A. Aviram and M. A. Ratner, Molecular rectifiers, Chemical Physics Letters, vol.29, issue.2, p.277, 1974.
DOI : 10.1016/0009-2614(74)85031-1

A. S. Gyorgyi, TOWARDS A NEW BIOCHEMISTRY?, Science, vol.93, issue.2426, p.609, 1941.
DOI : 10.1126/science.93.2426.609

H. B. Akkerman, P. W. Blom, D. M. De-leeuw, and B. D. Boer, Towards molecular electronics with large-area molecular junctions, Nature, vol.34, issue.204, p.69, 2006.
DOI : 10.1038/nature04699

T. Ohsawa, K. Fujita, T. Higashi, Y. Iwata, T. Kajiyama et al., Memory design using a one-transistor gain cell on SOI, IEEE Journal of Solid-State Circuits, vol.37, issue.11, p.1510, 2002.
DOI : 10.1109/JSSC.2002.802359

M. C. Petty, M. Electronics, ]. L. Adleman-]-r, N. Braich, C. Chelyapov et al., From Principles to Practice, Science, vol.266, issue.296, pp.1021-499, 1994.

G. Mathur, S. Gowda, Q. L. Li, S. Surthi, Q. Zhao et al., Properties of Functionalized Redox-Active Monolayers on Thin Silicon Dioxide???A Study of the Dependence of Retention Time on Oxide Thickness, IEEE Transactions On Nanotechnology, vol.4, issue.2, p.278, 2005.
DOI : 10.1109/TNANO.2004.842056

J. M. Buriak, Organometallic Chemistry on Silicon and Germanium Surfaces, Chemical Reviews, vol.102, issue.5, p.1271, 2002.
DOI : 10.1021/cr000064s

R. S. Loewe, A. Ambroise, K. Muthukumaran, K. Padmaja, A. B. Lysenko et al., Porphyrins Bearing Mono or Tripodal Benzylphosphonic Acid Tethers for Attachment to Oxide Surfaces, The Journal of Organic Chemistry, vol.69, issue.5, p.1453, 2004.
DOI : 10.1021/jo034946d

D. Gryko, J. Z. Li, J. R. Diers, K. M. Roth, D. F. Bocian et al., Studies related to the design and synthesis of a molecular octal counter, Journal of Materials Chemistry, vol.11, issue.4, p.1162, 2001.
DOI : 10.1039/b008224o

C. Yan, M. Zharnikov, A. Golzhauser, and M. Grunze, Preparation and Characterization of Self-Assembled Monolayers on Indium Tin Oxide, Langmuir, vol.16, issue.15, p.6208, 2000.
DOI : 10.1021/la000128u

Z. M. Liu, A. A. Yasseri, J. S. Lindsey, and D. F. Bocian, Molecular Memories That Survive Silicon Device Processing and Real-World Operation, Science, vol.302, issue.5650, p.1543, 2003.
DOI : 10.1126/science.1090677

Y. M. Niquet, C. Delerue, G. Allan, and M. Lannoo, Method for tight-binding parametrization: Application to silicon nanostructures, Physical Review B, vol.62, issue.8, p.5109, 2000.
DOI : 10.1103/PhysRevB.62.5109

URL : https://hal.archives-ouvertes.fr/hal-00158664

Z. M. Liu, A. A. Yasseri, J. S. Lindsey, and D. F. Bocian, Molecular Memories That Survive Silicon Device Processing and Real-World Operation, Science, vol.302, issue.5650, p.1543, 2003.
DOI : 10.1126/science.1090677

C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stoddart et al., Electronically Configurable Molecular-Based Logic Gates, Science, vol.285, issue.5426, p.391, 1999.
DOI : 10.1126/science.285.5426.391

J. R. Heath and M. A. Ratner, Molecular Electronics, Physics Today, vol.56, issue.5, p.43, 2003.
DOI : 10.1063/1.1583533

C. P. Collier, J. O. Jeppesen, Y. Luo, J. Perkins, E. W. Wong et al., Molecular-Based Electronically Switchable Tunnel Junction Devices, Journal of the American Chemical Society, vol.123, issue.50, p.12632, 2001.
DOI : 10.1021/ja0114456

Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim et al., Logic Gates and Computation from Assembled Nanowire Building Blocks, Science, vol.294, issue.5545, p.1313, 2001.
DOI : 10.1126/science.1066192

J. Chen and M. A. Reed, Electronic transport of molecular systems, Chemical Physics, vol.281, issue.2-3, p.127, 2002.
DOI : 10.1016/S0301-0104(02)00616-X

C. M. Carcel, J. K. Laha, R. S. Loewe, P. Thamyongkit, K. H. Schweikart et al., Porphyrin Architectures Tailored for Studies of Molecular Information Storage, The Journal of Organic Chemistry, vol.69, issue.20, p.6739, 2004.
DOI : 10.1021/jo0498260

J. J. Makwana, D. K. Schroder, A. P. Overview, . C. Lawrence18-]-j, . M. Whitaker-]-s et al., http://www.electronics-manufacturers.com/products/computer-hardware/computer- memory/eprom The electronics Handbook The essentials of computer organization and architecture, Mueller, Upgrading and Repairing PCs Hamalainen, Embedded Computer Systems: Architectures, Modeling, and Simulation, 1996.

W. D. Brown, J. E. Brewer, ]. S. Mori, M. Sato, Y. Mikata et al., Nonvolatile Semiconductor Memory Technology, G. Campardo, R. Micheloni, D. Novosel, VLSI-Design of Non-Volatile Memories, p.386, 1991.
DOI : 10.1109/9780470545409

P. Pavan, L. Larcher, and A. Marmiroli, Floating Gate Devices, 2002.

R. S. Potember, T. O. Poehler, and D. O. Cowan, Electrical switching and memory phenomena in Cu???TCNQ thin films, Applied Physics Letters, vol.34, issue.6, p.405, 1979.
DOI : 10.1063/1.90814

K. Sakai, H. Kawada, K. Eguchi, and T. Nakagiri, Switching and memory phenomena in Langmuir???Blodgett films, Applied Physics Letters, vol.53, issue.14, p.1274, 1988.
DOI : 10.1063/1.100449

H. K. Henisch and J. A. Meyers, Switching in organic polymer films, Thin Solid Films, vol.51, issue.3, p.265, 1978.
DOI : 10.1016/0040-6090(78)90288-2

W. Boer, Threshold switching in hydrogenated amorphous silicon, Applied Physics Letters, vol.40, issue.9, p.812, 1982.
DOI : 10.1063/1.93269

M. Jafar and D. Haneman, Switching in amorphous-silicon devices, Physical Review B, vol.49, issue.19, p.13611, 1994.
DOI : 10.1103/PhysRevB.49.13611

A. Avila and R. Asomoza, Switching in coplanar amorphous hydrogenated silicon devices, Solid-State Electronics, vol.44, issue.1, p.17, 2000.
DOI : 10.1016/S0038-1101(99)00182-3

C. Collier, E. Wong, M. Belohradsky, F. Raymo, J. Stoddart et al., Electronically Configurable Molecular-Based Logic Gates, Science, vol.285, issue.5426, p.391, 1999.
DOI : 10.1126/science.285.5426.391

M. A. Reed, J. Chen, A. M. Rawlett, D. W. Price, and J. M. Tour, Molecular random access memory cell, Applied Physics Letters, vol.78, issue.23, p.3735, 2001.
DOI : 10.1063/1.1377042

J. Heath, P. Kuekes, G. Snider, and R. Williams, A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology, Science, vol.280, issue.5370, p.1716, 1998.
DOI : 10.1126/science.280.5370.1716

T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung et al., Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing, Science, vol.289, issue.5476, p.94, 2000.
DOI : 10.1126/science.289.5476.94

R. K. Venkatesan, A. S. Al-zawawi, K. Sivasubramanian, and E. Rotenberg, ZettaRAM: A Power-Scalable DRAM Alternative through Charge-Voltage Decoupling, IEEE Transactions on Computers, vol.56, issue.2, p.147, 2007.
DOI : 10.1109/TC.2007.37

