P. Auzillon, B. Fiorina, R. Vicquelin, N. Darabiha, O. Gicquel et al., Modeling chemical flame structure and combustion dynamics in LES, Proceedings of the Combustion Institute, vol.33, issue.1, 2010.
DOI : 10.1016/j.proci.2010.05.045

URL : https://hal.archives-ouvertes.fr/hal-00491238

P. Auzillon, R. Vicquelin, O. Gicquel, N. Darabiha, D. Veynante et al., A Filtered Tabulated Chemistry Model for Large Eddy Simulation of Reactive Flows, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010.
DOI : 10.2514/6.2010-205

URL : https://hal.archives-ouvertes.fr/hal-00473221

M. Baum, T. Poinsot, and D. Thevenin, Accurate Boundary Conditions for Multicomponent Reactive Flows, Journal of Computational Physics, vol.116, issue.2, pp.247-261, 1995.
DOI : 10.1006/jcph.1995.1024

R. W. Bilger, Conditional moment closure for turbulent reacting flow. Physics of Fluids A-Fluid Dynamics, pp.436-444, 1993.

R. W. Bilger, S. H. Starner, K. , and R. J. , On reduced mechanisms for methane???air combustion in nonpremixed flames, Combustion and Flame, vol.80, issue.2, pp.135-149, 1990.
DOI : 10.1016/0010-2180(90)90122-8

M. Boger, D. Veynante, H. Boughanem, and A. Trouvé, Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion, Proceedings of the Combustion Institute, pp.917-925, 1998.
DOI : 10.1016/S0082-0784(98)80489-X

K. Bray, P. Domingo, and L. Vervisch, Role of the progress variable in models for partially premixed turbulent combustion, Combustion and Flame, vol.141, issue.4, pp.431-437, 2005.
DOI : 10.1016/j.combustflame.2005.01.017

T. D. Butler, O. 'rourke, and P. J. , A numerical method for twodimensional unsteady reacting flows, Proceedings of the Combustion Institute, pp.1503-1515, 1977.

V. Bykov and U. Maas, The extension of the ILDM concept to reaction-diffusion manifolds. Combustion Theory and Modelling, pp.839-862, 2007.

R. Cabra, Cabra and co-workers webpage, 2002.

R. Cabra, turbulent jet flames into a vitiated coflow, 2004.

R. Cabra, J. Y. Chen, R. W. Dibble, A. N. Karpetis, and R. S. Barlow, Lifted methane???air jet flames in a vitiated coflow, Combustion and Flame, vol.143, issue.4, pp.491-506, 2005.
DOI : 10.1016/j.combustflame.2005.08.019

R. Cabra, T. Myhrvold, J. Y. Chen, R. W. Dibble, A. N. Karpetis et al., Simultaneous laser raman-rayleigh-lif measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow, Proceedings of the Combustion Institute, pp.1881-1888, 2002.
DOI : 10.1016/S1540-7489(02)80228-0

R. R. Cao, S. B. Pope, and A. R. Masri, Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations, Combustion and Flame, vol.142, issue.4, pp.438-453, 2005.
DOI : 10.1016/j.combustflame.2005.04.005

A. Cavaliere and M. De-joannon, Mild Combustion, Progress in Energy and Combustion Science, pp.329-366, 2004.
DOI : 10.1016/j.pecs.2004.02.003

C. Team, Avbp code. www.cerfacs.fr/4-26334-The-AVBP-code, 2010.

V. Chakravarthy and S. Menon, Subgrid modeling of turbulent premixed flames in the flamelet regime. Flow, Turbulence and Combustion, pp.133-161, 2000.

C. S. Chang, Y. Zhang, K. N. Bray, R. , and B. , Modelling and Simulation of Autoignition Under Simulated Diesel-Engine Conditions, Combustion Science and Technology, vol.105, issue.46, pp.205-219, 1996.
DOI : 10.1080/00102209108924075

F. Charlette, C. Meneveau, and D. Veynante, A power-law flame wrinkling model for LES of premixed turbulent combustion Part II: dynamic formulation, Combustion and Flame, vol.131, issue.1-2, pp.159-180, 2002.
DOI : 10.1016/S0010-2180(02)00401-7

F. Charlette, C. Meneveau, and D. Veynante, A power-law flame wrinkling model for LES of premixed turbulent combustion Part II: dynamic formulation, Combustion and Flame, vol.131, issue.1-2, pp.181-197, 2002.
DOI : 10.1016/S0010-2180(02)00401-7

B. C. Choi, K. N. Kim, C. , and S. H. , Autoignited laminar lifted flames of propane in coflow jets with tribrachial edge and mild combustion, Combustion and Flame, vol.156, issue.2, pp.396-404, 2009.
DOI : 10.1016/j.combustflame.2008.10.020

P. J. Coelho and N. Peters, Numerical simulation of a mild combustion burner, Combustion and Flame, vol.124, issue.3, pp.503-518, 2001.
DOI : 10.1016/S0010-2180(00)00206-6

