N

N

Thermodynamics of ultracold Fermi gases

Sylvain Nascimbene

» To cite this version:

Sylvain Nascimbéne. Thermodynamics of ultracold Fermi gases. Condensed Matter [cond-mat]. Uni-
versité Pierre et Marie Curie - Paris VI, 2010. English. NNT: . tel-00491711v2

HAL Id: tel-00491711
https://theses.hal.science/tel-00491711v2
Submitted on 11 Jul 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-00491711v2
https://hal.archives-ouvertes.fr

Département de physique Laboratoire Kastler Brossel

Ecole Normale Supérieure

THESE de DOCTORAT de 'UNIVERSITE PARIS 6

Spécialité : Physique Quantique

présentée par
Sylvain Nascimbéne

pour obtenir le grade de DOCTEUR de 'UNIVERSITE PARIS 6

Thermodynamique des gaz de fermions ultrafroids
Thermodynamics of ultracold Fermi gases

Soutenue le 11 Juin 2010
devant le jury composé de :

M. Immanuel Bloch .................. Examinateur

M. Philippe Bouyer .................. Rapporteur

M. Frédéric Chevy ................... Membre invité
M. Roland Combescot ............... Examinateur

M. Stefano Giorgini .................. Rapporteur

M. Christophe Salomon ............. Directeur de thése












Contents

[Remerciements| 9
1__Introductionl 11
[I.1__Ultracold Fermi Gases: State of the Artl . . . . . . . . .. . .. ... ... ... ...... 12
[LI1 BECBCS Crossoverl . . . . . . o it e e e 12

[1.1.2 “High-T.” Superfluidity of a Fermi Gas with Resonant Interactions| . . . ... ... 13

[1.1.3  Spin-Imbalanced Fermi Gases| . . . . . . . . . . .. ... o oo 14

I1.2  Issues and Perspectives Addressed in this Thesis| . . . ... ... ... ... .. ...... 14
[1.2.1  Universal Thermodynamics of an Ultracold Fermi Gas| . . . . . . . ... ... ... 14

[1.2.2  Previous Thermodynamic Studies|. . . . . . . . . . . ... ... . .. 15

11.2.3  Measurement of the Local Pressure Inside a Irapped Gas| . . . . . ... ... ... 16

[L.L3  Outhline of this Thesisl . . . . . . .« . . . o e 16
[1.3.1  Chapter 2: Experimental Setup|. . . . . . . . . .. ... L. 16

11.3.2  Chapter 3: Measuring the Equation of State of a Homogeneous Ultracold Gas|. . . 16

[1.3.3  Chapter 4: Thermodynamics of a Strongly-Interacting Fermi Gas|. . . . . . . . .. 17

|11.3.4  Chapter 5: Ground State of an Attractive Fermi Gas: Phase Diagram and Equation |

| of Statel . . . . .. e 18
11.3.5 Chapter 6: Axial Breathing Modes of a Spin-Imbalanced Fermi Gas| . . . .. . .. 18

2 Experimental Setup| 19
2.1 Global Description of the Experimental Setup| . . . . . .. .. ... ... ... ... ... 19
2.2 “Li-°Li Magneto-Optical Trap|. . . . . . . . . . . . . . . 20
2.2.1  Laser System| . . . . . . . . e e e e e e 20

222 Zeeman Slowerl . . . . . . . .. 21

2.2.3  Dual Species Magneto-Optical Trap| . . . . . . .. ... .. .. ... 21

2.3 Sympathetic Cooling in a Magnetic Trap|. . . . . . . ... .. ... ... ... ...... 21
[2.3.1 Transfer into an loffe-Pritchard Irap{. . . . . . ... ... ... ... ... ... 22

2.3.2  Radio-Frequency Evaporation|. . . . . . ... ... oo oo 24

[2.4 Optical Trap and °Li Evaporation| . . . . ... ... . ... ... ... . . ... . ..... 26
2.4.1  Geometry of the Hybrid Optical and Magnetic Trap| . . . . . . .. ... ... ... 26

2.4.2  Optical System for the Dipole Trap|. . . . . . . .. . ... ... ... .. 28

[2.4.3  Preparation of a Strongly-Interacting °Li Mixture] . . . . ... ... ... ..... 30

[2.4.4 Evaporation of a °Li Gas With Resonant Interactions| . . . .. ... .. ... ... 32

2.5 Absorption Imaging | . . . . . . .. oL 36

2.0.1 Generation of High-Field Resonant Probes|. . . . . . ... .. ... ... ... ... 36




2.5.2  Imaging Optical System| . . . . . . . . ... ... o o 37

2.5.3  Imaging System Resolution| . . . . . . ... ... .. . oo oo 38
2.5.4  Double sn Situ Images| . . . . . . . ..o o 38

[ Measuring the Equation of State of a Homogeneous Ultracold Gas| 41
3.1 Equation of State of an Ultracold Gas: State of the Art| . . . . . ... . ... ... .... 42
3.1.1 Equation of State of a Trapped Gas| . . . . . ... ... ... ... .. ..... 42
18.1.2  Direct Measurement ot the Equation of State of a Homogeneous Gas| . . . . . . .. 44

8.2 Description of our Method|. . . . . . . . . . ... o 46
8.2.1  Measurement of the Local Pressure inside a Trapped Gas| . . . . . .. ... .. .. 46
13.2.2  Determination of a Grand-Canonical Equation of State|] . . . . .. .. ... .. .. 47

3.3 Equation of State of a Weakly-Interacting Bose Gas| . . . . .. ... ... .. ... .... 48
3.4 Mott Insulator Behavior ot a Bose Gas in an Optical Lattice|] . . . . .. ... .. ... .. 49
B.4.1 Realization of a Bose-Hubbard Modell . . . .. ... ... ... ... . ... ..., 49
8.4.2  The Mott-Insulator Regime] . . . . . . . .. ... o o oo 50
13.4.3  Extraction of the Equation of State] . . . . . ... .. ... .. ... ... .. 51
[3.4.4 Observation of a Mott-Insulator Behaviord . . . . . ... ... ... ........ 52
13.4.5  Estimation of Finite-lemperature Effects| . . . . . .. .. ... ... ... ... .. 53

3.5 Validity of the Pressure Measurement| . . . . . .. . ... ... ... ... . 53
B.5.1 Calibration of the Pressurel . . . . . . . ... ... ... ... ... .. ....... 54
13.5.2  Deviation from Local Density Approximation| . . . . . . . .. ... .. ... .... 54
18.50.3  Eftect of the Trap Anharmonicity|. . . . . . . ... ... ... .. o0, 56
8.5.4  Effect of the Imaging System Resolution| . . .. . ... ... ... ... ...... a7

4 Thermodynamics of a Strongly-Interacting Fermi gas| 59
[4.1 “Li Thermometry|. . . . . . . . . . . . e 60
4.1.1  Preparation of a Three-Component °Li-‘Li Mixture] . . . ... ... ... ..... 60
4.1.2  Two-Species Evaporation and Thermalization| . . . . . . . ... ... ... ..... 61
K4.1.3  ‘Temperature Measurement| . . . . .. ... . ... ... ... L. L. 62
K4.1.4  Limitation of our Thermometer at Low Temperature| . . . . . . . ... ... . ... 62

[4.2  Extraction of Ar(() from In Situ Images|. . . . . . . .. .. Lo 63
4.2.1  Direct Measurement of the High-Temperature Equation of State] . . . . .. .. .. 63
4.2.2  Construction of the Low-Temperature Equation of Statef . . . . . . ... ... ... 64
K4.2.3  Systematic Error on the Equation of State Determined from our Datal . . . . . . . 65

4.3 Direct Comparison with Theory | . . . . . . . . . .. o o oo 66
4.4 Comparison with the Tokyo Group Measurements| . . . . . .. . ... ... ... ... .. 68
4.5 High-Temperature Virial Expansion| . . . . . .. .. ... .. o000 69
4.5.1  Vinal Expansion of a Unitary Fermi Gas: Generalities| . . . . . ... .. ... ... 70
4.0.2 Vinal Coefficients Fxtracted from our Datal . . . . . ... ... ... ... ... .. 71

4.6 Fermi-Liquid Behavior in the Normal Phase| . . . . . . .. .. ... .o .. 73
4.6.1 Low-Temperature Normal Phases in Strongly-Interacting Systems| . . . . . . . .. 73
4.6.2  Observation of a Fermi Liquid Behavior| . . . ... ... ... ... .. ....... 76
4.6.3  Estimation of the Maximum Pseudogap Amplitude|. . . . . . . ... .. ... ... 78

4.7 Superfluid Transition|. . . . . . . . oL e e e e 80
4.7.1  Deviation from the Fermi Liquid Equation of Statel . . . . . . . . ... ... .. .. 80
4.7.2  Low-Temperature Excitations in the Superfluid Phase] . . . . . . ... ... .. .. 81
4.7.3  Critical Temperature for Superfluidity| . . . . . . . ... ... .. ... ... .... 82

|4.7.4  Validity of Local Density Approximation in the Critical Region| . . . . . . . . . .. 84




4.8 Equation of State of a Trapped Gas| . . . . . . . . . . . L oo 85
[6 Ground State of an Attractive Fermi Gas: Phase Diagram and Equation of State] 87
[5.:1 Sketch of the Phase Diagram| . . . . . . . . . . 0 0 i v i it e e e e e e 87
15.1.1  Superfluid to Normal Quantum Phase Iransition| . . . . . . . ... ... ... ... 88
p-1.2  The Impurity Problem|. . . . . . . ... . o oo oo 89
p.1.3  Beyond the Impurity Problem|. . . . . . . ... ... ... ... .. .. .. ... 90

0.2 Equation of State Measurement Scheme| . . . . . . . . ... oo o000 90
521 Experimental Sequence] . . . . . . . v i e e e 90
P-2.2  In Situ Image Analysis|. . . . . . . oL 91
5.2.3  Equation of State Deduced from our Datal . . . . . . . . ... ... ... ...... 92
9.2.4  Systematic Error of our Datal . . . . . .. ... ... . oo oo o 93

0.3 Superfluid to Normal Phase ‘Iransition| . . . . . . .. . ... ... ... ... ... 93
(.31 Critical Chemical Potential RAGIO] . « - « « « v v v v oo e e e e e e e 93
p-3.2  Critical Impurity Concentration| . . . . ... . .. ... ... . L. 94
p-3.3 Phase Diagram| . . . . . . . .. oo 95
9.3.4  Comparison with the Single-Particle Excitation Gap| . . . . .. .. ... ... ... 96

[5.4" Fermi Liquid Behavior in the Partially Polarized Phase]. . . . . .. ... ... ... .... 97
p-4.1  Observation of a Fermi Liquid Behavior| . . . . ... ... . ... ... ... .. 97
15.4.2 Measurement of the Polaron Effective Massl . . . . .. ... ... ... ... .. .. 98
5.4.3  Fermi Liquid Equation of State in the Unitary Limat| . . . . . . . . ... . ... . 99
p.4.4  Canonical Equation of State|. . . . . . . ... . ... . o oo 100
[5-4.5 Magnetic Susceptibility of a spin-Unpolarized Fermi Gas| . . . . . . . . o . . . . . 102

5.5 Superfluid Equation of State in the BEC-BCS Crossover| . . . . . . .. .. ... ... ... 104
9-5.1  Parametrization of the Superfluid Equation of State| . . . . . . .. ... ... ... 104
9.5.2  Direct Comparison with Theory|] . . . . . ... ... ... ... ... . ...... 105
p.0.3  Extracting Asymptotic Behaviors of the Equation of State]. . . . . . . . . ... .. 108
[5-5.4 Superfluid Equation of State Around the Unitary Limit| . . . . . . . . . .. . . .. 109
9-5.5  Equation of State of a Fermionic Superfluid from the Weakly-Interacting Regime| . 111
9-5.6  Equation of State of a Bosonic Superfluid| . . . . . .. ..o 0000 113

9.6 Ground State of a Trapped Fermi Gas| . . . . . . . . . ... . ... .. .. . .. .. .. 115
[5.6.1 Equation of State of a Irapped Spin-Imbalanced Fermi Gas| . . . . . . . . . . . .. 115
F6.2 Coallective Modes of a Balanced Fermi Gasl. . . - -« « = o o v v v v v 117

5.7 Molecular Physics Beyond the Scope of this Work|. . . . . . .. ... ... ... ...... 118
p.7.1  Polarized Superfluid| . . . . . . . ..o 118
0.7.2  Polaron to Molecule Transition in the Impurity Problem|. . . . . . ... . ... .. 119
[5.7.-3 Thermodynamic Instability of the Impurity Problem| . . . . . . .. ... ... ... 120

6 Axial Breathing Modes of a Spin-Imbalanced Fermi Gas| 121
6.1 Hydrodynamic Behavior of a Balanced Fermi Gas|. . . . . .. . ... ... ... ...... 122
6.1.1  Scaling Ansatz Solution of the Hydrodynamic Equations. . . . . . ... ... ... 122
6.1.2  Hydrodynamic Expansion| . . . . . ... ... . ... .. . . o 122
6.1.3  High-Q) Axial Breathing Mode| . . . . . ... . ... .. . o 0. 123

6.2 In-Phase Axial Breathing Mode|. . . . . . . . . . .. . o o 124
[6.2.1  Observation of the In-Phase Model . . . . . .. ... ... ... ... .. ...... 124
6.2.2  Frequency in the Hydrodynamic and Collisionless Regimes|. . . . . . .. . ... .. 125
16.2.3  Crossover from a Hydrodynamic to a Collisionless Behavior| . . . . ... ... ... 126

6.2.4  Oscillation Amplitude and Phase| . . . . ... . ... ... .. 00 0. 126




6.2.5  Relaxation of a Two-Component Fermi Gas| . . . . .. .. ... ... ... ..... 127

6.3 Polaron Axial Breathing Mode| . . . . . . . . .. . o o o 130
[Conclusionl 133
A Simple Thermodynamic Relations| 137

|A.1 Thermodynamics of an Ideal Fermi Gas|. . . . . . . ... ... ... ... ... ..., 137

IA.1.1 Equation of State of an Ideal Fermi Gas| . . . . . . ... ... ... ... ...... 137
|A.1.2 High- and Low-Temperature Expansions|. . . . . . .. .. ... ... ... ..... 138

IA.2 Conversion between the Canonical and Grand-Canonical Equations of State ot a Unitary |

L Gad e 139
[A.2.1 Conversion g(6) = h({)| . - - . .« . o 139
[A.2.2 Conversion h(C) — g(0)] . . - o v v o e e e 140

IA.3 Calculation of the Second-Order Vimal Coefficient! . . . . ... ... ... .. ... .... 140

|A.4 Clogston-Chandrasekhar Limit in a BCS Mean-Field Model| . . . . . ... ... ... ... 140
[B" Technical Details in Chapter [5] 143

IB.1 Construction of the Equation of State | . . . . . . . . . .. .. . o000 143

[B.1.1 Determination of p9 |. . . . . . . ..o 143
IB.1.2  Equation of State in the BEC-BCS Crossover | . . .. .. ... ... .. ...... 144
IB.2 Amplitude of Finite-Temperature Effects|. . . . . . . . .. ... o000 145
IB.2.1  Upper Bound on the Cloud Temperature| . . . . . ... ... ... ... ... 145
IB.2.2  Systematic Error in the Normal Phasel . . . . . . . ... ... 000 146
IB.2.3  Systematic Error in the Superfluid Phase| . . . . . .. .. ... ... o000, 147
IB.3 Padé Approximants| . . . . . . . . . . e e e e e e e e e e e e e 147
IB.3.1 Padé Approximant on the BCS side of the Resonance] . . . . . . ... .. ... .. 147
IB.3.2  Padé Approximants on the BEC side of the Resonance|. . . . . . ... ... .. .. 147
IB.3.3  Fit Function of the Complete Datal . . . . . . ... ... ... ... ... ..., 148

[B.4 Surface Tension at the Superfluid/Normal Boundary of a Trapped Spin-Imbalanced Fermi |
L Gad - 148
|IC Relaxation of the Axial Breathing Mode| 151
ID_Publicationsl| 155

ID.1_Collective Oscillations of an Imbalanced Fermi Gas...l . . . ... ... ... ... .. ... 156

ID.2  Exploring the Phase Diagram of a Universal Fermi Gas| . . .. ... .. ... ... .... 160

ID.3 The Equation of State of a Low-Temperature Fermi Gas with Tunable Interactions| . . . . 165
[References| 169

IResumé - Abstractl 186



Remerciements

Je souhaiterais remercier I’ensemble des personnes qui m’ont aidé dans la réalisation de cette thése. J’ai
effectué ce travail au sein du laboratoire Kastler Brossel, & ’Ecole Normale Supérieure, de septembre 2006
a juin 2010. Je remercie toutes les personnes qui rendent cet environnement scientifique exceptionnel,
notamment Paul Indelicato, directeur du laboratoire et Jean-Michel Raimond, directeur du département.

Je suis trés reconnaissant & Christophe Salomon de m’avoir donné la chance de rejoindre 1’équipe
Lithium. La passion contagieuse de Christophe pour la physique expérimentale a été une source de
motivation tout au long de ma thése. Durant les années de construction de ’expérience, son optimisme
et ses talents d’expérimentateur nous ont permis de rebondir dans les moments difficiles : nombreuses
sont les soirées ou Christophe ne pouvait se résoudre a quitter la salle de manip, jusqu’a trouver I'idée
qui permet de progresser. J’ai par ailleurs beaucoup apprécié la confiance qu’il a montrée a notre égard
en nous laissant beaucoup de libertés, tant sur le plan du montage expérimental que sur les expériences
que nous avons menées.

Je remercie aussi tout particuliérement Frédéric Chevy pour son encadrement en tant que second
directeur de thése officieux. Frédéric a toujours été disponible pour de longues discussions, nous apportant
un précieux recul sur la conduite de 'expérience. Il nous a par ailleurs souvent éclairé sur la physique
complexe des gaz de fermions. J’ai beaucoup apprécié son souci de comprendre en profondeur la physique
que nous découvrions, et de nous faire partager ses réflexions théoriques. Enfin, je le remercie de nous
avoir fait bénéficier, en plus de ses qualités de physicien, de sa grande expérience gastronomique !

Je remercie aussi I’ensemble des gens avec qui j’ai travaillé. De maniére générale j’ai beaucoup appris
de discussions avec l’ensemble des membres du groupe atomes froids, ainsi que des autres groupes et
laboratoires de ’ENS.

Le travail présenté dans ce mémoire étant celui d’une équipe, je tiens & exprimer ma gratitude envers
les thésards et postdocs de l'expérience Lithium.

J’ai travaillé durant la majeure partie de ma thése avec Nir, souvent quasiment en téte a téte. Nous
avons eu la chance de nous entendre particuliérement bien, et travailler avec lui a vraiment été un plaisir.
Le tuning de la manip aux couleurs de ’Equipe ou de films mythiques a rendu I’étroite piéce S22 quasiment
conviviale. Ensemble, nous avons bravé les catastrophes expérimentales - inondations, incendie ou autres,
et vécu ensemble des moments « énormes », que Nir a toujours fait en sorte de célébrer dignement. Je
pense que notre premiére image de « plateau superfluide » restera longtemps dans nos mémoires. .. Je le
remercie aussi de m’avoir fait découvrir des choses aussi différentes que le footing et les biéres belges. Je
souhaite a Nir et & Canh une bonne continuation sur la manip pour les années a venir.

Je remercie aussi les autres personnes avec qui j’ai travaillé durant ma thése. Je suis particuliérement
reconnaissant du travail des anciens, Martin, Jason et Leticia. Je les remercie notamment de m’avoir
patiemment appris tous les rouages de ’expérience lors sa construction. Grainne nous a ensuite rejoints
durant une année supplémentaire de construction, et son humour nous a permis de travailler dans une
ambiance excellente. Je remercie enfin Kai-Jun, qui nous a ensuite aidé pendant plus d’un an.

Je souhaite remercier Immanuel Bloch, Philippe Bouyer, Roland Combescot et Stefano Giorgini de



10

m’avoir fait ’honneur d’accepter d’étre membres du jury de ma thése. Je les remercie en particulier
pour leur lecture attentive de ce mémoire, leurs remarques sur le manuscript et plus généralement pour
I'intérét qu’ils ont porté & ce travail.

Je suis reconnaissant a I’équipe enseignante de la formation interuniversitaire de physique de m’avoir
donné la chance d’enseigner dans le cadre particulier de 'ENS. Je remercie plus particuliérement Jean-
Michel Raimond et Adrien Mahé, avec qui j’ai travaillé pendant les quatres années de thése, ainsi que
Claude Aslangul, Christophe Mora, Amir-Kian Kashani-Poor, et Frédéric.

Je remercie aussi tous ceux qui nous ont permis de travailler dans d’excellentes conditions. Je tiens
A exprimer ma reconnaissance envers ’ensemble du personnel des services techniques pour leur aide pré-
cieuse et leur disponibilité lors de la construction de l’expérience. Je remercie aussi I’équipe du secrétariat
du laboratoire et de 'TFRAF, pour leur efficacité quotidienne, ainsi que pour avoir patiemment résolu
de nombreux problémes administratifs. Enfin je remercie les autres services généraux du département de
physique pour leur assistance.

Je remercie aussi les étudiants que j’ai rencontré & I'ENS, et grice & qui j’ai travaille dans une
ambiance chaleureuse, et qui sont devenus de trés bons amis. Je remercie en particulier Armix pour
son enthousiasme et sa créativité en matiére de surnoms, Félix pour toutes nos discussions de physique
sans fin ainsi que pour son hospitalité, le groupe du DEA, Antoine, Samuel et Benoit, ainsi que Thomix,
Camille, Olivier, Marie-Béatrice, Elise, Mathieu et Arnaud.

Je souhaite également remercier vivement mes amis de toujours, Adrien, Maité, Marie et Pascal.
J'espére qu’il savent & quel point leur présence compte pour moi. Je tiens & exprimer ma gratitude
envers mes parents, Lucie et Didier pour leur aide trés proche et leurs conseils, malgré mon mauvais
caractére. .. Enfin, j’ai une pensée particuliére pour Laura, qui m’a beaucoup apporté en m’accompagnant

durant ces années.



Chapter 1

Introduction

The achievement of Bose-Einstein condensation in 1995 [1,/2,13] paved the way for the realization of
new states of matter using ultracold gases. At very low temperature, as soon as the quantum coherence
length becomes comparable to the inter-particle distance, quantum statistics plays an essential role in their
description. Despite their extremely low atom density, these gases exhibit many-body correlations that
affect both their microscopic and macroscopic properties. As a spectacular example, the first quantum
gases produced in the laboratory, namely weakly-interacting Bose gases, become superfluid when cooled
below the Bose-Einstein condensation temperature. Until 1995, the only superfluid made of bosons
observed in nature was liquid *He [4]; due to the small inter-particle distance, interactions between *He
atoms are rather complex to model and it is extremely hard to describe liquid “He from the first principles
of quantum mechanics. The intimate link between superfluidity and Bose-Einstein condensation thus
remains rather complex to understand [5]. The extreme diluteness of ultracold gases prepared in the
laboratory allows us to describe interactions between atoms in a very simple manner. One can then make
a clear connection between the Hamiltonian describing the system and the physical behavior of the latter.

Most properties of weakly-interacting Bose-Einstein condensates in three dimensions were investigated
in detail in recent years. For example, long-range phase coherence was directly observed by making spa-
tially separated regions of a trapped gas interfere [6], and made the observation of Anderson localization
of matter waves in a disordered potential possible [7,8]. Superfluidity of Bose-Einstein condensates was
demonstrated through the observation of quantized vortices in a rotating cloud [9,(10,/11]. While most
observed phenomena in weakly-interacting Bose gases are well accounted for by a mean-field approach
developed in the 1950’s [12}[13], complex many-body theories are required to describe ultracold gases in
the strongly correlated regime [14]. Such gases were produced more recently, using different approaches:

e The interaction strength can be varied using the phenomenon of Feshbach resonance by applying an
external magnetic field. While the realization of stable strongly-interacting Bose gases is prevented
by the large inelastic losses encountered when approaching a Feshbach resonance [15], Pauli exclu-
sion principle strongly inhibits inelastic losses in Fermi gases even for large interaction strengths [16].

This enabled one to produce ultracold Fermi gases in the strongly-interacting regime [17/18].

e Using periodic potentials in three directions created by off-resonant standing waves of laser light,
it is possible to pin atoms into the wells of a periodic lattice [19,/20]. The gas is then described
by a Hubbard Hamiltonian, a fundamental model introduced in solid state physics in order to
describe a transition between conducting and insulating systems. On-site interactions, than can be
larger than the atom tunneling amplitude, induce strong many-body correlations. By varying the
optical lattice depth, a quantum phase transition between a superfluid state to a Mott insulator
state was observed using dilute Bose gases in [20]. The recent realization of ultracold Fermi gases
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in the Hubbard regime [21,22] offers a unique opportunity to measure the phase diagram of the
Fermi-Hubbard model, and possibly understand its connection to high-T, superconductivity.

e By freezing the atom motion along one or two directions using tightly confining potentials, it is
possible to create ultracold gases in an effective reduced dimensionality, a situation in which many-
body correlations are enhanced [14]. A Bose gas in one dimension, described by Luttinger liquid
theory, was first obtained in [23}/24], while the Berezinskii-Kosterlitz-Thouless transition of a two-
dimensional Bose gas was observed in [25,26]. Very recently spin-imbalanced Fermi gases in one

dimension were produced at Rice [27].

