous section it was shown that n 4.6 yields a type IIB solution with O5/D5 sources.
We want to further twist the remaining U(1) bundle11 without changing the type of sources. This
requires taking a real twist of the S1 factor. From the n 4.6 algebra (0,0,0,0,13,14) it is not hard to
see that the S1 corresponds to the direction 2, and hence the twisting amounts to sending dẽ2 = 0 to
dẽ2 = F where F ∈ H2(N5). The algebra12 becomes (0,F ,0,0,13,14). The form of the F is again fixed
by imposing that the supersymmetry equations (4.4.15) continue to hold. This yields the conditions

F ∧ (e3 + ie4) ∧ (e5 + ie6) = 0 ,

F ∧ (e1 ∧ e3 ∧ e4 + e1 ∧ e5 ∧ e6) = 0 , (4.4.23)

which are solved by F = ẽ3 ∧ ẽ5 + ẽ4 ∧ ẽ6, where we set ẽi = eAei for i = 1, . . . , 4 and ẽi = e−Aei

for i = 5, 6. The corresponding algebra is (0,35+46,0,0,13,14), which is indeed isomorphic to n 3.14,
(0,0,0,12,23,14 - 35). In [29] it was shown that n 3.14 corresponds to the only solution involving
nilmanifolds that was not obtained by T-duality from compactifications on T 6 with fluxes. Our twist
transformation does connect it to the rest of the nilmanifold solutions family.

A typical feature of such non T-dual solutions is that they involve non-localized intersecting sources,
in this case two O5 planes. It is easy to see that our twist leads to the same result. Indeed, the Bianchi
identity for the F3 flux

gsdF3 = 2i∂∂̄(e−2AJ) = δ(source) , (4.4.24)

11As explained in appendix C.1.1, to obtain a nilmanifold with two iterated fibrations, one has indeed to perform two
consecutive twists, as we do here.

12It is easy to check that F is a linear combination of e1 ∧ e5, e1 ∧ e6, e3 ∧ e5, e3 ∧ e4, e4 ∧ e6 and e3 ∧ e6 + e4 ∧ e5.
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with the Kähler form

J = e−2A(ẽ1 ∧ ẽ2 + ẽ3 ∧ ẽ4) + e2Aẽ5 ∧ ẽ6 , (4.4.25)

becomes

gsdF3 = 2[∇(e−2A)− e2A]ẽ1 ∧ ẽ2 ∧ ẽ3 ∧ ẽ4 + 2e−2A ẽ3 ∧ ẽ4 ∧ ẽ5 ∧ ẽ6

+d(e−2A)(ẽ2 ∧ ẽ4 ∧ ẽ6 + ẽ2 ∧ ẽ3 ∧ ẽ5) + d(e2A)(ẽ2 ∧ ẽ4 ∧ ẽ5 − ẽ2 ∧ ẽ3 ∧ ẽ6) .(4.4.26)

In order to be consistent with the calibration conditions for the sources (see section 3.3 and the ap-
pendix B.3), the last line should vanish. Had we assumed that ∂5, ∂6 and ∂2 are all honest isometries,
this would set A to a constant, thus giving the unsurprising result that due to the intersection the
sources are smeared13. There is however the possibility of keeping the x2 dependence in the warp
factor and still have a consistent (and partially localized) solution [43, 44]. This possibility assumes
that the last twist (in direction 2) did not really require an isometry but a circle action. This also
suggests a possible generalization of our procedure, but we shall not pursue this further.

4.4.3 Generating solutions on solvmanifolds

In the previous section, we showed that the twist transformation could relate the known SU(3)
structure solutions on nilmanifolds to solutions on T 6, being T-duals or not. Let us focus here on
solvmanifolds. Few SU(3) structure solutions are known on solvmanifolds, as mentioned in section
3.3. These solutions all have two smeared intersecting sources, and are not T-dual to a T 6 solution,
but as in the previous section, they can be related to a T 6 solution by a twist transformation.

Here, we will rather use the transformation to generate a new solution. As shown in section 4.2,
the solvmanifold g

0,0,±1
5.17 × S1 is related by the twist to the more general manifold g

p,−p,±1
5.17 × S1. It

is then natural to ask what is the effect of twisting the type IIA solution in [29]. At the end of this
section, we present additionally a new localized solution on s 2.5 with one O6 source.

We take as starting point Model 3 of [29]. This is an SU(3) structure solution with smeared D6-
branes and O6-planes in the directions (146) and (236). For an SU(3) structure, the two pure spinors
Ψ± are given in (2.4.13). The phase in Ψ+ is, in general, determined by the orientifold projection.
For O6 planes θ+ is actually free and we set it to zero. We take for the SU(3) forms

Ω =
√
t1t2t3 χ

1 ∧ χ2 ∧ χ3 J =
i

2

∑

k

tkχ
k ∧ χk , (4.4.27)

with complex structure14

χ1 = e1 + i λ
τ3

τ4
e2 ,

χ2 = τ3 e
3 + iτ4 e

4 ,

χ3 = e5 − iτ6 e
6 . (4.4.29)

For simplicity, we introduce λ =
t2τ2

4
t1

. em are globally defined one-forms, obtained as in (4.2.1)

em = (A2)mndx
n , (4.4.30)

13Notice that while keeping the transformation real ensures that there is no change in the type of solution and hence
the sources (both the solution involving n 4.6 and the one on n 3.14 are of type C and have O5/D5 sources), relative
orientations of individual sources can change.

14Ω and J are normalised as

4

3
J3 = iΩ ∧ Ω = −8 vol(6) = −8

√
|g| e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6 (4.4.28)

where vol(6) is the internal volume form.
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with A2 given by (4.2.19). With this choice the metric in the em basis is diagonal

g = diag
(
t1, λ t2 τ

2
3 , t2 τ

2
3 , λt1, t3, t3τ

2
6

)
. (4.4.31)

Positivity of the volume and definite-positiveness of the metric imposes the following constraints on
the complex structure and Kähler moduli

τ6 > 0 , t1, t2, t3 > 0 . (4.4.32)

Due to the presence of intersecting sources, the warp factor is set to one and the dilaton to a
constant. By splitting the pure spinor equations (2.4.18), (2.4.19), and (2.4.20) into forms of fixed
degree, it is easy to verify that supersymmetry implies

d(Im Ω) = 0 , (4.4.33)

dJ = 0 , (4.4.34)

d(Re Ω) = gs ∗ F2 , (4.4.35)

F6 = F4 = F0 = H = 0 . (4.4.36)

The only non-zero RR flux reads

gsF2 =

√
λ (q1t1 − q2t2τ

2
3 )√

t3
(e3 ∧ e4 − e1 ∧ e2) , (4.4.37)

and it is straightforward to check that its Bianchi identity is satisfied.

Given the solution above, we want to use the twist action to produce solutions, still with O6-planes
and D6-branes, on g

p,−p,±1
5.17 × S1. The manifolds g

p,−p,±1
5.17 × S1 and g

0,0,±1
5.17 × S1 are related by the

twist matrix A1 in (4.2.19), whose adjoint matrix is

ad∂5(n)|p =

(
a12

a34

)
a12 = aT34 =

(
0 pq1

pq2 0

)
. (4.4.38)

The sixth direction being a trivial circle, we identify t = x5. Then the twist action on pure spinors,

Ψ± 7→ Ψ′± = O ·Ψ± , (4.4.39)

can be rewritten as (see (4.3.25))

O = e−px
5(q2e1∧ι2+q1e2∧ι1) e−px

5(q1e3∧ι4+q2e4∧ι3)

= O12O34 , (4.4.40)

with

O12 = I + [cosh(p
√
q1q2x

5)− 1](e1 ∧ ι1 + e2 ∧ ι2 + 2e1 ∧ e2 ∧ ι1 ∧ ι2)

− 1√
q1q2

sinh(p
√
q1q2x

5)(q2e
1 ∧ ι2 + q1e

2 ∧ ι1) , (4.4.41)

O34 = I + [cosh(p
√
q1q2x

5)− 1](e3 ∧ ι3 + e4 ∧ ι4 + 2e3 ∧ e4 ∧ ι3 ∧ ι4)

− 1√
q1q2

sinh(p
√
q1q2x

5)(q1e
3 ∧ ι4 + q2e

4 ∧ ι3) . (4.4.42)

Note that unimodularity of the algebra implies det(A) = 1. In comparison to (2.3.44), here we do not
introduce a phase in the twist operator, since we do not modify the nature of the fluxes and sources.
So the only component of the twist transformation that we use here is what we called the topology
change.
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It is straightforward to check that the transformed pure spinors and the SU(3) structure forms
have formally the same expression as in (4.4.27) - (4.4.29) but with the one-forms em now given by

em = (A1A2)mndx
n . (4.4.43)

Also the metric, which is completely specified by the pure spinors, has the same form as for the initial
solution, but in the new em basis

g = diag
(
t1, λt2τ

2
3 , t2τ

2
3 , λt1, t3, t3τ

2
6

)
. (4.4.44)

In order for the twist transformation to produce new solutions, the transformed pure spinors should
again satisfy the supersymmetry equations (4.4.3), or equivalently the constraints (4.4.4). The con-
ditions

H ′ = 0 dJ ′ = 0 (4.4.45)

are automatically satisfied, so that the first two equations in (4.4.3) reduce to15

0 = d(Im Ω′) = −p(λ− 1) τ3τ6

√
t1t2t3 (q2 e

1 ∧ e4 ∧ e5 + q1 e
2 ∧ e3 ∧ e5) ∧ e6 . (4.4.47)

From this we see that, beside the solution with p = 0, other supersymmetric solutions exist with
p 6= 0 provided λ = 1.

The last SUSY equation in (4.4.3) defines the transformed RR field as in (4.4.5). Since the twist
operator does not change the degree of forms, it follows from (4.4.5) that no new RR fluxes have been
generated

F0 = F4 = F6 = 0 , (4.4.48)

and (we have already set λ = 1)

gsF2 =
q1t1 − q2t2τ

2
3√

t3
(e3 ∧ e4 − e1 ∧ e2) +

p(q1t1 + q2t2τ
2
3 )√

t3
(e2 ∧ e4 + e1 ∧ e3) . (4.4.49)

The Bianchi identity for F2 is satisfied

gsdF2 = c1v
1 + c2v

2 , (4.4.50)

with v1 = t1
√
t3 e

1 ∧ e4∧ e5 and v2 = t2τ
2
3

√
t3 e

2 ∧ e3∧ e5 being the covolumes of the sources in (236)
and (146) (see (3.3.5)). The sign of the charges

c1 =
2q2

t3t1

[
t1q1(1− p2)− (1 + p2)t2q2τ

2
3

]

c2 =
2q1

t3t2τ2
3

[
τ2

3 t2q2(1− p2)− (1 + p2)t1q1

]
(4.4.51)

depends on the parameters, but the sum of the two charges is clearly negative. This guarantees
that the transformed background with p 6= 0 and λ = 1 is indeed a solution of the full set of ten-
dimensional equations of motion. In the next chapter we will use the non-supersymmetric version of
this background, with λ 6= 1, as starting point for our search for de Sitter solution.

15 Note that a slightly more general solution given by χ1 = e1 + i
(
τ3

τ4
λ e2 − τ2

τ4
e3
)
, χ2 = τ2 e

2 + τ3 e
3 + iτ4 e

4 and

the same χ3 leads to the same d(Im Ω′) and to

d(J ′) = −p(λ− 1) τ2

√
t1t2
λ

(q2 e
1 ∧ e4 ∧ e5 + q1 e

2 ∧ e3 ∧ e5) . (4.4.46)

A supersymmetric solution, requiring d(ImΩ) = dJ = 0, needs λ = 1. For τ2 = 0 we can have non-supersymmetric
solutions with a closed J ′.
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For completeness, it is worth to give the explicit form of the torsion classes for our solution. For
SU(3) structure solutions, the deviation from closure of the holomorphic three-form and the Kähler
form, is parametrized by five torsion classes

dJ =
3

2
Im(W̄1Ω) +W4 ∧ J +W3

dΩ = W1J
2 +W2 ∧ J + W̄5 ∧ Ω , (4.4.52)

where W1 is a complex scalar, W2 is a complex primitive (1, 1) form, W3 is a real primitive (2, 1)+(1, 2)
form, W4 is a real vector and W5 is a complex (1, 0) form. For the SU(3) structure solution (p 6= 0,
λ 6= 1, τ2 6= 0) mentioned in footnote 15, we obtain

W1 =
p τ2 (A+B)(1− λ)

6(τ2
2 + λτ2

3 )
√
t1t2t3

W2 =
1

6(τ2
2 + λτ2

3 )
√
t1t2t3

[
− it1

(
pτ2 (A+B)(λ+ 2) + 3λτ3(A−B)

)
χ1 ∧ χ̄1 +

+3
√
λt1t2

(
τ2(B −A) + pτ3(λA+B)

)
χ1 ∧ χ̄2 − 3

√
λt1t2

(
τ2(B −A) + pτ3(A+ λB)

)
χ2 ∧ χ̄1 +

+it2
(
pτ2(A+B)(1 + 2λ) + 3λτ3(A−B)

)
χ2 ∧ χ̄2 − ipτ2t3(A+B)(λ− 1)χ3 ∧ χ̄3

]

W3 =
ipτ2(λ− 1)

8(τ2
2 + λτ2

3 )

[
(A+B)χ1 ∧ χ2 ∧ χ̄3 − (A+B)χ3 ∧ χ̄1 ∧ χ̄2 +

−(A−B)(χ1 ∧ χ3 ∧ χ̄2 − χ1 ∧ χ̄2 ∧ χ̄3 + χ2 ∧ χ3 ∧ χ̄1 − χ2 ∧ χ̄1 ∧ χ̄3)

]

W4 = 0

W5 =
ip
√
λτ3(A+B)(λ− 1)

4(τ2
2 + λτ2

3 )
√
t1t2

χ3 , (4.4.53)

with A = q1t1, B = q2t2(τ2
3 +

τ2
2
λ ).

Solution with localized source, and the warping

The supersymmetric solution discussed previously is global, the warp factor and the dilaton being
constant. It is an interesting question to see whether localized solutions also exist (see e.g. [65] for
a recent discussion about the importance of warping). As discussed in section 3.3, the strategy for
finding localized solutions used in [29] was first to look for a smeared solution at large volume and
then localize it by scaling the vielbein, longitudinal and transverse with respect to the source, with
eA and e−A, respectively. This procedure works provided only parallel sources are present. Unfor-
tunately this is not the case for the supersymmetric solution we took as a departure point for our
construction - the intersecting O6/D6 solution on s 2.5.

It is however possible to find a completely localized solution on s 2.5 with O6 planes. The solution
has a simpler form in a basis where the algebra is (25,−15, r45,−r35, 0, 0), r2 = 1. In this basis the
O6-plane is along the directions (345). The SU(3) structure is constructed as in (4.4.27) with

χ1 = e−Ae1 + ieA(τ3e
3 + τ4e

4) ,

χ2 = e−Ae2 + ieAr(−τ4e
3 + τ3e

4) ,

χ3 = eAe5 + ie−Arτ6e
6 ,

τ6 > 0 , t1 = t2 , t3 > 0 , (4.4.54)
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where the non-trivial warp factor, e2A, depends on x1, x2, x6. The metric is diagonal

g = diag
(
t1e
−2A, t1e

−2A, t1(τ2
3 + τ2

4 )e2A, t1(τ2
3 + τ2

4 )e2A, t3e
2A, t3τ

2
6 e
−2A

)
, (4.4.55)

and the only non-zero flux is the RR two–form

gsF2 = −r
[
τ6

√
t3∂1(e−4A) dx2 ∧ e6− τ6

√
t3∂2(e−4A) dx1∧ e6 +

1

τ6

√
t21
t3
∂6(e−4A) dx1 ∧ dx2

]
. (4.4.56)

Setting the parameters t1 = t2 in the Kähler form (4.4.27) allows to have a single source term in the
F2 Bianchi identity

gsdF2 ∼ e−A∆(e−4A)e1 ∧ e2 ∧ e6 , (4.4.57)

where ∆ is the laplacian with unwarped metric.

As A→ 0 this solution becomes fluxless (s 2.5 can indeed support such solutions), hence it cannot
be found following the strategy of localizing the large volume smeared solutions. Unfortunately this
solution does not satisfy the twist to p 6= 0, (4.2.13), since for p 6= 0 the action of the involution of
an O6-plane with a component along direction 5 is not compatible with the algebra.

4.4.4 A digression: twist and non-geometric backgrounds

We would like to come back to the question of the consistency of the twist transformation. As
explained in section 4.2, the transformation is obstructed unless the matrix A is conjugated to an
integer-valued matrix. In many cases, the twist can result in a topology change similar to what is
achieved by T-duality. The latter also can be obstructed, and yet these obstructions do not stop us
from performing the duality transformation. So what about the obstructed twist?

To keep things simple, let us consider again an almost abelian algebra and the gluing under t→ t+t0.
We should have in general

T6 :

{
t→ t + t0
xi → ÃM (−t0)i jx

j i, j = 1, . . . , 5 , (4.4.58)

where ÃM (−t0) is necessarily an integer-valued matrix for t0 6= 0. In the case of compact almost
abelian solvmanifolds, this matrix is given by (4.2.5). For the algebras that do not admit an action of a
lattice, ÃM (−t0) has nothing to do with the algebra. Then the one forms em = A(t)mndx

n (dx6 = dt)
are defined only locally and have discontinuities under t → t + t0. These kinds of discontinuity are
actually familiar from the situations when an obstructed T-duality is performed, and are commonly
referred to as non-geometric backgrounds. One way to see this is to work on the generalized tangent
bundle and use local O(6) × O(6) transformations (for six-dimensional internal manifolds) to bring
the generalized vielbeine to the canonical lower diagonal form (2.3.23). In geometric backgrounds,
this is a good transformation, while in the non-geometric case it involves non-single valued functions
[27] (see also appendix C.2 for an illustration of this procedure, and the question of T-duals of solv-
manifold solutions).

As an example, let us consider the manifold g
−p
4.2 × T 2, where the algebra g

−p
4.2 is given in appendix

B.1.2. The corresponding group does not admit a lattice. For generic p this is very easy to see
since the group is not unimodular. For p = 2, the group is unimodular but there still is no lattice.
As explained in the Appendix B.1.2, in this case, the characteristic polynomial cannot have integer
coefficients, and therefore there is an obstruction to the existence of a lattice.

If we now consider the algebra together with its dual, i.e. examine the existence of a lattice on the
generalized tangent bundle E, we should study the 6 × 6 matrix M(t) = diag(µ(t), µ(−t)T ) instead
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of the matrix µ(t). One has

M(t) =




ept 0 0 0 0 0
0 e−t 0 0 0 0
0 −te−t e−t 0 0 0
0 0 0 e−pt 0 0
0 0 0 0 et tet

0 0 0 0 0 et




. (4.4.59)

For t0 = ln(3+
√

5
2 ) and p ∈ N

∗, M(t = t0) is conjugated to an integer matrix, P−1M(t0)P = N , where
N is an integer matrix (Theorem 8.3.2 in [37]):

P =




1 0 0 18+8
√

5
7+3
√

5
0 0

0 1 0 0 0 2(2+
√

5)

3+
√

5

0 0 ln( 2
3+
√

5
) 0

2(2+
√

5) ln( 3+
√

5
2

)

3+
√

5
0

1 0 0 2
3+
√

5
0 0

0 0 ln( 2
3+
√

5
) 0 − (1+

√
5) ln( 3+

√
5

2
)

3+
√

5
0

0 −1 0 0 0 1+
√

5
3+
√

5




, (4.4.60)

N =




a11 0 0 a14 0 0
0 2 0 0 0 −1
0 2 2 0 1 −1
a41 0 0 a44 0 0
0 1 1 0 1 −1
0 −1 0 0 0 1




. (4.4.61)

The piece

N4 =

(
a11 a14

a41 a44

)
=

(
0 −1
1 3

)p
(4.4.62)

comes from the entries ept and the result can be obtained16 from (B.1.14). We see that on the gener-
alized tangent bundle the basic obstruction to the existence of a lattice is easily removed. Moreover
it is not hard to see that, due to putting together the algebra and its dual, even the requirement of
unimodularity can be dropped.

On the generalized tangent bundle we can therefore obtain a lattice. For non-geometry, one may ask
for more: the integer matrix N being in O(3, 3). This question can be decomposed into N4 ∈ O(1, 1)
and the 4×4 integer matrix in O(2, 2). Actually, the latter is true17. But N4 /∈ O(1, 1). Moreover, one
can prove that diag(ept, e−pt) can only be conjugated to an integer O(1, 1) matrix for t = 0. Indeed,
the eigenvalues of an integer O(1, 1) matrices are ±1, and those are not changed by conjugation.

This is reminiscent of the twist construction of the IIB background n 3.14 discussed in section 4.4.2.
The internal manifold is a circle fibration over a five manifold M5, which itself is a bundle with a
two-torus fiber, but the only obvious duality seen there is the O(2, 2) associated with the two-torus.
The solution on M5 × S1 is obtained from IIB solution on T 6 with a self-dual three-form flux, but
not n 3.14 itself [29].

By taking p = 0 in (4.4.59), we obtain a different topology. In M(t) the corresponding direction
becomes trivial, and we can forget about it. Up to an O(1, 1) action, the non-trivial part of M(t)

16Another possible conjugation is given in (3.2.18). The other part of N , the 4×4 integer matrix, can also be different,
see the change of basis in Proposition 7.2.9 in [37].

17Note it is not true for the one given in Proposition 7.2.9 of [37].
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can still be thought of as corresponding to the algebra on T (ε1,1) ⊕ T ∗(ε1,1). Indeed, ε1,1 has two
local isometries, and T-duality (the O(1, 1) in question) with respect to any of them will yields a
non-geometric background. This can be inferred by simply noticing that the result of the duality
in (any direction) is not unimodular; more detailed discussion of T-duality on ε1,1 can be found in
appendix C.2.

We would like to stress that, in order to apply the twist transformation to construct non-geometric
backgrounds, a better understanding of the orientifold planes in GCG is clearly needed. However,
the possibility of using solvable algebras in order to describe (some of) these is interesting.

4.5 Heterotic transformations

In this section we will apply the twist transformation to the heterotic string. Heterotic string provides
the first examples where compactifications with non-trivial NSNS fluxes have been studied in full detail
[18, 19]. We shall consider here the twist transformation on non-trivial flux backgrounds preserving
at least N = 1 supersymmetry. The internal manifold will always be locally a product of K3 and T 2.
As discussed in [61, 62] a chain of dualities can relate a solution involving K3× T 2 to one where the
internal space is given by a non-trivial T 2 fibration over K3 (with connection). It is natural to ask
whether they could be related by an O(6, 6) transformation of the type (4.3.7).

As we discussed in the section 2.3, the action of O(6, 6) is naturally implemented in the General-
ized Complex Geometry framework. Such an approach is missing for the heterotic string, basically
because of the absence of a good twisting of the exterior derivative. It is nevertheless possible to
derive differential equations on pure spinors that capture completely the information contained in the
supersymmetry variations. This is all we need to act with the O(6, 6) transformation (4.3.7). In this
section we will derive the equations for the pure spinors in the heterotic string and use them to build
the O(6, 6) transformation connecting the SU(3) structure solutions of [61].

4.5.1 N = 1 supersymmetry conditions

Before writing the pure spinor equations for N = 1 compactifications in the heterotic case, we will
briefly recall the conditions for N = 1 supersymmetry [18, 19].

The supersymmetry equation for the heterotic case can be written18

δψM = (DM −
1

4
HM )ǫ = 0 ,

δλ = (6∂φ− 1

2
6H)ǫ = 0 ,

δχ = 2 6 Fǫ = 0 , (4.5.1)

where ǫ is a positive chirality ten-dimensional spinor. F is the gauge field strength taken to be
hermitian19, i.e. defined with the following covariant derivative on the gauge connection A

F = (d− iA∧)A . (4.5.2)

The conditions that N = 1 supersymmetry imposes on compactifications to a four-dimensional maxi-
mally symmetric space and non-trivial NSNS flux were derived in [18]. If we write the ten-dimensional
string frame metric as in type II, (2.2.1),

ds2 = e2Agµνdx
µdxν + gmn(y)dymdyn , (4.5.3)

18These conventions are the same as in type II [4] with the RR fluxes set to zero. Note that these are related to the
conventions of [58] via H → −H .

19Following conventions of [58], we can develop the gauge quantities in terms of hermitian generators λa in the vector
representation of SO(32), and we use the normalisation condition tr(λaλb) = 2δab.
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then the warp factor must be zero A = 0 and the four-dimensional metric Minkowski

gµν = ηµν . (4.5.4)

The internal manifold must be complex. The holomorphic three-form Ω satisfies

d(e−2φΩ) = 0 . (4.5.5)

In terms of the complex structure I defined by Ω, the Kähler form is Jmn = I pm gpn and satisfies

dJ = i(H1,2 −H2,1)⇔ H = i(∂ − ∂)J , (4.5.6)

d(e−2φJ ∧ J) = 0 . (4.5.7)

The NSNS three-form has only components (2, 1) and (1, 2) with respect to the complex structure
I mn

H = H2,1
0 +H1,2

0 + (H1,0 +H0,1) ∧ J , (4.5.8)

where the subindex 0 denotes the primitive part of H. The gauge field strength F must satisfy the
six-dimensional hermitian Yang-Mills equation, i.e. must be of type (1, 1) and primitive

FxJ = 0 , (4.5.9)

Fij = Fīj̄ = 0 , (4.5.10)

where the second equation is given in holomorphic and anti-holomorphic indices.

These are the necessary conditions imposed by supersymmetry. The equations of motion are sat-
isfied provided the Bianchi identity holds:

H = dB − α′

4
tr

(
A ∧ dA− i2

3
A ∧A∧A

)
+
α′

4
ω3(M) , (4.5.11)

where A is the gauge connection and ω3(M) the Lorentz Chern-Simons term [16]. It is easier to check
the anomaly cancellation condition

dH = 2i∂∂J =
α′

4
[tr(R∧R)− tr(F ∧ F)] . (4.5.12)

4.5.2 Pure spinor equations for heterotic compactifications

In the four plus six-dimensional splitting, the supersymmetry parameter ǫ corresponds, for N = 1
supersymmetry, to a single six-dimensional chiral spinor η+

ǫ = ζ+ ⊗ η+ + ζ− ⊗ η− , (4.5.13)

where ζ+ is, as always, a four-dimensional Weyl spinor of positive chirality (ζ− = (ζ+)∗) and η− =
(η+)∗. The spinor η+ can be seen as defining an SU(3) structure on M (and indeed the supersymmetry
conditions can be rephrased in terms of conditions on the torsion classes of an SU(3) structure
manifold). Then a natural choice for the pure spinors is

Ψ+ = 8 e−φη+ ⊗ η†+ = e−φ e−iJ ,

Ψ− = 8 e−φη+ ⊗ η†− = −ie−φΩ . (4.5.14)

We have used the same letter as in (2.4.15) and (2.4.16) for the fermion bilinears (4.5.14), and we
will still call them pure spinors. However it should be kept in mind that they are not defined on the
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generalized tangent bundle E but on TM ⊕ T ∗M (e−B is missing). Using (4.5.1) and (4.5.13), one
can obtain the supersymmetry conditions on the pure spinors [4, 29]

d (Ψ±) = H •Ψ± , (4.5.15)

with

H •Ψ± =
1

4
Hmnp(dx

m ∧ dxn ∧ ιp − 1

3
ιmιnιp)Ψ± . (4.5.16)

Even though (4.5.15) captures all the information contained in supersymmetry variations, there
are two problems with the action of the (d −H•) operator: it is not a differential, and it is hard to
interpret its action on pure spinors as a twisting. There is a partial resolution to the former problem.
The Ψ− equation yields that H is indeed only of (1,2) + (2,1) type as given in (4.5.8), and

d (Ψ−) = iH0,1 ∧Ψ− , (4.5.17)

from which we conclude that the internal manifold is complex. We can now use the integrability of
the complex structure (4.5.17) to rewrite (4.5.15) in terms of a differential

d (Ψ±) = ±
[
(H1,2 −H2,1)− i(H0,1 −H1,0)

]
∧Ψ± = ±Ȟ ∧Ψ± . (4.5.18)

The equation (4.5.18) for Ψ− agrees with (4.5.17). The decomposition of the Ψ+ equation by the
rank of the differential forms gives

• at degree 1
dφ = i(H0,1 −H1,0) , (4.5.19)

using which we recover the correct scaling on Ω (4.5.5).

• at degree 3

dJ = i(H1,2 −H2,1) (4.5.20)

= i(H1,2
0 −H2,1

0 ) + dφ ∧ J . (4.5.21)

Eq. (4.5.20) is clearly (4.5.6). Wedging (4.5.21) with J , we recover the balanced metric condition
(4.5.7). Finally recalling that ∗H = i(H2,1

0 −H1,2
0 −H1,0 ∧ J +H0,1 ∧ J) we arrive at

∗H = −e2φd(e−2φJ) . (4.5.22)

• at degree 5, there is no new information.

