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List of symbols: 
 

H Magnetic field [A/m] 

H0 Applied/External magnetic field [A/m] 

Hd Demagnetizing magnetic field [A/m] 

B Magnetic induction [T] 

M Magnetization [A/m] 

m Magnetic moment [Am2] 

F Force [N] 

fv Density of force per unit of volume [N/m3] 

Γ Torque [Nm] 

Γv Density of torque per unit of volume [N/m2] 

ε Strain [-] 

ς Stress [Pa] 

τ Shear stress [Pa] 

Ε Young’s modulus [Pa] 

ν Poisson’s ratio *-] 

G Shear modulus [Pa] 
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Introduction 
 

This thesis is aimed to measure and explain the apparent magnetostriction of a composite when 

exposed to an external homogeneous magnetic field. The studied composite is composed of 

ferromagnetic particles (mainly Iron here) dispersed in an elastic matrix. An elongation up to 4.3% 

can be seen in 30% filled composite when exposed to a uniform magnetic field (Ref. Fig.III.6). The 

matrix is non-magnetic and Iron is weakly magnetostrictive (maximum strain around 10-5). The 

composite deformation is 4 orders larger than the magnetostriction of the magnetic phase. None of 

the compounds used for the composite is (or too weakly) magnetostrictive. The observed 

phenomenon is a deformation due to an applied magnetic field, like the magnetostriction, which we 

will refer as magnetostriction in the following chapters, but it should be emphasized that it is not 

magnetostriction from the physical point of view. Their respective origins are totally different; 

magnetostriction is due to the magneto elastic coupling of a ferromagnetic crystal lattice whereas 

the observed magnetostriction is due to dipolar interactions.  

The remote deformation of material needs a coupling between the referred material and the 

control field. Those materials are called active materials. Induction of the deformation has been 

studied since the discovery of magnetostriction and piezoelectricity two hundred years ago. 

Enhancement of properties has been explored through metallurgical approaches but 

magnetostriction is limited by the materials high elastic constants, generally some 100 GPa. Another 

solution has been found out more recently which consists in mixing magnetic particles in a soft 

elastic matrix. Organic elastomers are good candidates as matrix because of their low Young 

modulus. Materials made of injected ferromagnetic (or ferroelectric) particles in such polymer are 

called Magneto (Electro) Rheological Elastomers. 

The rare-earth materials exhibit a 10-3 large magnetostriction, which is qualified “giant 

magnetostriction”. The apparent magnetostriction of these composite is larger than any 

magnetostrictive materials, so that it can be called “huge magnetostriction”. This result is achieved 

by the choice of the right compounds. Indeed, the matrix is elastically soft (with a low Young 

modulus) to ease the deformation and to provide a linear response whereas the particles are highly 

magnetic to maximize the magnetic force. 

Mechanisms of this apparently huge magnetostriction are detailed in the following chapters. The 

origin of the elongation, the way particles get magnetized in a composite, the elastic response of the 
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matrix to the magnetic stress, or the effect seen from different filling factor or the quantity of added 

particles are described further. 

The first chapter presents the starting point of all that follows in the thesis; all magnetic and 

mechanical laws that will be used forward in the manuscript are introduced here.  Moreover, an 

introduction to MRE composite and their magneto-mechanical properties already known are 

gathered here. 

The second chapter presents the materials preparation of material and their characterization 

used during the thesis. Devices, like magnetostriction and magnetization recorder, are also described 

in this chapter.   

The third chapter deals with the origin of that apparent magnetostriction. It provides a model 

based on the interaction of the ferromagnetic particles dispersed in the soft matrix. Forces are 

calculated through the dipolar interaction and the strain is estimated using a finite element 

mechanical approach (FEM). 

The fourth chapter treats the magnetization of the composite, as a homogeneous magnetic 

material. It will focus on the magnetic saturation and the magnetization slope. This slope is linked to 

the demagnetizing factor. Therefore, an effective demagnetizing factor will be introduced for such 

composites. 

The fifth chapter presents the magnetostriction of the composite. The composite is treated as 

homogeneous with effective magnetic and mechanical properties. The way in which the filling factor 

impacts on the magnetic stress and the mechanical response, and thus on the effective 

magnetostriction is provided. Shape effect is also discussed in the same chapter. 

The sixth chapter focuses on the magnetostriction composite filled with hard magnetic particles. 

Such particles are characterized by their magnetic remanence and hysteresis. Those parameters do 

influence the strain of the composite when they are placed in the presence of magnetic field.  

The effect of temperature is discussed in the seventh (and last) chapter. Both magnetization and 

elastic modulus are indeed temperature dependent. 
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I. Physics 

 

The analysis of the strain of a composite placed in a uniform applied magnetic field is proposed in 

this thesis. This phenomenon is due to the magnetic interaction (chap.III). In this end, a brief and 

condensed presentation of magnetic laws which allowed us to calculate the magnetic interactions & 

magnetic stresses that act on the material. Magnetic field in the matter, forces and torques exerted 

on magnetic material are briefly described. It also describes the elastic laws used in the calculation of 

the strain. 

 

I.1. Magnetostatic 

 

Magnetic field and induction are linearly related as: 

)()( 000 MHHMHB m


       eq.I.1 

With µ0=4π10-7, the vacuum permeability, B is the magnetic induction, H is the magnetic field Hm and 

H0 are matter and external/applied field, M is the material magnetization. 

 

I.1.1. Magnetic materials 

 

The magnetic properties of media are affected by the presence of a magnetic field and 

acquire a macroscopic magnetization. Magnetization is defined as the density of magnetic moment, 

m, per unit volume: 

dV

md
M


          eq.I.2 

In the case of linear materials, or at low magnetic field, the magnetization is set as: 

 

HM


          eq.I.3 
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The susceptibility χ varies in a wide range depending on the kind of magnetic materials. 

Diamagnetism results in a negative and small susceptibility, typically χd is in the range of -10-6 to -10-5, 

in contrast to the paramagnetic susceptibility, χp, which is positive, but still with low values; 10-6 to 

10-3. Industrial applications use the soft ferromagnetic materials which have much larger 

susceptibilities; χf will reach values 104 to 106 for Permalloy. 

The response of a ferromagnetic medium to an external field can be summarized as follows. 

Increasing the magnetic field increases the magnetization via a first magnetization curve. Enhancing 

the field drives the magnetization in a state where all the magnetic moments are aligned in the 

direction of the applied field. This state of magnetization defines the saturated magnetization Msat.   

 

 

Fig.I.1Typical magnetization curve M(H) 

 

Decreasing the magnetic field back to zero leads the magnetization to a non-null value. A 

remanent magnetization Mr appears due to defaults and magnetic anisotropy inside the materials. 

Bringing the magnetization to a zero state needs to decrease the applied field to negative values 

down to the coercive field Hc. A thin hysteresis is characteristic of soft materials, like Iron, unlike hard 

magnetic materials with a large hysteresis: those are currently used to make “magnets”. 

 

 

I.1.2. Magnetic field in magnetized materials 

The magnetic field inside a magnetized material is the superposition of the external field H0 

and the field which is generated by the magnetized body Hm: 
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mHHH


0           eq.I.4 

Magnetic field, generated by magnetic materials, can be deduced from Coulombian model, which is 

an analogy to the field created by an electric dipole.  

 

 

Fig.I.2 Equivalence of an electric dipole and the magnetic field created by a coil 

 

The magnetic field is then: 

 

V

m dV
r

r
H

3

0

4


         eq.I.5 

In that calculation, the equivalent charges have 2 origins; a volume density for non-homogeneous 

magnetized media, and a surface density: 

)(MdivV


         eq.I.6 

nMS


          eq.I.7 

Calculation of this magnetic field is an integral operation which is usually performed by FEM 

software. However, when the sample is an ellipsoid, the solution is analytically known; in the case of 

a sphere: 
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Fig.I.3a Map of the pseudo magnetic charge on 

the surface of a uniformly magnetized sphere 

Fig.I.3b Map of the magnetic field of the sphere, 

using FEMM software 

 

Rr
M

rHm
3

),(int




      eq.I.8

 

Rr
M

nM
r

R
rH ext

m
3

)cos(),(
3

3



      eq.I.9 

 

This inner magnetic field,
int

mH , is also called demagnetizing field due to the reverse direction 

compared to the magnetization direction. Therefore, the effective magnetic field viewed by magnetic 

materials is less than the applied field. In the case of ferromagnetic materials, this magnetic field 

rules the magnetization curve versus the applied field. In the case of an ellipsoid, this demagnetizing 

field is uniform and proportional to the magnetization through a demagnetizing factor: its value is 

1/3 for a sphere. Chapter IV will focus on this coefficient in other geometries and in the case of a 

composite made of ferromagnetic particles. 

 

I.1.3. Magnetic interactions of a moment in a magnetic field 

I.1.3.1. Magnetic force 

The interaction energy of a magnetic moment m placed in an induction field B is defined as:  

BmW


          eq.I.10 
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If the magnetic moment is placed in a non-homogenous field, the moment will experience a force F 

to decrease the interaction energy.  

BmWF


)()(         eq.I.11 

A body force fv can be defined as the density of force per unit volume [Mag1]: 

V

V dVfF


          eq.I.12 

BMfV


)(          eq.I.13 

 

 

Fig.I.4 Magnetic force experienced by a magnet placed in a gradient of magnetic induction 

Eq.I.11 (and eq.I.13) shows that a positive gradient of the viewed magnetic field results in a positive 

magnetic force; a magnetic moment experiencing such force will be displaced toward higher 

amplitude of magnetic field. 

The body force expression can be expanded as: 

z

B
M

z

B
M

z

B
M

y

B
M

y

B
M

y

B
M

x

B
M

x

B
M

x

B
M

BMf

z
z

y

y

x

x

z
z

y

y

x

x

z
z

y

y

x

x

V


)(      eq.I.14 

 

I.1.3.2. Magnetic torque 

 In a uniform field, if the moment and the magnetic field are not parallel, a magnetic torque Γ will act 

to align the moment in the direction of the field, which reduces the interaction energy. 
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Fig.I.5 Magnetic torque on a magnet placed in uniform induction 

 

Bm


          eq.I.15 

Expanding this expression in respect with the angle θ, defined as the angle between the 

magnetization and the magnetic field, yields to: 

)sin(mB          eq.I.16 

 A density of magnetic torque Γv, per unit of volume, can be defined as [Mag1]: 

BMv


          eq.I.17 

This torque will rotate the magnet until the angle θ decreases to zero, i.e. until the direction of the 

magnetization is the same as the direction the magnetic field. 

 

I.2.  Mechanical constants 

 

I.2.1. Elasticity 

 

The material elastic response to external solicitations is described by a set of elastic 

constants. They are intrinsic to the material. For an isotropic material, two different constants are 

required to completely define its elastic behavior. In fact, three constants are often used, namely: 

Young modulus, Poisson ratio and shear modulus. 
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 Young modulus 

 

An elastic body is deformed whenever a force F is applied on it. The resulting displacement dL is 

linearly linked to the force, by a constant factor called the force (or spring) constant k. This is the 

Hooke law: 

kdLF           eq.I.18 

 

Fig.I.6 Deformation of an elastic material 

In continuum mechanics, force and displacement are replaced by stress  and strain , respectively 

defined as the force divided by its surface area A and the change in length dL divided by the current 

length L. If dL is small, then L can be replaced by L0: 

A

F
          eq.I.19 

0L

dL
          eq.I.20 

Stress and strain are related, in the range of the Hooke law through the dimensionless factor E, the 

Young modulus: 

E
A

kL0           eq.I.21 
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The Young modulus or longitudinal elastic modulus is defined as the ratio of the stress by the strain 

for body in tension or compression, as far as the behavior is linear. 

Young modulus is an intrinsic elastic property of a given material and is also shape-independent. Iron 

modulus is close to 260 GPa whereas elastomers modulus have a much lower values, in the range of 

MPa.  

 

 Poisson ratio 

 

Materials bodies pulled in one direction tend to contract in the transversal direction. The transversal 

strain divided by the axial strain, in the direction of the load, gives the Poisson ratio 

axial

transveral
          eq.I.22 

 

 

Fig.I.7 Transversal deformation of an elastic material, due to Poisson ratio 

 

The minus sign, in eq.I.22, leads to a positive Poisson ratio value. This value ranges from 0 to 0.5. A 

0.5 value induces a complete incompressibility of the material. Many metals have =0.27 – 0.35 

unlike elastomers and rubbers which have =0.5. 
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 Shear modulus 

 

Stress is generally expressed by the stress tensor σij with: 

zzzyzx

yzyyzy

xzxyxx

         eq.I.23 

For i≠j, σij is shear stress, and is often written τij. Similarly to the Young modulus which is defined as 

the ratio of the strain created by a perpendicular stress on a surface, the shear modulus G defines 

the ratio of the strain created by a tangential stress on a surface, the shear stress. Using the general 

law that linked the strain to stress [Lan1]: 

ijij
G

1
          eq.I.24 

 

 

Fig.I.8 Deformation of an elastic material due shear stress 

 

The shear modulus, Young modulus and the Poisson ratio are related as: 

)1(2

E
G           eq.I.25 

The shear modulus of an incompressible medium (ν=1/2) is G=E/3. 
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I.2.2.  Viscoelasticity 

 

For purely elastic materials as above, the strain and the stress are linked by a timeless 

equation. However, for most elastomers, the response is linearly viscoelastic, i.e., is a combination of 

elastic and viscous components. 

Elastic component: E       eq.I.26 

Viscous component: 
dt

d
      eq.I.27 

 

  

Fig.I.9a Maxwell model Fig.I.9b Voigt model 

Empirical models have been built using 2 mechanical elements, namely: a spring and a dashpot. 

Maxwell model corresponds to a dashpot and a spring connected in series, giving the time 

dependant elongation below: 

dt

d

Edt

d 1
         eq.I.28 

Whereas the Voigt model, the spring and the dashpot are connected in parallel; the material is then 

ruled by the following time-dependent equation: 

E
dt

d
         eq.I.29 

Both models introduce a relaxation constant: 

E
           eq.I.30 

These materials exhibit a viscoelastic response to any stress. 
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II. Active materials 
 

Active materials are defined as materials able to produce a mechanical effect (shear, contraction, 

elongation…) with an external non-mechanical stimulus such as magnetic field, electric field, 

temperature (as an example, actuators controlled by temperature were developed very successfully 

using shape memory alloys; the shape memory effect is a solid state phase transition which occurs in 

some metallic alloys and yields a change in the atomic arrangement. Low temperature phase is 

known as martensite and the high temperature is the austenite), etc … Active materials also could 

have the inverse property: being exposed to a stress, they change their polarization or 

magnetization. Such active materials are currently used as industrials device like actuators or 

sensors. 

 

 

II.1. Piezoelectricity 
 

Piezoelectricity results from the coupling between mechanical strain and electrical polarization 

that exists in some materials like crystals (quartz), ceramics (ex: PZT: Lead Zirconium Titanate) and 

also in polymers (polyvinylidene fluoride: PVDF). A stress applied to this crystal changes the electric 

polarization and inversely, an electric field E applied on this crystal deforms it. 

 

Fig.I.10 Piezoelectricity 
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This electromechanical ability has been discovered in 1880 by Jacques and Pierre Curie on a quartz 

crystal. The positive and negative charges, in a crystal lattice, are symmetrically distributed, so that 

the crystal is neutral. With an external electric field, charges are attracted or repulsed in the field’s 

direction, according to their signs, which yields to an overall deformation (Fig.I.10, piezoelectricity). 

Piezoelectricity is mainly a linear function between strain, stress and the electrical field: 

 

dEsTS           eq.I.31 

Where S is the strain, T the stress, E the electric field; s and d are coupling constants. 

 

 

II.2. Magnetostriction 
 

Magnetostriction effect was discovered by J. P. Joule in 1842 [Jou1] by noticing the elongation of 

an iron rod submitted to a local magnetic field. A material is said magnetostrictive when a change of 

magnetization results in a change of shape. Most of pure ferromagnetic media are magnetostrictive 

despite exhibiting a relatively small deformation (roughly 10-5); metallic compounds and alloys are 

barely having a maximal magnetostriction larger than 10-4. First applications of these materials were 

the sonar transducers although magnetostrictive materials were soon replaced by the piezoelectric 

PZT ceramic, for better physical properties. 

 

 
 

 
 

 
Fig.I.11a Magnetostriction versus magnetic field 

[Mag2] 
Fig.I.11b Volume and Joule magnetostriction 

[Tre] 
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Nevertheless, in the 1960’s, Belov *Bel], discovered the giant magnetostriction, above 10-3, for 

rare earth compounds R3Fe5O12 (where R = Gd, Tb, Dy, Ho, Er or Yb), but only at low temperatures 

(below 100 °K). Clark [Tre] has then found out, in 1974, the giant magnetostriction at room 

temperature with a Dy0.3Tb0.7Fe2, well-known as Terfenol-D; named after TERbium Iron (Fe) Naval 

Ordnance Laboratory and D for Dysprosium. This material is still the highest Joule magnetostrictive 

material at room temperature. 

 

 

III. Magnetic Rheological Elastomers 

 

MRE (Magnetic Rheological Elastomers), are composites made of ferromagnetic particles 

dispersed within a non-magnetic elastomer matrix. Such composites are used for their low elastic 

constant, some few MPa, which allows large strain. The magnetic interactions of the particles provide 

the force that changes the composite properties. 

 

  Those materials have elastic properties tunable by an external magnetic field. Indeed, the 

interactions between the particles lead to an apparent magnetic stress which changes their elastic 

behavior.  This interaction is dependent on the inner distribution of the particles. The particles are 

usually randomly dispersed in the whole volume, in contrast to those which receive a magnetic 

treatment while the matrix is curing, leading to an anisotropic distribution of the particles. This latter 

category of MRE is often called “Field Structured Elastomer”, (FSE). Chain-like, sheet-like, or more 

complicate structure belongs to the FSE kind [Mar1]. FSE and MRE exhibit different responses to a 

mechanical solicitation and also to a magnetic field. Kallio [Kal] uses the definition of isotropic MRE 

and aligned MRE. 
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Fig.I.12a [Far] Randomly filled composite Fig.I.12b [Far] Structured composite 

 

We have selected some articles which represent the state of the art in each sub-domain. Articles 

are briefly presented with the composition of the sample, when explicitly told, matrices and 

particles; the physical models are also provided using the author’s notation and final results. Most of 

papers have been written on the possibility of magnetically tuning mechanical properties of the 

composite, by the application of a magnetic field, like the delta-E effect or the magneto-

viscoelasticity. Fewer papers on the change of sample shape under magnetic field are presented as 

the sample is submitted to a field gradient or to a homogeneous field. 

 

IV. Elastic tunable properties with a magnetic field 
 

 

Fig.I.13  [Nik]Mechanical damping of a composite with and without magnetic field 
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The dependence of the mechanical damping on the external homogeneous magnetic field was shown 

by Nikitin & Al. [Nik]. His experiment was led on a cylinder filled by 2µm iron particles, which was 

twisted with and without magnetic field. When a magnetic field is applied, damping increases due to 

the interaction of the ferromagnetic particles. These interactions between the particles reinforce the 

stiffness of the materials. This result is extended by Varga & al. [Var], who also studied the magneto 

elasticity of elastomers, but there, as the effect of the particles distribution on the elastic modulus. 

 

 

Fig.I.14 [Var] Changes of Young modulus for composite with different particles  distributions 

 

 

V. Shape change under magnetic field 

Deformation of a MRE may be generated by the application of a magnetic field. Two cases, 

leading to composite strain, have been studied. First, applying a non-homogenous field, each 

magnetic particle is submitted to a force and, as a consequence, the material changes its shape to 

get closer to the higher field: the composite is strained. 
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Fig.I.15 [Var] Length changes of a magneto elastomer due to an external gradient of magnetic field. 

 

Secondly, with the application of a homogeneous field, the magneto elastomer can also deform due 

to inter-particles interactions. This effect was observed for both structured elastomers and randomly 

filled elastomers. 

 

V.1. Changes resulting from a non-homogeneous field 
 

 

 

Fig.I.16 [Bed2] Bending of a long composite in the neighborhood of a magnet 
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Bednarek [Bed2] has studied the deflection of a silicone-steel composite beam fixed to its endpoints 

and submitted to a nearby magnet. Samples are prepared with a silicone matrix, used for its low 

Young modulus E0=0.25 MPa, mixed with 0.10 – 0.15 mm steel particles.  In this paper the magnetic 

force was estimated with the following expression: 

V

f dV
x

H
HµµP )1(0         eq.I.32 

And the deflection is  

IE

Pl
f

f192

3

          eq.I.33 

where µf is the relative permeability of the composite. H and ∂Η/∂x stand for the magnetic field and 

gradient, respectively, created by the magnet. Ef stands for the effective Young modulus of the 

composite. 

 

 

 
 

 

Fig.I.17 [Zri1] Stretching of a composite above an electromagnet  
 

In the same idea, Zrinyi [Zri1] has studied the elongation of a ferrogel within the field gradient 

created by an electromagnet placed under the composite. This ferrogel is a poly (vinyl alcohol), PVA, 

filled by magnetite (Fe3O4) particles with an average size of 10-12 nm. The composite was molded as 

a 120 mm long cylinder, with a content of magnetite close to 2-5 wt.% , and an effective elastic 

modulus of G=0.69 kPa. Experiments were carried out with an electromagnet creating a maximal 
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induction of 90mT (on the surface) and placed below the sample with a CCD camera shooting the 

displacement of the cylinder bottom.   The force exerted on the sample is given as: 

dV
z

H
Mµf

V

m




0
         eq.I.34 

Assuming that the magnetic field is small enough to restrict the magnetization in a linear 

approximation, HM ; the mechanical behavior is also set as linear, using a Hookean law leading 

to the expression of the ferrogel  length-change as :   

)(
2

220

0 mh HH
G

hh         eq.I.35 

Hm and Hh are respectively the magnetic field viewed on the top and the bottom of the cylinder.  In 

this experiment, Zrinyi reached a maximal displacement of 12mm i.e. roughly a 10% strain for this 

ferrogel. Such large strain is achieved with a very low elastic modulus of the composite: 0.69 kPa. 

