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Chapter 1

Introduction

The achievement of Bose-Einstein condensation in 1995 |[1,2, 3] paved the way for the realization of
new states of matter using ultracold gases. At very low temperature, as soon as the quantum coherence
length becomes comparable to the inter-particle distance, quantum statistics plays an essential role in their
description. Despite their extremely low atom density, these gases exhibit many-body correlations that
a ect both their microscopic and macroscopic properties. As a spectacular example, the rst quantum
gases produced in the laboratory, namely weakly-interacting Bose gases, become super uid when cooled
below the Bose-Einstein condensation temperature. Until 1995, the only super uid made of bosons
observed in nature was liquid*He [4]; due to the small inter-particle distance, interactions betweernfHe
atoms are rather complex to model and it is extremely hard to describe liquid*He from the rst principles
of quantum mechanics. The intimate link between super uidity and Bose-Einstein condensation thus
remains rather complex to understand [5]. The extreme diluteness of ultracold gases prepared in the
laboratory allows us to describe interactions between atoms in a very simple manner. One can then make
a clear connection between the Hamiltonian describing the system and the physical behavior of the latter.
Most properties of weakly-interacting Bose-Einstein condensates in three dimensions were investigated
in detail in recent years. For example, long-range phase coherence was directly observed by making spa-
tially separated regions of a trapped gas interfere [6], and made the observation of Anderson localization
of matter waves in a disordered potential possible|[7,[8]. Super uidity of Bose-Einstein condensates was
demonstrated through the observation of quantized vortices in a rotating cloud |[9, 10, 11]. While most
observed phenomena in weakly-interacting Bose gases are well accounted for by a mean- eld approach
developed in the 1950's|[12, 13], complex many-body theories are required to describe ultracold gases in
the strongly correlated regime [14]. Such gases were produced more recently, using di erent approaches:

The interaction strength can be varied using the phenomenon of Feshbach resonance by applying an
external magnetic eld. While the realization of stable strongly-interacting Bose gases is prevented

by the large inelastic losses encountered when approaching a Feshbach resonance [15], Pauli exclu-
sion principle strongly inhibits inelastic losses in Fermi gases even for large interaction strengths [1L6].
This enabled one to produce ultracold Fermi gases in the strongly-interacting regime [17, 18].

Using periodic potentials in three directions created by o -resonant standing waves of laser light,

it is possible to pin atoms into the wells of a periodic lattice [19,20]. The gas is then described
by a Hubbard Hamiltonian, a fundamental model introduced in solid state physics in order to
describe a transition between conducting and insulating systems. On-site interactions, than can be
larger than the atom tunneling amplitude, induce strong many-body correlations. By varying the
optical lattice depth, a quantum phase transition between a super uid state to a Mott insulator
state was observed using dilute Bose gases in |[20]. The recent realization of ultracold Fermi gases
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in the Hubbard regime [21,22] o ers a unique opportunity to measure the phase diagram of the
Fermi-Hubbard model, and possibly understand its connection to highT. superconductivity.

By freezing the atom motion along one or two directions using tightly con ning potentials, it is
possible to create ultracold gases in an e ective reduced dimensionality, a situation in which many-
body correlations are enhanced [14]. A Bose gas in one dimension, described by Luttinger liquid
theory, was rst obtained in [23|24], while the Berezinskii-Kosterlitz-Thouless transition of a two-
dimensional Bose gas was observed in [25,26]. Very recently spin-imbalanced Fermi gases in one
dimension were produced at Rice [27].

The viewpoint can be reversed by considering ultracold gases as unique tools to investigate open
problems from condensed matter. Thanks to their extreme purity, the good control of the trapping
potentials used to hold the gas, and the simple description of interactions, it is possible to write down
the system's Hamiltonian from rst principles of quantum mechanics. Reference Hamiltonians, such as
the Fermi-Hubbard model, or spin chain/ladder Hamiltonians, were proposed and extensively studied in
the eld of condensed matter, due to their analogy with (much more complex) real condensed matter
materials. However, most of these Hamiltonians are unsolved. In addition, their numerical simulation is
practically impossible due to the exponential growth of the size of quantum systems' Hilbert space with
atom number. Using an adequate ultracold gas system, it is possible to realize these Hamiltonians in
the laboratory and directly observe their solutions. Ultracold gases thus realize an analog simulation of
physical problems, an idea initially proposed by R. Feynman in 1982 [28].

1.1 Ultracold Fermi Gases: State of the Art

Let us now introduce the eld of ultracold Fermi gases that will be addressed in this thesis. Following
the achievement of Bose-Einstein condensation, ultracold Fermi gases were rst produced in the regime
of degeneracy and weak interactions, and the e ect of Fermi-Dirac statistics was identi ed through the
observation of Fermi pressure|[28, 30, 31]. Whiles-wave interactions are forbidden between fermionic
atoms in the same internal state due to Pauli exclusion principle, interactions are allowed in a two-
component Fermi gas. In the ultracold regime, they are described by a single parameter, the scattering
length a. Using the phenomenon of Feshbach resonance,can be tuned using an external magnetic eld
(see Figa), making it possible to reach the strongly-interacting regime and hope to observe a BCS-type
super uid [32]. Strongly-interacting Fermi gases were rst produced in 2002([1}],18] and, contrary to Bose
gases, were found to be particularly stable even for very large interaction strengths, as rst explained
in [16]. The production of degenerate and strongly interacting Fermi gases was then achieved in a several
laboratories (33,34, 35,36,37,38]. Super uidity of ultracold Fermi gases was unambiguously characterized
through the gas response to a rotation of the con ning potential, more precisely a resistance to rotation
in the low rotation speed regime |[39] and the formation of a vortex lattice for a larger rotation speed [40]
(see Figi1.1b). Other evidence for super uidity was provided by the observation of a critical velocity for
energy dissipation of a moving object immersed into the gas [41].

1.1.1 BEC-BCS Crossover

By varying the scattering length value across a Feshbach resonance, one observes a smooth crossover
between two limiting situations [33,(34/35| 36]:

The two-body problem admits a molecular bound state when the scattering lengtha is positive,
with a binding energy E, = ~?=ma?. When jE,j is much larger than the gas temperaturekg T
and Fermi energy Er, the gas can be viewed as a mixture of strongly bound molecules, possibly
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Figure 1.1: (a) s-wave scattering lengtha (in units of the Bohr radius ap) describing ultracold collisions
between the two lowest internal states of®Li, as a function of magnetic eld. (b) Absorption image of a
rotating strongly-interacting Fermi gas, from [40]. The observation of a vortex lattice demonstrates the
super uid character of degenerate strongly-interacting Fermi gases.

mixed with unbound majority atoms in the case of spin population imbalance. Molecules made of
two fermionic atoms behave in this limit as points-like bosons and form in the degenerate regime a
molecular Bose-Einstein condensate [42, 43, 36].

In the limit of small negative values of a, the amplitude of interactions is small. Although the
two-body problem does not admit a bound state, interactions between atoms are strongly modi ed
by Pauli exclusion principle which forbids scattering towards states already occupied by other
atoms. E ective bound states, the so-calledCooper pairs, become stabilized by this many-body
behavior [44], and the gas forms a Bardeen-Cooper-Schrie er super uid at very low temperature
[45]. However, this pairing is not very robust and the critical temperature for super uidity T,

Tr exp( =2kgjaj) is exponentially small for weak interactions kg is the Fermi momentum, Tg is
the Fermi temperature).

The strongly-interacting regime 1=kgjaj . 1 smoothly interpolates between the bosonic and fermionic
regimes. The strength of interactions then makes the theoretical understanding di cult.

1.1.2 “High- T.' Super uidity of a Fermi Gas with Resonant Interactions

By applying a magnetic eld right at the center of a Feshbach resonance, it is possible to reach the
regimea = 1 where the interaction strength takes the maximum value allowed by quantum mechanics,
the so-calledunitary limit . In this situation super uidity is found to be particularly robust.

The transition temperature T for super uidity was rst measured for a trapped gas in [4346|39,47]. In

this thesis we describe the rst measurement of the transition temperature for a homogeneous ges [47)48]:

2
Tc=0:16Tg; T = %(3 2n)%=3,

wheren is the total atom density. The critical temperature T, being on the order of the Fermi temperature
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Te, ultracold Fermi gases constitute in a sense a highi~ systenf] The exceptional robustness of the
super uid state was also demonstrated through the large critical velocity measured by the MIT group [41]:
r

2E
Ve =0:3Vg; Vg = ?F;

as well as the chemical potential di erence between the two spin components; 2 required to break
super uidity [49,/48] (see Chapter[g of this thesis):

j 1 2jC:0:18E|::

The connection with Bose-Einstein condensation was characterized by a direct measurement of the con-
densate fraction [3%, 36, 4[7], and the importance of many-body e ects was established through the mea-
surement of the single-particle excitation energy gap| [50, 51] and closed-channel fraction [38].

1.1.3 Spin-Imbalanced Fermi Gases

Super uidity of spin-balanced Fermi gases is intimately related to pairing between atoms with opposite
spins. A new degree of freedom is provided by the possibility to prepare di erent atom numbers in
both spin states. The rst open question is then to understand whether super uidity survives to spin
imbalance. This issue was addressed in the context of solid-state superconductors by Clogston [[52] and
Chandrasekhar [53] in the 1960's. They predicted that super uidity resists to a magnetic eld (lifting
the degeneracy between the two electronic spin states) up to a critical value.

These old issues of solid state physics were rst addressed using ultracold gases in 2006, by pioneering
works from the MIT and Rice groups [54/55]. Both groups revealed that a spin-imbalanced trapped
gas exhibits a phase separation between a super uid core where atoms are paired and densities are thus
equal for both species, and an external normal phase. Surprisingly, both groups' observations were not
in agreement concerning the normal phase: in Rice experiment, the normal phase was found to be fully
polarized with majority atoms, while in the MIT experiment the normal phase is split into an intermediate
shell with atoms from both species mixed together, and a fully polarized outer rim. This discrepancy has
remained unexplained up to now.

The phase diagram of spin-imbalanced Fermi gases is very rich. Exotic phases with spin-asymmetric
pairing are predicted to be stable, the most famous one being the Fulde-Ferrell-Larkin-Ovchinnikov state
in which the order parameter is modulated in space|[56,57]. Among other proposals, we mention a
gapless (‘breached pair) super uid state |[58], or a state with deformed Fermi surfaces [59]. However
these states are expected to occupy a very small part of the phase diagram and their observation may
require a substantial experimental e ort.

1.2 Issues and Perspectives Addressed in this Thesis

1.2.1 Universal Thermodynamics of an Ultracold Fermi Gas

The thermodynamic equation of state is a key quantity for the macroscopic description of ultracold Fermi
gases, and its determination from experiment would constitute a benchmark for many-body theories. We
will see that expressing the equation of state in the grand-canonical ensemble is more convenient for
its investigation in the laboratory. In this ensemble, the equation of state is written as a relationship
(V; 1; 2;T;a) between the grand-potential , the volume of the systemV, the chemical potentials

1, 2 of both spin states, the gas temperatureT, and the scattering length a describing low-energy

The mechanism for super uidity in high- T¢ materials from condensed matter, for which interactions are expected to be
repulsive, is probably very di erent from the one in ultracold Fermi gases, where interactions are e ectively attractive.
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collisions. The grand-potential being related to the pressureP through, = PV, the equation of state
can also be written using intensive variables only, as:

P( 1, 2;T;a):

The correspondence with equations of states expressed in other statistical ensembles is provided by
Legendre transforms.

It is believed that for Fermi gases with short-range interactions, such as thé’Li gases addressed in
this thesis, the scattering lengtha is su cient to account for all interaction e ects. Therefore the precise
nature of the fermionic species plays no role in the equation of state. Hence the relatioR( 1; 2;T;a)
is expected to beuniversal, in the sense that it is identical for all systems of fermions with short-range
interactions. Its determination using ultracold gases is thus directly relevant to describe another similar
system, namely neutron matter in the outer crust of neutron stars. Indeed, neutron matter is made
of a mixture of the two spin states of neutrons, whose interactions are also short-range and in the
cold-collision regime, captured by a scattering lengtha = 186 fm (at least in the low-density regime
n 108 m [60]. As the Fermi temperature Tr > 10' K is much larger than the temperature
T 10° K, temperature e ects are negligible in neutron matter. The measurement of the equation of
state P( 1; 2;T' 0;a) that we describe in Chapter[§ is thus directly relevant to the description of the
crust of neutron stars. We also mention analogies with other quantum many-body systems such as heavy
nuclei and dense QCD matter [[61].

1.2.2 Previous Thermodynamic Studies

The measurement of the equation of state of an ultracold gas aims to provide a benchmark for many-
body theories. However, most calculations are made on homogeneous systems while ultracold gases
prepared in the laboratory are held in a trapping potential and are thus inhomogeneous. However, the
comparison can still me made in most situations using thdocal density approximation: The cloud size,
imposed by the trap sti ness, is usually much larger than the characteristic length scale over which the
cloud feels a variation of the trapping potential V (r). Therefore the gas can bdocally described by the
equation of state of a homogeneous gas. While the temperatur€ is uniform over the cloud, the trapping
potential induces a slow pressure variationr P = (ny + ny)r V, according to the laws of hydrostatics.
Equivalently, the mechanical equilibrium can be written as:

(n= 7 V() (1.1)

9 peing the global chemical potential for species (i = 1;2).

In the rst thermodynamic studies of ultracold Fermi gases, the equation of state of the whole trapped
gas was measured. For example, an equation of state of a trapped Fermi gas with resonant interactions
was obtained in [62| 63], relating the total energy to the total entropy. In |64] was performed a pre-
cision measurement of the frequency of collective modes of a trapped gas in the BEC-BCS crossover.
In both cases the comparison with theory requires to integrate theoretical equations of state over the
trap. This makes the comparison indirect, and tends to hide possibly small di erences between theories.
Discriminating between a mean- eld BCS theory of the BEC-BCS crossover and advanced Monte-Carlo
calculations [65/66| 67] thus required to reach an excellent accuracy in the measurement of collective
mode frequencies [64]. Finally, the trap averaging smears sharp features in the equation of state, and the
super uid/normal phase transition is almost invisible in [63].

YSince free neutrons are unstable, neutron matter must be viewed as a model system in the large dilution limit.
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1.2.3 Measurement of the Local Pressure Inside a Trapped Gas

In this thesis we developed a new method for directly measuring the equation of state of a homogeneous
gas. Since the gas is locally homogeneous in the local density framework, measuring local properties
inside a trapped gas directly gives access to the equation of state of the homogeneous gas. This idea was
rst exploited in [68]. an Abel transform of in situ images of a trapped gas was used to probe the local
atom density. Due to the dramatic decrease of the signal-to-noise ratio induced by the Abel transform,
the equation of state deduced from this procedure is very noisy, despite the large atom numbers reached
in the MIT experiment. This shows the apparent di culty to probe local quantities inside a trapped gas.

During my PhD, | established, simultaneously to [69], a simple relation between the local pressure
inside a trapped gas and the optical density of anin situ absorption image (see Fi):

m! ! Y (o~ ~ 0 1 2,2 . z
P( 1z 22:T)= ——(M(2)+ M2(2)); where = § sm!;z° and mi(z)= dxdyn(xy;2):
1.2)

We mention that the idea of this relation can also be found in an earlier work [[70]. Equation [(1.P)
states that the pressure on thez axis is obtained by integrating along x the cloud absorption image,
taken alongy. Here! , (u = x;y;z) is the trapping frequency alongu. Contrary to the Abel transform
process, integrating alongx increases the signal-to-noise ratio and the pressure pro le along is thus
obtained with a low noise. As soon as the gas temperaturd and global chemical potentials © are
determined, each pixel rowz provides an experimental valueP( 1; 2,;T) of the equation of state of
the homogeneousgas. The analysis of a single image of a trapped gas thus leads to a large humber of
independent determinations of the equation of state. By collecting the data from all pixel rows of several
images, one obtains after proper averaging a very-low-noise equation of state [48,71]. This is a great
improvement over the studies of the thermodynamics of trapped gases, for which one experimental run
is required to obtain one point.

The main line of this thesis is the implementation of a new method for determining the grand-canonical
equation of state of a homogeneous Fermi gas, making use of equatidn ({.2).

1.3 Outline of this Thesis

1.3.1 Chapter 2: Experimental Setup

We rst describe the experimental setup producing ultracold éLi Fermi gases. Our setup is based on the
combined use of’Li and °Li species. ®Li atoms are sympathetically cooled by forced evaporation of the
’Li component in a magnetic trap. This allows us to transfer a large number offLi atoms in an optical
dipole trap, where a very e cient evaporation is performed on a mixture of the two lowest internal states,
with resonant interactions. Thermometry is performed by keeping a small amount of’ Li atoms.

1.3.2 Chapter 3: Measuring the Equation of State of a Homogeneous Ultracold
Gas

The method for determining the equation of state of a homogeneous ultracold gas is presented in Chapter
[3. We demonstrate equation [1.2) and discuss its validity range. We then illustrate the power of our
method by applying it to Bose gases in well understood regimes.

Using a singlein situ image from [31], we obtain the equation of state of a weakly-interacting Bose gas,
from the classical to the condensed regime. It reveals the characteristic features of a weakly-interacting
Bose gas, namely a bosonic bunching behavior in the normal phase, a Thomas-Fermi pressure in the
Bose-Einstein condensate, and a condensation threshold=0.
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Figure 1.2: Local pressure measurement scheme: a two-component ultracold gas is imagedsitu along
y. Further integration along x provides the doubly-integrated pro les for both components, n1(z) and
N2(z). The gas pressure along the axis is then obtained using equation [(1.P).

We also apply the method to Bose gases in an optical lattice, in the limit of large lattice depth, using
experimental data from [72]. The grand-canonical equation of state deduced from this analysis directly
reveals a Mott-insulator behavior: sites are occupied by an integer number of atoms, whose value depends
on the chemical potential value. We show that representing the experimental data in terms of an equation
of state is suited for investigating nite-temperature e ects.

1.3.3 Chapter 4: Thermodynamics of a Strongly-Interacting Fermi Gas

In Chapter ] we study the thermodynamics of a Fermi gas with resonant interactions|[48]. For simplicity
reasons we restrict our study to a spin-symmetric con guration. Applying our method requires to inde-
pendently measure the gas temperature, which is notoriously di cult in the case of strong interactions.
Inspired by the Innsbruck group |73], we implemented a new thermometry for strongly-interacting gases:
the temperature is measured on a small amount of weakly-interacting’Li atoms, immersed in the 5Li
cloud and at thermal equilibrium with it.

The equation of state deduced from our data enables us to make the rst direct comparison with
many-body theories. Surprisingly, none of them accounts for our observations over their full temperature
range. In the high-temperature regime, we extract several coe cients of the virial expansion. They
agree with the exact resolution of the three-body problem|[74, 75] and provide a benchmark for a future
resolution of the four-body problem. In the low-temperature regime, which is the most di cult to handle
from theory, our data reveal an unexpected feature: above the critical temperature for super uidity, the
normal phase is accurately described as a Landau Fermi liquid. This observation is in disagreement with
the expectations of several many-body theories, which predict that pair correlations should signi cantly
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modify the Fermi liquid picture. Finally, we observe a clear thermodynamic signature of the super uid
transition, occurring at a critical temperature:

Te =0:32(3);

quantitatively con rming the “high- T.' character of Fermi gases with resonant interactions.

1.3.4 Chapter 5: Ground State of an Attractive Fermi Gas: Phase Diagram and
Equation of State

In Chapter f|we describe the measurement of the equation of state( 1; »;T' 0;a) of a two-component
Fermi gas in the BEC-BCS crossover, in the limit of very low temperatures|[71].

In particular we obtain the equation of state in the spin-symmetric con guration, a situation where
the gas is super uid. As explained above, this equation of state is directly relevant to the description
of the outer crust of neutron stars. Our observations validate Fixed-Node Monte-Carlo simulations in
the entire BEC-BCS crossover |[65, 66, 67], and are in agreement with the Lee-Huang-Yang corrections
to mean- eld for low-density bosonic and fermionic super uids. These exact results, obtained 60 years
ago [76) 77|, 78], had only been indirectly observed up to now [64,79].

The equation of state P( 1; »;T "' 0;a) also addresses the physics of spin-imbalanced Fermi gases.
Before our work, it was believed that the di erence between the observations in Rice and MIT experiments
(see above) was due to di erent atom numbers and trap aspect ratios. We prepared spin-imbalanced Fermi
gases in a con guration close to Rice experiment and our observations unambiguously con rm the ones
of the MIT group, namely the existence of a normal phase where atoms of both spin components are
mixed, with di erent densities. We show that the normal phase can be accurately described as a Landau
Fermi liquid, despite strong interactions: minority atoms are dressed in quasi-particles, the so-called
Fermi polarons, with renormalized characteristics such as an e ective mass [80,81,32]. The normal phase
is then merely described, in most of the parameter range, as a mixture of ideal Fermi gases of majority
atoms and Fermi polarons. The polaron e ective masses extracted from our data are in agreement with
the most advanced theories|[83, 84, 85, 86].

Finally we characterize the quantum phase transition between the super uid and normal states, in
good agreement with Fixed-Node Monte-Carlo calculations|[8/1, 67].

1.3.5 Chapter 6: Axial Breathing Modes of a Spin-Imbalanced Fermi Gas

In Chapter [ the e ect of spin imbalance is addressed using a di erent technique, namely the study of
axial breathing modes. When the two spin components oscillate in phase, we observe a smooth crossover
between a hydrodynamic oscillation when the super uid core is large, and a collisionless behavior for
highly polarized gases. This reveals the amplitude of relaxation phenomena occurring in Fermi gases, in
the di erent polarization regimes. For very large polarizations, we also observe an out-of-phase collective
mode, associated with the oscillation of Fermi polarons inside the majority Fermi sea. We extract from
the frequency of this oscillation the polaron e ective mass, in agreement with the value deduced from the
equation of state.

In conclusion, we present the most important open questions that could be answered by extending
the equation of state measurement to other parameter domains, such as nite-temperature e ects in the
BEC-BCS crossover and with spin imbalance. This method will also be applied in our experiment to
strongly-interacting Bose gases using Feshbach resonances with tAgi isotope.



Chapter 2

Experimental Setup

In this chapter we describe the experimental setup used for our study of ultracold Fermi gases. After
a short explanation of the global strategy used for producing degenerate Fermi gases, all stages will be
depicted one by one. The rst stages of the experiment were already described in detail in L. Tarruell's
thesis [87]; therefore | will focus on the performances of our setup reached in these stages, and then give
a more extensive description of the optical trap and atom imaging system.

2.1 Global Description of the Experimental Setup

A rst version of the SLi-7Li experiment was constructed and operated between 1997 and 2006, from the
rst realization of degenerate Fermi gases to the rst studies of the BEC-BCS crossover. At the beginning

of this PhD (in the fall of 2006), the construction of a second-generation setup was under way, in order
to realize more complex experiments. The general experimental scheme, based on the combined use of
6Li and “Li, was preserved, and the improvement of several stages in the experiment led to a 10-times
improvement of the atom number in the quantum-degenerate regime, as well as a 4-times increase of the
experiment cycling rate. In addition, the geometry of the nal trap was completely modi ed, allowing

the implementation a new image analysis technique speci ¢ to elongated traps.

Our experiment is based on an intermediate stage where atoms are transfered from a magneto-optical
to a magnetic lo e-Pritchard trap, and cooled using radio-frequency-induced forced evaporation (see
Fig.. Evaporation is performed on a spin-polarized’Li cloud with a much smaller amount of 6Li,
the latter being progressively cooled by contact with the”Li component. This stage allows us to prepare
up to 5 10° Li atoms at a temperature low enough to yield a100%e cient transfer into an optical
dipole trap. This number is several times larger than the ones obtained in experiments whertLi atoms
are directly transfered from a magneto-optical trap to an optical dipole trap. We then make a SLi
mixture in the two lowest internal states, in a bias magnetic eld corresponding to resonant interactions.
Thanks to the very large collision rate, an e cient evaporation is performed by lowering the optical trap
power. The super uid transition is reached with more than 2 10° atoms in each spin state, and we
obtain, after a deeper evaporation, clouds containing up tal0® atoms in each spin state at a temperature
T=T¢ = 0:03(3). Our setup also enables us to produce spin-imbalanced Fermi gases in the degenerate
regime.

In addition, our setup gives us the possibility to use’Li in the nal experiments on degenerate Fermi
gases. In Chapte[]!l, we thus use a small amount JLi, left inside the °Li cloud, as a thermometer, solving
the notoriously di cult issue of strongly-interacting gases thermometry. Furthermore, broad Feshbach
resonances in’Li makes it a versatile tool for future experiments, such as the study of Bose-Einstein
condensates in the strongly-interacting regime or Bose-Fermi mixtures.
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Figure 2.1: Scheme of the main steps for producing degenerate Fermi gases. (a) In the MOT stad.,i
and ’Li atoms are trapped using a combination of a quadrupole trap and three pairs of light beams. (b)
They are then transfered into a quadrupole trap and moved into a small appendage of the cell, using two
pairs of coils in anti-Helmoltz con guration. (c) In a tight lo e trap,  ’Li is evaporated up to 100 K. (d)
5Li atoms are then transfered into a hybrid magnetic-optical trap (bottom-right), and further evaporation

is performed on a mixture of the two lowest internal states at 834 G. A small quantity of ’Li atoms can
be kept for thermometry.

2.2 Li-5Li Magneto-Optical Trap

The rst stage of the experiment is the simultaneous trapping of ’Li and °Li clouds with large atom
numbers in a magneto-optical trap (MOT). We rst describe the speci cities of our laser system, and the
performance of the Zeeman slower and MOT.

2.2.1 Laser System

Compared with the previous setup, we completely changed the laser system. Due to the very small
Zeeman structure in the 22P5_, excited states, Lithium MOTs require large laser powers for both cooling
and repumping transitions. Instead of concentrating all frequencies emitted by Master lasers into a single
tapered ampli er [38], we attributed one slave diode laser per frequency, delivering an intermediate power.
We use low-cost laser diodes manufactured for DVD playersHITACHI HL6545MGlelivering up to 180
mW of laser power. These diodes are heated up to 7QC in order to bring the laser wavelength at 671 nm.
This tends to increase temperature uctuations and a new design of well thermally isolated boxes was
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made. The power available for each frequency allows us to use optical bers as spatial Iters between the
laser diodes and the MOT. This strongly increases the long-term stability of the MOT alignment, and
enables one to maintain all optical elements before the bers optimally aligned without having to realign
the other components. In addition, since the replacement of a single diode does not require to realign
the MOT stage, we compensate the loss of laser power, due to the 70% ber coupling e ciency, by
increasing the current driving the diodes much higher that the constructor's speci cations, paying the
price of a lifetime reduced to 3 months. In the end, we typically obtain about 50 mW of laser power
directly available for the MOT, in a nearly perfect gaussian mode. These diodes are also used as Master
lasers, emitting 40 mW of laser power scannable over 1 GHz, as well as for Zeeman slowing. The large
number of lasers (15 lasers) makes the run-to-run laser stability relatively poor. However, using a single
type of diode strongly simpli es the laser maintenance and makes our setup very exible.

2.2.2 Zeeman Slower

We use a spin- ip Zeeman slower for the MOT loading from an atomic beam. The atomic beam is emitted
by an oven containing natural liquid Li (with a 7.5 % SLi fraction). The Zeeman slower is characterized by
a large capture velocity 1100m/s, and nal magnetic eld of 200 G in the MOT region, so that slowing
laser beams do not a ect the magneto-optical trap. The large laser power available allows us to use beams
with a large diameter (3 cm in the MOT region), and an intensity ~ 2ls, wherels ' 2:5 mW/cm 2 is
the saturation intensity for the S P lines. With these favorable characteristics, we obtain a large ux
of about 10° “Li atoms/s (and 1C® ®Li atoms/s), loaded into the magneto-optical trap.

2.2.3 Dual Species Magneto-Optical Trap

Slowed atoms are then captured into a magneto-optical trap, represented in Fif.2]2. The characteristics
of the magneto-optical trap are listed in Table[2.]. As the atoms are the transfered into a deep magnetic
trap, the MOT optimization aims to increase the atom number, regardless of the MOT temperature or
maximum density. Therefore we use a relatively small quadrupole eld gradient, of amplitude 24 G/cm
in the strong direction, in order to minimize inelastic losses. Laser beams are also far detuned to the red
in order to increase the capture velocity. The laser beams have a 2.5 cm diameter and a laser intensity
| ' s, values for which the trapped atom number is maximum. We typically trap 10'° ’Li atoms at

a temperature of 4 mK. The ®Li MOT is strongly a ected by the presence of ’Li due to light-assisted
inelastic 8Li-"Li collisions. We thus only trap up to 4 10° 6Li atoms, while up to 8 10% atoms can
be trapped when’Li laser light is switched o. We also mention that the ©Li cooling light induces a
25 %loss of’Li atoms, due to the proximity of several hundred of MHz with “Li D, transitions, inducing
light-assisted inelastic collisions.

Full atom loading is achieved in about 30 s. Before transferring the atoms into a magnetic trap, we
perform a dynamical compressed-MOT phase: the repumping light intensity is ramped to zero in 8 ms
while the cooling light is brought closer to resonance. The cloud's temperature is decreased by a factor 4,
down to 1 mK, at the price of a 35% atom loss. At the end of this stage, atoms are spread in all Zeeman
states of the lowest hyper ne manifold.

In the next section, we describe the transfer into a purely magnetic trap and the radio-frequency
forced evaporation.

2.3 Sympathetic Cooling in a Magnetic Trap

The magnetic trap stage aims at producing relatively large®Li clouds at a temperature low enough to
ensure a complete transfer into an optical dipole trap. A more e cient cooling scheme can then be used,



22

Chapter 2. Experimental Setup

Figure 2.2: Scheme of the magneto-optical trap. The quadrupole eld is created by two pairs of coils in
anti-Helmoltz con guration, in order to position the zero- eld point in the middle of the laser beams (in
red).

LiMOT  7LiCMOT SLi MOT SLi CMOT

Cooling beam intensity (Is ' 2:54 mw/cm ?) 1.0 1.0 1.0 1.0
Cooling beam detuning ( ' 5:87 MHz) -6.5 -3.3 -5.5 -1.7
Repumping beam intensity (I s) 1.0 0 1.0 0
Repumping beam detuning () -5.5 -4.7 -2.5 -1.7
Atom number 10t° 6 10° 4 10 25 10°
Temperature (mK) 4.2 1.0 4.2 1.0

Table 2.1: Characteristics of the ’Li-Li magneto-optical trap, in steady state and at the end of the
dynamic CMOT phase.

taking advantage of the Feshbach resonance relative t6Li atoms in the lowest internal states. In this
section we describe the sympathetic cooling ofLi atoms with ’Li, the latter being cooled using forced
evaporation.

2.3.1 Transfer into an lo e-Pritchard Trap

After the compressed MOT phase, we optically pump the atoms into the stretched stategF =2; mg = 2i
for ‘Liand F = 3;me = 3 for ®Li. The "Li-®Li mixture is loaded into a magnetic trap created by the
quadrupole eld previously used for the MOT stage, and ramped up to much larger magnetic eld
gradients. In these internal states, the’Li-®Li mixture is stable against spin-exchange inelastic collisions.
Due to the high MOT temperature and the small scattering length valuea;7; = 27 ag describing collisions
between’Li atoms, the achievement of an e cient evaporative cooling requires the transfer of the atoms
into a tight lo e-Pritchard trap, as well as an additional in situ Doppler cooling stage.

Optical Pumping and Transfer into a Quadrupole Magnetic Trap

After the compressed MOT stage, atoms are spread into all levels of the lowest hyper ne manifold.
We rapidly switch o the MOT quadrupole eld and create a 10-G bias magnetic eld. After waiting
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100 s for the magnetic elds to stabilize, we send optical pumping beams onto the atoms along the bias
eld direction, and during 300 s. ’Li atoms are mostly pumped in the jF =2;mg = 2i state using a
combination of a hyper ne optical pumping beam ontheF =1 ! F°%=2 D, line, and a Zeeman optical
pumping beam on theF =2 ! F°%=2 D; line, both beams being circularly . polarized. The Zeeman
optical pumping beam is far detuned from the absorption lines in order to address all atoms despite the
large cloud's optical density for resonant beams. The MOT quadrupole magnetic eld is then ramped
up to a maximum gradient of 335 G/cm. After waiting for inelastic collisions with atoms in other spin
states, we are left with about 50% of the ’Li atoms initially held in the compressed MOT. For ®Li atoms
we only use a hyper ne optical pumping beam, which is actually the same than the Zeeman optical
pumping beam for ’Li due to proximity of “Li D, lines and®Li D lines. The transfer e ciency from the
compressed MOT to the magnetic trap is about 396 for 6Li atoms.

Magnetic Transport into the Science Region

The vacuum cell was designed with a small appendage in order to be surrounded with a small lo e-
Pritchard trap, providing a very tight con nement (see Fig.. Atoms are transfered from the MOT re-
gion to the appendage using two pairs of coils in anti-Helmoltz con guration (see Fig.28). The quadrupole
zero- eld point is displaced in 100 ms by ramping down the current in the lower coil pair, while ramping
up the current in the upper coil pair. In the previous version of the experiment the appendage size was
too small and 90 % of the atoms collided with the appendage walls and were lost during the transfer.
By increasing the appendage inner size from 3 mm to 5 mm, the transfer e ciency was brought t&b0 %
The choice of the appendage size results from a compromise between the increase in transfer e ciency
and the decrease in the lo e trap con nement when the appendage size is increased.

Figure 2.3: Scheme of the magnetic transport. The orange and blue pairs of coils are in anti-Helmoltz
con guration.

lo e Trap Loading

Atoms are then transfered from a quadrupole trap to an lo e-Pritchard trap (see Fig.. Due to the
very di erent magnetic eld con gurations for each trap, it is not possible to make an adiabatic transfer
from the quadrupole to the lo e trap. We minimize atom losses during the transfer by keeping as much
as possible a tight con nement in the direction where the cell walls are close to the atomic cloud. In the
end, we end up with upto3  10° “Li atoms and 2 10’ 6Li atoms in the lo e trap.
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Figure 2.4: Scheme of the lo e-Pritchard trap. The radial con nement is provided by lo e bars in
quadrupole con guration (in brown), the axial curvature by the small green coils, and the bias eld is
compensated by the large blue coils in Helmoltz con guration. The yellow coils are used for a ne control
of the bias magnetic eld.

2.3.2 Radio-Frequency Evaporation

In this section we describe the sympathetic cooling ofLi atoms using forced evaporation of the’Li
component.

Decrease of the Scattering Length at Finite Momenta

The atom cloud is initially held, at a temperature T ' 0:9 mK, in a decompressed lo e trap with a
large bias eld By ' 500 G, the trap frequencies being! ;=2 = 198 Hz in the radial direction and
| ,=2 =66 Hz in the axial direction. The collision rate, . 0:5s !, is too small for initiating the
evaporation due the small scattering length valuea;; = 27 ag.

By decreasing the bias magnetic eld, the trap frequencies can be strongly increased. However, the
collision rate is not increased due to particular scattering properties of Li in the mK temperature range.
The scattering cross-section between two colliding atoms has a dependence on the relative momentdkm
given by [89]:

1+ a77rek2 .
(k)=8 a %7m’
in the low-k limit. re is the potential e ective range, on the order of the Van-der-Waals rangea. =
(2m, Cg=~?)14 " 2:6a77 [90]. Due to the negative sign of the scattering length, the factorl + az;rck?
decreases withk. The exact calculation of (k) reveals that the cross section actually cancels for a relative
energy of6:6 mK [90]. This leads to a strong decrease of the mean collision rate inside a trapped gas at
thermal equilibrium: at 2 mK, the scattering rate is decreased by a factor' 4 with respect to the collision
rate corresponding to = 8 a 2,. The temperature increase induced by an adiabatic trap compression
accentuates this e ect and makes the compression ine cient for increasing the collision rate. Therefore
it was necessary to implement anin situ Doppler cooling stage before compressing the trap.
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In Situ Doppler Cooling

We send during 2 s a weak'( 10 W/cm 2) and circularly polarized light beam along the bias magnetic
eld direction, detuned to the red of the closed jF =2;mg =2ilj F°=3;m =3i transition for "Li[]
The large magnetic eld value provides a small magnetic eld direction dependence with atom position,
and brings atomic transitions towards other states, induced by slight laser polarization imperfections,
far o resonance. Therefore we do not excite other states tharjF°=3;m = 3i. Doppler cooling, after
optimization of the cooling beam intensity and detuning on the nal collision rate, reduces the cloud's
temperature by a factor 5, with a moderate 30 atom loss. After a trap compression, the collision rate
is increased by a factor 20 compared with the collision rate without Doppler cooling, thanks to the
temperature reduction and the subsequent scattering cross-section increasi situ Doppler cooling thus
appears to be a very e cient cooling stage, whose use is now generalized to other atomic species with
high-temperature magneto-optical traps, such as Cr|[91], Ne [92] or He [93].

’Li Evaporation

We rst describe the evaporation of a pure “Li cloud. ’Li atoms are held in a tight lo e trap whose
frequencies ard (=2 =3:5kHz and! ;=2 =80 Hz. They are cooled using radio-frequency evaporation
onthejF =2;mg =2ij F =1;mg =1i hyper ne transition. The mean collision rate remains almost
constant, atavalue .' 40s 1@ This shows that the evaporation is at the runaway threshold. The evap-
oration trajectory, plotted in Fig.4.5, reveals an e cient evaporation up to Bose-Einstein condensation,
where the cloud becomes unstable because of the negative scattering length valag = 27 ag. Thanks
to better starting conditions, the new version of the experiment enables us to produce larger clouds at a
given phase-space densitp gB (T). We were thus able to reach the Bose-Einstein condensation threshold
with ' 5 10* atoms, without having speci cally optimized the evaporation ramp.

