
HAL Id: tel-00483944
https://theses.hal.science/tel-00483944

Submitted on 17 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantics for a Higher Order Functional Programming
Language for Quantum Computation

Benoît Valiron

To cite this version:
Benoît Valiron. Semantics for a Higher Order Functional Programming Language for Quantum Com-
putation. Other [cs.OH]. University of Ottawa, 2008. English. �NNT : �. �tel-00483944�

https://theses.hal.science/tel-00483944
https://hal.archives-ouvertes.fr

Semantics for a Higher-Order Functional Programming Language for

Quantum Computation.

Benôıt Valiron

Thesis Submitted to the Faculty of Graduate and Postdoctoral Studies
In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics1

Department of Mathematics and Statistics
Faculty of Science

University of Ottawa

c© Benôıt Valiron, Ottawa, Canada, 2008

1The Ph.D. program is a joint program with Carleton University, administered by the Ottawa-Carleton Institute
of Mathematics and Statistics

Pour mon père.

Abstract

The objective of this thesis is to develop a semantics for higher-order quantum information.
Following the work done in the author’s M.Sc. thesis, we study a lambda calculus for quantum

computation with classical control. The language features two important properties. The first one,
arising from the so-called no-cloning theorem of quantum computation, is the need for a distinction
between duplicable and non-duplicable elements. For keeping track of duplicability at higher-order,
we use a type system inspired by the resource-sensitive linear logic. The second important aspect is
the probability inherent to measurement, the only operation for retrieving classical data from quan-
tum data. This forces us into choosing a reduction strategy for being able to define an operational
semantics.

We address the question of a denotational semantics in two respects. First, we restrict the
study to the strictly linear aspect of the language. Doing so, we suppress the need for distinguishing
between duplicable and non-duplicable elements and we can focus on the description of quantum
features at higher-order. Using the category of completely positive maps as a framework, we build
a fully abstract denotational model of the strictly linear fragment of the language.

The study of the full language is more demanding. For dealing with the probabilistic aspect of
the language, we use a method inspired by Moggi and build a computational model with a distinction
between values and computations. For the distinction between duplicability and non-duplicability in
the calculus, we adapt Bierman’s linear category, where the duplication is considered as a comonad
with specific properties. The resulting model is what we call a linear category for duplication.
Finally, we only focus on the fragment of the language that contains the aforementioned elements,
and remove the classical Boolean and quantum Boolean features to get a generic computational
linear lambda-calculus. In this idealized setting, we show that such a language have a full and
complete interpretation in a linear category for duplication.

iii

Acknowledgements

Numerous people allowed me to write this thesis. In particular, I would like to thank:

• Peter, who supported me for yet another degree;

• Caroline, who came all the way to Halifax;

• my parents, for being supportive all that time;

• Rob, for feeding me with coffee;

• the administrative staff of both Dalhousie and Ottawa University, for being so helpful;

• and finally Gilles, for printing more that 1000 pages of this opus of content.

iv

Contents

Abstract iii

Acknowledgements iv

List of Figures ix

List of Tables x

1 Introduction 1

2 Notions of Category Theory 6

2.1 Categories and Functors . 6
2.2 Natural Transformations . 7
2.3 Adjoint Functors . 8
2.4 Products and Coproducts . 9
2.5 Monads . 10
2.6 Comonads . 11
2.7 Symmetric Monoidal Categories and Comonoids 13

2.7.1 Monoidal Categories . 13
2.7.2 Commutative Comonoids . 13

2.8 Monoidal Comonads and Coalgebras . 14

3 Quantum Computation 17

3.1 Mathematical Formalism . 17
3.1.1 Generalities on Finite Dimensional Hilbert Spaces 17
3.1.2 Tensor Products of Hilbert Spaces . 19
3.1.3 Completely Positive Maps . 19
3.1.4 Superoperators . 20
3.1.5 The 2-Dimensional Hilbert Space . 21

3.2 Quantum Foundations . 23
3.2.1 Quantum Bits . 23
3.2.2 Operations . 23
3.2.3 Mixed States . 25

3.3 Quantum Effects . 26
3.3.1 No Cloning . 26
3.3.2 Entanglement . 26
3.3.3 Bell’s Inequalities . 27

3.4 Some Algorithms and Uses of Quantum Effects 28
3.4.1 Teleportation . 28

v

CONTENTS vi

3.4.2 Dense Coding . 30
3.4.3 The Deutsch Algorithm . 31

4 A Tour in Existing Models of Quantum Computation 32

4.1 The Various Paradigms . 32
4.1.1 Unitary Gates as Computation. 32
4.1.2 Concurrent Quantum Computation . 34
4.1.3 Measurement-Based Quantum Computation 34
4.1.4 The QRAM Model . 35

4.2 Formalism of Hilbert Spaces . 35
4.2.1 Dagger Compact-Closed Categories . 36
4.2.2 Classical Objects . 37

4.3 A Flow-Chart Language . 37
4.3.1 The language . 37
4.3.2 The Category of Superoperators . 37
4.3.3 Interpretation of the Flow-Chart Language 39

4.4 Extension to Higher-Order . 40

5 Lambda Calculus and Semantics of Higher-Order Computation 41

5.1 Lambda Calculus . 41
5.1.1 The Language . 41
5.1.2 Free and Bound Variables . 42
5.1.3 Alpha-Equivalence . 42
5.1.4 Operational Meaning of Lambda Calculus 42
5.1.5 Typed Lambda Calculus . 43

5.2 Proofs as Computations . 45
5.2.1 Intuitionistic Logic . 46
5.2.2 Curry-Howard Isomorphism . 46

5.3 Categorical Logic . 47
5.4 Lambda Calculus and Side Effects . 48

5.4.1 Pure Versus Impure Calculus. 48
5.4.2 Reduction Strategies . 49
5.4.3 Towards a Semantics . 49
5.4.4 Computational Model for Call-By-Value 50

5.5 Intuitionistic Linear Logic . 51
5.6 Linear Calculi and their Interpretations . 51

5.6.1 Earlier Models . 52
5.6.2 Bierman’s Linear Category . 52

6 A Lambda Calculus for Quantum Computation 54

6.1 The Language . 54
6.2 Operational Semantics . 56

6.2.1 Abstract Machine . 56
6.2.2 Evaluation Strategy . 56
6.2.3 Probabilistic Reduction Systems . 58
6.2.4 Reduction System . 59

6.3 Type System . 60
6.3.1 Types . 60
6.3.2 Typing Rules . 61

6.4 Properties of the Type System . 62

CONTENTS vii

6.4.1 Safety Properties . 62
6.4.2 Type Inference Algorithm . 63

6.5 Examples of Algorithms . 64
6.5.1 The Deutsch Algorithm . 64
6.5.2 The Teleportation Procedure . 64
6.5.3 Type Derivation of the Teleportation Protocol 65
6.5.4 Reduction of the Teleportation Term . 67
6.5.5 Reduction of the Superdense Coding Term 68

6.6 Towards a Denotational Semantics . 69

7 The Linear Fragment 70

7.1 A Linear Lambda Calculus for Quantum Computation 70
7.2 Operational Semantics . 75

7.2.1 Small Step Semantics . 75
7.2.2 Safety Properties . 77
7.2.3 Normalization . 79
7.2.4 Quantum Context and Reduction . 81
7.2.5 Reduction to Values . 82

7.3 Denotational Semantics . 83
7.3.1 Modeling the Linear Quantum Lambda Calculus 83
7.3.2 Fullness of the First-Order Fragment . 89
7.3.3 Fullness up to Scalar Multiple . 91

7.4 Equivalence Classes of Terms . 94
7.4.1 Axiomatic Equivalence . 94
7.4.2 Operational Context . 95
7.4.3 Operational Equivalence . 95
7.4.4 Denotational Equivalence . 96

7.5 Soundness and Full Abstraction . 96
7.5.1 Proof of the Soundness Theorem . 97
7.5.2 Full Abstraction: Preliminary Lemmas . 97
7.5.3 Proof of the Full Abstraction Theorem . 98

8 Structure of the Linear-Non-Linear Fragment 99

8.1 Computations and Values . 99
8.2 Duplicability Versus Non-Duplicability . 99

8.2.1 Computations as Proofs . 100
8.3 Structure of the Exponential . 100

8.3.1 Idempotency . 100
8.3.2 Coherence Property for Idempotent Comonads 101
8.3.3 Duplicable Pairs and Pairs of Duplicable Elements 107

8.4 Linear Category for Duplication . 107

9 A Computational Lambda Calculus for Duplication 109

9.1 An Indexed Lambda Calculus . 109
9.1.1 Type System . 109
9.1.2 Terms . 110
9.1.3 Typing Judgements . 111
9.1.4 Type Casting and Substitution Lemma 116

9.2 Equational Logic of Typed Terms . 123
9.3 The Category Cλ . 128

CONTENTS viii

9.3.1 Monoidal Structure . 129
9.3.2 Monadic Structure . 139
9.3.3 Comonadic Structure . 145
9.3.4 The Category Cλ is a Linear Category for Duplication 147

10 Proof of Theorem 9.2.7 148

10.1 A Handy Tool: Neutral Terms . 148
10.2 Term Rewriting System Number One . 152
10.3 Term Rewriting System Number Two . 158

10.3.1 The Rewriting System . 158
10.3.2 Height of Terms . 160
10.3.3 Degree of Terms . 161
10.3.4 Last Notion of Measure: Number of a Term 163
10.3.5 Putting Everything Together . 164

10.4 Proof of Theorem 9.2.7 . 172

11 Categorical Semantics 174

11.1 Denotational Semantics . 174
11.1.1 Interpretation of the Type System . 174
11.1.2 Interpretation of the Language . 174

11.2 Soundness of the Denotation . 182
11.3 Completeness . 198
11.4 Towards a Denotational Model . 200

Bibliography 201

Index 207

List of Figures

3.1 The Bloch sphere. 22
3.2 Quantum teleportation protocol. 28
3.3 Dense coding protocol. 30

4.1 The QRAM model . 35

ix

List of Tables

4.1 Rules for constructing quantum flow-charts . 38

5.1 Intuitionistic logic: natural deduction rules . 46
5.2 Interpretation of the simply typed lambda calculus 48

6.1 Reductions rules of the quantum lambda calculus 60
6.2 Typing rules . 62

7.1 Typing rules for the linear quantum lambda calculus 71
7.2 Reduction rules for the linear quantum lambda calculus 76
7.3 Denotational semantics for typing judgements. 84
7.4 Axiomatic equivalence . 94

9.1 Typing rules for the linear-non-linear quantum lambda calculus 111
9.2 Axiomatic equivalence axioms: beta-eta-rules . 124
9.3 Axiomatic equivalence axioms: commutation rules 124
9.4 Axiomatic equivalence: derived rules . 125
9.5 Definitions of maps and operations on maps in Cλ 147

11.1 Interpretation of core values. 177
11.2 Interpretation of extended values. 178
11.3 Interpretation of computations. 179

x

Chapter 1

Introduction

Quantum computation is a paradigm of computation where information is potentially non-local, can
be non-duplicable, and for which one of the core features is inherently probabilistic. However, using
quantum computation, numerous hard problems, such as factoring, can be performed efficiently.
Higher-order computation brings new light on these algorithms, but raises several challenging prob-
lems such as dealing with non-duplicable functions, or marrying duplicability and probabilistic be-
havior. By taking the problem both at the concrete level of completely positive maps and at the
abstract level of categorical structures, this thesis addresses the issue of the semantics of higher-order
quantum computation.

Background

Quantum computation. While classical computation uses data encoded on objects governed
by the laws of classical physics, quantum computation uses data encoded on the state of particles
governed by the laws of quantum physics. The basic unit of data in quantum computation is a
quantum bit, which can be modeled by a normalized vector in a 2-dimensional Hilbert space H.
Choosing an orthonormal basis {|0〉, |1〉}, one can consider |0〉 and |1〉 as vectors of information,
leading to potential superposition of information. The state of a system of two or more quantum
bits is a normalized vector in H ⊗ H ⊗ . . . ⊗ H. The permissible operations on quantum bits are
determined by the laws of quantum physics. The only possible operations are initializations, unitary
operations and measurements (and combinations thereof). Here, measurement is an operation that
sends a quantum bit in state α|0〉 + β|1〉 to |0〉 with probability |α|2 and |1〉 with probability |β|2,
while simultaneously returning a Boolean 0 or 1, respectively.

Shor (1994) has shown that quantum computers can factor an integer in a time that is poly-
nomial in its number of digits. It is not known whether any classical algorithm can solve the
problem in polynomial time. The factoring problem has numerous implications in cryptography.
This discovery has focused attention on quantum computing. Quantum computing is also able
to bring change in other domains, such as database manipulation, with algorithms to query ele-
ments in databases, and such as numerical methods, with the ability to perform Fourier transform
efficiently (Nielsen and Chuang, 2002).

From the point of view of quantum programming languages, there are several features of quan-
tum computation that deserve special attention. First, unlike classical data, quantum data cannot
in general be duplicated: there is no map (α|0〉 + β|1〉) 7→ (α|0〉 + β|1〉) ⊗ (α|0〉 + β|1〉). This is
known as the “no-cloning theorem” (Wootters and Zurek, 1982). Second, quantum data can be en-
tangled: Consider the two-quantum bit state 1√

2
|00〉+ 1√

2
|11〉. Although one can speak of “quantum

1

2

bit number 1” and “quantum bit number 2”, there is no way of writing the system as |φ〉 ⊗ |ψ〉.
Finally, measurement, which is the only operation for converting quantum data to classical data, is
inherently a probabilistic operation.