We can now check that d ∓ Ȟ∧ is a differential. Since Ȟ is made of odd forms, it squares to zero,
and, due to (4.5.19) and (4.5.20), dȞ = 0. Hence (d∓ Ȟ∧)2 = 0.

There stays however the problem that we cannot see the action of d∓ Ȟ∧ as a result of a twisting
on the pure spinor. This will not prevent us for using the twist transformation to relate different
heterotic backgrounds. Essentially the idea is to consider a very special case of the transformation
(2.3.44) which does not contain a B-transform nor changes the phase of the pure spinor (even if this
amounts to stepping back somewhat from the GCG). In other words, we keep only the GL(d) part
of the general transformation (2.3.44) and we demand that

(d∓ Ȟ ′∧)(OcΨ±) = 0 . (4.5.23)

Two internal geometries M and M ′, defined by the pairs Ψ± and Ψ′± = OcΨ±, are related via twisting

and satisfy the same type of Ȟ-twisted integrability conditions. The pair of manifolds connected this
way may in general be topologically and geometrically distinct. Examples of such connections were
constructed recently in [66]. Since there is no B-transform involved in the construction, we are not
dealing here with the transformations of the generalized tangent bundle. In this sense the discussion
of the heterotic string differs from the rest of this chapter.

72



4.5.3 SU(3) structure solutions

We shall return to the class of fibered metrics discussed earlier. Consider a six-dimensional internal
space with a four-dimensional base B which is a conformal Calabi-Yau, and a T 2 fiber with holomor-
phic coordinate z = θ1 + iθ2. The metric and the SU(3) structure on the internal space are in general
given by

ds2 = e2φds2
B + ΘΘ ,

J = e2φ JB +
i

2
Θ ∧Θ

Ω = e2φ ωB ∧Θ (4.5.24)

where Θ = dz + α and α is a (1, 0) connection one-form. JB is the CY Kähler form, ωB is the CY
holomorphic two-form, and the dilaton φ depends only on the base coordinates. Furthermore, the
curvature of the T 2 bundle F = dα has to be primitive with respect to JB

F ∧ JB = 0 , and F ∧ ωB = 0 . (4.5.25)

A general solution to these constraints is of the form F = F+
(2,0) +F−(1,1) ∈ H2,+(B)⊕H2,−(B). Then,

one can satisfy the local supersymmetry equations, provided the base B is a four-dimensional hyper-
Kähler surface. Here, the equations (4.5.5) and (4.5.7) are automatically satisfied.

In [61], two N = 2 solutions with B = K3 and a non-zero H have been discussed. In the first
solution (which we will denote by Solution 1), the internal manifold is the direct product K3× T 2 ,
i.e. α = 0. The gauge bundle is reduced to the sum of U(1) bundles, so F is a sum of (1,1) primitive
two-forms on the base. Furthermore, in this solution, B = 0, so H receives only α′ contributions.
The dilaton is non-trivial and the condition (4.5.6) relates its derivatives to the gauge term.

The second solution (Solution 2) consists of a non-trivial T 2 fibration20 over K3, so we have an
α 6= 0. Moreover F = 0 and B = Re(α ∧ dz) 6= 0. The dilaton is non-trivial, and has the same value
as in the previous solution. The curvature of the connection α is in general given by (4.4.20), and
the solution would then be N = 1. If F has only a (1,1) part as in [61], the solution21 is N = 2.

These two solutions were proven to be related by a transition [54, 55, 58, 61, 62]. Both solutions
arise from M-theory compactifications on K3 × K3. A first step consists in reducing to type IIB
solutions on an orientifold (T 4/Z2) × (T 2/Z2). This is achieved by taking the two K3 at the point
in moduli space where they both are T 4/Z2 orbifold. Then one of the two T 4/Z2 is considered as a
fibration of T 2 over T 2/Z2, and the area of the fiber is taken to zero. This yields a type IIB solution
on (T 4/Z2) × (T 2/Z2) with four D7 and one O7 at each of the four fixed points of T 2/Z2. Then
two T-dualities along T 2/Z2 give a dual type IIB solution on (T 4/Z2)× (T 2/Z2) with D9 and O9 at
the dual points. The same solution can also be interpreted as a type I solution on K3 × T 2 where
K3 is understood as T 4/Z2. Finally, doing an S-duality, one gets the heterotic SO(32) solution on
K3×T 2 where K3 is again understood as T 4/Z2. The transition between the two heterotic solutions
then corresponds to an exchange of the two K3, and of its (1, 1) two-forms, namely F and F . Note
that M-theory on K3×K3 can be dual to type IIA on X3 × S1 where X3 is a CY three-fold. Then,
the exchange of the two K3 corresponds to mirror symmetry for X3 [67]. This exchange should not
change the dilaton, which is therefore the same in the two solutions.

20The Betti numbers are b1(M) = 0, b2(M) = 20 and b3(M) = 42. Note that the Euler number χ(M) vanishes, thus
the manifold has a global SU(2) structure.

21The N = 2 supersymmetry is easy to see using the SU(2) structure. There exists a second pair of compatible pure
spinors which are of type 1-2, namely Ψ+ = e−φωB ∧ exp(Θ ∧ Θ/2) and Ψ− = e−φΘ ∧ exp(−iJB) (where we chose
θ+ = π

2
, θ− = π). Differently from the type 0-3 pair, now it is Ψ− which is not closed. The closure of Ψ+ imposes a

stronger condition than (4.5.25) requiring that ωB ∧ F I = 0 (for I = 1, 2) hence restricting F = F−
(1,1)
∈ H2,−(B).
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We may connect these two solutions directly via (the special case of) our transformation (4.3.32).
Since we have a background with only two commuting isometries, the twist takes the form

Oc = 1 + o = 1 + α ∧ i∂z + α ∧ i∂z + α ∧ α ∧ i∂z i∂z . (4.5.26)

It has the effect of sending dz to Θ = dz + α in the forms defining the SU(3) structure (4.5.24), and
hence it relates the internal geometries of two solutions. Since the only change in the metric between
the two solutions is the presence of a non-trivial connection, we did not assume any rescaling of the
metric and thus we set AB = I4 and AF = I2 in (4.3.32). As a consequence the dilaton does not
change, in agreement with the analysis of [61].

Thus, starting with Solution 1 we read off the H from the closure of the transformed pure spinor
(note the similarity with the type II situation (4.4.5))

H = i(∂ − ∂)J = i(∂ − ∂)(e2φ) ∧ JB −
1

2
(∂ − ∂) ((dz + α) ∧ (dz + α))

= i(∂ − ∂)(e2φ) ∧ JB −
1

2
(∂ − ∂) (α ∧ α) + d (Re(α ∧ dz)) , (4.5.27)

where we used the anti-holomorphicity of α. The last term is the only closed part of H, and comparing
to (4.5.11) we derive the B-field of Solution 2

B = Re(α ∧ dz) . (4.5.28)

Furthermore,
dH = −2i∂∂(e2φ) ∧ JB + F ∧ F . (4.5.29)

We would like to stress once more that the two solutions were related using the transformation
on the fermion bilinears (4.5.14). Differently from the pure spinors in type II solutions these do not
contain an e−B factor and we have not performed any B-transform in mapping the solutions; rather
the B-field was read off as the closed part of H.

The global aspects of the solutions deserve some comments. Eq.(4.5.29) has the same structure as
the tadpole condition for the O5/D5 solutions in type IIB. Notice that, in general, the first term in
(4.5.29) yields δ-function contributions which are associated with the positions of branes and planes,
while the second term, after being completed to a top-form by wedging with J , integrates over the
six-manifold M to a positive number. The presence of these defects is what makes T 2 fibrations over
B = T 4 an admissible basis for the solutions in IIB. In heterotic string in the absence of good candi-
dates for negative tension defects, we would like to assume a smooth dilaton; the second term is then
cancelled by the α′ contributions to (4.5.11). Crucially, when B = K3, terms like

∫
M ∂∂(e2φ) ∧ J2

vanish for any smooth φ, while for B = T 4, φ may be non-single valued and the integral gives a finite
contribution to the tadpole. Indeed it is known that compactifications on smooth T 2 fibrations over
T 4 are forbidden by the heterotic Bianchi identity [57, 58]. Starting from a heterotic compactifica-
tion on T 6 and applying the transformation (4.3.7) with non-single valued coefficients (and hence
the dilaton) may allow to circumvent the constraints imposed by the Bianchi identity. However such
backgrounds will be non-geometric and we will not discuss them further.

We conclude this section by turning briefly to the transformation of the gauge field F . The ordinary
O(2, 18) transformation on the Narain lattice can exchange the antiself-dual part of the curvature
of the T 2 fibration with the U(1) factors in the gauge bundle. This exchange is consistent both
with supersymmetry and tadpole cancellation. As discussed in [68], a better understanding of this
exchange, as well as the transformation of the α′ terms of H, is achieved considering the pullback of
H to the total space of the gauge bundle π̃: P →M ,

H = π̃∗H − α′

4
trA∧ F ,
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whose contraction with the isometry vectors ∂z and ∂z gives a closed two-form (which can be ex-
changed with the gauge U(1) curvature terms). For our purposes, in order to capture the transforma-
tion of the α′ terms, one possibility is to extend the O(d, d) action to O(d+16, d+16) transformations,
and introduce new generalized vielbein incorporating the gauge connection. We discuss this possibility
in appendix C.3.
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Chapter 5

Supersymmetry breaking sources and
de Sitter vacua

5.1 Introduction

Recently a lot of activity in string compactifications has concentrated on the search for de Sitter
solutions. This renewed interest is motivated by recent cosmological data suggesting that we leave in
an expanding universe characterized by a small but positive cosmological constant.

De Sitter solutions are much harder to find than Minkowski or Anti de Sitter. A first difficulty
arises from the fact that de Sitter space-time is not compatible with supersymmetry. As we saw in
chapters 3 and 4, the vanishing of the SUSY variation together with the Bianchi identities for the
fluxes imply the full set of equations of motion. Then, supersymmetry provides a huge technical
simplification in the search for solutions since it allows to replace second order equations with first
order ones.

A second problem concerns the possibility of having a positive cosmological constant Λ. As we will
discuss in more details, for purely supergravity backgrounds, having Λ > 0 requires a non-trivial fine
tuning of the geometric parameters and fluxes of the solutions.

Finally, given a ten-dimensional solution, one should ask its four-dimensional reduction to be sta-
ble, meaning the extrema of the four-dimensional potential should be minima1. This last requirement
is also difficult to satisfy, and up to date, no stable de Sitter solution including only classical ten-
dimensional ingredients has been found.

In this chapter we are interested in de Sitter solutions of type IIA supergravity. In this context,
several no-go theorems against the existence of de Sitter vacua and ways of circumventing them have
been proposed [12, 69, 70, 71, 42, 72, 73, 74, 75]. As a result, de Sitter vacua require some necessary
(but not sufficient) assumptions. First, one needs O-planes as for Minkowski compactifications [12].
In particular we will consider O6/D6 sources. In that case, the internal manifold must have negative
curvature and a non-zero Roman mass must be turned on [12, 70, 42, 73]. Another possibility is to
allow for non-geometric fluxes, but we will not pursue this approach here.

Therefore, we will consider type IIA configurations with non-zero NSNS three-form and RR zero
and two-forms. We also take all the sources to be space-time filling and of the same dimension p = 6.
Since there could be intersecting sources, we will consider a constant dilaton, eφ = gs, and a constant
warp factor.

Assuming additionally that the sources are supersymmetric, one can combine the four- and six-

1Actually, for slow roll inflation models, this constraint can be slightly released.
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dimensional traces of Einstein equations and the dilaton e.o.m. to get

R4 =
2

3
(g2
s |F0|2 − |H|2) , (5.1.1)

R6 +
1

2
g2
s |F2|2 +

3

2
(g2
s |F0|2 − |H|2) = 0 . (5.1.2)

The second equation is just a constraint on internal quantities, while the first fixes R4. From these
two equations we recover the minimal requirements of having F0 6= 0 and R6 < 0. The negative
contribution from H is not always easy to balance, since F0 and H are not independent (they are
related via the H e.o.m. and the F2 Bianchi identity). Adding more fluxes, F4 and F6, does not help
because they contribute with negative signs. In practice, it turns out that F0 is often not enough to
find a de Sitter vacuum. This is why up to date, all known examples of stable de Sitter vacua require
some additional ingredients such as KK monopoles and Wilson lines [71], non-geometric fluxes [76],
or α′ corrections and probe D6 branes [77].

Here we want to see whether by milden some assumption, it is possible to find de Sitter solutions
in classical geometric compactifications. To this purpose, we decide to come back to the assumption
of SUSY sources. Since we are interested in non-supersymmetric backgrounds, there is a priori no
justification to preserve the supersymmetry of the sources2. Therefore, we propose an ansatz for
SUSY breaking sources. This will result in a new positive contribution for R4.

For a supersymmetric source, one can replace the volume form on the brane worldvolume by the
pullback of the non-integrable pure spinor [45, 30]

(
i∗[Im Φ−] ∧ eF

)
=
|a|2
8

√
|i∗[g] + F|dΣx , (5.1.3)

where i denotes the embedding of the worldvolume into the internal manifold M , g is the internal
metric and F the field strength of the gauge field on the brane worldvolume. To consider non-
supersymmetric sources, we propose to modify (5.1.3) to

(
i∗[ImX−] ∧ eF

)
=
√
|i∗[g] + F|dΣx , (5.1.4)

where X− is an odd polyform, pulled back from the bulk, that is not pure. X− consists in a general
expansion of an odd form on the basis on TM ⊕ T ∗M provided by the pure spinors Φ±. For super-
symmetric configurations, X− reduces to Φ−. The new source term (5.1.4) allows to rewrite (5.1.1)
for the four dimensional Ricci scalar as

R4 =
2

3

(
gs
2

(T0 − T ) + g2
s |F0|2 − |H|2

)
, (5.1.5)

where T is the trace of the energy momentum tensor, and T0 the supersymmetric part of the trace:
for SUSY sources, T0 = T . One can show that T0 > 0, giving a positive contribution to R4.

Equation (5.1.4) additionally helps to solve the internal Einstein equation with non-supersymmetric
fluxes. Indeed, we are able to provide a concrete example of a ten-dimensional de Sitter solution in
type IIA supergravity.

In order to further justify this condition we shall show that (with dH = d−H∧)

dH(e2A−φReX−) = 0 ,

dH(e4A−φ ImX−) = c0e
4A ∗ λ(F ) , (5.1.6)

where c0 is a constant fixed by the parameters of the solution. These are first order equations which
generalize the SUSY conditions (2.4.19) and (2.4.20) on Φ−. Note that, as for the supersymmetric

2This clearly makes it more difficult to check that the brane configuration is stable. We will come back later to the
question of the stability of such non-supersymmetric solutions.
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case, the second equation in (5.1.6) implies that the RR e.o.m. are automatically satisfied, provided
that no NSNS source is present (dH = 0). Indeed, by differentiating either (2.4.20) or (5.1.6), one
gets automatically

(d +H∧)(e4A ∗ F ) = 0 . (5.1.7)

Note that the presence of c0, generally not equal to one, tells that, differently from generalized cali-
brations [45, 30, 46, 11], the source energy density is not minimized. It is the combined bulk-brane
energy density that is extremized here.

The idea of solving first order equations to find non-supersymmetric solutions is not new. Never-
theless, a generalisation of the pure spinor equations to study non-supersymmetric backgrounds has
been recently proposed in [78]. The idea is to express the violation of the SUSY conditions (2.4.18),
(2.4.19), and (2.4.20) as an expansion on the Spin(6, 6) basis constructed from the SUSY pure spinors.
For instance, for Minkowski compactifications, the modified first order equations are

dH(e2A−φΦ1) = Υ ,

dH(eA−φRe Φ2) = Re Ξ ,

dH(e3A−φ Im Φ2)− |a|
2

8
e3A ∗ λ(F ) = Im Ξ , (5.1.8)

where schematically

Υ = a0Φ2 + ã0Φ2 + a1
mγ
mΦ1 + a2

mΦ1γ
m + ã1

mγ
mΦ1 + ã2

mΦ1γ
m

+amnγ
mΦ2γ

n + ãmnγ
nΦ2γ

m , (5.1.9)

Ξ = b0 Φ1 + b̃0 Φ1 + b1
mγ
mΦ2 + b2

mΦ2γ
m + bmnγ

mΦ1γ
n + b̃mnγ

nΦ1γ
m . (5.1.10)

In the particular case of an SU(3) structure, this decomposition is equivalent to the expansion in
the SU(3) torsion classes (4.4.52). This idea has been used to look for non-supersymmetric solutions
on Minkowski and Anti de Sitter [78, 72, 79, 80, 75]. However this approach assumes that the 4d
supersymmetry is not explicitly broken and that the breaking only take place in the internal manifold.
For this reason it does not apply directly to de Sitter compactifications.

Our explicit de Sitter solution is found on the solvmanifold g
p,−p,±1
5.17 × S1 of algebra (q1(p25 +

35), q2(p15 + 45), q2(p45− 15), q1(p35− 25), 0, 0). As explained in section 4.2, for p = 0, this algebra
reduces to s 2.5, while for p 6= 0, the manifold admits a supersymmetric solution provided a certain
combination of moduli, which we call λ, is equal to one. For generic λ, the pure spinor equations are
not satisfied and supersymmetry is broken. This set-up will serve as an ansatz to find a de Sitter
solution. It is certainly of great practical importance to have a SUSY limit in which our construction
can be tested.

In the rest of this chapter we present in more detail the treatment of supersymmetry breaking branes
and the explicit form of the de Sitter solution. We also compute and study the four-dimensional
effective potential. In particular, we will discuss how the non-supersymmetric sources contribute to
new terms in the potential. We will also provide an analysis of stability of the solution in the volume
and dilaton moduli. The stability in the other moduli remains to be studied. Similarly, a complete
discussion whether the proposal (5.1.4) and (5.1.6) can provide stable sources is postponed to further
work.
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5.2 Ten-dimensional analysis

5.2.1 Action and equations of motion

We consider type IIA supergravity and follow the conventions3 of section 2.1. In order to derive the
ten-dimensional equations of motion, we shall need the source terms of the action, that we have not
specified so far. To this end let us consider the DBI action of only one Dp-brane in string frame

Ss = −Tp
∫

dp+1x e−φ
√
|i∗[g10] + F| , T 2

p =
π

κ2
(4π2α′)3−p .

Here Tp is the tension of the brane; for an O-plane, one has to replace Tp by −2p−5Tp. F is the
field strength of the gauge field on the brane worldvolume. The open string excitations will not be
important for our solution, and we shall discard the F contribution from now on. However, the fact
that the brane wraps a non-trivial cycle is going to be important, and to derive the equations of
motion, a priori, we should take a full variation of the DBI action with respect to the bulk metric.

For supersymmetric (calibrated) sources it exists a convenient way of avoiding this. In this case,
one can think of an expansion of the DBI action around the supersymmetric configuration and, to
leading order, replace the DBI action by a pullback of the calibration form. This is given in terms
of the non-closed pure spinor (Φ− in type IIA) as given in (5.1.3). As shown in [11], this allows
to prove that, for Minkowski compactifications, Einstein equations follow from the first order pure
spinor equations and Bianchi identities. A similar treatment of space-time filling sources is also
possible for non-supersymmetric Minkowski and AdS4 configurations [78]. It is worth stressing that,
even in these cases, the sources continue being (generalized) calibrated and are not responsible for
the supersymmetry breaking. However convenient, as we shall see, these kinds of source are not going
to be helpful in our search for a dS vacuum.

At this point we shall make an important simplifying assumption, which will be justified a posteriori
and, for now, can be thought of as a generalization of the calibrated sources to non-supersymmetric
backgrounds. The backgrounds in question are of somewhat restricted type: we shall consider the case
of an internal space with SU(3) structure. We shall assume that, in analogy with the supersymmetric
case, the DBI action can be replaced to leading order by the pullback of a (poly)form X in the bulk.
The bulk does have invariant forms and hence pure spinors can be constructed, but X cannot be
pure, otherwise the source will be supersymmetric. The form X is expandable in the Hodge diamond
defined by the pure spinors. This amounts to consider forms that are equivalent not to simply the
invariant spinor η+ (defining the SU(3) structure) but to a full spinorial basis, η+, η−, γ īη+ and γiη−,
where i, ī = 1, ...3 are the internal holomorphic and antiholomorphic indices4. To be concrete we shall
consider a generic odd form

X =
√
|g4| d4x ∧X− =

√
|g4| d4x ∧ (ReX− + i ImX−) ,

X− = ReX− + i ImX− =
8

||Φ−||
(
α0Φ− + α̃0Φ− + αmnγ

mΦ−γ
n + α̃mnγ

mΦ−γ
n

+αLmγ
mΦ+ + α̃Lmγ

mΦ+ + αRnΦ+γ
n + α̃RnΦ+γ

n
)
, (5.2.2)

3These conventions are consistent with the SUSY conditions written before. Note we have a factor of 2 difference in
the normalisation of the RR kinetic terms with respect to [71], which will result in a difference in the RR quantization
conditions. For a k-flux α through a k-cycle Σ (with embedding i into the bulk manifold M), we have

1

(2π
√
α′)k−1

1

volM

∫

Σ

i∗α =
1

(2π
√
α′)k−1

1

volM

∫

M

〈δ(Σ →֒M), α〉 = n , (5.2.1)

where n is an integer.
4The covariant derivative on the invariant spinor contains the same information as the intrinsic torsions. For the

explicit dictionary for SU(3) structure see [28]. In the supersymmetric backgrounds the (H-twisted) derivative on the
spinor cancels against the RR contribution [4], and the entire content of that cancellation is captured by first order
equation on the pure spinors (2.4.18), (2.4.19), and (2.4.20). For the non-supersymmetric backgrounds, the unbalance
between the NSNS and RR contributions results in the presence of terms that need to be expanded in the full basis as
in (5.1.8).
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where Φ± are given in (2.4.11) (we take |a| = 1, θ± = 0) and the γ’s act on even and odd forms via
contractions and wedges

γmΦ± = (gmnın + dxm∧) Φ± , and Φ±γ
m = ∓(gmnın − dxm∧) Φ± . (5.2.3)

The action for a single source term becomes

Ss = −Tp
∫

Σ
dp+1x e−φ

√
|i∗[g10]|

= −Tp
∫

Σ
e−φi∗[ImX]

= −Tp
∫

M10

e−φ〈jp, ImX〉

= Tp

∫

M10

d10x
√
|g10| e−φ∗̂〈jp, ImX〉 , (5.2.4)

where i : Σ →֒M10 is the embedding of the cycle in the bulk and jp = δ(Σ →֒M10) is the dimensionless
Poincaré dual5 of the cycle Σ. The change of sign between the last two lines is due to the Lorentzian
signature which gives a minus when taking the Hodge star. We recall we denote by ∗̂ the ten-
dimensional Hodge star, and ∗ its six-dimensional counterpart. For the sum of all sources we then
take the action

Ss = Tp

∫

M10

d10x
√
|g10| e−φ∗̂〈j, ImX〉 , j =

∑

Dp

jp −
∑

Op

2p−5jp . (5.2.5)

As already mentioned in the introduction, we will consider solutions where the only non-trivial
fluxes are H, F0 and F2 on the internal manifold, and the RR magnetic sources are D6’s and O6’s.
The sources will be smeared, so we take δ → 1 and the warp factor e2A = 1. Out of section 2.1, we
get that the relevant part of the action6, in string frame, is then

S =
1

2κ2

∫
d10x

√
|g10| [e−2φ(R10 +4|∇φ|2− 1

2
|H|2)− 1

2
(|F0|2 +|F2|2)+2κ2Tp e

−φ∗̂〈j, ImX〉] . (5.2.6)

Given the assumptions made on the fluxes, their equations of motion (e.o.m.) and Bianchi identities
worked out in sections 2.1 and 2.2.1 reduce to

dH = 0 ,

dF0 = 0 ,

dF2 −H ∧ F0 = 2κ2Tp j ,

H ∧ F2 = 0 ,

d(e−2φ ∗H) = −F0 ∧ ∗F2 − e−φ 4κ2Tp j ∧ ImX1 ,

d(∗F2) = 0 ,

5The fact we put jp on the left is related to our conventions. See appendix B.3.
6By relevant we mean the parts of the bulk and source actions that give non-trivial contributions to the Einstein and

dilaton equations of motion and to the derivation of the four-dimensional effective potential of section 5.4. We do not
write down the Chern-Simons terms of the bulk action and the Wess-Zumino part of the source action. Indeed they do
not have any metric nor dilaton dependence and, since we do not allow for non-zero values of RR gauge potentials in the
background, they will not contribute to the vacuum value of the four-dimensional potential either. However, both terms
contribute the flux e.o.m. and Bianchi identities (in particular, see [81, 82, 10] for a discussion of the Chern-Simons
terms in the presence of non-trivial background fluxes).
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where ImX1 is the one-form part7 of ImX− in (5.2.2). Similarly, the ten-dimensional Einstein and
dilaton equations of section 2.1 (in string frame) become

RMN −
gMN

2
R10 = −4∇Mφ∇Nφ+

1

4
HMPQH

PQ
N +

e2φ

2
F2 MPF

P
2 N

−gMN
2

(
−4|∇φ|2 +

1

2
|H|2 +

e2φ

2
(|F0|2 + |F2|2)

)
+ eφ

1

2
TMN , (5.2.7)

8(∇2φ− |∇φ|2) + 2R10 − |H|2 = −eφ T0

p+ 1
. (5.2.8)

We recall that TMN and T0 are the source energy momentum tensor and its partial trace, respectively.
They are defined in footnote 2 of chapter 2. Out of the explicit expression for the source action, we
compute8

TMN = 2κ2Tp ∗̂〈j, gP (Mdx
P ⊗ ιN) ImX − δm(MgN)nC

n
m 〉 , (5.2.9)

T0 = 2κ2Tp ∗̂〈j, dxN ⊗ ιN ImX〉 = (p+ 1) 2κ2Tp∗̂〈j, ImX〉 , (5.2.10)

T = gMNTMN = T0 − 2κ2Tp ∗̂〈j, C mm 〉 . (5.2.11)

m,n are real internal indices, C nm =
√
|g4| d4x ∧ c nm and

c nm =
8

||Φ−||
Im
(
αLmγ

nΦ+ + α̃Lmγ
nΦ+ + αRmΦ+γ

n + α̃RmΦ+γ
n

+αpmγ
pΦ−γ

n + αmpγ
nΦ−γ

p + α̃pmγ
pΦ−γ

n + α̃mpγ
nΦ−γ

p
)
. (5.2.12)

For supersymmetric branes ImX− = 8 ImΦ−, c nm = 0, T0 reduces to the full trace of the source
energy-momentum tensor, T = T0 and one recovers the formulae in [11].

We can now split (5.2.7) into its four and six-dimensional components. Since for maximally sym-
metric spaces, Rµν = Λgµν = (R4/4)gµν , for constant dilaton, eφ = gs, the four-dimensional Einstein
equation has only one component and reduces to

R4 = −2R6 + |H|2 + g2
s(|F0|2 + |F2|2)− 2gsT̃0 = 4Λ . (5.2.13)

Not to clutter equations, from now on, we set T̃0 = T0/(p+1). This equation defines the cosmological
constant, Λ. Using the dilaton equation (5.2.8), the source contribution can be eliminated and we
obtain

R4 =
2

3
[−R6 −

g2
s

2
|F2|2 +

1

2
(|H|2 − g2

s |F0|2)] , (5.2.14)

R10 =
1

3
[R6 + |H|2 − g2

s(|F0|2 + |F2|2)] . (5.2.15)

We are left with the internal Einstein equation,

Rmn −
1

4
HmpqH

pq
n − g2

s

2
F2 mpF

p
2 n −

gmn
6

[R6 −
1

2
|H|2 − 5

2
g2
s(|F0|2 + |F2|2)] =

gs
2
Tmn , (5.2.16)

and the dilaton equation

gsT̃0 =
1

3
[−2R6 + |H|2 + 2g2

s(|F0|2 + |F2|2)] . (5.2.17)

7We refer to [11] for a discussion of the last term in the H equation of motion.
8To derive (5.2.9), we considered the fact that each γm matrix in the bispinors Φ± carries one vielbein. To derive

C nm the metric dependence of the full Hodge decomposition (5.2.2) must be taken into account. For supersymmetric
cases, the operator gP (Mdx

P ⊗ ιN) in TMN is the projector on the cycle wrapped by the source [13].
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Provided the flux equations of motion and Bianchi identities are satisfied, solving the Einstein and
dilaton equations becomes equivalent to finding the correct energy-momentum tensor for the sources.
We shall now consider an explicit example and see how the non-supersymmetric modifications to the
energy momentum tensor help in looking for de Sitter solutions. In the process we shall establish
some properties of the calibrating form ImX−.