Figure 2.5: Trajectory of “Li forced evaporation: temperature T as a function of atom numberN-, or
peak phase space density 3z (T) as a function of N7. The dashed line indicates the evaporation point
reached with a maximum SLi atom number Ng =5 1C° (see sectior] 2.3]2).

By monitoring the Doppler cooling beam absorption, we obtain a convenient diagnosis of the 7Li atom number before
radio-frequency evaporation, allowing a control of the stability of the rst stages of the experiment.
Yat least up to very low temperatures close to degeneracy, a regime which is not addressed when we use ’Li for SLi
cooling.
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6Li Sympathetic Cooling

Until the end of evaporation, the 6Li atom number Ng is much smaller than the “Li atom number N.
While spin-polarized °Li atoms do not collide with each other, the interspecies collision rate (perSLi
atom) is comparable to the ’Li-’Li collision rate (per ’Li atom), since the scattering length describing
SLi-"Li collisions, ag; = 41 ap, is on the order ofa;; = 27 ap. The SLi component's thermalization with
“Liis thus as e cient as the ’Li self-thermalization. Therefore ®Li atoms remains at thermal equilibrium
with 7Li atoms during evaporation.

Sympathetic cooling becomes ine cient when N; becomes comparable tdNg, and the nal temper-
ature reached after full ’Li evaporation thus depends on the®Li atom number. With the maximum
6Li atom number Ng =5 10° we are able to bring at this stage, the nal temperature is typically
equal to 100 K, a temperature low enough to ensure an e cient loading into the optical dipole trap.
The corresponding phase-space densityy 35 ' 5 10 *, is already relatively large, and we will see in
section[2.4.3 that it remains constant during the atom loading into the optical trap. At this stage we can
compare more quantitatively the performances of our setup with the ones of all-optical experiments: at
Duke university, the same phase space density is obtained fdlg ' 10°, i.e. several times smaller than
in our experiment [94].

Let us mention that by reducing Ng to much lower values, it is possible to push the evaporation
further, and we obtained a degenerate Bose-Fermi mixture withN; = 7 10*, Ng = 3  10*, and
T' Teec ' 0:3Tg, where Tgec is the “Li Bose-Einstein condensation temperature andTg is the SLi
Fermi temperature.

2.4 Optical Trap and °Li Evaporation

The internal states involved in the strongly-interacting Li mixture have a positive magnetic moment and
cannot be held in a magnetic trap. After sympathetic cooling in the magnetic trap, 6Li atoms are thus
transferred into an optical dipole trap before making the spin mixture in the two lowest internal states,
labeled j1i and j2i. In this section we rst describe the trap geometry and motivate our choice. We
then present the performance of our setup for obtaining degeneratéLi gases in the strongly-interacting
regime.

2.4.1 Geometry of the Hybrid Optical and Magnetic Trap

By contrast with the previous setup, we chose a single-beam optical dipole trap con guration, with an
additional magnetic curvature for a precise control of the atom con nement in the weak direction of
the optical trap, labeled z (see Figi2.§). This choice is suitable for measuring the equation of state of
ultracold Fermi gases from the analysis ofin situ absorption images. Indeed, in this elongated potential,
the typical cloud size alongz is about 500 m, allowing a high resolution imaging in this direction. The
image analysis presented in the next chapters, does not require a good resolution of the radial cloud
dimension. By strongly con ning the gas alongx and y, we concentrate the atom signal on a few camera
pixel and increase the signal-to-noise ratio, which is determined by the camera background pixel noise.
In addition, the magnetic axial con nement is very robust and reproducible, allowing the study of axial
collective modes using experimental data taken over several days (see Chap@r 6).
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Figure 2.6: Scheme of the hybrid optical and magnetic trap. The optical dipole trap is created using a
high-power red-detuned laser beam focused down to a waisty =35 m. An axial curvature, produced
by the green coils, provides the axial con nement. The blue coils, in Helmoltz con guration, create a
bias magnetic eld up to 1000 G.

The Single Beam Optical Dipole Trap

We use for the optical dipole trap a 120-W IPG ber laser emitting at o1 = 1071 nm. Atoms experience
an AC-Stark shift proportional to the intensity 1(r) [95]:
=21

V() = R (2.2)

where =2 5:9 MHz is the natural width of the S P absorption line at 671 nm, |s = 2:5 mW/cm 2
is its saturation intensity, and = 2  1:67 10 Hz is the dipole laser frequency detuning from the
671 nm line. The intensity variation with position leads to an e ective trapping potential proportional
to the local AC-Stark shift, attracting atoms towards the regions of high intensity.

We focus the laser beam at the bottom of the lo e magnetic trap potential, with a gaussian TEMqg
intensity pro le:
2(x2 + y?)

W 2=g) @2

L(x;y;2) = Xp

w1+ z2=23) ©
where P is the total laser power, wo = 35 m is the beam waist andzg = w 3= ot = 3:6 mm is the
Rayleigh length. Combining (2.1)) and (2.3), we obtain the trapping potential:

Uo 2(x2 + y?) ~ 2p

VOOV = ez O g 2=y 0 M YT

(2.3)
is the optical dipole trap depth. Close to the trap bottom, atoms experience a harmonic potential given

by the quadratic expansion of [2.3) around0:
s

2.

V(xy;z)= Up+ %m! 2x2+yH)+ %m! 272, where !, = 4 . pl—l! .

— ;= p= 2.4
mw3 2 W (2.4)

-z

For atom loading into the optical dipole trap, the laser power is ramped up to its maximum value
P ' 65 W, corresponding to a trap depth Uy ' kg 1.6 mK, the trapping frequencies being! =2 '
13kHz and ! ,=2 ' 95Hz. The trap depth is large enough to ensure a transfer of théLi cloud with
unit e ciency, despite the large increase in trapping frequencies.
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The choice of a 35 m waist was made empirically: we did not succeed to make an e cient atom
loading into an optical trap designed with a larger (wo ' 100 m) waist. This behavior is not merely due
to atom spilling due to a smaller trap depth. Indeed, the cloud temperature after loading is increased
from the magnetic trap value by the ratio of the geometrical mean frequency in the optical trap over
the one in the magnetic trap, and thus scales withw, =3 On the other hand, the optical trap depth
scales withw3. The amplitude of atom spilling is a priori driven by the ratio kg T=Uy which has a small
dependence w, 13 on the waist value. The ine cient transfer observed for a large trap waist may be
due to the very low axial trapping frequency! ; ' 4 Hz in that case, which makes the transfer from the
magnetic to the optical trap non adiabatic. The cloud size alongz then become comparable to the cell
size' 1 cm alongz, and atoms may collide with the cell walls.

Smaller waist values are not preferable for the nal stage of the experiment. The radial size of the
cloud would then become comparable to the imaging system resolution, and the peak optical density
would be relatively large. The combination of these two phenomena would lead to a strong distortion of
in situ absorption images, as explained in sectiop 3.5.4. It would also imply a very large nal trap aspect
ratio, casting doubt on the validity of local density approximation, which is at the heart of our data
analysis (see Appendif B.#). The 35-m waist was thus chosen as the maximum waist value allowing an
e cient loading.

Axial Magnetic Trapping

The optical dipole trap aspect ratio = 1!,=l, = piw 0= ot ' 150is very large. While the axial

con nement provided by the optical trap ! ;=2 ' 95Hz is su cient at maximum laser power, it becomes
very small (! ,=2 ' 3 Hz) when the °Li cloud is evaporated by lowering the optical trap up to 1/1000 of
the initial value. Thermalization then becomes very slow and may result in heating due to non-adiabatic
trap modi cations [

We use a magnetic curvature for an independent control of the axial con nement at low laser power.
We have at our disposal the pair of coils which provide the lo e trap magnetic curvature alongz (see
Fig. . They create a magnetic curvature of C = 1:0 G/cm?/A, as well as a bias magnetic eld
Bo = 2:28 G/A. The magnetic curvature, being positive in the direction of the bias eld, expels °Li
atoms in the jli or j2i states (see Fia). We use an extra pair of coils to control the bias magnetic
eld. They create a bias magnetic eld Bo = 2:28 G/A in the opposite direction and a much smaller
curvature  0:080G/cm?/A (see Fig. @) The total bias magnetic eld is reversed by imposing a larger
current through the second pair of coils, and the total curvature thus becomes negative with respect
to the reversed bias eld direction (see Fib). Using this magnetic eld con guration we create a
con ning potential along z, up to 40 Hz.

2.4.2 Optical System for the Dipole Trap

In this section we give more technical details relative to the optical system for the dipole trap . Special
care had to be taken for the design of a stable optical system adapted to the large laser power provided
by the 120-W IPG laser.

Strong heating rates were observed in the rst version of the optical system, where water-cooled
acousto-optic modulators (AOM) were used for the trap depth control. These AOM are designed to handle
large laser powers, but the water ow induces strong mechanical vibrations. Using a quadrant photo-
diode, we measured the beam pointing position noise power spectrui®,( ) (see Figi2.8a). Gas heating

Zor even possibly to metastable macroscopic states at low temperature [96]. | The latter phenomenon may be at the origin
of the discrepancy between the observations in Rice university [55,97] and in other groups [98, 49, 98] an spin-imbalanced
Fermi gases (see Chapter@, as suggested in [100].
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Figure 2.7: Magnetic eld created by the curvature coils only (a), or by the combination of curvature
coils and extra coils providing an opposite bias eld (b). High- eld seeker states are expelled along in
the rst con guration, and con ned in the other con guration.

is associated with the trap shaking spectral component at the radial trapping frequency =2 [101]:
1 !
E= 21m! is, Z—r
When water cooling is used, we estimate the heating rate to be about 500K/s at full laser power, to
be compared with 10 K/s without water cooling.

Figure 2.8: (a) Position noise power spectrumS,( ), as a function of frequency , with a water-cooled
AOM (gray line) and without water cooling (black line). (b) Associated heating rate E-as a function of
radial trapping frequency ! ;=2 .

The strong in uence of beam pointing uctuations encouraged us to improve the mechanical stability
of the optical system:

We use a single acousto-optic modulator without water cooling for the trap depth contr Since

XFrom Crystal Technology Inc.
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laser light absorption by the AOM causes strong heating, we send an air ow through a hole in the
hood of the modulator. This air ow is stopped during the dipole trapping stage using an electronic
air valve. In order to avoid trap shaking associated with AOM frequency uctuations, we use an
ultra-stable DDS function generator for the radio-frequency generation.

The optical system is made of “cage system' elements from Thorlabs company. All elements are
linked together with stainless steel rods and aluminum tubes, and the laser output coupler is glued
to this system, in order to minimize beam pointing uctuations. The tubes also isolate the optical
path from ambient air ow and impurities. Day-to-day mechanical drifts are very small as well,
and the optical trap rarely needs to be realigned.

The complete optical setup scheme is shown in Fig.2]9.

2.4.3 Preparation of a Strongly-Interacting  SLi Mixture
Atom Loading into the Optical Dipole Trap

After full evaporation of Li, we load pre-cooled®Li atoms in the optical dipole trap. The 6Li cloud
typically contains 2to 5 10° atoms at 100 K, and is held in magnetic trap whose frequencies are
Iy=2 ' 35kHz, ! ,=2 ' 80Hz. We rst strongly decompress the magnetic trap by slowly increasing
the bias magnetic eld from 3.5 G to 30 G and decreasing the curvature coils current from 500 A to 10 A.
The trap frequencies are, after decompression, ;=2 ' 400Hz and! ,=2 ' 10 Hz. The subsequent
cloud size increase makes the transfer into the optical trap less sensitive to the alignment of the dipole
laser on the lo e trap bottom. Fine adjustments of the infrared beam pointing are made using a mirror
whose orientation is controlled with a step-motor system (see Fi9).

The transfer is performed by ramping down the lo e bars current while increasing the optical trap
power in 200 ms. Atoms are adiabatically attracted into the dimple made by the optical trap. No
signi cant atom loss is observed in the loading process. The temperature after transferJ ' 250 K, is
3 times larger than the temperature reached at the end of sympathetic cooling. Since the mean trapping
frequency is increased, from the magnetic to the optical trap, by a comparable factor, this temperature
is consistent with an adiabatic loadind |

Heating and Loss Rates

We rst tried to characterize the trap heating and loss rates in the dipole trap using a ’Li cloud, and
observed large loss rates, with @=etime constant 300ms. Since’Li atoms collide with each other,
one expects atoms to escape from the trap because of collision-induced evaporation. However, we did not
observe a temperature reduction while atoms were lost. The atom loss is rather attributed to inelastic
dipolar losses, enhanced with respect to the lo e trap by the increase in trapping frequencies.

Loss rates were found to be much smaller fofLi spin-polarized clouds, where both elastic and inelastic
collisions are absent, and are consistent with > 20 s at full laser power, and no signi cant temperature
increase on a timescale of several seconds. This is consistent with the following heating rate estimates:

The heating rate associated with beam-pointing uctuations was estimated earlier toE.' 10 K/s
at the maximum trap depth (see Fig[2.§b).

Dipole laser intensity noise gives rise to parametric heating, whose amplitude is proportional to the

intensity noise power spectrumS; ( ) at twice the radial trapping frequency ! =2 [101]:

E 1 12 !
E= —; where — = er' L
| |

{ The SLi cloud being fully polarized, no collision occurs during the trap modi cations, and adiabaticity is a single-particle
process.
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Figure 2.9: Scheme of the optical system for the dipole trap. The infrared beam is emitted by a 120-W
IPG ber laser, in a gaussian TEMgy mode with a 5 mm 1=e diameter. After reducing its diameter with

a rst telescope, the beam is diracted by an air-cooled acousto-optic modulator. It is then enlarged by
a second telescope, and focused into the vacuum cell down to a 3%a waist. A step-motor-driven mirror
provides a ne adjustment of the laser pointing.

From the intensity noise S;( ) measured experimentally, and shown in Fig.2.10a, we deduce a
heating time constant | ' 100s at full dipole laser power (see Fig.2.10b). Therefore we did not
need to install an intensity stabilization lock, and the optical trap depth is controlled in open loop.

Because of the very high intensity at the trap bottom, light absorption is not completely negligible
despite the very large frequency detuning, and occurs with a rate [95]:

abS:?UO' 781.

Each absorbed photon leads to an energy gain of about one recoil energy, and the heating rate
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Figure 2.10: (a) Intensity noise power spectrumS; ( ), as a function of frequency (b) 1=etime constant
of the associated heating rate, as a function of radial trapping frequency =2 .

associated with o -resonant photon scattering reads|[95]:

2 -2 2 2
E= - E,'" 7 K=s, where E;, = — — ' Kk 1.4 K:
3 absEr r om oT B

Preparation of a Strongly-Interacting °Li Mixture

The SLi cloud loaded from the magnetic trap into the optical dipole trap is polarized in the low- eld
seeking statej6i=jF = 3=2;mg = 3=2i. The states involved in the strongly-interacting mixture are the
two lowest internal statesj1i and j2i, which exhibit a wide Feshbach resonance centered at a magnetic eld
Bo =834 G (see Fig). As these states have a positive magnetic moment, their magnetic con nement
along z requires an opposite curvature than the one used for the lo e trap (see Fi?). Therefore
during the transfer j6i!j 1i we need to switch o the magnetic curvature, the axial con nement being
solely produced by the optical trap. A small bias magnetic eld is kept on, and the j6i!j 1i transfer
is performed using an adiabatic passage across the hyper ne transition. In order to produce a reversed
magnetic curvature with the same coils, we suddenly reverse the bias magnetic eld, and then slowly
ramp the bias up to By = 834 G, and the curvature eldsupto ! ;=2 =40 Hz (see Fi). About 2006
of the atoms are lost in the process, and no signi cant atom loss is observed when crossing tipewave
Feshbach resonance aBy = 159 G [102,103]. Finally, ajli-j2i mixture is created using a non-adiabatic
Landau Zener passage around the nuclear spin- ip transitionjlilj 2i at 76,4 MHz.

2.4.4 Evaporation of a °Li Gas With Resonant Interactions

Evaporation of a Spin-Balanced Gas

The evaporation e ciency was characterized using spin-balanced gases. Right after the preparation of a
jli-j2i mixture at the center of the Feshbach resonance, the collision rate is particularly large [104]:

2N-~21 21,
= ——_T°Z' 4000s %
¢ (ke T)2
where N = 2 10° is the atom number per spin state. This enables us to perform a very e cient

evaporation.
No noticeable evaporation is observed as long as the trap depth is kept at the maximum value, despite
the large collision rate. This con rms that the atom transfer from the lo e trap to the optical dipole
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Figure 2.11: Left: Energy E of the states2?S,-, as a function of the magnetic eld B. In the last stage of
the experiment we use a mixture of the two lowest internal statesjli and j2i. Right: s-wave scattering
length describing ultracold collisions between stategli and j2i, as a function of magnetic eld.

trap does not induce signi cant heating. Evaporative cooling is forced by lowering the optical trap depth,
using an acousto-optic modulator for the laser power adjustment. As mentioned above, the laser power
is controlled in open loop; the AOM radio-frequency power is controlled using a 16-bit computer analog
output, providing a ne control of the laser power even in the rangeP 10 3P, addressed at the end of
evaporation.

In Fig.2.12 we show a typical evaporation trajectory. The dipole laser power is decreased in 5 s from
the maximum power Py up to a nal power P; , using an exponential function with a 1=etime constant
of 500 ms. Fermi degeneracy is reached with more tha@:5 10° atoms per spin state atT=Tg = 0:5,
and by pushing the evaporation further the gas is cooled to the lowest temperaturesT(=Tz = 0:03(3),
see Chaptelﬂi), with 10° atoms per spin state. At the end of evaporation we measure d=e lifetime of
about 5 s, the optical laser power being kept to the minimum value. Since residual evaporation is not
suppressed, this provides a lower bound to the intrinsic lifetime of thefLi gas. This value is much larger
than the one observed for*°K gases in the strongly-interacting regime. This di erence is related to the
very di erent Feshbach resonance widths for®Li and “°K [34}/105].

In the classical regime, the atom loss rate during evaporation can be related to the temperature to
trap depth ratio = kg T=W,, according to [106]:

Z|F

= 4)e ¢

which gives 10 for our experiment. In the limit of large  values, the gain in phase space density is
related to the atom number loss according to:

n3g/ N 3 N

showing the excellent evaporation e ciency achieved with 6Li mixtures in the unitary limit. As soon

as the gas enters the Fermi degeneracy regime, the atom number decreases more sharply when the trap

depth is lowered (see Fi2). This is expected as Pauli blocking plays an increasing role [107].
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Figure 2.12: Evaporation trajectory for a °Li spin-balanced mixture with resonant interactions: atom
number per spin state N as a function of the dipole laser powerP. The solid line is the evaporation
trajectory in the classical regime, corresponding to = 10.

Spin-Polarization Issues During Evaporation

In Chapter E] and [§ we study spin-imbalanced®Li mixtures at low temperature. Since in the degenerate
regime it is not possible to remove atoms in one spin state without heating the gas, one needs to prepare
a spin-imbalanced mixture before starting the evaporation. The performance of evaporation is not dra-
matically a ected by spin polarization, since it was possible to produce extremely imbalanced mixtures
(N2 < 0:02N1) with a temperature consistent with T=Tg = 0:03 (see Chapte@i).

However, the nal gas polarization is very sensitive to the initial condition, due to the combination
of the following e ects:

In the classical regime, the velocity distribution is identical for both components. In particular
collisions ejecting atoms from the trap act symmetrically on both spin states, and we expectN; =
dN,. This behavior leads to a progressive increase of spin polarization, as shown in Hig.2]13a.

In the degenerate regime, we observe a strong decrease of spin polarization, the tendency becoming
increasingly pronounced when evaporation is pushed further. A physical interpretation of this
phenomenon can be given in the BEC and BCS regimes: in the BEC regime, atoms with opposite
spins form deeply bound molecules, which have twice the atom polarizability and thus feel an optical
trap twice deeper compared to atoms. This makes single atom evaporation much more likely. In the
BCS regime, collisions mostly occur between majority atoms with a speedg; and minority atoms
with a speedvg, < Vgi. Majority atoms are thus more easily ejected from the trap. Many-body

e ects appearing in the degenerate regime are also expected to decrease the cloud polarization [100].

The large polarization variation during evaporation leads to a strong sensitivity to initial conditions,
and makes the control of polarization for deeply degenerate gases dicult. In Fig.2.1Bb we show the
large shot-to-shot polarization uctuations for gases prepared at the lowest temperatures. For some
experimental runs all minority atoms are evaporated during the trap depth decrease. However, as long
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Figure 2.13: (a) Polarization P; after evaporation as a function of polarization before evaporationP;,
for an evaporation up to T  Tg. The solid line is a guide to the eye. (b) Evolution of polarization

for consecutive experimental sequences preparing a deeply degenerate gas. For three sequences the gas

becomes fully polarized during evaporation.

as 100% polarized samples have a low probability, this phenomenon is not really penalizing since it is

possible to post-select images as a function of spin polarization.

Trap Frequency Calibrations

The trap frequencies! ; and ! , are calibrated by exciting the center-of-mass dipole mode along or z.
The magnetic con nement, that has a long-term stability, is calibrated with a very good precision.

We use the set of data taken for the study of collective modes described in Chaptér] 6. In addition to

the excitation of axial compression modes, we observe an oscillation of the gas center-of-mass alang
According to Kohn's theorem, the center of mass always oscillates at the trap frequency,=2 , whatever

interactions. For very cold samples, the optical dipole trap power is so small that its contribution to the

axial trapping frequency is less than1%. The axial con nement is thus completely characterized by the

magnetic eld curvature, provided by the curvature coils, plus a small contribution from the bias coils:

1, 2

> = bias | bias
Bo (Ibias leu); Where  =2:28G=A

+ CUICU

The coecients ias and , are extracted from frequency calibrations using gases prepared @ =
834 G, hence lpias 1o remains equal to 366 A. From the frequency values measured fory, =
50A, 70 A, 100 A (see Fig.2.14), we deduce the coe cients pias = 2:06 HZ2/A and ¢, = 24:8 HZ?/A

By measuring the oscillation frequency of the center-of-mass motion along, we obtain the following
calibration of ! ,:

Feo,

'2— P P where =2:002) kHz:p R

P being the dipole laser power.
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Figure 2.14: (a) Center-of-mass oscillation forl izs = 416 A and |, =50 A, and tted with a cosine,
providing ! ;=2 = 19:7(2) Hz. (b) Axial frequency as a function of curvature coil current, plotted as
(! ;=2 )2 versusl,, and tted with a straight line.

2.5 Absorption Imaging

We usein situ absorption imaging for the study of 6Li gases described in the next chapters, and also use
’Li images for 8Li thermometry in Chapter [] In this section we rst explain the probe light production
process for imaging atom clouds at high magnetic elds. We then describe the imaging optical system.

2.5.1 Generation of High-Field Resonant Probes

The ultracold gases studied in our experiment are produced around the Feshbach resonance center
By = 834 G. Optical transitions used for absorption imaging are thus strongly detuned from zero- eld
transitions, and the preparation of the corresponding probe beams requires a speci ¢ setup.

At these large magnetic eld values, the hyper ne coupling is smaller than the Zeeman shift and
atoms are in the Paschen-Back regime, where electronic and nuclear spins are decoupled (see[Fig]2.15).
The two lowest internal states of ®Li can thus be labeled as:

i = jd=1=2m;
j2i = jd=1=2m;

1=2;1 =1;m; =+11i;
1=2;1 =1;m; =0i;

where J;m; are the electronic quantum numbers andl; m, are the nuclear spin quantum numbers. In
the Paschen-Back regime, the nuclear spin is much less coupled to the electric dipole than the electronic
spin; therefore optical transitions jmy; = 1=2;m;ilj m9 = 3=2m?=m, 1i towards 22P;-, levels
are almost closed. As we imagéLi atoms along a direction perpendicular to the magnetic eld, the
transition strength is maximum for a linear polarization perpendicular to the magnetic eld, with an

e ective Clebsch-Gordan coe cient equal to 1=2. In the Feshbach resonance centeBy = 834 G, the
transition frequency is detuned by 1:2 GHz to the red from the zero-eld D, transitions. We use a
high-frequency acousto-optic frequency shift@ operating in the range 200-1000 MHz, in a double-pass
con guration, in order to generate the high- eld imaging probe beams. The' 7% di raction e ciency

in double-pass con guration requires to use of an additional slave laser in order to obtain large enough
laser power for imaging.

kModel BRI-GPF-650-225-670 from Brimrose Corp.
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The situation is much simpler for “Li high- eld imaging. Indeed, the transition from the ground state:
j7i=j3=1=2,m; = 1=2;1 =3=22;m, =+3 =2i;

to the state jm$ =3=2;m? = 3=2i is detuned to the red of the transition jF = 1i]j F°=2i at zero- eld,
by about 1.3 GHz. This corresponds to a detuning of -500 MHz with respect to thgF =2ilj F%= 3i
transition at zero eld, already used for laser cooling (see Fi5). Using the powerful laser light already
prepared for the MOT stage, and a more usual and e cient 200 MHz AOM in double-pass con guration,
we obtain a probe beam for’Li imaging at B, = 834 G with large enough power. For the experiments
described in Chapter@, the’Li component is imaged along the magnetic eld direction. We thus use a
circularly polarized probe, and the Clebsch-Gordan coe cient is equal to 1.

Figure 2.15: Energies of the2?S;_, and 2?P;-, levels for 6Li and ’Li versus magnetic eld. The thick
lines represent the stateg1i and j2i for ®Li and j7i for ’Li used in our experiments. The degeneracy due
to the nuclear spin is invisible for the 22P5-, levels (1 MHz). Red arrows: imaging transitions at high
eld jm; = 1=2;m,i! jm‘j = 3=2;m? =m; 1li. The dashed arrow is the laser cooling transition

jF =2ilj F%=3j at low magnetic eld.

2.5.2 Imaging Optical System

The imaging optical system for 6Li is represented in Fig. It is made of two parts: rsta 4 f
optical setup makes an intermediate image of the atom cloud, with a ( 1) magni cation. We then use
a pairs of doublets to conjugate the intermediate image onto a CCD camera. The overall optical system
magni cation, calibrated by monitoring the free fall under gravity of a cloud released from the lo e trap,

is equal toM =1:7(1).
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Figure 2.16: Scheme of the imaging system: the probe light exits from an optical ber and is collimated
with a doublet. The atom cloud is rstimaged using a 4 f setup made of af =200 mm doublet and a
combination of a 350 mm doublet and a 500 mm meniscus, essentially equivalent to a 200 mm lens. The
intermediate image is then imaged onto the camera using 75 mm and 150 mm doublets.

Another imaging system alongz is used in ChapterB for7Li thermometry. After taking the SLi in
situ image alongy, we switch o the optical dipole trap, let the cloud expand for 1 to 4 ms, and take
an absorption image of the’Li component. By imaging along the axial direction z, we take advantage
of the cloud ellipticity to increase the optical depth and hence the signal-to-noise ratio. We can then
reliably deduce the cloud temperature from the size of a 3000-atom’Li gas. Since the imaging beam
passes through the lo e bars, the solid angle for atom imaging is small, resulting in a relatively poor
resolution of 9 m. However, it is still much smaller than the typical Li cloud's radial size after free
ight > 40 m.

2.5.3 Imaging System Resolution

The theoretical imaging system resolution is evaluated to4:1 m (Airy disc radius). Ultracold gases held

in the optical dipole trap have a radial size < 10 m ( of a gaussian t), therefore details in the
transverse direction are not resolved by our imaging system (see F7). The measured cloud radial
sizes are consistent with a resolution blurring acting as a convolution with a gaussian of size, =4 m.
The consequences of the nite imaging resolution on the analysis dh situ images is discussed in section
[3.5.4. The magni cation was chosen so thatM =7 m is comparable to the camera pixel size, equal
to 6.45 m. The atom signal per pixel is thus maximized without having the pixel discretization decrease
the imaging resolution.

2.5.4 Double in Situ Images

In Chapter B]we measure the pressure in spin-imbalanced gases usiigsitu absorption images of both
spin components, taken in the same experimental run. In order to have a pixel-to-pixel correspondence,
we use the same camera for both images. The probe beams are also emitted from the same optical ber
in order to share a common intensity pattern. Both images have to be sequentially taken, with special
care so that the rst absorption image does not degrade the second image.

We rst studied the e ect of pulse duration on the absorption image of a spin-balanced Fermi gas
(see Figi2.18a). In that case we take a single absorption image, and maximize the atom signal by sending
both probe beams simultaneously. The radial cloud size deduced from the absorption image depends on
the probe pulse duration, while keeping the absorbed photon number per atom aN ' 10 per atom, by
adjusting the probe beam power. In Fig[2.I8a, we compare the images of a cloud prepared in the same
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Figure 2.17: Typical absorption image of a spin-balanced Fermi gas used for the work presented in
Chapter [4. The optical density integrated along the weak directionz is tted with a gaussian of width
=53 m.

conditions, with pulse durations 10 s and100 s. The measured radial cloud size is equalto =6:3 m
for the short pulse and = 8:5 m for the long pulse, showing the e ect of photon scattering on a
100- s time scale. This has to be compared with the mean velocity N=3v, induced alongx by photon
scattering (v, is the recoil velocity):

"N

iT372

"5 m for =100 s

For the study of spin-imbalanced Fermi gases, it is crucial that both spin states are imaged in the
same conditions. We use a PixelFly QE camera allowing us to take two images separated by 1G.
Using 10- s probe pulses separated by 10s (see Fib), we observe no signi cant perturbation on
the second image. The minority spin state is imaged rst in order to minimize the number of scattered
photons during the rst image. Using a saturation parameter s = I=l ¢ ' 0:04, absorption occurs in the
linear regime, with ' 8 scattered photons per atom. With these parameters, typically 600 photons hit
each pixel camera,i.e. 250 photon counts per pixels given the 4% quantum e ciency of the camera.
This number has to be compared with the dark background level of 18 counts per pixel, showing the
necessity to reduce the magni cation as much as possible to concentrate the atom signal.

The PixelFly camera is able to take a series of two absorption images in a short time interval. Reference
images for the computation of the optical densities:

|
_ jii
an - |09|ref

are thus taken separately, in practice at the end of an experimental run where atoms are absent. Since the
reference intensity pattern slowly drifts with time, we take a series of reference images every 10 minutes.
We mention that the reference image is not used for the computation of the optical density di erence,
which is an interesting observable for the identi cation of full j1li-j2i pairing in the super uid phase (see
Chapter [5):

li1i ¥
jLi
IOQ | ref + IOQ | ref

odi; 0dy;

ljai .

log
2

The optical density di erence thus does not su er from reference imperfections due to the long delays
between absorption and reference images.
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Figure 2.18: (a) Absorption image of a degenerate spin-balanced Fermi gas, usingl®0 s pulse (upper
panel) and al10 s pulse (lower panel). The probe intensity is increased by a factot 10 for the short

pulse. The radial sizes are = 2:3 pixels and = 1:7 pixels, respectively. (b) Scheme of the imaging
sequence for spin-imbalanced gases.

To conclude this chapter, we described the experimental setup and the procedure used for producing
quantum degenerate Fermi gases in the strongly-interacting regime. The performances of our setup in
terms of nal atom number and temperature are very good. The speci cities of our setup allows us to
use ’Li for thermometry and investigate the physics of spin-imbalanced Fermi gases.



Chapter 3

Measuring the Equation of State of
a Homogeneous Ultracold Gas

The nearly complete purity and extreme diluteness of ultracold atoms makes them valuable tools for
a precision investigation of model Hamiltonians from condensed matter physics. However, the density
inhomogeneity induced by the trapping potential makes the comparison between observations in the
laboratory and theoretical predictions for homogeneous gases indirect. However, in the local density
framework, an ultracold gas can be considered agscally homogeneous. It is thus possible to measure the
properties of homogeneous gases using trapped ones, by probing local properties inside the gas. However,
ultracold gases are usually probed by measuring the atom induced absorption or phase shift of a laser
beam. These techniques give access to a two-dimensional pro le, proportional to the atomic density
integrated along the probe beam direction (labeledy):
z
B(x;z) = dyn(xy;z):

Deducing local quantities from a(x; z) is a priori not simple. An important exception is the realization of
two-dimensional ultracold gases, where the motion is frozen in one direction (here the directiog) using
very tight con nement [26,108}/109,110]. In that case the optical density is proportional to the surface
density ng(x; z) and has a direct physical interpretation (see secti02).

In the rst part of this chapter we describe previous works on the thermodynamics of Fermi gases.
The rst kind of approaches is based on the determination of an equation of state of the entire trapped
gas, through the measurement of the gas energy using the virial theorem [§2,63], or the study of col-
lective modes ([64]. Since local properties are not probed, the comparison with theoretical results on
homogeneous gases is indirect and requires an integration of the latter over the trap. We then describe
the thermodynamic study performed at MIT, which relies on the measurement of the local density inside
the gas using an Abel transform ofa(x; z) [49]. This procedure dramatically decreases the signal-to-noise
ratio and leads to a noisy equation of state of the homogeneous gas [68].

We developed a new method for extracting froma(x; z) the local pressureP inside the gas in a very
simple manner [48]. It can be used to provide, from a set of several absorption images, a complete
equation of state P(; T ) of the homogeneous gas, with a small statistical noise. After describing the
general principle of the method, we illustrate its power by measuring the equation of state of an ultracold
Bose gas in simple situations: from a single image of a Bose gas trapped in three dimensions| [31], we
deduce the equation of state of a weakly-interacting Bose gas from the classical regime to Bose-Einstein
condensation. We also apply it to Bose gases in an optical lattice, in the regime of large lattice depth.
The equation of state deduced from the data from the Mainz group|[72] reveals characteristic features of
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a Mott insulator and can be used to investigate nite-temperature e ects.

3.1 Equation of State of an Ultracold Gas: State of the Art

In that section we describe previous studies of the thermodynamics of an ultracold gas.

3.1.1 Equation of State of a Trapped Gas

A rst approach for measuring thermodynamic properties of an ultracold gas is to extract from an
absorption image B(x;z) physical quantities characterizing the entire gas. Repeating this measurement
on a series of gases prepared with di erent total atom numbers or temperatures, one obtains the equation
of state of the trapped gas.

As a rst example, an equation of state of the Fermi-Hubbard model was rlscently measured in the
temperature range T ' 0:15Tg, by measuring the variation of the sizeR? = dxdz (x? + z?)e(x;z)
of a Fermi gas held in an optical lattice, versus the trap frequency! [21]. The quantity @R=@ ktan
be interpreted as the compressibility of the trapped gas and its variation as a function of con nement
strength can be viewed as an equation of state of the trapped gas. This physical picture was helpful for
identifying the Mott insulator phase, characterized by a small compressibility [21].

In the rest of this section we focus on techniques developed in the context of bulk Fermi gases since
the associated physical results will be compared in the next sections with our measurements.

Equation of State of a Trapped Fermi Gas with Resonant Interactions

In 2005 the groups at JILA and Duke University studied the thermodynamics of a spin-balanced Fermi
gas with resonant interactions [62}, 63]. They elegantly measured two simple quantities characterizing a
trapped gas, its total energy E; and entropy S;. The relationship E;(S;) constitutes an equation of state
of a trapped unitary gas.

The total energy of a trapped gas is directly deduced from anin situ absorption image using the
virial theorem [111,(112]: assuming a harmonic con nement and resonant interactions, the total energy
of a trapped gas is related to its total potential energyE{ through:

E, = 2EP;
where: Z 1 1 1
EP = dxdydz Sm!x*+ Smlfy?+ Sml 772 n(xy;2)

and ! ; is the trap frequency along the directioni. Provided that local density approximation is satis ed,
all directions contribute equally to the potential energy, leading to:

E,=3N!2 22 :
. . . : R .
E. is thus easily extracted from the doubly-integrated density prole n(z) = dxB(x;z), using:
R
> o 27N,
© dzn(z)

The entropy S; is measured in another experimental run. A gas is prepared in the same conditions, and
before imaging the magnetic eld is slowly ramped to the BCS side of the resonance, where the scattering
length is small and negative. Assuming that the scattering length change is adiabatic, the entropy after
the ramp is equal to the entropy on resonance. On the BCS side of the resonance, interaction e ects are
small and one knows how to relate the density pro le to the entropy S;.
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Figure 3.1: (a) Equation of state of a trapped Fermi gas in the unitary limit measured by the JILA group

(open squares, from|[62]) and at Duke University (black dots, from|[68]). (b) Radial breathing mode
frequency! , normalized to the radial trapping frequency ! ,, as a function of interaction strength 1=kr a

(from [64]).

This procedure provides an experimental determination of the equation of state of a trapped unitary
gas, shown in Fig.3.1a, with local density approximation as the only assumption. The good agreement
between the results obtained in the two groups, using two di erent atoms (°K in [62] and °Li in [63],
constituted the rst evidence of the universal character of the thermodynamics of unitary Fermi gases
with short-range interactions.

However, it does not provide a direct comparison with many-body theories, which rather calculate
the equation of state of ahomogeneougyas. In order to make the comparison, one has to model the e ect
of trap inhomogeneity. Assuming the validity of local density approximation, the equation of state of a
trapped gas is calculated by integration over space of the theoretical energy and entropy densitiesand

S:
Z

dre( © V(r);T);
Z
drs( © V(r);T):

=

St

The equation of state E; as a function of S; is obtained as a parametric curve by varying the values of

( °:;T). The calculation of a single point(S;; E;) thus requires to know the equation of state for all values
of (;T)with < 0. Hence the comparison with discrete numerical results is possible only when the
data is dense enough to make a precise interpolation. This makes the comparison with time-consuming
diagrammatic Monte Carlo calculations from [113] tricky. Moreover, the comparison with theory remains
indirect and the trap averaging blurs the possibly small discrepancies between theories. We will see in
section[4.3 that, by contrast, a direct measurement of the equation of state of a homogeneous gas provides
a clear identi cation of the validity domain of theoretical results. Finally, the equation of state of the

trapped gas does not easily reveal sharp features such as phase transitions, again because of the trap

averaging. This is for instance illustrated by the di erent values of the critical entropy at the super uid
phase transition, given in [63|46], depending on the procedure used to extract it from the data.
Super uid Equation of State in the BEC-BCS Crossover

Another tool for probing thermodynamic properties of a trapped gas is to study its response to a small
perturbation. When excited out of equilibrium, the gas pro le oscillates around the equilibrium pro le.
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When the collision rate is much larger than the oscillation frequency, or if the gas is super uid, the gas
dynamics is well described by hydrodynamic equations [114]:

@

@{1 = r (nv);
@ _ 1 5
m@}/ = r émv + (n)+V

Linearizing the hydrodynamic equations around equilibrium then provides the value of the collective
oscillation frequencies.