O. Colin, F. Ducros, D. Veynante, and T. Poinsot, A thickened flame model for large eddy simulations of turbulent premixed combustion, Physics of Fluids, vol.12, issue.7, pp.1843-1863, 2000.
DOI : 10.1063/1.870436

O. Colin and M. Rudgyard, Development of High-Order Taylor???Galerkin Schemes for LES, Journal of Computational Physics, vol.162, issue.2, pp.338-371, 2000.
DOI : 10.1006/jcph.2000.6538

C. F. Curtiss and J. O. Hirschfelder, Transport Properties of Multicomponent Gas Mixtures, The Journal of Chemical Physics, vol.17, issue.6, pp.550-555, 1949.
DOI : 10.1063/1.1747319

B. B. Dally, A. N. Karpetis, and R. S. Barlow, Structure of turbulent non-premixed jet flames in a diluted hot coflow, Proceedings of the Combustion Institute, pp.1147-1154, 2002.
DOI : 10.1016/S1540-7489(02)80145-6

B. B. Dally, E. Riesmeier, and N. Peters, Effect of fuel mixture on moderate and intense low oxygen dilution combustion, Combustion and Flame, vol.137, issue.4, pp.418-431, 2004.
DOI : 10.1016/j.combustflame.2004.02.011

S. De-ferrières, A. Bakali, B. Lefort, M. Montero, and J. F. Pauwels, Experimental and numerical investigation of low-pressure laminar premixed synthetic natural gas/O2/N2 and natural gas/H2/O2/N2 flames, Combustion and Flame, vol.154, issue.3, pp.601-623, 2008.
DOI : 10.1016/j.combustflame.2008.04.018

P. Desjardin and S. Frankel, Large eddy simulation of a nonpremixed reacting jet: Application and assessment of subgrid-scale combustion models, Physics of Fluids, vol.10, issue.9, pp.2298-2314, 1998.
DOI : 10.1063/1.869749

P. Domingo, L. Vervisch, S. Payet, and R. Hauguel, DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry, Combustion and Flame, vol.143, issue.4, pp.566-586, 2005.
DOI : 10.1016/j.combustflame.2005.08.023

P. Domingo, L. Vervisch, and D. Veynante, Large-eddy simulation of a lifted methane jet flame in a vitiated coflow, Combustion and Flame, vol.152, issue.3, pp.415-432, 2008.
DOI : 10.1016/j.combustflame.2007.09.002

URL : https://hal.archives-ouvertes.fr/hal-00270734

J. Donbar, J. Driscoll, C. , and C. , Strain rates measured along the wrinkled flame contour within turbulent non-premixed jet flames, Combustion and Flame, vol.125, issue.4, pp.1239-1257, 2001.
DOI : 10.1016/S0010-2180(01)00246-2

C. Duwig, Study of a filtered flamelet formulation for large eddy simulation of premixed turbulent flames. Flow, Turbulence and Combustion, pp.433-454, 2007.

E. Effelsberg and N. Peters, Scalar dissipation rates in turbulent jets and jet diffusion flames, Proceedings of the Combustion Institute, pp.693-700, 1989.
DOI : 10.1016/S0082-0784(89)80077-3

R. Eggels, Modelling of combustion processes and N O formation with reduced reaction mechanism, 1996.

H. El-asrag and S. Menon, Large eddy simulation of soot formation in a turbulent non-premixed jet flame, Combustion and Flame, vol.156, issue.2, pp.385-395, 2009.
DOI : 10.1016/j.combustflame.2008.09.003

M. Embouazza, Etude de l'Auto-Allumage par Réduction des Schémas Cinétiques Chimiques. Application à la Combustion Homogène diesel, 2005.

O. Esnault, M. Boileau, R. Vicquelin, B. Fiorina, and O. Gicquel, A Method To Accelerate LES Explicit Solvers Using Local Time-Stepping, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010.
DOI : 10.2514/6.2010-123

URL : https://hal.archives-ouvertes.fr/hal-00472692

O. Esnault, R. Vicquelin, M. Boileau, B. Fiorina, and O. Gicquel, Optimization of dns/les explicit solvers for combustor simulations using local time-stepping, 2009.

V. Fichet, Modélisation de la combustion du gaz naturel par réseaux de réacteurs avec cinétique chimique détaillée, 2008.

B. Fiorina, R. Baron, O. Gicquel, D. Thevenin, S. Carpentier et al., Modelling non-adiabatic partially premixed flames using flame-prolongation of ildm. Combustion Theory and Modelling, pp.449-470, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00256666

B. Fiorina, O. Gicquel, L. Vervisch, S. Carpentier, and N. Darabiha, Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation, Combustion and Flame, vol.140, issue.3, pp.147-160, 2005.
DOI : 10.1016/j.combustflame.2004.11.002

URL : https://hal.archives-ouvertes.fr/hal-00126045

B. Fiorina, O. Gicquel, L. Vervisch, S. Carpentier, and N. Darabiha, Premixed turbulent combustion modeling using tabulated detailed chemistry and PDF, Proceedings of the Combustion Institute, pp.867-874, 2005.
DOI : 10.1016/j.proci.2004.08.062