The viewpoint can be reversed by considering ultracold gases as unique tools to investigate open
problems from condensed matter. Thanks to their extreme purity, the good control of the trapping
potentials used to hold the gas, and the simple description of interactions, it is possible to write down
the system’s Hamiltonian from first principles of quantum mechanics. Reference Hamiltonians, such as
the Fermi-Hubbard model, or spin chain/ladder Hamiltonians, were proposed and extensively studied in
the field of condensed matter, due to their analogy with (much more complex) real condensed matter
materials. However, most of these Hamiltonians are unsolved. In addition, their numerical simulation is
practically impossible due to the exponential growth of the size of quantum systems’ Hilbert space with
atom number. Using an adequate ultracold gas system, it is possible to realize these Hamiltonians in
the laboratory and directly observe their solutions. Ultracold gases thus realize an analog simulation of
physical problems, an idea initially proposed by R. Feynman in 1982 [28].

1.1 Ultracold Fermi Gases: State of the Art

Let us now introduce the field of ultracold Fermi gases that will be addressed in this thesis. Following
the achievement of Bose-Einstein condensation, ultracold Fermi gases were first produced in the regime
of degeneracy and weak interactions, and the effect of Fermi-Dirac statistics was identified through the
observation of Fermi pressure [29,/30,/31]. While s-wave interactions are forbidden between fermionic
atoms in the same internal state due to Pauli exclusion principle, interactions are allowed in a two-
component Fermi gas. In the ultracold regime, they are described by a single parameter, the scattering
length a. Using the phenomenon of Feshbach resonance, a can be tuned using an external magnetic field
(see Fig), making it possible to reach the strongly-interacting regime and hope to observe a BCS-type
superfluid [32]. Strongly-interacting Fermi gases were first produced in 2002 [17,{18] and, contrary to Bose
gases, were found to be particularly stable even for very large interaction strengths, as first explained
in [16]. The production of degenerate and strongly interacting Fermi gases was then achieved in a several
laboratories [33}[34)/35,/361,37./38]. Superfluidity of ultracold Fermi gases was unambiguously characterized
through the gas response to a rotation of the confining potential, more precisely a resistance to rotation
in the low rotation speed regime [39] and the formation of a vortex lattice for a larger rotation speed [40]
(see Fig). Other evidence for superfluidity was provided by the observation of a critical velocity for
energy dissipation of a moving object immersed into the gas [41].

1.1.1 BEC-BCS Crossover

By varying the scattering length value across a Feshbach resonance, one observes a smooth crossover
between two limiting situations [33}34}35}36]:

e The two-body problem admits a molecular bound state when the scattering length a is positive,
with a binding energy E, = —h%/ma?. When |E}| is much larger than the gas temperature kpT

and Fermi energy Ep, the gas can be viewed as a mixture of strongly bound molecules, possibly
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Figure 1.1: (a) s-wave scattering length a (in units of the Bohr radius ag) describing ultracold collisions
between the two lowest internal states of 5Li, as a function of magnetic field. (b) Absorption image of a
rotating strongly-interacting Fermi gas, from [40]. The observation of a vortex lattice demonstrates the

superfluid character of degenerate strongly-interacting Fermi gases.

mixed with unbound majority atoms in the case of spin population imbalance. Molecules made of
two fermionic atoms behave in this limit as points-like bosons and form in the degenerate regime a

molecular Bose-Einstein condensate [42,43}36].

e In the limit of small negative values of a, the amplitude of interactions is small. Although the
two-body problem does not admit a bound state, interactions between atoms are strongly modified
by Pauli exclusion principle which forbids scattering towards states already occupied by other
atoms. Effective bound states, the so-called Cooper pairs, become stabilized by this many-body
behavior [44], and the gas forms a Bardeen-Cooper-Schrieffer superfluid at very low temperature
[45]. However, this pairing is not very robust and the critical temperature for superfluidity T, ~
Tr exp(—7/2kp|al) is exponentially small for weak interactions (kp is the Fermi momentum, T is
the Fermi temperature).

The strongly-interacting regime 1/kp|a] < 1 smoothly interpolates between the bosonic and fermionic
regimes. The strength of interactions then makes the theoretical understanding difficult.

1.1.2 ‘High-T." Superfluidity of a Fermi Gas with Resonant Interactions

By applying a magnetic field right at the center of a Feshbach resonance, it is possible to reach the
regime a = oo where the interaction strength takes the maximum value allowed by quantum mechanics,
the so-called unitary limit. In this situation superfluidity is found to be particularly robust.

The transition temperature T, for superfluidity was first measured for a trapped gas in [4346,39,47]. In
this thesis we describe the first measurement of the transition temperature for a homogeneous gas [47,/48]:

h2
T.=016Tp, Tp=—(37%n)*3,
2m

where n is the total atom density. The critical temperature T, being on the order of the Fermi temperature
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Tr, ultracold Fermi gases constitute in a sense a high-T, system[] The exceptional robustness of the
superfluid state was also demonstrated through the large critical velocity measured by the MIT group [41]:

2Fp
’UCZO.?)UF, Vp = E—
m

as well as the chemical potential difference between the two spin components p; — uo required to break
superfluidity [491/48] (see Chapter [5| of this thesis):

|,u1 - u2|c = 018EF

The connection with Bose-Einstein condensation was characterized by a direct measurement of the con-
densate fraction [35,364[47], and the importance of many-body effects was established through the mea-

surement of the single-particle excitation energy gap [50,51] and closed-channel fraction [3§].

1.1.3 Spin-Imbalanced Fermi Gases

Superfluidity of spin-balanced Fermi gases is intimately related to pairing between atoms with opposite
spins. A new degree of freedom is provided by the possibility to prepare different atom numbers in
both spin states. The first open question is then to understand whether superfluidity survives to spin
imbalance. This issue was addressed in the context of solid-state superconductors by Clogston [52| and
Chandrasekhar [53] in the 1960’s. They predicted that superfluidity resists to a magnetic field (lifting
the degeneracy between the two electronic spin states) up to a critical value.

These old issues of solid state physics were first addressed using ultracold gases in 2006, by pioneering
works from the MIT and Rice groups [54,[55]. Both groups revealed that a spin-imbalanced trapped
gas exhibits a phase separation between a superfluid core where atoms are paired and densities are thus
equal for both species, and an external normal phase. Surprisingly, both groups’ observations were not
in agreement concerning the normal phase: in Rice experiment, the normal phase was found to be fully
polarized with majority atoms, while in the MIT experiment the normal phase is split into an intermediate
shell with atoms from both species mixed together, and a fully polarized outer rim. This discrepancy has
remained unexplained up to now.

The phase diagram of spin-imbalanced Fermi gases is very rich. Exotic phases with spin-asymmetric
pairing are predicted to be stable, the most famous one being the Fulde-Ferrell-Larkin-Ovchinnikov state
in which the order parameter is modulated in space [56,/57]. Among other proposals, we mention a
gapless (‘breached pair’) superfluid state [58], or a state with deformed Fermi surfaces [59]. However
these states are expected to occupy a very small part of the phase diagram and their observation may

require a substantial experimental effort.

1.2 Issues and Perspectives Addressed in this Thesis

1.2.1 Universal Thermodynamics of an Ultracold Fermi Gas

The thermodynamic equation of state is a key quantity for the macroscopic description of ultracold Fermi
gases, and its determination from experiment would constitute a benchmark for many-body theories. We
will see that expressing the equation of state in the grand-canonical ensemble is more convenient for
its investigation in the laboratory. In this ensemble, the equation of state is written as a relationship
Q(V, p1, po, T, a) between the grand-potential €2, the volume of the system V', the chemical potentials
11, po of both spin states, the gas temperature T, and the scattering length a describing low-energy

*The mechanism for superfluidity in high-T. materials from condensed matter, for which interactions are expected to be
repulsive, is probably very different from the one in ultracold Fermi gases, where interactions are effectively attractive.
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collisions. The grand-potential being related to the pressure P through, 0 = — PV, the equation of state
can also be written using intensive variables only, as:

P(:u’la,u@aTa a)'

The correspondence with equations of states expressed in other statistical ensembles is provided by
Legendre transforms.

It is believed that for Fermi gases with short-range interactions, such as the SLi gases addressed in
this thesis, the scattering length « is sufficient to account for all interaction effects. Therefore the precise
nature of the fermionic species plays no role in the equation of state. Hence the relation P(uq, 2,7, a)
is expected to be universal, in the sense that it is identical for all systems of fermions with short-range
interactions. Its determination using ultracold gases is thus directly relevant to describe another similar
system, namely neutron matter in the outer crust of neutron stars. Indeed, neutron matter is made
of a mixture of the two spin states of neutrons, whose interactions are also short-range and in the
cold-collision regime, captured by a scattering length a« = —18.6 fm (at least in the low-density regime
n < 101 m*ﬂ [60]. As the Fermi temperature Tp > 10! K is much larger than the temperature
T ~ 105 K, temperature effects are negligible in neutron matter. The measurement of the equation of
state P(u1,p2, T ~ 0,a) that we describe in Chapter [5|is thus directly relevant to the description of the
crust of neutron stars. We also mention analogies with other quantum many-body systems such as heavy
nuclei and dense QCD matter [61].

1.2.2 Previous Thermodynamic Studies

The measurement of the equation of state of an ultracold gas aims to provide a benchmark for many-
body theories. However, most calculations are made on homogeneous systems while ultracold gases
prepared in the laboratory are held in a trapping potential and are thus inhomogeneous. However, the
comparison can still me made in most situations using the local density approximation: The cloud size,
imposed by the trap stiffness, is usually much larger than the characteristic length scale over which the
cloud feels a variation of the trapping potential V(r). Therefore the gas can be locally described by the
equation of state of a homogeneous gas. While the temperature T is uniform over the cloud, the trapping
potential induces a slow pressure variation VP = —(n; + n2)VV, according to the laws of hydrostatics.

Equivalently, the mechanical equilibrium can be written as:

a(r) = 1 — V(r), (L1)

1Y being the global chemical potential for species i (i = 1,2).

In the first thermodynamic studies of ultracold Fermi gases, the equation of state of the whole trapped
gas was measured. For example, an equation of state of a trapped Fermi gas with resonant interactions
was obtained in [62,/63], relating the total energy to the total entropy. In [64] was performed a pre-
cision measurement of the frequency of collective modes of a trapped gas in the BEC-BCS crossover.
In both cases the comparison with theory requires to integrate theoretical equations of state over the
trap. This makes the comparison indirect, and tends to hide possibly small differences between theories.
Discriminating between a mean-field BCS theory of the BEC-BCS crossover and advanced Monte-Carlo
calculations [65}/66,/67] thus required to reach an excellent accuracy in the measurement of collective
mode frequencies [64]. Finally, the trap averaging smears sharp features in the equation of state, and the

superfluid/normal phase transition is almost invisible in [63].

tSince free neutrons are unstable, neutron matter must be viewed as a model system in the large dilution limit.
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1.2.3 Measurement of the Local Pressure Inside a Trapped Gas

In this thesis we developed a new method for directly measuring the equation of state of a homogeneous
gas. Since the gas is locally homogeneous in the local density framework, measuring local properties
inside a trapped gas directly gives access to the equation of state of the homogeneous gas. This idea was
first exploited in [68]: an Abel transform of in situ images of a trapped gas was used to probe the local
atom density. Due to the dramatic decrease of the signal-to-noise ratio induced by the Abel transform,
the equation of state deduced from this procedure is very noisy, despite the large atom numbers reached
in the MIT experiment. This shows the apparent difficulty to probe local quantities inside a trapped gas.

During my PhD, I established, simultaneously to [69], a simple relation between the local pressure
inside a trapped gas and the optical density of an in situ absorption image (see Fig:

MWWy

2w

1
(M1 (2)+72(2)), where s, = pd —-mw?2? and ﬁi(z):/dxdyn(aﬁ,y,z).

2
(1.2)
We mention that the idea of this relation can also be found in an earlier work [70]. Equation (1.2)
states that the pressure on the z axis is obtained by integrating along z the cloud absorption image,

P(paz, p2-, T) =

taken along y. Here w, (u = z,y,z) is the trapping frequency along u. Contrary to the Abel transform
process, integrating along x increases the signal-to-noise ratio and the pressure profile along z is thus
obtained with a low noise. As soon as the gas temperature T and global chemical potentials u? are
determined, each pixel row z provides an experimental value P(u1,, pi2.,T) of the equation of state of
the homogeneous gas. The analysis of a single image of a trapped gas thus leads to a large number of
independent determinations of the equation of state. By collecting the data from all pixel rows of several
images, one obtains after proper averaging a very-low-noise equation of state [48]/71]. This is a great
improvement over the studies of the thermodynamics of trapped gases, for which one experimental run
is required to obtain one point.

The main line of this thesis is the implementation of a new method for determining the grand-canonical
equation of state of a homogeneous Fermi gas, making use of equation (|1.2).

1.3 Outline of this Thesis

1.3.1 Chapter 2: Experimental Setup

We first describe the experimental setup producing ultracold °Li Fermi gases. Our setup is based on the
combined use of “Li and SLi species. °Li atoms are sympathetically cooled by forced evaporation of the
"Li component in a magnetic trap. This allows us to transfer a large number of Li atoms in an optical
dipole trap, where a very efficient evaporation is performed on a mixture of the two lowest internal states,
with resonant interactions. Thermometry is performed by keeping a small amount of “Li atoms.

1.3.2 Chapter 3: Measuring the Equation of State of a Homogeneous Ultracold
Gas

The method for determining the equation of state of a homogeneous ultracold gas is presented in Chapter
We demonstrate equation ([1.2]) and discuss its validity range. We then illustrate the power of our
method by applying it to Bose gases in well understood regimes.

Using a single in situ image from [31], we obtain the equation of state of a weakly-interacting Bose gas,
from the classical to the condensed regime. It reveals the characteristic features of a weakly-interacting
Bose gas, namely a bosonic bunching behavior in the normal phase, a Thomas-Fermi pressure in the
Bose-Einstein condensate, and a condensation threshold p = 0.
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Figure 1.2: Local pressure measurement scheme: a two-component ultracold gas is imaged in situ along
y. Further integration along x provides the doubly-integrated profiles for both components, 771 (z) and
72(z). The gas pressure along the z axis is then obtained using equation ([1.2)).

We also apply the method to Bose gases in an optical lattice, in the limit of large lattice depth, using
experimental data from [72]. The grand-canonical equation of state deduced from this analysis directly
reveals a Mott-insulator behavior: sites are occupied by an integer number of atoms, whose value depends
on the chemical potential value. We show that representing the experimental data in terms of an equation
of state is suited for investigating finite-temperature effects.

1.3.3 Chapter 4: Thermodynamics of a Strongly-Interacting Fermi Gas

In Chapter 4| we study the thermodynamics of a Fermi gas with resonant interactions [48]. For simplicity
reasons we restrict our study to a spin-symmetric configuration. Applying our method requires to inde-
pendently measure the gas temperature, which is notoriously difficult in the case of strong interactions.
Inspired by the Innsbruck group [73], we implemented a new thermometry for strongly-interacting gases:
the temperature is measured on a small amount of weakly-interacting “Li atoms, immersed in the SLi
cloud and at thermal equilibrium with it.

The equation of state deduced from our data enables us to make the first direct comparison with
many-body theories. Surprisingly, none of them accounts for our observations over their full temperature
range. In the high-temperature regime, we extract several coefficients of the virial expansion. They
agree with the exact resolution of the three-body problem [74}/75] and provide a benchmark for a future
resolution of the four-body problem. In the low-temperature regime, which is the most difficult to handle
from theory, our data reveal an unexpected feature: above the critical temperature for superfluidity, the
normal phase is accurately described as a Landau Fermi liquid. This observation is in disagreement with

the expectations of several many-body theories, which predict that pair correlations should significantly
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modify the Fermi liquid picture. Finally, we observe a clear thermodynamic signature of the superfluid

transition, occurring at a critical temperature:

T
2 =0.32(3),
. (3)

quantitatively confirming the ‘high-T,.’ character of Fermi gases with resonant interactions.

1.3.4 Chapter 5: Ground State of an Attractive Fermi Gas: Phase Diagram and
Equation of State

In Chapter We describe the measurement of the equation of state P(uy, pe, T ~ 0, a) of a two-component
Fermi gas in the BEC-BCS crossover, in the limit of very low temperatures [71].

In particular we obtain the equation of state in the spin-symmetric configuration, a situation where
the gas is superfluid. As explained above, this equation of state is directly relevant to the description
of the outer crust of neutron stars. Our observations validate Fixed-Node Monte-Carlo simulations in
the entire BEC-BCS crossover [65,/66,67], and are in agreement with the Lee-Huang-Yang corrections
to mean-field for low-density bosonic and fermionic superfluids. These exact results, obtained 60 years
ago [76,,77,/78], had only been indirectly observed up to now [64,/79].

The equation of state P(u1,u2,T ~ 0,a) also addresses the physics of spin-imbalanced Fermi gases.
Before our work, it was believed that the difference between the observations in Rice and MIT experiments
(see above) was due to different atom numbers and trap aspect ratios. We prepared spin-imbalanced Fermi
gases in a configuration close to Rice experiment and our observations unambiguously confirm the ones
of the MIT group, namely the existence of a normal phase where atoms of both spin components are
mixed, with different densities. We show that the normal phase can be accurately described as a Landau
Fermi liquid, despite strong interactions: minority atoms are dressed in quasi-particles, the so-called
Fermi polarons, with renormalized characteristics such as an effective mass [80}/81})82]. The normal phase
is then merely described, in most of the parameter range, as a mixture of ideal Fermi gases of majority
atoms and Fermi polarons. The polaron effective masses extracted from our data are in agreement with
the most advanced theories [8384./85.86).

Finally we characterize the quantum phase transition between the superfluid and normal states, in
good agreement with Fixed-Node Monte-Carlo calculations [81,67].

1.3.5 Chapter 6: Axial Breathing Modes of a Spin-Imbalanced Fermi Gas

In Chapter [6] the effect of spin imbalance is addressed using a different technique, namely the study of
axial breathing modes. When the two spin components oscillate in phase, we observe a smooth crossover
between a hydrodynamic oscillation when the superfluid core is large, and a collisionless behavior for
highly polarized gases. This reveals the amplitude of relaxation phenomena occurring in Fermi gases, in
the different polarization regimes. For very large polarizations, we also observe an out-of-phase collective
mode, associated with the oscillation of Fermi polarons inside the majority Fermi sea. We extract from
the frequency of this oscillation the polaron effective mass, in agreement with the value deduced from the
equation of state.

In conclusion, we present the most important open questions that could be answered by extending
the equation of state measurement to other parameter domains, such as finite-temperature effects in the
BEC-BCS crossover and with spin imbalance. This method will also be applied in our experiment to

strongly-interacting Bose gases using Feshbach resonances with the 7Li isotope.
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Experimental Setup

In this chapter we describe the experimental setup used for our study of ultracold Fermi gases. After
a short explanation of the global strategy used for producing degenerate Fermi gases, all stages will be
depicted one by one. The first stages of the experiment were already described in detail in L. Tarruell’s
thesis [87]; therefore I will focus on the performances of our setup reached in these stages, and then give
a more extensive description of the optical trap and atom imaging system.

2.1 Global Description of the Experimental Setup

A first version of the SLi-"Li experiment was constructed and operated between 1997 and 2006, from the
first realization of degenerate Fermi gases to the first studies of the BEC-BCS crossover. At the beginning
of this PhD (in the fall of 2006), the construction of a second-generation setup was under way, in order
to realize more complex experiments. The general experimental scheme, based on the combined use of
Li and 7Li, was preserved, and the improvement of several stages in the experiment led to a 10-times
improvement of the atom number in the quantum-degenerate regime, as well as a 4-times increase of the
experiment cycling rate. In addition, the geometry of the final trap was completely modified, allowing
the implementation a new image analysis technique specific to elongated traps.

Our experiment is based on an intermediate stage where atoms are transfered from a magneto-optical
to a magnetic loffe-Pritchard trap, and cooled using radio-frequency-induced forced evaporation (see
Fig. Evaporation is performed on a spin-polarized “Li cloud with a much smaller amount of °Li,
the latter being progressively cooled by contact with the “Li component. This stage allows us to prepare
up to 5 x 10° SLi atoms at a temperature low enough to yield a 100%-efficient transfer into an optical
dipole trap. This number is several times larger than the ones obtained in experiments where °Li atoms
are directly transfered from a magneto-optical trap to an optical dipole trap. We then make a SLi
mixture in the two lowest internal states, in a bias magnetic field corresponding to resonant interactions.
Thanks to the very large collision rate, an efficient evaporation is performed by lowering the optical trap
power. The superfluid transition is reached with more than 2 x 10° atoms in each spin state, and we
obtain, after a deeper evaporation, clouds containing up to 10° atoms in each spin state at a temperature
T/Tr = 0.03(3). Our setup also enables us to produce spin-imbalanced Fermi gases in the degenerate
regime.

In addition, our setup gives us the possibility to use "Li in the final experiments on degenerate Fermi
gases. In Chapter 4| we thus use a small amount of “Li, left inside the SLi cloud, as a thermometer, solving
the notoriously difficult issue of strongly-interacting gases thermometry. Furthermore, broad Feshbach
resonances in 'Li makes it a versatile tool for future experiments, such as the study of Bose-Einstein

condensates in the strongly-interacting regime or Bose-Fermi mixtures.
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Figure 2.1: Scheme of the main steps for producing degenerate Fermi gases. (a) In the MOT stage, SLi
and “Li atoms are trapped using a combination of a quadrupole trap and three pairs of light beams. (b)
They are then transfered into a quadrupole trap and moved into a small appendage of the cell, using two
pairs of coils in anti-Helmoltz configuration. (c) In a tight Ioffe trap, “Li is evaporated up to 100 K. (d)
SLi atoms are then transfered into a hybrid magnetic-optical trap (bottom-right), and further evaporation
is performed on a mixture of the two lowest internal states at 834 G. A small quantity of “Li atoms can

be kept for thermometry.

2.2 "Li-%Li Magneto-Optical Trap

The first stage of the experiment is the simultaneous trapping of "Li and SLi clouds with large atom
numbers in a magneto-optical trap (MOT). We first describe the specificities of our laser system, and the

performance of the Zeeman slower and MOT.

2.2.1 Laser System

Compared with the previous setup, we completely changed the laser system. Due to the very small
Zeeman structure in the 22 P; /2 excited states, Lithium MOTSs require large laser powers for both cooling
and repumping transitions. Instead of concentrating all frequencies emitted by Master lasers into a single
tapered amplifier [88], we attributed one slave diode laser per frequency, delivering an intermediate power.
We use low-cost laser diodes manufactured for DVD players (HITACHI HL6545MG), delivering up to 180
mW of laser power. These diodes are heated up to 70 °C in order to bring the laser wavelength at 671 nm.
This tends to increase temperature fluctuations and a new design of well thermally isolated boxes was
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made. The power available for each frequency allows us to use optical fibers as spatial filters between the
laser diodes and the MOT. This strongly increases the long-term stability of the MOT alignment, and
enables one to maintain all optical elements before the fibers optimally aligned without having to realign
the other components. In addition, since the replacement of a single diode does not require to realign
the MOT stage, we compensate the loss of laser power, due to the ~ 70% fiber coupling efficiency, by
increasing the current driving the diodes much higher that the constructor’s specifications, paying the
price of a lifetime reduced to ~ 3 months. In the end, we typically obtain about 50 mW of laser power
directly available for the MOT, in a nearly perfect gaussian mode. These diodes are also used as Master
lasers, emitting 40 mW of laser power scannable over 1 GHz, as well as for Zeeman slowing. The large
number of lasers (15 lasers) makes the run-to-run laser stability relatively poor. However, using a single
type of diode strongly simplifies the laser maintenance and makes our setup very flexible.

2.2.2 Zeeman Slower

We use a spin-flip Zeeman slower for the MOT loading from an atomic beam. The atomic beam is emitted
by an oven containing natural liquid Li (with a 7.5% ©Li fraction). The Zeeman slower is characterized by
a large capture velocity ~ 1100 m/s, and final magnetic field of 200 G in the MOT region, so that slowing
laser beams do not affect the magneto-optical trap. The large laser power available allows us to use beams
with a large diameter (3 cm in the MOT region), and an intensity ~ 2 I, where Iy ~ 2.5 mW /cm? is
the saturation intensity for the S — P lines. With these favorable characteristics, we obtain a large flux
of about 10° "Li atoms/s (and 10® Li atoms/s), loaded into the magneto-optical trap.

2.2.3 Dual Species Magneto-Optical Trap

Slowed atoms are then captured into a magneto-optical trap, represented in Fig2.2] The characteristics
of the magneto-optical trap are listed in Table As the atoms are the transfered into a deep magnetic
trap, the MOT optimization aims to increase the atom number, regardless of the MOT temperature or
maximum density. Therefore we use a relatively small quadrupole field gradient, of amplitude 24 G/cm
in the strong direction, in order to minimize inelastic losses. Laser beams are also far detuned to the red
in order to increase the capture velocity. The laser beams have a 2.5 cm diameter and a laser intensity
I ~ I, values for which the trapped atom number is maximum. We typically trap 10'° "Li atoms at
a temperature of 4 mK. The °Li MOT is strongly affected by the presence of “Li due to light-assisted
inelastic SLi-"Li collisions. We thus only trap up to 4 x 10® SLi atoms, while up to 8 x 10% atoms can
be trapped when “Li laser light is switched off. We also mention that the ®Li cooling light induces a
25 % loss of "Li atoms, due to the proximity of several hundred of MHz with “Li D, transitions, inducing
light-assisted inelastic collisions.