Semantics of programming languages. When dealing with a programming language, an im-
portant question is how to describe the behavior of programs, and to characterize the set of the
possible behaviors. A semantics (Pierce, 2002) for a programming language serves as a description
of properties that valid programs satisfy. This permits to get insights into the capabilities of the
language and the logic underlying it. This can help for example in understanding the power and the
limitations of the computational paradigm considered, or more pragmatically to build automated
tools to check for the validity of a piece of code, along a set of specifications.

An operational semantics is a description of how valid programs behave by sequences of com-
putational steps. Depending on the programming language considered, this can take the form of a
rewriting system of the code itself (in the case, for example, of the simply-typed lambda calculus),
or it can be more involved and require the description of an abstract machine (as, for example, in
the case of the Turing machine).

An axiomatic semantics is a description of local syntactic equivalences of code. The goal is
to provide an equational logic of programs, in order to exhibit general syntactic properties of the
language. It is helpful to describe a system of normal forms in which every program can be re-
written. An important property of an axiomatic semantics is soundness. We say that an axiomatic
semantics is sound if two axiomatically equivalent programs are operationally equivalent.

A denotational semantics is built by drawing a parallel between the programs in the language
and a mathematically structured set. The properties of the language are understood as mathematical
and logical properties, giving a handle to answer questions about the language. A very strong
property for a denotational semantics is full abstraction: the semantics is fully abstract when any
two programs have the same denotation precisely when they are operationally equivalent in every
context. When the interpretation is also onto, the denotation is fully complete.

Sometimes, at first it is only possible to describe the axiomatic structure of the language. In
this situation, by studying the relations between pieces of code it can be possible to describe the
categorical structure underlying the logic and infer a categorical semantics.

Higher-order computation and lambda calculus. An essential paradigm in computation is
higher-order computation. A higher-order function is a function that inputs or outputs a “black
box”, which is itself a function. The canonical formalism for expressing higher-order functions is
the lambda calculus developed by Church (1936) and Kleene (1935a,b) to characterize computable
functions. This endeavour was shown (Turing, 1936) to have the same computational power as
Turing machines.

The lambda calculus not only permits the design of all computable functions, but it also allows
one to draw a correspondence between proofs in logic and programs. This correspondence, known as
the Curry-Howard isomorphism (Girard et al., 1990), is the one of the main tools used for passing
from an axiomatic semantics to a categorical semantics (Lambek and Scott, 1989). It is thus a
powerful handle to grasp the structure behind potentially intricate computational schemes.

Pure and impure lambda calculus. In its most general formulation, the lambda calculus is
called pure, or purely functional. This means that programs are completely determined by their out-
put result on each possible input. It is fairly restrictive and unfortunately rules out many interesting
side effects, such as non-determinism, probabilistic outcomes, or input-outputs. To give a seman-
tics to languages with side-effects, Moggi (1989, 1991) defines a lambda calculus, the computational
lambda calculus, where two classes of terms are considered: the values and the computations. Using

3

an axiomatic equivalence and some categorical tools, he describes a general model of computations
with side effects.

Semantics of Quantum Programming Languages

Besides a few existing algorithms, quantum computation is a relatively fresh area of research with
no single best way of thinking about the processes in play. Understanding the semantics of quantum
programming languages is therefore a useful tool in understanding the capabilities of quantum
computation and for deciding on the most appropriate form to use as a computational scheme.
Being in the intersection of physics, computer science and mathematics, several paradigms to process
quantum computation exist, and a wide ranges of approaches are studied (Gay, 2006).

Some studies focus primarily on the unitary evolution of the quantum states, and view mea-
surement as a meta-operation outside of the formalism. Benioff (1980) and Deutsch (1985) built
a quantum Turing machine, where the tape, the head and the states are encoded as quantum in-
formation. Van Tonder (2003, 2004) described a lambda calculus encoded on strings of quantum
bits. Altenkirch and Grattage (2005a,b) studied a first order functional language with a notion of
quantum test compiling into a quantum circuit.

Other approaches consider measurements as the driving force in the computation. This is
the one-way model of Raussendorf and Briegel (2001), further extended with an axiomatic and a
denotational semantics in (Danos et al., 2007).

It is also possible to see measurements as an active part in the computation and to allow inter-
leaved unitary operations and measurements. One example is the QRAM model of Knill (1996) and
Bettelli et al. (2003). Here, a quantum computer consists of a classical computer with a quantum de-
vice attached to it. In this configuration, called “classical control” (Selinger, 2004c), the operation of
the machine is controlled by a classical program which emits a sequence of instructions to the quan-
tum device for performing measurements and unitary operations. Several programming languages
have been proposed to deal with such a model, see for example the works of Sanders and Zuliani
(2000), Bettelli et al. (2003), Selinger (2004b).

The denotational aspect of quantum computation has been studied in various ways. A first
trend of research, started by Abramsky and Coecke (2004), focuses on the basic structures required
for performing quantum computation, using a categorical framework. This work gave birth to
a range of publications, such as (Coecke, 2004; Coecke and Pavlovic, 2007; Selinger, 2005) and
(Coecke and Paquette, 2006). Other approaches focus on the description of quantum computation
in term of superoperators. Selinger (2004b) defines a flow-chart language and provides a fully
complete semantics for the language in term of superoperators. (Selinger, 2004c) is an attempt to
generalize this semantics at higher-order, by looking for a suitable category of normed vector spaces.
However, none of the studied descriptions capture the required structure. Another related work
is the one of Girard (2004), describing a model of linear logic in terms of normed vector spaces.
However, although being a ∗-autonomous category, it does not yield the correct answer at base
types, as pointed out by (Selinger, 2004c).

A Lambda Calculus for Quantum Computation

Selinger and Valiron (2006a, 2005) and Valiron (2004a,b) developed a higher-order language for
quantum computation. The language is a typed lambda calculus together with classical and quantum
data, featuring creations of quantum bits, measurements and unitary operations. For example, in
such a language one can build a function that inputs a Boolean and returns a function from quantum
bits to quantum bits based on the input bit.

4

The first important feature built into the language is the distinction between duplicable and
non-duplicable elements. This arises from the no-cloning property of quantum computation. So if
x : qbit is a variable representing a quantum bit, and y : bit is a variable representing a classical bit,
then it is legal to write f(y, y), but not g(x, x). In order to keep track of duplicability at higher-order
types we use a type system based on linear logic (Girard, 1987). We use the duplicability operator
“!” to mark classical types.

The second feature of quantum computation included in the language is the probabilistic nature
of the measurement. This was taken care of by defining an abstract machine together with an
operational semantics in the form of a call-by-value reduction strategy.

The most significant results of (Valiron, 2004a) were the proof that the type system prevents a
typed program from ending up in an error state, and the description a type inference algorithm for
deciding whether a given program is typeable or not.

Semantics for Higher-Order Quantum Computation

We now turn to the question of a semantics for the quantum lambda calculus of (Valiron, 2004a).
As explained before, we use the duplicability operator “!” to mark classical types. In the categor-

ical semantics, this operator gives rise to a comonad as in the work of Seely (1989) and Benton et al.
(1992). Another account of mixing copyable and non-copyable data is Coecke and Pavlovic (2007),
where the copyability is internal to objects. However, it is not clear whether this approach scales
well to higher order.

To model the probabilistic effect of the measurement operator in our call-by-value setting,
our semantics requires a computational monad in the sense of Moggi (1991). The coexistence
of the computational monad and the duplicability comonad in the same category is what makes
our semantics interesting and novel. It differs from the work of Benton and Wadler (1996), who
considered a monad and a comonad one two different categories, arising from a single adjunction.

The computational aspects of linear logic have been extensively explored by many authors,
including Abramsky (1993); Benton et al. (1992, 1993); Bierman (1993); Wadler (1992). However,
these works contain explicit lambda terms to witness the structural rules of linear logic, for example,
x : !A ⊲ derelict(x) : A. By contrast, in our language, structural rules are implicit at the term
level, so that !A is regarded as a subtype of A and one writes x : !A ⊲ x : A. As it was shown
in Selinger and Valiron (2006a), linearity information can automatically be inferred by the type
checker. This allows the programmer to program as in a regular non-linear language.

This use of subtyping is the main technical complication in our proof of well-definedness of the
semantics. This is because one has to show that the denotation is independent of the choice of
a potentially large number of possible derivations of a given typing judgement. We are forced to
introduce a Church-style typing system, and to prove that the semantics finally does not depend on
the additional type annotations.

Another technical choice we made in our language concerns the relation between the exponential
“!” and the pairing operation. Linear logic only requires !A ⊗ !B ⊲ !(A⊗B) and not the opposite
implication. However, in our programming language setting, we find it natural to identify a classical
pair of values with a pair of classical values, and therefore we will have an isomorphism !A ⊗ !B ∼=
!(A⊗B).

Plan of the Thesis

The content of the thesis is summarized as follows.
In Chapter 2, we state the notions of category theory used in the thesis. In Chapter 3 we

give a brief overview of quantum computation, and we describe in Chapter 4 the works in the

5

literature concerned with the semantics of quantum programming languages. In particular, we detail
in Section 4.3 the flow-chart language of Selinger (2004b) and its semantics in term of superoperators,
used in Chapter 7.

The last chapter on general background is Chapter 5, giving a brief introduction on lambda
calculus and its categorical interpretation. We review the simply-typed lambda calculus, its compu-
tational extension for dealing with side-effects, and the computational interpretation of intuitionistic
linear logic

Chapter 6 summarizes of the results contained in (Valiron, 2004a). The quantum lambda
calculus that will be referred to all along the remainder of the thesis is defined here, together with
its type system and its operational semantics.

The next chapters are the main contribution of this thesis.
Chapter 7 contains a precise study of the linear fragment of the quantum lambda calculus. This

fragment is typed, its operational semantics is described in the same way as in Chapter 6, and a
denotational semantics in term of completely positive maps is provided. Using the fact that the
semantics is full at first order, the semantics is proved to be fully abstract.

Chapter 8 raises the issue of the structure of the full language. Using Moggi’s computational
model and Bierman’s linear categories, a categorical structure candidate for being a model of the
language, called linear category for duplication is provided.

Chapter 9 describes a version of the quantum lambda calculus stripped from the classical and
the quantum Boolean structure. The language is reduced to its core features, namely the distinction
between linearity and non-linearity, the higher-order, the pairing and the computational aspect. An
axiomatic semantics is described, yielding a syntactic category that is proved to be a linear category
for duplication. The result requires Theorem 9.2.7, whose proof requires some technical machinery.
Chapter 10 explains this machinery: We introduce two rewriting systems. They converge to a special
class of terms, called the neutral terms, for which the theorem is trivial. The main difficulty is to
prove a weak-normalization result for these rewriting systems. We use techniques from (Girard et al.,
1990, Ch. 4) by defining a well-founded measure of convergence, decreasing with each reduction of
the rewriting system.

Chapter 11 develops the interpretation of the computational lambda calculus for duplication
into a general linear category for duplication, and the proof that the interpretation is sound and
complete.

Chapter 2

Notions of Category Theory

In this chapter we give a brief exposition of the definitions and results of category theory used in
the remainder of the thesis. For a complete introduction to category theory, (Mac Lane, 1998) is a
solid reference. An approach to category theory oriented towards semantic aspects of computation
can be found in (Lambek and Scott, 1989).

2.1 Categories and Functors

The content of this section follows (Lambek and Scott, 1989).

Definition 2.1.1. A category C consists of the following three elements.

• A class of objects, denoted by |C|.

• A class of morphisms. To each morphism f is associated a domain A and a codomain B, where
A,B are objects. We say f is a morphism (or an arrow, or a map) from A to B and we write
f : A→ B. For any given A and B, we define the homset of A to B as the class of morphisms
from A to B, and we denote it C(A,B), homC(A,B), or hom(A,B) if there is no ambiguity.
For each A there is a special morphism idA : A→ A, called the identity.

• A binary operator ◦ called composition such that if f : A→ B and g : B → C are morphisms
then g ◦ f : A→ C is a morphism. We will also write g ◦ f as f ; g.

The composition satisfies two properties: if f : A → B, g : B → C and h : C → D are morphisms,
then

(f ; g);h = f ; (g;h) and f ; idB = f = idA; f.

We say that the category is locally small if for all objects A,B the class hom(A,B) is a set. We say
it is small if moreover the class of objects is a set.

Definition 2.1.2. We say that a morphism f : A → B in a category C is an isomorphism if there
exists a morphism f−1 : B → A such that f ; g = idA and g; f = idB .

Example 2.1.3. The trivial category 1. Its class of objects is the singleton {⋆} and its unique
arrow is the identity on ⋆. Composition is defined trivially.

Example 2.1.4. The category Set of sets. Its objects are arbitrary sets and its morphisms arbitrary
mappings between sets.

6

2.2. Natural Transformations 7

Example 2.1.5. Given a category C, the opposite category Cop consisting of the objects of C and
the arrows of C in “opposite” direction: f is an arrow from B to A in Cop if and only if f : A → B
is an arrow of C. We write fop for the arrow in Cop corresponding to f in C.

Example 2.1.6. Given two categories C and D one defines a category C × D with the following
data.

• Objects are pairs (A,B) where A ∈ |C| and B ∈ |D|.
• An arrow (A,B) → (C,D) is a pair of arrows (f : A→ C, g : B → D), where f ∈ C and g ∈ D.

The identity arrow idA,B is the pair (idA, idB).

• The composition of two maps (f, f ′) : (A,A′) → (B,B′) and (g, g′) : (B,B′) → (C,C′) is the
map (f ; g, f ; g′) : (A,A′) → (C,C′).

Definition 2.1.7. Given two categories C and D, a functor F from C to D is a map from |C| to |D|
and from homB(A,B) to homD(FA,FB) for all A,B in C preserving identities and composition:

F (idA) = idFA and F (f ; g) = Ff ;Fg.