URL : https://hal.archives-ouvertes.fr/hal-00116320

B. Fiorina, O. Gicquel, and D. Veynante, Turbulent flame simulation taking advantage of tabulated chemistry self-similar properties, Proceedings of the Combustion Institute, pp.1687-1694, 2009.
DOI : 10.1016/j.proci.2008.06.004

URL : https://hal.archives-ouvertes.fr/hal-00433750

W. A. Fiveland, Discrete-Ordinates Solutions of the Radiative Transport Equation for Rectangular Enclosures, Journal of Heat Transfer, vol.106, issue.4, pp.699-706, 1984.
DOI : 10.1115/1.3246741

C. Galletti, A. Parente, and L. Tognotti, Numerical and experimental investigation of a mild combustion burner, Combustion and Flame, vol.151, issue.4, pp.649-664, 2007.
DOI : 10.1016/j.combustflame.2007.07.016

J. Galpin, Modélisation LES de la combustion avec une prise en compte des effets de cinétique détaillée et en perspective d'apllication moteur, 2007.

J. Galpin, C. Angelberger, A. Naudin, and L. Vervisch, Largeeddy simulation of h-2-air auto-ignition using tabulated detailed chemistry, Journal of Turbulence, vol.9, issue.13, pp.1-21, 2008.

J. Galpin, A. Naudin, L. Vervisch, C. Angelberger, O. Colin et al., Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner, Combustion and Flame, vol.155, issue.1-2, pp.247-266, 2008.
DOI : 10.1016/j.combustflame.2008.04.004

F. Gao and E. Obrien, A large-eddy simulation scheme for turbulent reacting flows. Physics of Fluids A-Fluid Dynamics, pp.1282-1284, 1993.

M. Germano, U. Piomelli, P. Moin, C. , and W. H. , A dynamic subgrid???scale eddy viscosity model, Physics of Fluids A: Fluid Dynamics, vol.3, issue.7, pp.1760-1765, 1991.
DOI : 10.1063/1.857955

O. Gicquel, Développement d'une nouvelle méthode de réduction des schémas cinétiques : Application au méthane, 1999.

O. Gicquel, N. Darabiha, and D. Thevenin, Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proceedings of the Combustion Institute 28th International Symposium on Combustion, pp.1901-1908, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00256701

O. Gicquel, D. Thevenin, M. Hilka, and N. Darabiha, Direct numerical simulation of turbulent premixed flames using intrinsic lowdimensional manifolds. Combustion Theory and Modelling, pp.479-502, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00256705

S. S. Girimaji, on the modeling of scalar diffusion in isotropic turbulence . Physics of Fluids A-Fluid Dynamics, pp.2529-2537, 1992.

S. S. Girimaji and Y. Zhou, Analysis and modeling of subgrid scalar mixing using numerical data, Physics of Fluids, vol.8, issue.5, pp.1224-1236, 1996.
DOI : 10.1063/1.868894

K. Gkagkas and R. P. Lindstedt, Transported PDF modelling with detailed chemistry of pre- and auto-ignition in CH4/air mixtures, Proceedings of the Combustion Institute, pp.311559-1566, 2007.
DOI : 10.1016/j.proci.2006.08.078

G. Godel, Modélisation de sous-maille de la combustion turbulente. Développement d'outils pour la prédiction de la pollution dans une chambre aéronautique, 2010.

R. L. Gordon, A. R. Masri, M. , and E. , Simultaneous Rayleigh temperature, OH- and CH2O-LIF imaging of methane jets in a vitiated coflow, Combustion and Flame, vol.155, issue.1-2, pp.181-195, 2008.
DOI : 10.1016/j.combustflame.2008.07.001

R. L. Gordon, A. R. Masri, S. B. Pope, and G. M. Goldin, A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow, Combustion Theory and Modelling, vol.11, issue.3, pp.351-376, 2007.
DOI : 10.1016/0010-2180(84)90088-9

R. L. Gordon, A. R. Masri, S. B. Pope, and G. M. Goldin, Transport budgets in turbulent lifted flames of methane autoigniting in a vitiated co-flow, Combustion and Flame, vol.151, issue.3, pp.495-511, 2007.
DOI : 10.1016/j.combustflame.2007.07.001

R. L. Gordon, S. H. Starner, A. R. Masri, and R. W. Bilger, Further characterisation of lifted hydrogen and methane flames issuing into a vitiated coflow, Proceedings of the 5th Asia-Pacific Conference on Combustion, pp.333-336, 2005.