Full atom loading is achieved in about 30 s. Before transferring the atoms into a magnetic trap, we
perform a dynamical compressed-MOT phase: the repumping light intensity is ramped to zero in 8 ms
while the cooling light is brought closer to resonance. The cloud’s temperature is decreased by a factor 4,
down to 1 mK, at the price of a 35% atom loss. At the end of this stage, atoms are spread in all Zeeman
states of the lowest hyperfine manifold.

In the next section, we describe the transfer into a purely magnetic trap and the radio-frequency
forced evaporation.

2.3 Sympathetic Cooling in a Magnetic Trap

The magnetic trap stage aims at producing relatively large °Li clouds at a temperature low enough to
ensure a complete transfer into an optical dipole trap. A more efficient cooling scheme can then be used,



Chapter 2. Experimental Setup

Figure 2.2: Scheme of the magneto-optical trap. The quadrupole field is created by two pairs of coils in
anti-Helmoltz configuration, in order to position the zero-field point in the middle of the laser beams (in
red).

Li MOT 7Li CMOT SLi MOT SLi CMOT

Cooling beam intensity (I ~ 2.54 mW /cm?) 1.0 1.0 1.0 1.0
Cooling beam detuning (I' ~ 5.87 MHz) -6.5 -3.3 -5.5 -1.7
Repumping beam intensity (I5) 1.0 0 1.0 0
Repumping beam detuning (T") -5.5 -4.7 -2.5 -1.7
Atom number 101 6 x 10° 4x10% 2.5 x 108
Temperature (mK) 4.2 1.0 4.2 1.0

Table 2.1: Characteristics of the "Li-®Li magneto-optical trap, in steady state and at the end of the
dynamic CMOT phase.

taking advantage of the Feshbach resonance relative to °Li atoms in the lowest internal states. In this
section we describe the sympathetic cooling of °Li atoms with 7Li, the latter being cooled using forced
evaporation.

2.3.1 Transfer into an loffe-Pritchard Trap

After the compressed MOT phase, we optically pump the atoms into the stretched states |[F' = 2, mp = 2)
for "Li and |F = 2, mp = 2) for Li. The "Li-°Li mixture is loaded into a magnetic trap created by the
quadrupole field previously used for the MOT stage, and ramped up to much larger magnetic field
gradients. In these internal states, the "Li-6Li mixture is stable against spin-exchange inelastic collisions.
Due to the high MOT temperature and the small scattering length value a77 = —27 ag describing collisions
between "Li atoms, the achievement of an efficient evaporative cooling requires the transfer of the atoms
into a tight loffe-Pritchard trap, as well as an additional in situ Doppler cooling stage.

Optical Pumping and Transfer into a Quadrupole Magnetic Trap

After the compressed MOT stage, atoms are spread into all levels of the lowest hyperfine manifold.
We rapidly switch off the MOT quadrupole field and create a 10-G bias magnetic field. After waiting
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100 us for the magnetic fields to stabilize, we send optical pumping beams onto the atoms along the bias
field direction, and during 300 us. "Li atoms are mostly pumped in the |F = 2, mp = 2) state using a
combination of a hyperfine optical pumping beam on the F' =1 — F’ = 2 D, line, and a Zeeman optical
pumping beam on the F' =2 — F’ = 2 D line, both beams being circularly o polarized. The Zeeman
optical pumping beam is far detuned from the absorption lines in order to address all atoms despite the
large cloud’s optical density for resonant beams. The MOT quadrupole magnetic field is then ramped
up to a maximum gradient of 335 G/cm. After waiting for inelastic collisions with atoms in other spin
states, we are left with about 50% of the "Li atoms initially held in the compressed MOT. For °Li atoms
we only use a hyperfine optical pumping beam, which is actually the same than the Zeeman optical
pumping beam for “Li due to proximity of “Li D; lines and °Li D, lines. The transfer efficiency from the
compressed MOT to the magnetic trap is about 35% for 5Li atoms.

Magnetic Transport into the Science Region

The vacuum cell was designed with a small appendage in order to be surrounded with a small Ioffe-
Pritchard trap, providing a very tight confinement (see Fig. Atoms are transfered from the MOT re-
gion to the appendage using two pairs of coils in anti-Helmoltz configuration (see Fig. The quadrupole
zero-field point is displaced in 100 ms by ramping down the current in the lower coil pair, while ramping
up the current in the upper coil pair. In the previous version of the experiment the appendage size was
too small and 90 % of the atoms collided with the appendage walls and were lost during the transfer.
By increasing the appendage inner size from 3 mm to 5 mm, the transfer efficiency was brought to 50 %.
The choice of the appendage size results from a compromise between the increase in transfer efficiency

and the decrease in the Ioffe trap confinement when the appendage size is increased.

Figure 2.3: Scheme of the magnetic transport. The orange and blue pairs of coils are in anti-Helmoltz

configuration.

loffe Trap Loading

Atoms are then transfered from a quadrupole trap to an loffe-Pritchard trap (see Fig. Due to the
very different magnetic field configurations for each trap, it is not possible to make an adiabatic transfer
from the quadrupole to the Ioffe trap. We minimize atom losses during the transfer by keeping as much
as possible a tight confinement in the direction where the cell walls are close to the atomic cloud. In the
end, we end up with up to 3 x 10® "Li atoms and 2 x 107 %Li atoms in the Ioffe trap.
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Figure 2.4: Scheme of the Ioffe-Pritchard trap. The radial confinement is provided by Ioffe bars in
quadrupole configuration (in brown), the axial curvature by the small green coils, and the bias field is
compensated by the large blue coils in Helmoltz configuration. The yellow coils are used for a fine control

of the bias magnetic field.

2.3.2 Radio-Frequency Evaporation

In this section we describe the sympathetic cooling of SLi atoms using forced evaporation of the 7Li

component.

Decrease of the Scattering Length at Finite Momenta

The atom cloud is initially held, at a temperature T' ~ 0.9 mK, in a decompressed Ioffe trap with a
large bias field By ~ 500 G, the trap frequencies being w, /27 = 198 Hz in the radial direction and

1

w, /27 = 66 Hz in the axial direction. The collision rate, I'. ~ 0.5 s~*, is too small for initiating the

evaporation due the small scattering length value a7; = —27 ayg.

By decreasing the bias magnetic field, the trap frequencies can be strongly increased. However, the
collision rate is not increased due to particular scattering properties of “Li in the mK temperature range.
The scattering cross-section between two colliding atoms has a dependence on the relative momentum k
given by [89]:

o 14 arr.k?
o(k) = 8wa77m,
in the low-k limit. r. is the potential effective range, on the order of the Van-der-Waals range a. =
(2m,.Cs/h?)Y/* ~ 2.6 az; [90]. Due to the negative sign of the scattering length, the factor 1 4 azrr.k?
decreases with k. The exact calculation of (k) reveals that the cross section actually cancels for a relative
energy of 6.6 mK [90]. This leads to a strong decrease of the mean collision rate inside a trapped gas at
thermal equilibrium: at 2 mK, the scattering rate is decreased by a factor ~ 4 with respect to the collision
rate corresponding to o = 8ma?;. The temperature increase induced by an adiabatic trap compression
accentuates this effect and makes the compression inefficient for increasing the collision rate. Therefore

it was necessary to implement an in situ Doppler cooling stage before compressing the trap.
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In Situ Doppler Cooling

We send during 2 s a weak (~ 10 yW/cm?) and circularly polarized light beam along the bias magnetic
field direction, detuned to the red of the closed |F =2, mp = 2)—|F’ = 3, m/x = 3) transition for 7L
The large magnetic field value provides a small magnetic field direction dependence with atom position,
and brings atomic transitions towards other states, induced by slight laser polarization imperfections,
far off resonance. Therefore we do not excite other states than |F’ = 3, m/z = 3). Doppler cooling, after
optimization of the cooling beam intensity and detuning on the final collision rate, reduces the cloud’s
temperature by a factor 5, with a moderate 30% atom loss. After a trap compression, the collision rate
is increased by a factor ~ 20 compared with the collision rate without Doppler cooling, thanks to the
temperature reduction and the subsequent scattering cross-section increase. In situ Doppler cooling thus
appears to be a very efficient cooling stage, whose use is now generalized to other atomic species with

high-temperature magneto-optical traps, such as Cr [91], Ne [92] or He [93].

“Li Evaporation

We first describe the evaporation of a pure “Li cloud. “Li atoms are held in a tight Ioffe trap whose
frequencies are w, /27 = 3.5 kHz and w, /27 = 80 Hz. They are cooled using radio-frequency evaporation
on the |F'=2,mp =2)—|F =1, mp = 1) hyperfine transition. The mean collision rate remains almost
constant, at a value I'. ~ 40 s’lﬂ This shows that the evaporation is at the runaway threshold. The evap-
oration trajectory, plotted in Fig[2.5] reveals an efficient evaporation up to Bose-Einstein condensation,
where the cloud becomes unstable because of the negative scattering length value a77 = —27 ag. Thanks
to better starting conditions, the new version of the experiment enables us to produce larger clouds at a
given phase-space density n)\f’l 5(T). We were thus able to reach the Bose-Einstein condensation threshold

with ~ 5 x 10* atoms, without having specifically optimized the evaporation ramp.
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Figure 2.5: Trajectory of "Li forced evaporation: temperature 7' as a function of atom number N7, or
peak phase space density n\35(T) as a function of N7. The dashed line indicates the evaporation point
reached with a maximum SLi atom number Ng =5 x 105 (see section [2.3.2).

*By monitoring the Doppler cooling beam absorption, we obtain a convenient diagnosis of the “Li atom number before
radio-frequency evaporation, allowing a control of the stability of the first stages of the experiment.

fat least up to very low temperatures close to degeneracy, a regime which is not addressed when we use "Li for 6TLi
cooling.
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Li Sympathetic Cooling

Until the end of evaporation, the °Li atom number Ng is much smaller than the “Li atom number N7.
While spin-polarized °Li atoms do not collide with each other, the interspecies collision rate (per °Li
atom) is comparable to the “Li-"Li collision rate (per “Li atom), since the scattering length describing
61i-7Li collisions, agr = 41 ay, is on the order of a77 = —27 ag. The Li component’s thermalization with
"Li is thus as efficient as the Li self-thermalization. Therefore SLi atoms remains at thermal equilibrium

with “Li atoms during evaporation.

Sympathetic cooling becomes inefficient when N; becomes comparable to Ng, and the final temper-
ature reached after full “Li evaporation thus depends on the °Li atom number. With the maximum
SLi atom number Ng = 5 x 10° we are able to bring at this stage, the final temperature is typically
equal to 100 puK, a temperature low enough to ensure an efficient loading into the optical dipole trap.
The corresponding phase-space density, nA\35 ~ 5 x 107, is already relatively large, and we will see in
section [2.4:3] that it remains constant during the atom loading into the optical trap. At this stage we can
compare more quantitatively the performances of our setup with the ones of all-optical experiments: at
Duke university, the same phase space density is obtained for Ng ~ 10°, i.e. several times smaller than

in our experiment [94].

Let us mention that by reducing Ng to much lower values, it is possible to push the evaporation
further, and we obtained a degenerate Bose-Fermi mixture with N; = 7 x 10%, N5 = 3 x 10%, and
T ~ Tgrc ~ 0.3TF, where Tgrc is the “Li Bose-Einstein condensation temperature and T is the °Li

Fermi temperature.

2.4 Optical Trap and °Li Evaporation

The internal states involved in the strongly-interacting SLi mixture have a positive magnetic moment and
cannot be held in a magnetic trap. After sympathetic cooling in the magnetic trap, Li atoms are thus
transferred into an optical dipole trap before making the spin mixture in the two lowest internal states,
labeled |1) and |2). In this section we first describe the trap geometry and motivate our choice. We
then present the performance of our setup for obtaining degenerate °Li gases in the strongly-interacting

regime.

2.4.1 Geometry of the Hybrid Optical and Magnetic Trap

By contrast with the previous setup, we chose a single-beam optical dipole trap configuration, with an
additional magnetic curvature for a precise control of the atom confinement in the weak direction of
the optical trap, labeled z (see Fig. This choice is suitable for measuring the equation of state of
ultracold Fermi gases from the analysis of in situ absorption images. Indeed, in this elongated potential,
the typical cloud size along z is about 500 um, allowing a high resolution imaging in this direction. The
image analysis presented in the next chapters, does not require a good resolution of the radial cloud
dimension. By strongly confining the gas along x and y, we concentrate the atom signal on a few camera
pixel and increase the signal-to-noise ratio, which is determined by the camera background pixel noise.
In addition, the magnetic axial confinement is very robust and reproducible, allowing the study of axial
collective modes using experimental data taken over several days (see Chapter |§[)
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Figure 2.6: Scheme of the hybrid optical and magnetic trap. The optical dipole trap is created using a
high-power red-detuned laser beam focused down to a waist wg = 35 pm. An axial curvature, produced
by the green coils, provides the axial confinement. The blue coils, in Helmoltz configuration, create a
bias magnetic field up to 1000 G.

The Single Beam Optical Dipole Trap

We use for the optical dipole trap a 120-W IPG fiber laser emitting at Ao = 1071 nm. Atoms experience
an AC-Stark shift proportional to the intensity I(r) [95]:

A2 I(x
Ve =G

where I' = 27 x 5.9 MHz is the natural width of the S — P absorption line at 671 nm, I, = 2.5 mW /cm?
is its saturation intensity, and § = —27 x 1.67 x 10'* Hz is the dipole laser frequency detuning from the

(2.1)

671 nm line. The intensity variation with position leads to an effective trapping potential proportional
to the local AC-Stark shift, attracting atoms towards the regions of high intensity.
We focus the laser beam at the bottom of the Ioffe magnetic trap potential, with a gaussian TEMgq

B 2P 22+ )
o) = oy o (g ) 2

where P is the total laser power, wg = 35 pum is the beam waist and zp = ﬂwg/)\OT = 3.6 mm is the
Rayleigh length. Combining (2.1)) and (2.2]), we obtain the trapping potential:

2(z? + 4?) hr2p
——— h Uy=—— 2.3
( wi(l+22/2%) ) where: o 4o lswd (23)

intensity profile:

-U

0
V(l',% z) = W exp

is the optical dipole trap depth. Close to the trap bottom, atoms experience a harmonic potential given
by the quadratic expansion of (2.3) around 0:

1 1 4U, 1 A
Vix,y,z) = -Uy + imw?.(xZ + %) + §mw522, where w, =, /m—wog, w, = E%wr. (2.4)

For atom loading into the optical dipole trap, the laser power is ramped up to its maximum value
P ~ 65 W, corresponding to a trap depth Uy ~ kp x 1.6 mK, the trapping frequencies being w, /2m ~
13 kHz and w, /27 ~ 95 Hz. The trap depth is large enough to ensure a transfer of the °Li cloud with
unit efficiency, despite the large increase in trapping frequencies.



28

Chapter 2. Experimental Setup

The choice of a 35 pm waist was made empirically: we did not succeed to make an efficient atom
loading into an optical trap designed with a larger (wp ~ 100 pum) waist. This behavior is not merely due
to atom spilling due to a smaller trap depth. Indeed, the cloud temperature after loading is increased
from the magnetic trap value by the ratio of the geometrical mean frequency in the optical trap over
the one in the magnetic trap, and thus scales with w0_7/3. On the other hand, the optical trap depth
scales with w3. The amplitude of atom spilling is a priori driven by the ratio kT /Uy which has a small

~1/3
dependence o< wy /

on the waist value. The inefficient transfer observed for a large trap waist may be
due to the very low axial trapping frequency w, ~ 4 Hz in that case, which makes the transfer from the
magnetic to the optical trap non adiabatic. The cloud size along z then become comparable to the cell
size ~ 1 cm along z, and atoms may collide with the cell walls.

Smaller waist values are not preferable for the final stage of the experiment. The radial size of the
cloud would then become comparable to the imaging system resolution, and the peak optical density
would be relatively large. The combination of these two phenomena would lead to a strong distortion of
in situ absorption images, as explained in section [3.5.4] It would also imply a very large final trap aspect
ratio, casting doubt on the validity of local density approximation, which is at the heart of our data
analysis (see Appendix. The 35-um waist was thus chosen as the maximum waist value allowing an
efficient loading.

Axial Magnetic Trapping

The optical dipole trap aspect ratio A\ = w,/w, = v27wo/Aor =~ 150 is very large. While the axial
confinement provided by the optical trap w, /27 ~ 95 Hz is sufficient at maximum laser power, it becomes
very small (w, /27 ~ 3 Hz) when the °Li cloud is evaporated by lowering the optical trap up to 1/1000 of
the initial value. Thermalization then becomes very slow and may result in heating due to non-adiabatic
trap modiﬁcationﬂ

We use a magnetic curvature for an independent control of the axial confinement at low laser power.
We have at our disposal the pair of coils which provide the Ioffe trap magnetic curvature along z (see
Fig. [2.6). They create a magnetic curvature of C = 1.0 G/cm?/A, as well as a bias magnetic field
By = 2.28 G/A. The magnetic curvature, being positive in the direction of the bias field, expels Li
atoms in the |1) or |2) states (see Figl2.7h). We use an extra pair of coils to control the bias magnetic
field. They create a bias magnetic field By = —2.28 G/A in the opposite direction and a much smaller
curvature —0.080 G /cm? /A (see Fig. . The total bias magnetic field is reversed by imposing a larger
current through the second pair of coils, and the total curvature thus becomes negative with respect
to the reversed bias field direction (see Fig). Using this magnetic field configuration we create a

confining potential along z, up to 40 Hz.

2.4.2 Optical System for the Dipole Trap

In this section we give more technical details relative to the optical system for the dipole trap . Special
care had to be taken for the design of a stable optical system adapted to the large laser power provided
by the 120-W IPG laser.

Strong heating rates were observed in the first version of the optical system, where water-cooled
acousto-optic modulators (AOM) were used for the trap depth control. These AOM are designed to handle
large laser powers, but the water flow induces strong mechanical vibrations. Using a quadrant photo-
diode, we measured the beam pointing position noise power spectrum S, (v) (see Fig). Gas heating

for even possibly to metastable macroscopic states at low temperature |96]. The latter phenomenon may be at the origin
of the discrepancy between the observations in Rice university [554/97] and in other groups [98,/49,[99] on spin-imbalanced
Fermi gases (see Chapter , as suggested in [100].
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Figure 2.7: Magnetic field created by the curvature coils only (a), or by the combination of curvature
coils and extra coils providing an opposite bias field (b). High-field seeker states are expelled along z in
the first configuration, and confined in the other configuration.

is associated with the trap shaking spectral component at the radial trapping frequency w, /27 [101]:

. 1 w
E = Zmwts, (7)
A\

When water cooling is used, we estimate the heating rate to be about 500 uK/s at full laser power, to

be compared with 10 uK/s without water cooling.
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Figure 2.8: (a) Position noise power spectrum S, (v), as a function of frequency v, with a water-cooled
AOM (gray line) and without water cooling (black line). (b) Associated heating rate F as a function of

radial trapping frequency w, /2.

The strong influence of beam pointing fluctuations encouraged us to improve the mechanical stability

of the optical system:

e We use a single acousto-optic modulator without water cooling for the trap depth controﬁ Since

8From Crystal Technology Inc.
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laser light absorption by the AOM causes strong heating, we send an air flow through a hole in the
hood of the modulator. This air flow is stopped during the dipole trapping stage using an electronic
air valve. In order to avoid trap shaking associated with AOM frequency fluctuations, we use an

ultra-stable DDS function generator for the radio-frequency generation.

e The optical system is made of ‘cage system’ elements from Thorlabs company. All elements are
linked together with stainless steel rods and aluminum tubes, and the laser output coupler is glued
to this system, in order to minimize beam pointing fluctuations. The tubes also isolate the optical
path from ambient air flow and impurities. Day-to-day mechanical drifts are very small as well,

and the optical trap rarely needs to be realigned.

The complete optical setup scheme is shown in Fig[2.9]

2.4.3 Preparation of a Strongly-Interacting °Li Mixture
Atom Loading into the Optical Dipole Trap

After full evaporation of “Li, we load pre-cooled 6Li atoms in the optical dipole trap. The SLi cloud
typically contains 2 to 5 x 10° atoms at 100 pK, and is held in magnetic trap whose frequencies are
wy /2w ~ 3.5 kHz, w, /27 ~ 80 Hz. We first strongly decompress the magnetic trap by slowly increasing
the bias magnetic field from 3.5 G to 30 G and decreasing the curvature coils current from 500 A to 10 A.
The trap frequencies are, after decompression, w, /2w ~ 400 Hz and w,/27 ~ 10 Hz. The subsequent
cloud size increase makes the transfer into the optical trap less sensitive to the alignment of the dipole
laser on the Ioffe trap bottom. Fine adjustments of the infrared beam pointing are made using a mirror
whose orientation is controlled with a step-motor system (see Fig.

The transfer is performed by ramping down the Ioffe bars current while increasing the optical trap
power in 200 ms. Atoms are adiabatically attracted into the dimple made by the optical trap. No
significant atom loss is observed in the loading process. The temperature after transfer, T ~ 250 pK, is
3 times larger than the temperature reached at the end of sympathetic cooling. Since the mean trapping
frequency is increased, from the magnetic to the optical trap, by a comparable factor, this temperature

is consistent with an adiabatic loadingm

Heating and Loss Rates

We first tried to characterize the trap heating and loss rates in the dipole trap using a “Li cloud, and
observed large loss rates, with a 1/e time constant 7 ~ 300 ms. Since "Li atoms collide with each other,
one expects atoms to escape from the trap because of collision-induced evaporation. However, we did not
observe a temperature reduction while atoms were lost. The atom loss is rather attributed to inelastic
dipolar losses, enhanced with respect to the Ioffe trap by the increase in trapping frequencies.

Loss rates were found to be much smaller for SLi spin-polarized clouds, where both elastic and inelastic
collisions are absent, and are consistent with 7 > 20 s at full laser power, and no significant temperature

increase on a timescale of several seconds. This is consistent with the following heating rate estimates:

e The heating rate associated with beam-pointing fluctuations was estimated earlier to £ ~ 10 uK /s
at the maximum trap depth (see Fig[2.8p).

e Dipole laser intensity noise gives rise to parametric heating, whose amplitude is proportional to the

intensity noise power spectrum S7(v) at twice the radial trapping frequency w, /27 [101]:

. E 1 2 N
E =——, where —:&Sl (w—)
Tr Tr 4 T

9The 6Li cloud being fully polarized, no collision occurs during the trap modifications, and adiabaticity is a single-particle
process.



2.4 Optical Trap and °Li Evaporation

31

glass cell

photodiode

mirror with step motor

water-cooled
beam dump

IPG laser
YLR-120-LP

air cooling

=300 \/2

AOM 110 MHz

Figure 2.9: Scheme of the optical system for the dipole trap. The infrared beam is emitted by a 120-W
IPG fiber laser, in a gaussian TEMyo mode with a 5 mm 1/e diameter. After reducing its diameter with
a first telescope, the beam is diffracted by an air-cooled acousto-optic modulator. It is then enlarged by
a second telescope, and focused into the vacuum cell down to a 35-pum waist. A step-motor-driven mirror
provides a fine adjustment of the laser pointing.

From the intensity noise S;(v) measured experimentally, and shown in Fig{2.10h, we deduce a
heating time constant 77 ~ 100 s at full dipole laser power (see Figl2.10b). Therefore we did not
need to install an intensity stabilization lock, and the optical trap depth is controlled in open loop.

e Because of the very high intensity at the trap bottom, light absorption is not completely negligible
despite the very large frequency detuning, and occurs with a rate [95]:

r -1
hi(SUO_?S .

Each absorbed photon leads to an energy gain of about one recoil energy F,., and the heating rate

Fabs =
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Figure 2.10: (a) Intensity noise power spectrum S;(v), as a function of frequency v (b) 1/e time constant
7 of the associated heating rate, as a function of radial trapping frequency w;, /2.

associated with off-resonant photon scattering reads [95]:

.9 2 /72
B = {TauBy =T uK/s, where F, = . ( il

2
) ~ kp x 1.4 pK.
2m

Aot
Preparation of a Strongly-Interacting Li Mixture

The Li cloud loaded from the magnetic trap into the optical dipole trap is polarized in the low-field
seeking state |6)=|F = 3/2,mpr = 3/2). The states involved in the strongly-interacting mixture are the
two lowest internal states |1) and |2), which exhibit a wide Feshbach resonance centered at a magnetic field
By =834 G (see Fig. As these states have a positive magnetic moment, their magnetic confinement
along z requires an opposite curvature than the one used for the Ioffe trap (see Fig. Therefore
during the transfer |6)—|1) we need to switch off the magnetic curvature, the axial confinement being
solely produced by the optical trap. A small bias magnetic field is kept on, and the |6)—|1) transfer
is performed using an adiabatic passage across the hyperfine transition. In order to produce a reversed
magnetic curvature with the same coils, we suddenly reverse the bias magnetic field, and then slowly
ramp the bias up to By = 834 G, and the curvature fields up to w, /27 = 40 Hz (see Fig. About 20%
of the atoms are lost in the process, and no significant atom loss is observed when crossing the p-wave
Feshbach resonance at By = 159 G [102}[103|. Finally, a |1)-|2) mixture is created using a non-adiabatic
Landau Zener passage around the nuclear spin-flip transition |1)—|2) at 76,4 MHz.