 

V.2. Changes resulting from a homogeneous field 

 

As mentioned above, the response of a MRE to a magnetic solicitation highly depends on the 

distribution of the magnetic particles within the matrix. Field Structured Elastomers are stiffer than a 

randomly-filled Elastomers; their magnetostrictive behavior will also be different. In the first case, 

FSE will contract when a magnetic field is applied parallel to the chain-like columns: this is due to the 

attraction of the closest particles; on the contrary, randomly-filled elastomers will expand. These 

results are presented below. 

V.2.1. Structured composite 

 

Magnetostriction of FSE was intensively studied by Martin & Al. [Mar1].  The 

magnetostriction of the FSE is explained in this case by “the tendency of dipole pairs, aligned with 

the applied field, to approach each other, causing a contraction of the sample along the field and 

dipole pairs perpendicular to the field to push each other away, reinforcing the contraction along the 

field, due to the fact that Poisson ratio is close to ½ for these materials” as illustrated on Fig.I.18. 
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Fig.I.18 [Coq] Contraction of columns of particles due to inter-particles interaction. 

 

Composites are prepared using 3-5µm irregular-shaped iron particles chosen to maximize the 

magnetic stress and a silicone matrix to maximize the elastic response. While curing, the structure 

was made using a triaxial magnetic field. Such field was used to provide information on the 

magnetostriction due to different particle structures and test for different magnetostriction 

behaviors. In Martin’s model, the magnetostriction of composites depends on two parameters ψ2 

and ψ4 describing the specific structures of the particles distribution and estimated from the formula 

of the dipolar field: 

35

)(3

4

1

r

m

r

rrm
H dip


        eq.I.36 

Summing the contribution of all particles dipolar field, the order parameters are defined as:  

ji

ijk

ij

k P
r

a
)(

3

        eq.I.37 

rij is the distance of a pair particles within the composite, a is the particle radius, θij is the angle 

between the vectors rij and the z-axis, Pk the kth Legendre polynomial function. Martin shows that 

magnetostriction of FSE is independent of the particle size. In the case of randomly-filled composite 

the ψ2 parameter is null. 

Martin also studied the effect of a compressive pre-stress on the contraction of the FSE. A pre-stress 

(compression along the particle alignment axis) reduces the inter-particle distance, which increases 

the inter-particle interactions and, finally, should increase the contraction. However, the contrary is 

observed in the measurements curves. The contraction of the composite is reduced because the pre-

stress decreases the aspect ratio of samples which increases the demagnetizing energy of the 

composite. 
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Fig.I.19a [Mar1] Magnetostriction (contraction) 

of FSE, with pre-stress 

Fig.I.19b [Mar1] Correction of the demagnetizing 

strain on the magnetostriction (contraction) of 

FSE 

 

In this way, Martin introduced an expression a demagnetizing field forces as a correction for its data: 

Z

n

Zn

VHµ
F 2

2

2

00

)1(2

1
       eq.I.38 

This force brings the dependence on the composite susceptibility χ and on demagnetizing coefficient 

n.  

In Martin’s paper, the susceptibility of structured composites is written as:  

)1(3

3

2wp

p

w
        eq.I.39 

With φ as the filling factor of particles in the composite, χp as the intrinsic susceptibility of the 

particles and δw as a constant linking the measurement axis and the chain-like axis. The 4th chapter 

will explain in depth this susceptibility behavior.  

The first term of eq.I.38 depends on the derivative of the susceptibility over the z-coordinates. Since 

only the parameter ψ2, evaluated, with the formula in eq.I.37, is a function of the distance (hence z), 

this first term is the force created by the structure of the composite. In the case of randomly filled 

composite the parameter ψ2 is null, so the derivative of the susceptibility is null. If the first term 

stands for a structure force, the second stands for a force arising from the demagnetizing energy. 

Usually, the corresponding coefficient is not a function of space coordinates, but depends on the 
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aspect ratio of the sample. However, this second term brings a demagnetizing dependence on the 

magnetostriction, so a sample’s shape dependence. Moreover, this susceptibility derivative sign is 

the opposite of the demagnetizing factor derivative. The 2 forces are opposite. The demagnetizing 

force is always acting on the sample. Studying contraction of FSE, this force was an undesirable 

effect; hence Martin hence uses long samples to avoid this demagnetizing effect during experiment. 

A structured and a randomly-filled composite have different behaviors when exposed to an external 

magnetic field. 

 

V.2.2. Comparison 

 

Zhou [Zho] compared the displacement of the surface of a structured elastomer and of a randomly-

filled elastomer, when exposed to a magnetic field. In this article, structured elastomers are called 

MRE whereas randomly-filled elastomers are called EFC (Elastomer Ferromagnet Composite). 

Displacement was measured using the white light speckle method. The maximal magnetic induction 

was 500 mT.  

 

 
 

Fig.I.20a [Zho] Displacement of a structured 

composite 

Fig.I.20b [Zho] Displacement of a randomly-filled 

composite 

 

From these experiments, the difference in the behavior of the composite can be noticed whether 

they are randomly-filled or not. The displacement (the deformation) of FSE composite is negative 
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whereas, in the case of MRE composite, the displacement is positive. Moreover, the amplitude of 

displacement was found larger for a MRE than for a FSE, for composites with the same filling factor. 

 

V.2.3. Randomly-filled composite  

 

 

 
 

Fig.I.21  [Bed1]Magnetostriction of a randomly-filled composite 
 

 

The strain of a randomly-filled composite, submitted to a homogenous magnetic field, was 

measured by Bednarek [Bed1]. Samples were prepared by mixing 0.1 – 0.15 mm iron particles into a 

silicone matrix characterized by an unfilled Young’s modulus of E0=0.25 MPa. This change of the 

composite length effect was tested for different filling factor and porosity into a superconductor 

magnet allowing a maximal induction of 8 T. The largest value recorded was 4.81% for a composite 

filled by Pf=15% (vol.) particles, with a porosity Pp=45% (vol.) and an external field at the maximum 

value: 8 T. He also monitored the hysteresis for this phenomenon.  Increasing the magnetic field and 

decreasing back to a null value didn’t bring back the composite to its initial length. This so-called 

remnant magnetostriction is found to be a time-dependent function.  Magnetostriction is affected by 

the composite viscoelastic behavior. About the phenomenon, Bednarek explained the shape change 

by the rotation of non-spherical particle due to the applied magnetic field and as a result, the whole 

sample will be strained along the field‘s direction. Guan *Gua1], which has measured a weak 

magnetostriction (184 ppm = 10-4) of such a composite, also proposed the same explanation of the 

deformation. 
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Fig.I.22a [Bed1] Bednarek’s model for 

magnetostriction 

Fig.I.22b [Gua1+Guan’s model for magnetostriction 

 

Lanotte [Lao1] has developed this idea of rotation of ferromagnetic particles, inside an 

elastomer matrix. The prepared sample is constituted of 4 rectangular rods of silicone filled with 9% 

of Sm2Co7. Those ferromagnetic particles are hard magnetic particles, i.e. they keep their 

magnetization. Each of these rods has its particles oriented at 45° relatively to the rod axis. The 4 

rods are then gathered into a 50 mm x 10 mm sample. This was used as a sensor, for oscillating strain 

monitoring, with frequencies ranging from 20 to 150Hz and maximal amplitude of 0.8 mm. When the 

strain is applied the rod reduces or extends his size, and the particles rotate positively or negatively 

respectively, to follow the matrix deformation. The axial magnetization shifts its value, which shifts 

the effective induction. This variation of induction is monitored via a pick-up coil, wounded around 

the elastomer. The measured signal was proportional to the strain amplitude. This experiment shows 

the possibility for MRE of being used as a linear strain sensor. This device was then tested as an 

actuator, using the inverse phenomenon. The pick-up coil acts here as the exciting coil which forces 

the magnetic particles to aligned towards its generated magnetic field with maximal amplitude of 0.2 

Tesla. The force is proportional to the applied magnetic field and to the concentration of magnetic 

particles. The torque is, indeed, the product of the magnetic field and the magnetization which is the 

volume represented by all the magnetic particles inside the sample volume divided by that entire 

sample volume, i.e. the filling factor. 
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Fig.I.23a Lanotte’ sample [Lao1] Fig.I.23b Lanotte’ s device *Lao1] 

 

 

Raikher [Rai] has performed a full calculation of the elongation of an incompressible 

ferromagnetic material sample, with an initial spherical shape, under the action of an external and 

homogenous magnetic field H. He uses the principle of conversion of magnetic energy to elastic 

energy. Following equations are given, in CGS units, as:  

VNMEmag

22          eq.I.40 

Where ΔN is the change of the demagnetizing factor of the sphere into an ellipsoid of semi-axis 

b<R<a. 
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        eq.I.41 

Summing and minimizing these energies leads to the expression of the strain: 

G

H

R

ba

15

)(4 2

         eq.I.42 

With χ the material susceptibility. 

Raikher operates another calculation based on variational equation with the hypothesis that the 

sphere will not necessarily change into an ellipsoid. 

The sphere was supposed to be submitted to surface stress defined as: 



32 
 

nHn n

 2)(2         eq.I.43 

Hn is the normal magnetic field on the sphere boundary Γ, and n


 is the normal, outward, unit vector. 

Eq.I.43 shows that a sphere, having both magnetization and demagnetizing field homogenous and in 

the same direction, exhibits outward forces which results in the elongation of the sphere. Details of 

the calculation are provided in the article; the result of the magneto deformation of an 

incompressible sphere is: 

G

H

57

)(20 2

         eq.I.43 

 

 

VI. Thesis subject 

 

As presented in the above articles the magneto-elasticity is highly sensitive to the particles 

distribution. Magnetic field effect onto those composite, MRE or FSE, can be viewed as a tool to tune 

the stiffness of the composite, or to induce a deformation. Our interest is on the apparent 

magnetostriction of MRE.  

Fewer works are carried out on that specific subject. Zhou has monitored the positive elongation of a 

randomly filled composite but did not explicitly give an explanation. Bednarek and Guan explained 

that this deformation comes from the non-spherical shape of the particles which rotate to get the 

same orientation as the magnetic field. But positive deformation does not necessarily require arising 

from rotation of elongated particles. Martin, who studied the deformation of composite with 

spherical particles in chains-like structure, introduced demagnetizing force acting on his composite, 

as a counter force which counters the contraction measurements. Focusing only on FSE composite, 

he didn’t go farther with this. Moreover, he used long sample to reduce at maximum this additive 

force. Raikher published his theoretical paper on the conversion of demagnetizing energy into elastic 

energy which results into a positive strain. 

This thesis focuses on modeling this phenomenon, from the particles scale, with the inter-particles 

interactions to the macroscopic scale of the composite. Magnetic and elastic effective media are 

introduced to have the important parameters which can enhance or limit the deformation. Our 

approach is also based on the demagnetizing energy conversion, but we give and measure, a 
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demagnetizing factor for a MRE composite with different shape and filling factor. Then using 

effective Young modulus of composite, we have the whole pieces to present a model of this kind of 

magnetostriction of composite. 

MRE composite also provided many advantages:  

 A larger positive effect, 5.10-2, compared to the highest classical materials, 10-3. So that randomly-

filled composite offers a relative attractive value of deformation, under homogenous magnetic field. 

 Those composite are easily manufactured, mixing magnetic particles in a matrix.  

 Its compounds, particles and elastomers are extremely cheap. 
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I. Sample  preparation 
 

 

In most of the cases, a soft matrix was used to get a smaller Young’s modulus in order to 

increase the deformation. In some cases, a hard matrix was also used. The soft matrix was a bi-

compound silicone provided from DALBE. The ratio hardener to silicone is roughly 2-5% depending 

on how fast the hardening should last. As received, it has a viscosity of 8000 mPa.s. The average time 

for polymerization is about 12h, and it presents in its elastomeric state a nominal strain up to 170%.  

 

The hard matrix is an epoxy resin (Araldite), which is also a bi-component mixture hardening in a 

day.   

The general method used was the injection of the particles in the matrix while it is liquid and 

viscous. This matrix viscosity creates the counter-force to the sedimentation on the particles. The 

mixture was hand-mixed for several minutes and the catalyst was added to start the polymerization. 

To remove any trapped gas, the mixture was placed in a vacuum chamber. The viscosity highly 

increases during the polymerization reaction and particles were checked to be randomly dispersed in 

the matrix at the end of the curing step.  

 

 

Fig.II.1 Mixture preparation 

 

The demagnetizing factor effect on the magnetization (cf. Chapter 4) and on the magnetostriction (cf. 

Chapter 5) is investigated further in this thesis. This factor, for an ellipsoidal/cylindrical shaped 

sample, is a function of the aspect ratio c/a (cf. Chapter 4). Easiest shape to produce with tunable 

aspect ratio is the cylinder. Cylindrical samples were made for those experiments and also for 

mechanical tests. Cylindrical moulds were coated with vacuum grease in order to facilitate the 
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extraction of the sample from the mould. Such samples are shown in Fig.II.2a&b. Fig.II.2a shows a 

pure silicone elastomer and the Fig.II.2b shows a composite filled with iron particles.  

 

 

  

Fig.II.2a Pure silicone elastomers Fig.II.2b Particle-filled elastomer 

 

Different examples of filled samples are presented in Fig.II.3a&b, where the cylindrical samples were 

cut in half along an axis-symmetric plan. An example of non-homogenous sample is shown in 

Fig.II.3b, where it can be seen that such composite presents many macroscopic air bubbles and also 

some aggregates unlike to the homogeneous sample, shown in Fig.II.3a.  
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Fig.II.3a Homogeneous particle-filled 

elastomer  

Fig.II.3b Heterogeneous particle-filled 

elastomer  

 

Most of the measurements were made on cylindrical samples, but we sometimes changed 

the sample shape. The magnetic sphere produces a homogenous demagnetizing field; thus, it was 

interesting to make some spherical samples. This was achieved using a spherical mould and 

proceeding as described in Fig.II.4. The mould consists of a spherical cavity inside 2 blocks screwed 

together. As it was done with the cylinder moulds, the spherical mould is also coated with vacuum 

grease to facilitate the extraction of the sphere.   

 

 

  

Fig.II.4 Spherical-shape sample synthesis 
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II. Magnetization measurement 
 

 

II.1. Faraday balance 

 

 The Faraday balance is a device designed in 1855 for magnetic properties measurements. This 

device induces a magnetization on the sample and a field gradient; thereby a magnetic force is 

applied on a sample. Magnetization is extracts from the force measurement. 

 

II.1.1. Principle 

 

 
 

Fig.II.5. Superconducting coil(Oxford) 
 

 

Magnetization curves of composites were measured with such device. The sample was 

exposed to a magnetic field inside a superconducting coil (Oxford), as shown in Fig.II.5, with a 

maximum magnetic induction up to 7 Tesla. The force acting on the sample (see Fig.II.6) is then read 
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as the weight, mread, on the balance. The expression of that magnetic force, induced on the 

magnetized sample by the gradient is given as (eq.II.1): 

 

 

 
 

Fig.II.6. Faraday balance ‘s Principle 
 

dz

dH
HMmµFmag )(00         eq.II.1 

Which in turn balances the weight; 

magread Fgm           eq.II.2
 

Thus, we obtain the magnetization: 

dz

dH
mµ

mg
HM read

00

)(          eq.II.3
 

Experimental values were measured using the CGS units: 

 m0 [g] is the mass of the sample, without external magnetic field (H=0).  

 mread [g] is the mass of the sample read with the balance. 
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 µ0 = 1 is the vacuum permeability.  

 
dz

dH
[Oe/cm] is the local magnetic field gradient. 

 g = 981 [cm/s-²] is the gravitational acceleration constant. 

 M [emu/g] is the magnetic moment of the sample per unit of mass. 

Magnetization is converted into the S.I. units through the relation:  

1 emu/g = 1 Am²/Kg  

M [A/m] =ρsample* M [emu/g] 

where ρsample   [Kg/m3] is the mass density of the sample. 

Sometimes the magnetic polarization is used; it is extracted from the magnetization as follow: 

J [T] = µ0* M [A/m] 

The S.I. value of µ0 (See eq.I.1) is used in this relation. 

 

II.1.2. Experimental data 

 

Sample is put at 16 cm from the highest maximum magnetic field, just above the inflection 

point of magnetic curve, which is located at x=14.5cm (Fig.II.7) where the magnetic field gradient is 

maximal, for a given field, in order to maximize the magnetic force and to get benefit of centripetal 

radial forces that held the sample along the coil axis. The sensibility of the balance is 0.05g with a 

maximal load of 600g. 
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Fig.II.7.measurement of the  axial component of the magnetic induction inside the superconducting 

coil versus the position along the coil axis 

 

 

 

 

Fig.II.8. Mass (weight) measured on the  balance versus the applied magnetic field on a spherical 

sample randomly filled with 3% (vol.) iron particles 

 

Fig.II.8 presents an example of a mass measurement as a function of the applied magnetic field on 

the sample. This curve can be split into two parts: at low field, the mass is a quadratic function of the 

applied field; at larger field, it becomes linear. The mass is proportional to the magnetic force, which 

is the product of the magnetization and the field gradient (eq.II.1 and eq.II.2); at low magnetic field, 

0

0,5

1

1,5

2

2,5

3

3,5

-20 -15 -10 -5 0 5 10 15 20

B0 [T]

x [cm]

2,95T

1,00T

0,50T

0,20T

0

20

40

60

80

100

120

140

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

m [g]

B0 [T]



45 
 

both are linear to the applied field, yielding to that quadratic behavior. Increasing the applied field 

saturates the sample, i.e. the magnetization becomes a constant, and the only contribution to the 

force is the field gradient. In order to determine the limit between these two regimes, experimental 

data were obtained up to the saturation of the sample. 

  

 

Fig.II.9.  Magnetization versus the applied magnetic field on a spherical sample randomly filled with 

3% (vol.) iron particles 

 

Magnetic measurement is a non-destructive technique (unlike thermo-gravimetric analysis). The 

filling factor of a sample can be easily deduced from the knowledge of both the saturation of the 

ferromagnetic material and of the sample. In this example, the sample saturated at 49 kA/m whereas 

the Iron saturation is 1735 kA/m; thus the filling factor of this sample is checked to be 3%. 
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III. Mechanical 
 

 

 
 

Fig.II.10. Dynamic Mechanical Thermal Analyser VA 2000 (Metravib R.D.S.) 
 

The Dynamic Mechanical Thermal Analyser (DMTA) VA 2000 (Metravib R.D.S.) (Fig.II.10) is a 

versatile instrument dedicated to the measurement of viscoelastic properties of materials, and their 

dependence on temperature.  The dynamic elastic modulus and damping coefficient are parameters 

usually studied in polymer science. Those parameters are characterized as a function of temperature 

and/or frequency. In this work, these measurements can be used to determine the stiffness 

reinforcement of soft matrices filled by hard particles and can lead to information on the interaction 

between matrix and fillers.  

 

 

III.1.  Principle 
 

The DMTA applies a dynamic stress on the sample: 

)cos()( max tt          eq.II.4 

where σ(t) is the stress characterized by it maximal amplitude σmax and the pulsation ω in radian/s. As 

far as mechanical behavior is linear, this applied stress results in sine wave strain, shifted by the angle 

δ, relatively to the applied stress:   
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)cos()( max tt         eq.II.5 

In the same way, the strain signal ε(t) is defined by it maximum amplitude  εmax and the pulsation ω, 

as seen in Fig.II.11. 

 

 

Fig.II.11. Dynamic mechanical test 

 

For small deformation, a complex dynamic modulus, defined as the ratio of the stress to the strain, 

can be expressed by a complex value: 

)(")('
)(

)(
)(

*

*
* iGGGe

i

i
iG i

      eq.II.6 

The real part G’ stands for the polymer elastic modulus or storage modulus and the imaginary part 

G'' out of phase with the displacement, is called the viscous modulus or loss modulus. The phase shift 

(δ) between the force and the displacement is called the loss angle of the material and the tangent of 

the loss angle (with tan(δ)=G’’/G’) is called the loss factor for internal friction coefficient and 

corresponds to the damping of the material.  
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III.2. Sample measurement 

 

 

Fig.II.12. Thermal chamber 

 

Sample is pasted between a static plate and a moving plate in the thermal chamber (Fig.II.12). The 

moving plate applies an oscillating force and the resulting displacement of the sample is measured. 

Data are converted into real part and imaginary part of Young modulus 

 

 

 

IV. Scanning Electron Microscope  
 

Magnetic particles shapes were characterized via a Scanning Electron Microscope (S.E.M.). A 

Princeton Gamma-Tech EDX also allowed a X-ray analysis to investigated the composition/purity of 

the ferromagnetic particles. 
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Fig.II.13a. S.E.M. Fig.II.13b. Iron particles picture 

 

 

 

V. Magnetostriction measurement 
 

V.1. Device 

 

Magnetic field viewed by the sample is generated by an electromagnet TE 200A (TEK Elec), which is 

made of a couple of coils and an iron core to enhance and canalize the magnetic field into an air gap. 

This air gap is about 4 cm wide (to be compared with the cross section of the core, of roughly 12 cm). 

The electromagnet is connected to a Hewlett Packard power supply providing a maximal current of 

170 A yielding to a maximal magnetic induction of 1.2 Tesla. For the magnetostriction measurement, 

the sample is put inside the air gap, via a sliding piece on a rail. 
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Fig.II.14 Electromagnet 

A video camera (ELMO) is attached behind the sample holder on the sliding piece, to visualize directly 

the strain on the sample exposed to the magnetic field. Thus, pictures have been shot for different 

values of magnetic field. A light spot is added to improve the contrast. Black & white pictures have 

768x512 pixels resolution. The strain is determined by image analysis. 

