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Chapter 1

Introduction

The achievement of Bose-Einstein condensation in 1995 [1, 2, 3] paved the way for the realization of
new states of matter using ultracold gases. At very low temperature, as soon as the quantum coherence
length becomes comparable to the inter-particle distance, quantum statistics plays an essential role in their
description. Despite their extremely low atom density, these gases exhibit many-body correlations that
a�ect both their microscopic and macroscopic properties. As a spectacular example, the �rst quantum
gases produced in the laboratory, namely weakly-interacting Bose gases, become super�uid when cooled
below the Bose-Einstein condensation temperature. Until 1995, the only super�uid made of bosons
observed in nature was liquid4He [4]; due to the small inter-particle distance, interactions between4He
atoms are rather complex to model and it is extremely hard to describe liquid4He from the �rst principles
of quantum mechanics. The intimate link between super�uidity and Bose-Einstein condensation thus
remains rather complex to understand [5]. The extreme diluteness of ultracold gases prepared in the
laboratory allows us to describe interactions between atoms in a very simple manner. One can then make
a clear connection between the Hamiltonian describing the system and the physical behavior of the latter.

Most properties of weakly-interacting Bose-Einstein condensates in three dimensions were investigated
in detail in recent years. For example, long-range phase coherence was directly observed by making spa-
tially separated regions of a trapped gas interfere [6], and made the observation of Anderson localization
of matter waves in a disordered potential possible [7, 8]. Super�uidity of Bose-Einstein condensates was
demonstrated through the observation of quantized vortices in a rotating cloud [9, 10, 11]. While most
observed phenomena in weakly-interacting Bose gases are well accounted for by a mean-�eld approach
developed in the 1950's [12,13], complex many-body theories are required to describe ultracold gases in
the strongly correlated regime [14]. Such gases were produced more recently, using di�erent approaches:

� The interaction strength can be varied using the phenomenon of Feshbach resonance by applying an
external magnetic �eld. While the realization of stable strongly-interacting Bose gases is prevented
by the large inelastic losses encountered when approaching a Feshbach resonance [15], Pauli exclu-
sion principle strongly inhibits inelastic losses in Fermi gases even for large interaction strengths [16].
This enabled one to produce ultracold Fermi gases in the strongly-interacting regime [17,18].

� Using periodic potentials in three directions created by o�-resonant standing waves of laser light,
it is possible to pin atoms into the wells of a periodic lattice [19, 20]. The gas is then described
by a Hubbard Hamiltonian, a fundamental model introduced in solid state physics in order to
describe a transition between conducting and insulating systems. On-site interactions, than can be
larger than the atom tunneling amplitude, induce strong many-body correlations. By varying the
optical lattice depth, a quantum phase transition between a super�uid state to a Mott insulator
state was observed using dilute Bose gases in [20]. The recent realization of ultracold Fermi gases
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in the Hubbard regime [21, 22] o�ers a unique opportunity to measure the phase diagram of the
Fermi-Hubbard model, and possibly understand its connection to high-Tc superconductivity.

� By freezing the atom motion along one or two directions using tightly con�ning potentials, it is
possible to create ultracold gases in an e�ective reduced dimensionality, a situation in which many-
body correlations are enhanced [14]. A Bose gas in one dimension, described by Luttinger liquid
theory, was �rst obtained in [23, 24], while the Berezinskii-Kosterlitz-Thouless transition of a two-
dimensional Bose gas was observed in [25, 26]. Very recently spin-imbalanced Fermi gases in one
dimension were produced at Rice [27].

The viewpoint can be reversed by considering ultracold gases as unique tools to investigate open
problems from condensed matter. Thanks to their extreme purity, the good control of the trapping
potentials used to hold the gas, and the simple description of interactions, it is possible to write down
the system's Hamiltonian from �rst principles of quantum mechanics. Reference Hamiltonians, such as
the Fermi-Hubbard model, or spin chain/ladder Hamiltonians, were proposed and extensively studied in
the �eld of condensed matter, due to their analogy with (much more complex) real condensed matter
materials. However, most of these Hamiltonians are unsolved. In addition, their numerical simulation is
practically impossible due to the exponential growth of the size of quantum systems' Hilbert space with
atom number. Using an adequate ultracold gas system, it is possible to realize these Hamiltonians in
the laboratory and directly observe their solutions. Ultracold gases thus realize an analog simulation of
physical problems, an idea initially proposed by R. Feynman in 1982 [28].

1.1 Ultracold Fermi Gases: State of the Art

Let us now introduce the �eld of ultracold Fermi gases that will be addressed in this thesis. Following
the achievement of Bose-Einstein condensation, ultracold Fermi gases were �rst produced in the regime
of degeneracy and weak interactions, and the e�ect of Fermi-Dirac statistics was identi�ed through the
observation of Fermi pressure [29, 30, 31]. Whiles-wave interactions are forbidden between fermionic
atoms in the same internal state due to Pauli exclusion principle, interactions are allowed in a two-
component Fermi gas. In the ultracold regime, they are described by a single parameter, the scattering
length a. Using the phenomenon of Feshbach resonance,a can be tuned using an external magnetic �eld
(see Fig.1.1a), making it possible to reach the strongly-interacting regime and hope to observe a BCS-type
super�uid [32]. Strongly-interacting Fermi gases were �rst produced in 2002 [17,18] and, contrary to Bose
gases, were found to be particularly stable even for very large interaction strengths, as �rst explained
in [16]. The production of degenerate and strongly interacting Fermi gases was then achieved in a several
laboratories [33,34,35,36,37,38]. Super�uidity of ultracold Fermi gases was unambiguously characterized
through the gas response to a rotation of the con�ning potential, more precisely a resistance to rotation
in the low rotation speed regime [39] and the formation of a vortex lattice for a larger rotation speed [40]
(see Fig.1.1b). Other evidence for super�uidity was provided by the observation of a critical velocity for
energy dissipation of a moving object immersed into the gas [41].

1.1.1 BEC-BCS Crossover

By varying the scattering length value across a Feshbach resonance, one observes a smooth crossover
between two limiting situations [33,34,35,36]:

� The two-body problem admits a molecular bound state when the scattering lengtha is positive,
with a binding energy Eb = � ~2=ma2. When jEbj is much larger than the gas temperaturekB T
and Fermi energy EF , the gas can be viewed as a mixture of strongly bound molecules, possibly
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Figure 1.1: (a) s-wave scattering length a (in units of the Bohr radius a0) describing ultracold collisions
between the two lowest internal states of6Li, as a function of magnetic �eld. (b) Absorption image of a
rotating strongly-interacting Fermi gas, from [40]. The observation of a vortex lattice demonstrates the
super�uid character of degenerate strongly-interacting Fermi gases.

mixed with unbound majority atoms in the case of spin population imbalance. Molecules made of
two fermionic atoms behave in this limit as points-like bosons and form in the degenerate regime a
molecular Bose-Einstein condensate [42,43,36].

� In the limit of small negative values of a, the amplitude of interactions is small. Although the
two-body problem does not admit a bound state, interactions between atoms are strongly modi�ed
by Pauli exclusion principle which forbids scattering towards states already occupied by other
atoms. E�ective bound states, the so-calledCooper pairs, become stabilized by this many-body
behavior [44], and the gas forms a Bardeen-Cooper-Schrie�er super�uid at very low temperature
[45]. However, this pairing is not very robust and the critical temperature for super�uidity Tc �
TF exp(� �= 2kF jaj) is exponentially small for weak interactions (kF is the Fermi momentum, TF is
the Fermi temperature).

The strongly-interacting regime 1=kF jaj . 1 smoothly interpolates between the bosonic and fermionic
regimes. The strength of interactions then makes the theoretical understanding di�cult.

1.1.2 `High- Tc' Super�uidity of a Fermi Gas with Resonant Interactions

By applying a magnetic �eld right at the center of a Feshbach resonance, it is possible to reach the
regime a = 1 where the interaction strength takes the maximum value allowed by quantum mechanics,
the so-calledunitary limit . In this situation super�uidity is found to be particularly robust.

The transition temperature Tc for super�uidity was �rst measured for a trapped gas in [43,46,39,47]. In
this thesis we describe the �rst measurement of the transition temperature for a homogeneous gas [47,48]:

Tc = 0 :16TF ; TF =
~2

2m
(3� 2n)2=3;

wheren is the total atom density. The critical temperature Tc being on the order of the Fermi temperature
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TF , ultracold Fermi gases constitute in a sense a high-Tc system� . The exceptional robustness of the
super�uid state was also demonstrated through the large critical velocity measured by the MIT group [41]:

vc = 0 :3vF ; vF =

r
2EF

m
;

as well as the chemical potential di�erence between the two spin components� 1 � � 2 required to break
super�uidity [49,48] (see Chapter 5 of this thesis):

j� 1 � � 2jc = 0 :18EF :

The connection with Bose-Einstein condensation was characterized by a direct measurement of the con-
densate fraction [35, 36, 47], and the importance of many-body e�ects was established through the mea-
surement of the single-particle excitation energy gap [50,51] and closed-channel fraction [38].

1.1.3 Spin-Imbalanced Fermi Gases

Super�uidity of spin-balanced Fermi gases is intimately related to pairing between atoms with opposite
spins. A new degree of freedom is provided by the possibility to prepare di�erent atom numbers in
both spin states. The �rst open question is then to understand whether super�uidity survives to spin
imbalance. This issue was addressed in the context of solid-state superconductors by Clogston [52] and
Chandrasekhar [53] in the 1960's. They predicted that super�uidity resists to a magnetic �eld (lifting
the degeneracy between the two electronic spin states) up to a critical value.

These old issues of solid state physics were �rst addressed using ultracold gases in 2006, by pioneering
works from the MIT and Rice groups [54, 55]. Both groups revealed that a spin-imbalanced trapped
gas exhibits a phase separation between a super�uid core where atoms are paired and densities are thus
equal for both species, and an external normal phase. Surprisingly, both groups' observations were not
in agreement concerning the normal phase: in Rice experiment, the normal phase was found to be fully
polarized with majority atoms, while in the MIT experiment the normal phase is split into an intermediate
shell with atoms from both species mixed together, and a fully polarized outer rim. This discrepancy has
remained unexplained up to now.

The phase diagram of spin-imbalanced Fermi gases is very rich. Exotic phases with spin-asymmetric
pairing are predicted to be stable, the most famous one being the Fulde-Ferrell-Larkin-Ovchinnikov state
in which the order parameter is modulated in space [56, 57]. Among other proposals, we mention a
gapless (`breached pair') super�uid state [58], or a state with deformed Fermi surfaces [59]. However
these states are expected to occupy a very small part of the phase diagram and their observation may
require a substantial experimental e�ort.

1.2 Issues and Perspectives Addressed in this Thesis

1.2.1 Universal Thermodynamics of an Ultracold Fermi Gas

The thermodynamic equation of state is a key quantity for the macroscopic description of ultracold Fermi
gases, and its determination from experiment would constitute a benchmark for many-body theories. We
will see that expressing the equation of state in the grand-canonical ensemble is more convenient for
its investigation in the laboratory. In this ensemble, the equation of state is written as a relationship

( V; � 1; � 2; T; a) between the grand-potential 
 , the volume of the systemV, the chemical potentials
� 1, � 2 of both spin states, the gas temperatureT, and the scattering length a describing low-energy

� The mechanism for super�uidity in high- Tc materials from condensed matter, for which interactions are expected to be
repulsive, is probably very di�erent from the one in ultracold Fermi gases, where interactions are e�ectively attractive.
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collisions. The grand-potential being related to the pressureP through, 
 = � PV, the equation of state
can also be written using intensive variables only, as:

P(� 1; � 2; T; a):

The correspondence with equations of states expressed in other statistical ensembles is provided by
Legendre transforms.

It is believed that for Fermi gases with short-range interactions, such as the6Li gases addressed in
this thesis, the scattering length a is su�cient to account for all interaction e�ects. Therefore the precise
nature of the fermionic species plays no role in the equation of state. Hence the relationP(� 1; � 2; T; a)
is expected to beuniversal, in the sense that it is identical for all systems of fermions with short-range
interactions. Its determination using ultracold gases is thus directly relevant to describe another similar
system, namely neutron matter in the outer crust of neutron stars. Indeed, neutron matter is made
of a mixture of the two spin states of neutrons, whose interactions are also short-range and in the
cold-collision regime, captured by a scattering lengtha = � 18:6 fm (at least in the low-density regime
n � 1041 m� 3y) [60]. As the Fermi temperature TF > 1011 K is much larger than the temperature
T � 106 K, temperature e�ects are negligible in neutron matter. The measurement of the equation of
state P(� 1; � 2; T ' 0; a) that we describe in Chapter 5 is thus directly relevant to the description of the
crust of neutron stars. We also mention analogies with other quantum many-body systems such as heavy
nuclei and dense QCD matter [61].

1.2.2 Previous Thermodynamic Studies

The measurement of the equation of state of an ultracold gas aims to provide a benchmark for many-
body theories. However, most calculations are made on homogeneous systems while ultracold gases
prepared in the laboratory are held in a trapping potential and are thus inhomogeneous. However, the
comparison can still me made in most situations using thelocal density approximation: The cloud size,
imposed by the trap sti�ness, is usually much larger than the characteristic length scale over which the
cloud feels a variation of the trapping potential V (r ). Therefore the gas can belocally described by the
equation of state of a homogeneous gas. While the temperatureT is uniform over the cloud, the trapping
potential induces a slow pressure variationr P = � (n1 + n2)r V , according to the laws of hydrostatics.
Equivalently, the mechanical equilibrium can be written as:

� i (r ) = � 0
i � V (r ); (1.1)

� 0
i being the global chemical potential for speciesi (i = 1 ; 2).

In the �rst thermodynamic studies of ultracold Fermi gases, the equation of state of the whole trapped
gas was measured. For example, an equation of state of a trapped Fermi gas with resonant interactions
was obtained in [62, 63], relating the total energy to the total entropy. In [64] was performed a pre-
cision measurement of the frequency of collective modes of a trapped gas in the BEC-BCS crossover.
In both cases the comparison with theory requires to integrate theoretical equations of state over the
trap. This makes the comparison indirect, and tends to hide possibly small di�erences between theories.
Discriminating between a mean-�eld BCS theory of the BEC-BCS crossover and advanced Monte-Carlo
calculations [65, 66, 67] thus required to reach an excellent accuracy in the measurement of collective
mode frequencies [64]. Finally, the trap averaging smears sharp features in the equation of state, and the
super�uid/normal phase transition is almost invisible in [63].

ySince free neutrons are unstable, neutron matter must be viewed as a model system in the large dilution limit.
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1.2.3 Measurement of the Local Pressure Inside a Trapped Gas

In this thesis we developed a new method for directly measuring the equation of state of a homogeneous
gas. Since the gas is locally homogeneous in the local density framework, measuring local properties
inside a trapped gas directly gives access to the equation of state of the homogeneous gas. This idea was
�rst exploited in [68]: an Abel transform of in situ images of a trapped gas was used to probe the local
atom density. Due to the dramatic decrease of the signal-to-noise ratio induced by the Abel transform,
the equation of state deduced from this procedure is very noisy, despite the large atom numbers reached
in the MIT experiment. This shows the apparent di�culty to probe local quantities inside a trapped gas.

During my PhD, I established, simultaneously to [69], a simple relation between the local pressure
inside a trapped gas and the optical density of anin situ absorption image (see Fig.1.2):

P(� 1z ; � 2z ; T) =
m! x ! y

2�
(n1(z)+ n2(z)) ; where � iz = � 0

i �
1
2

m! 2
z z2 and ni (z) =

Z
dx dy n(x; y; z):

(1.2)
We mention that the idea of this relation can also be found in an earlier work [70]. Equation (1.2)
states that the pressure on thez axis is obtained by integrating along x the cloud absorption image,
taken along y. Here ! u (u = x; y; z) is the trapping frequency along u. Contrary to the Abel transform
process, integrating alongx increases the signal-to-noise ratio and the pressure pro�le alongz is thus
obtained with a low noise. As soon as the gas temperatureT and global chemical potentials � 0

i are
determined, each pixel rowz provides an experimental valueP(� 1z ; � 2z ; T) of the equation of state of
the homogeneousgas. The analysis of a single image of a trapped gas thus leads to a large number of
independent determinations of the equation of state. By collecting the data from all pixel rows of several
images, one obtains after proper averaging a very-low-noise equation of state [48, 71]. This is a great
improvement over the studies of the thermodynamics of trapped gases, for which one experimental run
is required to obtain one point.

The main line of this thesis is the implementation of a new method for determining the grand-canonical
equation of state of a homogeneous Fermi gas, making use of equation (1.2).

1.3 Outline of this Thesis

1.3.1 Chapter 2: Experimental Setup

We �rst describe the experimental setup producing ultracold 6Li Fermi gases. Our setup is based on the
combined use of7Li and 6Li species. 6Li atoms are sympathetically cooled by forced evaporation of the
7Li component in a magnetic trap. This allows us to transfer a large number of6Li atoms in an optical
dipole trap, where a very e�cient evaporation is performed on a mixture of the two lowest internal states,
with resonant interactions. Thermometry is performed by keeping a small amount of7Li atoms.

1.3.2 Chapter 3: Measuring the Equation of State of a Homogeneous Ultracold
Gas

The method for determining the equation of state of a homogeneous ultracold gas is presented in Chapter
3. We demonstrate equation (1.2) and discuss its validity range. We then illustrate the power of our
method by applying it to Bose gases in well understood regimes.

Using a singlein situ image from [31], we obtain the equation of state of a weakly-interacting Bose gas,
from the classical to the condensed regime. It reveals the characteristic features of a weakly-interacting
Bose gas, namely a bosonic bunching behavior in the normal phase, a Thomas-Fermi pressure in the
Bose-Einstein condensate, and a condensation threshold� = 0 .
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Figure 1.2: Local pressure measurement scheme: a two-component ultracold gas is imagedin situ along
y. Further integration along x provides the doubly-integrated pro�les for both components, n1(z) and
n2(z). The gas pressure along thez axis is then obtained using equation (1.2).

We also apply the method to Bose gases in an optical lattice, in the limit of large lattice depth, using
experimental data from [72]. The grand-canonical equation of state deduced from this analysis directly
reveals a Mott-insulator behavior: sites are occupied by an integer number of atoms, whose value depends
on the chemical potential value. We show that representing the experimental data in terms of an equation
of state is suited for investigating �nite-temperature e�ects.

1.3.3 Chapter 4: Thermodynamics of a Strongly-Interacting Fermi Gas

In Chapter 4 we study the thermodynamics of a Fermi gas with resonant interactions [48]. For simplicity
reasons we restrict our study to a spin-symmetric con�guration. Applying our method requires to inde-
pendently measure the gas temperature, which is notoriously di�cult in the case of strong interactions.
Inspired by the Innsbruck group [73], we implemented a new thermometry for strongly-interacting gases:
the temperature is measured on a small amount of weakly-interacting7Li atoms, immersed in the 6Li
cloud and at thermal equilibrium with it.

The equation of state deduced from our data enables us to make the �rst direct comparison with
many-body theories. Surprisingly, none of them accounts for our observations over their full temperature
range. In the high-temperature regime, we extract several coe�cients of the virial expansion. They
agree with the exact resolution of the three-body problem [74,75] and provide a benchmark for a future
resolution of the four-body problem. In the low-temperature regime, which is the most di�cult to handle
from theory, our data reveal an unexpected feature: above the critical temperature for super�uidity, the
normal phase is accurately described as a Landau Fermi liquid. This observation is in disagreement with
the expectations of several many-body theories, which predict that pair correlations should signi�cantly
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modify the Fermi liquid picture. Finally, we observe a clear thermodynamic signature of the super�uid
transition, occurring at a critical temperature:

Tc

�
= 0 :32(3);

quantitatively con�rming the `high- Tc ' character of Fermi gases with resonant interactions.

1.3.4 Chapter 5: Ground State of an Attractive Fermi Gas: Phase Diagram and
Equation of State

In Chapter 5 we describe the measurement of the equation of stateP(� 1; � 2; T ' 0; a) of a two-component
Fermi gas in the BEC-BCS crossover, in the limit of very low temperatures [71].

In particular we obtain the equation of state in the spin-symmetric con�guration, a situation where
the gas is super�uid. As explained above, this equation of state is directly relevant to the description
of the outer crust of neutron stars. Our observations validate Fixed-Node Monte-Carlo simulations in
the entire BEC-BCS crossover [65, 66, 67], and are in agreement with the Lee-Huang-Yang corrections
to mean-�eld for low-density bosonic and fermionic super�uids. These exact results, obtained 60 years
ago [76,77,78], had only been indirectly observed up to now [64,79].

The equation of state P(� 1; � 2; T ' 0; a) also addresses the physics of spin-imbalanced Fermi gases.
Before our work, it was believed that the di�erence between the observations in Rice and MIT experiments
(see above) was due to di�erent atom numbers and trap aspect ratios. We prepared spin-imbalanced Fermi
gases in a con�guration close to Rice experiment and our observations unambiguously con�rm the ones
of the MIT group, namely the existence of a normal phase where atoms of both spin components are
mixed, with di�erent densities. We show that the normal phase can be accurately described as a Landau
Fermi liquid, despite strong interactions: minority atoms are dressed in quasi-particles, the so-called
Fermi polarons, with renormalized characteristics such as an e�ective mass [80,81,82]. The normal phase
is then merely described, in most of the parameter range, as a mixture of ideal Fermi gases of majority
atoms and Fermi polarons. The polaron e�ective masses extracted from our data are in agreement with
the most advanced theories [83,84,85,86].

Finally we characterize the quantum phase transition between the super�uid and normal states, in
good agreement with Fixed-Node Monte-Carlo calculations [81,67].

1.3.5 Chapter 6: Axial Breathing Modes of a Spin-Imbalanced Fermi Gas

In Chapter 6 the e�ect of spin imbalance is addressed using a di�erent technique, namely the study of
axial breathing modes. When the two spin components oscillate in phase, we observe a smooth crossover
between a hydrodynamic oscillation when the super�uid core is large, and a collisionless behavior for
highly polarized gases. This reveals the amplitude of relaxation phenomena occurring in Fermi gases, in
the di�erent polarization regimes. For very large polarizations, we also observe an out-of-phase collective
mode, associated with the oscillation of Fermi polarons inside the majority Fermi sea. We extract from
the frequency of this oscillation the polaron e�ective mass, in agreement with the value deduced from the
equation of state.

In conclusion, we present the most important open questions that could be answered by extending
the equation of state measurement to other parameter domains, such as �nite-temperature e�ects in the
BEC-BCS crossover and with spin imbalance. This method will also be applied in our experiment to
strongly-interacting Bose gases using Feshbach resonances with the7Li isotope.



Chapter 2

Experimental Setup

In this chapter we describe the experimental setup used for our study of ultracold Fermi gases. After
a short explanation of the global strategy used for producing degenerate Fermi gases, all stages will be
depicted one by one. The �rst stages of the experiment were already described in detail in L. Tarruell's
thesis [87]; therefore I will focus on the performances of our setup reached in these stages, and then give
a more extensive description of the optical trap and atom imaging system.

2.1 Global Description of the Experimental Setup

A �rst version of the 6Li- 7Li experiment was constructed and operated between 1997 and 2006, from the
�rst realization of degenerate Fermi gases to the �rst studies of the BEC-BCS crossover. At the beginning
of this PhD (in the fall of 2006), the construction of a second-generation setup was under way, in order
to realize more complex experiments. The general experimental scheme, based on the combined use of
6Li and 7Li, was preserved, and the improvement of several stages in the experiment led to a 10-times
improvement of the atom number in the quantum-degenerate regime, as well as a 4-times increase of the
experiment cycling rate. In addition, the geometry of the �nal trap was completely modi�ed, allowing
the implementation a new image analysis technique speci�c to elongated traps.

Our experiment is based on an intermediate stage where atoms are transfered from a magneto-optical
to a magnetic Io�e-Pritchard trap, and cooled using radio-frequency-induced forced evaporation (see
Fig.2.1). Evaporation is performed on a spin-polarized7Li cloud with a much smaller amount of 6Li,
the latter being progressively cooled by contact with the7Li component. This stage allows us to prepare
up to 5 � 106 6Li atoms at a temperature low enough to yield a 100%-e�cient transfer into an optical
dipole trap. This number is several times larger than the ones obtained in experiments where6Li atoms
are directly transfered from a magneto-optical trap to an optical dipole trap. We then make a 6Li
mixture in the two lowest internal states, in a bias magnetic �eld corresponding to resonant interactions.
Thanks to the very large collision rate, an e�cient evaporation is performed by lowering the optical trap
power. The super�uid transition is reached with more than 2 � 105 atoms in each spin state, and we
obtain, after a deeper evaporation, clouds containing up to105 atoms in each spin state at a temperature
T=TF = 0 :03(3). Our setup also enables us to produce spin-imbalanced Fermi gases in the degenerate
regime.

In addition, our setup gives us the possibility to use7Li in the �nal experiments on degenerate Fermi
gases. In Chapter 4, we thus use a small amount of7Li, left inside the 6Li cloud, as a thermometer, solving
the notoriously di�cult issue of strongly-interacting gases thermometry. Furthermore, broad Feshbach
resonances in7Li makes it a versatile tool for future experiments, such as the study of Bose-Einstein
condensates in the strongly-interacting regime or Bose-Fermi mixtures.
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Figure 2.1: Scheme of the main steps for producing degenerate Fermi gases. (a) In the MOT stage,6Li
and 7Li atoms are trapped using a combination of a quadrupole trap and three pairs of light beams. (b)
They are then transfered into a quadrupole trap and moved into a small appendage of the cell, using two
pairs of coils in anti-Helmoltz con�guration. (c) In a tight Io�e trap, 7Li is evaporated up to 100� K. (d)
6Li atoms are then transfered into a hybrid magnetic-optical trap (bottom-right), and further evaporation
is performed on a mixture of the two lowest internal states at 834 G. A small quantity of 7Li atoms can
be kept for thermometry.

2.2 7Li- 6Li Magneto-Optical Trap

The �rst stage of the experiment is the simultaneous trapping of 7Li and 6Li clouds with large atom
numbers in a magneto-optical trap (MOT). We �rst describe the speci�cities of our laser system, and the
performance of the Zeeman slower and MOT.

2.2.1 Laser System

Compared with the previous setup, we completely changed the laser system. Due to the very small
Zeeman structure in the 22P3=2 excited states, Lithium MOTs require large laser powers for both cooling
and repumping transitions. Instead of concentrating all frequencies emitted by Master lasers into a single
tapered ampli�er [88], we attributed one slave diode laser per frequency, delivering an intermediate power.
We use low-cost laser diodes manufactured for DVD players (HITACHI HL6545MG), delivering up to 180
mW of laser power. These diodes are heated up to 70� C in order to bring the laser wavelength at 671 nm.
This tends to increase temperature �uctuations and a new design of well thermally isolated boxes was
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made. The power available for each frequency allows us to use optical �bers as spatial �lters between the
laser diodes and the MOT. This strongly increases the long-term stability of the MOT alignment, and
enables one to maintain all optical elements before the �bers optimally aligned without having to realign
the other components. In addition, since the replacement of a single diode does not require to realign
the MOT stage, we compensate the loss of laser power, due to the� 70% �ber coupling e�ciency, by
increasing the current driving the diodes much higher that the constructor's speci�cations, paying the
price of a lifetime reduced to � 3 months. In the end, we typically obtain about 50 mW of laser power
directly available for the MOT, in a nearly perfect gaussian mode. These diodes are also used as Master
lasers, emitting 40 mW of laser power scannable over 1 GHz, as well as for Zeeman slowing. The large
number of lasers (15 lasers) makes the run-to-run laser stability relatively poor. However, using a single
type of diode strongly simpli�es the laser maintenance and makes our setup very �exible.

2.2.2 Zeeman Slower

We use a spin-�ip Zeeman slower for the MOT loading from an atomic beam. The atomic beam is emitted
by an oven containing natural liquid Li (with a 7.5 % 6Li fraction). The Zeeman slower is characterized by
a large capture velocity � 1100m/s, and �nal magnetic �eld of 200 G in the MOT region, so that slowing
laser beams do not a�ect the magneto-optical trap. The large laser power available allows us to use beams
with a large diameter (3 cm in the MOT region), and an intensity � 2 I s, where I s ' 2:5 mW/cm 2 is
the saturation intensity for the S � P lines. With these favorable characteristics, we obtain a large �ux
of about 109 7Li atoms/s (and 108 6Li atoms/s), loaded into the magneto-optical trap.

2.2.3 Dual Species Magneto-Optical Trap

Slowed atoms are then captured into a magneto-optical trap, represented in Fig.2.2. The characteristics
of the magneto-optical trap are listed in Table 2.1. As the atoms are the transfered into a deep magnetic
trap, the MOT optimization aims to increase the atom number, regardless of the MOT temperature or
maximum density. Therefore we use a relatively small quadrupole �eld gradient, of amplitude 24 G/cm
in the strong direction, in order to minimize inelastic losses. Laser beams are also far detuned to the red
in order to increase the capture velocity. The laser beams have a 2.5 cm diameter and a laser intensity
I ' I s, values for which the trapped atom number is maximum. We typically trap 1010 7Li atoms at
a temperature of 4 mK. The 6Li MOT is strongly a�ected by the presence of 7Li due to light-assisted
inelastic 6Li- 7Li collisions. We thus only trap up to 4 � 108 6Li atoms, while up to 8 � 108 atoms can
be trapped when 7Li laser light is switched o�. We also mention that the 6Li cooling light induces a
25 %loss of7Li atoms, due to the proximity of several hundred of MHz with 7Li D1 transitions, inducing
light-assisted inelastic collisions.

Full atom loading is achieved in about 30 s. Before transferring the atoms into a magnetic trap, we
perform a dynamical compressed-MOT phase: the repumping light intensity is ramped to zero in 8 ms
while the cooling light is brought closer to resonance. The cloud's temperature is decreased by a factor 4,
down to 1 mK, at the price of a 35% atom loss. At the end of this stage, atoms are spread in all Zeeman
states of the lowest hyper�ne manifold.

In the next section, we describe the transfer into a purely magnetic trap and the radio-frequency
forced evaporation.

2.3 Sympathetic Cooling in a Magnetic Trap

The magnetic trap stage aims at producing relatively large6Li clouds at a temperature low enough to
ensure a complete transfer into an optical dipole trap. A more e�cient cooling scheme can then be used,
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Figure 2.2: Scheme of the magneto-optical trap. The quadrupole �eld is created by two pairs of coils in
anti-Helmoltz con�guration, in order to position the zero-�eld point in the middle of the laser beams (in
red).

7Li MOT 7Li CMOT 6Li MOT 6Li CMOT

Cooling beam intensity (I s ' 2:54 mW/cm 2) 1.0 1.0 1.0 1.0
Cooling beam detuning (� ' 5:87 MHz) -6.5 -3.3 -5.5 -1.7
Repumping beam intensity (I s) 1.0 0 1.0 0
Repumping beam detuning (� ) -5.5 -4.7 -2.5 -1.7
Atom number 1010 6 � 109 4 � 108 2:5 � 108

Temperature (mK) 4.2 1.0 4.2 1.0

Table 2.1: Characteristics of the 7Li- 6Li magneto-optical trap, in steady state and at the end of the
dynamic CMOT phase.

taking advantage of the Feshbach resonance relative to6Li atoms in the lowest internal states. In this
section we describe the sympathetic cooling of6Li atoms with 7Li, the latter being cooled using forced
evaporation.

2.3.1 Transfer into an Io�e-Pritchard Trap

After the compressed MOT phase, we optically pump the atoms into the stretched statesjF = 2 ; mF = 2 i
for 7Li and

�
�F = 3

2 ; mF = 3
2

�
for 6Li. The 7Li- 6Li mixture is loaded into a magnetic trap created by the

quadrupole �eld previously used for the MOT stage, and ramped up to much larger magnetic �eld
gradients. In these internal states, the7Li- 6Li mixture is stable against spin-exchange inelastic collisions.
Due to the high MOT temperature and the small scattering length valuea77 = � 27a0 describing collisions
between7Li atoms, the achievement of an e�cient evaporative cooling requires the transfer of the atoms
into a tight Io�e-Pritchard trap, as well as an additional in situ Doppler cooling stage.

Optical Pumping and Transfer into a Quadrupole Magnetic Trap

After the compressed MOT stage, atoms are spread into all levels of the lowest hyper�ne manifold.
We rapidly switch o� the MOT quadrupole �eld and create a 10-G bias magnetic �eld. After waiting
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100 � s for the magnetic �elds to stabilize, we send optical pumping beams onto the atoms along the bias
�eld direction, and during 300 � s. 7Li atoms are mostly pumped in the jF = 2 ; mF = 2 i state using a
combination of a hyper�ne optical pumping beam on the F = 1 ! F 0 = 2 D2 line, and a Zeeman optical
pumping beam on theF = 2 ! F 0 = 2 D1 line, both beams being circularly � + polarized. The Zeeman
optical pumping beam is far detuned from the absorption lines in order to address all atoms despite the
large cloud's optical density for resonant beams. The MOT quadrupole magnetic �eld is then ramped
up to a maximum gradient of 335 G/cm. After waiting for inelastic collisions with atoms in other spin
states, we are left with about 50% of the 7Li atoms initially held in the compressed MOT. For 6Li atoms
we only use a hyper�ne optical pumping beam, which is actually the same than the Zeeman optical
pumping beam for 7Li due to proximity of 7Li D1 lines and 6Li D2 lines. The transfer e�ciency from the
compressed MOT to the magnetic trap is about 35% for 6Li atoms.

Magnetic Transport into the Science Region

The vacuum cell was designed with a small appendage in order to be surrounded with a small Io�e-
Pritchard trap, providing a very tight con�nement (see Fig.2.4). Atoms are transfered from the MOT re-
gion to the appendage using two pairs of coils in anti-Helmoltz con�guration (see Fig.2.3). The quadrupole
zero-�eld point is displaced in 100 ms by ramping down the current in the lower coil pair, while ramping
up the current in the upper coil pair. In the previous version of the experiment the appendage size was
too small and 90 % of the atoms collided with the appendage walls and were lost during the transfer.
By increasing the appendage inner size from 3 mm to 5 mm, the transfer e�ciency was brought to50 %.
The choice of the appendage size results from a compromise between the increase in transfer e�ciency
and the decrease in the Io�e trap con�nement when the appendage size is increased.

Figure 2.3: Scheme of the magnetic transport. The orange and blue pairs of coils are in anti-Helmoltz
con�guration.

Io�e Trap Loading

Atoms are then transfered from a quadrupole trap to an Io�e-Pritchard trap (see Fig.2.4). Due to the
very di�erent magnetic �eld con�gurations for each trap, it is not possible to make an adiabatic transfer
from the quadrupole to the Io�e trap. We minimize atom losses during the transfer by keeping as much
as possible a tight con�nement in the direction where the cell walls are close to the atomic cloud. In the
end, we end up with up to 3 � 108 7Li atoms and 2 � 107 6Li atoms in the Io�e trap.
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Figure 2.4: Scheme of the Io�e-Pritchard trap. The radial con�nement is provided by Io�e bars in
quadrupole con�guration (in brown), the axial curvature by the small green coils, and the bias �eld is
compensated by the large blue coils in Helmoltz con�guration. The yellow coils are used for a �ne control
of the bias magnetic �eld.

2.3.2 Radio-Frequency Evaporation

In this section we describe the sympathetic cooling of6Li atoms using forced evaporation of the7Li
component.

Decrease of the Scattering Length at Finite Momenta

The atom cloud is initially held, at a temperature T ' 0:9 mK, in a decompressed Io�e trap with a
large bias �eld B0 ' 500 G, the trap frequencies being! r =2� = 198 Hz in the radial direction and
! z=2� = 66 Hz in the axial direction. The collision rate, � c � 0:5 s� 1, is too small for initiating the
evaporation due the small scattering length valuea77 = � 27 a0.

By decreasing the bias magnetic �eld, the trap frequencies can be strongly increased. However, the
collision rate is not increased due to particular scattering properties of7Li in the mK temperature range.
The scattering cross-section between two colliding atoms has a dependence on the relative momentumk
given by [89]:

� (k) = 8 �a 2
77

1 + a77r ek2

1 + ( ka77)2 ;

in the low-k limit. r e is the potential e�ective range, on the order of the Van-der-Waals rangeac =
(2mr C6=~2)1=4 ' 2:6a77 [90]. Due to the negative sign of the scattering length, the factor1 + a77r ek2

decreases withk. The exact calculation of � (k) reveals that the cross section actually cancels for a relative
energy of6:6 mK [90]. This leads to a strong decrease of the mean collision rate inside a trapped gas at
thermal equilibrium: at 2 mK, the scattering rate is decreased by a factor' 4 with respect to the collision
rate corresponding to � = 8 �a 2

77. The temperature increase induced by an adiabatic trap compression
accentuates this e�ect and makes the compression ine�cient for increasing the collision rate. Therefore
it was necessary to implement anin situ Doppler cooling stage before compressing the trap.
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In Situ Doppler Cooling

We send during 2 s a weak (' 10 � W/cm 2) and circularly polarized light beam along the bias magnetic
�eld direction, detuned to the red of the closed jF = 2 ; mF = 2 i!j F 0 = 3 ; m0

F = 3 i transition for 7Li � .
The large magnetic �eld value provides a small magnetic �eld direction dependence with atom position,
and brings atomic transitions towards other states, induced by slight laser polarization imperfections,
far o� resonance. Therefore we do not excite other states thanjF 0 = 3 ; m0

F = 3 i . Doppler cooling, after
optimization of the cooling beam intensity and detuning on the �nal collision rate, reduces the cloud's
temperature by a factor 5, with a moderate 30% atom loss. After a trap compression, the collision rate
is increased by a factor� 20 compared with the collision rate without Doppler cooling, thanks to the
temperature reduction and the subsequent scattering cross-section increase.In situ Doppler cooling thus
appears to be a very e�cient cooling stage, whose use is now generalized to other atomic species with
high-temperature magneto-optical traps, such as Cr [91], Ne [92] or He [93].

7Li Evaporation

We �rst describe the evaporation of a pure 7Li cloud. 7Li atoms are held in a tight Io�e trap whose
frequencies are! r =2� = 3 :5 kHz and ! z=2� = 80 Hz. They are cooled using radio-frequency evaporation
on the jF = 2 ; mF = 2 i!j F = 1 ; mF = 1 i hyper�ne transition. The mean collision rate remains almost
constant, at a value� c ' 40s� 1y. This shows that the evaporation is at the runaway threshold. The evap-
oration trajectory, plotted in Fig.2.5, reveals an e�cient evaporation up to Bose-Einstein condensation,
where the cloud becomes unstable because of the negative scattering length valuea77 = � 27 a0. Thanks
to better starting conditions, the new version of the experiment enables us to produce larger clouds at a
given phase-space densityn� 3

dB (T). We were thus able to reach the Bose-Einstein condensation threshold
with ' 5 � 104 atoms, without having speci�cally optimized the evaporation ramp.

Figure 2.5: Trajectory of 7Li forced evaporation: temperature T as a function of atom number N7, or
peak phase space densityn� 3

dB (T) as a function of N7. The dashed line indicates the evaporation point
reached with a maximum 6Li atom number N6 = 5 � 106 (see section 2.3.2).

� By monitoring the Doppler cooling beam absorption, we obtain a convenient diagnosis of the 7Li atom number before
radio-frequency evaporation, allowing a control of the stability of the �rst stages of the experiment.

yat least up to very low temperatures close to degeneracy, a regime which is not addressed when we use 7Li for 6Li
cooling.
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6Li Sympathetic Cooling

Until the end of evaporation, the 6Li atom number N6 is much smaller than the 7Li atom number N7.
While spin-polarized 6Li atoms do not collide with each other, the interspecies collision rate (per6Li
atom) is comparable to the 7Li- 7Li collision rate (per 7Li atom), since the scattering length describing
6Li- 7Li collisions, a67 = 41 a0, is on the order ofa77 = � 27 a0. The 6Li component's thermalization with
7Li is thus as e�cient as the 7Li self-thermalization. Therefore 6Li atoms remains at thermal equilibrium
with 7Li atoms during evaporation.

Sympathetic cooling becomes ine�cient when N7 becomes comparable toN6, and the �nal temper-
ature reached after full 7Li evaporation thus depends on the6Li atom number. With the maximum
6Li atom number N6 = 5 � 106 we are able to bring at this stage, the �nal temperature is typically
equal to 100 � K, a temperature low enough to ensure an e�cient loading into the optical dipole trap.
The corresponding phase-space density,n� 3

dB ' 5 � 10� 4, is already relatively large, and we will see in
section 2.4.3 that it remains constant during the atom loading into the optical trap. At this stage we can
compare more quantitatively the performances of our setup with the ones of all-optical experiments: at
Duke university, the same phase space density is obtained forN6 ' 106, i.e. several times smaller than
in our experiment [94].