C. Li, D. Zhang, S. Han, X. Liu, T. Tang et al., Diameter-Controlled Growth of Single-Crystalline In2O3 Nanowires and Their Electronic Properties, Advanced Materials, vol.290, issue.2, p.143, 2003.
DOI : 10.1002/adma.200390029

D. Zhang, C. Li, S. Han, X. Liu, T. Tang et al., Electronic transport studies of single-crystalline In2O3 nanowires, Applied Physics Letters, vol.82, issue.1, p.112, 2003.
DOI : 10.1063/1.1534938

C. Li, J. Ly, B. Lei, W. Fan, D. Zhang et al., Data Storage Studies on Nanowire Transistors with Self-Assembled Porphyrin Molecules, The Journal of Physical Chemistry B, vol.108, issue.28, p.9646, 2004.
DOI : 10.1021/jp0498421

D. X. Shi, Y. L. Song, H. X. Zhang, P. Jiang, S. T. He et al., Direct observation of a local structural transition for molecular recording with scanning tunneling microscopy, Applied Physics Letters, vol.77, issue.20, p.3203, 2000.
DOI : 10.1063/1.1326481

D. X. Shi, Y. L. Song, D. B. Zhu, H. X. Zhang, P. Jiang et al., Recording at the Nanometer Scale on p-Nitrobenzonitrile Thin Films by Scanning Tunneling Microscopy, Advanced Materials, vol.13, issue.14, p.1103, 2001.
DOI : 10.1002/1521-4095(200107)13:14<1103::AID-ADMA1103>3.0.CO;2-B

C. Bucher, J. C. Moutet, J. Pécaut, G. Royal, E. Saint-aman et al., Redox-Triggered Molecular Movement in a Multicomponent Metal Complex in Solution and in the Solid State, Inorganic Chemistry, vol.43, issue.13, p.3777, 2004.
DOI : 10.1021/ic049684s

V. Balzani, A. Credi, F. M. Raymo, and J. F. Stoddart, Artificial Molecular Machines, Angewandte Chemie, vol.406, issue.2, p.3348, 2000.
DOI : 10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X

T. J. Kealy and P. L. Pauson, A New Type of Organo-Iron Compound, Nature, vol.165, issue.4285, p.1039, 1951.
DOI : 10.1038/1681039b0

G. Wilkinson, M. Rosenblum, M. C. Whiting, and R. B. Woodward, THE STRUCTURE OF IRON BIS-CYCLOPENTADIENYL, Journal of the American Chemical Society, vol.74, issue.8, p.2125, 1952.
DOI : 10.1021/ja01128a527

C. E. Chidsey, Free Energy and Temperature Dependence of Electron Transfer at the Metal-Electrolyte Interface, Science, vol.251, issue.4996, p.919, 1991.
DOI : 10.1126/science.251.4996.919

T. W. Solomons and C. B. Fryhle, Organic Chemistry, 2006.

K. M. Roth, R. B. Dabke, Z. Liu, A. A. Yasseri, D. T. Gryko et al., Series, J. Mater. Chem, vol.11, issue.18, pp.844-1162, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00909707

A. M. Bond, Broadening Electrochemical Horizons: Principles and Illustration of Voltammetric and Related Techniques, 2002.

A. Jacubowski, Diagnostic Measurements in LSI and VLSI Integrated Circuits Production, 1991.
DOI : 10.1142/1142

D. D. Fitts, Principles of Quantum Mechanics, 2002.
DOI : 10.1017/CBO9780511813542

W. Koch and M. C. Holthausen, A Chemist's Guide to Density Functional Theory, 2e, 2001.

C. D. Sherrill, An Introduction to Hartree-Fock Molecular Orbital Theory, School of chemistry and Biochemistry, Georgia Institute of Technology, 2000.