 

 

Fig.II.15. Magnetic field versus the current inside the coils 
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V.2. Data extraction 

The video camera is shooting pictures of the sample at different amplitude of the applied 

magnetic field. Experiment data is thus a stack of picture which has to be processed. 

  

  

Fig.II.16a Sample at rest (H=0) Fig.II.16b Sample exposed to an external 

magnetic field (H≠0) 

 

Fig.II.17 Superposition of the 2 images (H=0) and (H≠0) 
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The image processing is effected using the software «ImageJ». This treatment has been written in 

Java language and executes the following procedure on the stack of recorded pictures; 

The first step consists in choosing a reference picture, usually the one taken without any external 

magnetic field. Any changes in the further pictures would be calculated relatively to that reference 

picture. 

The entire picture will be transformed in a way that highlights sharp changes in intensity. Because 

of its dark color, due to the particle reinforcement of the matrix, the composite stands out of the 

white background (Fig.II.16a&b). Hence, the boundaries can be easily tracked. Moreover, light 

reflection on the sample also brings other possible targets to track, in order to get more local strain 

data.  

 At first, the reference picture is processed. An area is chosen for a tracking mark of which the 

coordinates will be saved. Then, the other pictures are successively analyzed in the same area and 

the mark coordinates are compared to those of the reference. Displacements of the marks are 

obtained. Finally, the whole stack is processed and displacements for different values of the 

magnetic field are calculated (Fig.II.17). 

 Finally, displacements are converted into strain via the knowledge of the initial length of the 

sample (accounting for the low strain).  

)0(

)0()0(
)(

HL

HLHL
H        eq.II.7 

Maximum resolution is estimated around 0.1%.  
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Chapter 3 

Dipolar interactions and 

magnetostriction 
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I. Introduction 
 

In this chapter, we give an explanation of the positive magnetostriction of MRE exposed to 

homogeneous applied magnetic field. Bednarek [Bed1] and Guan [Gua1] have both postulated that 

the MRE magnetostriction is a result of rotation of irregular-shaped particles. But a measurement 

made on MRE filled with spherical ferromagnetic particles, provided below in this chapter, also 

presents a positive magnetostrictive behavior. Because of the shape of these particles, the strain is 

the consequence of force acting on particles and does not result from couple as proposed in their 

model. Because of the homogeneity of the applied field, the experienced force is the outcome of 

inter-particle interactions. Therefore, the complete force is calculated through the inter-particle 

forces.  

The magnetic field created by a magnetized sphere is the same as the dipolar field. Thus, the 

model used to perform this calculation is based on the dipolar interaction of magnetic moments. The 

effective force between spherical soft ferromagnetic particles, which are in the saturation state       

will be first described and discussed.  Then, this force (between two particles) will be calculated for 

all the particles, randomly distributed in the volume, as is our composite. 

These forces are projected on a cylinder axi-symmetric plan to extract a map of the local forces, 

inside the volume. This map is implemented in a Finite Element Modeling software to determine the 

macroscopic deformation. In order to compare theory and experimental data, the strain calculation 

is performed using the same parameters, i.e. filling factor, sample shape, mechanical and magnetic 

properties. 

 

II. Experimental 
 

A magnetostriction experiment is firstly performed in order to be compared with calculation. This 

calculation will also need data like the magnetic saturation of the particles and the effective 

composite Young modulus. 

II.1. Composite characterization 
 

II.1.1. Magnetic particles 
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Fig.III.1: X-ray analysis of the magnetic particles 

(EDX) 

Fig.III.2: SEM picture of the magnetic particles 

(bar is 10µm) 

 

Chemical composition of the magnetic particles, provided by SPETELEC, has been measured using a 

X-ray micro-analyzer with a Princeton Gamma-Tech. System Spirit. From the spectral curve shown in 

Fig.III.1, we determined that magnetic particles are mainly made of iron (98.7%). Fig.III.2 shows a 

SEM picture of these particles. We can observe that particles are spherical with a diameter close to 5 

µm. In Fig.III.3 the iron magnetization curve using a Vibrating Sample Magnetometer is presented, 

the magnetization was measured under an external magnetic field increasing from -1 T to 1 T and 

decreasing back to -1T in order to determine the hysteresis. The iron powder has a low magnetic 

remanence and a high saturation magnetization. We measured the powder saturation magnetization 

µ0Ms = 2.08T. 
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Fig.III.3: Magnetization loop of the magnetic particles 

 

 

II.1.2. Matrix 
 

An isotropic composite was prepared by hand-mixing 30% vol. of iron particles in a silicone macro 

monomer (liquid) from DALBE. Then the silicone was polymerized by the addition of a catalyst. The 

choice of that specific monomer has been made for its low glass transition temperature (Tg) after 

polymerization, which led to an elastomeric behavior at room temperature. Before polymerization, a 

procedure of degassing step was applied to remove bubbles; the mixture was placed in a vacuum 

chamber at 1 mbar for 5 min. The mixture was finally molded into a cylindrical mould (height 14 mm, 

diameter 11.7 mm) and kept at room temperature for 1 day. 

The dynamic Young modulus was measured with a Visco analyzer VA 2000 (Metravib R.D.S.) with 

solicitations ranging from 5 to 50 Hz. At 5 Hz, a 7.105 Pa modulus was measured at room 

temperature (fig.III.4). 

 

 

Fig. III.4: Young modulus at different frequency of the composite filled with 30% (vol.) iron particles  
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II.2. Strain measurement 
 

II.2.1. Principle 

 

Sample dilatation has been obtained using an electromagnet to generate a uniform magnetic 

field within the sample. This electromagnet is made of a couple of coils which have been placed 

around a magnetic circuit (fig.III.5). The magnetic circuit has a small gap providing a uniform 

magnetic field on the sample. The electrical current ranged from 0 to 160 A yielding a magnetic field 

up to 1.2 T. The sample was placed inside this device and was observed with the CCD camera from 

ELMO. Pictures were recorded every 0.14 Tesla, at both increasing and decreasing field. 

Displacement between each step was determined by images analysis (See Chap.II). 

 

 

Fig.III.5: Electromagnet generating a uniform magnetic field. (1) Helmholtz coil; (2) Magnetic core 

 

II.2.2. Magnetostriction curve 

 

Longitudinal magnetostriction curve is presented in Fig.III.6. As the magnetic field increased, the 

interaction between magnetized particles increased too. The sample starts to enlarge its longitudinal 

size. When the magnetic field is large enough, all the particles reach their magnetic saturation, which 

in turn, leads to the maximum magnetostriction. Thus, a saturated magnetostriction of 4.3 % was 
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measured. This result is close to the value measured by Bednarek [Bed1] but, in our case, the applied 

magnetic field is only 1.2 Tesla, whereas he used 8 Tesla to achieve this result.  

 

Fig.III.6: Relative longitudinal strain as a function of the magnetic field 

 

Reduction in magnetic field leads to a decrease of particles interaction and of the 

magnetostriction. When the magnetic field is turned off, interaction is assumed to disappear because 

of the low magnetic remanence (Fig.III.3) of iron. However, a 0.12% residual strain was measured. 

This hysteresis probably results from damage at the particle-polymer interface, comparable to what 

happens for the Payne’s effect *Pay1] and for higher strain, for the Mullin's effects [Mul1]. Stretching 

the composite may create decohesion between matrix and particles or cavitations inside the matrix 

[Coq1].  Those phenomena are irreversible. So the strain, when the magnetic field goes back to zero, 

is not zero.   

 

III. Magnetic calculation 

 

III.1. Dipolar interaction of a couple of particles 
 

In order to understand the physical mechanisms at the origin of the above observed 

magnetostriction, a simple model has been developed. Let a set of N spherical magnetic particles be 

distributed in a cylinder shape. All magnetic moments are supposed to have equal magnitude which 



61 
 

corresponds to the saturated state of all the particles and are all directed parallel to the cylinder Z-

axis, i.e. to the applied magnetic field direction.  

 

 

Fig.III.7: System of saturated particles in a cylinder 

 

 

Magnetic induction field created by a magnetic moment m


is calculated using the dipolar 

magnetic field expression [Mag1]. 

35
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        eq.III.1 

Where µ0 is the vacuum permeability, r


is defined as the vector from the particle centre to a given 

position in the cylinder. This dipolar expression of the magnetic field is the exact expression of the 

magnetic field created by a spherical particle, assuming that the testing point is at a distance larger 

than the sphere radius, r>R. Gathering magnetic moments will enhance the interaction energy. The 

dipolar energy E12 between two magnetic moments may be expressed by the interaction of one 

moment with the dipolar field created by the second one:  

3

12

12

5

12

1211220

12212

))((3

4 r

mm

r

rmrmµ
BmE


    eq.III.2 

The force created by a moment 
1m on the moment 

2m at a distance 
12r  is then deduced by: 
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eq.III.4 

With all moments parallel to the Z-axis and having the same value, the force expression is 

simplified and is given within the polar coordinates system by:  

4

12

2

0

2

21

))(cos31()2sin(

4

3

r

uuµm
F r


      eq.III.5 

where the distance between the 2 particles is 
12r ,  is the angle between the Z-axis and the inter-

particle vector. The dependence of the radial and the angular components of the forces are plotted 

in Fig.III.8a, whereas the corresponding vectors are represented in Fig.III.8b. Particles inside FSE, 

being all aligned, should attract the 2 closest particles and then the whole chain-like should contract 

leading to a contraction of the composite.  

 

a 
b 

Fig.III.8: Angular dependence of dipole-dipole force. Fig.III.8a: The dot line represents the radial 

component and the dash line represents the angular one. Fig III.8b: The force is represented for 

different positions of the second particle. 

 

Unlike the head-to-tail particles which attract themselves, face-to-face particles repel. Particles 

on the top of the cylinder would be attracted towards the core of the cylinders in a first 

approximation.  In the same way, particles on the lateral edges would be repelled out of the cylinder. 
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The only solution, in the case of randomly filled composite, is to take into account the interaction 

over all the particles on every single particle.  

 

 

III.2. Forces map within a cylinder shaped volume 
 

A cylindrical-symmetric mesh (Fig.III.9) has been performed for our sample. Forces are calculated 

on all the nodes of an axi-symmetric plane of this mesh to probe their amplitudes and directions 

inside the sample. 

 

 

Fig. III.9: cylindrical-symmetric mesh 

 

Force given by Eq.3 can be written into Cartesian coordinates, to get the resultant created by all 

the dipoles on a given point of the cylinder. Thus: 

xxzz uFuFF
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212121         eq.III.6 
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The resultant force on a point (i, j) inside the cylinder is calculated by summing the forces created 

by the N particles randomly distributed in the cylinder. In order to determine the average force map, 

this calculation was repeated for K distributions and we averaged the result s as shown below: 

K
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jip
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


         eq.III.9 

 

Fig.III.10a and Fig.III.10b presents the distribution inside the cylinder of average axial (a) and 

radial (b) forces components. 

a b 

Fig. III.10a & III.10b: Forces distribution inside the cylinder; (a) the axial component and (b) the radial 

component 

 

In Fig.III.10a, the axial forces are plotted against the position on the considered plan. These 

axial forces are almost null in the volume and non-null close to the maximal and minimal axial 

position, i.e. the top basis and the bottom basis. On the top and bottom of the cylinder, axial forces 

are directed from inside toward outside, acting as a tensile stress, leading to the cylinder dilatation. 

In fig.III.10b, the radial forces are plotted versus the position on the same plan. These radial 

forces are also almost null in the volume and non-null at the maximal radial position, i.e. the lateral 

surface of the cylinder. The radial forces are negative close to that lateral edge leading to an 

additional pressure for the overall magnetostriction. 

Magnetic force is created by the product of magnetization and the variation of the inner 

magnetic field. This magnetic field is the sum of the applied field and the field created by the 

distribution of particles. The applied field is homogenous, so the forces are mainly due to the 
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variation of the particles field. The average forces inside the core of the composite are zero, the 

particles field is then assumed to be homogenous in this part of the composite. On the edges of the 

cylinder, where the field created by all the particles is inhomogeneous, the magnetic forces are not 

null. 

 

IV. Mechanical analysis 
 

In order to compare our experimental data with our simulation, we calculated the forces 

distribution inside a cylinder with the same size as for our experiments.  The strain was then 

calculated using commercial Finite Element software, namely ABAQUS. The radial and axial forces 

fields as determined above were injected in the software as pressure: positive for radial forces and 

negative for the axial ones.  

 

Fig. III.11 Tested part of the cylinder 

 

Because of the cylindrical symmetry of the considered system and because of the symmetry of the 

axial forces, upper and lower disks are submitted to tensile forces, the strain calculation was done on 

the upper half part of an axi-symmetric plane (Fig.III.11). The measured deformation was roughly 5%, 

which is small enough to use linear mechanical properties of the composite. The Poisson ratio was 

set as 0.49, to avoid numerical divergence, but is still close to the ideal elastomer value of 0.5; and 

the Young modulus was set as 0.7 MPa (Fig.III.4).   
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Continuum mechanics laws are linear, so the strains generated by the axial and radial forces 

were treated apart and summed afterward. The axial and radial forces effects on the cylinder shape 

are respectively plotted in Fig.III.12a & III.12b. 

a b 

Fig. III.12a & III.12b: Deformation distribution inside the cylinder due to (a) the axial forces and (b) the 

radial forces. The black-meshed part represents the deformed sample where the green-meshed part 

set for the initial sample shape 

 

 

An axial strain of 3.08% was obtained due to the axial forces whereas a 1.59 % with the radial 

forces, which is a consequence of the hypothesis of almost constant volume (Poisson ratio close to 

0.5). The whole sample calculated deformation is presented in Fig.III.13; the axial deformation is 

larger than the radial one as expected and the longitudinal strain was of 4.7 %. This value is very 

close to the experimental one, i.e. 4.3%, which confirms the interest in the modeling method, as it 

can be applied for all kind of sample shape.   
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Fig. III.13: The addition of the 2 deformations. The black-meshed part represents the deformed 

sample where the green-meshed part set for the initial sample shape 

 

 

 

V. Discussion on the dipolar interaction 

 

 

V.1. Boundaries forces 

 
As described above, we have proved that the dipolar interaction is responsible for the observed 

strain of a MRE placed in a uniform magnetic field. These dipolar forces are localized on each 

boundaries of the cylinder unlike to the inner part of the sample where no force is acting. We can 

figure out these forces with geometrical assumptions. Considering a magnetic moment surrounded 

entirely or partially by an elementary spherical shell, it will provide the same kind of force.  
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Fig. III.14: Magnetic moment in a magnetic medium 

 

The expression of the dipolar force represented by eq.III.5 shows that such force is acting at very 

short distance. Hence, considering a distance d for which an increment Δd will slightly increase the 

force, we calculate the resultant force, acting on a single moment m


, by the other magnetic 

moments placed below that distance d. The mathematical way to get this result is to integrate the 

force created by all the magnetic moments placed on a spherical shell on that moment. To ease the 

calculation, by using the spherical symmetry, we use the reciprocal force, i.e. the force created by the 

moment on the shell: 

shellmomentmomentshell ff


       eq.III.10 

 

The force acting on the shell is evaluated by summing all forces created by the moment on an 

elementary magnetized volume set i.e ddrdMrdVMm )sin(2


  as seen in Fig.III.14. This 

force df (eq.III.5) can be written in spherical coordinates as: 
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where C is a constant equal to -3mMµ0/4π, Ar(r) is the radial amplitude function due to radial 

distance r and the fx, fy and fz are angular functions of the spherical angles θ and φ.  The direction of 

the force depends on only these 2 angles; the distance r modulates the amplitude of the force. The 

amplitude function is: 
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r
Ar           eq.III.12 
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And the components of the force due to the angular term: 

)](cos51)[sin()cos(),( 2

xf       eq.III.13 

)](cos51)[sin()sin(),( 2

yf       eq.III.14 

)](cos51)[cos(),( 2

zf        eq.III.15 

 

In this case, when the summation is made over all space directions, θ is ranging from 0 to π and φ 

from 0 to 2π, yielding to the same result: no force. So that, the dipolar force inside a magnetic 

medium is always zero as found on the two figures Fig.III10a&b. This result is easily understood 

because of the symmetry of the system. This is not the case for a magnetic moment placed on the 

edge of the material. We can check the above presented results: for the upper basis and for the 

lateral surface of the cylinder as seen on the Fig.III.15a&b. 

 

 

 

 

Fig. III.15a: Magnetic moment on the upper edge 

of a magnetic medium 

Fig. III.15b: Magnetic moment on the lateral 

edge of a magnetic medium 

 

The radial amplitude force created on the magnetic moment by a half spherical shell is the same in 

the two cases represented by Fig.III.15a&b. It can be estimated as follows; the distance between the 

shell and the moment is d. But the volume of the moment itself has to be excluded because it does 

not create a force on itself. If the excluded length (corresponding to the excluded volume) is e, the 

amplitude of the force due to the distance between the moment and the shell is: 

de
drrA

d

e

r

112          eq.III.16 

Because e is smaller than d, this integral is positive.  

Now we have to consider the modulation of the force due to the angular component.  
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First case: an upper boundary. Here, all the other magnetic moments are placed on a half spherical 

shell below the considered moment as seen in Fig.III.15a. Due to symmetry, the fx and fy 

components are null (integral of cosinus and sinus over 2π). With this geometry, only axial force 

arises. Thus,  fz component is evaluated with the angle θ ranging from π/2 to π: 

2
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2

2

0 2/

dddf z
  eq.III.17 

 

The angular component is negative. The force created by the shell on the moment is the product of 

the radial component (positive), the angular component (negative) and the constant C which is 

negative resulting finally in the positive force. Top surface experiences an outward force. 

 

Since the whole force, experienced by an entirely surrounded moment is zero and the upper 

boundary moment experiences a positive force (in the same of the applied field), the lower boundary 

moment will consequently experience a negative force. Top and bottom face of the cylinder are 

under tensile stress. 

 

The second case is a lateral boundary. Here, all the other magnetic moments are placed on a half 

spherical shell aside the considered moment as seen in Fig.III.15b. Because of symmetry, fz 

component is null. The same result can be found for θ ranging from 0 to π. If we restrict the normal 

vector to be collinear with the unit vector yu


(general case is treated in annex), the integral of the 

respective component fy, for the angle φ ranging from π to 2π and θ from 0 to π is: 
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The angular component is positive. The force created by the shell on the moment is the product of 

the radial component (positive) and the angular component (positive) and the negative constant 

giving a force that is negative. Lateral boundary is under compressive stress.  

 

This calculation concludes to macroscopic positive (resp. negative) force on the top (resp. bottom) of 

the cylinder and negative force on the lateral surface of the cylinder. In fact, the sign of the forces is a 

consequence of the exclude volume as shown in eq.III.15; therefore those forces are located in a thin 

layer just under the surface of the sample. Dipolar forces are created in the neighborhood of the 

edges of the sample and also due to the volume of the moment. This is a force created on a volume; 

a body force with a non-null value close to edges and null inside the core.  
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These results are like those found through the complete dipolar calculation. A limit in this calculation 

arises from the fact that all other magnetic moments in the composite are not placed on a spherical 

shell, but in the entire volume of the sample. So despite it provides the same behavior, the full 

calculation is more rigorous. 

 

V.2. Introduction to shape effect on the forces 
 

It is proved above that the dipolar interaction is responsible for the observed strain of a MRE placed 

in a uniform magnetic field. This dipolar interaction is highly dependent on the way particles are 

distributed. For example, two magnetic moments, with a radius R and distant of r, can be placed with 

different relative angle  (from m to r) as seen in Fig.III.16a & b: 

 

 

 

 

Fig.III.16a. Magnetic moments placed with a 

relative angle of 0 rad. 

Fig.III.16b Magnetic moments placed with a 

relative angle of /2 rad. 

The interacting energies (eq.III.2), of these two cases are different. In the case of magnetic moments 

placed in a head-to-tail configuration (Fig.III.16a), energy is written as: 

3

2

0
12

2
)0(

r

m
E         eq.III.19 

whereas the energy of the magnetic moments placed in a face-to-face configuration (Fig.III.16b) is 

written as: 

3

2

0
12

4
)2/(

r

m
E         eq.III.20 
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So, the interacting energy for given distance is lower, when particles are in a head-to-tail 

configuration compare to the face–to-face configuration. This consideration, made on 2 particles 

separated by the same distance can be expanded for a larger set of particles inside a given volume. 

Summing all the energies of interacting pairs being expressed as: 

i

iiD BmE
2

1
         eq.III.21 

Bi is the induction created on the site i by all the other moments. The reduced dipolar energy 

ED/{µ0/2[m/R3]²} is a density of energy per volume. For volume characterized by a cylindrical 

symmetry, as ellipsoid, this reduced energy exhibits a shape effect. The shape effect appears with the 

definition of the aspect ratio c/a with c as the length of the sample parallel to the moments direction 

and a as the transversal length. Considering 2 cases: the ellipsoid is an oblate, the ratio is low, 

particles see the others particles with a relative angles θ tending toward π/2, and in contrary, if the 

ellipsoid is a prolate, the aspect ratio is large, the relative angles θ are tending toward 0; the oblate 

has a higher energy per unit of volume than the prolate. This available larger energy of low ratio 

shaped sample is then converted into a force that strains the sample. 

Following this idea, we have performed the force calculation over several shapes. The testing 

parameter was the aspect ratio. This aspect ratio was ranging from 0.33 to 1.2. The summation of all 

pair-forces inside the volume, due to the summation of reciprocal forces would lead to zero. Forces 

were therefore summed over the top half cylinder like in Fig.III.11 and normalized by the chosen 

volume. 