A functor F : C → D is full if for all objects A and B of C the map

FA,B : homC(A,B) → homD(FA,FB)
f 7→ Ff

is surjective. The functor F is faithful if the maps FA,B are injective, and fully faithful if they are
bijective. A full embedding is a fully faithful functor that is also injective on objects.

Example 2.1.8. The diagonal functor on C is the functor △C : C → C ×C sending A to (A,A) and
f to (f, f). It is faithful but not in general full.

Example 2.1.9. The terminal functor on C is the functor ©C : C → 1 sending every object on ⋆
and every morphism on id⋆. It is full but not in general faithful.

Example 2.1.10. Consider three categories C, D and E .

1. Given a functor F : C → D and a functor G : D → E , the map GF : C → E defined as the
composition of F and G is also a functor.

2. The map idC : C → C sending an object A to itself and a map f : A → B to itself is the
identity functor.

Definition 2.1.11. One defines the category Cat of small categories as the category where objects
are small categories and morphisms are functors of small categories. The identity morphism on C is
the identity functor idC and the composition of arrows is the composition of functors.

2.2 Natural Transformations

The content of this section follows (Mac Lane, 1998).

Definition 2.2.1. Given two functors F,G : C → D, a natural transformation n from F to G,
denoted as n : F →̇G, is a collection of maps nA : FA→ GA in D for each object A of C such that
for all morphism f : A→ B in C the following diagram commutes:

FA
nA //

Ff

��

GA

Gf

��
FB nB

// GB.

2.3. Adjoint Functors 8

We say that a diagram commutes when for every two vertices X,Y in the diagram, all the paths
from X to Y (following arrows) yield equal morphisms. In this particular case, this means nA;Gf =
Ff ;nB. The diagrammatic notation for a natural transformation n : F →̇G is

C
F

((

G

77
�� ��
�� n D (2.2.1)

We say that a natural transformation n is a natural isomorphism if for all objects A the map nA is
an isomorphism.

Definition 2.2.2. Given three functors F,G,H : C → D and two natural transformationsm : F →̇G
and n : G →̇H , one defines the composition m;n : F →̇H as the collection of maps mA;nA : FA→
HA. One defines the identity on F as the collection of arrows idFA : FA→ FA.

Definition 2.2.3. Consider two categories C and D. One defines the functor category Func(C,D),
or DC , as the category whose objects are functors C → D and arrows natural transformations F →̇G,
where F,G : C → D are functors.

Definition 2.2.4. Consider four categories, four functors and one natural transformation in the
following situation:

A F // B
G

%%

H

99
�� ��
�� n C K // D. (2.2.2)

One defines the two natural transformations

nF : GF →̇HF, Kn : KG →̇KH

as (nF)A = nFA and (Kn)A = K(nA).

Lemma 2.2.5. Consider the situation

A F // B

G

��
�� ��
�� n

??

L

�� ��
�� m

H // C K // D.

Then K(nF) = (Kn)F , K(n;m) = (Kn;Km) and (n;m)L = (nL;mL).

Definition 2.2.6 (Mac Lane, 1998, p. 93). Let C and D be two categories. We say that C and D
are equivalent if there exists a pair of functors F : C → D and G : D → C together with natural
isomorphisms idC ∼= G ◦ F and idD ∼= F ◦G. We say that F and G are equivalences of category.

2.3 Adjoint Functors

The following definitions and lemmas are taken directly from (Lambek and Scott, 1989, pp. 13–15)

Definition 2.3.1. An adjunction between categories C and D is given by a quadruple (F,U, η, ǫ),
where F : C → D and U : D → C are functors and η : idC →̇ UF and ǫ : FU →̇ idD are natural
transformations such that (ηU); (Uǫ) = idU and (Fη); (ǫF) = idF . One says that U is right adjoint
to F , or that F is left adjoint to U , and one calls η the unit and ǫ the counit of the adjunction.

2.4. Products and Coproducts 9

Lemma 2.3.2. An adjunction (F,U, η, ǫ) between locally small categories C and D gives rise to and
is determined by a natural isomorphism τ

τA,B : D(FA,B)
∼−→ C(A,UB).

between the two functors D(F−,−) and C(−, U−) of type Cop ×D → Set.

Lemma 2.3.3 (Uniqueness). Adjoint functors determine each other uniquely up to natural isomor-
phism.

Lemma 2.3.4 (Composition). Given the two following adjunctions:

(F : C → D, U : D → C, η : idC →̇ UF, ǫ : FU →̇ idD),

(F ′ : D → E , U ′ : E → D, η′ : idD →̇ U ′F ′ ,ǫ′ : F ′U ′ →̇ idE),

the quadruple

(F ′F : C → E , UU ′ : E → C, η;Uη′F : idC →̇ UU ′F ′F, F ′ǫU ′; ǫ′ : F ′FUU ′ →̇ idE)

is an adjunction between C and E.

Definition 2.3.5. We say that the adjunction (F ′F,UU ′) of Lemma 2.3.4 is the composition of
(F,U) and (F ′, U ′).

Remark 2.3.6. The new structure is an adjunction because the two equations of Definition 2.3.1,
namely

((η;Uη′F)(UU ′)); ((UU ′)(F ′ǫU ′; ǫ′)) = idUU ′ , (2.3.1)

((F ′F)(η;Uη′F)); ((F ′ǫU ′; ǫ′)(F ′F)) = idF ′F , (2.3.2)

are satisfied.

2.4 Products and Coproducts

Definition 2.4.1 (Mac Lane, 1998). An object T in a category C is called a terminal object if for
each object A there exists a unique map ©A : A→ T .

Definition 2.4.2. An object ⊥ in a category C is called an initial object if for each object A there
exists a unique map �A : ⊥ → A.

Lemma 2.4.3 (Lambek and Scott, 1989). The category C has a terminal (respectively initial) object
if and only if the functor ©C : C → 1 has a right (respectively left) adjoint.

Definition 2.4.4 (Lambek and Scott, 1989). Given a category C and two objects A and B, the
product of A and B is, if it exists, the data consisting of an object A × B and two maps π1

A,B :

A×B → A and π2
A,B : A×B → B, such that for all maps f : C → A and g : C → B there exists a

unique map 〈f, g〉 : C → A×B with the following equations holding for all h : C → A×B:

〈f, g〉;π1
A,B = f (2.4.1)

〈f, g〉;π2
A,B = g (2.4.2)

〈h;π1
A,B, h;π

2
A,B〉 = h (2.4.3)

We say that the category C has binary products if there is a product for all A and B.

2.5. Monads 10

Definition 2.4.5 (Mac Lane, 1998). Given a category C and two objects A and B in C, the coproduct
of A and B is, if it exists, the data consisting of an object A+B and two maps ilA,B : A→ A+B
and ir : B → A + B such that for all maps f : A → C and g : B → C there exists a unique map
[f, g] : A+B → C with the following equations holding for all h : A+B → C:

ilA,B; [f, g] = f (2.4.4)

irA,B; [f, g] = g (2.4.5)

[ilA,B;h, irA,B;h] = h (2.4.6)

We say that the category C has binary coproducts if there is a coproduct for all A and B.

Lemma 2.4.6. Binary products (respectively binary coproducts) in a category C induce a functor ×
(respectively +): C × C → C.

Lemma 2.4.7 (Lambek and Scott, 1989). The category C has binary products (respectively binary
coproducts) if and only if the functor △C : C → C × C has a right (respectively left) adjoint.

Definition 2.4.8 (Lambek and Scott, 1989). We say that a category C is cartesian if it has a
terminal object T and binary products ×. The category is cartesian closed if for all A the functor
A× (−) has a right adjoint A⇒ (−).

2.5 Monads

Definition 2.5.1 (Mac Lane, 1998). A monad over a category C is a triple (T, η, µ) where T : C → C
is a functor, η : id →̇ T and µ : T 2 →̇ T are natural transformations and the following diagrams
commute:

(2.5.1) T 3A
TµA //

µT A

��

T 2A

µA

��
T 2A

µA // TA,

TA
ηT A //

idTA ""E
EEEEEEE T 2A

µA

��

TA.
TηAoo

idT A{{xx
xx

xx
xx

x

TA

(2.5.2)

The natural transformation µ is called the multiplication of the monad and η the unit of the monad.

Definition 2.5.2 (Manes, 1976). A Kleisli triple over a category C is a triple (T, η,−∗) where
T : |C| → |C|, ηA : A → TA for all A and f∗ : TA → TB for all f : A → TB, and the following
equations hold:

η∗A = idTA, (2.5.3)

ηA; f∗ = f for f : A→ TB, (2.5.4)

f∗; g∗ = (f ; g∗)∗ for f : A→ TB and g : B → TC. (2.5.5)

Lemma 2.5.3 (Manes, 1976). There is a one-to-one correspondence between Kleisli triples and
monads.

Proof. Given a Kleisli triple (T, η,−∗), we construct a monad (T, η, µ) by extending T to arrows:
T (f) = (f ; ηB)∗ for f : A → B, and by defining µA = id∗

TA. Conversely, given a monad (T, η, µ),
−∗ is defined by f∗ = (Tf);µB for f : A→ TB.

Definition 2.5.4 (Manes, 1976). Given a Kleisli triple (T, η,−∗) over C, the Kleisli category CT is
defined as follows:

• the objects of CT are the objects of C,

2.6. Comonads 11

• the set CT (A,B) of morphisms from A to B in CT is C(A, TB),

• the identity on A is ηA : A→ TA,

• The composition of f ∈ CT (A,B) and g ∈ CT (B,C) in CT is f ; g∗ : A→ TC.

Lemma 2.5.5. Consider a monad (T, µ, η) over a category C. There is an adjunction

C
F

'' CT
U

ff ⊥

arising from the monad, where F (A) = A, U(A) = T (A), and F and U perform the following
operations on morphisms:

F : (A
f−→ B) 7−→(A

f−→ B
ηB−−→ TB),

U : (A
g−→ TB) 7−→(TA

g∗−→ TB).

The unit η of the adjunction is the unit of the monad, and the counit ǫ is the map TA
idTA−−−→ TA in

the category C.

Lemma 2.5.6. Conversely, given an adjunction (F,U, η, ǫ), there is a canonical monad arising from
it, by setting T = UF . The unit of the monad is the unit of the adjunction, and the multiplication
µ of the monad is UǫF : UFUF →̇ UF .

2.6 Comonads

A dual notion to monad is the notion of comonad. We are going to use it extensively in the rest of
the thesis.

Definition 2.6.1 (Mac Lane, 1998). A comonad in a category C is a tuple (L, ǫ, δ) where L : C → C
is a functor and ǫ : L →̇ I and δ : L →̇L2 are natural transformations which render commutative the
diagrams

(2.6.1) LA
δA //

δA

��

L2A

LδA

��
L2A

δLA

// L3A,

LA

δA

��

idLA

""F
FF

FF
FF

FF
idLA

||yyyyy
yyy

LA L2AǫLA

oo
LǫA

// LA.

(2.6.2)

By analogy with monads, we define the map (−)∗

f : LA→ B

f∗ : LA
δA−−→ L2A

Lf−−→ LB

Definition 2.6.2. Given a comonad (L, ǫ, δ) over a category C, the co-Kleisli category CL is defined
as follows:

• the objects of CL are the objects of C,

• the set CL(A,B) of morphisms from A to B in CL is C(LA,B),

2.6. Comonads 12

• the identity on A is ǫA : LA→ A,

• The composition of f ∈ CL(A,B) and g ∈ CL(B,C) in CL is f∗; g : LA→ C.

Definition 2.6.3. Given a comonad (L, δ, ǫ) on a category C, an L-coalgebra is a pair (A, hA : A→
LA) where A is an object and hA is an arrow of C, such that both

(2.6.3) A
hA //

hA

��

LA,

δA

��
LA

LhA

// L2A

A
hA //

idA ��@
@@

@@
@@

LA

ǫA
}}||

||
||

||

A

(2.6.4)

commute. A morphism f : (A, hA) → (B, hB) of L-coalgebras is an arrow f : A → B of C which
renders commutative the diagram

(2.6.5) A
f //

hA

��

B

hB

��
LA

Lf
// LB.

The category CL of L-coalgebras of C is the category whose objects are L-coalgebras and whose maps
are morphisms of L-coalgebras. It is called the co-Eilenberg-Moore category of the comonad L.

Lemma 2.6.4. Given a comonad (L, δ, ǫ) on a category C, for each object A in C the pair (LA, δA :
LA→ L2A) forms a coalgebra. Given any map f : A→ B, the map Lf : (LA, δA) → (LB, δB) is a
coalgebra map.

Lemma 2.6.5. Given a category C and a comonad (L, δ, ǫ) on it, the coalgebra (LA, δA) has the
following universal property: If (X,hX) is any L-coalgebra, and if f : X → A is any map in C, there
exists a unique coalgebra map f ♯ : (X,hX) → (LA, δA) such that

LA
ǫA // A.

X

f♯

OO

f

=={{{{{{{{

(2.6.6)

Moreover, f ♯ = hX ;Lf .

Corollary 2.6.6. Given a category C and a comonad (L, δ, ǫ), there is a one-to-one correspondence
between coalgebra morphisms g : (LA, δA) → (LB, δB) and maps of C of the form f : LA→ B.

Definition 2.6.7. The coalgebra (LA, δA) in Lemma 2.6.4 is called a (co)free coalgebra.

Corollary 2.6.8. There is a full embedding of CL into CL sending the object A of CL to (LA, δA)
and sending the morphism f : LA→ B into f∗ : LA→ LB.