2.4.4 Evaporation of a °Li Gas With Resonant Interactions
Evaporation of a Spin-Balanced Gas

The evaporation efficiency was characterized using spin-balanced gases. Right after the preparation of a
|1)-]2) mixture at the center of the Feshbach resonance, the collision rate is particularly large [104]:
_ 2N h2wiw,

.= "2 ~ 4000 s~ 1,
m(kpT)? °

where N = 2 x 10% is the atom number per spin state. This enables us to perform a very efficient
evaporation.

No noticeable evaporation is observed as long as the trap depth is kept at the maximum value, despite
the large collision rate. This confirms that the atom transfer from the Ioffe trap to the optical dipole
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Figure 2.11: Left: Energy E of the states 2251/2 as a function of the magnetic field B. In the last stage of
the experiment we use a mixture of the two lowest internal states, |1) and |2). Right: s-wave scattering
length describing ultracold collisions between states |1) and |2), as a function of magnetic field.

trap does not induce significant heating. Evaporative cooling is forced by lowering the optical trap depth,
using an acousto-optic modulator for the laser power adjustment. As mentioned above, the laser power
is controlled in open loop; the AOM radio-frequency power is controlled using a 16-bit computer analog
output, providing a fine control of the laser power even in the range P ~ 1073 P, addressed at the end of
evaporation.

In Fig[2.12] we show a typical evaporation trajectory. The dipole laser power is decreased in 5 s from
the maximum power P up to a final power P,,, using an exponential function with a 1/e time constant
of 500 ms. Fermi degeneracy is reached with more than 2.5 x 10° atoms per spin state at 7/Tr = 0.5,
and by pushing the evaporation further the gas is cooled to the lowest temperatures (T/Tr = 0.03(3),
see Chapter , with 10° atoms per spin state. At the end of evaporation we measure a 1/e lifetime of
about 5 s, the optical laser power being kept to the minimum value. Since residual evaporation is not
suppressed, this provides a lower bound to the intrinsic lifetime of the ®Li gas. This value is much larger
than the one observed for °K gases in the strongly-interacting regime. This difference is related to the
very different Feshbach resonance widths for SLi and 0K [341[105].

In the classical regime, the atom loss rate during evaporation can be related to the temperature to
trap depth ratio n = kT /Uy, according to [106]:

% =—2(n—4)e T,
which gives  ~ 10 for our experiment. In the limit of large n values, the gain in phase space density is
related to the atom number loss according to:

n\3p o< N3 ~ N7,

showing the excellent evaporation efficiency achieved with Li mixtures in the unitary limit. As soon
as the gas enters the Fermi degeneracy regime, the atom number decreases more sharply when the trap
depth is lowered (see Fig2.12). This is expected as Pauli blocking plays an increasing role [107].
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Figure 2.12: Evaporation trajectory for a SLi spin-balanced mixture with resonant interactions: atom
number per spin state IV as a function of the dipole laser power P. The solid line is the evaporation
trajectory in the classical regime, corresponding to n = 10.

Spin-Polarization Issues During Evaporation

In Chapter |5/ and |§| we study spin-imbalanced SLi mixtures at low temperature. Since in the degenerate
regime it is not possible to remove atoms in one spin state without heating the gas, one needs to prepare
a spin-imbalanced mixture before starting the evaporation. The performance of evaporation is not dra-
matically affected by spin polarization, since it was possible to produce extremely imbalanced mixtures
(N2 < 0.02N;) with a temperature consistent with 7'/Tr = 0.03 (see Chapter [3)).

However, the final gas polarization is very sensitive to the initial condition, due to the combination
of the following effects:

e In the classical regime, the velocity distribution is identical for both components. In particular
collisions ejecting atoms from the trap act symmetrically on both spin states, and we expect dN; =

dN,. This behavior leads to a progressive increase of spin polarization, as shown in Fig2.13.

e In the degenerate regime, we observe a strong decrease of spin polarization, the tendency becoming
increasingly pronounced when evaporation is pushed further. A physical interpretation of this
phenomenon can be given in the BEC and BCS regimes: in the BEC regime, atoms with opposite
spins form deeply bound molecules, which have twice the atom polarizability and thus feel an optical
trap twice deeper compared to atoms. This makes single atom evaporation much more likely. In the
BCS regime, collisions mostly occur between majority atoms with a speed vp; and minority atoms
with a speed vpy < vp1. Majority atoms are thus more easily ejected from the trap. Many-body
effects appearing in the degenerate regime are also expected to decrease the cloud polarization [100].

The large polarization variation during evaporation leads to a strong sensitivity to initial conditions,
and makes the control of polarization for deeply degenerate gases difficult. In Figf2.13p we show the
large shot-to-shot polarization fluctuations for gases prepared at the lowest temperatures. For some

experimental runs all minority atoms are evaporated during the trap depth decrease. However, as long
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Figure 2.13: (a) Polarization P; after evaporation as a function of polarization before evaporation P;,
for an evaporation up to T" ~ Tr. The solid line is a guide to the eye. (b) Evolution of polarization
for consecutive experimental sequences preparing a deeply degenerate gas. For three sequences the gas

becomes fully polarized during evaporation.

as 100-% polarized samples have a low probability, this phenomenon is not really penalizing since it is

possible to post-select images as a function of spin polarization.

Trap Frequency Calibrations

The trap frequencies w, and w, are calibrated by exciting the center-of-mass dipole mode along x or z.
The magnetic confinement, that has a long-term stability, is calibrated with a very good precision.
We use the set of data taken for the study of collective modes described in Chapter [6] In addition to
the excitation of axial compression modes, we observe an oscillation of the gas center-of-mass along z.
According to Kohn’s theorem, the center of mass always oscillates at the trap frequency w, /27, whatever
interactions. For very cold samples, the optical dipole trap power is so small that its contribution to the
axial trapping frequency is less than 1%. The axial confinement is thus completely characterized by the

magnetic field curvature, provided by the curvature coils, plus a small contribution from the bias coils:

2
Wz
(7) = iasdbias + Ceuleu

27
By B(Ipias — Iew), where [ =228 G/A

The coefficients apq5 and «g, are extracted from frequency calibrations using gases prepared at By =
834 G, hence Iy;us — I., remains equal to 366 A. From the frequency values measured for I., =
50 A, 70 A, 100 A (see Fig, we deduce the coefficients ap;qs = —2.06 Hz2 /A and a,, = 24.8 Hz?/A
By measuring the oscillation frequency of the center-of-mass motion along z, we obtain the following
calibration of w,.:
Wy

7 = aVP  where a=2.0(2) kHz/VW,
™

P being the dipole laser power.
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Figure 2.14: (a) Center-of-mass oscillation for I;,s = 416 A and I., = 50 A, and fitted with a cosine,
providing w, /27 = 19.7(2) Hz. (b) Axial frequency as a function of curvature coil current, plotted as
(w./27)? versus I, and fitted with a straight line.

2.5 Absorption Imaging

We use in situ absorption imaging for the study of 5Li gases described in the next chapters, and also use
"Li images for Li thermometry in Chapter [4l In this section we first explain the probe light production

process for imaging atom clouds at high magnetic fields. We then describe the imaging optical system.

2.5.1 Generation of High-Field Resonant Probes

The ultracold gases studied in our experiment are produced around the Feshbach resonance center
By = 834 G. Optical transitions used for absorption imaging are thus strongly detuned from zero-field
transitions, and the preparation of the corresponding probe beams requires a specific setup.

At these large magnetic field values, the hyperfine coupling is smaller than the Zeeman shift and
atoms are in the Paschen-Back regime, where electronic and nuclear spins are decoupled (see Fig.
The two lowest internal states of 5Li can thus be labeled as:

|1> ‘J=1/27mJ=—1/2,.7:1,m[:+1>7
|2> = ‘J:1/2’mJ:_1/2,I:1,m]:0>’

where .J,mj are the electronic quantum numbers and I, m; are the nuclear spin quantum numbers. In
the Paschen-Back regime, the nuclear spin is much less coupled to the electric dipole than the electronic
spin; therefore optical tramsitions |m; = —1/2,m;)—|m/; = —3/2,m} = m; — 1) towards 2Py, levels
are almost closed. As we image 5Li atoms along a direction perpendicular to the magnetic field, the
transition strength is maximum for a linear polarization perpendicular to the magnetic field, with an
effective Clebsch-Gordan coefficient equal to 1/2. In the Feshbach resonance center By = 834 G, the
transition frequency is detuned by 1.2 GHz to the red from the zero-field D, transitions. We use a
high-frequency acousto-optic frequency shifterm operating in the range 200-1000 MHz, in a double-pass
configuration, in order to generate the high-field imaging probe beams. The ~ 7% diffraction efficiency
in double-pass configuration requires to use of an additional slave laser in order to obtain large enough

laser power for imaging.

IModel BRI-GPF-650-225-670 from Brimrose Corp.
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The situation is much simpler for “Li high-field imaging. Indeed, the transition from the ground state:
|7y =1|J =1/2,m; = —1/2,1 = 3/2,m; = +3/2),

to the state |m’; = 3/2, m} = —3/2) is detuned to the red of the transition |F = 1)—|F’ = 2} at zero-field,
by about 1.3 GHz. This corresponds to a detuning of -500 MHz with respect to the |F = 2)—|F’ = 3)
transition at zero field, already used for laser cooling (see Fig. Using the powerful laser light already
prepared for the MOT stage, and a more usual and efficient 200 MHz AOM in double-pass configuration,
we obtain a probe beam for “Li imaging at By = 834 G with large enough power. For the experiments
described in Chapter 4] the “Li component is imaged along the magnetic field direction. We thus use a
circularly polarized o_ probe, and the Clebsch-Gordan coefficient is equal to 1.

6Lj Li

"Li laser cooling

0 500 834 1000 0 500 834 1000
B(G) B (G

Figure 2.15: Energies of the 225; 5 and 22P; 5 levels for °Li and "Li versus magnetic field. The thick
lines represent the states |1) and |2) for 5Li and |7) for “Li used in our experiments. The degeneracy due
to the nuclear spin is invisible for the 22P; /2 levels (~ 1 MHz). Red arrows: imaging transitions at high
field |my = —1/2,mr)—|m/; = =3/2,m}; = m; —1). The dashed arrow is the laser cooling transition

o_

|F' = 2)—|F’ = 3) at low magnetic field.

2.5.2 Imaging Optical System

The imaging optical system for SLi is represented in Fig It is made of two parts: first a 4 — f
optical setup makes an intermediate image of the atom cloud, with a x(—1) magnification. We then use
a pairs of doublets to conjugate the intermediate image onto a CCD camera. The overall optical system
magnification, calibrated by monitoring the free fall under gravity of a cloud released from the Ioffe trap,
is equal to M = 1.7(1).
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Figure 2.16: Scheme of the imaging system: the probe light exits from an optical fiber and is collimated
with a doublet. The atom cloud is first imaged using a 4 — f setup made of a f = 200 mm doublet and a
combination of a 350 mm doublet and a 500 mm meniscus, essentially equivalent to a 200 mm lens. The

intermediate image is then imaged onto the camera using 75 mm and 150 mm doublets.

Another imaging system along z is used in Chapter 4] for “Li thermometry. After taking the SLi in
situ image along y, we switch off the optical dipole trap, let the cloud expand for 1 to 4 ms, and take
an absorption image of the "Li component. By imaging along the axial direction z, we take advantage
of the cloud ellipticity to increase the optical depth and hence the signal-to-noise ratio. We can then
reliably deduce the cloud temperature from the size of a ~ 3000-atom "Li gas. Since the imaging beam
passes through the Ioffe bars, the solid angle for atom imaging is small, resulting in a relatively poor
resolution of 9 pum. However, it is still much smaller than the typical "Li cloud’s radial size after free
flight o > 40 pm.

2.5.3 Imaging System Resolution

The theoretical imaging system resolution is evaluated to 4.1 pum (Airy disc radius). Ultracold gases held
in the optical dipole trap have a radial size 0 < 10 pum (o of a gaussian fit), therefore details in the
transverse direction are not resolved by our imaging system (see Fig. The measured cloud radial
sizes are consistent with a resolution blurring acting as a convolution with a gaussian of size o, = 4 pm.
The consequences of the finite imaging resolution on the analysis of in situ images is discussed in section
The magnification was chosen so that Mo, = 7 pm is comparable to the camera pixel size, equal
to 6.45 um. The atom signal per pixel is thus maximized without having the pixel discretization decrease

the imaging resolution.

2.5.4 Double in Situ Images

In Chapter [5] we measure the pressure in spin-imbalanced gases using in situ absorption images of both
spin components, taken in the same experimental run. In order to have a pixel-to-pixel correspondence,
we use the same camera for both images. The probe beams are also emitted from the same optical fiber
in order to share a common intensity pattern. Both images have to be sequentially taken, with special
care so that the first absorption image does not degrade the second image.

We first studied the effect of pulse duration on the absorption image of a spin-balanced Fermi gas
(see Fig). In that case we take a single absorption image, and maximize the atom signal by sending
both probe beams simultaneously. The radial cloud size deduced from the absorption image depends on
the probe pulse duration, while keeping the absorbed photon number per atom at N ~ 10 per atom, by
adjusting the probe beam power. In Fig[2.18h, we compare the images of a cloud prepared in the same



2.5 Absorption Imaging

39

integrated optical density (a.u.)

X (um)
Figure 2.17: Typical absorption image of a spin-balanced Fermi gas used for the work presented in

Chapter [4 The optical density integrated along the weak direction z is fitted with a gaussian of width
o =5.3 pm.

conditions, with pulse durations 10 us and 100 us. The measured radial cloud size is equal to 0 = 6.3 ym
for the short pulse and ¢ = 8.5 um for the long pulse, showing the effect of photon scattering on a
100-us time scale. This has to be compared with the mean velocity v/N /3v, induced along x by photon
scattering (v, is the recoil velocity):

VN~

UTT§ ~5pum for 7 =100 ps.

For the study of spin-imbalanced Fermi gases, it is crucial that both spin states are imaged in the
same conditions. We use a PixelFly QE camera allowing us to take two images separated by 10 us.
Using 10-us probe pulses separated by 10 us (see Fig), we observe no significant perturbation on
the second image. The minority spin state is imaged first in order to minimize the number of scattered
photons during the first image. Using a saturation parameter s = I/I; ~ 0.04, absorption occurs in the
linear regime, with ~ 8 scattered photons per atom. With these parameters, typically 600 photons hit
each pixel camera, i.e. 250 photon counts per pixels given the 40% quantum efficiency of the camera.
This number has to be compared with the dark background level of 18 counts per pixel, showing the
necessity to reduce the magnification as much as possible to concentrate the atom signal.

The PixelFly camera is able to take a series of two absorption images in a short time interval. Reference

images for the computation of the optical densities:

113y
Ire

Od|i> = — log

are thus taken separately, in practice at the end of an experimental run where atoms are absent. Since the
reference intensity pattern slowly drifts with time, we take a series of reference images every 10 minutes.
We mention that the reference image is not used for the computation of the optical density difference,

which is an interesting observable for the identification of full |1)-|2) pairing in the superfluid phase (see
Chapter [5):

I bf

odjy —odjpy = —log I|1>f +log Il2>f
In
= —log—=.
Iiz)

The optical density difference thus does not suffer from reference imperfections due to the long delays

between absorption and reference images.
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Figure 2.18: (a) Absorption image of a degenerate spin-balanced Fermi gas, using a 100 us pulse (upper
panel) and a 10 ps pulse (lower panel). The probe intensity is increased by a factor ~ 10 for the short
pulse. The radial sizes are o = 2.3 pixels and o = 1.7 pixels, respectively. (b) Scheme of the imaging
sequence for spin-imbalanced gases.

To conclude this chapter, we described the experimental setup and the procedure used for producing
quantum degenerate Fermi gases in the strongly-interacting regime. The performances of our setup in
terms of final atom number and temperature are very good. The specificities of our setup allows us to
use "Li for thermometry and investigate the physics of spin-imbalanced Fermi gases.



Chapter 3

Measuring the Equation of State of

a Homogeneous Ultracold Gas

The nearly complete purity and extreme diluteness of ultracold atoms makes them valuable tools for
a precision investigation of model Hamiltonians from condensed matter physics. However, the density
inhomogeneity induced by the trapping potential makes the comparison between observations in the
laboratory and theoretical predictions for homogeneous gases indirect. However, in the local density
framework, an ultracold gas can be considered as locally homogeneous. It is thus possible to measure the
properties of homogeneous gases using trapped ones, by probing local properties inside the gas. However,
ultracold gases are usually probed by measuring the atom induced absorption or phase shift of a laser
beam. These techniques give access to a two-dimensional profile, proportional to the atomic density n

integrated along the probe beam direction (labeled y):

Az, ) = / dyn(z,y, ).

Deducing local quantities from 7(z, z) is a priori not simple. An important exception is the realization of
two-dimensional ultracold gases, where the motion is frozen in one direction (here the direction y) using
very tight confinement [26}/108/109,(110]. In that case the optical density is proportional to the surface
density ns(z, z) and has a direct physical interpretation (see section [3.1.2)).

In the first part of this chapter we describe previous works on the thermodynamics of Fermi gases.
The first kind of approaches is based on the determination of an equation of state of the entire trapped
gas, through the measurement of the gas energy using the virial theorem [62,/63], or the study of col-
lective modes [64]. Since local properties are not probed, the comparison with theoretical results on
homogeneous gases is indirect and requires an integration of the latter over the trap. We then describe
the thermodynamic study performed at MIT, which relies on the measurement of the local density inside
the gas using an Abel transform of 7(x, z) [49]. This procedure dramatically decreases the signal-to-noise
ratio and leads to a noisy equation of state of the homogeneous gas [68].

We developed a new method for extracting from 7(x, z) the local pressure P inside the gas in a very
simple manner [48]. It can be used to provide, from a set of several absorption images, a complete
equation of state P(u,T) of the homogeneous gas, with a small statistical noise. After describing the
general principle of the method, we illustrate its power by measuring the equation of state of an ultracold
Bose gas in simple situations: from a single image of a Bose gas trapped in three dimensions [31], we
deduce the equation of state of a weakly-interacting Bose gas from the classical regime to Bose-Einstein
condensation. We also apply it to Bose gases in an optical lattice, in the regime of large lattice depth.
The equation of state deduced from the data from the Mainz group [72] reveals characteristic features of
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a Mott insulator and can be used to investigate finite-temperature effects.

3.1 Equation of State of an Ultracold Gas: State of the Art

In that section we describe previous studies of the thermodynamics of an ultracold gas.

3.1.1 Equation of State of a Trapped Gas

A first approach for measuring thermodynamic properties of an ultracold gas is to extract from an
absorption image n(z, z) physical quantities characterizing the entire gas. Repeating this measurement
on a series of gases prepared with different total atom numbers or temperatures, one obtains the equation
of state of the trapped gas.

As a first example, an equation of state of the Fermi-Hubbard model was recently measured in the
temperature range 7' ~ 0.157, by measuring the variation of the size R? = [dzdz (z? + 2%)n(z, 2)
of a Fermi gas held in an optical lattice, versus the trap frequency w [21]. The quantity OR/0w can
be interpreted as the compressibility of the trapped gas and its variation as a function of confinement
strength can be viewed as an equation of state of the trapped gas. This physical picture was helpful for
identifying the Mott insulator phase, characterized by a small compressibility [21].

In the rest of this section we focus on techniques developed in the context of bulk Fermi gases since

the associated physical results will be compared in the next sections with our measurements.

Equation of State of a Trapped Fermi Gas with Resonant Interactions

In 2005 the groups at JILA and Duke University studied the thermodynamics of a spin-balanced Fermi
gas with resonant interactions [62}/63]. They elegantly measured two simple quantities characterizing a
trapped gas, its total energy F; and entropy S;. The relationship E;(S;) constitutes an equation of state
of a trapped unitary gas.

The total energy of a trapped gas is directly deduced from an in situ absorption image using the
virial theorem [111,|112]: assuming a harmonic confinement and resonant interactions, the total energy

of a trapped gas is related to its total potential energy F! through:
Et == 2.E%’D7

where:

1 1 1
Ef - /dx dy dZ <2mng2 + imwzyz + 2mw522> n(l.vya Z)

and w; is the trap frequency along the direction i. Provided that local density approximation is satisfied,

all directions contribute equally to the potential energy, leading to:
Ey = 3Nw? (2%).
E, is thus easily extracted from the doubly-integrated density profile n(z) = [ da n(x, 2), using:
() [ dz 2°7n(z)
25y =T —2.
[ dzn(z)
The entropy S; is measured in another experimental run. A gas is prepared in the same conditions, and
before imaging the magnetic field is slowly ramped to the BCS side of the resonance, where the scattering
length is small and negative. Assuming that the scattering length change is adiabatic, the entropy after

the ramp is equal to the entropy on resonance. On the BCS side of the resonance, interaction effects are

small and one knows how to relate the density profile to the entropy S;.
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Figure 3.1: (a) Equation of state of a trapped Fermi gas in the unitary limit measured by the JILA group
(open squares, from [62]) and at Duke University (black dots, from [63]). (b) Radial breathing mode
frequency w, normalized to the radial trapping frequency w,., as a function of interaction strength 1/kra
(from [64]).

This procedure provides an experimental determination of the equation of state of a trapped unitary
gas, shown in Fig[3Th, with local density approximation as the only assumption. The good agreement
between the results obtained in the two groups, using two different atoms (*°K in [62] and °Li in [63],
constituted the first evidence of the universal character of the thermodynamics of unitary Fermi gases
with short-range interactions.

However, it does not provide a direct comparison with many-body theories, which rather calculate
the equation of state of a homogeneous gas. In order to make the comparison, one has to model the effect
of trap inhomogeneity. Assuming the validity of local density approximation, the equation of state of a
trapped gas is calculated by integration over space of the theoretical energy and entropy densities e and

S:

E, = /dre(uO—V(r),T),
Sy = /drs(uO—V(r),T).

The equation of state F; as a function of S; is obtained as a parametric curve by varying the values of
(u°,T). The calculation of a single point (S;, E;) thus requires to know the equation of state for all values
of (u,T) with p < p°. Hence the comparison with discrete numerical results is possible only when the
data is dense enough to make a precise interpolation. This makes the comparison with time-consuming
diagrammatic Monte Carlo calculations from [113] tricky. Moreover, the comparison with theory remains
indirect and the trap averaging blurs the possibly small discrepancies between theories. We will see in
section [.3] that, by contrast, a direct measurement of the equation of state of a homogeneous gas provides
a clear identification of the validity domain of theoretical results. Finally, the equation of state of the
trapped gas does not easily reveal sharp features such as phase transitions, again because of the trap
averaging. This is for instance illustrated by the different values of the critical entropy at the superfluid

phase transition, given in [63}/46], depending on the procedure used to extract it from the data.

Superfluid Equation of State in the BEC-BCS Crossover

Another tool for probing thermodynamic properties of a trapped gas is to study its response to a small
perturbation. When excited out of equilibrium, the gas profile oscillates around the equilibrium profile.
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When the collision rate is much larger than the oscillation frequency, or if the gas is superfluid, the gas

dynamics is well described by hydrodynamic equations [114]:

0
Fri -V - (nv),
a 1,
mav = -V <2m1} + p(n) + V) .

Linearizing the hydrodynamic equations around equilibrium then provides the value of the collective
oscillation frequencies.

We consider here the experiment performed in the Innsbruck group [64], directly connected to the work
described in section In that experiment, a spin-balanced gas, prepared at a temperature 7' < T, is
trapped in an elongated cylindrical trap, with w, = w, = w, > w,, and is excited in the radial breathing
mode. As shown in Fig[3.Ib the frequency measurement is particularly precise. Hydrodynamics predicts
that the oscillation frequency is related, with an excellent approximation, to the equation of state n(u)
through [115]:

=3 /drnQZ—'Z(uo - V(r))//dr n(p —V(r)V(r). (3.1)

Equation (3.1) enables one to compare these experimental results with theoretical equations of state.

2
2
Wy

Equation of State of a Trapped Spin-Imbalanced Fermi Gas

The last example of equation of state of a trapped gas deals with the physics of spin imbalance in a two-
component Fermi gas, a topic addressed in Chapter [5| In short, when imposing different atom numbers
in the two spin states, a phase separation occurs in a trapped gas [54,55,99]: one observes a fully paired
superfluid core of radius Rg at the center, then a partially polarized shell where the minority spin state
is present up to the radius R, and finally a fully polarized part of radius Rjf] The measurement of
the radii Rg, R2 and R; as a function of spin polarization P = (N7 — N3)/(N1 + Nz), where N; is the
total atom number of species 7, characterizes macroscopic properties of the ground state of a trapped
two-component Fermi gas with resonant interactions [116] (see Fig). In particular one observes a
critical polarization P, ~ 0.75 beyond which the superfluid core disappears. The effect of interaction
strength on the critical polarization was also addressed using a Feshbach resonance [54] (see Fig[3.2p).
Similarly to the equation of state of a balanced unitary gas at finite temperature, the comparison
between theory and experiment in the last two examples, namely the study of collective mode frequencies
or the study of spin component radii, requires to integrate the equation of state of a homogeneous gas
over the trap. In Chapter [5| we apply our method to these systems, and obtain the equation of state of a
homogeneous gas, yielding a direct and much more discriminating comparison with theory.