J. C. Roothaan, New Developments in Molecular Orbital Theory, Reviews of Modern Physics, vol.23, issue.2, p.69, 1951.
DOI : 10.1103/RevModPhys.23.69

P. O. Lowdin, Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction, Physical Review, vol.97, issue.6, p.1474, 1955.
DOI : 10.1103/PhysRev.97.1474

C. Moeller and M. S. Plesset, Note on an Approximation Treatment for Many-Electron Systems, Physical Review, vol.46, issue.7, p.618, 1934.
DOI : 10.1103/PhysRev.46.618

D. C. Young, Computational Chemistry: A practical Guide for Applying Techniques to Real World Problems, 2001.
DOI : 10.1002/0471220655

R. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, 1989.
DOI : 10.1007/978-94-009-9027-2_2

P. A. Dirac, The principles of quantum mechanics, 4ed, 1989.

F. A. Reuse, Electrodynamique et optique quatiques, Presses polytechniques et universitaires romandes, 2007.

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review, vol.136, issue.3B, p.864, 1964.
DOI : 10.1103/PhysRev.136.B864

R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, 1989.
DOI : 10.1007/978-94-009-9027-2_2

S. Vosko, L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics, vol.58, issue.8, p.1200, 1980.
DOI : 10.1139/p80-159

J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B, vol.45, issue.23, p.13244, 1992.
DOI : 10.1103/PhysRevB.45.13244

M. Ernzerhof, J. P. Perdew, and K. Burke, Density functionals: Where do they come from, why do they work?, Topics in Current Chemistry, vol.180, 1996.
DOI : 10.1007/3-540-61091-X_1

G. B. Bachelet, D. R. Hamann, and M. Schlüter, Pseudopotentials that work: From H to Pu, Physical Review B, vol.26, issue.8, p.4199, 1982.
DOI : 10.1103/PhysRevB.26.4199

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, vol.38, issue.6, p.3098, 1988.
DOI : 10.1103/PhysRevA.38.3098

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.37, issue.2, p.785, 1988.
DOI : 10.1103/PhysRevB.37.785

W. Kohn, Y. Meir, and D. E. Makarov, van der Waals Energies in Density Functional Theory, Physical Review Letters, vol.80, issue.19, p.4153, 1998.
DOI : 10.1103/PhysRevLett.80.4153

M. Lein, J. F. Dobson, and E. K. Gross, Toward the description of van der Waals interactions within density functional theory, Journal of Computational Chemistry, vol.54, issue.1, p.12, 1999.
DOI : 10.1002/(SICI)1096-987X(19990115)20:1<12::AID-JCC4>3.0.CO;2-U

J. F. Dobson and B. P. Dinte, Constraint Satisfaction in Local and Gradient Susceptibility Approximations: Application to a van der Waals Density Functional, Physical Review Letters, vol.76, issue.11, p.1780, 1996.
DOI : 10.1103/PhysRevLett.76.1780

Y. Andersson, D. C. Langreth, and B. I. Lundqvist, van der Waals Interactions in Density-Functional Theory, Physical Review Letters, vol.76, issue.1, p.102, 1996.
DOI : 10.1103/PhysRevLett.76.102

E. R. Johnson and A. D. Becke, A post-Hartree???Fock model of intermolecular interactions, The Journal of Chemical Physics, vol.123, issue.2, p.24101, 2005.
DOI : 10.1063/1.1949201

C. Filippi, C. J. Umrigar, and M. Taut, Comparison of exact and approximate density functionals for an exactly soluble model, The Journal of Chemical Physics, vol.100, issue.2, p.1290, 1994.
DOI : 10.1063/1.466658

R. M. Martin, Electronic Structure, Basic Theory and Practical Methods, 2004.

A. D. Becke, A new inhomogeneity parameter in density-functional theory, The Journal of Chemical Physics, vol.109, issue.6, p.2092, 1998.
DOI : 10.1063/1.476722

C. Adamo and V. J. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, The Journal of Chemical Physics, vol.110, issue.13, p.6158, 1999.
DOI : 10.1063/1.478522

J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Climbing the Density Functional Ladder: Nonempirical Meta???Generalized Gradient Approximation Designed for Molecules and Solids, Physical Review Letters, vol.91, issue.14, p.146401, 2003.
DOI : 10.1103/PhysRevLett.91.146401