We consider here the experiment performed in the Innsbruck group [64], directly connected to the work
described in sectior] 5.p. In that experiment, a spin-balanced gas, prepared at a temperatuie T, is
trapped in an elongated cylindrical trap, with !, =1, =1, I ,, and is excited in the radial breathing
mode. As shown in Fig.3.1b the frequency measurement is particularly precise. Hydrodynamics predicts
that the oscillation frequency is related, with an excellent approximation, to the equation of staten( )
through [115]: L 7 7
—=3 ar nZ%,-f o V() drn( © V(r)V(r): (3.2)

| 2
r

Equation enables one to compare these experimental results with theoretical equations of state.

Equation of State of a Trapped Spin-Imbalanced Fermi Gas

The last example of equation of state of a trapped gas deals with the physics of spin imbalance in a two-
component Fermi gas, a topic addressed in Chaptdr]5. In short, when imposing di erent atom numbers
in the two spin states, a phase separation occurs in a trapped gas [54,55/99]: one observes a fully paired
super uid core of radius Rg at the center, then a partially polarized shell where the minority spin state
is present up to the radius R,, and nally a fully polarized part of radius R[] The measurement of
the radii Rs, R, and R as a function of spin polarizationP = (N; N32)=(N; + N3), where N; is the
total atom number of speciesi, characterizes macroscopic properties of the ground state of a trapped
two-component Fermi gas with resonant interactions [116] (see Fi2a). In particular one observes a
critical polarization P. ' 0:75 beyond which the super uid core disappears. The e ect of interaction
strength on the critical polarization was also addressed using a Feshbach resonante|[54] (see[Fig.3.2b).
Similarly to the equation of state of a balanced unitary gas at nite temperature, the comparison
between theory and experiment in the last two examples, namely the study of collective mode frequencies
or the study of spin component radii, requires to integrate the equation of state of a homogeneous gas
over the trap. In Chapter E]we apply our method to these systems, and obtain the equation of state of a
homogeneous gas, yielding a direct and much more discriminating comparison with theory.

3.1.2 Direct Measurement of the Equation of State of a Homogeneous Gas

In the previous examples, local density approximation was used to calculate characteristic quantities of
a trapped gas from a theoretical equation of state of a homogeneous gas. It is possible to reverse the
procedure, and to infer the equation of state of a homogeneous gas from an analysis of local properties
inside a trapped gas.

Equation of State of a Two-Dimensional Bose Gas

As mentioned above, two-dimensional ultracold gases are directly suited for this approach, sinag(x; z)
is equal to the surface densityns(x;z) (the maotion is frozen alongy) [26,,108| 109, 110]. In the quasi-2D

The Rice group did not observe the intermediate shell, a di erence which remains unexplained.
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Figure 3.2: (a) Super uid core radius Rs (open squares), minority radius R, (dots) and majority radius
R; (crosses) as a function of polarizationP, from [116]. The radii are normalized to the Thomas-Fermi
radius of a balanced and non-interacting Fermi gas with same total atom number. We note in particular
the disappearance of the super uid core forP > P, ' 0:75 (b) Critical polarization P as a function of
the interaction strength 1=kg a, from [54].

regime, the equation of state of a homogeneous Bose gas can we written as [117]:

Ns d|32(T)=G :m;g ;

where g5 (T) is the thermal de Broglie wavelength, andg is a dimensionless number characterizing the
interaction strength and which is independent of and T. This equation of state was measured in|[110]
by analyzing absorption images of trapped gases ¢&f Rb, using the following procedure: Assuming local
density approximation, the chemical potential varies in a trapped gas according to (r) = © V(r).
The global chemical potential ° and temperature T are extracted from the wings of the cloud, using a
mean- eld Hartree-Fock description. Each pixel (x;z) then provides a measurement of the equation of
state of a homogeneous gas:

0 V(x2).
Tt
Ns(X;2) 4o (T):

G(; 9

After averaging over several pixels, one obtains from a single image a low-noise equation of state.

Local Density Measurement Using Abel Transform

he situation is much more complicated for a three-dimensional gas since the column densig(x;z) =

dy n(x;y; z) does not give a direct access to the local atom density. However, in the case of a cylindrically
symmetric trap (the symmetry axis being z), the relation between the density and the column density
can be inverted using an inverse Abel transforif

0.
n(x;y;z) = 1 D dx°p 1 @a(x ,Z):

PR aryy  oF ¢2

YInterestingly, this formula does not assume that local density approximation is satis ed, and was used in [97] where it
is clearly violated.
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Figure 3.3: Equation of stateg(x) of aT = 0 two-component Fermi gas in the unitary limit (from [68]).

In the MIT experiment, local density proles n;(r) (i = 1;2) of a two-component Fermi gas were
computed using ) [49], and used to determine the equation of state the homogeneous gas|[68]. At
T = 0 and for resonant interactions, the canonical equation of state of a two-component Fermi gas
reads [81]:

E(ni;ny) = §i(6 2)2230373g x = N2
52m Ny
A simple calculation leads to the expressiong = ( 1Ny + 2n2)=(~2=2m(6 2)%*3n>=%). Therefore, once
the chemical potentials ¢ and J are determined, each data point(r;ns; n,) provides one measurement
of the equation of state:
X = &;
Ny

~2(622)n:=3nSz3 (9 V()ni+( 5 V()nz
1

However, the inverse Abel transform dramatically decreases the signal-to-noise ratio, and despite very
large atom numbers, the noise of their equation of state is large (see F.3).

a(x)

3.2 Description of our Method

We implemented a new method providing the equation of state of a homogeneous ultracold gas with a
good precision. It relies on a simple relationship allowing us to measure the local pressure inside the gas
by a simple integration of the column density B(X; z).

3.2.1 Measurement of the Local Pressure inside a Trapped Gas

We discuss here the case of a two-component gas, held in a cylindrically symmetric harmonic trap of

frequencies! ; alongx andy, and ! ; along z. A simplﬁformula then relat%s the local gas pressurd®

along the z axis to the integrated density pro les mj(z) = dxdyn;(x;y;z) = dxmi(x;z), provided local

density approximation is satis ed. We recall that n; is the atom density for species. This relationship

was rst derived in [70] and more recently used in [69], and | found it independently during my PhD.
The derivation of the formula is straightforward. Gibbs-Duhem identity:

dP = SdT + nid 1+ nod >
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reads, alongx (dT =0,d ; = m! 2xdx):
dP = m! 2x(ny + ny)dx:

Integrating betweenx =0 andx =+ 1 gives the pressure along the axis, i.e. at the chemical potentials

=0 1 252.
iz = im!zz.

P( 1z 22:T) = m!rZ (ny + ny)x dx

(ny+ ny)2r dr

(n1 + nz) dxdy;

which leads to the formula:

2
m! ;
2

P( 1z; 22;T) = (M (2) + Ny(2)): 3.3)

This relation can easily be extended to any multi-component ultracold gas at equilibrium, provided

each component is harmonically trapped and that local density approximation applies:
1 X )
P(i:T)= 'R m;i! 5 m(2);
i

where m; is the atom mass of specie$ and ! |, ! ;; are the corresponding trapping frequencies. The
generalization to non-axially symmetric situations is also straightforward.

Contrary to the inverse Abel transform, integrating B(X;z) over x to obtain the pressure increases the
signal-to-noise ratio. In the next section we describe how to deduce from the pressure pro le the equation
state of a homogeneous ultracold gas.

3.2.2 Determination of a Grand-Canonical Equation of State

The grand canonical equation of stateP( ; T) is particularly suited for the experimental study of the
thermodynamics of an ultracold gas. Indeed, the local gas pressure is directly given bjy (3.3), with a good
signal-to-noise ratio. In the local density framework, the arguments( ;; T) of the equation of state are
completely characterized by the global chemical potentials ? and the temperature T. If these numbers
can be appropriately determined, each pixel line at positionz provides one point for the equation of state.
From a single image one then obtains the equation of stat® ( ; T) for a large set of values of ;T).

The determination of the temperature and of the global chemical potentials depends on the system
considered. Let us describe brie y how they are determined in our study of Fermi gases, presented in
the next Chapters. We did not characterize the complete equation of stateP( ;; »;T;a) of a two-
component Fermi gas due to the large number of degrees of freedom. We rather focused on particular
physical situations, encompassing most of the physical phenomena:

1. In Chapter [4 we study the equation of state of a spin-balanced gas in the unitary limitP(; ; T;a =
1). The temperature T is measured on & Li cloud at thermal equilibrium with the 6Li atoms. ©
is measured using the wings of the clouds which are in the classical high-temperature regime.

2. In Chapter [5, the gas is fully evaporated and the temperatureT is considered equal to 0. We then
measure the ground state pressur®( 1; ;T =0;a), and ? is determined by tting the position
at which the density n; vanishes.
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3.3 Equation of State of a Weakly-Interacting Bose Gas

In this section we apply equation (3.3) to the measurement of the equation of state of a weakly-interacting
Bose gas. We use arn situ absorption image of a’Li cloud prepared in the jF =1;mg = 1i state,
and held in an elongated magnetic trap with a small bias eld [31] (see Fi). The trap frequencies are
1, =2 =4970 Hz and! ,=2 =83 Hz. As shown in Fig, the integrated density pro le n(z) directly
reveals the presence of a Bose-Einstein condensate in the middle of the cloud. Our method will directly
provide the grand-canonical equation of state, in both the thermal and condensed regimes.

Figure 3.4: Doubly-integrated density pro les of “Li (dots) and °Li (open circles). The gas contains
35 10 "Li atoms and 2.5 10* SLi atoms.

Dimensional analysis allows us to write the equation of state as:

P(;T)= gl,(:(-l_-l_)g( ); where =e “*sT:;
The variable is the inverse of the fugacity, and is an increasing function of temperature, at xed
chemical potential. 45 (T) is the thermal de Broglie wavelength. Our goal is to extract from the image
the function g( ), which contains all the information on the gas thermodynamics.

The pressure along thez axis is directly given by equation ). In order to obtain the value of g,
we also need to know the cloud temperature. We use a spin-polarizefli gas at thermal equilibrium
with the 7Li cloud for thermometry (see Fig): as the inter-species scattering lengthagy = 40 ag is
small, the e ect of the “Li component on the SLi pro le is negligible. The latter is thus tted with a
non-interacting Fermi gas pro le, providing the cloud temperature T = 1:6(1) K. At this level, we can
plot the data as:

P 3 (T m! 272
P 6 (T) versus  exp 22
ke T

o( )=

2kg T 0

where ©=e "7&T s the global inverse fugacity. We thus already know the equation of stateg( ) up
to an unknown multiplication factor © in abscissa. We determination of ° requires some information
on the equation of state. We t the data where no Bose-Einstein condensate is presentj(z) < 16 m ?!
(see Fig), with the equation of state of an ideal Bose gas above the condensation threshold:

k

X
9() = Gs=2( ); where Gs2(2)= |55 (3.4)
k=1

and obtain the value ° =0:904
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We then deduce the equation of stateg( ), shown in Fig. Each pixel rowz provides one point
g( ), and a single image thus gives the equation of state in the whole relevant temperature range, from
the condensed regime to the classical regime. In the non-condensed region, our data is in close agreement
with the equation of a weakly-interacting Bose gasg( ) = 0s=»( ), from the classical regime 1to
' 1. The deviation from the one of a Boltzmann gasg( ) = 1 is a manifestation of the bosonic
bunching e ect A sharp transition occurs at = ' 1, indicating the Bose-Einstein condensation
transition. While interactions essentially play no role in the description of the thermal part > 1, the

Bose-Einstein condensate pressure is dominated by the mean- eld interaction:

_ 4 “26\77 .
- T?n, (35)

where az; is the scattering length describing collisions betweer{Li atoms and m> is the ’Li atom mass.
The pressure is then obtained by integrating Gibbs-Duhem relation at xed temperature d® = nd ,

providing:
iBaS)('ng log? o): (3.6)
Fitting our data with equation ( for < .and ) for > , with . and a;; as free parameters,
we obtain the . = 1:0(1) and az7 = 11(2)ap = 0:6(1) nm. The uncertainties take into account the t
uncertainty and the uncertainty related to the temperature determination. The condensation threshold
is in agreement with the value . = 1 expected for a weakly-interacting Bose g@ The scattering length
value is also in agreement with the calculationa;7 = 11:5a¢ in [118].

Extending this measurement to stronger interactions, on Bose gases prepared close to Feshbach
resonances (for example usingLi clouds in the j1;1i or j1;0i states, held in an optical dipole trap
[119/120,121]), could reveal more complex beyond-mean- eld phenomena.

9( )= Gs=2( c) *+

3.4 Mott Insulator Behavior of a Bose Gas in an Optical Lattice

In this section we present an application of our image analysis technique to the measurement of the
equation of state of a bosonic Mott insulator using experimental data from |[72].

3.4.1 Realization of a Bose-Hubbard Model

A 8 Rb Bose-Einstein condensate is loaded in a trap consisting of the superposition of a harmonic trap
Vh(r)= 3m ! 2(x?+y?)+ | 222 and a 3D optical lattice [72]:

V(r)= Va(r)+ Vo sin?(kx) + sin?(ky) + sin?(kz) :

The optical lattice is created by three orthogonal standing waves of red-detuned laser light of wavelength
=2 =k =843 nm. Atoms occupy the lowest Bloch band and realize the Bose-Hubbard mode| [19]:

X X X
R= J aa+ % (i DA+ Va(rdh: (3.7)
hizj i i i

ZThe determination of 0 actually makes the overall agreement of the data with gs_,( ), rather than g( ) = 1,
automatic. However, the fact that some data points in the thermal component satisfy g > 1, which is independent of the
choice of 9, is a clear manifestation of the bosonic bunching e ect.

XThe chemical potential value at the Bose-Einstein condensation threshold is shifted, to lowest order, by the mean- eld
interaction with thermal atoms:

1 24 ~2az7 3 ary ary

n =4 nd =4 (32— 1%
dB dB

c 1 =
ke T ¢ kg T my c

in our experiment. This value is much smaller than the  10% uncertainty on the determination of ¢ from our data.
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Figure 3.5: Grand-canonical equation of stateg( ) of a weakly-interacting Bose gas (black dots). The
solid line is a t of the data with a Bose function gs=»( ) in the thermal region and a Thomas-Fermi
equation of state in the condensed region (see text). The dashed line is the classical equation of state

g )=

The index i refers to a potential well at positionr;. J is the tunneling amplitude between nearest neighbors
and U is the onsite interaction, both of them being a function of lattice depth [14]. In this sectionn no
longer denotes the atom density bur rather the occupation numberper site. The slow variation of V; (r;)
compared with the lattice period =2 ensures that local density approximation is satis ed. The system
is thus locally described by a homogeneous Hubbard model, given by (3.7) without the last term, and
with a local chemical potential (r)= ° Vu(r).

3.4.2 The Mott-Insulator Regime

The phase diagram of the Bose-Hubbard model was established in [122] and is shown in 3.6a. At low
temperature and fo%large tunneling valuesJ U the gas forms a Bose-Einstein condensate in the state
jg=0iN =(N, **" jii)V, where N, = V(2= )3 is the number of lattice sites.

The condensate depletion becomes large whds  J and a quantum phase transition occurs towards
an insulator state. We focus here on the limitU J. In that situation lattice sites are essentially
independent, with a Hamiltonian per site:

Ho = %(h 1)A; (3.8)
where fi is the occupation number. The grand-partition function then reads:
X
o = Tre Wo M= o (Un(h D=2 n). =g T
n=0
and the pressure is given by|[123, 124]
kg T
P(;T) = —=1
( ’ ) ( — 2)3 0g o
ke T * (n 1)U
' I 1+ _— 3.9
(= 2)3 o 09 exp kg T (3.9)
(3.10)

{ The last equality in (3s a convenient approximate that introduces an exponentially small error at low temperature
(kg T U) [123|[124].
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This provides the occupation number (see Fig.3)6b):

R 1
U -

(n
n=1 L+exp T

n(;T)=

Inthe limit kg T U, these Fermi-Dirac-type termstendtoH(  (n 1)U), whereH is the Heaviside
function, and | m

(T =0= 5

i.e. equal to the rstinteger larger than =U (see Fib). At zero temperature the occupation number
is thus constant upon varying the chemical potential (except around = nU), and the compressibility =
@n=@is equal to zero. This is the characteristic feature of a Mott insulating phase. At low temperature
ke T U, the occupation number remains at, until the Mott insulator melts at a temperature kg T '
0:2U (see Fig3.6b).
The grand-canonical equation of state atT =0 is calculated by integrating Gibbs-Duhem relation:
P(;T =0) = = n(%T=0)d?°
5 3 n 1 I m

= — h = — . A1
2Unweren ¥ (3.11)

Figure 3.6: (a) Phase diagram of the Bose Hubbard model at zero temperature. The gray regions are the
Mott insulating phases with an integer occupation numbern. In a trapped gas, the chemical potential
varies from the value © at the bottom of the trap to 1 and our method thus provides the equation of
state of the Bose Hubbard model along a line (dashed line). (b) Mean occupation number in the Mott
regime J U, for kg T =0 (solid line), kg T =0:1U (dashed line), andkg T = 0:2U (dotted line).

3.4.3 Extraction of the Equation of State

We illustrate our method by extracting the equation of state of the Bose-Hubbard model in the regime
U J, from doubly-integrated density pro les from the Mainz group [72].

Local Pressure Measurement

Resolving details ofin situ images of a 30 m cloud requires a resolution on the order of 1 m. As
the experiment was not designed for implementing a high-resolution optical imaging system, the gas
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was rather probed using a tomographic technique| [72]. In the trap bottom, atoms experience a linear
gradient of 3.4 G/cm along z. By applying a radio-frequency pulse, atoms are transfered into another
internal state, with a spatial selectivity dz' 1 m determined by the pulse characteristics|[125]. The
number dN = n(z)dz of transfered atoms is then counted using absorption imaging after a time-of- ight,
thus giving access to the doubly-integrated density pro le n(z) and hence, using equation ), to the
gas pressure. Repeating this measurement for di erent probe frequencies provides the complete pressure
pro le. In Fig.3.7& we show four pressure pro lesa, b, ¢, d corresponding to di erent total atom numbers
Na=0:6 10°, N,=10° N.=2 10 andNg=3:5 10 [72,125].

Construction of the Equation of State

The chemical potential varies alongz accordingto , = °© %m! 272, Therefore, the data plotted as:

1 | 252.
W versus Em ZZ y

is equal to the equation of stateP=U(=2) 2 versus , up to a translation in abscissa by the global
(unknown) chemical potential °. Since all images correspond to the same equation of state (we assume
a common temperature for all images), the sets of data from the each image can all be superimposed
by translating all images onto one of them, let us say imagec (see Fig[3.Tb). We thus determine the
dierences ° 9 between global chemical potentials, and gather all data points in a single equation of
state (still translated from the actual equation of state by the unknown quantity 2).

Figure 3.7: (a) Doubly-integrated density pro les for a cloud prepared with N, = 0:6 10° (crosses),
Ny = 10° (open squares)N. =2 1C° (black dots) and Ng =3:5 10° (plus). (b) Superposition of the
data from image d on the one from imagec. (3.11).

3.4.4 Observation of a Mott-Insulator Behavior

In order to observe a Mott-Insulator behavior, we t the data with piecewise linear function consistent

with equation (B.11):
P
————— = 0 for < O
U(=2) 3
= nlU for 0< < 1
= m-—t+n, for 1< < 1t 2
U U
1 2 1 2
= — =+ nN,—=+ + <
ni U No U n3 U for 1 2 '
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with 1, 2, n1, hy and ng as free parameters. We also allow a free translation in abscissa by a quantity
9. The determination from the t of ¢ provides the unknown quantity that was missing to obtain the
equation of state of the Bose-Hubbard model in the Mott regime, plotted in Fig[3.8.

The other t parameters exhibit the characteristic features of the incompressible Mott phases. The
size of the rst Mott regionis 1 =0:9(1)U, with an occupation number n; = 1:0(1) atom per site. The
size of the second Mott region size is , = 1:1(1)U, with an occupation number n, = 2:0(1). Finally,
the occupation number in the third Mott region is n3 = 3:1(1). These values agree with the theoretical
values ;=Uandn; =i.

Figure 3.8: Equation of state of the Bose-Hubbard model in the Mott regimeU  J (black dots). The
solid line is a t of the equation of state by a piecewise linear function, revealing the Mott phases.

3.4.5 Estimation of Finite-Temperature E ects

Finite-temperature e ects tend to smear the occupation plateaus of a Mott insulator, until a their dis-
appearance at the melting temperaturekg T ' 0:2U [123] (see Fib). Fitting the experimental
equation of state with the nite-temperature equation of state (, we obtain:

ke T =0:09%%U;

i.e. a value signi cantly lower than the melting temperature.

In order to estimate the e ect of the pressure prole smearing due to the nite resolution of the
tomographic technigue, we convolved a theoreticall = 0 pro le with a point-spread function associated
with the nite probe resolution (see [125]). The simulated pro le is then tted with (3 and we obtain
ks T =0:08(3)U. This shows that the investigation of lower temperature regimes would require a better
resolution.

3.5 Validity of the Pressure Measurement

In this section we discuss the validity of equation [3.8) used for measuring the local gas pressure. We
show how to calibrate the pressure measurement in order to minimize systematic errors. We also estimate
the magnitude of the deviation from local density approximation and the e ect of trap anharmonicity or
nite imaging system resolution.
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3.5.1 Calibration of the Pressure

The systematic error on the pressure measured using equatiof (3.3) &priori de ned by the uncertainty
of atom counting and of the radial frequency. Since it is very dicult to achieve an atom counting
precision better than  10% we rather directly calibrate the pressure using a reference pressure pro le.

We use the pressure pro le of a deeply evaporated spin-balanced Fermi gas, in the unitary limit, as a
reference (see Fi§.3]9). Indeed the equation of state of such a gas is well known:

P()= — = (3.12)
The parameter s = 0:415(20)is measured in Chaptef b, without using this calibration, and this value is
in agreement with most previous experimental and theoretical results. Fitting an experimental pressure
prole P( ;) with ( provides a precise calibration of the pressure. Finally, we estimate the error due
to a shot-to-shot drift of the probe laser frequency or radial trapping frequency to be less tharb%.

Figure 3.9: Pressure pro le of a balanced Fermi gas at unitarity and very low temperature. The solid
line is a t with a Thomas-Fermi pro le multiplied by s =2 providing a calibration of the pressure.

3.5.2 Deviation from Local Density Approximation

The pressure measurement is based on local density approximation. In the case of strong interactions
there is no prediction for the amplitude of deviations from local density approximation. We thus consider
the simpler situation of a two-component balanced Fermi gas in the BEC limitl1=kra 1. The gas is
then a molecular Bose-Einstein condensate, described by the Gross-Pitaevskii equation:
2 2
~ 4 ~
add n p

— + V+
4m 2m

_ -
n= %n;

where n is the molecule density andagg ' 0:6a is the dimer-dimer scattering length [16]. For simplicity
the trap is assumed isotropic, with a frequency! . In the local density approximation framework, the
rst term is neglected, leading to the Thomas-Fermi density pro le:

2m
nr)y = ——(°% V)
) 2 2 r 0
r 2m
= no 1 ~— ; where Rrg = and ng= 0

R2. m! 2 4 ~2a44
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plotted in Fig.B.10]as a dashed line. Writing the Gross-Pitaevskii equation using dimensionless variables
e= r=Rtg and B = n=ng:

"5 o

B=1 €& —p—~; where = _—— ;
B 20

guanti es the gradient term in terms of a dimensionless number . For a typical molecular condensate
with N =5 10* molecules, prepared at750 G wherea ' 2000ag, and held in a trap with a mean
frequency! =2 330Hz, the parameter is on the order of0:5%. A numerical resolution of the Gross
Pitaevskii equation, shown in Fig[3.10, con rms the very small deviation from the Thomas-Fermi density
pro le [126]. The size of the region where local density approximation is incorrect is on the order of the
healing length =1=" 8na 44, which is much smaller than the cloud size. As a conclusion, local density
approximation accurately describes the density pro le of a trapped Fermi gas in the BEC limit. In more
complex situations such as the unitary limit, the exact calculation is not possible, but we expect the
conclusion to remain the same because the correlation length kg is much smaller than the cloud size.

Figure 3.10: Density prole B(g) of a molecular Bose-Einstein condensate calculated using the Gross-
Pitaevskii equation (solid line) and the Thomas-Fermi approximation (dashed line). The total molecule
number isN =5 10% the trap frequency is! =2 330 Hz, and the scattering length isa = 2000 ay
(corresponding to a magnetic eld B ' 750G).

However, the e ect of the gradient term can be much more pronounced if the density pro le abruptly
changes. This typically occurs around a density jump associated with a rst-order phase transition, a sit-
uation encountered in Chapter[§ when considering spin-imbalanced trapped gases. When the populations
of the two spin states di er, a phase separation occurs between a central super uid core and an external
normal shell. At the interface between the two phases, local density approximation predicts an abrupt
density jump. Gradient terms beyond local density approximation then play an essential role in the
description of the interface. In a rst approximation, they might be captured by adding a surface tension
term to the force balance at the interface between the super uid (S) and normal (N) phases [12/7,128,129]:

Pn Ps = ﬁ;
where is the surface tension coe cient and R is the mean curvature radius of the interface. In particular,
in the case of an anisotropic con nement, surface tension tends to deform the interface from a trap
equipotential. In Appendix B.4]we show that, in our experiment, the surface tension e ect is very small
and that local density approximation applies well for the description of Fermi gases.

Local density approximation is also expected to fail in the critical region of a second-order phase
transition, due to the divergence of the correlation length. This situation will be encountered in section
M7 when considering the super uid transition of a spin-balanced Fermi gas at unitarity. However, we
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show in section[4.7.% that in practice the size over which local density approximation is incorrect is very
small, and that (B.3) provides the pressure of a homogeneous gas with a good precision.

3.5.3 E ect of the Trap Anharmonicity

Correction to the Pressure Formula due to the Trap Anharmonicity

Besides local density approximation, the other key assumption for obtaining equation[(3]3) is the trap
harmonicity. However, the optical dipole trap potential is actually gaussian in the transverse directions:

r2
Vi(x;y)=Up 1 exp v
0

Let us estimate the error introduced by the anharmonicity of this potential. For simplicity we consider

a spin-balanced mixture of total density n( ;T ). In the local density approximation framework, the local
chemical potential is given by:

- ] . 1 2,2,

(xy;2) = Vigy)  Sm!zz%

and the integrated density reads:

Z
mz)= 2rdrn % Vi(xy) %m! 2227
Using the variablev = V; (r) and n = @P=@leads to:
Z
m! 2 _ Voo 1 @P
- = - = T .
> @) . 1T v @ (z viTdv;
where! , = P 2Uo=mwj is the radial frequency at the trap bottom. Expanding this expression for large
trap depths Uy, and integrating by parts, we obtain:
A
1 2 1
M in@)= P( ;T)+ le( 2z VT (3.13)
2 o Uo

In the limit of a very large depth Uy ! 1 , the rst term in (3.13)|dominates and one recovers equation
B.3). The second term in [3.13) is the rst correction to (B.3) due to the trap anharmonicity.

Amplitude of the Anharmonic Correction

Let us now evaluate the amplitude of this correction for typical situations encountered in our experiment.

We rst consider the case of a high-temperature Fermi gas in the classical regime, a situation encoun-
tered in the measurement of the equation of state of the unitary gas at nite temperature (see Chapter
@). We recall the expression of the pressure for a classical gas:

P(;T)=2ksT 4o(T)exp(=kgT):
The integration over the chemical potential in ) is then straightforward, leading to:

m! 2 kg T
niz)= P T) 1+ —
> (2) (2:T) Us

The relative error is equal to kg T=Uy, typically equal to 0:1 when we do not compress the optical trap
at the end of evaporation (see sectiof 2.4]4). It does not depend on the position in the trap, hence the
pressure pro le is not distorted but globally shifted. Therefore, the systematic error could be corrected
by modifying the calibration of the pressure.
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The error introduced by the trap anharmonicity is also simple to estimate for a single-component
Fermi gas at zero temperature. The pressure is then given by:
3=2

- _ w1 2m 5=0.
PCT =00= 125 = ,
and integrating over the chemical potential in (3.13) gives:
m! 2 2 ;
= . + —
5 M@= P(10) 1+ 27

In that case, the correction is inhomogeneousj.e. the doubly-integrated pro le, compared with the
pressure pro le, is distorted. The larger distortion amplitude occurs at the trap center and is equal to
2 9=7U,. For typical trap parameters considered in our study of zero-temperature Fermi gases in Chapter
E, 0=l ' 0:1 and the maximal distortion is 3%, below the statistical noise of our data.

3.5.4 E ect of the Imaging System Resolution

The nite resolution of the imaging system has to be considered for a precise understanding ofh situ
images. As shown in sectiof 2.5]3, the e ect of the resolution of our imaging system can be captured by
a convolution of the probe intensity pro le with a gaussian of size ; =4 m. The Thomas-Fermi radius
of a trapped gas is typically equal to 15 m in the transverse direction, and details of the pro le are not
resolved. However, the axial Thomas-Fermi radius being on the order of 300m, ne details are well
resolved in the axial direction. We show here that the pressurd®( ,) / n(z), obtained by integration of
the column density B(X; z), is insensitive to the nite resolution of the imaging system, at least for small
optical densities. We also address the combined e ect of nite resolution and large optical densities.

Insensitivity to the Resolution for Low-Density Clouds

We consider here the case of clouds with a small optical density, for which the column density is propor-
tional to the probe intensity absorption:

lo 1(x2).

e(x;z)/
lo

where | ¢ is the incoming light intensity and | (x; z) is the light intensity after passing through the atom
cloud. The intensity pro le actually measured is obtained by convoluting the real pro le with a gaussian

of size ,:
Z

2
Imeasured (X;2) = (1 f)(x;2)=  dx%1(x%2)f (x x9; where f(x)= 192717 exp X

27
Since the cloud pro le varies alongz on a much larger length scale than , the convolution along z
has a negligible e ect on the intensity prole and has not been included. In the linear regime, the
proportionality between the column density and the intensity absorption leads to:

Z

Bmeasured (X; Z) = dXOB(XO; z2)f (x XO)Z

The integrated density pro le is then given by:Z

dX Bmeasured (X; Z)
Z Z

dx%(x%z) dxf(x x9

Mmeasured (Z)

= n(z2):

Therefore, when light absorption is in the linear regime, doubly-integrated density pro les are insensitive
to the nite resolution of the imaging system [55].
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Figure 3.11: Theoretical integrated pro le n(z) of a spin-balanced gas with a total atom numbemN = 105,
at a temperature T = 180 nK, and held in a trap of frequencies! ;=2 =1:1kHz and! ,=2 = 37 Hz.
The solid line (dashed line) is the theoretical prole with =0 ( =4 m).

Large Optical Density E ects

In the case of large optical densities, the relationship between intensity absorption and column density is
no longer linear:
1(x;2) = loexp( oB(X;2));
where  is the light scattering cross section. The measured intensity pro le then reads:
z
| measured (X; Z) = dXOI 0 eXp( OB(XO; Z))f (X XO):

The measured column density is thus given by:

1 |
= logi————
0 | measured (X; Z)

1 lo
9T Dk

(e f)(x;2);

Bmeasured (X; Z)

(0]

and in particular Nieasured (2) 6 N(2).

In Fig.B.11] we simulate the e ect of the nite resolution of our imaging system for a cloud with typical
parameters used in Chapte#. The maximum optical density is then 1.2. The pressure deduced from
the integrated density pro le is 9% less than the actual pressure at the trap center. As a result, in the
determination of the equation of state of a spin-balanced unitary gas, we do not use the data of optical
density larger than * 1, and the accuracy of the pressure measurement is then better tha®%. For
the study of the ground state of a spin-imbalanced Fermi gas described in Chaptdr] 5, the axial trapping
frequency is reduced to! ;=2 = 20 Hz in order to reduce the cloud's optical density and minimize
non-linear e ects.



Chapter 4

Thermodynamics of a
Strongly-Interacting Fermi gas

The rst application of our method to Fermi gases is the measurement of the equation of state of a
two-component Fermi gas with an equal number of atoms in each spin state, and prepared in the unitary
limit a= 1 . As described in sectior{ 3.1]1, the equation of state of &apped unitary gas was measured
in [62,63]. Despite its importance as the rst measurement of a ‘'model-independent' equation of state,
it cannot be directly compared with many-body theories, which rather deal with homogeneousgases.
The comparison requires to integrate the theoretical equations of state over the trap, making use of
local density approximation. However, some advanced theories, such as the Diagrammatic Monte Carlo
calculations from the Amherst group [113], only provide several points for the equation of state, and
the integration over the trap can not be performed. These theories have thus remained untested by
experiments up to now. The aim of our study is to provide the equation of state of ahomogeneousgas
in order to make a direct comparison with theory. We will see that this comparison reveals unexpected
features.

Moreover, it is clear that sharp features such as phase transitions are expected to be smeared out by
the trap averaging. As an example, the critical temperature for super uidity is almost invisible on the
equation of state of a trapped gas|[63,46]. We will show that the equation of state of the homogeneous
gas is more suited for measuring the critical temperature, as well as other physical quantities such as
virial coe cients.

Universal Thermodynamics of a Fermi Gas in the Unitary Limit

In this chapter we consider a gas prepared at 834 G, where the scattering length is in nite, and with
equal atom numbers in each spin state. In that situation, the two chemical potentials ; and , are
equal and we will use the notation = 1 = 5 in the rest of the chapter. The equation of state is
then reduced to a relation between the pressur® and the intensive variables and T. At unitarity, the
scattering length drops from the equation of state and the only way to construct a dimensionless number
is the combination =k g T. Therefore the equation of state can be written as the product of a reference
pressure, taken as the pressur®y( ;T ) of a single-component ideal gas, multiplied by a dimensionless
function h( ), where =exp( =kgT) is the inverse of the fugacity:

P(;T)=2Po(;T )hr(): (4.1)

is a convenient grand-canonical equivalent off =T¢, and is an increasing function of temperature.
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All informations of the thermodynamics of a Fermi gas with resonant interactions are included in the
function ht( ). In this Chapter, we present the measurement otht( ) using the method described in
Chapter[3, as well as a physical interpretation of our data.

4.1 ’Li Thermometry

In Chapter E] we showed how to extract fromin situ images the pressureP( ,;T) along the z axis.
Deducing the equation of state from the pressure prole of a trapped gas also requires to know the
temperature T and the global chemical potential °. The temperature cannot be extracted from the cloud
image without invoking a model, since the relation between density pro le and temperature is precisely
given by the equation of state we want to measure. Inspired by the Innsbruck group [73], we developed
a new thermometry method, using’Li atoms immersed in the ®Li gas, and at thermal equilibrium with

it. The temperature is measured on the’Li component through its size after time-of- ight, a technique
speci ¢ to weakly-interacting gases.

4.1.1 Preparation of a Three-Component SLi-‘Li Mixture

Adding a small amount of “Li atoms in the optical trap is particularly simple. We control the amount
of “Li at the end of sympathetic cooling by appropriately choosing the nal frequency of the RF knife
expelling “Li atoms from the magnetic trap. As we do not need a large number of Li atoms, we keep a
smaller amount of ’Li than 6Li, hence the nal ®Li temperature and transfer e ciency to the optical trap
are essentially unchanged. However this procedure leads to a larger sensitivity to atom number drifts.
Indeed, a larger®Li atom number leads to a higher temperature at the end of sympathetic cooling, and
requires an adjustment of the nal knife frequency to maintain a constant ’Li atom number.

Once loaded into the optical dipole trap, atoms are transfered into the nal internal states. Under a 10-
G bias magnetic eld, they are simultaneously transfered fromjF =3=2;mg =3=2ito jF =1=2;mg = 1=2i=j1i
for 6Li and from jF =2;mg =2i to jF =1;mg = 1i=j7i for "Li using an adiabatic passage around the
hyper ne transitions, respectively around 245 MHz and 825 MHz. The collision rate being especially
large in the optical trap at the highest power, it is crucial to make the transfer as fast as possible to avoid
spin-exchange inelastic collisions between low- eld and high- eld seeking states. Using high-power ampli-
ers (50 W and 30 W for the ®Li and ’Li frequencies, respectively), we are able to make the transfer with
essentially no atom loss in 100 ms. The magnetic eld is then ramped to 834 G and we prepare a balanced
jli-j2i mixture using a series of non-adiabatic Landau-Zener passages around th# -j2i transition. We
do not observe signi cant losses during this phase.

Stability of the Three-Component °Li-’Li Mixture

Inelastic losses constitute the main limit to the realization of arbitrary ultracold mixtures. We discuss
here the stability of the ®Li-”Li mixture of the two lowest states of 6Li and of the ground state of ’Li
with respect to inelastic collisions. The hyper ne structure of the electronic ground state of®Li and ’Li
is shown in Fig[4.]. The splitting betweenjli and j2i is 76 MHz at high eld, while the splitting between
the two lowest states of’Li, j7i and j8i, is 177 MHz. The inelastic spin-exchange collision:

6y ; T 6 ; 7
L|j2i+ L|j7i ! L|j1i+ Lljgi

is therefore endothermic and cannot occur. Moreover, two-body dipolar losses were estimated by S.
Kokkelmans to be very small, on the order of2 10 8 cm®/s. Before starting the evaporation, no
appreciable atom loss is observed after waiting in the optical trap at full power, thereby con rming the
very good stability of the mixture.
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Figure 4.1: Energy levels of the electronic ground state ofLi (left) and ’Li (right). The gas is prepared
in a mixture of the two lowest states of ®Li, labeled j1i and j2i, and of the ground state of ’Li, labeled
j7i.