Let us mention that by reducing N6 to much lower values, it is possible to push the evaporation
further, and we obtained a degenerate Bose-Fermi mixture withN7 = 7 � 104, N6 = 3 � 104, and
T ' TBEC ' 0:3TF , where TBEC is the 7Li Bose-Einstein condensation temperature andTF is the 6Li
Fermi temperature.

2.4 Optical Trap and 6Li Evaporation

The internal states involved in the strongly-interacting 6Li mixture have a positive magnetic moment and
cannot be held in a magnetic trap. After sympathetic cooling in the magnetic trap, 6Li atoms are thus
transferred into an optical dipole trap before making the spin mixture in the two lowest internal states,
labeled j1i and j2i . In this section we �rst describe the trap geometry and motivate our choice. We
then present the performance of our setup for obtaining degenerate6Li gases in the strongly-interacting
regime.

2.4.1 Geometry of the Hybrid Optical and Magnetic Trap

By contrast with the previous setup, we chose a single-beam optical dipole trap con�guration, with an
additional magnetic curvature for a precise control of the atom con�nement in the weak direction of
the optical trap, labeled z (see Fig.2.6). This choice is suitable for measuring the equation of state of
ultracold Fermi gases from the analysis ofin situ absorption images. Indeed, in this elongated potential,
the typical cloud size alongz is about 500� m, allowing a high resolution imaging in this direction. The
image analysis presented in the next chapters, does not require a good resolution of the radial cloud
dimension. By strongly con�ning the gas alongx and y, we concentrate the atom signal on a few camera
pixel and increase the signal-to-noise ratio, which is determined by the camera background pixel noise.
In addition, the magnetic axial con�nement is very robust and reproducible, allowing the study of axial
collective modes using experimental data taken over several days (see Chapter 6).
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Figure 2.6: Scheme of the hybrid optical and magnetic trap. The optical dipole trap is created using a
high-power red-detuned laser beam focused down to a waistw0 = 35 � m. An axial curvature, produced
by the green coils, provides the axial con�nement. The blue coils, in Helmoltz con�guration, create a
bias magnetic �eld up to 1000 G.

The Single Beam Optical Dipole Trap

We use for the optical dipole trap a 120-W IPG �ber laser emitting at � OT = 1071 nm. Atoms experience
an AC-Stark shift proportional to the intensity I (r) [95]:

V (r) =
~� 2

8�
I (r)
I s

; (2.1)

where � = 2 � � 5:9 MHz is the natural width of the S � P absorption line at 671 nm, I s = 2 :5 mW/cm 2

is its saturation intensity, and � = � 2� � 1:67� 1014 Hz is the dipole laser frequency detuning from the
671 nm line. The intensity variation with position leads to an e�ective trapping potential proportional
to the local AC-Stark shift, attracting atoms towards the regions of high intensity.

We focus the laser beam at the bottom of the Io�e magnetic trap potential, with a gaussian TEM00

intensity pro�le:

I (x; y; z) =
2P

�w 2
0(1 + z2=z2

R )
exp

�
�

2(x2 + y2)
w2

0(1 + z2=z2
R )

�
; (2.2)

where P is the total laser power, w0 = 35 � m is the beam waist andzR = �w 2
0=� OT = 3 :6 mm is the

Rayleigh length. Combining (2.1) and (2.2), we obtain the trapping potential:

V (x; y; z) =
� U0

1 + z2=z2
R

exp
�

�
2(x2 + y2)

w2
0(1 + z2=z2

R )

�
; where U0 =

~� 2P
4��I sw2

0
(2.3)

is the optical dipole trap depth. Close to the trap bottom, atoms experience a harmonic potential given
by the quadratic expansion of (2.3) around0:

V (x; y; z) = � U0 +
1
2

m! 2
r (x2 + y2) +

1
2

m! 2
z z2; where ! r =

s
4U0

mw2
0

; ! z =
1

p
2�

� OT

w0
! r : (2.4)

For atom loading into the optical dipole trap, the laser power is ramped up to its maximum value
P ' 65 W, corresponding to a trap depth U0 ' kB � 1:6 mK, the trapping frequencies being! r =2� '
13 kHz and ! z=2� ' 95 Hz. The trap depth is large enough to ensure a transfer of the6Li cloud with
unit e�ciency, despite the large increase in trapping frequencies.
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The choice of a 35� m waist was made empirically: we did not succeed to make an e�cient atom
loading into an optical trap designed with a larger (w0 ' 100 � m) waist. This behavior is not merely due
to atom spilling due to a smaller trap depth. Indeed, the cloud temperature after loading is increased
from the magnetic trap value by the ratio of the geometrical mean frequency in the optical trap over
the one in the magnetic trap, and thus scales withw� 7=3

0 . On the other hand, the optical trap depth
scales withw2

0 . The amplitude of atom spilling is a priori driven by the ratio kB T=U0 which has a small
dependence/ w� 1=3

0 on the waist value. The ine�cient transfer observed for a large trap waist may be
due to the very low axial trapping frequency ! z ' 4 Hz in that case, which makes the transfer from the
magnetic to the optical trap non adiabatic. The cloud size alongz then become comparable to the cell
size ' 1 cm along z, and atoms may collide with the cell walls.

Smaller waist values are not preferable for the �nal stage of the experiment. The radial size of the
cloud would then become comparable to the imaging system resolution, and the peak optical density
would be relatively large. The combination of these two phenomena would lead to a strong distortion of
in situ absorption images, as explained in section 3.5.4. It would also imply a very large �nal trap aspect
ratio, casting doubt on the validity of local density approximation, which is at the heart of our data
analysis (see Appendix B.4). The 35-� m waist was thus chosen as the maximum waist value allowing an
e�cient loading.

Axial Magnetic Trapping

The optical dipole trap aspect ratio � = ! r =! z =
p

2�w 0=� OT ' 150 is very large. While the axial
con�nement provided by the optical trap ! z=2� ' 95 Hz is su�cient at maximum laser power, it becomes
very small (! z=2� ' 3 Hz) when the 6Li cloud is evaporated by lowering the optical trap up to 1/1000 of
the initial value. Thermalization then becomes very slow and may result in heating due to non-adiabatic
trap modi�cations z.

We use a magnetic curvature for an independent control of the axial con�nement at low laser power.
We have at our disposal the pair of coils which provide the Io�e trap magnetic curvature alongz (see
Fig. 2.6). They create a magnetic curvature ofC = 1 :0 G/cm 2/A, as well as a bias magnetic �eld
B0 = 2 :28 G/A. The magnetic curvature, being positive in the direction of the bias �eld, expels 6Li
atoms in the j1i or j2i states (see Fig.2.7a). We use an extra pair of coils to control the bias magnetic
�eld. They create a bias magnetic �eld B0 = � 2:28 G/A in the opposite direction and a much smaller
curvature � 0:080 G/cm 2/A (see Fig. 2.6). The total bias magnetic �eld is reversed by imposing a larger
current through the second pair of coils, and the total curvature thus becomes negative with respect
to the reversed bias �eld direction (see Fig.2.7b). Using this magnetic �eld con�guration we create a
con�ning potential along z, up to 40 Hz.

2.4.2 Optical System for the Dipole Trap

In this section we give more technical details relative to the optical system for the dipole trap . Special
care had to be taken for the design of a stable optical system adapted to the large laser power provided
by the 120-W IPG laser.

Strong heating rates were observed in the �rst version of the optical system, where water-cooled
acousto-optic modulators (AOM) were used for the trap depth control. These AOM are designed to handle
large laser powers, but the water �ow induces strong mechanical vibrations. Using a quadrant photo-
diode, we measured the beam pointing position noise power spectrumSx (� ) (see Fig.2.8a). Gas heating

zor even possibly to metastable macroscopic states at low temperature [96]. The latter phenomenon may be at the origin
of the discrepancy between the observations in Rice university [55, 97] and in other groups [98, 49, 99] on spin-imbalanced
Fermi gases (see Chapter 5), as suggested in [100].
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Figure 2.7: Magnetic �eld created by the curvature coils only (a), or by the combination of curvature
coils and extra coils providing an opposite bias �eld (b). High-�eld seeker states are expelled alongz in
the �rst con�guration, and con�ned in the other con�guration.

is associated with the trap shaking spectral component at the radial trapping frequency! r =2� [101]:

_E =
1
4

m! 4
r Sx

� ! r

2�

�
:

When water cooling is used, we estimate the heating rate to be about 500� K/s at full laser power, to
be compared with 10� K/s without water cooling.

Figure 2.8: (a) Position noise power spectrumSx (� ), as a function of frequency� , with a water-cooled
AOM (gray line) and without water cooling (black line). (b) Associated heating rate _E as a function of
radial trapping frequency ! r =2� .

The strong in�uence of beam pointing �uctuations encouraged us to improve the mechanical stability
of the optical system:

� We use a single acousto-optic modulator without water cooling for the trap depth controlx. Since

xFrom Crystal Technology Inc.
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laser light absorption by the AOM causes strong heating, we send an air �ow through a hole in the
hood of the modulator. This air �ow is stopped during the dipole trapping stage using an electronic
air valve. In order to avoid trap shaking associated with AOM frequency �uctuations, we use an
ultra-stable DDS function generator for the radio-frequency generation.

� The optical system is made of `cage system' elements from Thorlabs company. All elements are
linked together with stainless steel rods and aluminum tubes, and the laser output coupler is glued
to this system, in order to minimize beam pointing �uctuations. The tubes also isolate the optical
path from ambient air �ow and impurities. Day-to-day mechanical drifts are very small as well,
and the optical trap rarely needs to be realigned.

The complete optical setup scheme is shown in Fig.2.9.

2.4.3 Preparation of a Strongly-Interacting 6Li Mixture

Atom Loading into the Optical Dipole Trap

After full evaporation of 7Li, we load pre-cooled6Li atoms in the optical dipole trap. The 6Li cloud
typically contains 2 to 5 � 106 atoms at 100 � K, and is held in magnetic trap whose frequencies are
! r =2� ' 3:5 kHz, ! z=2� ' 80 Hz. We �rst strongly decompress the magnetic trap by slowly increasing
the bias magnetic �eld from 3.5 G to 30 G and decreasing the curvature coils current from 500 A to 10 A.
The trap frequencies are, after decompression,! r =2� ' 400 Hz and ! z=2� ' 10 Hz. The subsequent
cloud size increase makes the transfer into the optical trap less sensitive to the alignment of the dipole
laser on the Io�e trap bottom. Fine adjustments of the infrared beam pointing are made using a mirror
whose orientation is controlled with a step-motor system (see Fig.2.9).

The transfer is performed by ramping down the Io�e bars current while increasing the optical trap
power in 200 ms. Atoms are adiabatically attracted into the dimple made by the optical trap. No
signi�cant atom loss is observed in the loading process. The temperature after transfer,T ' 250 � K, is
3 times larger than the temperature reached at the end of sympathetic cooling. Since the mean trapping
frequency is increased, from the magnetic to the optical trap, by a comparable factor, this temperature
is consistent with an adiabatic loading{ .

Heating and Loss Rates

We �rst tried to characterize the trap heating and loss rates in the dipole trap using a 7Li cloud, and
observed large loss rates, with a1=e time constant � � 300 ms. Since7Li atoms collide with each other,
one expects atoms to escape from the trap because of collision-induced evaporation. However, we did not
observe a temperature reduction while atoms were lost. The atom loss is rather attributed to inelastic
dipolar losses, enhanced with respect to the Io�e trap by the increase in trapping frequencies.

Loss rates were found to be much smaller for6Li spin-polarized clouds, where both elastic and inelastic
collisions are absent, and are consistent with� > 20 s at full laser power, and no signi�cant temperature
increase on a timescale of several seconds. This is consistent with the following heating rate estimates:

� The heating rate associated with beam-pointing �uctuations was estimated earlier to _E ' 10 � K/s
at the maximum trap depth (see Fig.2.8b).

� Dipole laser intensity noise gives rise to parametric heating, whose amplitude is proportional to the
intensity noise power spectrumSI (� ) at twice the radial trapping frequency ! r =2� [101]:

_E = �
E
� I

; where
1
� I

=
! 2

r

4
SI

� ! r

�

�
:

{ The 6Li cloud being fully polarized, no collision occurs during the trap modi�cations, and adiabaticity is a single-particle
process.
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Figure 2.9: Scheme of the optical system for the dipole trap. The infrared beam is emitted by a 120-W
IPG �ber laser, in a gaussian TEM00 mode with a 5 mm 1=e diameter. After reducing its diameter with
a �rst telescope, the beam is di�racted by an air-cooled acousto-optic modulator. It is then enlarged by
a second telescope, and focused into the vacuum cell down to a 35-� m waist. A step-motor-driven mirror
provides a �ne adjustment of the laser pointing.

From the intensity noise SI (� ) measured experimentally, and shown in Fig.2.10a, we deduce a
heating time constant � I ' 100 s at full dipole laser power (see Fig.2.10b). Therefore we did not
need to install an intensity stabilization lock, and the optical trap depth is controlled in open loop.

� Because of the very high intensity at the trap bottom, light absorption is not completely negligible
despite the very large frequency detuning, and occurs with a rate [95]:

� abs =
�
~�

U0 ' 7 s� 1:

Each absorbed photon leads to an energy gain of about one recoil energyE r , and the heating rate
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Figure 2.10: (a) Intensity noise power spectrumSI (� ), as a function of frequency� (b) 1=etime constant
� of the associated heating rate, as a function of radial trapping frequency! r =2� .

associated with o�-resonant photon scattering reads [95]:

_E =
2
3

� absE r ' 7 � K=s; where E r =
~2

2m

�
2�

� OT

� 2

' kB � 1:4 � K:

Preparation of a Strongly-Interacting 6Li Mixture

The 6Li cloud loaded from the magnetic trap into the optical dipole trap is polarized in the low-�eld
seeking statej6i = jF = 3=2; mF = 3=2i . The states involved in the strongly-interacting mixture are the
two lowest internal states j1i and j2i , which exhibit a wide Feshbach resonance centered at a magnetic �eld
B0 = 834 G (see Fig.2.11). As these states have a positive magnetic moment, their magnetic con�nement
along z requires an opposite curvature than the one used for the Io�e trap (see Fig.2.7). Therefore
during the transfer j6i!j 1i we need to switch o� the magnetic curvature, the axial con�nement being
solely produced by the optical trap. A small bias magnetic �eld is kept on, and the j6i!j 1i transfer
is performed using an adiabatic passage across the hyper�ne transition. In order to produce a reversed
magnetic curvature with the same coils, we suddenly reverse the bias magnetic �eld, and then slowly
ramp the bias up to B0 = 834 G, and the curvature �elds up to ! z=2� = 40 Hz (see Fig.2.7). About 20%
of the atoms are lost in the process, and no signi�cant atom loss is observed when crossing thep-wave
Feshbach resonance atB0 = 159 G [102,103]. Finally, a j1i -j2i mixture is created using a non-adiabatic
Landau Zener passage around the nuclear spin-�ip transitionj1i!j 2i at 76,4 MHz.

2.4.4 Evaporation of a 6Li Gas With Resonant Interactions

Evaporation of a Spin-Balanced Gas

The evaporation e�ciency was characterized using spin-balanced gases. Right after the preparation of a
j1i -j2i mixture at the center of the Feshbach resonance, the collision rate is particularly large [104]:

� c =
2N ~2! 2

r ! z

� (kB T)2 ' 4000 s� 1;

where N = 2 � 106 is the atom number per spin state. This enables us to perform a very e�cient
evaporation.

No noticeable evaporation is observed as long as the trap depth is kept at the maximum value, despite
the large collision rate. This con�rms that the atom transfer from the Io�e trap to the optical dipole
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Figure 2.11: Left: EnergyE of the states22S1=2 as a function of the magnetic �eld B . In the last stage of
the experiment we use a mixture of the two lowest internal states,j1i and j2i . Right: s-wave scattering
length describing ultracold collisions between statesj1i and j2i , as a function of magnetic �eld.

trap does not induce signi�cant heating. Evaporative cooling is forced by lowering the optical trap depth,
using an acousto-optic modulator for the laser power adjustment. As mentioned above, the laser power
is controlled in open loop; the AOM radio-frequency power is controlled using a 16-bit computer analog
output, providing a �ne control of the laser power even in the range P � 10� 3P0 addressed at the end of
evaporation.

In Fig.2.12 we show a typical evaporation trajectory. The dipole laser power is decreased in 5 s from
the maximum power P0 up to a �nal power P1 , using an exponential function with a 1=e time constant
of 500 ms. Fermi degeneracy is reached with more than2:5 � 105 atoms per spin state at T=TF = 0 :5,
and by pushing the evaporation further the gas is cooled to the lowest temperatures (T=TF = 0 :03(3),
see Chapter 5), with 105 atoms per spin state. At the end of evaporation we measure a1=e lifetime of
about 5 s, the optical laser power being kept to the minimum value. Since residual evaporation is not
suppressed, this provides a lower bound to the intrinsic lifetime of the6Li gas. This value is much larger
than the one observed for40K gases in the strongly-interacting regime. This di�erence is related to the
very di�erent Feshbach resonance widths for6Li and 40K [34,105].

In the classical regime, the atom loss rate during evaporation can be related to the temperature to
trap depth ratio � = kB T=U0, according to [106]:

_N
N

= � 2(� � 4)e� � � c;

which gives � ' 10 for our experiment. In the limit of large � values, the gain in phase space density is
related to the atom number loss according to:

n� 3
dB / N � � 3 ' N 7;

showing the excellent evaporation e�ciency achieved with 6Li mixtures in the unitary limit. As soon
as the gas enters the Fermi degeneracy regime, the atom number decreases more sharply when the trap
depth is lowered (see Fig.2.12). This is expected as Pauli blocking plays an increasing role [107].
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Figure 2.12: Evaporation trajectory for a 6Li spin-balanced mixture with resonant interactions: atom
number per spin state N as a function of the dipole laser powerP. The solid line is the evaporation
trajectory in the classical regime, corresponding to� = 10.

Spin-Polarization Issues During Evaporation

In Chapter 5 and 6 we study spin-imbalanced6Li mixtures at low temperature. Since in the degenerate
regime it is not possible to remove atoms in one spin state without heating the gas, one needs to prepare
a spin-imbalanced mixture before starting the evaporation. The performance of evaporation is not dra-
matically a�ected by spin polarization, since it was possible to produce extremely imbalanced mixtures
(N2 < 0:02N1) with a temperature consistent with T=TF = 0 :03 (see Chapter 5).

However, the �nal gas polarization is very sensitive to the initial condition, due to the combination
of the following e�ects:

� In the classical regime, the velocity distribution is identical for both components. In particular
collisions ejecting atoms from the trap act symmetrically on both spin states, and we expect dN1 =
dN2. This behavior leads to a progressive increase of spin polarization, as shown in Fig.2.13a.

� In the degenerate regime, we observe a strong decrease of spin polarization, the tendency becoming
increasingly pronounced when evaporation is pushed further. A physical interpretation of this
phenomenon can be given in the BEC and BCS regimes: in the BEC regime, atoms with opposite
spins form deeply bound molecules, which have twice the atom polarizability and thus feel an optical
trap twice deeper compared to atoms. This makes single atom evaporation much more likely. In the
BCS regime, collisions mostly occur between majority atoms with a speedvF 1 and minority atoms
with a speed vF 2 < v F 1. Majority atoms are thus more easily ejected from the trap. Many-body
e�ects appearing in the degenerate regime are also expected to decrease the cloud polarization [100].

The large polarization variation during evaporation leads to a strong sensitivity to initial conditions,
and makes the control of polarization for deeply degenerate gases di�cult. In Fig.2.13b we show the
large shot-to-shot polarization �uctuations for gases prepared at the lowest temperatures. For some
experimental runs all minority atoms are evaporated during the trap depth decrease. However, as long
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Figure 2.13: (a) Polarization Pf after evaporation as a function of polarization before evaporationPi ,
for an evaporation up to T � TF . The solid line is a guide to the eye. (b) Evolution of polarization
for consecutive experimental sequences preparing a deeply degenerate gas. For three sequences the gas
becomes fully polarized during evaporation.

as 100-% polarized samples have a low probability, this phenomenon is not really penalizing since it is
possible to post-select images as a function of spin polarization.

Trap Frequency Calibrations

The trap frequencies! r and ! z are calibrated by exciting the center-of-mass dipole mode alongx or z.

The magnetic con�nement, that has a long-term stability, is calibrated with a very good precision.
We use the set of data taken for the study of collective modes described in Chapter 6. In addition to
the excitation of axial compression modes, we observe an oscillation of the gas center-of-mass alongz.
According to Kohn's theorem, the center of mass always oscillates at the trap frequency! z=2� , whatever
interactions. For very cold samples, the optical dipole trap power is so small that its contribution to the
axial trapping frequency is less than1%. The axial con�nement is thus completely characterized by the
magnetic �eld curvature, provided by the curvature coils, plus a small contribution from the bias coils:

� ! z

2�

� 2
= � bias I bias + � cu I cu

B0 = � (I bias � I cu ); where � = 2 :28 G=A

The coe�cients � bias and � cu are extracted from frequency calibrations using gases prepared atB0 =
834 G, hence I bias � I cu remains equal to 366 A. From the frequency values measured forI cu =
50 A, 70 A, 100 A (see Fig.2.14), we deduce the coe�cients� bias = � 2:06 Hz2/A and � cu = 24:8 Hz2/A

By measuring the oscillation frequency of the center-of-mass motion alongx, we obtain the following
calibration of ! r :

! r

2�
' �

p
P where � = 2 :0(2) kHz=

p
W;

P being the dipole laser power.
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Figure 2.14: (a) Center-of-mass oscillation forI bias = 416 A and I cu = 50 A, and �tted with a cosine,
providing ! z=2� = 19:7(2) Hz. (b) Axial frequency as a function of curvature coil current, plotted as
(! z=2� )2 versusI cu , and �tted with a straight line.

2.5 Absorption Imaging

We usein situ absorption imaging for the study of 6Li gases described in the next chapters, and also use
7Li images for 6Li thermometry in Chapter 4. In this section we �rst explain the probe light production
process for imaging atom clouds at high magnetic �elds. We then describe the imaging optical system.

2.5.1 Generation of High-Field Resonant Probes

The ultracold gases studied in our experiment are produced around the Feshbach resonance center
B0 = 834 G. Optical transitions used for absorption imaging are thus strongly detuned from zero-�eld
transitions, and the preparation of the corresponding probe beams requires a speci�c setup.

At these large magnetic �eld values, the hyper�ne coupling is smaller than the Zeeman shift and
atoms are in the Paschen-Back regime, where electronic and nuclear spins are decoupled (see Fig.2.15).
The two lowest internal states of 6Li can thus be labeled as:

j1i = jJ = 1=2; mJ = � 1=2; I = 1 ; mI = +1 i ;

j2i = jJ = 1=2; mJ = � 1=2; I = 1 ; mI = 0 i ;

where J; mJ are the electronic quantum numbers andI; m I are the nuclear spin quantum numbers. In
the Paschen-Back regime, the nuclear spin is much less coupled to the electric dipole than the electronic
spin; therefore optical transitions jmJ = � 1=2; mI i!j m0

J = � 3=2; m0
I = mI � 1i towards 22P3=2 levels

are almost closed. As we image6Li atoms along a direction perpendicular to the magnetic �eld, the
transition strength is maximum for a linear polarization perpendicular to the magnetic �eld, with an
e�ective Clebsch-Gordan coe�cient equal to 1=2. In the Feshbach resonance centerB0 = 834 G, the
transition frequency is detuned by 1:2 GHz to the red from the zero-�eld D2 transitions. We use a
high-frequency acousto-optic frequency shifterk , operating in the range 200-1000 MHz, in a double-pass
con�guration, in order to generate the high-�eld imaging probe beams. The ' 7% di�raction e�ciency
in double-pass con�guration requires to use of an additional slave laser in order to obtain large enough
laser power for imaging.

k Model BRI-GPF-650-225-670 from Brimrose Corp.
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The situation is much simpler for 7Li high-�eld imaging. Indeed, the transition from the ground state:

j7i = jJ = 1=2; mJ = � 1=2; I = 3=2; mI = +3 =2i ;

to the state jm0
J = 3=2; m0

I = � 3=2i is detuned to the red of the transition jF = 1 i!j F 0 = 2 i at zero-�eld,
by about 1.3 GHz. This corresponds to a detuning of -500 MHz with respect to thejF = 2 i!j F 0 = 3 i
transition at zero �eld, already used for laser cooling (see Fig.2.15). Using the powerful laser light already
prepared for the MOT stage, and a more usual and e�cient 200MHz AOM in double-pass con�guration,
we obtain a probe beam for7Li imaging at B0 = 834 G with large enough power. For the experiments
described in Chapter 4, the7Li component is imaged along the magnetic �eld direction. We thus use a
circularly polarized � � probe, and the Clebsch-Gordan coe�cient is equal to1.

Figure 2.15: Energies of the22S1=2 and 22P3=2 levels for 6Li and 7Li versus magnetic �eld. The thick
lines represent the statesj1i and j2i for 6Li and j7i for 7Li used in our experiments. The degeneracy due
to the nuclear spin is invisible for the 22P3=2 levels (� 1 MHz). Red arrows: imaging transitions at high
�eld jmJ = � 1=2; mI i!

� �
jm0

J = � 3=2; m0
I = mI � 1i . The dashed arrow is the laser cooling transition

jF = 2 i!j F 0 = 3 i at low magnetic �eld.

2.5.2 Imaging Optical System

The imaging optical system for 6Li is represented in Fig.2.16. It is made of two parts: �rst a 4 � f
optical setup makes an intermediate image of the atom cloud, with a� (� 1) magni�cation. We then use
a pairs of doublets to conjugate the intermediate image onto a CCD camera. The overall optical system
magni�cation, calibrated by monitoring the free fall under gravity of a cloud released from the Io�e trap,
is equal to M = 1 :7(1).
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Figure 2.16: Scheme of the imaging system: the probe light exits from an optical �ber and is collimated
with a doublet. The atom cloud is �rst imaged using a 4� f setup made of af = 200 mm doublet and a
combination of a 350 mm doublet and a 500 mm meniscus, essentially equivalent to a 200 mm lens. The
intermediate image is then imaged onto the camera using 75 mm and 150 mm doublets.

Another imaging system alongz is used in Chapter 4 for 7Li thermometry. After taking the 6Li in
situ image alongy, we switch o� the optical dipole trap, let the cloud expand for 1 to 4 ms, and take
an absorption image of the7Li component. By imaging along the axial direction z, we take advantage
of the cloud ellipticity to increase the optical depth and hence the signal-to-noise ratio. We can then
reliably deduce the cloud temperature from the size of a� 3000-atom 7Li gas. Since the imaging beam
passes through the Io�e bars, the solid angle for atom imaging is small, resulting in a relatively poor
resolution of 9 � m. However, it is still much smaller than the typical 7Li cloud's radial size after free
�ight � > 40 � m.

2.5.3 Imaging System Resolution

The theoretical imaging system resolution is evaluated to4:1 � m (Airy disc radius). Ultracold gases held
in the optical dipole trap have a radial size � < 10 � m (� of a gaussian �t), therefore details in the
transverse direction are not resolved by our imaging system (see Fig.2.17). The measured cloud radial
sizes are consistent with a resolution blurring acting as a convolution with a gaussian of size� r = 4 � m.
The consequences of the �nite imaging resolution on the analysis ofin situ images is discussed in section
3.5.4. The magni�cation was chosen so thatM� r = 7 � m is comparable to the camera pixel size, equal
to 6.45 � m. The atom signal per pixel is thus maximized without having the pixel discretization decrease
the imaging resolution.

2.5.4 Double in Situ Images

In Chapter 5 we measure the pressure in spin-imbalanced gases usingin situ absorption images of both
spin components, taken in the same experimental run. In order to have a pixel-to-pixel correspondence,
we use the same camera for both images. The probe beams are also emitted from the same optical �ber
in order to share a common intensity pattern. Both images have to be sequentially taken, with special
care so that the �rst absorption image does not degrade the second image.

We �rst studied the e�ect of pulse duration on the absorption image of a spin-balanced Fermi gas
(see Fig.2.18a). In that case we take a single absorption image, and maximize the atom signal by sending
both probe beams simultaneously. The radial cloud size deduced from the absorption image depends on
the probe pulse duration, while keeping the absorbed photon number per atom atN ' 10 per atom, by
adjusting the probe beam power. In Fig.2.18a, we compare the images of a cloud prepared in the same
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Figure 2.17: Typical absorption image of a spin-balanced Fermi gas used for the work presented in
Chapter 4. The optical density integrated along the weak directionz is �tted with a gaussian of width
� = 5 :3 � m.

conditions, with pulse durations 10 � s and100 � s. The measured radial cloud size is equal to� = 6 :3 � m
for the short pulse and � = 8 :5 � m for the long pulse, showing the e�ect of photon scattering on a
100-� s time scale. This has to be compared with the mean velocity

p
N=3vr induced alongx by photon

scattering (vr is the recoil velocity):

vr

p
N
3

�
2

' 5 � m for � = 100 � s:

For the study of spin-imbalanced Fermi gases, it is crucial that both spin states are imaged in the
same conditions. We use a PixelFly QE camera allowing us to take two images separated by 10� s.
Using 10-� s probe pulses separated by 10� s (see Fig.2.18b), we observe no signi�cant perturbation on
the second image. The minority spin state is imaged �rst in order to minimize the number of scattered
photons during the �rst image. Using a saturation parameter s = I=I s ' 0:04, absorption occurs in the
linear regime, with ' 8 scattered photons per atom. With these parameters, typically 600 photons hit
each pixel camera,i.e. 250 photon counts per pixels given the 40% quantum e�ciency of the camera.
This number has to be compared with the dark background level of 18 counts per pixel, showing the
necessity to reduce the magni�cation as much as possible to concentrate the atom signal.

The PixelFly camera is able to take a series of two absorption images in a short time interval. Reference
images for the computation of the optical densities:

odj i i = � log
I j i i

I ref

are thus taken separately, in practice at the end of an experimental run where atoms are absent. Since the
reference intensity pattern slowly drifts with time, we take a series of reference images every 10 minutes.
We mention that the reference image is not used for the computation of the optical density di�erence,
which is an interesting observable for the identi�cation of full j1i -j2i pairing in the super�uid phase (see
Chapter 5):

odj 1i � odj 2i = � log
I j 1i

I ref + log
I j 2i

I ref

= � log
I j 1i

I j 2i
:

The optical density di�erence thus does not su�er from reference imperfections due to the long delays
between absorption and reference images.
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Figure 2.18: (a) Absorption image of a degenerate spin-balanced Fermi gas, using a100 � s pulse (upper
panel) and a 10 � s pulse (lower panel). The probe intensity is increased by a factor' 10 for the short
pulse. The radial sizes are� = 2 :3 pixels and � = 1 :7 pixels, respectively. (b) Scheme of the imaging
sequence for spin-imbalanced gases.

To conclude this chapter, we described the experimental setup and the procedure used for producing
quantum degenerate Fermi gases in the strongly-interacting regime. The performances of our setup in
terms of �nal atom number and temperature are very good. The speci�cities of our setup allows us to
use7Li for thermometry and investigate the physics of spin-imbalanced Fermi gases.



Chapter 3

Measuring the Equation of State of

a Homogeneous Ultracold Gas

The nearly complete purity and extreme diluteness of ultracold atoms makes them valuable tools for
a precision investigation of model Hamiltonians from condensed matter physics. However, the density
inhomogeneity induced by the trapping potential makes the comparison between observations in the
laboratory and theoretical predictions for homogeneous gases indirect. However, in the local density
framework, an ultracold gas can be considered aslocally homogeneous. It is thus possible to measure the
properties of homogeneous gases using trapped ones, by probing local properties inside the gas. However,
ultracold gases are usually probed by measuring the atom induced absorption or phase shift of a laser
beam. These techniques give access to a two-dimensional pro�le, proportional to the atomic densityn
integrated along the probe beam direction (labeledy):

en(x; z) =
Z

dy n(x; y; z):

Deducing local quantities from en(x; z) is a priori not simple. An important exception is the realization of
two-dimensional ultracold gases, where the motion is frozen in one direction (here the directiony) using
very tight con�nement [26, 108, 109, 110]. In that case the optical density is proportional to the surface
density ns(x; z) and has a direct physical interpretation (see section 3.1.2).

In the �rst part of this chapter we describe previous works on the thermodynamics of Fermi gases.
The �rst kind of approaches is based on the determination of an equation of state of the entire trapped
gas, through the measurement of the gas energy using the virial theorem [62, 63], or the study of col-
lective modes [64]. Since local properties are not probed, the comparison with theoretical results on
homogeneous gases is indirect and requires an integration of the latter over the trap. We then describe
the thermodynamic study performed at MIT, which relies on the measurement of the local density inside
the gas using an Abel transform ofen(x; z) [49]. This procedure dramatically decreases the signal-to-noise
ratio and leads to a noisy equation of state of the homogeneous gas [68].

We developed a new method for extracting fromen(x; z) the local pressureP inside the gas in a very
simple manner [48]. It can be used to provide, from a set of several absorption images, a complete
equation of state P(�; T ) of the homogeneous gas, with a small statistical noise. After describing the
general principle of the method, we illustrate its power by measuring the equation of state of an ultracold
Bose gas in simple situations: from a single image of a Bose gas trapped in three dimensions [31], we
deduce the equation of state of a weakly-interacting Bose gas from the classical regime to Bose-Einstein
condensation. We also apply it to Bose gases in an optical lattice, in the regime of large lattice depth.
The equation of state deduced from the data from the Mainz group [72] reveals characteristic features of
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a Mott insulator and can be used to investigate �nite-temperature e�ects.

3.1 Equation of State of an Ultracold Gas: State of the Art

In that section we describe previous studies of the thermodynamics of an ultracold gas.

3.1.1 Equation of State of a Trapped Gas

A �rst approach for measuring thermodynamic properties of an ultracold gas is to extract from an
absorption image en(x; z) physical quantities characterizing the entire gas. Repeating this measurement
on a series of gases prepared with di�erent total atom numbers or temperatures, one obtains the equation
of state of the trapped gas.

As a �rst example, an equation of state of the Fermi-Hubbard model was recently measured in the
temperature range T ' 0:15TF , by measuring the variation of the sizeR2 =

R
dx dz (x2 + z2)en(x; z)

of a Fermi gas held in an optical lattice, versus the trap frequency! [21]. The quantity @R=@!can
be interpreted as the compressibility of the trapped gas and its variation as a function of con�nement
strength can be viewed as an equation of state of the trapped gas. This physical picture was helpful for
identifying the Mott insulator phase, characterized by a small compressibility [21].

In the rest of this section we focus on techniques developed in the context of bulk Fermi gases since
the associated physical results will be compared in the next sections with our measurements.

Equation of State of a Trapped Fermi Gas with Resonant Interactions

In 2005 the groups at JILA and Duke University studied the thermodynamics of a spin-balanced Fermi
gas with resonant interactions [62, 63]. They elegantly measured two simple quantities characterizing a
trapped gas, its total energyE t and entropy St . The relationship E t (St ) constitutes an equation of state
of a trapped unitary gas.

The total energy of a trapped gas is directly deduced from anin situ absorption image using the
virial theorem [111, 112]: assuming a harmonic con�nement and resonant interactions, the total energy
of a trapped gas is related to its total potential energyE p

t through:

E t = 2E p
t ;

where:

E p
t =

Z
dx dy dz

�
1
2

m! 2
x x2 +

1
2

m! 2
y y2 +

1
2

m! 2
z z2

�
n(x; y; z)

and ! i is the trap frequency along the direction i . Provided that local density approximation is satis�ed,
all directions contribute equally to the potential energy, leading to:

E t = 3N! 2
z



z2�

:

E t is thus easily extracted from the doubly-integrated density pro�le n(z) =
R

dx en(x; z), using:



z2�

=

R
dz z2n(z)

R
dz n(z)

:

The entropy St is measured in another experimental run. A gas is prepared in the same conditions, and
before imaging the magnetic �eld is slowly ramped to the BCS side of the resonance, where the scattering
length is small and negative. Assuming that the scattering length change is adiabatic, the entropy after
the ramp is equal to the entropy on resonance. On the BCS side of the resonance, interaction e�ects are
small and one knows how to relate the density pro�le to the entropy St .
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Figure 3.1: (a) Equation of state of a trapped Fermi gas in the unitary limit measured by the JILA group
(open squares, from [62]) and at Duke University (black dots, from [63]). (b) Radial breathing mode
frequency ! , normalized to the radial trapping frequency ! r , as a function of interaction strength 1=kF a
(from [64]).

This procedure provides an experimental determination of the equation of state of a trapped unitary
gas, shown in Fig.3.1a, with local density approximation as the only assumption. The good agreement
between the results obtained in the two groups, using two di�erent atoms (40K in [62] and 6Li in [63],
constituted the �rst evidence of the universal character of the thermodynamics of unitary Fermi gases
with short-range interactions.

However, it does not provide a direct comparison with many-body theories, which rather calculate
the equation of state of ahomogeneousgas. In order to make the comparison, one has to model the e�ect
of trap inhomogeneity. Assuming the validity of local density approximation, the equation of state of a
trapped gas is calculated by integration over space of the theoretical energy and entropy densitiese and
s:

E t =
Z

dr e(� 0 � V (r ); T);

St =
Z

dr s(� 0 � V (r ); T):

The equation of state E t as a function of St is obtained as a parametric curve by varying the values of
(� 0; T). The calculation of a single point (St ; E t ) thus requires to know the equation of state for all values
of (�; T ) with � < � 0. Hence the comparison with discrete numerical results is possible only when the
data is dense enough to make a precise interpolation. This makes the comparison with time-consuming
diagrammatic Monte Carlo calculations from [113] tricky. Moreover, the comparison with theory remains
indirect and the trap averaging blurs the possibly small discrepancies between theories. We will see in
section 4.3 that, by contrast, a direct measurement of the equation of state of a homogeneous gas provides
a clear identi�cation of the validity domain of theoretical results. Finally, the equation of state of the
trapped gas does not easily reveal sharp features such as phase transitions, again because of the trap
averaging. This is for instance illustrated by the di�erent values of the critical entropy at the super�uid
phase transition, given in [63,46], depending on the procedure used to extract it from the data.

Super�uid Equation of State in the BEC-BCS Crossover

Another tool for probing thermodynamic properties of a trapped gas is to study its response to a small
perturbation. When excited out of equilibrium, the gas pro�le oscillates around the equilibrium pro�le.
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When the collision rate is much larger than the oscillation frequency, or if the gas is super�uid, the gas
dynamics is well described by hydrodynamic equations [114]:

@
@t

n = �r � (nv );

m
@
@t

v = �r
�

1
2

mv2 + � (n) + V
�

:

Linearizing the hydrodynamic equations around equilibrium then provides the value of the collective
oscillation frequencies.

We consider here the experiment performed in the Innsbruck group [64], directly connected to the work
described in section 5.5. In that experiment, a spin-balanced gas, prepared at a temperatureT � TF , is
trapped in an elongated cylindrical trap, with ! x = ! y = ! r � ! z , and is excited in the radial breathing
mode. As shown in Fig.3.1b the frequency measurement is particularly precise. Hydrodynamics predicts
that the oscillation frequency is related, with an excellent approximation, to the equation of state n(� )
through [115]:

! 2

! 2
r

= 3
Z

dr n2 @�
@n

(� 0 � V (r ))
� Z

dr n(� 0 � V (r ))V (r ): (3.1)

Equation (3.1) enables one to compare these experimental results with theoretical equations of state.

Equation of State of a Trapped Spin-Imbalanced Fermi Gas

The last example of equation of state of a trapped gas deals with the physics of spin imbalance in a two-
component Fermi gas, a topic addressed in Chapter 5. In short, when imposing di�erent atom numbers
in the two spin states, a phase separation occurs in a trapped gas [54,55,99]: one observes a fully paired
super�uid core of radius RS at the center, then a partially polarized shell where the minority spin state
is present up to the radius R2, and �nally a fully polarized part of radius R1

� . The measurement of
the radii RS , R2 and R1 as a function of spin polarization P = ( N1 � N2)=(N1 + N2), where N i is the
total atom number of speciesi , characterizes macroscopic properties of the ground state of a trapped
two-component Fermi gas with resonant interactions [116] (see Fig.3.2a). In particular one observes a
critical polarization Pc ' 0:75 beyond which the super�uid core disappears. The e�ect of interaction
strength on the critical polarization was also addressed using a Feshbach resonance [54] (see Fig.3.2b).