Lemma 2.6.9. Given an adjunction (F,U, η, ǫ) there is a canonical comonad arising from it, by
setting T = FU , the counit of the comonad is the counit of the adjunction, and the comultiplication
δ of the comonad is FηU : FUFU →̇ FU .

2.7. Symmetric Monoidal Categories and Comonoids 13

2.7 Symmetric Monoidal Categories and Comonoids

2.7.1 Monoidal Categories

Definition 2.7.1 (Mac Lane, 1998). A monoidal category C is a tuple (C,⊗,⊤, α, λ, ρ) where C is a
category, ⊗ : C × C → C is a functor, ⊤ is an object of C and α, λ, ρ are three natural isomorphisms

αA,B,C : A⊗ (B ⊗ C) → (A⊗B) ⊗ C,

λA : ⊤⊗A→ A, ρA : A⊗⊤ → A

such that the diagrams

(2.7.1) (A⊗B) ⊗ (C ⊗D)
α

**UUUUUUUUU

A⊗ (B ⊗ (C ⊗D))

α 44iiiiiiiii

id⊗α
��8

88
88

88
88

((A ⊗B) ⊗ C) ⊗D

A⊗ ((B ⊗ C) ⊗D) α
// (A⊗ (B ⊗ C)) ⊗D,

α⊗id

BB���������

(2.7.2) A⊗ (⊤ ⊗ C)
α //

id⊗λ ""E
EE

EE
EE

E
(A⊗⊤) ⊗ C

ρ⊗id||yy
yy

yy
yy

A⊗ C,

⊤⊗⊤
λ

��
ρ

��
⊤

(2.7.3)

commute. We call the category strict monoidal when αA,B,C , λA and ρA are identity morphisms.

Definition 2.7.2 (Mac Lane, 1998). A monoidal category is said to be symmetric when it is
equipped with a natural isomorphism σA,B : A⊗B → B ⊗A such that the diagrams

(2.7.4) A⊗ B

σA,B --
B ⊗A,

σB,A

ll B ⊗⊤
σB,⊤ //

ρB

55⊤⊗B
λB // B, (2.7.5)

(2.7.6) A⊗ (B ⊗ C)
α //

id⊗σ
��

(A⊗B) ⊗ C
σ // C ⊗ (A⊗B)

α

��
A⊗ (C ⊗B)

α // (A⊗ C) ⊗B
σ⊗id // (C ⊗A) ⊗B

commute.

2.7.2 Commutative Comonoids

Definition 2.7.3. In a symmetric monoidal category C, a commutative comonoid object is an object
A of C equipped with two arrows ♦A : A→ ⊤ and △A : A→ A⊗A such that the following diagrams
commute

(2.7.7) A

△A %%LLLLLLLLLLL

△Ayysssssssssss

A⊗A

A⊗△A

��

A⊗A

△A⊗A
��

A⊗ (A⊗A)
α // (A⊗A) ⊗A,

2.8. Monoidal Comonads and Coalgebras 14

(2.7.8) A⊗⊤
ρA

��

A⊗A
A⊗♦Aoo ♦A⊗A// ⊤⊗A,

λA

��
A = A

△A

OO

= A

A⊗A
σA,A // A⊗A.

A

△A

bbFFFFFFFFF △A

;;wwwwwwwww

(2.7.9)

A morphism f : (A,♦A,△A) → (B,♦A,△B) of commutative comonoids is an arrow f : A → B in
C such that

(2.7.10) A
f //

△A

��

B,

△B

��
A⊗A

f⊗f
// B ⊗B

A
f //

♦A ��@
@@

@@
@@

B.

♦B~~}}
}}

}}
}}

⊤

(2.7.11)

Definition 2.7.4 (Selinger, 2001). We call a diagonal structure on a symmetric monoidal cate-
gory (C,⊗,⊤) a family {(A,♦A,△A)}A∈|C| of commutative comonoids that respects the symmetric
monoidal structure of C, that is, such that the following diagrams commute:

(2.7.12) A⊗B
♦A⊗B

##F
FF

FF
FF

FF
♦A⊗♦B

zzttttttttt

⊤⊗⊤ λ⊤=ρ⊤ // ⊤,

⊤
id⊤

��
♦⊤

		
⊤,

(2.7.13)

(2.7.14) A⊗B
△A⊗B

((QQQQQQQQQQQQ
△A⊗△B

vvnnnnnnnnnnnn

(A⊗A) ⊗ (B ⊗B)
swA,B // (A⊗B) ⊗ (A⊗B),

where sw is defined as the natural transformation constructed from α’s and σ’s swapping the two
middle objects, that is α; (α−1 ⊗ id); ((id ⊗ σ) ⊗ id); (α⊗ id);α−1.

Theorem 2.7.5 (Selinger, 2001). Let (C,⊗,⊤, α, λ, ρ, σ) be a symmetric monoidal category. It is a
cartesian category if and only if there there exist two natural transformations △A : A→ A⊗A and
♦A : A → ⊤ such that {(A,△A,♦A)}A∈|C| forms a diagonal structure. In this case the cartesian
structure is given by

©A : A
♦A−−→ ⊤, 〈f, g〉 : C

△C−−→ C ⊗ C
f⊗g−−−→ A⊗B,

π1
A,B : A⊗B

A⊗♦B−−−−→ A⊗⊤ ρA−−→ A, π2
A,B : A⊗B

♦A⊗B−−−−→ ⊤⊗B
λB−−→ B,

where f : C → A and g : C → B. Given a cartesian structure, we construct the diagonal structure
with △A = 〈idA, idA〉 and ♦A = ©A.

2.8 Monoidal Comonads and Coalgebras

This section is taken from (Eilenberg and Kelly, 1965).

Definition 2.8.1. A (lax) monoidal functor F between two monoidal categories (C,⊗,⊤) and
(D,⊗′,⊤′) consists of a functor F : C → D together with two natural transformations

dFA,B : FA⊗′ FB → F (A⊗B), dF⊤ : ⊤′ → F⊤,

2.8. Monoidal Comonads and Coalgebras 15

called coherence maps, with the following coherence equations:

(2.8.1) (FA⊗′ FB) ⊗′ FC
α //

dF
A,B⊗′FC

��

FA⊗′ (FB ⊗′ FC)

FA⊗′dF
B,C

��
F (A⊗B) ⊗′ FC

dF
A⊗B,C

��

FA⊗′ F (B ⊗ C)

dF
A,B⊗C

��
F ((A⊗B) ⊗ C)

Fα
// F (A⊗ (B ⊗ C)),

(2.8.2) FA⊗′ ⊤′ FA⊗′d//

ρ

��

FA⊗′ F⊤
dF

A,⊤′

��
FA F (A⊗⊤),

Fρ
oo

⊤′ ⊗′ FB
d⊗′FB//

λ

��

F⊤⊗′ FB

dF
⊤′,B

��
FB F (⊤ ⊗B).

Fλ
oo

(2.8.3)

If the categories are symmetric, the functor is said to be lax symmetric monoidal if the following
diagram also commutes:

(2.8.4) FA⊗′ FB
σ //

dF
A,B

��

FB ⊗′ FA

dF
B,A

��
F (A⊗B)

Fσ
// F (B ⊗A).

We call the functor strong monoidal if the natural transformations dFA,B and dF⊤ are isomorphisms.

Theorem 2.8.2 (Mac Lane, 1998, p. 257). Any monoidal category C is categorically equivalent, via
a strong monoidal functor F : C → D and a strong monoidal functor G : D → C, to a strict monoidal
category D.

Lemma 2.8.3. Let (C,⊗C ,⊤C), (D,⊗D,⊤D) and (E ,⊗E ,⊤E) be symmetric monoidal categories.

1. The identity functor 1C : C → C together with d1C

⊤C = id⊤C : ⊤C → ⊤C and d1C

A⊗CB
= idA⊗CB :

A⊗C B → A⊗C B is a monoidal functor.

2. The functor ♦C from C to C sending A to ⊤C and f to id⊤C is monoidal, with

d♦C

⊤C = id⊤C :⊤C → ⊤C ,
d♦C

A,B = λ⊤C = ρ⊤C :♦CA⊗C ♦CB = ⊤C ⊗C ⊤C → ⊤C = ♦C(A⊗C B).

3. The diagonal functor △C from C to C sending A to A⊗C A and f to f ⊗C f is monoidal with

d△C

⊤C :⊤ λ−1
⊤

=ρ−1
⊤−−−−−−→ ⊤⊗⊤,

d△C

A,B :△CA⊗△CB = (A⊗A) ⊗ (B ⊗B),
swA,B−−−−→ (A⊗B) ⊗ (A⊗B) = △C(A⊗B).

4. If (F, dF⊤C , d
F
A,B) : C → D and (G, dG⊤D , d

G
A,B) : D → E are any monoidal functor, so is G ◦ F :

C → E together with

dG◦F
⊤C :⊤E

dG
⊤D−−→ G⊤D

GdF
⊤C−−−→ GF⊤C ,

dG◦F
A,B :GFA⊗E GFB

dG
F A,F B−−−−−→ G(FA ⊗D FB)

GdF
A,B−−−−→ GF (A⊗C B).

2.8. Monoidal Comonads and Coalgebras 16

Definition 2.8.4. In the setting of Definition 2.8.1, if (F, d) and (F ′, d′) are two symmetric monoidal
functors, we say that a natural transformation n : C →̇ D is monoidal if the following diagrams
commute:

(2.8.5) FA⊗′ FB
nA⊗′nB//

dA,B

��

F ′A⊗′ F ′B

d′A,B

��
F (A⊗B) nA⊗B

// F ′(A⊗B),

⊤′

d

}}{{
{{

{{
{{ d′

""E
EE

EE
EE

E

F⊤ n⊤

// F ′⊤.

(2.8.6)

Remark 2.8.5. The natural transformation n in Definition 2.8.4 could be called symmetric since
the category is symmetric. However, since σ is not a structure but a property of monoidal functors,
it does not yield any equation. In that sense the adjective “symmetric” does not apply to n.

Definition 2.8.6 (Benton et al., 1992; Bierman, 1993). Let (C,⊗,⊤) be a (symmetric) monoidal
category. A (symmetric) monoidal comonad on C is a comonad (L, δ, ǫ):

• equipped with two natural transformations dA,B : LA ⊗ LB → L(A ⊗ B) and d⊤ : L⊤ → ⊤
making (L, d) a lax (symmetric) monoidal functor,

• such that δ and ǫ are monoidal natural transformations, i.e. such that the following diagrams
commute:

(2.8.7) LA⊗ LB
dA,B //

ǫA⊗ǫB @
@@

@@
@@

@ L(A⊗B),

ǫA⊗B
~~||

||
||

||

A⊗B

⊤ d⊤ //

id⊤ ��6
66

66
66

L⊤,

ǫ⊤
����

��
��

�

⊤

(2.8.8)

(2.8.9) LA⊗ LB
dA,B //

δA⊗δA

��

L(A⊗B),

δA⊗B

��
L2A⊗ L2B

dLA,LB

// L(LA⊗ LB)
LdA,B

// L2(A⊗B)

⊤ d⊤ //

d⊤

��

L⊤.
δ⊤
��

L⊤
Ld⊤

// L2⊤

(2.8.10)

Theorem 2.8.7. Let (C,⊗,⊤) be a symmetric monoidal category with structure α, λ, ρ and σ. Let
(L, δ, ǫ, d) be a symmetric monoidal comonad on C. Then the co-Eilenberg-Moore category CL is also
symmetric monoidal when equipped with

• the functor ⊗′ : CL×CL → CL, defined as (A, hA) ⊗′ (B, hB) = (A ⊗ B, (hA ⊗ hB); dA,B) on
objects and f ⊗′ g = f ⊗ g on arrows.

• the unit object ⊤′ = (⊤, d⊤),

• the structure maps

α′
(A,hA),(B,hB),(C,hC) = αA,B,C , λ′(A,hA) = λA,

σ′
(A,hA),(B,hB) = σA,B, ρ′(A,hA) = ρA.

Definition 2.8.8. In Theorem 2.8.7 we call ⊗′ the induced tensor and (⊗′,⊤′, α, λ, ρ, σ) the induced
symmetric monoidal structure. We identify ⊗′ with ⊗ and ⊤′ with ⊤.

Chapter 3

Quantum Computation

Whether the notion of data is thought of concretely or abstractly, it is usually supposed to behave
classically: a piece of data is supposed to be clonable, erasable, readable as many time as needed,
and is not supposed to change when left untouched.

Quantum computation is a paradigm where data can be encoded with a medium governed by
the law of quantum physics. Although only rudimentary quantum computers have been built so far,
the laws of quantum physics are mathematically well described. It is therefore possible to try to
understand the capabilities of quantum computation, and quantum information turns out to behave
substantially differently from usual (classical) information.

In this chapter we will describe the mathematics needed for quantum computation, and we will
have a brief overview of the theory of quantum computation. A more complete study of the subject
can be found in (Nielsen and Chuang, 2002) and in (Preskill, 1999).

3.1 Mathematical Formalism

This section will cover the common wisdom we need about Hilbert spaces and their operators. All
considered vector spaces are assumed to be finite-dimensional. For a more complete mathematical
analysis of the subject, see e.g. (Lang, 1993, Ch. V).

3.1.1 Generalities on Finite Dimensional Hilbert Spaces

Definition 3.1.1 (Lang, 1993, p. 95). Let E be a finite-dimensional vector space over the complex
numbers C. A sesquilinear form on E is a map φ : E × E → C, which is linear in y: φ(x, αy + βz) =
αφ(x, y) + βφ(x, z), and semi-linear in x: φ(αx + βt, y) = αφ(x, y) + β̄φ(x, t), where α is the
complex conjugation of α: a+ bi = a − bi, for a, b ∈ R. We say the form is hermitian if moreover
φ(x, y) = φ(y, x). It is positive definite if φ(x, x) > 0 with equality if and only if x = 0. If a form
is hermitian and positive definite, we will call it a scalar product. In this case we often denote it as
〈.|.〉.