W. Koch and M. C. Holthausen, A Chemist's Guide to Density Functional Theory, 2001.
DOI : 10.1002/3527600043

D. C. Young, Computational Chemistry: A practical Guide for Applying Techniques to Real World Problems, 2001.
DOI : 10.1002/0471220655

R. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, 1989.
DOI : 10.1007/978-94-009-9027-2_2

F. Jensen, Computational chemistry, 1999.
DOI : 10.14293/S2199-1006.1.SOR-CHEM.CLYWQK5.v1

URL : https://hal.archives-ouvertes.fr/jpa-00253761

T. Helgaker, P. Jorgensen, and J. Olsen, Molecular Electronic Structure Theory The fundamentals of Density Functional Theory, 2000.

. Verlagsgesellschaft, Modern Quantum Chemistry, 1989.

R. M. Martin, Electronic Structure, 2004.
DOI : 10.1017/CBO9780511805769

URL : https://hal.archives-ouvertes.fr/in2p3-00022164

G. P. Srivastava, Theoretical Modelling of Semiconductor Surfaces, 1998.
DOI : 10.1142/3635

H. Smith, introduction to quantum mechanics, World Scientific, 1991.
DOI : 10.1142/1271

S. L. Altmann, Band Theory of Solids: An Introduction from the point of view of symmetry, 1994.

J. M. Ziman, Principles of the theory of Solids, 1979.

G. Joos, Theoretical Physics, 1987.

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Physical Review B, vol.13, issue.12, p.5188, 1976.
DOI : 10.1103/PhysRevB.13.5188

J. C. Phillips, Energy-Band Interpolation Scheme Based on a Pseudopotential, Physical Review, vol.112, issue.3, p.685, 1958.
DOI : 10.1103/PhysRev.112.685

J. C. Phillips and L. Kleinman, New Method for Calculating Wave Functions in Crystals and Molecules, Physical Review, vol.116, issue.2, p.287, 1958.
DOI : 10.1103/PhysRev.116.287

V. Heine, SOLID STATE PHYSICS, 1970.
DOI : 10.1016/B978-0-08-009242-3.50013-7

M. Ernzerhof, J. P. Perdew, K. D. Burke-]-a, and . Becke, Density functionals: Where do they come from, why do they work? Topics in Current Chemistry, J. Chem. Phys, vol.84, issue.44, p.4524, 1986.

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.37, issue.2, p.785, 1988.
DOI : 10.1103/PhysRevB.37.785

J. P. Perdew and Y. Wang, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, Physical Review B, vol.33, issue.12, p.8800, 1986.
DOI : 10.1103/PhysRevB.33.8800

L. Kleinman and D. M. Bylander, Efficacious Form for Model Pseudopotentials, Physical Review Letters, vol.48, issue.20, p.1425, 1982.
DOI : 10.1103/PhysRevLett.48.1425

Y. Fu, L. Liu, H. Yu, Y. Wang, and Q. Guo, Quantum-Chemical Predictions of Absolute Standard Redox Potentials of Diverse Organic Molecules and Free Radicals in Acetonitrile, Journal of the American Chemical Society, vol.127, issue.19, p.7227, 2005.
DOI : 10.1021/ja0421856

L. E. Roy, E. Jakubikova, M. G. Guthrie, and E. R. Batista, Calculation of One-Electron Redox Potentials Revisited. Is It Possible to Calculate Accurate Potentials with Density Functional Methods?, The Journal of Physical Chemistry A, vol.113, issue.24, p.6745, 2009.
DOI : 10.1021/jp811388w

S. Miertus, E. Scrocco, and J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects, Chemical Physics, vol.55, issue.1, p.117, 1981.
DOI : 10.1016/0301-0104(81)85090-2

A. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, vol.38, issue.6, p.3098, 1988.
DOI : 10.1103/PhysRevA.38.3098