3.1.2 Direct Measurement of the Equation of State of a Homogeneous Gas

In the previous examples, local density approximation was used to calculate characteristic quantities of
a trapped gas from a theoretical equation of state of a homogeneous gas. It is possible to reverse the
procedure, and to infer the equation of state of a homogeneous gas from an analysis of local properties

inside a trapped gas.

Equation of State of a Two-Dimensional Bose Gas

As mentioned above, two-dimensional ultracold gases are directly suited for this approach, since n(z, z)

is equal to the surface density ng(z,z) (the motion is frozen along y) |26}/108,/109,/110]. In the quasi-2D

*The Rice group did not observe the intermediate shell, a difference which remains unexplained.
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Figure 3.2: (a) Superfluid core radius Rg (open squares), minority radius R (dots) and majority radius
Ry (crosses) as a function of polarization P, from [116]. The radii are normalized to the Thomas-Fermi
radius of a balanced and non-interacting Fermi gas with same total atom number. We note in particular
the disappearance of the superfluid core for P > P, ~ 0.75 (b) Critical polarization P. as a function of
the interaction strength 1/kpa, from [54].

regime, the equation of state of a homogeneous Bose gas can we written as [117]:

ns 3T = G (o= 1 403)

where Agp(T) is the thermal de Broglie wavelength, and g is a dimensionless number characterizing the
interaction strength and which is independent of x and T'. This equation of state was measured in [110]
by analyzing absorption images of trapped gases of 8’Rb, using the following procedure: Assuming local
density approximation, the chemical potential varies in a trapped gas according to u(r) = u° — V(r).
The global chemical potential x° and temperature T are extracted from the wings of the cloud, using a
mean-field Hartree-Fock description. Each pixel (z,z) then provides a measurement of the equation of
state of a homogeneous gas:

1’ —V(z,2)
a = —=
kT
Gle,g) = ns(,2)A5(T).

After averaging over several pixels, one obtains from a single image a low-noise equation of state.

Local Density Measurement Using Abel Transform

The situation is much more complicated for a three-dimensional gas since the column density n(z, z) =
J dyn(z,y, z) does not give a direct access to the local atom density. However, in the case of a cylindrically
symmetric trap (the symmetry axis being z), the relation between the density and the column density

can be inverted using an inverse Abel transfornﬂ

n(z,y,z) = . /00 dz’ ! aﬁ(q:’,z). (3.2)

T J\/z21y2 2 — (xz + yz) ox’

TInterestingly, this formula does not assume that local density approximation is satisfied, and was used in [97] where it

is clearly violated.



46

Chapter 3. Measuring the Equation of State of a Homogeneous Ultracold Gas

110
105} 8 -
100, o, :
[ L 4 1
_095- *a g 3
ko) [ :.. ° ]
o)) [ °,° o
0.90 o:‘. Cun o, . R a
i M O 1 * . I
[ ol S ®e o
0'85j *.: ° :'~o (4 . L] .$ot
r el . o0, %
0.80 e LI
075’ S S S S RO SR R
0.0 0.2 04 0.6 0.8 1.0
X

Figure 3.3: Equation of state g(x) of a T = 0 two-component Fermi gas in the unitary limit (from [68]).

In the MIT experiment, local density profiles n;(r) (i = 1,2) of a two-component Fermi gas were
computed using (3.2) |49|, and used to determine the equation of state the homogeneous gas [68]. At
T = 0 and for resonant interactions, the canonical equation of state of a two-component Fermi gas

reads [81]:

30 2/3,_5/3 n2
E(ny,ng) = g%(&r ) nig |z = w )

A simple calculation leads to the expression g = (u1n1 + ugng)/(hz/Qm(6w2)2/3n?/3). Therefore, once
the chemical potentials p{ and 1§ are determined, each data point (r,n1,n2) provides one measurement

of the equation of state:

- 2,
o(e) = W@;;w%«ﬂvmmlwﬁvmmg.

However, the inverse Abel transform dramatically decreases the signal-to-noise ratio, and despite very
large atom numbers, the noise of their equation of state is large (see Figl3.3).

3.2 Description of our Method

We implemented a new method providing the equation of state of a homogeneous ultracold gas with a
good precision. It relies on a simple relationship allowing us to measure the local pressure inside the gas

by a simple integration of the column density n(z, 2).

3.2.1 Measurement of the Local Pressure inside a Trapped Gas

We discuss here the case of a two-component gas, held in a cylindrically symmetric harmonic trap of

frequencies w, along = and y, and w, along z. A simple formula then relates the local gas pressure P

along the z axis to the integrated density profiles 77;(z) = [ dzdyn;(z,y,2) = [dan;(x, z), provided local

density approximation is satisfied. We recall that n; is the atom density for species i. This relationship

was first derived in [70] and more recently used in [69], and I found it independently during my PhD.
The derivation of the formula is straightforward. Gibbs-Duhem identity:

dP = -8dT + nldul + 77,2(31[12
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reads, along z (dT = 0, dy; = —mw?2x dx):
dP = —mwfx(nl + ng)da.

Integrating between x = 0 and x = +oo gives the pressure along the z axis, i.e. at the chemical potentials

— ,,0 1 2.2,
friz = py — gmw?z’:

P(.“levﬂZzaT) = mw?/ (Tll +n2)xdz
0

mw,

- 27r/O (n1 + n2)27rdr

3N

2
mw;.

oo
= 277/0 (n1 + n2) da dy,

which leads to the formula:

2

YL @01(2) + 72(2)). (3.3)

P(ﬂlza,“QzaT) = ot

This relation can easily be extended to any multi-component ultracold gas at equilibrium, provided
each component is harmonically trapped and that local density approximation applies:

1 _
Plui, T) = o > mwlm(2),

where m; is the atom mass of species ¢ and w;;, w,; are the corresponding trapping frequencies. The
generalization to non-axially symmetric situations is also straightforward.

Contrary to the inverse Abel transform, integrating n(x, z) over x to obtain the pressure increases the
signal-to-noise ratio. In the next section we describe how to deduce from the pressure profile the equation
state of a homogeneous ultracold gas.

3.2.2 Determination of a Grand-Canonical Equation of State

The grand canonical equation of state P(u;,T") is particularly suited for the experimental study of the
thermodynamics of an ultracold gas. Indeed, the local gas pressure is directly given by , with a good
signal-to-noise ratio. In the local density framework, the arguments (u;, T) of the equation of state are
completely characterized by the global chemical potentials 1) and the temperature T'. If these numbers
can be appropriately determined, each pixel line at position z provides one point for the equation of state.
From a single image one then obtains the equation of state P(u;,T) for a large set of values of (u;, T').
The determination of the temperature and of the global chemical potentials depends on the system
considered. Let us describe briefly how they are determined in our study of Fermi gases, presented in
the next Chapters. We did not characterize the complete equation of state P(ui,pus2,T,a) of a two-
component Fermi gas due to the large number of degrees of freedom. We rather focused on particular

physical situations, encompassing most of the physical phenomena:

1. In Chapterwe study the equation of state of a spin-balanced gas in the unitary limit P(u, u, T, a =
o). The temperature T is measured on a “Li cloud at thermal equilibrium with the °Li atoms. pu°
is measured using the wings of the clouds which are in the classical high-temperature regime.

2. In Chapter [5] the gas is fully evaporated and the temperature T is considered equal to 0. We then
measure the ground state pressure P(uq,p2, T = 0,a), and p? is determined by fitting the position
at which the density n; vanishes.
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3.3 Equation of State of a Weakly-Interacting Bose Gas

In this section we apply equation to the measurement of the equation of state of a weakly-interacting
Bose gas. We use an in situ absorption image of a "Li cloud prepared in the |F = 1,mr = —1) state,
and held in an elongated magnetic trap with a small bias field [31] (see Fig. The trap frequencies are
wy /27 = 4970 Hz and w, /27 = 83 Hz. As shown in Fig[3.4] the integrated density profile n(z) directly
reveals the presence of a Bose-Einstein condensate in the middle of the cloud. Our method will directly

provide the grand-canonical equation of state, in both the thermal and condensed regimes.
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Figure 3.4: Doubly-integrated density profiles of "Li (dots) and ®Li (open circles). The gas contains
3.5 x 10* "Li atoms and 2.5 x 10* 5Li atoms.

Dimensional analysis allows us to write the equation of state as:

kT
= g
Aip(T)

P(u,T) (¢), where (=e W8T,

The variable ¢ is the inverse of the fugacity, and is an increasing function of temperature, at fixed
chemical potential. Ay (7T) is the thermal de Broglie wavelength. Our goal is to extract from the image
the function g(¢), which contains all the information on the gas thermodynamics.

The pressure along the z axis is directly given by equation . In order to obtain the value of g,
we also need to know the cloud temperature. We use a spin-polarized °Li gas at thermal equilibrium
with the 7Li cloud for thermometry (see Fig: as the inter-species scattering length ag; = 40 ag is
small, the effect of the "Li component on the Li profile is negligible. The latter is thus fitted with a
non-interacting Fermi gas profile, providing the cloud temperature "= 1.6(1) pK. At this level, we can

PX35(T) mw?z? ¢
g(()—kBiT versus  exp T ) 0

where (0 = e~ /ksT ig the global inverse fugacity. We thus already know the equation of state g(¢) up
to an unknown multiplication factor ¢° in abscissa. We determination of (Y requires some information
on the equation of state. We fit the data where no Bose-Einstein condensate is present, 7(z) < 10% m~!
(see Fig, with the equation of state of an ideal Bose gas above the condensation threshold:

plot the data as:

Z—k
L (3.4)

M8

9(¢) = g5/2(C), where g55(z) =

=
Il

1

and obtain the value ¢° = 0.904.
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We then deduce the equation of state g(¢), shown in Fig Each pixel row z provides one point
9(¢), and a single image thus gives the equation of state in the whole relevant temperature range, from
the condensed regime to the classical regime. In the non-condensed region, our data is in close agreement
with the equation of a weakly-interacting Bose gas g(¢) = g5/2(¢), from the classical regime ¢ > 1 to
¢ ~ 1. The deviation from the one of a Boltzmann gas g(¢) = (! is a manifestation of the bosonic
bunching effectﬂ A sharp transition occurs at ¢ = (. ~ 1, indicating the Bose-Einstein condensation
transition. While interactions essentially play no role in the description of the thermal part ¢ > 1, the
Bose-Einstein condensate pressure is dominated by the mean-field interaction:

47rh2a77
= —nNn

i , (3.5)

mz

where a7 is the scattering length describing collisions between “Li atoms and my is the "Li atom mass.
The pressure is then obtained by integrating Gibbs-Duhem relation at fixed temperature dP = ndy,
providing:

9(¢) = g5/2(Cc) + (log” ¢ — log® ¢c). (3.6)

Fitting our data with equation (3.6)) for ¢ < ¢, and (3.4) for ¢ > (., with (. and a7; as free parameters,
we obtain the (. = 1.0(1) and a77 = 11(2)ap = 0.6(1) nm. The uncertainties take into account the fit

uncertainty and the uncertainty related to the temperature determination. The condensation threshold

Xa(T)
dary

is in agreement with the value (. = 1 expected for a weakly-interacting Bose gas{ﬂ The scattering length
value is also in agreement with the calculation a77 = 11.5a¢ in [118].

Extending this measurement to stronger interactions, on Bose gases prepared close to Feshbach
resonances (for example using “Li clouds in the |1,1) or |1,0) states, held in an optical dipole trap

[1194120,/121]), could reveal more complex beyond-mean-field phenomena.

3.4 Mott Insulator Behavior of a Bose Gas in an Optical Lattice

In this section we present an application of our image analysis technique to the measurement of the
equation of state of a bosonic Mott insulator using experimental data from [72].

3.4.1 Realization of a Bose-Hubbard Model

A 8"Rb Bose-Einstein condensate is loaded in a trap consisting of the superposition of a harmonic trap
Vi(r) = im (w2(2? + y?) + w?z?) and a 3D optical lattice [72]:

V(r) = Vi(r) + Vo (sin?(kz) + sin®(ky) + sin®(kz)) .

The optical lattice is created by three orthogonal standing waves of red-detuned laser light of wavelength
A =2n/k = 843 nm. Atoms occupy the lowest Bloch band and realize the Bose-Hubbard model [19]:

- U

. i " N .

H= —J(E 4> a;4; + 5 g (ny — 1) + g Vi (i) ;. (3.7)
1,3 ? 7

tThe determination of ¢° actually makes the overall agreement of the data with 95,2(C), rather than g(¢) = ¢t
automatic. However, the fact that some data points in the thermal component satisfy g > 1, which is independent of the
choice of ¢9, is a clear manifestation of the bosonic bunching effect.

8The chemical potential value at the Bose-Einstein condensation threshold is shifted, to lowest order, by the mean-field
interaction with thermal atoms:

1 _4mh?
Coml ~ (L) - <72 dl a77n> =4(nA3p) TT = 4¢(3/2) T ~ 1%
kgT ). kT~ mr . ¢ XdB AdB

in our experiment. This value is much smaller than the 10% uncertainty on the determination of (. from our data.
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BEC threshold

PA/kaT
N
T

Figure 3.5: Grand-canonical equation of state g(¢) of a weakly-interacting Bose gas (black dots). The
solid line is a fit of the data with a Bose function g5/5(¢) in the thermal region and a Thomas-Fermi

equation of state in the condensed region (see text). The dashed line is the classical equation of state

9(Q)=¢

The index i refers to a potential well at position r;. J is the tunneling amplitude between nearest neighbors
and U is the onsite interaction, both of them being a function of lattice depth [14]. In this section n no
longer denotes the atom density bur rather the occupation number per site. The slow variation of V (r;)
compared with the lattice period A/2 ensures that local density approximation is satisfied. The system
is thus locally described by a homogeneous Hubbard model, given by without the last term, and
with a local chemical potential u(r) = p° — Vj(r).

3.4.2 The Mott-Insulator Regime

The phase diagram of the Bose-Hubbard model was established in [122] and is shown in Fig. At low
temperature and for large tunneling values J > U the gas forms a Bose-Einstein condensate in the state
lq=0)~ = (N, /2 3,|i)%, where N, = V(2/A)? is the number of lattice sites.

The condensate depletion becomes large when U ~ J and a quantum phase transition occurs towards
an insulator state. We focus here on the limit U > J. In that situation lattice sites are essentially

independent, with a Hamiltonian per site:

Hy = %(ﬁ —1)n, (3.8)
where 7 is the occupation number. The grand-partition function then reads:
=2, = Tre AHo—ui) _ i e AWUN(n=1)/2—m) g _ 1 /kLT,
n=0
and the pressure is given by [123, 124|I|c
P(uT) = pogloss
(if;)gi g (1 exp 0T, (39)

(3.10)

9The last equality in 1} is a convenient approximate that introduces an exponentially small error at low temperature
(kpT < U) [123\[124].
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This provides the occupation number (see Fig3.6b):

o0

1
n(w,T) = ———-
1 1l+exp “;Bi;w

In the limit kpT < U, these Fermi-Dirac-type terms tend to H(p — (n — 1)U), where H is the Heaviside

function, and
L

n(uT=0)=[L],
i.e. equal to the first integer larger than p/U (see Fig). At zero temperature the occupation number
is thus constant upon varying the chemical potential (except around p = nU), and the compressibility x =
On /0 is equal to zero. This is the characteristic feature of a Mott insulating phase. At low temperature
kT <« U, the occupation number remains flat, until the Mott insulator melts at a temperature kgT™ ~

0.2U (see Figl3.6p).

The grand-canonical equation of state at 7' = 0 is calculated by integrating Gibbs-Duhem relation:

P(u,T=0) = /OH (i)sn(u’7T = 0)dy’

2\? n—1
= ()\) (,u - U) n where n= {%—‘ . (3.11)
@ (b)
.
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Figure 3.6: (a) Phase diagram of the Bose Hubbard model at zero temperature. The gray regions are the
Mott insulating phases with an integer occupation number n. In a trapped gas, the chemical potential
varies from the value ;° at the bottom of the trap to —oo and our method thus provides the equation of
state of the Bose Hubbard model along a line (dashed line). (b) Mean occupation number n in the Mott
regime J < U, for kT = 0 (solid line), kT = 0.1U (dashed line), and kpT = 0.2U (dotted line).

3.4.3 Extraction of the Equation of State

We illustrate our method by extracting the equation of state of the Bose-Hubbard model in the regime
U > J, from doubly-integrated density profiles from the Mainz group [72].

Local Pressure Measurement

Resolving details of in situ images of a ~ 30 pm cloud requires a resolution on the order of 1 pum. As

the experiment was not designed for implementing a high-resolution optical imaging system, the gas
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was rather probed using a tomographic technique [72]. In the trap bottom, atoms experience a linear
gradient of 3.4 G/cm along z. By applying a radio-frequency pulse, atoms are transfered into another
internal state, with a spatial selectivity dz ~ 1 pum determined by the pulse characteristics [125]. The
number dN = 7(z)dz of transfered atoms is then counted using absorption imaging after a time-of-flight,
thus giving access to the doubly-integrated density profile 7(z) and hence, using equation , to the
gas pressure. Repeating this measurement for different probe frequencies provides the complete pressure
profile. In Figl3.7h we show four pressure profiles a, b, ¢, d corresponding to different total atom numbers
N, = 0.6 x 10°, N, = 10°, N, = 2 x 10° and Ny = 3.5 x 10° [72}[125].

Construction of the Equation of State

The chemical potential varies along z according to p, = u® — $mw?z2. Therefore, the data plotted as:
P 1 9 9
W versus — imwzz 5

is equal to the equation of state P/U()\/2)~2 versus u, up to a translation in abscissa by the global
(unknown) chemical potential x°. Since all images correspond to the same equation of state (we assume
a common temperature for all images), the sets of data from the each image can all be superimposed
by translating all images onto one of them, let us say image ¢ (see Fig). We thus determine the
differences 1% — 1Y between global chemical potentials, and gather all data points in a single equation of

state (still translated from the actual equation of state by the unknown quantity 12).
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Figure 3.7: (a) Doubly-integrated density profiles for a cloud prepared with N, = 0.6 x 10° (crosses),
N, = 10° (open squares), N. = 2 x 10° (black dots) and N; = 3.5 x 105 (plus). (b) Superposition of the

data from image d on the one from image c. (3.11).

3.4.4 Qbservation of a Mott-Insulator Behavior

In order to observe a Mott-Insulator behavior, we fit the data with piecewise linear function consistent

with equation (3.11)):
P

W = 0 for /J,<0

m% for 0<p<du

n%—i—n 7M—5M1
T Ty

) ) — 0L — 0
nl# +n2% +n3%

for Sp1 < p < Opr+ops

for dpq + dpo < p,
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with dp1, dpe, n1, ne and ng as free parameters. We also allow a free translation in abscissa by a quantity
u2. The determination from the fit of u0 provides the unknown quantity that was missing to obtain the
equation of state of the Bose-Hubbard model in the Mott regime, plotted in Fig[3.8]

The other fit parameters exhibit the characteristic features of the incompressible Mott phases. The
size of the first Mott region is du; = 0.9(1)U, with an occupation number n; = 1.0(1) atom per site. The
size of the second Mott region size is dus = 1.1(1)U, with an occupation number ny = 2.0(1). Finally,
the occupation number in the third Mott region is ng = 3.1(1). These values agree with the theoretical

values du; = U and n; = 1.

6F ny=0 Mm=1.01) =201 nz=3.1(1) -

P/(UQX/2)73)

u/U

Figure 3.8: Equation of state of the Bose-Hubbard model in the Mott regime U > J (black dots). The
solid line is a fit of the equation of state by a piecewise linear function, revealing the Mott phases.

3.4.5 Estimation of Finite-Temperature Effects

Finite-temperature effects tend to smear the occupation plateaus of a Mott insulator, until a their dis-
appearance at the melting temperature kgT* ~ 0.2U [123] (see Fig[3.6p). Fitting the experimental
equation of state with the finite-temperature equation of state (3.9), we obtain:

kpT = 0.091591 U,

i-e. a value significantly lower than the melting temperature.

In order to estimate the effect of the pressure profile smearing due to the finite resolution of the
tomographic technique, we convolved a theoretical T' = 0 profile with a point-spread function associated
with the finite probe resolution (see [125]). The simulated profile is then fitted with (3.9), and we obtain
kpT = 0.08(3) U. This shows that the investigation of lower temperature regimes would require a better

resolution.

3.5 Validity of the Pressure Measurement

In this section we discuss the validity of equation (3.3)) used for measuring the local gas pressure. We
show how to calibrate the pressure measurement in order to minimize systematic errors. We also estimate
the magnitude of the deviation from local density approximation and the effect of trap anharmonicity or

finite imaging system resolution.
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3.56.1 Calibration of the Pressure

The systematic error on the pressure measured using equation is a priori defined by the uncertainty
of atom counting and of the radial frequency. Since it is very difficult to achieve an atom counting
precision better than ~ 10%, we rather directly calibrate the pressure using a reference pressure profile.

We use the pressure profile of a deeply evaporated spin-balanced Fermi gas, in the unitary limit, as a
reference (see Fig. Indeed the equation of state of such a gas is well known:

2 [2m)\*?
Pp) =& — 5/2, 3.12
() =& 175 | 72 Iz (3.12)
The parameter s = 0.415(20) is measured in Chapter [5] without using this calibration, and this value is
in agreement with most previous experimental and theoretical results. Fitting an experimental pressure
profile P(u.) with ([3.12) provides a precise calibration of the pressure. Finally, we estimate the error due
to a shot-to-shot drift of the probe laser frequency or radial trapping frequency to be less than 5%.

0 50 100 150

Pixel Number

Figure 3.9: Pressure profile of a balanced Fermi gas at unitarity and very low temperature. The solid
line is a fit with a Thomas-Fermi profile multiplied by &5 3/ 2, providing a calibration of the pressure.

3.5.2 Deviation from Local Density Approximation

The pressure measurement is based on local density approximation. In the case of strong interactions
there is no prediction for the amplitude of deviations from local density approximation. We thus consider
the simpler situation of a two-component balanced Fermi gas in the BEC limit 1/kra > 1. The gas is
then a molecular Bose-Einstein condensate, described by the Gross-Pitaevskii equation:

h? Amh?
_7A+V+M
4m 2m

n) V= p’v/n,

where n is the molecule density and agq ~ 0.6 a is the dimer-dimer scattering length [16]. For simplicity
the trap is assumed isotropic, with a frequency w. In the local density approximation framework, the
first term is neglected, leading to the Thomas-Fermi density profile:

2m

n(r) = —o— (' = V(r)),

47Th2 add

r2 2u
= 1— —— h Rrp = d = —
ng ( R%F) , where Rrp 2 and o Thzag™
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plotted in Fig[3.10] as a dashed line. Writing the Gross-Pitaevskii equation using dimensionless variables
¥ =r/Rrrp and n = n/ng:

n=1-7r? —EA(\/E), where €= (hw)27
Vi 2p°
quantifies the gradient term in terms of a dimensionless number €. For a typical molecular condensate
with N = 5 x 10* molecules, prepared at 750 G where a ~ 2000 ag, and held in a trap with a mean
frequency w = 27 x 330 Hz, the parameter € is on the order of 0.5%. A numerical resolution of the Gross
Pitaevskii equation, shown in Fig[3.10] confirms the very small deviation from the Thomas-Fermi density
profile [126]. The size of the region where local density approximation is incorrect is on the order of the
healing length £ = 1/v/8mnagq, which is much smaller than the cloud size. As a conclusion, local density
approximation accurately describes the density profile of a trapped Fermi gas in the BEC limit. In more
complex situations such as the unitary limit, the exact calculation is not possible, but we expect the
conclusion to remain the same because the correlation length ~ kp is much smaller than the cloud size.
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Figure 3.10: Density profile n(r) of a molecular Bose-Einstein condensate calculated using the Gross-
Pitaevskii equation (solid line) and the Thomas-Fermi approximation (dashed line). The total molecule
number is N = 5 x 10%, the trap frequency is w = 27 x 330 Hz, and the scattering length is a = 2000 ag
(corresponding to a magnetic field B ~ 750 G).

However, the effect of the gradient term can be much more pronounced if the density profile abruptly
changes. This typically occurs around a density jump associated with a first-order phase transition, a sit-
uation encountered in Chapter [5] when considering spin-imbalanced trapped gases. When the populations
of the two spin states differ, a phase separation occurs between a central superfluid core and an external
normal shell. At the interface between the two phases, local density approximation predicts an abrupt
density jump. Gradient terms beyond local density approximation then play an essential role in the
description of the interface. In a first approximation, they might be captured by adding a surface tension
term to the force balance at the interface between the superfluid (S) and normal (N) phases [127)/128[129]:

(o
PN_PS:ﬁa

where o is the surface tension coefficient and R is the mean curvature radius of the interface. In particular,
in the case of an anisotropic confinement, surface tension tends to deform the interface from a trap
equipotential. In Appendix [B.4] we show that, in our experiment, the surface tension effect is very small
and that local density approximation applies well for the description of Fermi gases.

Local density approximation is also expected to fail in the critical region of a second-order phase
transition, due to the divergence of the correlation length. This situation will be encountered in section
M7 when considering the superfluid transition of a spin-balanced Fermi gas at unitarity. However, we
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show in section [£.7.4] that in practice the size over which local density approximation is incorrect is very
small, and that (3.3) provides the pressure of a homogeneous gas with a good precision.