Definition 3.1.2. Let E be a complex vector space. A norm on E is a map ||.|| : E → R such that

1. ||v|| > 0 for all v, with equality if and only if v = 0;

2. ||αv|| = |α|||v||;

3. ||v + w|| 6 ||v|| + ||w||.

17

3.1. Mathematical Formalism 18

Lemma 3.1.3. Given a scalar product 〈.|.〉 on a complex vector space E, the map ||.|| : E → C

mapping v to
√

〈v|v〉 is a norm.

Definition 3.1.4. Given a scalar product on a complex vector space E . The norm in Lemma 3.1.3
is called the induced norm.

Definition 3.1.5. A vector space together with a norm is called a normed vector space.

Definition 3.1.6. Let H be a finite dimensional vector space over the field C of complex numbers.
The space H is a Hilbert space if it comes equipped with a scalar product. When speaking about a
given Hilbert space, we will always consider it to be normed by the induced norm.

Definition 3.1.7. An operator A on a Hilbert space H is a linear map A : H → H. A functional
on H is a linear map λ : H → C. The space of functionals on H is denoted by H∗.

Lemma 3.1.8. Let λ be a functional on H. Then there exists x0 ∈ H such that for all y ∈ H,
λ(y) = 〈x0|y〉.

Lemma 3.1.9. Let φ be a sesquilinear form on a Hilbert space H. Then the map λx : y 7→ φ(x, y)
is a functional.

Let A be an operator on H. Define φA by φA(x, y) = 〈x|Ay〉. Then φA is a sesquilinear form
on H. For each x, λx(y) = φA(x, y) is a functional. Therefore there exists some x0 such that
λx(y) = 〈x0|y〉. Define A∗ as A∗x = x0: we have

〈x|Ay〉 = 〈A∗x|y〉.

Definition 3.1.10. One calls A∗ the adjoint of A. If A = A∗, we say A is self-adjoint, or hermitian.

Lemma 3.1.11 (Lang, 1993, p. 106). The map A 7→ A∗ satisfies the following properties:

(A+B)∗ = A∗ +B∗, A∗∗ = A,

(αA)∗ = αA∗, (AB)∗ = B∗A∗.

Lemma 3.1.12 (Lang, 1993, p. 107). If for all x, 〈x|Ax〉 = 0 then A = 0.

Theorem 3.1.13 (Spectral Theorem, Lang, 2002). Let A be a hermitian operator on a finite di-
mensional Hilbert space H. Then H has an orthogonal basis consisting of eigenvectors of A.

Definition 3.1.14. We say that an operator A on H is positive if it is hermitian and if all of its
eigenvalues are positive. Equivalently, A is positive if the form φA is positive definite. We say A is
a density matrix if moreover, the sum of the eigenvalues is less or equal to 1.

Lemma 3.1.15. Let H be a finite dimensional Hilbert space, and A an invertible operator. Then
the following conditions are equivalent:

1. A∗ = A−1;

2. ||Ax|| = ||x|| for all x ∈ H;

3. 〈Ax|Ay〉 = 〈x|y〉 for all x, y ∈ H;

4. ||Ax|| = 1 for every unit vector x ∈ H.

Definition 3.1.16. An invertible operator satisfying the conditions of Lemma 3.1.15 is said to be
unitary.

3.1. Mathematical Formalism 19

3.1.2 Tensor Products of Hilbert Spaces

Definition 3.1.17 (Dummit and Foote, 1999). Consider two finite Hilbert spaces V and W with
respective bases (e1, . . . , en) and (f1, . . . , fk). We define the tensor product of V and W , denoted
V ⊗W , as the space generated by the basis of syntactic symbols:

(e1 ⊗ f1, . . . , e1 ⊗ fk, , en ⊗ f1, . . . , en ⊗ fk).

The tensor product of two elements v =
∑

i λi · ei and w =
∑

j µj · fj is

v ⊗ w =
∑

i,j

λiµj · ei ⊗ fj .

We define the scalar product in V ⊗W as follows:

〈ei ⊗ fj|ek ⊗ fl〉 = 〈ei|ek〉〈fj |fl〉.

Lemma 3.1.18. If U , V and W are finite-dimensional Hilbert spaces, there exists a one-to-one
correspondence Φ between linear maps U ⊗ V → W and linear maps U → V ⊗W1.

Proof. Choose a basis (ei)i for V and a basis (fj)j for W . Then if f : U ⊗ V → W , we define
g = Φ(f) : U → V ⊗W as the map

g(u) =
∑

i

ei ⊗ f(u⊗ ei).

If g : U → V ⊗W, and if

g(u) =
∑

i,j

ρi,j · ei ⊗ fj,

we define f = Φ−1(g) : U ⊗ V → W as the map

f(u⊗ ei) =
∑

j

ρi,j · ei ⊗ fj .

Convention 3.1.19. If A ∈ Cn×n and B ∈ Ck×k are two square matrices of respective size n× n
and k× k seen as operators respectively on Cn and on Ck, the matrix A⊗B is an operator on Cnk

and we represent it as the matrix of blocks

A⊗B =







a1,1B · · · a1,nB
...

. . .
...

an,1B · · · an,nB






.

3.1.3 Completely Positive Maps

In this section, we focus primarily on Hilbert spaces of the form Cn×n, spaces of of n× n-matrices.
We choose as basis for Cn×n the canonical basis (Ei,j)i,j∈{1,...,n}, where (Ei,j)k,l = 0 for all k and l
except when k = i and l = j. We use the notations and definitions of (Selinger, 2004b).

Definition 3.1.20. A linear map F : Cn×n → Ck×k is said to be a positive map if for all positive
matrices A, F (A) is positive.

1Note that we identified V with V∗. Although the result is correct since we are in finite dimension, we lose the
basis Independence of the correspondence

3.1. Mathematical Formalism 20

Definition 3.1.21. A linear map F : Cn×n → Ck×k is said to be completely positive if for all i, if
id i is the identity on i× i-matrices, id i ⊗ F is a positive map C

ni×ni → C
ki×ki.

Definition 3.1.22. The characteristic matrix of a linear map F : C
n×n → C

k×k is defined as the
nk × nk-matrix of blocks

χF =







F (E1,1) · · · F (E1,n)
...

. . .
...

F (En,1) · · · F (En,n)






.

Lemma 3.1.23. Let F : Cn×n → Ck×k be a linear operator, and let χF be its characteristic matrix.
Then F (A) = UAU∗ for some U ∈ Ck×n if and only if there exists a vector v ∈ Cnk such that
vv∗ = χF .

Theorem 3.1.24 (Choi, 1975). Let F : Cn×n → Ck×k be a linear operator, and let χF be its
characteristic matrix. Then the following are equivalent:

1. F is completely positive

2. χF is positive

3. F is of the form F (A) =
∑

i UiAU
∗
i for some finite sequence of matrices U1, . . . Ul in Ck×n.

3.1.4 Superoperators

The following definitions and results are from (Selinger, 2004b).

Definition 3.1.25 (Löwner order). We define a relation ⊑ on Cn×n as follows. Let A,B be matrices
in Cn×n. Then A ⊑ B if and only if B −A is positive.

Definition 3.1.26. A completely positive map F : Cn×n → Ck×k is called a superoperator if for all
positive matrices A ∈ Cn×n, we have tr(F (A)) 6 tr(A).

Theorem 3.1.27 (Kraus Representation Theorem). Let F : Cn×n → Ck×k be a completely positive
operator. The following are equivalent:

1. F is a superoperator;

2. (idn⊗trk)(χF) ⊑ In, where In is the identity matrix and trk : Ck×k → C is the trace operation;

3. F is of the form

F (A) =
∑

i

UiAU
∗
i

for matrices U1, . . . , Un with
∑

i U
∗
i Ui ⊑ In.

Definition 3.1.28. A matrix U ∈ C
k×n is called contraction if U is a sub-matrix of some unitary

U ′, that is, if there exist matrices U1, U2, and U3 such that

U ′ =

(

U U1

U2 U3

)

is unitary. A linear function F : Cn×n → Ck×k is called a contraction if it is of the form F (A) =
UAU∗ for some contraction U .

3.1. Mathematical Formalism 21

Lemma 3.1.29. Let U ∈ Cn×m be a contraction. Then the matrix
(

U
0

)

∈ C
(n+1)×m

is also a contraction.

Proof. With the notation of the definition, consider the unitary matrix




U 0 U1

0 1 0
U2 0 U3



 .

Lemma 3.1.30. A matrix U ∈ Ck×n is a contraction if and only if UU∗ ⊑ Ik, and if and only if
U∗U ⊑ In.

Definition 3.1.31. If trn is the trace on matrices in Cn×n, we define the partial trace operator
Ckn×kn → Ck×k as

trkn = trn ⊗ idCk×k .

Theorem 3.1.32 (Naimark Theorem). Every superoperator F : Cn×n → Cm×m can be factored as
F = E ◦G, where G is a contraction and E is a partial trace operator.

3.1.5 The 2-Dimensional Hilbert Space

We will now study in more detail what we saw in the previous section, applied to the 2-dimensional
Hilbert space. We identify it with C2 and we call the canonical basis e1 = (1

0) and e2 = (0
1). The

results of this section can be found in (Preskill, 1999).

Lemma 3.1.33. The set of hermitian matrices on H is spanned as a real vector space by the
following basis:

I =

(

1 0
0 1

)

, σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

.

Definition 3.1.34. The matrices σx,σy,σz are called the Pauli matrices.

Remark 3.1.35. The eigenvectors and eigenvalues of the Pauli matrices are as follows:

σx(1
1) = (1

1), σy(1
i) = (1

i), σz(0
1) = (0

1),

σx(
1
−1) = −(1

−1), σy(
1
−i) = −(1

−i), σz(1
0) = −(1

0).

Definition 3.1.36. Let H be a Hilbert space. A ray [v] in H is an equivalence class of vectors in
H that differ by multiplication by non-zero complex scalars: so [v] contains all αv, α ∈ C \ {0}.
Lemma 3.1.37. There is a group action from the group of linear operators of H on the set of rays
of H.

Lemma 3.1.38. If v and w are orthogonal, so are any two elements of their respective rays.

Lemma 3.1.39. The rays of C2 are in one-to-one correspondence with the points on the unit sphere
of R3. In spherical coordinates, a point (θ, ϕ) with θ ∈ [0, π], ψ ∈ [−π, π] is in correspondence with
the ray of representative

r(θ, ϕ) =

(

cos θ2
eiϕ sin θ

2

)

. (3.1.1)

The correspondence is pictured in Figure 3.1.

3.1. Mathematical Formalism 22

0

ooooooooooooooooo

ww
x

•

•

OOz

• • // y

•

•

•

•

•

��θ

LLLLL44ϕ

(

0
1
0

)

c
=
(

π/2
π/2

)

s
7→ 1√

2
(1
i)H

##

5
7

9
<

?
A

D
F

(

1
0
0

)

c
=
(

π/2
0

)

s
7→ 1√

2
(1

1)H
,,

F
H

I
K

L
N

O
P

R S T U V W X Z

(

0
0
1

)

c
= (0

0)s 7→ (1
0)H

��

S Q P N M
K

I
G

E
C

@
>

<
:

8
6

(

0
1
0

)

c
=
(

−π/2
π/2

)

s
7→ 1√

2

(

1
−i
)

H
##

�
�

�

�
�

y
s

m g b] Y U
Q

M
J

H
G

(−1
0
0

)

c
=
(

π/2
π

)

s
7→ 1√

2

(

1
−1

)

H
33

�
�

�
y

s
n

j g

(

0
0
−1

)

c
= (0

π)s 7→ (0
1)H

>>

n o o p q r s
t

u
v

w
x

y
z

{
|

Figure 3.1: The Bloch sphere.

One calls this unit sphere the Bloch sphere. In this representation, the Pauli matrices acts on
the rays as follows:

• σx sends r(θ, ϕ) onto
(

eiϕ sin θ
2

cos θ2

)

≃
(

cos π−θ2

e−iϕ sin π−θ
2 ,

)

thus sends the point (θ, ϕ) of the unit sphere of R3 (in spherical coordinate) to (π − θ,−ϕ),
that is, in cartesian coordinates,





sin θ cosϕ
sin θ sinϕ

cos θ



 7→





sin θ cosϕ
− sin θ sinϕ

− cos θ



 or





x
y
z



 7→





x
−y
−z



 .

The operator σx acts on the sphere as an axial symmetry around Ox. The two eigenvectors
(1

1) and (1
−1) respectively correspond to the point (1, 0, 0) and to the point (−1, 0, 0) on the

sphere.

• σy sends r(θ, ϕ) onto
(

eiϕ sin θ
2

cos θ2

)

≃
(

cos π−θ2

ei(π−ϕ) sin π−θ
2 ,

)

i.e. maps (θ, ϕ) to (π− θ, π−ϕ), i.e. computes an axial symmetry around Oy. The two eigen-
vectors (1

i) and (1
−i) respectively correspond to the point (0, 1, 0) and to the point (0,−1, 0)

on the sphere.

• Finally, σz sends r(θ, ϕ) onto
(

eiϕ sin θ
2

cos θ2

)

≃
(

cos θ2
ei(π−ϕ) sin θ

2 ,

)

i.e. maps (θ, ϕ) to (θ, π−ϕ), i.e. computes an axial symmetry aroundOz. The two eigenvectors
(1

0) and (0
1) respectively correspond to the point (0, 0, 1) and to the point (0, 0, 1) on the sphere.