5.2.2 Solvable de Sitter

Ansatz of solution

Our starting point is the solution described in section 4.4.3, based on the algebra

(q1(p25 + 35), q2(p15 + 45), q2(p45 − 15), q1(p35− 25), 0, 0) . (5.2.18)

Among the different O6 projections compatible with the algebra for p = 0, only those along 146
or 236 are still compatible with the full algebra with p 6= 0. In section 4.4.3 we showed that, acting
with a twist transformation on the supersymmetric solution with p = 0 and the right O6 planes, one
finds a family of backgrounds characterized by the SU(3) structure

Ω =
√
t1t2t3(e1 + iλ

τ3

τ4
e2) ∧ (τ3 e

3 + iτ4 e
4) ∧ (e5 − iτ6 e

6) , (5.2.19)

J = t1λ
τ3

τ4
e1 ∧ e2 + t2τ3τ4e

3 ∧ e4 − t3τ6e
5 ∧ e6 , (5.2.20)

which satisfy the supersymmetry equations (2.4.18) and (2.4.19) only when the parameter λ =
t2τ2

4
t1

is equal to one. One motivation to consider what happens when supersymmetry is violated comes
from the form of the Ricci scalar for this class of backgrounds9

R6 = − 1

t1t2t3τ
2
3

[
(A−B)2 + p2

(
(λ− 1)2

2λ
(A2 +B2) + (A+B)2

)]
, (5.2.24)

where we introduced the following quantities

A = q1t1 B = q2t2τ
2
3 . (5.2.25)

Indeed, R6 gets more negative when the SUSY breaking parameters p and |λ− 1| leave their SUSY
value 0. Therefore, the value R4 as given in (5.2.14) is lifted by SUSY breaking and this is a priori
promising for a de Sitter vacuum.

9The Ricci tensor of a group manifold is easily computed in frame indices (where the metric is the unit one) in terms
of the group structure constants

Rad =
1

2

(
1

2
f bc
a fdbc − fc dbf b

ca − fb acfc db
)
. (5.2.21)

In our case, with the appropriate rescaling of the one-forms ea in (4.4.43) and of the structure constants, we find that
the only non-zero components of the Ricci tensor are

R11 = −R22 =
1

2t1t2t3τ 2
3

[
A2 −B2 +

p2

λ
(A2 − λ2B2)

]
,

R33 = −R44 =
1

2t1t2t3τ 2
3

[
B2 − A2 +

p2

λ
(B2 − λ2A2)

]
,

R55 = − 1

t1t2t3τ 2
3

[
(A−B)2 + p2

(
1 + λ2

2λ
(A2 +B2) + 2AB

)]
, (5.2.22)

R14 = R23 =
1

2t1t2t3τ 2
3

p√
λ

(λ− 1)(A2 −B2) . (5.2.23)

Notice that the curvature only receives contributions from R55.
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The rest of this section is devoted to the search of de Sitter solutions on the class of backgrounds
discussed above. We will take the same SU(3) structure as in (5.2.19) and metric

g = diag
(
t1, λt2τ

2
3 , t2τ

2
3 , λt1, t3, t3τ

2
6

)
(5.2.26)

in the basis of em given in (4.4.43). Dilaton and warp factor are still constant: eφ = gs and e2A = 1.
For the fluxes, beside the RR two-form, we will allow for non-trivial RR zero-form and NSNS three-
form

H = h (t1
√
t3λ e

1 ∧ e4 ∧ e5 + t2τ
2
3

√
t3λ e

2 ∧ e3 ∧ e5) ,

gsF2 = γ

√
λ

t3

[
(A−B)(e3 ∧ e4 − e1 ∧ e2) +

p

λ
(A+B)(λ2 e2 ∧ e4 + e1 ∧ e3)

]
,

gsF0 =
h

γ
. (5.2.27)

The NSNS flux has component along the covolumes, v1 = t1
√
t3λ e

1 ∧ e4 ∧ e5 and v2 = t2τ
2
3

√
t3λ e

2 ∧
e3 ∧ e5 of the calibrated sources in the supersymmetric case10. We have introduced here another
parameter γ > 0 which is given by the ratio of NSNS and RR zero-form fluxes.

The SUSY solutions of section 4.4.3 are obtained setting

λ = 1 or p = 0, γ = 1 , F0 = h = 0 . (5.2.28)

The solution

We will first consider the four-dimensional Einstein equation (5.2.14). Using the ansatz for the fluxes
we obtain

g2
s |F2|2 =

2γ2

t1t2t3τ2
3

[
(A−B)2 + p2(A+B)2

(
(λ− 1)2

2λ
+ 1

)]
,

|H|2 = 2h2 . (5.2.29)

Notice that

g2
s |F2|2 = 2γ2

[
−R6 + p2 (λ− 1)2

λ

q1q2

t3

]
. (5.2.30)

This allows to write the four dimensional Ricci scalar as

R4 =
2

3

[
(1− 2γ2)(−R6 −

1

2
g2
s |F0|2) + γ2

(
−R6 −

q1q2

t3
p2 (λ− 1)2

λ

)]
. (5.2.31)

Since the second bracket is positive

−R6−
q1q2

t3
p2 (λ− 1)2

λ
=
q1q2

t3

1

AB

[
(A−B)2 + p2

(
(λ− 1)2

2λ
(A−B)2 + (A+B)2

)]
> 0 , (5.2.32)

we see that de Sitter solutions are possible, for instance, for γ2 ≤ 1
2 and small F0. Note also that R4

clearly vanishes in the supersymmetric solution where λ = 1, γ = 1 and F0 = 0.

10In order not to clutter the notations we did not divide vi by
√

2 (and recalibrate the cycles accordingly) with an
unfortunate consequence that H in the normalisation discussed in footnote 3 comes out as even-quantized, and γ is
rational up to multiplication by

√
2.
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To solve the dilaton and internal Einstein equations it is more convenient to go to frame indices
and take a unit metric. As already discussed in footnote 9, this choice makes the computation of the
Ricci tensor very simple. To simplify notations we introduce the constant

C = −1

6

(
R6 −

1

2
|H|2 − 5

2
g2
s(|F0|2 + |F2|2)

)
. (5.2.33)

Then the dilaton equation becomes

gsT̃0 = 4C − h2

γ2
− 2γ2

t1t2t3τ
2
3

[
(A−B)2 + p2(A+B)2

(
(λ− 1)2

2λ
+ 1

)]
. (5.2.34)

For the internal Einstein equations, only some components are non-trivial

gsT14 =
1

t1t2t3τ2
3

p√
λ

(A2 −B2)(λ− 1)(1 − γ2) ,

gsT23 =
1

t1t2t3τ
2
3

p√
λ

(A2 −B2)(λ− 1)(1 − γ2) ,

gsT11 =
1

t1t2t3τ2
3

[
A2 −B2 +

p2

λ
(A2 −B2λ2)− γ2((A−B)2 +

p2

λ
(A+B)2)

]
− h2 + 2C ,

gsT22 =
1

t1t2t3τ2
3

[
B2 −A2 +

p2

λ
(B2λ2 −A2)− γ2((A−B)2 + p2λ(A+B)2)

]
− h2 + 2C ,

gsT33 =
1

t1t2t3τ
2
3

[
B2 −A2 +

p2

λ
(B2 −A2λ2)− γ2((A−B)2 +

p2

λ
(A+B)2)

]
− h2 + 2C ,

gsT44 =
1

t1t2t3τ
2
3

[
A2 −B2 +

p2

λ
(A2λ2 −B2)− γ2

(
(A−B)2 + p2λ(A+B)2

)]
− h2 + 2C ,

gsT55 = − 2

t1t2t3τ2
3

[
(A−B)2 + p2

(
(λ2 + 1)

2λ
(A2 +B2) + 2AB

)]
− 2h2 + 2C ,

gsT66 = 2C . (5.2.35)

The remaining components set to zero the corresponding source term Tab = 0.

To solve these equations we need the explicit expressions for the source energy momentum tensor,
(5.2.9). In six-dimensional frame indices we have

Tab = 2κ2Tp∗̂〈j, δc(aec ⊗ ιb) ImX − δc(aδb)dCdc 〉

= 2κ2Tp∗̂
(√
|g4| d4x ∧ 〈j, δc(aec ⊗ ιb) ImX− − δc(aδb)dcdc〉

)

= 2κ2Tp
1√
|g6|

[
j ∧

(
δc(ae

c ⊗ ιb) ImX3 − δc(aδb)dcdc |3
)]

1...6

=
1√
|g6|

[
(dF2 −HF0) ∧

(
δc(ae

c ⊗ ιb) ImX3 − δc(aδb)dcdc |3
)]

1...6
. (5.2.36)

Since, in our case, the source j is a three-form,

2κ2Tp j = dF2 −HF0 , (5.2.37)

only the three-form parts ImX3 and cdc |3 of ImX− and cdc contribute to the equations. In the same
way, we obtain

gsT̃0 = gs 2κ2Tp ∗̂〈j, ImX〉 =
1√
|g6|

[gs (dF2 −HF0) ∧ ImX3]1...6 . (5.2.38)
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Combining (5.2.2) and the explicit expression for SU(3) pure spinors, it is easy to see that ImX−
decomposes into a one-form, a three-form and a five-form piece

ImX− = ImX1 + ImX3 + ImX5 , (5.2.39)

where11

ImX1 = (ai Lk + ai Rk )dxk − (ar Lk − ar Rk )gkjιjJ + (gkmgjlιmιl)[−arkj Re Ω + aikj Im Ω] ,

ImX3 = −(ar Lk + ar Rk )dxk ∧ J − (ai Lk − ai Rk ) gkjιjJ ∧ J
− [ar0 − arkj (gkj − (gkldxj + gjldxk)ιl)] Re Ω

+ [ai0 − aikj(gkj − (gkldxj + gjldxk)ιl)] Im Ω ,

ImX5 = −1

2
[(ai Lk + ai Rk ))dxk − (ar Lk − ar Rk ))gkjιjJ ] ∧ J2

− dxk ∧ dxj ∧ [−arkj Re Ω + aikj Im Ω] . (5.2.40)

The superscripts r and i indicate real and imaginary parts:

ar0 = Re(α0 − α̃0) , arjk = Re(αjk − α̃jk) ,
ai0 = Im(α0 + α̃0) , aijk = Im(αjk + α̃jk) . (5.2.41)

and

ar Lk = Re(αLk − α̃Lk ) , ar Rk = Re(αRk − α̃Rk ) ,

ai Lk = Im(αLk + α̃Lk ) , ai Rk = Im(αRk + α̃Rk ) . (5.2.42)

As already discussed, only the three-form parts of ImX− and cdc contribute to the equations. Then,
for simplicity, we choose to set to zero ImX1 and ImX5. This amounts to setting

ar Lk = ai Lk = ar Rk = ai Rk = 0 , (5.2.43)

and choosing arjk and aijk symmetric. Then, in frame indices, ImX3 becomes

ImX3 = [ai0 − Tr(aibc) + aibc(δ
bdec + δcdeb)ιd] Im Ω

− [ar0 − Tr(arbc) + arbc(δ
bdec + δcdeb)ιd] Re Ω . (5.2.44)

Similarly, we find that the three-form part of cba is given by

cba|3 = 2aiac[−δbc + (δcdeb + δbdec)ιd] Im Ω

− 2arac[−δbc + (δcdeb + δbdec)ιd] Re Ω . (5.2.45)

The coefficients in ImX3 are free parameters which should be fixed by solving the dilaton and internal
Einstein equations.

The equations Tmn = 0 are satisfied by choosing12

ai0 = 0 a = 1, . . . , 6 ,

aibc = 0 b, c = 1, . . . , 6 ,

arbc = 0 (bc) /∈ {(bb), (14), (23)} . (5.2.46)

11We have not imposed (5.2.4) yet, and shall return to it later.
12The parameters ai12, ai13, ai24, ai34, ai56 are not fixed by any equation. For simplicity, we decide to put them to zero.

86



The Einstein and dilaton equations, (5.2.35) and (5.2.34) fix the other parameters

ar0 = −gs
T̃0 + T55 + T66 − x0

2(c1 + c2)
,

ar14 = gs
T14

2(c2 − c1)
,

ar23 = gs
T23

2(c1 − c2)
,

ar11 = gs
1

2(c2 − c1)

[
T11 −

c2T̃0

c1 + c2
+

x0c1c2

(c2
1 − c2

2)

]
,

ar22 = gs
1

2(c1 − c2)

[
T22 −

c1T̃0

c1 + c2
+

x0c1c2

(c2
2 − c2

1)

]
,

ar33 = gs
1

2(c1 − c2)

[
T33 −

c1T̃0

c1 + c2
+

x0c1c2

(c2
2 − c2

1)

]
,

ar44 = gs
1

2(c2 − c1)

[
T44 −

c2T̃0

c1 + c2
+

x0c1c2

(c2
1 − c2

2)

]
,

ar55 = −gs
T55

2(c1 + c2)
,

ar66 = gs
T66 − T̃0

2(c1 + c2)
, (5.2.47)

where x0 = 2T̃0 − (T11 + T22 + T33 + T44) and Tab are given by (5.2.35). The coefficients c1 and c2

appear in the source term of the Bianchi identity for F2 (see (3.3.5))

gs(dF2 −HF0) = c1 v
1 + c2 v

2 , (5.2.48)

where v1 and v2 are covolumes of sources in the directions (146) and (236) and

c1 = −h
2

γ
+
q1q2

At3
γ

[
2(A−B)− p2λ

2 + 1

λ
(A+B)

]
,

c2 = −h
2

γ
+
q1q2

Bt3
γ

[
2(B −A)− p2λ

2 + 1

λ
(A+B)

]
. (5.2.49)

Whether the sources are D6 branes or O6 planes depends again on the parameters in the solution,
but the overall tension is always negative and so is c1 + c2.

In order to have a solution, we should also solve the equations of motion and the remaining Bianchi
identities for the fluxes. However, these are automatically satisfied by our ansatz for the fluxes,
provided j ∧ ImX1 = 0. This condition is satisfied by our choice of the parameters a. Thus we have
constructed a de Sitter solution.

5.3 A first step towards first order equations

In this section, we will try to provide further justification for our choice of calibrating polyform X−.
In supersymmetric compactifications, the imaginary part of the non-closed pure spinor, Φ− in type
IIA, on one side, defines the calibration for the sources and, on the other, gives the bulk RR fields
in the supersymmetry equation (2.4.20). We will show that, for our de Sitter solution, the polyform
X− satisfies the same equations Φ− satisfies in the supersymmetric case

(d−H) ReX− = 0 ,

(d−H) ImX− = c0 gs ∗ λ(F ) . (5.3.1)
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Notice the presence of the constant c0. Indeed, differently from the generalized calibrations, the source
energy density is not minimized [30]. It is the combined bulk-brane energy density that is extremized.

Keeping only the parameters a that are non-zero in the de Sitter solution (5.2.47), it is easy to
compute

d(ImX−) = [(ar0 + ar66 − ar55)[p(q1 + q2)(e1 ∧ e3 + e2 ∧ e4)

− (q1 − q2)(e1 ∧ e2 − e3 ∧ e4)] ∧ e5 ∧ e6

− (ar11 + ar44 − ar22 − ar33)[p(q1 − q2)(e1 ∧ e3 + e2 ∧ e4)

− (q1 + q2)(e1 ∧ e2 − e3 ∧ e4)] ∧ e5 ∧ e6 , (5.3.2)

and

H ∧ ImX− = −2h (ar0 + ar66 − ar55) e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6 . (5.3.3)

In order to have d(ImX−) proportional to gs ∗ F2, one must impose the relation

ar11 + ar44 − ar22 − ar33 = 0 . (5.3.4)

Then, one has

d(ImX−) = −c0 gs ∗ F2 ,

H ∧ ImX− = −2γ2 c0 gs ∗ F0 , (5.3.5)

with

c0 =
ar0 + ar66 − ar55

γ
= −gs

T̃0

γ(c1 + c2)
. (5.3.6)

To obtain the second equality, we used the explicit expression (5.2.47), (5.2.35) for the parameters
a, while c1 and c2 are defined in (5.2.49). Also, using (5.2.47), it is easy to show that the constraint
(5.3.4) reduces to

x0 = 2T̃0 − (T11 + T22 + T33 + T44) = 0 ⇔ (2γ2 − 1) h2 = 0 . (5.3.7)

Therefore, for13

γ2 =
1

2
(5.3.8)

we can write a differential equation for ImX−

(d−H) ImX− = c0 gs ∗ λ(F ) , (5.3.9)

which is the non-supersymmetric analogue of the supersymmetry equations14 for Im Φ−.
Notice that the value γ2 = 1/2 is compatible with the condition (5.2.31) for having de Sitter solu-

tions. The value of the constant c0 is also fixed by the solution. Indeed, in order for X− to reproduce
the correct Born-Infeld action (5.2.4), we have to impose c0 γ = 1. This relation is automatically
satisfied for supersymmetric backgrounds, where c0 = γ = 1 and the pullback of Re Ω agrees with the
DBI action on the solution. In non-supersymmetric backgrounds, the condition c0 γ = 1 plus (5.3.6)

13Clearly also h = 0 (no NSNS flux) is a solution to this constraint. It would be interesting to explore the possibility
of having de Sitter or non-supersymmetric Minkowski solution with h = 0. Notice that, in this case, the condition of
having F0 6= 0 [42], necessary to avoid de Sitter no-go theorems [70], is not required.

14Notice that from the equation for ImX− we recover the condition T0 > 0 (5.2.17). Indeed, as in [29], starting from
(5.2.38) we have

T0

p+ 1

∫

M

vol(6) = −
∫

M

〈dHF, ImX−〉 = −
∫

M

〈F,dH ImX−〉 = c0 gs

∫

M

〈∗λ(F ), F 〉 > 0 .
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fix the value of the constant, c0 =
√

2.

We can now show that the dH - closure can be imposed on ReX−. Indeed, the three-form part of
ReX− can be written as

ReX3 = −[br0 − Tr(brkj) + brkj(g
kldxj + gjldxk)ιl] Re Ω

+[bi0 − Tr(bikj) + bikj(g
kldxj + gjldxk)ιl] Im Ω

+[(bi Rk − bi Lk ) dxk + gkl(brRk − brLk ) ιlJ ] ∧ J , (5.3.10)

where, as for ImX3, we have defined

br0 = Im(α̃0 − α0) brkj = Im(α̃kj − αkj) ,
bi0 = Re(α̃0 + α0) bikj = Re(α̃kj + αkj) ,

br Lk = Re(α̃Lk + αLk ) br Rk = Re(αRk + α̃Rk ) ,

bi Lk = Im(α̃Lk − αLk ) bi Rk = Im(αRk − α̃Rk ) . (5.3.11)

Consistently with (5.2.46), we can choose

br0 = 0 ,

br Lk = br Lk = bi Lk = bi Rk = 0 ∀ k = 1, . . . 6

brjk = 0 ∀ j, k = 1, . . . 6

bijk = 0 for (kj) /∈ {(kk), (14), (23), (41), (32)} . (5.3.12)

Furthermore, choosing

bi14

t1
= − bi23

t2τ2
3

,
bi11

t1
+

bi33

t2τ2
3

− bi22

t2τ2
3λ
− bi44

t1λ
= 0 , (5.3.13)

we obtain

dH(ReX3) =
√
t1t2t3 τ3τ6 p(1− λ)

(
bi0 +

bi66

t3τ2
6

− bi55

t3

)
(q2 e

1 ∧ e4 + q1 e
2 ∧ e3) ∧ e5 ∧ e6 , (5.3.14)

which is zero either in the SUSY solution, or by further setting

bi0 = − bi66

t3τ2
6

+
bi55

t3
. (5.3.15)

While these equations are derived in the vanishing warp factor and constant dilaton limit, their
extension to the general case is natural15

dH(e2A−φReX−) = 0 ,

dH(e4A−φ ImX−) = c0e
4A ∗ λ(F ) . (5.3.16)

Inspired by the supersymmetric case, it is natural to ask if and when it might be possible to find
an even-form counterpart to (5.3.16), X+ , so that the equations on X− and X+ (together with flux
Bianchi identities) imply the e.o.m. However it is not yet clear to us what the correct generalization

15Just like Φ−, X− is globally defined, and both B-field and the dilaton are needed in order to define an isomorphism
between such forms and the positive and negative helicity spin bundles S±(E) as discussed in section 2.3.3. The dilaton
assures the correct transformation under GL(6), making the (non-pure) spinor e−φe−BX− the natural variable for the
first order equations (5.3.16), as Ψ− is in (4.4.1).
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of the notion of compatibility is, and what algebraic properties X+ should satisfy. Hoping for a sym-
metry with the supersymmetric solutions (and the possibility of having a solution to some variational
problem) one may construct X+ satisfying

dH(e3A−φX+) = 0 . (5.3.17)

In general the odd form X− should receive contribution from both pure spinors, but in our solu-
tion we have chosen to “decouple” the even pure spinor completely. Assuming X+ has an expansion
similar to that of X−, i.e. X+ does not receive contributions from Ω, this amounts to finding a closed
two-form on g

p,−p,±1
5.17 × S1. It is indeed not hard to construct such a form for our solution, since the

symplectic form itself is closed, provided τ2 = 0 (even if λ 6= 1, see (4.4.45), and footnote 15 of section
4.4.3). Even if we do not take τ2 = 0, finding a conformally closed X+ of this form is always possible,
since the manifold is symplectic. A better understanding of such first order equations applicable to
non-supersymmetric backgrounds is a work in progress.

Finally, we would like to stress that we do not consider the open string sector of our solution (we
set F = 0 but do not analyse the worldvolume scalars). Note though that this would be needed for
D-brane sources, while in our model, we can tune parameters in order to have only two O-planes (see
(5.2.49)). Nevertheless, in the case of a D-brane, this is a weak point of our proposal since we are
not able to properly address the question of the stability of the supersymmetry-breaking branes. By
solving the bulk equations of motion, we extremize the energy density of the brane plus bulk system,
but we cannot be sure that the solution is a minimum for arbitrary values of the parameters. The
problem is currently under study. Note though that an unstable brane may also be interesting for
some inflation scenarios.

In the next section we will give a partial justification of the stability of our solution by analysing
the four-dimensional effective potential.

5.4 Four-dimensional analysis

The search for de Sitter vacua, or for no-go theorems against their existence, has generally been
performed from a four-dimensional point of view [69, 70, 71, 42, 72, 73, 74, 76], analysing the behaviour
of the four dimensional effective potential with respect to its moduli dependence. In this section, we
want to make contact with this approach and show that our solution has the good behaviour one
expects to find for de Sitter vacua, as far as the volume and the dilaton are concerned.

5.4.1 Moduli and 4d Einstein frame

Let us consider the ten-dimensional action (5.2.6). As discussed in chapter 1, by Kaluza-Klein reduc-
tion on the internal manifold, we should obtain a four-dimensional effective action for the moduli. In
particular, in addition to the kinetic terms, the four-dimensional action will contain a potential for
the moduli fields. Their number and the way they enter the potential will depend on the peculiar
features of the single model.

A de Sitter solution of the four-dimensional effective action will correspond to a positive valued
minimum of the potential. Determining the minima of the potential is general rather difficult, since,
a priori one should extremize along all the directions in the moduli space. This complicated problem
is generally solved only by numerical analysis, because of the large number of variables. However,
some information can be extracted by restricting the analysis to a subset of the moduli fields.

For whatever choice of the manifold on which the compactification is performed, we are always
able to isolate two universal moduli: the internal volume and the four-dimensional dilaton. Their
appearance in the effective potential at tree-level is also universal. We will then only focus on these
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two moduli. We define the internal volume as

∫

M
d6x

√
|g6| =

L6

2
=
L6

0

2
ρ3 , (5.4.1)

where the factor of 1
2 is due to the orientifold and the vacuum value is ρ = 1. Defining the ten-

dimensional dilaton fluctuation as e−φ̃ = gse
−φ, the four-dimensional dilaton is given by

σ = ρ
3
2 e−φ̃ . (5.4.2)

Then reducing the action (5.2.6), we obtain the four-dimensional effective action for gravity, 4d
dilaton and volume modulus in the string frame

S =
1

2κ2

∫
d4x

√
|g4|

[
L6

2
e−2φ(R4 + 4|∇φ|2)− 2κ2U

]
, (5.4.3)

with U(ρ, σ) the four-dimensional potential. To derive the explicit form of the potential, we need to
determine how the internal Ricci scalar, fluxes and source terms scale with the volume. For R6 and
the fluxes this is easily computed

R6 → ρ−1 R6 , |H|2 → ρ−3 |H|2 , |Fk|2 → ρ−k |Fk|2 . (5.4.4)

The source term requires some more attention. As shown in (5.2.38),

2κ2Tp ∗̂〈j, ImX〉 =
[(dF2 −HF0) ∧ ImX3]1...6√

|g6|
. (5.4.5)

The terms in ImX3 in (5.2.40) appearing with a0, ajk and a
(L,R)
k scale differently with the volume.

Let us denote them by X0, XΩ and XJ , respectively

ImX3 = X0 +XΩ +XJ . (5.4.6)

Their ρ dependence is determined by the scaling of the forms J and Ω

J → ρJ , Ω→ ρ
3
2 Ω , (5.4.7)

and by the metric factors in the gamma matrices of (5.2.40)

X0 → ρ
3
2X0 , XΩ → ρ

1
2XΩ , XJ → ρXJ . (5.4.8)

Then, the source term scales as

[(dF2 −HF0) ∧ ImX3]1...6√
|g6|

→ ρ−
3
2

(
b0 + b1 ρ

−1 + b2 ρ
− 1

2

)
, (5.4.9)

where

b0 =
[(dF2 −HF0) ∧X0]1...6√

|g6|
,

b1 =
[(dF2 −HF0) ∧XΩ]1...6√

|g6|
,

b2 =
[(dF2 −HF0) ∧XJ ]1...6√

|g6|
, (5.4.10)
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are vacuum values. Then the four-dimensional potential for ρ and σ becomes

U =
1

2κ2

∫

M
d6x

√
|g6|[e−2φ(−R6 +

1

2
|H|2) +

1

2
(|F0|2 + |F2|2)− 2κ2Tp e

−φ ∗̂〈j, ImX〉]

=
L6

0

4g2
sκ

2
σ2 [(−R6

ρ
+
|H|2
2ρ3

)− gs
σ

(b0 +
b1

ρ
+

b2√
ρ

) +
g2
s ρ

3

2σ2
(|F0|2 +

|F2|2
ρ2

)] . (5.4.11)

Note that the terms in b1 and b2 are purely non-supersymmetric contributions of the source. They
are due to the new metric dependence of the source action with respect to the supersymmetric case.

In order to correctly identify the cosmological constant, but also to perform the study of the moduli
dependence, we need to go to the four-dimensional Einstein frame

gµν E = σ2 gµν . (5.4.12)

The four-dimensional Einstein-Hilbert term transforms as16

1

2κ2

∫
d4x

√
|g4|

L6

2
e−2φR4 =

L6
0

2g2
s 2κ2

∫
d4x

√
|g4| σ2R4

= M2
4

∫
d4x

√
|g4E |R4E ,

where we denote Einstein frame quantities by E, and we introduced M2
4 =

L6
0

2g2s 2κ2 , the squared four-
dimensional Planck mass. Similarly, the four-dimensional potential in the Einstein frame becomes

UE = σ−4 U = 4κ4M4
4

e4φ

(L
6

2 )2
U , (5.4.14)

and we can write the Einstein frame action as

S = M2
4

∫
d4x

√
|g4E |

(
R4E + kin − 1

M2
4

UE

)
. (5.4.15)

The cosmological constant, (5.2.13), is then related to the vacuum value of the potential

Λ =
1

2M2
4

UE|0 . (5.4.16)

5.4.2 Extremization and stability

In order to find a solution, one should determine the minima of the potential. For our choice of
moduli, ρ and σ, one has

∂UE
∂σ

= −M
2
4

σ5
[2g2
s (|F0|2ρ3 + |F2|2ρ) + 2σ2 (−R6

ρ
+
|H|2
2ρ3

)− 3σ gs(b0 +
b1

ρ
+

b2√
ρ

)] ,(5.4.17)

∂UE
∂ρ

=
M2

4

σ2
[(
R6

ρ2
− 3|H|2

2ρ4
) +

gs
σ

(
b1

ρ2
+

b2

2
√
ρ3

) +
g2
s

2σ2
(3|F0|2ρ2 + |F2|2)] . (5.4.18)

In our conventions, the extremization conditions are

∂UE
∂σ
|σ=ρ=1 = 0 ,

∂UE
∂ρ
|σ=ρ=1 = 0 , (5.4.19)

16Under a conformal rescaling of the four dimensional metric we have

gµν → e2λgµν ⇒
√
|g4| → e4λ

√
|g4| , R4 → e−2λR4 . (5.4.13)
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where σ = ρ = 1 are the values of the moduli on the vacuum. Actually, the conditions (5.4.19)
are equivalent to the ten-dimensional dilaton e.o.m. and the trace of internal Einstein equation.
Combining the dilaton equation (5.2.17) and the trace of the internal Einstein equation, (5.2.16), we
can write the six-dimensional Ricci scalar as

R6 =
3

2
|H|2 − g2

s

2
(3|F0|2 + |F2|2)− gs

2
(T0 − T ) , (5.4.20)

where

T0 − T = 2κ2Tp∗̂〈j, Cmm 〉 =
[(dF2 −HF0) ∧ (XJ + 2XΩ)]1...6√

|g6|
= 2b1 + b2 . (5.4.21)

In the last line we used (5.4.10). With this expression for T0 − T , it is immediate to verify that
(5.4.20) is indeed equal to the ∂ρUE in (5.4.19). Similarly, one can see that using (5.4.18), (5.4.9),
(5.2.38) and (5.4.19), the dilaton equation (5.2.17) reduces to ∂σUE in (5.4.19).