Similarly to the equation of state of a balanced unitary gas at �nite temperature, the comparison
between theory and experiment in the last two examples, namely the study of collective mode frequencies
or the study of spin component radii, requires to integrate the equation of state of a homogeneous gas
over the trap. In Chapter 5 we apply our method to these systems, and obtain the equation of state of a
homogeneous gas, yielding a direct and much more discriminating comparison with theory.

3.1.2 Direct Measurement of the Equation of State of a Homogeneous Gas

In the previous examples, local density approximation was used to calculate characteristic quantities of
a trapped gas from a theoretical equation of state of a homogeneous gas. It is possible to reverse the
procedure, and to infer the equation of state of a homogeneous gas from an analysis of local properties
inside a trapped gas.

Equation of State of a Two-Dimensional Bose Gas

As mentioned above, two-dimensional ultracold gases are directly suited for this approach, sinceen(x; z)
is equal to the surface densitynS (x; z) (the motion is frozen along y) [26,108,109,110]. In the quasi-2D

� The Rice group did not observe the intermediate shell, a di�erence which remains unexplained.
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Figure 3.2: (a) Super�uid core radius RS (open squares), minority radiusR2 (dots) and majority radius
R1 (crosses) as a function of polarizationP, from [116]. The radii are normalized to the Thomas-Fermi
radius of a balanced and non-interacting Fermi gas with same total atom number. We note in particular
the disappearance of the super�uid core forP > P c ' 0:75 (b) Critical polarization Pc as a function of
the interaction strength 1=kF a, from [54].

regime, the equation of state of a homogeneous Bose gas can we written as [117]:

nS � � 2
dB (T) = G

�
� =

�
kB T

; eg
�

;

where � dB (T) is the thermal de Broglie wavelength, andeg is a dimensionless number characterizing the
interaction strength and which is independent of � and T. This equation of state was measured in [110]
by analyzing absorption images of trapped gases of87Rb, using the following procedure: Assuming local
density approximation, the chemical potential varies in a trapped gas according to� (r ) = � 0 � V (r ).
The global chemical potential � 0 and temperature T are extracted from the wings of the cloud, using a
mean-�eld Hartree-Fock description. Each pixel (x; z) then provides a measurement of the equation of
state of a homogeneous gas:

� =
� 0 � V (x; z)

kB T
;

G(�; eg) = nS (x; z)� � 2
dB (T):

After averaging over several pixels, one obtains from a single image a low-noise equation of state.

Local Density Measurement Using Abel Transform

The situation is much more complicated for a three-dimensional gas since the column densityen(x; z) =
R

dy n(x; y; z) does not give a direct access to the local atom density. However, in the case of a cylindrically
symmetric trap (the symmetry axis being z), the relation between the density and the column density
can be inverted using an inverse Abel transformy:

n(x; y; z) = �
1
�

Z 1

p
x 2 + y2

dx0 1
p

x02 � (x2 + y2)

@en(x0; z)
@x0

: (3.2)

y Interestingly, this formula does not assume that local density approximation is satis�ed, and was used in [97] where it
is clearly violated.
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Figure 3.3: Equation of state g(x) of a T = 0 two-component Fermi gas in the unitary limit (from [68]).

In the MIT experiment, local density pro�les ni (r ) (i = 1 ; 2) of a two-component Fermi gas were
computed using (3.2) [49], and used to determine the equation of state the homogeneous gas [68]. At
T = 0 and for resonant interactions, the canonical equation of state of a two-component Fermi gas
reads [81]:

E (n1; n2) =
3
5

~2

2m
(6� 2)2=3n5=3

1 g
�

x =
n2

n1

�
:

A simple calculation leads to the expressiong = ( � 1n1 + � 2n2)=(~2=2m(6� 2)2=3n5=3
1 ). Therefore, once

the chemical potentials � 0
1 and � 0

2 are determined, each data point(r ; n1; n2) provides one measurement
of the equation of state:

x =
n2

n1
;

g(x) =
2m

~2(6� 2)2=3n5=3
1

�
(� 0

1 � V (r ))n1 + ( � 0
2 � V (r ))n2

�
:

However, the inverse Abel transform dramatically decreases the signal-to-noise ratio, and despite very
large atom numbers, the noise of their equation of state is large (see Fig.3.3).

3.2 Description of our Method

We implemented a new method providing the equation of state of a homogeneous ultracold gas with a
good precision. It relies on a simple relationship allowing us to measure the local pressure inside the gas
by a simple integration of the column density en(x; z).

3.2.1 Measurement of the Local Pressure inside a Trapped Gas

We discuss here the case of a two-component gas, held in a cylindrically symmetric harmonic trap of
frequencies! r along x and y, and ! z along z. A simple formula then relates the local gas pressureP
along thez axis to the integrated density pro�les ni (z) =

R
dx dy ni (x; y; z) =

R
dx eni (x; z), provided local

density approximation is satis�ed. We recall that ni is the atom density for speciesi . This relationship
was �rst derived in [70] and more recently used in [69], and I found it independently during my PhD.

The derivation of the formula is straightforward. Gibbs-Duhem identity:

dP = � SdT + n1d� 1 + n2d� 2
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reads, alongx (dT = 0 , d� i = � m! 2
r x dx):

dP = � m! 2
r x(n1 + n2)dx:

Integrating between x = 0 and x = + 1 gives the pressure along thez axis, i.e. at the chemical potentials
� iz = � 0

i � 1
2 m! 2

z z2:

P(� 1z ; � 2z ; T) = m! 2
r

Z 1

0
(n1 + n2)x dx

=
m! 2

r

2�

Z 1

0
(n1 + n2)2�r dr

=
m! 2

r

2�

Z 1

0
(n1 + n2) dx dy;

which leads to the formula:

P(� 1z ; � 2z ; T) =
m! 2

r

2�
(n1(z) + n2(z)) : (3.3)

This relation can easily be extended to any multi-component ultracold gas at equilibrium, provided
each component is harmonically trapped and that local density approximation applies:

P(� i ; T) =
1

2�

X

i

mi ! 2
ri ni (z);

where mi is the atom mass of speciesi and ! ri , ! zi are the corresponding trapping frequencies. The
generalization to non-axially symmetric situations is also straightforward.

Contrary to the inverse Abel transform, integrating en(x; z) over x to obtain the pressure increases the
signal-to-noise ratio. In the next section we describe how to deduce from the pressure pro�le the equation
state of a homogeneous ultracold gas.

3.2.2 Determination of a Grand-Canonical Equation of State

The grand canonical equation of stateP(� i ; T) is particularly suited for the experimental study of the
thermodynamics of an ultracold gas. Indeed, the local gas pressure is directly given by (3.3), with a good
signal-to-noise ratio. In the local density framework, the arguments(� i ; T) of the equation of state are
completely characterized by the global chemical potentials� 0

i and the temperature T. If these numbers
can be appropriately determined, each pixel line at positionz provides one point for the equation of state.
From a single image one then obtains the equation of stateP(� i ; T) for a large set of values of(� i ; T).

The determination of the temperature and of the global chemical potentials depends on the system
considered. Let us describe brie�y how they are determined in our study of Fermi gases, presented in
the next Chapters. We did not characterize the complete equation of stateP(� 1; � 2; T; a) of a two-
component Fermi gas due to the large number of degrees of freedom. We rather focused on particular
physical situations, encompassing most of the physical phenomena:

1. In Chapter 4 we study the equation of state of a spin-balanced gas in the unitary limitP(�; �; T; a =
1 ). The temperature T is measured on a7Li cloud at thermal equilibrium with the 6Li atoms. � 0

is measured using the wings of the clouds which are in the classical high-temperature regime.

2. In Chapter 5, the gas is fully evaporated and the temperatureT is considered equal to 0. We then
measure the ground state pressureP(� 1; � 2; T = 0 ; a), and � 0

i is determined by �tting the position
at which the density ni vanishes.
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3.3 Equation of State of a Weakly-Interacting Bose Gas

In this section we apply equation (3.3) to the measurement of the equation of state of a weakly-interacting
Bose gas. We use anin situ absorption image of a7Li cloud prepared in the jF = 1 ; mF = � 1i state,
and held in an elongated magnetic trap with a small bias �eld [31] (see Fig.3.4). The trap frequencies are
! r =2� = 4970 Hz and ! z=2� = 83 Hz. As shown in Fig.3.4, the integrated density pro�le n(z) directly
reveals the presence of a Bose-Einstein condensate in the middle of the cloud. Our method will directly
provide the grand-canonical equation of state, in both the thermal and condensed regimes.

Figure 3.4: Doubly-integrated density pro�les of 7Li (dots) and 6Li (open circles). The gas contains
3:5 � 104 7Li atoms and 2:5 � 104 6Li atoms.

Dimensional analysis allows us to write the equation of state as:

P(�; T ) =
kB T

� 3
dB (T)

g(� ); where � = e� �=k B T :

The variable � is the inverse of the fugacity, and is an increasing function of temperature, at �xed
chemical potential. � dB (T) is the thermal de Broglie wavelength. Our goal is to extract from the image
the function g(� ), which contains all the information on the gas thermodynamics.

The pressure along thez axis is directly given by equation (3.3). In order to obtain the value of g,
we also need to know the cloud temperature. We use a spin-polarized6Li gas at thermal equilibrium
with the 7Li cloud for thermometry (see Fig.3.4): as the inter-species scattering lengtha67 = 40 a0 is
small, the e�ect of the 7Li component on the 6Li pro�le is negligible. The latter is thus �tted with a
non-interacting Fermi gas pro�le, providing the cloud temperature T = 1 :6(1) � K. At this level, we can
plot the data as:

g(� ) =
P � 3

dB (T)
kB T

versus exp
�

m! 2
z z2

2kB T

�
=

�
� 0 ;

where � 0 = e� � 0 =kB T is the global inverse fugacity. We thus already know the equation of stateg(� ) up
to an unknown multiplication factor � 0 in abscissa. We determination of� 0 requires some information
on the equation of state. We �t the data where no Bose-Einstein condensate is present,n(z) < 108 m� 1

(see Fig.3.4), with the equation of state of an ideal Bose gas above the condensation threshold:

g(� ) = g5=2(� ); where g5=2(z) =
1X

k=1

z� k

k5=2
; (3.4)

and obtain the value � 0 = 0 :904.
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We then deduce the equation of stateg(� ), shown in Fig.3.5. Each pixel row z provides one point
g(� ), and a single image thus gives the equation of state in the whole relevant temperature range, from
the condensed regime to the classical regime. In the non-condensed region, our data is in close agreement
with the equation of a weakly-interacting Bose gasg(� ) = g5=2(� ), from the classical regime� � 1 to
� ' 1. The deviation from the one of a Boltzmann gasg(� ) = � � 1 is a manifestation of the bosonic
bunching e�ect z. A sharp transition occurs at � = � c ' 1, indicating the Bose-Einstein condensation
transition. While interactions essentially play no role in the description of the thermal part � > 1, the
Bose-Einstein condensate pressure is dominated by the mean-�eld interaction:

� =
4� ~2a77

m7
n; (3.5)

where a77 is the scattering length describing collisions between7Li atoms and m7 is the 7Li atom mass.
The pressure is then obtained by integrating Gibbs-Duhem relation at �xed temperature dP = n d� ,
providing:

g(� ) = g5=2(� c) +
� dB (T)

4a77
(log2 � � log2 � c): (3.6)

Fitting our data with equation (3.6) for � < � c and (3.4) for � > � c, with � c and a77 as free parameters,
we obtain the � c = 1 :0(1) and a77 = 11(2)a0 = 0 :6(1) nm. The uncertainties take into account the �t
uncertainty and the uncertainty related to the temperature determination. The condensation threshold
is in agreement with the value � c = 1 expected for a weakly-interacting Bose gasx. The scattering length
value is also in agreement with the calculationa77 = 11:5a0 in [118].

Extending this measurement to stronger interactions, on Bose gases prepared close to Feshbach
resonances (for example using7Li clouds in the j1; 1i or j1; 0i states, held in an optical dipole trap
[119,120,121]), could reveal more complex beyond-mean-�eld phenomena.

3.4 Mott Insulator Behavior of a Bose Gas in an Optical Lattice

In this section we present an application of our image analysis technique to the measurement of the
equation of state of a bosonic Mott insulator using experimental data from [72].

3.4.1 Realization of a Bose-Hubbard Model

A 87Rb Bose-Einstein condensate is loaded in a trap consisting of the superposition of a harmonic trap
Vh (r ) = 1

2 m
�
! 2

r (x2 + y2) + ! 2
z z2

�
and a 3D optical lattice [72]:

V (r ) = Vh (r ) + V0
�
sin2(kx) + sin 2(ky) + sin 2(kz)

�
:

The optical lattice is created by three orthogonal standing waves of red-detuned laser light of wavelength
� = 2 �=k = 843 nm. Atoms occupy the lowest Bloch band and realize the Bose-Hubbard model [19]:

Ĥ = � J
X

hi;j i

ây
i âj +

U
2

X

i

(n̂i � 1)n̂i +
X

i

Vh (r i )n̂i : (3.7)

zThe determination of � 0 actually makes the overall agreement of the data with g5=2 (� ), rather than g(� ) = � � 1 ,
automatic. However, the fact that some data points in the thermal component satisfy g > 1, which is independent of the
choice of � 0 , is a clear manifestation of the bosonic bunching e�ect.

xThe chemical potential value at the Bose-Einstein condensation threshold is shifted, to lowest order, by the mean-�eld
interaction with thermal atoms:

� c � 1 '
�

�

kB T

�

c
=

�
1

kB T
2

4� ~2a77

m7
n

�

c
= 4

�
n� 3

dB

�
c

a77

� dB
= 4 � (3=2)

a77

� dB
' 1%

in our experiment. This value is much smaller than the 10% uncertainty on the determination of � c from our data.
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Figure 3.5: Grand-canonical equation of stateg(� ) of a weakly-interacting Bose gas (black dots). The
solid line is a �t of the data with a Bose function g5=2(� ) in the thermal region and a Thomas-Fermi
equation of state in the condensed region (see text). The dashed line is the classical equation of state
g(� ) = � � 1.

The index i refers to a potential well at position r i . J is the tunneling amplitude between nearest neighbors
and U is the onsite interaction, both of them being a function of lattice depth [14]. In this section n no
longer denotes the atom density bur rather the occupation numberper site. The slow variation of Vh (r i )
compared with the lattice period �= 2 ensures that local density approximation is satis�ed. The system
is thus locally described by a homogeneous Hubbard model, given by (3.7) without the last term, and
with a local chemical potential � (r ) = � 0 � Vh (r ).

3.4.2 The Mott-Insulator Regime

The phase diagram of the Bose-Hubbard model was established in [122] and is shown in Fig.3.6a. At low
temperature and for large tunneling valuesJ � U the gas forms a Bose-Einstein condensate in the state
jq = 0i N = ( N � 1=2

l

P
i ji i )

N , where N l = V(2=� )3 is the number of lattice sites.
The condensate depletion becomes large whenU � J and a quantum phase transition occurs towards

an insulator state. We focus here on the limit U � J . In that situation lattice sites are essentially
independent, with a Hamiltonian per site:

Ĥ0 =
U
2

(n̂ � 1)n̂; (3.8)

where n̂ is the occupation number. The grand-partition function then reads:

� 0 = Tr e� � ( Ĥ 0 � � n̂ ) =
1X

n =0

e� � (Un (n � 1)=2� �n ) ; � = 1=kB T;

and the pressure is given by [123,124]{ :

P(�; T ) =
kB T

(�= 2)3 log � 0

'
kB T

(�= 2)3

1X

n =1

log
�

1 + exp
� � (n � 1)U

kB T

�
: (3.9)

(3.10)

{ The last equality in (3.9) is a convenient approximate that introduces an exponentially small error at low temperature
(kB T � U) [123,124].
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This provides the occupation number (see Fig.3.6b):

n(�; T ) =
1X

n =1

1

1 + exp � � (n � 1)U
kB T

:

In the limit kB T � U, these Fermi-Dirac-type terms tend to H (� � (n � 1)U), where H is the Heaviside
function, and

n(�; T = 0) =
l �

U

m
;

i.e. equal to the �rst integer larger than �=U (see Fig.3.6b). At zero temperature the occupation number
is thus constant upon varying the chemical potential (except around� = nU), and the compressibility � =
@n=@�is equal to zero. This is the characteristic feature of a Mott insulating phase. At low temperature
kB T � U, the occupation number remains �at, until the Mott insulator melts at a temperature kB T � '
0:2U (see Fig.3.6b).

The grand-canonical equation of state atT = 0 is calculated by integrating Gibbs-Duhem relation:

P(�; T = 0) =
Z �

0

�
2
�

� 3

n(� 0; T = 0) d� 0

=
�

2
�

� 3 �
� �

n � 1
2

U
�

n where n =
l �

U

m
: (3.11)

Figure 3.6: (a) Phase diagram of the Bose Hubbard model at zero temperature. The gray regions are the
Mott insulating phases with an integer occupation number n. In a trapped gas, the chemical potential
varies from the value � 0 at the bottom of the trap to �1 and our method thus provides the equation of
state of the Bose Hubbard model along a line (dashed line). (b) Mean occupation numbern in the Mott
regime J � U, for kB T = 0 (solid line), kB T = 0 :1U (dashed line), andkB T = 0 :2U (dotted line).

3.4.3 Extraction of the Equation of State

We illustrate our method by extracting the equation of state of the Bose-Hubbard model in the regime
U � J , from doubly-integrated density pro�les from the Mainz group [72].

Local Pressure Measurement

Resolving details of in situ images of a� 30 � m cloud requires a resolution on the order of 1� m. As
the experiment was not designed for implementing a high-resolution optical imaging system, the gas
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was rather probed using a tomographic technique [72]. In the trap bottom, atoms experience a linear
gradient of 3.4 G/cm along z. By applying a radio-frequency pulse, atoms are transfered into another
internal state, with a spatial selectivity d z ' 1 � m determined by the pulse characteristics [125]. The
number dN = n(z)dz of transfered atoms is then counted using absorption imaging after a time-of-�ight,
thus giving access to the doubly-integrated density pro�le n(z) and hence, using equation (3.3), to the
gas pressure. Repeating this measurement for di�erent probe frequencies provides the complete pressure
pro�le. In Fig.3.7a we show four pressure pro�lesa, b, c, d corresponding to di�erent total atom numbers
Na = 0 :6 � 105, Nb = 105, Nc = 2 � 105 and Nd = 3 :5 � 105 [72,125].

Construction of the Equation of State

The chemical potential varies alongz according to � z = � 0 � 1
2 m! 2

z z2. Therefore, the data plotted as:

P
U(�= 2)� 3 versus �

1
2

m! 2
z z2;

is equal to the equation of stateP=U(�= 2)� 3 versus � , up to a translation in abscissa by the global
(unknown) chemical potential � 0. Since all images correspond to the same equation of state (we assume
a common temperature for all images), the sets of data from the each image can all be superimposed
by translating all images onto one of them, let us say imagec (see Fig.3.7b). We thus determine the
di�erences � 0

� � � 0
c between global chemical potentials, and gather all data points in a single equation of

state (still translated from the actual equation of state by the unknown quantity � 0
c).

Figure 3.7: (a) Doubly-integrated density pro�les for a cloud prepared with Na = 0 :6 � 105 (crosses),
Nb = 105 (open squares),Nc = 2 � 105 (black dots) and Nd = 3 :5 � 105 (plus). (b) Superposition of the
data from image d on the one from imagec. (3.11).

3.4.4 Observation of a Mott-Insulator Behavior

In order to observe a Mott-Insulator behavior, we �t the data with piecewise linear function consistent
with equation (3.11):

P
U(�= 2)� 3 = 0 for � < 0

= n1
�
U

for 0 < � < �� 1

= n1
�� 1

U
+ n2

� � �� 1

U
for �� 1 < � < �� 1 + �� 2

= n1
�� 1

U
+ n2

�� 2

U
+ n3

� � �� 1 � �� 2

U
for �� 1 + �� 2 < �;
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with �� 1, �� 2, n1, n2 and n3 as free parameters. We also allow a free translation in abscissa by a quantity
� 0

c . The determination from the �t of � 0
c provides the unknown quantity that was missing to obtain the

equation of state of the Bose-Hubbard model in the Mott regime, plotted in Fig.3.8.

The other �t parameters exhibit the characteristic features of the incompressible Mott phases. The
size of the �rst Mott region is �� 1 = 0 :9(1)U, with an occupation number n1 = 1 :0(1) atom per site. The
size of the second Mott region size is�� 2 = 1 :1(1)U, with an occupation number n2 = 2 :0(1). Finally,
the occupation number in the third Mott region is n3 = 3 :1(1). These values agree with the theoretical
values �� i = U and ni = i .

Figure 3.8: Equation of state of the Bose-Hubbard model in the Mott regimeU � J (black dots). The
solid line is a �t of the equation of state by a piecewise linear function, revealing the Mott phases.

3.4.5 Estimation of Finite-Temperature E�ects

Finite-temperature e�ects tend to smear the occupation plateaus of a Mott insulator, until a their dis-
appearance at the melting temperaturekB T � ' 0:2U [123] (see Fig.3.6b). Fitting the experimental
equation of state with the �nite-temperature equation of state (3.9), we obtain:

kB T = 0 :09+0 :04
� 0:1 U;

i.e. a value signi�cantly lower than the melting temperature.

In order to estimate the e�ect of the pressure pro�le smearing due to the �nite resolution of the
tomographic technique, we convolved a theoreticalT = 0 pro�le with a point-spread function associated
with the �nite probe resolution (see [125]). The simulated pro�le is then �tted with (3.9), and we obtain
kB T = 0 :08(3)U. This shows that the investigation of lower temperature regimes would require a better
resolution.

3.5 Validity of the Pressure Measurement

In this section we discuss the validity of equation (3.3) used for measuring the local gas pressure. We
show how to calibrate the pressure measurement in order to minimize systematic errors. We also estimate
the magnitude of the deviation from local density approximation and the e�ect of trap anharmonicity or
�nite imaging system resolution.
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3.5.1 Calibration of the Pressure

The systematic error on the pressure measured using equation (3.3) isa priori de�ned by the uncertainty
of atom counting and of the radial frequency. Since it is very di�cult to achieve an atom counting
precision better than � 10%, we rather directly calibrate the pressure using a reference pressure pro�le.

We use the pressure pro�le of a deeply evaporated spin-balanced Fermi gas, in the unitary limit, as a
reference (see Fig.3.9). Indeed the equation of state of such a gas is well known:

P(� ) = � � 3=2
s

2
15� 2

�
2m
~2

� 3=2

� 5=2: (3.12)

The parameter � s = 0 :415(20) is measured in Chapter 5, without using this calibration, and this value is
in agreement with most previous experimental and theoretical results. Fitting an experimental pressure
pro�le P(� z ) with (3.12) provides a precise calibration of the pressure. Finally, we estimate the error due
to a shot-to-shot drift of the probe laser frequency or radial trapping frequency to be less than5%.

Figure 3.9: Pressure pro�le of a balanced Fermi gas at unitarity and very low temperature. The solid
line is a �t with a Thomas-Fermi pro�le multiplied by � � 3=2

s , providing a calibration of the pressure.

3.5.2 Deviation from Local Density Approximation

The pressure measurement is based on local density approximation. In the case of strong interactions
there is no prediction for the amplitude of deviations from local density approximation. We thus consider
the simpler situation of a two-component balanced Fermi gas in the BEC limit 1=kF a � 1. The gas is
then a molecular Bose-Einstein condensate, described by the Gross-Pitaevskii equation:

�
�

~2

4m
� + V +

4� ~2add

2m
n

�
p

n = � 0p
n;

where n is the molecule density andadd ' 0:6a is the dimer-dimer scattering length [16]. For simplicity
the trap is assumed isotropic, with a frequency! . In the local density approximation framework, the
�rst term is neglected, leading to the Thomas-Fermi density pro�le:

n(r ) =
2m

4� ~2add
(� 0 � V (r )) ;

= n0

�
1 �

r 2

R2
T F

�
; where RT F =

r
2� 0

m! 2 and n0 =
2m

4� ~2add
� 0;
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plotted in Fig.3.10 as a dashed line. Writing the Gross-Pitaevskii equation using dimensionless variables
er = r=RT F and en = n=n0:

en = 1 � er 2 � �
�(

p
en)

p
en

; where � =
�

~!
2� 0

� 2

;

quanti�es the gradient term in terms of a dimensionless number� . For a typical molecular condensate
with N = 5 � 104 molecules, prepared at750 G where a ' 2000 a0, and held in a trap with a mean
frequency! = 2 � � 330 Hz, the parameter � is on the order of0:5%. A numerical resolution of the Gross
Pitaevskii equation, shown in Fig.3.10, con�rms the very small deviation from the Thomas-Fermi density
pro�le [126]. The size of the region where local density approximation is incorrect is on the order of the
healing length � = 1=

p
8�na dd , which is much smaller than the cloud size. As a conclusion, local density

approximation accurately describes the density pro�le of a trapped Fermi gas in the BEC limit. In more
complex situations such as the unitary limit, the exact calculation is not possible, but we expect the
conclusion to remain the same because the correlation length� kF is much smaller than the cloud size.

Figure 3.10: Density pro�le en(er ) of a molecular Bose-Einstein condensate calculated using the Gross-
Pitaevskii equation (solid line) and the Thomas-Fermi approximation (dashed line). The total molecule
number is N = 5 � 104, the trap frequency is ! = 2 � � 330 Hz, and the scattering length is a = 2000 a0

(corresponding to a magnetic �eld B ' 750 G).

However, the e�ect of the gradient term can be much more pronounced if the density pro�le abruptly
changes. This typically occurs around a density jump associated with a �rst-order phase transition, a sit-
uation encountered in Chapter 5 when considering spin-imbalanced trapped gases. When the populations
of the two spin states di�er, a phase separation occurs between a central super�uid core and an external
normal shell. At the interface between the two phases, local density approximation predicts an abrupt
density jump. Gradient terms beyond local density approximation then play an essential role in the
description of the interface. In a �rst approximation, they might be captured by adding a surface tension
term to the force balance at the interface between the super�uid (S) and normal (N) phases [127,128,129]:

PN � PS =
�

2R
;

where� is the surface tension coe�cient and R is the mean curvature radius of the interface. In particular,
in the case of an anisotropic con�nement, surface tension tends to deform the interface from a trap
equipotential. In Appendix B.4 we show that, in our experiment, the surface tension e�ect is very small
and that local density approximation applies well for the description of Fermi gases.

Local density approximation is also expected to fail in the critical region of a second-order phase
transition, due to the divergence of the correlation length. This situation will be encountered in section
4.7 when considering the super�uid transition of a spin-balanced Fermi gas at unitarity. However, we
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show in section 4.7.4 that in practice the size over which local density approximation is incorrect is very
small, and that (3.3) provides the pressure of a homogeneous gas with a good precision.

3.5.3 E�ect of the Trap Anharmonicity

Correction to the Pressure Formula due to the Trap Anharmonicity

Besides local density approximation, the other key assumption for obtaining equation (3.3) is the trap
harmonicity. However, the optical dipole trap potential is actually gaussian in the transverse directions:

Vr (x; y) = U0

�
1 � exp

�
�

r 2

w2
0

��
:

Let us estimate the error introduced by the anharmonicity of this potential. For simplicity we consider
a spin-balanced mixture of total density n(�; T ). In the local density approximation framework, the local
chemical potential is given by:

� (x; y; z) = � 0 � Vr (x; y) �
1
2

m! 2
z z2;

and the integrated density reads:

n(z) =
Z

2�r dr n
�

� 0 � Vr (x; y) �
1
2

m! 2
z z2; T

�
:

Using the variable v = Vr (r ) and n = @P=@�leads to:

m! 2
r

2�
n(z) =

Z U0

0

1
1 � v=U0

� @P
@�

(� z � v; T)dv;

where ! r =
p

2U0=mw2
0 is the radial frequency at the trap bottom. Expanding this expression for large

trap depths U0, and integrating by parts, we obtain:

m! 2
r

2�
n(z) = P(� z ; T) +

Z 1

0

dv
U0

P(� z � v; T): (3.13)

In the limit of a very large depth U0 ! 1 , the �rst term in (3.13) dominates and one recovers equation
(3.3). The second term in (3.13) is the �rst correction to (3.3) due to the trap anharmonicity.

Amplitude of the Anharmonic Correction

Let us now evaluate the amplitude of this correction for typical situations encountered in our experiment.
We �rst consider the case of a high-temperature Fermi gas in the classical regime, a situation encoun-

tered in the measurement of the equation of state of the unitary gas at �nite temperature (see Chapter
4). We recall the expression of the pressure for a classical gas:

P(�; T ) = 2 kB T � � 3
dB (T) exp(�=k B T):

The integration over the chemical potential in (3.13) is then straightforward, leading to:

m! 2
r

2�
n(z) = P(� z ; T)

�
1 +

kB T
U0

�
:

The relative error is equal to kB T=U0, typically equal to 0:1 when we do not compress the optical trap
at the end of evaporation (see section 2.4.4). It does not depend on the position in the trap, hence the
pressure pro�le is not distorted but globally shifted. Therefore, the systematic error could be corrected
by modifying the calibration of the pressure.
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The error introduced by the trap anharmonicity is also simple to estimate for a single-component
Fermi gas at zero temperature. The pressure is then given by:

P(�; T = 0) =
1

15� 2

�
2m
~2

� 3=2

� 5=2;

and integrating over the chemical potential in (3.13) gives:

m! 2
r

2�
n(z) = P(� z ; 0)

�
1 +

2
7

� z

U0

�
:

In that case, the correction is inhomogeneous,i.e. the doubly-integrated pro�le, compared with the
pressure pro�le, is distorted. The larger distortion amplitude occurs at the trap center and is equal to
2� 0=7U0. For typical trap parameters considered in our study of zero-temperature Fermi gases in Chapter
5, � 0=U0 ' 0:1 and the maximal distortion is 3%, below the statistical noise of our data.

3.5.4 E�ect of the Imaging System Resolution

The �nite resolution of the imaging system has to be considered for a precise understanding ofin situ
images. As shown in section 2.5.3, the e�ect of the resolution of our imaging system can be captured by
a convolution of the probe intensity pro�le with a gaussian of size� r = 4 � m. The Thomas-Fermi radius
of a trapped gas is typically equal to 15� m in the transverse direction, and details of the pro�le are not
resolved. However, the axial Thomas-Fermi radius being on the order of 300� m, �ne details are well
resolved in the axial direction. We show here that the pressureP(� z ) / n(z), obtained by integration of
the column density en(x; z), is insensitive to the �nite resolution of the imaging system, at least for small
optical densities. We also address the combined e�ect of �nite resolution and large optical densities.

Insensitivity to the Resolution for Low-Density Clouds

We consider here the case of clouds with a small optical density, for which the column density is propor-
tional to the probe intensity absorption:

en(x; z) /
I 0 � I (x; z)

I 0
;

where I 0 is the incoming light intensity and I (x; z) is the light intensity after passing through the atom
cloud. The intensity pro�le actually measured is obtained by convoluting the real pro�le with a gaussian
of size� r :

I measured (x; z) = ( I � f )(x; z) =
Z

dx0I (x0; z)f (x � x0); where f (x) =
1

p
2�� r

exp
�

�
x2

2� 2
r

�
:

Since the cloud pro�le varies along z on a much larger length scale than� r , the convolution along z
has a negligible e�ect on the intensity pro�le and has not been included. In the linear regime, the
proportionality between the column density and the intensity absorption leads to:

enmeasured (x; z) =
Z

dx0en(x0; z)f (x � x0):

The integrated density pro�le is then given by:

nmeasured (z) =
Z

dx enmeasured (x; z)

=
Z

dx0en(x0; z)
Z

dx f (x � x0)

= n(z):

Therefore, when light absorption is in the linear regime, doubly-integrated density pro�les are insensitive
to the �nite resolution of the imaging system [55].



58 Chapter 3. Measuring the Equation of State of a Homogeneous Ultracold Gas

Figure 3.11: Theoretical integrated pro�le n(z) of a spin-balanced gas with a total atom numberN = 105,
at a temperature T = 180 nK, and held in a trap of frequencies! r =2� = 1 :1 kHz and ! z=2� = 37 Hz.
The solid line (dashed line) is the theoretical pro�le with � r = 0 (� r = 4 � m).

Large Optical Density E�ects

In the case of large optical densities, the relationship between intensity absorption and column density is
no longer linear:

I (x; z) = I 0 exp(� � 0en(x; z)) ;

where � 0 is the light scattering cross section. The measured intensity pro�le then reads:

I measured (x; z) =
Z

dx0I 0 exp(� � 0en(x0; z)) f (x � x0):

The measured column density is thus given by:

enmeasured (x; z) =
1
� 0

log
I 0

I measured (x; z)

=
1
� 0

log
I 0

(I � f )(x; z)
6= ( en � f )(x; z);

and in particular nmeasured (z) 6= n(z).
In Fig.3.11 we simulate the e�ect of the �nite resolution of our imaging system for a cloud with typical

parameters used in Chapter 4. The maximum optical density is then 1.2. The pressure deduced from
the integrated density pro�le is 9% less than the actual pressure at the trap center. As a result, in the
determination of the equation of state of a spin-balanced unitary gas, we do not use the data of optical
density larger than ' 1, and the accuracy of the pressure measurement is then better than5%. For
the study of the ground state of a spin-imbalanced Fermi gas described in Chapter 5, the axial trapping
frequency is reduced to! z=2� = 20 Hz in order to reduce the cloud's optical density and minimize
non-linear e�ects.



Chapter 4

Thermodynamics of a

Strongly-Interacting Fermi gas

The �rst application of our method to Fermi gases is the measurement of the equation of state of a
two-component Fermi gas with an equal number of atoms in each spin state, and prepared in the unitary
limit a = 1 . As described in section 3.1.1, the equation of state of atrapped unitary gas was measured
in [62, 63]. Despite its importance as the �rst measurement of a `model-independent' equation of state,
it cannot be directly compared with many-body theories, which rather deal with homogeneousgases.
The comparison requires to integrate the theoretical equations of state over the trap, making use of
local density approximation. However, some advanced theories, such as the Diagrammatic Monte Carlo
calculations from the Amherst group [113], only provide several points for the equation of state, and
the integration over the trap can not be performed. These theories have thus remained untested by
experiments up to now. The aim of our study is to provide the equation of state of ahomogeneousgas
in order to make a direct comparison with theory. We will see that this comparison reveals unexpected
features.

Moreover, it is clear that sharp features such as phase transitions are expected to be smeared out by
the trap averaging. As an example, the critical temperature for super�uidity is almost invisible on the
equation of state of a trapped gas [63, 46]. We will show that the equation of state of the homogeneous
gas is more suited for measuring the critical temperature, as well as other physical quantities such as
virial coe�cients.

Universal Thermodynamics of a Fermi Gas in the Unitary Limit

In this chapter we consider a gas prepared at 834 G, where the scattering lengtha is in�nite, and with
equal atom numbers in each spin state. In that situation, the two chemical potentials� 1 and � 2 are
equal and we will use the notation � = � 1 = � 2 in the rest of the chapter. The equation of state is
then reduced to a relation between the pressureP and the intensive variables� and T. At unitarity, the
scattering length drops from the equation of state and the only way to construct a dimensionless number
is the combination �=k B T. Therefore the equation of state can be written as the product of a reference
pressure, taken as the pressureP0(�; T ) of a single-component ideal gas, multiplied by a dimensionless
function hT (� ), where � = exp( � �=k B T) is the inverse of the fugacity:

P(�; T ) = 2 P0(�; T )hT (� ): (4.1)

� is a convenient grand-canonical equivalent ofT=TF , and is an increasing function of temperature.
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All informations of the thermodynamics of a Fermi gas with resonant interactions are included in the
function hT (� ). In this Chapter, we present the measurement ofhT (� ) using the method described in
Chapter 3, as well as a physical interpretation of our data.

4.1 7Li Thermometry

In Chapter 3 we showed how to extract from in situ images the pressureP(� z ; T) along the z axis.
Deducing the equation of state from the pressure pro�le of a trapped gas also requires to know the
temperature T and the global chemical potential� 0. The temperature cannot be extracted from the cloud
image without invoking a model, since the relation between density pro�le and temperature is precisely
given by the equation of state we want to measure. Inspired by the Innsbruck group [73], we developed
a new thermometry method, using7Li atoms immersed in the 6Li gas, and at thermal equilibrium with
it. The temperature is measured on the7Li component through its size after time-of-�ight, a technique
speci�c to weakly-interacting gases.

4.1.1 Preparation of a Three-Component 6Li- 7Li Mixture

Adding a small amount of 7Li atoms in the optical trap is particularly simple. We control the amount
of 7Li at the end of sympathetic cooling by appropriately choosing the �nal frequency of the RF knife
expelling 7Li atoms from the magnetic trap. As we do not need a large number of7Li atoms, we keep a
smaller amount of 7Li than 6Li, hence the �nal 6Li temperature and transfer e�ciency to the optical trap
are essentially unchanged. However this procedure leads to a larger sensitivity to atom number drifts.
Indeed, a larger6Li atom number leads to a higher temperature at the end of sympathetic cooling, and
requires an adjustment of the �nal knife frequency to maintain a constant 7Li atom number.

Once loaded into the optical dipole trap, atoms are transfered into the �nal internal states. Under a 10-
G bias magnetic �eld, they are simultaneously transfered fromjF = 3=2; mF = 3=2i to jF = 1=2; mF = 1=2i = j1i
for 6Li and from jF = 2 ; mF = 2 i to jF = 1 ; mF = 1 i = j7i for 7Li using an adiabatic passage around the
hyper�ne transitions, respectively around 245 MHz and 825 MHz. The collision rate being especially
large in the optical trap at the highest power, it is crucial to make the transfer as fast as possible to avoid
spin-exchange inelastic collisions between low-�eld and high-�eld seeking states. Using high-power ampli-
�ers (50 W and 30 W for the 6Li and 7Li frequencies, respectively), we are able to make the transfer with
essentially no atom loss in 100 ms. The magnetic �eld is then ramped to 834 G and we prepare a balanced
j1i -j2i mixture using a series of non-adiabatic Landau-Zener passages around thej1i -j2i transition. We
do not observe signi�cant losses during this phase.

Stability of the Three-Component 6Li-7Li Mixture

Inelastic losses constitute the main limit to the realization of arbitrary ultracold mixtures. We discuss
here the stability of the 6Li- 7Li mixture of the two lowest states of 6Li and of the ground state of 7Li
with respect to inelastic collisions. The hyper�ne structure of the electronic ground state of6Li and 7Li
is shown in Fig.4.1. The splitting betweenj1i and j2i is 76 MHz at high �eld, while the splitting between
the two lowest states of7Li, j7i and j8i , is 177 MHz. The inelastic spin-exchange collision:

6Li j 2i + 7 Li j 7i ! 6Li j 1i + 7 Li j 8i

is therefore endothermic and cannot occur. Moreover, two-body dipolar losses were estimated by S.
Kokkelmans to be very small, on the order of2 � 10� 18 cm3/s. Before starting the evaporation, no
appreciable atom loss is observed after waiting in the optical trap at full power, thereby con�rming the
very good stability of the mixture.
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Figure 4.1: Energy levels of the electronic ground state of6Li (left) and 7Li (right). The gas is prepared
in a mixture of the two lowest states of 6Li, labeled j1i and j2i , and of the ground state of 7Li, labeled
j7i .

4.1.2 Two-Species Evaporation and Thermalization

The scattering length describing collisions between6Li (in j1i or j2i ) and 7Li atoms is equal toa67 = 41 a0,
with essentially no variation with magnetic �eld. On the other hand, the scattering length a77 between
7Li atoms strongly depends on the magnetic �eld value because of the existence of a 200-G-wide Feshbach
resonance centered at 737 G [119,120,130]. At the magnetic �eldB = 834 G corresponding to the center
of the 6Li Feshbach resonance, the scattering length value isa77 = � 73 a0.