E. W. Grandmaison, I. Yimer, H. A. Becker, and A. Sobiesiak, The Strong-Jet/Weak-Jet Problem and Aerodynamic Modeling of the CGRI Burner, Combustion and Flame, vol.114, issue.3-4, pp.3-4381, 1998.
DOI : 10.1016/S0010-2180(97)00314-3

A. K. Gupta, S. Bolz, and T. Hasegawa, Effect of Air Preheat Temperature and Oxygen Concentration on Flame Structure and Emission, Journal of Energy Resources Technology, vol.121, issue.3, pp.209-216, 1999.
DOI : 10.1115/1.2795984

E. Gutmark and C. Ho, Preferred modes and the spreading rates of jets, Physics of Fluids, vol.26, issue.10, pp.2932-2938, 1983.
DOI : 10.1063/1.864058

C. Hasse, A Two-Dimensional Flamelet Model for Multiple Injections in Diesel Engines, 2004.

C. Hasse and N. Peters, A two mixture fraction flamelet model applied to split injections in a DI Diesel engine, Proceedings of the Combustion Institute, pp.2755-2762, 2005.
DOI : 10.1016/j.proci.2004.08.166

E. Hawkes and J. Chen, Direct numerical simulation of hydrogen-enriched lean premixed methane???air flames, Combustion and Flame, vol.138, issue.3, pp.242-258, 2004.
DOI : 10.1016/j.combustflame.2004.04.010

E. R. Hawkes and R. S. Cant, A flame surface density approach to large-eddy simulation of premixed turbulent combustion, Proceedings of the Combustion Institute, pp.51-58, 2000.
DOI : 10.1016/S0082-0784(00)80194-0

E. R. Hawkes and R. S. Cant, Physical and numerical realizability requirements for flame surface density approaches, Combustion Theory and Modelling, vol.278, issue.4, pp.699-720, 2001.
DOI : 10.1088/1364-7830/5/4/310

D. C. Haworth, Progress in probability density function methods for turbulent reacting flows, Progress in Energy and Combustion Science, 2010.
DOI : 10.1016/j.pecs.2009.09.003

R. Hilbert, F. Tap, H. El-rabii, and D. Thevenin, Impact of detailed chemistry and transport models on turbulent combustion simulations, Progress in Energy and Combustion Science, pp.61-117, 2004.
DOI : 10.1016/j.pecs.2003.10.001

R. Hilbert and D. Thevenin, Autoignition of turbulent non-premixed flames investigated using direct numerical simulations, Combustion and Flame, vol.128, issue.1-2, pp.22-37, 2002.
DOI : 10.1016/S0010-2180(01)00330-3

Y. Huang, H. Sung, S. Hsieh, Y. , and V. , Large-Eddy Simulation of Combustion Dynamics of Lean-Premixed Swirl-Stabilized Combustor, Journal of Propulsion and Power, vol.19, issue.5, pp.782-794, 2003.
DOI : 10.2514/2.6194

M. Ihme, C. M. Cha, and H. Pitsch, Prediction of local extinction and re-ignition effects in non-premixed turbulent combustion using a flamelet/progress variable approach, Proceedings of the Combustion Institute, pp.793-800, 2005.
DOI : 10.1016/j.proci.2004.08.260

M. Ihme and H. Pitsch, Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation, Physics of Fluids, vol.20, issue.5, p.55110, 2008.
DOI : 10.1063/1.2911047

M. Ihme and H. Pitsch, Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model, Combustion and Flame, vol.155, issue.1-2, pp.70-89, 2008.
DOI : 10.1016/j.combustflame.2008.04.001

M. Ihme, C. Schmitt, and H. Pitsch, Optimal artificial neural networks and tabulation methods for chemistry representation in LES of a bluff-body swirl-stabilized flame, Proceedings of the Combustion Institute, pp.321527-1535, 2009.
DOI : 10.1016/j.proci.2008.06.100

W. P. Jones and B. E. Launder, The prediction of laminarization with a two-equation model of turbulence, International Journal of Heat and Mass Transfer, vol.15, issue.2, p.301, 1972.
DOI : 10.1016/0017-9310(72)90076-2

W. P. Jones and S. Navarro-martinez, Large eddy simulation of autoignition with a subgrid probability density function method, Combustion and Flame, vol.150, issue.3, pp.170-187, 2007.
DOI : 10.1016/j.combustflame.2007.04.003

M. Katsuki and T. Hasegawa, The science and technology of combustion in highly preheated air, 27th Symposium on Combustion, pp.3135-3146, 1998.
DOI : 10.1016/S0082-0784(98)80176-8

R. J. Kee, J. F. Grcar, M. D. Smooke, and J. A. Miller, A fortran program for modelling steady laminar one-dimensional premixed flames, 1985.

R. J. Kee, J. F. Grcar, M. D. Smooke, and J. A. Miller, A fortran program for modelling steady laminar one-dimensional premixed flames, 1992.

R. J. Kee, J. F. Grear, M. D. Smooke, and J. A. Miller, A fortran program for modeling steady laminarone-dimensional premixed flames, 1985.

A. Kempf, H. Forkel, J. Y. Chen, A. Sadiki, and J. Janicka, Largeeddy simulation of a counterflow configuration with and without combustion, Proceedings of the Combustion Institute, pp.35-40, 2000.