From the equivalence of the ten-dimensional equations and (5.4.19) we see that the ten-dimensional
solution discussed in the previous sections does indeed satisfy the extremization conditions (5.4.19).
The next step is to see whether such extremum correspond to a minimum of the potential and whether,
furthermore, it is stable.

Let us consider (5.4.18) and discuss the ρ dependence of the potential. It is convenient to define
the function

P (ρ2) =
∂UE
∂ρ

σ2ρ4

M2
4

. (5.4.22)

It is easy to check that P (ρ2) is negative for ρ = 0 and positive for ρ → ∞. Hence there must be
a real positive root and this is a minimum of UE . A priori, P (ρ2) could have other zeros. Let us
focus only on the situation in which b2 = 0, which, in particular, is the case for our ten-dimensional
solution. In that case, P (ρ2) has two other roots which are either complex conjugate17, or real and
negative, according to the value of the parameters. Indeed, studying ∂ρ2P , one can show that P (ρ2)
can be 0 only once. Therefore, at least for b2 = 0, there is only one extremum of UE in ρ and it is a
minimum. So satisfying the extremization in ρ is enough for the stability.

Let us now analyze the σ dependence of (5.4.14). It is easy to see that the potential admits an
extremum for

σ± =
1

4a

(
3b±

√

8b2

(
9

8
− 4ac

b2

))
,

4ac

b2
<

9

8
, (5.4.23)

where for simplicity we introduced

a = −R6ρ
−1 +

1

2
|H|2ρ−3 ,

b = gs(b0 + b1ρ
−1 + b2ρ

− 1
2 ) ,

c =
g2
s

2
ρ3(|F0|2 + |F2|2ρ−2) . (5.4.24)

In our case, asking for σ = 1 and using the extremization in σ in (5.4.19), which can be written as
2a− 3b+ 4c = 0, we find that the minimum in σ− corresponds to

a− 2c < 0 . (5.4.25)

17Since the polynomial is real, they come in conjugate pairs.
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This condition is satisfied by our solution choosing γ2 = 1
2 , as we can see from (5.2.30). Therefore,

our solution is at the minimum in σ, and it is then stable both in the volume and the dilaton moduli.

It is easy to see that the four-dimensional potential takes a positive value at the minimum, and,
hence, the minimum corresponds to a de Sitter vacuum. In [71], it has been shown that the potential
has a strictly positive minimum in σ for

1 <
4ac

b2
<

9

8
, (5.4.26)

where the lower bound comes from asking the potential to be never vanishing (strictly positive). This
condition is satisfied by our solution.

In addition, we can actually compute the value of the potential at σ = ρ = 1. Starting from (5.4.14)
and using the two equations of (5.4.19), we obtain

UE
M2

4

=
1

3

(
gs
2

(T0 − T ) + g2
s |F0|2 − |H|2

)
. (5.4.27)

Using (5.2.14) and (5.4.20), one can show that the four-dimensional Ricci scalar is proportional to
(5.4.27), R4 = 2UE/M

2
4 . For γ2 = 1/2, R4 is positive (see the discussion below (5.2.31)), and hence

so is the value of the potential at the minimum.
Note also that, for γ2 = 1/2, the last two terms in (5.4.27) cancel each other and the entire con-

tribution to the cosmological constant comes from sources, (T0 − T ). For supersymmetry breaking
branes, this contribution is never vanishing but, for generic situations, we do not know what its sign
is. It would be nice to have a model independent argument to determine whether, for this mechanism
of supersymmetry breaking, the resulting four-dimensional space is always de Sitter.

As a further check of the existence of a de Sitter minimum for our solution, we can plot the
four-dimensional potential UE as a function of σ and ρ for some values of the parameters

t1 = t2 = t3 = τ3 = τ6 = 1 ,

q1 = 1 , q2 = 3 , p =
cosh−1(2)

π
,

λ = 5 , γ =
1√
2
, h = 4 . (5.4.28)
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Figure 5.1: Dependence of the potential on dilaton and volume modulus
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Chapter 6

Conclusion

In thesis, we studied flux vacua of ten-dimensional type II supergravity, compactified on a solv-
manifold (twisted tori). Finding such vacua is an important step in the process of trying to relate
ten-dimensional string theory to low energy four-dimensional particle physics, as discussed in chapter
1.

When looking for solutions towards four-dimensional Minkowski space-time, preserving supersym-
metry in the vacuum serves as a guiding line, and also offers technical advantages. As discussed in
chapter 2, this requirement plays a key role: in absence of flux, it characterizes the internal manifold
to be a Calabi-Yau (CY) manifold. Reductions over a CY are unfortunately not phenomenologically
satisfying, because of the moduli problem. Allowing for internal fluxes in the vacuum helps to solve
this problem, because they generate a potential which can fix some, if not all, the moduli. In that
case, the internal manifold is no longer restricted to be a CY. The conditions to get a supersymmet-
ric Minkowski flux vacuum can be reformulated in terms of Generalized Complex Geometry (GCG).
Thanks to this mathematical formalism, the internal manifold is characterized to be a Generalized
Calabi-Yau (GCY). This class of manifolds, larger than the CY, incorporates some solvmanifolds.
This is why we used them for our compactifications.

In chapter 3 and associated appendix B, we gave an account on the properties of these manifolds.
Thanks these properties, and to the reformulation of the conditions in terms of GCG, one can now
look for supersymmetric vacuum by a direct resolution of the various constraints, instead of obtaining
these solutions as duals of CY solutions. So we discussed a resolution method to get vacua on
these manifolds, and then provided a list of known solutions. The method was then adapted to
find new solutions of a particular kind: those with intermediate SU(2) structure, meaning the two
internal supersymmetry spinorial parameters are neither parallel nor orthogonal. Such solutions,
even if covered by the GCG formalism, were at first not easy to find because of intricate orientifold
projection conditions and supersymmetry equations. We introduced appropriate new variables, and
the problem got simplified. Then, three new solutions were presented. By taking the limit where
the spinors become either parallel or orthogonal, known solutions were recovered, and a new one
was found. We also discussed how an intermediate SU(2) structure solution could be related by a
β-transform to an SU(3) structure solution. We illustrated this situation with one of the solutions
found.

In chapter 4, we discussed the idea of relating all supersymmetric Minkowski flux vacua on solv-
manifolds by some transformation. As discussed in chapter 3, T-duality is known to relate some
solutions on torus to solutions on twisted tori, but not all of them: some non-T-dual solutions were
found using GCG tools. So we proposed a transformation named the twist, which can relate solu-
tions on torus to solutions on solvmanifolds. The main building block of the transformation is a local
GL(d) matrix which constructs Maurer-Cartan one-forms of a solvmanifold out of those of a torus.
Doing so, this operator is responsible for the topology change when going from one manifold to the
other. This GL(d) transformation is then embedded in a local O(d, d) transformation. The latter acts
equivalently on vectors and one-forms of the generalized tangent bundle of GCG. The transformation
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can then be extended by considering more general local O(d, d) transformations. In addition to the
topology change just discussed, one can act on the B-field by a B-transform, transform the metric
with scalings, accordingly shift the dilaton, and finally allow for two U(1) actions on the GCG pure
spinors. With these actions, the whole NSNS sector gets transformed. The transformation of the
RR sector is read indirectly via the supersymmetry conditions on the pure spinors. Note that on the
contrary to T-duality, the transformed RR fluxes get contributions from both RR and NSNS sectors.
Given this general twist transformation, we worked out general constraints in order to use it as a
solution generating technique. We then solved these constraints to recover all known solutions on
nilmanifolds, even those which are not T-dual to a torus solution. We also solved the constraints to
construct a new solution on a solvmanifold. Finally, we discussed if the twist transformation could
be used to get non-geometric solutions. As a side result, we presented another new solution in type
IIA with an O6-plane on a solvmanifold. This solution is fully localized, on the contrary to previous
solutions which had two intersecting smeared sources. In a final section, we considered flux solutions
of heterotic string. In this context, two solutions are known on internal manifolds given locally by
K3×T 2, while globally, one is a trivial fibration and the other is not. These two solutions are known
to be related by the so-called Kähler/non-Kähler transition, a chain of dualities which involves a lift
to M-theory. The twist transformation, designed to reproduce such a topology change, can be used
to relate these two solutions. To do so, we first reformulated the conditions to get a supersymmetric
solution of heterotic string in terms of GCG pure spinors. We were then able to act with the twist
transformation. The introduction of GCG in this context lead to an interesting discussion, including
the idea of a possible extension of the generalized tangent bundle to the gauge bundle. One could
then act with a subset of O(d + 16, d + 16) to transform the gauge fields. Details on this idea, and
on the twist transformation are given in appendix C.

Motivated by recent cosmological observations, we finally discussed in chapter 5 ten-dimensional
solutions towards four-dimensional de Sitter space-time. These solutions have a major disadvantage:
they do not preserve supersymmetry. For supersymmetric Minkowski solutions, the supersymmetry
conditions, together with the Bianchi identities for the fluxes, imply that equations of motion are
automatically satisfied. This eases the resolution since equations of motion can be second order dif-
ferential equations, while supersymmetry conditions are first order. Therefore, it is technically more
difficult to get a de Sitter solution, as one goes back to solving the equations of motion. Another dif-
ficulty comes from obtaining a positive cosmological constant. In presence of supersymmetric sources
and constant warp factor and dilaton, most of the supergravity classical contributions to the four-
dimensional Ricci scalar come with a negative sign. One can then consider additional non-classical
ingredients, or consider purely four-dimensional compactifications like non-geometric ones. Instead,
we proposed an ansatz for non-supersymmetric sources. The main result of this proposal was to pro-
vide an additional positive contribution to the cosmological constant. We gave an explicit example
of a de Sitter solution found with this ansatz on a solvmanifold. This solution can be understood as
a deformation of the new supersymmetric Minkowski solution found via the twist transformation in
chapter 4. A last requirement, which is always difficult to fully satisfy, is the four-dimensional stabil-
ity of the solution. In our case, it was partially examined: the solution was found stable in the volume
and dilaton moduli. The ansatz proposed for the sources mimics the supersymmetric situation. For
the latter, the DBI action can be replaced by an action, over the whole internal manifold, given by
a particular GCG pure spinor. Similarly in our proposal, the DBI action is replaced by a general
expansion over a base given by the GCG pure spinors. This generality provided more freedom to solve
the Einstein equations, and helped to get a positive cosmological constant. The GCG pure spinors
are also involved in the supersymmetry conditions. Mimicking again the supersymmetric situation,
we proposed a set of first order equations generalizing the supersymmetry conditions, so that they
could imply, with the Bianchi identities, the equations of motion. These first order equations were
only partially solved, and further study on such a proposal was left to future work.

Given all the flux vacua studied in this thesis, the next step would be to work out the effective
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actions over them, as discussed in chapter 1. To do so, one should first determine the light modes.
This is actually an important unsolved problem. The answer is known in absence of fluxes: for a CY,
the light modes are massless, and are given by harmonic forms. In presence of fluxes on a warped
CY, one can still use this result when going to the large volume limit, where the fluctuations of the
fluxes can be neglected. But on twisted tori, fluxes are responsible for the non-trivial topology so
they have to be taken into account. Determining the light modes is much more involved. Generic
formulas for four-dimensional actions, potentials, are known away from the CY: they are given in
terms of internal integrals over expressions involving GCG pure spinors [83, 84]. Nevertheless, one
does not know what is the basis of light modes on which to develop these expressions. Instead,
consistent truncations are considered [85]: they correspond to truncations of the spectrum to a set
of modes, which do not have to be the full set of lightest modes. But the truncation is consistent, in
the sense that a four-dimensional solution obtained from the truncated and reduced action is liftable
to a ten-dimensional solution. Most of the four-dimensional studies, in particular when looking for
a de Sitter solution, are done in this set-up. A better understanding of these problematics is a first
direction to pursue. It is necessary in order to make contact with phenomenology.

Another important aspect for phenomenology mentioned in chapter 1 is model building. Out of
type II compactifications, the four-dimensional action is not enough to recover some supersymmetric
extension of the standard model. In particular, in order to get non-abelian gauge groups, one adds
additional ingredients like intersecting probe branes [86]. This kind of models has always been worked
out on torus. Trying to work them out on twisted tori, where the fluxes needed for a four-dimensional
scalar potential are present, could be interesting. Calibration conditions for sources on such back-
grounds have been worked out, so such a model building is in principle doable. Similarly, recent
advances in the F-theory approach should be studied, and some link with our GCG formalism would
be interesting.

We would also like to come back to several questions raised by the study of flux compactifications.
Flux backgrounds of heterotic string indicated similarities and differences with the type II set-up.
The similarities are due to the S-duality relating type II at the orbifold point (type I) and heterotic
string. Further comparison between the two set-ups could be interesting. In particular, we may learn
more on the role of open string degrees of freedom, which are treated rather differently on the two
sides of the duality. The role of the internal curvature, and the different sources on both sides, also
need further study.

In heterotic compactifications, the H-flux appeared not to play the same role as in type II. For
heterotic, it is not related to a twisting of the generalized tangent bundle. The H-flux is actually
the S-dual of the RR fluxes for twisted tori solutions in type II. So the unusual role of the H-
flux in heterotic is related to our poor understanding of RR fluxes in type II supergravity, where
we do not have a clear geometric picture of the RR fluxes in terms of GCG. The RR fluxes bring
constraints on solutions, which make the restriction of the internal manifold to be a GCY, not a
complete characterization. A better understanding of the RR fluxes, in particular of the restriction
they bring on the internal manifold, would be interesting. This may also shed light on heterotic flux
compactifications.

At the world-sheet level, similar problems occur. Making the GCG formalism appear at the world-
sheet level would be interesting. This formalism is successful in describing the NSNS sector, so GCG
structures in sigma-models have already appeared for purely bosonic strings [24, 25, 26]. Trying to
extend this within the Berkovits formalism could help to understand better the role of the RR fluxes.

Coming back to the work presented in this thesis, several points could lead to further study. One
could try to make further use of the twist transformation. It is tempting to try implement the twist
transformation at the world-sheet level, similarly to T-duality [87]. The mixing between NSNS and
RR sector in the twist transformation would unfortunately require a non-trivial use of the Berkovits
formalism, which makes such an implementation difficult. Not going that far, one could try to
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implement the twist transformation at the level of the supergravity action. The four-dimensional
potentials are given in terms of the GCG pure spinors, and the twist transformation is acting on
those. So we should be able to relate an action obtained by compactifying on a torus to an action
obtained on a twisted tori. The transformation relating the two should correspond to some gauging,
in the context of gauged supergravity, where one can relate four-dimensional theories corresponding
to compactifications on different manifolds. To do so, one gauges some symmetries of the reduced
action. In order to preserve supersymmetry in this procedure, the gauging has to fulfill some further
constraints [88]. Similarly for us, we consider the local O(d, d) group, and the transformation has to
satisfy some constraints to get supersymmetric solution. These similarities, and their use at the level
of the four-dimensional actions, should be further studied.

Our proposal for non-supersymmetric sources deserves further justification. In particular, one can
ask how much the geometry of the subspace wrapped by the source can differ from the supersymmetric
case. This problem is related to the question of calibration, and the stability of the source, that also
need to be further studied. For instance one could look at known examples of non-BPS sources [89].

We also began to develop a first order formalism. This set of equations would imply, together
with the Bianchi identities for the fluxes, the equations of motion. Differently from similar proposals
[78], we try to preserve the closure of some polyform, which would correspond to some integrabil-
ity condition. One should then understand what geometric structure would correspond to such an
integrability.

Last but not least, we mentioned and illustrated how GCG can provide a nice understanding of
non-geometric situations. Though, one still does not have a clear ten-dimensional description of
non-geometric solutions. Such solutions are found at the four-dimensional level, and these can be
of particular interest for de Sitter compactifications, because the non-geometric fluxes bring positive
contributions to the cosmological constant. A better understanding of the ten-dimensional point of
view would useful. Non-geometric compactifications have appeared through different other perspec-
tives (see [90] and references therein), and drawing the link between the various approaches would
also be interesting.

Hopefully, with all these ideas, we would go closer to extensions of the standard model of particle
physics, but also get a better understanding of string theory.
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Appendix A

Conventions for supersymmetric vacua

A.1 Differential forms

In this appendix we give our conventions on internal gamma matrices, differential forms, contractions,
and the Hodge star.

We choose hermitian γ matrices (they are all purely imaginary and antisymmetric): γi† = γi. Here
are some identities used (see [91] for more):

{γm, γn} = 2gmn [γm, γn] = 2γmn

{γmn, γp} = 2γmnp [γmn, γp] = −4δp[mγn]

{γmnpq, γr} = 2γmnpqr [γmnpq, γr] = −8δr[mγnpq] . (A.1.1)

We take as a convention for a p-form A:

γµ1...µp ↔ dxµ1 ∧ ... ∧ dxµp , A =
1

p!
Aµ1...µpγ

µ1...µp . (A.1.2)

For a p-tensor A, we define the antisymmetrization as

A[µ1...µp] =
1

p!
(Aµ1µ2µ3...µp −Aµ2µ1µ3...µp +Aµ2µ3µ1...µp + ...+Aµ3µ4µ1µ2µ5...µp + ...) (A.1.3)

with the p! possible terms on the right-hand side. For a p-form A and q-form B, we have the
convention:

1

(p+ q)!
(A ∧B)µ1...µp+q =

1

p!q!
A[µ1...µpBµp+1...µp+q] . (A.1.4)

For a p-form A and a 1-form b = bµγ
µ, we define the contraction:

bxA =
1

p!
bνAµ1...µp p δ

[µ1
ν γµ2...µp] =

1

(p − 1)!
bµ1Aµ1...µpγ

µ2...µp . (A.1.5)

It can also be noted with ι. For generic 1-form ξ, p-form A and q-form B, one has:

ξx(A ∧B) = (ξxA) ∧B + (−1)p A ∧ (ξxB) . (A.1.6)

We now give the conventions for the Hodge star ∗, with a given metric g. We introduce the totally
antisymmetric tensor ǫ by ǫµ1..µm = +1/− 1 for (µ1..µm) being any even/odd permutation of (1..m),
and 0 otherwise. Then, the convention used for the Hodge star is1

∗(dxµ1 ∧ ...∧ dxµk) =

√
|g|

(d− k)!
(−1)(d−k)k ǫµ1..µk µk+1..µd gµk+1νk+1

...gµdνd dxνk+1 ∧ ...∧ dxνd , (A.1.7)

1We take the same “awkward sign convention” as in [29], and use the same pure spinors SUSY equations and the
same calibration of the sources. See footnote 1 in chapter 2.
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with d the dimension of the space, |g| the determinant of the metric. In the basis (ξ1, ..., ξd), with
diagonalized metric D, we get for a k-form:

∗(ξµ1 ∧ ... ∧ ξµk) = (−1)(d−k)k ǫµ1...µd√
|g| Dµk+1µk+1

...Dµdµdξ
µk+1 ∧ ... ∧ ξµd , (A.1.8)

without any summation on µk+1, ..., µd, as we took off the (d − k)!, i.e. these indices are fixed; the
ǫµ1..µd is then only there for a sign. Note for a p-form Ap, one has:

∗ ∗Ap = (−1)(d−p)p Ap = (−1)(d−1)p Ap . (A.1.9)

A.2 Structure conditions and compatibility

A.2.1 SU(2) structure conditions

In this appendix we derive in a specific way the SU(2) structure conditions given in section 2.2.2.
We start by considering a globally defined spinor η+: this gives an SU(3) structure which has the
properties (2.2.14). Let us now assume there is some holomorphic globally defined one-form z, for
which we recall ||z||2 = zxz = zxz = zµzµ = 2. One can then always define two-forms from it:

j = J − i

2
z ∧ z ω =

1

2
zxΩ . (A.2.1)

Note that j is clearly real. We are going to show that these define an SU(2) structure (the one
naturally embedded in the SU(3)) since they satisfy the conditions (2.2.16), (2.2.17), and (2.2.18).

Holomorphicity is defined with respect to an almost complex structure. Then, one can always
have an hermitian metric (its non-zero components have one index holomorphic and the other one
antiholomorphic). Using this metric and some holomorphicity arguments in six dimensions, we first
get that zxΩ = 0, zxz = zxz = 0. Furthermore, we get that ω is holomorphic, and deduce the
following structure conditions:

ω ∧ ω = 0 , (A.2.2)

zxω = 0, zxω = 0 . (A.2.3)

Using the same arguments, we get that z ∧ Ω = 0, and using (A.1.6), we have: 0 = zx(z ∧ Ω) =
2Ω − z ∧ (zxΩ), hence

Ω = z ∧ ω . (A.2.4)

Let us now recover the structure conditions involving j. We get using (A.1.6): zx(z∧z2 ) = −z,
zx(z∧z2 ) = z. We have (using our almost complex structure and real indices) zxJ = iz, because

(zxJ)ν = zµJµν = −Jνµzµ = −J µ
ν zµ = −(−i)zν = izν . (A.2.5)

So we deduce from the definition of j the following structure conditions:

zxj = 0, zxj = 0 . (A.2.6)

Using J ∧ Ω = 0 and (A.2.4), we deduce z ∧ j ∧ ω = 0, and using (A.1.6), we then get:

j ∧ ω = 0 . (A.2.7)

To recover the remaining structure condition (2.2.16), we express the equality 4
3J

3 = iΩ ∧ Ω in
terms of z, j and ω, and get 4

3 (j + i
2z ∧ z)3 = iz ∧ z ∧ ω ∧ ω. Then, using the previously derived

properties, contracting last formula with z and then contracting with z, we finally get:

2 j2 = ω ∧ ω . (A.2.8)

Going back to 4
3J

3 = iΩ ∧ Ω, one deduces with (A.2.8):

j3 = 0 . (A.2.9)
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A.2.2 Details on the compatibility conditions

In section 2.4.1, we explained that we needed a pair of compatible pure spinors. We mentioned that
the compatibility conditions were actually implied by a set of SU(2) structure conditions seen in
section 2.2.2. We are going to prove this implication here. The SU(2) structure conditions involved
are (A.2.2), (A.2.7), (A.2.8), and (A.2.9). We will use the formulas (2.4.9) for the pure spinors, which
are valid for any structure (intermediate or orthogonal SU(2), SU(3)), hence this result is valid for
any structure. We give the following useful formula for any p-form Ap and q-form Bq:

λ(Ap ∧Bq) = (−1)pqλ(Ap) ∧ λ(Bq) , (A.2.10)

and we recall the compatibility conditions given in section 2.4.1

〈
Φ1,Φ1

〉
=
〈
Φ2,Φ2

〉
6= 0 , (A.2.11)

〈Φ1, V · Φ2〉 =
〈

Φ1, V · Φ2

〉
= 0, ∀ V = (v, ξ) ∈ TM ⊕ T ∗M . (A.2.12)

In the following, we will use the Φi defined in (2.4.21) for IIA, but note these conditions are actually
independent of the theory, since they are only involving a generic pair of pure spinors.

Using (2.4.9) for the pure spinors, the first compatibility condition gives

z ∧ z ∧
(
2k2
⊥j

2 + k2
||ω ∧ ω − 2k||k⊥j ∧ Re(ω)

)
6= 0 , (A.2.13)

k2
||

4

3
ij3+ik||k⊥j

2∧Re(ω) = 4
z ∧ z
||z||2 ∧

(
j2(k2

|| − k2
⊥) +

1

2
ω ∧ ω(k2

⊥ − k2
||) + 2j ∧ Re(ω)k||k⊥

)
. (A.2.14)

One can see that imposing (A.2.7), (A.2.8) and (A.2.9), (A.2.14) is automatically satisfied. Only
(A.2.13) remains to be satisfied; it corresponds to the volume form being non-zero.

Let us now focus on the second compatibility condition. Since this condition is valid for any V , it
is sufficient to study it in the two different cases where V = (v, 0) and V = (0, ξ). Then let us first
look at V = (0, ξ) and the condition 〈Φ1, V · Φ2〉 = 0. One gets:

ξ ∧ z ∧ ω ∧ (k||k⊥ω + (k2
|| − k2

⊥)j) = 0 . (A.2.15)

As (A.2.15) is valid for any ξ, we get:

z ∧ ω ∧ (k||k⊥ω + (k2
|| − k2

⊥)j) = 0 . (A.2.16)

If one imposes (A.2.2) and (A.2.7), (A.2.15) is automatically satisfied.

Let us now consider V = (v, 0) and still 〈Φ1, V · Φ2〉 = 0. Using (A.1.6) and the following useful
formula valid ∀v ∈ TM, ∀n ǫ N

∗

vxjn = n j(n−1) ∧ (vxj) , (A.2.17)

one gets the following top form in terms of vxz, vxj, and vxω:

(vxz)

(
i

2
ω ∧ j2 +

z ∧ z
2

ω ∧ (−k||k⊥ω + j(k2
⊥ − k2

||))
)
− z ∧

(
ik2
⊥ω ∧ j ∧ (vxj) +

k2
||
2
j2 ∧ (vxω)

)
.

Apart from the term in j2∧(vxω), the previous expression is obviously zero when one imposes (A.2.2)
and (A.2.7). Using (A.1.6) and (A.2.17), one has

vx(j2 ∧ ω) = 2 j ∧ vx(j) ∧ ω + j2 ∧ (vxω) . (A.2.18)
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Hence the term in j2 ∧ (vxω) is also zero when using (A.2.7), so the whole expression vanishes with
(A.2.2) and (A.2.7). Thus, 〈Φ1, V · Φ2〉 = 0 is automatically satisfied for any V when (A.2.2) and
(A.2.7) are imposed.

One can play the same game with the condition
〈

Φ1, V · Φ2

〉
= 0. For V = (0, ξ), one gets:

ξ ∧ z ∧
(
k||k⊥(ω ∧ ω − 2 j2) + j ∧ (k2

||ω − k2
⊥ω)

)
= 0 , (A.2.19)

which is obviously satisfied by imposing (A.2.7) and (A.2.8). For the V = (v, 0) case, one gets:

(vxz)

(
−4i

3
k||k⊥j

3 +
i

2
j2 ∧ (k2

||ω − k2
⊥ω)− z ∧ z

2
∧ (k||k⊥(ω ∧ ω − 2j2) + j ∧ (k2

||ω − k2
⊥ω))

)

+z ∧
(
ik⊥(vxj) ∧ j ∧ (2k||j + k⊥ω)−

k2
||
2
j2 ∧ (vxω)

)
= 0 . (A.2.20)

Using the same kind of tricks as before ((A.2.9) gives j2∧ (vxj) = 0), we get that (A.2.7), (A.2.8) and

(A.2.9) imply that the whole expression is zero. Thus,
〈
Φ1, V · Φ2

〉
= 0 is automatically satisfied for

any V when (A.2.7), (A.2.8) and (A.2.9) are imposed.
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Appendix B

Intermediate SU(2) structure solutions
and solvmanifolds

In this appendix, we first provide a detailed discussion of the algebraic aspects and the compactness
properties of nil- and solvmanifolds. Their geometric properties are discussed in section 3.2. Then,
we focus on the variables introduced in section 3.4.1 for intermediate SU(2) structure solutions: the
projection basis variables. We rewrite the different equations to be solved in terms of these variables.
Finally, we discuss the normalisation (3.3.6) out of the calibration of supersymmetric sources.

B.1 Solvable groups and compactness properties

B.1.1 Algebraic aspects of solvable groups

First algebraic definitions

We consider a connected and simply-connected real Lie group G of identity element e. H, N and Γ
will be subgroups of G. We denote the associated Lie (sub)algebras of G, H, N by g, h, n. Con-
nected and simply-connected (sub)groups are in one-to-one correspondence with the corresponding
(sub)algebras. Many properties of the (sub)algebras will have their counterpart in the (sub)groups
and vice versa.