 

 

Fig.III.17 Shape effect on the forces 
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The increment of both, the axial dipolar force and radial dipolar forces when the cylinder is tending 

to a flat disk, c/a →0 can be seen in Fig.III.17; in the same way, these forces are decreasing when the 

shape tends to a long rod, c/a→∞. Hence, we have introduced a shape effect; flatter shape creates a 

larger force compared to needle-like shape. Those calculations are in agreement to measurements 

made on 30% (vol.) filled sample with different aspect ratio, as seen in Fig.III.18.  

 

 

Fig.III.18 Shape effect on the saturation of the magnetostriction. Red point stands for the sample 

considered above.  

 

The smaller the ratio, the larger the strain. This effect will be discussed in detail in the 5th Chapter. 

For sample with same aspect ratio but with different sizes, forces have the same amplitude and are 

located in the same thin layer near the surface (whose thickness is about the particle size) as shown 

in Fig.III.19. The resulting force per surface unit i.e. stress is the same for samples with same 

geometry. Same stresses yield to same strains. 
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Fig.III.19 Force distribution as the function of the highness, for 2 samples with different size, keeping 

the same aspect ratio 

 

 

VI. Conclusion 
 

We have studied the measurement of the positive magnetostriction of a composite, made of 

spherical ferromagnetic particles embedded in an elastic matrix, under a homogenous magnetic field. 

Experimental data were compared to a theoretical calculation. The force calculation is only based on 

the dipole-dipole interaction of saturated spherical particles randomly embedded in a cylindrical 

volume. This force field, coupled with a strain calculation (using FEM software) on an effective elastic 

material, provides a positive axial deformation 4.7 % very close to the one measured i.e. 4.3 %. Inter-

particle forces successfully provided the explanation to the apparent magnetostriction of the 

composite when placed in the applied field. The calculation of interaction between magnetized 

particles has proved the dependence the force on the square magnetization, eq.III.5. The applied 

magnetic field does not play a key-role in the phenomenon; it just induces a magnetization in all the 

particles which in turn interact together.  

Forces are located in the neighborhood of the edges; top and bottom faces of the cylinder are 

under a negative pressure while the lateral face is under a positive pressure. These forces were result 

in an extension of the cylinder. Dipolar forces act on the cylinder in such way that the demagnetizing 

energy of that cylinder decreases. 
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The calculation has also proved a shape effect showing that as the cylinder becomes longer, axial 

and radial forces per unit of volume decrease as seen in Fig.III.17. This is also a characteristic of the 

demagnetizing field. The following chapter deals with the demagnetizing field and coefficient of a 

composite made of ferromagnetic spherical particles inside a non-magnetic matrix.  
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Chapter 4 

Magnetization of a 

ferromagnetic composite  
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I. Introduction 
 

In the previous chapter, we have calculated the magnetic force induced on a particle by all the 

other magnetic moments, except itself. The force was calculated from the field which is created by 

the magnetized particles. Inside a bulk magnetic material, this field is in fact the demagnetizing field 

which depends on the sample shape: it decreases with increasing aspect ratio c/a for a cylinder 

(length/diameter). We have also shown that the magnetostriction effect is also reduced for high 

aspect ratio cylinders. Both effects might be correlated and suggest a better understanding of the 

demagnetizing field effect in a composite. 

In this chapter, we will bring back to mind the concept of demagnetizing field and demagnetizing 

factor and its effect on the magnetization curve of a ferromagnetic material. Then, we will present 

some basis on the effective demagnetizing factor of a composite made of ferromagnetic particles 

embedded in a non-magnetic matrix. Experiments will be provided for the discussion on this effective 

demagnetizing factor for the shape of the sample and for the filling factor (volume fraction of fillers). 

A model taking into account the distribution of the particle will be then presented and discussed. 

 

 

II. Magnetization of a ferromagnetic material 
 

II.1. Pure ferromagnetic material 
 

For a pure ferromagnetic material, the magnetization is related to the local magnetic field via 

susceptibility χ of the ferromagnetic material: 

intHM             eq.IV.1 

When a magnetic sample is exposed to an external magnetic field (experimentally, the applied field), 

the material is magnetized and hence creates a magnetic field outside and inside the material, 

changing the viewed field Hint. This inner magnetic field is the superposition of the external magnetic 

field and the magnetic field created by the material itself, known as demagnetizing field:  

extD HHH int          eq.IV.2 
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where Hext, Hint and HD are respectively the external, the internal and the demagnetizing magnetic 

field. The magnetic field generated by the magnetized body, is inside the material, is opposite to the 

magnetization, so that it is called demagnetizing field. In many cases, this field is expressed as a linear 

function of the magnetization: 

NMHD
          eq.IV.3 

In the case of an ellipsoid of revolution, HD is homogenous and N is a function of aspect ratio, length 

to diameter of the sample. N is then called the demagnetizing factor (or sometimes demagnetizing 

coefficient). The effective or apparent susceptibility is then defined with the external magnetic field: 

exteff HM           eq.IV.4 

 

 

Fig.IV.1. Magnetization within the sample volume with the external and demagnetizing field 

 

 

Using equations eq.IV.1, eq.IV.2 and eq.IV.3 in equation eq.IV.4, the effective susceptibility can be 

expressed as: 

N
eff

1
         eq.IV.5 

For a pure ferromagnetic material, the susceptibility is large enough to use the following 

approximation, χ>>1, providing the result: 
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extext H
N

H

N

M
1

1

1
        eq.IV.6

 

This expression shows that the magnetization at low magnetic field (far from the saturation), in the 

case of a soft ferromagnetic material, is controlled by the shape of the sample via the demagnetizing 

factor. The general expression of the magnetization sample, below and above saturation of the 

ferromagnetic material is: 

 

 

satasat

sataa

NMHifMM

NMHifH
N

M
1

 

Fig.IV.2a. Magnetization curve of a ferromagnetic 

material 

Fig.IV.2b. Equivalent equation  

On fig.IV.2a and 2b, it can be seen that the saturation is reached for a critical applied field equal to 

the product of the demagnetizing factor and the saturated magnetization. 

Calculation of the effective demagnetizing factor is known analytically for an ellipsoid.  Hence, for an 

oblate sample with the dimension ratio γ= diameter /length, the formula is [Chi1]:  

1²

11²
sin

)1²(

²

2

1

2
3

ArcN       eq.IV.7 

The case of a sphere leads to the factor [Chi1]: 

3

1
N           eq.IV.8 

In the case of a prolate sample with the dimension ratio γ=length/diameter, the formula is [Chi1]:  

 1)1²ln(
1²1²

1
N       eq.IV.9 
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Fig.IV.3. Demagnetizing factor of ellipsoid sample versus the aspect ratio γ=length/diameter

 

 

In one hand, when the aspect ratio is large, γ>>1, the demagnetizing factor tends toward 0, 

the magnetization slope is infinite; the sample is easily magnetized. On the other hand, when the 

aspect ratio is small, γ<<1, the demagnetizing factor tends toward 1 and the sample is hardly 

magnetized. 

For non-ellipsoidal geometries, the inner magnetic field created by the magnetic material is 

no more homogeneous. The demagnetizing factor is replaced by a demagnetizing tensor [Jos1, Zhe, 

and Lu]. The amplitude and the direction of the magnetization are functions of the local 

demagnetizing tensor:  

jiji MNH           eq.IV.10

 

where i,j={x,y,z}. Hence, considering a cylinder of length L and diameter 2a, a complex calculation 

[Jos1] yields to the non-homogeneous demagnetizing field which depends on the tested point inside 

the cylinder:
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The origin of the coordinates coincides with the center of the cylinder on lower basis.  K(k), E(k) and 

Λ0(α, β) are respectively the complex elliptic integral of the first, second and third kind and k, α, β are 

defined as : 
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   eq.IV.13

 

 

 

Fig.IV.4. Magnetic induction inside  an uniform magnetized cylinder 

 

The effective demagnetizing factor or magnetometric demagnetizing factor, of a non-ellipsoidal 

sample, is defined by the volume average of all local value of the demagnetizing tensor [Jos2]: 

V

dVzrN
V

N ),(
1

         eq.IV.14

 

 A simple formula has been given by Sato & Ishii [Sat] providing the averaged geometrical 

demagnetizing factor of a cylinder with a maximum error of 3 % for a ratio  ranging from 0.1 to 10. 

1
2

2

1
N          eq.IV.15
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The magnetic energy density of a magnetized body depends on the external field and on the 

magnetization. The magnetization in turn depends on the inner field which is the sum of the external 

field and of the demagnetizing field, so that, the energy, per unit of volume is written as: 

2

00

0

0
2

1
NMMHMdHE a

H

d

a

     eq.IV.16 

From eq.IV.16, this energy can be seen as the opposite of the area under the magnetization in a MH 

curve as seen in Fig.IV.2a. The first term stands for the interaction of the sample placed in the 

external magnetic field, the Zeeman energy, whereas the second one represents the interaction of 

the sample in its own magnetic field, the demagnetizing energy. Demagnetizing density of energy is 

defined as the energy paid to gathered magnetized moment inside the considered volume. This 

demagnetizing energy is proportional to the demagnetizing factor, so that, a flat sample has a larger 

energy than a needle-like one. 

 

II.2. Ferromagnetic composite 
 

Considering a non-magnetic matrix filled by ferromagnetic particles, the magnetization of such 

sample is controlled by demagnetizing factor nsample of the sample, the fraction  of volume occupied 

by the particles, the demagnetizing factor nparticle of particles and the distribution of the particles 

within the sample. The way the particle inside the matrix magnetizes depends highly on the particles 

distribution in the volume of the sample. We will first consider a randomly filled composite. 

 

 

 

 

II.2.1. Randomly filled composite 

 

As the ferromagnetic particles are soft, without any remnant magnetization, the magnetization of a 

randomly filled composite is carried through both its saturation and demagnetizing factor 

parameters.  
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II.2.1.1. Effective magnetic saturation 

 

The magnetic saturation of a composite is the density of magnetic moment of all the compounds 

inside, i.e. the particles and the matrix: 

Vtot

VMVM

M
p m

m

sat

matrixp

sat

particle

sat

composite

      eq.IV.17 

Vp, Vm and Vtot are the volume of the particles, the matrix and the sample (composite) respectively. 

The magnetization
sat

particleM , 
sat

matrixM  and 
sat

compositeM  are the saturate magnetization of the particles, 

the matrix and the sample (composite) respectively. An important parameter for such composite is 

the filling factor which is defined as the volume of all the particles inside the sample: 

Vtot

V
p

p

          eq.IV.18 

Assuming that the matrix magnetization is null and using eq.IV.17 and eq.IV.18, the magnetic 

saturation of randomly-filled composite is interrelated to the filling factor and the magnetic 

saturation of the ferromagnetic particles by the following equation: 

sat

particle

sat

composite MM
         eq.IV.19 

 

 

II.2.1.2. Effective demagnetizing factor 

 

II.2.1.2.1. Kneller model 

 

This effective demagnetizing factor for a random dispersion was calculated by Kneller [Kne] 

through the point of view of a single particle inside the composite. The effective demagnetizing field 

of a ferromagnetic particle, inside a non-magnetic volume, is the summation of both the geometrical 

(shape) demagnetizing factor of the volume and that of the particles, and a term which takes into 

account the interaction of particles. 
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 Fig. IV.6. Model of the demagnetizing coefficient of a composite

 

 

This particle sees a geometrical demagnetizing field with the factor nsample due to the sample shape, a 

vicinity field due to the particles magnetic field and the inner demagnetizing field of that particle with 

the factor nparticle. Calculation of that vicinity field is complicated because of its dependence on the 

distribution of particle, on the filling factor and of course on the particle shape. Increasing the filling 

factor leads to high increase of the particles interaction. Kneller converts this vicinity field as a field 

created by the cavity surrounding the particle; it is set as a hole, with the particle shape, into the 

homogenized matrix.  

)( particleparticleparticleparticleparticlesampleparticle
p

d MnMnMnMnH   eq.IV.20

 

)1(particlesample nnn         eq.IV.21

 

In the extreme case, where φ=1, the volume is completely filled by particles and n = nsample, that 

particle will be affected only by the geometrical demagnetizing field. In the case φ→0, n = nparticle, the 

isolated particle will be affected by its own demagnetizing field. This demagnetizing factor viewed by 

a particle is ranging between nparticle and nsample. 

The final expression of the composite demagnetizing factor is found considering that there is only 

one magnetic field within the volume, but the magnetization is different for the particle and for the 

sample, thereby, an extra operation is needed to extract the sample demagnetizing factor. Equaling 

those factors will provide Neff: the demagnetizing factor of the composite.  

particleparticleeff nMMN         eq.IV.22 
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1
1

particlesampleeff nnN        eq.IV.23 

This composite demagnetizing factor does not range between 0 and 1 unlike the pure ferromagnetic 

one. Nevertheless, this property is still true for high concentration of particle, when φ→1, the 

effective factor Neff tends toward nsample . For lower concentration, values are greater than 1 and a 

divergence of that effective factor for the lowest concentration can be seen. In this case, when the 

concentration is very low, φ→0, the effective demagnetizing factor tends to infinity, so that the 

magnetization slope is null. Physically, the fewer the particles inside the composite, the harder the 

magnetization of the composite, still assuming the matrix is non-magnetic. Also, the magnetization is 

null for low concentrations. Considering the demagnetizing energy, we will find: 
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1
compositeeffd MNE         eq.IV.24 
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particleparticlesamplecompositeparticlesampled MnnMnnE  eq.IV.25 

The demagnetizing energy would not diverge regardless of the concentration. This energy, as viewed 

by the sample is the same as the one viewed by the previously considered particle. The magnetic 

energy is concentrated locally inside the ferromagnetic particles, but it can be homogeneously 

distributed over the whole sample volume. 

 

 

Fig. IV.7.  model of the magnetization of a Iron composite 
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Fig.IV.7. summarizes the behavior of a ferromagnetic composite for different filling factor and 

composite shape. 

II.2.1.2.2. Composite demagnetizing factor and composite susceptibility 

 

The effective composite demagnetizing factor can be generalized in a way as for a pure 

ferromagnetic material. The difference arises from the localization of the magnetization in the 

material. Only particles are magnetized. 

particlecomposite MM           eq.IV.26 

intHM pcomposite           eq.IV.27 

The internal magnetic field here is the applied field and the effective demagnetizing field in the 

composite: 

)( compositeeffextpcomposite MNHM        eq.IV.28 
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         eq.IV.29 
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1
11

1
      eq.IV.30 

The above equation (eq. IV.28) relates the magnetization to the external field. It can be rewritten as 

it was done for the pure ferromagnetic material (eq. IV.6) with a composite susceptibility:  

sample

c

eff

n
1

1           eq.IV.31 

Where c is the susceptibility of the composite. Identifying those expressions, eq.IV.30 and eq.IV.31, 

the effective susceptibility is: 

1
111

particle

pc

n         eq.IV.32 
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1
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1 particlep

p

c

n

        eq.IV.33 

We can notice that this formula, in the special case, nparticle = 1/3 for a spherical-shape particle, yields 

to the Maxwell-Garnett formula.  

)1(3

3

p

p

c
         eq.IV.34 

This relation gives the following expression of the susceptibility of such composite for low filling 

factor, considering this medium as randomly-filled by spherical particles. This has proved the validity 

of the Kneller model at low concentration of particles, in the range of validity of the Maxwell-Garnett 

expression. 

The effective demagnetizing factor for a composite is the summation of the geometrical 

demagnetizing factor, nsample, and a term including the effective composite susceptibility. Many 

expressions of composite susceptibility are available for any filling factor, any orientation of non-

spherical inclusions [Jyl] or for larger inter-particles interaction [Yin].  

 

 

 

 

 

II.2.1.3. Experimental 

 

The aim of such measurements is the characterization of both the saturation and the slope of 

the magnetization of the isotropic composites. Previously, it was shown that this magnetization slope 

was shape dependent in the case of ferromagnetic materials. Non-deformable composites were 

therefore used for the following experiments. These composites were prepared by mixing iron 

particles with a bi-compound Araldite provided from Bostik Findley. The particles and matrix were 

mixed together. The mixture was then degassed in a vacuum chamber at 1 mbar for 5 minutes to 

remove bubbles, molded into different shapes and finally kept at room temperature for 1 day to 
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harden the composite. The shapes of those samples were cylinder, ellipsoidal or spherical, Fig IV.9. 

Demagnetizing factor‘s dependence on the filling factor was also investigated. 

 

 

Fig. IV.9. Sample shape : cylinder, ellipsoid and sphere 

The magnetization curve is presented on Fig.IV.10 for different filling factors. As expected, the 

ferromagnetic composite magnetization curves are like pure ferromagnetic ones, linear until they 

reach saturation. That saturation is limited by the amount of ferromagnetic particles in the 

composite.

 

 

Fig. IV.10. Magnetization versus  the applied magnetic field for cylinder-shaped composite, c/a= 0.3, 

for different concentrations 

 

 

Magnetic saturation of randomly-filled composite is plotted as a function of the filling factor. This 

saturation is linearly dependent on the filling factor (Fig.IV.11) as expected from eq.IV.19: 
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Fig. IV.11. Magnetic saturation of randomly-filled composite versus the filling factor 

The experimental filling factor is thus extracted from the magnetization curve when the saturation is 

reached. In the table fig.IV.12 the different tested sample with their respective shape, with aspect 

ratio and the corresponding geometrical demagnetizing factor are presented. The measured 

saturated magnetization and filling factor are then provided and finally the effective demagnetizing 

factor of the composite is shown with both theoretical and experimental values. 

shape G Nshape Msat[T] φv NTheory Nexperimental 

cylinder 0,37 0,55 0,0567 2,73% 12,42 9,90 

cylinder 0,68 0,39 0,0557 2,68% 12,51 10,21 

cylinder 0,87 0,34 0,0513 2,47% 13,51 10,57 

cylinder 0,37 0,55 0,0507 2,44% 13,87 11,01 

cylinder 0,37 0,55 0,0433 2,08% 16,21 13,10 

cylinder 0,37 0,55 0,0158 0,76% 44,01 32,38 

cylinder 0,37 0,55 0,1230 5,92% 5,85 4,40 

cylinder 0,34 0,56 0,2215 10,65% 3,36 2,82 

cylinder 0,46 0,49 0,2121 10,20% 3,43 2,48 

cylinder 0,60 0,42 0,2079 10,00% 3,43 2,48 

Sphere 1,00 0,33 0,1008 4,85% 6,87 5,49 

Sphere 1,00 0,33 0,1077 5,18% 6,43 5,31 

Sphere 1,00 0,33 0,0619 2,98% 11,19 9,45 

Sphere 1,00 0,33 0,0303 1,46% 22,82 19,25 

Ellipsoid 1,34 0,26 0,0578 2,78% 11,92 9,99 

Ellipsoid 1,34 0,26 0,0305 1,47% 22,65 19,18 

Ellipsoid 1,34 0,26 0,4112 19,77% 2,61 1,41 
 

Fig.IV.12. Effective Demagnetizing factor of randomly-filled composites 
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As expected, for low filling factor, the effective demagnetizing factor is larger than 1; the maximum 

value measured was 32 (44 expected) for a sample with a filling factor of nearly 0.8 % and a 

geometrical demagnetizing factor nsample = 0.55.  

  

 

Fig. IV.13. demagnetizing coefficient of a composite versus the filling factor 

Theoretical and experimental values follow the same curve, but experimental values are lower than 

theoretical values for cylinders similar to ellipsoids or spheres. The effective demagnetizing factors of 

randomly-filled cylinders and ellipsoids are plotted on fig.IV.14 and fig.IV.15 respectively:  

 

Fig.IV.14. Effective demagnetizing factor of  cylinder randomly-filled composites 
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Fig.IV.15. Effective demagnetizing factor of  ellipsoid randomly-filled composites 

 

Fig.IV.14 and Fig.IV.15 show that the gap between theoretical and experimental values is not linked 

to the sample shape. The experimental value is always lower than the expected value. Experimental 

data are corrected as follow. The particles may have gathered into clusters. The composite can be 

seen as a dispersion of such clusters (Fig.IV.16). Moreover, a cluster is a local dispersion of particles. 

Because of this agglomeration of particles, the effective demagnetizing factor will be modified. 

If the clusters are well-dispersed in the matrix, we can use the Kneller model (eq.IV.23) with a 

volume fraction of clusters, φc, inside the matrix:   

1
1

_

*

c

clustereffsampleeff NnN        eq.IV.35  

Neff_cluster is the effective cluster demagnetizing factor which is calculated as the effective 

demagnetizing factor of particles.  
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Fig.IV.16. model of the composite with clusters of particles 

 

We once more applied the Kneller model to have the expression of the demagnetizing factor of the 

cluster, assuming that particles are also well-dispersed inside a cluster, with a fraction of particles per 

cluster of φpc and having its own demagnetizing factor n cluster _shape: 

1
1

__

pc

pshapeclusterclustereff nnN       eq.IV.36 

 

The fraction of clusters in the composite and the fraction of particles per cluster are linked by:  

pcc           eq.IV.37 

In the case of filled clusters, φpc =1, the eq.IV.36 is reduced as Neff_cluster= n cluster _shape, the eq.IV.35 is 

alike the eq.IV.23 (φc = φ); clusters have the role of filler of the matrix. The case of the composite 

filled by cluster cannot be treated with this formula. Having φc =1 means the cluster occupies the 

whole volume of the sample, so that, the demagnetizing factor of the cluster, n cluster _shape, must be 

the equal to the sample one. However, such composite can be treated by using directly the eq.IV.23 

and switching φc by φ and n cluster _shape by n sample. 

If the clusters are spherical, ncluster_shape = 1/3, the expression of the effective demagnetizing factor 

*

effN of a composite with local cluster of particles is: 
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sampleeff nN
11

3

1*        eq.IV.38 

Comparison of the expression 
*

effN and the theoretical Kneller model demagnetizing factor effN yields 

to: 

0
1

1
3

1*

pc

effeff NN         eq.IV.39 

As shown with the eq.IV.39, a composite with spherical cluster of particles, presents a smaller 

effective demagnetizing factor
*

effN  than the well-dispersed given by the Kneller model effN . This 

difference means that experimental samples are not randomly filled. Clusters are present in the 

tested composite.  