3.5.3 Effect of the Trap Anharmonicity
Correction to the Pressure Formula due to the Trap Anharmonicity

Besides local density approximation, the other key assumption for obtaining equation (3.3) is the trap
harmonicity. However, the optical dipole trap potential is actually gaussian in the transverse directions:

Vi) = o (1 - ex (;;))

Let us estimate the error introduced by the anharmonicity of this potential. For simplicity we consider
a spin-balanced mixture of total density n(u, T). In the local density approximation framework, the local

chemical potential is given by:

1
:u(xayzz) = NO - ‘/T‘(z7y) - 57710]522,

and the integrated density reads:

n(z) = /27r1"d7"n (,uo —Vi(z,y) — ;mwgz2,T) .

Using the variable v = V,.(r) and n = 9P/du leads to:

mw? Yo 1 —0P
M = — L S o
21 n(2) /0 1—v/Uy Ou (1 =0, T)dv,

where w, = \/2Up/mw{ is the radial frequency at the trap bottom. Expanding this expression for large
trap depths Up, and integrating by parts, we obtain:

mw? _ < do
o n(z) = P(u,,T) Jr/o %P(uz —0,T). (3.13)

In the limit of a very large depth Uy — oo, the first term in (3.13)) dominates and one recovers equation
(3.3). The second term in (3.13) is the first correction to (3.3)) due to the trap anharmonicity.

Amplitude of the Anharmonic Correction

Let us now evaluate the amplitude of this correction for typical situations encountered in our experiment.

We first consider the case of a high-temperature Fermi gas in the classical regime, a situation encoun-
tered in the measurement of the equation of state of the unitary gas at finite temperature (see Chapter
. We recall the expression of the pressure for a classical gas:

P(u,T) = 2kpTAG(T) exp(pu/kpT).

The integration over the chemical potential in (3.13) is then straightforward, leading to:

2

The relative error is equal to kg7 /Uy, typically equal to 0.1 when we do not compress the optical trap
at the end of evaporation (see section [2.4.4). It does not depend on the position in the trap, hence the
pressure profile is not distorted but globally shifted. Therefore, the systematic error could be corrected

by modifying the calibration of the pressure.
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The error introduced by the trap anharmonicity is also simple to estimate for a single-component
Fermi gas at zero temperature. The pressure is then given by:
3/2
1 2m
Pu,T=0)=— | = 52
(w )= 152 ( = ) 1

and integrating over the chemical potential in (3.13) gives:
2

mwy_, 2p,
5 n(z) = P(p.,0) (1 + - UO) .

In that case, the correction is inhomogeneous, i.e. the doubly-integrated profile, compared with the

pressure profile, is distorted. The larger distortion amplitude occurs at the trap center and is equal to
2110 /7Uy. For typical trap parameters considered in our study of zero-temperature Fermi gases in Chapter
19 /Uy ~ 0.1 and the maximal distortion is 3%, below the statistical noise of our data.

3.5.4 Effect of the Imaging System Resolution

The finite resolution of the imaging system has to be considered for a precise understanding of in situ
images. As shown in section the effect of the resolution of our imaging system can be captured by
a convolution of the probe intensity profile with a gaussian of size o, = 4 um. The Thomas-Fermi radius
of a trapped gas is typically equal to 15 pym in the transverse direction, and details of the profile are not
resolved. However, the axial Thomas-Fermi radius being on the order of 300 um, fine details are well
resolved in the axial direction. We show here that the pressure P(u,) « 7i(2), obtained by integration of
the column density 7(z, z), is insensitive to the finite resolution of the imaging system, at least for small
optical densities. We also address the combined effect of finite resolution and large optical densities.

Insensitivity to the Resolution for Low-Density Clouds

We consider here the case of clouds with a small optical density, for which the column density is propor-
tional to the probe intensity absorption:
Iy — I(x, 2)
Iy ’
where I is the incoming light intensity and I(z, z) is the light intensity after passing through the atom

n(x, z) «

cloud. The intensity profile actually measured is obtained by convoluting the real profile with a gaussian

of size o,:

! ! / 1 :li2
Theasured (2, 2) = (I % f)(x,2) = /dx I(2', 2)f(x — 2"), where f(z)= N exp <_%r2> .

Since the cloud profile varies along z on a much larger length scale than o,, the convolution along z
has a negligible effect on the intensity profile and has not been included. In the linear regime, the

proportionality between the column density and the intensity absorption leads to:
ﬁmeasured(xy Z) - /dxl ﬁ(xl, Z)f(fli — LBI).
The integrated density profile is then given by:

MNmeasured (Z) = dx ﬁmeasured (337 Z)

dz'n(2’, 2) /dx flx —2)

Therefore, when light absorption is in the linear regime, doubly-integrated density profiles are insensitive

1
Sl— —

to the finite resolution of the imaging system [55].
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Figure 3.11: Theoretical integrated profile 71(z) of a spin-balanced gas with a total atom number N = 10°,
at a temperature 7' = 180 nK, and held in a trap of frequencies w, /27w = 1.1 kHz and w, /27 = 37 Hz.
The solid line (dashed line) is the theoretical profile with ¢, = 0 (o, = 4 pm).

Large Optical Density Effects

In the case of large optical densities, the relationship between intensity absorption and column density is
no longer linear:

I(x, z) = Ipexp(—oon(x, 2)),

where g is the light scattering cross section. The measured intensity profile then reads:

Ineasured (2, 2) = /dl‘/ Iy exp(—oon(z', 2)) f(x — o).

The measured column density is thus given by:

~ ( ) 1 I IO
Nmeasured (T, 2) = —log————+
measured \ L 0o & Imcasurcd (:U, Z)
1 Io
= —log

oo (I*f)(x,2)
7 (nxf)(z,2),

and in particular Timeasured (2) 7 T(2).

In Fig[3.11] we simulate the effect of the finite resolution of our imaging system for a cloud with typical
parameters used in Chapter ] The maximum optical density is then 1.2. The pressure deduced from
the integrated density profile is 9% less than the actual pressure at the trap center. As a result, in the
determination of the equation of state of a spin-balanced unitary gas, we do not use the data of optical
density larger than ~ 1, and the accuracy of the pressure measurement is then better than 5%. For
the study of the ground state of a spin-imbalanced Fermi gas described in Chapter [5] the axial trapping
frequency is reduced to w,/2m = 20 Hz in order to reduce the cloud’s optical density and minimize

non-linear effects.



Chapter 4

Thermodynamics of a

Strongly-Interacting Fermi gas

The first application of our method to Fermi gases is the measurement of the equation of state of a
two-component Fermi gas with an equal number of atoms in each spin state, and prepared in the unitary
limit a = co. As described in section the equation of state of a trapped unitary gas was measured
in [62,/63]. Despite its importance as the first measurement of a ‘model-independent’ equation of state,
it cannot be directly compared with many-body theories, which rather deal with homogeneous gases.
The comparison requires to integrate the theoretical equations of state over the trap, making use of
local density approximation. However, some advanced theories, such as the Diagrammatic Monte Carlo
calculations from the Amherst group [113|, only provide several points for the equation of state, and
the integration over the trap can not be performed. These theories have thus remained untested by
experiments up to now. The aim of our study is to provide the equation of state of a homogeneous gas
in order to make a direct comparison with theory. We will see that this comparison reveals unexpected
features.

Moreover, it is clear that sharp features such as phase transitions are expected to be smeared out by
the trap averaging. As an example, the critical temperature for superfluidity is almost invisible on the
equation of state of a trapped gas [63}/46]. We will show that the equation of state of the homogeneous
gas is more suited for measuring the critical temperature, as well as other physical quantities such as

virial coefficients.

Universal Thermodynamics of a Fermi Gas in the Unitary Limit

In this chapter we consider a gas prepared at 834 G, where the scattering length a is infinite, and with
equal atom numbers in each spin state. In that situation, the two chemical potentials u; and uo are
equal and we will use the notation g = pu; = po in the rest of the chapter. The equation of state is
then reduced to a relation between the pressure P and the intensive variables p and T'. At unitarity, the
scattering length drops from the equation of state and the only way to construct a dimensionless number
is the combination pu/kpT. Therefore the equation of state can be written as the product of a reference
pressure, taken as the pressure Py(u,T') of a single-component ideal gas, multiplied by a dimensionless
function hr(¢), where ¢ = exp(—u/kgT) is the inverse of the fugacity:

P(1,T) = 2Py (1, T)her(C). (4.1)

¢ is a convenient grand-canonical equivalent of T//Tr, and is an increasing function of temperature.
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All informations of the thermodynamics of a Fermi gas with resonant interactions are included in the
function hr(¢). In this Chapter, we present the measurement of hz(¢) using the method described in
Chapter |3 as well as a physical interpretation of our data.

4.1 "Li Thermometry

In Chapter |3| we showed how to extract from in situ images the pressure P(u,,T) along the z axis.
Deducing the equation of state from the pressure profile of a trapped gas also requires to know the
temperature T and the global chemical potential 1°. The temperature cannot be extracted from the cloud
image without invoking a model, since the relation between density profile and temperature is precisely
given by the equation of state we want to measure. Inspired by the Innsbruck group [73], we developed
a new thermometry method, using “Li atoms immersed in the °Li gas, and at thermal equilibrium with
it. The temperature is measured on the "Li component through its size after time-of-flight, a technique

specific to weakly-interacting gases.

4.1.1 Preparation of a Three-Component °Li-"Li Mixture

Adding a small amount of "Li atoms in the optical trap is particularly simple. We control the amount
of TLi at the end of sympathetic cooling by appropriately choosing the final frequency of the RF knife
expelling "Li atoms from the magnetic trap. As we do not need a large number of “Li atoms, we keep a
smaller amount of “Li than %Li, hence the final °Li temperature and transfer efficiency to the optical trap
are essentially unchanged. However this procedure leads to a larger sensitivity to atom number drifts.
Indeed, a larger SLi atom number leads to a higher temperature at the end of sympathetic cooling, and
requires an adjustment of the final knife frequency to maintain a constant “Li atom number.

Once loaded into the optical dipole trap, atoms are transfered into the final internal states. Under a 10-
G bias magnetic field, they are simultaneously transfered from |F = 3/2,mp = 3/2) to |F = 1/2,mp = 1/2)=|1)
for °Li and from |F = 2,mp = 2) to |F = 1,mp = 1)=|7) for "Li using an adiabatic passage around the
hyperfine transitions, respectively around 245 MHz and 825 MHz. The collision rate being especially
large in the optical trap at the highest power, it is crucial to make the transfer as fast as possible to avoid
spin-exchange inelastic collisions between low-field and high-field seeking states. Using high-power ampli-
fiers (50 W and 30 W for the Li and “Li frequencies, respectively), we are able to make the transfer with
essentially no atom loss in 100 ms. The magnetic field is then ramped to 834 G and we prepare a balanced
|1)-]2) mixture using a series of non-adiabatic Landau-Zener passages around the |1)-|2) transition. We
do not observe significant losses during this phase.

Stability of the Three-Component SLi-"Li Mixture

Inelastic losses constitute the main limit to the realization of arbitrary ultracold mixtures. We discuss
here the stability of the 5Li-"Li mixture of the two lowest states of °Li and of the ground state of "Li
with respect to inelastic collisions. The hyperfine structure of the electronic ground state of 6Li and “Li
is shown in Fig[i.1] The splitting between |1) and |2) is 76 MHz at high field, while the splitting between
the two lowest states of "Li, |7) and [8), is 177 MHz. The inelastic spin-exchange collision:

%Lijgy +" Lijry — °Lipy +" Lijg)

is therefore endothermic and cannot occur. Moreover, two-body dipolar losses were estimated by S.
Kokkelmans to be very small, on the order of 2 x 10718 c¢m?3/s. Before starting the evaporation, no
appreciable atom loss is observed after waiting in the optical trap at full power, thereby confirming the
very good stability of the mixture.
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Figure 4.1: Energy levels of the electronic ground state of °Li (left) and “Li (right). The gas is prepared
in a mixture of the two lowest states of °Li, labeled |1) and |2), and of the ground state of "Li, labeled
|7)-

4.1.2 Two-Species Evaporation and Thermalization

The scattering length describing collisions between °Li (in |1) or |2)) and "Li atoms is equal to agy = 41 aq,
with essentially no variation with magnetic field. On the other hand, the scattering length a77 between
"Li atoms strongly depends on the magnetic field value because of the existence of a 200-G-wide Feshbach
resonance centered at 737 G [119,/120,[130|]. At the magnetic field B = 834 G corresponding to the center
of the 5Li Feshbach resonance, the scattering length value is az7 = —73 ag.

At the beginning of evaporation, the optical dipole trap typically holds Ng = 2 x 10% °Li atoms in each
spin state and N; = 10% 7Li atoms, at a temperature T ~ 250 uK, and with a mean trapping frequency
/27 ~ 2.5 kHz. The collision rate between SLi atoms, interacting with resonant interactions, is very
large [104]:

2Ngh?w®

— 0~ 4000 st
06 = T (kpT)? 5

while the collision rate between °Li and 7Li atoms and between Li atoms are respectively:

2Nemw3a2, ~150 5L, and Tpy— 4Nymw3a2,

~ 200 s~ L.
kT kT °

I'76 =
These large collision rates ensure an efficient thermalization during evaporative cooling. In the classical
regime (7' > 0.3TF) where the Li temperature can directly be measured, we indeed observe identical
temperatures for both species. It is also important to be convinced of a good thermalization in the
degenerate regime, where the ®Li temperature can no longer be measured. At the end of evaporation,
the trap typically contains 5 x 10* 5Li atoms in each spin state and 10* "Li atoms, the mean trapping
frequency being w/27 ~ 300 Hz. The classical collision rate is then on the order of 30 s~!, but collisions
between “Li and SLi atoms may be strongly inhibited by Pauli exclusion principle in the degenerate SLi
cloud. Indeed, a 5Li atom undergoing a collision needs to be scattered in an empty state, which restricts
the allowed final states above the Fermi level, and thus decreases the collision probability. In Chapter
we show that ®°Li gases can be evaporated up to very low temperatures T = 0.03(3)TF, showing
that collisions still occur in the deeply degenerate regime. In our experiment, we observed that the "Li
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®Li imaging "Li imaging

Figure 4.2: SLi atoms are imaged in situ along y, and "Li atoms are imaged along z, after a time of
flight. Typical absorption images are shown, corresponding to a high-temperature cloud at T = 1.5 uK
containing 1.5 x 10° °Li atoms in each spin state and 10* “Li atoms.

temperature no longer varies after evaporation down to a given trap depth, as if the temperature reaches
a steady state in less than 100 ms. This indicates a good thermalization efficiency even at the lowest
temperatures. This has to be compared with the experimental results from [73]| obtained on a mixture
of 6Li and “°K. A steady state is reached after more than 3 s, and the final temperatures for the °Li
cloud and the 4°K cloud differ by ~ 30%, probably due to different heating rates for the two species. In
our case, °Li and “Li atoms experiencing exactly the same trapping potential, we expect trap-induced
heating to be almost identical for the two species and therefore the final °Li and "Li temperatures to be
identical.

4.1.3 Temperature Measurement

At the end of evaporative cooling, the 5Li component is imaged in situ using absorption imaging along
the transverse direction y (see Fig. The trap is switched off during the pulse, and “Li atoms are
imaged along z after a time of flight chosen between 1 and 4 ms, depending on the radial trapping
frequency. Imaging along z increases the optical depth, and the size of the cloud can reliably be fitted
for "Li atom numbers down to ~ 3000. Essentially no collision occur between the two species during the
time-of-flight, and we checked that, indeed, °Li imaging has no significant effect on the “Li profile. The
imaging system magnification along z is calibrated by comparison of the size of a high-temperature cloud
imaged simultaneously along z and y. We then use the calibration of the imaging system magnification
along y (see section to deduce the one along z. As the measured temperatures can be close to the
Bose-Einstein condensation threshold for "Li, we fit the "Li density profile with a Bose distribution [131].

4.1.4 Limitation of our Thermometer at Low Temperature

The scattering length a7 = —73 ag being negative, “Li Bose-Einstein condensates are unstable above a
critical atom number [132}|133]:
h 1
N, ~0.37{/ ———— ~ 230,
M7 |ar|

where we have taken into account the effect of trap ellipticity [134]. When evaporated down to the lowest
trap depths, we observed that the temperature saturates at the critical temperature for condensation:

N7
g3(1)

1/3
kgTerec = hwy ( ) ,  where g3(1) >~ 1.202.
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For a typical mean "Li trapping frequency w7 /2w = 270 Hz, and a typical “Li atom number N; = 3000,
the critical temperature is Tggc = 175 nK. We did not study in detail the physics around T' = Tggc. As
we never observed a sharp feature in the density profile, we assume the cloud to be at thermal equilibrium,
with no condensed fraction and at 7"~ Tggc.

The temperature lower bound imposed by the nature of our thermometer has to be compared with
the SLi Fermi temperature Ty = hwg (6N6)1/3:

1/3
meg 1 N7
T > T =,/ — — Tg.
= BEe V mr (693(1) N6) r

This limit is pushed to its lowest values by reducing the “Li atom number to the minimum value N7 ~ 2500

allowing us to make a reliable temperature measurement. With Ny = 5 x 10* SLi atoms in each spin
state, this yields the following numerical value for the temperature limit:

T>0.18TF.

This lower bound nearly coincides with the temperature at which a part of the gas becomes superfluid
[43146,139L/47]. Therefore this thermometer is not suited for investigating low-temperature effects in the
superfluid phase. However, we will see in section [4.7] that we still managed to observe and characterize
the onset of superfluidity.

4.2 Extraction of hp(() from In Situ Images

Let us remind the information we have at our disposal at this stage of the data analysis. The pressure
profile P(u.,T) is determined from an in situ image using (3.3)) (see Chapter , and the temperature is
determined using the “Li thermometer (see section [4.1). We can calculate for each position z along the

z axis the quantity:
P(p.,T)
kT 5(T)

which is a function of the local inverse fugacity:

2,2
0 nmws;z
(o= oy (252),

where (0 = e~ /kT ig the global inverse fugacity. ¢° is the remaining unknown parameter.

= fs/2(C ) (C),

4.2.1 Direct Measurement of the High-Temperature Equation of State

In the wings of a high-temperature cloud, ¢, is much larger than 1, i.e. the gas is in the classical regime
and f55(¢; 1 )hr(¢:) ~ ¢S ' As pictured in Fig we obtain the value of ¢° as the only value consistent
with this high-temperature equation of state.

Actually, interaction effects are not negligible even for the largest values (, ~ 5 reached in our data.
A better estimate of the equation of state is given by the second-order virial expansion, i.e. the first
correction to the equation of state of an ideal and classical gas, due to interactions and quantum statistics.
The second-order virial correction is known exactly for a gas in the unitary limit [L35] (see section [4.5):

1
ﬁ.

¢Y is chosen on each image so that the high-temperature data corresponding to ¢, > 2.5 matches the

Fs2(CHRE) = ¢+ (—2*5/2 + b2> ¢24..., where by= (4.2)

second-order virial expansiorf]

*The next correction to the second-order virial expansion, discussed in section is less than 2% for ¢ > 2.5, justifying
the use of 1) in that region.



64

Chapter 4. Thermodynamics of a Strongly-Interacting Fermi gas

(@ (b

P
ke T A3 (T)
P
3
ke T35 (T)

10 1520 30 50 7.0 10.0 15.®0.0 10 1520 30 50 7.0 10.0 15@0.0

e {

Figure 4.3: (a) The procedure used for the determination of ¢V at high temperature is well illustrated
by plotting P(u.,T)/2kpTA;5(T) as a function of ¢ in log scale. Indeed, as log¢ = log ¢ + log %,
the degree of freedom (° corresponds in that representation to a translation of the data in abscissa.
We choose the value of ¢° so that the data corresponding to ¢, > 2.5 matches the second-order virial
expansion (solid line). The dashed line is the equation of state of a classical ideal gas. (b) Equation of
state given by all the pixel columns along the z axis from a high-temperature cloud. For ¢, > 4 (in gray),
the signal-to-noise decreases because of the small optical density in the cloud’s wings. We exclude these
points for the rest of the data analysis.

After averaging over the equations of state given by 7 high-temperature clouds prepared in the same
conditions, we obtain a low-noise equation of state, displayed in Fig[d4l For a given image, each pixel
located in a region of high enough signal-to-noise ratio gives a point of the equation of state h(¢). 7 images
thus provide ~ 1000 points, leading after averaging to an equation of state with a very low statistical
noise. As shown in Figlf4] at the highest ¢ values the equation of state agrees with the second-order
virial expansion , while at the lowest ¢ values it clearly deviates from . This procedure therefore
provides an equation of state in a temperature range well below the validity of the second-order virial
expansion. However, the lowest ( values obtained with these images, { ~ 1, are too large to reveal
the low-temperature physics corresponding to ¢ < 1 (the superfluid transition is expected to occur at
¢ = ( =~ 5x1072%). Preparing a low-temperature gas, for example with (° ~ (., i.e. with a small
superfluid core at the center, would not allow us to use such a procedure because the signal from classical
wings of the cloud ¢, > 2.5 would be far below the noise. Obtaining the equation of state at lower
temperatures thus requires an additional step.

4.2.2 Construction of the Low-Temperature Equation of State

For colder clouds, we cannot use the second-order virial expansion as a reference for fitting ¢°. As the
low-noise equation of state measured using the hottest clouds is valid up to ¢ 2 1, i.e. in a much
broader range than the second-order virial expansion, we use it as a reference for fitting ¢° in the wings
of colder clouds. This procedure can be used for clouds prepared at an intermediate temperature, so
that the signal-to-noise ratio in the region ¢ > 1 is good enough. We then iterate this procedure: these

clouds provide a precise equation of state for ¢ > 0.2 and are used to fit (° for colder clouds, and so on
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Figure 4.4: Equation of state given by 7 images prepared at the highest temperatures. The gray crosses
are the raw data, each corresponding to one pixel row of a single image. The black points result of an

averaging of 60 consecutive gray points.

(see Fig. We finally obtain a reference equation of state that can be used to fit ¢(° on the coldest
samples, at a temperature limited by the "Li thermometer (see section , corresponding to ¢ ~ 0.02.
By gathering the data from all images, we obtain ~ 2500 points in a temperature range 0.02 < ¢ < 5,
i.e. from the classical to the degenerate regime. After averaging over consecutive points, we obtain a
low-noise equation of state with 58 points (see Fig.
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Figure 4.5: Step-by-step construction of the equation of state. For a given image (gray points), the

determination of (° makes use of the equation of state (black circles) determined from colder clouds. We

show here 4 such steps corresponding to different final optical trap depths.

4.2.3 Systematic Error on the Equation of State Determined from our Data

After averaging, the statistical noise of our data is less than 5% (see Figd.6)). We evaluate in this section

the systematic error introduced by our procedure.

Absolute Error on the Pressure

As explained in section the pressure P(u.,T) is calibrated using a reference profile whose equation
of state is well known, namely a spin-balanced Fermi gas in the unitary limit, and at a temperature well
below the superfluid threshold. This procedure leads to a 5% systematic uncertainty.
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Figure 4.6: Thermodynamic function hr(¢) of a homogeneous Fermi gas with resonant interactions. The
complete data are the gray crosses. The black points are averages of raw data points.

Noise Induced by the Determination of ¢°

During the step-by-step construction of the equation of state, an error on the determination of ¢° for a
given image induces an error on the reference equation of state used for colder images. The noise of our
pressure data leads to a statistical uncertainty on the determination of (. Typically 100 pixels with a
signal-to-noise ratio > 3 are used for the determination of ¢°, leading to a 0.3/y/100 = 3% uncertainty
on ¢°. The data from a single image is overlaped with typically 10 other images to form the low-noise
equation of state used as a reference for colder clouds. The error in { on the reference equation is
thus reduced to 0.03/4/10 = 1%. The 1% statistical error induced by each image results in a random
walk of the noise during the construction of the complete equation of state, leading to a final error of

0.01v/40 ~ 5%.

In the next sections, we discuss the content of this equation of state. We make a direct comparison of
our data with theory. We then extract the high-temperature and low-temperature asymptotic behaviors,

and the critical temperature for superfluidity.

4.3 Direct Comparison with Theory

Our data provides the equation of state of a homogeneous Fermi gas in the unitary limit. It can thus
directly be compared with theory, contrary to the equations of state of a trapped gas [62,63] which require
to integrate the theoretical equations of state over the trap. In particular our data allow us to compare
for the first time the several points given by time-consuming diagrammatic Monte-Carlo calculations with
experiment [113]. Moreover, the trap averaging smears the possibly small differences between theoretical
equations of state, so that up to now trapped equations of state have not be used to clearly discriminate
between theories.
The comparison is made in Fig[d.7] with the following theories:

e double-dot-dashed line: BCS mean field theory
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Figure 4.7: Comparison of our data with theory (see text for the legend).

e open circles: Diagrammatic Monte Carlo calculations [113]

e open squares: Quantum Monte Carlo calculations |136]

e dotted line: GG perturbation theory [137,|{138]|

e dashed line: GG\ perturbation theory [139]

e triple-dot-dashed line: Ladder diagrams approximation [140]

e dot-dashed line: Pseudogap theory [139]

e solid line: Gaussian pair fluctuation/Noziéres-Schmitt Rink theory [141]

Our data clearly discriminates between these theories. We observe that none of them account for
our data over their full range. In particular our observations are not consistent with the diagrammatic
Monte Carlo calculations from [113]. Their highest-temperature data exhibits a clear inconsistency: they
violate the exact constraint on the equation of state hr({) > 1, valid for an attractive gas such as a Fermi
gas in the unitary limit [48]. Finally our data agrees well with the Quantum Monte Carlo calculations
from [136], except in the region 0.05 < ¢ < 0.2.
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4.4 Comparison with the Tokyo Group Measurements

The thermodynamics of a homogeneous unitary Fermi gas was experimentally studied, simultaneously
to our work, by the Tokyo group [47]. Using the equation of state of a trapped unitary gas measured
in the Duke group [63] as a reference for thermometry, they obtain a canonical equation of state for the
homogeneous gas, from the analysis of density profiles after a hydrodynamic expansion (see Fig).
This equation of state is written as:

E= gNEFg (9: ;;) ,
where F is the energy, N is the total atom number, and Er (Tr) is the Fermi energy (temperature). The

function ¢(#) is the canonical equivalent of hr(().
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Figure 4.8: (a) Open circles (open squares): canonical equation of state of a homogeneous unitary (ideal)
gas measured in the Tokyo group [47]. Solid line: equation of state of an ideal gas. Dashed line: second-
order virial expansion. (b) Chemical potential computed from the experimental data for a unitary gas
(solid line) and an ideal gas (dashed line). The dotted line is the exact chemical potential for an ideal

gas.