3.2. Quantum Foundations 23

Lemma 3.1.40. Two rays in C2 are orthogonal if and only if their representations on the Bloch
sphere are antipodal.

3.2 Quantum Foundations

Quantum computation is somehow the art of making the theory of finite Hilbert spaces into a theory
of computation: In quantum computation, information is encoded on states of quantum particles,
states whose mathematical representation are rays in some Hilbert space.

Convention 3.2.1. In the following, we use the Dirac convention for writing vectors:

• vectors are written as kets : |φ〉;

• functionals are written as bras : 〈ψ|;

• scalar products, which are by Lemma 3.1.9 the application of some functional to some vectors,
are written as usual: 〈ψ|φ〉.

3.2.1 Quantum Bits

One Quantum Bit

In classical computation, the smallest unit of data is the bit, element of the two-elements set {0, 1}.
In quantum computation, the smallest unit of data is a quantum bit, or qubit, defined as a ray in a
2-dimensional Hilbert space. We write the canonical basis of this space as {|0〉, |1〉}.

Using the results of Section 3.1.5, one says that

(|0z〉, |1z〉) =
(

|0〉, |1〉
)

is the basis along z,

(|0x〉, |1x〉) =
(1√

2
(|0〉 + |1〉), 1√

2
(|1〉 − |1〉)

)

is the basis along x,

(|0y〉, |1y〉) =
(1√

2
(|0〉 + i|1〉), 1√

2
(|1〉 − i|1〉)

)

is the basis along y.

Several Quantum Bits

When considering a system of n quantum bits, the state of the system is a ray in H⊗n = H⊗· · ·⊗H,
where H is the 2-dimensional Hilbert space. As stated in Definition 3.1.17, we take the canonical
basis for H⊗n to be

{|i1 . . . in〉 | i1, . . . , in ∈ {0, 1}},
where we write |i1 . . . in〉 for |i1〉 ⊗ · · · ⊗ |in〉.

3.2.2 Operations

Measurements

Observables. In quantum physics, a measurement in a Hilbert space H is associated with a self-
adjoint operator A of H. Physicists call A an observable.

As we saw in Theorem 3.1.13, to a self-adjoint operator one can associate a set of orthogonal
eigenspaces with their corresponding eigenvalues. If |φ〉 is an eigenvector of A with eigenvalue a, the
numerical outcome of the measurement of |φ〉 with the observable A is the value a.

3.2. Quantum Foundations 24

What does happen if φ is not an eigenvector? For simplicity assume that H is finite and that
the basis of eigenvectors of A is (|φ1〉, . . . , |φn〉) such that the eigenvalue corresponding to |φi〉 is
ai. Then |φ〉 can be re-written as |φ〉 =

∑n
i=1 αi|φi〉, and measuring with A makes the system

randomly collapse to a new state, namely a basis vector |φi〉. This new state is |φi〉 with probability
|αi|2 = |〈φ|φi〉|2. In this situation, the measurement outputs the numerical value ai.

For the purpose of measurement the numerical eigenvalues have little importance. What is
really important is that two eigenvalues corresponding to two distinct eigenspaces differ. When
measuring a state of n quantum bits, we say that the outcome of the measurement of the state is
x1 . . . xn if the state collapsed to |x1 . . . xn〉. For example, we say:

“ The measurement of the state |φ〉 = α|00〉 + β|01〉 + γ|10〉 + δ|11〉 in the standard basis
results in the outcome 01 with probability |〈01|φ〉|2 = |β|2. ”

Pauli matrices. Given a quantum bit state |φ〉, for i = x, y, z the Pauli matrix σi provides an
observable, whose measurement projects the state |φ〉 in the basis along axis i.

From Section 3.1.5, the bases along x, y and z have special properties: if a quantum bit is in
one of the basis element of the base along i, for some i = x, y or z, then measuring the observable
σj , j 6= i will yield 0 with probability 1

2 and 1 with probability 1
2 . Thus somehow the information

stored in the basis along i is not accessible from the two other ones.

Convention 3.2.2. In the remainder of the thesis, when speaking of “a measurement” without
further precision, we always consider the measurement to be along the basis z.

Unitary gates

A quantum mechanical system, if not measured (by the operator or by the environment), evolves
along a unitary path. That is, loosely speaking, all we can do is to apply rotations on the system.
We call these actions unitary gates.

The ability to perform one gate or another depends on the physical implementation of the
quantum bits. In general, only a few gates are needed to approximate any given unitary matrix, a
result known as the Solovay-Kitaev Theorem. We already met the Pauli matrices in Lemma 3.1.33.
The matrix σz is also called the not gate:

N =

(

0 1
1 0

)

.

Two other usual gates are the Hadamard gate and the phase-shift gate:

H =
1√
2

(

1 1
1 −1

)

, Vθ =

(

1 0
0 eiθ

)

.

Finally, written in the canonical basis (|00〉, |01〉, |10〉, |11〉), we have the exchange gate and the
controlled-not gate:

X =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









, NC =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









.

The NC -gate comes from a generic process: If U is a one-qubit gate, one constructs UC , called
controlled U , to be the two-qubits gate:

UC (|0〉 ⊗ |φ〉) = |0〉 ⊗ |φ〉,
UC (|1〉 ⊗ |φ〉) = |1〉 ⊗ U |φ〉.

The gate U is applied on the second qubit depending on the value of the first qubit.

3.2. Quantum Foundations 25

Quantum Circuit

It is possible to write tensors and compositions of gates as wires and boxes on wires. For example,
the map H ⊗ Vθ can be written as

H

Vθ .

Some gates have specific representations:

• The gate N is written as ⊕ .

• A controlled-U gate is written as
•
U .

• The gate NC is written as
•
⊕ .

• The gate X is simply
.

• Measurements will be represented by dashed boxes followed by a dashed wire, to indicate that
we now have a classical bit, as follows:

_ _�
�

�
�

_ _M b
..

G
Q X

3.2.3 Mixed States

The representation of a state of a system of quantum bits as a ray in some Hilbert space is a
valid description of an isolated quantum system. It does not work when only part of the system is
considered. Indeed, suppose we are given a two-qubit system |φAB〉 in the state

α|0A〉 ⊗ |0B〉 + β|0A〉 ⊗ |1B〉 + γ|1A〉 ⊗ |0B〉 + δ|1A〉 ⊗ |1B〉,

where (|0A〉, |1A〉) and (|0B〉, |1B〉) are some basis of C2 and suppose we only have access to qubit
A.

Consider an observable M on A. Using the formalism developed with isolated systems, if we
perform a measurement with this observable, the total expectation of the measurement is

〈φAB |(M ⊗ IB)|φAB〉 =





(

α〈0A| + γ〈1A|
)

M
(

α|0A〉 + γ|1A〉
)

+
(

β〈0A| + δ〈1A|
)

M
(

β|0A〉 + δ|1A〉
)



 = tr(MρA),

where ρA is the density matrix (as in Definition 3.1.14) equal to

(

β|0A〉 + δ|1A〉
)(

β〈0A| + δ〈1A|
)

+
(

α|0A〉 + γ|1A〉
)(

α〈0A| + γ〈1A|
)

,

that is
(

|α|2 γα
αγ |γ|2

)

+

(

|β|2 δβ

βδ |δ|2
)

in the basis (|0A〉, |1A〉). Note that if M is the projection onto |0A〉, as expected we get |α|2 + |β|2.
And if it is the projection onto |1A〉, we get |δ|2 + |γ|2.

3.3. Quantum Effects 26

Thus, if we are only considering the quantum bit A, one can safely work with the density matrix
ρA in place of the whole system. This representation is called a mixed state: Since |α|2 + |γ|2 +
|β|2 + |δ|2 = 1, if

α′ =
α

|α|2 + |γ|2 , γ′ =
γ

|α|2 + |γ|2 , β′ =
β

|β|2 + |δ|2 , δ′ =
δ

|β|2 + |δ|2 ,

then the matrix ρA represents a probability distribution over pure states

(|α|2 + |γ|2)
{

α′|0A〉 + γ′|1A〉
}

+ (|β|2 + |δ|2)
{

β′|0A〉 + δ′|1A〉
}

.

We can re-encode the state of an n-quantum bit system |φ〉 as the 2n × 2n density matrix ρ =
|φ〉〈φ|. A unitary operation U on this state yields the density matrix UρU∗, and the measurement
of an observable M yields the expected value tr(Mρ).

3.3 Quantum Effects

We list in this section a few specifics of quantum computation, following (Preskill, 1999).

3.3.1 No Cloning

Consider a quantum bit in some unknown state |φ〉 = α|0〉+β|1〉. Then it is not possible to “clone”
the state and get the two-qubit state |φ〉 ⊗ |φ〉. The reason is simple: the only operations we are
allowed to perform are unitaries and measurements, which are linear maps. The cloning operation
being non-linear, it is therefore not implementable.

It is however possible to build a “copying” map G

α|0〉 + β|1〉 7−→ α|00〉 + β|11〉.

But it does not satisfy the usual commutativity rule for duplication: if f : H → H is any linear map,
then G ◦ f 6= (f ⊗ f) ◦G.

3.3.2 Entanglement

Another special property of quantum information is the superposition: the 2-qubit state

1√
2
(|00〉 + |11〉) (3.3.1)

is a valid state, but cannot be written as |φ〉 ⊗ |ψ〉. We say the two quantum bits are entangled.
The interesting aspect of entanglement is that the measurements of the qubits will be correlated.

For example, measuring the first qubit in the state (3.3.1) with respect to the standard basis yields
0 with probability 1

2 and 1 with probability 1
2 . In the former case, the state of the 2-qubit system

is |00〉, thus measuring the second qubit yields 0 with probability 1. In the latter, the state of the
system is |11〉, and measuring the second qubit yields 1 with probability 1.

A useful basis for 2-qubit systems is the following set of entangled states:

1√
2
(|00〉 + |11〉), 1√

2
(|00〉 − |11〉),

1√
2
(|01〉 + |10〉), 1√

2
(|01〉 − |10〉).

3.3. Quantum Effects 27

3.3.3 Bell’s Inequalities

This section is taken from (Preskill, 1999).
From a classical perspective, a measurement is a special form of coin-toss. A hidden variable

theory is a theory where a probability λ is associated to each state and to each axis such that the
measurement along this axis outputs λ. The question is then whether it is possible to build a hidden
variable theory that would agree with the prediction of quantum theory while still satisfying the
strong locality criterion (Einstein et al., 1935), stating:

“ Suppose that A and B are space-like separated systems. Then in a complete description
of physical reality an action performed on system A must not modify the description of
system B. ”

Bell (1964) shows that it is not possible. The argument goes as follows. Consider a quantum machine
that maximally entangles two quantum bits A and B

|φAB〉 =
1√
2
(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉)

and sends qubit A to Alice and qubit B to Bob. Suppose that they can independently choose one
of the following axes (in the Bloch sphere, see Figure 3.1) to measure:

a = (0, 0, 1), b =

(√
3

2
, 0,−1

2

)

, c =

(

−
√

3

2
, 0,−1

2

)

.

They live in the xz-plane of the Bloch sphere and correspond respectively to the bases in C2:

|0a〉 = |0〉, |0b〉 =
1

2
|0〉 +

√
3

2
|1〉, |0c〉 =

1

2
|0〉 −

√
3

2
|1〉,

|1a〉 = |1〉 |1b〉 =

√
3

2
|0〉 − 1

2
|1〉, |1c〉 =

√
3

2
|0〉 +

1

2
|1〉.

What is the probability of obtaining the same output when measuring A and B with respect to two
different bases?

In a local hidden variable theory, the result of measuring A and B along each of the possible
axis is predetermined. Let Px,y be the probability of obtaining the same output while measuring A
along x and B along y. For any local hidden variable theory,

Pa,b + Pb,c + Pc,a > 1, (3.3.2)

since for any possible distribution of measurement values, there will always be two values that will
be equal (see (Preskill, 1999) for a complete discussion). However, the quantum theory provides the
value

Px,y = 〈φAB |(|0x〉〈0x| ⊗ |0y〉〈0y|)|φAB〉 + 〈φAB |(|1x〉〈1x| ⊗ |1y〉〈1y|)|φAB〉.
The computation shows that Px,y = 1

4 for x 6= y, x, y = a, b, c. In particular,

Pa,b + Pb,c + Pc,a =
3

4
< 1,

which violates Equation (3.3.2).

3.4. Some Algorithms and Uses of Quantum Effects 28

qubit 1: |φ〉 • H

(1) (2) M

x,y

��

qubit 2: |0〉 H • ⊕

qubit 3: |0〉 ⊕
ED location B

location A

@A
Uxy

(3)

|φ〉

_ _�
�
�
�
�
�
�

�
�
�
�
�
�
�

_ _

Figure 3.2: Quantum teleportation protocol.

3.4 Some Algorithms and Uses of Quantum Effects

The main power of quantum computation comes from entanglement. We describe in the following
three algorithms that we will consider in the remainder of the thesis. For more algorithms, such as
the quantum fast Fourier transform, or Shor’s factorization algorithm (Shor, 1994), a good reference
is (Aharonov, 1999).

3.4.1 Teleportation

One use of entanglement is the “teleportation” of a quantum bit state via a classical channel. The
idea is the following: Alice and Bob share an entangled pair of qubits

1√
2
(|00〉 + |11〉).

Alice wants to send a qubit in an unknown state |φ〉 = α|0〉 + β|1〉 to Bob. The teleportation
procedure, summarized in Figure 3.2, can be described in three steps:

1. At location A, create the initial entangled state 1√
2
(|00〉+ |11〉) with the two last qubits using

the circuit
|0〉 H •

|0〉 ⊕ .