The ascending series (Gk)k∈N, the descending series (Gk)k∈N and the derived series (DkG)k∈N of
subgroups of G are defined as

G0 = {e} , G0 = D0G = G ,

Gk = {g ∈ G|[g,G] ⊂ Gk−1} , Gk = [G,Gk−1] , DkG = [Dk−1G,Dk−1G] ,

where the commutator of two group elements g and h is [g, h] = ghg−1h−1. We define in the same
way the ascending, descending and derived series of g or its subalgebras, by using the Lie bracket
instead of the commutator, and 0 instead of e.
G is nilpotent respectively solvable if there exist k such that Gk = {e} respectively DkG = {e}.

We define the same notions for the algebra g replacing 0 with e. Lie (sub)algebras corresponding
to nilpotent/solvable groups are nilpotent and solvable, respectively. The converse is also true. All
nilpotent Lie algebras/groups are solvable (the converse is not true).

An ideal i of g is a subspace of g stable under the Lie bracket: [g, i] ⊂ i. Obviously i is also a
subalgebra. The subalgebras given in the previously defined series are all ideals.

The nilradical n of the algebra g is the biggest nilpotent ideal of g. The nilradical is unique [39, 92]
as will be the corresponding subgroup N of G, also named nilradical.

To ideals of g will correspond normal subgroups of G. We recall that a subgroup N is said normal
if ∀g ∈ G, gNg−1 ⊂ N , i.e. it is invariant under conjugation (inner automorphisms). This property
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is necessary in order to be able to define a group structure on the quotient G/N . Note that the
nilradical N of a solvable Lie group G as well as the subgroups DkG of the derived serie are normal
subgroups.

The adjoint action

Let V be a vector space over a field K and let g be a Lie algebra over the same field. A representation
of g is a map π : g→ End(V ) such that:

1. π is linear ;

2. π ([X,Y ]) = π(X)π(Y )− π(Y )π(X) .

There is a natural representation of a Lie algebra over itself called the adjoint representation:

ad : g→ End(|g|)
X 7→ ad(X) = adX ,

where |g| means the underlying vector space of the Lie algebra g, End(|g|) the space of all linear maps
on it1, and

for X ∈ g , adX : g→ g

Y 7→ adX(Y ) = [X,Y ] .

We can obtain a matrix form of the adjoint representation from the structure constants in a certain
basis of the Lie algebra. Let {Ea}a=1,...,d be a basis of a Lie algebra g, and the structure constants in
that basis given by

[Eb, Ec] = fa bcEa . (B.1.1)

Then the matrices (a is the row index and c is the column index)

(Mb)
a
c = fa bc (B.1.2)

provide a representation of the Lie algebra g.

A unimodular algebra g is such that ∀X ∈ g, tr(adX) = 0. In view of what has been discussed,
this is equivalent to

∑
a f
a
ba = 0, ∀b .

Let G be a Lie group and let V be a (real) vector space. A representation of G in V is a map
π : G→ Aut(V ) such that:

1. π(e) = Id ;

2. π(g1g2) = π(g1)π(g2) , ∀ g1, g2 ∈ G .

There is a natural representation of the group over its algebra called the adjoint representation:

Ad : G→ Aut(g)

g 7→ Ad(g) = Adg ,

where Adg = expAut(|g|)(adXg ) for Xg ∈ g , expG(Xg) = g. Actually one can show the following
relations between the representations:

1These maps do not necessarily respect the Lie bracket, or in other words, are not necessarily algebra morphisms.
In particular, for X ∈ g, adX is not an algebra morphism.
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G
Ad

// Aut(g)

g

expG

OO

ad
// End(|g|)

expAut(|g|)

OO

The map ad then turns out to be the derivation2 of Ad. At the level of the single elements, they
act according to the following diagram:

g Ad
// Ad(g) = Adg

Xg

OO

ad
// ad(Xg) = adXg

OO

One can show as well that the derivation of the inner automorphism Ig for g ∈ G (the conjugation)
is actually the adjoint action Adg:

d(Ig) = Adg . (B.1.3)

Furthermore, for ϕ : G→ G an automorphism, the following diagram is commutative:

G
ϕ

// G

g

expG

OO

dϕ
// g

expG

OO

A Lie group is said to be exponential (the case for us) if the exponential map is a diffeomorphism.
Denoting its inverse as logG, then we deduce

Ig = expG ◦Adg ◦ logG . (B.1.4)

Semidirect products

Most of the solvable groups we are interested in are semidirect products, we recall here some defini-
tions.

Let us consider two groupsH and N and a (smooth) action µ : H×N → N by (Lie) automorphisms.
The semidirect product of H and N is the group noted H ⋉µN , whose underlying set is H ×N and
the product is defined as

(hi=1,2, ni=1,2) ∈ H ×N , (h1, n1) · (h2, n2) = (h1 · h2, n1 · µh1(n2)) . (B.1.5)

The semidirect product of Lie algebras can be defined in a similar way. Let d(h) be the derivation
algebra of an algebra h (for instance ad ∈ d(g)). Let σ : g → d(h) , X 7→ σX be a representation of
the Lie algebra g in |h|. Then we can define the semidirect product g ⋉σ h of the two Lie algebras
with respect to σ in the following way:

• the vector space is |g| × |h|

• the Lie bracket is [(X1, Y1), (X2, Y2)] = ([X1,X2]g, [Y1, Y2]h + σX1(Y2)− σX2(Y1)).

This provides a Lie algebra structure to the vector space |g|× |h|. Note that the fact σ is a derivation
is important to verify the Jacobi identity for the new bracket.

If we denote g′ = g × {0} and h′ = {0} × h then h′ is an ideal of the new algebra and g′ is a
subalgebra of it. Furthermore

g′ + h′ = g ⋉σ h , g′ ∩ h′ = 0 . (B.1.6)

2It is the derivative with respect to the parameters of the group element g, taken at the identity.
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There is a unique decomposition of an element of |g| × |h| as a sum of an element of |g| and one of
|h|, thus we can think of it as the couple in |g| × |h| or as an element of a direct sum of vector spaces.

Let us consider a Lie group G and two subgroups H and N with N normal. If every element of
G can be uniquely written as a product of an element in H and one in N , then one can show that
G ≈ H⋉µN with µ being the conjugation3. This point of view will be important for us. As discussed
previously, the conjugation can be given in terms of the restriction of the adjoint action of H over
n as in (B.1.4), so we are able to determine µ in terms of AdH(N). For exponential groups, as we
consider here, the corresponding Lie algebra of G = H ⋉µ N is then clearly g = h ⋉adh(n) n (we just
write ad in the following for simplicity).

Let us now consider a group G with a normal subgroup N of codimension 1. The Lie algebra g has
two components, R and n. We want to show that g is isomorphic to R ⋉ad n, and then, as discussed,
we get that G ≈ R ⋉µ N with µ the conjugation. At level of the algebra, in terms of vector spaces,
the isomorphism is obviously true. What needs to be verified is that the Lie brackets coincide. The
Lie bracket of two elements of R or of n clearly coincide with those of the corresponding two elements
of R ⋉ad n. Let us now take X ∈ R, Y ∈ n. We have for R ⋉ad n:

[(X, 0), (0, Y )] = (0, 0 + adX(Y )− ad0(0)) = (0, [X,Y ]) , (B.1.7)

which clearly coincides with the bracket [X,Y ] for g. We can conclude that g is isomorphic to R⋉ad n

and thus the group is isomorphic to R ⋉µ N .

Solvable groups

According to Levi’s decomposition, any real finite dimensional Lie algebra is the semidirect sum of
its largest solvable ideal called the radical, and a semi-simple subalgebra. So solvable and nilpotent
algebras do not enter the usual Cartan classification. Solvable algebras g are classified with respect
to the dimension of their nilradical n. One can show [63, 37] that dim n ≥ 1

2dim g. Since we are
interested in six dimensional manifolds we will consider dim n = 3, . . . , 6. If dim n = 6, n = g and
the algebra is nilpotent (they clearly are a subset of the solvable ones). There are 34 (isomorphism)
classes of six-dimensional nilpotent algebras (see for instance [29, 93] for a list), among which 24 are
indecomposable. Among the 10 decomposable algebras, there is of course the abelian one, R

6. There
are 100 indecomposable solvable algebras with dim n = 5 (99 were found in [94], and [64] added 1,
see [40] for a complete and corrected list), and 40 indecomposable solvable algebras with dim n = 4
[64]. Finally, those with dim n = 3 are decomposable into sums of two solvable algebras. There
are only 2 of them, see Corollary 1 of [95]. In total, there are 164 indecomposable six-dimensional
solvable algebras. For a list of six-dimensional indecomposable unimodular4 solvable algebras, see [37].

Most of the solvable groups are semidirect products. For G a solvable group and N its nilradical,
we consider the following definitions:

• If G = R ⋉µ N , G is called almost nilpotent. All three and four-dimensional solvable groups
are of that kind [37].

• If furthermore, the nilradical is abelian (i.e. N = R
k), G is called almost abelian.

The result at the end of the previous section applies here: any solvable group for which dim N =
dim G−1 is almost nilpotent. In fact N is a normal subgroup of G. Let us label the R direction with
a parameter t, which we can take as a coordinate, with the corresponding algebra element being ∂t.
According to (B.1.4), we then have

µ(t) = expN ◦ Adet∂t (n) ◦ logN , Adet∂t (n) = eadt∂t (n) = et ad∂t (n) . (B.1.8)

3In particular it is the case for a group G = H ⋉ν N with ν being not the conjugation.
4See below equation (B.1.2) for a definition.
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Furthermore, for the almost abelian case, we can identify N and n, so the exp and log correspond to
the identity. Then, we obtain the simpler formula

µ(t) = Adet∂t (n) = et ad∂t (n) . (B.1.9)

We will mainly focus on solvable algebras with dim n = 5 (to which correspond almost nilpotent
solvable groups) because, as we will discuss further, the compactness question is simpler to deal with.

B.1.2 Compactness

Existence of a lattice

We recall here that according to the definition5 we adopt (section 3.2) a solvmanifold is a compact
homogeneous space G/Γ obtained by the quotient of a connected, simply-connected solvable group
and a discrete cocompact subgroup Γ, the lattice [37, 36]. The main result concerning the geometry of
these manifolds is the Mostow bundle, and we refer to section 3.2 for its discussion (see in particular
diagram (3.2.6) and [41] for the original reference). In this appendix, we come back to the problem
of the existence of a lattice.

Whether a lattice exists or not, and so whether the manifold can be made compact is not always an
easy question for non-nilpotent solvable groups. There is a simple necessary condition for a manifold
to be compact, namely that the algebra has to be unimodular. Sufficient conditions are on the
contrary more difficult to establish.

A theorem by Malcev [34] states that a connected and simply-connected nilpotent Lie group G
admits a lattice if and only if there exists a basis for the Lie algebra g such that the structure
constants are rational numbers. This condition is always satisfied for all the 34 classes of nilpotent
six dimensional algebras. For the non-nilpotent cases, several criteria have been proposed. The first
is due to Auslander [39]. Despite its generality the criterion is difficult to use in concrete situations
and we will not refer to it in our search for lattices. Details about it can be found in the original
paper [39] and in [37]. Another criterion, which is closer to the one we use here, is due to Saitô [96].
It is less general than Auslander’s because it applies to solvable groups that are algebraic subgroups
of GL(n,R) for some n. The criterion deals with the adjoint action of the group G over the nilradical
n of its algebra g. For an illustration, see [29].

The criterion we adopt in this work follows [37] and it applies to almost abelian solvable groups.
As discussed above almost abelian solvable groups are characterized by the map µ(t) (B.1.9). Then
the criterion states the group G admits a lattice if and only if it exists a t0 6= 0 for which µ(t0) can
be conjugated to an integer matrix. This criterion is very useful in practice since we have a simple
formula (B.1.9) for µ(t).

In [37], some almost nilpotent (not almost abelian) cases were also proved to admit a lattice, thanks
to some further technique that we will not consider here.

In section 3.2 we applied the compactness criterion mentioned above to the two algebras ε2 and ε1,1

(corresponding to g0
3.5 and g−1

3.4 given in the Table 1, respectively). Here we will review the argument
for ε1,1, using a change of basis closer to [37]. The algebra ε1,1 is defined by

[E1, E3] = E1 , [E2, E3] = −E2 . (B.1.10)

We have n = {E1, E2} and ∂t = E3. Then, in the (E1, E2) basis,

ad∂t(n) =

(
−1 0
0 1

)
, µ(t) = et ad∂t (n) =

(
e−t 0
0 et

)
. (B.1.11)

5Let us emphasize the non-trivial result that, according to our (restrictive) definition solvmanifolds, these are always
parallelizable (see [36] for a proof).
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It is not possible to have µ(t0) being an integer matrix for t0 6= 0. To check if the group admits
a lattice, we have to find another basis where the matrix µ(t0) can be integer. Let us consider the
particular change of basis given by

P =

(
1 c
1 1
c

)
, P−1 =

1

c− 1
c

(
−1
c c

1 −1

)
, (B.1.12)

where c = e−t1 and t1 6= 0. Then:

µ̂(t) = P−1

(
e−t 0
0 et

)
P =

(
sinh(t1−t)
s1

− sinh(t)
s1

sinh(t)
s1

cosh(t) + c1
sinh(t)
s1

)
, (B.1.13)

with s1 = sinh(t1) and c1 = cosh(t1). For t = t1, we get

µ̂(t = t1) =

(
0 −1
1 2c1

)
. (B.1.14)

The conjugated matrix µ̂(t) can have integer entries for some non-zero t = t1 when 2 cosh(t1) is
integer. In [37], 2 cosh(t1) = 3.

Let us now describe an example for which there is no lattice. We consider the algebra g
−p
4.2

[E1, E4] = −pE1 , [E2, E4] = E2 , [E3, E4] = E2 + E3 , p 6= 0 . (B.1.15)

It is easy to check that the algebra is unimodular only for p = 2. This is a necessary condition for
compactness, we can exclude all other values of p.

We have n = {E1, E2, E3} and ∂t = E4 (the algebra is almost abelian). Then, in the (E1, E2, E3)
basis,

ad∂t(n) =



p 0 0
0 −1 0
0 −1 −1


 , µ(t) = et ad∂t (n) =



ept 0 0
0 e−t 0
0 −te−t e−t


 . (B.1.16)

Following [37], we are going to prove that this matrix cannot be conjugated to an integer matrix6

except for t = 0. A way to verify if the matrix µ(t) can be conjugated to an integer one is to look
at the coefficients of its characteristic polynomial P (λ). This is independent of the basis in which it
is computed, and hence, for the criterion to be satisfied it should have integer coefficients. Here we
have:

P (λ) = (λ− e2t)(λ− e−t)2 = λ3 − λ2(2e−t + e2t) + λ(e−2t + 2et)− 1 . (B.1.17)

The coefficients are given by sums and products of roots. We can use Lemma (2.2) in [97]. Let

P (λ) = λ3 − kλ2 + lλ− 1 ∈ Z[λ] . (B.1.18)

Then P (λ) has a double root λ0 ∈ R if and only if λ0 = +1 or λ0 = −1 for which P (λ) = λ3 − 3λ2 +
3λ− 1 or P (λ) = λ3 + λ2 − λ− 1 respectively.

In our case, we find the double root e−t. This means the only way to have this polynomial with
integer coefficients is to set t = 0. Then we can conclude there is no lattice.

Note that the same reasoning can be done for g
− 1

2
,− 1

2
4.5 .

6A naïve reason one could think of would be that it is due to the off-diagonal piece, but as we are going to show,
this piece actually does not contribute.
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Algebras admitting a lattice

We present here a list of indecomposable solvable, non-nilpotent unimodular algebras7 that admit a
lattice (at least for certain values of the parameters p, q, r appearing, for instance the values chosen
in table C.1.2.). For dimension up to 4 the algebras are almost nilpotent or almost abelian. For
dimension 5 and 6, only almost abelian algebras have been considered. The list might not be complete
only for the six-dimensional indecomposable algebras: for the other algebras in that case, we do not
know if a lattice exists.

Name Algebra

g−1
3.4 [X1,X3] = X1, [X2,X3] = −X2 alm. ab.

g0
3.5 [X1,X3] = −X2, [X2,X3] = X1 alm. ab.

g
p,−p−1
4.5 [X1,X4] = X1, [X2,X4] = pX2, [X3,X4] = −(p+ 1)X3, −1

2 ≤ p < 0 alm. ab.

g
−2p,p
4.6 [X1,X4] = −2pX1, [X2,X4] = pX2 −X3, [X3,X4] = X2 + pX3, p > 0 alm. ab.

g−1
4.8 [X2,X3] = X1, [X2,X4] = X2, [X3,X4] = −X3 alm. nil.

g0
4.9 [X2,X3] = X1, [X2,X4] = −X3, [X3,X4] = X2 alm. nil.

Table B.1: Indecomposable non-nilpotent solvable unimodular algebras up to dimension 4, that admit
a lattice

Name Algebra

g
p,q,r
5.7 [X1,X5] = X1, [X2,X5] = pX2, [X3,X5] = qX3, [X4,X5] = rX4,

−1 ≤ r ≤ q ≤ p ≤ 1 , pqr 6= 0 , p+ q + r + 1 = 0

g−1
5.8 [X2,X5] = X1, [X3,X5] = X3, [X4,X5] = −X4

g
−1−2q,q,r
5.13 [X1,X5] = X1, [X2,X5] = −(1 + 2q)X2, [X3,X5] = qX3 − rX4, [X4,X5] = rX3 + qX4,

−1 ≤ q ≤ 0 , q 6= −1
2 , r 6= 0

g0
5.14 [X2,X5] = X1, [X3,X5] = −X4, [X4,X5] = X3

g−1
5.15 [X1,X5] = X1, [X2,X5] = X1 +X2, [X3,X5] = −X3, [X4,X5] = X3 −X4

g
p,−p,r
5.17 [X1,X5] = pX1 −X2, [X2,X5] = X1 + pX2, [X3,X5] = −pX3 − rX4, [X4,X5] = rX3 − pX4,

r 6= 0

g0
5.18 [X1,X5] = −X2, [X2,X5] = X1, [X3,X5] = X1 −X4, [X4,X5] = X2 +X3

Table B.2: Indecomposable solvable unimodular almost abelian algebras of dimension 5, that admit
a lattice

Name Algebra

g
0,−1
6.3 [X2,X6] = X1, [X3,X6] = X2, [X4,X6] = X4, [X5,X6] = −X5

g
0,0
6.10 [X2,X6] = X1, [X3,X6] = X2, [X4,X6] = −X5, [X5,X6] = X4

Table B.3: Indecomposable solvable unimodular almost abelian algebras of dimension 6, for which
we know a lattice exists

B.2 The projection basis for intermediate SU(2) structure solutions

In section 3.4.1, we explained that the good variables to use for intermediate SU(2) structure solutions
were those of the projection basis:

Re(z), Im(z), Im(ω), Re(ω)||, Re(ω)⊥, (j||, j⊥) ,

7For a list of six-dimensional nilpotent algebras, see for instance [29, 93].
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where j||, j⊥ can eliminated using the projection conditions (3.4.12). Here, we rewrite the different
equations to be solved in terms of these variables.

B.2.1 SU(2) structure conditions

We rewrite the SU(2) structure conditions implying the compatibility conditions (see appendix A.2.2),
namely (A.2.2), (A.2.7), (A.2.8) and (A.2.9). To do so we also use the projection conditions (3.4.12).
The SU(2) structure conditions (A.2.2) and (A.2.7), for O6/O5 (upper/lower), are equivalent to

Im(ω) ∧ Re(ω)|| = 0 ,

Im(ω) ∧ Re(ω)⊥ = 0 ,

Re(ω)|| ∧ Re(ω)⊥ = 0 ,

Re(ω)2
|| =

(
k⊥
k||

)∓2

Re(ω)2
⊥ ,

Re(ω)2
|| + Re(ω)2

⊥ = Im(ω)2 . (B.2.1)

We do not get any new condition from (A.2.8) and (A.2.9). This is because z, Im(ω), Re(ω)||, Re(ω)⊥
define, modulo a rescaling, a new SU(2) structure obtained by a rotation from the previous one. So
it is natural [31] to have the five previous “wedge conditions”, and only them.

We recall that this last set of conditions, together with the projection conditions, is then enough to
get all the compatibility conditions except from (A.2.13). Using the last relations and the projection
basis, we can also rewrite (A.2.13), for an O6/O5, as

Re(z) ∧ Im(z) ∧
(

Im(ω)2 +
1

k2
||

Re(ω)2
||/⊥

)
6= 0 ,

⇔ Re(z) ∧ Im(z) ∧ Re(ω)2
|| 6= 0 . (B.2.2)

B.2.2 SUSY conditions derivation

In section 2.4.2, we gave the SUSY equations reformulated in terms of the GCG pure spinors: (2.4.18),
(2.4.19), and (2.4.20). Furthermore, we motivated the use of the projection basis variables, which are
equivalent to the dielectric variables (3.4.22). The dielectric variables also provide an SU(2) structure
and verify the following SU(2) structure conditions

jD ∧ ωDr = 0 jD ∧ ωDi = 0 ωDr ∧ ωDi = 0

j2
D = ω2

Dr = ω2
Di 6= 0

zxjD = 0 zxωDr = 0 zxωDi = 0 (B.2.3)

where we introduced to lighten notations

Re(ωD) = ωDr , Im(ωD) = ωDi , Re(z) = zr , Im(zD) = zi . (B.2.4)

Here we will use the pure spinors given in terms of the dielectric variables by

Φ+ =
|a|2
8
eiθ+e

1
2
z∧z(k|| − ijD + k⊥ωDi −

1

2
k||j

2
D)

Φ− = −|a|
2

8
z ∧ (k⊥ + iωDr − k||ωDi −

1

2
k⊥j

2
D) , (B.2.5)

where we took θ− = 0. Plugging these pure spinors in (2.4.18), (2.4.19), and (2.4.20), we can derive
the equations to solve. Let us first consider coefficients to be a priori non-constant. We only assume
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that eA, a, and k|| are not vanishing. The last condition forbids to obtain orthogonal SU(2) structures
(more precisely it forbids to solve our equations at points where we have orthogonal SU(2) structures).
Due to these assumptions, it will not be possible to get diverging-dilaton-like solutions (see (B.2.8)
and (B.2.13)). Note as well the following useful relation:

d(k||) = −k⊥
k||
d(k⊥) . (B.2.6)

IIA equations

In IIA, we first get with (2.4.18) the following equation:

d(|a|2eiθ+e2A−φk||) = 0 . (B.2.7)

Decomposing on real and imaginary part, given the assumptions made, we first get that θ+ should
be constant. This could be surprising because of the Frey-Graña [98] solutions, which do have such
a phase. But these solutions have an SU(3) structure in IIB, i.e. the typical T-dual situation of an
orthogonal SU(2) structure in IIA. As we assumed k|| 6= 0, there is no contradiction. So θ+ is taken
to be constant. We solve this equation by introducing g̃s as an integration constant and get

eφ = g̃sk||e
2A|a|2 . (B.2.8)

We plug this result into the other equations derived from (2.4.18) and (2.4.19) and get these SUSY
equations:

d

(
e−A

k⊥
k||
zr

)
= 0

d

(
1

k||
jD + zr ∧ zi

)
= 0

d

(
k⊥
k||
ωDi

)
= H

d

(
e−A

k||
(zr ∧ ωDik|| + zi ∧ ωDr)

)
= e−A

k⊥
k||
zr ∧H

d

(
k⊥
k||
zr ∧ zi ∧ ωDi

)
=

1

k||
H ∧ (jD + k||zr ∧ zi)

1

2
d(j2
D) + d

(
1

k||
zr ∧ zi ∧ jD

)
= −k⊥

k||
H ∧ ωDi

−e
−A

k||

k⊥
2
zr ∧ d(j2

D) =
e−A

k||
H ∧ (zr ∧ ωDik|| + zi ∧ ωDr) . (B.2.9)

The equation (2.4.20) gives the definitions of the RR fluxes:

F6 = 0

d

(
eA
k⊥
k||
zi

)
= −g̃s|a|2e3A ∗ F4

d

(
eA

k||
(−zi ∧ ωDik|| + zr ∧ ωDr)

)
+ eA

k⊥
k||
zi ∧H = g̃s|a|2e3A ∗ F2

d

(
eA

k||

k⊥
2
zi ∧ j2

D

)
+
eA

k||
H ∧ (−zi ∧ ωDik|| + zr ∧ ωDr) = g̃s|a|2e3A ∗ F0 . (B.2.10)
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Using the (wedge) structure conditions (B.2.3), the equations (B.2.9) get simplified. Furthermore,
using the lower order form SUSY equations, the higher orders (5- and 6-forms equations) are auto-
matically satisfied. So the set of equations gets reduced to

d

(
k⊥
k||
ωDi

)
= H

d

(
k⊥
k||
e−Azr

)
= 0

d

(
1

k||
jD + zr ∧ zi

)
= 0

d

(
e−A

k2
||

(zr ∧ ωDi + k||zi ∧ ωr)
)

= 0 . (B.2.11)

IIB equations

We use the same procedure as in IIA. (2.4.19) first gives:

d(|a|2 cos(θ+)eA−φk||) = 0 . (B.2.12)

Here θ+ can vary as there is only a real part in this equation. To go further, we have to restrict a
possible resolution to the intervals where cos(θ+) 6= 0, forbidding to get so-called type C solutions on
these intervals. We solve this equation by introducing g̃s as an integration constant and get

eφ = g̃sk||e
A|a|2 cos(θ+) . (B.2.13)

We simplify notations with cos(θ+) = cθ, tan(θ+) = tθ. We plug this into the other equations derived
from (2.4.18) and (2.4.19) and get

d

(
eA

k⊥
k||cθ

zr

)
= 0 , d

(
eA

k⊥
k||cθ

zi

)
= 0

d

(
k⊥
k||
ωDi +

tθ
k||

(k||zr ∧ zi + jD)

)
= H

d

(
eA

k||cθ
(zr ∧ ωDik|| + zi ∧ ωDr)

)
= eA

k⊥
k||cθ

zr ∧H

d

(
eA

k||cθ
(−zi ∧ ωDik|| + zr ∧ ωDr)

)
= −eA k⊥

k||cθ
zi ∧H

d

(
1

2
j2
D +

1

k||
zr ∧ zi ∧ jD − tθ

k⊥
k||
zr ∧ zi ∧ ωDi

)
= − 1

k||
H ∧ (k⊥ωDi + tθ(k||zr ∧ zi + jD))

eA

k||cθ

k⊥
2
zi ∧ d(j2

D) =
eA

k||cθ
H ∧ (−zi ∧ ωDik|| + zr ∧ ωDr)

− eA

k||cθ

k⊥
2
zr ∧ d(j2

D) =
eA

k||cθ
H ∧ (zr ∧ ωDik|| + zi ∧ ωDr) . (B.2.14)
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The equation (2.4.20) gives the definitions of the RR fluxes:

d(e2Atθ) = g̃s|a|2e3A ∗ F5

d

(
e2A

k||
(zr ∧ zik|| + jD − tθk⊥ωDi)

)
+ e2AtθH = g̃s|a|2e3A ∗ F3 (B.2.15)

d

(
e2A

k||

(
−zr ∧ zi ∧ ωDik⊥ − tθ(zr ∧ zi ∧ jD +

k||
2
j2
D)

))
+
e2A

k||
H ∧ (zr ∧ zik|| + jD − tθk⊥ωDi)

= g̃s|a|2e3A ∗ F1

As in IIA, the set of equations gets simplified (in particular lower order form equations of SUSY
imply the 6-form equations) to

d

(
k⊥
k||
ωDi + tθ

(
1

k||
jD + zr ∧ zi

))
= H

d

(
k⊥eA

k||cθ
zr

)
= 0 , d

(
k⊥eA

k||cθ
zi

)
= 0

d

(
eA

k||cθ

(
zr ∧

(
1

k||
ωDi + tθ

k⊥
k||
jD

)
+ zi ∧ ωr

))
= 0

d

(
eA

k||cθ

(
zi ∧

(
1

k||
ωDi + tθ

k⊥
k||
jD

)
− zr ∧ ωr

))
= 0

d

(
1

c2
θk||

jD ∧
(

1

2k||
jD + zr ∧ zi

))
= 0 . (B.2.16)

Towards intermediate SU(2) structure solutions

Looking for intermediate SU(2) structure solutions, one can further simplify the previous set of equa-
tions. First we take k|| and k⊥ to constant and non-zero. We choose θ+ to be constant (in IIB).

Furthermore, we will choose |a|2 = eA, and go to the large volume limit, i.e. A = 0. Indeed in
the main part, solutions are found in this regime. All these restrictions lead to a constant dilaton.
Therefore, in both theories, we can reabsorb all the constant factors into one: eφ = gs.