M. Cossi, M. F. Iozzi, A. G. Marrani, T. Lavecchia, P. Galloni et al., Redox Potential in Molecular Monolayers Covalently Bound to H???Si(100), The Journal of Physical Chemistry B, vol.110, issue.46, p.22961, 2006.
DOI : 10.1021/jp064800t

A. Wahab, M. Bhattacharya, S. Ghosh, A. G. Samuelson, and P. K. Das, Quadratic Nonlinearity of One- and Two-Electron Oxidized Metalloporphyrins and Their Switching in Solution, The Journal of Physical Chemistry B, vol.112, issue.10, p.2842, 2008.
DOI : 10.1021/jp076909m

M. S. Liao and S. J. Scheiner, Electronic structure and bonding in metal porphyrins, metal=Fe, Co, Ni, Cu, Zn, The Journal of Chemical Physics, vol.117, issue.1, p.205, 2002.
DOI : 10.1063/1.1480872

T. Vangberg and A. Ghosh, A First-Principles Quantum Chemical Analysis of the Factors Controlling Ruffling Deformations of Porphyrins:?? Insights from the Molecular Structures and Potential Energy Surfaces of Silicon, Phosphorus, Germanium, and Arsenic Porphyrins and of a Peroxidase Compound I Model, Journal of the American Chemical Society, vol.121, issue.51, p.12154, 1999.
DOI : 10.1021/ja992457i

R. W. Scheidt, M. E. Kastner, and K. Hatano, Stereochemistry of the toluene solvate of .alpha.,.beta.,.gamma.,.delta.-tetraphenylporphinatozinc(II), Inorganic Chemistry, vol.17, issue.3, p.706, 1978.
DOI : 10.1021/ic50181a041

W. Jentzen, X. Song, and J. A. Shelnutt, Structural Characterization of Synthetic and Protein-Bound Porphyrins in Terms of the Lowest-Frequency Normal Coordinates of the Macrocycle, The Journal of Physical Chemistry B, vol.101, issue.9, p.1684, 1997.
DOI : 10.1021/jp963142h

W. Jentzen, E. Unger, X. Z. Song, S. L. Jia, I. Turowska-tyrk et al., -Tetraphenylporphinato)nickel(II) in Solution As Inferred from Solution and Solid-State Raman Spectroscopy, The Journal of Physical Chemistry A, vol.101, issue.32, p.5789, 1997.
DOI : 10.1021/jp970496f

W. R. Scheidt, Trends in metalloporphyrin stereochemistry, Accounts of Chemical Research, vol.10, issue.9, p.339, 1977.
DOI : 10.1021/ar50117a005

N. R. Kestner and J. E. , Basis Set Superposition Errors: Theory and Practice, Combariza, Rev. Comput. Chem, vol.13, p.99, 1999.
DOI : 10.1002/9780470125908.ch2

J. F. Kirner, C. A. Reed, and W. R. Scheidt, Stereochemistry of manganese porphyrins. 2. The toluene solvate of .alpha.,.beta.,.gamma.,.delta.-tetraphenylporphinatomanganese(II) at 20 and -175.degree.C, Journal of the American Chemical Society, vol.99, issue.4, p.1093, 1977.
DOI : 10.1021/ja00446a020

R. B. Vanatta, C. E. Strouse, L. K. Hanson, and J. S. Valentine, Peroxo(tetraphenylporphinato)manganese(III) and chloro(tetraphenylporphinato)manganese(II) anions. Synthesis, crystal structures, and electronic structures., Journal of the American Chemical Society, vol.109, issue.5, p.1425, 1987.
DOI : 10.1021/ja00239a024

P. Turner and M. J. Gunter, Carbon-13 NMR Spectroscopy, Electron Spin Distribution, and Valence State of Pentacoordinate Manganese Tetraphenylporphyrin Complexes, Inorganic Chemistry, vol.33, issue.7, p.1406, 1994.
DOI : 10.1021/ic00085a032

B. S. Cheng, P. H. Fries, J. C. Marchon, and W. R. Scheidt, A Nearly Linear Single Hydroxo Bridge. Synthesis, Structure, and Magnetic Susceptibility of (??-Hydroxo)bis((tetraphenylporphinato)manganese(III)) Perchlorate, Inorganic Chemistry, vol.35, issue.4, p.1024, 1996.
DOI : 10.1021/ic951041c