J. P. Kim, U. Schnell, G. Scheffknecht, and A. C. Benim, Numerical modelling of MILD combustion for coal, Progress in computational fluid dynamics, pp.337-346, 2007.
DOI : 10.1504/PCFD.2007.014683

S. Kumar, P. J. Paul, and H. S. Mukunda, PREDICTION OF FLAME LIFTOFF HEIGHT OF DIFFUSION/PARTIALLY PREMIXED JET FLAMES AND MODELING OF MILD COMBUSTION BURNERS, Combustion Science and Technology, vol.27, issue.10, pp.1792219-2253, 2007.
DOI : 10.1016/S0360-1285(97)00006-3

M. Lesieur, O. Métais, C. , and P. , Large-Eddy Simulations of Turbulence, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00261551

G. Lodato, P. Domingo, and L. Vervisch, Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows, Journal of Computational Physics, vol.227, issue.10, pp.2275105-5143, 2008.
DOI : 10.1016/j.jcp.2008.01.038

G. Lodato, L. Vervisch, D. , and P. , A compressible walladapting similarity mixed model for large-eddy simulation of the impinging round jet, Physics of Fluids, vol.21, issue.3, 2009.

T. Lu and C. K. Law, A directed relation graph method for mechanism reduction, Proceedings of the Combustion Institute, pp.1333-1341, 2005.
DOI : 10.1016/j.proci.2004.08.145

U. Maas and S. B. Pope, Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space, Combustion and Flame, vol.88, issue.3-4, pp.3-4239, 1992.
DOI : 10.1016/0010-2180(92)90034-M

B. F. Magnussen and B. H. Hjertager, On the mathematical modelling of turbulent combustion with special emphasis on soot formation and combustion, Proceedings of the 16th Symposium (Int.) on combustion, pp.719-729, 1976.

M. Mancini, P. Schwoppe, R. Weber, and S. Orsino, On mathematical modelling of flameless combustion, Combustion and Flame, vol.150, issue.1-2, pp.54-59, 2007.
DOI : 10.1016/j.combustflame.2007.03.007

A. R. Masri, R. Cao, S. B. Pope, and G. M. Goldin, Pdf calculations of turbulent lifted flames of h 2 /n 2 fuel issuing into a vitiated co-flow. Combustion Theory and Modelling, pp.1-22, 2004.

E. Masson, Etude expérimentale des champs dynamiques et scalaires de la combustion sans flamme, 2005.

E. Mastorakos, Ignition of turbulent non-premixed flames, Progress in Energy and Combustion Science, pp.57-97, 2009.
DOI : 10.1016/j.pecs.2008.07.002

P. R. Medwell, P. A. Kalt, and B. B. Dally, Simultaneous imaging of OH, formaldehyde, and temperature of turbulent nonpremixed jet flames in a heated and diluted coflow, Combustion and Flame, vol.148, issue.1-2, pp.48-61, 2007.
DOI : 10.1016/j.combustflame.2006.10.002

P. R. Medwell, P. A. Kalt, and B. B. Dally, Imaging of diluted turbulent ethylene flames stabilized on a Jet in Hot Coflow (JHC) burner, Combustion and Flame, vol.152, issue.1-2, pp.100-113, 2008.
DOI : 10.1016/j.combustflame.2007.09.003

W. Meier, P. Weigand, X. Duan, and R. Giezendanner-thoben, Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame, Combustion and Flame, vol.150, issue.1-2, pp.2-26, 2007.
DOI : 10.1016/j.combustflame.2007.04.002

S. Menon and W. Jou, Large-Eddy Simulations of Combustion Instability in an Axisymmetric Ramjet Combustor, Combustion Science and Technology, vol.75, issue.1-3, pp.53-72, 1991.
DOI : 10.1007/BF01061452

J. Michel, O. Colin, C. Angelberger, and D. Veynante, Using the tabulated diffusion flamelet model adf-pcm to simulate a lifted methaneair jet flame, Combustion and Flame, issue.7, pp.1561318-1331, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00430396

J. Michel, O. Colin, and D. Veynante, Modeling ignition and chemical structure of partially premixed turbulent flames using tabulated chemistry, Combustion and Flame, vol.152, issue.1-2, pp.80-99, 2008.
DOI : 10.1016/j.combustflame.2007.09.001

URL : https://hal.archives-ouvertes.fr/hal-00271673

Y. Mizobuchi, S. Tachibana, J. Shinjo, S. Ogawa, and T. Takeno, A numerical analysis of the structure of a turbulent hydrogen jet lifted flame, The proceedings of the Twenty-Ninth Symposium (Int.) on Combustion, pp.2009-2015, 2002.
DOI : 10.1016/S1540-7489(02)80245-0

V. Moureau, B. Fiorina, and H. Pitsch, A level set formulation for premixed combustion LES considering the turbulent flame structure, Combustion and Flame, vol.156, issue.4, pp.801-812, 2009.
DOI : 10.1016/j.combustflame.2009.01.019

URL : https://hal.archives-ouvertes.fr/hal-00472629

V. Moureau, G. Lartigue, Y. Sommerer, C. Angelberger, O. Colin et al., Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids, Journal of Computational Physics, vol.202, issue.2, pp.710-736, 2005.
DOI : 10.1016/j.jcp.2004.08.003

V. Moureau, P. Minot, H. Pitsch, and C. Berat, A ghost-fluid method for large-eddy simulations of premixed combustion in complex geometries, Journal of Computational Physics, vol.221, issue.2, pp.600-614, 2007.
DOI : 10.1016/j.jcp.2006.06.031