We do not really need to fix the remaining freedom in θ+, except that in IIB, we can use the O5
condition on this phase: eiθ+ = ±1. Then, coming back to the projection basis variables via (3.4.22),
we obtain the SUSY equations of the main part (3.4.24) and (3.4.25).

B.3 Calibrated supersymmetric sources

In this appendix, we briefly recall some results about calibrations of supersymmetric sources [45, 30,
46, 11], and motivate the normalisation condition (3.3.6). For simplicity, we will not consider any
flux pulled-back to the source, nor any worldvolume gauge field. Consider a supersymmetric source
wrapping a k-dimensional subspace Σ of a d-dimensional internal space M . Then, the volume form
of Σ on the source worldvolume is given by the pullback of one of the GCG pure spinors

i∗[Im(Φ2)]|k =
|a|2
8

√
|i∗[g]| dΣξ , (B.3.1)

where i is the embedding of Σ into M , g the internal metric, ξ the coordinates on Σ, and the index
k indicates the restriction to k-forms (see also (5.1.3)). In particular, if one has a trivial embedding,
then

Im(Φ2)|k =
|a|2
8
VΣ , (B.3.2)
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where VΣ is the volume form of Σ. More generally, one can introduce a current jΣ, defined in our
conventions as (the Mukai pairing was defined in (2.4.14))

∫

M
〈jΣ, f〉 =

∫

Σ
i∗[f ] , (B.3.3)

for a polyform f of M . The current acts as a dimensionless δ, or equivalently is given by a Poincaré
dual with respect to the Mukai pairing. For i∗[Im(Φ2)]|Σl for a source l, the current jΣl turns out to
be related to the right handside of the BI, i.e. it localizes the sources. In the smeared approximation
(the δ functions are taken to 1), jΣl is then proportional to the covolume V l of the source l (see
(3.3.5)), which should also be given by the Poincaré dual of the source volume form.

More precisely, in our conventions, the Poincaré dual with respect to the Mukai pairing can be read
in the following identity

〈∗λ(VΣl), VΣl〉 = V , (B.3.4)

where V is the internal space volume form. So we choose the covolumes in (3.3.5) to satisfy

V l = ∗λ(VΣl) , (B.3.5)

and we deduce, in the large volume limit

〈
V l, e−φIm(Φ2)

〉
=

1

8gs
V , (B.3.6)

where we introduced the dilaton for further use.

Note this normalisation may be refined, to take into account some possible forgotten volume factors.
But all these factors are positive, so they are not changing the sign of the charges, which is what
matters in the end. Furthermore, one obtains

∫

M6

〈
V l, e3A−φIm(Φ2)

〉
> 0 . (B.3.7)

Using this condition and our conventions for the Hodge star, it can be shown as in [29] that
∑
lQl < 0,

and so recover the need for orientifolds as sources, because of their negative charge.
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Appendix C

Twist transformation

In this appendix, we come back to the twist transformation discussed in chapter 4 and to the solutions
on solvmanifolds mentioned there. We first give a more detailed twist construction of the one-forms
of an (almost) nilpotent solvable group. Then we give a list of solvmanifolds in terms of their
globally defined one-forms. This allows one to look for solutions on these manifolds. Then we study
the possible non-geometric T-duals of the solutions found on solvmanifolds. Finally, we discuss an
extension of the twist transformation in heterotic string to the gauge bundle, by an extended action
O(d+ 16, d + 16). This extension allows to transform the gauge fields directly.

C.1 Construction of one-forms and basis for algebras

C.1.1 Algorithmic construction of the one-forms of a solvable group

Let us consider a connected and simply-connected six-dimensional solvable group G (see section 3.2
and appendix B.1 for definitions and properties). As a manifold, its tangent bundle at the identity is
given by TeG ≈ g, and has a basis of vectors Ea (a = 1 . . . 6) satisfying

[Eb, Ec] = fa bcEa . (C.1.1)

We will focus on the dual basis of one-forms ea on the cotangent bundle g∗ ≈ TeG∗, which verify the
Maurer-Cartan equation

dea = −1

2
fa bce

b ∧ ec = −
∑

b<c

fa bc e
b ∧ ec . (C.1.2)

We want to consider a transformation A relating the one-forms of R
6 to those of G:

A




dx1

...
dx6


 =



e1

...
e6


 . (C.1.3)

Clearly the one-forms in (C.1.3) must satisfy the corresponding1 Maurer-Cartan equation.
The matrix A should reproduce the different fibrations of the solvable group (the bundle structure

is manifest in the Maurer-Cartan equations). Given the general form of solvable groups (a nilradical
subgroup N and an abelian left over subgroup G/N = R

dim G−dim N , see section 3.2), we will consider
A to be a product of two pieces:

A =

(
AN 0

0 I6−dim N

)(
AM 0

0 I6−dim N

)
, (C.1.4)

1Whether the exterior derivative is defined on these new forms will not be treated (see footnote 2 in section 3.2): we
will just define it as the exterior derivative of R

6 acting on the left handside of (C.1.3).
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where we take AM and AN to be dimN × dimN matrices, and we put the abelian directions of
R

dim G−dim N in the last entries. AM will provide the non-trivial fibration of N over R
dim G−dim N ,

the Mostow bundle fibration of the solvmanifold for the compact case, as explained in section 3.2. In
turn, AN will provide fibrations inside N , the fibrations within the nilmanifold piece for the compact
case. If the solvable group is nilpotent, then we take AM to be the identity.

To explicitly construct the matrices AM and AN we will now restrict ourselves to G = N (nilpotent)
or G = R ⋉µ N (almost nilpotent).

Mostow bundle structure: AM

We focus on the case of an almost nilpotent group. We identify the R subalgebra with the direction
x6. Then we take ∂t = ∂6 the basis for the R subalgebra, and the corresponding one-form dx6 = dt.
Then we define

AM = Ade−t∂t (n) = e−t ad∂t (n) , (C.1.5)

and

ei = (AM )ik dxk . (C.1.6)

Let us prove that this action will give forms which do verify the Maurer-Cartan equation. Consider
first the simpler case of an almost abelian group, i.e. with N = R

5, which has AN = IN . Then

dei = d(e−t ad∂t )i k ∧ dxk

= −dt ∧ (ad∂te
−t ad∂t )i kdx

k

= −dt ∧ (ad∂t)
i
j(e
−t ad∂t )j kdx

k

= −dt ∧ (ad∂t)
i
je
j

dei = −f i tj dt ∧ ej . (C.1.7)

The fact that we used the adjoint action allows to easily verify the Maurer-Cartan equations.

Expression (C.1.5) for the matrix AM holds also for the more general case of almost nilpotent
algebras. In this case the Maurer-Cartan equations have component in direction dt and also in the
directions of the nilradical. The t dependence is always determined by AM and hence it is not modified
by the presence of a non-trivial nilradical. The form of the nilradical matrix, AN , is given below.

Nilmanifold fibration structure: AN

The matrix AN should reproduce the iterated fibration structure of N . The iterated structure is
related to the descending serie of n (see appendix B.1) noted:

nk=0...p with n0 = n , np = {0} .

Every nk is an ideal of g, so ∀k ≥ 1 , nk = [n, nk−1] ⊂ [g, nk−1] ⊂ nk−1. Let us now define another
serie:

For 1 ≤ k ≤ p, sk = {E ∈ nk−1 with E /∈ nk} . (C.1.8)

Let us prove some property of this serie. Assume that ∃X ∈ sp
⋂
sq , p > q with X 6= 0.

Then X ∈ np−1 ⊂ np−2 ⊂ · · · ⊂ nq ⊂ nq−1. So X ∈ nq−1 and X ∈ nq, so X /∈ sq, which
is a contradiction. So sp

⋂
sq = {0} for p 6= q. Furthermore, we always have sp = np−1. So

sp−1⋃ sp = sp−1⋃ np−1 = np−2⋃ np−1 = np−2. Assume that sk
⋃
sk+1⋃ · · ·⋃ sp−1⋃ sp = nk−1.

Then sk−1⋃ sk
⋃ · · ·⋃ sp−1⋃ sp = sk−1⋃ nk−1 = nk−2⋃ nk−1 = nk−2. So by recurrence, we get that⋃

k=1...p s
k = n. In other words, each element of n appears in one and only one element of the serie

s{k}.
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Let us give an example: consider the five-dimensional solvable algebra (0, 31,−21, 23, 24) (notations
of section 3.2). We have

g = {1, 2, 3, 4, 5} , n = {2, 3, 4, 5} , n1 = {4, 5} , n2 = {5} , n3 = {0}
s1 = {2, 3} , s2 = {4} , s3 = {5} .

The descending serie of n is known to be related to the fibration structure of the nilpotent group:
each element gives a further fibration. Now we understand that the serie s{k} gives us what directions
are fibered at each step. The correspondence between basis, fibers and series for a general iteration is
given in the following diagram (of course it should be understood in terms of group elements instead
of algebra elements as given here, see [38]):

Fp−1 = sp →֒ Mp−1 = n

↓
Fp−2 = sp−1 →֒ Mp−2 = Bp−1

↓
...
↓

F2 = s3 →֒ M2 = B3

↓
F1 = s2 →֒ M1 = B2

↓
B1 = s1

We see the unique decomposition of n into the serie s{k}. We have Bi =
⋃
k=1...i s

k and F i = si+1.

In the general case of an iteration, we consider a product of several operators, each of them giving
one fibration of the iteration:

AN = Ap−1 . . . A1 , Ai = e−
1
2
fi (for p = 1, n = R

5 and AN = 1) ,

with fi ∈ End(n):

For i = 1 . . . p− 1 , fi : n → n

X 7→ Y = adBi(X) if X ∈ Bi and adBi(X) ∈ F i ,
Y = 0 otherwise . (C.1.9)

We choose to give a basis of n in the order given by s1, s2, . . . , sp, and in each sk we can choose
some order for the elements. Then in that basis, fi, as a matrix, is an off-diagonal block with lines
corresponding to F i = si+1 and columns to Bi =

⋃
k=1...i s

k. Then Ai is the same plus the identity.
Furthermore, the block depends on parameters aj of a generic element ajEj of Bi, and we have
adajEj∈Bi = ajadEj∈Bi . So for instance for the previous algebra, we get:

A1 =




1 0 0 0
0 1 0 0

1
2a

3 −1
2a

2 1 0
0 0 0 1


 , A2 =




1 0 0 0
0 1 0 0
0 0 1 0

1
2a

4 0 −1
2a

2 1


 . (C.1.10)

The parameters aj can be understood as a coordinate along Ej, so they are such that daj = ej , dual
of Ej .
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Let us prove that the operator Ar gives the fibration of directions of Fr over a base Br, and the
correct corresponding Maurer-Cartan equation. As explained, an element of Ar is given by:

(Ar)
i
k = δik −

1

2

∑

j∈Br
aj(adEj )

i
k Θ(i ∈ Fr)Θ(k ∈ Br) = δik −

1

2

∑

j,k∈Br
ajf i jk Θ(i ∈ Fr) . (C.1.11)

The forms on which we act with Ar at the step r of the iteration are labelled ek, and they become
after the operation ẽi:

ẽi = (Ar)
i
k e
k . (C.1.12)

The directions we fiber with Ar are initially not fibered, so ek∈F
r

= dxk. All the other directions are
not modified by Ar, so in particular ẽi∈B

r
= ei∈B

r
. So the Maurer-Cartan equations of the forms not

in Fr are not modified at this step. Their equation is then only modified at the step when they are
fibered, so we do not have to consider it here. For the directions Fr, we get:

ẽi∈F
r

= ei∈F
r − 1

2

∑

j,k∈Br
ajf i jk e

k = dxi − 1

2

∑

j,k

ajf i jk e
k ,

where we dropped the restriction j, k ∈ Br because due to the iterated structure, for i ∈ Fr, f i jk = 0
if k or j /∈ Br. This operation then gives the fibration structure, since we can read the connection.
We can verify that we have the correct Maurer-Cartan equation:

dẽi∈F
r

= −1

2
f i jk daj ∧ ek = −1

2
f i jk e

j ∧ ek = −1

2
f i jk ẽ

j ∧ ẽk .

C.1.2 Six-dimensional solvmanifolds in terms of globally defined one-forms

In the following table we present all the solvmanifolds that we are able to construct. They have the
form G/Γ = H1/Γ1×H2/Γ2, i.e. they are products of (at most) two solvmanifolds. Each of these two
solvmanifolds are constructed from the algebras given in the previous Tables (see appendix B.1.2)
and the three-dimensional nilpotent algebra g3.1 : (−23, 0, 0). In particular, these are indecomposable
solvable algebras for which the group admits a lattice. The difference with respect to the tables of
section B.1.2 is that the algebras are given here in terms of a basis of globally defined forms (see
discussion in section 4.2). They are related by isomorphisms to the algebras given in the Tables of
B.1.2. The fact the forms are globally defined is important for studying the compatibility of orien-
tifold planes with the manifold and for finding solutions. For g

p,−p−1
4.5 ⊕ R

2 and g
−2p,p
4.6 ⊕ R

2, we were
not able to find such a basis, even if a priori we expect it to exist.

The column Name indicates the label of the algebra and the corresponding solvmanifold. The
column Algebra gives the corresponding six-dimensional algebra in terms of exterior derivative acting
on the dual basis of globally defined one-forms (see section 3.2). The next two columns give the O5
and O6 planes that are compatible with the manifold. The column Sp indicates by a X when the
manifold is symplectic, according to [37, 40]. Note that the latter can be obtained as conditions for
the pure spinors to solve the supersymmetry equations. In particular, for the even SU(3) pure spinor
Φ+ = 1

8e
−iJ the condition (see (4.4.4))

d(O)Φ+ = 0 (C.1.13)

is equivalent to the requirement that the manifold is symplectic, with O given in (4.3.25).

There is an additional subtlety for not completely solvable manifolds, when one looks for solutions
on them. This is due to the lack of isomorphism between the cohomology groupsH∗(g) and H∗dR(G/Γ)
for not completely solvable manifolds (see footnote 2 in section 3.2). In other words, the Betti numbers
for the Lie algebra cohomology give only the lower bound for the corresponding numbers for de Rham
cohomology. When looking for e.g. symplectic manifolds, we have considered only the forms in H2(g),
and hence might have missed some candidate two-forms in H2

dR(G/Γ).
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Name Algebra O5 O6 Sp

g−1

3.4
⊕ R

3 (q123, q213, 0, 0, 0, 0) q1, q2 > 0 14, 15, 16, 24, 25, 123, 145, 146, 156, 245, X

26, 34, 35, 36 246, 256, 345, 346, 356
g0

3.5
⊕ R

3 (−23, 13, 0, 0, 0, 0) 14, 15, 16, 24, 25, 123, 145, 146, 156, 245, X

26, 34, 35, 36 246, 256, 345, 346, 356

g3.1 ⊕ g−1

3.4
(−23, 0, 0, q156, q246, 0) q1, q2 > 0 14, 15, 16, 24, 25, - X

26, 34, 35, 36
g3.1 ⊕ g0

3.5 (−23, 0, 0,−56, 46, 0) 14, 15, 16, 24, 25, - X

26, 34, 35, 36

g−1

3.4
⊕ g0

3.5 (q123, q213, 0,−56, 46, 0) q1, q2 > 0 14, 15, 16, 24, 25, - X

26, 34, 35, 36

g−1

3.4
⊕ g−1

3.4
(q123, q213, 0, q356, q446, 0) q1, q2, q3, q4 > 0 14, 15, 16, 24, 25, - X

26, 34, 35, 36
g0

3.5
⊕ g0

3.5
(−23, 13, 0,−56, 46, 0) 14, 15, 16, 24, 25, - X

26, 34, 35, 36

g
p,−p−1

4.5
⊕ R

2 ? -

g
−2p,p

4.6
⊕ R

2 ? -

g−1

4.8
⊕ R

2 (−23, q134, q224, 0, 0, 0) q1, q2 > 0 14, 25, 26, 35, 36 145, 146, 256, 356 -
g0

4.9
⊕ R

2 (−23,−34, 24, 0, 0, 0) 14, 25, 26, 35, 36 145, 146, 256, 356 -

g
1,−1,−1

5.7
⊕ R (q125, q215, q245, q135, 0, 0) q1, q2 > 0 13, 14, 23, 24, 56 125, 136, 146, 236, 246, 345 X

g−1

5.8
⊕ R (25, 0, q145, q235, 0, 0) q1, q2 > 0 13, 14, 23, 24, 56 125, 136, 146, 236, 246, 345 X

g
−1,0,r

5.13
⊕ R (q125, q215,−q2r45, q1r35, 0, 0) r 6= 0, q1, q2 > 0 13, 14, 23, 24, 56 125, 136, 146, 236, 246, 345 X

g0

5.14
⊕ R (−25, 0,−45, 35, 0, 0) 13, 14, 23, 24, 56 125, 136, 146, 236, 246, 345 X

g−1

5.15
⊕ R (q1(25− 35), q2(15− 45), q245, q135, 0, 0) q1, q2 > 0 14, 23, 56 146, 236 X

g
p,−p,r

5.17
⊕ R (q1(p25 + 35), q2(p15 + 45), q2(p45− 15), q1(p35− 25), 0, 0) 14, 23, 56 146, 236 X

r2 = 1, q1, q2 > 0 p = 0: 12, 34 p = 0: 126, 135, 245, 346
g0

5.18
⊕ R (−25− 35, 15− 45,−45, 35, 0, 0) 14, 23, 56 146, 236 X

g
0,−1

6.3
(−26,−36, 0, q156, q246, 0) q1, q2 > 0 24, 25 134, 135, 456 X

g
0,0

6.10
(−26,−36, 0,−56, 46, 0) 24, 25 134, 135, 456 X
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C.2 T-dualising solvmanifolds

T-duality has been extensively used in flux compactifications in order to obtain solutions on nilmani-
folds. Being iterations of torus bundles, these are obtainable from torus solutions with an appropriate
B-field (the contraction of H with the isometry vectors should be a closed horizontal two-form that
can be thought as a curvature of the dual torus bundle.). Correspondingly, the structure constants
fa bc have also a T-duality friendly form. For any upper index there is a well-defined isometry vector
∂a with respect to which one can perform an (unobstructed) T-duality.

In this appendix we would like to study some aspects of T-duality for solvmanifolds (see section
3.2 and appendix B.1 for definitions and properties). In this case, the situation is more complicated.
For instance, it can happen that the structure constants have the same index in the upper and lower
position fa ac and are not fully antisymmetric. Put differently, most of our knowledge about the global
aspects of T-duality comes from the study of its action on (iterations of) principal U(1) bundles. Since
the Mostow bundles are not in general principal, the topology of the T-dual backgrounds is largely
unexplored. We shall not attempt to do this here, but rather illustrate some of novel features by
considering T-duality on the simplest cases of almost abelian manifolds.

Requiring that T-duality preserves supersymmetry imposes that the Lie derivatives with respect
to any isometry vector v vanish, LvΨ± = 0 [27]. For the simple case of almost abelian solvmanifolds,
it is not hard to check that all vectors vi = ∂i, where, in the basis chosen, i = 1, ..., 4, 6, satisfy this
condition. However, these vectors are defined only locally2, since they transform non-trivially under
t ∼ t + t0. Hence, in general, the result of T-duality will be non-geometric. We shall see that there
are subtleties even for the case when the supersymmetry-preserving isometries ∂i are well defined.

We shall consider the action of T-duality on two solvmanifolds, g
0,0,±1
5.17 ×S1 (s 2.5) and g

1,−1,−1
5.7 ×S1.

We mentioned in section 3.3 the existence of solutions on these two manifolds. For s 2.5, following
[29], we write the algebra as (25,−15, r45,−r35, 0, 0), r2 = 1. The twist matrix A(t) is made of
periodic functions of t = x5,

A =



Rr=1

Rr
I2


 , Rr =

(
cos x5 −r sin x5

r sin x5 cos x5

)
, (C.2.1)

and T-duality is unobstructed. The supersymmetric solutions mentioned in section 3.3 are all related
by two T-dualities

IIB IIA

t:30 t:12 t :30 t :12

(13 + 24)

T12

oo // (14 + 23) oo //

T6

(136 + 246)

T12

oo // (146 + 236)

(14 + 23) oo // (13 + 24) oo // (146 + 236) oo // (136 + 246)

In the table we labelled each solution by the dominant O-plane charge. The sources are labelled
by their longitudinal directions, e.g. (13 + 24) stands for a solution with two sources (one O5 and
one D5) along directions e1 ∧ e3 and e2 ∧ e4. T-dualities (the subscripts indicate the directions in
which they are performed) exchange the columns in the table; lines are exchanged by relabellings
(symmetries of the algebra). The T-dualities are type changing, meaning a pair of type 0 and 3 (t:30)
pure spinors is exchanged with a pair of type 1 and 2 (t:12) and vice versa.

2As discussed, on the compact solvmanifolds there exists a set of globally defined one forms {e} = {AMdx} and the
dual basis {E} = {(A−1

M )T ∂} is made of globally defined vectors. However, the Lie derivative of the pure spinors with
respect to these does not vanish.
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It is natural to see what will be the effect of a single T-duality. To be precise we take as starting
point Model 3 of [29]. We shall concentrate on the NSNS sector and discuss the topology changes
under T-duality. The NSNS flux is zero and the metric, in the dxi basis is

ds2 =
t21
t2

(τ1
2 )2G(dx1 +Adx2)2 +

t1
G

(dx2)2 + t1(τ1
2 )2G(dx3 + rAdx4)2

+
t2
G

(dx4)2 + t3(dx5)2 + t3(dx6)2 (C.2.2)

with

G = cos2(x5) +
t2

t1(τ1
2 )2

sin2(x5) A =
t2 − t1(τ1

2 )2

2Gt1(τ1
2 )2

sin(2x5) . (C.2.3)

A single T-duality along x1 yields the manifold T 3 × ε2 (ε2 : (−23, 13, 0)) with O6-D4 (or D6-O4)
and an H-flux given by

H = −dA∧ dx1 ∧ dx2 . (C.2.4)

Note that the H-flux (C.2.4) allows for topologically different choices of B-field. Being not completely
solvable (see footnote 2 in section 3.2), s 2.5 can yield manifolds of different topology (different Betti
numbers). Correspondingly, the results of T-duality should vary as well, and the application of
the local Buscher rules might be ambiguous. The choice of B-field in (C.2.4), B = −Adx1 ∧ dx2,
corresponding to the application of the local rules to (C.2.2), is globally defined due to A(x5 + l) =
A(x5). There is a less trivial choice with B = −x1 ∂5A dx2 ∧ dx5 which however does not arise from
the application of local T-duality rules to (C.2.2) since the metric does not have off-diagonal elements
between x2 and x5.

A further T-duality along x2 gives back s 2.5 with O5-D5 sources, but the supersymmetry now is
captured by a different pair of pure spinors.

For the manifold g
1,−1,−1
5.7 ⊕ R, the twist matrix is

A(x5) =



R(x5)

R(−x5)
I2


 , R(x5) =

(
ch −η0sh
− 1
η0

sh ch

)
, (C.2.5)

where we set

ch = cosh(
√
q1q2x

5) , sh = sinh(
√
q1q2x

5) , η0 =

√
q1

q2
. (C.2.6)

Then it is straightforward to check that the isometry vectors vi = ∂i are local. Any T-duality along
these is thus obstructed, and hence the O6-D6 solution of [47, 29] does not have geometric T-duals.
For this case we shall adopt the method applied to nilmanifolds in [27] and mentioned in section 2.3,
and work out the action of T-duality on the generalized vielbein.

The generalized vielbein on g
1,−1,−1
5.7 ⊕ R can be obtained using twist transformation (see (4.3.2))

from the generalized vielbein of the torus (on which we take for simplicity the identity metric)

E =

(
I6 06

06 I6

)(
A 06

06 A−T

)
. (C.2.7)

To work out their T-duals, we act by

ET = OT × E ×OT , (C.2.8)

where OT is the O(d, d) matrix for T-duality (see (2.3.16)). The OT on the right is the regular action
of T-duality, while the OT on the left assures that the map has no kernel (see [27]). The T-duality is
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done in the x1 direction, so the OT is

OT =




T1 T2

I2 02

I2 02

T2 T1

02 I2

02 I2




, T1 =

(
0

1

)
, T2 =

(
1

0

)
, (C.2.9)

and then

ET =




C1 B1

R(−x5) 02

I2 02

B2 C2

02 R(x5)T

02 I2




, (C.2.10)

with

C1 = C2 = ch I2 , B1 = − 1

η0
sh ǫ , B2 = η0sh ǫ , ǫ =

(
0 −1
1 0

)
. (C.2.11)

The generalized vielbein ET can be brought to the canonical lower diagonal form (2.3.23) by a local
O(d) × O(d) transformation. When such a transformation cannot be made single-valued, we talk
about non-geometric backgrounds (where the action of a non-trivial β cannot be gauged away). The
result of the O(d)×O(d) transformation is

E ′ =




O1 O2

I2 02

I2 02

O2 O1

02 I2

02 I2




× ET =




O1C1 +O2B2 O1B1 +O2C2

R2 02

I2 02

O2C1 +O1B2 O2B1 +O1C2

02 R−T2

02 I2




,

(C.2.12)
where the non-trivial O(d)×O(d) components are (see 2.3.29)

O1/2 =
1

2
(O+ ±O−) O± ∈ O(2) . (C.2.13)

By solving O1B1 +O2C2 = 0, we can obtain O2 and express O± in terms of O1:

O± = O1(I2 ± u ǫ) , u =
sh

η0ch
,

OT±O± = I2 ⇔ OT1 O1 =
1

1 + u2
I2 . (C.2.14)

A simple solution is given by

O1 =
1√

1 + u2
I2 ⇒ O2 =

u√
1 + u2

ǫ . (C.2.15)

Thus we can indeed bring ET to a lower-diagonal form, but with an O(d)×O(d) transformation that
is not globally defined. It is not hard to see that replacing the x1 direction by others does not change
much. Hence any T-dual to g

1,−1,−1
5.7 × S1 is non-geometric.

A similar analysis for s 2.5 shows that one can easily solve the constraint O1B1 + O2C2 = 0 with
O1 and O2 being globally defined (this is easy since the functions entering are all periodic).
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C.3 Transforming the gauge bundle in heterotic compactifications

C.3.1 New conventions and transformations considered

As discussed at the end of section 4.5, in order to map the gauge fields F of the two heterotic
solutions considered, we should extend our transformation on the generalized tangent bundle (and
generalized vielbein) to the gauge bundle. T-duality and O(n, n) transformations in heterotic string
have been extended to the gauge bundle by considering O(n+16, n+16) transformations. These were
introduced in [99, 100]. We will follow the same procedure and extend our O(d, d) transformation
to O(d + 16, d + 16). Basically, we have to extend every matrix considered so far by 16 complex
components to get them on a dimension d+ 16 bundle. So we define these extended quantities:

e =

(
es 0
egA eg

)
, g = eT e =

(
gs +ATggA AT gg

ggA gg

)
, B =

(
Bs −ATgg
ggA Bg

)
, (C.3.1)

where the s index denotes the space-time objects (they are the same as in section 4.3.1), and the
g index denotes the gauge bundle quantities. A is the 16 × d matrix giving the gauge connection.
gg = eTg eg and Bg are the “gauge” metric and B-field, which are actually constrained to take specific
values, in order to make sense with the (root) lattice on which we consider the fields

gg =
1

2
C, (Bg)ij =





−(gg)ij i < j
0 i = j

(gg)ij i > j
(C.3.2)

where C is the Cartan matrix (symmetric) of the group considered. As these matrices are fixed, the
only new freedom we introduce is the gauge connection given by A.

Then we define as before the generalized metric H and the generalized vielbein E , which are now
extended to the gauge bundle:

Ẽ =

(
e 0
−ê B ê

)
H = ẼT Ẽ =

(
g −Bg−1B Bg−1

−g−1B g−1

)
, (C.3.3)

and are therefore 2(d+16)×2(d+16) matrices. The O(d+16, d+16) transformations act on them as
did O(d, d) on the generalized vielbein and metric, (2.3.25) and (2.3.22). We define the transformation
of the dilaton as before (2.3.34); as we will see, we can use either the previous d × d metric or the
new (d+ 16)× (d+ 16) one.

As in [99, 100], we shall consider a subset3 of O(d + 16, d + 16), which does not change eg and
Bg. Indeed, eg and Bg are related to the Cartan matrix which should stay invariant. Furthermore,
the transformation should preserve the off-diagonal structure of B, i.e. the off-diagonal block of the
transformed B should be related in the same way to the new gauge connection.