4.1.2 Two-Species Evaporation and Thermalization

The scattering length describing collisions betweefiLi (in j1i orj2i) and ”Li atoms is equal toag; = 41 a,
with essentially no variation with magnetic eld. On the other hand, the scattering length a;; between
’Li atoms strongly depends on the magnetic eld value because of the existence of a 200-G-wide Feshbach
resonance centered at 737 G [119,120,130]. At the magnetic el = 834 G corresponding to the center

of the °Li Feshbach resonance, the scattering length value ia;7; = 73 ap.

At the beginning of evaporation, the optical dipole trap typically holds Ng =2 10° 6Li atoms in each
spin state and N; = 108 7Li atoms, at a temperature T' 250 K, and with a mean trapping frequency
=2 ' 25 kHz. The collision rate between®Li atoms, interacting with resonant interactions, is very
large [104]:

_ 2Ng~213

' 1.
66 — 7('(5 T)2 4000 s -;

while the collision rate between®Li and ’Li atoms and between’Li atoms are respectively:

_ 2Nem!3ag; 150s ! and _ 4N;mT3a3, |

= 2 L
76 kBT 77 kBT 00 s

These large collision rates ensure an e cient thermalization during evaporative cooling. In the classical
regime (T > 0:3Tg) where the 6Li temperature can directly be measured, we indeed observe identical
temperatures for both species. It is also important to be convinced of a good thermalization in the
degenerate regime, where théLi temperature can no longer be measured. At the end of evaporation,
the trap typically contains 5 10* Li atoms in each spin state and10* ’Li atoms, the mean trapping
frequency beingt=2 ' 300Hz. The classical collision rate is then on the order oBOs !, but collisions
between’Li and ®Li atoms may be strongly inhibited by Pauli exclusion principle in the degenerate®Li
cloud. Indeed, a®Li atom undergoing a collision needs to be scattered in an empty state, which restricts
the allowed nal states above the Fermi level, and thus decreases the collision probability. In Chapter
E, we show that 6Li gases can be evaporated up to very low temperature§ = 0:03(3)Tg, showing
that collisions still occur in the deeply degenerate regime. In our experiment, we observed that théLi
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Figure 4.2: 5Li atoms are imagedin situ alongy, and ’Li atoms are imaged alongz, after a time of
ight. Typical absorption images are shown, corresponding to a high-temperature cloud atT =1:5 K
containing 1:5 1C° 6Li atoms in each spin state and10* “Li atoms.

temperature no longer varies after evaporation down to a given trap depth, as if the temperature reaches
a steady state in less than 100 ms. This indicates a good thermalization e ciency even at the lowest
temperatures. This has to be compared with the experimental results from|[73] obtained on a mixture
of ®Li and “°K. A steady state is reached after more than 3 s, and the nal temperatures for theSLi
cloud and the 4°K cloud dier by ' 30% probably due to di erent heating rates for the two species. In
our case,®Li and “Li atoms experiencing exactly the same trapping potential, we expect trap-induced
heating to be almost identical for the two species and therefore the nal®Li and “Li temperatures to be
identical.

4.1.3 Temperature Measurement

At the end of evaporative cooling, the ®Li component is imagedin situ using absorption imaging along
the transverse directiony (see Fig). The trap is switched o during the pulse, and ’Li atoms are
imaged alongz after a time of ight chosen between 1 and 4 ms, depending on the radial trapping
frequency. Imaging alongz increases the optical depth, and the size of the cloud can reliably be tted
for 7Li atom numbers down to 3000 Essentially no collision occur between the two species during the
time-of- ight, and we checked that, indeed, ®Li imaging has no signi cant e ect on the ’Li prole. The
imaging system magni cation along z is calibrated by comparison of the size of a high-temperature cloud
imaged simultaneously alongz and y. We then use the calibration of the imaging system magni cation
alongy (see sectio) to deduce the one alormy As the measured temperatures can be close to the
Bose-Einstein condensation threshold for Li, we t the ’Li density pro le with a Bose distribution [131]]

4.1.4 Limitation of our Thermometer at Low Temperature

The scattering length a;; = 73 ap being negative,’Li Bose-Einstein condensates are unstable above a

critical atom number [132/133]: ;

N¢e' 0:37

1
— "' 230
m- 17 jaz7j

where we have taken into account the e ect of trap ellipticity [134]. When evaporated down to the lowest
trap depths, we observed that the temperature saturates at the critical temperature for condensation:

N, 1
(1) ’

kg Teec = ~T7 where gz(1)' 1:202
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For a typical mean ’Li trapping frequency T7=2 = 270 Hz, and a typical ’Li atom number N; = 3000,
the critical temperature is Tgec = 175 nK. We did not study in detail the physics around T = Tggc . As
we never observed a sharp feature in the density pro le, we assume the cloud to be at thermal equilibrium,
with no condensed fraction and atT ' Tgec .

The temperature lower bound imposed by the nature of our thermometer has to be compared with
the ®Li Fermi temperature Tr = ~T6(6Ng)*=S:

me 1 N, B

T Teee = 0 B Ne

=

This limit is pushed to its lowest values by reducing the’Li atom number to the minimum value N7 ' 2500
allowing us to make a reliable temperature measurement. WithNg =5  10* SLi atoms in each spin
state, this yields the following numerical value for the temperature limit:

T 0:18Tg:

This lower bound nearly coincides with the temperature at which a part of the gas becomes super uid
[43,46|39,47]. Therefore this thermometer is not suited for investigating low-temperature e ects in the
super uid phase. However, we will see in sectioff 4]7 that we still managed to observe and characterize
the onset of super uidity.

4.2 Extraction of hy( ) from In Situ Images

Let us remind the information we have at our disposal at this stage of the data analysis. The pressure
prole P( ,;T) is determined from anin situ image using [3.3) (see Chaptef [3), and the temperature is
determined using the ’Li thermometer (see sectio). We can calculate for each positiom along the
z axis the quantity:

P(2T) 1
— =7 =g h ;
T 3(T) s=2( 2 )t (2)
which is a function of the local inverse fugacity:
_ o m! 222
2= P T

0_ . . . . ..
where ©=e 78T js the global inverse fugacity. ° is the remaining unknown parameter.

4.2.1 Direct Measurement of the High-Temperature Equation of State

In the wings of a high-temperature cloud, , is much larger than 1,i.e. the gas is in the classical regime
and fs=p( , Y)hr( ;)" ,*. As pictured in Fig.A.3| we obtain the value of ° as the only value consistent
with this high-temperature equation of state.

Actually, interaction e ects are not negligible even for the largest values , ' 5 reached in our data.
A better estimate of the equation of state is given by the second-order virial expansionj.e. the rst
correction to the equation of state of an ideal and classical gas, due to interactions and quantum statistics.
The second-order virial correction is known exactly for a gas in the unitary limit [135] (see secti05):

fso( Hh()= 1+ 25%2+b 2+ :::; where bzzpl—é: (4.2)

0 is chosen on each image so that the high-temperature data corresponding tg > 2:5 matches the
second-order virial expansiop]

The next correction to the second-order virial expansion, discussed in section 4.5}5 lessthan 2 % for > 2:5, justifying
the use of (4.2) in that region.
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Figure 4.3: (a) The procedure used for the determination of © at high temperature is well illustrated

by plotting P( ,;T)=2ks T ,2(T) as a function of in log scale. Indeed, adog =log ° +log ”;L:f

the degree of freedom ° corresponds in that representation to a translation of the data in abscissa.
We choose the value of © so that the data corresponding to , > 2:5 matches the second-order virial
expansion (solid line). The dashed line is the equation of state of a classical ideal gas. (b) Equation of
state given by all the pixel columns along thez axis from a high-temperature cloud. For , & 4 (in gray),

the signal-to-noise decreases because of the small optical density in the cloud's wings. We exclude these

points for the rest of the data analysis.

After averaging over the equations of state given by 7 high-temperature clouds prepared in the same
conditions, we obtain a low-noise equation of state, displayed in Fi§.4]4. For a given image, each pixel
located in a region of high enough signal-to-noise ratio gives a point of the equation of stat® ). 7 images
thus provide 1000 points, leading after averaging to an equation of state with a very low statistical
noise. As shown in Fid.4.4, at the highest values the equation of state agrees with the second-order
virial expansion ), while at the lowest values it clearly deviates from ). This procedure therefore
provides an equation of state in a temperature range well below the validity of the second-order virial
expansion. However, the lowest values obtained with these images, ' 1, are too large to reveal
the low-temperature physics corresponding to 1 (the super uid transition is expected to occur at

= ' 5 10 ?). Preparing a low-temperature gas, for example with ' , i.e. with a small
super uid core at the center, would not allow us to use such a procedure because the signal from classical
wings of the cloud , > 2:5 would be far below the noise. Obtaining the equation of state at lower

temperatures thus requires an additional step.

4.2.2 Construction of the Low-Temperature Equation of State

For colder clouds, we cannot use the second-order virial expansion as a reference for ttind. As the
low-noise equation of state measured using the hottest clouds is valid up to & 1, i.e. in a much
broader range than the second-order virial expansion, we use it as a reference for tting® in the wings

of colder clouds. This procedure can be used for clouds prepared at an intermediate temperature, so
that the signal-to-noise ratio in the region > 1 is good enough. We then iterate this procedure: these
clouds provide a precise equation of state for > 0:2 and are used to t © for colder clouds, and so on
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Figure 4.4: Equation of state given by 7 images prepared at the highest temperatures. The gray crosses
are the raw data, each corresponding to one pixel row of a single image. The black points result of an
averaging of 60 consecutive gray points.

(see Fi). We nally obtain a reference equation of state that can be used to t © on the coldest
samples, at a temperature limited by the ’Li thermometer (see sectio), corresponding to ' 0:02
By gathering the data from all images, we obtain 2500 points in a temperature range0:02< < 5,
i.e. from the classical to the degenerate regime. After averaging over consecutive points, we obtain a
low-noise equation of state with 58 points (see Fi6).

Figure 4.5: Step-by-step construction of the equation of state. For a given image (gray points), the
determination of ° makes use of the equation of state (black circles) determined from colder clouds. We
show here 4 such steps corresponding to di erent nal optical trap depths.

4.2.3 Systematic Error on the Equation of State Determined from our Data

After averaging, the statistical noise of our data is less than5% (see Fig[4.6). We evaluate in this section
the systematic error introduced by our procedure.

Absolute Error on the Pressure

As explained in section[3.5.1L, the pressur®( ,;T) is calibrated using a reference pro le whose equation
of state is well known, namely a spin-balanced Fermi gas in the unitary limit, and at a temperature well
below the super uid threshold. This procedure leads to a 8% systematic uncertainty.
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Figure 4.6: Thermodynamic function ht () of a homogeneous Fermi gas with resonant interactions. The
complete data are the gray crosses. The black points are averages of raw data points.

Noise Induced by the Determination of °

During the step-by-step construction of the equation of state, an error on the determination of © for a
given image induces an error on the reference equation of state used for colder images. The noise of our
pressure data leads to a statistical uncertainty on the determination of °. Typically 100 pixels with a
signal-to-noise ratio > 3 are used for the determination of °, leading to a 0:3= 100 = 3% uncertainty
on 0. The data from a single image is overlaped with typically 10 other images to form the low-noise
equation of state used as a reference for colder clouds. The error in on the reference equation is
thus reduced to 0:03= 10 = 1%. The 1% statistical error induced by each image results in a random
walk_of the noise during the construction of the complete equation of state, leading to a nal error of
O:Olpﬂ)' 5%.

In the next sections, we discuss the content of this equation of state. We make a direct comparison of
our data with theory. We then extract the high-temperature and low-temperature asymptotic behaviors,
and the critical temperature for super uidity.

4.3 Direct Comparison with Theory

Our data provides the equation of state of a homogeneous Fermi gas in the unitary limit. It can thus
directly be compared with theory, contrary to the equations of state of a trapped gas|[62,63] which require
to integrate the theoretical equations of state over the trap. In particular our data allow us to compare
for the rst time the several points given by time-consuming diagrammatic Monte-Carlo calculations with
experiment [113]. Moreover, the trap averaging smears the possibly small di erences between theoretical
equations of state, so that up to now trapped equations of state have not be used to clearly discriminate
between theories.

The comparison is made in Fid.4.y, with the following theories:

double-dot-dashed line: BCS mean eld theory
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Figure 4.7: Comparison of our data with theory (see text for the legend).

open circles: Diagrammatic Monte Carlo calculations|[113]

open squares: Quantum Monte Carlo calculations [136]

dotted line: GG perturbation theory [137,{138]

dashed line: GGq perturbation theory [L39]

triple-dot-dashed line: Ladder diagrams approximation [140]
dot-dashed line: Pseudogap theory [139]

solid line: Gaussian pair uctuation/Noziéres-Schmitt Rink theory [141]

Our data clearly discriminates between these theories. We observe that none of them account for
our data over their full range. In particular our observations are not consistent with the diagrammatic
Monte Carlo calculations from |[113]. Their highest-temperature data exhibits a clear inconsistency: they
violate the exact constraint on the equation of stateht( ) 1, valid for an attractive gas such as a Fermi
gas in the unitary limit [48]. Finally our data agrees well with the Quantum Monte Carlo calculations
from [136], except in the region0:05< < 0:2
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4.4 Comparison with the Tokyo Group Measurements

The thermodynamics of a homogeneous unitary Fermi gas was experimentally studied, simultaneously
to our work, by the Tokyo group [47]. Using the equation of state of a trapped unitary gas measured
in the Duke group [63] as a reference for thermometry, they obtain a canonical equation of state for the
homogeneous gas, from the analysis of density pro les after a hydrodynamic expansion (see .8a).
This equation of state is written as:
3 T

E= gNEF g = ﬁ ;
whereE is the energy,N is the total atom number, and Eg (Tg) is the Fermi energy (temperature). The
function g( ) is the canonical equivalent ofht ( ).

Figure 4.8: (a) Open circles (open squares): canonical equation of state of a homogeneous unitary (ideal)
gas measured in the Tokyo group|[47]. Solid line: equation of state of an ideal gas. Dashed line: second-
order virial expansion. (b) Chemical potential computed from the experimental data for a unitary gas
(solid line) and an ideal gas (dashed line). The dotted line is the exact chemical potential for an ideal
gas.

In order to compare with our data, we have to make the correspondence between the canonical equation
of state g( ) and the grand-canonical equation of stateht ( ). We rst express the data from the Tokyo
group in the variables ( ; h). This requires to compute the chemical potential from the experimental data

(see Appendix[A.Z for a detailed calculation):

3 % g 9d °
CANA

g =00=90) ¢ (4.3)

The integral in ( is calculated using a function interpolating the experimental data. In order to test the
robustness of this procedure, we calculated the chemical potential of an ideal gas using the experimental
equation of state of an ideal gas also measured iQ [47] (see [fig}4.8a). As shown in Fig]4.8b, the chemical
potential deduced from the experimental data agrees with the theoretical chemical potential of an ideal
gas. This validates our calculation ofg ( ) from the experimental data.

There is then a one-to-one correspondence between the dafgg) and the data ( ;h ) (see Appendix

A.2):
g ()

= exp == (4.4)
_ 8 a()
ht = ﬁkm (4.5)
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Figure 4.9: Comparison between the grand-canonical equation of statét( ) deduced from our data
(black dots) and from the one measured in|[4]7] (open circles). The open squares are calculated with the
ideal gas data from [47], using the same procedure. The good agreement with the exact equation of state
ht( ) =1 for an ideal gas shows the robustness of the correspondence canonical/grand-canonical.

In Fig.we make the comparison in the variableq ; h 1) between our data and the one from|[4[7/]. They
are in good agreement for < 0:5 but strongly di er in the high-temperature regime.

Alternatively, we express our data in the canonical ensemble to make the comparison without having
to transform the data from [47]. The canonical equation of stateg( ) is calculated from our datah( )

according to (see Appendiq A.2):

18 ¥ dfsn( Hhe() T
= == , (4.6)
2 B dfg,( Hhe() TP
g =5 o N fso( Hhr(): 4.7)

Calculating g( ) thus requires to take the derivative of our experimental data, which decreases the signal-
to-noise ratio. In order to highlight the di erences between the two sets of data, we plotg( )=¢? ( ) as a
function of , whereg© ( ) is the equation of state for an ideal gas. As shown in FiO, our data agree
within our signal-to-noise ratio with the one from [47] for < 0:5. In the high-temperature regime the
two measurements signi cantly di er. In the high-temperature regime, our data is in excellent agreement
with the exact high-temperature asymptotic behavior given by the third-order virial expansion [75] (see
section). Therefore we believe that the data from|[4]7] have a systematic error at high temperature,
possibly due a deviation from hydrodynamics during the time-of- ight.

4.5 High-Temperature Virial Expansion

As described in sectiorf 4.3, our data can be used as a benchmark for many-body theories, from the low-
temperature to the high-temperature regimes. It is also important to get a more physical picture of the
equation of state. In this section we extract several virial coe cients of the high-temperature expansion
of the equation of state in a series of . We also give a physical interpretation of these numbers in
terms of few-body physics.
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Figure 4.10: Comparison between the canonical equation of state deduced from our data (black dots)
and the one measured in|[47] (open circles), and expressed B§ )=E© ( ), where EQ () is the energy
of an ideal gas with same atom number. The lines are the successive theoretical virial expansions of the
equation of state at high temperature.

4.5.1 Virial Expansion of a Unitary Fermi Gas: Generalities
Connection of the Virial Expansion to Few-Body Physics

The grand-canonical partition function  can be decomposed by gathering all terms with given total
atom numbers N, Nj:

X X
(:T)= Z(Ni;Ny;T) (Na#Nabo where Z(Ng;Np;T) = e B T

N1;N2 state  (N1;N, xed)

is the canonical partition functions for xed atom numbers Ni, N,. Calculating Z(N1;N2;T) requires
to know the complete energy spectrum of a system withN; particles of speciesl, and N, particles of
species2. The grand potential = PV = kgTlog (related to the pressure by = PV) can then
be expressed as a high-temperature series of *:

h i
LQBTV v 25241, 2+ 352+by 3+ 4524p Y4 (48)
38 (M)

The coe cients by are the so-calledvirial coe cients . The coe cient b is obtained by expandinglog
in powers of 1 up to k" order, and thus involves the values of the partition functions Z(N1; No; T)
for N7 + N> k. As an example, it is simple to show that the second-order virial coe cient reads
b = (Z11 zf;l):zzl;o, where the superscript® refers to partition functions for a non-interacting
gas. Our convention for the de nition of the virial coe cients is chosen so that a non-interacting two-
component Fermi gas corresponds tdy = 0 for all values ofk. As a conclusionb; can be interpreted as
a coe cient quantifying the e ect of interactions in the high-temperature expansion up to k™ order, and
is given by the eigen-spectrum of thek-body problem.

(:T)=

Virial Coe cients for Uniform and Trapped Gases

A simple relationship can be established between the virial coe cients for a uniform gas and for a
harmonically-trapped gas [75]. For a trapped gas, the virial expansion is de ned as an expansion of the
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grand potential  in powers of( %) *, where °= e *=ka T s the global inverse fugacity. In the local
density approximation framework, the grand potential ; is obtained by integrating the grand potential
of a uniform gas over the trap:

z dr
(0T = 0 Ve
2kg T z z
- B(T) ( O) 1 dre V(r)=ke T + 2 5:2+ b2 ( 0) 2 dre 2V (r)=kg T + oo
dB
Integration over space is straightforward:
Z 3=2
dre KV (N=ke T _ 2kgT 1
mi=2 k3=2’

where T is the geometrical mean trap frequency. The virial expansion for a trapped gas then reads:
0. — kBT s 0y 1 4 0y 2 4 0y 3 — —1,3=2.
(5 T)Y= 2kgT - (") "+ 2%+by (°) “+ 3%+Dhs (") °+:::; where by = b=k>":
(4.9)
Compared with the virial coe cients for a uniform gas, the virial coe cients of a trapped gas are sup-
pressed by a factorby =k = k372. Therefore we can already feel that the equation of state of a homo-
geneous gas is more suited to extract virial coe cients than the equation of state of a trapped gas (see

section[4.8).

Theoretical Values for the Second- and Third-Order Virial Coe cients

The calculation of the second- and third-order virial coe cients can be performed exactly, making use of
the exact resolution of the two-body problem in [142] and of the three-body problem in|[74].
The calculation of the second-order virial coe cient was rst made in [135]:

by = 1:ID 2: (4.10)

The derivation of this result is simple and can be found in Appendix[A.
The three-body problem at unitarity and in a harmonic trap was solved recently in [74]. The calcu-
lation of the third-order virial coe cient using this energy spectrum was performed in [(5]:

bs= 0:355% (4.11)

This coe cient was also calculated in [143] using an e ective eld theory, and surprisingly the result
b; = 1:05is very di erent. Our data will unambiguously show which of the two calculations is correct.

The next virial coe cient has not been calculated yet since the four-body problem has not been
treated yet.

45.2 Virial Coe cients Extracted from our Data

As we use in our procedure the second-order virial expansior (4.2) for the determination of the global
chemical potential ©, our high-temperature data cannot serve as a measurement df,. However the
deviation of our data from (4.2) provides the value of the next-order coe cients.

Third-Order Virial Coe cient

At high temperature, the deviation from the second-order virial expansion reads:

fs=2( D(hr() 1) Yk b % (4.12)
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In Fig.f.TTla, we show that the deviation of our data from the second-order virial expansion agrees with
the asymptotic behavior (4.17) using the theoretical valueb; =  0:3551 from [75]. Our observations
clearly exclude the other theoretical valueb; = 1:05 from [143]. In order to extract an experimental
value of bz, we t our high-temperature data > ;0 in a with the asymptotic behavior ). In
Fig[4.11b we plot the t result as a function of ¢, de ning the number of data points used for the t.
This shows the robustness of the determination otys, and provides the value ofb; consistent with our
data: by = 0:345(25)

Figure 4.11: (a) Deviation of our data from the second-order virial expansion, compared with the behavior
of the third-order virial expansion (#.12) with b; = 0:3551(solid line). (b) Result of the t (4.12)]using
thedata > o , as afunction of oy . The gray rectangle represents the values df; consistent with
our data. (c) Deviation of our data from the third-order virial expansion, compared with the behavior of
the third-order virial expansion (§.13) with b, = 0:09 (solid line). (b) Result of the t (4.13)]using the
data > o , as a function of ¢y

Fourth-Order Virial Coe cient

Our measurement of the third-order virial coe cient agrees with a very good precision with the calculation
b; = 0:3551 Having checked this result, we can go one step beyond and extract the next term of the
virial expansion. The high-temperature deviation from the third-order virial expansion reads:

fsa( (hr() 1) Y 7 b b % (4.13)
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We show in Figc that our high-temperature data agree with the asymptotic behavior). Applying
the same procedure than for the measurement of the coe cientb;, we obtain the coe cient b, = 0:09(1)
(see Figl4.11d). The calculation ofbs would require to solve the four-body problem. As shown in[[75],
numerical calculations of the energy spectrum of three-body problem from [144] are precise enough to
calculate the third-order coe cient bs with an excellent precision. A numerical calculation of the energy
spectrum of the four-body problem was already carried out in|[145], and could possibly be used to
calculate the fourth-order virial coe cient by.

To conclude this section, we plot in Fig[4.12 the successive virial expansions up to fourth order,
together with the data ht( ). The fourth-order virial expansion accounts for our observations within 3%
upto =0:4.

Figure 4.12: Grand-canonical equation of state of a Fermi gas in the unitary limit extracted from our
data (black dots), compared with the successive virial expansions described in the text.

4.6 Fermi-Liquid Behavior in the Normal Phase

We now consider the low-temperature behavior of the equation of state determined from our data. At
very low temperature a phase transition from a normal phase to a super uid phase occurs$ [40]. We discuss
the observation of this phase transition in sectio[ 4.} and focus here on the low-temperature behavior in
the normal phase.

Understanding the thermodynamic properties in the normal phase of strongly correlated materials
such as highT. copper oxides is a challenge for condensed matter physics. It is one of the key ingredients
for modeling the superconducting phase transition, governed by the energy competition between normal
and superconducting states.

4.6.1 Low-Temperature Normal Phases in Strongly-Interacting Systems

In this section we brie y present two families of normal states in strongly correlated materials: the family
of Fermi liquids and the family of the pseudogap phase.

The Fermi Liquid Family

Fermi liquid theory, developed by Landau in [146], provides a phenomenological description of thermody-
namic properties of most metals. According to this theory, the e ect of interactions on electrons can be
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Figure 4.13: (a) Experimental values of2He specic heat, plotted as Cy =RT as a function of T (from
[147]). The numbers indicate the pressure at which each set of measurements was performed. (b)
Experimental values of Cy =T as a function of T for the heavy-fermion metal CeCy Si,, taken from [148].
The heavy-fermion regime is observed foil . 2 K.

reduced to a renormalization of the electron physical characteristics, such as its mass. The metal is then
described as a non-interacting Fermi gas of renormalized electrons, the so-called Landau quasiparticles.

The structure of the dispersion relation for low-energy excitations around the Fermi surface remains
identical to the one of non-interacting fermions:

k= F —jk Kej: (4.14)

m

whereks = (3 2n)?73 is the Fermi momentum and n is the total electron density. For k > k  excitations
correspond to the extra particles above the Fermi level, while foikk < k ¢ they corresponds to the removal
of one particle under the Fermi level, and can been seen as the creation of a 'hole’. Due to interactions,
the bare electron massm is replaced by the quasiparticle e ective massm , and may dier from
Er = ~?kZ=2m. At nite temperature, quasi-particles are populated according to the Fermi-Dirac
distribution 1=(1+ e( x )=ksT) The calculation of the specic heat at low temperature is then similar
to the one of an ideal Fermi gas, and gives:

cy = m Vmk; (3 2n)1:3_|_:
m 3~2

Therefore, the quasi-particle e ective mass can directly be obtained from a measurement of the specic

heat, by comparison with the one of an ideal Fermi gas with the same electron density.

As shown in Fig[4.13, this low-temperature linear dependence of the speci c heat with temperature
is observed in a large number of materials.

For simple metals, the e ective mass valuem is comparable to the bare electron massn. As an
example, the e ective mass in Cuism =1:3m [149]. Atlow temperature (above the super uid transition
temperature), 3He is a Fermi liquid whose quasiparticle e ective massm is on the order of the bare*He
massm (see Figi4.1Ba):m ' 3m at ambient pressure [147].

The most exotic Fermi liquids are heavy-fermion metals, which exhibit a Fermi liquid behavior with
e ective masses up to  1000m, where m is the electron mass. Heavy-fermion metals contain a matrix
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Figure 4.14: (a) Specic heat coecient Cy =T as a function of temperature for the high-T. material

YBa,Cuz0s- y, here for a dopingy = 0:57 (from [150]). (b) Typical phase diagram for high-T. super-
conductors with electron doping (left side) or hole doping (right side) (from [152]), showing the large
parameter range where the pseudo-gap phase, or “strange metal' phase, is observed.

of rare-earth or actinide ions acting as magnetic impurities, coupled to a Fermi sea of mobile conduction
electrons. Interactions between a single ion and the surrounding electron Fermi sea result in the so-called
Kondo e ect, i.e. a complete screening of the magnetic impurity by electrons at low temperature. In such
materials, if the magnetic screening is stronger than the tendency to form an insulating antiferromagnet,
impurities are dissolved into the mobile electron Fermi sea and form charged mobile quasi-particles with
a large e ective mass (see Fi3b).
The Landau Fermi liquid prescription does not predict which systems are Fermi liquids or how to cal-

culate quasi-particle characteristics. Nevertheless, its relevance for describing most metals is remarkable.

The Pseudogap Phase

The normal state in high-T; cuprates does not seem to exhibit the characteristic features of a Fermi
liquid for a wide range of temperatures and doping above the critical temperature for super uidity. In
Fig.a we show the speci ¢ heat of the compound YBaCu30Og.57, measured in|[150]. The sharp feature
indicates the normal to super uid phase transition at T = T, = 57 K. In the wide temperature range
T.<T . T =150 K, the specic heat is not linear with temperature, indicating the non-applicability
of Fermi liquid theory. In Fig.4.14b we show a typical phase diagram, illustrating the large width of this
“strange metal' phase as a function of impurity concentration.

The microscopic origin of this behavior is attributed to the existence of a gap in the single-particle
excitations in therange T, <T . T =150 K. Using angle-resolved photoemission, momentum-resolved
single-particle excitation spectrum are measured and one observes an energy gap along certain momentum
directionsfor T, <T . T [151]. Understanding this phenomenon and its connection to superconductivity
is a major research topic in condensed matter physics.

Normal State of a Two-Component Fermi Gas

The investigation of a Fermi liquid or pseudogap behavior in unitary Fermi gases, which constitute model
high-T. systems, could shed some light on the physics of high; super uidity.

Before addressing the case of the unitary limita= 1 , we brie y discuss the weak interaction limits
of the BEC-BCS crossover. On the BEC side of the resonancel€kca 1), the normal gas above the
critical temperature T, ' 0:22E¢ [153] is a thermal gas of molecules, whose thermodynamics strongly
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Figure 4.15: Temperature T at which the single-particle excitation gap vanishes, as a function of the
interaction strength 1=kr a. The two solid lines are the predictions in the BCS limit, T = T, and in the
BEC limit, T | Epj=kg (see[15V7] for details). The circles are the diagrammatic calculations from [154],
and the square is the Quantum Monte Carlo prediction from [155].

di ers from a Fermi liquid, as long as the temperature is much smaller than the molecular binding energy.
Therefore, the ideal Fermi gas picture is recovered only fokg T kg T = jEpj = ~>=ma? Eg. Due
to the molecular binding energy, single-particle excitations are gapped in the normal phase fof . T
(see Fig). On the other hand, in the BCS limit the gap is directly associated with the super uid
order parameter and therefore it vanishes afl = T, with no pseudogap region. In|[154], the temperature
T at which the pseudogap vanishes was estimated, interpolating between the BEC regime and the BCS
regime, but this study does not predict whether T signi cantly di ers from T, in the unitary limit. In
a recent Monte Carlo calculation by P. Magierski et al [155], the single-particle spectral function of a
nite-temperature unitary gas was calculated, and presents a pseudogap fof, < T . 1:3T, falling from

" O2EF atT' Tcto =0 atT =1:3Tc. In[156] the single-particle spectral function was directly
measured by the JILA group, for a unitary gas prepared at a temperatureT =T, = 0:9(1), i.e. right below
the normal to super uid transition. They deduce from their measurements the existence of a large gap
of single-particle excitations = =0:75. At present there is no experimental evidence for the existence
of a pseudogap forT > T.

We will address these open questions by analyzing the low-temperature behavior of the equation of
state extracted from our data.

4.6.2 Observation of a Fermi Liquid Behavior
Grand-Canonical Fermi Liquid Equation of State

In order to compare our data ht( ) to a Fermi liquid behavior, we derive in this section the grand-
canonical equation of state of a Fermi liquid. The starting assumption of Fermi liquid theory is the
quasi-particle dispersion relation ). The corresponding density of states reads, around the Fermi
level:

Z
\Y ~Ke . .
= 2 k k k
2 k .
: V—2m~2': assuming
P- . p_
L, 2 2m32 22
= % 0 ?V———5— wherewedene = , 2mF:
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Therefore the density of states is simply equal to the one of a two-component ideal Fermi gas with the
same chemical potential, multiplied by m =m %2 The parameter , de nes the Fermi liquid equation
of state extrapolated at zero temperature = ,Eg. The corresponding pressure reads:

P(;T =0)= ,*22P(;T =0);

where 2Py( ;T =0) =2 =15 2(2m=~?)3=2 572 js the pressure of a non-interacting two-component Fermi
gas at T = 0. Low-temperature e ects are then calculated similarly to the ones of an ideal gas (see

Appendix [A.1):

ke T 21
PGT) = PG O+~ d ()log 1+el Il
P- .p_Z
_,2 2m332 ! -
= P(n O)+kBT% nl—ZT d |Og 1+ e( )=ke T
!
> 52m ., kT 2
= 2Po(; 0) n3_2+?m 1 : (4.15)

The ideal gas equation of state[(A.8) derived in Appendi A.] is recovered by taking, =1 andm = m.

Fermi Liquid Behavior of the Equation of State Deduced from our Data

In order to compare our data hr( ) to (#.15), we plot our data as P(; T )=2Po( ; 0) versus (ks T=)2.
There is a single correspondence between the dafa;h ) and (ks T= )%, P(; T )=2Po( ; 0)):

ke T

= (og ) ?
PGT) _ PoGiT), 1P (Y
2Po(; 0)  Po(;0 ' 8 ( log )52

Therefore, each data pointhy () results in one point in this representation.
Our data for kg T . is in very good agreement with a Fermi liquid equation of state ) with
n =0:51(2)and m =1:13(4)m (see Fig4.1fa and b). The relative deviation of our data with [4.15) is
less than3% for 0:1 < (kg T= )? < 0:6, and around T = is about S%ﬂ
Equivalently, the Fermi liquid characteristics can be expressed in terms olLandau parameters [146],
F§$= nm=m 1= 042andF?=3(m =m 1)=0:39

Condensation Energy of a Fermi Gas with Resonant Interactions

The extrapolation to T =0, P(; 0) = 2Po( ) n =2 corresponds to a pressure lower than the actual
ground state pressureP (; 0) =2Py( ) s 32 Wwhere ' 0:41is a characteristics of theT =0 super uid
measured in Chapter[$. This means that the normal state is thermodynamically unstable with respect
to the super uid state. The di erence between the T = 0 energy in the normal and super uid states is
referred to as thecondensation energy

Ec En  Es
= §NE ( )
- 5 F n S

o:10(2)gNEF:

YAs a comparison, the relative di erence between the equation of state of an ideal gas and its Sommerfeld expansion up
to second order in kg T= is7% at kg T =
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Figure 4.16: (a) Equation of state of a unitary Fermi gas, plotted asP ( ;T )=2Po(; 0) versus(kg T= )2.
For kg T. our data are in very good agreement with a Fermi liquid equation of state, with , =0:51
and m = 1:13m (solid line). (b) and (c) Results of the t of our data for (ks T=) < (kg T= )cuto
with a Fermi liquid equation of state (. The gray regions correspond to the values of, or m =m
compatible with our low-temperature data.

In the BCS limit of weak interactions, the condensation energy is directly related to the single-particle
excitation gap ¢ through:

_5 o "3,
"8 E. 5NEF. (4.16)
Interestingly, using the experimental value ¢ = 0:44Eg from [51] (which agrees with a recent calcula-
tion using an unbiased Monte-Carlo computation [158]), we obtain5=8( ¢=Egf)?"' 0:12, showing that
equation ) approximately remains valid even for resonant interactions. It would be interesting to

investigate more deeply this behavior and how it depends on the interaction strength.

Ec

4.6.3 Estimation of the Maximum Pseudogap Amplitude

Our data thus agrees with a simple Fermi liquid picture, while it is generally believed that the normal
gas aboveT. exhibits a pseudogap in the unitary limit [159,/160, 155, 1611, 162, 163]. In this section we
estimate the maximum pseudogap values in agreement with our observations, assuming the existence of
a well-de ned dispersion relation  (i.e. the spectral function A(k;! ) of the unitary gas is approximated
by (k !)). Inspired by the quasi-particle dispersion relation in the BCS limit [157], we introduce a
pseudogap in the excitation spectrum in the following manner (see Fig):

s
~Ke ~2Ke 2
ik kegj ! k k + 2
o) Fi K - ( F)

1
+

k= t

+ is then indeed the minimum single-particle excitation energy. From the density of states associated
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Figure 4.17: Quasi-particle dispersion for a Fermi liquid (dashed line) and with a pseudogap (solid
line)

with such a dispersion relation:

-m 2P ome=2P -
()_ H n 2.3 d ( )2 >
one calculates the gas pressure:
z 1
P(;T) = F>(;0)+kf/7T d ()log 1+el IkeT
+
P35 3=0P—Z 1
_ ) m ,,2 2m ( )keT
- P('O)+kBTHn T . dpﬁbg 1+e
5 52m ., kT 2
= 2P 3=2, 2 1 1= = .
o: 0 8 m " ke T
where the function F, de ned by:
1241 X
FY)= — dx p——=—1Iog(1+ e *); (4.17)
y X2 y?

is plotted in Fig.f.18p. F quanti es the deviation of the equation of state from the one of a Fermi liquid.
As shown in Fig[4.16, the deviation of our data from a Fermi liquid equation of state is less than % in
the range 0:1 < (kg T=)? < 1, i.e. 0:95< F( =ksT) < 1:05. This leads to an upper bound for the
pseudogap values in agreement with our observations (Fi8a):

< 0:25kg T: (4.18)

As shown in Figb, this bound excludes the Monte Carlo pseudogap values from [155]. Indeed, just
above the critical temperature for super uidity, our data are consistent with . 0:25T; "' 0:05Eg. Our
measurements also exclude the larger pseudogap values, 0:6Er at T=Tr = 0:24, given by a nite-T
extended BCS-Leggett theory [160] or a Nozieres Schmitt-Rink theory| [164].

To conclude, our measurement strongly supports an accurate description of the normal state of the
unitary gas as a Fermi liquid. The pseudogap values . 0:05Eg consistent with our data are very small
compared with the values measured in the super uid state|[51,156]. Developing a more complex model
accounting for a nite width of the spectral function A(k;!) could provide a more precise comparison
with theories supporting a pseudogap.
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Figure 4.18: (a) Function F, de ned in equation .17, that quanti es the deviation of the equation of
state from a Fermi liquid equation. The gray rectangle represent the possible values df in agreement
with our data. (b) Upper bound on the value of the pseudogap given by equation8), compared with
the pseudogap Monte Carlo values from|[155] (black dots). Our data exclude the value ' 0:2Ef at
T =0:16T. We also show the pseudogap values given by a nitéF extended BCS-Leggett theory [160]
(square) or a Noziéres Schmitt-Rink theory [164] (diamond).