II.2.2. Field structured composite 

 

In the expression of the effective demagnetizing factor, Kneller assumed that particles were 

affected by a vicinity field, which was set as the field created by the surrounding cavity in a 

homogenized medium. It has been proved that this model can be seen as the summation of the 

sample demagnetizing factor and the invert composite susceptibility (eq.IV.31). The above expression 

of the Kneller (eq.IV.23) provides The Maxwell-Garnett susceptibility (eq.IV.34).  We are now 

interested in the case of a structured composite. Invert calculation, based on the susceptibility of 

such material, will provide an expression of the effective demagnetizing factor of the structured 

composite.  Martin & al. give the following expression of the anisotropic susceptibility [Mar2] for 

spherical particles structured composites: 

)1(3

3

zwp

p

w        eq.IV.40 

 

Where w is the susceptibility of the anisotropic composite along the axis w of measurement and p is 

the ferromagnetic particle susceptibility. z is a parameter depending on the structure (chain-like, 

sheet-like or random). In the case of a random distribution, this parameter is null, leading to the 

Maxwell-Garnett expression. Fig.IV.17a presents the different values, numerically evaluated for this 

parameter, in the case of column-like structure of the particles, for different filling factor. w is an 
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anisotropic constant linking the direction of measurement and the direction of the particle structure 

in the way that w=-2 if the two directions are the same and w=1 otherwise. This susceptibility 

depends therefore on the axis of measurement of the magnetization. 

 

φ z (chain) 

0% -0.301 

5% -0.263 

10% -0.246 

15% -0.232 

20% -0.211 

25% -0.187 

30% -0.162 

40% -0.115 

50% -0.07 

 

 

 

Fig. IV.17a. Table of 

calculated values of z 

[Mar2] 

Fig. IV.17b. Filling factor behaviour of z/ . 

 

Since the ferromagnetic particles’ susceptibility in eq.IV.40 is larger than 1, this equation, hence 

injected in eq.IV.31 provides the effective demagnetizing factor for the anisotropic composite: 

1
1

3

1 zw
sampleeff nN        eq.IV.41 

This expression is roughly the same as in the case of the MRE. In this case with a random structure, 

the parameter z is null, leading to the expression of MRE factor. The effective factor is the 

summation of the geometrical factor and the composite term as for the MRE, but an anisotropic 

term is added here. Assuming that the direction of the particle is chain-like and the measurement 

direction are the same, w=-2, this expression could be written to ease the comparison of the 

structured and randomly-filled composite demagnetizing factor: 
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z
particlerandomeffstructeff nNN

2
__

       eq.IV.42

 

Eq.IV.42 shows that the effective demagnetizing factor of a structured-composite can be split in two 

components. The first term is the factor of the randomly-filled composite whereas the second term 

provides the behavior of the composite’s inner structure which behaves as shown in Fig.IV.17b. Two 

samples were made to check this shift of the effective demagnetizing factor when the composite is 

structured. The shift is large for low filling factor. For these samples, the filling factor was then 

chosen at 3% to enhance this effect. One has hardened without a magnetic field, yielding to a 

randomly filled composite, whereas the second one has hardened with an external induction. 

 

Fig.IV.18. Magnetization curve of a randomly-filled (dot-line) and a chain-like structured (strait-line) 

composite 

 

 

Magnetization curve of a chain-like distribution of the particles is presented above in fig.IV.18. The 

magnetization is measured in the applied field so that the directional parameter w=-2 and the filling 

factor is low enough to enhance the structure parameter z. Such composites are easier to 

magnetize than randomly-filled composite; a lower magnetic field will saturate it but the same state 

of magnetic saturation is reached. As seen in Fig.IV.11 and in the Fig.IV.18, the effective 

magnetization in the saturated state is proportional to the total amount of magnetic material in the 

composite volume, no matter how the distribution of the particles is.
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III. Conclusion 
 

In this chapter, the magnetization of a non-magnetic matrix filled by ferromagnetic particles has 

been studied through the knowledge of two important parameters: the saturation at high magnetic 

field and the magnetization slope at low magnetic field. The saturated magnetization of the 

composite is simply the saturated magnetization of the ferromagnetic particle times the filling factor. 

It does not depend on the distribution of the ferromagnetic particles. The magnetization of the 

composite at low applied magnetic field is ruled by the demagnetizing field. Composite being made 

of non-magnetic materials, the effective demagnetizing factor can be larger than 1 (which is the 

larger value in a case of a pure ferromagnetic material). This effective demagnetizing field of a 

composite includes a term, nsample, which is a function of the aspect ratio of the sample.  The second 

term is determined by the filling factor and the distribution of the particles inside the composite. This 

second term can be evaluated by the measurement of the composite susceptibility.  
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Shape effect on the 

magnetostriction 
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I. Introduction 
 

In this chapter, we present another way to model the magnetostriction, based on energetic 

calculations. The magnetostriction is a phenomenon which is the combination of two factors, the 

magnetic stress and the mechanical strain. The stress is caused by the apparition of forces within the 

magnetic material, submitted to a magnetic field. In the following section, we will focus on the 

magnetic stress induced in a uniform magnetic field. Forces are self-generated by the material unlike 

to those generated by an external gradient of field, called magnetophoretic force [Zri2]. In the 

previous Chapter (3), calculation of dipolar forces on the particles has led to several conclusions: 

 The force is due to interactions between ferromagnetic particles dispersed within the matrix; 

thus, applied uniform magnetic field has no effect in the force calculation. 

  The macroscopic force is shape dependent. The flatter the disk, the larger the force. 

  The force results from the pair interactions between particles with magnetic moment m. It is 

then dependent on the square of m. 

Effective magnetic stress will be presented but also the effective elastic response of the composite. 

Magnetic and mechanical properties depend on the filling factor. The filling factor of a randomly 

filled composite will also be discussed for its effect on the magnetostriction behavior. 

 

II. Experimental 
 

II.1. Composite characterization 
 

To test the shape effect, cylindrical samples with different aspect ratios defined by length  

divided by the diameter were prepared. Aspect ratio ranged from 0.33 to 1.46. These samples have a 

filling factor set as 30% vol. to allow a large deformation. A sphere (with diameter 196 mm and the 

filling factor 28% vol.) was also prepared to test another shape. 
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Fig. V.1. Cylinder-shaped samples with different aspect ratio 

 

Another set of samples were prepared in order to have the filling factor effect. Magnetostriction 

measurements as well as Young modulus were recorded for samples with different filling factors. 

These samples had an aspect ratio set at 0.62. The experimental filling factor ranged from 5 % to 35 

% (vol.).  

 

II.2. Results 
 

Magnetostriction versus the applied magnetic field of samples with different aspect ratio is 

presented in Fig.V.2. The dilatation of the composite increased with the increment in applied 

magnetic field. Then, magnetization of those composite is saturated, resulting in a saturated state of 

magnetostriction. Hysteresis is thought to be the consequence of decohesion between the particles 

and the silicone matrix. 

Dependence on the aspect ratio effect of the saturated state of magnetostriction of 30% vol. 

filled composites is plotted in Fig.V.3. The largest strain appears for the smallest aspect ratio.  The 

strain at saturation for the smallest aspect ratio (0.33) is 2.6 times larger than for the largest (1.46). 

Thus, we can reach a strain of 9.2% for an aspect ratio of 0.33. The difference is the same for the 

demagnetizing factor of the cylinder. For a ratio of 0.33, the demagnetizing factor is 2.5 times larger 

than for the demagnetizing factor of the 1.46 ratio sample. This curve is presented in Fig.V.8b, 

showing the linear relationship between strain and samples demagnetizing factor.  
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Fig.V.2: magnetostriction versus the applied magnetic field for different aspect ratios 

 

 

 

 

Fig.V.3: Saturation magnetostriction versus the aspect ratio 
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III. Model 
 

III.1. Magnetic energy 

Calculation of magnetic force on the composite is made by the knowledge of the interacting 

particles energy in the composite. It has been shown that dipolar interaction between particles 

explains the positive magnetostriction of a randomly filled composite [Dig]. 

The energy E of interaction of a magnetic particle, with a magnetic moment m, in a magnetic 

induction B is given by: 

BmE


          eq.V.1 

In the third Chapter, inter-particles forces were calculated using this interaction energy and was 

further derived into a force expression. Calculation was made from the point of view of a particle. 

Now we will expand the calculation on the whole set of magnetic particles and consider this set as an 

equivalent magnetic body with effective parameter.  Thus, the energy ED of interaction of a set of n 

magnetic particles is: 

n

i

n

ijj

ijiD BmE
1 ,12

1 
        eq.V.2  

where Bij is the magnetic induction on the moment mi created by all the other moments mj (See 

eq.III.1). This dipolar energy is the work for gathering isolated magnetic moments into the volume. 

The ½ factor is added to avoid the double summation of reciprocal terms. In this energy, a shape-

dependent term can be extracted; the demagnetizing energy.  

In the case of the MRE composite, which is described as a set of magnetic moment randomly 

dispersed in the volume, we can write demagnetizing energy seen in Chapter 4 as: 

compositecompositeeffd VMNE 2

0
2

1
       eq.V.3 

This energy is then converted into mechanical energy through the strain. Change of size therefore 

leads to a reduction of the demagnetizing energy of the composite [Lan2]: 

compositeeffcomposited VNME 2

0
2

1
       eq.V.4 
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But, looking carefully on the expression of the composite demagnetizing factor, 

1
1particlesampleeff nnN        eq.V.5 

only the demagnetizing factor of the sample is shape-dependent shape. Moreover, the fact that the 

particles are magnetically soft and spherical induces no changes in their own demagnetizing energies 

(on the contrary, a flake particle would rotate during the strain due to the conservation of the 

volume of the elastomer and then its demagnetizing field would change).  

Thus, in our case, only the demagnetizing factor of the sample plays a role. When 

magnetized, the composite has energy linked to its shape, which is available for the strain. As the 

sample is flat and the energy is large, the only possibility to reduce that energy is to increase the 

aspect ratio. That means as the sample elongates and the strain is positive as seen in Fig.V.4 below: 

 

 

Fig.V.4: Demagnetizing factor decreasing as the sample elongates 

 

Now that the qualitative description is made, we can provide a quantitative evaluation of the strain. 

This change of demagnetizing energy dEd can be evaluated as a function of the strain by the variation 

of the sample demagnetizing factor dnsample.  

sampleeff dndN          eq.V.6 
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Considering a cylinder with length c and diameter a, with all the surface of that cylinder free to 

move; submitted to the magnetic field, the reduction of the demagnetizing energy results in a 

change of length dc and also a change of diameter da as seen in Fig.V.5; the sample experiences a 

strain: 

a

c
dn

a

c
d

a

c
d

dn
dn sample

sample

sample

'       eq.V.7 

The derivative form of the demagnetizing factor with respect to the aspect ratio is introduced. During 

the transformation, the differential of the aspect ratio is calculated using the elongation defined by ε 

and the Poisson ratio ν, as: 

)1(
a

c

a

da

c

dc

a

c

a

c
d        eq.V.8 

 

 

Fig.V.5: Dimensions changes of the cylinder 

 

During the transformation, the change of the demagnetizing factor of the composite is set as: 

)1('

a

c
ndN sampleeff         eq.V.9 
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III.2. Elastic response of the composite 
 

Elastomers are known to exhibit visco-elastic behavior under external solicitation. The response 

can be written as the response is the sum of viscous and elastic force. The Voigt model, consisting of 

a spring and a damper in parallel, has been widely used as a first approximation to evaluate the 

damping or stiffness of viscoelastic materials. 

Viscoelastic stress can be split into 2 components: ςelas and ςvisc which are the elastic and the 

viscous stresses respectively.  





visc           eq.V.10 

where the viscous stress is time-dependent, and  is a viscous constant. This viscous stress accounts 

for the relaxation behavior of the magnetostriction of the composite when the magnetic field is 

switched off [bed]. In our case, we are interested in the magnetostriction at the saturate state, 

where the composite reaches a steady state ( 0

 ). The remaining visco-elastic term is the elastic 

force which is written as: 


Eelas           eq.V.11 

The general form of the elastic energy is defined as: 

compositeijijelas VE
2

1
        eq.V.12 

Considering a change of shape at constant volume, this elastic energy can be written as [Lan]: 

compositecompositeelas VEE 2

2

1
       eq.V.13 

with Ecomposite is the effective Young modulus of the composite.  

 

 

 

 

III.3. Strain of the magnetized composite 
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The total change energy involved in the transformation is then written as the sum of the change of 

demagnetizing energy and the elastic energy: 

compositecompositecompositesamplecompositetot VEVnME 22

0
2

1

2

1
)(    eq.V.14 

 

Fig.V.6 Variation of the total energy versus the strain for different aspect ratio 

 

The whole energy plotted as a function of elongation is presented in Fig.V.6. This curve shows the 

conversion of the demagnetizing energy into elastic energy. For small strain, the energy decreases, 

which means the demagnetizing energy is dominant. Then the total energy reaches a minimum and 

increases for larger strain. From this minimum, the elastic energy is the dominant component of the 

total energy. The effective elongation ε is calculated via minimizing this energy with respect to the 

elongation:  

0
)(

d

dEtot
         eq.V.15 

 

which is rewritten as: 
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0
2

1

2

1 2
2

0
d

d
EV

d

dn
VM compositecomposite

sample

compositecomposite    eq.V.16 

0)1(
2

1 '2

0 compositesamplecomposite E
a

c
nM      eq.V.17 

The final expression of the elongation of the M.R.E. when submitted to an external and 

homogeneous magnetic field is:  

)1(
2

'

2

0

sample

composite

composite
n

a

c

E

M
       eq.V.18 

Due to the negative values of the derivative of the demagnetizing factor and the minus sign 

and all the others positive parameters M², Young modulus Ecomposite, aspect ratio c/a... the elongation 

is always positive as seen in Fig.V.7 

 

 

Fig.V.7 Strain and alternative applied field on a time scale 

 

The applied field magnetizes the particles. Interaction of these particles is a pair function of 

the particle magnetization. Inversing the direction of the field does not change the direction of the 

strain. 

Experimental data and the model are compared in Fig.V.8a as function of the aspect ratio. 
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Fig.V.8a Maximal strain as  function of the aspect ratio 

 

Calculated strain and experimental data are in similar. However, theoretical values are 

slightly larger than experimental measurement and exhibit a maximum, which is not the case for 

experimental data. This might be explained by dissipative mechanisms within the matrix (such as 

decohesion, damage, etc.) having energy cost which is not taken into account in the model. 

Measurements were made for 30% vol. particle content, for which such damages are expected. 

Experimental difficulties prevent us from checking the expected maximum strain. 
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Fig.V.8b: Saturated magnetostriction versus the demagnetizing factor of the sample. Squares 

represent cylindrical sample and the circle  dot corresponds to a spherical sample  

 

III.4. Case of a spherical composite 

 

Experiments were made on cylinders; however, the model presented above was build without 

any specific shape, so that it has to be valid for another kind of shape. To check this point, a 28 % 

filled sphere has been made. That M.R.E. sphere is shown unstrained in Fig.V.9a without field and  

strained in Fig.V.9b, when placed inside a homogenous magnetic field. 

 

  

Fig.V.9a Spherical sample(D=19.6mm)without 

external field (B0=0T) 

Fig.V.9b Spherical sample with external field 

(B0=1.2T) 
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Applying the maximum magnetic field yields the sphere to its saturate magnetostriction a 4.8%.  

The sample demagnetizing factor for a sphere is 1/3, so that when compared with the plot of the 

strain versus the demagnetizing factor as shown in fig.V.8b, the sphere and the cylindrical samples, 

are behave in similar ways.   

 

 

IV. Filling factor effect 
 

 

The filling factor   is defined as the ratio of the volume of all the particles that fill the matrix over the 

total volume; 

sample

particle

V

V
          eq.V.19 

Both elastic constant and magnetization, and so the macroscopic behavior, are function of . 

 

IV.1. Effect on the magnetic stress 
 

 

The magnetization of the composite at the saturate state is proportional to this parameter leading to 

a quadratic dependence of the magnetic stress on this filling factor:   

sat

particle

sat

composite MM          eq.V.20 

 

Therefore, the magnetic stress is a quadratic form of the filling factor: 

2

mag           eq.V.21 

 



116 
 

 

 

IV.2. Effect on the elastic constant 
 

The effective Young modulus of the composite depends on the distribution of the particles [Zri1], on 

the filling factor  and on the Young modulus E0 of the unfilled composite. For a composite randomly 

filled by hard particles, various relationships of the Young modulus for such composite have been 

given versus the particle concentration in the matrix.  

 For a dilute composite, the Einstein model, initially developed to express viscosity of dilute 

suspensions, is a good approximation. It has been used by Zrinyi for a 5% (wt) filled polymer [Zri1]: 

5.21
)(

0E

E
         eq.V.22 

 For larger filling factor, the Guth & Gold law [Gut1, Gut2], provides the behavior of the modulus of 

a random and diluted distribution of hard spheres inside an elastomer and is given by: 

2

0

1.145.21
)(

E

E
        eq.V.23 

 For a filling factor larger than the percolation threshold, the Young’s modulus can be expressed 

using the empirical formula derived from the Maron-Pierce [Mar, Cro, Pab] relation as: 

2

*

0

1
)(

E

E
         eq.V.24 

where * is defined as a maximum packing fraction. When  = *, the effective Young’s modulus 

diverges. This maximum packing fraction of isotropic composite can be evaluated from well known 

values for cubic lattices: 0.52 for “simple cubic” (CS), 0.68 for “body-centered cubic” (BCC), 0.74 for 

“face-centered cubic” (FCC). Moreover, for a random dispersion of spheres, Jaeger and Nagel (1992) 

[Jae] have found *=0.64.   
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Fig.V.10a Einstein model Fig.V.10b Guth & Gold model Fig.V.10c Percolation model 

 

Einstein relationship for the relative Young modulus of a suspension of uniform hard sphere is valid 

only at extremely low value of concentration. At higher concentrations, particle interactions become 

significant, yielding to the non-linear relation like the Guth & Gold proposed. Larger concentrations 

induce the formation of aggregates. Bonded polymer does not participate to the whole elasticity, 

which means that the composite will highly increase its elastic modulus. 

 

 

Fig.V.11: Young modulus versus filling factor. E0=0.14 MPa 
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Fig.V.11 presents the measured Young modulus of MRE with filling factor ranging from 0 to 35%. On 

this curve the above mentioned three models of modulus are also plotted. Einstein model and Guth 

& Gold are not reliable for high filling factor as expected. Measurement data were therefore fitted 

using an empirical model taking into account the percolation effect; the value of the experimental 

maximum packing fraction * was found as 54%. This fitted curve is also presented on the Fig.V.11. 

This value of 54% vol. is smaller than the theoretical one (0.64%) maybe because the aggregates are 

formed during the sample processing  

 

IV.3. Effect on the magnetostriction 
 

Magnetostriction is a competition between the magnetic stress and the ability of the composite 

to response to that stress. For a large deformation, the ideal would be a large magnetic stress and a 

low Young modulus. Increasing the magnetic stress without any other source of gradient field would 

need an increment of the magnetic particle, i.e. an enhancement in the filling factor. Indeed, the 

magnetization is a quadratic function of that filling factor (eq.V.27). At increasing filling factor the 

magnetization increases but also the material stiffness. The knowledge of the Young modulus 

dependence on the filling factor is therefore the important key to determine the filling factor 

influence on the magnetostriction. 

Fig.V.12 presents the measured saturate magnetostriction of MRE with filling factor ranging 

from 0 to 35%. Theoretical curves of the magnetostriction are plotted using the Maron-Pierce and 

the Guth & Gold equations for the Young modulus. The curve using the Guth & Gold model does not 

present a maximum value and increases continuously with the filling factor. The curve using the 

Maron-Pierce equation presents a maximum for 27%.  This optimal op value, where the saturated 

magnetostriction amplitude is the largest was experimentally found between 25% and 30%. 

 



119 
 

 

Fig.V.12 Saturated magnetostriction versus filling factor 

 

Between those 3 expressions of the effective Young‘s modulus, the Maron-Pierce equation, 

unlike the two other equations, can be used to find an optimal op value giving the filling factor 

resulting in a maximum value for the saturated magnetostriction, such as: 

2
0

*

op
z

d

d
         eq.V.25 

Using the experimental value of * of 54%, we have a value for op of 27%. 
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V. Conclusion 
 

In this Chapter, we investigated the effect of the sample shape, mainly through the shape factor 

of cylindrical samples. We compared also our data with data obtained for spherical sample effect; 

both experimental and theoretical data provided a dependence of the magnetostriction on the 

sample demagnetizing factor. We have measured a 9.2% saturated strain for a flat sample and 30% 

filled composite. Dipolar interaction between the particles leads to square dependence of the 

magnetic stress on the filling factor. However, the elastic response of a composite material depends 

even more on the filling factor at high concentration (especially close to the percolation threshold). 

Due to the competition between the increase of magnetic stress and the composite stiffness at 

increasing the magnetic particles concentration, a maximum strain is obtained for a filling factor of 

27%. This is fully consistent with our prediction for which the maximum is reached at half of the 

maximum packing factor, if we consider that this maximum packing is 54% vol. 
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Introduction 

Bednarek [Bed1] and Guan [Gua1] have experimentally demonstrated the effect of the particle shape 

on the elongation of the composite in the presence of an applied magnetic field. Their works show 

how a magnetic torque deformes the composite, but are essentially qualitative. Lanotte [Lao1, Lao2] 

suggested a mathematical model of this phenomenon linking the rotation of the particle, within the 

elastic matrix, to the presence of the magnetic field. Rotation of the particles results to a 

macroscopic strain of the composite. Lanotte has also considered the inverse phenomenon where an 

applied stress changes orientation of the particles. Here, we focus on the macroscopic strain induced 

in hard magnetic particles composites placed in a homogeneous applied field. Hard magnetization 

has a memory effect i.e. it depends not only on the applied field but also on the precedent state 

unlike soft magnetization which is solely a function of the applied field at a given time. This special 

effect induces a special behavior on the magnetostriction curve of such composite. 