Following the logic of section 4.3.1, we consider the following O(d+ 16, d+ 16) transformations

O =

(
A 0
C A−T

)
, (C.3.4)

which satisfies the O(d+ 16, d+ 16) constraint ATC+CTA = 0d+16, and where, according to (C.3.1),
the matrices A and C can be decomposed into space and gauge blocks

A =

(
As 0
Ao Ag

)
, C =

(
Cs Co
C ′o Cg

)
. (C.3.5)

3One can show this subset is a subgroup of O(d+ 16, d), because it preserves the last (d+ 16)× 16 block column of
g +B.
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The transformed vielbein read

Ẽ ′ =
(

e′ 0
−ê′B′ ê′

)
, e′ = eA, B′ = ATBA−ATC . (C.3.6)

Imposing the invariance of the eg component of the vielbein sets Ag = I16 and gives the new gauge
connection A′ = AAs +Ao. Similarly the invariance of Bg in the B-field implies Cg = 016. Then we
have to ask that the off-diagonal terms in B can be written again in the form (C.3.1). This fixes Co
and C ′o

Co = A−Ts ATo (gg +Bg) C ′o = (Bg − gg)Ao . (C.3.7)

Finally it is easy to see that the O(d + 16, d + 16) constraint ATC + CTA = 0d+16 is equivalent to
the antisymmetry of transformed B-field in (C.3.6) and gives the constraint

ATs Cs + CTs As = 2ATo ggAo . (C.3.8)

Out of all these constraints, the only remaining degrees of freedom of the transformation are then
As, Ao, and Cs, which are constrained with (C.3.8). With respect to the O(d, d) transformation, we
gain Ao, which can act on the gauge connection (the only new freedom introduced in Ẽ).

C.3.2 A specific case: the Kähler/non-Kähler transition of section 4.5

Let us now focus on the specific examples we considered in section 4.5. Solution 1 is a trivial T 2

fibration, with no B-field, so we set Bs = 0, and has a non-trivial gauge connection A 6= 0. To
recover Solution 2, we want to produce a connection in the metric, a non-zero B-field, and no gauge
connection, i.e. A′ = 0. From section 4.3.1, it is easy to write the metric part of the transformation
A

As =

(
I4 0
AC I2

)
. (C.3.9)

Since the diagonal elements are just identity matrices, this transformation does not modify the metric
and the dilaton. The vanishing of the gauge field A′ = 0 simply tells us to choose Ao = −AAs. So
the choice of connections fixes completely the A matrix.

We have now to check whether the constraint (C.3.8) can be satisfied. If we take the gauge
connection in Solution 1 to be only on the base, the off-diagonal block in the vielbein (C.3.1) takes

the form egA =
(
AB 016×2

)
, then the constraint (C.3.8) becomes

ATs Cs + CTs As = 2AT ggA , (C.3.10)

and it is easy to verify that it solved by the following choice for the matrix Cs

Cs =

(
C̃B −ATCCC +ATBAB −(CTC +ATCCF )

CC CF

)
, (C.3.11)

where C̃B, CF and CC are free, and the two first are antisymmetric. Note the new B-field is then
given by

B′s = −
(
C̃B −CTC
CC CF

)
(C.3.12)

so we see once again that we can choose it to be whatever we want, and it fixes completely the C
matrix.

To summarise, inspired by the T-duality in heterotic strings we have made some steps towards
extending the O(d, d) generalized tangent bundle transformations to O(d+ 16, d+ 16) hence covering
the transformations of the gauge bundle. This allows, in particular, to relate the two solutions
discussed in section 4.5.
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Appendix D

Résumé long en français

Les théories de cordes sont des candidates très intéressantes en vue d’une théorie quantique de la
gravitation. Tâcher d’en faire des théories unificatrices des interactions fondamentales a donc été
considéré depuis longtemps. Pour y parvenir, elles devraient pouvoir reproduire à basse énergie le
modèle standard de la physique des particules. Réussir à faire ce lien n’est pas si simple, car les
théories de cordes sont dotés de plusieurs ingrédients supplémentaires non observés. En particulier,
la plupart d’entre elles sont définies à dix dimensions d’espace-temps, et sont supersymétriques. Dans
le schéma habituel pour retrouver la physique que l’on connaît, la supersymétrie est préservée pour
des arguments phénoménologiques ou simplement techniques, et l’on essaye plutôt de reproduire une
extension supersymétrique du modèle standard. Par contre, les six dimensions d’espace supplémen-
taires ne peuvent être conservées. On considère alors qu’elles ne sont pas étendues, mais qu’elles
forment un espace compact (par exemple six cercles) de taille suffisamment petite pour ne pas avoir
été détecté par nos expériences. Il existe de nombreuses possibilités pour le choix de cet espace com-
pact à six dimensions, appelé espace interne. Mathématiquement, il s’agit d’une variété différentielle
M , et le choix de ses propriétés (sa topologie, etc.) va avoir une importance capitale. Il existe une
procédure dite de réduction dimensionnelle pour passer d’une théorie à dix dimensions à une théorie à
quatre dimensions. Dans cette procédure, les caractéristiques de M ont une influence importante sur
la théorie résultante à quatre dimensions. Par conséquent, des critères phénoménologiques, comme la
préservation de la supersymétrie, ou l’absence de champs scalaires non massifs, vont alors être utilisés
pour contraindre le choix de cette variété M .

Pour relier les théories de cordes à des théories de basse énergie quatre-dimensionnelles, on part
tout d’abord d’une des théories de supergravité dix-dimensionnelles. Celles-ci sont les théories de
basse énergie des théories de cordes. On cherche ensuite une solution dix-dimensionnelle à cette
théorie. Puis on doit déterminer les modes légers (fluctuations) autour de cette solution. Les degrés
de liberté de la théorie sont alors tronqués à ces modes légers. On peut ensuite effectuer la réduction
dimensionnelle qui consiste à intégrer sur les degrés de libertés internes. On obtient une théorie
effective de basse énergie à quatre dimensions. Dans cette thèse, nous allons seulement nous focaliser
sur une étape de ce programme, qui consiste à trouver et à étudier les solutions de la supergravité
dix-dimensionnelle, sur des variétés internes potentiellement intéressantes pour la phénoménologie.

Nous commencerons par une présentation générale des solutions préservant la supersymétrie, et
reviendrons sur la question du choix de la variété interne, puis nous motiverons l’utilisation du formal-
isme mathématique de Géométrie Complexe Généralisée. Etant donné ce contexte, nous discuterons
alors plus en détails le travail effectué en thèse et les résultats obtenus.
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D.1 Solutions supersymétriques et Géométrie Complexe Général-
isée

Une partie importante de cette thèse est consacrée à l’étude de solutions supersymétriques de la
supergravité de type II avec flux non-triviaux, dans le cadre de compactifications sur un espace
six-dimensionnel. Les conditions pour avoir un vide (une solution) supersymétrique imposent des
contraintes sur la géométrie de la variété interne M . Dans le cas connu de compactifications sans
flux, avoir une supersymétrie minimale impose que la variété interne soit un Calabi-Yau. En présence
de flux, les conditions de supersymétrie peuvent se réécrire de manière simple [4, 5] en utilisant le
formalisme de Géométrie Complexe Généralisée, récemment développé par Hitchin et Gualtieri [6, 7].
La variété interne est alors caractérisée comme étant un Calabi-Yau Généralisé.

Nous allons tout d’abord donner les ingrédients dont nous aurons besoin pour chercher des vides avec
flux. Nous présentons nos conventions pour la supergravité, dans le contexte d’une compactification
vers quatre dimensions. Ensuite, nous discutons la préservation de la supersymétrie et motivons
l’utilisation de la Géométrie Complexe Généralisée, en particulier de la notion de spineurs purs. Nous
présentons enfin les conditions pour préserver la supersymétrie réécrites en termes de ces spineurs
purs.

D.1.1 Solutions de supergravité et variété interne

Supergravité en quatre plus six dimensions

Dans cette thèse, nous sommes intéressés par les compactifications vers quatre dimensions, où l’espace-
temps quatre-dimensionnel est maximalement symétrique: Minkowski, de Sitter ou Anti de Sitter.
Nous allons donc présenter la supergravité de type IIA ou IIB en proposant certaines formes pour ses
champs, qui respectent cette séparation de l’espace-temps dix-dimensionnel.

Nous considérerons un espace-temps dix-dimensionnel qui est un produit conforme d’un espace-
temps quatre-dimensionnel maximalement symétrique, et d’un espace six-dimensionnel compact M
(espace interne). Par conséquent, la métrique dix-dimensionnelle est de la forme

ds2
(10) = e2A(y) gµνdx

µdxν + gmn(y)dymdyn , (D.1.1)

où e2A est le facteur conforme dépendant des dimensions internes ym. La métrique quatre-dimensionnelle,
de signature (−1,+1,+1,+1), a comme groupe de symétrie le groupe de Poincaré, SO(1, 4) ou
SO(2, 3), pour M4, AdS4 ou dS4 respectivement. Le dilaton φ va souvent être relié au facteur
conforme.

Pour les flux de RR et NSNS, nous pouvons leur permettre a priori d’avoir des valeurs non-nulles
dans le vide. Néanmoins, la symétrie maximale quatre-dimensionnelle impose d’avoir des flux non-
triviaux seulement sur la variété interne. Le potentiel de jauge B du secteur NSNS et son tenseur
de Faraday H = dB sont donc purement internes, et les tenseurs de Faraday des flux RR dix-

dimensionnels F
(10)
k sont restreints à l’ansatz suivant, en terme des flux internes Fk

F
(10)
k = Fk + vol4 ∧ λ(∗F6−k) . (D.1.2)

Ici, ∗ est le “Hodge star” six-dimensionnel, vol(4) est le volume conforme quatre-dimensionnel, et λ
agit sur une p-forme Ap par une inversion complète de ses indices

λ(Ap) = (−1)
p(p−1)

2 Ap . (D.1.3)

On définit le champ RR interne total F par

IIA : F = F0 + F2 + F4 + F6 , (D.1.4)

IIB : F = F1 + F3 + F5 , (D.1.5)
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où Fk est la k-forme RR interne. Ainsi, les équations du mouvement des flux et leur identités de
Bianchi s’expriment comme

d(e4A−2φ ∗H)± e4A
∑

k

Fk ∧ ∗Fk+2 = terme de source , dH = 0 ,

(d +H∧)(e4A ∗ F ) = 0 , (d−H∧)F = δs , (D.1.6)

où le signe haut/bas est pour IIA/B, et d et ∗ sont internes. Dans les identités de Bianchi, on suppose
l’absence de source NSNS, et δs indique la contribution des sources RR. Les compactifications avec
flux vers Minkowski ou de Sitter à quatre dimensions ne sont possibles qu’avec des sources à tension
négative, les orientifolds (notés Op pour un objet étendu dans p dimensions d’espace). Ces sources
sont nécessaires pour annuler la contribution positive des flux à la trace du tenseur d’énergie-impulsion
[12, 13]. De plus, pour ne pas briser la symétrie maximale à quatre dimensions, nous considérerons
seulement des D-branes ou des orientifolds étendus dans tout l’espace quatre-dimensionnel.

Le secteur fermionique de la supergravité est constitué d’un doublet de gravitino ψiM (M indice
d’espace-temps dix-dimensionnel) et d’un doublet de dilatino λ̃i. Imposant la symétrie maximale,
leur valeur dans le vide doit être zéro. Nous chercherons donc des solutions purement bosoniques.

Solutions supersymétriques

Nous allons restreindre davantage la forme de nos solutions en imposant qu’elles préservent une
supersymétrie minimale N = 1 à quatre dimensions. D’un point de vue physique, cela signifie
que la supersymétrie devra être brisée à plus basse énergie. D’un point de vue technique, chercher
des solutions supersymétriques simplifie grandement la résolution. En effet, pour les solutions de
Minkowski, il a été prouvé [14, 15, 11] que toutes les équations du mouvement sont automatiquement
satisfaites dès lors que les conditions de supersymétrie, et les identités de Bianchi pour les flux sont
vérifiées. Par conséquent, au lieu de résoudre les équations du mouvement qui peuvent être des
équations du second ordre, il suffit de résoudre des équations du premier ordre, ce qui est plus simple.

Pour un vide purement bosonique, les conditions pour préserver la supersymétrie sont données par
l’annulation des variations supersymétriques des champs fermioniques. En effet, ces variations sont
bosoniques donc ne sont pas automatiquement nulles dans le vide. Cela signifie en supergravité de
type II que l’on doit annuler les variations supersymétriques du gravitino et du dilatino

δψM = 0 , δλ̃ = 0 . (D.1.7)

Elles s’écrivent

δψM = (DM +
1

4
HMP)ǫ+

1

16
eφ
∑

n

6F (2n) ΓMPn ǫ , (D.1.8)

δλ̃ = (6∂φ+
1

2
6HP)ǫ+

1

8
eφ
∑

n

(−1)2n(5− 2n) 6F (2n) Pnǫ , (D.1.9)

où le paramètre de supersymétrie ǫ = (ǫ1, ǫ2) est un doublet de spineurs Majorana-Weyl. Les matrices
P et Pn sont différentes en IIA et IIB. En IIA P = Γ11 et Pn = Γ11σ1, tandis qu’en IIB P = −σ3,
Pn = σ1 pour n+ 1/2 pair et iσ2 pour n+ 1/2 impair.

Dans notre ansatz pour la métrique et les flux, nous avons pris en compte que l’espace-temps
se décomposait en quatre plus six dimensions. Les paramètres de supersymétrie ǫ1 et ǫ2 doivent
se décomposer de la même manière. Le groupe de Lorentz est brisé en SO(1, 3) × SO(6) donc les
paramètres s’écrivent comme un produit sous les représentations spinorielles de ces groupes. Pour un
vide N = 1, on considère à quatre dimensions un seul paramètre spinoriel chiral ζ+. Il faut alors une
paire (η1, η2) de spineurs de Weyl à six dimensions. Etant donné les chiralités des deux théories, on
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considère donc la décomposition suivante en IIA

ǫ1 = ζ1
+ ⊗ η1

+ + ζ1
− ⊗ η1

− ,

ǫ2 = ζ2
+ ⊗ η2

− + ζ2
− ⊗ η2

+ , (D.1.10)

et celle-ci en IIB

ǫi=1,2 = ζi+ ⊗ ηi+ + ζi− ⊗ ηi− , (D.1.11)

où la conjugaison complexe change la chiralité: (η+)∗ = η−. Pour un vide N = 1, on prend
ζ1

+ = ζ2
+ = ζ+.

En général, on demande que les spineurs internes soient en plus globalement définis (ne s’annulant
jamais). La justification pour une telle hypothèse vient de la réduction dimensionnelle: pour avoir
une théorie supersymétrique à quatre dimensions, on a besoin d’une base de spineurs internes glob-
alement définis pour pouvoir réduire les paramètres de supersymétrie. Cette contrainte topologique
va jouer un rôle important. Elle peut tout d’abord être traduite en terme de G-structures.

On dit qu’une variété M admet une G-structure lorsque le groupe de structure du fibré tangent est
G. Ce groupe correspond au groupe des fonctions de transitions. A six dimensions, il s’agit a priori
de GL(6). L’existence de tenseurs ou de spineurs globalement définis conduit à une réduction de ce
groupe. Par exemple, étant donné une métrique et une orientation, il est réduit à SO(6) ∼ SU(4).
En présence d’un spineur globalement défini, il est réduit davantage en SU(3), et même en SU(2)
dans le cas d’un second spineur indépendant et également globalement défini.

A six dimensions, étant donné un spineur de Weyl de chiralité positive et de norme unitaire η+

globalement défini, on peut définir de manière équivalente la structure SU(3) en terme de formes
invariantes. On définit la trois-forme holomorphe Ω et la forme de Kähler J comme

Ωµνρ = −iη†−γµνρη+ ,

Jµν = −iη†+γµνη+ . (D.1.12)

De même, pour une structure SU(2) définie par deux spineurs orthogonaux globalement définis η+ et
χ+ de norme unitaire, on peut définir des formes invariantes: une un-forme holomorphe z (que l’on
prend de norme ||z||2 = 2), une deux-forme réelle j, et une deux-forme holomorphe ω

zµ = η†−γµχ+ ,

jµν = −iη†+γµνη+ + iχ†+γµνχ+ ,

ωµν = η†−γµνχ− . (D.1.13)

Dans les deux cas, ces formes doivent satisfaire certaines conditions pour définir la G-structure.
La contrainte topologique donnée par l’existence de deux spineurs internes globalement définis

ηi=1,2
+ est équivalente à l’existence de formes globalement définies, qui satisfont des conditions dites

de structure. Comme on va le voir, ces formes offrent également une manière alternative d’exprimer
les contraintes différentielles pour la préservation de la supersymétrie, données par l’annulation des
variations supersymétriques des fermions. Comme premier exemple, nous allons tout d’abord discuter
le cas des compactifications sans flux, où la préservation de la supersymétrie amène à la condition de
Calabi-Yau.

Cas des variétés de Calabi-Yau

Considérons des solutions sans flux: Fk = 0, H = 0. On suppose également que la variété n’admet
qu’un seul spineur globalement défini η1

+ = η2
+ = η+. Dans ce cas, on obtient a priori une théorie
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N = 2 à quatre dimensions avec deux spineurs quatre-dimensionnels ζ1,2. Avec cette hypothèse, en
décomposant les spineurs et les conditions de supersymétrie (D.1.8) et (D.1.9) en parties quatre et
six-dimensionnelles, on obtient

∂µζ+ = 0 , Dmη
1
+ = 0 , (D.1.14)

où m est un indice interne. Cela signifie que la variété interne doit admettre non seulement un spineur
globalement défini (contrainte topologique), mais celui-ci doit être constant de manière covariante
(contrainte différentielle). Cela implique que le groupe d’holonomie de M est réduit à SU(3), et par
conséquent la variété doit être un Calabi-Yau [16].

En terme de G-structures, on obtient une structure SU(3). De plus, la fermeture du spineur se
traduit en conditions différentielles sur les formes définissant la structure SU(3). Celles-ci doivent
être fermées:

dJ = 0 , dΩ = 0 . (D.1.15)

Ces conditions donnent l’intégrabilité des structures quasi-complexe et symplectique, ce qui signifie
que la variété interne doit être Kähler. C’est en effet le cas d’un Calabi-Yau. Notez qu’une autre
propriété des variétés de Calabi-Yau est d’être plate.

En l’absence de flux, chercher un vide supersymétrique demande donc de considérer une variété
interne étant un Calabi-Yau. Par réduction dimensionnelle de l’action de type II sur un Calabi-
Yau, on obtiendra une théorie effective N = 2 à quatre dimensions (une réduction similaire en corde
hétérotique mènerait à une théorie N = 1). Nous n’allons pas présenter en détail cette réduction mais
seulement insister sur deux aspects. Tout d’abord, la géométrie de la variété interne apparaît donc
comme cruciale pour déterminer les symétries et le contenu en champs de la théorie effective quatre-
dimensionnelle. De plus, les théories effectives construites par réduction sur Calabi-Yau souffrent
toutes de la présence de champs scalaires sans masse, non contraints par un quelconque potentiel. Ils
sont appelés moduli. En théorie supersymétrique, ils ne posent a priori pas de problème particulier.
Cependant, si certains d’entre eux demeurent sans masse après la brisure de la supersymétrie, cela
pose un problème phénoménologique: des champs scalaires sans masse seraient porteurs d’interactions
à longue portée qui devraient être observées (mis à part le cas d’un scénario de confinement).

On cherche donc des mécanismes qui permettraient de stabiliser au moins quelques-uns de ces
moduli au niveau de la théorie supersymétrique. Supposons qu’un champ scalaire ϕ apparaissant
dans la théorie effective est soumis à un potentiel V (ϕ). Si ce potentiel admet un minimum en une
valeur ϕ0, alors l’action et le potentiel peuvent être développés autour de ce minimum

V (ϕ) ≈ V (ϕ0) + V ′′(ϕ0)(∂ϕ)2 . (D.1.16)

Par conséquent, donner une valeur dans le vide à un champ scalaire (le “fixer”) lui donne une masse
(un terme de masse). Pour peu que cette masse soit suffisamment élevée, on peut intégrer sur le
champ scalaire et ainsi s’en débarrasser. Comme mentionné, les compactifications sur Calabi-Yau ne
génèrent malheureusement pas de potentiel pour les scalaires.

Vides avec flux non-triviaux

Ce problème des moduli a conduit dans les années 2000 au développement des compactifications avec
flux: on cherche des solutions en présence de flux à valeur non-triviale dans le vide. De tels flux sur la
variété interne sont intéressant car ils génèrent un potentiel qui peut fixer quelques moduli, si ce n’est
tous (dans le cas de certaines compactifications sur AdS). Les moduli restant sont fixés la plupart du
temps par des corrections non-perturbatives. Voir [17] pour des revues sur le sujet.

La présence de flux change drastiquement les propriétés des solutions. Typiquement, les flux vont
courber la variété interne via leur densité d’énergie, et par conséquent, M ne peut a priori plus être
plate. En particulier, la variété interne n’est plus un Calabi-Yau. La présence des flux modifie les
conditions de supersymétrie, comme on peut le voir dans (D.1.8) et (D.1.9). Sur l’espace interne, on
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obtient typiquement des membres de droite dans (D.1.14) ou (D.1.15) qui sont non-nuls, et dépendent
des flux. Par exemple, les composantes internes pour le gravitino deviennent

δψ1
m = (Dm +

1

4
Hm)η1

++ 6Fmη1
++ 6Fmη2

+ , (D.1.17)

δψ2
m = (Dm +

1

4
Hm)η2

++ 6Fmη2
++ 6Fmη1

+ . (D.1.18)

L’exemple le plus ancien de vide avec flux est celui des solutions de cordes hétérotiques avec H non-
nul [18, 19]. Dans ce contexte, en présence de flux, la variété n’est plus que complexe, car J n’est
désormais plus fermée (voir (D.1.15)). Pour certaines solutions avec flux, la variété ne diffère pas
énormément d’un Calabi-Yau: elle peut n’être qu’un Calabi-Yau conforme, où le facteur conforme
peut tendre vers 1 dans une certaine limite. Mais dans d’autres cas, comme dans l’exemple de la
corde hétérotique, la déviation au Calabi-Yau peut être plus radicale: la topologie peut changer, ce
qui rend une limite éventuelle au Calabi-Yau impossible. L’exemple typique est le tore twisté: une
fibration non-triviale de cercles sur une base étant un tore. Nous allons utiliser certains d’entre eux
(les variétés nilpotentes, et résolubles) et les étudier plus en détails.

Il est donc naturel de demander si l’on peut donner préciser davantage la géométrie de la variété
interne, en présence de flux. Une caractérisation mathématique de cette variété a été donnée en
supergravité de type II pour les compactifications vers Minkowski [4, 5]: en présence de flux, la variété
interne doit être un Calabi-Yau Généralisé. Cette définition prend son sens dans le formalisme de la
Géométrie Complexe Généralisée, développée récemment par Hitchin et Gualtieri [6, 7]. La condition
de Calabi-Yau Généralisée provient d’une réécriture des conditions différentielles pour préserver la
supersymétrie en présence des flux, en terme d’objets de Géométrie Complexe Généralisée: les spineurs
purs. Cette condition sur M n’est malheureusement que nécessaire et non suffisante, à la différence
du cas du Calabi-Yau. Comme on va le voir, les contraintes supplémentaires proviennent des flux de
RR, qui ne sont pas véritablement incorporés dans ce formalisme.

La Géométrie Complexe Généralisée permet de décrire des variétés qui sont complexes, symplec-
tiques, ou partiellement complexes et partiellement symplectiques. On peut définir une structure
plus générale, nommée structure complexe généralisée, qui incorpore tous les cas précédents en un
seul formalisme, ce qui aide à comprendre la zoologie des variétés apparaissant en présence de flux.
Par exemple, les variétés nilpotentes, même si elles n’admettent pas toujours une structure complexe
ou symplectique, sont toutes des Calabi-Yau Généralisés (un sous-cas de Complexe Généralisé) [23].
Donc ces variétés seront particulièrement intéressantes pour nous.

Enfin, notez que le formalisme de la Géométrie Complexe Généralisée a l’avantage d’incorporer de
manière naturelle une action O(6, 6) qui inclue le groupe de T-dualité, et pourrait donc jouer un rôle
plus large que celui que nous avons mentionné.

D.1.2 Spineurs purs de Géométrie Complexe Généralisée et vides de supergravité

Jusqu’à présent, nous avons discuté la possibilité d’obtenir des solutions supersymétriques de la
supergravité de type II, sur un espace-temps dix-dimensionnel séparé en un espace-temps quatre-
dimensionnel maximalement symétrique, et un espace interne six-dimensionnel. En présence de flux,
utiles pour résoudre le problème des moduli, nous avons motivé l’introduction du formalisme de la
Géométrie Complexe Généralisée. Nous allons à présent donner plus de détails sur l’utilisation de ce
formalisme.

La Géométrie Complexe Généralisée considère le fibré tangent généralisé E. Pour une variété M
de dimension d, il s’agit de la fibration a priori non-triviale de l’espace cotangent T ∗M sur l’espace
tangent TM :

T ∗M →֒ E
↓
TM

(D.1.19)
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Les sections de E sont des vecteurs généralisés et peuvent être écrit localement comme la somme d’un
vecteur et d’une un-forme

V = v + ξ =

(
v
ξ

)
∈ TM ⊕ T ∗M . (D.1.20)

On peut également considérer localement des spineurs sur TM ⊕ T ∗M . Ces spineurs vont nous
permettre de réexprimer les conditions pour préserver la supersymétrie.

Spineurs internes et spineurs purs de Géométrie Complexe Généralisée

Considérons des spineurs sur TM ⊕ T ∗M . Ce sont des spineurs Cliff(d, d) de Majorana-Weyl, et on
peut les voir comme des polyformes, c’est-à-dire des sommes de formes différentielles paires/impaires,
qui correspondent à des spineurs de chiralité positive/négative. On va s’intéresser à des spineurs purs:
ce sont des vides de Cliff(d, d). Un spineur de Cliff(d, d) est pur si il est annihilé par la moitié des
matrices gamma cette algèbre.

Les spineurs purs de Cliff(6, 6) sur TM ⊕ T ∗M peuvent être obtenus comme produit tensoriel de
spineurs de Cliff(6), car les bispineurs sont isomorphes aux formes via la relation de Clifford:

C =
∑

k

1

k!
C

(k)
i1...ik

dxi1 ∧ . . . ∧ dxik ↔ C =
∑

k

1

k!
C

(k)
i1...ik

γi1...ik , (D.1.21)

et à six dimensions, tout spineur de Cliff(6) est pur. Dans le contexte de la supergravité, il est donc
naturel de définir les spineurs (purs) de Cliff(6, 6) sur TM ⊕ T ∗M comme un produit des paramètres
internes de supersymétrie

Φ+ = η1
+ ⊗ η2†

+ ,

Φ− = η1
+ ⊗ η2†

− . (D.1.22)

Ils peuvent être vus comme des polyformes via l’identité de Fierz

η1
+ ⊗ η2†

± =
1

8

6∑

k=0

1

k!

(
η2†
± γµk ...µ1η

1
+

)
γµ1...µk . (D.1.23)

Les expressions explicites des deux spineurs purs dépendent de la forme des spineurs η1 et η2. Nous
choisissons de les paramétrer ainsi:

η1
+ = aη+ ,

η2
+ = b(k||η+ + k⊥

zη−
2

) . (D.1.24)

η+ et χ+ = 1
2zη− dans (D.1.24) définissent une structure SU(2) comme vu précédemment. k|| est

réel et 0 ≤ k|| ≤ 1, k⊥ =
√

1− k2
||. a et b sont des nombres complexes non-nuls reliés à la norme des

spineurs ηi+ par

a = ||η1
+|| eiα , b = ||η2

+|| eiβ . (D.1.25)

Dans la suite, on prendra toujours |a| = |b|, de sorte à ce que ||η1
+|| = ||η2

+||. Cette condition est
imposée par la présence de sources supersymétriques, ou encore par les conditions de supersymétrie
en présence de sources [30, 29].

Selon les valeurs des paramètres k|| et k⊥, on peut définir différentes G-structures sur la variété
interne. k|| et k⊥ peuvent être reliés à l’ “angle” entre les spineurs. On peut introduire l’angle ϕ

k|| = cos(ϕ), k⊥ = sin(ϕ), 0 ≤ ϕ ≤ π

2
. (D.1.26)

Pour k⊥ = 0, les spineurs deviennent parallèles, donc il n’y a qu’un spineur globalement défini, et cela
nous donne une structure SU(3). Quand k⊥ 6= 0, les deux spineurs sont généralement indépendants,
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donc on obtient une structure SU(2) [31]. Dans ce cas, on doit distinguer les deux situations k|| = 0 et
k|| 6= 0. Nous les nommons respectivement une structure SU(2) orthogonale et une structure SU(2)
intermédiaire, en référence à l’angle entre les spineurs. On a schématiquement

η1
+

η2
+

η1
+

η2
+

ϕ

η1
+

η2
+

Structure SU(3): Structure SU(2) intermédiaire: Structure SU(2) orthogonale:
k|| = 1, k⊥ = 0 k|| 6= 0, k⊥ 6= 0 k|| = 0, k⊥ = 1

Etant donné la paramétrisation (D.1.24) des spineurs internes, on peut obtenir les expressions
explicites des spineurs purs en tant que polyformes [32]

Φ+ =
|a|2
8
eiθ+e

1
2
z∧z(k||e

−ij − ik⊥ω) ,

Φ− = −|a|
2

8
eiθ−z ∧ (k⊥e

−ij + ik||ω) , (D.1.27)

où les formes apparaissant on été définies précédemment, et les phases θ± sont reliées aux phases des
spineurs ηi: θ+ = α− β, θ− = α+ β.