At the beginning of evaporation, the optical dipole trap typically holds N6 = 2 � 106 6Li atoms in each
spin state and N7 = 106 7Li atoms, at a temperature T ' 250 � K, and with a mean trapping frequency
!= 2� ' 2:5 kHz. The collision rate between 6Li atoms, interacting with resonant interactions, is very
large [104]:

� 66 =
2N6~2! 3

� (kB T)2 ' 4000 s� 1;

while the collision rate between6Li and 7Li atoms and between7Li atoms are respectively:

� 76 =
2N6m! 3a2

67

�k B T
' 150 s� 1; and � 77 =

4N7m! 3a2
77

�k B T
' 200 s� 1:

These large collision rates ensure an e�cient thermalization during evaporative cooling. In the classical
regime (T > 0:3TF ) where the 6Li temperature can directly be measured, we indeed observe identical
temperatures for both species. It is also important to be convinced of a good thermalization in the
degenerate regime, where the6Li temperature can no longer be measured. At the end of evaporation,
the trap typically contains 5 � 104 6Li atoms in each spin state and104 7Li atoms, the mean trapping
frequency being!= 2� ' 300 Hz. The classical collision rate is then on the order of30 s� 1, but collisions
between 7Li and 6Li atoms may be strongly inhibited by Pauli exclusion principle in the degenerate6Li
cloud. Indeed, a6Li atom undergoing a collision needs to be scattered in an empty state, which restricts
the allowed �nal states above the Fermi level, and thus decreases the collision probability. In Chapter
5, we show that 6Li gases can be evaporated up to very low temperaturesT = 0 :03(3)TF , showing
that collisions still occur in the deeply degenerate regime. In our experiment, we observed that the7Li
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Figure 4.2: 6Li atoms are imaged in situ along y, and 7Li atoms are imaged alongz, after a time of
�ight. Typical absorption images are shown, corresponding to a high-temperature cloud atT = 1 :5 � K
containing 1:5 � 105 6Li atoms in each spin state and104 7Li atoms.

temperature no longer varies after evaporation down to a given trap depth, as if the temperature reaches
a steady state in less than 100 ms. This indicates a good thermalization e�ciency even at the lowest
temperatures. This has to be compared with the experimental results from [73] obtained on a mixture
of 6Li and 40K. A steady state is reached after more than 3 s, and the �nal temperatures for the6Li
cloud and the 40K cloud di�er by ' 30%, probably due to di�erent heating rates for the two species. In
our case,6Li and 7Li atoms experiencing exactly the same trapping potential, we expect trap-induced
heating to be almost identical for the two species and therefore the �nal6Li and 7Li temperatures to be
identical.

4.1.3 Temperature Measurement

At the end of evaporative cooling, the 6Li component is imagedin situ using absorption imaging along
the transverse direction y (see Fig.4.2). The trap is switched o� during the pulse, and 7Li atoms are
imaged along z after a time of �ight chosen between 1 and 4 ms, depending on the radial trapping
frequency. Imaging alongz increases the optical depth, and the size of the cloud can reliably be �tted
for 7Li atom numbers down to � 3000. Essentially no collision occur between the two species during the
time-of-�ight, and we checked that, indeed, 6Li imaging has no signi�cant e�ect on the 7Li pro�le. The
imaging system magni�cation along z is calibrated by comparison of the size of a high-temperature cloud
imaged simultaneously alongz and y. We then use the calibration of the imaging system magni�cation
along y (see section 2.5.2) to deduce the one alongz. As the measured temperatures can be close to the
Bose-Einstein condensation threshold for7Li, we �t the 7Li density pro�le with a Bose distribution [131].

4.1.4 Limitation of our Thermometer at Low Temperature

The scattering length a77 = � 73 a0 being negative,7Li Bose-Einstein condensates are unstable above a
critical atom number [132,133]:

Nc ' 0:37

r
~

m7! 7

1
ja77 j

' 230;

where we have taken into account the e�ect of trap ellipticity [134]. When evaporated down to the lowest
trap depths, we observed that the temperature saturates at the critical temperature for condensation:

kB TBEC = ~! 7

�
N7

g3(1)

� 1=3

; where g3(1) ' 1:202:
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For a typical mean 7Li trapping frequency ! 7=2� = 270 Hz, and a typical 7Li atom number N7 = 3000,
the critical temperature is TBEC = 175 nK. We did not study in detail the physics around T = TBEC . As
we never observed a sharp feature in the density pro�le, we assume the cloud to be at thermal equilibrium,
with no condensed fraction and atT ' TBEC .

The temperature lower bound imposed by the nature of our thermometer has to be compared with
the 6Li Fermi temperature TF = ~! 6(6N6)1=3:

T � TBEC =
r

m6

m7

�
1

6g3(1)
N7

N6

� 1=3

TF :

This limit is pushed to its lowest values by reducing the7Li atom number to the minimum value N7 ' 2500
allowing us to make a reliable temperature measurement. WithN6 = 5 � 104 6Li atoms in each spin
state, this yields the following numerical value for the temperature limit:

T � 0:18TF :

This lower bound nearly coincides with the temperature at which a part of the gas becomes super�uid
[43, 46, 39, 47]. Therefore this thermometer is not suited for investigating low-temperature e�ects in the
super�uid phase. However, we will see in section 4.7 that we still managed to observe and characterize
the onset of super�uidity.

4.2 Extraction of hT (� ) from In Situ Images

Let us remind the information we have at our disposal at this stage of the data analysis. The pressure
pro�le P(� z ; T) is determined from an in situ image using (3.3) (see Chapter 3), and the temperature is
determined using the 7Li thermometer (see section 4.1). We can calculate for each positionz along the
z axis the quantity:

P(� z ; T)

kB T � � 3
dB (T)

= f 5=2(� � 1
z )hT (� z );

which is a function of the local inverse fugacity:

� z = � 0 exp
�

m! 2
z z2

2kB T

�
;

where � 0 = e� � 0 =kB T is the global inverse fugacity. � 0 is the remaining unknown parameter.

4.2.1 Direct Measurement of the High-Temperature Equation of State

In the wings of a high-temperature cloud, � z is much larger than 1, i.e. the gas is in the classical regime
and f 5=2(� � 1

z )hT (� z ) ' � � 1
z . As pictured in Fig.4.3, we obtain the value of � 0 as the only value consistent

with this high-temperature equation of state.
Actually, interaction e�ects are not negligible even for the largest values� z ' 5 reached in our data.

A better estimate of the equation of state is given by the second-order virial expansion,i.e. the �rst
correction to the equation of state of an ideal and classical gas, due to interactions and quantum statistics.
The second-order virial correction is known exactly for a gas in the unitary limit [135] (see section 4.5):

f 5=2(� � 1)h(� ) = � � 1 +
�

� 2� 5=2 + b2

�
� � 2 + : : : ; where b2 =

1
p

2
: (4.2)

� 0 is chosen on each image so that the high-temperature data corresponding to� z > 2:5 matches the
second-order virial expansion� .

� The next correction to the second-order virial expansion, discussed in section 4.5, is less than 2 % for � > 2:5, justifying
the use of (4.2) in that region.
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Figure 4.3: (a) The procedure used for the determination of� 0 at high temperature is well illustrated
by plotting P(� z ; T)=2kB T � � 3

dB (T) as a function of � in log scale. Indeed, aslog � = log � 0 + log m! 2
z z2

2kB T ,
the degree of freedom� 0 corresponds in that representation to a translation of the data in abscissa.
We choose the value of� 0 so that the data corresponding to � z > 2:5 matches the second-order virial
expansion (solid line). The dashed line is the equation of state of a classical ideal gas. (b) Equation of
state given by all the pixel columns along thez axis from a high-temperature cloud. For � z & 4 (in gray),
the signal-to-noise decreases because of the small optical density in the cloud's wings. We exclude these
points for the rest of the data analysis.

After averaging over the equations of state given by 7 high-temperature clouds prepared in the same
conditions, we obtain a low-noise equation of state, displayed in Fig.4.4. For a given image, each pixel
located in a region of high enough signal-to-noise ratio gives a point of the equation of stateh(� ). 7 images
thus provide � 1000 points, leading after averaging to an equation of state with a very low statistical
noise. As shown in Fig.4.4, at the highest� values the equation of state agrees with the second-order
virial expansion (4.2), while at the lowest � values it clearly deviates from (4.2). This procedure therefore
provides an equation of state in a temperature range well below the validity of the second-order virial
expansion. However, the lowest� values obtained with these images,� ' 1, are too large to reveal
the low-temperature physics corresponding to� � 1 (the super�uid transition is expected to occur at
� = � c ' 5 � 10� 2). Preparing a low-temperature gas, for example with � 0 ' � c, i.e. with a small
super�uid core at the center, would not allow us to use such a procedure because the signal from classical
wings of the cloud � z > 2:5 would be far below the noise. Obtaining the equation of state at lower
temperatures thus requires an additional step.

4.2.2 Construction of the Low-Temperature Equation of State

For colder clouds, we cannot use the second-order virial expansion as a reference for �tting� 0. As the
low-noise equation of state measured using the hottest clouds is valid up to� & 1, i.e. in a much
broader range than the second-order virial expansion, we use it as a reference for �tting� 0 in the wings
of colder clouds. This procedure can be used for clouds prepared at an intermediate temperature, so
that the signal-to-noise ratio in the region � > 1 is good enough. We then iterate this procedure: these
clouds provide a precise equation of state for� > 0:2 and are used to �t � 0 for colder clouds, and so on
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Figure 4.4: Equation of state given by 7 images prepared at the highest temperatures. The gray crosses
are the raw data, each corresponding to one pixel row of a single image. The black points result of an
averaging of 60 consecutive gray points.

(see Fig.4.5). We �nally obtain a reference equation of state that can be used to �t � 0 on the coldest
samples, at a temperature limited by the 7Li thermometer (see section 4.1), corresponding to� ' 0:02.
By gathering the data from all images, we obtain � 2500 points in a temperature range 0:02 < � < 5,
i.e. from the classical to the degenerate regime. After averaging over consecutive points, we obtain a
low-noise equation of state with 58 points (see Fig.4.6).

Figure 4.5: Step-by-step construction of the equation of state. For a given image (gray points), the
determination of � 0 makes use of the equation of state (black circles) determined from colder clouds. We
show here 4 such steps corresponding to di�erent �nal optical trap depths.

4.2.3 Systematic Error on the Equation of State Determined from our Data

After averaging, the statistical noise of our data is less than5% (see Fig.4.6). We evaluate in this section
the systematic error introduced by our procedure.

Absolute Error on the Pressure

As explained in section 3.5.1, the pressureP(� z ; T) is calibrated using a reference pro�le whose equation
of state is well known, namely a spin-balanced Fermi gas in the unitary limit, and at a temperature well
below the super�uid threshold. This procedure leads to a 5% systematic uncertainty.
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Figure 4.6: Thermodynamic function hT (� ) of a homogeneous Fermi gas with resonant interactions. The
complete data are the gray crosses. The black points are averages of raw data points.

Noise Induced by the Determination of � 0

During the step-by-step construction of the equation of state, an error on the determination of� 0 for a
given image induces an error on the reference equation of state used for colder images. The noise of our
pressure data leads to a statistical uncertainty on the determination of� 0. Typically 100 pixels with a
signal-to-noise ratio > 3 are used for the determination of � 0, leading to a 0:3=

p
100 = 3% uncertainty

on � 0. The data from a single image is overlaped with typically 10 other images to form the low-noise
equation of state used as a reference for colder clouds. The error in� on the reference equation is
thus reduced to 0:03=

p
10 = 1%. The 1% statistical error induced by each image results in a random

walk of the noise during the construction of the complete equation of state, leading to a �nal error of
0:01

p
40 ' 5%.

In the next sections, we discuss the content of this equation of state. We make a direct comparison of
our data with theory. We then extract the high-temperature and low-temperature asymptotic behaviors,
and the critical temperature for super�uidity.

4.3 Direct Comparison with Theory

Our data provides the equation of state of a homogeneous Fermi gas in the unitary limit. It can thus
directly be compared with theory, contrary to the equations of state of a trapped gas [62,63] which require
to integrate the theoretical equations of state over the trap. In particular our data allow us to compare
for the �rst time the several points given by time-consuming diagrammatic Monte-Carlo calculations with
experiment [113]. Moreover, the trap averaging smears the possibly small di�erences between theoretical
equations of state, so that up to now trapped equations of state have not be used to clearly discriminate
between theories.

The comparison is made in Fig.4.7, with the following theories:

� double-dot-dashed line: BCS mean �eld theory
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Figure 4.7: Comparison of our data with theory (see text for the legend).

� open circles: Diagrammatic Monte Carlo calculations [113]

� open squares: Quantum Monte Carlo calculations [136]

� dotted line: GG perturbation theory [137,138]

� dashed line: GG0 perturbation theory [139]

� triple-dot-dashed line: Ladder diagrams approximation [140]

� dot-dashed line: Pseudogap theory [139]

� solid line: Gaussian pair �uctuation/Nozières-Schmitt Rink theory [141]

Our data clearly discriminates between these theories. We observe that none of them account for
our data over their full range. In particular our observations are not consistent with the diagrammatic
Monte Carlo calculations from [113]. Their highest-temperature data exhibits a clear inconsistency: they
violate the exact constraint on the equation of statehT (� ) � 1, valid for an attractive gas such as a Fermi
gas in the unitary limit [48]. Finally our data agrees well with the Quantum Monte Carlo calculations
from [136], except in the region0:05 < � < 0:2.



68 Chapter 4. Thermodynamics of a Strongly-Interacting Fermi gas

4.4 Comparison with the Tokyo Group Measurements

The thermodynamics of a homogeneous unitary Fermi gas was experimentally studied, simultaneously
to our work, by the Tokyo group [47]. Using the equation of state of a trapped unitary gas measured
in the Duke group [63] as a reference for thermometry, they obtain a canonical equation of state for the
homogeneous gas, from the analysis of density pro�les after a hydrodynamic expansion (see Fig.4.8a).
This equation of state is written as:

E =
3
5

NE F g
�

� =
T
TF

�
;

whereE is the energy,N is the total atom number, and EF (TF ) is the Fermi energy (temperature). The
function g(� ) is the canonical equivalent ofhT (� ).

Figure 4.8: (a) Open circles (open squares): canonical equation of state of a homogeneous unitary (ideal)
gas measured in the Tokyo group [47]. Solid line: equation of state of an ideal gas. Dashed line: second-
order virial expansion. (b) Chemical potential computed from the experimental data for a unitary gas
(solid line) and an ideal gas (dashed line). The dotted line is the exact chemical potential for an ideal
gas.

In order to compare with our data, we have to make the correspondence between the canonical equation
of state g(� ) and the grand-canonical equation of statehT (� ). We �rst express the data from the Tokyo
group in the variables (�; h ). This requires to compute the chemical potential from the experimental data
(see Appendix A.2 for a detailed calculation):

�
EF

= g� (� ) = g(� ) �
3
5

�
Z �

0

g0(� 0)d� 0

� 0 : (4.3)

The integral in (4.3) is calculated using a function interpolating the experimental data. In order to test the
robustness of this procedure, we calculated the chemical potential of an ideal gas using the experimental
equation of state of an ideal gas also measured in [47] (see Fig.4.8a). As shown in Fig.4.8b, the chemical
potential deduced from the experimental data agrees with the theoretical chemical potential of an ideal
gas. This validates our calculation ofg� (� ) from the experimental data.

There is then a one-to-one correspondence between the data(�; g ) and the data (�; h T ) (see Appendix
A.2):

� = exp
�

�
g� (� )

�

�
(4.4)

hT =
8

15
p

�
g(� )

� 5=2f 5=2(� � 1)
: (4.5)
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Figure 4.9: Comparison between the grand-canonical equation of statehT (� ) deduced from our data
(black dots) and from the one measured in [47] (open circles). The open squares are calculated with the
ideal gas data from [47], using the same procedure. The good agreement with the exact equation of state
hT (� ) = 1 for an ideal gas shows the robustness of the correspondence canonical/grand-canonical.

In Fig.4.9 we make the comparison in the variables(�; h T ) between our data and the one from [47]. They
are in good agreement for� < 0:5 but strongly di�er in the high-temperature regime.

Alternatively, we express our data in the canonical ensemble to make the comparison without having
to transform the data from [47]. The canonical equation of stateg(� ) is calculated from our data hT (� )
according to (see Appendix A.2):

� =
�

16
9�

� 1=3 �
� �

df 5=2(� � 1)hT (� )
d�

� � 2=3

; (4.6)

g = 5
�

2
9�

� 1=3 �
� �

df 5=2(� � 1)hT (� )
d�

� � 5=3

f 5=2(� � 1)hT (� ): (4.7)

Calculating g(� ) thus requires to take the derivative of our experimental data, which decreases the signal-
to-noise ratio. In order to highlight the di�erences between the two sets of data, we plotg(� )=g(0) (� ) as a
function of � , whereg(0) (� ) is the equation of state for an ideal gas. As shown in Fig.4.10, our data agree
within our signal-to-noise ratio with the one from [47] for � < 0:5. In the high-temperature regime the
two measurements signi�cantly di�er. In the high-temperature regime, our data is in excellent agreement
with the exact high-temperature asymptotic behavior given by the third-order virial expansion [75] (see
section 4.5). Therefore we believe that the data from [47] have a systematic error at high temperature,
possibly due a deviation from hydrodynamics during the time-of-�ight.

4.5 High-Temperature Virial Expansion

As described in section 4.3, our data can be used as a benchmark for many-body theories, from the low-
temperature to the high-temperature regimes. It is also important to get a more physical picture of the
equation of state. In this section we extract several virial coe�cients of the high-temperature expansion
of the equation of state in a series of� � 1. We also give a physical interpretation of these numbers in
terms of few-body physics.
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Figure 4.10: Comparison between the canonical equation of state deduced from our data (black dots)
and the one measured in [47] (open circles), and expressed asE(� )=E(0) (� ), where E (0) (� ) is the energy
of an ideal gas with same atom number. The lines are the successive theoretical virial expansions of the
equation of state at high temperature.

4.5.1 Virial Expansion of a Unitary Fermi Gas: Generalities

Connection of the Virial Expansion to Few-Body Physics

The grand-canonical partition function � can be decomposed by gathering all terms with given total
atom numbers N1, N2:

�( �; T ) =
X

N 1 ;N 2

Z (N1; N2; T)� � (N 1 + N 2 ) ; where Z (N1; N2; T) =
X

state � (N 1 ;N 2 �xed)

e� E � =kB T

is the canonical partition functions for �xed atom numbers N1, N2. Calculating Z (N1; N2; T) requires
to know the complete energy spectrum of a system withN1 particles of species1, and N2 particles of
species2. The grand potential 
 = � PV = � kB T log � (related to the pressure by
 = � PV) can then
be expressed as a high-temperature series of� � 1:


( �; T ) = �
2kB TV
� 3

dB (T)

h
� � 1 +

�
� 2� 5=2 + b2

�
� � 2 +

�
3� 5=2 + b3

�
� � 3 +

�
� 4� 5=2 + b4

�
� � 4 + : : :

i
: (4.8)

The coe�cients bk are the so-calledvirial coe�cients . The coe�cient bk is obtained by expanding log �
in powers of � � 1 up to kth order, and thus involves the values of the partition functions Z (N1; N2; T)
for N1 + N2 � k. As an example, it is simple to show that the second-order virial coe�cient reads
b2 = ( Z1;1 � Z 0

1;1)=2Z1;0, where the superscript 0 refers to partition functions for a non-interacting
gas. Our convention for the de�nition of the virial coe�cients is chosen so that a non-interacting two-
component Fermi gas corresponds tobk = 0 for all values of k. As a conclusionbk can be interpreted as
a coe�cient quantifying the e�ect of interactions in the high-temperature expansion up to kth order, and
is given by the eigen-spectrum of thek-body problem.

Virial Coe�cients for Uniform and Trapped Gases

A simple relationship can be established between the virial coe�cients for a uniform gas and for a
harmonically-trapped gas [75]. For a trapped gas, the virial expansion is de�ned as an expansion of the
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grand potential 
 t in powers of (� 0) � 1, where � 0 = e� � 0 =kB T is the global inverse fugacity. In the local
density approximation framework, the grand potential 
 t is obtained by integrating the grand potential
of a uniform gas over the trap:


 t (� 0; T) =
Z

dr
V


( � 0 � V (r ); T)

=
2kB T

� 3
dB (T)

�
(� 0) � 1

Z
dr e� V ( r )=kB T +

�
� 2� 5=2 + b2

�
(� 0) � 2

Z
dr e� 2V (r )=kB T + : : :

�
:

Integration over space is straightforward:

Z
dr e� kV (r )=kB T =

�
2�k B T
m! 2

� 3=2 1
k3=2

;

where ! is the geometrical mean trap frequency. The virial expansion for a trapped gas then reads:


 t (� 0; T) = � 2kB T
�

kB T
~!

� 3 �
(� 0) � 1 +

�
� 2� 4 + bt 2

�
(� 0) � 2 +

�
3� 4 + bt 3

�
(� 0) � 3 + : : :

�
; where btk = bk =k3=2:

(4.9)
Compared with the virial coe�cients for a uniform gas, the virial coe�cients of a trapped gas are sup-
pressed by a factorbtk =bk = k3=2. Therefore we can already feel that the equation of state of a homo-
geneous gas is more suited to extract virial coe�cients than the equation of state of a trapped gas (see
section 4.8).

Theoretical Values for the Second- and Third-Order Virial Coe�cients

The calculation of the second- and third-order virial coe�cients can be performed exactly, making use of
the exact resolution of the two-body problem in [142] and of the three-body problem in [74].

The calculation of the second-order virial coe�cient was �rst made in [135]:

b2 = 1=
p

2: (4.10)

The derivation of this result is simple and can be found in Appendix A.
The three-body problem at unitarity and in a harmonic trap was solved recently in [74]. The calcu-

lation of the third-order virial coe�cient using this energy spectrum was performed in [75]:

b3 = � 0:3551: (4.11)

This coe�cient was also calculated in [143] using an e�ective �eld theory, and surprisingly the result
b3 = 1 :05 is very di�erent. Our data will unambiguously show which of the two calculations is correct.

The next virial coe�cient has not been calculated yet since the four-body problem has not been
treated yet.

4.5.2 Virial Coe�cients Extracted from our Data

As we use in our procedure the second-order virial expansion (4.2) for the determination of the global
chemical potential � 0, our high-temperature data cannot serve as a measurement ofb2. However the
deviation of our data from (4.2) provides the value of the next-order coe�cients.

Third-Order Virial Coe�cient

At high temperature, the deviation from the second-order virial expansion reads:

f 5=2(� � 1) (hT (� ) � 1) � � � 1 � b2� � 2 ' b3� � 3: (4.12)
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In Fig.4.11a, we show that the deviation of our data from the second-order virial expansion agrees with
the asymptotic behavior (4.12) using the theoretical valueb3 = � 0:3551 from [75]. Our observations
clearly exclude the other theoretical valueb3 = 1 :05 from [143]. In order to extract an experimental
value of b3, we �t our high-temperature data � > � cuto� in 4.11a with the asymptotic behavior (4.12). In
Fig.4.11b we plot the �t result as a function of � cuto� de�ning the number of data points used for the �t.
This shows the robustness of the determination ofb3, and provides the value ofb3 consistent with our
data: b3 = � 0:345(25).

Figure 4.11: (a) Deviation of our data from the second-order virial expansion, compared with the behavior
of the third-order virial expansion (4.12) with b3 = � 0:3551(solid line). (b) Result of the �t (4.12) using
the data � > � cuto� , as a function of � cuto� . The gray rectangle represents the values ofb3 consistent with
our data. (c) Deviation of our data from the third-order virial expansion, compared with the behavior of
the third-order virial expansion (4.13) with b4 = 0 :09 (solid line). (b) Result of the �t (4.13) using the
data � > � cuto� , as a function of � cuto� .

Fourth-Order Virial Coe�cient

Our measurement of the third-order virial coe�cient agrees with a very good precision with the calculation
b3 = � 0:3551. Having checked this result, we can go one step beyond and extract the next term of the
virial expansion. The high-temperature deviation from the third-order virial expansion reads:

f 5=2(� � 1) (hT (� ) � 1) � � � 1 � b2� � 2 � b3� � 3 ' b4� � 4: (4.13)
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We show in Fig.4.11c that our high-temperature data agree with the asymptotic behavior (4.13). Applying
the same procedure than for the measurement of the coe�cientb3, we obtain the coe�cient b4 = 0 :09(1)
(see Fig.4.11d). The calculation ofb4 would require to solve the four-body problem. As shown in [75],
numerical calculations of the energy spectrum of three-body problem from [144] are precise enough to
calculate the third-order coe�cient b3 with an excellent precision. A numerical calculation of the energy
spectrum of the four-body problem was already carried out in [145], and could possibly be used to
calculate the fourth-order virial coe�cient b4.

To conclude this section, we plot in Fig.4.12 the successive virial expansions up to fourth order,
together with the data hT (� ). The fourth-order virial expansion accounts for our observations within 5%
up to � = 0 :4.

Figure 4.12: Grand-canonical equation of state of a Fermi gas in the unitary limit extracted from our
data (black dots), compared with the successive virial expansions described in the text.

4.6 Fermi-Liquid Behavior in the Normal Phase

We now consider the low-temperature behavior of the equation of state determined from our data. At
very low temperature a phase transition from a normal phase to a super�uid phase occurs [40]. We discuss
the observation of this phase transition in section 4.7 and focus here on the low-temperature behavior in
the normal phase.

Understanding the thermodynamic properties in the normal phase of strongly correlated materials
such as high-Tc copper oxides is a challenge for condensed matter physics. It is one of the key ingredients
for modeling the superconducting phase transition, governed by the energy competition between normal
and superconducting states.

4.6.1 Low-Temperature Normal Phases in Strongly-Interacting Systems

In this section we brie�y present two families of normal states in strongly correlated materials: the family
of Fermi liquids and the family of the pseudogap phase.

The Fermi Liquid Family

Fermi liquid theory, developed by Landau in [146], provides a phenomenological description of thermody-
namic properties of most metals. According to this theory, the e�ect of interactions on electrons can be
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Figure 4.13: (a) Experimental values of3He speci�c heat, plotted as CV =RT as a function of T (from
[147]). The numbers indicate the pressure at which each set of measurements was performed. (b)
Experimental values ofCV =T as a function ofT for the heavy-fermion metal CeCu2Si2, taken from [148].
The heavy-fermion regime is observed forT . 2 K.

reduced to a renormalization of the electron physical characteristics, such as its mass. The metal is then
described as a non-interacting Fermi gas of renormalized electrons, the so-called Landau quasiparticles.

The structure of the dispersion relation for low-energy excitations around the Fermi surface remains
identical to the one of non-interacting fermions:

� k = � +
~2kF

m� jk � kF j; (4.14)

wherekF = (3 � 2n)2=3 is the Fermi momentum and n is the total electron density. For k > k F excitations
correspond to the extra particles above the Fermi level, while fork < k F they corresponds to the removal
of one particle under the Fermi level, and can been seen as the creation of a 'hole'. Due to interactions,
the bare electron massm is replaced by the quasiparticle e�ective massm� , and � may di�er from
EF = ~2k2

F =2m. At �nite temperature, quasi-particles are populated according to the Fermi-Dirac
distribution 1=(1 + e( � k � � )=kB T ). The calculation of the speci�c heat at low temperature is then similar
to the one of an ideal Fermi gas, and gives:

CV =
m�

m
V mk2

B (3� 2n)1=3

3~2 T:

Therefore, the quasi-particle e�ective mass can directly be obtained from a measurement of the speci�c
heat, by comparison with the one of an ideal Fermi gas with the same electron density.

As shown in Fig.4.13, this low-temperature linear dependence of the speci�c heat with temperature
is observed in a large number of materials.

For simple metals, the e�ective mass valuem� is comparable to the bare electron massm. As an
example, the e�ective mass in Cu ism� = 1 :3m [149]. At low temperature (above the super�uid transition
temperature), 3He is a Fermi liquid whose quasiparticle e�ective massm� is on the order of the bare3He
massm (see Fig.4.13a):m� ' 3m at ambient pressure [147].

The most exotic Fermi liquids are heavy-fermion metals, which exhibit a Fermi liquid behavior with
e�ective masses up to� 1000m, where m is the electron mass. Heavy-fermion metals contain a matrix
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Figure 4.14: (a) Speci�c heat coe�cient CV =T as a function of temperature for the high-Tc material
YBa2Cu3O6+ y , here for a dopingy = 0 :57 (from [150]). (b) Typical phase diagram for high-Tc super-
conductors with electron doping (left side) or hole doping (right side) (from [152]), showing the large
parameter range where the pseudo-gap phase, or `strange metal' phase, is observed.

of rare-earth or actinide ions acting as magnetic impurities, coupled to a Fermi sea of mobile conduction
electrons. Interactions between a single ion and the surrounding electron Fermi sea result in the so-called
Kondo e�ect , i.e. a complete screening of the magnetic impurity by electrons at low temperature. In such
materials, if the magnetic screening is stronger than the tendency to form an insulating antiferromagnet,
impurities are dissolved into the mobile electron Fermi sea and form charged mobile quasi-particles with
a large e�ective mass (see Fig.4.13b).

The Landau Fermi liquid prescription does not predict which systems are Fermi liquids or how to cal-
culate quasi-particle characteristics. Nevertheless, its relevance for describing most metals is remarkable.

The Pseudogap Phase

The normal state in high-Tc cuprates does not seem to exhibit the characteristic features of a Fermi
liquid for a wide range of temperatures and doping above the critical temperature for super�uidity. In
Fig.4.14a we show the speci�c heat of the compound YBa2Cu3O6:57, measured in [150]. The sharp feature
indicates the normal to super�uid phase transition at T = Tc = 57 K. In the wide temperature range
Tc < T . T � = 150 K, the speci�c heat is not linear with temperature, indicating the non-applicability
of Fermi liquid theory. In Fig.4.14b we show a typical phase diagram, illustrating the large width of this
`strange metal' phase as a function of impurity concentration.

The microscopic origin of this behavior is attributed to the existence of a gap in the single-particle
excitations in the range Tc < T . T � = 150 K. Using angle-resolved photoemission, momentum-resolved
single-particle excitation spectrum are measured and one observes an energy gap along certain momentum
directions for Tc < T . T � [151]. Understanding this phenomenon and its connection to superconductivity
is a major research topic in condensed matter physics.

Normal State of a Two-Component Fermi Gas

The investigation of a Fermi liquid or pseudogap behavior in unitary Fermi gases, which constitute model
high-Tc systems, could shed some light on the physics of high-Tc super�uidity.

Before addressing the case of the unitary limita = 1 , we brie�y discuss the weak interaction limits
of the BEC-BCS crossover. On the BEC side of the resonance (1=kF a � 1), the normal gas above the
critical temperature Tc ' 0:22EF [153] is a thermal gas of molecules, whose thermodynamics strongly
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Figure 4.15: Temperature T � at which the single-particle excitation gap vanishes, as a function of the
interaction strength 1=kF a. The two solid lines are the predictions in the BCS limit, T � = Tc, and in the
BEC limit, T � � j Ebj=kB (see [157] for details). The circles are the diagrammatic calculations from [154],
and the square is the Quantum Monte Carlo prediction from [155].

di�ers from a Fermi liquid, as long as the temperature is much smaller than the molecular binding energy.
Therefore, the ideal Fermi gas picture is recovered only forkB T � kB T � = jEbj = ~2=ma2 � EF . Due
to the molecular binding energy, single-particle excitations are gapped in the normal phase forT . T �

(see Fig.4.15). On the other hand, in the BCS limit the gap is directly associated with the super�uid
order parameter and therefore it vanishes atT = Tc, with no pseudogap region. In [154], the temperature
T � at which the pseudogap vanishes was estimated, interpolating between the BEC regime and the BCS
regime, but this study does not predict whether T � signi�cantly di�ers from Tc in the unitary limit. In
a recent Monte Carlo calculation by P. Magierski et al [155], the single-particle spectral function of a
�nite-temperature unitary gas was calculated, and presents a pseudogap forTc < T . 1:3Tc, falling from
� ' 0:2EF at T ' Tc to � = 0 at T = 1 :3Tc. In [156] the single-particle spectral function was directly
measured by the JILA group, for a unitary gas prepared at a temperatureT=Tc = 0 :9(1), i.e. right below
the normal to super�uid transition. They deduce from their measurements the existence of a large gap
of single-particle excitations � =� = 0 :75. At present there is no experimental evidence for the existence
of a pseudogap forT > T c.

We will address these open questions by analyzing the low-temperature behavior of the equation of
state extracted from our data.

4.6.2 Observation of a Fermi Liquid Behavior

Grand-Canonical Fermi Liquid Equation of State

In order to compare our data hT (� ) to a Fermi liquid behavior, we derive in this section the grand-
canonical equation of state of a Fermi liquid. The starting assumption of Fermi liquid theory is the
quasi-particle dispersion relation (4.14). The corresponding density of states reads, around the Fermi
level:

� (� ) = 2
V

(2� )3

Z
dk �

�
� � � �

~2kF

m� jk � kF j
�

' V
2
� 2

m� kF

~2 assuming � � � � �

=
m�

m
� � 1=2

n V
2
p

2m3=2p
�

� 2~3 where we de�ne � = � n
~2k2

F

2m
:
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Therefore the density of states is simply equal to the one of a two-component ideal Fermi gas with the
same chemical potential, multiplied by m� =m � � 1=2

n . The parameter � n de�nes the Fermi liquid equation
of state extrapolated at zero temperature� = � n EF . The corresponding pressure reads:

P(�; T = 0) = � � 3=2
n 2P0(�; T = 0) ;

where 2P0(�; T = 0) = 2 =15� 2(2m=~2)3=2� 5=2 is the pressure of a non-interacting two-component Fermi
gas at T = 0 . Low-temperature e�ects are then calculated similarly to the ones of an ideal gas (see
Appendix A.1):

P(�; T ) = P(�; 0) +
kB T

V

Z 1

�
d� � (� ) log

�
1 + e( � � � )=kB T

�

= P(�; 0) + kB T
m�
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2
p
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� 2~3

Z 1

�
d� log

�
1 + e( � � � )=kB T

�

= 2P0(�; 0)
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5� 2
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n

�
kB T

�

� 2
!

: (4.15)

The ideal gas equation of state (A.8) derived in Appendix A.1 is recovered by taking� n = 1 and m� = m.

Fermi Liquid Behavior of the Equation of State Deduced from our Data

In order to compare our data hT (� ) to (4.15), we plot our data as P(�; T )=2P0(�; 0) versus (kB T=� )2.
There is a single correspondence between the data(�; h T ) and ((kB T=� )2; P(�; T )=2P0(�; 0)):

�
kB T

�

� 2

= (log � ) � 2

P(�; T )
2P0(�; 0)

=
P0(�; T )
P0(�; 0)

hT =
15

p
�

8
f 5=2(� � 1)

(� log � )5=2
hT :

Therefore, each data pointhT (� ) results in one point in this representation.

Our data for kB T . � is in very good agreement with a Fermi liquid equation of state (4.15) with
� n = 0 :51(2) and m� = 1 :13(4)m (see Fig.4.16a and b). The relative deviation of our data with (4.15) is
less than3% for 0:1 < (kB T=� )2 < 0:6, and around T = � is about 5%y.

Equivalently, the Fermi liquid characteristics can be expressed in terms ofLandau parameters [146],
F s

0 = � n m� =m � 1 = � 0:42 and F s
1 = 3( m� =m � 1) = 0 :39.

Condensation Energy of a Fermi Gas with Resonant Interactions

The extrapolation to T = 0 , P(�; 0) = 2P0(� )� � 3=2
n , corresponds to a pressure lower than the actual

ground state pressureP(�; 0) = 2P0(� )� � 3=2
s , where � s ' 0:41 is a characteristics of theT = 0 super�uid

measured in Chapter 5. This means that the normal state is thermodynamically unstable with respect
to the super�uid state. The di�erence between the T = 0 energy in the normal and super�uid states is
referred to as thecondensation energy:

Ec � EN � ES

=
3
5

NE F (� n � � s)

= 0 :10(2)
3
5

NE F :

yAs a comparison, the relative di�erence between the equation of state of an ideal gas and its Sommerfeld expansion up
to second order in kB T=� is 7% at kB T = � .
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Figure 4.16: (a) Equation of state of a unitary Fermi gas, plotted asP(�; T )=2P0(�; 0) versus(kB T=� )2.
For kB T . � our data are in very good agreement with a Fermi liquid equation of state, with � n = 0 :51
and m� = 1 :13m (solid line). (b) and (c) Results of the �t of our data for (kB T=� ) < (kB T=� )cuto�

with a Fermi liquid equation of state (4.15). The gray regions correspond to the values of� n or m� =m
compatible with our low-temperature data.

In the BCS limit of weak interactions, the condensation energy is directly related to the single-particle
excitation gap � 0 through:

Ec =
5
8

�
� 0

EF

� 2 3
5

NE F : (4.16)

Interestingly, using the experimental value � 0 = 0 :44EF from [51] (which agrees with a recent calcula-
tion using an unbiased Monte-Carlo computation [158]), we obtain5=8(� 0=EF )2 ' 0:12, showing that
equation (4.16) approximately remains valid even for resonant interactions. It would be interesting to
investigate more deeply this behavior and how it depends on the interaction strength.

4.6.3 Estimation of the Maximum Pseudogap Amplitude

Our data thus agrees with a simple Fermi liquid picture, while it is generally believed that the normal
gas aboveTc exhibits a pseudogap in the unitary limit [159, 160, 155, 161, 162, 163]. In this section we
estimate the maximum pseudogap values in agreement with our observations, assuming the existence of
a well-de�ned dispersion relation � k (i.e. the spectral function A(k; ! ) of the unitary gas is approximated
by � (� k � ! )). Inspired by the quasi-particle dispersion relation in the BCS limit [157], we introduce a
pseudogap� in the excitation spectrum in the following manner (see Fig.4.17):

� k = � +
~2kF

m� jk � kF j ! � k = � +

s �
~2kF

m� (k � kF )
� 2

+ � 2:

� + � is then indeed the minimum single-particle excitation energy. From the density of states associated
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Figure 4.17: Quasi-particle dispersion for a Fermi liquid (dashed line) and with a pseudogap� (solid
line)

with such a dispersion relation:
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one calculates the gas pressure:
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where the function F , de�ned by:

F (y) =
12
� 2

Z 1

y
dx

x
p

x2 � y2
log(1 + e� x ); (4.17)

is plotted in Fig.4.18a. F quanti�es the deviation of the equation of state from the one of a Fermi liquid.
As shown in Fig.4.16, the deviation of our data from a Fermi liquid equation of state is less than 5% in
the range 0:1 < (kB T=� )2 < 1, i.e. 0:95 < F (� =kB T) < 1:05. This leads to an upper bound for the
pseudogap values in agreement with our observations (Fig.4.18a):

� < 0:25kB T: (4.18)

As shown in Fig.4.18b, this bound excludes the Monte Carlo pseudogap values from [155]. Indeed, just
above the critical temperature for super�uidity, our data are consistent with � . 0:25Tc ' 0:05EF . Our
measurements also exclude the larger pseudogap values,� � 0:6EF at T=TF = 0 :24, given by a �nite- T
extended BCS-Leggett theory [160] or a Nozières Schmitt-Rink theory [164].

To conclude, our measurement strongly supports an accurate description of the normal state of the
unitary gas as a Fermi liquid. The pseudogap values� . 0:05EF consistent with our data are very small
compared with the values measured in the super�uid state [51, 156]. Developing a more complex model
accounting for a �nite width of the spectral function A(k; ! ) could provide a more precise comparison
with theories supporting a pseudogap.
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Figure 4.18: (a) Function F , de�ned in equation 4.17, that quanti�es the deviation of the equation of
state from a Fermi liquid equation. The gray rectangle represent the possible values ofF in agreement
with our data. (b) Upper bound on the value of the pseudogap given by equation (4.18), compared with
the pseudogap Monte Carlo values from [155] (black dots). Our data exclude the value� ' 0:2EF at
T = 0 :16TF . We also show the pseudogap values given by a �nite-T extended BCS-Leggett theory [160]
(square) or a Nozières Schmitt-Rink theory [164] (diamond).

4.7 Super�uid Transition

At lower temperature, we expect the gas to become super�uid. The super�uid character of a low-
temperature Fermi gas with resonant interactions was unambiguously identi�ed through its response to
a rotation of the trapping potential: at a low rotation speed the gas does not respond to rotation [39],
while at a larger frequency the gas starts to rotate through the formation of a vortex lattice [40]. The
measurement of the critical temperature for super�uidity attracted a large amount of work in the past
few years [43, 46, 39, 47]. However, similarly to previous measurements of the equation of state, these
studies determine the transition point for a trapped gas, expressed asTc=TF wherekB TF = ~! (3N )1=3 is
the Fermi energy of a trapped gas. The comparison with theories of the homogeneous gas then requires
to integrate the equation of state over the trap, using values of the equation of state forT > T c, a region
especially di�cult to handle. In this section we identify the transition point for a homogeneous gas on
the equation of state deduced from our data, which allows us to make the �rst direct comparison with
many-body theories.

4.7.1 Deviation from the Fermi Liquid Equation of State

In Fig.4.19 we focus on the low-temperature data, limited to (kB T=� )2 > 0:07 due to the instability
of 7Li at low temperature (see section 4.1). For (kB T=� )2 < 0:1 our data deviates from the Fermi
liquid equation of state (4.15) and P=2P0 seemsT-independent. As the deviation is small, we add some
arguments showing that this behavior is indeed expected in the super�uid state.