4.7 Super uid Transition

At lower temperature, we expect the gas to become superuid. The super uid character of a low-
temperature Fermi gas with resonant interactions was unambiguously identi ed through its response to

a rotation of the trapping potential: at a low rotation speed the gas does not respond to rotation |[39],
while at a larger frequency the gas starts to rotate through the formation of a vortex lattice [40]. The
measurement of the critical temperature for super uidity attracted a large amount of work in the past
few years |[43} 48, 39, 47]. However, similarly to previous measurements of the equation of state, these
studies determine the transition point for a trapped gas, expressed a$.=Tr wherekg Tr = ~(3N) is
the Fermi energy of a trapped gas. The comparison with theories of the homogeneous gas then requires
to integrate the equation of state over the trap, using values of the equation of state foil > T, a region
especially di cult to handle. In this section we identify the transition point for a homogeneous gas on
the equation of state deduced from our data, which allows us to make the rst direct comparison with
many-body theories.

4.7.1 Deviation from the Fermi Liquid Equation of State

In Fig. we focus on the low-temperature data, limited to (kg T= )2 > 0:07 due to the instability
of ‘Li at low temperature (see section). For (kg T=)? < 0:1 our data deviates from the Fermi
liquid equation of state ) and P=2P, seemsT -independent. As the deviation is small, we add some
arguments showing that this behavior is indeed expected in the super uid state.

At T =0 the equation of state is well known and solely involves the parameters = =E ¢, that has
been extensively measured and calculated in the past [165]. In secti@.S we measure the pressure of
the ground state in the BEC-BCS crossover and in particular we con rm the value s = 0:415(10) The
pressure atT =0 is then given by:

P(;0) _

322 _ n.a(1)-
(i 0) 5 3:8(1);
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which is equal to the values of P( ;T )=2Py(; 0) that we measure at (kg T= )2 ' 0:1. Moreover,
P(;T )=2Po(; 0) is an increasing function of T since:

@ P(CGT) _ @R:T)=@T

@T 2Py(; 0) - 2Po(; 0)
S(;T) o
2V Py(; 0) '

This shows that, constrained by the values atT =0 and at (kg T= )?"' 0:1, the value of P( ;T )=2Pq( ; 0)
necessarily remains almost equal tos *2in the whole range0< (ks T= )2 < 0:1.

In the next section we show that this small temperature dependence is expected in the super uid
phase.

4.7.2 Low-Temperature Excitations in the Super uid Phase

To rst order, low-temperature e ects in the super uid are captured by the thermal population of its low-
energy excitations. Two kinds of excitations are considered here: the fermionic single-particle excitations
and the Bogoliubov-Anderson collective excitations associated with the propagation of sound.

Single-Particle Fermionic Excitations

The dispersion relation of single-particle fermionic excitations was directly measured by the MIT group
in [166], and is well accounted for by a BCS-type dispersion relation:
S

~2K2 2
+U + 2

2m

m m is the quasi-particle e ective mass,U = 0:43EF = 1:02 is the Hartree energy shift, and
= 0 :44Ef is the excitation gap. In addition, these measurements are in agreement with Quantum
Monte-Carlo calculations [167!155]. The dispersion relation is thus essentially the same than the one
considered for the estimation of the pseudogap amplitude in the normal phase (equatio?)). Using
the calculations made in sectio (and replacing, by ), we obtain the pressure increase due to the

thermal population of fermionic excitations:

_ 52m - kBT
P(;T) = 2Po(; 0 R L L —
( ) 0( ) S 8 m S kBT
|
p _ _ _ H
- 152 m (kg T)%2 122
" 2Po(; 0 3=2 4 — = ex —_— 4.19
0( ) S 4 m S 2 p kB T ( )
in the low-temperature limit kg T At low temperature these excitations are thus exponentially

suppressed due to the gap, and the pressure increase at' 0:3 is only 3% (assuming a gap equal to
its T =0 value, =0 :44E¢ [51]) (see Fid.4.1pa).

Sound Excitations

The lowest energy excitations are the collective excitations associated with the propagation of sound.
The speed of sound is related to the equation of state through:
r r_

n@ _ 2

m@n  3m’

ZThe asymptotic behavior of F (x) for x 1 is given by F(x) " 12=p 2 872x12¢ x|
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Figure 4.19: (a) Equation of state of a unitary Fermi gas, plotted asP (; T )=2Pq( ; 0) versus(kg T= )?,
and zoomed around(kg T= )2 = 0:1. The solid line is the Fermi liquid equation of state (4.18), the
dashed line is theT = 0 value s *7, the dotted line takes into account the phonon correction Etl))
and the dot-dashed line the phonon and fermionic-excitation correctionsO) an9). (b) Fit of our
data around the critical point (kg T= ). = 0:32 with a function capturing the critical behavior (see text).
The data are expressed a® =Panalytic 1 versuskg T= , where Panayic is the Fermi liquid pressure in
the normal phase.

where we have used / n?2 at T = 0. Bosonic quasi-particles (phonons) associated with the propagation
of sound have a dispersion relationy = ~cgk. Their population induced by a non-zero temperature leads
to a pressure correction given by the Stefan law of black body radiation:

Pphonons (T ) = 90’~303(kBT)4
S
3 keT °
= 2Po(; 0)—4z+— — 4.2
(5 0)—5 (4.20)

While at very low temperature the e ect of phonons dominates over the fermionic excitations (see
Fig@.19a), it is less than 26at T ' 0:3 .

The overall pressure increase al ' 0:3 is therefore expected to be less than%, in agreement with
the behavior P(; T )=2Po(; 0)' cst consistent with our data.

4.7.3 Critical Temperature for Super uidity

These arguments show that the deviation from the Fermi liquid equation of state indicates a phase
transition from a normal to a super uid state.

In [48] we proposed to extract the critical temperature (kg T= ). in a very simple manner. We tted
our data around (kg T=)? = 0:3 with a continuous and piecewise linear function, one part being equal
to the Fermi liquid equation of state, the other part being a constant. The breaking point was let as a
free parameter and was identi ed with (kg T= ). This procedure leads to:

ke T =0:316(7):.

c
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This tting function, whose slope is discontinuous at the super uid transition, could be suited for a
rst-order phase transition. However, the super uid transition of a Fermi gas is expected to be of second
order and to belong to the three-dimensionalXY universality class. In the critical region, expected to
be rather large for the unitary gas [168], the pressure variation is then given by:

!
+2

P(;T) for T>T¢

Panalytic (;T) l+a

+2
for T<T,

Panaytc (;T) 1+a

where Panayic (;T ) is the analytic equation of state far from the critical region, here the Fermi liquid
equation of state. For the three-dimensional XY universality class, the specic heat exponent =

0:012(3) is known with an excellent precision from experiments orfHe [169] or eld theory calculations
[17Q,171]. Fitting our data with this function (see Fig/4.19b) leads to the coecients a = 22(12),
a. =0:0(1), and:

ke T =0:33(1):

Cc
The two t procedures lead to very similar values and di er by less than the 10% uncertainty due to the
systematic error of our data. The critical temperature value extracted from our data is thus nally given
by:

ke T =0:32(3);

C

This constitutes the rst measurement of the critical temperature of a homogeneous Fermi gas in the
unitary limit. It is compared in Table 4.1 }o several theoretical results. Our measurement is in very good
agreement with the most robust numerical calculations|[113,172,173]. Itis also interesting to extract from
our data the value of T=T: at the phase transition, wherekg Tz = ~>=2m(3 2n)2=2 is the Fermi energy.
The density is calculated from the pressure usingh = @P=@r and requires to compute the derivative of
our data. It is safe to assume that the derivative of P(; T )=2Py( ;T ) at the phase transition is between
the one given by the Fermi liquid equation of state ), and 0. This leads to the value:

T
0:13< — < 0:16
Te .
also in good agreement with|[113,172,173]. In addition, we deduce from this calculation the chemical
potential value at the phase transition:

0:41< Er i < 0:5:

We also compare our value to other experimental values which are less direct than our method. In the
MIT group, the super uid transition of a spin-imbalanced Fermi gas was studied below the tri-critical
point at T = 0:07Tg, i.e. in the temperature range where the phase transition is of rst order [49].
Extrapolating the critical temperature to the spin-balanced situation, they obtained (T=Tg).' 0:15, but
this extrapolation is rather di cult to justify. In the Tokyo group, the condensate fraction was directly
measured and the identi cation of the super uid transition is straightforward [47]| In addition the atomic
density is obtained from a t of the cloud absorption image after a hydrodynamic expansion. Using the
equation of state of a trapped unitary gas measured in [63] as a reference for thermometry, they obtained
(T=Tg)c =0:17(1), in agreement with our value.
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Our values Ambherst group Seattle group Utrecht group
Diagram. MC [113,/172] Quantum MC [173] Renorm. group|[174]
(ke T=)c 0.32(3) 0.32(2) 0.35(3) 0.24
(T=Te)c 0.145(20) 0.152(7) 0.15(1) 0.13
Munchen group Tokyo/Seattle group Harvard group Brisbane group
Diagrams [138] d=4 ,d=2+ [175] 1=N expansion [176] NSR theory|[141]
(ke T=)c 0.41 1.38 0.23 0.49
(T=T¢)c 0.16 0.25 0.136 0.22

Table 4.1: Comparison between our measurement of the critical temperature for super uidity with dif-
ferent theories.
4.7.4 Validity of Local Density Approximation in the Critical Region

In the critical region of the super uid transition, the coherence length diverges according to:

. T Te ]
T ;

Ke (4.21)

where ' 0:67is a critical exponent of the three-dimensionalXY universality class. This may invalidate
local density approximation in the critical region. Let us consider a trapped gas prepared below the
super uid transition, i.e. kg T= ° < 0:32. For simplicity we consider an isotropic trap, the calculations
for a more realistic trap essentially giving the same conclusions. In the critical region, the coherence
length varies according to (r) kg Y (n (ro))= (ro)j , wherer. is the radius at which the phase
transition occurs, de ned by kg T= (r.) = 0:32 Local density approximation is expected to be incorrect

intheregionr, r<r<r .+ r,where [168]:
r = (re+ 1)
1 m! 2rer
F (re)
A simple calculation leads to the typical spatial extent of the breakdown of local density approximation,
compared with the Thomas-Fermi radius R¢ de ned as m! 2R%. = O
r 2Rtg r¢ o 1
[EE— [ —— k R 1+
Rte R%F rg ( FRTF )
2RtE T o 1
= — 24N) 3@ )
RE 12 (248

" 5% for re= Ry=2 and N =10° atoms:

Therefore the actual atom density may not be described by local density approximation is a small region
around the super uid transition. The impact on the pressure value is much smaller, due to the double
integration:
z

dx dy (nipa (1)

m! 2
P( 2;T) Pmeasured( 2;T)= —— Nreal (1)) < 0:05P( ,;T)
sincenipa (r) = Neea (r) on 95%of the integration domain. The equation of state extracted from our data
thus coincides with the equation of state of a homogeneous gas, within th8%-noise of our data, even
around the super uid transition. The measurement of critical exponents would require a much larger

signal-to-noise ratio, and a violation of local density approximation would then become visible.
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4.8 Equation of State of a Trapped Gas

Previous studies on the thermodynamics of a unitary Fermi gas, performed in JILA|[62] and in Duke
university [63,/46], were dealing with the equation of state of a trapped gas, relating the trapped gas total
energy E; to its total entropy S; (see sectiol). It can be written using dimensionless variables as a
relationship between the entropy par particle s = S;=N;kg and the energyE; normalized by the energy
Et(o) of an ideal gas at same entropys:

= St
_ =g s= : (4.22)
ES () Niks

In section we calculated the virial expansion [(4.p) of a trapped gas as a function of the virial
expansion of a homogeneous gas. The equation of state of a trapped ideal gas is directly obtained from
(@.9) by canceling all virial coe cients:

ke T ° )
O(OT)=2keT 2 f4 e T (4.23)
P
where f4(z) = PolyLog(4; z) = , ,( 1)*k * The ideal gas equation of stateEt(O) (s) is then
calculated from (4.23).

In order to obtain the equation of state (4.22) from our data ht( ), we express the total atom
number N¢, energy E;, and entropy S; using local density approximation, as an integral over the trap of
thermodynamic quantities of the homogeneouszgas. As an example, the total atom number is given by

Ne( %T)= drn(°® V(r);T);

where n(;T ) = @P=@is the density of a homogeneous gas, whose equation of state B ;T ) =
2kg T dB3(T)f5=2(e:T Yhr(e =T ). We then express the integral using the variable , leading after a
straightforward calculation to:

4 kT 377 dlog?(= 9)

Ni( %T)= p= o . d7f5=2( Hhr()d: (4.24)

Similar expressions are obtained folE; and S; and can be found in [[177]. Using a discretized version of
these integrals taken on our data pointg], we obtain the equation of stateg (s) plotted in Fig.

Our data are in good agreement with previous studies| [62, 63, 46] but has a much smaller statistical
noise. Indeed, integrating over the trap signi cantly increases the signal-to-noise ratio. However, th&%
systematic error is unchanged. In Fid.4.2D we also make the comparison with successive virial expansions
up to fourth order, using the exact relation by = b.=k3=? between the virial coe cients b, measured for
a homogeneous gas and the ones of a trapped gas. Due to the coe ciekt 372, the e ect of higher-order
coe cients is much smaller on the equation of state of a trapped gas, and we see in F[g.4.P0 that the
signal-to-noise ratio required to extract bs; and by, was not achieved in previous studies [62, 683, 46].

Finally, we also compare our measurement with previous studies of the super uid transition. A large
amount of work [43,/46|39, 47] focused on the characterization of the onset of super uidity in a trapped
gas: these works provided the ratio of the temperaturel over the Fermi temperature of the trapped gas
ks Tre = ~(38N;)*™3, for which the central part of the cloud becomes super uid. In the local density
approximation framework, this occurs whenkg T= is equal, at the bottom of the trap, to the critical
value for super uidity of a homogeneous gas:kg T= ° = 0:32(3). Using equation ) to obtain the
atom number and hence the Fermi temperature corresponding to the onset of super uidity, we get:

T
—  =0:19(2):
Tre . @

XIn order to make the integral over up to +1 , we complete our data with theoretical values given by the second-order
virial expansion for > 5.
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Figure 4.20: Equation of state g(s) of a trapped unitary gas. The black dots are calculated from our
experimental data. The crosses are data from Duke university| [46], the open squares are data from the
JILA group [62]. The dotted (dashed, dot-dashed, solid) line is the ideal gas (second-order virial, third-
order virial, fourth-order virial) expansion. The third-order virial expansion has an unphysical cusp at
s' 35.

This value is in very good agreement with other experimental results listed in Tabl¢.48.

Our value Duke Univ. group Innsbruck group Tokyo group
EOS trapped gas|[46] Momentum of inertia|[39] Condensate fractior] [47]
(T=Trt)e  0.19(2) 0.21(1) 0.185(15) 0.21(2)

Table 4.2: Comparison between our measurement of the onset of super uidity in a trapped gas to other
previous measurements.

To conclude, we described the measurement of the equation of state of a spin-balanced Fermi gas with
resonant interactions. We combined the use ofLi to measure the temperature of a strongly-interacting
SLi mixture with the measurement of the local pressure inside a trapped gas, to obtain the equation of
state of the homogeneousgas. Thanks to the low noise of our data, we made a strongly discriminating
comparison with many-body theories, and extracted a series of characteristics of the unitary Fermi gas.
The virial coe cients could be helpful for the resolution of the four-body problem. The Fermi liquid
behavior of the normal phase remains to be understood, and related to single-particle excitation spectra.
Finally this work could be extended to the BEC-BCS crossover. Among several motivations (see the
conclusion), let us mention that on the BEC side of the resonance, the pseudogap should become apparent
on the equation of state.



Chapter 5

Ground State of an Attractive Fermi Gas:
Phase Diagram and Equation of State

In this chapter we describe the measurement of the equation of state of a two-component attractive Fermi
gas at low temperature [71]. As described in the introduction, in the case of short-range interactions the
equation of state of a two-component Fermi gas is universal, in the sense that interactions between
atoms are completely characterized by the scattering lengtha describing low-energy collisions between
atoms with opposite spins. In this chapter we measure the pressure of a low-temperature Fermi gas for
arbitrary values of interactions or spin imbalance. The physics associated with this system is very rich:
it encompasses the BEC-BCS crossover of a spin-balanced super uid, as well as the more recent topic of
spin-imbalanced Fermi gases.

We rst picture a qualitative phase diagram of this system, using simple mean- eld or impurity
models. We then describe the equation of state measurement scheme, give a physical interpretation our
measurement, and compare it with previous works.

5.1 Sketch of the Phase Diagram

In this section we give a qualitative description of the phase diagram addressed in our study.
In this work we measure the grand-canonical equation of statd®( 1; »2;a) (we assumeT =0 for the
rest of this chapter, see Appendi for an estimate of nite-temperature e ects). With the quantities
1, 2, and a, we can form two independent dimensionless numbers:

By analogy with the interaction parameter 1=kg a, where ke = (3 2n)'=3, de ned for a balanced
Fermi gas of given densityn, we de ne a grand-canonical interaction parameter relative to species
1

1= 2m 1a'

1 is equal to 1=kg a for a balanced and weakly-interacting Fermi gas.

The other dimensionless parameter:
2.

1
describes the chemical potential imbalance between the two spin states. By convention we assume

2 1, i.e. the spin state labeled1l is the majority spin state.

The ground-state pressure can then be written as:

P( 1, 2;8)= Po( 1)h( 1; );
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Figure 5.1: Phase diagram of a two-component Fermi gas in the plan€ ;; ). The solid line is the
super uid/normal rst order phase transition at = ¢<( 1). The dashed line = A( 1) is the threshold
beyond which minority atoms are absent. For clarity we have replaced by e= +2 2 on the BEC side
of the resonance.

where Po( ) is the Fermi pressure of a single-component (ideal) gas. The functioh( 1; ) characterizes
the equation of state and can be used to calculate any other thermodynamic quantity. As an example,

the minority density reads:
@P  _ Po( 1) @h

Ny =

@2 ., 1 @
The rest of this section describes the phase diagram in thé 1; ) plane drawn in Fig.

5.1.1 Super uid to Normal Quantum Phase Transition

A spin-symmetric Fermi gas is super uid at low temperature for all interaction strengths. By imposing a
chemical potential imbalance ( 6 1), a competition between pairing and spin polarization occurs. This
problem was rst studied in the context of solid state superconductors by Clogston|[52] and Chandrasekhar
[53]. Using a BCS approach, they found the super uid state resists to a chemical potential imbalan¢é
up to a critical value:

p_
(1 2= 2 0 (5.1)
where  is the BCS pairing gap. In the variables (1; ), this criterion reads:
p_
(D=1 2% (5.2)

For < < 1the gas remains superuid and is fully paired: n; = n,. When one varies across ¢,
a rst-order phase transition occurs towards a normal phase withn, < n;. A derivation of this result
using a mean- eld BCS ansatz is made in Appendif A.4.

The mean- eld approach is expected to be correct in the BCS limit( 1 ! 1 ). In our work we
rather address the strongly-interacting regime 0:8 < ; < 0:65. Therefore the relation (5.7) between
the critical chemical potential ratio and the gap is not expected to be valid in our case. Nevertheless, the
observations of the MIT group |79] and the ones described in the next sections [[71] show that the phase
diagram qualitatively remains the same: the super uid remains unpolarized until a critical value . at
which a phase transition occurs towards a partially-polarized normal phase. The theoretical prediction

induced by a magnetic eld which lifts the degeneracy between the two electronic spin states
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of  is challenging. Up to now the only quantitative prediction is provided by Fixed-Node Monte Carlo
simulations in [178}} In Fig.p.1we drew a guess for ¢( 1).

5.1.2 The Impurity Problem

When the chemical potential imbalance is very large, the gas is fully polarizedn, =0 and P = Py( 1),
i.e. h( 1; ) =1. The transition towards the partially polarized normal phase corresponds to the value
of , denoted A( 1), at which minority atoms appear. A( ;) corresponds to the chemical potential of
a single minority atom immersed in a Fermi sea of majority atoms. This “impurity' problem is much
simpler than the general problem with macroscopic atom numbers in both spin states. Up to now all
theories give the same value foA( ;) within less than 1% [83/85| 178,84, 86], and are in agreement with
the MIT measurement [82] (see Fig.5.]L).

In the regime of weak interactions (1! 1 ), the ground state is essentially the ground statej oi
with no interactions and the minority chemical potential is given by the mean- eld energy shift:

4 ~2a 4

= ng; ie. A = :
2 m M (1) 3,

When interactions increase, the ground state substantially di ers from the non-interacting ground state.
The minority atom collides with majority particles and creates particle-hole pairs in the Fermi sea. It
was shown in [[84] that a good approximation of the ground state energy is obtained by solely taking
into account the creation of a single particle-hole excitation. The ground state is then written as a
linear combination of the non-interacting ground state j (i and statesj qi with a single particle-hole

excitation [B0] (see Fig5.a):
X
ji= oo+ ka ) kql:
q kg
k kg
Minimizing the energy in this subspace |[80, 83] gives a good (and simple to calculate) approximation of
the actual energy [84], even when interaction-induced particle-hole excitations are likelyi.e. whenj i

should appreciably di er from j i, such as in the unitary limit.

Figure 5.2: Representation of the ground state on the BCS side of the resonance. In the non-interacting
ground state oi, the impurity momentum is 0 and the majority Fermi sea is fully occupied fork < k.

In the excited state j yq i, the impurity has collided with a majority atom, bringing it from the initial
momentum q, q < kg, towards k, k > k.

YThe work in [178] actually does not directly provides ¢, the super uid/normal phase transition being expressed in the
canonical ensemble.
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5.1.3 Beyond the Impurity Problem

Understanding from theory the partially polarized normal phase A < < . a priori requires to solve
the much more di cult problem of a macroscopic humber of minority atoms among majority particles.
However, a simple and powerful description can be proposed in terms of Landau Fermi liquid theory [81].
In this approach, minority atoms are renormalized by interactions with majority atoms into fermionic
quasi-particles, nhamed Fermi polarons. The gas is then described as an ideal mixture of bare majority
atoms and polarons. In particular the Fermi pressure associated with polarons is calculated from the
single-polaron spectrumE (p) as the sum of all energies below the Fermi level. Therefore we not only
need to know the ground state but also the excited energies of the impurity problem. These eigenen-
ergies, parametrized by the impurity momentum p, exhibit a quadratic dependence with momentum,
encapsulated by a mass renormalization [81, 83, 85, 1//8,/86]:

2

_ p .
E(P)= A(1) 1+ m

It is then straightforward to calculate the gas pressure, as the sum of the majority component Fermi
pressure and of the polaron Fermi pressure:

3=2
P( 1 2a)= Po( )+ 1L

Po( 2 A( 1) 1): (53)

To conclude this section, we remind the state of the art concerning the phase diagram of spin-
imbalanced Fermi gases. The phase diagram was explored by the MIT group in [V9,82]. In [82] the
polaron chemical potential shift A( ;) was measured in the BEC-BCS crossover, in agreement with the-
ory [83,85/178,86]. We are thus entitled to uséA( ;) as a reference for extracting the equation of state
from in situ images (see sectioZ). In [79], the maximum density raticn,=n; at the normal to su-
per uid phase transition was measured. However, the critical chemical potential ratio ( 1) remains
unknown. Finally, the equations of state in the partially polarized and super uid phase have never been
measured for ahomogeneougyas.

The phase diagram drawn at this stage is su cient for the understanding of the work described in the
next sections. We mention that in the BEC regime, further away from the parameter space addressed in
this study, new phases are expected. We give an introduction to this still largely unexplored eld at the
end of this chapter (see sectio?).

5.2 Equation of State Measurement Scheme

In this section we describe the procedure used to extract the equation of state of a two-component Fermi
gas fromin situ absorption images.

5.2.1 Experimental Sequence

Here we highlight the parts of the experimental sequence that are speci c to this study. We prepare a
spin-imbalanced mixture of ®Li in the two lowest internal states j1i and j2i, held in an optical dipole trap,
a magnetic curvature being used for the axial con nement (alongz). The gas is evaporated by lowering
the trap depth down to Uy ' 4 K. The nal trap frequencies are ! ;=2 ' 800Hz and! ,=2 ' 20Hz.
During evaporation the bias magnetic eld is ramped towards a value755G< B, < 981 G in order to
address the entire BEC-BCS crossover. The nal atom number is on the order o6 10* atoms per spin
state.
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Figure 5.3: In situ absorption images of a spin-imbalanced Fermi gas, prepared a8y = 834 G. The
total atom numbers are N; = 1:1  1C° for the majority spin state (black dots) and N, =6  10* for
the minority spin state (gray dots). The solid line is a t of the majority density prole in the fully
polarized region (outer wing of the atomic cloud) with a Thomas-Fermi prole. The increase of the
majority pro le ny(z) above the Thomas-Fermi t is a manifestation of the strong attraction with the
minority component, when the two clouds overlap.

5.2.2 In Situ Image Analysis

In situ absorption images of both spin components are taken after evaporation (see sectipn .5 for details

on doublein situ imaging). After integration of the column density B;(x;z) over the transverse direction
X, we obtain the doubly-integrated density pro les m;(z) (see Fig[5.8).

Determination of h and 1,

We observe that the minority atom density vanishes before the majority component. In the fully polarized
region, majority atoms form a single-component (ideal) Fermi gas whose density pro le is given by:

2 3=2 5=2
m! 1 2m o 1 mi 272

2' ~N1(2) = Po( 17) = 152 =2 15

Fitting in the fully polarized region the doubly-integrated densial prole my(z) with a function N2(z) =
(1 z?=R%)%%2, we obtain the majority Fermi radius R; = = 2 9=m! 2. The axial frequency being
calibrated with a good precision (see sectiof 2.4]4), we deduce froR; the majority chemical potential
? with a good accuracy. The interaction parameter at positionz is then given by 1, = ~= 2m j;a.
Finally, we obtain the value of h( ;; ) through:

P( 1z 2z;a) — ﬁ1(2)+ ﬁZ(Z).

h( 1z; 2) Po( 12) ﬁg(Z)

In the calculation of h, the normalization by the t n%(z) avoids using a calibration of the pressure and
thus cancels the associated systematic error. In other words, the t result extracted from the cloud's
wings serves as a pressure calibration for the rest of the cloud, as rst shown in [49].

Determination of

Finally, one has to determine the chemical potential , = ,,= ;, along the z axis. This requires
to extract J from the data. As the minority atoms strongly interact with the majority component,
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the relation between 9 and the minority density prole calls upon an additional information on the
equation of state. As described in sectiof 5]1, the chemical potential ratio for a large density imbalance,

= A( 1), is known from the resolution of the impurity problem. Fitting the minority radius R at which
the minority density vanishes (see Appendi for more details) then provides J according to:

1 2p2
im! ZRZ.

A(1R,) = 51 505"
? sm! 2RZ

RO|INO

The chemical potential ratio along the z axis is then given by , =( § im! 2z%)=( ¢ im! 2z?).

5.2.3 Equation of State Deduced from our Data

By gathering the data from all images taken at a given magnetic eld 800 G< B < 981 G, we obtain
after averaging a series of low-noise equations of state shown in Hig.5.4. They provide a paving of the
plane ( 1; ) inadomain 08< ;< 065and 2< < O0:7. The next sections are devoted to the
physical interpretation of these data.

Figure 5.4: (a) Equation of state of a two-component Fermi gas at zero temperature and in the unitary
limit, deduced from the analysis of 20 images. Crosses: raw data, black dots: average of 20 consecutive
points. (b) Averaged equations of state corresponding to a given magnetic eld. From left to right:
800 G, 811 G, 822 G, 834 G, 855 G, 871 G, 981 G. (c) Same equations of state in the spécg ;h).
The regions in green (blue, red) are fully polarized (partially polarized, super uid).
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5.2.4 Systematic Error of our Data

The chemical potential ratio , = ;= 1, and the interaction parameter i, = P 2m ;a vary simul-
taneously alongz. By eliminating z from these relations, we nd that 31, and , are related by:

(5.4)

Therefore a single image provides the equation of staté( 1; ) along a line in the ( 1; ) plane. In the
image averaging process, we superpose the equations of state obtained from clouds prepared at a given
bias magnetic_eld By. These images thus correspond to the same scattering length valuEB,) but the
parameter 9= 1  © may dier from one image to another, and the equations of state cannot strictly
speaking be superimposed. In Appendix B.1]2 we show that the systematic error introduced by this
issue is less tham%. We also mention that the superposition of images taken in the unitary limit is not
a ected by this problem since 3, =0.

In Appendix B.Z]we estimate the temperature of our data, and deduce that the associated systematic
error is less that 3%.

As a conclusion, the total systematic error is 3%.

5.3 Super uid to Normal Phase Transition

In Fig.p.4p we plot the experimental equation of stateh( 1; ) along several lines corresponding to di erent
magnetic elds, and parametrized by equation ). Except for the magnetic eld By = 981 G where
the noise of our data is large, we observe on each experimental equation of state an abrupt change of
slope. This jump in the derivative of h( 1( ); ) at = (( 1) indicates a rst-order phase transition.

In the next paragraphs we describe how to extract the position of this phase transition from the data,
and identify the nature of the phases corresponding to both sides of the phase transition. We also give a
direct proof of the rst-order nature of the transition through the observation of a jump of the minority
concentration occurring at = ..

5.3.1 Ciitical Chemical Potential Ratio

In order to extract the value of ., we tthe data inside aninterval = 0:2< < ~+0:2using a piecewise
linear function with a change of slope occurring at = . The tresult ¢ is plotted as a function of ~
in Fig.5.5 The change of slope position ¢ is found to be insensitive to the value of~ in a large range of
parameters. We then identify this stable t result as the actual change of slope position in the equation
of state, at = ..

Let us now conrm that the phase > . corresponds to a fully paired superuid. In Fig[5.6
we plot the integrated minority density prole n»(z), together with the integrated density di erence
Ng(z) = Ny(z) Nu(z2), for a gas prepared in the unitary limit. Fitting the pressure in the fully polarized
region and the low-density minority prole with Thomas-Fermi pro les, we obtain the Thomas-Fermi
radii R; and R, for each spin state. We infer the chemical potential ratio at the bottom of the trap

= A(1=0)(1 R3=R?)+ R3=R?%, as well as the radius at which the phase transition occurs:

S

0 C
C

We observe thatng(z) increases fromjzj = R, to jzj = Rs and remains constant forjzj < Rs. A simple
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Figure 5.5: Determination of the critical chemical potential imbalance from the equations of states at
811 G, 834 G and 871 G. We tthe data~ 0:2< < ~+0:2using a piecewise linear function with a
change of slope at o, and plot the tresult o as a function of . For a large number of ~ values the t
result is identical, indicating the actual . value.

physical interpretation is provided by an explicit calculation of the slope of hy(z) [127]:

e} 2
TolD) = 2 Lam@) na):

The plateau on the density di erence observed forjzj < R ¢ thus reveals that the phase > . is fully
paired: n; = n, (despite 1 6 ). This is a characteristic feature of super uid pairing between atoms
with opposite spins. In the MIT experiment the super uidity of the fully paired phase was unambiguously
identi ed through the observation of vortices [54]. As a conclusion, the observed phase transition at = .
indeed corresponds to the super uid/normal phase transition previously introduced in sectio.

Figure 5.6: Integrated minority density n,(z) (gray dots) and integrated di erence density ng(z) (black
dots), for a cloud prepared in the unitary limit. The plateau on ny(z) indicating full pairing coincides
with the region jzj < R ¢ for which > ..

5.3.2 Critical Impurity Concentration

The rst-order nature of the phase transition can directly be observed as a jump in the minority density
occurring at the phase transition. The absorption images easily give access to the minority concentration
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X = np=ny in the cloud along the z axis. Indeed, from d;(z)=dz = 2! 2=!2zn;, we get the simple
relation:
_ dﬁz_
dﬁl.

We thus obtain the concentration by computing the derivative of the data expressed a$1, as a function of
n1. In Fig.5.7|we plot the concentration x as a function of at di erent magnetic elds. For all magnetic
elds the same behavior is observed:

In the partially polarized phase the concentration smoothly increases with , up to a maximum
value xc at = ( 1). The quantitative understanding of x( 1; ) in the partially polarized phase
will be given in section[5.4.4.

In the super uid phase the concentration remains equal to 1, indicating a full pairing.

Around = . the concentration abruptly changes fromx = X, to x ' 1. This behavior reveals a
concentration jump occurring at the phase transition, thereby con rming the order of the transition.

Even on the BEC side of the resonance(q < 3 < 0:65), we found no evidence for a nite polarization

in the super uid phase. This is in agreement with the observations of the MIT group [79] or several
theoretical predictions using Monte Carlo calculations [67] or excitation spectrum calculations|[179, 180]:
the super uid can be polarized for ; & 1, which is beyond the parameter range addressed in this work.

Figure 5.7: Concentration X = n,=n; as a function of for bias magnetic elds By = 811; 834 871G.
The arrows indicate the concentration jump from x = X to x =1 occurring at the phase transition.

5.3.3 Phase Diagram

Gathering the values of . and x. for all magnetic elds, we obtain the phase diagram plotted in Fig[5.8,
either in the plane ( 1; ) (Fig.5.8p) or in the plane ( 1;x) (Fig.5.8b).

Apart from BCS mean- eld theory which is quantitatively incorrect, the only theoretical prediction
for the equation of state is provided by Fixed-Node Monte Carlo calculations|[6]7]. As the numerical data

are expressed in canonical variables, the comparison with our results requires to use ts of the Monte

Carlo dat The pressure and chemical potentials are calculated from the t functions, and the phase
transition position ( 1) is computed by imposing the condition of coexistence of the super uid and
normal phases at equilibrium, namely the equality of chemical potentials and pressure. As shown in

ZWe use ts proposed by the authors of the Monte Carlo calculations in [181]. They are limited to the BEC side of the
resonance.
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Fig.@a, the transition line ¢( 1) computed from the Monte-Carlo data is in excellent agreement with
our measurements.

The data x¢( 1) cannot be directly compared with the measurements of the MIT groups which rather
provide X¢(1=kg,a) [79].

Figure 5.8: (a) Phase diagram established for; < 0:65, plotted in the plane ( 1; ) (we have added
22to for ;> 0). The solid line marks the appearance of minority atoms at = A( ;). The black
dots are the experimental values of ( 1) at which the super uid/normal phase transition occurs. The

dashed line is the transition line ( ;) calculated from ts of T = 0 Monte Carlo data [67,181]. (b)
Phase diagram plotted in the plane( 1;X = ny=n;). The fully polarized (super uid) phase corresponds
to x =0 (x =1), respectively. The black dots are the experimental values for the critical polarizationx,

at the super uid/normal phase transition. The region x. <x < 1 is thermodynamically unstable.

5.3.4 Comparison with the Single-Particle Excitation Gap

In the BCS limit, the super uid/normal phase transition position is directly related to the single-particle
excitation gap ¢ in the super uid (see section[5.1.1):
p_
2—0; for 4111
1

c=1

It is simple to show that the single-particle excitation gap also provides a lower bound on . which is
valid for all interaction strengths: when the majority chemical potential ; is larger than the super uid

chemical potential =( ;+ )=2 plus the excitation gap o, extra majority atoms are spontaneously
populated and break the super uid ¥} This provides a lower bound on :

c>1 2- 0.
1

In Fig. we compare the values of . extracted from our data to lower bounds1l 2 (= ;, using values
of the gap measured by the MIT group in [166], or calculated in|[179,60,182,158]. Quite surprisingly, the

XIn the BEC limit, it is possible to add extra majority atoms to a super uid without breaking it. However this is expected
to occur for 1 > 1, i.e. outside the parameter range addressed in this work. We anyway checked that the super uid is

indeed not polarized in section
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Figure 5.9: Comparison between the experimental . values determined from our work (black dots) to
the lower bounds1l 2 (= ; provided by the single-particle excitation gap. The stars are given by the
experimental ¢ values from the MIT group [166], the open squares from diagrammatic calculations [179],
the open circles from the most recent Fixed Node Monte Carlo calculations| [60], the crosses from a
Quantum Monte Carlo calculation extrapolated at T = 0 [182], and the open triangle from a zero-
temperature Quantum Monte Carlo calculation [158].

values of . are closer to the boundsl 2 o= ; than to the Clogston limit 1 P 2 o= 1, a phenomenon
actually anticipated in [L83]. However, a more quantitative estimate of the relationship between ¢
and . is dicult to make, due to the uncertainty on the gap illustrated by the scatter of theoretical
predictions.
In the unitary limit, the single-particle gap ¢ = 0:44E¢ is known more precisely, from experiment
[166] and unbiased Quantum Monte Carlo calculations|[158]. Using. = 0:065(2) and the relation
= sEf, s=0:41(1), we obtain;

c=1 18(1)-2;
1

a value closer to the boundl 2 = ; than to the Clogston limit 1 pi o= 1. This conrms more
guantitatively the picture described above.

5.4 Fermi Liquid Behavior in the Partially Polarized Phase

In this section we focus on the partially polarized normal phaseA( 1) < < <( 1).