A. Mura, V. Robin, and M. Champion, Modeling of scalar dissipation in partially premixed turbulent flames, Combustion and Flame, vol.149, issue.1-2, pp.217-224, 2007.
DOI : 10.1016/j.combustflame.2006.11.004

URL : https://hal.archives-ouvertes.fr/hal-00246547

A. Naudin, Simulation des grandes échelles de la combustion turbulente avec chimie détaillée tabulée, 2008.

P. Nguyen, L. Vervisch, V. Subramanian, D. , and P. , Multidimensional flamelet-generated manifolds for partially premixed combustion, Combustion and Flame, vol.157, issue.1, pp.43-61, 2010.
DOI : 10.1016/j.combustflame.2009.07.008

F. Nicoud and F. Ducros, Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion, pp.183-200, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00910373

Ó. Conaire, M. Curran, H. J. Simmie, J. M. Pitz, W. J. et al., A comprehensive modeling study of hydrogen oxidation, International Journal of Chemical Kinetics, vol.217, issue.11, pp.36603-622, 2004.
DOI : 10.1002/kin.20036

M. Oberlack and N. Peters, On stochastic damköhler number variations in a homogeneous flow reactor. Combustion Theory and Modelling, pp.495-509, 2000.

N. Okong-'o and J. Bellan, Consistent Boundary Conditions for Multicomponent Real Gas Mixtures Based on Characteristic Waves, Journal of Computational Physics, vol.176, issue.2, pp.330-344, 2002.
DOI : 10.1006/jcph.2002.6990

A. Parente, C. Galletti, and L. Tognotti, Effect of the combustion model and kinetic mechanism on the MILD combustion in an industrial burner fed with hydrogen enriched fuels, International Journal of Hydrogen Energy, vol.33, issue.24, pp.337553-7564, 2008.
DOI : 10.1016/j.ijhydene.2008.09.058

S. Patankar, Numerical heat transfer and fluid flow, 1980.

N. Peters, Numerical and asymptotic analysis of systematically reduced reaction schemes for hydrocarbon flames, Lecture Notes in Physics, vol.241, pp.90-109, 1985.
DOI : 10.1007/BFb0008654

N. Peters, Turbulent combustion, 2000.
DOI : 10.1017/cbo9780511612701

S. Pfadler, J. Kerl, F. Beyrau, A. Leipertz, A. Sadiki et al., Direct evaluation of the subgrid scale scalar flux in turbulent premixed flames with conditioned dual-plane stereo PIV, Proceedings of the Combustion Institute, pp.1723-1730, 2009.
DOI : 10.1016/j.proci.2008.05.027

C. D. Pierce and P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, Journal of Fluid Mechanics, vol.504, pp.73-97, 2004.
DOI : 10.1017/S0022112004008213

H. Pitsch and . Aachen, A c++ computer program for 0-d combustion and 1-d laminar flame calculations, 1998.

H. Pitsch, Unsteady flamelet modeling of differential diffusion in turbulent jet diffusion flames, Combustion and Flame, vol.123, issue.3, pp.358-374, 2000.
DOI : 10.1016/S0010-2180(00)00135-8

H. Pitsch, A consistent level set formulation for large-eddy simulation of premixed turbulent combustion, Combustion and Flame, vol.143, issue.4, pp.587-598, 2005.
DOI : 10.1016/j.combustflame.2005.08.031

H. Pitsch, LARGE-EDDY SIMULATION OF TURBULENT COMBUSTION, Annual Review of Fluid Mechanics, vol.38, issue.1, pp.453-482, 2006.
DOI : 10.1146/annurev.fluid.38.050304.092133

H. Pitsch, M. Chen, and N. Peters, Unsteady flamelet modeling of turbulent hydrogen-air diffusion flames, Proceedings of the Combustion Institute, pp.1057-1064, 1998.
DOI : 10.1016/S0082-0784(98)80506-7

H. Pitsch and N. Peters, A Consistent Flamelet Formulation for Non-Premixed Combustion Considering Differential Diffusion Effects, Combustion and Flame, vol.114, issue.1-2, pp.26-40, 1998.
DOI : 10.1016/S0010-2180(97)00278-2

H. Pitsch and H. Steiner, Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D), Physics of Fluids, vol.12, issue.10, pp.2541-2554, 2000.
DOI : 10.1063/1.1288493

T. Poinsot and D. Veynante, Theorical and Numerical Combustion, 2005.

T. J. Poinsot and S. K. Lele, Boundary conditions for direct simulations of compressible viscous flows, Journal of Computational Physics, vol.101, issue.1, pp.104-129, 1992.
DOI : 10.1016/0021-9991(92)90046-2

S. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combustion Theory and Modelling, pp.41-63, 1997.