 

I. Model of Lanotte 
 

The case of the irregular particles embedded in the matrix, submitted to a homogenous magnetic 

field has been widely studied by Lanotte. Those articles were focused on the change of the 

composite magnetization, ZZZ MMM '
, when stressed or placed in the presence of an 

external magnetic field. He used soft particles with shape anisotropy [Lao2] magnetic behavior with 

the aim of designing a sensor [Lao1] device. 

 

Fig. VI.1: Lanotte model of the rotation of a magnetic moment in an elastic cell when placed in a 

magnetic field [Lao1] 
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Two effects are needed for the deformation of an elementary volume: Magnetic torque and the 

elastic torque (response). The magnetization of the particles is initially characterized by an angle θi, 

between the applied magnetic field (H) and the Z-axis direction. The magneto-elastic torque balance 

is written as; 

kHmµ i )sin(0         eq.VI.1 

Where k is the torsional elastic constant. Considering the resulting rotation θ small,  

k

Hmµ i )sin(0          eq.VI.2 

That resulting rotation θ is defining a strain. In this way, he also shows the importance of the initial 

angle θi. If the average of this angle over all particles is close to 0°, it will provide a minimum effect 

which is simply explained by the fact that pre-aligned particles won’t feel any torque. Best case for 

the change of the apparent magnetization happens when the particles are directed with an average 

angle is close to 45 °. A randomly-oriented particles composite is an intermediary state in the effect.  

In our case, we focus on the strain in composites made of hard ferromagnetic particles; because the 

particles are hard (keeping a magnetization at zero field), the strain will depends on the sign of the 

applied field. As an example, the strain observed with a positive applied field (relatively to the first 

magnetization) is positive (Fig.VI.2a) whereas a negative field results in negative strain (Fig.VI.2b). Of 

course, this is true only if the viewed field is lower than the coercive field, preventing the 

magnetization to change its sign. 

 

  

Fig.VI.2a:Composite, with hard particles, exposed 

to an induction parallel to the magnetization 

Fig.VI.2b:Composite, with hard particles, exposed 

to an induction antiparallel to the magnetization 
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II. Model with the whole internal field 
 

In the model described above, composites were filled by few particles. Thus, particles were assumed 

to have no interactions with each others; they were in interaction only with the external field. Now, if 

we consider the composite with larger filling factor, the magnetic field acting on the particle is no 

more just the applied field but we also have to take into account the magnetic field produced by the 

other particles. 

A single magnetic particle interacts with the composite internal field. This field is therefore expressed 

as the sum of the external field plus the field created by the particles: 

compositeHHH


0int
         eq.VI.3 

with H0 as the applied field, the one used by Lanotte in his model. The magnetic field produced by 

the composite is a complex calculation since each particle has its own magnetization. Consequently 

this magnetic field is estimated though the composite magnetization, which is the volume average of 

all the ferromagnetic particles magnetization within that volume: 

particlecomposite MM


        eq.VI.4 

Where φ stands for the filling factor and 
particleM


is the average magnetization of the particles 

inside the considered volume. 

 
 

Fig.VI.3a: orientation: Space direction of a 

moment carried by a magnetic particle 

Fig.VI.3b: System of moment with a distribution 

of orientation  



127 
 

Considering that the applied magnetic field is axial and the strain has an axial and a transverse 

component, only the θ parameter changes during our experiment. A particle magnetization is 

expressed in spherical coordinates (Fig. VI.3a) as: 

])cos()sin()sin()cos()[sin( zpyppxppparticleparticle uuuMM


 eq.VI.5 

Where the inclination θp and azimuth φp are those of the particles without magnetic field or 

mechanical strain and θ is the resultant rotation of the particle due an applied mechanical or 

magnetic stress and the elastomer response.   

When the particles get magnetized for the first time by an applied magnetic field directed in the z-

axis, all particles exhibit a positive axial component to decrease the Zeeman interaction energy. 

Then, as the applied field sweeps different values, the inclination θ will change. In contrary, nothing 

set the particles azimuth φp. As a result of this, the particle average magnetization of the set of N 

particles is: 

N

particleparticle M
N

M
 1

        eq.VI.6 

zpparticleparticle uMM


)cos(       eq.VI.7 

We will consider the particles magnetization direction placed on a cone defined by the semi-angle θp 

as seen below in fig.VI.4a and having all the same value. 

 
  

Fig.VI.4a. Magnetization of a 

unit cell at rest 

Fig.VI.4b. Magnetization of an 

elongated unit cell 

Fig.VI.4c. Magnetization of a 

contracted unit cell 
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So that, the composite is using eq.VI.4 and eq.VI.7, expressed as: 

zpparticlecomposite uMM


)cos(       eq.VI.8 

The average magnetization is expressed as a magnetization along the cylinder axis with its amplitude 

proportional to the particle magnetization and the filling factor. As seen, in the chapter 4, a uniformly 

magnetized cylinder generated a demagnetizing field expressed as: 

compositesampled MnH


        eq.VI.9 

Finally, the magnetic field inside the composite is written using eq.VI.9 into eq.VI.6 as: 

zparticlepsample uMnHH


))cos(( 0int
     eq.VI.10 

Using this equation we can define the magnetic torque acting on a magnetic particle; this torque is 

created by the difference of direction of the magnetization and the local magnetic field: 

particleMH


int
         eq.VI.11 

The internal field is the combination of the external field and of the demagnetizing field. Torque can 

be split in 2 components resulting in each of these fields. 

d


0           eq.VI.12 

With the corresponding definition of these components: 

)sin( pparticleOparticleOO MHMH


     eq.VI.13 

We have found in eq.VI.13 the magnetic torque as used by Lanotte in eq.VI.1. 

)cos()sin(2

ppparticleparticledd MMH


    eq.VI.14 

Applying a magnetic field will rotate the particle by an angle θ, yielding to the strain in the 

composite. Fig.VI.4b and fig.VI.5c shows the relation between the strain and the resultant change of 

direction of a particle’s magnetization. Hence, an elongated unit cell decreases that angle unlike the 

case of a contracted cell which increases it. 
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III. Experimental 

 

III.1. Hard magnetic particles 
 

 

MPQ-S-11-9 and MQP-D are hard particles, provided by MAGNETQUENCH with different shapes; 

MPQ-S-11-9 particles are fine particles with a spherical morphology; median size d50 is 35-55µm 

whereas MQP-D particles present a flake-like shape. These particles are manufactured in such a way 

that they exhibit an isotropic magnetization; the magnetization is in the same direction as the 

applied field. Fig.VI.5a and 5b show SEM picture of these particles.  

 

  

Fig. VI.5a: SEM picture of the magnetic particles 

MQP-S-11-9 

Fig. VI.5b: SEM picture of the magnetic particles 

MQP-D 

 

 

Magnetization has been measured as a function of the applied field and is shown in Fig.VI.6 for field 

ranging from 0 to 7.2 Tesla (to get a first magnetization curve), then looping between -7.2 and 7.2 

Tesla.  A saturation, µ0M=1.34 T is measured for these particles. Important data extracted from this 

curve are the remnant magnetization and the coercive field measured at µ0Mr=0.74 T and µ0Hc=0.9 T 
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respectively. Experimental strain curve were measured in a maximal field of 1.2T, therefore another 

magnetization measurement was performed to get the pertinent values of magnetization.  

Magnetization reached for the maximal applied field of 1.2 T is µ0M=0.80 T, the remnant 

magnetization is µ0Mr=0.51 T and the coercive field for this loop is µ0Hc=0.8 T. 

 

 

Fig.VI.6 Magnetization curve of MQP-S-9-11 versus applied field. Maximal field applied were 1.2 T in 

blue and 7.2T in purple. 

 

 

III.2. Composite strain versus the applied magnetic field 
 

 

III.2.1. Fist magnetization loop 

 

In the following experiments, we investigated the strain while the sample is exposed to magnetic 

field for the first time. The samples used were not magnetized before. First, a composite sample, 

filled by non-spherical particles 20%vol., with an aspect ratio of 0.36 was made. Its strain was 

recorded for applied field increasing from 0 to 1.2 T, then decreasing to -1.2 T and going back to 0 T.  
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Fig VI.7: First magnetostriction loop 

 

Fig VI.7 presents the measurement of the magnetostriction versus the applied field. Unlike to 

the case of iron/silicone samples (Fig.V.7) where the magnetostriction was positive for positive or 

negative applied field, the magnetostriction of composite based on hard magnetic particles is 

positive for a positive applied field and negative in the other case. The magnetostriction presented in 

the previous chapter was a quadratic function of the magnetization (M²); a first consequence of this 

observation (Fig.VI.7) is the necessity to add the effect of the applied field.   

When the applied field becomes zero the remnant strain is negative. In the chapter 3, we 

have supposed that the remnant state, which was positive, was a consequence of the mechanical 

damage between particles and the matrix. This cannot explain the observed negative value. At this 

point, we can say that the particles being magnetized in the first segment keep a remnant value 

when the applied field goes to zero. Shape effect, i.e. minimizing the average demagnetizing energy 

as discussed in chapter 5, would produce a positive (M²) remnant strain. Our experimental results 

suggest a different mechanism. The average magnetization of the particles is along the cylinder axis 

and then produces a demagnetizing field along that axis but in the opposite direction. This negative 

axial field can interact with the positively magnetized particles; this interaction result in a negative 

strain as discussed in the above model. 

To check the effect of the demagnetizing field, 20%vol. samples with different aspect ratio 

(0.80, 0.64 and 0.36) were made.  Those samples were placed in the device to track the 
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displacements induced by the applied magnetic field.  In Fig VI.8, the magnetostriction curves are 

presented. Data are limited to field values down to -0.4 T: during the experiments, the longest 

samples were very sensitive to a macroscopic magnetic torque; they started getting bended with 

high negative field values which is not the effect we are looking at. We are interested in the strain at 

a zero applied field after a first magnetization which can be seen on this curve. 

 

 

Fig VI.8 : magnetostriction curve as a function of the aspect ratio 

 

In Fig VI.8, the resulting magnetostriction curves are plotted for 3 different aspect ratio 

parameter c/a (0.36, 0.64 and 0.80). Samples were not magnetized before the experiment. 

Magnetostriction curves increase in the first segment, when external magnetic field rises from 0 T to 

1.2 T with their respective amplitude increasing as the aspect ratio is lower. With the applied field, 

particles are magnetized which yields to an axial magnetization of the composite and therefore a 

demagnetizing energy linked to the aspect ratio of the samples. This results in a strain explained by 

the demagnetizing energy as discussed in the previous chapter. By the way, the applied field also acts 

on the particles by a magnetic torque, enhancing the resultant rotation of the particles. When the 

magnetic field decreases, the strain is also decreasing and becomes null before the magnetic field 

goes to zero. It can be seen that the magnetostriction values are negatives when a zero external field 

is applied for any aspect ratio. Hard magnetic particles keep their remnant magnetization, so that a 

demagnetizing field is still present. Besides, in zero external field, this demagnetizing field is larger as 
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the aspect ratio is lower.  This behavior impacts on the magnetostriction value at zero field. The 

amplitude (in absolute value) is larger when the sample aspect ratio is lower.  

For negative applied field, we can see in Fig.VI.7 that the strain is also negative. Moreover, the strain 

is larger in absolute value than the strain due to the first magnetization. This can be explain by a 

larger internal field when the applied field is negative (but still does not reach the coercive field) than 

for the case of a positive applied field. This is discussed below.  

 

III.2.2. Coercive field 

 

The magnetization loop of the hard magnetic powder with a largest field of +/- 1.2 T is 

presented in Fig.VI.6. Magnetization was found to be null at 0.8 T. Considering that the strain results 

from interactions like magnetization times magnetic field or magnetization times magnetization, no 

strain should be measured at this value. However, the experimental curve (Fig.VI.7) shows that the 

strain is negative (not null) for applied negative field up to the maximal field of 1.2 T. An explanation 

is provided by the distribution of the orientation of magnetic moment inside the composite.   

The internal field on a particle can be expressed as the sum of the applied field and the 

demagnetizing field (resulting from the magnetized particles): 

dHHH


0int          eq.VI.15 

 

  

fig.VI.9a: distribution of moments inside the 

composite placed in the internal field 

fig.VI.9b: If the internal field increases enough, 

the moments with low angle can be reversed 
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Considering than the particles are magnetized (positively), they are creating a demagnetizing 

negative field. For an applied negative field, but still above the coercive field value, the particles 

magnetization remains positive.  Then, both the applied field and the demagnetizing field are 

negative; eq.VI.15 shows that the resulting internal field reaches values larger than the solely applied 

field. Interaction between particles and that internal field is then larger than when the applied field 

was positive; this results in a larger magnetostriction, in absolute value, when the applied field is 

negative than when it is positive as seen in Fig.VI.7. 

Hard magnetic particles have a large magneto crystalline anisotropy. Any rotation of the 

magnetic moment inside the particle is avoided by this magneto crystalline anisotropy. Therefore, we 

assume that the magnetization remains along the anisotropic axis.  The amplitude of the 

magnetization of a particle, which presents an angle relatively to that field, is a function of the field 

on the particle. A correction of that field has to be taken into account. A particle with a relative angle 

θp for the cylinder axis (field axis) is affected by an effective field, which is the projection of the 

internal field (relatively to the composite) on that particle expressed as (without strain): 

)cos(int psee HH          eq.VI.16 

This equation provides the magnetic field that rules the magnetization of a particle. In this 

way, the field that should reverse the particle magnetization is different from the magnetic field 

inside the composite and therefore from the applied field. Moreover, the composite being a set of 

particles with random orientations inside the volume, each particle will experience a different value 

of magnetic field (eq.VI.15). This equation also shows that particles with a low angle θp can easily 

reach their coercive field, whereas those with larger angle θp need a larger applied field to reach their 

coercive field.  

A distribution of orientation of particles results into a distribution of the apparent coercive 

field. As seen in Fig.VI.9a & Fig.VI.9b, only particles with a low angle θp can easily reverse their 

magnetization as opposed to the others with a large angle. The impact of this distribution of coercive 

field appears clearly in Fig.VI.7. For an applied field close to -0.8T (which stands for magnetic particle 

coercivity as seen in Fig.VI.6), a non-null magnetostriction is found. As that applied field is decreasing, 

the magnetostriction is reaching a minimum value.  This means that the number of particles which 

have changed their magnetization direction is increasing as the applied field is decreasing to larger 

negative value.  
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III.2.3. Cycling 

 

Previously we have applied an external magnetic field, first positive, then negative field and 

finally the applied field was set back to zero. The magnetostriction curve reaches a negative value as 

the applied field is zero (Fig.VI.7). The coercive field, for hard particles appears symmetrically for an 

external field of ±0.8T as seen on the magnetization curve (Fig.VI.6). Apparent coercive field 

corresponds to a minimum on the magnetostriction curve for a negative applied field. Since the 

demagnetizing field amplitude changes when the composite is strained positively or negatively, the 

internal fields in the composite (applied field + demagnetizing field) are different in these two cases. 

We are now interested in the effect of the positive coercive field. Therefore, we have submitted the 

samples to a full magnetic loop. 

The effect of the cycling magnetic field on a sample is presented in Fig.VI.10. Positive fields and 

negative fields reach maximum absolute values of 1.2 T. For the first magnetic loop (from zero to 

positive then negative then zero field), the resulting strain is like the one presented in Fig.VI.7.  

Growth and saturation of the alternating peak magnetostriction 

By increasing the magnetic field from 0 T to +1.2 T, the magnetostriction of the composite is also 

increasing as seen in Fig.VI.10. When the magnetic field is then decreasing to -1.2 T, the 

magnetostriction reaches a minimum for an applied field close to -0.8 T. The amplitude of these two 

magnetostriction peaks are different; when the applied field is positive (from 0 T to +1.2 T) the 

resulting magnetostriction peak is smaller than the second peak when the applied field is negative (0 

T to -1.2 T). The third peak, when the applied field is now again positive, has a higher amplitude than 

the two previous ones. Peaks amplitude continues to increase until the phenomenon saturates. The 

positive magnetostriction is also larger than the negative one. 

Drop discontinuity effect 

In the case of negative strain, a small drop in the magnetostriction curve is observed. This drop is 

observed when the applied field reaches the particle coercive field; magnetic moments are then 

reversed, which changes the amplitude of the magnetostriction curve. When the applied field is 

positive, that drop is smoother than in the case of a negative field. When exposed to a positive field, 

the composite exhibits a positive strain so that the demagnetizing field is reduced; thus the inner 

field is reduced. In the same way, when the composite is exposed to a negative field, the composite 

exhibits a negative strain so that the demagnetizing field is enhanced; thus the inner field is 

reinforced. The number of reversed moments is therefore lesser in the case of the positive field than 
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in the case of negative field, since the inner field is different in each case.  This can explain the 

stronger drop of the magnetostriction in the case of the applied negative field. 

 

 

Fig.VI.10 Strain as a function of the applied field, positive and negative alternatively 

 

Necessity of a field reversal for an amplitude evolution 

To understand such enhancement of the effective magnetostrictive curve, we did other 

measurements. First idea was to check the need to change of the applied field sign to exhibit this 

behavior. The measurement of the magnetostriction of a composite was performed with a magnetic 

field ranging from 0T to 1.2 T; this sequence of positive field was repeated 6 times, looking for some 

possible enhancement when cycling with positive field. Then we changed the applied field sign and 

made a new sequence of three negative peaks of magnetic field. Such sequences of three peaks of 

magnetic field with same sign then three other peaks with opposite sign were repeated. The 

corresponding magnetic field is plotted in red in Fig.VI.11. The corresponding strains are also plotted 

in Fig.VI.11. As expected the magnetostriction curves sign is the same as the applied field sign. No 

enhancement in the strain is observed when six first positive peaks were performed. Cycling positive 

amplitude of magnetic field does not change the resulting amplitude of the strain. Then the next 

sequence of three negative peaks has been operated with the same amplitude: from 0T to -1.2 T. 
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Negative strain was observed, as a consequence of the negative applied field. Negative strains were 

larger than positive strain found in the first magnetostriction curves. Moreover, a higher absolute 

value for the first negative peak is found as compared to the two followings negative peaks. The 

enhancement is only observed when the applied field has changed its sign.  This behavior was 

confirmed in different subsequent cycles.  

 

Fig.VI.11 Strain as a function of the applied field, which was packed by sequence of 3 positive peaks 

and 3 negative peaks 

Evolution of the drop effect  

In Fig.VI.11, we could see that the first peak of the negative value was larger than the 2 following 

peaks whereas this difference was not found in the case of positive peaks. To highlight this 

phenomenon, the 3 strain peaks of negative sequences (0 to -1.2 to 0 Tesla) were superimposed on 

the same plot in Fig.VI.12.a.  We confirm that the first curve reaches as larger value of strain as 

compared to the 2 followings.  

Before these three negative sequences, the applied field was positive. Going from positive field 

values to negative values induces a change of the sign of the magnetization as the inner field reaches 

the coercive field of the particles. Reversing magnetization of some of the particles reduces the 

average magnetization and hence the average coupling and magnetostriction. The difference 

between the 2nd and the 1st curve can be viewed as the amount of particles that reversed their 

magnetization. The 2nd and 3rd curves present a similar shape as no more reversal occurs. 
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Fig.VI.10 & fig.VI.11 show that the increase of the magnetostriction curve becomes lower and lower 

as the magnetic field is cycling and finally a maximum amplitude of that strain is reached. Fig.VI.12b 

presents the different negative magnetostriction curves observed just after the reversal of the sign of 

the magnetic field sequences. Those first peaks of negative magnetostriction present a drop in their 

shape (as described above) and also evolve after each reversal of the sign of the magnetic cycles, 

getting smoother and smoother. This suggests that the number of particles which reverse their 

magnetization is lower and lower as the number of alternating field is larger.  

 

  

Fig.VI.12a: Three consecutive negative field 

sequences 

Fig.VI.12b: Comparison between the first 

negative sequences observed after each 

magnetic field reversal  

 

Necessity to reach the coercive field  

In the above observations, we have suggested that the evolution of the magnetostriction cycles is 

connected to some reversal of particles magnetization. The next experiment was therefore made to 

determine whether the enhancement process appears only when an applied negative field that 

reaches the coercive field is needed or not.   

 The fig.VI.13 presents the magnetostriction curve of a sample exposed to a 

homogeneous field with alternating values. In the first part of the experiment, the amplitude of the 
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negative field was B0 = -0.55 T and the amplitude of the positive field was B0 = +1.2 T. This cycle was 

applied 3 times to verify whether any increase of the magnetostriction maximum occurs or not. 

 Then, larger negative values were set at B0 = -0.9 T with the positive applied field still set at B0 = + 1.2 

T. The sample was submitted 3 times to that cycle to check whether any increase of the 

magnetostriction maximum occurs or not. The last cycles were performed with an applied field 

ranging values between B0 = -1.2 T and B0 = + 1.2 T. 

 

Fig.VI.13 Strain as a function of an alternating applied field. Negative field amplitude increases in 3 

steps 

 

In the first part, when the negative values are limited to -0.55 T, the amplitude of the maximum 

negative magnetostriction is constant and no drop is observed. The applied negative field is 

therefore shown to be too weak to activate some magnetization reversal.  

In the second part, when the negative magnetic field being set to -0.9T (stronger than the coercive 

field but close to it), a slight enhancement of the positive strain and the negative strain is observed. 