At T = 0 the equation of state is well known and solely involves the parameter� s = �=E F , that has
been extensively measured and calculated in the past [165]. In section 5.5 we measure the pressure of
the ground state in the BEC-BCS crossover and in particular we con�rm the value � s = 0 :415(10). The
pressure atT = 0 is then given by:

P(�; 0)
2P0(�; 0)

= � � 3=2
s = 3 :8(1);
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which is equal to the values of P(�; T )=2P0(�; 0) that we measure at (kB T=� )2 ' 0:1. Moreover,
P(�; T )=2P0(�; 0) is an increasing function ofT since:

@
@T

�
P(�; T )

2P0(�; 0)

� �
�
�
�
�

=
@P(�; T )=@Tj �

2P0(�; 0)

=
S(�; T )

2V P0(�; 0)
� 0:

This shows that, constrained by the values atT = 0 and at (kB T=� )2 ' 0:1, the value ofP(�; T )=2P0(�; 0)
necessarily remains almost equal to� � 3=2

s in the whole range0 < (kB T=� )2 < 0:1.

In the next section we show that this small temperature dependence is expected in the super�uid
phase.

4.7.2 Low-Temperature Excitations in the Super�uid Phase

To �rst order, low-temperature e�ects in the super�uid are captured by the thermal population of its low-
energy excitations. Two kinds of excitations are considered here: the fermionic single-particle excitations
and the Bogoliubov-Anderson collective excitations associated with the propagation of sound.

Single-Particle Fermionic Excitations

The dispersion relation of single-particle fermionic excitations was directly measured by the MIT group
in [166], and is well accounted for by a BCS-type dispersion relation:

� k = � +

s �
~2k2

2m� + U � �
� 2

+ � 2:

m� ' m is the quasi-particle e�ective mass,U = � 0:43EF = � 1:02� is the Hartree energy shift, and
� = 0 :44EF is the excitation gap. In addition, these measurements are in agreement with Quantum
Monte-Carlo calculations [167, 155]. The dispersion relation is thus essentially the same than the one
considered for the estimation of the pseudogap amplitude in the normal phase (equation (4.17)). Using
the calculations made in section 4.6 (and replacing� n by � s), we obtain the pressure increase due to the
thermal population of fermionic excitations:
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in the low-temperature limit kB T � � z. At low temperature these excitations are thus exponentially
suppressed due to the gap, and the pressure increase atT ' 0:3 � is only 3% (assuming a gap equal to
its T = 0 value, � = 0 :44EF [51]) (see Fig.4.19a).

Sound Excitations

The lowest energy excitations are the collective excitations associated with the propagation of sound.
The speed of sound is related to the equation of state through:

cs =

r
n
m

@�
@n

=

r
2
3

�
m

;

zThe asymptotic behavior of F (x) for x � 1 is given by F (x) ' 12=
p

2� 3=2x1=2e� x .
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Figure 4.19: (a) Equation of state of a unitary Fermi gas, plotted asP(�; T )=2P0(�; 0) versus(kB T=� )2,
and zoomed around(kB T=� )2 = 0 :1. The solid line is the Fermi liquid equation of state (4.15), the
dashed line is theT = 0 value � � 3=2

s , the dotted line takes into account the phonon correction (4.20),
and the dot-dashed line the phonon and fermionic-excitation corrections (4.20) and (4.19). (b) Fit of our
data around the critical point (kB T=� )c = 0 :32 with a function capturing the critical behavior (see text).
The data are expressed asP=Panalytic � 1 versuskB T=� , where Panalytic is the Fermi liquid pressure in
the normal phase.

where we have used� / n2=3 at T = 0 . Bosonic quasi-particles (phonons) associated with the propagation
of sound have a dispersion relation� k = ~csk. Their population induced by a non-zero temperature leads
to a pressure correction given by the Stefan law of black body radiation:

�P phonons (�; T ) =
� 2

90~3c3
s

(kB T)4

= 2P0(�; 0)
� 4

p
3

32

�
kB T

�

� 4

: (4.20)

While at very low temperature the e�ect of phonons dominates over the fermionic excitations (see
Fig.4.19a), it is less than 2% at T ' 0:3 � .

The overall pressure increase atT ' 0:3 � is therefore expected to be less than 5%, in agreement with
the behavior P(�; T )=2P0(�; 0) ' cst consistent with our data.

4.7.3 Critical Temperature for Super�uidity

These arguments show that the deviation from the Fermi liquid equation of state indicates a phase
transition from a normal to a super�uid state.

In [48] we proposed to extract the critical temperature (kB T=� )c in a very simple manner. We �tted
our data around (kB T=� )2 = 0 :3 with a continuous and piecewise linear function, one part being equal
to the Fermi liquid equation of state, the other part being a constant. The breaking point was let as a
free parameter and was identi�ed with (kB T=� )c. This procedure leads to:

�
kB T

�

�

c
= 0 :316(7):
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This �tting function, whose slope is discontinuous at the super�uid transition, could be suited for a
�rst-order phase transition. However, the super�uid transition of a Fermi gas is expected to be of second
order and to belong to the three-dimensionalXY universality class. In the critical region, expected to
be rather large for the unitary gas [168], the pressure variation is then given by:

P(�; T ) = Panalytic (�; T )

 

1 + a+

�
T � Tc

Tc

� � +2
!

for T > T c

= Panalytic (�; T )

 

1 + a�

�
Tc � T

Tc

� � +2
!

for T < T c

where Panalytic (�; T ) is the analytic equation of state far from the critical region, here the Fermi liquid
equation of state. For the three-dimensionalXY universality class, the speci�c heat exponent � =
� 0:012(3) is known with an excellent precision from experiments on4He [169] or �eld theory calculations
[170, 171]. Fitting our data with this function (see Fig.4.19b) leads to the coe�cients a� = 22(12),
a+ = 0 :0(1), and:

�
kB T

�

�

c
= 0 :33(1):

The two �t procedures lead to very similar values and di�er by less than the 10% uncertainty due to the
systematic error of our data. The critical temperature value extracted from our data is thus �nally given
by:

�
kB T

�

�

c
= 0 :32(3);

This constitutes the �rst measurement of the critical temperature of a homogeneous Fermi gas in the
unitary limit. It is compared in Table 4.1 to several theoretical results. Our measurement is in very good
agreement with the most robust numerical calculations [113,172,173]. It is also interesting to extract from
our data the value of T=TF at the phase transition, wherekB TF = ~2=2m(3� 2n)2=3 is the Fermi energy.
The density is calculated from the pressure usingn = @P=@�jT and requires to compute the derivative of
our data. It is safe to assume that the derivative ofP(�; T )=2P0(�; T ) at the phase transition is between
the one given by the Fermi liquid equation of state (4.15), and 0. This leads to the value:

0:13 <
�

T
TF

�

c
< 0:16;

also in good agreement with [113, 172, 173]. In addition, we deduce from this calculation the chemical
potential value at the phase transition:

0:41 <
�

�
EF

�

c
< 0:5:

We also compare our value to other experimental values which are less direct than our method. In the
MIT group, the super�uid transition of a spin-imbalanced Fermi gas was studied below the tri-critical
point at T = 0 :07TF , i.e. in the temperature range where the phase transition is of �rst order [49].
Extrapolating the critical temperature to the spin-balanced situation, they obtained (T=TF )c ' 0:15, but
this extrapolation is rather di�cult to justify. In the Tokyo group, the condensate fraction was directly
measured and the identi�cation of the super�uid transition is straightforward [47]. In addition the atomic
density is obtained from a �t of the cloud absorption image after a hydrodynamic expansion. Using the
equation of state of a trapped unitary gas measured in [63] as a reference for thermometry, they obtained
(T=TF )c = 0 :17(1), in agreement with our value.
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Our values Amherst group Seattle group Utrecht group
Diagram. MC [113,172] Quantum MC [173] Renorm. group [174]

(kB T=� )c 0.32(3) 0.32(2) 0.35(3) 0.24
(T=TF )c 0.145(20) 0.152(7) 0.15(1) 0.13

München group Tokyo/Seattle group Harvard group Brisbane group
Diagrams [138] d = 4 � � , d = 2 + � [175] 1=N expansion [176] NSR theory [141]

(kB T=� )c 0.41 1.38 0.23 0.49
(T=TF )c 0.16 0.25 0.136 0.22

Table 4.1: Comparison between our measurement of the critical temperature for super�uidity with dif-
ferent theories.

4.7.4 Validity of Local Density Approximation in the Critical Region

In the critical region of the super�uid transition, the coherence length diverges according to:

� � k� 1
F
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�
�
�
T � Tc

T

�
�
�
�

� �

; (4.21)

where � ' 0:67 is a critical exponent of the three-dimensionalXY universality class. This may invalidate
local density approximation in the critical region. Let us consider a trapped gas prepared below the
super�uid transition, i.e. kB T=� 0 < 0:32. For simplicity we consider an isotropic trap, the calculations
for a more realistic trap essentially giving the same conclusions. In the critical region, the coherence
length varies according to� (r ) � k� 1

F j(� (r ) � � (r c))=� (r c)j � � , where r c is the radius at which the phase
transition occurs, de�ned by kB T=� (r c) = 0 :32. Local density approximation is expected to be incorrect
in the region r c � �r < r < r c + �r , where [168]:

�r = � (r c + �r )

� k� 1
F

�
m! 2r c�r

� (r c)

� � �

A simple calculation leads to the typical spatial extent of the breakdown of local density approximation,
compared with the Thomas-Fermi radius RTF de�ned as 1

2 m! 2R2
TF = � 0:

�r
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�
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2RTF r c

R2
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c

� � �
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(kF RTF ) � 1
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=
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2RTF r c
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TF � r 2

c

� � �
1+ �

(24N ) � 1
3(1+ � )

' 5% for r c = RTF =2 and N = 105 atoms:

Therefore the actual atom density may not be described by local density approximation is a small region
around the super�uid transition. The impact on the pressure value is much smaller, due to the double
integration:

P(� z ; T) � Pmeasured (� z ; T) =
m! 2

r

2�

Z
dx dy (nLDA (r ) � nreal (r )) < 0:05P(� z ; T)

sincenLDA (r ) = nreal (r ) on 95%of the integration domain. The equation of state extracted from our data
thus coincides with the equation of state of a homogeneous gas, within the5%-noise of our data, even
around the super�uid transition. The measurement of critical exponents would require a much larger
signal-to-noise ratio, and a violation of local density approximation would then become visible.
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4.8 Equation of State of a Trapped Gas

Previous studies on the thermodynamics of a unitary Fermi gas, performed in JILA [62] and in Duke
university [63,46], were dealing with the equation of state of a trapped gas, relating the trapped gas total
energyE t to its total entropy St (see section 3.1.1). It can be written using dimensionless variables as a
relationship between the entropy par particle s = St =Nt kB and the energyE t normalized by the energy
E (0)

t of an ideal gas at same entropys:

E t

E (0)
t (s)

= gt

�
s =

St

N t kB

�
: (4.22)

In section 4.5 we calculated the virial expansion (4.9) of a trapped gas as a function of the virial
expansion of a homogeneous gas. The equation of state of a trapped ideal gas is directly obtained from
(4.9) by canceling all virial coe�cients:


 (0)
t (� 0; T) = 2 kB T

�
kB T
~!

� 3

f 4

�
e� 0 =kB T

�
; (4.23)

where f 4(z) = � PolyLog(4; � z) =
P

k � 1(� 1)k+1 k� 4. The ideal gas equation of stateE (0)
t (s) is then

calculated from (4.23).
In order to obtain the equation of state (4.22) from our data hT (� ), we express the total atom

number N t , energyE t , and entropy St using local density approximation, as an integral over the trap of
thermodynamic quantities of the homogeneous gas. As an example, the total atom number is given by

N t (� 0; T) =
Z

dr n(� 0 � V (r ); T);

where n(�; T ) = @P=@�is the density of a homogeneous gas, whose equation of state isP(�; T ) =
2kB T � � 3

dB (T)f 5=2(e�=T )hT (e� �=T ). We then express the integral using the variable� , leading after a
straightforward calculation to:

N t (� 0; T) =
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� 3 Z 1
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d log1=2(�=� 0)
d�

f 5=2(� � 1)hT (� )d�: (4.24)

Similar expressions are obtained forE t and St and can be found in [177]. Using a discretized version of
these integrals taken on our data pointsx, we obtain the equation of stategt (s) plotted in Fig.4.20.

Our data are in good agreement with previous studies [62, 63, 46] but has a much smaller statistical
noise. Indeed, integrating over the trap signi�cantly increases the signal-to-noise ratio. However, the5%
systematic error is unchanged. In Fig.4.20 we also make the comparison with successive virial expansions
up to fourth order, using the exact relation btk = bk =k3=2 between the virial coe�cients bk measured for
a homogeneous gas and the ones of a trapped gas. Due to the coe�cientk� 3=2, the e�ect of higher-order
coe�cients is much smaller on the equation of state of a trapped gas, and we see in Fig.4.20 that the
signal-to-noise ratio required to extract b3t and b4t was not achieved in previous studies [62,63,46].

Finally, we also compare our measurement with previous studies of the super�uid transition. A large
amount of work [43, 46, 39, 47] focused on the characterization of the onset of super�uidity in a trapped
gas: these works provided the ratio of the temperatureT over the Fermi temperature of the trapped gas
kB TF t = ~! (3N t )1=3, for which the central part of the cloud becomes super�uid. In the local density
approximation framework, this occurs when kB T=� is equal, at the bottom of the trap, to the critical
value for super�uidity of a homogeneous gas:kB T=� 0 = 0 :32(3). Using equation (4.24) to obtain the
atom number and hence the Fermi temperature corresponding to the onset of super�uidity, we get:

�
T

TF t

�

c
= 0 :19(2):

x In order to make the integral over � up to + 1 , we complete our data with theoretical values given by the second-order
virial expansion for � > 5.
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Figure 4.20: Equation of state g(s) of a trapped unitary gas. The black dots are calculated from our
experimental data. The crosses are data from Duke university [46], the open squares are data from the
JILA group [62]. The dotted (dashed, dot-dashed, solid) line is the ideal gas (second-order virial, third-
order virial, fourth-order virial) expansion. The third-order virial expansion has an unphysical cusp at
s ' 3:5.

This value is in very good agreement with other experimental results listed in Table.4.8.

Our value Duke Univ. group Innsbruck group Tokyo group
EOS trapped gas [46] Momentum of inertia [39] Condensate fraction [47]

(T=TF t )c 0.19(2) 0.21(1) 0.185(15) 0.21(2)

Table 4.2: Comparison between our measurement of the onset of super�uidity in a trapped gas to other
previous measurements.

To conclude, we described the measurement of the equation of state of a spin-balanced Fermi gas with
resonant interactions. We combined the use of7Li to measure the temperature of a strongly-interacting
6Li mixture with the measurement of the local pressure inside a trapped gas, to obtain the equation of
state of the homogeneousgas. Thanks to the low noise of our data, we made a strongly discriminating
comparison with many-body theories, and extracted a series of characteristics of the unitary Fermi gas.
The virial coe�cients could be helpful for the resolution of the four-body problem. The Fermi liquid
behavior of the normal phase remains to be understood, and related to single-particle excitation spectra.
Finally this work could be extended to the BEC-BCS crossover. Among several motivations (see the
conclusion), let us mention that on the BEC side of the resonance, the pseudogap should become apparent
on the equation of state.



Chapter 5

Ground State of an Attractive Fermi Gas:

Phase Diagram and Equation of State

In this chapter we describe the measurement of the equation of state of a two-component attractive Fermi
gas at low temperature [71]. As described in the introduction, in the case of short-range interactions the
equation of state of a two-component Fermi gas is universal, in the sense that interactions between
atoms are completely characterized by the scattering lengtha describing low-energy collisions between
atoms with opposite spins. In this chapter we measure the pressure of a low-temperature Fermi gas for
arbitrary values of interactions or spin imbalance. The physics associated with this system is very rich:
it encompasses the BEC-BCS crossover of a spin-balanced super�uid, as well as the more recent topic of
spin-imbalanced Fermi gases.

We �rst picture a qualitative phase diagram of this system, using simple mean-�eld or impurity
models. We then describe the equation of state measurement scheme, give a physical interpretation our
measurement, and compare it with previous works.

5.1 Sketch of the Phase Diagram

In this section we give a qualitative description of the phase diagram addressed in our study.
In this work we measure the grand-canonical equation of stateP(� 1; � 2; a) (we assumeT = 0 for the

rest of this chapter, see Appendix B.2 for an estimate of �nite-temperature e�ects). With the quantities
� 1, � 2, and a, we can form two independent dimensionless numbers:

� By analogy with the interaction parameter 1=kF a, where kF = (3 � 2n)1=3, de�ned for a balanced
Fermi gas of given densityn, we de�ne a grand-canonical interaction parameter relative to species
1:

� 1 =
~

p
2m� 1a

:

� 1 is equal to 1=kF a for a balanced and weakly-interacting Fermi gas.

� The other dimensionless parameter:
� =

� 2

� 1
;

describes the chemical potential imbalance between the two spin states. By convention we assume
� 2 � � 1, i.e. the spin state labeled1 is the majority spin state.

The ground-state pressure can then be written as:

P(� 1; � 2; a) = P0(� 1) h(� 1; � );
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Figure 5.1: Phase diagram of a two-component Fermi gas in the plane(� 1; � ). The solid line is the
super�uid/normal �rst order phase transition at � = � c(� 1). The dashed line� = A(� 1) is the threshold
beyond which minority atoms are absent. For clarity we have replaced� by e� = � + 2 � 2

1 on the BEC side
of the resonance.

where P0(� ) is the Fermi pressure of a single-component (ideal) gas. The functionh(� 1; � ) characterizes
the equation of state and can be used to calculate any other thermodynamic quantity. As an example,
the minority density reads:

n2 =
@P
@�2

�
�
�
�
� 1 ;a

=
P0(� 1)

� 1

@h
@�

:

The rest of this section describes the phase diagram in the(� 1; � ) plane drawn in Fig.5.1.

5.1.1 Super�uid to Normal Quantum Phase Transition

A spin-symmetric Fermi gas is super�uid at low temperature for all interaction strengths. By imposing a
chemical potential imbalance (� 6= 1 ), a competition between pairing and spin polarization occurs. This
problem was �rst studied in the context of solid state superconductors by Clogston [52] and Chandrasekhar
[53]. Using a BCS approach, they found the super�uid state resists to a chemical potential imbalance�

up to a critical value:

(� 1 � � 2)c =
p

2� 0; (5.1)

where � 0 is the BCS pairing gap. In the variables (� 1; � ), this criterion reads:

� c(� 1) = 1 �
p

2
� 0

� 1
: (5.2)

For � c < � < 1 the gas remains super�uid and is fully paired: n1 = n2. When one varies� across� c,
a �rst-order phase transition occurs towards a normal phase withn2 < n 1. A derivation of this result
using a mean-�eld BCS ansatz is made in Appendix A.4.

The mean-�eld approach is expected to be correct in the BCS limit (� 1 ! �1 ). In our work we
rather address the strongly-interacting regime� 0:8 < � 1 < 0:65. Therefore the relation (5.2) between
the critical chemical potential ratio and the gap is not expected to be valid in our case. Nevertheless, the
observations of the MIT group [79] and the ones described in the next sections [71] show that the phase
diagram qualitatively remains the same: the super�uid remains unpolarized until a critical value � c at
which a phase transition occurs towards a partially-polarized normal phase. The theoretical prediction

� induced by a magnetic �eld which lifts the degeneracy between the two electronic spin states
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of � c is challenging. Up to now the only quantitative prediction is provided by Fixed-Node Monte Carlo
simulations in [178]y. In Fig.5.1 we drew a guess for� c(� 1).

5.1.2 The Impurity Problem

When the chemical potential imbalance is very large, the gas is fully polarized:n2 = 0 and P = P0(� 1),
i.e. h(� 1; � ) = 1 . The transition towards the partially polarized normal phase corresponds to the value
of � , denoted A(� 1), at which minority atoms appear. A(� 1) corresponds to the chemical potential of
a single minority atom immersed in a Fermi sea of majority atoms. This `impurity' problem is much
simpler than the general problem with macroscopic atom numbers in both spin states. Up to now all
theories give the same value forA(� 1) within less than 1% [83,85,178,84,86], and are in agreement with
the MIT measurement [82] (see Fig.5.1).

In the regime of weak interactions (� 1 ! �1 ), the ground state is essentially the ground statej 0i
with no interactions and the minority chemical potential is given by the mean-�eld energy shift:

� 2 =
4� ~2a

m
n1; i.e. A(� 1) =

4
3�� 1

:

When interactions increase, the ground state substantially di�ers from the non-interacting ground state.
The minority atom collides with majority particles and creates particle-hole pairs in the Fermi sea. It
was shown in [84] that a good approximation of the ground state energy is obtained by solely taking
into account the creation of a single particle-hole excitation. The ground state is then written as a
linear combination of the non-interacting ground state j 0i and states j kq i with a single particle-hole
excitation [80] (see Fig.5.2a):

j i = � 0 j 0i +
X

q� kF
k � kF

� kq j kq i :

Minimizing the energy in this subspace [80, 83] gives a good (and simple to calculate) approximation of
the actual energy [84], even when interaction-induced particle-hole excitations are likely,i.e. when j i
should appreciably di�er from j 0i , such as in the unitary limit.

Figure 5.2: Representation of the ground state on the BCS side of the resonance. In the non-interacting
ground state j 0i , the impurity momentum is 0 and the majority Fermi sea is fully occupied for k < k F .
In the excited state j kq i , the impurity has collided with a majority atom, bringing it from the initial
momentum q, q < kF , towards k, k > k F .

yThe work in [178] actually does not directly provides � c , the super�uid/normal phase transition being expressed in the
canonical ensemble.
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5.1.3 Beyond the Impurity Problem

Understanding from theory the partially polarized normal phase A < � < � c a priori requires to solve
the much more di�cult problem of a macroscopic number of minority atoms among majority particles.
However, a simple and powerful description can be proposed in terms of Landau Fermi liquid theory [81].
In this approach, minority atoms are renormalized by interactions with majority atoms into fermionic
quasi-particles, named Fermi polarons. The gas is then described as an ideal mixture of bare majority
atoms and polarons. In particular the Fermi pressure associated with polarons is calculated from the
single-polaron spectrumE(p) as the sum of all energies below the Fermi level. Therefore we not only
need to know the ground state but also the excited energies of the impurity problem. These eigenen-
ergies, parametrized by the impurity momentum p, exhibit a quadratic dependence with momentum,
encapsulated by a mass renormalization [81,83,85,178,86]:

E (p) = A(� 1)� 1 +
p2

2m� (� 1)
:

It is then straightforward to calculate the gas pressure, as the sum of the majority component Fermi
pressure and of the polaron Fermi pressure:

P(� 1; � 2; a) = P0(� 1) +
�

m� (� 1)
m

� 3=2

P0(� 2 � A(� 1)� 1): (5.3)

To conclude this section, we remind the state of the art concerning the phase diagram of spin-
imbalanced Fermi gases. The phase diagram was explored by the MIT group in [79, 82]. In [82] the
polaron chemical potential shift A(� 1) was measured in the BEC-BCS crossover, in agreement with the-
ory [83,85,178,86]. We are thus entitled to useA(� 1) as a reference for extracting the equation of state
from in situ images (see section 5.2). In [79], the maximum density ration2=n1 at the normal to su-
per�uid phase transition was measured. However, the critical chemical potential ratio � c(� 1) remains
unknown. Finally, the equations of state in the partially polarized and super�uid phase have never been
measured for ahomogeneousgas.

The phase diagram drawn at this stage is su�cient for the understanding of the work described in the
next sections. We mention that in the BEC regime, further away from the parameter space addressed in
this study, new phases are expected. We give an introduction to this still largely unexplored �eld at the
end of this chapter (see section 5.7).

5.2 Equation of State Measurement Scheme

In this section we describe the procedure used to extract the equation of state of a two-component Fermi
gas from in situ absorption images.

5.2.1 Experimental Sequence

Here we highlight the parts of the experimental sequence that are speci�c to this study. We prepare a
spin-imbalanced mixture of 6Li in the two lowest internal states j1i and j2i , held in an optical dipole trap,
a magnetic curvature being used for the axial con�nement (alongz). The gas is evaporated by lowering
the trap depth down to U0 ' 4 � K. The �nal trap frequencies are ! r =2� ' 800 Hz and ! z=2� ' 20 Hz.
During evaporation the bias magnetic �eld is ramped towards a value755 G< B 0 < 981 G in order to
address the entire BEC-BCS crossover. The �nal atom number is on the order of5 � 104 atoms per spin
state.
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Figure 5.3: In situ absorption images of a spin-imbalanced Fermi gas, prepared atB0 = 834 G. The
total atom numbers are N1 = 1 :1 � 105 for the majority spin state (black dots) and N2 = 6 � 104 for
the minority spin state (gray dots). The solid line is a �t of the majority density pro�le in the fully
polarized region (outer wing of the atomic cloud) with a Thomas-Fermi pro�le. The increase of the
majority pro�le n1(z) above the Thomas-Fermi �t is a manifestation of the strong attraction with the
minority component, when the two clouds overlap.

5.2.2 In Situ Image Analysis

In situ absorption images of both spin components are taken after evaporation (see section 2.5 for details
on double in situ imaging). After integration of the column density eni (x; z) over the transverse direction
x, we obtain the doubly-integrated density pro�les ni (z) (see Fig.5.3).

Determination of h and � 1z

We observe that the minority atom density vanishes before the majority component. In the fully polarized
region, majority atoms form a single-component (ideal) Fermi gas whose density pro�le is given by:

m! 2
r

2�
n1(z) = P0(� 1z ) =

1
15� 2

�
2m
~2

� 3=2 �
� 0

1 �
1
2

m! 2
z z2

� 5=2

:

Fitting in the fully polarized region the doubly-integrated density pro�le n1(z) with a function n0
1(z) =

� (1 � z2=R2
1)5=2, we obtain the majority Fermi radius R1 =

p
2� 0

1=m! 2
z . The axial frequency being

calibrated with a good precision (see section 2.4.4), we deduce fromR1 the majority chemical potential
� 0

1 with a good accuracy. The interaction parameter at position z is then given by � 1z = ~=
p

2m� 1za.
Finally, we obtain the value of h(� 1; � ) through:

h(� 1z ; � z ) =
P(� 1z ; � 2z ; a)

P0(� 1z )
=

n1(z) + n2(z)
n0

1(z)
:

In the calculation of h, the normalization by the �t n0
1(z) avoids using a calibration of the pressure and

thus cancels the associated systematic error. In other words, the �t result� extracted from the cloud's
wings serves as a pressure calibration for the rest of the cloud, as �rst shown in [49].

Determination of � z

Finally, one has to determine the chemical potential � z = � 2z=� 1z along the z axis. This requires
to extract � 0

2 from the data. As the minority atoms strongly interact with the majority component,
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the relation between � 0
2 and the minority density pro�le calls upon an additional information on the

equation of state. As described in section 5.1, the chemical potential ratio for a large density imbalance,
� = A(� 1), is known from the resolution of the impurity problem. Fitting the minority radius R2 at which
the minority density vanishes (see Appendix B.1.1 for more details) then provides� 0

2 according to:

A(� 1R 2 ) =
� 0

2 � 1
2 m! 2

z R2
2

� 0
1 � 1

2 m! 2
z R2

2
:

The chemical potential ratio along the z axis is then given by � z = ( � 0
2 � 1

2 m! 2
z z2)=(� 0

1 � 1
2 m! 2

z z2).

5.2.3 Equation of State Deduced from our Data

By gathering the data from all images taken at a given magnetic �eld 800 G < B < 981 G, we obtain
after averaging a series of low-noise equations of state shown in Fig.5.4. They provide a paving of the
plane (� 1; � ) in a domain � 0:8 < � 1 < 0:65 and � 2 < � < 0:7. The next sections are devoted to the
physical interpretation of these data.

Figure 5.4: (a) Equation of state of a two-component Fermi gas at zero temperature and in the unitary
limit, deduced from the analysis of 20 images. Crosses: raw data, black dots: average of 20 consecutive
points. (b) Averaged equations of state corresponding to a given magnetic �eld. From left to right:
800 G, 811 G, 822 G, 834 G, 855 G, 871 G, 981 G. (c) Same equations of state in the space(� 1; �; h ).
The regions in green (blue, red) are fully polarized (partially polarized, super�uid).
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5.2.4 Systematic Error of our Data

The chemical potential ratio � z = � 2z=� 1z and the interaction parameter � 1z = ~=
p

2m� 1a vary simul-
taneously alongz. By eliminating z from these relations, we �nd that � 1z and � z are related by:

� 1z = � 0
1

r
1 � � z

1 � � 0 : (5.4)

Therefore a single image provides the equation of stateh(� 1; � ) along a line in the (� 1; � ) plane. In the
image averaging process, we superpose the equations of state obtained from clouds prepared at a given
bias magnetic �eld B0. These images thus correspond to the same scattering length valuea(B0) but the
parameter � 0

1=
p

1 � � 0 may di�er from one image to another, and the equations of state cannot strictly
speaking be superimposed. In Appendix B.1.2 we show that the systematic error introduced by this
issue is less than4%. We also mention that the superposition of images taken in the unitary limit is not
a�ected by this problem since � 1z = 0 .

In Appendix B.2 we estimate the temperature of our data, and deduce that the associated systematic
error is less that 3%.

As a conclusion, the total systematic error is 5%.

5.3 Super�uid to Normal Phase Transition

In Fig.5.4b we plot the experimental equation of stateh(� 1; � ) along several lines corresponding to di�erent
magnetic �elds, and parametrized by equation (5.4). Except for the magnetic �eld B0 = 981 G where
the noise of our data is large, we observe on each experimental equation of state an abrupt change of
slope. This jump in the derivative of h(� 1(� ); � ) at � = � c(� 1) indicates a �rst-order phase transition.
In the next paragraphs we describe how to extract the position of this phase transition from the data,
and identify the nature of the phases corresponding to both sides of the phase transition. We also give a
direct proof of the �rst-order nature of the transition through the observation of a jump of the minority
concentration occurring at � = � c.

5.3.1 Critical Chemical Potential Ratio

In order to extract the value of � c, we �t the data inside an interval � � 0:2 < � < � +0 :2 using a piecewise
linear function with a change of slope occurring at� = � 0. The �t result � 0 is plotted as a function of �
in Fig.5.5. The change of slope position� 0 is found to be insensitive to the value of� in a large range of
parameters. We then identify this stable �t result as the actual change of slope position in the equation
of state, at � = � c.

Let us now con�rm that the phase � > � c corresponds to a fully paired super�uid. In Fig.5.6
we plot the integrated minority density pro�le n2(z), together with the integrated density di�erence
nd(z) = n1(z) � n2(z), for a gas prepared in the unitary limit. Fitting the pressure in the fully polarized
region and the low-density minority pro�le with Thomas-Fermi pro�les, we obtain the Thomas-Fermi
radii R1 and R2 for each spin state. We infer the chemical potential ratio at the bottom of the trap
� 0 = A(� 1 = 0)(1 � R2

2=R2
1) + R2

2=R2
1, as well as the radius at which the phase transition occurs:

Rs = R1

s
� 0 � � c

1 � � c
:

We observe that nd(z) increases fromjzj = R1 to jzj = Rs and remains constant for jzj < R s. A simple
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Figure 5.5: Determination of the critical chemical potential imbalance from the equations of states at
811 G, 834 G and 871 G. We �t the data � � 0:2 < � < � + 0 :2 using a piecewise linear function with a
change of slope at� 0, and plot the �t result � 0 as a function of � . For a large number of � values the �t
result is identical, indicating the actual � c value.

physical interpretation is provided by an explicit calculation of the slope of nd(z) [127]:

dnd(z)
dz

= � 2�
! 2

z

! 2
r

z(n1(z) � n2(z)) :

The plateau on the density di�erence observed forjzj < R s thus reveals that the phase� > � c is fully
paired: n1 = n2 (despite � 1 6= � 2). This is a characteristic feature of super�uid pairing between atoms
with opposite spins. In the MIT experiment the super�uidity of the fully paired phase was unambiguously
identi�ed through the observation of vortices [54]. As a conclusion, the observed phase transition at� = � c

indeed corresponds to the super�uid/normal phase transition previously introduced in section 5.1.1.

Figure 5.6: Integrated minority density n2(z) (gray dots) and integrated di�erence density nd(z) (black
dots), for a cloud prepared in the unitary limit. The plateau on nd(z) indicating full pairing coincides
with the region jzj < R s for which � > � c.

5.3.2 Critical Impurity Concentration

The �rst-order nature of the phase transition can directly be observed as a jump in the minority density
occurring at the phase transition. The absorption images easily give access to the minority concentration
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x = n2=n1 in the cloud along the z axis. Indeed, from dni (z)=dz = � 2�! 2
z =! 2

r zni , we get the simple
relation:

x =
dn2

dn1
:

We thus obtain the concentration by computing the derivative of the data expressed asn2 as a function of
n1. In Fig.5.7 we plot the concentration x as a function of � at di�erent magnetic �elds. For all magnetic
�elds the same behavior is observed:

� In the partially polarized phase the concentration smoothly increases with� , up to a maximum
value xc at � = � c(� 1). The quantitative understanding of x(� 1; � ) in the partially polarized phase
will be given in section 5.4.4.

� In the super�uid phase the concentration remains equal to 1, indicating a full pairing.

� Around � = � c the concentration abruptly changes fromx = xc to x ' 1. This behavior reveals a
concentration jump occurring at the phase transition, thereby con�rming the order of the transition.

Even on the BEC side of the resonance (0 < � 1 < 0:65), we found no evidence for a �nite polarization
in the super�uid phase. This is in agreement with the observations of the MIT group [79] or several
theoretical predictions using Monte Carlo calculations [67] or excitation spectrum calculations [179,180]:
the super�uid can be polarized for � 1 & 1, which is beyond the parameter range addressed in this work.

Figure 5.7: Concentration x = n2=n1 as a function of � for bias magnetic �elds B0 = 811; 834; 871 G.
The arrows indicate the concentration jump from x = xc to x = 1 occurring at the phase transition.

5.3.3 Phase Diagram

Gathering the values of� c and xc for all magnetic �elds, we obtain the phase diagram plotted in Fig.5.8,
either in the plane (� 1; � ) (Fig.5.8a) or in the plane (� 1; x) (Fig.5.8b).

Apart from BCS mean-�eld theory which is quantitatively incorrect, the only theoretical prediction
for the equation of state is provided by Fixed-Node Monte Carlo calculations [67]. As the numerical data
are expressed in canonical variables, the comparison with our results requires to use �ts of the Monte
Carlo dataz. The pressure and chemical potentials are calculated from the �t functions, and the phase
transition position � c(� 1) is computed by imposing the condition of coexistence of the super�uid and
normal phases at equilibrium, namely the equality of chemical potentials and pressure. As shown in

zWe use �ts proposed by the authors of the Monte Carlo calculations in [181]. They are limited to the BEC side of the
resonance.
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Fig.5.8a, the transition line � c(� 1) computed from the Monte-Carlo data is in excellent agreement with
our measurements.

The data xc(� 1) cannot be directly compared with the measurements of the MIT groups which rather
provide xc(1=kF 1a) [79].

Figure 5.8: (a) Phase diagram established for� 1 < 0:65, plotted in the plane (� 1; � ) (we have added
2� 2

1 to � for � 1 > 0). The solid line marks the appearance of minority atoms at� = A(� 1). The black
dots are the experimental values of� c(� 1) at which the super�uid/normal phase transition occurs. The
dashed line is the transition line � c(� 1) calculated from �ts of T = 0 Monte Carlo data [67, 181]. (b)
Phase diagram plotted in the plane(� 1; x = n2=n1). The fully polarized (super�uid) phase corresponds
to x = 0 (x = 1 ), respectively. The black dots are the experimental values for the critical polarizationxc

at the super�uid/normal phase transition. The region xc < x < 1 is thermodynamically unstable.

5.3.4 Comparison with the Single-Particle Excitation Gap

In the BCS limit, the super�uid/normal phase transition position is directly related to the single-particle
excitation gap � 0 in the super�uid (see section 5.1.1):

� c = 1 �
p

2
� 0

� 1
; for � 1 ! �1 :

It is simple to show that the single-particle excitation gap also provides a lower bound on� c which is
valid for all interaction strengths: when the majority chemical potential � 1 is larger than the super�uid
chemical potential � = ( � 1 + � 2)=2 plus the excitation gap � 0, extra majority atoms are spontaneously
populated and break the super�uid x. This provides a lower bound on� c:

� c > 1 � 2
� 0

� 1
:

In Fig.5.9 we compare the values of� c extracted from our data to lower bounds 1� 2� 0=� 1, using values
of the gap measured by the MIT group in [166], or calculated in [179,60,182,158]. Quite surprisingly, the

x In the BEC limit, it is possible to add extra majority atoms to a super�uid without breaking it. However this is expected
to occur for � 1 > 1, i.e. outside the parameter range addressed in this work. We anyway checked that the super�uid is
indeed not polarized in section 5.3.1.
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Figure 5.9: Comparison between the experimental� c values determined from our work (black dots) to
the lower bounds1 � 2� 0=� 1 provided by the single-particle excitation gap. The stars are given by the
experimental � 0 values from the MIT group [166], the open squares from diagrammatic calculations [179],
the open circles from the most recent Fixed Node Monte Carlo calculations [60], the crosses from a
Quantum Monte Carlo calculation extrapolated at T = 0 [182], and the open triangle from a zero-
temperature Quantum Monte Carlo calculation [158].

values of� c are closer to the bounds1� 2� 0=� 1 than to the Clogston limit 1�
p

2� 0=� 1, a phenomenon
actually anticipated in [183]. However, a more quantitative estimate of the relationship between� 0

and � c is di�cult to make, due to the uncertainty on the gap illustrated by the scatter of theoretical
predictions.

In the unitary limit, the single-particle gap � 0 = 0 :44EF is known more precisely, from experiment
[166] and unbiased Quantum Monte Carlo calculations [158]. Using� c = 0 :065(2) and the relation
� = � sEF , � s = 0 :41(1), we obtain:

� c = 1 � 1:8(1)
� 0

� 1
;

a value closer to the bound1 � 2� 0=� 1 than to the Clogston limit 1 �
p

2� 0=� 1. This con�rms more
quantitatively the picture described above.

5.4 Fermi Liquid Behavior in the Partially Polarized Phase

In this section we focus on the partially polarized normal phaseA(� 1) < � < � c(� 1).

5.4.1 Observation of a Fermi Liquid Behavior

Inspired by the Trento group [81], we proposed in section 5.1.2 a simple description of the partially
polarized phase in terms of Landau's Fermi liquid theory. The impurity problem suggests that minority
atoms are dressed by surrounding majority atoms into quasi-particles, the polarons. In the limit of low
polaron density, we expect polarons to form a weakly-interacting Fermi sea. The gas pressure is then
given by the sum of the Fermi pressures of bare majority atoms and of polarons:

P(� 1; � 2; a) =
1

15� 2

�
2m
~2

� 3=2

� 5=2
1 +

1
15� 2

�
2m� (� 1)

~2

� 3=2

(� 2 � A(� 1)� 1)5=2: (5.5)
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We remind that A(� 1)� 1 is the energy shift of a single polaron andm� (� 1) is the polaron e�ective mass.
By dividing equation (5.5) by P0(� 1), we obtain the thermodynamic function h(� 1; � ) of this `ideal Fermi
liquid':

h(� 1; � ) = 1 +
�

m� (� 1)
m

� 3=2

(� � A(� 1))5=2: (5.6)

For large minority concentrations, deviations to (5.6) may appear, either due to interactions between
quasi-particles, or merely as a breakdown of Fermi liquid theory. As an interesting example, it was
proposed in [184] that e�ective p-wave interactions between polarons could be induced by the interactions
with majority atoms, and might lead to exotic p-wave super�uidity at very low temperature.

In order to reveal a Fermi liquid behavior, we plot our data as h � 1 as a function of (� � A)5=2 (see
Fig.5.10). We observe a linear variation, characteristic of an ideal Fermi liquid behavior (see equation
(5.6)), for a wide range of chemical potential imbalance. On the BEC side of the resonance and in the
unitary limit, equation (5.6) gives an adequate description of our data for A < � < � c, i.e. in the entire
partially polarized normal phase. This results is all the more surprising since interactions are strong and
minority concentrations can be large, up to n2=n1 ' 0:5 in the unitary limit (see section 5.3.3). In the
BCS limit, we observe a deviation from (5.6) close to the super�uid to normal transition. In that limit
minority and majority densities are comparable and it is not surprising that a model constructed from
the characteristics of the impurity problem is no longer adequate.