Alice keeps qubit 2 and stays at location A, while Bob takes qubit 3 and goes to location B.

2. Alice, to send qubit 1 in state |φ〉 to Bob, applies a rotation on her two qubits 1 and 2, using

3.4. Some Algorithms and Uses of Quantum Effects 29

the circuit
• H

⊕ .

She then measures the 2-qubit resulting state, gets two classical bits (x, y) and sends them to
Bob.

3. Bob, to transform qubit 3 to state |φ〉 applies on it the transformation Uxy defined as follows:

if M outputs 00, U00 =

(

1 0
0 1

)

,

if M outputs 01, U01 =

(

0 1
1 0

)

,

if M outputs 10, U10 =

(

1 0
0 −1

)

,

if M outputs 11, U11 =

(

0 1
−1 0

)

.

(3.4.1)

Note that the entanglement of qubits 2 and 3 can be done ahead of time (so long as they stay
entangled).

Proof of the correctness of the protocol. The rotation of step (2) performs the following computation

CNOT H ⊗ id
|00〉 7→ |00〉 7→ 1√

2
(|00〉 + |10〉),

|01〉 7→ |01〉 7→ 1√
2
(|01〉 + |11〉),

|10〉 7→ |11〉 7→ 1√
2
(|01〉 − |11〉),

|11〉 7→ |10〉 7→ 1√
2
(|00〉 − |10〉).

If we apply it to the two first qubits of

(α|0〉 + β|1〉) ⊗ 1√
2
(|00〉 + |11〉) =

1√
2
(α|000〉 + α|011〉 + β|100〉 + β|111〉)

we get

1

2

(

α(|000〉 + |100〉) + α(|011〉 + |111〉) + β(|010〉 − |110〉) + β(|001〉 − |101〉)
)

=
1

2









|00〉 ⊗ (α|0〉 + β|1〉)
+ |01〉 ⊗ (β|0〉 + α|1〉)
+ |10〉 ⊗ (α|0〉 − β|1〉)
+ |11〉 ⊗ (α|1〉 − β|0〉)









If we measure the two first qubits, the third qubit becomes

α|0〉 + β|1〉 if 00 was measured,
β|0〉 + α|1〉 if 01 was measured,
α|0〉 − β|1〉 if 10 was measured,
α|1〉 − β|0〉 if 11 was measured.

Finally note that if Uxy is applied in the case where x, y was measured, then the state of the last
qubit is α|0〉 + β|1〉.

3.4. Some Algorithms and Uses of Quantum Effects 30

qubit 1: |0〉 H •

⊕qubit 2: |0〉 Ux,yCC
�

�
z

t
o

kgc

x, y

location A

location BBC

GF
⊕

BC

GF
•

M

_ _�
�
�
�
�

�
�
�
�
�

_ _H ��

a U
D

4

x, y

Figure 3.3: Dense coding protocol.

3.4.2 Dense Coding

The teleportation algorithm allows to “send” one qubit using two classical bits. It is possible to
perform the reverse operation, namely to send two classical bits using an entangled pair and a
quantum channel.

The situation is similar. Alice and Bob share an entangled state of 2 qubits, Alice has qubit
1, Bob has qubit 2. This time, Bob wants to send the two classical bits (x, y) to Alice. He can use
the protocol summarized in Figure 3.3, called dense coding. Like the teleportation algorithm, the
procedure is again in three steps:

1. At location B, Alice and Bob create an entangled state of two quantum bits 1 and 2, using the
circuit

|0〉 H •

|0〉 ⊕ .

Then, Alice goes to location A with qubit 1, while Bob stays at location B with qubit 2.

2. If Bob wants to send two classical bits (x, y) to Alice, he needs to apply the gate Ux,y as defined
in the teleportation protocol (Equation (3.4.1)), and send the modified qubit 2 to Alice.

3. Alice, to retrieve the two classical bits, applies a rotation on qubits 1 and 2 using the gate

⊕

• H .

and a measurement, retrieving the two bits (x, y).

3.4. Some Algorithms and Uses of Quantum Effects 31

3.4.3 The Deutsch Algorithm

The Deutsch algorithm is for finding out whether a boolean function is balanced or constant. In
classical computation, two calls to the function are needed. In quantum computation, one can find
it out in only one call. The algorithm takes as input an unknown circuit Uf computing

Uf (|x〉 ⊗ |y〉) = |x〉 ⊗ |y ⊕ f(x)〉

for some boolean function f , where ⊕ stands for the boolean addition. The quantum circuit for the
algorithm is the following:

|0〉 H H |f0 ⊕ f1〉
Uf

|1〉 H ,

|x〉 |x〉

|y〉 |y⊕fx〉

where we write fx in place of f(x). To retrieve the answer, we have to measure the first qubit: it
is 0 when the function is balanced and 1 when it is not. Note that the input of this algorithm is a
“black-box”, in other terms a function from two qubits to two qubits.

Proof that the procedure is correct. This will compute the following thing:

(H ⊗ id)(Uf)(H ⊗H)(|0〉 ⊗ |1〉)

=(H ⊗ id)(Uf)
1√
2
(|0〉 + |1〉) ⊗ 1√

2
(|0〉 − |1〉)

=
1

2
(H ⊗ id)(Uf)(|00〉 + |10〉 − |01〉 − |11〉)

=
1

2
(H ⊗ id)

(

|0〉 ⊗ |0 ⊕ f0〉 + |1〉 ⊗ |0 ⊕ f1〉
−|0〉 ⊗ |1 ⊕ f0〉 − |1〉 ⊗ |1 ⊕ f1〉

)

=
1

2
√

2

(

(|0〉 + |1〉) ⊗ |f0〉 +(|0〉 − |1〉) ⊗ |f1〉
−(|0〉 + |1〉) ⊗ |1 ⊕ f0〉−(|0〉 − |1〉) ⊗ |1 ⊕ f1〉)

)

=
1

2
√

2

(

|0〉 ⊗ (|f0〉 + |f1〉 − |1 ⊕ f0〉 − |1 ⊕ f1〉)
+|1〉 ⊗ (|f0〉 − |f1〉 − |1 ⊕ f0〉 + |1 ⊕ f1〉)

)

.

If f0 = f1, then |f0〉 − |f1〉 − |1 ⊕ f0〉+ |1 ⊕ f1〉 = 0 and the result is

1√
2
|0〉 ⊗ (|f1〉 − |1 ⊕ f1〉).

If f0 = 1 ⊕ f1, then |f0〉 + |f1〉 − |1 ⊕ f0〉 − |1 ⊕ f1〉 = 0 and the result is

1√
2
|1〉 ⊗ (|1 ⊕ f1〉 − |f1〉).

So the value of the measurement of the first qubit is 0 if the function f is balanced, and 1 in the
other case.

Chapter 4

A Tour in Existing Models of

Quantum Computation

Chapter 3 developed the formalism and the techniques needed to perform quantum computation.
This chapter surveys a few selected models for manipulating quantum programs and protocols. A
more complete set can be found in e.g. (Gay, 2006).

The goal is twofold. First, we want to be able to write programs and codes manipulating
quantum data. Numerous attempts have been done in the past years to provide a more easy way to
write (and read) quantum algorithms. Second, we aim at a deeper understanding of the structure
of quantum information by developing a semantics for quantum computation.

4.1 The Various Paradigms

For building languages and understanding algorithms, several paradigms of computation have been
studied.

4.1.1 Unitary Gates as Computation.

Families of Quantum Circuits

One formal system for writing quantum algorithms is the quantum circuit formalism described by
Deutsch (1989) and sketched in Section 3.2.2. In this formalism, the driving forces in the computation
are the unitary operations. An algorithm is composed of three steps:

1. allocation of n quantum bits;

2. application of a list of unitary gates;

3. measurement of all or a part of the n quantum bits.

The description of an algorithm is a family of quantum circuits, one for each possible number
of input qubits. The family needs to be uniform, i.e. efficiently computable by a classical computer.
As for classical boolean circuits, it is then possible to speak of the complexity of an algorithm by
taking the limit of the ratio of the number of gates used in the circuit versus the number of input
quantum bits.

32

4.1. The Various Paradigms 33

The Quantum Turing Machine

A Turing machine (Turing, 1936) is an automaton consisting of the following elements:

1. an infinite tape, divided into cells, each cell containing a letter from a given alphabet;

2. a head, able to read and write into cells, and to move to the left or to the right along the tape;

3. a finite set of states and a state register, recording the state of the machine. One of the state
is called initial and a subset of the states are called final ;

4. a transition table, mapping each possible pair (letter, state) to a triple consisting of a new
state, a letter and a direction (left or right).

At the beginning the state register is in the initial state. At each time-step, the automaton reads
the cell of tape below the head. Based on the letter read and its state, using the transition table, it
writes on the tape the corresponding letter and moves in the given direction. It iterates this course
of action until a final state is reached. A program consists of a given alphabet, a set of states and a
transition table.

Benioff (1980) and Deutsch (1985) describe a Turing machine where the tape, the head, and
the states of the automaton are encoded as a quantum state. The transition table is described in
a unitary operation. This model provides a tool to reason about expressiveness and complexity
of quantum algorithms: As was shown by Nishimura and Ozawa (2002), the resulting notion of
computation is equivalent to that of the quantum circuit model.

QML or the Quantum Test

Altenkirch and Grattage (2005a,b) describe a first-order language for manipulating quantum bits.
This calculus understands duplication as sharing, or copying:

α|0〉 + β|1〉 7→ α|00〉 + β|11〉.

The language is written on a classical device and compiles into a quantum circuit. Due to the
copying operation, contraction can be done blindly but weakening (that is, measurement) has to be
kept track of.

The language features superposition of quantum states, leading to a “quantum” test. For
example, the gate NC is defined as:

N x = if qx then 0 else 1,
NC 〈c, x〉 = if qc then 〈c,Nx〉 else 〈c, x〉.

The main drawback of this formalism is that the quantum test

if qx then M else N

is well defined if and only if M and N have orthogonal representations. Therefore, in general one
cannot say before running the computation whether a program is valid or not.

Van Tonder’s Quantum Lambda Calculus

(Van Tonder, 2004) describes a lambda calculus where the terms are encoded on strings of quantum
bits. The language is built using the terms

Term M,N ::= x | c |MN | λx.M,
Constant c ::= 0 | 1 | H | · · · ,

4.1. The Various Paradigms 34

where the constants c contains booleans 0 and 1, as representatives of the quantum bits |0〉 and
|1〉, and representatives for a chosen set of unitary gates. For example, the identity is |λx.x〉. The
unitaries apply on 0 and 1 in the naive way: |H0〉 should reduce to 1√

2
(|0〉 + |1〉). This language is

purely quantum, and the reduction is encoded as a unitary map.
A trick needs to be used to overcome the fact that the reduction is not in general a reversible

operation (Consider for example (λx.1)0 → 1). Given any function β : X → Y , it is possible to
produce a reversible map X → X × Y invertible on its range by mapping x 7→ (x, β(x)). If β is a
reduction of terms, we can make it reversible by appending to the successive terms in the reduction
its history:

M → (M,β(M)) → (M,β(M), β2(M)) → · · ·
However, a naive implementation of the lambda calculus into quantum bits does not provide a

consistent equational theory. Indeed the term

1√
2
(|(λx.0)0〉 + |(λx.0)1〉) = |λx.0〉 ⊗ 1√

2
(|0〉 + |1〉)

should be β-equivalent to 1√
2
(|0〉+ |0〉) =

√
2|0〉, which is not valid since its norm is greater than 1.

As it turns out, one needs to distinguish between terms that are in superposition (such as
1√
2
(|0〉 + |1〉) and the ones that are not. For the system to be consistent, terms in superposition

should not be duplicated nor erased, and should be the same, modulo the 0’s and the 1’s.

4.1.2 Concurrent Quantum Computation

Quantum computation has important implications in cryptography. The design of quantum protocols
to securely communicate data is a field of ongoing research.

From a theoretic side, a question one might ask is whether the tools that were developed to
analyse the safety of classical distributed systems can be used in the context of quantum systems.

The simultaneous works of Lalire and Jorrand (2004) and Gay and Nagarajan (2005) develop
a process algebraic approach to concurrent quantum computation. Starting from the π-calculus,
quantum features, such as quantum bits, unitaries and measurements, are added to the syntax, and
an operational semantics is developed. (Gay and Nagarajan, 2005) gives a typed language and prove
some safety properties for well-typed protocols; for example the fact that a quantum bit cannot be
shared among several processes, and the soundness of the type system.

4.1.3 Measurement-Based Quantum Computation

The unitary operations are one side of the quantum coin. The other side is the measurement. It
turns out that it is possible to perform quantum computation with “only” measurements, as it
was described first by Briegel and Raussendorf (2002); Raussendorf and Briegel (2001) and then
computationally by Danos et al. (2007).

The idea is the following: A state of highly entangled quantum bits is prepared and then a series
of measurements are performed. The computation is “run” by the projections occurring during the
measurements. In its most general formulation, the calculus happens to be as powerful as the regular
quantum-circuit computational model, and is slightly better in terms of time complexity.

Formally, one works with a pattern, composed of a finite set V , a set of inputs I ⊂ V , a set of
outputs O ⊂ V , and a sequence of operations of the following kinds (where i, j ∈ V):

• 1-quantum measurements Mα
i : measurement of qubit i in the xy-plane, along the axes

1√
2
(|0〉 + eiα|1〉), 1√

2
(|0〉 − eiα|1〉).

4.2. Formalism of Hilbert Spaces 35

Classical
Device

Quantum
Device

''

gg

Allocation

Measurement

zz

Unitary

Figure 4.1: The QRAM model

• 2-qubit entanglement operators Ei,j : where Ei,j is (σz)C (controlled-σz) applied to qubits i, j.