5.4.1 Observation of a Fermi Liquid Behavior

Inspired by the Trento group [81], we proposed in sectioZ a simple description of the partially
polarized phase in terms of Landau's Fermi liquid theory. The impurity problem suggests that minority
atoms are dressed by surrounding majority atoms into quasi-particles, the polarons. In the limit of low
polaron density, we expect polarons to form a weakly-interacting Fermi sea. The gas pressure is then
given by the sum of the Fermi pressures of bare majority atoms and of polarons:

1 2m ¥2 o, 1 2m (. *F

15 2 -2 1+152 2

P(1; 2,@)= (2 A(1) )= (5.5)
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We remind that A( ;1) ; is the energy shift of a single polaron andn ( ;) is the polaron e ective mass.
By dividing equation (p.5) by Po( 1), we obtain the thermodynamic function h( 1; ) of this “ideal Fermi
liquid":

h( 1 )=1+ ( A= (5.6)
For large minority concentrations, deviations to @) may appear, either due to interactions between
quasi-particles, or merely as a breakdown of Fermi liquid theory. As an interesting example, it was
proposed in [184] that e ective p-wave interactions between polarons could be induced by the interactions
with mayjority atoms, and might lead to exotic p-wave super uidity at very low temperature.

In order to reveal a Fermi liquid behavior, we plot our data ash 1 as a function of(  A)>2 (see
Fig5.10). We observe a linear variation, characteristic of an ideal Fermi liquid behavior (see equation
@)), for a wide range of chemical potential imbalance. On the BEC side of the resonance and in the
unitary limit, equation ( gives an adequate description of our data forA< < , i.e. in the entire
partially polarized normal phase. This results is all the more surprising since interactions are strong and
minority concentrations can be large, up ton,=n; ' 0:5 in the unitary limit (see section f.3.3). In the
BCS limit, we observe a deviation from [5.6) close to the super uid to normal transition. In that limit
minority and majority densities are comparable and it is not surprising that a model constructed from
the characteristics of the impurity problem is no longer adequate.

Figure 5.10: Equation of state plotted ash 1 as a function of ( A)>=2 for di erent bias magnetic
elds. The dashed lines indicate the super uid/normal transition and the solid lines are ts with a Fermi
liquid equation of state.

5.4.2 Measurement of the Polaron E ective Mass

Fitting the data represented in Fig. with the ideal Fermi liquid equation of state ( provides the
e ective mass valuem ( 1) (see Figl5.11). In the BCS limit we do not use for the t the data close to
the super uid transition where the polaron concentration is large. The e ective mass extracted from our
data is an increasing function of ;. At unitarity, we obtain a very precise value m =m = 1:21(2), which is
remarkably small for a strongly-interacting system. The e ective mass values extracted from our data are
in agreement with the most advanced calculations, namely diagrammatic Monte-Carlo calculations [§5],
and an analytic theory involving two particle-hole excitations [84], as well a simple variational calculation
involving one particle-hole excitation [83]. The e ective mass values predicted by Fixed-Node Monte-
Carlo calculations from [67] are systematically slightly lower than our measurements.
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Figure 5.11: Polaron e ective massm =m as a function of the interaction parameter ; (black dots). The
open squares are diagrammatic Monte-Carlo data [85], the solid line is an analytic theory involving two
particle-hole excitations [84], the dashed line a simple variational calculation involving one particle-hole
excitation [83], and the dot-dashed line a Fixed-Node Monte-Carlo calculation from|[67].

5.4.3 Fermi Liquid Equation of State in the Unitary Limit

We showed that the ideal Fermi liquid equation ) accurately describes the partially polarized phase
except for large minority concentrations in the BCS regime. In Fig[5.12 we also make a direct comparison
with a Fixed-Node Monte Carlo calculation [81,67].The di erence between the Monte-Carlo calculation
and our data is quite small in the entire normal phaseA = 0:615< < =0:065

Figure 5.12: Equation of state in the partially polarized phase deduced from our data (black dots),
compared with equation ) (solid line) and with a Fixed-Node Monte-Carlo calculation [81,67] (dashed
line).

We now give a more detailed physical interpretation of the Fermi liquid equation of state in the unitary
limit:

3=2 3=2
1 2m = 1 2m -
P( 1 28)= B2 =2 ?2"'152 70 (2 Ao )% (5.7)
whereAp = 0:615and my=m = 1:21 are the polaron energy shift and e ective mass for ;1 = 0. Due to

the polaron chemical potential shift, minority and majority densities are coupled. Indeed, di erentiating
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the pressure ) with respectto ; or , gives the following relationship between the densitie@
1 2m ¥2 4
ni = 62 =2 i 2 Aony:
Therefore the majority density is enhanced by the presence of minority atoms, as if each minority atom
was surrounded by Ap ' 0:6 majority atom. Integrating this relation over the radial coordinates, we

obtain a relationship between the doubly-integrated pro les:
mi(z) = N(2)  AoMz(2): (5.8)

We remind that n9(z) is the Thomas Fermi pro le deduced from the fully polarized region. In Fig
we plot Iy N9 as a function of M,. In the partially polarized phase we observe a linear dependence,
whose slope give#\; = 0:58(5), in agreement with the exact valueAp '  0:615 This constitutes an
independent check of the value ofA, that we use as a reference for the data analysis.

Figure 5.13:m;  Nnj as a function of, for a gas prepared in the unitary limit. The data in the normal
phase corresponds for this image tai, < 0:15, and is in very good agreement with the Fermi liquid

prediction (5.8).

5.4.4 Canonical Equation of State
Canonical Equation of State in the Unitary Limit

In this section we make a direct comparison with the canonical equation of state of a spin-imbalanced
Fermi gas in the unitary limit measured in the MIT group [49/68] and presented in section 3.1.p. The
canonical equation of state is expressed as:

E(ny;ny) = §;2(6 2)2:3n5:?’g X = N2
L1222 T 5om 1 ny
From the grand-canonical equation of state in the unitary limit ho( ) = h( 1 = 0; ), we compute the

canonical equation of stateg(x):

- MmO
Sho()  hi()
o0 = L

ho() 2h§() "

{ This relation can not be directly generalized out of the unitary limit.
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In Fig. we plot the equations of stateg(x) determined from the MIT group [68] and from our
data, together with the following theoretical predictions:

The most recent Fixed-Node Monte Carlo prediction, tted with g(x) =1+ ngx + mLOX5=3 + Fx2,
with Ag = 0:595 m; =1:09m and F =0:14 [67ﬂ

The canonical equation of stateg(x) = (1 + Ax)>3 + "T—Ox5=3, with Ag = 0:615 my = 1:21m,
which is the canonical equivalent of the ideal Fermi liquid equation ) [48].

Our data shows signi cant di erences with the MIT data and with the Monte-Carlo calculation.
As a remark, we mention that an expansion of the ideal Fermi liquid equation of state in a series of
X reads:

gx)=1+ gA0x+ mﬂx5:3+ Fx2+ :::; with F = 0:21

0
and therefore contains ax? term, whose amplitude is close to the one extracted from the Monte-Carlo

data. The term Fx? can be interpreted an e ective interaction between polarons. This connection
between the coe cient F and the single-polaron characteristicsAg was established from theory in|[185].

Figure 5.14: Canonical equation of stateg(x) extracted from our data (black dots) and from the MIT
data [68] (open circles), compared with a Fixed-Node Monte Carlo calculation| [81] (dashed line) and the
ideal Fermi liquid equation (6.7) (solid line).

Critical Concentration in the BEC-BCS Crossover

In section|5.3.2 we extracted from our data the concentrationx = n,=n; in the BEC-BCS crossover. We
compare this data to the prediction given by the ideal Fermi liquid equation of state (5.6). Away from
the unitary limit, the concentration is related to h( 1; ) by the formula:

@h .
gh @h 1=2@,h’
Using equation ), we calculate the concentration pro les in the partially polarized phase for di erent
magnetic elds. In order to locate the position ( ;) of super uid/normal phase transition, we solve the
pressure equilibrium condition between the super uid almd normal phases:

X(1; )= (5.9)

3=2
5=2

1o 1+ w ( A(1)™2 =e"2n5(® at = (1)

kThis equation of state is very close to a previous calculation [81].
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Here e572hg(®) is a parametrization of the super uid equation of state that will be explained in the
next section. In Fig/5.15 we plot the experimental data together with theoretical concentration pro les.
We nd a good agreement, with the exception of the value of . on the BCS side of the resonance.
This deviation is expected since we observed that equati06) does not account for the experimental
equation of state in this region.

Figure 5.15: Concentrationx as a function of the chemical potential ratio for di erent magnetic elds,
compared with the theoretical pro les (b.9) (solid lines).

The maximum concentration in the partially polarized phase xc( 1) = X( 1; ¢( 1)) is also computed
using the Fermi liquid equation of state and compared with the maximum concentration directly measured
from the concentration pro les in Fig.5.16] We observe a good agreement between this calculation and

the direct measurements.

Figure 5.16: Phase diagram of a spin-imbalanced Fermi gas in th€ 1;x) plane. The solid line is the
maximum minority concentration allowed in the partially polarized phase. The region x; < x < 1in gray
is thermodynamically unstable.

5.4.5 Magnetic Susceptibility of a Spin-Unpolarized Fermi Gas

In the previous paragraphs we provided a description of the partially polarized normal phase in terms
of a Fermi liquid of majority atoms and polarons, the latter being characterized by the resolution of the
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impurity problem. In this section we consider the opposite limit of small chemical potential imbalance.
We no longer express the equation of state in terms of ; and = ,= 1, but rather in terms of mean
chemical potential =( 1+ 2)=2and "e ective magnetic eld' =( 1 2)=2. The equation of state
can then be expressed as:

P( 1 2,8)= Po( )hg = %;b= —

In the next paragraphs we study the behavior ofhg ( ;b) at low values ofb.

Magnetic Susceptibility in the Super uid and Normal Phases

We have shown in sectiof 5.3]1 that in the super uid phase the atom densities of both spin states are

equal: n; = n,. The partial derivative of the pressure with respectto  reads:

@ . @ ,,@ , @ ,,@ .,

Therefore in the super uid phase the pressure does not depend on , and hg(;b)= hg(;b =0).

When one imposes a strong enough magnetic eld , the superuid breaks and one enters into
a partially polarized normal phase. In dimensionless variables, the critical magnetic eld is equal to
b = (1 )=(1+ (), where . is the critical chemical potential ratio studied in section m If b is
not too large, hg (; b) may be well described by the rst terms of the expansion in series ob. Equation
) taken in the spin-symmetric con guration = 0 where it is clear that n; = nj, implies that
@B =@jb( ;b =0)=0. Hence the expansion ohg in series ofb reads:

= %(nl ny): (5.10)

s (ib)= hu()+ 2 (I +

The normalizations were chosen so that for an ideal gaBy = =1. hy( ) is the grand-canonical equa-
tion of state of the normal phase extrapolated to the symmetric con guration b=0. () is the magnetic
susceptibility compared with the one of an ideal Fermi gas. In the Landau Fermi liquid framework, these
parameters are related to the some Landau parameters:
h2=3 = m =m 1=3 _ M =M
N1+ g N1+ R

wherem is the e ective mass of the quasi-particles and~§ and F& quantify interactions between quasi-
particles [146].

Magnetic Susceptibility of a Spin-Unpolarized Fermi Gas in the Unitary Limit

We rst focus on the equation of state in the unitary limit, plotted in Fig.5[17 hs hg( = 0;b) versus
7. In the super uid phase ? < 0:75, hg does not depend onb, a clear manifestation of the super uid
unpolarizability. In the normal phase one observes a cleal’ dependence for0:75 < b2 < 3. This

shows that the normal phase can be described as a Landau Fermi liquid, magnetized with respect to a

spin-symmetric con guration.
The equation of state extrapolated tob= 0, hy = 2:55(5), is in agreement with the value obtained
from the extrapolation to zero temperature of the equation of state of a balanced gas at nite temperature

and in the normal phase (see secti06 in Chapt 4). This observation suggests that the two normal

phases(T =0; > ¢)and (T > T, = 0) can be continuously connected in the plang(T; ),

in agreement with the phase diagram established in the MIT group |[49]. The equation of state of a

spin-imbalanced Fermi gas at nite temperature will be the subject of future work.
We also obtain the parameter = 0:73(3); using the e ective mass valuem =m = 1:13(3) determined
in section[4.6, we obtain the Landau parameter§ = 1:1(1).
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Figure 5.17: Equation of statehg( = 0;b) of a spin-imbalanced Fermi gas in the unitary limit, as a
function of b>. The super uid phase corresponds to the regiont? < 0:75 where hg is constant. In the
normal phasel? > 0:75, the linear variation of hg with ? is a manifestation of a Fermi liquid behavior.
The di erence between the super uid and normal equations of state is referred to as thecondensation
pressure (gray area).

Fermi Liquid Parameters in the BEC-BCS Crossover

A similar behavior hg = hy + b2 is observed on the BCS side of the resonance and &, = 822 G
(for the data deeper on the BEC side of the resonance, the critical eldh. is much larger than one,
casting doubt on the validity of an expansion in series ofb for b > b..). The parametershy and are
plotted in Figas a function of the interaction parameter . The equation of statehy ( ) of a balanced
normal gas is in agreement with a Fixed-Node Monte Carlo calculation|[178]. We also plot a t of the
super uid equation of state hs( ) (see sectio); the di erence betweellns( ) and hy () represents the
condensation pressure associated with super uidity. The super uid/normal transition, characterized by
hs( )= hg(;bc)= hy( )+ %5 b 2, leads to the following relationship between the condensation pressure
and the critical eld h:

15
hs hN = gbg,

which is the analogous of the relationship between the condensation energy and critical magnetic eld
for superconductors [[186]. It would also be interesting to study the e ect of strong interactions on the
relationship between the condensation energy and the gap that can be established in the BCS limit.

5.5 Super uid Equation of State in the BEC-BCS Crossover

In this section we extract and interpret the super uid equation of state from the data > ( 1).

5.5.1 Parametrization of the Super uid Equation of State

We have shown that the gas is fully paired in the super uid phase:

ni( 15 2;a)=na( 1, 2@ for > ¢(1):
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Figure 5.18: (a) Equation of state of the normal phasehy ( ) extrapolated to a spin-symmetric con g-
uration (black dots), compared with a t of the Monte Carlo data from [178]| (solid line), and with the
super uid equation of state hg( ) (dashed line). (b) Compressibility ( ), normalized to the one of a
non-interacting mixture.

This provides a constraint on the equation of state which can be expressed as:

@ _ @P  @P
@ ) a @, 2;a @: 1,8
= N1 nNng
= 0;
where = , j;and =( 1+ 2)=2. The pressure is thus a function of the mean chemical potential

only. Instead of the parametrization h( ;; ) for the equation of state, we rather express it using the
symmetric variable only:
; a< 0 ~
P( 1; 2;a)=2Py(e)hs(®); where e= 2 and €= p—:
5maZs Q4> 0 2mea
We use e instead of in order to avoid handling negative chemical potentials on the BEC side of the
resonance. We gather the datah( 1; ) in the super uid phase and express it in term of hg():
1=2 ( 5=2
1+ )=2 1; a<o0 (A+ )=2) "“h( 1 ); a<o
€= 1=2 and hs(®) = 5=2 :
1+ )=2+ § 1, a>0 1+ )=2+ § h(1; ) a>0

Our experimental data, plotted in Fig.5.19] is the rst experimental equation of state of a homogeneous
super uid Fermi gas. The cloud images taken at a given magnetic eld contribute to the equation of
state in a rather narrow region, typically in a region € 2 [0:8Kfi; 1:2k€i]. The statistical noise of our data
is about 10%, and we recall that the systematic uncertainty is 5%.

5.5.2 Direct Comparison with Theory

In this section we compare our data with several theories predicting the equation of statehs(€) of
a homogeneous super uid. Our data can directly be compared with numerical calculations providing
discrete values forhs(€):

a Noziéres-Schmitt-Rink approximation from [141],

a quantum Monte-Carlo calculation from [173], extrapolated at T =0,
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Figure 5.19: Super uid equation of state in the BEC-BCS crossoveths(€) (gray crosses). The black dots
are an average of successive points.

a diagrammatic approach from [138].

As shown in Fig[5.20, our data agrees with the rst calculation but signi cantly di ers from the other
two predictions. The 100%inaccuracy of BCS mean- eld theory shows that the equation of statehs (€)
is a much more discriminating quantity than the collective mode frequency, for which BCS mean- eld
theory is wrong by 3% only |[64] (see. sectiof 3.1]1).

The comparison with Fixed-Node Monte Carlo calculations from [65} 66, 67] is less direct. Indeed,
these data are expressed in the canonical ensemble as:

(
N 3 1 0; a<O0
E=—E,+ =NE = _—— : where Ep,= ' :
2 PT 5 -F ke a b ~2=ma?; a>0

Relating the equations of state ( ) and hs(€) requires taking the derivative of the data:

()  Y)=2
= —: h (e) = —:
(O O (O (S

In Fig. we calculate hs(€) using a t of the most recent Monte-Carlo data [178], and nd a good
agreement with our data. The tting function is proposed by the authors of the numerical calculations
in [187], and di ers from the discrete data by less than1%. It is important to mention that the Fixed-
Node Monte Carlo method is a variational calculation of the ground state energy, anda priori gives an
upper bound of the actual ground state energy, which corresponds to a lower bound fdrs(€). This is in
agreement with the slight positive di erence between our data and the Fixed-Node Monte Carlo results
(see Figl5.20).

Alternatively, we calculate the canonical equation of state ( ) using a t of our data. The tting
function is described in detail in the next sections and in Appendix[B.3. In Fig[5.21 we compare the
equation of state given by the experimental data with Fixed-Node Monte Carlo calculations|[65, 66, 67].
We nd a good agreement except with the data from [66] around = 0:4, a region where the Monte-
Carlo method was expected to be less robust [66]. The identi cation of a few inaccurate points in the

e

In the unitary, BCS and BEC limits, the collective mode frequencies are identical for all theories due to the scalings
/ nZ=3 or | n that are imposed by dimensional analysis. This intuitively explains why collective modes do not easily
discriminate between theories.
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Figure 5.20: Comparison of the experimental equation of state (black dots) with BCS mean- eld theory
(solid line), a Noziéres-Schmitt-Rink approximation from [141] (gray squares), a quantum Monte-Carlo
calculation from [173] (gray open circles) and a diagrammatic approach from [138] (gray crosses). The
dashed line is calculated from a t of the Fixed-Node data [67].

Monte-Carlo data from [66] is made possible by the direct measurement of the equation of state of a
homogeneoudermi gas. It would be much more di cult to establish using observables such as collective
mode frequencies, since the comparison theory/experiment requires to integrate the theoretical prediction
over the trap [115/64].

Figure 5.21: Comparison of the equation of state ( ) deduced from a t of our data (solid line) with
Fixed-Node Monte Carlo calculations from [65] (squares),| [66] (open circles) and [67] (crosses).

In the next sections we extract more physical quantities from our data by studying the asymptotic
behaviors of the equation of state in the BCS limit, around the unitary limit, and in the BEC limit.
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Figure 5.22: (a) Equation of state extracted from our data (crosses and dots), together with the linear
and quadratic expansions in€ around the unitary limit, with ¢ = 0:415 = 0:9, v = 0:4. (dashed
and solid line, respectively) (b) Fit result as a function of the cuto €., , for a linear tting function
(dashed line) and a quadratic t function (solid line).

5.5.3 Extracting Asymptotic Behaviors of the Equation of State

Extracting asymptotic behaviors from a set of discrete data is not obvious. We illustrate this di culty
on the example of the unitary limit. We want to extract from our data the expansion of the equation of
state around the unitary limit:

3 - 5v 1
E=-NEF 3% §2+::: ; <a

5
A physical interpretation of the expansion will be given in the next section, and we focus here on the
problem of extracting the coe cients of the expansion from our data. The corresponding expansion in
the grand-canonical ensemble reads:

12251+25Ve2+ 0; €< 0

_ +::0 €1 5.11
10 32 5¢°7€; e> 0 &1

ns(@= e 7y

The discontinuity of the second-order derivative ofhs(€) is due to the addition of the molecular binding
energy to in e. This behavior does not play a role in this discussion.

In order to extract from the data, we t the data either with a linear expansion in € given by the
rst two terms in (5.11)| or with a quadratic expansion given by (§.11). The points included in the t
aredened by ©2 [ €. ;Suo ]. The tresult as a function of the tting function and of the cuto
€uto IS shown in Figb. The actual value is expected to be given by the extrapolation of the t
result when &, tends to zero. However, wherf,, is very small the t result becomes wrong because
of the low number of data points involved in the t. A good estimate is obtained if the t result is stable
in a wide region of cuto values. However, this is not the case for the ts shown in Fig[5.22b and the
t results given by the two tting functions always signi cantly di er. The inaccuracy of this procedure
is due to the behavior of the tting functions away from the unitary limit. In Fig.5[22a]we show the
linear and quadratic tting functions with the parameters ¢ =0:415 =0:9, v =0:4 determined from
a better t procedure, described in the next sections. The divergence of the tting functions in the BCS
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limit, while the data are expected to approach1, makes them inadequate for the description of the data
except in a very narrow interval around the unitary limit.

This is an usual problem when one approximates a function with a Taylor expansion around a given
point. A better estimate of the function is often given, instead of the polynomial Taylor expansion, by
a rational function, a so-called Padé approximant, which remains nite at 1 |18&]. As an example,
we consider the exponential function. The Padé approximant having the correct Taylor expansion up to
fourth order around 0 is given by:

1+ x=2 + x2=12

- 2_ 3 4_ 5.
1 =2+ x2=12 1+ x+ x°=2+ x°=6+ x"=24 + O(x>);

and gives an estimate of the exponential function within 3% in the interval [ 2;2], whereas the Taylor
expansion is correct within 3% in a narrower interval [ 0:4;1:4].

We thus construct a set of tting functions inspired by Padé approximants. As the limiting behaviors
in the BEC and BCS limit di er, we use di erent functions for both sides of the resonance. On the BCS
side of the resonance, we use the following function:

ey e
BCS @ - 1t 2o+ =
hs> (&)= ——F—<

3+ 48+ €2

which is nite in the unitary limit and tends to 1 in the BCS limit. On the BEC side of the resonance,
we use more complex tting functions h8EC (€) in order to capture a more subtle asymptotic behavior in
the BEC limit (see section[5.5.6 and Appendix{B.3). We nally connect both sides of the resonance by
imposing a smooth connection in the unitary limit:

hg8°° (0) = hg5€ (0);  (hE°%)%0) = (h€E©)X0);  (hE%®)R0) = ( hEF©)%Q0) + 5 hs(0);

the last condition being due to the conventione = Ep=2 for > 0.

We test the pertinence of these tting functions on a simple example. We consider the equation of
state hEMF (€) given by the BCS mean- eld model (see Fia). The parameter discussed above is
equal to 0:90 for this model. We t  using the procedure described above, using either a linear tting
function, a quadratic tting function, or a Padé-type tting function. As shown in Fig.5.23b, obtaining a
good estimate for does not require to extrapolate€,,;, to very small values in the case of the Padé-type
functions. This suggests that these functions are more suited for extracting asymptotic behaviors of the
actual super uid equation of state hg(€).

5.5.4 Super uid Equation of State Around the Unitary Limit
We discuss in this section the asymptotic behavior around the unitary limit, written as:

3 3=2 5l2+... . 1

E = =-NE =— 1L 12
F S 3 ’ kFa (5 )

5

We t the data in the region [ €0 ;Suo ] With the Padé-type approximant described in section
and Appendix B.3, with s, and v as free parameters. As shown in Fi§.5.24, the t results s and
do not vary depend much on&,;, , except for small cuto values for which the number of data points
is small. The value ofv appears to be less robust. The gray regions indicate the actual values of the
parameters in agreement with our data.

The coe cient s was already introduced in Chapter[4. Its encapsulates all thermodynamic properties
of a balanced unitary gas at zero temperature. We obtain:

s = 0:415(10)
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Figure 5.23: (a) Equation of state h¥F (€) given by the BCS mean- eld model. (b) Fit result as a
function of €, , for a linear tting function (dashed line), a quadratic tting function (solid line), and
the more elaborate tting function described in the text (dot-dashed line).

Figure 5.24: Fit results s (@), (b) and v (c), as a function of €&, . The gray regions indicate our
estimation of the actual values of these parameters. The dashed lines are proportional to the number of
points used for the t. When €., is smaller than 0.5, the number of data points becomes small and
the t results strongly depend on the noise of our data.

a value in agreement with previous measurements and numerical calculations [165].

A physical interpretation of was rst given by S. Tan in [189,|190,191]. In|[189], an exact relation
between thermodynamic quantities and more microscopic observables is established for a gas with short-
range interactions: the derivative of the energy with respect to the scattering lengtha, encapsulated in
the coe cient , is connected to the short-range behavior of the pair correlation function:

D, nn . E
@y p 2D A@ROE0 e 1
/\{(r) Al(r) /\%/(O) /\2(0) rt o 10 (kF r)2

The scaling gg’? (r) / 1=(ker)? is expected for a gas with short-range interactions: when two particles
(labeled i and j) with opposite spins approach each other, the many-body wave function is proportional
to the two-body scattering state between the particlesi and j:

ri+rj

1
Ik (rj ri); where (r)rloF:

2 K6 i

The coe cient A; depends on the positions of all other particles.ggzz) (r) is then equal the mean value
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of j j% for a xed distance jri  rij, hence thel=(kr r)2 behavior at low distance. The proportionality
coecient 9 = 10 between gfz) (r) and 1=(kg r)? involves many-body physics. Since it quanti es the
probability to nd two atoms at short distances, s often referred to as thecontact coe cient .

Our experimental value = 0:91(5) is in agreement with a Fixed-Node Monte Carlo calculation of
the pair correlation function giving = 0:95 [192] and with some recent experimental values. In [193]
the static structure factor S(q) was measured using inelastic Bragg scattering.S(q) being the Fourier

transform of the pair correlation function, is given by the S(g) behavior at high momentum:

128 ke |

where we have written the formula for the trap-averaged structure factorS;(qg) actually measured in the
experiment [193]. The contact coe cient was also measured through other microscopic observables, such
as the photo-association amplitude|[38, 194], the highk tail of the momentum distribution [189/195], the
high- tail of the radio-frequency spectrum [196|, 19//,195,198], the photo-emission spectroscopy spectrum
[15€], and other macroscopic observables, namely the potential energy and the release energy, |[18, 62,
190,191, 195]. These results are gathered in Tab@.l. While the agreement of our measurement with
theory and with the dynamic structure factor measurement is excellent, the measurements from [195] are
signi cantly di erent.

Macroscopic observables

Pressure Energy Energy
Experiment [71] Theory [66] Experiment [195]
0.91(5) 0.95 0.65(10)
Microscopic observables
Pair correlation  Structure factor ~Momentum distrib. RF spectrum Photo-emission
Theory [192] Experiment [193] Experiment [195]  Experiment|[195] Experiment|[195]
0.95 0.92(3) 0.91(5) 0.67(7) 0.63(7)

Table 5.1: List of values determined from theory and experiment, and from macroscopic or microscopic
observables. We only quote values performed in the unitary limit.

Finally, we obtain the second-order derivative coe cient v = 0:4(2). It was shown recently that v
must be positive [199], in agreement with our measurement.

5.5.5 Equation of State of a Fermionic Super uid from the Weakly-Interacting
Regime

In the BCS limit € | 1 , interactions become weak and the gas pressure tends towards the ideal
gas pressure corresponding this(€) =1, or ( ) = 1. The deviation from 1 is written as an expansion
in powers of 1:

()=1+ w '+ v %+ gy i (5.13)

In order to extract these coe cients, we t our data with the Padé-type functions, in the interval
€2 [1 ;%uo ] Our best estimates of the coe cients e, Ly and gy are given by extrapolating
the tresultsto €uo ! 1 , knowing that for very small values of €&, the result becomes wrong
due to the small number of points used for the t (see Fig[5.25).

The rst coecient g quanti es the mean- eld interactions in a Fermi gas. We obtain an experi-
mental value:

me = 0:32(7);
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in agreement with the exact theoretical value [200]:

10
ME — 97' 0:354
The second coe cient |y quanti es the rst deviations to mean- eld. It is also known exactly since
the work of Lee and Yang in the 1950's|[78]:

_ 411 2log2),

LY 21 2 0:186;

and the value we extract from our data:
v =0:20(2);

provides its rst experimental veri cation.
Finally, our estimate of the coe cient beyond the Lee-Yang expansion:

BLY = 0 035(10);
is also in agreement with more recent (non analytical) theoretical predictions|[201, 202,203, 204]:

gry — 0:03C

Figure 5.25: Fitresults wr (), v (b)and gy (c), as afunction of the cuto €., . The gray regions
indicate our estimation of the actual values of these parameters. The dashed lines are proportional to
the number of data points used for the t. When €., is smaller than -0.3 a small number of points are
used and the t results become inaccurate.

Interestingly, the rst non-universal corrections are also known exactly in the BCS limit and lead to

a correction to ( ) given by [201]202,203, 204]:
()= irj 3+1 @3 Sy e
6 a a

The e ective range re¢ is a characteristics of the two-bodys-wave scattering potential that quanti es the
error made by replacing the true scattering potential by a pseudo-potential of scattering lengtha [205].
Its value re  4:7 nm is very small for °Li gases [206,207]. The-wave scattering lengtha, = 1:8 nm [20€]
describes low-energyp-wave interactions. Given the small values of these lengths compared with typical
scattering length valuesjaj > 150 nm, non-universal terms are completely negligible in our experiment.
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5.5.6 Equation of State of a Bosonic Super uid

We now consider the BEC limit ; €! +1 . In this regime atoms with opposite spins form deeply bound

molecules, with a binding energy:
2

Ep= = JEpi  Er:
Composite molecules behave as point-like bosons and the gas is a molecular Bose-Einstein condensate.
Interactions between dimers are described by a dimer-dimer scattering lengtlagg ' 0:60a, given by the
exact resolution of the 4-fermion scattering problem|[16,209]. However, it is not clear to which extent the
many-body ground state is merely equal to the equation of state ohy = n=2 bosons with short-range
interactions described by a scattering lengthayg.

Equation of State of a Gas of Point-Like Bosons

Let us rst remind the equation of state of a gas of N = V n point-like bosons of masan and scattering
length a. The equation of state, written as an expansion in powers of the interaction parametena?3, is
universal up to the order nas:

1+ i(naﬁlzz + o (5.14)

The rst term is the mean- eld interaction inside a Bose-Einstein condensate, and the second term
is the Lee-Huang-Yang correction to mean- eld, an exact result of many-body theory dating from the
1950's [76]. Observing the Lee-Huang-Yang correction using ultracold Bose gases close to a Feshbach
resonance is hindered by the enhancement of inelastic losses when approaching the strongly-interacting
regime [15]. In [210] Bragg spectroscopy performed ofPRb demonstrated deviations to a mean- eld
behavior for large interaction strengths, but the connection with ) remains indirect. Fermi gases,
being stable in the entire BEC-BCS crossover, might be more suited for such studies.

The next order term is more complex. Its calculation requires the introduction of low- and high-
momenta cutg s [211]]. A low k values the natural length scale is the Bose-Einstein condensate's healing
length =1= 8na, while at high k values one has to introduce non-universal length scales such as the
potential's e ective range. We end up with a correction [211]:

p_
1+ 1—!15|§>8i(na3)1=2 +847333na3 log(na®)+ B(a;re;D) +::: ;  (5.15)

14 ~*a
E=V = = 2
2

where the non-analytical log term is given by the low-k divergence and is universal. The coe cient B
is not universal and depends on the precise shape of the interaction potential [212]. In [213] an explicit
expression forB is proposed, based on the study of a gas of hard spheres:

3 le D
B(a;re;D)= Bg+ —p— ey .
(&reiD) 0 84 33 a 12a4 ’

(5.16)
involving the following parameters:

the coecient By' 6:03is expected to be universal, and was calculated in [214,213],

the e ective range re, introduced in section[5.5.5,

the three-body scattering hypervolume D, which is the equivalent of the scattering length a for
three-body interactions.

These parameters were calculated for a gas of hard spheres, givig) ' 8:51 [213]. For a gas with
re @, the three-boson problem exhibits a series of weakly bound states, the so-calldeimov states
[215]. The precise value oD varies in a narrow range with the exact position of the E mov spectrum:
7:11<B < 7:18[214].
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Equation of State of a Gas of Composite Bosons

We now consider a two-component Fermi gas in the BEC limit, and the expansion of its equation of state
in a powers ofnga3y. In [77] it was shown that, up to order  nga3,, the equation of state is accounted
for by the Lee-Huang-Yang expansion|(5.14) with the appropriate replacements:

n! ng=n=2; al! ag=0:60a; m! mg=2m:

For the next term, the e ective range and scattering hypervolume relative to interactions between dimers
are expected to be related to the scattering lengtha by universal numbers, similarly to the e ective
scattering length between dimersagq = 0:60a. The dimer-dimer e ective range can be viewed as the “size'
of the details of the e ective dimer-dimer potential. This length scale being intuitively directly related
to the dimer size a, one expectsre a. In a recent paper, the energy spectrum of the four-fermion
problem was computed and one infers from it the e ective range between dimersyg = 0:13(2)a’ 0:2a4q,
i.e. a value comparable toaqq [216/217]. The value of the e ective three-dimer scattering hypervolume
Dgyq is still unknown; its calculation would require the analysis of the six-fermion scattering problem.
The dimer's composite nature is not expected to modify the coe cient in front of the log term in (:
the composite nature is invisible for large-wavelength phenomena = 2 =k as soon as is much larger
than the dimer microscopic sizea. On the other hand, it is not clear whether the coe cient B is merely
accounted for by equation ) with the appropriate values forrygqg and Dgyq given by the resolution
of few-body scattering phenomena, or whether many-body e ects modify this picture. Nevertheless,
we expect the value ofB to be characteristic of Bose-Einstein condensates made of dimers of fermions
interacting with short-range interactions, independently of the nature of the fermionic species.

Measurement of the Equation of State of a Bosonic Super uid

We rst consider the measurement of the Lee-Huang-Yang coe cient. In previous works [[64, 79], the
Lee-Huang-Yang expansion ) was shown to give a better description of the gas than the mean- eld
equation of state. Here we try to extract the expansion ) more quantitatively . We t our data for
€> €., with a Padé approximant whose asymptotic behavior in the BEC limit reads (see Appendix
[B.3| for an explicit expression):
E=V = %ﬂnﬁ 1+ Ly (ngddg) 2+ 100 (5.17)

My
We use the mean- eld interaction in the BEC regime given by the rst term in (, and the values
of s and previously determined, as constraints on the tting functions. As shown in Fig/5.28a, the t
result _ny depends on€, even for our data the most in the BEC regime. Our best estimate of the
actual Lee-Huang-Yang coe cient is given by a linear extrapolation of the tresult |4y as a function
of € 1 | towards the BEC limit € 1 1 0 (see Figb). We obtain:

cuto cuto
Lty = 5:2(8);

in agreement with the exact value py = 128=15IO Tt 481

We then go one step beyond and extract from our data the unknown coe cientB. We use a more
complex Padé approximant, described in Appendix{ B.B and consistent with the expansion[(5.15), to

obtain (see Fig[5.26c):
B =7:2(8):

Interestingly, this value is close to the ones calculated for a gas of hard spheres [213] and for a gas with
short-range interactions [214],B ' 85and B ' 7:1, respectively.

To conclude this study of the super uid equation of state, we show in Fig.5.2¥ the experimental data
hs(€) together with the asymptotic behaviors extracted from it.
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Figure 5.26: (a) Fit result ny as a function of the cuto €., . The extrapolation to the BEC limit is
more conveniently made by plotting 4y as a function of ecu}o , see (b). (c) Fit result B as a function
of €& . The gray regions indicate our estimation of the actual values of these parameters, the dashed

lines are proportional to the number of points used for the t.

Figure 5.27: Equation of state hs(®) extracted from our data (black dots) compared with the following
asymptotic behaviors: the blue lines are the expansiong (5.13) in the BCS limit up to rst order (dashed
line), second order (dot-dashed line) and third order (solid line); the black lines are the expansionZ)
around the unitary limit up to rst order (dashed line) and second order (solid line); the red lines are
the expansions [(5.14) in the BEC limit up to rst order (dashed line) and second order (solid line).

5.6 Ground State of a Trapped Fermi Gas

Here we make a comparison of our results with previous works discussed in sectjon 3]1.1. In these works,
the equation of state of the entire trapped gas is obtained through the measurement of the position of
phase boundaries or the study of collective modes.

5.6.1 Equation of State of a Trapped Spin-Imbalanced Fermi Gas
Equation of State in the Unitary Limit

In the MIT experiment the radii R, Ry, Rs of the di erent phases observed in a trapped spin-imbalanced
Fermi gas are measured as a function of polarizatio” [116,49]. We compare these measurements with the
prediction given by the Fermi liquid equation of state @) that accurately describes our measurements.
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In order to obtain the radii R1, R2, Rg as a function of P, we calculate the atom numbers and radii as

a function of the global chemical potential potentials ©:
Z

P
N, = drni( 1; 2); where ;= 0 V(r); and ni:g :
. @i
20
R - 1.
1 72”'5
R = Ry — 2% where A= 0:615
2 - 1 1 A01 0— .
s
0 C
Rs = R; 1 ;. where =0:065
o4

The curvesR;(P) are then obtained as parametric curves by varying the global chemical potentials. As
shown in Figa, they signi cant deviate from the data from [116], where the radii were measured
after a time of ight, assuming a hydrodynamic expansion. This is probably due to the fact that the gas
does not fully expands according to hydrodynamics, especially in the outer shell where the gas is fully
polarized and no collision occurs. The radii measured fromin situ density pro les [49] are in excellent
agreement with the Fermi liquid equation of state.

Figure 5.28: (a) Radii R1, R2, Rs of the di erent phases observed in a trapped spin-imbalanced Fermi
gas, in the unitary limit. The radii are normalized to the Thomas-Fermi radius R(10) of an ideal gas with
N, atoms. The data in gray is inferred from the cloud pro les after a time of ight [116]. The large
black symbols are obtained fromin situ images [49]. The solid lines are calculated using the Fermi liquid
equation of state ). (b) Critical polarization P; as a function of 1=kr;a, where kg, is the Fermi
momentum at the bottom of the trap of an ideal gas with N; atoms. The solid line is calculated from
the theoretical pro les accounting for our data (see text). It agrees with the critical polarization values
determined by the MIT group (open squares: [54], open circles| [218]) and by our group [99] (point with
an error bar), but disagrees with the one of the Rice group|[97] (cross).