S. Pope, Ten questions concerning the large-eddy simulation of turbulent flows, New Journal of Physics, vol.6, 2004.
DOI : 10.1088/1367-2630/6/1/035

S. B. Pope, An explanation of the turbulent round-jet/plane-jet anomaly, AIAA Journal, vol.16, issue.3, pp.279-281, 1978.
DOI : 10.2514/3.7521

S. B. Pope, Turbulent Flows, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00338511

V. Raman and H. Pitsch, Large-eddy simulation of a bluff-body-stabilized non-premixed flame using a recursive filter-refinement procedure, Combustion and Flame, vol.142, issue.4, pp.329-347, 2005.
DOI : 10.1016/j.combustflame.2005.03.014

Z. Ren, S. Pope, A. Vladimirsky, and J. Guckenheimer, The invariant constrained equilibrium edge preimage curve method for the dimension reduction of chemical kinetics, The Journal of Chemical Physics, vol.124, issue.11, p.124114111, 2006.
DOI : 10.1063/1.2177243

Z. Ren and S. B. Pope, The use of slow manifolds in reactive flows, Combustion and Flame, vol.147, issue.4, pp.243-261, 2006.
DOI : 10.1016/j.combustflame.2006.09.002

Z. Ren, S. B. Pope, A. Vladimirsky, and J. M. Guckenheimer, Application of the ICE-PIC method for the dimension reduction of chemical kinetics coupled with transport, Proceedings of the Combustion Institute, pp.31473-481, 2007.
DOI : 10.1016/j.proci.2006.07.106

G. Ribert, Développement d'un schéma cinétique réduit du kérosène : Application au calcul d'une chambre de turboréacteur, 2005.

G. Ribert, O. Gicquel, N. Darabiha, and D. Veynante, Tabulation of complex chemistry based on self-similar behavior of laminar premixed flames, Combustion and Flame, vol.146, issue.4, pp.649-664, 2006.
DOI : 10.1016/j.combustflame.2006.07.002

URL : https://hal.archives-ouvertes.fr/hal-00114951

S. Richard, O. Colin, O. Vermorel, A. Benkenida, C. Angelberger et al., Towards large eddy simulation of combustion ib spark ignition engines, Proceedings of the Combustion Institute, pp.3059-3066, 2007.

C. Rottier, Etude expérimentale de l'influence des mélanges gazeux sur la combustion sans flamme, 2010.

S. Roux, G. Lartigue, T. Poinsot, U. Meier, and C. Berat, Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations, Combustion and Flame, vol.141, issue.1-2, pp.40-54, 2005.
DOI : 10.1016/j.combustflame.2004.12.007

D. Rudy, J. Strikwerda, and J. , A nonreflecting outflow boundary condition for subsonic navier-stokes calculations, Journal of Computational Physics, vol.36, issue.1, pp.55-70, 1980.
DOI : 10.1016/0021-9991(80)90174-6

N. Schaffel, M. Mancini, A. Szl¸ekszl¸ek, W. , and R. , Mathematical modeling of MILD combustion of pulverized coal, Combustion and Flame, vol.156, issue.9, pp.1771-1784, 2009.
DOI : 10.1016/j.combustflame.2009.04.008

L. Selle, G. Lartigue, T. Poinsot, R. Koch, K. Schildmacher et al., Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes, Combustion and Flame, vol.137, issue.4, pp.489-505, 2004.
DOI : 10.1016/j.combustflame.2004.03.008

URL : https://hal.archives-ouvertes.fr/hal-00271666

N. Shah, New method of computation of radiation heat transfer in combustion chambers, 1979.

J. Smagorinsky, GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS, Monthly Weather Review, vol.91, issue.3, pp.99-164, 1963.
DOI : 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

A. Smirnov, S. Shi, C. , and I. , Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling, Journal of Fluids Engineering, vol.123, issue.2, pp.359-371, 2001.
DOI : 10.1115/1.1369598

G. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer et al., Gri-mech web site, 2000.

D. Stull and H. Prophet, Janaf thermochemical tables, 1971.

G. G. Szegö, B. B. Dally, N. , and G. J. , Operational characteristics of a parallel jet MILD combustion burner system, Combustion and Flame, vol.156, issue.2, pp.429-438, 2009.
DOI : 10.1016/j.combustflame.2008.08.009

K. Thompson, Time dependent boundary conditions for hyperbolic systems, Journal of Computational Physics, vol.68, issue.1, pp.1-24, 1987.
DOI : 10.1016/0021-9991(87)90041-6

A. S. Tomlin, T. Turànyi, M. J. Pilling, and M. J. Pilling, Chapter 4 Mathematical tools for the construction, investigation and reduction of combustion mechanisms, pp.293-437, 1997.
DOI : 10.1016/S0069-8040(97)80019-2

T. Turanyi, Reduction of large reaction-mechanisms, New Journal of Chemistry, vol.14, issue.11, pp.795-803, 1990.

S. Undapalli, S. Srinivasan, and S. Menon, LES of premixed and non-premixed combustion in a stagnation point reverse flow combustor, Proceedings of the Combustion Institute, pp.1537-1544, 2009.
DOI : 10.1016/j.proci.2008.06.167

S. Vajda, P. Valko, and T. Turanyi, Principal component analysis of kinetic models, International Journal of Chemical Kinetics, vol.14, issue.1, pp.55-81, 1985.
DOI : 10.1002/kin.550170107