Figure 5.10: Equation of state plotted ash � 1 as a function of (� � A)5=2 for di�erent bias magnetic
�elds. The dashed lines indicate the super�uid/normal transition and the solid lines are �ts with a Fermi
liquid equation of state.

5.4.2 Measurement of the Polaron E�ective Mass

Fitting the data represented in Fig.5.10 with the ideal Fermi liquid equation of state (5.6) provides the
e�ective mass value m� (� 1) (see Fig.5.11). In the BCS limit we do not use for the �t the data close to
the super�uid transition where the polaron concentration is large. The e�ective mass extracted from our
data is an increasing function of� 1. At unitarity, we obtain a very precise value m� =m = 1 :21(2), which is
remarkably small for a strongly-interacting system. The e�ective mass values extracted from our data are
in agreement with the most advanced calculations, namely diagrammatic Monte-Carlo calculations [85],
and an analytic theory involving two particle-hole excitations [84], as well a simple variational calculation
involving one particle-hole excitation [83]. The e�ective mass values predicted by Fixed-Node Monte-
Carlo calculations from [67] are systematically slightly lower than our measurements.
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Figure 5.11: Polaron e�ective massm� =m as a function of the interaction parameter � 1 (black dots). The
open squares are diagrammatic Monte-Carlo data [85], the solid line is an analytic theory involving two
particle-hole excitations [84], the dashed line a simple variational calculation involving one particle-hole
excitation [83], and the dot-dashed line a Fixed-Node Monte-Carlo calculation from [67].

5.4.3 Fermi Liquid Equation of State in the Unitary Limit

We showed that the ideal Fermi liquid equation (5.5) accurately describes the partially polarized phase
except for large minority concentrations in the BCS regime. In Fig.5.12 we also make a direct comparison
with a Fixed-Node Monte Carlo calculation [81, 67].The di�erence between the Monte-Carlo calculation
and our data is quite small in the entire normal phaseA = � 0:615< � < � c = 0 :065.

Figure 5.12: Equation of state in the partially polarized phase deduced from our data (black dots),
compared with equation (5.6) (solid line) and with a Fixed-Node Monte-Carlo calculation [81,67] (dashed
line).

We now give a more detailed physical interpretation of the Fermi liquid equation of state in the unitary
limit:

P(� 1; � 2; a) =
1

15� 2

�
2m
~2

� 3=2

� 5=2
1 +

1
15� 2

�
2m�

0

~2

� 3=2

(� 2 � A0� 1)5=2; (5.7)

where A0 = � 0:615 and m�
0=m = 1 :21 are the polaron energy shift and e�ective mass for� 1 = 0 . Due to

the polaron chemical potential shift, minority and majority densities are coupled. Indeed, di�erentiating
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the pressure (5.7) with respect to� 1 or � 2 gives the following relationship between the densities{ :

n1 =
1

6� 2

�
2m
~2

� 3=2

� 3=2
1 � A0n2:

Therefore the majority density is enhanced by the presence of minority atoms, as if each minority atom
was surrounded by� A0 ' 0:6 majority atom. Integrating this relation over the radial coordinates, we
obtain a relationship between the doubly-integrated pro�les:

n1(z) = n0
1(z) � A0n2(z): (5.8)

We remind that n0
1(z) is the Thomas Fermi pro�le deduced from the fully polarized region. In Fig.5.13

we plot n1 � n0
1 as a function of n2. In the partially polarized phase we observe a linear dependence,

whose slope givesA0 = � 0:58(5), in agreement with the exact valueA0 ' � 0:615. This constitutes an
independent check of the value ofA0 that we use as a reference for the data analysis.

Figure 5.13: n1 � n0
1 as a function of n2 for a gas prepared in the unitary limit. The data in the normal

phase corresponds for this image ton2 < 0:15, and is in very good agreement with the Fermi liquid
prediction (5.8).

5.4.4 Canonical Equation of State

Canonical Equation of State in the Unitary Limit

In this section we make a direct comparison with the canonical equation of state of a spin-imbalanced
Fermi gas in the unitary limit measured in the MIT group [49, 68] and presented in section 3.1.2. The
canonical equation of state is expressed as:

E(n1; n2) =
3
5

~2

2m
(6� 2)2=3n5=3

1 g
�

x =
n2

n1

�
:

From the grand-canonical equation of state in the unitary limit h0(� ) = h(� 1 = 0 ; � ), we compute the
canonical equation of stateg(x):

x =
h0

0(� )
5
2 h0(� ) � �h 0

0(� )
;

g(x) =
h0(� )

�
h0(� ) � 2

5 �h 0
0(� )

� 5=3
:

{ This relation can not be directly generalized out of the unitary limit.
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In Fig.5.14 we plot the equations of stateg(x) determined from the MIT group [68] and from our
data, together with the following theoretical predictions:

� The most recent Fixed-Node Monte Carlo prediction, �tted with g(x) = 1 + 5
3 A0x + m

m �
0
x5=3 + Fx2,

with A0 = � 0:595, m�
0 = 1 :09m and F = 0 :14 [67]k .

� The canonical equation of stateg(x) = (1 + A0x)5=3 + m
m �

0
x5=3, with A0 = � 0:615, m�

0 = 1 :21m,
which is the canonical equivalent of the ideal Fermi liquid equation (5.7) [48].

Our data shows signi�cant di�erences with the MIT data and with the Monte-Carlo calculation.
As a remark, we mention that an expansion of the ideal Fermi liquid equation of state in a series of

x reads:

g(x) = 1 +
5
3

A0x +
m
m�

0
x5=3 + Fx2 + : : : ; with F =

5A2
0

9
' 0:21

and therefore contains ax2 term, whose amplitude is close to the one extracted from the Monte-Carlo
data. The term Fx2 can be interpreted an e�ective interaction between polarons. This connection
between the coe�cient F and the single-polaron characteristicsA0 was established from theory in [185].

Figure 5.14: Canonical equation of stateg(x) extracted from our data (black dots) and from the MIT
data [68] (open circles), compared with a Fixed-Node Monte Carlo calculation [81] (dashed line) and the
ideal Fermi liquid equation (5.7) (solid line).

Critical Concentration in the BEC-BCS Crossover

In section 5.3.2 we extracted from our data the concentrationx = n2=n1 in the BEC-BCS crossover. We
compare this data to the prediction given by the ideal Fermi liquid equation of state (5.6). Away from
the unitary limit, the concentration is related to h(� 1; � ) by the formula:

x(� 1; � ) =
@� h

5
2 h � � @� h � � 1=2@� 1 h

: (5.9)

Using equation (5.6), we calculate the concentration pro�les in the partially polarized phase for di�erent
magnetic �elds. In order to locate the position � c(� 1) of super�uid/normal phase transition, we solve the
pressure equilibrium condition between the super�uid and normal phases:

� 5=2
1

 

1 +
�

m� (� 1)
m

� 3=2

(� � A(� 1))5=2

!

= e� 5=2hS (e� ) at � = � c(� 1):

k This equation of state is very close to a previous calculation [81].
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Here e� 5=2hS (e� ) is a parametrization of the super�uid equation of state that will be explained in the
next section. In Fig.5.15 we plot the experimental data together with theoretical concentration pro�les.
We �nd a good agreement, with the exception of the value of � c on the BCS side of the resonance.
This deviation is expected since we observed that equation (5.6) does not account for the experimental
equation of state in this region.

Figure 5.15: Concentrationx as a function of the chemical potential ratio � for di�erent magnetic �elds,
compared with the theoretical pro�les (5.9) (solid lines).

The maximum concentration in the partially polarized phase xc(� 1) = x(� 1; � c(� 1)) is also computed
using the Fermi liquid equation of state and compared with the maximum concentration directly measured
from the concentration pro�les in Fig.5.16. We observe a good agreement between this calculation and
the direct measurements.

Figure 5.16: Phase diagram of a spin-imbalanced Fermi gas in the(� 1; x) plane. The solid line is the
maximum minority concentration allowed in the partially polarized phase. The region xc < x < 1 in gray
is thermodynamically unstable.

5.4.5 Magnetic Susceptibility of a Spin-Unpolarized Fermi Gas

In the previous paragraphs we provided a description of the partially polarized normal phase in terms
of a Fermi liquid of majority atoms and polarons, the latter being characterized by the resolution of the
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impurity problem. In this section we consider the opposite limit of small chemical potential imbalance.
We no longer express the equation of state in terms of� 1 and � = � 2=� 1, but rather in terms of mean
chemical potential � = ( � 1 + � 2)=2 and `e�ective magnetic �eld' �� = ( � 1 � � 2)=2. The equation of state
can then be expressed as:

P(� 1; � 2; a) = P0(� )hB

�
� =

~
p

2m�a
; b =

��
�

�
:

In the next paragraphs we study the behavior ofhB (�; b) at low values of b.

Magnetic Susceptibility in the Super�uid and Normal Phases

We have shown in section 5.3.1 that in the super�uid phase the atom densities of both spin states are
equal: n1 = n2. The partial derivative of the pressure with respect to �� reads:

@P
@��

�
�
�
�
�;a

=
@P
@�1

�
�
�
�
� 2 ;a

@�1
@��

�
�
�
�
�;a

+
@P
@�2

�
�
�
�
� 2 ;a

@�2
@��

�
�
�
�
�;a

=
1
2

(n1 � n2): (5.10)

Therefore in the super�uid phase the pressure does not depend on�� , and hB (�; b) = hB (�; b = 0) .
When one imposes a strong enough magnetic �eld�� , the super�uid breaks and one enters into

a partially polarized normal phase. In dimensionless variables, the critical magnetic �eld is equal to
bc = (1 � � c)=(1 + � c), where � c is the critical chemical potential ratio studied in section 5.3.1. If bc is
not too large, hB (�; b) may be well described by the �rst terms of the expansion in series ofb. Equation
(5.10) taken in the spin-symmetric con�guration �� = 0 where it is clear that n1 = n2, implies that
@hB =@bj � (�; b = 0) = 0 . Hence the expansion ofhB in series ofb reads:

hB (�; b) = hN (� ) +
15
8

� (� )b2 + : : :

The normalizations were chosen so that for an ideal gashN = � = 1 . hN (� ) is the grand-canonical equa-
tion of state of the normal phase extrapolated to the symmetric con�guration b = 0 . � (� ) is the magnetic
susceptibility compared with the one of an ideal Fermi gas. In the Landau Fermi liquid framework, these
parameters are related to the some Landau parameters:

h2=3
N =

m� =m
1 + F s

0
; �h 1=3

N =
m� =m
1 + F a

0
;

where m� is the e�ective mass of the quasi-particles andF s
0 and F a

0 quantify interactions between quasi-
particles [146].

Magnetic Susceptibility of a Spin-Unpolarized Fermi Gas in the Unitary Limit

We �rst focus on the equation of state in the unitary limit, plotted in Fig.5.17 as hB (� = 0 ; b) versus
b2. In the super�uid phase b2 < 0:75, hB does not depend onb, a clear manifestation of the super�uid
unpolarizability. In the normal phase one observes a clearb2 dependence for0:75 < b2 < 3. This
shows that the normal phase can be described as a Landau Fermi liquid, magnetized with respect to a
spin-symmetric con�guration.

The equation of state extrapolated to b = 0 , hN = 2 :55(5), is in agreement with the value obtained
from the extrapolation to zero temperature of the equation of state of a balanced gas at �nite temperature
and in the normal phase (see section 4.6 in Chapter 4). This observation suggests that the two normal
phases(T = 0 ; �� > �� c) and (T > T c; �� = 0) can be continuously connected in the plane(T; �� ),
in agreement with the phase diagram established in the MIT group [49]. The equation of state of a
spin-imbalanced Fermi gas at �nite temperature will be the subject of future work.

We also obtain the parameter� = 0 :73(3); using the e�ective mass valuem� =m = 1 :13(3) determined
in section 4.6, we obtain the Landau parameterF a

0 = 1 :1(1).
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Figure 5.17: Equation of state hB (� = 0 ; b) of a spin-imbalanced Fermi gas in the unitary limit, as a
function of b2. The super�uid phase corresponds to the regionb2 < 0:75 where hB is constant. In the
normal phaseb2 > 0:75, the linear variation of hB with b2 is a manifestation of a Fermi liquid behavior.
The di�erence between the super�uid and normal equations of state is referred to as thecondensation
pressure (gray area).

Fermi Liquid Parameters in the BEC-BCS Crossover

A similar behavior hB = hN + �b 2 is observed on the BCS side of the resonance and atB0 = 822 G
(for the data deeper on the BEC side of the resonance, the critical �eldbc is much larger than one,
casting doubt on the validity of an expansion in series ofb for b > bc.). The parameters hN and � are
plotted in Fig5.18 as a function of the interaction parameter � . The equation of statehN (� ) of a balanced
normal gas is in agreement with a Fixed-Node Monte Carlo calculation [178]. We also plot a �t of the
super�uid equation of state hS (� ) (see section 5.5); the di�erence betweenhS (� ) and hN (� ) represents the
condensation pressure associated with super�uidity. The super�uid/normal transition, characterized by
hS (� ) = hB (�; bc) = hN (� ) + 15

8 �b 2
c , leads to the following relationship between the condensation pressure

and the critical �eld bc:

hS � hN =
15
8

�b 2
c ;

which is the analogous of the relationship between the condensation energy and critical magnetic �eld
for superconductors [186]. It would also be interesting to study the e�ect of strong interactions on the
relationship between the condensation energy and the gap that can be established in the BCS limit.

5.5 Super�uid Equation of State in the BEC-BCS Crossover

In this section we extract and interpret the super�uid equation of state from the data � > � c(� 1).

5.5.1 Parametrization of the Super�uid Equation of State

We have shown that the gas is fully paired in the super�uid phase:

n1(� 1; � 2; a) = n2(� 1; � 2; a) for � > � c(� 1):
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Figure 5.18: (a) Equation of state of the normal phasehN (� ) extrapolated to a spin-symmetric con�g-
uration (black dots), compared with a �t of the Monte Carlo data from [178] (solid line), and with the
super�uid equation of state hS (� ) (dashed line). (b) Compressibility � (� ), normalized to the one of a
non-interacting mixture.

This provides a constraint on the equation of state which can be expressed as:

@P
@(�� )

�
�
�
�
�;a

=
@P
@�1

�
�
�
�
� 2 ;a

�
@P
@�2

�
�
�
�
� 1 ;a

= n1 � n2

= 0 ;

where �� = � 2 � � 1 and � = ( � 1 + � 2)=2. The pressure is thus a function of the mean chemical potential
only. Instead of the parametrization h(� 1; � ) for the equation of state, we rather express it using the
symmetric variable � only:

P(� 1; � 2; a) = 2 P0(e� )hS (e� ); where e� =

(
�; a < 0

� + ~2

2ma 2 ; a > 0
and e� =

~
p

2me�a
:

We use e� instead of � in order to avoid handling negative chemical potentials on the BEC side of the
resonance. We gather the datah(� 1; � ) in the super�uid phase and express it in term of hS (e� ):

e� =

(
((1 + � )=2)� 1=2 � 1; a < 0
�
(1 + � )=2 + � 2

1

� � 1=2
� 1; a > 0

and hS (e� ) =

(
((1 + � )=2)� 5=2 h(� 1; � ); a < 0
�
(1 + � )=2 + � 2

1

� � 5=2
h(� 1; � ); a > 0

:

Our experimental data, plotted in Fig.5.19, is the �rst experimental equation of state of a homogeneous
super�uid Fermi gas. The cloud images taken at a given magnetic �eld contribute to the equation of
state in a rather narrow region, typically in a region e� 2 [0:8he� i ; 1:2he� i ]. The statistical noise of our data
is about 10%, and we recall that the systematic uncertainty is 5%.

5.5.2 Direct Comparison with Theory

In this section we compare our data with several theories predicting the equation of statehS (e� ) of
a homogeneous super�uid. Our data can directly be compared with numerical calculations providing
discrete values forhS (e� ):

� a Nozières-Schmitt-Rink approximation from [141],

� a quantum Monte-Carlo calculation from [173], extrapolated at T = 0 ,
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Figure 5.19: Super�uid equation of state in the BEC-BCS crossoverhS (e� ) (gray crosses). The black dots
are an average of successive points.

� a diagrammatic approach from [138].

As shown in Fig.5.20, our data agrees with the �rst calculation but signi�cantly di�ers from the other
two predictions. The � 100%inaccuracy of BCS mean-�eld theory shows that the equation of statehS (e� )
is a much more discriminating quantity than the collective mode frequency, for which BCS mean-�eld
theory is wrong by 3% only�� [64] (see. section 3.1.1).

The comparison with Fixed-Node Monte Carlo calculations from [65, 66, 67] is less direct. Indeed,
these data are expressed in the canonical ensemble as:

E =
N
2

Eb +
3
5

NE F �
�

� =
1

kF a

�
; where Eb =

(
0; a < 0
� ~2=ma2; a > 0

:

Relating the equations of state� (� ) and hS (e� ) requires taking the derivative of the data:

e� =
�

(� (� ) � �� 0(� )=5)1=2
; hS (e� ) =

� (� ) � �� 0(� )=2

(� (� ) � �� 0(� )=5)5=2
:

In Fig.5.20 we calculate hS (e� ) using a �t of the most recent Monte-Carlo data [178], and �nd a good
agreement with our data. The �tting function is proposed by the authors of the numerical calculations
in [187], and di�ers from the discrete data by less than1%. It is important to mention that the Fixed-
Node Monte Carlo method is a variational calculation of the ground state energy, anda priori gives an
upper bound of the actual ground state energy, which corresponds to a lower bound forhS (e� ). This is in
agreement with the slight positive di�erence between our data and the Fixed-Node Monte Carlo results
(see Fig.5.20).

Alternatively, we calculate the canonical equation of state � (� ) using a �t of our data. The �tting
function is described in detail in the next sections and in Appendix B.3. In Fig.5.21 we compare the
equation of state given by the experimental data with Fixed-Node Monte Carlo calculations [65, 66, 67].
We �nd a good agreement except with the data from [66] around� = � 0:4, a region where the Monte-
Carlo method was expected to be less robust [66]. The identi�cation of a few inaccurate points in the

�� In the unitary, BCS and BEC limits, the collective mode frequencies are identical for all theories due to the scalings
� / n2=3 or � / n that are imposed by dimensional analysis. This intuitively explains why collective modes do not easily
discriminate between theories.
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Figure 5.20: Comparison of the experimental equation of state (black dots) with BCS mean-�eld theory
(solid line), a Nozières-Schmitt-Rink approximation from [141] (gray squares), a quantum Monte-Carlo
calculation from [173] (gray open circles) and a diagrammatic approach from [138] (gray crosses). The
dashed line is calculated from a �t of the Fixed-Node data [67].

Monte-Carlo data from [66] is made possible by the direct measurement of the equation of state of a
homogeneousFermi gas. It would be much more di�cult to establish using observables such as collective
mode frequencies, since the comparison theory/experiment requires to integrate the theoretical prediction
over the trap [115,64].

Figure 5.21: Comparison of the equation of state� (� ) deduced from a �t of our data (solid line) with
Fixed-Node Monte Carlo calculations from [65] (squares), [66] (open circles) and [67] (crosses).

In the next sections we extract more physical quantities from our data by studying the asymptotic
behaviors of the equation of state in the BCS limit, around the unitary limit, and in the BEC limit.
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Figure 5.22: (a) Equation of state extracted from our data (crosses and dots), together with the linear
and quadratic expansions ine� around the unitary limit, with � s = 0 :415, � = 0 :9, v = 0 :4. (dashed
and solid line, respectively) (b) Fit result � as a function of the cuto� e� cuto� , for a linear �tting function
(dashed line) and a quadratic �t function (solid line).

5.5.3 Extracting Asymptotic Behaviors of the Equation of State

Extracting asymptotic behaviors from a set of discrete data is not obvious. We illustrate this di�culty
on the example of the unitary limit. We want to extract from our data the expansion of the equation of
state around the unitary limit:

E =
3
5

NE F

�
� � 3=2

s � � � �
5v
3

� 2 + : : :
�

; � =
1

kF a
� 1:

A physical interpretation of the expansion will be given in the next section, and we focus here on the
problem of extracting the coe�cients of the expansion from our data. The corresponding expansion in
the grand-canonical ensemble reads:

hS (e� ) = � � 3=2
s +

3�
2� 2

s

e� +
12� 2� � 1

s + 25v

10� 3=2
s

e� 2 +

(
0; e� < 0

� 5� � 3=2
s e� 2; e� > 0

+ : : : ; e� � 1: (5.11)

The discontinuity of the second-order derivative ofhS (e� ) is due to the addition of the molecular binding
energy to � in e� . This behavior does not play a role in this discussion.

In order to extract � from the data, we �t the data either with a linear expansion in e� given by the
�rst two terms in (5.11) or with a quadratic expansion given by (5.11). The points included in the �t
are de�ned by e� 2 [� e� cuto� ; e� cuto� ]. The �t result � as a function of the �tting function and of the cuto�
e� cuto� is shown in Fig.5.22b. The actual� value is expected to be given by the extrapolation of the �t
result when e� cuto� tends to zero. However, whene� cuto� is very small the �t result becomes wrong because
of the low number of data points involved in the �t. A good estimate is obtained if the �t result is stable
in a wide region of cuto� values. However, this is not the case for the �ts shown in Fig.5.22b and the
�t results given by the two �tting functions always signi�cantly di�er. The inaccuracy of this procedure
is due to the behavior of the �tting functions away from the unitary limit. In Fig.5.22a we show the
linear and quadratic �tting functions with the parameters � s = 0 :415, � = 0 :9, v = 0 :4 determined from
a better �t procedure, described in the next sections. The divergence of the �tting functions in the BCS
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limit, while the data are expected to approach1, makes them inadequate for the description of the data
except in a very narrow interval around the unitary limit.

This is an usual problem when one approximates a function with a Taylor expansion around a given
point. A better estimate of the function is often given, instead of the polynomial Taylor expansion, by
a rational function, a so-called Padé approximant, which remains �nite at �1 [188]. As an example,
we consider the exponential function. The Padé approximant having the correct Taylor expansion up to
fourth order around 0 is given by:

1 + x=2 + x2=12
1 � x=2 + x2=12

= 1 + x + x2=2 + x3=6 + x4=24 + O(x5);

and gives an estimate of the exponential function within 5% in the interval [� 2; 2], whereas the Taylor
expansion is correct within 5% in a narrower interval [� 0:4; 1:4].

We thus construct a set of �tting functions inspired by Padé approximants. As the limiting behaviors
in the BEC and BCS limit di�er, we use di�erent functions for both sides of the resonance. On the BCS
side of the resonance, we use the following function:

hBCS
S (e� ) =

� 1 + � 2
e� + e� 2

� 3 + � 4
e� + e� 2

;

which is �nite in the unitary limit and tends to 1 in the BCS limit. On the BEC side of the resonance,
we use more complex �tting functions hBEC

S (e� ) in order to capture a more subtle asymptotic behavior in
the BEC limit (see section 5.5.6 and Appendix B.3). We �nally connect both sides of the resonance by
imposing a smooth connection in the unitary limit:

hBCS
S (0) = hBEC

S (0); (hBCS
S )0(0) = ( hBEC

S )0(0); (hBCS
S )00(0) = ( hBEC

S )00(0) + 5 hS (0);

the last condition being due to the convention e� = � � Eb=2 for � > 0.

We test the pertinence of these �tting functions on a simple example. We consider the equation of
state hBMF

S (e� ) given by the BCS mean-�eld model (see Fig.5.23a). The parameter� discussed above is
equal to 0:90 for this model. We �t � using the procedure described above, using either a linear �tting
function, a quadratic �tting function, or a Padé-type �tting function. As shown in Fig.5.23b, obtaining a
good estimate for� does not require to extrapolatee� cuto� to very small values in the case of the Padé-type
functions. This suggests that these functions are more suited for extracting asymptotic behaviors of the
actual super�uid equation of state hS (e� ).

5.5.4 Super�uid Equation of State Around the Unitary Limit

We discuss in this section the asymptotic behavior around the unitary limit, written as:

E =
3
5

NE F

�
� � 3=2

s � � � �
5v
3

� 2 + : : :
�

; � =
1

kF a
� 1: (5.12)

We �t the data in the region [� e� cuto� ; e� cuto� ] with the Padé-type approximant described in section 5.5.3
and Appendix B.3, with � s, � and v as free parameters. As shown in Fig.5.24, the �t results� s and �
do not vary depend much one� cuto� , except for small cuto� values for which the number of data points
is small. The value of v appears to be less robust. The gray regions indicate the actual values of the
parameters in agreement with our data.

The coe�cient � s was already introduced in Chapter 4. Its encapsulates all thermodynamic properties
of a balanced unitary gas at zero temperature. We obtain:

� s = 0 :415(10);
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Figure 5.23: (a) Equation of state hMF
S (e� ) given by the BCS mean-�eld model. (b) Fit result � as a

function of e� cuto� , for a linear �tting function (dashed line), a quadratic �tting function (solid line), and
the more elaborate �tting function described in the text (dot-dashed line).

Figure 5.24: Fit results � s (a), � (b) and v (c), as a function of e� cuto� . The gray regions indicate our
estimation of the actual values of these parameters. The dashed lines are proportional to the number of
points used for the �t. When e� cuto� is smaller than 0.5, the number of data points becomes small and
the �t results strongly depend on the noise of our data.

a value in agreement with previous measurements and numerical calculations [165].
A physical interpretation of � was �rst given by S. Tan in [189, 190, 191]. In [189], an exact relation

between thermodynamic quantities and more microscopic observables is established for a gas with short-
range interactions: the derivative of the energy with respect to the scattering lengtha, encapsulated in
the coe�cient � , is connected to the short-range behavior of the pair correlation function:

g(2)
12 (r ) =

D
 ̂ y

1(r ) ̂ y
2(0) ̂ 2(0) ̂ 1(r )

E

D
 ̂ y

1(r ) ̂ 1(r )
E D

 ̂ y
2(0) ̂ 2(0)

E �
r ! 0

9��
10

1
(kF r )2 :

The scaling g(2)
12 (r ) / 1=(kF r )2 is expected for a gas with short-range interactions: when two particles

(labeled i and j ) with opposite spins approach each other, the many-body wave function is proportional
to the two-body scattering state between the particlesi and j :

	( r 1 ; : : : ; r N ) �
r i ! r j

A ij

�
r i + r j

2
; r k

� �
�
�
�
k6= i;j

� (r j � r i ); where � (r ) �
r ! 0

1
r

:

The coe�cient A ij depends on the positions of all other particles.g(2)
12 (r ) is then equal the mean value
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of j	 j2 for a �xed distance jr j � r i j, hence the1=(kF r )2 behavior at low distance. The proportionality
coe�cient 9��= 10 between g(2)

12 (r ) and 1=(kF r )2 involves many-body physics. Since it quanti�es the
probability to �nd two atoms at short distances, � is often referred to as thecontact coe�cient .

Our experimental value � = 0 :91(5) is in agreement with a Fixed-Node Monte Carlo calculation of
the pair correlation function giving � = 0 :95 [192] and with some recent experimental values. In [193]
the static structure factor S(q) was measured using inelastic Bragg scattering.S(q) being the Fourier
transform of the pair correlation function, � is given by the S(q) behavior at high momentum:

St (q) �
q� kF

128�

175� 1=4
s

kF

q
;

where we have written the formula for the trap-averaged structure factorSt (q) actually measured in the
experiment [193]. The contact coe�cient was also measured through other microscopic observables, such
as the photo-association amplitude [38,194], the high-k tail of the momentum distribution [189,195], the
high-� tail of the radio-frequency spectrum [196,197,195,198], the photo-emission spectroscopy spectrum
[156], and other macroscopic observables, namely the potential energy and the release energy [18, 62,
190, 191, 195]. These results are gathered in Table 5.1. While the agreement of our measurement with
theory and with the dynamic structure factor measurement is excellent, the measurements from [195] are
signi�cantly di�erent.

Macroscopic observables

Pressure Energy Energy
Experiment [71] Theory [66] Experiment [195]

0.91(5) 0.95 0.65(10)

Microscopic observables

Pair correlation Structure factor Momentum distrib. RF spectrum Photo-emission
Theory [192] Experiment [193] Experiment [195] Experiment [195] Experiment [195]

0.95 0.92(3) 0.91(5) 0.67(7) 0.63(7)

Table 5.1: List of � values determined from theory and experiment, and from macroscopic or microscopic
observables. We only quote values performed in the unitary limit.

Finally, we obtain the second-order derivative coe�cient v = 0 :4(2). It was shown recently that v
must be positive [199], in agreement with our measurement.

5.5.5 Equation of State of a Fermionic Super�uid from the Weakly-Interacting
Regime

In the BCS limit e�; � ! �1 , interactions become weak and the gas pressure tends towards the ideal
gas pressure corresponding tohS (e� ) = 1 , or � (� ) = 1 . The deviation from 1 is written as an expansion
in powers of � � 1:

� (� ) = 1 + � MF � � 1 + � LY � � 2 + � BLY � � 3 : : : (5.13)

In order to extract these coe�cients, we �t our data with the Padé-type functions, in the interval
e� 2 [�1 ; e� cuto� ]. Our best estimates of the coe�cients � MF , � LY and � BLY are given by extrapolating
the �t results to e� cuto� ! �1 , knowing that for very small values of e� cuto� the result becomes wrong
due to the small number of points used for the �t (see Fig.5.25).

The �rst coe�cient � MF quanti�es the mean-�eld interactions in a Fermi gas. We obtain an experi-
mental value:

� MF = 0 :32(7);
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in agreement with the exact theoretical value [200]:

� MF =
10
9�

' 0:354:

The second coe�cient � LY quanti�es the �rst deviations to mean-�eld. It is also known exactly since
the work of Lee and Yang in the 1950's [78]:

� LY =
4(11� 2 log 2)

21� 2 ' 0:186;

and the value we extract from our data:

� LY = 0 :20(2);

provides its �rst experimental veri�cation.

Finally, our estimate of the coe�cient beyond the Lee-Yang expansion:

� BLY = 0 :035(10);

is also in agreement with more recent (non analytical) theoretical predictions [201,202,203,204]:

� BLY ' 0:030:

Figure 5.25: Fit results � MF (a), � LY (b) and � BLY (c), as a function of the cuto� e� cuto� . The gray regions
indicate our estimation of the actual values of these parameters. The dashed lines are proportional to
the number of data points used for the �t. When e� cuto� is smaller than -0.3 a small number of points are
used and the �t results become inaccurate.

Interestingly, the �rst non-universal corrections are also known exactly in the BCS limit and lead to
a correction to � (� ) given by [201,202,203,204]:

�� (� ) =
1

6�
r e

a
� � 3 +

1
�

� ap

a

� 3
� � 3 + : : : :

The e�ective range r e is a characteristics of the two-bodys-wave scattering potential that quanti�es the
error made by replacing the true scattering potential by a pseudo-potential of scattering lengtha [205].
Its value r e � 4:7 nm is very small for 6Li gases [206,207]. Thep-wave scattering lengthap = 1 :8 nm [208]
describes low-energyp-wave interactions. Given the small values of these lengths compared with typical
scattering length valuesjaj > 150 nm, non-universal terms are completely negligible in our experiment.
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5.5.6 Equation of State of a Bosonic Super�uid

We now consider the BEC limit �; e� ! + 1 . In this regime atoms with opposite spins form deeply bound
molecules, with a binding energy:

Eb = �
~2

ma2 ; jEbj � EF :

Composite molecules behave as point-like bosons and the gas is a molecular Bose-Einstein condensate.
Interactions between dimers are described by a dimer-dimer scattering lengthadd ' 0:60a, given by the
exact resolution of the 4-fermion scattering problem [16,209]. However, it is not clear to which extent the
many-body ground state is merely equal to the equation of state ofnd = n=2 bosons with short-range
interactions described by a scattering lengthadd .

Equation of State of a Gas of Point-Like Bosons

Let us �rst remind the equation of state of a gas of N = V n point-like bosons of massm and scattering
length a. The equation of state, written as an expansion in powers of the interaction parameterna3, is
universal up to the order

p
na3:

E=V =
1
2

4� ~2a
m

n2
�

1 +
128

15
p

�
(na3)1=2 + : : :

�
: (5.14)

The �rst term is the mean-�eld interaction inside a Bose-Einstein condensate, and the second term
is the Lee-Huang-Yang correction to mean-�eld, an exact result of many-body theory dating from the
1950's [76]. Observing the Lee-Huang-Yang correction using ultracold Bose gases close to a Feshbach
resonance is hindered by the enhancement of inelastic losses when approaching the strongly-interacting
regime [15]. In [210] Bragg spectroscopy performed on85Rb demonstrated deviations to a mean-�eld
behavior for large interaction strengths, but the connection with (5.14) remains indirect. Fermi gases,
being stable in the entire BEC-BCS crossover, might be more suited for such studies.

The next order term is more complex. Its calculation requires the introduction of low- and high-
momenta cuto�s [211]. A low k values the natural length scale is the Bose-Einstein condensate's healing
length � = 1=

p
8�na , while at high k values one has to introduce non-universal length scales such as the

potential's e�ective range. We end up with a correction [211]:

E=V =
1
2

4� ~2a
m

n2

 

1 +
128

15
p

�
(na3)1=2 + 8

4� � 3
p

3
3

na3 �
log(na3) + B (a; re; D )

�
+ : : :

!

; (5.15)

where the non-analytical log term is given by the low-k divergence and is universal. The coe�cient B
is not universal and depends on the precise shape of the interaction potential [212]. In [213] an explicit
expression forB is proposed, based on the study of a gas of hard spheres:

B (a; re; D ) = B0 +
3

8(4� � 3
p

3)

�
�

r e

a
+

D
12�a 4

�
; (5.16)

involving the following parameters:

� the coe�cient B0 ' 6:03 is expected to be universal, and was calculated in [214,213],

� the e�ective range r e, introduced in section 5.5.5,

� the three-body scattering hypervolume D, which is the equivalent of the scattering length a for
three-body interactions.

These parameters were calculated for a gas of hard spheres, givingB ' 8:51 [213]. For a gas with
r e � a, the three-boson problem exhibits a series of weakly bound states, the so-calledE�mov states
[215]. The precise value ofD varies in a narrow range with the exact position of the E�mov spectrum:
7:11 < B < 7:18 [214].
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Equation of State of a Gas of Composite Bosons

We now consider a two-component Fermi gas in the BEC limit, and the expansion of its equation of state
in a powers ofnda3

dd . In [77] it was shown that, up to order
p

nda3
dd , the equation of state is accounted

for by the Lee-Huang-Yang expansion (5.14) with the appropriate replacements:

n ! nd = n=2; a ! add = 0 :60a; m ! md = 2m:

For the next term, the e�ective range and scattering hypervolume relative to interactions between dimers
are expected to be related to the scattering lengtha by universal numbers, similarly to the e�ective
scattering length between dimersadd = 0 :60a. The dimer-dimer e�ective range can be viewed as the `size'
of the details of the e�ective dimer-dimer potential. This length scale being intuitively directly related
to the dimer size � a, one expectsr e � a. In a recent paper, the energy spectrum of the four-fermion
problem was computed and one infers from it the e�ective range between dimersr dd = 0 :13(2)a ' 0:2add ,
i.e. a value comparable toadd [216, 217]. The value of the e�ective three-dimer scattering hypervolume
Ddd is still unknown; its calculation would require the analysis of the six-fermion scattering problem.
The dimer's composite nature is not expected to modify the coe�cient in front of the log term in (5.15):
the composite nature is invisible for large-wavelength phenomena� = 2 �=k as soon as� is much larger
than the dimer microscopic sizea. On the other hand, it is not clear whether the coe�cient B is merely
accounted for by equation (5.16) with the appropriate values for r dd and Ddd given by the resolution
of few-body scattering phenomena, or whether many-body e�ects modify this picture. Nevertheless,
we expect the value ofB to be characteristic of Bose-Einstein condensates made of dimers of fermions
interacting with short-range interactions, independently of the nature of the fermionic species.

Measurement of the Equation of State of a Bosonic Super�uid

We �rst consider the measurement of the Lee-Huang-Yang coe�cient. In previous works [64, 79], the
Lee-Huang-Yang expansion (5.14) was shown to give a better description of the gas than the mean-�eld
equation of state. Here we try to extract the expansion (5.14) more quantitatively . We �t our data for
e� > e� cuto� with a Padé approximant whose asymptotic behavior in the BEC limit reads (see Appendix
B.3 for an explicit expression):

E=V =
1
2

4� ~2add

md
n2

d

�
1 + � LHY (nda3

dd )1=2 + : : :
�

: (5.17)

We use the mean-�eld interaction in the BEC regime given by the �rst term in (5.14), and the values
of � s and � previously determined, as constraints on the �tting functions. As shown in Fig.5.26a, the �t
result � LHY depends one� cuto� even for our data the most in the BEC regime. Our best estimate of the
actual Lee-Huang-Yang coe�cient is given by a linear extrapolation of the �t result � LHY as a function
of e� � 1

cuto� , towards the BEC limit e� � 1
cuto� ! 0 (see Fig.5.26b). We obtain:

� LHY = 5 :2(8);

in agreement with the exact value� LHY = 128=15
p

� ' 4:81.
We then go one step beyond and extract from our data the unknown coe�cient B . We use a more

complex Padé approximant, described in Appendix B.3 and consistent with the expansion (5.15), to
obtain (see Fig.5.26c):

B = 7 :2(8):

Interestingly, this value is close to the ones calculated for a gas of hard spheres [213] and for a gas with
short-range interactions [214],B ' 8:5 and B ' 7:1, respectively.

To conclude this study of the super�uid equation of state, we show in Fig.5.27 the experimental data
hS (e� ) together with the asymptotic behaviors extracted from it.
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Figure 5.26: (a) Fit result � LHY as a function of the cuto� e� cuto� . The extrapolation to the BEC limit is
more conveniently made by plotting � LHY as a function of e� � 1

cuto� , see (b). (c) Fit result B as a function
of e� cuto� . The gray regions indicate our estimation of the actual values of these parameters, the dashed
lines are proportional to the number of points used for the �t.

Figure 5.27: Equation of statehS (e� ) extracted from our data (black dots) compared with the following
asymptotic behaviors: the blue lines are the expansions (5.13) in the BCS limit up to �rst order (dashed
line), second order (dot-dashed line) and third order (solid line); the black lines are the expansions (5.12)
around the unitary limit up to �rst order (dashed line) and second order (solid line); the red lines are
the expansions (5.14) in the BEC limit up to �rst order (dashed line) and second order (solid line).

5.6 Ground State of a Trapped Fermi Gas

Here we make a comparison of our results with previous works discussed in section 3.1.1. In these works,
the equation of state of the entire trapped gas is obtained through the measurement of the position of
phase boundaries or the study of collective modes.

5.6.1 Equation of State of a Trapped Spin-Imbalanced Fermi Gas

Equation of State in the Unitary Limit

In the MIT experiment the radii R1, R2, RS of the di�erent phases observed in a trapped spin-imbalanced
Fermi gas are measured as a function of polarizationP [116,49]. We compare these measurements with the
prediction given by the Fermi liquid equation of state (5.5) that accurately describes our measurements.
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In order to obtain the radii R1, R2, RS as a function of P, we calculate the atom numbers and radii as
a function of the global chemical potential potentials � 0

i :

N i =
Z

dr ni (� 1; � 2); where � j = � 0
j � V (r ); and ni =

@P
@�i

�
�
�
�
� j

;

R1 =

s
2� 0

1

m! 2
z

;

R2 = R1

s
� 0 � A0

1 � A0
; where A0 = � 0:615;

RS = R1

s
� 0 � � c

1 � � c
; where � c = 0 :065:

The curves Ri (P) are then obtained as parametric curves by varying the global chemical potentials. As
shown in Fig.5.28a, they signi�cant deviate from the data from [116], where the radii were measured
after a time of �ight, assuming a hydrodynamic expansion. This is probably due to the fact that the gas
does not fully expands according to hydrodynamics, especially in the outer shell where the gas is fully
polarized and no collision occurs. The radii measured fromin situ density pro�les [49] are in excellent
agreement with the Fermi liquid equation of state.

Figure 5.28: (a) Radii R1, R2, RS of the di�erent phases observed in a trapped spin-imbalanced Fermi
gas, in the unitary limit. The radii are normalized to the Thomas-Fermi radius R(0)

1 of an ideal gas with
N1 atoms. The data in gray is inferred from the cloud pro�les after a time of �ight [116]. The large
black symbols are obtained fromin situ images [49]. The solid lines are calculated using the Fermi liquid
equation of state (5.5). (b) Critical polarization Pc as a function of 1=kF 1a, where kF 1 is the Fermi
momentum at the bottom of the trap of an ideal gas with N1 atoms. The solid line is calculated from
the theoretical pro�les accounting for our data (see text). It agrees with the critical polarization values
determined by the MIT group (open squares: [54], open circles: [218]) and by our group [99] (point with
an error bar), but disagrees with the one of the Rice group [97] (cross).