K. Leung, S. B. Rempe, P. A. Schultz, E. M. Sproviero, V. S. Batista et al., Density Functional Theory and DFT+U Study of Transition Metal Porphines Adsorbed on Au(111) Surfaces and Effects of Applied Electric Fields, Journal of the American Chemical Society, vol.128, issue.11, p.3659, 2006.
DOI : 10.1021/ja056630o

N. R. Kestner and J. E. , Basis Set Superposition Errors: Theory and Practice, Combariza, Rev. Comput. Chem, vol.13, p.99, 1999.
DOI : 10.1002/9780470125908.ch2

V. Vetere, C. Adamo, and P. Maldivi, Performance of the `parameter free' PBE0 functional for the modeling of molecular properties of heavy metals, Chemical Physics Letters, vol.325, issue.1-3, p.99, 2000.
DOI : 10.1016/S0009-2614(00)00657-6

L. M. Lawson-daku, A. Castaings, and J. C. Marchon, Density-Functional Theory Study of the Stereochemistry of Chloroiron(III) and Chloromanganese(III) Complexes of a Bridled Chiroporphyrin, Inorganic Chemistry, vol.48, issue.12, p.5164, 2009.
DOI : 10.1021/ic900031c

I. Figure, 21 Optimized structure of Fc directly grafted The molecule seems to be stable on the surface, and doesn't collapse during the minimization procedure. After optimization of the structure, the resulting PDOS in reduced form are shown in figure IV

T. Rakshit, G. Liang, A. W. Ghost, M. C. Hersam, and S. Datta, Molecules on silicon: Self-consistent first-principles theory and calibration to experiments, Physical Review B, vol.72, issue.12, p.125305, 2005.
DOI : 10.1103/PhysRevB.72.125305

Y. Xue, S. Datta, and M. A. Ratner, Charge transfer and ???band lineup??? in molecular electronic devices: A chemical and numerical interpretation, The Journal of Chemical Physics, vol.115, issue.9, p.4292, 2001.
DOI : 10.1063/1.1391253

M. Cossi, M. F. Iozzi, A. G. Marrani, T. Lavecchia, P. Galloni et al., Redox Potential in Molecular Monolayers Covalently Bound to H???Si(100), The Journal of Physical Chemistry B, vol.110, issue.46, p.22961, 2006.
DOI : 10.1021/jp064800t

W. C. O-'mara, L. E. Hunt, and R. B. Haber, Handbook of Semiconductor Silicon Technology, 1990.

R. Hull, Properties of Crystalline Silicon, 1999.

J. Shoemaker, L. W. Burggraf, and M. S. Gordon, cluster study of the structure of the Si(001) surface, The Journal of Chemical Physics, vol.112, issue.6, p.2994, 2000.
DOI : 10.1063/1.480930

A. R. Brown and D. J. Doren, Dissociative adsorption of silane on the Si(100)-(2??1) surface, The Journal of Chemical Physics, vol.110, issue.5, p.2643, 1999.
DOI : 10.1063/1.477986

Y. M. Niquet, C. Delerue, G. Allan, and M. Lannoo, Method for tight-binding parametrization: Application to silicon nanostructures, Physical Review B, vol.62, issue.8, p.5109, 2000.
DOI : 10.1103/PhysRevB.62.5109

URL : https://hal.archives-ouvertes.fr/hal-00158664

G. P. Srivastava, Theoretical Modelling of Semiconductor Surfaces, 1999.
DOI : 10.1142/3635

M. J. Monte, L. M. Santos, M. Fulem, J. M. Fonseca, and C. A. Sousa, New Static Apparatus and Vapor Pressure of Reference Materials:??? Naphthalene, Benzoic Acid, Benzophenone, and Ferrocene, Journal of Chemical & Engineering Data, vol.51, issue.2, p.757, 2006.
DOI : 10.1021/je050502y