Un spineur pur peut toujours s’écrire sous la forme ωk ∧ eb̃+iω̃ où ωk est une k-forme holomorphe,
et b̃ et ω̃ sont des deux-formes réelles [7]. Le degré k de ωk est nommé le type du spineur pur. Pour
des structures SU(2) intermédiaires, où k|| et k⊥ ne sont pas zéro, il est possible d’exponentier ω, et
obtient par (D.1.27)

Φ+ =
|a|2
8
eiθ+k|| e

1
2
z∧z−ij−i k⊥

k||
ω
,

Φ− = −|a|
2

8
eiθ−k⊥ z ∧ e−ij+i

k||
k⊥
ω
, (D.1.28)

de sorte à ce que les spineurs aient un type défini: 0 et 1. Dans le cas de structure SU(3) (k⊥ = 0),
on obtient des spineurs purs de type 0 et 3

Φ+ =
|a|2
8
eiθ+e−iJ , Φ− = −ieiθ− |a|

2

8
Ω , (D.1.29)

tandis que dans le cas de structure SU(2) orthogonale (k|| = 0), les types sont 1 et 2:

Φ+ = −i |a|
2

8
eiθ+ω ∧ e 1

2
z∧z̄ , Φ− = −|a|

2

8
eiθ−z ∧ e−ij . (D.1.30)

Si un spineur pur est fermé, son type k sert à caractériser la géométrie. La variété admet alors une
structure complexe le long de 2k directions réelles, et une structure symplectique le long des directions
restantes.

Les spineurs Φ± en tant que polyformes sont clairement reliés aux formes différentielles définissant
les G-structures. Tout comme ces formes doivent satisfaire des conditions de structure, les spineurs
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purs doivent satisfaire des conditions dites de compatibilité, sur lesquelles nous ne nous étendrons pas.
Dès lors, ils définiront une structure SU(3)× SU(3) sur TM ⊕ T ∗M . C’est le cas des bispineurs Φ±
(D.1.22). Selon la relation entre les spineurs η1,2

+ , cette structure se traduira sur TM en une structure
SU(3), SU(2) orthogonale ou SU(2) intermédiaire. Donc le formalisme de Géométrie Complexe
Généralisé donne une contrainte topologique unifiée sur la variété M : pour avoir un vide N = 1, on
doit pouvoir trouver sur TM ⊕ T ∗M une structure SU(3) × SU(3), ou de manière équivalente une
paire de spineurs purs compatibles.

Nous allons voir à présent que nous pouvons également exprimer la contrainte différentielle en terme
de ces spineurs purs.

Conditions de supersymétrie

Les conditions de supersymétrie sont données en supergravité de type II par l’annihilation des vari-
ations fermioniques (D.1.8) et (D.1.9). D’après la décomposition des paramètres de supersymétrie
dix-dimensionnels (D.1.10) et (D.1.11), en facteurs quatre et six-dimensionnels, on peut séparer les
variations supersymétriques en composantes externes et internes. Il est montré dans [4, 5] que ce
système d’équations peut se réécrire comme un ensemble de conditions différentielles sur la paire
(D.1.22) de spineurs purs compatibles:

(d−H∧)(e2A−φΦ1) = 0 , (D.1.31)

(d−H∧)(eA−φRe(Φ2)) = 0 , (D.1.32)

(d−H∧)(e3A−φ Im(Φ2)) =
|a|2
8
e3A ∗ λ(F ) , (D.1.33)

où λ a été défini en (D.1.3) et avec

Φ1 = Φ± , Φ2 = Φ∓ , (D.1.34)

pour IIA/B (haut/bas). Nous prendrons par la suite |a|2 = eA. Ces conditions de supersymétrie
généralisent la condition de Calabi-Yau pour les compactifications sans flux. En effet, la première de
ces équations impliquent que l’un des spineurs purs (celui avec la même parité que les champs RR)
doit être fermé (plus précisément de manière conforme à cause du facteur, et twisté à cause de −H∧).
Une variété admettant un tel spineur pur est un Calabi-Yau Généralisé (twisté). Nous chercherons
donc des solutions sur de telles variétés.

Nous rappelons que les conditions de supersymétrie et les identités de Bianchi impliquent ensemble
que les équations du mouvement sont automatiquement satisfaites (pour un vide sur Minkowski).

D.2 Principaux résultats de la thèse

Jusqu’à présent, nous avons motivé la recherche de solutions supersymétriques de la supergravité dix-
dimensionnelle de type II, et nous avons montré comment la Géométrie Complexe Généralisée fournit
un formalisme utile pour l’étude de vides N = 1 en présence de flux. Voici à présent la structure du
reste de la thèse, et les principaux résultats, qui seront détaillés dans les sections qui suivent.

Nous discutons tout d’abord les solutions supersymétriques dix-dimensionnelles vers Minkowski,
où la variété interne est une variété résoluble (tore twisté). Ces variétés sont des candidates in-
téressantes pour trouver de telles solutions (il a été prouvé que certaines sous-classes de ces variétés
sont des Calabi-Yau Généralisés), et leurs propriétés permettent d’envisager une résolution explicite
des équations de supersymétrie pour les spineurs purs et des identités de Bianchi pour les flux. La
thèse fournit une revue de leurs propriétés géométriques. Puis la méthode de résolution pour trouver
des solutions est présentée, et une liste de solutions connues sur ces variétés est fournie. Nous nous
focalisons ensuite sur un type particulier de solutions: celles qui admettent une structure SU(2) in-
termédiaire, définie précédemment. Afin de trouver de telles solutions, la méthode présentée doit être
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légèrement adaptée. Nous introduisons une base de formes particulières qui simplifie les conditions de
projection de l’orientifold, et les conditions de supersymétrie. Ainsi, nous parvenons à trouver trois
solutions de ce type, que nous présentons. En prenant certaines limites sur l’angle entre les spineurs
internes dans ces solutions, nous pouvons retrouver des solutions connues avec structure SU(3) ou
SU(2) orthogonale, et nous trouvons aussi une nouvelle solution. Finalement, nous dérivons les con-
ditions pour qu’une solution à structure SU(2) intermédiaire soit issue d’une transformation β d’une
solution à structure SU(3). Nous montrons que c’est le cas pour l’une de nos solutions.

Par la suite, nous étudions un type particulier de transformation O(d, d) nommée le twist, qui peut
être utilisée pour générer de nouvelles solutions supersymétriques sur Minkowski. L’idée consiste tout
d’abord en une transformation qui construit les un-formes d’une variété résoluble à partir de celles
d’un tore. Cette transformation est alors plongée, puis étendue, en Géométrie Complexe Généralisée
dans une transformation O(d, d) locale, afin de relier des solutions sur un tore à des solutions sur
des variétés nilpotentes ou résolubles. Les conditions pour générer, à l’aide de cette transformation,
des solutions supersymétriques, sont discutées, et utilisées pour retrouver toutes les solutions connues
sur variétés nilpotentes, et trouver une nouvelle solution sur une variété résoluble. Nous présentons
également une nouvelle solution complètement localisée sur une variété résoluble, et discutons par
ailleurs la possibilité d’obtenir des solutions non-géométriques à l’aide du twist. Finalement, nous
réécrivons les conditions de supersymétrie en corde hétérotique en termes de spineurs purs, puis nous
les utilisons pour relier à l’aide du twist deux solutions avec flux connues dans ce contexte.

Finalement, nous discutons la possibilité d’obtenir des solutions non-supersymétriques sur un
espace-temps quatre-dimensionnel de de Sitter. La motivation pour de telles solutions est cos-
mologique. Nous expliquons tout d’abord les difficultés majeures rencontrées lorsque l’on essaye
d’obtenir des solutions de supergravité avec constante cosmologique Λ positive. Puis nous proposons
un ansatz pour des sources brisant la supersymétrie, qui pourrait aider à augmenter la valeur de Λ.
Cette ansatz se base sur l’idée de préserver un certain ensemble d’équations du premier ordre basé sur
la structure SU(3), ce malgré la brisure des conditions de supersymétrie. Puis nous donnons un ex-
emple explicite de solution de Sitter avec cet ansatz, où la variété interne est résoluble. Cette solution
peut être comprise comme une déviation de la nouvelle solution supersymétrique trouvée auparavant
grâce au twist. Enfin, nous fournissons une analyse partielle de la stabilité quatre-dimensionnelle de
la solution trouvée.

La thèse se termine par une conclusion qui résume le travail effectué et propose des idées et des
directions à suivre pour la suite.

D.2.1 Solutions sur variétés résolubles

Nous avons motivé l’utilisation du formalisme de la Géométrie Complexe Généralisée pour étudier les
vides supersymétriques de supergravité de type II avec flux non-triviaux, lorsque l’espace-temps dix-
dimensionnel est séparé en l’espace-temps de Minkowski quatre-dimensionnel et une variété interne
M six-dimensionnelle. En particulier, pour obtenir des vides N = 1 sur Minkowski avec flux non-
triviaux, l’espace interne est caractérisé comme étant une variété de Calabi-Yau Généralisé.

Ici, nous étudions la possibilité d’obtenir des exemples explicites de solutions avec flux non-triviaux
sur Calabi-Yau Généralisé. Les exemples les plus simples de vides avec flux non-triviaux sont des
Calabi-Yau conformes en type IIB (dans le cas le plus simple un T 6 conforme), avec un O3 et un
flux donné par une trois-forme auto-duale. Une méthode standard [33] pour produire de nouveaux
vides avec flux non-triviaux est de T-dualiser les solutions sur Calabi-Yau conformes. Les variétés
résultantes sont des tores twistés, c’est-à-dire des fibrations de cercles sur une base donnée par un
tore. Mathématiquement parlant, ceux sont des variétés résolubles: ces variétés sont construites à
partir de groupes de Lie particuliers nommés les groupes résolubles. Un sous-ensemble de ces groupes
est constitué de groupes dit nilpotents, à partir desquels on peut construire les variétés nilpotentes.
Il a été montré que les variétés nilpotentes sont toutes des Calabi-Yau Généralisés [23]. Et en effet,
certains vides supersymétriques avec flux non-triviaux ont été trouvés sur ces variétés via la T-dualité.

En utilisant la Géométrie Complexe Généralisée, au lieu des dualités, on peut essayer de trouver

134



des vides sur un Calabi-Yau Généralisé (par exemple l’une des variétés nilpotentes) en résolvant
directement les contraintes de supersymétrie, et les identités de Bianchi pour les flux. Cette stratégie
a été utilisée dans [29] pour déterminer les vides avec flux sur les variétés nilpotentes et quelques
variétés résolubles. Les auteurs ont retrouvé quelques solutions connues, qui avaient été obtenues
précédemment par T-dualité en partant d’une solution sur un Calabi-Yau conforme, mais ils ont aussi
trouvé de nouveaux vides non T-duaux. Ces solutions ont été obtenues en réalisant une recherche
exhaustive sur toutes les variétés nilpotentes six-dimensionnelles, et sur quelques variétés résolubles.

Une telle recherche a été possible car la méthode de résolution sur ces variétés est plutôt algo-
rithmique. En particulier les variétés considérées sont parallélisables donc elles possèdent, via leur
formes de Maurer-Cartan, une base six-dimensionnelle de un-formes globalement définies. Grâce à
cette base, on peut construire des spineurs purs généraux, et essayer d’ajuster leurs paramètres libres
pour obtenir une solution.

Dans la thèse, nous donnons tout d’abord une revue des propriétés géométriques et algébriques des
variétés nilpotentes et résolubles. Nous donnons ensuite plus de détails sur la méthode de résolution
et sur les solutions trouvées de cette manière. La suite de l’étude est dédiée à un type de solutions
particulières, celles qui admettent une structure SU(2) intermédiaire, définie précédemment. Afin de
trouver de telles solutions, on doit adapter légèrement la méthode de résolution. En particulier, on
introduit certaines variables qui simplifie les conditions de projection de l’orientifold, et les conditions
de supersymétrie. On parvient alors à trouver trois nouvelles solutions non T-duales à un Calabi-Yau
conforme, que l’on présente ensuite. On discute enfin certaines relations qu’elles ont avec des solutions
à structure SU(3) ou SU(2) orthogonale.

D.2.2 Transformation de twist en corde de type II et hétérotique

Précédemment, nous avons discuté des exemples de solutions Minkowski supersymétriques avec flux
non-triviaux sur variété résoluble. Nous avons également fourni une liste de solutions connues.

Les solutions trouvées sur variétés résolubles non-nilpotentes ne sont pas T-duales à des config-
urations sur T 6 conformes. Parmi les solutions trouvées sur les variétés nilpotentes, seules celles
correspondant à l’algèbre n 3.14 sont aussi non T-duales à un T 6 conforme. De plus, en type IIB, en
partant d’un T 6 avec un O3 et un champ B non-trivial, et en réalisant deux T-dualités indépendantes,
on aboutit dans la même théorie à une variété nilpotente avec premier nombre de Betti étant égal à
5 ou 4 [33, 52]. n 3.14 au contraire a son premier nombre de Betti b1(M) = 3. Par conséquent, on
peut s’interroger si toutes ces solutions, T-duales ou pas, peuvent être reliées par une transformation
plus générale. On présente ici une telle transformation que nous nommons le twist.

L’idée consiste tout d’abord à construire un opérateur GL(d) qui transforme la base de un-formes
du tore en la base de un-formes de Maurer-Cartan d’une variété résoluble donnée. Les un-formes
de Maurer-Cartan reflètent la topologie de la variété. Par conséquent, un tel opérateur devrait
encoder la topologie de la variété résoluble atteinte par la transformation. D’une certaine manière, la
matrice µ(t) des variétés résolubles quasi-abéliennes est déjà un exemple d’opérateur GL(d) encodant
la topologie d’une variété. Elle encode la fibration du fibré de Mostow. Pour ces variétés, notre
opérateur sera en fait très proche de ces matrices µ(t).

Si l’on parvient à relier les formes du tore à celles des variétés résolubles, il est tentant d’essayer de
relier des solutions complètes. Dans le formalisme de Géométrie Complexe Généralisée, une manière
naturelle de transformer une solution est d’agir sur ces spineurs purs avec un élément de O(d, d). Un
exemple bien connu est l’action du groupe de T-dualité O(n, n) (voir [53] pour une revue sur le sujet)
sur une variété ayant n isométries. Il est donc naturel de plonger la transformation GL(d) responsable
du changement de topologie dans une transformation O(d, d) agissant de manière équivalente sur les
formes et les vecteurs du fibré tangent généralisé. Etant donné ce plongement, on peut étendre la
transformation en incluant d’autres ingrédients. En particulier, ceux-ci permettront de transformer
le champ B avec une transformation dite B, transformer la métrique avec un facteur d’échelle, et le
dilaton sera changé en conséquence. On peut également inclure une paire de transformations U(1)
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agissant sur les spineurs purs par multiplication avec des phases. De la sorte, on peut transformer
tout le secteur NSNS à notre guise. L’action O(d, d) étant appliquée sur le fibré tangent généralisé,
les flux RR ne sont pas transformés directement, mais au travers des spineurs purs et des équations
de supersymétrie les définissant (D.1.33). Notez que la transformation générale que l’on peut déduire
pour les flux RR mélange les secteurs NSNS et RR, ce qui n’est pas le cas de la T-dualité. Une
manière de réaliser ce genre de mélange est d’utiliser la U-dualité, mais notre transformation n’a pas
l’air d’y être reliée.

Nous proposons donc d’utiliser la transformation de twist pour relier les solutions sur le tore aux
solutions sur les variétés résolubles. A la différence de la T-dualité, le twist est une transformation
O(d, d) locale. Par conséquent, alors que la première est une symétrie des équations du mouvement,
la deuxième ne l’est pas en général. Néanmoins, des contraintes générales sur le twist peuvent
être formulées de sorte à ce qu’il préserve les conditions de supersymétrie. Dans certains cas, ces
contraintes sont suffisamment simples pour être résolues. On peut alors utiliser la transformation
comme une technique pour générer des solutions. Par exemple, nous sommes capables de relier
toutes les solutions en type IIB présentées précédemment sur les variétés nilpotentes, y compris la
solution non T-duale sur n 3.14 qui semblait isolée. Pour les variétés résolubles, on peut également
retrouver la solution non T-duale sur s 2.5 en type IIB. On utilise également le twist dans la thèse
pour construire une nouvelle solution sur une nouvelle variété résoluble. Enfin, on discute également
la possibilité d’obtenir des solutions non-géométriques.

Les transformations de twist peuvent aussi être appliquées dans le contexte de la corde hétérotique,
pour relier deux solutions supersymétriques sur des variétés ayant des topologies différentes. Ces
solutions ont été reliées auparavant par ce qui est connu sous le nom de transition Kähler/non-
Kähler: la relation est établie via une chaîne compliquée et indirecte de dualités impliquant un
passage en théorie M [54, 55, 56, 57, 58, 59, 60, 61, 62]. Afin de relier ces solutions par le twist,
nous discutons au préalable la reformulation des conditions de supersymétrie en corde hétérotique,
en terme de Géométrie Complexe Généralisée.

Dans l’appendice associé, certains points sont abordés plus en détails. Nous donnons tout d’abord
une construction plus détaillée des un-formes des variétés résolubles, et donnons une liste de ces
variétés en termes de ces un-formes globalement définies. Puis nous discutons les solutions poten-
tiellement non-géométriques T-duales aux solutions sur variétés résolubles. Enfin, dans le contexte
de la corde hétérotique, on étend le fibré tangent généralisé pour inclure le fibré de jauge, afin de
transformer les champs de jauges directement par un sous-ensemble de transformations locales de
O(d+ 16, d + 16).

D.2.3 Sources brisant la supersymétrie et les vides de de Sitter

Récemment, de nombreux travaux en compactifications de cordes se sont focalisés sur la recherche de
solutions de de Sitter. Ce regain d’intérêt est dû à de récentes données cosmologiques suggérant que
nous vivons dans un univers en expansion caractérisé par une constante cosmologique faible, mais
positive.

Les solutions de de Sitter sont bien plus difficiles à trouver que celles sur Minkowski ou Anti de Sitter.
Tout d’abord, l’espace-temps de de Sitter n’est pas compatible avec la supersymétrie. Comme indiqué
précédemment, les conditions de supersymétrie et les identités de Bianchi pour les flux impliquent
que l’ensemble des équations du mouvement soient satisfaites. Ainsi, la supersymétrie permet une
simplification technique conséquente dans la recherche des solutions, puisque l’on est amené à résoudre
des équations du premier ordre plutôt que des équations du second ordre.

Une deuxième difficulté concerne l’obtention d’une constante cosmologique positive Λ. Comme nous
allons le voir plus en détails, pour des solutions de supergravité, avoir Λ > 0 requiert un ajustement
non-trivial des paramètres géométriques et des flux de la solution.

Finalement, étant donné une solution dix-dimensionnelle, on doit vérifier que sa réduction quatre-
dimensionnelle soit stable, c’est-à-dire que les extrema correspondant du potentiel quatre-dimensionnel
doivent être des minima (pour des modèles d’inflation dit de “slow roll”, on peut revenir légèrement
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sur ce point). Cette contrainte est également difficile à satisfaire, et jusqu’à présent, aucune solution
de de Sitter stable admettant seulement des ingrédients dix-dimensionnels classiques n’a été trouvée.

Ici, nous nous intéressons aux solutions de de Sitter en supergravité de type IIA. Dans ce contexte,
il existe plusieurs théorèmes no-go allant contre l’existence de vides de de Sitter, et des manières
de les contourner ont également été proposées [12, 69, 70, 71, 42, 72, 73, 74, 75]. Par conséquent,
l’obtention de vides de de Sitter requiert certaines conditions nécessaires (mais non suffisantes). Tout
d’abord, des orientifolds sont nécessaires, tout comme pour les compactifications vers Minkowski [12].
Nous considérerons en particulier des sources O6/D6. Dans ce cas, la variété interne doit avoir un
rayon de courbure négatif et une masse de Roman non-nulle [12, 70, 42, 73]. Une autre possibilité est
de permettre des flux non-géométriques, mais nous ne suivrons pas cette approche ici.

Nous considérerons donc des configurations de type IIA avec une trois-forme NSNS et une zéro-
et deux-formes RR. Nous considérerons également des sources qui remplissent l’espace-temps quatre-
dimensionnel et seulement de dimension p = 6. Comme les sources pourraient avoir une intersection,
nous considérerons un dilaton constant, eφ = gs, et un facteur conforme constant.

De plus, en supposant que les sources sont supersymétriques, on peut combiner les traces quatre-
et six-dimensionnelles des équations d’Einstein, et l’équation du mouvement du dilaton pour obtenir

R4 =
2

3
(g2
s |F0|2 − |H|2) , (D.2.1)

R6 +
1

2
g2
s |F2|2 +

3

2
(g2
s |F0|2 − |H|2) = 0 . (D.2.2)

La seconde équation n’est qu’une contrainte sur les quantités internes, tandis que la première fixe R4.
On retrouve via ces deux équations les contraintes minimales: avoir F0 6= 0 et R6 < 0. La contribu-
tion négative de H n’est pas toujours facile à contrebalancer, car F0 et H ne sont pas indépendants
(ils sont reliés via l’équation du mouvement de H et l’identité de Bianchi de F2). Ajouter des flux
comme F4 et F6 n’aide aucunement car ils contribuent avec des signes négatifs. Par conséquent, en
pratique, F0 n’est souvent pas suffisant pour obtenir un vide de de Sitter. C’est la raison pour laque-
lle jusqu’à présent, tous les exemples connus de vides de de Sitter stables requièrent des ingrédients
additionnels comme des monopoles KK et des lignes de Wilson [71], des flux non-géométriques [76],
ou des corrections α′ et des D6-branes sondes [77].

Ici, nous aimerions voir si, en revenant sur une hypothèse, il serait possible de trouver des so-
lutions de de Sitter dans des compactifications géométriques classiques. Nous décidons de revenir
sur l’hypothèse de sources préservant la supersymétrie. Comme nous nous intéressons à des solutions
non-supersymétriques, il n’y a a priori pas de justification pour préserver la supersymétrie des sources,
si ce n’est leur stabilité sur laquelle nous reviendrons. Par conséquent nous proposons un ansatz pour
les sources brisant la supersymétrie. Ceci donnera une nouvelle contribution positive à R4.

Pour une source supersymétrique, on peut remplacer la forme de volume sur le volume d’univers
de la brane par le pullback du spineur pur non-intégrable [45, 30]

(
i∗[Im Φ−] ∧ eF

)
=
|a|2
8

√
|i∗[g] + F|dΣx , (D.2.3)

où i dénote le plongement du volume d’univers dans la variété interne M , g est la métrique interne
et F le tenseur de Faraday associé au champ de jauge sur le volume d’univers de la brane. Afin de
considérer des sources non-supersymétriques, nous proposons de modifier (D.2.3) en

(
i∗[ImX−] ∧ eF

)
=
√
|i∗[g] + F|dΣx , (D.2.4)

où X− est une polyforme impaire non-pure, pulled back depuis l’espace entier. X− est une expansion
générale sur la base de TM ⊕ T ∗M donnée par les spineurs purs Φ±. Pour les configurations super-
symétriques, X− se réduit à 8Φ−. Le nouveau terme de source (D.2.4) permet de réécrire le scalaire

137



de Ricci quatre-dimensionnel (D.2.1) comme

R4 =
2

3

(
gs
2

(T0 − T ) + g2
s |F0|2 − |H|2

)
, (D.2.5)

où T est la trace du tenseur d’énergie-impulsion, et T0 est la partie supersymétrique de la trace: pour
les sources supersymétriques, T0 = T . On peut montrer que T0 > 0, ce qui donne une contribution
positive à R4.

L’expression (D.2.4) aide de plus à résoudre les équations d’Einstein internes avec des flux non-
supersymétriques. En effet, nous sommes capables de trouver un exemple concret de solution de de
Sitter dix-dimensionnelle en supergravité de type IIA.

Afin de mieux justifier cet ansatz pour les sources brisant la supersymétrie, on montre que (avec
dH = d−H∧)

dH(e2A−φReX−) = 0 ,

dH(e4A−φ ImX−) = c0e
4A ∗ λ(F ) , (D.2.6)

où c0 est une constante fixée par les paramètres de la solution. Ce sont des équations du premier ordre
qui généralisent les conditions de supersymétrie (D.1.32) et (D.1.33) sur Φ−. Notez que comme dans
le cas supersymétrique, la seconde équation dans (D.2.6) implique que les équations du mouvement
des flux RR sont automatiquement satisfaites, à condition qu’il n’y a pas de source NSNS (dH = 0).
En effet, en différenciant (D.2.6), on obtient automatiquement

(d +H∧)(e4A ∗ F ) = 0 . (D.2.7)

Notez que la présence de c0, génériquement non égale à un, indique que, à la différence des calibrations
généralisées [45, 30, 46, 11], la densité d’énergie de source n’est ici pas minimisée. Nous cherchons ici
les extrema de la combinaison de l’énergie de la brane et du bulk.

L’idée de résoudre des équations du premier ordre pour trouver des solutions non-supersymétriques
n’est pas nouvelle. Une généralisation des équations sur les spineurs purs (D.1.31), (D.1.32) et (D.1.33)
pour étudier les solutions non-supersymétriques a été proposée récemment [78]. L’idée consiste à
exprimer la violation des conditions de supersymétrie comme une expansion sur la base Spin(6, 6)
construite à partir des spineurs purs. Par exemple, pour les compactifications vers Minkowski, les
équations du premier ordre modifiées sont

dH(e2A−φΦ1) = Υ ,

dH(eA−φRe Φ2) = Re Ξ ,

dH(e3A−φ Im Φ2)− |a|
2

8
e3A ∗ λ(F ) = Im Ξ , (D.2.8)

où schématiquement

Υ = a0Φ2 + ã0Φ2 + a1
mγ
mΦ1 + a2

mΦ1γ
m + ã1

mγ
mΦ1 + ã2

mΦ1γ
m

+amnγ
mΦ2γ

n + ãmnγ
nΦ2γ

m , (D.2.9)

Ξ = b0 Φ1 + b̃0 Φ1 + b1
mγ
mΦ2 + b2

mΦ2γ
m + bmnγ

mΦ1γ
n + b̃mnγ

nΦ1γ
m . (D.2.10)

Dans le cas particulier d’une structure SU(3), cette décomposition est équivalente à une expansion sur
classes de torsion SU(3). Cette idée a été utilisée pour chercher des solutions non-supersymétriques
sur Minkowski et Anti de Sitter [78, 72, 79, 80, 75]. Cependant, cette approche suppose que la su-
persymétrie quatre-dimensionnelle n’est pas brisée explicitement, et que la brisure n’apparaît que sur
la variété interne. Pour cette raison, cela ne s’applique pas directement aux compactifications de de
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Sitter.

Notre solution de de Sitter explicite a été trouvée sur la variété résoluble g
p,−p,±1
5.17 × S1 d’algèbre

(q1(p25 + 35), q2(p15 + 45), q2(p45− 15), q1(p35− 25), 0, 0). Pour p = 0, cette algèbre se réduit à s 2.5
(une algèbre résoluble sur laquelle on connaît déjà des solutions supersymétriques), tandis que pour
p 6= 0, la variété admet une solution supersymétrique à condition qu’une certaine combinaison de
paramètres, que l’on nomme λ, est égale à un. Pour un λ générique, les équations de spineurs purs
ne sont pas satisfaites et la supersymétrie est brisée. Cette configuration sert d’ansatz pour trouver
une solution de de Sitter. Notez qu’il est pratique d’avoir une limite supersymétrique dans laquelle
notre construction peut être testée.

La thèse contient une présentation plus détaillée du traitement des sources brisant la supersymétrie
et la forme explicite de la solution de de Sitter. De plus, nous déterminons puis étudions le potentiel ef-
fectif quatre-dimensionnel. En particulier, nous discutons comment les sources non-supersymétriques
contribuent à de nouveaux termes dans le potentiel. Nous analysons également la stabilité de la
solution en terme du volume et du dilaton. La stabilité des autres moduli reste indéterminée. De
même, la question de savoir si les propositions (D.2.4) et (D.2.6) peuvent fournir des sources stables
n’est pas traitée, et nous espérons y revenir plus tard.
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