Critical Polarization in the BEC-BCS Crossover

In Fig.5.28a, we see on the case of the unitary limit that the super�uid core disappears above a critical
polarization Pc. The �rst characterization of the normal/super�uid phase transition was provided by the
measurement ofPc, in the unitary limit [54, 97, 218, 99], and in the BEC-BCS crossover [54, 218]. We
calculate the critical polarization in the BEC-BCS crossover using the Fermi liquid equation of state (5.5)
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for the normal phase and a �t of the super�uid equation of state described in Appendix B.3. As shown
in Fig.5.28b, the Fermi liquid equation of state accounts for most measurements, apart from the Rice
university measurementPc ' 1 in the unitary limit, and the data in the region 1=kF 1a > 0:5, where we
did not check experimentally the validity of the Fermi liquid equation of state.

5.6.2 Collective Modes of a Balanced Fermi Gas

In this section we compare the equation of state of a balanced super�uid determined from our data with
the collective mode frequency measurements from [64]. In section 3.1.1 we discussed the relationship
between the collective mode frequencies and the super�uid equation of state provided by a hydrodynamic
description of the collective modes [115]. Using �ts of our data (see Appendix B.3), we calculate the radial
breathing mode frequency! given by equation (3.1), and make the comparison with the experimental data
in Fig.5.29. The agreement with the experiment is much better that the prediction using a BCS mean-
�eld equation of state. Since our data are close to the Fixed-Node Monte Carlo calculations from [66],
it is not surprising that the calculated frequencies are close to the ones previously calculated from the
Monte Carlo data (see [64]).

As mentioned earlier, we see that discriminating between Fixed-Node Monte Carlo calculations and
BCS mean-�eld theory required to reach a � 0:5% accuracy on the frequency measurement. This has
to be compared with the large di�erence between both theories in the variablehS (e� ) (see Fig.5.20).
Similarly, the Lee-Huang-Yang correction, which leads to the following asymptotic behavior in the BEC
limit [219,220,221]:

! = 2 ! r (1 + � (kF a)6=5 + : : :); � =
21 56=5

248=5
(add=a)6=5 ' 0:1; (5.18)

where ! r is the transverse trapping frequency, is di�cult to observe from a collective mode study. The
frequency upshift ! > 2! r observed in the BEC limit is consistent with this behavior, but does not allow
one to extract the value of the Lee-Huang-Yang term.

Figure 5.29: Radial breathing mode frequency from the Innsbruck experiment [64], compared with the
hydrodynamic prediction using a mean-�eld BCS equation of state (dashed line), and the equation of
state determined from our data (solid line). The dotted line is the Lee-Huang-Yang expansion (5.18).

To conclude, the equation of state of a homogeneous Fermi gas deduced from our study is consistent
with most previous works on trapped gases.
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5.7 Molecular Physics Beyond the Scope of this Work

The parameter range addressed in our work is limited to� 1 < 0:65. Qualitatively new features in the
phase diagram are expected for� 1 & 1. We give here a short review of this still largely unexplored
physics, as a perspective for future work.

5.7.1 Polarized Super�uid

Figure 5.30: Phase diagram of a two-component Fermi gas in the plane(� 1; � ). The black dot is the
tri-critical point. The gray region corresponds to a super�uid phase. We subtracted for clarity � 2� 2

1 to
� for � 1 > 0.

We have shown that, in the super�uid phase and for � 1 < 0:65, the gas remains unpolarized when
one imposes a chemical potential di�erence. However, one expects that in the BEC regime a mixture of
majority atoms and a fully paired molecular condensate can be stable (see Fig.5.30). This can easily be
shown using a mean-�eld description, valid in the BEC limit. Let us consider a homogeneous mixture of
molecules and unbound fermions, with respective densitiesnb and nf . The system is thermodynamically
stable if the compressibility matrix (@2e=@ni @nj ), where e is the energy density, is positive. Using the
mean-�eld energy density [222]:

e(nf ; nb) =
3
5

nf E f + nbEb +
1
2

4� ~2add

2m
n2

b +
4� ~2aad

4m=3
nbnf ; (5.19)

we obtain the stability condition:

n1=3
f �

(6� 2)2=3

12�
add

a2
ad

:

This criterion is similar to the thermodynamic stability domain of 3He-4He mixtures at low temperature
(see Fig.5.31). Therefore a molecular BEC can be polarized by imposing a chemical potential di�erence.
It remains unpolarized as long as� 1 is smaller than the super�uid chemical potential � = ( � 1 + � 2)=2
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plus the single-particle excitation gap � 0, i.e. foryy:

� � � p = 1 � 2
� 0

� 1
:

When � is decreased below� p, the gas becomes polarized but remains super�uid (see Fig.5.30).

Figure 5.31: Phase diagram of a3He-4He mixture at low temperature [224]. At T = 0 the maximum 3He
density if nf ' 0:07nb [225].

5.7.2 Polaron to Molecule Transition in the Impurity Problem

The large imbalance limit was addressed in section 5.1.2 by considering the ground state of the impurity
problem. It was expressed as the sum of the non-interacting ground state plus states with one particle-
hole excitation. This approach does not account for the ground state in the BEC limit, where we expect
the minority atom to bind with one majority atom into a deeply bound molecule. This state is very
di�erent from the polaron state, in the sense that it cannot be expressed as the non-interacting ground
state plus several particle-hole excitations.

In the mean-�eld approach, the chemical potential ratio of the impurity problem is obtained from
(5.19) through [85]:

A(� 1) = lim
n b ! 0

� 2

� 1
= � 2� 2

1 � 1 +
1
�

aad

a
� � 1

1 :

The molecular binding energy was calculated, beyond this mean-�eld approach, using a diagrammatic
Monte Carlo calculations [85], an analytic theory involving up to two particle-holes excitations in the
Fermi sea [86], and variational ansatz's [226,180], all results being in very good agreement (see Fig.5.30).

Polaronic and molecular impurities are expected to behave very di�erently when considering small
but macroscopic minority atom numbers. Indeed, while polarons are fermionic quasi-particles (as clearly
shown in section 5.4), a set of molecules is expected to form a molecular Bose-Einstein condensate. In
other words, these two kind of impurities obey di�erent quantum statistics.

The transition between the two regimes occurs when the ground state of the impurity problem changes
from a polaron-type to a molecular-type quantum state, at � 1 = 0 :91(2) [85] (see Fig.5.30).

yy In the BEC limit, one can use the mean-�eld energy (5.19) to calculate the asymptotic value of � p [223]:

� p = lim
n f ! 0

� 2

� 1
= � 2� 2

1 � 1 +
add

3 aad
:
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5.7.3 Thermodynamic Instability of the Impurity Problem

Using a mean-�eld approach, we showed in section 5.7.1 that a spin-imbalanced gas is unstable for large
extra majority atom densities. In the limit of vanishing minority atom density, which corresponds to the
impurity problem, the stability condition can be written as [67] zz:

� 1 > � 1c =
9

4�
a2

ad

add a
' 1:7:

In the region � 1 < � 1c, the transition between the fully and partially polarized regions thus becomes of
�rst order (see Fig.5.30). � 1c is thus a tri-critical point. The instability of the impurity problem casts
doubt on the possibility to directly observe the polaron/molecule transition.

To conclude this chapter, we measured the equation of state of the ground state of a two-component
attractive Fermi gas with arbitrary spin-imbalance and interactions. The universal character of this
equation of state makes it a relevant quantity for the description of other quantum many-body systems,
such as the crust of neutron stars. We characterized the super�uid equation of state in the entire BEC-
BCS crossover. Our observations are in very good agreement with Fixed-Node Monte-Carlo calculations
and are used to extract several physical quantities such as the Lee-Yang and Lee-Huang-Yang corrections
to mean-�eld. We showed that the partially polarized phase is well accounted for by a Landau Fermi
liquid description. We obtain from our data the value of the e�ective mass of the associated Landau
quasi-particles, the Fermi polaron.

In the last section we showed that qualitatively di�erent physics is expected to occur in the deep BEC
regime that is not addressed in this work. The measurement of the position of the tri-critical point, and
of the polaron to molecule transition could be the subject of future work. It would also be interesting to
investigate the existence of exotic phases such as the FFLO state, expected to be stable on the BCS side of
the resonance (in a rather small window between the Fermi liquid and super�uid states). The signatures
of these states on the equation of state are expected to be rather small [229, 230] and would require to
improve the precision of our measurement or combine it with the measurement of other observables such
as density correlations/�uctuations [231,230].

zz Recently the �rst correction to (5.19) was obtained analytically [227]:

e(n f ; nb) =
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5
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which leads to
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BCS mean-�eld theory predicts � 1c = 2 :4 [228, 229] and Fixed-Node Monte Carlo calculations, expected to be the most
precise result, give � 1c = 1 :7 [67].



Chapter 6

Axial Breathing Modes of a

Spin-Imbalanced Fermi Gas

In this chapter we describe a study of collective modes of a spin-imbalanced Fermi gas in the unitary
limit [99]. Collective modes of trapped ultracold gases are the counterpart of sound waves in homogeneous
systems. Their study provides a �rst-level understanding of the gas dynamics, and can be used to reveal
for example characteristic features super�uidity through the observation of second sound [232]. The
measurement of collective oscillations frequencies is a precision tool for the experimental study of trapped
ultracold gases. In some situations the mode frequency can be related to physical quantities di�cult to
probe otherwise. An important example is the angular momentum measurement through a precession
of a radial quadrupole excitation [233, 39]. Moreover, as shown in section 3.1.1, the frequency of some
collective modes can directly be related to the equation of state of the trapped gas and therefore its
determination from experiment provides a benchmark for many-body theory [115,64].

The collective modes of a spin-imbalanced Fermi gas are rather complex. We saw in Chapter 5 that a
phase separation occurs in a trapped gas: a super�uid core occupies the trap bottom (for a polarization
P < P c ' 0:75), and is surrounded by a partially polarized intermediate shell and a fully polarized outer
rim. The dynamic behavior of these phases strongly di�er. Indeed, the fully paired core is expected
to evolve according to hydrodynamics as a consequence of super�uidity, while the fully polarized shell
reacts as a collisionless ideal gas. Therefore, we expect the dominant collective mode frequencies to be
typical of a hydrodynamic behavior when the super�uid core is large (i.e. for small polarizations), while
collisionless frequencies are expected at the lowest minority concentrations, when the gas is essentially
fully polarized. It is also tempting to think that the crossover between these two regimes, when one varies
the spin polarization, may reveal the polarization thresholdP = Pc for the super�uid core disappearance.

In this work we consider the axial breathing modes of a gas held in an elongated trap. A two-
component gas exhibits two axial breathing eigenmodes. The �rst collective mode corresponds to an
in-phase oscillation of both spin components. It is the only low-lying collective mode encountered for a
paired super�uid, since an out-of-phase excitation requires to break pairs and costs a large energy (on
the order of the gap). We will see that, when the gas polarization is increased, this mode progressively
evolves from a hydrodynamic to a collisionless behavior. The second mode corresponds to oscillations of
both spin component with di�erent phases. In the strong polarization limit, it corresponds to a minority
component oscillation in an unperturbed Fermi sea, the oscillation being strongly a�ected by interactions.
In particular interactions modify the minority atoms inertia through a mass renormalization, and we will
thus extract the e�ective mass value from the frequency of this mode.
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6.1 Hydrodynamic Behavior of a Balanced Fermi Gas

Before addressing the e�ect of spin polarization, we �rst consider the dynamics of a spin-balanced Fermi
gas in order to introduce the hydrodynamic equations that will be invoked in the rest of the chapter. We
study the oscillation of a balanced Fermi gas which is deeply evaporated, up to temperatures much smaller
than the super�uid transition temperature. The gas is thus a fully paired super�uid, whose dynamics is
expected to be described by the laws of hydrodynamics, previously introduced in section 3.1.1:

@
@t

n = �r � (nv );

m
@
@t

v = �r
�

1
2

mv 2 + � (n) + V
�

;

where n is the total density and � (n) = � s~2=2m(3� 2n)2=3 in the unitary limit.

6.1.1 Scaling Ansatz Solution of the Hydrodynamic Equations

We are going to study the gas dynamics in two situations:

� The optical trap is suddenly switched o� and the cloud expands in the saddle potential created by
the magnetic �eld curvature. The con�ning potential can be written as:

! z (t) = ! 0
z ; ! r (t) =

(
! 0

r ; t < 0
� ! 0

z =
p

2; t > 0
:

� The gas is excited by switching the current in the curvature coils o� during � 1 ms. The bias
magnetic �eld is consequently brought to the BCS side of the resonance. After the gas is excited
the con�ning potential and bias magnetic �eld are brought back to the values before excitation.

Both situations belong to the more general problem of solving the hydrodynamic equations in a harmonic
trap with time-dependent frequencies. As �rst shown for the dynamics of Bose-Einstein condensates
in [234,235], the scaling� / n2=3 at equilibrium implies that an exact class of solutions of these equations
is provided by a scaling ansatz [153]� :

n(x; y; z; t ) =
1

bz (t)br (t)2 n0
�

x
br (t)

;
y

br (t)
;

z
bz (t)

�
; (6.1)

where n0(x; y; z) is the equilibrium density pro�le. The density pro�le (6.1) is a solution of the hydrody-
namic equations equations, provided the scaling factorsbi (t) solve the di�erential equations [153]:

•bz (t) = � ! z (t)2bz (t) +
! z (0)2

bz (t)5=3br (t)4=3
(6.2)

•br (t) = � ! r (t)2br (t) +
! r (0)2

bz (t)2=3br (t)7=3
: (6.3)

6.1.2 Hydrodynamic Expansion

In this section we study the expansion of the super�uid after the optical is suddenly switched o�. The
bias and curvature magnetic �elds are left on, and the super�uid evolves in a saddle potential. The initial
trapping frequencies are! 0

z =2� = 37 Hz and ! 0
r =2� = 600 Hz. In Fig.6.1 we plot experimental results

for the time evolution of the cloud axial and radial sizes. A numerical resolution of equations (6.2), (6.3)

� We mention that in the case of an isotropic harmonic trap, it was shown that such a scaling ansatz provides an exact
solution of the gas dynamics [112].
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accurately describes the super�uid dynamics even 5 ms after the optical trap switch o�, despite a radial
size increase by a factor' 25. The decrease in axial size is an eloquent consequence of the hydrodynamic
behavior, by opposition to the obvious solution bz (t) = 1 for a ballistic expansion into a potential whose
axial con�nement is unchanged. This behavior is consistent with previous observations of a hydrodynamic
expansion for a unitary gas [17, 236] (in which the axial con�nement is switched o� together with the
optical trap).

Figure 6.1: Time evolution of the axial (radial) cloud radius of a super�uid expanding in a saddle potential
(black (open) dots). The solid (dashed) line is the hydrodynamic prediction.

6.1.3 High- Q Axial Breathing Mode

In this section we present the response of a trapped super�uid to a weak perturbation. We switch o� the
curvature coils current during 0.5 ms, come back to the initial current, and take anin situ image of the
cloud after a variable wait time. In Fig.6.2 we plot the time evolution of cloud axial size over more than
600 ms.

Figure 6.2: Cloud size time evolution (black dots). The solid line is a �t with a damped cosine.

The oscillation frequency of the axial radius is calculated by linearizing equations (6.2), (6.3) around
the equilibrium positions bi = 1 . Writing bi = 1 + ai ei!t , ai � 1, we obtain the linear system

 
� ! 2az

� ! 2ar

!

=

 
� ! 2

z az + ! 2
z (5=3az + 4=3ar )

� ! 2
r ar + ! 2
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:
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This systems admits two solutions, namely the axial (radial) breathing mode ! =
p

12=5! z (! =
p

10=3! r ), for an elongated trap (! r � ! z ).

Fitting our experimental data with a damped cosine, we obtain the axial breathing mode frequency
! = 1 :54(1) ! z , in agreement with the theoretical value (

p
12=5 ' 1:549). The oscillation damping rate

is very small, and corresponds to a quality factorQ ' 200. This value is comparable to the low damping
rates previously reported in the Innsbruck experiment [33].

The oscillation amplitude can easily be modeled. The excitation scheme chosen for this experiment
has two e�ects:

� The axial frequency ! z drops to 0 during the 0.5 ms excitation.

� The bias magnetic �eld becomes very largeB0 ' 1100 G. The gas, switched to the BCS side of
the resonance, becomes weakly interacting and its equation of state reads� = ~2=2m(3� 2n)2=3,
i.e. the chemical potential is � � 1

s times larger than the one of a unitary gas with the same density.
However, the gas remains super�uid and its motion is still described by hydrodynamic equations.

Equations (6.2), (6.3) thus read, during the excitation:

•bz (t) = � � 1
s

! 2
z

bz (t)5=3br (t)4=3

•br (t) = � ! 2
r br (t) + � � 1

s
! 2

r

bz (t)2=3br (t)7=3
:

A numerical resolution of this system of di�erential equations leads to an oscillation amplitude equal
to � Rz=R0

z = 0 :26 (peak-peak amplitude/mean value), in excellent agreement with our observations
� Rz=R0

z = 0 :28. The change in trapping frequency and the change in bias �eld have a comparable
contribution to the oscillation amplitude.

6.2 In-Phase Axial Breathing Mode

6.2.1 Observation of the In-Phase Mode

We now discuss the e�ect of polarization on the axial breathing mode. We evaporate a spin-imbalanced
Fermi gas in the unitary limit up to a trap depth identical for all polarizations. The majority atom
number N1 ' 105 does not depend much on polarization, while the minority atom number is scanned in
a range1000. N2 < N 1. The excitation procedure is identical to the one described above for a balanced
gas. We �t the integrated density pro�les for both spin components with Thomas-Fermi formulas:

ni (z) = � i (R2
i � z2)5=2; i = 1 ; 2:

In order to study the gas dynamics at a given polarizationP, we post-select the cloud images correspond-
ing to polarizations in a window [P � � P=2; P + � P=2], with � P chosen between 0.025 and 0.06.

In Fig.6.3 we plot R2 as a function of R1 in order to see whether both spin components oscillate
in phase. Except for large polarizationsP & 0:8, the radii oscillations around the mean valuesR0

i are
proportional:

R2 � R0
2 / R1 � R0

1:

This is a clear signature that both spin components oscillate in phase.

For P > 0:8 we will see in section 6.3 that the weight of out-of-phase mode is more signi�cant and
strongly a�ects the time evolution of the minority radius. However, we expect the e�ect on the majority
component to be much smaller. Therefore the time evolution of the majority radius is always dominated
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Figure 6.3: Radius R2 as a function of the radius R1, for three polarizations P = 0 :3, P = 0 :6 and
P = 0 :9. The radii are normalized to the mean valueR0

i , i = 1 ; 2. The proportionality for P = 0 :3 and
P = 0 :6 shows that both spin components oscillate in phase.

by the in-phase mode, even at large polarizations. We thus extract the in-phase mode characteristics on
the majority component.

We �t the time evolution of the majority radius with a damped cosine (see Fig.6.4):

R1(t) = R0
1

�
1 + A1e�  1 t cos(! 1t + � 1)

�
: (6.4)

The constants A1, ! 1, � 1 and  1 are the in-phase mode amplitude, frequency, phase with respect to the
excitation, and damping rate.

Figure 6.4: Time evolution of the majority radius , for P = 0 :3, P = 0 :6 and P = 0 :9. The solid lines
are �ts with a damped cosine (6.4).

6.2.2 Frequency in the Hydrodynamic and Collisionless Regimes

The value of the in-phase mode frequency can be calculated in the collisionless and hydrodynamic regimes.

In the collisionless regime, particles freely oscillate at the trap frequency! z . The oscillation frequency
of the radius is then twice as large:

! CL
1 = 2 ! z :

In the hydrodynamic regime, an exact solution of the hydrodynamic equations is provided by a scaling
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ansatz with the same dilatation factors for both components:

ni (x; y; z; t ) =
1

bzb2
r

n0
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x
br

;
y
br

;
z
bz

�
; (6.5)

where n0
i (x; y; z) are the equilibrium density pro�les. The proof is rather simple: one inserts the ansatz

(6.5) into the hydrodynamic equations. At unitarity, the equilibrium equation of state reads:
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:

When n1 and n2 are dilated by the same factor, f i (n2=n1) does not change, and one simply obtains:

� i (n2; n1) =
1

(bzb2
r )2=3

� i (n0
2; n0

1):

This shows that the hydrodynamic equations for each spin state are decoupled and identical to the ones
of a spin-balanced unitary gasy. The axial breathing mode frequency, in the limit of a large aspect ratio,
then reads:

! HD
1 =

r
12
5

! z ' 1:55! z :

This result was also derived with di�erent assumptions in [99], using a sum-rule approach.

6.2.3 Crossover from a Hydrodynamic to a Collisionless Behavior

In Fig.6.5a we plot the in-phase mode frequency! 1=! z as a function of polarizationP. At low polarization
the frequency is close to the hydrodynamic value. This behavior is expected for a gas with a large
super�uid core: the core itself is super�uid and therefore evolves according to hydrodynamics, and
particles in the normal phase are likely to collide with the super�uid core during one axial oscillation
period Tz = 2 �=! z . The mean free path is thus smaller than the cloud size, which is the condition
for hydrodynamic behavior for a classical gas. AsP increases, the frequency slowly departs from the
hydrodynamic value. For P & 0:75 the frequency strongly increases towards the collisionless value. For
extremely high polarizations, the collision rate per majority atom becomes smaller that the oscillation
frequency and the gas freely oscillates at the collisionless value. This collisionless regime is approached
but is not fully reached in our experiment because of the di�culty to sort the data by polarization when
the minority atom number is very small ( N2 ' 1000). It is important to remark that no particular feature
occurs at the critical polarization Pc ' 0:75 at which the super�uid phase disappears.

6.2.4 Oscillation Amplitude and Phase

For the calculation of the frequency in the hydrodynamic regime presented in section 6.2.2, we assumed
that the density pro�les were scaled for both components with the same factor. Therefore we expect here
the amplitudes A i to be identical. In Fig.6.6a we plot the amplitudes A i as a function of polarization,
and indeed observe thatA1 ' A2 in the hydrodynamic regime P < 0:75. We also note that the amplitude
of the majority component A1 ' 0:28 is rather independent of the polarization value.

We also check the in-phase character of the mode by comparing the phases� i for both components.
As shown in Fig.6.6b, the two components oscillate in phase in the hydrodynamic regimeP < 0:75.
Moreover, the oscillation is shifted by �= 2 compared to the excitation, as expected for an excitation
which sets the cloud in movement but is much shorter than the oscillation period.

ySince this property relies on the identity of the scaling factors for both two spin states, it is speci�c to the in-phase
mode.
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Figure 6.5: In-phase mode frequency (a) and damping rate (b) as a function of polarization. The gray
crosses are the results of a �t of the data in a window[P � � P=2; P + � P=2] results with a damped
cosine (6.4). We vary the central polarization0 < P < 1 and the binning 0:02 < � P < 0:07 to obtain all
gray data points. Black dots are averages of ten consecutive gray points. In (a), the solid lines are the
hydrodynamic and collisionless frequencies. We mention that the data �tting procedure slightly di�ers
from the one used in [99], leading to a better signal-to-noise ratio.

Figure 6.6: (a) Amplitude of the in-phase mode for both spin components, as a function of polarization.
� (+ ): raw data for species1 (2), � (� ): average of ten raw data points for species 1 (2). (b) Phase of the
in-phase mode as a function of polarization, with the same notations than (a). The solid line corresponds
to an oscillation shifted by �= 2 compared to the excitation.

6.2.5 Relaxation of a Two-Component Fermi Gas

In Fig.6.5b we plot the damping rate  1=! 1 as a function of polarization. When the gas is either in the
hydrodynamic or collisionless regimes the damping rate is small. It is maximum forP ' 0:9, i.e. in the
middle of the crossover between the two limit regimes. We give in this section a physical explanation of
this behavior.
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Sound Propagation in Gases and Relaxation Phenomena

Damping of sound waves in �uids is driven by the spontaneous relaxation towards equilibrium. We
present here a simpli�ed model for which the relaxation can be captured using a single relaxation time
scale� � model �rst introduced by Kneser in the 1930's [237] . For a classical gas� � 1 is on the order of
the collision rate per particle, and a typical value at ambient temperature and pressure is� � 10� 10 s.
In the acoustic domain, sound wave frequencies are much smaller than typical relaxation rates, therefore
the gas locally remains almost at equilibrium. The speed of sound is then given by:

c2 =
@P
@n

�
�
�
�
equilibrium

� c2
0;

and the oscillation quality factor is large. Using high-frequency ultrasonic waves!= 2� > 1 GHz, it is
possible to address the regime!� & 1. For very large frequencies!� � 1, the gas equilibrium does not
take place and the speed of sound reads:

c2 =
@P
@n

�
�
�
�
instantaneous

� c2
1 :

In the case of a single relaxation time scale� , the speed of soundc smoothly interpolates betweenc0 and
c1 when ! is varied, according to [237,238]:

c2 = c2
1 +

c2
1 � c2

0

1 + i!�
: (6.6)

The imaginary part of the speed of sound accounts for the sound wave damping. In Fig.6.7 we plot the
variation of the speed of sound and damping rate as a function of frequency. As expected, the speed of
sound smoothly varies fromc ' c0 for !� � 1 to c ' c1 for !� � 1. The oscillation qualify factor is
large in the two limit regimes and is minimum in the middle of the crossover.

Figure 6.7: Speed of soundc and sound wave quality factorQ as a function of !� for a Kneser �uid with
c0 = 2c1 .

Comparison of our Data to a Kneser Relaxation Model

In the case of trapped gases, collective modes frequencies are quantized, with typical values on the order
of c=L, where c is the speed of sound andL is the cloud size (alongz for the axial breathing modes).
The transposition of equation (6.6) is then given by [239]:

! 2 = ( ! HD
1 )2 +

(! CL
1 )2 � (! HD

1 )2

1 + i!�
; ! = ! 1 + i 1: (6.7)
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The hydrodynamic frequency value! HD
1 is reached in the limit of a relaxation time much smaller than

the oscillation period. The collisionless frequency value! HD
1 is reached in the opposite limit.

Taking the real part and imaginary part of (6.7), we obtain 2 equations for three variables! z � , ! 1=! z

and  1=! 1. We can eliminate ! z � and directly relate the damping rate to the frequency:

 1

! 1
=

s
4
p

15(! 1=! z )2 � 11) � 8 � 5(! 1=! z )2

5(! 1=! z )4 : (6.8)

A crossover between a hydrodynamic and a collisionless behavior in qualitative agreement with (6.8) was
observed in [240] with balanced unitary gases, by playing with the gas temperature. Here the crossover
is induced by the spin imbalance. In Fig.6.8 we plot our data in the plane(! 1=! z ;  1=! 1). In the high
polarization limit, our data are consistent with (6.8), given the relatively large noise of our data for low
minority atom numbers. At low polarization, our data seem to signi�cantly di�er from (6.8). In between,
the maximum damping rate  1 ' 0:15! 1 is equal to the maximum damping rate allowed by (6.8).

Figure 6.8: In-phase collective mode data plotted in the plane(! 1=! z ;  1=! 1) (gray crosses). The black
dots are averages of 10 raw data points. The solid line is the prediction given by equation (6.8).

Relaxation Rate Value

Assuming that equation (6.7) is valid, we �t our data with a damped cosine, where! 1=! z and  1=! 1 are
expressed using a single parameter! z � . In Fig.6.9 we plot the relaxation rate 1=(! z � ) as a function of
N2=N1 = (1 � P)=(1 + P). We observe a surprising linear dependence valid for all polarizations:

1
! z �

' 50
N2

N1
:

In particular the presence of a super�uid core does not seem to a�ect the variation of� with polarization.
Understanding this behavior is rather di�cult, especially when both a super�uid core and a fully

polarized rim oscillate together. Above the Clogston limit P > P c ' 0:75, it may be possible to model
the system more easily. As shown in Chapter 5, the gas can then be described, at equilibrium, as a
mixture of majority atoms and minority particles renormalized by the interaction with majority atoms.
Within this Fermi liquid picture, the gas is merely a mixture of two Fermi seas with di�erent atom
numbers. Collective oscillations have already been modeled in this context using Boltzmann equation,
but for slightly di�erent situations, namely for spin-balanced gases [241, 242, 243] or for the spin dipole
mode in spin-imbalanced Fermi gases [244]. In Appendix C we adapt these calculations to the case
relevant to our experiment, the axial breathing mode of a two-component Fermi gas with di�erent atom
numbers.
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Figure 6.9: Relaxation rate 1=(! z � ) as a function of N2=N1. The solid line is a linear �t of the complete
data. The Clogston limit Pc ' 0:75 corresponds toN2=N1 ' 0:2.

It is clear that Pauli blocking plays an essential role in the collision processes, the classical collision
rate for a gas with such atom densities being� 100 times larger than the inverse relaxation time1=�
that we observe. We mention that the axial breathing mode of a gas prepared at a higher temperature
(T = 0 :12TF 1) is always hydrodynamic in the range0 < P < 0:95 addressed in our experiment, probably
due to the diminution of Pauli blocking e�ects. Here the proportionality of � with N2 suggests that
Pauli blocking does not signi�cantly a�ect the scattering of minority atoms. Otherwise, the collision
rate would rather be proportional to the minority atom number available for scattering � N2(T=TF 2),
which scales di�erently with N2. At zero temperature and at equilibrium, no scattering occurs because
energy conservation prevents scattering towards unoccupied states above the Fermi levels. Therefore the
relaxation is induced:

� either by a Fermi surface deformation associated with the gas oscillation itself (see Fig.6.10a),

� or by a non-zero temperature allowing collisions to occur in a regionkB T around the Fermi energies
(see Fig.6.10b).

The deformation induced by our excitation, or a temperature T = 0 :03(3)TF 1, provide the good order
of magnitude for the relaxation rate (see Appendix C). However, a more precise understanding would
require to know more precisely the gas temperature in order to isolate the two e�ects.

6.3 Polaron Axial Breathing Mode

In the hydrodynamic regime, out-of-phase oscillations are expected to be over-damped, as shown in [241]
on the example of the spin dipole mode. However, the gas dynamics approaches a collisionless behavior
at large polarization, and we expect the out-of-phase mode to become observable. In that limit of low
minority atom number, the two axial breathing eigenmodes are easily identi�ed: as the collision rate with
the minority component is small, the majority component freely oscillates at the frequency! CL

1 = 2 ! z .
The second mode can be pictured as the free oscillation of minority atoms inside an unperturbed Fermi
sea. The coupling with the inhomogeneous majority component leads to an e�ective potential

Ve� (r ) = V (r ) + A0 � 1(r )

= A0 � 0
1 + (1 � A0)V (r );
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Figure 6.10: (a) Collision of a majority atom with an immobile impurity for a zero-temperature and
deformed Fermi distribution. Energy conservation imposes the outcome momentum to belong to the
dashed circle, and Pauli exclusion principle to be outside the deformed Fermi sea. (b) Collision of a
majority atom with an immobile impurity for a �nite-temperature Fermi distribution. The probability
to make a collision is signi�cant for atoms in a region of size� T=TF .

where A0 � 1 = � 0:615� 1 is the energy shift for one minority atom (see Chapter 5). In addition, interac-
tions lead to a mass renormalization entering into second Newton law:

m�
0

dv
dt

= �r Ve� (r );

where m�
0 is the polaron e�ective mass. The polaron axial oscillation frequency therefore reads:

! �
z =

s
1 � A0

m�
0=m

! z :

Measuring the out-of-phase mode frequency at large polarizations would thus provide the e�ective mass
value (assuming that A0 is exactly known).

The time evolution of the minority radius is expected to be described as the sum of two damped
cosines, one at the frequency! 1 ' 2! z , and one at the frequency! 2 ' 2! �

z . However, the uncertainty
on the minority radius becomes large for small minority atom numbers and the oscillation amplitude is
smaller than noise of our data. In order to unambiguously reveal the appearance of the out-of-phase
mode, we calculate the Fourier spectrumP(! ) of the data R2(t) corresponding to a polarization in the
window [P � � P=2; P +� P=2]. The Fourier spectrum calculation is adapted to an unevenly spaced set of
data, as described in [245,246]. In Fig.6.11 we plot the Fourier spectrum as a function of polarization. For
P & 0:75we observe the appearance of a second peak besides the peak corresponding to! HD

1 < ! 1 < ! CL
1 ,

of frequency! 2 > ! CL
1 , and which is identi�ed to the out-of-phase mode.

By varying the mean polarization P and the width � P de�ning the set of points R2(t) used for the
frequency spectrum calculation, we obtain a series of peak positions! 2, in a window 0:75 < P < 0:9 (see
Fig.6.12). We observe that! 2 rapidly varies with polarization, from ! 2 ' 3 ! z at P = 0 :75 to ! 2 ' 2:6 ! z

at P = 0 :9. We are interested in the high-polarization limit P ! 1. As our data ! 2(P) is well �tted
by a straight line ! 2(P) = 2 :3(1) + 2 :9(3)(1 � P) in the range 0:75 < P < 0:9, our best estimate of the
polaron oscillation frequency is given by:

! �
z =

! 2(P ! 1)
2

= 1 :15(5) ! z :
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Figure 6.11: Left: Fourier spectrum P(! ) of the data R2(t) as a function of polarization. The red ellipse
indicates the frequency domain of the out-of-phase mode. Right: Fourier spectrumP(! ) for P = 0 :84.

Using the exact result A0 = � 0:615, we obtain the e�ective mass value:

m�
0 = 1 :2(1) m;

in agreement with theory [85, 84] and with our determination from the equation of state in the unitary
limit m�

0 = 1 :21(2)m (see section 5.4.2).

Figure 6.12: Out-of-phase mode frequency! 2, as a function of polarization P, and calculated for polar-
ization windows 0:02 < � P < 0:05. The black dots are an average of 10 consecutive raw data points
(gray crosses). The solid line is a linear �t of the complete data.

To conclude this chapter, we showed that the in-phase axial breathing mode frequency smoothly
evolves from a hydrodynamic to a collisionless value. The out-of-phase mode appears at the largest
frequencies and allows us to measure the polaron e�ective mass. Its large frequency variation may be due
to a crossover towards a hydrodynamic behavior. In order to reach more easily the collisionless value, it
would be interesting to study the radial breathing mode. Indeed, a collisionless behavior is expected when
the atomic mean free path is larger than the cloud dimension relative to the mode considered, namely
the radial (axial) cloud size for the radial (axial) breathing mode. Therefore it is clear that the radial
mode is more favorable. This would allow a more simple comparison with theories of collective modes.



Conclusion

In this thesis we studied experimentally the thermodynamics of ultracold Fermi gases. We implemented a
new method for measuring the universal equation of state of a two-component Fermi gas with short-range
interactions. The local pressure inside a trapped gas is extracted from itsin situ absorption image. In
the local density framework, this local probe provides the equation of state of thehomogeneousgas. We
combined this work with a new thermometry of strongly-interacting Fermi gases, using a small quantity
of weakly-interacting 7Li atoms as a thermometer.

We explored the phase diagram of a two-component Fermi gases under two angles of attack, namely
the equation of state of a spin-balanced unitary Fermi gas at �nite temperature, and of the one of a
low-temperature Fermi gas with arbitrary interactions and spin imbalance.

The equations of state deduced from our work allowed us to make the �rst direct comparison between
experiments and many-body theories. We validate Fixed-Node Monte-Carlo simulations at zero temper-
ature, and show that, up to now, none of the existing many-body theories accounts for our observations
at �nite temperature over their full range.

For large enough temperature or chemical potential asymmetry, the gas is in a normal state. Surpris-
ingly, in all the parameter domain (temperature, spin imbalance or interaction strength) addressed in this
work, the understanding of its macroscopic properties can be uni�ed using a Fermi liquid picture. This
contradicts several theoretical predictions for which pair correlations lead to a di�erent behavior. We ex-
tracted from our data the associated Landau parameters, such as the compressibility or the quasi-particle
e�ective mass, for arbitrary interactions. For resonant interactions, we observed that the e�ective mass
values are close to the bare mass, despite strong many-body correlations. A study of collective modes
makes the link between the e�ective mass extracted from the equation of state and the inertia of oscillating
quasi-particles.

We also characterized the super�uid threshold in terms of critical chemical potential imbalance and
critical temperature, quantitatively con�rming the exceptional robustness of the super�uid state in
the strongly-interacting regime. We obtained the super�uid equation of state in the whole BEC-BCS
crossover, a quantity directly relevant to describe the crust of neutron stars. We measured for the �rst
time the corrections to mean �eld in low-density fermionic and bosonic super�uids, predicted by Lee,
Huang and Yang in the 1950's.

A �rst extension of this work could be investigating other domains of the universal equation of state
P(� 1; � 2; T; a) of a two-component Fermi gas. Measuring the �nite-temperature equation of state of a
spin-balanced Fermi gas in the BEC-BCS crossover could bring new physical phenomena to light. On
the BEC side of the resonance and right above the critical temperature, a two-component Fermi gas is
made of molecules and is expected to behave as a thermal molecular Bose gas. Therefore the Fermi liquid
picture should break down [154,79] (see Fig.6.13). On the BCS side of the resonance, the normal phase
should remain described as a Fermi liquid. Extrapolating the Fermi liquid equation of state down to
T = 0 , compared with the actual T = 0 super�uid equation of state, would provide the condensation
energy of the super�uid state. Finally, we showed that the critical temperature for super�uidity can be
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extracted from the equation of state in the unitary limit. By extending this measurement to the BEC-
BCS crossover, we could measure the critical temperature curve, which has remained largely unexplored
up to now [116].

Figure 6.13: Grand-canonical equation of state of a balanced Fermi gas in the plane(�; � ). The black
dots are the experimental data corresponding to the equation of state of a unitary gas with resonant
interactions (see Chapter 4) and to the equation of state of the super�uid at zero temperature, and in
the BEC-BCS crossover (see Chapter 5). An experimental determination of the equation of state of a
Fermi gas in the molecular regime, at �nite temperature, would reveal thermodynamic signatures of a
pseudogap phase.

We could also explore the ground-state properties in the far BEC regime. The ground state of the
impurity problem is no longer a (fermionic) polaron but rather a (bosonic) molecule [85,86,226,180]. The
change of quantum statistics should appear clearly on the grand-canonical equation of state given by our
method. Strongly polarized gases in the BEC regime are also expected to be thermodynamically unstable
for an interaction strength larger than a value associated with a tri-critical point [67]. This domain is
still largely unexplored experimentally [79]. Investigating �nite-temperature e�ects could also bring new
phases of matter, such as the Sarma phase, to light [247]. Measuring the tri-critical line in the BEC-BCS
crossover [229] would extend the work of the MIT group in the unitary limit [49] (see Fig.6.14).

The method developed during my PhD is general and could be used for the investigation of other
systems. An extension of this work could be the measurement of the universal equation of state
P(� 1; � 2; T; a; m2=m1) describing two-component Fermi gases with di�erent atomic species for each spin
state. The mass di�erence degree of freedom is expected to enrich the phase diagram with new states
of matter [248, 249, 250]. Recent experiments exploring the physics of6Li and 40K mixtures could ad-
dress this subject in a near future [251, 252]. As an illustration of our method, we determined the
equation of state of a weakly-interacting Bose gas. It would be very interesting to address Bose gases
prepared close to a Feshbach resonance, hoping to reveal beyond-mean-�eld e�ects for large interaction
strengths. 7Li gases would be particularly adapted, thanks to the wide Feshbach resonances in the states
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Figure 6.14: Grand-canonical equation of state of an two-component Fermi gas with resonant interactions,
in the plane (�; � ). The black dots are the experimental data corresponding to the equation of state
of a spin-balanced gas at �nite temperature (see Chapter 4) and to the equation of state of a spin-
imbalanced gas at zero temperature (see Chapter 5). The equation of state of a spin-imbalanced gas at
�nite temperature would reveal a super�uid to normal transition line. A tri-critical point (� t ; � t ) would
set the separation between a �rst- and a second-order transition [49].

jF = 1 ; mF = 1 i [119, 120] andj1; 0i [121], and this work could be done with our experimental setup.
We also showed the pertinence of our method for ultracold gases in optical lattices. The equation of
state of a Bose gas held in a deep lattice that we deduce fromin situ pro�les directly reveals the Mott-
insulator physics and is adapted to the investigation of �nite-temperature e�ects. Its implementation on
Fermi gases in an optical lattice could be helpful for characterizing the solution of the three-dimensional
Fermi-Hubbard model from experiment [21,22].