In order to compare with our data, we have to make the correspondence between the canonical equation
of state g(#) and the grand-canonical equation of state hr({). We first express the data from the Tokyo
group in the variables (¢, h). This requires to compute the chemical potential from the experimental data
(see Appendix for a detailed calculation):

0 _1(p! !
2= aul6) = 9(0) - 30 [ HOE (43)
The integral in is calculated using a function interpolating the experimental data. In order to test the
robustness of this procedure, we calculated the chemical potential of an ideal gas using the experimental
equation of state of an ideal gas also measured in [47] (see Fig[i.8h). As shown in Fig[d.8p, the chemical
potential deduced from the experimental data agrees with the theoretical chemical potential of an ideal
gas. This validates our calculation of g, (@) from the experimental data.
There is then a one-to-one correspondence between the data (8, g) and the data (¢, hr) (see Appendix

A.2):
¢ = exp (—g“(9)> (4.4)

0
8 9(0)
157 95/2]”5/2(471) .
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Figure 4.9: Comparison between the grand-canonical equation of state hr(¢) deduced from our data
(black dots) and from the one measured in [47] (open circles). The open squares are calculated with the
ideal gas data from [47], using the same procedure. The good agreement with the exact equation of state

hr(¢) =1 for an ideal gas shows the robustness of the correspondence canonical/grand-canonical.

In Fig[i.9) we make the comparison in the variables ((, h7) between our data and the one from [47]. They
are in good agreement for ¢ < 0.5 but strongly differ in the high-temperature regime.
Alternatively, we express our data in the canonical ensemble to make the comparison without having

to transform the data from |47]. The canonical equation of state g(f) is calculated from our data hr(¢)
according to (see Appendix [A.2):

( 16 ) /3 (_ Cdfw(cd;)hT(o ) - (4.6)

Calculating g(6) thus requires to take the derivative of our experimental data, which decreases the signal-

—5/3

f52(¢Hhr(€).

g (4.7)

to-noise ratio. In order to highlight the differences between the two sets of data, we plot g(8)/¢(*) () as a
function of #, where ¢(°)(0) is the equation of state for an ideal gas. As shown in Fig our data agree
within our signal-to-noise ratio with the one from [47] for < 0.5. In the high-temperature regime the
two measurements significantly differ. In the high-temperature regime, our data is in excellent agreement
with the exact high-temperature asymptotic behavior given by the third-order virial expansion [75] (see
section . Therefore we believe that the data from [47] have a systematic error at high temperature,
possibly due a deviation from hydrodynamics during the time-of-flight.

4.5 High-Temperature Virial Expansion

As described in section .3} our data can be used as a benchmark for many-body theories, from the low-
temperature to the high-temperature regimes. It is also important to get a more physical picture of the
equation of state. In this section we extract several virial coefficients of the high-temperature expansion
of the equation of state in a series of (~'. We also give a physical interpretation of these numbers in

terms of few-body physics.
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Figure 4.10: Comparison between the canonical equation of state deduced from our data (black dots)
and the one measured in [47] (open circles), and expressed as E(#)/E(®(0), where E(°)(0) is the energy
of an ideal gas with same atom number. The lines are the successive theoretical virial expansions of the

equation of state at high temperature.

4.5.1 Virial Expansion of a Unitary Fermi Gas: Generalities

Connection of the Virial Expansion to Few-Body Physics

—

The grand-canonical partition function = can be decomposed by gathering all terms with given total
atom numbers Ny, Ny:

E(p,T) = Y Z(Ny,Np, T)¢"NHV2) 0 where  Z(Ny, N, T) = > e~ FalknT
Ni,N2 state a (N1,N2 fixed)

is the canonical partition functions for fixed atom numbers Ny, No. Calculating Z(Ny, N2, T) requires
to know the complete energy spectrum of a system with Nj particles of species 1, and Ny particles of
species 2. The grand potential Q = —PV = —kpT log Z (related to the pressure by @ = —PV) can then
be expressed as a high-temperature series of (~':

2kpTV

Q) = =3z 1)

[Cl + (—2*5/2 + bg) 24 (3*5/2 + b3> 3+ (—4*5/2 + b4) L } . (4.8)
The coefficients by are the so-called wirial coefficients. The coeflicient by, is obtained by expanding log =
in powers of (7! up to k' order, and thus involves the values of the partition functions Z(Ny, Ny, T)
for Ny + Ny < k. As an example, it is simple to show that the second-order virial coefficient reads
by = (Z11 — Zlo’l)/2Zl’0, where the superscript © refers to partition functions for a non-interacting
gas. Our convention for the definition of the virial coefficients is chosen so that a non-interacting two-
component Fermi gas corresponds to by = 0 for all values of k. As a conclusion by can be interpreted as
a coefficient quantifying the effect of interactions in the high-temperature expansion up to k*" order, and
is given by the eigen-spectrum of the k-body problem.

Virial Coefficients for Uniform and Trapped Gases

A simple relationship can be established between the virial coefficients for a uniform gas and for a
harmonically-trapped gas [75]. For a trapped gas, the virial expansion is defined as an expansion of the
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grand potential {; in powers of ((°)~!, where (¥ = e /ksT ig the global inverse fugacity. In the local
density approximation framework, the grand potential €2, is obtained by integrating the grand potential
of a uniform gas over the trap:

. T) = [T - ve,T)
_ 2kgT 0 —1/ -V (r)/kgT _9—5/2 0 —2/ —2V (r)/kT
= N [(C) dre +< 2 —l—bg) (¢”) dre +...

Integration over space is straightforward:

3/2
/dre_kv(r)/kBT _ (27TkBT) / ].

mw? k3/2’
where @ is the geometrical mean trap frequency. The virial expansion for a trapped gas then reads:

kpT

3
m) [(CO)7 4 (=27 4 b)) ()24 (34 4+ bys) (C°) 2 +...], where by = by/k2,

(4.9)
Compared with the virial coefficients for a uniform gas, the virial coefficients of a trapped gas are sup-

Q(u°,T) = —2kpT (

pressed by a factor by /by = k%/2. Therefore we can already feel that the equation of state of a homo-
geneous gas is more suited to extract virial coefficients than the equation of state of a trapped gas (see
section [4.8)).

Theoretical Values for the Second- and Third-Order Virial Coefficients

The calculation of the second- and third-order virial coefficients can be performed exactly, making use of
the exact resolution of the two-body problem in [142] and of the three-body problem in [74].

The calculation of the second-order virial coefficient was first made in [135]:
by =1/V/2. (4.10)

The derivation of this result is simple and can be found in Appendix [A]
The three-body problem at unitarity and in a harmonic trap was solved recently in [74]. The calcu-

lation of the third-order virial coefficient using this energy spectrum was performed in [75]:
bs = —0.3551. (4.11)

This coefficient was also calculated in [143]| using an effective field theory, and surprisingly the result
bs = 1.05 is very different. Our data will unambiguously show which of the two calculations is correct.

The next virial coefficient has not been calculated yet since the four-body problem has not been
treated yet.

4.5.2 Virial Coefficients Extracted from our Data

As we use in our procedure the second-order virial expansion (4.2) for the determination of the global
chemical potential u°, our high-temperature data cannot serve as a measurement of by. However the
deviation of our data from (4.2)) provides the value of the next-order coefficients.

Third-Order Virial Coefficient

At high temperature, the deviation from the second-order virial expansion reads:

Fop2(CT) (h(Q) = 1) = ¢ = 0o = b3¢ 2, (4.12)
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In Fig[d11h, we show that the deviation of our data from the second-order virial expansion agrees with
the asymptotic behavior using the theoretical value b3 = —0.3551 from [75]. Our observations
clearly exclude the other theoretical value b3 = 1.05 from [143]. In order to extract an experimental
value of b3, we fit our high-temperature data ¢ > (cuorr in with the asymptotic behavior . In
Fig[d.11p we plot the fit result as a function of (.yion defining the number of data points used for the fit.
This shows the robustness of the determination of b3, and provides the value of b3 consistent with our
data: b = —0.345(25).
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Figure 4.11: (a) Deviation of our data from the second-order virial expansion, compared with the behavior
of the third-order virial expansion with b3 = —0.3551 (solid line). (b) Result of the fit using
the data ¢ > (cutoft, as a function of (.ytor- The gray rectangle represents the values of b3 consistent with
our data. (c) Deviation of our data from the third-order virial expansion, compared with the behavior of
the third-order virial expansion with by = 0.09 (solid line). (b) Result of the fit using the
data ¢ > Ceutoft, as a function of (eytoft-

Fourth-Order Virial Coefficient

Our measurement of the third-order virial coefficient agrees with a very good precision with the calculation
bs = —0.3551. Having checked this result, we can go one step beyond and extract the next term of the
virial expansion. The high-temperature deviation from the third-order virial expansion reads:

Fop2(CT) (h(Q) = 1) = ¢ = 0o = b3¢ ™2 o (4.13)
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We show in Fig that our high-temperature data agree with the asymptotic behavior . Applying
the same procedure than for the measurement of the coefficient b3, we obtain the coefficient by = 0.09(1)
(see Fig). The calculation of by would require to solve the four-body problem. As shown in [75],
numerical calculations of the energy spectrum of three-body problem from [144] are precise enough to
calculate the third-order coefficient bs with an excellent precision. A numerical calculation of the energy
spectrum of the four-body problem was already carried out in [145]|, and could possibly be used to
calculate the fourth-order virial coefficient b4.

To conclude this section, we plot in Fig[d12] the successive virial expansions up to fourth order,
together with the data hr(¢). The fourth-order virial expansion accounts for our observations within 5%
up to ¢ = 0.4.
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Figure 4.12: Grand-canonical equation of state of a Fermi gas in the unitary limit extracted from our
data (black dots), compared with the successive virial expansions described in the text.

4.6 Fermi-Liquid Behavior in the Normal Phase

We now consider the low-temperature behavior of the equation of state determined from our data. At
very low temperature a phase transition from a normal phase to a superfluid phase occurs [40]. We discuss
the observation of this phase transition in section [4.7] and focus here on the low-temperature behavior in
the normal phase.

Understanding the thermodynamic properties in the normal phase of strongly correlated materials
such as high-T, copper oxides is a challenge for condensed matter physics. It is one of the key ingredients
for modeling the superconducting phase transition, governed by the energy competition between normal

and superconducting states.

4.6.1 Low-Temperature Normal Phases in Strongly-Interacting Systems

In this section we briefly present two families of normal states in strongly correlated materials: the family
of Fermi liquids and the family of the pseudogap phase.

The Fermi Liquid Family

Fermi liquid theory, developed by Landau in [146], provides a phenomenological description of thermody-
namic properties of most metals. According to this theory, the effect of interactions on electrons can be
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Figure 4.13: (a) Experimental values of *He specific heat, plotted as Cy/RT as a function of T (from
[147]). The numbers indicate the pressure at which each set of measurements was performed. (b)
Experimental values of Cy /T as a function of T for the heavy-fermion metal CeCusSiy, taken from [148].

The heavy-fermion regime is observed for T' < 2 K.

reduced to a renormalization of the electron physical characteristics, such as its mass. The metal is then
described as a non-interacting Fermi gas of renormalized electrons, the so-called Landau quasiparticles.
The structure of the dispersion relation for low-energy excitations around the Fermi surface remains

identical to the one of non-interacting fermions:
kg

m*

=+ Ik — kg, (4.14)

where kp = (372n)?/? is the Fermi momentum and n is the total electron density. For k > kp excitations
correspond to the extra particles above the Fermi level, while for & < kr they corresponds to the removal
of one particle under the Fermi level, and can been seen as the creation of a ’hole’. Due to interactions,
the bare electron mass m is replaced by the quasiparticle effective mass m*, and p may differ from
Er = h%*k%/2m. At finite temperature, quasi-particles are populated according to the Fermi-Dirac
distribution 1/(1 4 e(¢*=#)/ksT)  The calculation of the specific heat at low temperature is then similar
to the one of an ideal Fermi gas, and gives:

m* Vmk%(3m2n)'/3

m 3h2

Therefore, the quasi-particle effective mass can directly be obtained from a measurement of the specific

Cy =

heat, by comparison with the one of an ideal Fermi gas with the same electron density.

As shown in Fig[f:13] this low-temperature linear dependence of the specific heat with temperature
is observed in a large number of materials.

For simple metals, the effective mass value m* is comparable to the bare electron mass m. As an
example, the effective mass in Cuis m* = 1.3 m [149|]. At low temperature (above the superfluid transition
temperature), 3He is a Fermi liquid whose quasiparticle effective mass m* is on the order of the bare *He
mass m (see Figll.13h): m* ~ 3 m at ambient pressure [147].

The most exotic Fermi liquids are heavy-fermion metals, which exhibit a Fermi liquid behavior with

effective masses up to ~ 1000m, where m is the electron mass. Heavy-fermion metals contain a matrix
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Figure 4.14: (a) Specific heat coefficient Cy /T as a function of temperature for the high-T, material
YBayCu3Ogy, here for a doping y = 0.57 (from [150]). (b) Typical phase diagram for high-T. super-
conductors with electron doping (left side) or hole doping (right side) (from [152]), showing the large
parameter range where the pseudo-gap phase, or ‘strange metal’ phase, is observed.

of rare-earth or actinide ions acting as magnetic impurities, coupled to a Fermi sea of mobile conduction
electrons. Interactions between a single ion and the surrounding electron Fermi sea result in the so-called
Kondo effect, i.e. a complete screening of the magnetic impurity by electrons at low temperature. In such
materials, if the magnetic screening is stronger than the tendency to form an insulating antiferromagnet,
impurities are dissolved into the mobile electron Fermi sea and form charged mobile quasi-particles with
a large effective mass (see Fig[4.13p).

The Landau Fermi liquid prescription does not predict which systems are Fermi liquids or how to cal-

culate quasi-particle characteristics. Nevertheless, its relevance for describing most metals is remarkable.

The Pseudogap Phase

The normal state in high-T, cuprates does not seem to exhibit the characteristic features of a Fermi
liquid for a wide range of temperatures and doping above the critical temperature for superfluidity. In
Fig we show the specific heat of the compound YBasCu3QOg 57, measured in [150]. The sharp feature
indicates the normal to superfluid phase transition at 7' = T, = 57 K. In the wide temperature range
T. <T < T* =150 K, the specific heat is not linear with temperature, indicating the non-applicability
of Fermi liquid theory. In Figlf.T4p we show a typical phase diagram, illustrating the large width of this
‘strange metal’ phase as a function of impurity concentration.

The microscopic origin of this behavior is attributed to the existence of a gap in the single-particle
excitations in the range T, < T < T = 150 K. Using angle-resolved photoemission, momentum-resolved
single-particle excitation spectrum are measured and one observes an energy gap along certain momentum
directions for T, < T' < T* |[151]. Understanding this phenomenon and its connection to superconductivity

is a major research topic in condensed matter physics.

Normal State of a Two-Component Fermi Gas

The investigation of a Fermi liquid or pseudogap behavior in unitary Fermi gases, which constitute model
high-T, systems, could shed some light on the physics of high-T, superfluidity.

Before addressing the case of the unitary limit a = oo, we briefly discuss the weak interaction limits
of the BEC-BCS crossover. On the BEC side of the resonance (1/kpa > 1), the normal gas above the
critical temperature T, ~ 0.22EF [153| is a thermal gas of molecules, whose thermodynamics strongly
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Figure 4.15: Temperature T at which the single-particle excitation gap vanishes, as a function of the
interaction strength 1/kra. The two solid lines are the predictions in the BCS limit, 7% = T, and in the
BEC limit, T* ~ |Ey|/kp (see [157] for details). The circles are the diagrammatic calculations from [154],
and the square is the Quantum Monte Carlo prediction from [155].

differs from a Fermi liquid, as long as the temperature is much smaller than the molecular binding energy.
Therefore, the ideal Fermi gas picture is recovered only for kgT > kpT* = |Ey| = h?/ma? > Ep. Due
to the molecular binding energy, single-particle excitations are gapped in the normal phase for T < T*
(see Fig. On the other hand, in the BCS limit the gap is directly associated with the superfluid
order parameter and therefore it vanishes at T' = T, with no pseudogap region. In [154], the temperature
T* at which the pseudogap vanishes was estimated, interpolating between the BEC regime and the BCS
regime, but this study does not predict whether T* significantly differs from T, in the unitary limit. In
a recent Monte Carlo calculation by P. Magierski et al [155], the single-particle spectral function of a
finite-temperature unitary gas was calculated, and presents a pseudogap for T, < T' < 1.3 T, falling from
A~02FEr at T~T.to A=0at T =1.3Tc. In [156] the single-particle spectral function was directly
measured by the JILA group, for a unitary gas prepared at a temperature T/T. = 0.9(1), i.e. right below
the normal to superfluid transition. They deduce from their measurements the existence of a large gap
of single-particle excitations A/ = 0.75. At present there is no experimental evidence for the existence
of a pseudogap for T > T..

We will address these open questions by analyzing the low-temperature behavior of the equation of
state extracted from our data.

4.6.2 Observation of a Fermi Liquid Behavior
Grand-Canonical Fermi Liquid Equation of State

In order to compare our data hr(¢) to a Fermi liquid behavior, we derive in this section the grand-
canonical equation of state of a Fermi liquid. The starting assumption of Fermi liquid theory is the
quasi-particle dispersion relation (4.14). The corresponding density of states reads, around the Fermi

2
ple) = 2 v /dk&(e—u—hkF|k—kF|>
k

(2m)3 m*
2 m

level:

~ QTF assuming € —pu << p
* 2v/2m?/? Pk
_ m7€;1/2VM where we define p = &, —%.
- 37,3 2m
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Therefore the density of states is simply equal to the one of a two-component ideal Fermi gas with the
same chemical potential, multiplied by m*/m &, /2 The parameter &, defines the Fermi liquid equation
of state extrapolated at zero temperature y = &, Er. The corresponding pressure reads:

P(u, T =0) = &,*?2Py(u, T = 0),

where 2Py (i1, T = 0) = 2/1572(2m/h?)>/2°/? is the pressure of a non-interacting two-component Fermi

gas at T = 0. Low-temperature effects are then calculated similarly to the ones of an ideal gas (see

Appendix :

kgT [*
P(u,T) P, 0) + % / de p(e) log (1 + e(e_“)/kBT)
N

* 2./2 3/2 o)
= P(M,O) + kBTmfnl/QW/ de log (1 + e(ef,u)/kBT>
m 2 h u

_ 52 m* s (keT\?
= 2Py(u,0) <§n3/2+8m§n1/2< IZ > > (4.15)

The ideal gas equation of state (A.8) derived in Appendixis recovered by taking &, = 1 and m* = m.

Fermi Liquid Behavior of the Equation of State Deduced from our Data

In order to compare our data hr(¢) to (4.15), we plot our data as P(u,T)/2Py(p,0) versus (kpT/u)?.
There is a single correspondence between the data (¢, hr) and ((kgT'/u)?, P(1, T)/2Py(1,0)):

2
(25) = oo
P(M7T) _ PO(/LaT)h _ 15\/7Tr fS/Q(C_l)
2Py (1,0) — Ro(u,0) "~ 8 (~log¢)p2

Therefore, each data point hr(¢) results in one point in this representation.

Our data for kT < p is in very good agreement with a Fermi liquid equation of state with
&, = 0.51(2) and m* = 1.13(4) m (see Fig[d.16h and b). The relative deviation of our data with is
less than 3% for 0.1 < (kpT/p)? < 0.6, and around T = y is about 5%|ﬂ

Equivalently, the Fermi liquid characteristics can be expressed in terms of Landau parameters [146],
F§ =&m*/m—1=-042 and F; = 3(m*/m —1) = 0.39.

Condensation Energy of a Fermi Gas with Resonant Interactions

The extrapolation to T' = 0, P(u,0) = 2P0(,u)£;3/2, corresponds to a pressure lower than the actual
ground state pressure P(u,0) = 2P0(,u)§;3/2, where & ~ 0.41 is a characteristics of the T' = 0 superfluid
measured in Chapter [5| This means that the normal state is thermodynamically unstable with respect
to the superfluid state. The difference between the 7" = 0 energy in the normal and superfluid states is

referred to as the condensation energy:

E.

En — Es

3
- gNEF(gn 755)

- 0.10(2)§NEF.

TAs a comparison, the relative difference between the equation of state of an ideal gas and its Sommerfeld expansion up
to second order in kpT/u is 7% at kT = .
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Figure 4.16: (a) Equation of state of a unitary Fermi gas, plotted as P(u,T)/2Py(u,0) versus (kpT /).
For kT < p our data are in very good agreement with a Fermi liquid equation of state, with &, = 0.51
and m* = 1.13m (solid line). (b) and (c) Results of the fit of our data for (kgT/u) < (kT/t)cutoft
with a Fermi liquid equation of state . The gray regions correspond to the values of &, or m*/m

compatible with our low-temperature data.

In the BCS limit of weak interactions, the condensation energy is directly related to the single-particle
excitation gap Ay through:
5(A0\° 3

E.=-|—) =NEp. 4.1
8(EF) SNy (4.16)

Interestingly, using the experimental value Ag = 0.44 Ef from [51] (which agrees with a recent calcula-
tion using an unbiased Monte-Carlo computation [158]), we obtain 5/8(A¢/Er)? ~ 0.12, showing that
equation (4.16) approximately remains valid even for resonant interactions. It would be interesting to

investigate more deeply this behavior and how it depends on the interaction strength.

4.6.3 Estimation of the Maximum Pseudogap Amplitude

Our data thus agrees with a simple Fermi liquid picture, while it is generally believed that the normal
gas above T, exhibits a pseudogap in the unitary limit [159}/160}/155,/161,(162,(163]. In this section we
estimate the maximum pseudogap values in agreement with our observations, assuming the existence of
a well-defined dispersion relation € (i.e. the spectral function A(k,w) of the unitary gas is approximated
by d(ex — w)). Inspired by the quasi-particle dispersion relation in the BCS limit [157], we introduce a
pseudogap A in the excitation spectrum in the following manner (see Figld.17):

*

2k n2k 2
e =p+—|k—kp| — ek:u+\/< F(k—kp)> + A2,
m m

1+ A is then indeed the minimum single-particle excitation energy. From the density of states associated
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Figure 4.17: Quasi-particle dispersion for a Fermi liquid (dashed line) and with a pseudogap A (solid
line)

with such a dispersion relation:

one calculates the gas pressure:

kgT [
Pp,T) = P(u0)+ BT/ Adep(e) log (1 +e(€_“)/kBT)
pt

m* 2\/§m3/2\/ﬁ 0o

= P(‘u7 O) + kBTH§;1/2 de i log (1 4 e(ef,u)/kBT>

m2h3 WA (e—p)?2 — A?

_ 52 m* kpT\> A
om0 (6904 5 e () 7 (15))

where the function F, defined by:

f(y)Zlé

s

o x
dr ——=1log(1 +¢e7%), 4.17
| st o) @.17)
is plotted in Figlf.18h. F quantifies the deviation of the equation of state from the one of a Fermi liquid.
As shown in Figld.16] the deviation of our data from a Fermi liquid equation of state is less than 5% in
the range 0.1 < (kpT/p)? < 1, ice. 0.95 < F(A/kpT) < 1.05. This leads to an upper bound for the
pseudogap values in agreement with our observations (Fig4.18p):

A <0.25kpT. (4.18)

As shown in Fig, this bound excludes the Monte Carlo pseudogap values from [155]. Indeed, just
above the critical temperature for superfluidity, our data are consistent with A < 0.257, ~ 0.05 Fr. Our
measurements also exclude the larger pseudogap values, A ~ 0.6Er at T/Tr = 0.24, given by a finite-T'
extended BCS-Leggett theory [160] or a Noziéres Schmitt-Rink theory [164].

To conclude, our measurement strongly supports an accurate description of the normal state of the
unitary gas as a Fermi liquid. The pseudogap values A < 0.05 Er consistent with our data are very small
compared with the values measured in the superfluid state [51,[156]. Developing a more complex model
accounting for a finite width of the spectral function A(k,w) could provide a more precise comparison
with theories supporting a pseudogap.
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Figure 4.18: (a) Function F, defined in equation that quantifies the deviation of the equation of
state from a Fermi liquid equation. The gray rectangle represent the possible values of F in agreement
with our data. (b) Upper bound on the value of the pseudogap given by equation , compared with
the pseudogap Monte Carlo values from [155] (black dots). Our data exclude the value A ~ 0.2 Ep at
T = 0.16 Tp. We also show the pseudogap values given by a finite-T' extended BCS-Leggett theory [160]
(square) or a Noziéres Schmitt-Rink theory [164] (diamond).