Critical Polarization in the BEC-BCS Crossover

In Fig.6.28a, we see on the case of the unitary limit that the super uid core disappears above a critical
polarization P.. The rst characterization of the normal/super uid phase transition was provided by the

measurement ofPc, in the unitary limit [54,97,(218,099|, and in the BEC-BCS crossover |[54, 2118]. We
calculate the critical polarization in the BEC-BCS crossover using the Fermi liquid equation of state )
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for the normal phase and a t of the super uid equation of state described in Appendix[B.3. As shown
in Fig.5.28p, the Fermi liquid equation of state accounts for most measurements, apart from the Rice
university measurementP. ' 1 in the unitary limit, and the data in the region 1=kg;a > 0:5, where we
did not check experimentally the validity of the Fermi liquid equation of state.

5.6.2 Collective Modes of a Balanced Fermi Gas

In this section we compare the equation of state of a balanced super uid determined from our data with
the collective mode frequency measurements froni [64]. In sectidn 3.1.1 we discussed the relationship
between the collective mode frequencies and the super uid equation of state provided by a hydrodynamic
description of the collective modes [115]. Using ts of our data (see Appendi3), we calculate the radial
breathing mode frequency! given by equation ), and make the comparison with the experimental data

in Fig.5.29. The agreement with the experiment is much better that the prediction using a BCS mean-
eld equation of state. Since our data are close to the Fixed-Node Monte Carlo calculations from [66],

it is not surprising that the calculated frequencies are close to the ones previously calculated from the
Monte Carlo data (see [64]).

As mentioned earlier, we see that discriminating between Fixed-Node Monte Carlo calculations and
BCS mean- eld theory required to reach a  0:5% accuracy on the frequency measurement. This has
to be compared with the large di erence between both theories in the variablehs(€) (see Fig).
Similarly, the Lee-Huang-Yang correction, which leads to the following asymptotic behavior in the BEC
limit [219]|220,221]:

=21, 1+ (kpa)®®+::0): o AS =S 0:1; 5.18
P =21 ( (ke @) ) —W(add—a) L (5.18)
where! ; is the transverse trapping frequency, is di cult to observe from a collective mode study. The
frequency upshift! > 2! . observed in the BEC limit is consistent with this behavior, but does not allow

one to extract the value of the Lee-Huang-Yang term.

Figure 5.29: Radial breathing mode frequency from the Innsbruck experiment [64], compared with the
hydrodynamic prediction using a mean- eld BCS equation of state (dashed line), and the equation of
state determined from our data (solid line). The dotted line is the Lee-Huang-Yang expansion8).

To conclude, the equation of state of a homogeneous Fermi gas deduced from our study is consistent
with most previous works on trapped gases.
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5.7 Molecular Physics Beyond the Scope of this Work

The parameter range addressed in our work is limited to ; < 0:65. Qualitatively new features in the
phase diagram are expected for; & 1. We give here a short review of this still largely unexplored
physics, as a perspective for future work.

5.7.1 Polarized Super uid

Figure 5.30: Phase diagram of a two-component Fermi gas in the plan¢ ;; ). The black dot is the
tri-critical point. The gray region corresponds to a super uid phase. We subtracted for clarity 2 2 to
for 1> 0.

We have shown that, in the super uid phase and for ; < 0:65, the gas remains unpolarized when
one imposes a chemical potential di erence. However, one expects that in the BEC regime a mixture of
majority atoms and a fully paired molecular condensate can be stable (see FO). This can easily be
shown using a mean- eld description, valid in the BEC limit. Let us consider a homogeneous mixture of
molecules and unbound fermions, with respective densities, and n; . The system is thermodynamically
stable if the compressibility matrix (@e=@i@p), where e is the energy density, is positive. Using the
mean- eld energy density [222]:

NpNs ; (5.19)

3 14 ~2a4 4 23
&(Nrinp) = N By + NoBp+ 5— “np + 4m=§d

we obtain the stability condition:

This criterion is similar to the thermodynamic stability domain of 3He-*He mixtures at low temperature
(see Fig). Therefore a molecular BEC can be polarized by imposing a chemical potential di erence.
It remains unpolarized as long as ; is smaller than the super uid chemical potential =( 1+ 5)=2
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plus the single-particle excitation gap o, i.e. fof%}
0.
b=1 2-%
1

When is decreased below, the gas becomes polarized but remains super uid (see FO).

Figure 5.31: Phase diagram of &He-*He mixture at low temperature [224]. At T =0 the maximum 3He
density if ny * 0:07ny [225].

5.7.2 Polaron to Molecule Transition in the Impurity Problem

The large imbalance limit was addressed in sectiof 5.1.2 by considering the ground state of the impurity
problem. It was expressed as the sum of the non-interacting ground state plus states with one particle-
hole excitation. This approach does not account for the ground state in the BEC limit, where we expect
the minority atom to bind with one majority atom into a deeply bound molecule. This state is very
di erent from the polaron state, in the sense that it cannot be expressed as the non-interacting ground
state plus several particle-hole excitations.

In the mean- eld approach, the chemical potential ratio of the impurity problem is obtained from
(6.19) through [85]:
The molecular binding energy was calculated, beyond this mean- eld approach, using a diagrammatic
Monte Carlo calculations [85], an analytic theory involving up to two particle-holes excitations in the
Fermi sea [86], and variational ansatz's[[226,180], all results being in very good agreement (see Fig.5.30).

Polaronic and molecular impurities are expected to behave very di erently when considering small
but macroscopic minority atom numbers. Indeed, while polarons are fermionic quasi-particles (as clearly
shown in section[5.4), a set of molecules is expected to form a molecular Bose-Einstein condensate. In
other words, these two kind of impurities obey di erent quantum statistics.

The transition between the two regimes occurs when the ground state of the impurity problem changes
from a polaron-type to a molecular-type quantum state, at ; = 0:91(2) [85] (see Fi).

Yin the BEC limit, one can use the mean- eld energy (5. - calculate the asymptotic value of p [223]:

. 2 a
p=lim 2= 22 14 2%
ngl 0 4 3ayg
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5.7.3 Thermodynamic Instability of the Impurity Problem

Using a mean- eld approach, we showed in section 5.7/1 that a spin-imbalanced gas is unstable for large
extra majority atom densities. In the limit of vanishing minority atom density, which corresponds to the
impurity problem, the stability condition can be written as [67]

9 &y . 1.7

1> 1c =
©7 4 aga

In the region 1 < 1, the transition between the fully and partially polarized regions thus becomes of

rst order (see Fig.. 1¢c IS thus a tri-critical point. The instability of the impurity problem casts
doubt on the possibility to directly observe the polaron/molecule transition.

To conclude this chapter, we measured the equation of state of the ground state of a two-component
attractive Fermi gas with arbitrary spin-imbalance and interactions. The universal character of this
equation of state makes it a relevant quantity for the description of other quantum many-body systems,
such as the crust of neutron stars. We characterized the super uid equation of state in the entire BEC-
BCS crossover. Our observations are in very good agreement with Fixed-Node Monte-Carlo calculations
and are used to extract several physical quantities such as the Lee-Yang and Lee-Huang-Yang corrections
to mean- eld. We showed that the partially polarized phase is well accounted for by a Landau Fermi
liquid description. We obtain from our data the value of the e ective mass of the associated Landau
quasi-particles, the Fermi polaron.

In the last section we showed that qualitatively di erent physics is expected to occur in the deep BEC
regime that is not addressed in this work. The measurement of the position of the tri-critical point, and
of the polaron to molecule transition could be the subject of future work. It would also be interesting to
investigate the existence of exotic phases such as the FFLO state, expected to be stable on the BCS side of
the resonance (in a rather small window between the Fermi liquid and super uid states). The signatures
of these states on the equation of state are expected to be rather small [229, 230] and would require to
improve the precision of our measurement or combine it with the measurement of other observables such
as density correlations/ uctuations [231}230].

?ZRecently the rst correction to (5.as obtained analytically [227]:

3 14 ~2a 4 ~23 8log2 3
e(ng ;ny) = gnf Ef + npEp + dn2+ 2 pong 1+ 209C ° 1

2m  °  4m=3 2 1

which leads to
_ 9 a2, , 48log2  3)au
le 4 agga 3
BCS mean- eld theory predicts 1. = 2:4 [228,229] and Fixed-Node Monte Carlo calculations, expected to be the most

precise result, give 1c =1:7 [67].

2:9:




Chapter 6

Axial Breathing Modes of a
Spin-Imbalanced Fermi Gas

In this chapter we describe a study of collective modes of a spin-imbalanced Fermi gas in the unitary
limit [99]. Collective modes of trapped ultracold gases are the counterpart of sound waves in homogeneous
systems. Their study provides a rst-level understanding of the gas dynamics, and can be used to reveal
for example characteristic features super uidity through the observation of second sound|[232]. The
measurement of collective oscillations frequencies is a precision tool for the experimental study of trapped
ultracold gases. In some situations the mode frequency can be related to physical quantities di cult to
probe otherwise. An important example is the angular momentum measurement through a precession
of a radial quadrupole excitation [233| 39]. Moreover, as shown in secti.l, the frequency of some
collective modes can directly be related to the equation of state of the trapped gas and therefore its
determination from experiment provides a benchmark for many-body theory|[115, 64].

The collective modes of a spin-imbalanced Fermi gas are rather complex. We saw in Chaptef 5 that a
phase separation occurs in a trapped gas: a super uid core occupies the trap bottom (for a polarization
P <P.' 0:75), and is surrounded by a partially polarized intermediate shell and a fully polarized outer
rim. The dynamic behavior of these phases strongly di er. Indeed, the fully paired core is expected
to evolve according to hydrodynamics as a consequence of super uidity, while the fully polarized shell
reacts as a collisionless ideal gas. Therefore, we expect the dominant collective mode frequencies to be
typical of a hydrodynamic behavior when the super uid core is large {.e. for small polarizations), while
collisionless frequencies are expected at the lowest minority concentrations, when the gas is essentially
fully polarized. It is also tempting to think that the crossover between these two regimes, when one varies
the spin polarization, may reveal the polarization thresholdP = P, for the super uid core disappearance.

In this work we consider the axial breathing modes of a gas held in an elongated trap. A two-
component gas exhibits two axial breathing eigenmodes. The rst collective mode corresponds to an
in-phase oscillation of both spin components. It is the only low-lying collective mode encountered for a
paired super uid, since an out-of-phase excitation requires to break pairs and costs a large energy (on
the order of the gap). We will see that, when the gas polarization is increased, this mode progressively
evolves from a hydrodynamic to a collisionless behavior. The second mode corresponds to oscillations of
both spin component with di erent phases. In the strong polarization limit, it corresponds to a minority
component oscillation in an unperturbed Fermi sea, the oscillation being strongly a ected by interactions.

In particular interactions modify the minority atoms inertia through a mass renormalization, and we will
thus extract the e ective mass value from the frequency of this mode.
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6.1 Hydrodynamic Behavior of a Balanced Fermi Gas

Before addressing the e ect of spin polarization, we rst consider the dynamics of a spin-balanced Fermi
gas in order to introduce the hydrodynamic equations that will be invoked in the rest of the chapter. We
study the oscillation of a balanced Fermi gas which is deeply evaporated, up to temperatures much smaller
than the super uid transition temperature. The gas is thus a fully paired super uid, whose dynamics is
expected to be described by the laws of hydrodynamics, previously introduced in sectidn 3.7.1:

@ _ :
@{1 = r (nv);
m@@){/ = r %mv2+ (nN+V ;

wheren is the total density and (n) = s~?=2m(3 2n)?=2 in the unitary limit.

6.1.1 Scaling Ansatz Solution of the Hydrodynamic Equations
We are going to study the gas dynamics in two situations:

The optical trap is suddenly switched o and the cloud expands in the saddle potential created by
the magnetic eld curvature. The con ning potential can be written as:
| 0. t< 0

I =10 = e :

L)y=1;; 1. (t) !S=p§; (>0 -
The gas is excited by switching the current in the curvature coils o during 1 ms. The bias
magnetic eld is consequently brought to the BCS side of the resonance. After the gas is excited
the con ning potential and bias magnetic eld are brought back to the values before excitation.

Both situations belong to the more general problem of solving the hydrodynamic equations in a harmonic
trap with time-dependent frequencies. As rst shown for the dynamics of Bose-Einstein condensates
in [234,235], the scaling / n?=2 at equilibrium implies that an exact class of solutions of these equations
is provided by a scaling ansatz|[158}

1 o X y z
n ; ; ; 6.1
BB ©2" B@® B BO ©-4
wheren®(x;y; z) is the equilibrium density pro le. The density pro le (6/1)]is a solution of the hydrody-
namic equations equations, provided the scaling factorg (t) solve the di erential equations [153]:

1, (0)2
b, (£)5=3 (1)
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b, ()220 (7=

n(x;y;z;t) =

Lo (t)%h, (1) + (6.2)

b (1)

L ()b () + (6.3)

b (1)

6.1.2 Hydrodynamic Expansion

In this section we study the expansion of the super uid after the optical is suddenly switched o. The
bias and curvature magnetic elds are left on, and the super uid evolves in a saddle potential. The initial
trapping frequencies are! 9=2 =37 Hz and ! =2 =600 Hz. In Fig. we plot experimental results
for the time evolution of the cloud axial and radial sizes. A numerical resolution of equations),)

We mention that in the case of an isotropic harmonic trap, it was shown that such a scaling ansatz provides an exact
solution of the gas dynamics [112].
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accurately describes the super uid dynamics even 5 ms after the optical trap switch o, despite a radial
size increase by a factot 25. The decrease in axial size is an eloquent consequence of the hydrodynamic
behavior, by opposition to the obvious solutionb, (t) = 1 for a ballistic expansion into a potential whose
axial con nement is unchanged. This behavior is consistent with previous observations of a hydrodynamic
expansion for a unitary gas |[17], 236] (in which the axial con nement is switched o together with the
optical trap).

Figure 6.1: Time evolution of the axial (radial) cloud radius of a super uid expanding in a saddle potential
(black (open) dots). The solid (dashed) line is the hydrodynamic prediction.

6.1.3 High- Q Axial Breathing Mode

In this section we present the response of a trapped super uid to a weak perturbation. We switch o the
curvature coils current during 0.5 ms, come back to the initial current, and take anin situ image of the
cloud after a variable wait time. In Fig.p.2]we plot the time evolution of cloud axial size over more than
600 ms.

Figure 6.2: Cloud size time evolution (black dots). The solid line is a t with a damped cosine.

The oscillation frequency of the axial radius is calculated by linearizing equations[(6]2),[(6]3) around

the equilibrium positions b = 1. Writing b =1+ ae€e" | g 1, we obtain the linear system
! !
'2a, I 2a, + | 2(5=3a, + 4=3a,)
| 2, I 23, + | 2(2=3a, + 7=3a,)
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This systems admits two solutions, namely the axial (radial) breathing mode! = P 1251, (! =
10=3! ), for an elongated trap (! ; ! ;).

Fitting our experimental data with a damped cosine, we obtain the axial breathing mode frequency
I =1:54(1)! ., in agreement with the theoretical value (p 12=5"' 1:549). The oscillation damping rate
is very small, and corresponds to a quality factorQ * 200 This value is comparable to the low damping
rates previously reported in the Innsbruck experiment [33].

The oscillation amplitude can easily be modeled. The excitation scheme chosen for this experiment
has two e ects:

The axial frequency! , drops to 0 during the 0.5 ms excitation.

The bias magnetic eld becomes very largeBy ' 1100G. The gas, switched to the BCS side of
the resonance, becomes weakly interacting and its equation of state reads = ~?>=2m(3 2n)273,
i.e. the chemical potential is ¢! times larger than the one of a unitary gas with the same density.
However, the gas remains super uid and its motion is still described by hydrodynamic equations.

Equations (6.7), (6.3) thus read, during the excitation:

2
1 ! z

° b ()53 (1)5=2
2o () + §*

B (t)
1 2
r .
b, (t)2=3bx (1) 7=3"
A numerical resolution of this system of di erential equations leads to an oscillation amplitude equal
to R,=RY = 0:26 (peak-peak amplitude/mean value), in excellent agreement with our observations

R,=RY = 0:28. The change in trapping frequency and the change in bias eld have a comparable
contribution to the oscillation amplitude.

b (1)

6.2 In-Phase Axial Breathing Mode

6.2.1 Observation of the In-Phase Mode

We now discuss the e ect of polarization on the axial breathing mode. We evaporate a spin-imbalanced
Fermi gas in the unitary limit up to a trap depth identical for all polarizations. The majority atom
number N; ' 10° does not depend much on polarization, while the minority atom number is scanned in
arangel1000. N; < N ;. The excitation procedure is identical to the one described above for a balanced
gas. We t the integrated density pro les for both spin components with Thomas-Fermi formulas:

n@= (R ATH Q=12

In order to study the gas dynamics at a given polarizationP, we post-select the cloud images correspond-
ing to polarizations in a window [P P=2;P + P=2], with P chosen between 0.025 and 0.06.

In Fig.p.3] we plot R, as a function of Ry in order to see whether both spin components oscillate
in phase. Except for large polarizationsP & 0:8, the radii oscillations around the mean valuesR? are
proportional:

R RY/ Ry RY:

This is a clear signature that both spin components oscillate in phase.

For P > 0:8 we will see in sectior] 6.8 that the weight of out-of-phase mode is more signi cant and
strongly a ects the time evolution of the minority radius. However, we expect the e ect on the majority
component to be much smaller. Therefore the time evolution of the majority radius is always dominated
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Figure 6.3: Radius R, as a function of the radius R1, for three polarizations P = 0:3, P = 0:6 and
P =0:9. The radii are normalized to the mean valueR?, i = 1;2. The proportionality for P = 0:3 and
P = 0:6 shows that both spin components oscillate in phase.

by the in-phase mode, even at large polarizations. We thus extract the in-phase mode characteristics on
the majority component.
We t the time evolution of the majority radius with a damped cosine (see Fig.@):

Ri(t)= RY 1+ Aje *'cos( it+ 1) : (6.4)

The constantsA;, ! 1, 1 and ; are the in-phase mode amplitude, frequency, phase with respect to the
excitation, and damping rate.

Figure 6.4: Time evolution of the majority radius , for P =0:3, P = 0:6 and P = 0:9. The solid lines
are ts with a damped cosine (6.4).

6.2.2 Frequency in the Hydrodynamic and Collisionless Regimes

The value of the in-phase mode frequency can be calculated in the collisionless and hydrodynamic regimes.
In the collisionless regime, particles freely oscillate at the trap frequency ;. The oscillation frequency
of the radius is then twice as large:

In the hydrodynamic regime, an exact solution of the hydrodynamic equations is provided by a scaling
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ansatz with the same dilatation factors for both components:

1 Xy z
ni(xy;zit)y= —nd —; > = 6.5
where n%(x;y; z) are the equilibrium density pro les. The proof is rather simple: one inserts the ansatz
(6.5) into the hydrodynamic equations. At unitarity, the equilibrium equation of state reads:
nz

2
) . - _ 212=3,,2=3¢ _ 2
i(nz;ny) 2m(6 ) n, fi X Ny

When n; and n, are dilated by the same factor, f;(n,=n;) does not change, and one simply obtains:
. . - 1 (n0. L0y,
i(nz;nq) = W i(n3;ny):

This shows that the hydrodynamic equations for each spin state are decoupled and identical to the ones
of a spin-balanced unitary gaEl The axial breathing mode frequency, in the limit of a large aspect ratio,
then reads: r
o - 12
= gl
This result was also derived with di erent assumptions in [99], using a sum-rule approach.

' 1:551,:

6.2.3 Crossover from a Hydrodynamic to a Collisionless Behavior

In Fig.@ we plot the in-phase mode frequency ;=! ; as a function of polarization P. At low polarization
the frequency is close to the hydrodynamic value. This behavior is expected for a gas with a large
super uid core: the core itself is superuid and therefore evolves according to hydrodynamics, and
particles in the normal phase are likely to collide with the super uid core during one axial oscillation
period T, = 2 =! ,. The mean free path is thus smaller than the cloud size, which is the condition
for hydrodynamic behavior for a classical gas. AP increases, the frequency slowly departs from the
hydrodynamic value. For P & 0:75 the frequency strongly increases towards the collisionless value. For
extremely high polarizations, the collision rate per majority atom becomes smaller that the oscillation
frequency and the gas freely oscillates at the collisionless value. This collisionless regime is approached
but is not fully reached in our experiment because of the di culty to sort the data by polarization when
the minority atom number is very small (N, ' 1000. It is important to remark that no particular feature
occurs at the critical polarization P. ' 0:75 at which the super uid phase disappears.

6.2.4 Oscillation Amplitude and Phase

For the calculation of the frequency in the hydrodynamic regime presented in sectiof 6.2/2, we assumed
that the density pro les were scaled for both components with the same factor. Therefore we expect here
the amplitudes A; to be identical. In Fig.6.6p we plot the amplitudes A; as a function of polarization,
and indeed observe thatA; ' A, in the hydrodynamic regime P < 0:75. We also note that the amplitude

of the majority component A; ' 0:28 is rather independent of the polarization value.

We also check the in-phase character of the mode by comparing the phases for both components.
As shown in Fig[6.8b, the two components oscillate in phase in the hydrodynamic regim® < 0:75.
Moreover, the oscillation is shifted by =2 compared to the excitation, as expected for an excitation
which sets the cloud in movement but is much shorter than the oscillation period.

YSince this property relies on the identity of the scaling factors for both two spin states, it is specic to the in-phase
mode.
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Figure 6.5: In-phase mode frequency (a) and damping rate (b) as a function of polarization. The gray
crosses are the results of a t of the data in a window[P P=2;P + P=2] results with a damped
cosine [6.4). We vary the central polarization0 < P < 1 and the binning 0:02< P < 0:07 to obtain all
gray data points. Black dots are averages of ten consecutive gray points. In (a), the solid lines are the
hydrodynamic and collisionless frequencies. We mention that the data tting procedure slightly di ers
from the one used in|[99], leading to a better signal-to-noise ratio.

Figure 6.6: (a) Amplitude of the in-phase mode for both spin components, as a function of polarization.

(+): raw data for speciesl (2), ( ): average of ten raw data points for species 1 (2). (b) Phase of the
in-phase mode as a function of polarization, with the same notations than (a). The solid line corresponds
to an oscillation shifted by =2 compared to the excitation.

6.2.5 Relaxation of a Two-Component Fermi Gas

In Fig.6.5p we plot the damping rate ;=!; as a function of polarization. When the gas is either in the
hydrodynamic or collisionless regimes the damping rate is small. It is maximum foP ' 0:9, i.e. in the
middle of the crossover between the two limit regimes. We give in this section a physical explanation of
this behavior.
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Sound Propagation in Gases and Relaxation Phenomena

Damping of sound waves in uids is driven by the spontaneous relaxation towards equilibrium. We
present here a simpli ed model for which the relaxation can be captured using a single relaxation time
scale model rst introduced by Kneser in the 1930's [237] . For a classical gas * is on the order of

the collision rate per particle, and a typical value at ambient temperature and pressure is 10 10 s,

In the acoustic domain, sound wave frequencies are much smaller than typical relaxation rates, therefore

the gas locally remains almost at equilibrium. The speed of sound is then given by:

¢= 9P &;
@ quilibrium
and the oscillation quality factor is large. Using high-frequency ultrasonic wavesl=2 > 1 GHz, it is
possible to address the regimeé & 1. For very large frequencies! 1, the gas equilibrium does not
take place and the speed of sound reads:
2= @P ¢

@ n instantaneous
In the case of a single relaxation time scale, the speed of sound: smoothly interpolates betweency and
c: when! is varied, according to [237],238]:

02:c§+C% C%: (6.6)

1+
The imaginary part of the speed of sound accounts for the sound wave damping. In F{g.§.7 we plot the
variation of the speed of sound and damping rate as a function of frequency. As expected, the speed of
sound smoothly varies fromc ' ¢q for ! ltoc' ¢ for! 1. The oscillation qualify factor is
large in the two limit regimes and is minimum in the middle of the crossover.

Figure 6.7: Speed of sound and sound wave quality factorQ as a function of!  for a Kneser uid with
Co=2¢C .

Comparison of our Data to a Kneser Relaxation Model

In the case of trapped gases, collective modes frequencies are quantized, with typical values on the order
of c=L, where c is the speed of sound and is the cloud size (alongz for the axial breathing modes).
The transposition of equation (6.6) is then given by [239]:

12=(14HD)2 4 ( 1CL12+ i!(! lHD)2; D=1+ g (6.7)
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The hydrodynamic frequency value! }'P is reached in the limit of a relaxation time much smaller than
the oscillation period. The collisionless frequency value P is reached in the opposite limit.
Taking the real part and imaginary part of (§.7), we obtain 2 equations for three variables! , ,!1=!,

and ;=!;. We can eliminate! ; and directly relate the damping rate to the frequency:
S _p

L 4 I5(4=1,)2 1) 8 5(11=1,)?. 6.5

1 5(! 1=1 ;)% ' '

A crossover between a hydrodynamic and a collisionless behavior in qualitative agreement with (§.8) was

observed in [240] with balanced unitary gases, by playing with the gas temperature. Here the crossover

is induced by the spin imbalance. In Fig we plot our data in the plane(! 1=!,; 1=!1). In the high

polarization limit, our data are consistent with (6.8], given the relatively large noise of our data for low

minority atom numbers. At low polarization, our data seem to signi cantly di er from (6 In between,

the maximum damping rate ;' 0:15!; is equal to the maximum damping rate allowed by ).

Figure 6.8: In-phase collective mode data plotted in the plang(! 1=!,; 1=!1) (gray crosses). The black
dots are averages of 10 raw data points. The solid line is the prediction given by equatio.8).

Relaxation Rate Value

Assuming that equation ) is valid, we t our data with a damped cosine, where! ;=!, and 1=!, are
expressed using a single parametdr, . In Fig. we plot the relaxation rate 1=(! , ) as a function of
N,=N; =(1 P)=(1+ P). We observe a surprising linear dependence valid for all polarizations:

1 N

In particular the presence of a super uid core does not seem to a ect the variation of with polarization.

Understanding this behavior is rather di cult, especially when both a super uid core and a fully
polarized rim oscillate together. Above the Clogston limit P > P. "' 0:75, it may be possible to model
the system more easily. As shown in Chaptef]5, the gas can then be described, at equilibrium, as a
mixture of majority atoms and minority particles renormalized by the interaction with majority atoms.
Within this Fermi liquid picture, the gas is merely a mixture of two Fermi seas with di erent atom
numbers. Collective oscillations have already been modeled in this context using Boltzmann equation,
but for slightly di erent situations, namely for spin-balanced gases [241, 242, 243] or for the spin dipole
mode in spin-imbalanced Fermi gases [244]. In Appendik |C we adapt these calculations to the case
relevant to our experiment, the axial breathing mode of a two-component Fermi gas with di erent atom
numbers.
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Figure 6.9: Relaxation rate 1=(! ; ) as a function of N,=N;. The solid line is a linear t of the complete
data. The Clogston limit P ' 0:75 corresponds toN,=N; ' 0:2.

It is clear that Pauli blocking plays an essential role in the collision processes, the classical collision
rate for a gas with such atom densities being 100 times larger than the inverse relaxation time1=
that we observe. We mention that the axial breathing mode of a gas prepared at a higher temperature
(T =0:12Tg,) is always hydrodynamic in the range0 < P < 0:95 addressed in our experiment, probably
due to the diminution of Pauli blocking e ects. Here the proportionality of  with N, suggests that
Pauli blocking does not signi cantly a ect the scattering of minority atoms. Otherwise, the collision
rate would rather be proportional to the minority atom number available for scattering  N2(T=Tg>),
which scales di erently with N,. At zero temperature and at equilibrium, no scattering occurs because
energy conservation prevents scattering towards unoccupied states above the Fermi levels. Therefore the
relaxation is induced:

either by a Fermi surface deformation associated with the gas oscillation itself (see F[g.6.]10a),

or by a non-zero temperature allowing collisions to occur in a regiorkg T around the Fermi energies

(see Fig[6.10b).

The deformation induced by our excitation, or a temperature T = 0:03(3)T¢ 1, provide the good order
of magnitude for the relaxation rate (see Appendix@‘). However, a more precise understanding would
require to know more precisely the gas temperature in order to isolate the two e ects.

6.3 Polaron Axial Breathing Mode

In the hydrodynamic regime, out-of-phase oscillations are expected to be over-damped, as shown in [241]
on the example of the spin dipole mode. However, the gas dynamics approaches a collisionless behavior
at large polarization, and we expect the out-of-phase mode to become observable. In that limit of low
minority atom number, the two axial breathing eigenmodes are easily identi ed: as the collision rate with

the minority component is small, the majority component freely oscillates at the frequency! $- = 21 ,.
The second mode can be pictured as the free oscillation of minority atoms inside an unperturbed Fermi
sea. The coupling with the inhomogeneous majority component leads to an e ective potential

Ve (r) V(r)+ Ag 1(r)

Ao 9+ AgV(r);
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Figure 6.10: (a) Collision of a majority atom with an immobile impurity for a zero-temperature and
deformed Fermi distribution. Energy conservation imposes the outcome momentum to belong to the
dashed circle, and Pauli exclusion principle to be outside the deformed Fermi sea. (b) Collision of a
majority atom with an immobile impurity for a nite-temperature Fermi distribution. The probability

to make a collision is signi cant for atoms in a region of size T=T¢.

whereAg 1= 0:615 ; is the energy shift for one minority atom (see Chapte@). In addition, interac-
tions lead to a mass renormalization entering into second Newton law:

dv
Mg—=1 Ve (r);
0 dt e ( )
wheremy is the polaron e ective mass. The polaron axial oscillation frequency therefore reads:
s

1 Ao
Y
my=m

4
Measuring the out-of-phase mode frequency at large polarizations would thus provide the e ective mass
value (assuming that Ay is exactly known).

The time evolution of the minority radius is expected to be described as the sum of two damped
cosines, one at the frequency ; ' 2! ,, and one at the frequency! , ' 2! ,. However, the uncertainty
on the minority radius becomes large for small minority atom numbers and the oscillation amplitude is
smaller than noise of our data. In order to unambiguously reveal the appearance of the out-of-phase
mode, we calculate the Fourier spectrumP (! ) of the data R,(t) corresponding to a polarization in the
window [P P=2;P + P=2]. The Fourier spectrum calculation is adapted to an unevenly spaced set of
data, as described in|[245,246]. In Fi1 we plot the Fourier spectrum as a function of polarization. For
P & 0:75we observe the appearance of a second peak besides the peak correspondingtd <! ; <1 §t,
of frequency! , >! £+, and which is identi ed to the out-of-phase mode.

By varying the mean polarization P and the width P de ning the set of points R;(t) used for the
frequency spectrum calculation, we obtain a series of peak positions;, in a window 0:75< P < 0:9 (see
Fig.). We observe that! , rapidly varies with polarization, from !, * 3!, atP =0:75to!,"' 26!,
at P = 0:9. We are interested in the high-polarization limit P ! 1. As our data ! ,(P) is well tted
by a straight line ! ,(P) =2:3(1) +2:9(3)(1 P) in the range 0:75< P < 0:9, our best estimate of the
polaron oscillation frequency is given by:

_ 1P 1)

2 5 =1:15(5)! ;:
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Figure 6.11: Left: Fourier spectrum P (! ) of the data R,(t) as a function of polarization. The red ellipse
indicates the frequency domain of the out-of-phase mode. Right: Fourier spectrun® (! ) for P = 0:84.

Using the exact resultAg = 0:615 we obtain the e ective mass value:
my =1:2(1)m;

in agreement with theory [85,84] and with our determination from the equation of state in the unitary

limit mg = 1:21(2)m (see sectior 5.4]2).

Figure 6.12: Out-of-phase mode frequency ,, as a function of polarization P, and calculated for polar-
ization windows 0:02< P < 0:05. The black dots are an average of 10 consecutive raw data points
(gray crosses). The solid line is a linear t of the complete data.

To conclude this chapter, we showed that the in-phase axial breathing mode frequency smoothly
evolves from a hydrodynamic to a collisionless value. The out-of-phase mode appears at the largest
frequencies and allows us to measure the polaron e ective mass. Its large frequency variation may be due
to a crossover towards a hydrodynamic behavior. In order to reach more easily the collisionless value, it
would be interesting to study the radial breathing mode. Indeed, a collisionless behavior is expected when
the atomic mean free path is larger than the cloud dimension relative to the mode considered, namely
the radial (axial) cloud size for the radial (axial) breathing mode. Therefore it is clear that the radial
mode is more favorable. This would allow a more simple comparison with theories of collective modes.
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In this thesis we studied experimentally the thermodynamics of ultracold Fermi gases. We implemented a
new method for measuring the universal equation of state of a two-component Fermi gas with short-range
interactions. The local pressure inside a trapped gas is extracted from itén situ absorption image. In
the local density framework, this local probe provides the equation of state of thehomogeneousgas. We
combined this work with a new thermometry of strongly-interacting Fermi gases, using a small quantity
of weakly-interacting ’Li atoms as a thermometer.

We explored the phase diagram of a two-component Fermi gases under two angles of attack, nhamely
the equation of state of a spin-balanced unitary Fermi gas at nite temperature, and of the one of a
low-temperature Fermi gas with arbitrary interactions and spin imbalance.

The equations of state deduced from our work allowed us to make the rst direct comparison between
experiments and many-body theories. We validate Fixed-Node Monte-Carlo simulations at zero temper-
ature, and show that, up to now, none of the existing many-body theories accounts for our observations
at nite temperature over their full range.

For large enough temperature or chemical potential asymmetry, the gas is in a normal state. Surpris-
ingly, in all the parameter domain (temperature, spin imbalance or interaction strength) addressed in this
work, the understanding of its macroscopic properties can be uni ed using a Fermi liquid picture. This
contradicts several theoretical predictions for which pair correlations lead to a di erent behavior. We ex-
tracted from our data the associated Landau parameters, such as the compressibility or the quasi-particle
e ective mass, for arbitrary interactions. For resonant interactions, we observed that the e ective mass
values are close to the bare mass, despite strong many-body correlations. A study of collective modes
makes the link between the e ective mass extracted from the equation of state and the inertia of oscillating
quasi-particles.

We also characterized the super uid threshold in terms of critical chemical potential imbalance and
critical temperature, quantitatively con rming the exceptional robustness of the super uid state in
the strongly-interacting regime. We obtained the super uid equation of state in the whole BEC-BCS
crossover, a quantity directly relevant to describe the crust of neutron stars. We measured for the rst
time the corrections to mean eld in low-density fermionic and bosonic super uids, predicted by Lee,
Huang and Yang in the 1950's.

A rst extension of this work could be investigating other domains of the universal equation of state
P( 1; 2;T;a) of a two-component Fermi gas. Measuring the nite-temperature equation of state of a
spin-balanced Fermi gas in the BEC-BCS crossover could bring new physical phenomena to light. On
the BEC side of the resonance and right above the critical temperature, a two-component Fermi gas is
made of molecules and is expected to behave as a thermal molecular Bose gas. Therefore the Fermi liquid
picture should break down [154, 79] (see Fif.6.13). On the BCS side of the resonance, the normal phase
should remain described as a Fermi liquid. Extrapolating the Fermi liquid equation of state down to
T = 0, compared with the actual T = 0 super uid equation of state, would provide the condensation
energy of the super uid state. Finally, we showed that the critical temperature for super uidity can be
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extracted from the equation of state in the unitary limit. By extending this measurement to the BEC-
BCS crossover, we could measure the critical temperature curve, which has remained largely unexplored
up to now [11€].

Figure 6.13: Grand-canonical equation of state of a balanced Fermi gas in the plang; ). The black
dots are the experimental data corresponding to the equation of state of a unitary gas with resonant
interactions (see Chapter[]l) and to the equation of state of the super uid at zero temperature, and in
the BEC-BCS crossover (see Chaptef|5). An experimental determination of the equation of state of a
Fermi gas in the molecular regime, at nite temperature, would reveal thermodynamic signatures of a
pseudogap phase.

We could also explore the ground-state properties in the far BEC regime. The ground state of the
impurity problem is no longer a (fermionic) polaron but rather a (bosonic) molecule [8%,86,226,180]. The
change of quantum statistics should appear clearly on the grand-canonical equation of state given by our
method. Strongly polarized gases in the BEC regime are also expected to be thermodynamically unstable
for an interaction strength larger than a value associated with a tri-critical point [67]. This domain is
still largely unexplored experimentally [79]. Investigating nite-temperature e ects could also bring new
phases of matter, such as the Sarma phase, to light [247]. Measuring the tri-critical line in the BEC-BCS
crossover |[2209] would extend the work of the MIT group in the unitary limit [49] (see Fig).

The method developed during my PhD is general and could be used for the investigation of other
systems. An extension of this work could be the measurement of the universal equation of state
P( 1; 2;T;a;my=m;) describing two-component Fermi gases with di erent atomic species for each spin
state. The mass di erence degree of freedom is expected to enrich the phase diagram with new states
of matter [248,249| 250]. Recent experiments exploring the physics &iLi and “°K mixtures could ad-
dress this subject in a near future |[251, 252]. As an illustration of our method, we determined the
equation of state of a weakly-interacting Bose gas. It would be very interesting to address Bose gases
prepared close to a Feshbach resonance, hoping to reveal beyond-mean- eld e ects for large interaction
strengths. ‘Li gases would be particularly adapted, thanks to the wide Feshbach resonances in the states
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Figure 6.14: Grand-canonical equation of state of an two-component Fermi gas with resonant interactions,
in the plane (; ). The black dots are the experimental data corresponding to the equation of state
of a spin-balanced gas at nite temperature (see Chapter[]4) and to the equation of state of a spin-
imbalanced gas at zero temperature (see Chapt 5). The equation of state of a spin-imbalanced gas at
nite temperature would reveal a super uid to normal transition line. A tri-critical point  ( ¢; ) would
set the separation between a rst- and a second-order transition| [49].

jF =1;mg =1i [119,120] andj1;0i [121], and this work could be done with our experimental setup.
We also showed the pertinence of our method for ultracold gases in optical lattices. The equation of
state of a Bose gas held in a deep lattice that we deduce fronm situ pro les directly reveals the Mott-
insulator physics and is adapted to the investigation of nite-temperature e ects. Its implementation on
Fermi gases in an optical lattice could be helpful for characterizing the solution of the three-dimensional
Fermi-Hubbard model from experiment [21|22].