The universal equation of state explored in this thesis is relevant for the description of neutron matter
at low density. We could go one step further in the simulation of matter encountered in nature. One
direction could be to investigate the �rst correction to universality introduced by a �nite size of the
interaction potential. By using a di�erent fermionic species, or using a recent proposal for tuning the
potential range using an electric �eld [253], we could simulate neutron matter in the crust of neutron stars
up to larger densities [60]. Simulating quantum chromodynamics models, such as color superconductivity
models, could also be investigated using Bose-Fermi mixtures [61] or three-component Fermi gases [254,
255], the realization of the latter being the subject or current active research [256,257]. Finally, problems
of quantum magnetism [258, 14] could be addressed using ultracold atoms in optical lattices. Among
them, a great challenge is the investigation of the repulsive Fermi-Hubbard model in dimension 2, with
tunable �lling factor and interactions. The observation of d-wave super�uidity within this model is an
important open issue, connected to the understanding of high-Tc superconductivity.
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Appendix A

Simple Thermodynamic Relations

A.1 Thermodynamics of an Ideal Fermi Gas

A.1.1 Equation of State of an Ideal Fermi Gas

In this section we brie�y derive the equation of state of an ideal Fermi gasP0(�; T ), which serves as
a reference for the expression (4.1) of the equation of state of the unitary gas. We consider here an
ideal single-component gas in a box of volumeV . In the grand-canonical ensemble, the grand-partition
function �( V; �; T ) factorizes over the eigenstates� [259]:

�( V; �; T ) =
Y

�

�
1 + exp

�
�

� � � �
kB T

��
:

The grand-potential 
 = � kB T log � = E � TS � �N = � P0V thus reads:


 = � kB T
X

�

log
�

1 + exp
�

�
� � � �
kB T

��

= kB T
Z 1

0
d� � (� ) log

0

@ 1

1 + exp
�

� � � �
kB T

�

1

A ; (A.1)

where � (� ) = V m3=2=(
p

2� 2~3)
p

� is the density of states for a single spinless particle. Equation (A.1)
also applies for a multicomponent ideal gas or for a trapped ideal gas, with the appropriate density of
states. After integration by parts, one obtains the equation of state of the ideal Fermi gas:

P0(�; T ) =
1

6� 2

�
2m
~2

� 3=2 Z 1

0
d�

� 3=2

1 + exp
�
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� (A.2)

=
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� �
kB T

�
eu

(A.3)

=
kB T

� 3
dB (T)

f 5=2

�
e�=k B T

�

after introducing the variable u = �=kB T, the thermal De Broglie wavelength � dB (T) =
p

2� ~2=mkB T.
Expanding (A.3) in a series of z, f 5=2 can be expressed using the Polylogarithm function of order5=2
(see Fig.A.1.1a):

f 5=2(z) = � PolyLog
�

5
2

; � z
�

=
1X

n =1

(� 1)n +1 zn

n5=2
: (A.4)
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Figure A.1: (a) Solid line: equation of an ideal Fermi gasf 5=2(� � 1) = P0(�; T )=kB T � � 3
dB (T), as a function

of � � 1. The dashed straight line is the equation of state of a Boltzmann gasPB (�; T )=kB T � � 3
dB (T) = � � 1.

(b) Solid line: Equation of state of an ideal Fermi gas expressed asP0(�; T )=P0(�; 0). The dashed line
is the low-temperature quadratic temperature dependence, given by the �rst term of the Sommerfeld
expansion (A.8).

In our study of the thermodynamics of the unitary gas we rather use the inverse fugacity� = e� �=k B T .
Using this variable, the equation of state of an ideal gas reads:

P0(�; T ) =
kB T

� 3
dB (T)

f 5=2(� � 1): (A.5)

A.1.2 High- and Low-Temperature Expansions

Several physical quantities, such as the virial coe�cients, will be extracted from our data by �tting the
high- and low-temperature asymptotic behaviors of the equation of state, and by comparison with the
case of an ideal gas. We thus remind in this section the asymptotic behaviors of the equation of state of
an ideal gas.

The high-temperature expansion is explicitly given by equation (A.5), as an expansion ofP0 in powers
of � � 1 � 1. The equation of state of a classical Boltzmann gas is equal to (see Fig.A.1.1a):

PB (�; T ) =
kB T

� 3
dB (T)

� � 1:

Therefore the terms n > 1 in the series account for the Fermi pressure due to the quantum statistics.
At low temperature, the pressure of a Fermi gas tends to a non-zero value, the so-called Fermi Pressure.

Replacing in (A.2) the Fermi-Dirac distribution by a Heaviside function �( � � � ), we obtain:

P0(�; 0) =
1

15� 2

�
2m
~2

� 3=2

� 5=2:

Finite-temperature deviations are given by the Sommerfeld expansion. Using the variablev = ( � � � )=kB T
in (A.2), we obtain:

P0(�; T ) � P0(�; 0) =
1

6� 2

�
2m
~2

� 3=2

kB T � 3=2
Z 1

�1
dv

�
1 +

kB T
�

v
� 3=2 �

1
1 + ev � �( � v)

�
; (A.6)
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where we have extended the integral to�1 , introducing an exponentially small error. Remarking that
1=(1 + ev ) � 1 = � 1=(1 + e� v ), we can write (A.6) as:

P0(�; T ) � P0(�; 0) =
1

6� 2

�
2m
~2
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0
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1 �
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#

:

(A.7)
The last term in (A.7) can then be expanded in power ofkB T=� :

P0(�; T ) � P0(�; 0) = P0(�; 0)
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Up to fourth order, this expansion reads (see Fig.A.1.1b):

P0(�; T ) = P0(�; 0)

 

1 +
5� 2

8

�
kB T

�

� 2

�
7� 4

384

�
kB T

�

� 4

: : :

!

: (A.8)

Similarly to the high-temperature expansion, it is clear that measuring a few coe�cients � i of the low-
temperature expansion does not give any information on the high-temperature physics, since� vanishes
at some intermediate temperature and the expansion is no longer relevant.

A.2 Conversion between the Canonical and Grand-Canonical Equa-

tions of State of a Unitary Gas

In this section we make the correspondence between the canonical equation of state:

E (V; N; T) =
3
5

NE F g(� ); � =
T
TF

;

measured in [47] and the grand-canonical equation of state:

P(�; T ) = 2 P0(� )h(� ); � = e� �=k B T ;

measured in this work.

A.2.1 Conversion g(� ) ! h(� )

In order to calculate h(� ) from the data g(� ), we need to calculate the chemical potential:

� =
@F
@N

�
�
�
�
V;T

;

where F = E � TS is the free energy. Therefore we �rst have to calculate the entropy:

S(V; N; T) =
Z T

0

dT0

T0

@E
@T

�
�
�
�
V;N

(V; N; T0)

= NkB gS (� ) where gS (� ) =
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0

g0(� 0)d� 0

� 0 :

The chemical potential then reads:

�
EF

= g� (� ) = g(� ) �
3
5

�
Z �

0

g0(� 0)d� 0

� 0 ;

leading to equation (4.4) in section 4.4. Finally, the pressure of a unitary gas is simply given by the exact
relation P = 2E=3V , and we obtain (4.5).
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A.2.2 Conversion h(� ) ! g(� )

Expressingg(� ) in terms of h(� ) is simpler since the grand-canonical equation of stateP(�; T ) involves
the natural variables of the grand-canonical ensemble. The energy, density and Fermi temperature are
directly given by:

E =
3
2

PV; n =
@P
@�

�
�
�
�
T

; kB TF =
~2

2m
(3� 2n)2=3;

leading to equations (4.6) and (4.7) in section 4.4.

A.3 Calculation of the Second-Order Virial Coe�cient

In this section we calculate the second-order virial coe�cient of a spin-balanced Fermi gas with resonant
interactions. Calculating of the partition function for a trapped gas involves a summation over discrete
eigenenergies [75] and is therefore more simple to write than the direct calculation of the partition function
for a homogeneous gas [135]. Using local density approximation we can show that the virial coe�cients are
expected to be independent of the trap ellipticity. We thus consider for simplicity the case of an isotropic
harmonic con�nement. The Hamiltonian of the two-fermion problem in an isotropic trap was solved
exactly in [142]. The center-of-mass motion can be separated from the relative motion and is insensitive
to interactions. Its eigenstates are products of Fock statesjnx ; ny ; nz i along x, y and z, of energies
En x ;n y ;n z = ~! (nx + ny + nz + 3

2 ). The eigenstatesEn;l;m of the relative motion are parametrized by the
angular momentum numbersl; m and by an additional quantum number n relative to the radial degree
of freedom. s-wave interactions only a�ect the eigenstates corresponding to zero angular momentum
l = m = 0 . In the unitary limit a = 1 , the eigenenergies read [142]:

En x ;n y ;n z ;n;l;m = En x ;n y ;n z + En;l;m

= E 0
n x ;n y ;n z ;n;l;m � ~!� l; 0;

where the E 0
n x ;n y ;n z ;n;l;m are the eigenstates fora = 0 and � l; 0 is the Kronecker symbol. Calculating

the partition functions involved in the second-order virial coe�cient bt 2 = ( Z1;1 � Z 0
1;1)=2Z1;0 is then

straightforward: the center-of-mass degrees of freedom factorize in the partition function of a single
particle, which simpli�es with the denominator Z1;0. Then, in the calculation of Z1;1 � Z 0

1;1, the terms
with l � 1 cancel, which leads to a simple expression:

bt 2 =
1
2

X
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!
1
4

for ~! � kB T:

Using b2 = bt 2=23=2, we obtain the value of the second-order virial coe�cient for a uniform gas:

b2 = 1=
p

2:

A.4 Clogston-Chandrasekhar Limit in a BCS Mean-Field Model

In this section we use a BCS mean-�eld model to describe a two-component Fermi gas with arbitrary
interaction strength and spin imbalance [260,261], providing a simple qualitative picture of this system.
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In this approach, the grand potential of this system:
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i; k âi; k +

g
V

X

k ;k 0;q

ây
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P

k 1=(2� k ) is the bare coupling constant, is replaced
by a mean-�eld grand potential in which interactions occur only between atoms with opposite momentum
(k = � k0), and interaction quartic terms are replaced with adequate mean-�eld quadratic terms:
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2;� p

E
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The grand potential then reads:
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i; k âi; k � �

�
â2;� k â1;k + ây
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This quadratic grand potential can be diagonalized using a Bogoliubov transformation:


̂ = � V
� 2

g
+ 2

X

k

(� k � Ek ) +
X

k ;i =1 ;2

(Ek � � i )b̂
y
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where b̂i; k is the quasi-particle creation operator for speciesi and momentum k � and Ek = � +
p

(� k � � )2 + � 2 the associated energy (� = ( � 1 + � 2)=2). � is the BCS pairing gap.
For given pairing gap � and chemical potentials� i , the ground state is a product of empty states for

Ek > � i and �lled states for Ek < � i , and the corresponding grand potential reads:


( � 1; � 2; �) = 
( � ) +
X

k ;i =1 ;2

(Ek � � i )� (� i � Ek );

where 
( � ) is the grand potential of the spin-symmetric con�guration. Since � 2 < � 1, one has� 2 < � <
Ek for all k , i.e. quasiparticles of species2 are never populated in the ground state.

We �nally obtain the actual ground state by minimizing 
( � 1; � 2; �) with respect to � . If the
minimum is obtained for � 6= 0 , the system is super�uid. In addition, if � 1 is larger than the single-
particle excitation gap � + � 0 = Min k Ek , extra majority atoms spontaneously appear, and the atom
density for the two species di�er, i.e. the system is partially polarized.

As shown in Fig.A.2a, we can show that the gas is super�uid in the BCS limit as long as

�� = � 1 � � 2 < �� c =
p

2� ;

where � is the gap for �� = 0 . This bound is the Chandrasekhar-Clogston limit [53, 52], originally
expressed as the maximum magnetic �eld supported by a superconductor. It can also be written as a
critical chemical potential ratio � c at the super�uid to normal transition:
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:

As � > 0 in the BCS regime, the minimum of the excitation energy spectrumEk = � +
p

(� k � � )2 + � 2

occurs at k =
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2m�= ~ and its value � 0 is equal to the order parameter� . The gas becomes partially

� The explicit expression of the Bogoliubov transform is the following:
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Figure A.2: (a) Grand potential 
 , normalized to the non-interacting value, as a function of� =� , in the
unitary limit a = 1 , for �� = 0 (dashed line) and�� = 1 :6� (solid line). For �� < 1:6� the minimum of

 is obtained for � > 0 and the gas is super�uid (and spin-balanced). For� > 1:6� , the minimum of 

is obtained for � = 0 and the gas becomes normal. (b) Grand potential as a function of� =j� j, on the
BEC side of the resonance (� < 0), for �� = 0 (dashed line) and �� = 10� (solid line). For �� = 0 the
gas is super�uid and � = 4 j� j. For �� = 10� the minimum is still reached for � 6= 0 . Therefore the gas
is super�uid, but as �� > 2� 0 it is partially polarized.

polarized for � 1 > � + � or �� > 2� > �� c, i.e. for a chemical potential imbalance larger than the
Clogston limit. Therefore, in the BCS regime the super�uid is never polarized.

On the BEC side of the resonance, as shown in Fig.A.2b, the spin imbalance condition can be reached
before super�uidity is lost. Indeed, in the BEC regime the chemical potential � is negative, hence the
minimum of the excitation energy spectrum Ek = � +

p
(� k � � )2 + � 2 occurs for k = 0 and strongly

di�ers from the pairing gap: � 0 ' � 2=2j� j. It is then possible to polarize the gas by imposing�� > 2� 0

and at the same time have a grand potential minimum for � 6= 0 . Therefore on the BEC side of the
resonance the gas can be partially polarized and super�uid.



Appendix B

Technical Details in Chapter 5

B.1 Construction of the Equation of State

B.1.1 Determination of � 0
2

The minority global chemical potential � 0
2 is extracted from in situ absorption images by �tting the radius

R2 at which minority atoms disappear, according to:

A(� 1R 2 ) =
� 0

2 � 1
2 m! 2

z R2
2

� 0
1 � 1

2 m! 2
z R2

2
: (B.1)

In practice this requires to know the behavior of n2(z) when z ! R2. As we expect the pressure of
minority atoms to be nothing but the Fermi pressure of fermionic quasi-particles (see section 5.1.3), we
are entitled to use a Thomas-Fermi pro�le n2(z) / (1� z2=R2

2)5=2 around z = R2 in the partially polarized
normal phase. While the size of this phase is expected to be large on the BCS side of the resonance, it
becomes very small on the BEC side of the resonance (see Fig.5.1), and the determination of� 0

2 is then
rather di�cult.

We tackled the issue of the determination ofR2 by averaging the equation of state given by several
images without having to determine � 0

2 for each image. The determination of� 0
2 is then performed on

the low-noise data obtained after averaging. For simplicity reasons we �rst describe the case of a gas in
the unitary limit, i.e. the interaction parameter � 1z is always equal to 0. Let us consider the equation of
state h(� z ) corresponding to a given image. The chemical potential imbalance varies alongz according
to

� z =
� 0

2 � 1
2 m! 2

z z2

� 0
1 � 1

2 m! 2
z z2

; (B.2)

which leads to:

log(1 � � z ) = log(1 � � 0) � log
�

1 �
z2

R2
1

�
; (B.3)

where � 0 = � 0
2=� 0

1 is the chemical potential imbalance at the bottom of the trap. In Fig.B.1a we plot the
data from a single image ash as a function of � log

�
1 � z2=R2

1

�
. These data are equal to the equation

of state expressed ash as a function of log(1 � � ), translated in abscissa by the unknown quantity
log(1 � � 0). The data from all images corresponding to the same equation of state, we expect the data
from two di�erent images to be identical, in that representation, up to a translation in abscissa. We use
this property to construct a low-noise equation of state without having to determine the value of � 0.

We start with a reference image labeleda and express the data ash as a function of � log
�
1 � z2=R2

1

�
.

Then the data from another image coincide with the one of imagea after a translation of the quantity
� log(1 � � 0) = log(1 � � 0) � log(1 � � 0

a). After translation, we obtain two sets of data equivalent to



144 Chapter B. Technical Details in Chapter 5

image a. They constitute a new reference data with a larger signal-to-noise ratio. We then iterate this
procedure (see FigB.1b): we compare the data from a given image with the high signal-to-noise data
given by all previous images in order to �t � log(1 � � 0), and then add this data to the low-noise data.

Figure B.1: (a) Data from a single image labeleda, plotted as h as a function of � log
�
1 � z2=R2

1

�

(gray crosses). (b) Data from a single image (gray crosses), plotted ash as a function of � log(1 �
� 0) � log

�
1 � z2=R2

1

�
, where � log(1 � � 0) is chosen so that the data agree with the low noise data from

previous images (black dots).

We end up with a low-noise data equivalent to imagea. In Fig.B.2a we plot the pressure increase
P � P0 / (h � 1) n0

1(z) due to the minority component as a function of z. We �t the pressure increase in
the high imbalance limit with a Thomas-Fermi pro�le � (1 � z2=R2

2)5=2, and obtain the minority radius
R2 = 0 :734R1. The validity of the �t for z close to R2 is manifest in Fig.B.2b, where P � P0 is
plotted as a function of (1 � z2=R2

2)5=2. Using the solution of the single impurity problem at unitarity
A(� 1 = 0) = � 0:615 and equation (B.1), we obtain

� 0
a =

R2
2

R2
1

+ A
�

1 �
R2

2

R2
1

�
= 0 :255:

The chemical potential ratio along the z axis � z is then calculated using (B.2), and we obtain the equation
of state h(� 1 = 0 ; � ) plotted in Fig.5.4a.

B.1.2 Equation of State in the BEC-BCS Crossover

A similar procedure is used for the equation of state in the BEC-BCS crossover. Outside the unitary
limit, the chemical potential ratio � z = � 2z=� 1z and the interaction parameter � 1z = ~=

p
2m� 1a vary

simultaneously along thez axis, and are related by:

� 1z = � 0
1

r
1 � � z

1 � � 0 :

Therefore a single image provides the equation of stateh(� 1; � ) along a line in the (� 1; � ) plane. In
the image averaging process, we superpose the equations of state obtained from clouds prepared at a
given bias magnetic �eld B0. These images thus correspond to the same scattering length valuea(B0)
but the parameter � 0

1=
p

1 � � 0 may di�er from one image to another, and the equations of state cannot
strictly speaking be superimposed. At 800 G the variation of� 0

1=
p

1 � � 0 between the di�erent images
is the largest, about 0.1 around a mean value of 0.6. We modeled the e�ect of the averaging procedure
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Figure B.2: (a) Pressure increaseP � P0 / (h � 1)(1 � z2=R2
1)5=2, as a function of z=R1. The crosses

are the raw data from 20 images superimposed to the imagea pressure pro�le, and the black dots are
an average of 15 consecutive data. The solid line is a �t of the highly polarized region with a Thomas-
Fermi pro�le. (b) Pressure increaseP � P0 as a function of (1 � z2=R2

2)5=2, showing the validity of the
Thomas-Fermi �t for 0 < (1 � z2=R2

2)5=2 < 0:4.

using theoretical pro�les corresponding to values of� 0
1 and � 0 similar to our data. After performing the

averaging procedure described for the unitary gas, we obtain an equation of state which di�ers by less
than 4% from the equation of state corresponding to the mean value of� 0

1=
p

1 � � 0. Therefore we are
entitled to average over all images of clouds prepared at the same bias magnetic �eld, paying the price
of a 4% systematic error.

B.2 Amplitude of Finite-Temperature E�ects

Here estimate the amplitude of the systematic error induced by a non-zero temperature in Chapter 5.

B.2.1 Upper Bound on the Cloud Temperature

As �rst shown in [49], the fully polarized outer rim of a spin-imbalanced Fermi gas can be used for
thermometry. Indeed, in this region the majority component forms an ideal Fermi gas, whose density
pro�le is given by the Thomas-Fermi formula (see Appendix A):

n1(z) =
2�

m! 2
r

P0(� 1z ; T)

=
2�

m! 2
r

kB T
� 3

dB (T)
f 5=2

�
exp

� 0
1 � 1

2 m! 2
z z2

kB T

�
:

In Fig.B.3 we �t the majority pro�le of a highly polarized gas (in the fully polarized region) with �nite-
temperature pro�les. The di�erence between the pro�les corresponding to di�erent temperatures is
revealed in the wings of the cloud. While the temperature clearly appears to be smaller than 0.1� 0

1, it
is di�cult to discriminate between lower temperatures. If kB T=� 0

1 is let as a free parameter in the �t
of the outer region, we obtain most of the timeT = 0 (and sometimeskB T ' 0:05 to 0:1 � 0

1, the result
depending on very �ne details such as the reference image used to calculate the absorption image pro�le
or the number of pixels summed for the calculation ofn1(z)). In order to estimate more quantitatively
the uncertainty of this measurement, we �t a zero-temperature theoretical pro�le where a white noise is
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added on each pixel, with an amplitude corresponding to the signal-to-noise of our experimental data.
Depending on the noise value, the �t results vary, with a mean valuekB T=� 0

1 = 0 :03, and a standard
deviation �( kB T=� 0

1) = 0 :03. We thus give the following estimate for the cloud temperature:

kB T
� 0

1
= 0 :03(3):

On the BCS side of the resonance, the size of the fully polarized region is smaller than in the unitary
limit or on the BEC side of the resonance. As less points are used for the �t, the uncertainty is larger.
For the data taken at a bias magnetic �eld B0 = 981 G and B0 = 871 G, the �t of the fully polarized
shell is consistent with kB T=� 1 < 0:13, i.e. a large upper bound which is not su�cient for our T = 0
assumption. However, as described in section 5.3.2, we observe a jump in the minority concentration
at the super�uid/normal phase transition which indicates that the temperature is smaller than the tri-
critical point temperature Ttri . As Ttri exponentially decreases in the BCS limit, this bound becomes
smaller that the one given by the �t of the fully polarized shell in the BCS regime.

Figure B.3: Integrated density pro�le for the majority spin state n1(z) in the fully polarized region of
a very polarized gasP = 0 :96 (black dots). The minority pro�le is shown in gray. The lines are �ts
of the data in black with �nite-temperature Thomas-Fermi pro�les: solid line: T=� 0

1 = 0 , dashed line:
T=� 0

1 = 0 :1, dotted line: T=� 0
1 = 0 :2.

B.2.2 Systematic Error in the Normal Phase

The e�ect of non-zero temperature can be estimated in the normal phase by extending the Fermi liquid
picture to a �nite temperature. We showed that the pressure is well accounted for, at zero temperature,
by the sum of the Fermi pressure of bare atoms with a chemical potential� 1 and the Fermi pressure of
polarons with an e�ective mass m� and chemical potential � 2 � A� 1. Replacing zero-temperature Fermi
pressures by �nite-temperature Sommerfeld expansions lead to the following estimate for the equation of
state at T 6= 0 :

P(� 1; � 2; a) '
1

15� 2

�
2m
~2

� 3=2

� 5=2
1

 

1 +
5� 2

8

�
kB T
� 1

� 2
!

+ (B.4)

+
1

15� 2

�
2m� (� 1)

~2

� 3=2

(� 2 � A(� 1)� 1)5=2

 

1 +
5� 2

8

�
kB T

� 2 � A(� 1)� 1

� 2
!

:

Using the temperature estimatekB T=� 0
1 = 0 :03on the BEC side of the resonance, we estimate the relative

systematic error to be less than 2%, a value smaller than the systematic error induced by the image
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analysis procedure (see section 5.2). On the BCS side of the resonance, we use the upper bound provided
by the tri-critical point temperature. In the BCS limit, the tri-critical temperature is approximately
equal to half the critical temperature for super�uidity of a balanced mixture, given by the mean-�eld
BCS result with the Gorkov correction. This asymptotic result also gives a good estimate of the tri-critical
point temperature Ttri ' 0:07TF 1 measured in the MIT group in the unitary limit [49], and is therefore
expected to be a good estimate ofTtri on the whole BCS side of the resonance. This temperature upper
bound inserted in (B.5) leads to a3% systematic error on the zero-temperature pressure on the BCS side
of the resonance.

B.2.3 Systematic Error in the Super�uid Phase

In the super�uid phase temperature e�ects are expected to be much smaller. Indeed, as explained in
section 4.7.2 on the special case of a unitary gas, low-temperature excitations in the super�uid phase
are either fermionic excitations, exponentially suppressed by the gap, or Bogoliubov-Anderson phonons.
Let us estimate the amplitude of phonons black-body radiation, which is the dominant e�ect at the
lowest temperatures. The speed of soundc =

p
n=m @�=@nis calculated in the BEC-BCS crossover from

the zero-temperature super�uid equation of state. The phonon contribution to the pressure (see section
4.7.2):

�P phonons (�; T ) = 2 P0(�; T = 0)
� 4

p
3

32

 p
2�= 3m

c

! 3 �
kB T

�

� 4

;

evaluated at T = Ttri , is always smaller that 2% of the zero-temperature pressure.
As a conclusion, the systematic error due to a non-zero temperature is at most3%. Together with

the 4% error introduced by the data analysis procedure, we estimate the total systematic error to be5%.

B.3 Padé Approximants

We give in this appendix the explicit expression of the Padé approximants used to �t the experimental
data in the super�uid phase.

B.3.1 Padé Approximant on the BCS side of the Resonance

On the BCS side of the resonance, rational fractions:

hBCS
S (e� ) =

� 1 + � 2
e� + e� 2

� 3 + � 4
e� + e� 2

form a set of �tting functions which tend to 1 in the BCS limit and remain �nite in the unitary limit.

B.3.2 Padé Approximants on the BEC side of the Resonance

On the BEC side of the resonance, the asymptotic behavior is analytic in the BEC limit up to the
Lee-Huang-Yang expansion (see section 5.5.6). Therefore the latter is captured using a rational function:

hBEC
S (e� ) =

� 1 + � 2
e� + � 3

e� 2

1 + � 4
e�

;

which remains �nite in the unitary limit and is asymptotic to a straight line in the BEC limit, in agreement
with the mean-�eld equation of state:

hS (e� ) '
15�
4

a
add

; e� � 1:
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The next order term is no longer analytical (see section 5.5.6), and is captured using a more complex
Padé-type approximant:

hBEC
S (e� ) =

� 0
1 + � 0

2
e� + � 0

3
e� log(1 + e� ) + � 0

4
e� 2 + � 0

5
e� 3

1 + � 0
6
e� 2

;

which remains analytical around the unitary limit and accounts for the log term in the BEC limit (see
section 5.5.6).

B.3.3 Fit Function of the Complete Data

The best estimate of the complete experimental data is provided by the coe�cients listed in Table B.1, and
is used for the calculation of other quantities, such as the canonical equation of state for the comparison
with Fixed-Node Monte Carlo data (see section 5.5.2). In Fig.B.4 we compare the experimental data
with this best �t.

� 1 � 2 � 3 � 4

-1.065 0.441 -0.535 0.1418

� 0
1 � 0

2 � 0
3 � 0

4 � 0
5 � 0

6

3.74 7.92 8.29 -4.24 3.67 0.187

Table B.1: Padé-type approximants coe�cients � i and � 0
i �tted from our data.

Figure B.4: Equation of state hS (e� ) extracted from our data, compared with the best �t (solid line).

B.4 Surface Tension at the Super�uid/Normal Boundary of a

Trapped Spin-Imbalanced Fermi Gas

Our work relies on the validity of local density approximation. While it is expected to be valid with a
very good accuracy in most situations (see section 3.5.2), it becomes inaccurate for the description of the
density pro�le of a spin-imbalanced Fermi gas around the super�uid to normal boundary. Indeed, local
density approximation predicts an unphysical density discontinuity. In the unitary limit, we expect the
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Figure B.5: Upper panel: Scheme of the fully polarized phase and super�uid phase boundaries, without
deformation (dashed lines) and with a deformation � S=� = 0 :9 (solid lines). Lower panel: Doubly-
integrated density di�erence nd(z) without deformation (dashed lines) and with a deformation � S=� = 0 :9
(solid lines).

density jump to be smeared out over a distance on the order of the correlation length� k� 1
F . As k� 1

F is
much smaller than the cloud size, the violation of local density approximation may occur in a very small
region.

However, a strong violation of local density approximation was observed at Rice university [97]: the
super�uid core aspect ratio strongly di�ers from the trap aspect ratio � ' 50. The density pro�les are
consistent with a model in which the deviation from local density approximation is encapsulated by a
surface tension associated with the super�uid/normal interface [127, 128, 129]. In this model, the grand
potential reads:


( � 0
1; � 0

2; S) = �
Z

r 2 VS

dr PS (� 1; � 2) �
Z

r =2 VS

dr PN (� 1; � 2) +
Z

S
� (� 1; � 2)dS;

where S is the normal/super�uid boundary, VS is the super�uid core de�ned as the interior of S, and
� (� 1; � 2) is the surface tension coe�cient associated with the normal/super�uid interface. In the unitary
limit, dimensional analysis requires the surface tension coe�cient to be written as� :

� (� 1; � 2) = �
2m
~2 � 2

1;

where � is a dimensionless number. The equilibrium surface minimizes the grand potential value, a
condition equivalent to the Laplace law:

PS � PN = �
�

1
R1

+
1

R2

�
;

where R1 and R2 are the surface principal curvature radii. The pressure drop occurring at the phase
transition boundary shrinks the super�uid core, especially in the regions of small curvature radii. In an
elongated trap, the curvature radius is smallest along the weak directionz, therefore the super�uid core
aspect ratio � S is smaller than the trapping potential aspect ratio � (see Fig.B.5).

The doubly-integrated density di�erence nd(z) = n1(z)� n2(z) is particularly suited for the observation
of surface tension e�ects. Indeed, as shown in Fig.B.5,nd(z) is constant in the region � RS < z < R S

if the super�uid core is not deformed, while it increases with jzj when � S < � . Fitting an experimental
pro�le nd(z), such as the one shown in Fig.5.6, with a set of theoretical pro�les calculated with� S 6= � ,
we obtain an estimate of the deformation:

0:95 < � S=� < 1:

� � 2 is equal to � c � 1 at the normal/super�uid transition, therefore � is a function of � 1 only.
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The deformation is much smaller than the one observed in Rice experiment [97], despite very similar
aspect ratio and atom number values. The origin of this disagreement remains an open question. A
super�uid core deformation invalidates formula (3.3) relating the doubly-integrated density pro�les to
the gas pressure; the maximum deformation� S=� = 0 :95 consistent with our data induces a maximum
5% systematic error on the gas pressure, the error being concentrated aroundz = RS . The shrinking
of the super�uid/normal interface also shiftes the � c value away from the value for a homogeneous gas.
From the maximum deformation � S=� = 0 :95, we estimate the maximum shift to be equal to:

� � c = +0 :02:

This value could explain the di�erence between our measurement� c = 0 :065(20) and the measurement
� c = 0 :03(2) from the MIT group [49], where surface tension e�ects are expected to be much smaller due
the larger atom number and smaller aspect ratio.



Appendix C

Relaxation of the Axial Breathing

Mode

In section 6.2.5 we showed that the frequency! 1 and damping  1 of the in-phase axial breathing mode
are qualitatively related by a Kneser relaxation model. Both quantities can be expressed using a single
parameter, namely the relaxation time � , according to:

! 2 = ( ! HD
1 )2 +

(! CL
1 )2 � (! HD

1 )2

1 + i!�
; ! = ! 1 + i 1: (C.1)

Fitting our data with a damped cosine whose frequency and damping values are given by (C.1), we obtain
the relaxation time � as a function of polarization P, and observe that (see Fig.6.9):

1
! z �

' 50
N2

N1
:

The relaxation time can be calculated above the Clogston limit using Boltzmann equation, modeling
the gas as a mixture of two ideal Fermi gases, a Fermi sea of majority atoms and a Fermi sea of polarons.
Closely related problems were studied in previous works, namely the axial breathing mode relaxation of
a spin-balanced Fermi gas [241,242,243] and the spin dipole mode of an imbalanced Fermi gas [244]. We
adapt here these calculations to the speci�c case of the axial breathing mode of a spin-imbalanced Fermi
gas.

At equilibrium, the distribution function for both spin component are given by the Fermi-Dirac
distribution function:

f 0
i (r ; p) = 1

��
1 + exp

�
� 0

i � p2=2m � V (r )
kB T

��
;

whereT is the gas temperature. We forget for simplicity the renormalization e�ects on the minority atoms
due to interactions with majority atoms. The axial breathing mode is accounted for by a dilatation in z
by a factor (1 + � ), in x and y by a factor (1 � �= 2), in pz by a factor (1 + � ), and in px and py by a
factor (1 � �= 2):

f i (r ; p; t) = f 0
i

�
x

1 � � (t)=2
;

y
1 � � (t)=2

;
z

1 + � (t)
;

px

1 � � (t)=2
;

py

1 � � (t)=2
;

pz

1 + � (t)

�
:

f i (r ; p; t) remains normalized up to second order in�; � . The quadrupole moment for the majority
component is given by:

q(t) =
Z

dr dp
h3 (2p2

z � p2
x � p2

y )f 1(r ; p; t) = N1
p2

F 1

3
� (t);

and oscillates at the axial breathing mode frequency! 1.
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The relaxation for the quantity q(t) is calculated in the Boltzmann equation framework according to:

�
q(t)
�

= �
1

64� 4~4m2p2
F 1

Z
dr dp1 dp2 dq (2p2

1z � p2
1x � p2

1y ) �
�

p2
1

2m
+

p2
2

2m
�

p02
1

2m
�

p02
2

2m

�
� : : :

: : : � (f 1(r ; p1 ; t)f 2(r ; p2 ; t)(1 � f 1(r ; p0
1 ; t))(1 � f 2(r ; p0

2 ; t)) �

f 1(r ; p0
1 ; t)f 2(r ; p0

2 ; t)(1 � f 1(r ; p1 ; t))(1 � f 2(r ; p2 ; t))) ;

where p0
1 = p1 + q and p0

2 = p2 � q are the outcomes of a collision between a particle of species1 and
initial momentum p1 and a particle of species2 and initial momentum p2 . The collision amplitude is
given by the unitary-limited cross section � = 4 �=k 2

F 1 at the Fermi level for species1 [244]. The terms
in (1 � f i ) account for the Pauli principle which forbids scattering towards occupied states.

As we consider the limit N2 � N1, we can assume that minority atoms are localized at the bottom
of the trap, with momenta p2 � p1. We thus consider in a �rst approach that minority atoms constitute
a set of immobile impurities at r = 0. It is then more convenient to write the collision outcome as:

p0
1 = p=2 + p=2u;

where u is a vector of modulus 1. If we neglect the e�ect of Pauli exclusion principle on minority atoms,
the integral over p2 and r is straightforward and gives N2:

�
q(t)
�

= � N2
1

4~m2p2
F 1

Z
dp1 (2p2

1z � p2
1x � p2

1y )f 1(r ; p1 ; t)p1F (p1 ); F (p1 ) =
Z

du
4�

(1� f 1(r = 0; p0
1 ; t)) :

F (p1 ) represents the fraction of collisions allowed by Pauli exclusion principle for a particle initially at
momentum p1 .

If we forget Pauli exclusion principle also for majority atoms, and calculate the integral, we obtain a
very large relaxation rate:

1
! z �

' 5000
N2

N1
:

The much smaller value measured in our experiment shows the importance of Pauli blocking at such low
temperatures. Moreover, it is clear that for a zero-temperature distribution at equilibrium f 1 = f 0

1 (T =
0), F (p1 ) vanishes for p < pF 1, therefore 1=� = 0 . We consider two contributions leading to a �nite
collision probability:

� The majority Fermi surface is deformed into a non-isotropic Fermi surface due to the quadrupole
excitation. We calculate the collision integrals numerically and obtain the following law:

~
�

' 2:1
N2

N1
� 3EF ; i.e.

1
! z �

' 2:1� 3� � 2=3(6N1)1=3 N2

N1
;

where � = ! z=! r ' 1=20 is the trap aspect ratio, and N1 = 105 is the majority atom number. The
� 3 dependence extracted from our calculations was derived analytically in the case of spin-balanced
gases in [243]. For the deformation amplitude� = 0 :3 corresponding to our experiment, we obtain
1=! z � = 30N2=N1, which is the correct order of magnitude.

� Finite temperature e�ects also make collisions possible (see Fig.6.10b). We calculate numerically
the relaxation rate for an undeformed and �nite-temperature distribution, and obtain:

1
! z �

' 36
�

T
TF 1

� 2

� � 2=3(6N1)1=3 N2

N1
:

The gas temperature is estimated to beT = 0 :03(3)TF 1, leading to 1=! z � = 20(50)N2=N1.
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While the amplitude � of the Fermi surface deformation is easily measured (and is found not to vary
much with polarization), the cloud's temperature is not measured and may vary with polarization, as we
expect evaporation to be more e�cient for small polarizations. Therefore the e�ect of temperature may
not lead to a law 1=! z � / N2=N1 if T varies with P. In order to have a more precise understanding of
the relaxation process, it is thus necessary to isolate the e�ect of deformation and temperature.

Our model is based on a small e�ect of Pauli blocking for minority atoms. The e�ect of Pauli blocking
on minority would be the freezing of motion for p2 < p F 2 � � p, where � p is proportional to temperature
or related to the amplitude of the deformation � . Therefore we would expect the number of atoms
involved in a collision to be reduced by a factor� p=pF 2, and thus 1=! z � / N 2=3

2 , contrary to what is
observed. Minority atoms thus appear to behave as classical immobile particles. This is probably due to
the small Fermi energy value for minority atoms.

We have shown that collisions induced by a Fermi surface deformation or a non-zero temperature
may account for the relaxation time values extracted from our data. Understanding of the dependence
1=! z � / N2=N1 for P < P c, i.e. when a super�uid core is present, is clearly beyond the scope of this
appendix and remains an open question.
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Résumé

Les gaz ultrafroids permettent d'étudier sous un angle nouveau des hamiltoniens complexes issus de la
matière condensée, tels le modèle de Fermi-Hubbard. Cette thèse présente une nouvelle méthode de
mesure de l'équation d'état d'un gaz ultrafroid, autorisant une comparaison directe avec la théorie. Elle
repose sur une mesure de la pression à l'intérieur d'un gaz à partir de l'analyse de son imagein situ .

Nous appliquons cette méthode à l'étude d'un gaz de fermions en interaction résonnante, un gaz de7Li
en interaction faible servant de thermomètre. De manière surprenante, aucune des théories àN corps du
gaz unitaire ne rend compte dans son intégralité de l'équation déduite de cette analyse. Le développement
du viriel extrait des données à haute température est en accord avec la résolution du problème à trois
corps. À basse température nous montrons, contrairement à un certain nombre d'études antérieures, que
la phase normale se comporte comme un liquide de Fermi. En�n, nous obtenons la température critique
de super�uidité grâce à une signature claire sur l'équation d'état.

Nous avons aussi mesuré la pression de l'état fondamental en fonction du déséquilibre de spin et de la
force des interactions � mesure directement utile à la description de la croûte des étoiles à neutrons. Nos
données valident les simulations Monte-Carlo et sont en accord avec les corrections Lee-Huang-Yang au
champ moyen pour un super�uide fermionique ou bosonique. Nous observons que, dans presque tous les
cas, la phase partiellement polarisée peut être décrite comme un liquide de Fermi de polarons. La masse
e�ective du polaron déduite de l'équation d'état est en accord avec une étude de modes collectifs.

Mots-clés: gaz ultrafroids - super�uidité - thermodynamique - crossover BEC-BCS -
liquide de Fermi - polaron

Abstract

Complex Hamiltonians from condensed matter, such as the Fermi-Hubbard model, can be experimentally
studied using ultracold gases. This thesis describes a new method for determining the equation of state
of an ultracold gas, making the comparison with many-body theories straightforward. It is based on the
measurement of the local pressure inside a trapped gas from the analysis of itsin situ image.

We �rst apply this method to the study of a Fermi gas with resonant interactions, a weakly-interacting
7Li gas acting as a thermometer. Surprisingly, none of the existing many-body theories of the unitary
gas accounts for the equation of state deduced from our study over its full range. The virial expansion
extracted from the high-temperature data agrees with the resolution of the three-body problem. At low
temperature, we observe, contrary to some previous studies, that the normal phase behaves as a Fermi
liquid. Finally we obtain the critical temperature for super�uidity from a clear signature on the equation
of state.

We also measure the pressure of the ground state as a function of spin imbalance and interaction
strength � measure directly relevant to describe the crust of neutron stars. Our data validate Monte-
Carlo simulations and quantify the Lee-Huang-Yang corrections to mean-�eld interactions in low-density
fermionic or bosonic super�uids. We show that, in most cases, the partially polarized normal phase can
be described as a Fermi liquid of polarons. The polaron e�ective mass extracted from the equation of
state is in agreement with a study of collective modes.

Keywords: ultracold gases - super�uidity - thermodynamics - BEC-BCS crossover -
Fermi liquid - polaron
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