Then, in the last part of the experiment, with a negative field down to -1.2 T, a clear evolution effect 

is observed (increasing amplitude of the maximum magnetostriction). The drop in the negative value 

of the strain is also clearly observed. 
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From all the above experiments, the phenomenon of enhancement of the magnetostriction seems to 

appear when a large enough negative field is applied. The coercive field value is observed to be that 

needed value.  

When a negative field is applied, the composite is contracted as a consequence of the torque acting 

on the ferromagnetic particles. That contraction reduces the aspect ratio of the composite, resulting 

in a larger demagnetizing field. The internal field reverses the magnetization of some particles. When 

the applied field is going back to positive value, the composite is elongated also due to interaction of 

the particles with the applied field. The aspect ratio becomes larger, than in the case of the 

contracted composite, which induces lower demagnetizing field and thus a lower internal field. 

Symmetrical applied field, positive and negative, results into a non-symmetrical internal field due to 

the elongation and contraction of the composite. The consequence is a non-symmetrical behavior of 

the magnetization, hence the magnetostriction curve. This non-symmetrical magnetostriction also 

impact on the magnetization. The result of that complex phenomenon is the enhancement of the 

magnetostriction curve as the applied field is cycling. 

 

III.2.4. Influence of the cylinder radial field 

 

We have just presented a model of hard magnetic composites in which the particles 

magnetizations are oriented in any direction. The magnetostriction of such composite was then 

treated as the interaction of the particles with the local field. This local field was only considered as 

an axial field. However, for cylindrical samples, the demagnetization field has also a radial 

component which should be taken into account in our model. 

 

III.2.4.1. Local magnetic field 

 

Demagnetizing field is the field created on a point by the magnetized matter; in a case of an 

ellipsoid this field is entirely oriented in the opposite direction of the magnetization. However, this 

field is generally more complex for others geometry. In chapter 4, we have presented the 

demagnetizing field of the cylinder as a combination of an axial field (eq.IV.11) and a radial field 

(eq.IV.12); the internal field is then expressed as the summation of the applied field along the 

cylinder axis and the demagnetizing field with its 2 components: 
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rrdzzd uHuHHH


__0int )(        eq.VI.17 

That demagnetizing field in a cylinder is mainly located close to the top (and bottom) edge where the 

equivalent magnetic charges )( nM


 are located. Due to the symmetry, the field on the cylinder axis 

has no radial component; on the contrary that field component becomes stronger far from this axis. 

The radial component is then mostly in the neighborhood of the cylinder corner.  

 

 

 

 

Fig.VI.14a: The local magnetic field Hint(p) inside 

the cylinder : axial applied field H0 and a local 

two-components demagnetizing field Hd(p) 

Fig.VI.14b: Local two-components 

demagnetizing field Hd(p) 

 

Both the magnetization and the demagnetizing field are non-homogeneous. However, it is possible 

to locally correlate the demagnetizing field to the average magnetization M, through local 

demagnetizing coefficients Nzz and Nrz with:  

rcompositerzzcompositezz uMNuMNHH


)( 0int
     eq.VI.18 

 

A change in the applied field results in a change of both the amplitude and the direction of the inner 

field. The axial and radial components of the inner field change due to the change of the composite 

magnetization but the axial component will also change due to the change in the applied field. Axial 
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and radial components of the inner field have different field dependence behavior. Thus, an 

increment of the applied field result in a change of direction of the inner field: that field is “turning”. 

 

 

 

III.2.4.2. Anisotropic magnetization 

 

Unlike composites based on iron particles, this radial component becomes really important 

for composite based on hard magnetic particles, like the MQP-S-11-9. The difference appears since 

the magnetic behavior of iron particles and MQP-S-11-9 possess different magnetocrystalline 

anisotropies: it is much larger for hard magnetic particles than for soft particles.  

The magnetocrystalline anisotropic energy in a magnetic material is defined as the energy 

paid to rotate the magnetization relatively to the crystal axes. Expression of that energy depends on 

the considered lattice; cubic, quadratic hexagonal [Mag1+… Whatever the lattice is, the first order 

expression of the energy is usually a function of the azimuthally rotation of the magnetization: 

...)(sin2

1KEA          eq.VI.19 

K1 is an anisotropic constant. The term of next higher degree, Ki  i>1, are generally small compared to 

K1. In the case of a soft material as Iron, this anisotropic constant is much lower than for a hard 

material: 

490048]/[

142

3

1

BFeNdIron

mkJK
 

 

Hence, the magnetization’s direction of hard particles is considered to be fixed at low field and 

remains frozen unless a stronger magnetic field is applied, bringing enough energy to rotate the 

magnetization along that field.  
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Fig.VI.15: Anisotropic magnetization of the MQP-S-11-9 

 

The change of magnetization of such particle resulting from a change of applied field is expressed as: 

MMM


12          eq.VI.20 

This equation means that the new state of magnetization results from the previous one plus an 

increment of magnetization. This infinitesimal change of magnetization δM is expressed as a function 

of the viewed field: 

intHM


          eq.VI.21 

A change in the value of the external field results into a change of direction and amplitude of the 

inner field. Therefore, a particle which has still a magnetization frozen in one direction will 

experience a torque that depends on the external field. That torque still tends to align the 

magnetization towards the local inner field as seen in Fig.VI.16. 
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Fig.VI.16a: Shear stress due to the magnetic 

torque acting within the cylinder in a case of a 

positive viewed field 

Fig.VI.16b: Shear stress due to the magnetic 

torque acting within the cylinder in a case of a 

negative viewed field 

 

In Fig.VI.16a, the inner magnetic field is positive yielding to a positive torque acting on the particles. 

The opposite case is presented in Fig.VI.16b where the inner field is negative. This torque effect 

occurs thanks to the radial component of the inner magnetic field and to the hard magnetization of 

the particles. 

This magnetic torque is then converted into a shear stress. This phenomenon will strain the cylinder 

in different way with respect to the sign of the inner magnetic field, and more specifically to the 

applied field.  

 

 

III.2.4.3. Experimental 

 

In order to test the effect of this radial field on a magnetized sample shape, a composite 

filled with 20% (vol.) hard particles MQP-S-11-9 has been prepared. The cylinder thickness is 40mm 

and the diameter is 12mm. A magnetic field was applied along the cylinder axis of the sample. The 

magnetic field values were 0, 1.2 T and -1.2 T. The resulting strain due to the radial component of the 

inner field occurs in the corner of the cylinders as expected from the Fig.VI.14b.  Pictures, 

Fig.VI.17.a,b and c, were taken during the experiments in this area for each of these magnetic field 

values.   
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Fig.VI.17.a : composite filled with 

20% (vol.) MQP-S-11-9 particles 

without magnetic field 

Fig.VI.17.b : composite in a 

positive magnetic field 

Fig.VI.17.c : composite in a 

negative magnetic field 

 

In fig.VI.17, the effect of that radial field on the change of shape is presented. In fig.VI.17.a, no 

magnetic field is applied, the cylinder is at rest. When submitted to a positive external field, relatively 

to the first magnetization, the sample elongates as described before, but it also becomes barrel-

shaped, as seen in Fig.VI.17.b, due to the radial component of the inner field. The composite 

magnetization reaches a remnant state when the applied field goes down to zero. When the applied 

is negative, the average magnetization of the composite is still positive; the stresses induce a diabolo 

type shape as seen in Fig.VI.17.c. 

 

 

 

IV. Conclusion 
 

The above experiments present the strain of composite of hard magnetic particles embedded in 

a soft elastic matrix under a homogenous magnetic field. Hard magnetization of such particles plays 

an important role on the magnetostriction curve of the composite. A direct effect of the external 

field is recorded: the strain is either positive or negative with respect to the applied magnetic field 

sign as expected from Lanotte’s model based on magnetic torque. Elongation or compression of the 
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length of the composite is driven with regards to the sign of the applied field and to the particles 

magnetization. It should be noticed that the elongation of the composite placed in a homogeneous 

field was alike piezomagnetism: a linear curve of strain versus applied field is measured; this result is 

different from the case of composite filled by soft particles which behaved as magnetostriction: a 

quadratic curve.  

The total inner field has an effect on the magnetic torque experienced by particles. Pure effect of 

the demagnetizing field was measured when the external field was set back to zero: the 

magnetization reached a positive remnant value resulting into a negative remnant demagnetizing 

field yielding to a composite compression. In the range of the experimental magnetic field, ±1.2T, the 

demagnetizing field also provides a new effect. When the applied field is negative, the demagnetizing 

field, which is still negative, reinforces the inner field: coercive field of particles was easier to reach 

for negative values than for positive field values. In the case of a positive applied field, the 

demagnetizing field was still negative which reduced the inner field and coercive field of particles 

was harder to reach. 

Due to that non-symmetrical inner field, to the distribution of magnetic particles and to the 

coercive value of the magnetic particles, a cycling effect was experimentally highlighted: as the 

applied field changes its sign, the magnetostriction is enhanced. This phenomenon appears only if 

the inner field goes above the coercive field of the hard ferromagnetic particles. 

The effect of the whole demagnetizing field in the cylinder, including both axial and radial 

components, was also recorded. The radial component, localized in the cylinder corner, is impacting 

on the shape of the composite. The cylinder shape becomes like a barrel for a positive applied field 

and like a diabolo for a negative field. 
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I. Introduction 
 

In the previous chapters, we studied the deformation of Fe/Silicone composite as a function of 

the applied magnetic field, the sample shape and the filling factor. Filling factor is a parameter that 

determines the magnetic stress and the Young modulus. The temperature is another parameter 

which determines the level of the magnetic stress and mechanical response. In this chapter, we will 

focus on thermal behavior of the magnetostriction. The magnetization and elastic modulus are 

affected when the temperature is changed: at increasing temperature, both the magnetic force and 

the stiffness decrease resulting in opposite effects on the sample. To study the thermal behavior of 

the deformation, composites have been made using two different types of ferromagnetic particles 

and matrix in order to separate the role of these two effects.  

 

I.1. Thermal consideration 
 

I.1.1. Thermal magnetization of the particles 

 

 

 

 

Fig.VII.1: Thermal dependence on the spontaneous magnetization 
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Ferromagnetic interactions in magnetic materials lead to a spontaneous magnetization. Because 

of the competition between thermal energy and the magnetic energy, this spontaneous 

magnetization is reduced when temperature increases as illustrated in Fig.VII.1. At 0K, the 

spontaneous magnetization is maximum and at the so-called Curie temperature Tc, this spontaneous 

magnetization disappears. This Curie temperature is characteristic of the each magnetic material. 

 

In this chapter, two ferromagnetic materials are used: namely Iron and Gadolinium. Iron has a 

high TC compared to Gadolinium, which yields to an almost constant magnetization at room 

temperature. Gadolinium magnetization is highly dependent on temperature when measurements 

are performed close to room temperature: close to TC of Gadolinium [Ell, Bou]: 

 

][295]1[1043][ She

Gd

Mag

Fe

KTC
 

Iron thermal expansion coefficient (TEC) is 11.7 10-6K-1 (at 293K) [Bor] while for gadolinium TEC is 

known as 9 10-6K-1 [Eng]. In the following experiments, those intrinsic thermal expansion coefficients 

are neglected because of their small values as we did before for the intrinsic magnetostriction of the 

ferromagnetic particles, when the magnetostriction of the composite was considered. 
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I.1.2. Thermomechanical behavior of the matrix 

 

 

 

Fig.VII.2: Schematic thermal dependence of  Young modulus of amorphous polymlers 

 

 

The behavior of the Young modulus E of an amorphous polymer is drastically temperature 

dependent. At low temperature, the polymer is glassy and brittle; E is almost constant with typical 

values of few GPa. At higher temperature, the polymer reaches its so-called glass-rubber transition, 

which corresponds to a modulus drop by around 3 decades within a temperature increase of 20-30K 

for polymers lightly cross-linked as for the silicone matrix used here. Further another temperature 

range where the Young modulus remains almost constant corresponds to the rubber plateau, where 

the elastic behavior results from the polymeric chain conformational entropy. Thus, the rubber 

plateau exhibits a Young modulus of some MPa. The glass transition is characterized by temperature 

TG. TG is characteristic of a given polymer to its molecular weight (Fig.VII.3), and is independent of 

filler content, at least for particles in the µm range [Pau].  
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Fig.VII.3: Glass transition for different methacrylate 

 

In the experiments described above and below, we used a silicone characterized by a low TG, which 

corresponds to a soft elastic behavior at room temperature. 

According to literature, this silicone TEC is around 10-5 K-1 [Han1, Han2]. These polymers TEC even 

decreases at increasing filling factor [Sim].  

 

II. Experimental 
 

 

II.1. Strain measurement 
 

II.1.1. Principle 

 

Sample dilatation device was modified to allow thermal measurements. As seen in Fig.VII.3, a 

thermocouple (type T) is inserted in the sample holder to record temperature during the experiment. 

The thermocouple, being in contact with the sample, the recorded temperature is set to be the 

sample temperature. The temperature is assumed to be homogeneous inside the samples during the 

experiment. The sample and its support are surrounded by a glass tube (φint=3mm, φext=3.4mm, 

L=190mm) to play the role of thermal chamber. Magnetostriction curve is recorded using the CCD 

camera through the transparent glass tube. Cooled air is injected from the top of the tube.  The 

Cooled chamber initially cooled down is then closed by a cover. It is then warmed up to room 
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temperature by natural thermal exchange with laboratory atmosphere. The warm up temperature 

was recorded versus time and is plotted in Fig.VII.4.  

 

 

a 

 

 

 

b 

Fig.VII.3: Device modified for thermal measurements 

 

 

 

Thermal cycle was repeatable as seen in Fig.VII.4; both experiments with Fe or Gd composite have 

the same kinetics.  

The Fe/silicone and the Gd/silicone samples were cylinders with diameter and thickness equal to 

12mm and 4 mm respectively. Gadolinium, 99.9 % pure powder ALFA AESAR, was provided by VWR 

with a maximal particles size of 325 mesh. The filling factor of the Iron/silicone sample was 27.4%, 

whereas the filling factor of the Gadolinium/silicone sample was 26.6%. 
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Fig.VII.4: Temperature versus time during experiments 

 

When the thermal chamber starts to warm up, temperature is changed from 245K to 260K in 5 

minutes,  yielding to a maximal heating rate of 0.05Ks-1. Approaching the room temperature, the 

heating rate decreases to a lower value, between the 25th and 45th min of the experiment, 

temperature increased from 285K to roughly 290K; the heating rate in this temperature interval is 

0.004Ks-1. 

  

II.1.2. Magnetostriction curves 

 

 

First experiments were carried out on the Fe/silicone sample. A magnetostriction curve was 

recorded for an applied field of 0T and of 1.2T. First experiment shows the silicone based composite 

dependence versus temperature, when the magnetic field is null. Following experiments were made 

for both Fe/silicone Gd/silicone samples, under a magnetic field of 1.2T. 
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Fig.VII.5: Strain versus temperature for composite based on silicone 

 

Fig.VII.5 presents the thermal behavior of composite with the silicone matrix. If the applied 

field is turned off, for soft ferromagnetic particles like Iron, no magnetic stress is induced, hence no 

strain was measured. Only the thermal dilatation occurs; experimental data are provided between 

257K and 294K, so that the thermal dilatation is expressed as: 

%08.01077.737101.2 45TTT  

This value was obtained for TEC of a pure silicone. As previously said, this coefficient is smaller for 

filled elastomers. For the iron-filled composite the measured curve was nearly zero without magnetic 

field. If the magnetic field is turned on, iron is magnetized. For temperature ranging from 250K to 

290K, the iron magnetization is almost constant, leading to nearly constant induced magnetic stress 

acting. Strain increases with temperature because of the temperature dependence on the Young 

modulus. In this case, the strain temperature dependence is purely due to the matrix thermo-

mechanical behavior.  

In the case of soft ferromagnetic particles like Gadolinium and for temperature ranging from 

250K to 290K, where the gadolinium magnetization is strongly temperature sensitive, the magnetic 

stress also depends on temperature. The strain is dependent on both the magnetic thermo-

mechanical behavior for such composite. 
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III. Discussion 
 

The magnetostriction was found as: 
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In this expression, 2 parameters are temperature dependent, magnetization (Fig.VII.1) and the Young 

modulus (Fig.VII.2). Therefore, eq.VII.1 can be written accounting for temperature as follow: 
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From this equation, we can write the strain temperature dependence: 
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Thus, for a temperature increment of ΔT, both magnetization and Young modulus will change by ΔM 

and ΔE respectively, and we can write the relative magnetostriction for a temperature change as: 

 

sMEs

s

zz

zz

E

E

M

M

0

2         eq.VII.5 

 

In the case of the Iron/Silicone composite, eq.VII.5 can be simplified taking; within the temperature 

range [250K to 285K]. The value of the magnetization µ0Msat of Iron [Mag1] is 2.18T at 0K and 2.16T 

at 300K leading to a relative decrement of 1% to the magnetization, so that the relative change of 



158 
 

magnetization can be neglected unlike the Young modulus in the elastic plateau. Eq.VII.5  simplifies 

to:   
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E
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          eq.VII.6 

 

The strain variation of the Fe/Silicone is mainly due to the decrease of Young modulus with 

temperature. 

 

Fig.VII.6: Young modulus of the silicone-filled composite 

 

Strain for the Fe/Silicone sample is plotted in Fig.VII.5 for temperature between 250K and 290K. 

The thermal dependence of the elastic modulus for the composite is plotted in Fig.VII.6 for 

temperature ranging from 248K to 288K. Those values are normalized relatively to the lowest 

measured Young modulus, the one measured at 248°K. The relative Young modulus decreases in the 

same interval of temperature with a slope of -5.03 K-1, yielding to a relative shift of -20%. 

 The strain slope of the Fe/Silicone is 2.88 10-4K-1 when exposed to the magnetic field with an initial 

values of 5.2% (T=250K) yielding to a relative increase of +18.6%. 

Since the two values are quite similar, a good agreement between experimental data and 

eq.VII.6 is found. This discussion can be generalized for all temperature above the 250K. Fig.VII.7 

presents the variation of the Young modulus and the variation of the Fe/Silicone composite strain 

versus temperature. Though experimental relative variations of strain are spread around the 



159 
 

modulus relative variation, fitting these data by linear shows that strain and Young modulus fit 

perfectly well. 

 

 

Fig.VII.7: Relative variation of Young modulus and strain versus temperature 

 

 

In the case of the thermal magnetostriction of Gd/Silicone sample, the behavior is more complex. 

Close to its Tc, the gadolinium magnetization is highly temperature dependent. The magnetic stress 

has a non-null value only for temperature below TC. 

For temperature T≲Tc, the ferromagnetic magnetization can be written as [Mag]: 
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Where β is a critical exponent predicted to be 0.5 in the Landau transition model [Mag1], but 

experimental data, for a given element, are generally lower than this value [Kit]. A is a correlation 

coefficient.  
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Sheng has measured the magnetic critical exponent for a gadolinium sample and found out a 0.31 

value and a Curie temperature Tc = 295K [She]. Therefore, a theoretical expression of the thermal 

magnetostriction of the Gd/Silicone composite, just below the Curie temperature, can be written as: 
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Eq.VII.8 provides the thermal strain of a magneto-elastic sample. Young modulus is found to be linear 

versus the temperature whereas the magnetization behaves as a power-law. The resulting strain has 

a non-linear dependence with respect to temperature. Experimental data and the theoretical 

expression, eq.VII.8, are plotted versus the temperature in Fig.VII.8. 

 

 

Fig.VII.8: Thermal magnetostriction of Gd/silicone composite versus the temperature. Blue dots are 

experimental data and the red curve is plotted using eq.VII.8 

 

 

 

A regression curve is built using eq.VII.8 and with: Tc = 295K and β=0.31. Those parameters were 

kept because they are directly linked to the thermal behavior of the magnetization. We also set the 

µ0Msat(T=0) for gadolinium as 2.66 T [Mag1]. Young modulus thermal dependence was supposed to 

be the same as for the Fe/silicone composite (Fig.VII.6). However, in order to take into account the 
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difference in the filling factors of the two composite, we used eq.V.20 & eq.V.24. Thus, for 

Fe/Silicone composite filled by 27.4 %vol., E(φ)/E0=4.12. For Gd/Silicone composite filled by 26.6 

%vol., E(φ)/E0=3.9.  

The constant A was used as a free parameter and set as 0.43, which is close to the Sheng value of 

0.49. A good agreement is also found for this thermal composite behavior. 

 

 

IV. Conclusion 
 

In this chapter, we succeeded in measuring the strain temperature dependence of ferromagnetic 

particles embedded in a silicone matrix. Thermal dependence is mainly due to the elastic 

dependence of the matrix filled by iron particles. Those particles have no significant change in 

magnetization close to room temperature. To improve the model, a composite based on Gadolinium 

was tested and also provided a good agreement with the model. 