J. Van-oijen and L. De-goey, Modelling of Premixed Laminar Flames using Flamelet-Generated Manifolds, Combustion Science and Technology, vol.384, issue.1, pp.113-137, 2000.
DOI : 10.1088/1364-7830/3/3/304

J. A. Van-oijen, Flamelet-Generated Manifolds: Development and Application to Premixed Laminar Flames, 2002.

J. A. Van-oijen, F. A. Lammers, and L. P. De-goey, Modeling of complex premixed burner systems by using flamelet-generated manifolds, Combustion and Flame, vol.127, issue.3, pp.2124-2134, 2001.
DOI : 10.1016/S0010-2180(01)00316-9

L. Vervisch, R. Haugel, P. Domingo, and M. Rullaud, Three facets of turbulent combustion modelling: DNS of premixed V-flame, LES of lifted nonpremixed flame and RANS of jet-flame, Journal of Turbulence, vol.5, issue.4, pp.1-36, 2004.
DOI : 10.1088/1468-5248/5/1/004

D. Veynante, B. Fiorina, P. Domingo, and L. Vervisch, Using self-similar properties of turbulent premixed flames to downsize chemical tables in high-performance numerical simulations. Combustion Theory and Modelling, 21st International Colloquium on the Dynamics of Explosion and Reactive Systems, pp.1055-1088, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00430352

D. Veynante and L. Vervisch, Turbulent combustion modeling, Progress in Energy and Combustion Science, pp.193-266, 2002.
DOI : 10.1016/S0360-1285(01)00017-X

URL : https://hal.archives-ouvertes.fr/hal-01219272

R. Vicquelin, B. Fiorina, N. Darabiha, O. Gicquel, and D. Veynante, Coupling tabulated chemistry with Large Eddy Simulation of turbulent reactive flows, Comptes Rendus M??canique, vol.337, issue.6-7, pp.6-7329, 2009.
DOI : 10.1016/j.crme.2009.06.011

URL : https://hal.archives-ouvertes.fr/hal-00472613

R. Vicquelin, B. Fiorina, N. Darabiha, D. Veynante, V. Moureau et al., Coupling tabulated chemistry with Large Eddy Simulation of turbulent reactive flows, Comptes Rendus M??canique, vol.337, issue.6-7, 2008.
DOI : 10.1016/j.crme.2009.06.011

URL : https://hal.archives-ouvertes.fr/hal-00472613

R. Vicquelin, B. Fiorina, G. Lartigue, and O. Gicquel, Large eddy simulation of a methane-air turbulent jet flame in a vitiated co-flow, 11th International Conference on Numerical Combustion, 2008.

A. W. Vreman, J. A. Van-oijen, L. P. De-goey, and R. J. Bastiaans, Subgrid scale modeling in large eddy simulation of turbulent combustion using premixed flamelet chemistry. Flow, Turbulence and Combustion, pp.511-535, 2009.

J. Warnatz, U. Mass, and R. W. Dibble, Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant formation. Spinger, 2006.

F. Williams, Combustion Theory. Persus Books, 1985.
URL : https://hal.archives-ouvertes.fr/hal-00014918

Z. Wu, S. H. Starner, and R. W. Bilger, Lift-off heights of turbulent h 2 /n 2 jet flames in a vitiated coflow, Proceedings of the 2003 Australian Symposium on Combustion and the 8th Australian Flame Days, 2003.

Z. J. Wu, A. R. Masri, and R. W. Bilger, An experimental investigation of the turbulence structure of a lifted h-2/n-2 jet flame in a vitiated co-flow. Flow, Turbulence and Combustion, pp.61-81, 2006.

J. A. Wunning and J. G. Wunning, Flameless oxidation to reduce thermal no-formation, Progress in Energy and Combustion Science, pp.81-94, 1997.
DOI : 10.1016/S0360-1285(97)00006-3

W. Yang and W. Blasiak, Numerical simulation of properties of a LPG flame with high-temperature air, International Journal of Thermal Sciences, vol.44, issue.10, pp.44973-985, 2005.
DOI : 10.1016/j.ijthermalsci.2005.03.001

I. Yimer, H. A. Becker, and E. W. Grandmaison, The strong-jet/weak-jet problem: new experiments and CFD, Combustion and Flame, vol.124, issue.3, pp.481-502, 2001.
DOI : 10.1016/S0010-2180(00)00216-9

C. S. Yoo, R. Sankaran, C. , and J. H. , Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: flame stabilization and structure, Journal of Fluid Mechanics, vol.26, issue.1, pp.640453-481, 2009.
DOI : 10.1016/0010-2180(66)90028-9

A. Yoshizawa, Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling, Physics of Fluids, vol.29, issue.7, pp.2152-2164, 1986.
DOI : 10.1063/1.865552

Y. Zhang, B. Rogg, and K. N. Bray, 2-D Simulation of Turbulent Autoignition with Transient Laminar Flamelet Source Term Closure, Combustion Science and Technology, vol.152, issue.4-6, pp.4-6211, 1995.
DOI : 10.1080/00102208908924038