4.7 Superfluid Transition

At lower temperature, we expect the gas to become superfluid. The superfluid character of a low-
temperature Fermi gas with resonant interactions was unambiguously identified through its response to
a rotation of the trapping potential: at a low rotation speed the gas does not respond to rotation [39],
while at a larger frequency the gas starts to rotate through the formation of a vortex lattice [40]. The
measurement, of the critical temperature for superfluidity attracted a large amount of work in the past
few years [43],461/39,/47]. However, similarly to previous measurements of the equation of state, these
studies determine the transition point for a trapped gas, expressed as T./Tr where kpTr = hw(3N )1/ 3is
the Fermi energy of a trapped gas. The comparison with theories of the homogeneous gas then requires
to integrate the equation of state over the trap, using values of the equation of state for 7" > T, a region
especially difficult to handle. In this section we identify the transition point for a homogeneous gas on
the equation of state deduced from our data, which allows us to make the first direct comparison with

many-body theories.

4.7.1 Deviation from the Fermi Liquid Equation of State

In Fig we focus on the low-temperature data, limited to (kgT/u)? > 0.07 due to the instability
of "Li at low temperature (see section . For (kpT/u)* < 0.1 our data deviates from the Fermi
liquid equation of state and P/2P, seems T-independent. As the deviation is small, we add some
arguments showing that this behavior is indeed expected in the superfluid state.

At T = 0 the equation of state is well known and solely involves the parameter s = p1/ Ep, that has
been extensively measured and calculated in the past [165]. In section we measure the pressure of
the ground state in the BEC-BCS crossover and in particular we confirm the value & = 0.415(10). The
pressure at T' = 0 is then given by:

P(u,0)

_ o
(0] o
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which is equal to the values of P(u,T)/2Py(u,0) that we measure at (kgT/p)? ~ 0.1. Moreover,
P(u,T)/2Py(p,0) is an increasing function of T since:
9 ( PT) OP (1, T)/0T],
S, T)

= — _>0.
2V Py, 0) =

m

This shows that, constrained by the values at T = 0 and at (kpT/u)? ~ 0.1, the value of P(u,T)/2Py(1,0)
necessarily remains almost equal to 53_3/2 in the whole range 0 < (kgT/u)? < 0.1.

In the next section we show that this small temperature dependence is expected in the superfluid
phase.

4.7.2 Low-Temperature Excitations in the Superfluid Phase

To first order, low-temperature effects in the superfluid are captured by the thermal population of its low-
energy excitations. Two kinds of excitations are considered here: the fermionic single-particle excitations
and the Bogoliubov-Anderson collective excitations associated with the propagation of sound.

Single-Particle Fermionic Excitations

The dispersion relation of single-particle fermionic excitations was directly measured by the MIT group
in [166], and is well accounted for by a BCS-type dispersion relation:

h2k2 2
ek:,u+\/< +U—u) + A2
2m*

m* ~ m is the quasi-particle effective mass, U = —0.43 Fr = —1.02 u is the Hartree energy shift, and

A = 0.44 Er is the excitation gap. In addition, these measurements are in agreement with Quantum
Monte-Carlo calculations [167,[155]. The dispersion relation is thus essentially the same than the one
considered for the estimation of the pseudogap amplitude in the normal phase (equation ) Using
the calculations made in section (and replacing &, by &), we obtain the pressure increase due to the
thermal population of fermionic excitations:

B 5r2m* kpT\?2 A
Pty = 2R <§Sg/z+smfs () f(m))

_ 15v27 m* o (kpT)3/2A/2 A
2Py (1, 0) (fs 2 4 TES 1/2(}3)#2 exp <— ) ; (4.19)

12

s kT

in the low-temperature limit kT < Aﬂ At low temperature these excitations are thus exponentially
suppressed due to the gap, and the pressure increase at T' ~ 0.3 u is only 3% (assuming a gap equal to
its T = 0 value, A = 0.44 EF [51]) (see Fig{4.19h).

Sound Excitations

The lowest energy excitations are the collective excitations associated with the propagation of sound.
The speed of sound is related to the equation of state through:

nouw_ J2e
mon V3m’

1The asymptotic behavior of F(x) for z 3> 1 is given by F(z) ~ 12/v/273/2z1/2e~7,
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Figure 4.19: (a) Equation of state of a unitary Fermi gas, plotted as P(u,T)/2P(u,0) versus (kgT/p)?,
and zoomed around (kpT/u)> = 0.1. The solid line is the Fermi liquid equation of state (4.15), the
dashed line is the T" = 0 value &5 3/ 2, the dotted line takes into account the phonon correction ‘@,
and the dot-dashed line the phonon and fermionic-excitation corrections and . (b) Fit of our
data around the critical point (kgT'/u). = 0.32 with a function capturing the critical behavior (see text).

The data are expressed as P/Panaiytic — 1 versus kgT'/u, where Papaiytic 1S the Fermi liquid pressure in
the normal phase.

where we have used p o< n?/3

at T = 0. Bosonic quasi-particles (phonons) associated with the propagation
of sound have a dispersion relation €, = ficsk. Their population induced by a non-zero temperature leads

to a pressure correction given by the Stefan law of black body radiation:

2

™
5Pphonons(MaT) = 90h3c3(kBT)4
V3 (kBT>4
= 2PFPy(u,0 — ] . 4.20
w05y (A2 (1.20)

While at very low temperature the effect of phonons dominates over the fermionic excitations (see
Figl.10h), it is less than 2% at T ~ 0.3 p1.

The overall pressure increase at T' =~ 0.3 p is therefore expected to be less than 5%, in agreement with
the behavior P(u,T)/2Py(u,0) ~ cst consistent with our data.

4.7.3 Critical Temperature for Superfluidity

These arguments show that the deviation from the Fermi liquid equation of state indicates a phase
transition from a normal to a superfluid state.

In [48] we proposed to extract the critical temperature (kpT/u). in a very simple manner. We fitted
our data around (kpT/u)? = 0.3 with a continuous and piecewise linear function, one part being equal
to the Fermi liquid equation of state, the other part being a constant. The breaking point was let as a

free parameter and was identified with (kgT/u).. This procedure leads to:

("”ZT) = 0.316(7).



4.7 Superfluid Transition

This fitting function, whose slope is discontinuous at the superfluid transition, could be suited for a
first-order phase transition. However, the superfluid transition of a Fermi gas is expected to be of second
order and to belong to the three-dimensional XY universality class. In the critical region, expected to
be rather large for the unitary gas [168], the pressure variation is then given by:

T_T a+2
P(/'Lﬂ T) = Panalytic(uvT) (1 + A+ < T C) ) for T > Tc

c

Tc _T a+2
Panalytic(ﬂ, T) <1 +a_ ( T ) ) for T < T,

C

where Pajaiytic(i4, ) is the analytic equation of state far from the critical region, here the Fermi liquid
equation of state. For the three-dimensional XY universality class, the specific heat exponent a =
—0.012(3) is known with an excellent precision from experiments on *He [169] or field theory calculations
[170,[171]. Fitting our data with this function (see Fig[f.19b) leads to the coefficients a_ = 22(12),

aty = 0.0(1), and:
(*27) o),
K /e

The two fit procedures lead to very similar values and differ by less than the 10% uncertainty due to the
systematic error of our data. The critical temperature value extracted from our data is thus finally given

by:
(’“BT) —0.32(3),
B

This constitutes the first measurement of the critical temperature of a homogeneous Fermi gas in the
unitary limit. It is compared in Table .| to several theoretical results. Our measurement is in very good
agreement with the most robust numerical calculations [113}/172|[173]. It is also interesting to extract from
our data the value of T/Tr at the phase transition, where kgTp = h?/2m(372n)?/3 is the Fermi energy.
The density is calculated from the pressure using n = dP/du|r and requires to compute the derivative of
our data. It is safe to assume that the derivative of P(u,T)/2Py(p, T) at the phase transition is between
the one given by the Fermi liquid equation of state , and 0. This leads to the value:

T
0.13 — 0.16
<(7) <o

also in good agreement with [113/172}[173]. In addition, we deduce from this calculation the chemical

o
41 —_— 5.
0 <<EF>C<05

We also compare our value to other experimental values which are less direct than our method. In the

potential value at the phase transition:

MIT group, the superfluid transition of a spin-imbalanced Fermi gas was studied below the tri-critical
point at T = 0.07TF, i.e. in the temperature range where the phase transition is of first order [49].
Extrapolating the critical temperature to the spin-balanced situation, they obtained (T'/Tr). ~ 0.15, but
this extrapolation is rather difficult to justify. In the Tokyo group, the condensate fraction was directly
measured and the identification of the superfluid transition is straightforward [47]. In addition the atomic
density is obtained from a fit of the cloud absorption image after a hydrodynamic expansion. Using the
equation of state of a trapped unitary gas measured in [63] as a reference for thermometry, they obtained
(T/Tr). = 0.17(1), in agreement with our value.
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Our values Ambherst group Seattle group Utrecht group
Diagram. MC [113[172]  Quantum MC [173] Renorm. group [174]

(kT/p)e 0.32(3) 0.32(2) 0.35(3) 0.24
(T/Tr). 0.145(20) 0.152(7) 0.15(1) 0.13

Miinchen group Tokyo/Seattle group Harvard group Brisbane group

Diagrams [138] d=4—¢,d=2+¢€|175] 1/N expansion [176] NSR theory [141]
(kpT/p)e 0.41 1.38 0.23 0.49
(T/Tr). 0.16 0.25 0.136 0.22

Table 4.1: Comparison between our measurement of the critical temperature for superfluidity with dif-
ferent theories.

4.7.4 Validity of Local Density Approximation in the Critical Region

In the critical region of the superfluid transition, the coherence length diverges according to:

et %4

T-T,
o, (4.21)

-1
§ kF T

where v ~ 0.67 is a critical exponent of the three-dimensional XY universality class. This may invalidate
local density approximation in the critical region. Let us consider a trapped gas prepared below the
superfluid transition, i.e. kpT/u’ < 0.32. For simplicity we consider an isotropic trap, the calculations
for a more realistic trap essentially giving the same conclusions. In the critical region, the coherence
length varies according to &(r) ~ kjp'|(u(r) — pu(re))/u(re)| ™", where 7. is the radius at which the phase
transition occurs, defined by kpT/u(r.) = 0.32. Local density approximation is expected to be incorrect
in the region r. — ér < r < r. + dr, where [168]:

or = &(re+or)

=1 <mw27”55r> -
r pu(re)

A simple calculation leads to the typical spatial extent of the breakdown of local density approximation,
compared with the Thomas-Fermi radius Rrp defined as mw? R4, = p:

or 2RrET, T 1
me ~ (o) Gem

- < 2RTFTC
R%F —rZ

5% for r.= Rrr/2 and N = 10° atoms.

_1_1*_7'” .
) (24N)~ 307

1

Therefore the actual atom density may not be described by local density approximation is a small region
around the superfluid transition. The impact on the pressure value is much smaller, due to the double
integration:

P(MZ, T) - Pmeasured(,uzv T) =

mw?
- / dz dy (npa (F) — neent () < 0.05P(ji., T)

since nypa (r) = Nreal(r) on 95% of the integration domain. The equation of state extracted from our data
thus coincides with the equation of state of a homogeneous gas, within the 5%-noise of our data, even
around the superfluid transition. The measurement of critical exponents would require a much larger

signal-to-noise ratio, and a violation of local density approximation would then become visible.
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4.8 Equation of State of a Trapped Gas

Previous studies on the thermodynamics of a unitary Fermi gas, performed in JILA [62] and in Duke
university [63,46], were dealing with the equation of state of a trapped gas, relating the trapped gas total
energy F; to its total entropy S; (see section . It can be written using dimensionless variables as a
relationship between the entropy par particle s = S;/N;kp and the energy E; normalized by the energy
Et(o) of an ideal gas at same entropy s:

Et ( St >
—_— g S = . 4.22
E"(s) \ Nikp 42

In section we calculated the virial expansion (4.9) of a trapped gas as a function of the virial
expansion of a homogeneous gas. The equation of state of a trapped ideal gas is directly obtained from
(4.9) by canceling all virial coefficients:

T\® 0
O (W0, T) = 2kpT <k}i ) fa (e" / kBT) , (4.23)

where fi(z) = —PolyLog(4,—z) = Y ,~,(—1)FTk~*. The ideal gas equation of state Et(o)(s) is then
calculated from . -

In order to obtain the equation of state from our data hp(¢), we express the total atom
number Ny, energy F;, and entropy S; using local density approximation, as an integral over the trap of
thermodynamic quantities of the homogeneous gas. As an example, the total atom number is given by

Ne(p°,T) = /drn(,u0 —-V(r),T),

where n(u,T) = OP/0u is the density of a homogeneous gas, whose equation of state is P(u,T) =
2kBT)\J§(T)fs/g(e“/T)hT(e’“/T). We then express the integral using the variable ¢, leading after a

straightforward calculation to:

Nt(/’('07T) =

3100 q10al/? 0
4 (lCBT)/ dlog (/) (¢ (¢)dc. (4.24)

Vi hw ) Jeo d¢
Similar expressions are obtained for E; and S; and can be found in [177]. Using a discretized version of
these integrals taken on our data pointﬂ we obtain the equation of state g;(s) plotted in Fig

Our data are in good agreement with previous studies [62}/63,46] but has a much smaller statistical
noise. Indeed, integrating over the trap significantly increases the signal-to-noise ratio. However, the 5%
systematic error is unchanged. In Fig[4:20] we also make the comparison with successive virial expansions
up to fourth order, using the exact relation by, = by/ k3/2 between the virial coefficients by, measured for
a homogeneous gas and the ones of a trapped gas. Due to the coefficient k—3/2, the effect of higher-order
coefficients is much smaller on the equation of state of a trapped gas, and we see in Fig[f:20] that the
signal-to-noise ratio required to extract bs; and by, was not achieved in previous studies [62}63,46].

Finally, we also compare our measurement with previous studies of the superfluid transition. A large
amount of work [431/46/39,47] focused on the characterization of the onset of superfluidity in a trapped
gas: these works provided the ratio of the temperature T" over the Fermi temperature of the trapped gas
kpTr: = hw(3N,)Y/3, for which the central part of the cloud becomes superfluid. In the local density
approximation framework, this occurs when kgT/u is equal, at the bottom of the trap, to the critical
value for superfluidity of a homogeneous gas: kgT/u® = 0.32(3). Using equation to obtain the
atom number and hence the Fermi temperature corresponding to the onset of superfluidity, we get:

(L) ~osae)

8Tn order to make the integral over ¢ up to +o0, we complete our data with theoretical values given by the second-order

virial expansion for ¢ > 5.
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Figure 4.20: Equation of state g(s) of a trapped unitary gas. The black dots are calculated from our
experimental data. The crosses are data from Duke university [46], the open squares are data from the
JILA group [62]. The dotted (dashed, dot-dashed, solid) line is the ideal gas (second-order virial, third-

order virial, fourth-order virial) expansion. The third-order virial expansion has an unphysical cusp at
s~ 3.5.

This value is in very good agreement with other experimental results listed in Table[4.8|

Our value Duke Univ. group Innsbruck group Tokyo group
EOS trapped gas [46] Momentum of inertia [39] Condensate fraction [47]
(T/Try)e  0.19(2) 0.21(1) 0.185(15) 0.21(2)

Table 4.2: Comparison between our measurement, of the onset of superfluidity in a trapped gas to other
previous measurements.

To conclude, we described the measurement of the equation of state of a spin-balanced Fermi gas with
resonant interactions. We combined the use of "Li to measure the temperature of a strongly-interacting
6Li mixture with the measurement of the local pressure inside a trapped gas, to obtain the equation of
state of the homogeneous gas. Thanks to the low noise of our data, we made a strongly discriminating
comparison with many-body theories, and extracted a series of characteristics of the unitary Fermi gas.
The virial coefficients could be helpful for the resolution of the four-body problem. The Fermi liquid
behavior of the normal phase remains to be understood, and related to single-particle excitation spectra.
Finally this work could be extended to the BEC-BCS crossover. Among several motivations (see the
conclusion), let us mention that on the BEC side of the resonance, the pseudogap should become apparent
on the equation of state.



Chapter 5

Ground State of an Attractive Fermi Gas:

Phase Diagram and Equation of State

In this chapter we describe the measurement of the equation of state of a two-component attractive Fermi
gas at low temperature [71]. As described in the introduction, in the case of short-range interactions the
equation of state of a two-component Fermi gas is universal, in the sense that interactions between
atoms are completely characterized by the scattering length a describing low-energy collisions between
atoms with opposite spins. In this chapter we measure the pressure of a low-temperature Fermi gas for
arbitrary values of interactions or spin imbalance. The physics associated with this system is very rich:
it encompasses the BEC-BCS crossover of a spin-balanced superfluid, as well as the more recent topic of
spin-imbalanced Fermi gases.

We first picture a qualitative phase diagram of this system, using simple mean-field or impurity
models. We then describe the equation of state measurement scheme, give a physical interpretation our
measurement, and compare it with previous works.

5.1 Sketch of the Phase Diagram

In this section we give a qualitative description of the phase diagram addressed in our study.
In this work we measure the grand-canonical equation of state P(u1, uo,a) (we assume T = 0 for the
rest of this chapter, see Appendix for an estimate of finite-temperature effects). With the quantities

11, p2, and a, we can form two independent dimensionless numbers:

e By analogy with the interaction parameter 1/kpa, where kp = (37r2n)1/3, defined for a balanced

Fermi gas of given density n, we define a grand-canonical interaction parameter relative to species

1:
h

V2mpia’

91 is equal to 1/kpa for a balanced and weakly-interacting Fermi gas.

0 =

e The other dimensionless parameter:
_ M2

fn’
describes the chemical potential imbalance between the two spin states. By convention we assume

o < p1, i.e. the spin state labeled 1 is the majority spin state.

The ground-state pressure can then be written as:

Py, p2,a) = Py(p1) h(61,m),
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Figure 5.1: Phase diagram of a two-component Fermi gas in the plane (§1,7). The solid line is the
superfluid /normal first order phase transition at 7 = 7.(d1). The dashed line n = A(d7) is the threshold
beyond which minority atoms are absent. For clarity we have replaced n by 7 = 7+ 267 on the BEC side
of the resonance.

where Py(p) is the Fermi pressure of a single-component (ideal) gas. The function h(d1,7) characterizes
the equation of state and can be used to calculate any other thermodynamic quantity. As an example,

the minority density reads:
_ oP Po(p1) Oh

C Opaly . om0
The rest of this section describes the phase diagram in the (41,7) plane drawn in Fig

N2

5.1.1 Superfluid to Normal Quantum Phase Transition

A spin-symmetric Fermi gas is superfluid at low temperature for all interaction strengths. By imposing a
chemical potential imbalance (1 # 1), a competition between pairing and spin polarization occurs. This
problem was first studied in the context of solid state superconductors by Clogston [52] and Chandrasekhar
[53]. Using a BCS approach, they found the superfluid state resists to a chemical potential imbalanc
up to a critical value:

(11 — p2)e = V24, (5.1)

where Ag is the BCS pairing gap. In the variables (d1,7), this criterion reads:

Bel8) =1 V3L, (5:2)
H1
For n. < n < 1 the gas remains superfluid and is fully paired: n; = ns. When one varies n across 7.,
a first-order phase transition occurs towards a normal phase with ny < n;. A derivation of this result
using a mean-field BCS ansatz is made in Appendix [A4]

The mean-field approach is expected to be correct in the BCS limit (6; — —o0). In our work we
rather address the strongly-interacting regime —0.8 < d; < 0.65. Therefore the relation between
the critical chemical potential ratio and the gap is not expected to be valid in our case. Nevertheless, the
observations of the MIT group [79] and the ones described in the next sections [71] show that the phase
diagram qualitatively remains the same: the superfluid remains unpolarized until a critical value 7, at

which a phase transition occurs towards a partially-polarized normal phase. The theoretical prediction

*induced by a magnetic field which lifts the degeneracy between the two electronic spin states
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of 7. is challenging. Up to now the only quantitative prediction is provided by Fixed-Node Monte Carlo

simulations in [178[f] In Fig[5.1| we drew a guess for 7.(d:).

5.1.2 The Impurity Problem

When the chemical potential imbalance is very large, the gas is fully polarized: no = 0 and P = Py(p1),
i.e. h(d1,nm) = 1. The transition towards the partially polarized normal phase corresponds to the value
of n, denoted A(d1), at which minority atoms appear. A(d1) corresponds to the chemical potential of
a single minority atom immersed in a Fermi sea of majority atoms. This ‘impurity’ problem is much
simpler than the general problem with macroscopic atom numbers in both spin states. Up to now all
theories give the same value for A(6;) within less than 1% [83}/85,[178.[84}/86], and are in agreement with

the MIT measurement, (see Figl5.1)).

In the regime of weak interactions (§; — —o0), the ground state is essentially the ground state |¢g)
with no interactions and the minority chemical potential is given by the mean-field energy shift:

dwh2a . 4
Lo = ny, ie A(d) = g

When interactions increase, the ground state substantially differs from the non-interacting ground state.
The minority atom collides with majority particles and creates particle-hole pairs in the Fermi sea. It
was shown in that a good approximation of the ground state energy is obtained by solely taking
into account the creation of a single particle-hole excitation. The ground state is then written as a

linear combination of the non-interacting ground state [1y) and states |¢kq) With a single particle-hole

excitation (see Figl5.2h):
[9) = o [Yo) + D, Pkaltka) -

q<kp

k>kp
Minimizing the energy in this subspace gives a good (and simple to calculate) approximation of
the actual energy , even when interaction-induced particle-hole excitations are likely, i.e. when [¢))

should appreciably differ from |4}, such as in the unitary limit.

W)O) qu)

Figure 5.2: Representation of the ground state on the BCS side of the resonance. In the non-interacting
ground state [t)g), the impurity momentum is 0 and the majority Fermi sea is fully occupied for k < kp.
In the excited state |tkq), the impurity has collided with a majority atom, bringing it from the initial
momentum q, ¢ < kg, towards k, k > kp.

TThe work in \ actually does not directly provides 7., the superfluid/normal phase transition being expressed in the
canonical ensemble.
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5.1.3 Beyond the Impurity Problem

Understanding from theory the partially polarized normal phase A < n < 1. a priori requires to solve
the much more difficult problem of a macroscopic number of minority atoms among majority particles.
However, a simple and powerful description can be proposed in terms of Landau Fermi liquid theory [81].
In this approach, minority atoms are renormalized by interactions with majority atoms into fermionic
quasi-particles, named Fermi polarons. The gas is then described as an ideal mixture of bare majority
atoms and polarons. In particular the Fermi pressure associated with polarons is calculated from the
single-polaron spectrum E(p) as the sum of all energies below the Fermi level. Therefore we not only
need to know the ground state but also the excited energies of the impurity problem. These eigenen-
ergies, parametrized by the impurity momentum p, exhibit a quadratic dependence with momentum,
encapsulated by a mass renormalization [81}[831|85}/178.(86]:

2
p
E(p) = A6 —_—.
(p) = A(d1)p1 + 3m(01)
It is then straightforward to calculate the gas pressure, as the sum of the majority component Fermi

pressure and of the polaron Fermi pressure:

m(6,)\ ¥
Punonn,) = Po) + (") R = A 5:)

To conclude this section, we remind the state of the art concerning the phase diagram of spin-
imbalanced Fermi gases. The phase diagram was explored by the MIT group in [79,[82]. In [82] the
polaron chemical potential shift A(d;) was measured in the BEC-BCS crossover, in agreement with the-
ory [83.[85],/178,[86]. We are thus entitled to use A(d;1) as a reference for extracting the equation of state
from in situ images (see section [5.2). In [79], the maximum density ratio ns/n; at the normal to su-
perfluid phase transition was measured. However, the critical chemical potential ratio 7.(d;) remains
unknown. Finally, the equations of state in the partially polarized and superfluid phase have never been
measured for a homogeneous gas.

The phase diagram drawn at this stage is sufficient for the understanding of the work described in the
next sections. We mention that in the BEC regime, further away from the parameter space addressed in
this study, new phases are expected. We give an introduction to this still largely unexplored field at the
end of this chapter (see section .

5.2 Equation of State Measurement Scheme

In this section we describe the procedure used to extract the equation of state of a two-component Fermi

gas from in situ absorption images.

5.2.1 Experimental Sequence

Here we highlight the parts of the experimental sequence that are specific to this study. We prepare a
spin-imbalanced mixture of °Li in the two lowest internal states |1) and |2), held in an optical dipole trap,
a magnetic curvature being used for the axial confinement (along z). The gas is evaporated by lowering
the trap depth down to Uy ~ 4 pK. The final trap frequencies are w, /27 ~ 800 Hz and w, /27 ~ 20 Hz.
During evaporation the bias magnetic field is ramped towards a value 755 G< By < 981 G in order to
address the entire BEC-BCS crossover. The final atom number is on the order of 5 x 10* atoms per spin
state.
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Figure 5.3: In situ absorption images of a spin-imbalanced Fermi gas, prepared at By = 834 G.