The universal equation of state explored in this thesis is relevant for the description of neutron matter
at low density. We could go one step further in the simulation of matter encountered in nature. One
direction could be to investigate the rst correction to universality introduced by a nite size of the
interaction potential. By using a di erent fermionic species, or using a recent proposal for tuning the
potential range using an electric eld [253], we could simulate neutron matter in the crust of neutron stars
up to larger densities [60]. Simulating quantum chromodynamics models, such as color superconductivity
models, could also be investigated using Bose-Fermi mixtures [61] or three-component Fermi gases [254,
255], the realization of the latter being the subject or current active research [256,257]. Finally, problems
of quantum magnetism [258, 14] could be addressed using ultracold atoms in optical lattices. Among
them, a great challenge is the investigation of the repulsive Fermi-Hubbard model in dimension 2, with
tunable lling factor and interactions. The observation of d-wave super uidity within this model is an
important open issue, connected to the understanding of highF. superconductivity.
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Appendix A

Simple Thermodynamic Relations

A.1 Thermodynamics of an Ideal Fermi Gas

A.1.1 Equation of State of an Ideal Fermi Gas

In this section we brie y derive the equation of state of an ideal Fermi gasPq( ;T ), which serves as
a reference for the expressionl) of the equation of state of the unitary gas. We consider here an
ideal single-component gas in a box of volumé&/. In the grand-canonical ensemble, the grand-partition
function ( V; ;T ) factorizes over the eigenstates [259]:

Y
(V;;T)= 1+exp

ke T

The grand-potential = kgTlog = E TS N = PyV thus reads:

X
= ke T log 1+exp

ks T
z, 0 X 1

= kgT d ()log@ A (A1)
0 1+exp

kg T

where ()= V m3:2:(p 2 2-3) P~ is the density of states for a single spinless particle. Equation[ (Al1)
also applies for a multicomponent ideal gas or for a trapped ideal gas, with the appropriate density of
states. After integration by parts, one obtains the equation of state of the ideal Fermi gas:

—Z
1 2m ¥2°1 3=2
Po(iT) = 52 = d (A-2)
0 1+exp KT
z 1 3=2
S L - (A.3)
as (T) 3 0 l+texp o+ e
ke T =k gT
= fg_, e™ 8
(M) 7
after introducing the variable u = =kg T, the thermal De Broglie wavelength 45 (T) = P 2 ~2=mkgT.

Expanding in a series ofz, fs-, can be expressed using the Polylogarithm function of orde5=2

(see FigiA.1.]a):
5 X A
fs=x(z) = PolyLog E; z = (1 ﬁ: (A.4)
n=1
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Figure A.1: (a) Solid line: equation of an ideal Fermi gasfs-»( )= Po(;T )=ks T dB3(T), as a function
of 1. The dashed straight line is the equation of state of a Boltzmann ga®s ( ;T )=ks T dB3(T) = L
(b) Solid line: Equation of state of an ideal Fermi gas expressed aBy( ;T )=Py(; 0). The dashed line
is the low-temperature quadratic temperature dependence, given by the rst term of the Sommerfeld

expansion [A.8).

In our study of the thermodynamics of the unitary gas we rather use the inverse fugacity = e 8T,
Using this variable, the equation of state of an ideal gas reads:

. ksT .
Po(;T )= me:z( b: (A.5)

A.1.2 High- and Low-Temperature Expansions

Several physical quantities, such as the virial coe cients, will be extracted from our data by tting the
high- and low-temperature asymptotic behaviors of the equation of state, and by comparison with the
case of an ideal gas. We thus remind in this section the asymptotic behaviors of the equation of state of
an ideal gas.

The high-temperature expansion is explicitly given by equation ), as an expansion oPg in powers
of ! 1. The equation of state of a classical Boltzmann gas is equal to (see .1a):
kg T 1.
B
Therefore the termsn > 1 in the series account for the Fermi pressure due to the quantum statistics.

At low temperature, the pressure of a Fermi gas tends to a non-zero value, the so-called Fermi Pressure.

Pe(;T)=

Replacing in (A.2) the Fermi-Dirac distribution by a Heaviside function ( ), we obtain:
. 1o2m o,
Po 0= 157 = :

Finite-temperature deviations are given by the Sommerfeld expansion. Using the variable = ( )=ks T
in (A.2}, we obtain:

3=2 Z1 kg T

1 2m -
PO(,T) PO(, O): p j kBT 3=2 L dV l+ —V ]_+eV

3=2 1

(v (A6
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where we have extended the integral tol , introducing an exponentially small error. Remarking that
1=1+¢) 1= 1=(1+ e V), we can write (A.6) as:

" #
= Z _ _
_ _ 1 2m *? a1 1 ke T 72 ke T 372
PO(,T) Po(vo)zﬁ j kBT o dV1+ev 1+7V 1 —YV
(A.7)
The last term in (A.7) can then be expanded in power ofkg T= :
|
x ke T 2" 3 4y
Po(;T) Po(; 0)= Po(; B wh = :
o(z;T) Po(; 0) o(,O)n=l n ; where =5 o 1 dv1+eV
Up to fourth order, this expansion reads (see Fig.A.L]Lb):
!
52 KkgT 2 74 kgT *
T)= ; +— — —_ — .
Po(;T )= Po(; 0) 1 8 384 (A.8)

Similarly to the high-temperature expansion, it is clear that measuring a few coe cients ; of the low-
temperature expansion does not give any information on the high-temperature physics, since vanishes
at some intermediate temperature and the expansion is no longer relevant.

A.2 Conversion between the Canonical and Grand-Canonical Equa-
tions of State of a Unitary Gas

In this section we make the correspondence between the canonical equation of state:

3 T
E(V:N;T)= =NE C=
( y N ) 5 Fg( )1 TF,
measured in [47] and the grand-canonical equation of state:
P(;T)=2Po( )h(); =e T°T;

measured in this work.

A.2.1 Conversion g( )! h()

In order to calculate h( ) from the data g( ), we need to calculate the chemical potential:

_ @F |
@NV;T ’
whereF = E TS is the free energy. Therefore we rst have to calculate the entropy:
Z
N _ dT° @E N
S(V;N;T) = T @T,, (V;N;T9)
’ z
d 0
= Nkegs() where gs()= gt
The chemical potential then reads:
Z
_ _ 37 g(9d°
Er g()=90) ¢ —

5

leading to equation (4.4) in section4.4. Finally, the pressure of a unitary gas is simply given by the exact
relation P = 2E=3V, and we obtain (4.5).
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A.2.2 Conversion h( )! g()

Expressingg( ) in terms of h( ) is simpler since the grand-canonical equation of staté>( ;T ) involves
the natural variables of the grand-canonical ensemble. The energy, density and Fermi temperature are

directly given by:
3 @P
E=_-PV;, n= —
2 @ -
leading to equations [4.6) and [(4.7) in sectior] 4.4.

2
; keTe = %(3 2n) %=,

A.3 Calculation of the Second-Order Virial Coe cient

In this section we calculate the second-order virial coe cient of a spin-balanced Fermi gas with resonant
interactions. Calculating of the partition function for a trapped gas involves a summation over discrete
eigenenergies [/5] and is therefore more simple to write than the direct calculation of the partition function
for a homogeneous gas [135]. Using local density approximation we can show that the virial coe cients are
expected to be independent of the trap ellipticity. We thus consider for simplicity the case of an isotropic
harmonic con nement. The Hamiltonian of the two-fermion problem in an isotropic trap was solved
exactly in [142]. The center-of-mass motion can be separated from the relative motion and is insensitive
to interactions. Its eigenstates are products of Fock stategny;ny;n.i along x, y and z, of energies
Enyinyin, = T (Nx+ ny+nz + %). The eigenstatesE .., of the relative motion are parametrized by the
angular momentum numbersl; m and by an additional quantum number n relative to the radial degree
of freedom. s-wave interactions only a ect the eigenstates corresponding to zero angular momentum
I = m=0. Inthe unitary limit a= 1, the eigenenergies read [142]:

Enx:ny;nz:n;l;m - Enx;ny;nz + En;I;m

_ 0 - .
- Enx;ny;nz;n;l;m ' vo;

where the E nyn.nim are the eigenstates fora = 0 and o is the Kronecker symbol. Calculating
the partition functions involved in the second-order virial coe cient by = (Z1:1 zf;l):zzl;o is then
straightforward: the center-of-mass degrees of freedom factorize in the partition function of a single
particle, which simpli es with the denominator Z;.o. Then, in the calculation of Z;.; Zf;l, the terms

with | 1 cancel, which leads to a simple expression:

1X i} o
h, = = e En 0;0=ks T e En 0.0=Ke T
2n2N
1 X
- 1 e 271 (n+1) =ke T o 2~! (n+3=2)=ks T
2
n2N

1 e 2~1=k g T
21+e 'KeT

1
| — ~I .
! 2 for ~I ke T:

Using b, = b,»,=2%72, we obtain the value of the second-order virial coe cient for a uniform gas:
bb=1= 2:

A.4 Clogston-Chandrasekhar Limit in a BCS Mean-Field Model

In this section we use a BCS mean- eld model to describe a two-component Fermi gas with arbitrary
interaction strength and spin imbalance [260), 261], providing a simple qualitative picture of this system.
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In this approach, the grand potential of this system:

"= A \j N
Xll 2IN2 X

= (x DAYy &k + % a{;k+qag;k0 q82ko8Lk
ki=1;2 k:kOq

P
where = ~?k2=2m and 1=g= m=(4 ~?a) 1=V , 1=(2 ) is the bare coupling constant, is replaced
by a mean- eld grand potential in which interactions occur only between atoms with opposite momentum
(k = k9, and interaction quartic terms are replaced with adequate mean- eld quadratic terms:

D E D E
a8 8 kank ! a8 o 8 kBuk +A, 8 oMo wBuki  &L,8) ) Py KBy

The grand potential then reads:

2 X X
= V—+ ( K i)a¥kai;k az; kal;k +’a{;ka¥; K where = = % m2; kal;ki .
k;i=1;2 k

This quadratic grand potential can be diagonalized using a Bogoliubov transformation:

2 X X
= V—+2 (k En+ (Ex i)t\%kﬁ;k;
g k k:i=1;2

AN

where ﬁ;k is the quasi-particle creation operator for species and momentum k D and Ex, = +
(x )2+ 2the associated energy (=( 1+ »)=2). is the BCS pairing gap.
For given pairing gap  and chemical potentials ;, the ground state is a product of empty states for
Ex > ; and lled states for Ex < , and the corresponding grand potential reads:

X
( 122)=(0 )+ (Ex i) (i Ex)
k;i=1;2
where () is the grand potential of the spin-symmetric con guration. Since < ;,onehas ,< <
Ex for all k, i.e. quasiparticles of specie® are never populated in the ground state.

We nally obtain the actual ground state by minimizing ( 1; 2;) with respect to . If the
minimum is obtained for 6 0, the system is super uid. In addition, if ; is larger than the single-
particle excitation gap + o = Min (Ey, extra majority atoms spontaneously appear, and the atom
density for the two species di er, i.e. the system is partially polarized.

As shown in Fig[A:Za, we can show that the gas is super uid in the BCS limit as long as

p_
= 1 2< = 2

where is the gap for = 0. This bound is the Chandrasekhar-Clogston limit [53|52], originally
expressed as the maximum magnetic eld supported by a superconductor. It can also be written as a
critical chemical potential ratio . at the super uid to normal transition:

p_
> =1 2—:
1
. . - o pP————
As > 0inthe BCS regime, the minimum of the excitation energy spectrumgy, = + ( )2+ 2
occurs atk = © 2m =~ and its value ¢ is equal to the order parameter . The gas becomes partially

The explicit expression of the Bogoliubov transform is the following:
| | |

. u \Y 4.
Bl'k = k k Lk ;. where ug =
B, « Vk Uk .«

N| =
—
=
-
N
+
N
N| -
—~
=
-
N
+
N
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Figure A.2: (a) Grand potential , normalized to the non-interacting value, as a function of = , in the
unitary limit a= 1 ,for =0 (dashed line) and =1:6 (solidline). For < 1:6 the minimum of
is obtained for > 0 and the gas is super uid (and spin-balanced). For > 1:6 , the minimum of
is obtained for =0 and the gas becomes normal. (b) Grand potential as a function of 5 j, on the
BEC side of the resonance (< 0), for =0 (dashed line) and =10 (solid line). For =0 the
gasis superuidand =4 j j. For =10 the minimum is still reached for 6 0. Therefore the gas

is super uid, butas > 2 g itis partially polarized.

polarized for ;> + or > 2 > ., i.e. for a chemical potential imbalance larger than the
Clogston limit. Therefore, in the BCS regime the super uid is never polarized.

On the BEC side of the resonance, as shown in Fig.A]2b, the spin imbalance condition can be reached
before super uidity is lost. Indeed, in the BEC regime the chemical potential is negative, hence the
minimum of the excitation energy spectrumE, = + (x )2+ 2 occurs fork = 0 and strongly
di ers from the pairing gap: o' 2=2j j. Itis then possible to polarize the gas by imposing > 2 o
and at the same time have a grand potential minimum for 6 0. Therefore on the BEC side of the
resonance the gas can be partially polarized and super uid.
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B.1 Construction of the Equation of State

B.1.1 Determination of 9

The minority global chemical potential 9 is extracted from in situ absorption images by tting the radius
R, at which minority atoms disappear, according to:

1 2p2
fm! ZR2.

A = = = = B.1
( 1R2) %ml %R% ( )

RO|INO

In practice this requires to know the behavior of n,(z) whenz ! R,. As we expect the pressure of
minority atoms to be nothing but the Fermi pressure of fermionic quasi-particles (see sectio.3), we
are entitled to use a Thomas-Fermi pro le n,(z) / (1 z?=R3)%72 around z = R; in the partially polarized
normal phase. While the size of this phase is expected to be large on the BCS side of the resonance, it
becomes very small on the BEC side of the resonance (see 5.1), and the determination df is then
rather di cult.

We tackled the issue of the determination ofR, by averaging the equation of state given by several
images without having to determine 9 for each image. The determination of 3 is then performed on
the low-noise data obtained after averaging. For simplicity reasons we rst describe the case of a gas in
the unitary limit, i.e. the interaction parameter 1, is always equal to 0. Let us consider the equation of
state h( ;) corresponding to a given image. The chemical potential imbalance varies along according
to

0 1l 252
_ 2 2m. ZZ .
=2 M2z B.2
z g %ml 3221 ( )
which leads to: )
logd ,)=logd o) log 1 2, ; (8.3)

Ri
where °= 9= 9 is the chemical potential imbalance at the bottom of the trap. In FigB.1h we plot the
data from a single image ash as a function of log 1 2z?=R? . These data are equal to the equation
of state expressed ash as a function of log(1 ), translated in abscissa by the unknown quantity
log(1 ). The data from all images corresponding to the same equation of state, we expect the data
from two di erent images to be identical, in that representation, up to a translation in abscissa. We use
this property to construct a low-noise equation of state without having to determine the value of ©°.
We start with a reference image labeleca and express the data a$ as a function of log 1 z?=R? .

Then the data from another image coincide with the one of imagea after a translation of the quantity

log(1 9 =log(1 9 log(1 9). After translation, we obtain two sets of data equivalent to
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image a. They constitute a new reference data with a larger signal-to-noise ratio. We then iterate this
procedure (see FigB.[Lb): we compare the data from a given image with the high signal-to-noise data
given by all previous images in order to t log(1 9), and then add this data to the low-noise data.

Figure B.1: (a) Data from a single image labeleda, plotted as h as a function of log 1 z2=R?
(gray crosses). (b) Data from a single image (gray crosses), plotted als as a function of log(1

9 log 1 2z2=R?% , where log(1 9) is chosen so that the data agree with the low noise data from
previous images (black dots).

We end up with a low-noise data equivalent to imagea. In Fig.B.Za we plot the pressure increase
P Po/ (h 1)n?(z) due to the minority component as a function ofz. We t the pressure increase in
the high imbalance limit with a Thomas-Fermi prole (1 z2=R3%)%72, and obtain the minority radius
R, = 0:734R;. The validity of the t for z close to R, is manifest in Fig[B.2b, where P Pq is
plotted as a function of (1  z2=R2)5=2. Using the solution of the single impurity problem at unitarity
A( 1=0)= 0:615and equation ), we obtain
0 =
a

+A 1 =0:255

2R
2R

The chemical potential ratio along the z axis ; is then calculated using ), and we obtain the equation
of state h( ;1 =0; ) plotted in Fig.5.4p.

B.1.2 Equation of State in the BEC-BCS Crossover

A similar procedure is used for the equation of state in the BEC-BCS crossover. Outside the unitary
limit, the chemical potential ratio , = ,,= ;, and the interaction parameter 1, = ~:p 2m ia vary
simultaneously along thez axis, and are related by:

r

1 z.
1 o

— 0
1z = 1

Therefore a single image provides the equation of statd( 1; ) along a line in the ( 1; ) plane. In
the image averaging process, we superpose the equations of state obtained from clouds prepared at a
given bias magnetic eld By. These images thus correspond to the same scattering length valug(B)

but the parameter $= 1  © may di er from one image to another, and the equations of state cannot

strictly speaking be superimposed. At 800 G the variation of = 1 9 between the di erent images
is the largest, about 0.1 around a mean value of 0.6. We modeled the e ect of the averaging procedure
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Figure B.2: (a) Pressure increase® Py / (h 1)(1 2z?=R?)%%2, as a function of z=R;. The crosses
are the raw data from 20 images superimposed to the imaga pressure pro le, and the black dots are
an average of 15 consecutive data. The solid line is a t of the highly polarized region with a Thomas-
Fermi pro le. (b) Pressure increaseP Py as a function of (1  z2=R3)%72, showing the validity of the
Thomas-Fermi tfor 0< (1 2?=R3)%? < 0:4.

using theoretical pro les corresponding to values of ¢ and © similar to our data. After performing the
averaging procedure described for the unitary gas, we obtain an equation of state which di ers by less
than 4% from the equation of state corresponding to the mean value of 9= 1 O, Therefore we are
entitled to average over all images of clouds prepared at the same bias magnetic eld, paying the price

of a 4% systematic error.
B.2 Amplitude of Finite-Temperature E ects
Here estimate the amplitude of the systematic error induced by a non-zero temperature in Chaptdfr|5.

B.2.1 Upper Bound on the Cloud Temperature

As rst shown in [49], the fully polarized outer rim of a spin-imbalanced Fermi gas can be used for
thermometry. Indeed, in this region the majority component forms an ideal Fermi gas, whose density
pro le is given by the Thomas-Fermi formula (see Appendix@:

2
m(z) = WPO( 12;T)
r
2 kT 9 gmlZz?
= 2387f5=2 explziz
m! 2 35 (T) kg T

In Fig.B.3|we t the majority pro le of a highly polarized gas (in the fully polarized region) with nite-
temperature proles. The dierence between the proles corresponding to di erent temperatures is
revealed in the wings of the cloud. While the temperature clearly appears to be smaller than 0.19, it

is di cult to discriminate between lower temperatures. If kg T= 2 is let as a free parameter in the t
of the outer region, we obtain most of the timeT = 0 (and sometimeskg T ' 0:05to 0:1 9, the result
depending on very ne details such as the reference image used to calculate the absorption image pro le
or the number of pixels summed for the calculation offi;(z)). In order to estimate more quantitatively
the uncertainty of this measurement, we t a zero-temperature theoretical pro le where a white noise is
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added on each pixel, with an amplitude corresponding to the signal-to-noise of our experimental data.
Depending on the noise value, the t results vary, with a mean valuekg T= ¢ = 0:03, and a standard
deviation ( ks T= 9) =0:03. We thus give the following estimate for the cloud temperature:

kB(l)T =0:03(3):
On the BCS side of the resonance, the size of the fully polarized region is smaller than in the unitary
limit or on the BEC side of the resonance. As less points are used for the t, the uncertainty is larger.
For the data taken at a bias magnetic eld By = 981 G and By = 871 G, the t of the fully polarized
shell is consistent with kg T= ; < 0:13, i.e. a large upper bound which is not su cient forour T =0
assumption. However, as described in sectioh 5.3.2, we observe a jump in the minority concentration
at the super uid/normal phase transition which indicates that the temperature is smaller than the tri-
critical point temperature Ty . As Ty exponentially decreases in the BCS limit, this bound becomes
smaller that the one given by the t of the fully polarized shell in the BCS regime.

Figure B.3: Integrated density pro le for the majority spin state n;(z) in the fully polarized region of
a very polarized gasP = 0:96 (black dots). The minority pro le is shown in gray. The lines are ts
of the data in black with nite-temperature Thomas-Fermi pro les: solid line: T= ¢ = 0, dashed line:
T=9=0:1, dotted line: T=2=0:2.

B.2.2 Systematic Error in the Normal Phase

The e ect of non-zero temperature can be estimated in the normal phase by extending the Fermi liquid
picture to a nite temperature. We showed that the pressure is well accounted for, at zero temperature,
by the sum of the Fermi pressure of bare atoms with a chemical potential ; and the Fermi pressure of
polarons with an e ective massm and chemical potential , A ;. Replacing zero-temperature Fermi
pressures by nite-temperature Sommerfeld expansions lead to the following estimate for the equation of
state at T 6 0:

, 1 2m ¥ o, 52 KkgT 2
P( 1 258 52 = T0 o1+ 8 . + (B.4)
!
1 2m ( 1) 3=2 5o 5 2 ke T 2
+ 152 = (2 A(1) 1) 1+ B8 5 Al

Using the temperature estimatekg T= ¢ = 0:03 on the BEC side of the resonance, we estimate the relative
systematic error to be less than 26, a value smaller than the systematic error induced by the image
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analysis procedure (see sectiq@.Z). On the BCS side of the resonance, we use the upper bound provided
by the tri-critical point temperature. In the BCS limit, the tri-critical temperature is approximately

equal to half the critical temperature for super uidity of a balanced mixture, given by the mean- eld
BCS result with the Gorkov correction. This asymptotic result also gives a good estimate of the tri-critical
point temperature Ty ' 0:07Tg 1 measured in the MIT group in the unitary limit [49]| and is therefore
expected to be a good estimate ofy; on the whole BCS side of the resonance. This temperature upper
bound inserted in leads to a3% systematic error on the zero-temperature pressure on the BCS side
of the resonance.

B.2.3 Systematic Error in the Super uid Phase

In the super uid phase temperature e ects are expected to be much smaller. Indeed, as explained in
section[4.7.2 on the special case of a unitary gas, low-temperature excitations in the super uid phase
are either fermionic excitations, exponentially suppressed by the gap, or Bogoliubov-Anderson phonons.
Let us estimate the amplitude of phonons black-body radiation, which is the dominant e ect at the

lowest temperatures. The speed of sound=n=m @ =@iis calculated in the BEC-BCS crossover from

the zero-temperature super uid equation of state. The phonon contribution to the pressure (see section
472): |
Pz Pomam ® et ¢
32 c '

I:)phonons( T )=2Po(;T =0)

evaluated at T = Ty , is always smaller that 2% of the zero-temperature pressure.
As a conclusion, the systematic error due to a non-zero temperature is at mos?%. Together with
the 4% error introduced by the data analysis procedure, we estimate the total systematic error to bé&%.

B.3 Padé Approximants

We give in this appendix the explicit expression of the Padé approximants used to t the experimental
data in the super uid phase.

B.3.1 Padé Approximant on the BCS side of the Resonance
On the BCS side of the resonance, rational fractions:

1t 28+ &

hBCS (€) =
= e

form a set of tting functions which tend to 1 in the BCS limit and remain nite in the unitary limit.

B.3.2 Padé Approximants on the BEC side of the Resonance

On the BEC side of the resonance, the asymptotic behavior is analytic in the BEC limit up to the
Lee-Huang-Yang expansion (see sectign 5.5.6). Therefore the latter is captured using a rational function:

hBEc (e) — 1+ 2e+ 3e2
S 1+ e
4

which remains nite in the unitary limit and is asymptotic to a straight line in the BEC limit, in agreement
with the mean- eld equation of state:
15 a

h I e 1
@ o



148

Chapter B. Technical Details in Chapter § |

The next order term is no longer analytical (see sectio6), and is captured using a more complex
Padé-type approximant:

0, O 0 0 0
hEEC (€) = 9+ 28+ Clog(1+ €+ Q€2+ Q€8
s (9= 1+ o0&
6

which remains analytical around the unitary limit and accounts for the log term in the BEC limit (see

section[5.5.6).

B.3.3 Fit Function of the Complete Data

The best estimate of the complete experimental data is provided by the coe cients listed in TablgB.1, and
is used for the calculation of other quantities, such as the canonical equation of state for the comparison
with Fixed-Node Monte Carlo data (see section 5.5.2). In Fid.B.4 we compare the experimental data
with this best t.

1 2 3 4

-1.065 0.441 -0.535 0.1418
0 0 0 0 0 0
1 2 3 4 5 6

3.74 7.92 8.29 -4.24 3.67 0.187

Table B.1: Padé-type approximants coe cients ; and P tted from our data.

Figure B.4: Equation of state hs(€) extracted from our data, compared with the best t (solid line).

B.4 Surface Tension at the Super uid/Normal Boundary of a
Trapped Spin-Imbalanced Fermi Gas

Our work relies on the validity of local density approximation. While it is expected to be valid with a
very good accuracy in most situations (see sectioh 3.5.2), it becomes inaccurate for the description of the
density pro le of a spin-imbalanced Fermi gas around the super uid to normal boundary. Indeed, local
density approximation predicts an unphysical density discontinuity. In the unitary limit, we expect the
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Figure B.5: Upper panel: Scheme of the fully polarized phase and super uid phase boundaries, without

deformation (dashed lines) and with a deformation s= = 0:9 (solid lines). Lower panel: Doubly-
integrated density di erence ny(z) without deformation (dashed lines) and with a deformation s= =0:9
(solid lines).

density jump to be smeared out over a distance on the order of the correlation length kg 1 As ke Lis
much smaller than the cloud size, the violation of local density approximation may occur in a very small
region.

However, a strong violation of local density approximation was observed at Rice university| [97]: the
super uid core aspect ratio strongly di ers from the trap aspect ratio ' 50. The density pro les are
consistent with a model in which the deviation from local density approximation is encapsulated by a
surface tension associated with the super uid/normal interface [127], 128, 129]. In this model, the grand

potential reads:
z z z

(% %9= dr Ps( 1; 2) drPn( 15 2)+ (1; 2)dS;
r2Vs rZVs S

where S is the normal/super uid boundary, Vs is the super uid core de ned as the interior of S, and
( 1; 2) is the surface tension coe cient associated with the normal/super uid interface. In the unitary
limit, dimensional analysis requires the surface tension coe cient to be written a§}

2m
(1 2= = 5§
where is a dimensionless number. The equilibrium surface minimizes the grand potential value, a
condition equivalent to the Laplace law:

Ps PN = Ril + Riz y
where R; and R, are the surface principal curvature radii. The pressure drop occurring at the phase
transition boundary shrinks the super uid core, especially in the regions of small curvature radii. In an
elongated trap, the curvature radius is smallest along the weak directiore, therefore the super uid core
aspect ratio s is smaller than the trapping potential aspect ratio ~ (see Fig[B.5).

The doubly-integrated density di erence ng(z) = N1(z) N2 (z2) is particularly suited for the observation
of surface tension e ects. Indeed, as shown in Fif.B]5mg(z) is constant in the region Rs <z <R's
if the super uid core is not deformed, while it increases withjzj when g < . Fitting an experimental
prole ngy(z), such as the one shown in Fi6, with a set of theoretical pro les calculated with s 6
we obtain an estimate of the deformation:

0:95< g= < 1

2 isequal to ¢ 1 atthe normal/super uid transition, therefore is a function of 1 only.
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The deformation is much smaller than the one observed in Rice experiment [97], despite very similar
aspect ratio and atom number values. The origin of this disagreement remains an open question. A
super uid core deformation invalidates formula (8.3) relating the doubly-integrated density pro les to
the gas pressure; the maximum deformation s= = 0:95 consistent with our data induces a maximum
5% systematic error on the gas pressure, the error being concentrated around = Rs. The shrinking
of the super uid/normal interface also shiftes the . value away from the value for a homogeneous gas.
From the maximum deformation s= = 0:95, we estimate the maximum shift to be equal to:

¢ =10 :02

This value could explain the di erence between our measurement . = 0:065(20) and the measurement
¢ =0:03(2) from the MIT group [49], where surface tension e ects are expected to be much smaller due
the larger atom number and smaller aspect ratio.
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Relaxation of the Axial Breathing
Mode

In section[6.2.5 we showed that the frequency 1 and damping ; of the in-phase axial breathing mode
are qualitatively related by a Kneser relaxation model. Both quantities can be expressed using a single
parameter, namely the relaxation time , according to:

12=(1HDy2y (! f"ii i!(! 1HD)2;

=1+ q: (C.1)

Fitting our data with a damped cosine whose frequency and damping values are given by (G.1), we obtain
the relaxation time  as a function of polarization P, and observe that (see Fig.6.p):

1 Ny

The relaxation time can be calculated above the Clogston limit using Boltzmann equation, modeling
the gas as a mixture of two ideal Fermi gases, a Fermi sea of majority atoms and a Fermi sea of polarons.
Closely related problems were studied in previous works, namely the axial breathing mode relaxation of
a spin-balanced Fermi gas [241,242,243] and the spin dipole mode of an imbalanced Fermi gas [244]. We
adapt here these calculations to the speci ¢ case of the axial breathing mode of a spin-imbalanced Fermi
gas.

At equilibrium, the distribution function for both spin component are given by the Fermi-Dirac

distribution function:
PpP=m V()

ke T '

whereT is the gas temperature. We forget for simplicity the renormalization e ects on the minority atoms
due to interactions with majority atoms. The axial breathing mode is accounted for by a dilatation in z
by a factor (L+ ), in x andy by a factor (1 =2), in p, by a factor (1+ ), and in p, and py by a
factor 1 =2):

for;p)=1 1+exp

rnty= £0 X . y .z Px . By . P
HEpO=1 =21 m=21+ ©'1 ©O=21 @©O=21+ O
fi(r;p;t) remains normalized up to second order in; . The quadrupole moment for the majority
component is given by:
Z
drd 2
= S B L= NP )

and oscillates at the axial breathing mode frequency ;.
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The relaxation for the quantity q(t) is calculated in the Boltzmann equation framework according to:

z
an  _ 1 RN RN S S < i
- 64 4mZpZ drdp:dp2dq(2p;, Pix  Piy) 2m+2m >m  2m
(Fa(r;pu;Of2(r;p2; )@ Fa(rspdi)@  fa(r;pdit)
fo(rp2it)fa(r;p3 @ fa(rpt)@ fa(rsp2;t);

wherep9 = p; + g and p§ = p, g are the outcomes of a collision between a particle of specigsand
initial momentum p; and a particle of specie?2 and initial momentum p,. The collision amplitude is
given by the unitary-limited cross section =4 =k 2, at the Fermi level for speciesl [244]. The terms
in (1 f;) account for the Pauli principle which forbids scattering towards occupied states.

As we consider the limit N, N1, we can assume that minority atoms are localized at the bottom
of the trap, with momenta p,  p;. We thus consider in a rst approach that minority atoms constitute
a set of immobile impurities at r = 0. It is then more convenient to write the collision outcome as:

pl = p=2+p=2u;

whereu is a vector of modulus 1. If we neglect the e ect of Pauli exclusion principle on minority atoms,
the integral over p, and r is straightforward and gives N:

7 4
t du
am dpy 205, P PL)f(rip1i)paF (p1); F(p1) = 2 @ fa(r= 0;p;1):

No—~
2 4~m?2pE
F (p1) represents the fraction of collisions allowed by Pauli exclusion principle for a particle initially at
momentum py.
If we forget Pauli exclusion principle also for majority atoms, and calculate the integral, we obtain a
very large relaxation rate:

The much smaller value measured in our experiment shows the importance of Pauli blocking at such low
temperatures. Moreover, it is clear that for a zero-temperature distribution at equilibrium f1 = fX(T =
0), F(p1) vanishes forp < pgi, therefore 1= = 0. We consider two contributions leading to a nite
collision probability:

The majority Fermi surface is deformed into a non-isotropic Fermi surface due to the quadrupole
excitation. We calculate the collision integrals numerically and obtain the following law:

- N2 3 i 1 3 2=3 1=3N2
-' 21— °Eg; ie. —"' 21 6N —
N, F I I (6N1) N,
where =1!,=!, "' 1=20is the trap aspect ratio, and N1 = 10° is the majority atom number. The

3 dependence extracted from our calculations was derived analytically in the case of spin-balanced
gases in|[243]. For the deformation amplitude = 0:3 corresponding to our experiment, we obtain
1=!', =30N32=N,, which is the correct order of magnitude.

Finite temperature e ects also make collisions possible (see Fig.6.10b). We calculate numerically
the relaxation rate for an undeformed and nite-temperature distribution, and obtain:
1 T ? N,

' 36 — 23(BN1) 1 ==
2 T2 (6N1) N1

The gas temperature is estimated to belT = 0:03(3)Tg 1, leading to 1=!, = 20(50)N,=Nj.
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While the amplitude  of the Fermi surface deformation is easily measured (and is found not to vary
much with polarization), the cloud's temperature is not measured and may vary with polarization, as we
expect evaporation to be more e cient for small polarizations. Therefore the e ect of temperature may
not lead to a law 1=!; / N,=Nj if T varies with P. In order to have a more precise understanding of
the relaxation process, it is thus necessary to isolate the e ect of deformation and temperature.

Our model is based on a small e ect of Pauli blocking for minority atoms. The e ect of Pauli blocking
on minority would be the freezing of motion for p, < pg2 p, where pis proportional to temperature
or related to the amplitude of the deformation . Therefore we would expect the number of atoms
involved in a collision to be reduced by a factor p=p-», and thus 1=!, / N22:3, contrary to what is
observed. Minority atoms thus appear to behave as classical immobile particles. This is probably due to
the small Fermi energy value for minority atoms.

We have shown that collisions induced by a Fermi surface deformation or a non-zero temperature
may account for the relaxation time values extracted from our data. Understanding of the dependence
1=I', |/ Ny=N; for P < P, i.e. when a super uid core is present, is clearly beyond the scope of this
appendix and remains an open question.
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Résumeé

Les gaz ultrafroids permettent d'étudier sous un angle nouveau des hamiltoniens complexes issus de la
matiére condensée, tels le modeéle de Fermi-Hubbard. Cette thése présente une nouvelle méthode de
mesure de I'équation d'état d'un gaz ultrafroid, autorisant une comparaison directe avec la théorie. Elle
repose sur une mesure de la pression a l'intérieur d'un gaz a partir de I'analyse de son imaesitu.

Nous appliquons cette méthode a I'étude d'un gaz de fermions en interaction résonnante, un gaz de
en interaction faible servant de thermométre. De maniére surprenante, aucune des théories\a corps du
gaz unitaire ne rend compte dans son intégralité de I'équation déduite de cette analyse. Le développement
du viriel extrait des données a haute température est en accord avec la résolution du probleme a trois
corps. A basse température nous montrons, contrairement & un certain nombre d'études antérieures, que
la phase normale se comporte comme un liquide de Fermi. En n, nous obtenons la température critique
de super uidité grace a une signature claire sur I'équation d'état.

Nous avons aussi mesuré la pression de I'état fondamental en fonction du déséquilibre de spin et de la
force des interactions mesure directement utile & la description de la crolte des étoiles a neutrons. Nos
données valident les simulations Monte-Carlo et sont en accord avec les corrections Lee-Huang-Yang au
champ moyen pour un super uide fermionique ou bosonique. Nous observons que, dans presque tous les
cas, la phase partiellement polarisée peut étre décrite comme un liquide de Fermi de polarons. La masse
e ective du polaron déduite de I'équation d'état est en accord avec une étude de modes collectifs.

Mots-clés: gaz ultrafroids - super uidité - thermodynamique - crossover BEC-BCS -
liquide de Fermi - polaron

Abstract

Complex Hamiltonians from condensed matter, such as the Fermi-Hubbard model, can be experimentally
studied using ultracold gases. This thesis describes a new method for determining the equation of state
of an ultracold gas, making the comparison with many-body theories straightforward. It is based on the
measurement of the local pressure inside a trapped gas from the analysis of its situ image.

We rst apply this method to the study of a Fermi gas with resonant interactions, a weakly-interacting
’Li gas acting as a thermometer. Surprisingly, none of the existing many-body theories of the unitary
gas accounts for the equation of state deduced from our study over its full range. The virial expansion
extracted from the high-temperature data agrees with the resolution of the three-body problem. At low
temperature, we observe, contrary to some previous studies, that the normal phase behaves as a Fermi
liquid. Finally we obtain the critical temperature for super uidity from a clear signature on the equation
of state.

We also measure the pressure of the ground state as a function of spin imbalance and interaction
strength measure directly relevant to describe the crust of neutron stars. Our data validate Monte-
Carlo simulations and quantify the Lee-Huang-Yang corrections to mean- eld interactions in low-density
fermionic or bosonic super uids. We show that, in most cases, the partially polarized normal phase can
be described as a Fermi liquid of polarons. The polaron e ective mass extracted from the equation of
state is in agreement with a study of collective modes.

Keywords: ultracold gases - super uidity - thermodynamics - BEC-BCS crossover -
Fermi liquid - polaron
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