To complete the model, measurements made on other matrices with glass transition in the same 

temperature range should be very interesting. We could obtain an exact compensation of both 

effects, leading to a constant strain in a given temperature range, like the Invar.  
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Conclusion 

 

Embedding ferromagnetic particles, which are weakly magnetostrictive but highly magnetic, 

in a soft elastic matrix generates an apparent magnetostriction of the composite when submitted to 

a homogeneous magnetic field. If the classic magnetostriction arises from the coupling between the 

ferromagnetic interaction and the elastic coefficient of a crystal lattice, the observed strain of such 

composite was found as a consequence of dipolar interaction between the ferromagnetic particles. If 

the largest magnetostrictive, called giant, reached a deformation in the order of 0.1%, the 

combination of that dipolar interaction and the low value of the Young modulus of the matrix results 

in a larger magnetostriction, two orders of higher magnitude, when compared to those giant 

magnetostrictive materials. By the magnetostriction that arises from the dipolar interactions, two 

main parameters have to be considered to analyze the magnetically induced deformation, namely (i) 

the shape effect and (ii) the particles concentrations within the composite. It is worthy to notice that 

the dipolar energy density depends on the sample shape. Forces are located close to the boundaries 

of the magnetic material. In this work, most our samples were cylindrical. Axial forces act on the two 

disks and radial forces act on the lateral surface. Axial forces and radial forces result in the cylinder 

elongation. The magnetic energy (more precisely the demagnetizing energy density) decreases as the 

composite elongates because its aspect ratio increases during the deformation. Thereby, a flat 

sample will present a larger strain than a long one, at constant amount of particles. Thus, we 

succeeded in recording a strain of 9.2 % for a 30% filled composite with an external field of 1T. The 

second parameter is the particles concentration within the matrix. A magnetic moment creates a 

dipolar force on every other moment and each of those other moments is also creating a force on 

that moment The effective magnetic force acting on the composite, in the saturation state, is 

proportional to square of the filling factor : Fmag ~ φ². The elastic response being controlled by the 

Young modulus is therefore also affected by the filling factor. If the magnetic force is easily expressed 

as a function of the filling factor, the Young modulus of the composite have to be defined by more 

complex expression in regards to the amount of particles. Young modulus, like thermal/electric 

conductivity of composite, is highly dependent on the filling factor; low filling are having a simple 

expression, whereas for larger values a relationship accounting for the percolation must be chosen. 

The percolation of stiff particles generates a limitation of the macroscopic strain. The conversion of 
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the demagnetizing energy into mechanical energy is shown to be optimal for a filling factor defined 

by the half of a maximum packing fraction which in our case was found for 54%vol. yielding to an 

optimal filling factor of 27%. 

Unlike to a composite filled with soft magnetic particles where the strain is a quadratic 

function of the magnetization, composite filled with hard magnetic particles were found to present 

linear behavior relative to the applied field. Positive applied filed yields to positive strain and 

reciprocally negative field yields to a negative strain. Moreover, strain of such composite presents a 

memory effect: the strain at a given applied field depends on the previous state of magnetostriction. 

Magnetization of hard particles is usually symmetric versus the applied field, but for an elastic 

composite, particles are magnetized by non-symmetrical process: such composite elongates in 

positive applied field while they contracted when submitted to a negative field; the demagnetizing 

field being shape dependent has different amplitude in those 2 cases; magnetic particle inside the 

composite sees a non-symmetrical field.  An enhancement of the strain results of this phenomenon. 

Filing factor has an effect on the magnetization of the composite and on the Young modulus; 

temperature also rules these parameters value leading to a temperature dependence on the strain. 

Examples of thermal behavior have been presented in the last chapter. The temperature behavior of 

the magnetostriction was measured. Further experiments would complete it; as for instance the 

behavior near the glass transition temperature, which is characterized by a drastically stiff change. By 

tuning these different, parameters, materials with original temperature behavior could be probably 

designed. 

In this thesis, measurements were made in static field. A next study of the magnetostriction could 

investigate the effect of dynamic fields. The strain amplitude depends on frequencies and on the 

stress. Applying a static magnetic field elongates the material; dynamic magnetic field would 

therefore strain the composite with respect to the frequency. Moreover, for material with low 

damping and at the resonating frequencies the amplitude of the strain is maximal, larger than static 

strain. 

Applications of such magnetostrictive materials are transducers/sensors because of their large strain 

range. However, the hysteresis may be an important issue for commercial devices, which needs 

repeatable strain. A surface chemical treatment of the particles might improve adhesion with the 

polymer reducing the damage at this interface when the composite is strained. 
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Annexes 

 

I. Calculation of the force on the lateral boundary: 
 

The general case of a lateral boundary is treated here. As described in chapter 3, we consider a 

magnetic moment surrounded by a half magnetic spherical shell. Magnetization direction is along uz. 

On that surface, we can set an outward normal unit vector as seen on fig.A.1.  

 

 

Fig.A.1. Lateral boundary defined by its normal outward unit vector 

 

 

This vector is written as: 

yx uun


)sin()cos(         eq.A.1 

As discussed in the 3rd chapter, only fx and fy components of the force are non-null. Then the force 

has to be written as: 
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         eq.A.2 
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The interval of integration for the angle θ remains unchanged, namely from 0 to π. On the contrary, 

the angle φ ranges from β+π/2 to β+3π/2. Using the following integral: 

8
)sin()](cos51)[sin(

0

2 d       eq.A.3 

 the two fx and fy components of the force are:  
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The radial amplitude term is: 
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with e the length characterizing the exclude volume of the considered moment and d is the distance 

between that moment and the shell. Going back to the force acting on the magnetic moment, which 

is the product of the radial and angular term, we have both fx and fy components negative. Rewriting 

the eq.A.2 as: 
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A magnetized material experiences force on its boundaries. On surface parallel to the magnetization 

direction, that magnetic force is always directed toward the material core. Magnetized material 

experiences a contraction from all its boundaries parallel to its magnetization direction. 
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Introduction 
 

Le but de cette thèse est la mesure et la description de la magnetostriction apparente de 

composites placés dans un champ magnétique homogène. Les composites étudiés sont des 

composés de particules ferromagnétiques (principalement du fer) dispersées dans une matrice 

élastique. La déformation d'un tel matériau nécessite un couplage entre celui-ci et le champ 

magnétique externe. Ces matériaux sont aussi appelés matériaux actifs. La déformation induite a été 

étudiée depuis la découverte de la magnetostriction et de la piézoélectricité, il y a près de deux cent 

ans. L’amélioration de ces propriétés a d'abord été explorée par des approches métallurgiques. 

Néanmoins les constantes élastiques de ces alliages, généralement de l’ordre de 100 GPa, en limite la 

déformation. Une autre solution, qui consiste a disperser des particules magnétiques dans une 

matrice de faible module élastique, a été récemment proposée. Les élastomères organiques sont 

donc des candidats idéaux de par leur module de Young de quelques MPa. Ces matériaux, résultant 

du mélange de particules ferromagnétiques (ou ferroélectriques) dans une telle matrice polymère 

sont appelés "Magneto (Electro) Rheological Elastomers" ou M.R.E. 

Dans des travaux précédents, une élongation de 4.81% a été observée pour un composite 

contenant 15% (vol.) de particules de fer et une porosité de 45% (vol.), soumis à un champ de 8 

Tesla, alors que la matrice n’est pas magnétique et que la magnetostriction du fer est très faible 

(valeur maximale de l’ordre de 10-5). La déformation du composite est de 4 ordres de grandeur 

supérieure à celle de la phase magnétique. Si le phénomène observé est bien la déformation d’un 

matériau en présence d’un champ magnétique externe, à l’instar de la magnetostriction d’un cristal 

ferromagnétique, l’origine physique de cette déformation est différente. Elle est ici la conséquence 

de l’interaction de particules magnétiques placées dans une matrice élastique souple. On gardera 

malgré cette remarque, le terme de magnetostriction dans la suite de cette thèse.  

Les alliages à base de terre rare possèdent une amplitude magnetostriction de l’ordre de  10-3, 

qualifiée de ”giant magnetostriction”. La magnetostriction apparente des composite M.R.E. est 

encore beacoup plus grande que ces matériaux magnétostrictifs classiques ; le phénomène est donc 

qualifiée de  “huge magnetostriction”.  

Les mécanismes a l origine de cette magnetostriction apparent sont détaillés dans les chapitres 

suivants.  
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Résumé des chapitres 
Chapitre 1: 

Le premier chapitre présente le point de départ de cette étude, les lois du magnétisme et de 

l’élasticité, nécessaires pour les chapitres suivants, sont introduites ici.  Une brève présentation des 

M.R.E. et leurs propriétés magnéto-élastiques présentées dans ce chapitre constituent la base 

bibliographique de ce travail. Diverses études ont démontrés l’effet d’un champ magnétique 

inhomogène sur ces matériaux ; ils s étirent vers les champs intenses ou encore présentent une 

augmentation du module de Young (l’effet « delta-E ») lorsqu’ils sont exposés à un champ 

magnétique. La déformation en champ homogène a été étudiée pour différents types de M.R.E. Les 

composites dont les particules sont distribuées aléatoirement dans la matrice tendent à s’allonger 

dans la direction du champ magnétique alors que ceux ayant les particules formant des alignements 

parallèles au champ se contracte sous l’effet de ce champ.  

 

Chapitre 2: 

Le second chapitre présente la méthode de préparation des composites ainsi que les techniques 

expérimentales utilisées au cours de cette thèse. Les particules sont d’abord mélangées dans la 

matrice liquide puis l’addition du durcisseur permet l’obtention d’échantillons de formes diverses 

suivant le moule utilisé.  La mesure d’aimantation est faite en utilisant un dispositif de balance de 

Faraday. L’échantillon est placé dans un gradient de champ magnétique créant une force sur cet 

échantillon, cette force est enregistrée via la mesure du poids apparent sur une balance placée 

dessous. Un électro-aimant générant un champ magnétique statique maximal de 1,2 T a été utilisé 

pour les mesures de magnetostriction. La déformation de l’échantillon est ensuite déterminée à 

l’aide d’une caméra et d’un traitement numérique. Le module de Young des composites est mesuré 

par mesure mécanique dynamique (DMA).    

 

Chapitre 3: 

Le troisième chapitre traite de l’origine de cette magnetostriction apparente. Un calcul basé sur 

les interactions dipolaires entre les particules est effectué. Une carte des forces est ainsi obtenue 
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pour une distribution de particules dans un cylindre. Cette carte montre des forces de traction sont 

concentrés sur les bords supérieurs et inferieurs du cylindre alors que des forces de compression le 

sont sur la surface latérale de ce cylindre; il est notable que la résultante des forces au sein du 

cylindre est nulle. Cette projection des forces sur un plan axisymétrique du cylindre est ensuite 

utilisée dans un logiciel de calcul par élément fini (FEM) pour évaluer la déformation résultante. La 

déformation obtenue par ce calcul est en bon accord avec la mesure de magnetostriction d’un 

échantillon, sans paramètres ajustables. 

 

Chapitre 4: 

Dans le chapitre 4, l’aimantation du composite est étudiée. L’aimantation en fonction du champ 

magnétique externe est décrite par 2 paramètres: le coefficient de champ démagnétisant à champ 

faible et l’aimantation à saturation pour les champs plus intenses. Ces 2 paramètres sont étudiés 

expérimentalement et théoriquement pour divers taux de particules. L’aimantation à saturation du 

composite est simplement celle du matériau ferromagnétique, quelle que soit la distribution de ces 

particules. Le coefficient de champ démagnétisant dépend du taux de particules mais aussi de la 

distribution et de la forme des particules.  

 

Chapitre 5: 

Dans ce chapitre, nous donnons une expression de la magnetostriction du composite à partir des 

différent paramètres macroscopiques : module de Young de la matrice, aimantation des particules et 

le taux de particules. Ce modèle est basé sur la conversion d’énergie magnétique, et plus 

précisément de l’énergie démagnétisante, en énergie élastique. En effet cette énergie 

démagnetisante dépend de la forme de l’échantillon et décroit au fur et à mesure que l’échantillon 

s’allonge. L’effet de forme initiale de l’échantillon est prédit et vérifié expérimentalement. L’effet du 

taux de particules est aussi traité dans ce chapitre ; à taux croissant de particules dans le composite,  

l’aimantation et le module de Young augmentent et sont donc en compétition quant à l’évolution de 

la déformation. Ainsi, passé un certain seuil, le module de Young augmente plus fortement et limite 

par conséquent l’amplitude de déformation. L’expression choisie pour exprimer ce module de Young 

dépend de la concentration. A l’instar de la conductivité thermique ou électrique dans un composite, 

le module de Young s’exprime simplement pour de faible taux de charge mais augmente fortement 

pour de plus grand taux de charge : dans ce cas une expression prenant en compte l’effet de 
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percolation des particules est plus pertinent. Cette percolation e particules dures génère une limite 

dans la déformation macroscopique de la déformation. La déformation de composite est optimale 

pour un taux de charge étant la moitié de la concentration maximale, qui dans notre cas fut mesurée 

à 54%vol., ce qui définit ce taux optimale à 27%. 

 

Chapitre 6: 

Dans ce chapitre, les particules ferromagnétiques des composites ont un comportement 

magnétique dur. Contrairement aux composites contenant des particules magnétiques douces où la 

déformation était toujours positive, la déformation est du signe du champ appliqué et présente un 

comportement piézomagnétique pour de faible valeur de champ. De plus, une amplification de la 

déformation est observée à mesure que les champs positifs et négatifs sont alternés. Cet effet 

apparaît si le champ appliqué est supérieure au champ coercitif des particules dures. Enfin, l’effet de 

la composante radiale du champ interne du composite cylindrique est décrit. Cette composante 

radiale crée une composante radiale de déformation. 

 

Chapitre 7: 

Dans ce dernier chapitre, l’effet de la température sur la déformation est décrit. L’aimantation 

des particules ferromagnétiques et le module de Young de la matrice sont dépendant de la 

température. Deux types de composites ont été étudiés ; les premiers sont renforcés par des 

particules de fer qui possède une température de Curie très supérieurs aux températures de nos 

expériences. Les seconds sont renforcés par des particules de gadolinium ayant une température de 

Curie proche des températures expérimentales. La déformation des composites ayant des particules 

de fer augmente avec la température qui n’agit que sur le module de Young.  La déformation de 

composite avec des particules de gadolinium diminue et tends vers zéro à mesure que la 

température approche la température de Curie de ces particules.  
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Conclusion 

 

Les composites constitués de particules ferromagnétiques, très faiblement magnétostrictifs 

mais possédant une forte aimantation à saturation, distribuées dans une matrice élastiquement 

douce se déforment quand ils sont placés dans un champ magnétique homogène. La déformation 

observée résulte des interactions dipolaires entre les particules. Alors que la plus forte valeur de 

déformation atteinte par des alliages à base de terre rare ne dépasse pas 0,1%, la déformation 

atteinte par les composites M.R.E. parvient à atteindre des amplitudes de 2 ordres supérieures en 

combinant les propriétés de ses constituants. Les forces sont  localisées près des surfaces du 

composite ; des forces de traction agissent sur les 2 surfaces supérieures et inférieures du cylindre 

alors que des forces de compression agissent sur la surface latérale ; la combinaison de ces forces 

crée l’allongement de ce cylindre. Pour analyser la déformation de ces composites exposés à un 

champ externe, deux effets sont étudiés en particulier ; (i) l’effet de du facteur de forme et (ii) le taux 

de particules dans le composite. Il est important de noter que l’énergie dipolaire dépend de la forme 

du de l’échantillon considérée. L’énergie magnétique, plus précisément l’énergie démagnétisante 

décroit lors de l’allongement du composite du fait de l’augmentation de son facteur de forme. Par 

conséquent, un échantillon “plat” s’allongera plus fortement en valeur relative qu’un 

échantillon “long”, pour un même taux de particules. Nous avons ainsi réussi à mesurer une 

déformation de 9,2 % pour un composite chargé à 30% placé dans un champ externe de 1T. Le 

paramètre clé est le taux de particules dans le composite. L’interaction des particules ayant leur 

aimantation à saturation est de proportionnelle au carré de ce taux de particules. La réponse 

élastique, contrôlée notamment par le module de Young, est aussi dépendante de la concentration 

des particules dans le composite. En utilisant un modèle empirique pour évaluer le module de Young 

des composites, on a pu prédire une valeur optimale du taux de particules et la vérifier 

expérimentalement en mesurant la déformation en fonction de ce taux. 

Dans le cas de composites renforcés par des particules magnétiques douces la déformation 

ne dépend pas du signe du  champ appliqué. Au contraire, en remplaçant ces particules douces par 

des particules dures, la déformation est, du même signe que le champ appliqué. Un champ positif 

allonge le composite alors qu’un champ négatif le contracte. L’aimantation de particules 

magnétiquement dures est normalement symétrique vis-à-vis du champ externe. Ce n’est pas le cas 

dans les matériaux composites élastiques. L’allongement du composite en champ externe positif et la 

contraction en champ externe négatif induisent des amplitudes du champ démagnétisant 
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différentes. Les particules magnétiques voient un champ local non symétrique.  Une augmentation 

de l’amplitude de déformation a été observée au cours de cycles successifs à même amplitude du 

champ. 

Enfin, à l’instar du taux de particules qui modifie l’aimantation du composite et son module 

de Young, la température influe aussi sur ces deux paramètres. La déformation dépend donc de la 

température. Le comportement de la magnetostriction en température est présenté dans le dernier 

chapitre de la thèse. L’effet de la température de Curie a ainsi été démontré expérimentalement. 

D’autres expériences sur l’effet de la température de transition vitreuse, pour laquelle la valeur du 

module de Young  change radicalement, compléteraient la présentation sur le  comportement 

thermique de la déformation. En jouant sur ces deux paramètres, des matériaux aux caractéristiques 

thermiques originales pourraient être conçus.  

Dans cette thèse, la magnetostriction a été mesurée en champ magnétique statique. Il serait 

donc intéressant d’étudier l’effet de champ magnétique dynamique. La déformation des élastomères 

dépend de la fréquence de la sollicitation. Un champ dynamique pourrait aussi apporter une 

nouvelle contribution, liée à la fréquence de cette sollicitation, à la magnetostriction apparente. (De 

plus, pour des pièces constituées de matériaux présentant un faible amortissement, et à leur 

fréquence de résonance, l’amplitude de déformation est maximale et plus importante que la 

déformation statique.)  

L’utilisation comme actionneur ou comme détecteur sont des applications possibles de ces 

nouveaux matériaux magnétostrictifs due à leur grande déformation. Néanmoins, l’hystérésis 

observé, mais non étudié ici, reste encore un problème majeur à leur emploi dans des dispositifs 

industriels. Son origine ne peut qu’être liée à des mécanismes d’endommagement à l’interface 

particules-matrice (ce que confirme l’étude bibliographique). Des traitements chimiques des 

particules peuvent améliorer l’adhésion avec le polymère et ainsi diminuer l’amplitude de cette 

hystérésis. 
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Abstract: 
  This thesis is aimed to measure and explain the elongation of M.R.E. placed in a 

homogenous magnetic field. M.R.E. is material consisting in ferromagnetic particles embedded in an elastic 

matrix. Combination of a silicone, with low elastic modulus (E0=0.14 MPa), and Iron particles, characterized by 

a high saturate magnetization (µ0Msat=2.14 T), allows large deformation (some percents) when placed in the 

applied field µ0H0=1.2 T. Coupling of the dipolar forces calculation between the particles, randomly distributed 

in a cylinder-shape volume, with strain calculus, using F.E.M. software, is a good agreement with a 

magnetostrictive experiment. Magnetized sample get a so-called “demagnetizing” energy bounded to it shape: 

“flatter” samples yields to a larger demagnetizing energy than longer ones. Composite magnetization has been 

investigated in this thesis through 2 parameters: the saturate magnetization and the effective demagnetizing 

coefficient. Experiments, carried on samples with different shapes, show the effect of the demagnetizing 

energy, flattest sample (with aspect ratio c/a =0.3) exhibits the largest strain of 10%. A model, based on the 

competition of the demagnetizing energy and elastic energy, during the strain, accounts for this shape effect. 

That model also deals with the filling factor impact on the strain. An optimal filling factor of 27% has been 

measured and predicted.  

Magnetostriction of composites with hard magnetic particles was investigated as function of the 

applied field. Due to the magnetization hysteresis loop of those particles, a “memory effect” was found in the 

magnetostriction.  

Finally, elastic modulus and particle magnetization are both temperature dependent. The temperature 

behavior of the magnetostriction is measured. By tuning these parameters, materials with different 

temperature behavior could be designed. 

 

Résumé: 

  Le but de cette thèse est l’étude expérimentale et théorique de l’élongation de 

M.R.E. (Magneto Rheological Elastomer) placé dans un champ magnétique homogène. Ces matériaux sont 

constitués de particules ferromagnétiques distribuées au sein d’une matrice élastique. La combinaison d’une 

matrice de silicone de faible module de Young (E0=0,14 MPa) combinée à la forte aimantation des particules de 

fer (µ0Msat=2,14 T) permet d’atteindre des déformations de plusieurs pourcents, pour un champ appliqué 

µ0H0=1,2 T. Le calcul des forces dipolaires entre les particules, distribuées aléatoirement dans un volume de 

forme cylindrique, couplé à un calcul de déformation (utilisant un  logiciel F.E.M.) est en accord avec la mesure 

de magnetostriction. Un échantillon aimanté acquiert une énergie magnétique dite « démagnétisante » liée à 

sa forme : un échantillon « plat »  aura une énergie démagnétisante plus importante qu’un échantillon « long ». 

L’aimantation d’un composite a été étudié dans cette thèse via 2 paramètres : l’aimantation à saturation et le 

coefficient de champ démagnétisant effectif. La mesure de déformation faite sur des échantillons de 

différentes formes montre l’effet de cette énergie démagnétisante : l’échantillon le plus plat (de facteur de 

forme c/a=0.3) se déforme ainsi jusqu’à près de 10 %. Un modèle basé sur la compétition entre l’énergie 

démagnétisante et l’énergie élastique, pendant la déformation, donne des valeurs de déformation prenant en 

compte cet effet de forme. Ce modèle prend en compte aussi l’effet de la fraction volumique sur la 

déformation du composite. Une concentration optimale de 27 % a été mesurée et prédite.  

La magnetostriction de composites avec des particules magnétiques dures a aussi été mesurée en 

fonction du champ. L’effet de l’hystérésis de ces particules génère un "effet mémoire" à la courbe de 

magnetostriction.  

Enfin, le comportement thermique de la magnetostriction de ces composites a été mesuré. La 

constante élastique de la matrice et l’aimantation des particules sont des fonctions de la température. Le  rôle 

de ces paramètres permet de concevoir des matériaux avec différentes propriétés thermiques.  