• 1-qubit Pauli corrections Xi, Zi: The corresponding Pauli matrix applied on qubit i.

(Danos et al., 2007) describe an operational semantics and a compositional denotational semantics
in terms of completely positive, trace preserving maps. More importantly, it gives a rewrite theory
for patterns and proves the confluence of the rewriting system as well as a standardization theorem
allowing patterns to be put in semantically equivalent form.

4.1.4 The QRAM Model

One of the first formal descriptions of a quantum programming language is the pseudo-code un-
derlying the quantum random access machine (QRAM) model of Knill (1996). While it does not
strictly speaking present a language, the paper provides a basis for formally describing algorithms.
The idea (see Figure 4.1) is to consider a computation as done by a classical process that has access
to a quantum device. A series of built-in operations are allowed, such as allocation of quantum bits,
measurements, and unitary operations. One can summarize this approach with the slogan “classical
control, quantum data” (Selinger, 2004b).

Ömer (2000) describes a rich, architecture-independent programming language called QCL fol-
lowing the QRAM model. The language is sequential, classical based, and comes with powerful
routines to deal with quantum effects: quantum register allocation, scratch space management,
syntactic reversibility of user-defined quantum operators.

Building up on top of these works, (Bettelli et al., 2003) describe a language in a C++ style for
manipulating quantum constructs and concepts more efficiently. Its main characteristic is to treat
quantum operators as objects, thus allowing construction and manipulation at run-time.

However, none of these works contains a semantics. A language somehow different is the lan-
guage qGCL of Sanders and Zuliani (2000). The paper develops a guarded-command language for
probabilistic operation together with an operational semantics based on probability distributions,
and extend it to quantum constructs. The described semantics is very close to the actual implemen-
tation: the interpretation of a program assigns to each possible input state a probability distribution
on the output space.

Another language-based approach with semantics in mind is the work of Selinger (2004b),
developing a flow-chart language. The language has a sound and complete interpretation in the
category of superoperators. We detail this semantics in Section 4.3.

4.2 Formalism of Hilbert Spaces

A recent research thread initiated by Abramsky and Coecke (2004) aims at providing an abstract
framework in which one could interpret quantum computation. The goal is to extract from the

4.2. Formalism of Hilbert Spaces 36

category of Hilbert spaces the required structures for performing quantum computation.

4.2.1 Dagger Compact-Closed Categories

Abstract notions of adjointness, self-adjointness, unitaries, bases and scalar products arise in the
context of dagger compact-closed categories with biproducts:

Definition 4.2.1 (Selinger, 2005). A dagger category is a category C together a functor † : Cop → C
such that for every f : A→ B, f †† = f and for every object A, A† = A.

Definition 4.2.2 (Selinger, 2005). A dagger compact-closed category is a dagger symmetric monoidal
category that is also compact closed (see e.g. Kelly and Laplaza, 1980), and such that the following
diagram commutes for all A:

⊤

ηA ##G
GGGGGGGG

ǫ†A // A⊗A∗

σA,A∗

��
A∗ ⊗A.

Various notions of Hilbert spaces can be defined in the context of dagger compact-closed cate-
gories with biproducts:

• A scalar is a morphism s : ⊤ → ⊤.

• A vector is a morphism v : ⊤ → A.

• The adjoint of a morphism f : A→ B is the morphism f † : B → A.

• The scalar product of v, w : ⊤ → A is v;w† : ⊤ → ⊤.

• A unitary morphism is a morphism f : A→ B such that f † is its inverse.

• A basis for an object A is a unitary morphism

bA : n·⊤ → A,

where n·⊤ is a sum of n ⊤’s. In this case, the dimension of A is said to be n.

• We can define the matrix of a morphism f : A→ B where A and B are finite dimensional as
the map

nA·⊤ bA−−→ A
f−→ B

bB−−→ nB·⊤.

These definitions satisfy various equations related to Hilbert spaces and hermitian positive operators.
For example, (Selinger, 2005) shows that completely positive maps can be defined in this context.
The paper provides a categorical construction for building a category of completely positive maps
out of any dagger compact-closed category.

Although no formal syntax comes with the semantics, a colourful graphical language is provided,
making proofs of properties relatively easy to follow. However, this graphical language does not mix
well with the need for biproducts: in the desired quantum computational applications, the notion
of bases is heavily used.

4.3. A Flow-Chart Language 37

4.2.2 Classical Objects

In an attempt to remove biproducts, Coecke and Pavlovic (2007) describe a new notion called clas-
sical objects. A classical object is an object X in the category together with a map δX : X → X⊗X ,
a map ǫX : X → ⊤, and a few equations. In particular, these equations make (X, ǫX , δX) a com-
mutative comonoid object, as in Definition 2.7.3. The notion of classical object captures the notion
of basis without the needs for biproducts. The idea is the following. A generic object X in the
category is like a generic finite dimensional Hilbert space, with no associated basis. Associating a
structure (δX , ǫX) to the object X is the same thing as associating a basis to X . In Hilbert spaces,
the maps δX and ǫX are

δX : ei 7→ ei ⊗ ei, ǫX : ei 7→ 1,

for some basis (e1, . . . en) of X . With enough structure, it is possible to simulate what was done
with biproducts. In particular, as was shown by Coecke and Paquette (2006), an abstract version
of the Naimark theorem can be proved using the graphical language.

4.3 A Flow-Chart Language

(Selinger, 2004b) describes a semantics for QRAM-based first-order quantum computation. Instead
of starting from the category of Hilbert spaces, the paper describes computations as maps in the
category of superoperators.

4.3.1 The language

The language is described by a flow-chart notation: it is a super-set of a classical flow-chart language.
A program is a graph together with a cursor that follows the wires, with data attached to it. A
graph is constructed from the rules in Table 4.1. The box new qbit b = i creates a new quantum bit
of name b with value |i〉. The box new bit b = i creates a new boolean variable named b with value
i. The gate q1, . . . qn ∗= Un applies the unitary gate Un on the corresponding variables. The gate
permute φ permutes the context ∆ according to the permutation φ. The gate branch b performs a
test on the boolean b and meas q measures the quantum bit q and performs a test on the output.

4.3.2 The Category of Superoperators

The language has a full and complete representation in the category Q of superoperators. This
category is defined as the refinement of the category CPM.

Definition 4.3.1. The category CPM is defined as follows:

• The objects are signatures σ = n1, . . . , nk, i.e., finite tuples of positive integers,

• the morphisms σ → τ are completely positive maps Vσ → Vτ , where Vn1,...,nk
is the Hilbert

space Cn1×n1 × · · · × Cnk×nk .

We use the notation Bσ for the canonical basis of Vσ.

The objects in this category can be seen as spaces of block matrices. Following the construction
in Lemma 3.1.18, one can define a tensor and a coproduct structure, as follows:

Definition 4.3.2. Given two signatures σ = (n1, . . . , nk) and τ = (m1, . . . ,ml), we define σ ⊗ τ
and σ ⊕ τ to be respectively

σ ⊗ τ = (n1m1, . . . , n1ml, n2m1, . . . , nkml), σ ⊕ τ = (n1, . . . , nk,m1, . . . ,ml).

4.3. A Flow-Chart Language 38

∆

new bit b = 0

b:bit,∆

∆

new bit b = 1

b:bit,∆

∆

new qbit q = 0

q:qbit,∆

∆

new qbit b = 1

q:qbit,∆

q1:qbit,...,qn:qbit ,∆

q1, . . . qn ∗= Un

q1:qbit,...,qn:qbit ,∆

∆

permute φ

φ(∆)

q:qbit,∆

meas q

1

q:qbit,∆

FF
FF

FF
FF

F
q:qbit ,∆

0
xx

xx
xx

xx
x

∆ ??
??

??
??

∆
��

��
��

��

•
∆

b:bit,∆

branch b

1

b:bit,∆

HH
HHH

HH
HH

b:bit,∆

0
vvv

vvv
vv

v

Table 4.1: Rules for constructing quantum flow-charts

Lemma 4.3.3. Let σ and τ be two signatures. Then we have Vσ⊗τ ∼= Vσ ⊗ Vτ and Vσ⊕τ ∼=
Vσ ⊕ Vτ .

Definition 4.3.4. We define a map between arrows

Φ : CPM(σ ⊗ τ, σ′)
∼−→ CPM(σ, τ ⊗ σ′)

as in Lemma 3.1.18, using the canonical basis.

Lemma 4.3.5. The category (CPM,⊗, (1)) is a symmetric monoidal category. The map Φ makes
CPM symmetric monoidal closed. The structure ⊕ and the signature (0) provide a structure of
biproducts.

Definition 4.3.6. Given a signature σ = (n1, . . . , nk), a tuple A = (A1, . . . , Ak) in Vσ is hermitian
(respectively positive) if each matrix Ai is hermitian (respectively positive). We extend the Löwner
order of Definition 3.1.25 to tuples of matrices by letting A ⊑ B if B −A is positive. We define the
trace of the matrix tuple A to be the sum of the traces of its components: tr(A) =

∑

i tr(Ai).

Definition 4.3.7. Let σ = (n1, . . . , nk) and τ = (m1, . . . ,ml) be two signatures. A linear function
F : Vσ → Vτ is a tuple (F1,1, . . . , F1,k, , Fn,1, . . . , Fn,k), where Fi,j is the component Cni →
Cmj . The characteristic matrix tuple χF of the function F is

(χF1,1 , . . . , χF1,k
, , χFn,1, . . . , χFn,k

).

Note that since F : Vσ → Vτ , χF ∈ Vσ⊗τ

Definition 4.3.8. The category Q has the same objects as CPM and as arrows superoperators.
A superoperator is, as in Definition 3.1.26, a completely positive map f : σ → τ such that for all
A ∈ Vσ, tr(f(A)) 6 tr(A).

4.3. A Flow-Chart Language 39

Lemma 4.3.9. The category Q is symmetric monoidal and has coproducts, with the same construct
as for CPM. It is not, however, closed.

Definition 4.3.10. The trace characteristic matrix tuple of a linear function F : Vσ → Vτ is

defined to be χ
(tr)
F = χtrτ◦F ∈ Vσ , that is, the characteristic matrix tuple of trτ ⊗ F . Equivalently,

χ
(tr)
F = (idσ ⊗ trτ)(χF).

Completely positive maps and superoperators in this generalized context still satisfy a version
of Theorem 3.1.27.

Theorem 4.3.11 (Generalized Kraus Representation Theorem). Consider the signatures σ of the
form (n1, . . . , ns) and τ of the form (m1, . . . ,mt). Let F : Vσ → Vτ be a linear function. Then the
following holds:

1. F is completely positive if and only if χF is positive.

2. F is a superoperator if and only if χF is positive and χ
(tr)
F ⊑ Iσ, where Iσ ∈ Vσ is the tuple

consisting of identity matrices.

3. F is a superoperator if and only if it can be written in the form

F (A1, . . . , As) =
(

∑

i,l

Ui1lAiU
∗
i1l, . . . ,

∑

i,l

UislAiU
∗
itl

)

,

for matrices Uijl ∈ Cmj×ni where
∑

j,l U
∗
ijlUijl ⊑ Ini for all i. Here, l ranges over a finite

set.

4.3.3 Interpretation of the Flow-Chart Language

It is possible to interpret a flow chart diagram as a superoperator. We state in this section the few
results of (Selinger, 2004b) used in Chapter 7.

Definition 4.3.12. Let σ = (n1, . . . , ns) be a signature, and let σ′ = n1 + . . . + ns be an integer
regarded as a simple signature. The measurement operator µσ : Vσ′ → Vσ is defined as

µσ′







A1,1 · · · A1,s

...
. . .

...
As,1 · · · As,s






= (A1,1, A2,2, . . . , As,s),

where Ai,j ∈ Cni×nj .

Definition 4.3.13. We extend the definition of partial trace of Definition 3.1.31 to any map of the
form (trσ ⊗ id τ) : Vσ⊗τ → Vτ .

Definition 4.3.14. We extend the definition of contractions of Definition 3.1.28 to linear maps.
We say that f : Vσ → Vτ is a contraction if it if of the form

f(A1, . . . , As) = (U1A1U
∗
1 , . . . , UsAsU

∗
s) ,

for contractions Ui ∈ Cmi×ni , where σ = (n1, . . . , ns) and τ = (m1, . . . ,ms).

Theorem 4.3.15. Every superoperator F : Vσ → Vτ can be factored as F = M ◦E ◦G, where G is
a contraction, E is a partial trace operator, and M is a measurement operator.

Theorem 4.3.16. The interpretation of any flow-chart in CPM yields a superoperator. Conversely,
any superoperator is the image of a flow chart diagram under the interpretation.

4.4. Extension to Higher-Order 40

4.4 Extension to Higher-Order

A natural avenue of research for finding a model of higher-order quantum computation is the gen-
eralization of the category of superoperators. Selinger (2004c) investigated possible categories of
normed vector spaces as model of higher order quantum computation. A challenging problem turns
out to be the matching between the norm for the tensor of two spaces and the required norm on the
space of functions. This study did not find any satisfactory model.

Another work in this direction is the paper of Girard (2004). In this paper, the author describes
a models of linear logic based on normed vector spaces, following the same constructions as for
coherent spaces (Girard, 1987). The resulting category, although based on the right sort of spaces,
does not yield the correct answer at base types, as pointed out by (Selinger, 2004c).

Chapter 5

Lambda Calculus and Semantics of

Higher-Order Computation

In this chapter I will briefly describe the semantics for classical higher-order computation. The
canonical tool for this purpose is a semantics, a mathematical model that will allow us to exhibit
underlying structures and invariants.

For an complete introduction on lambda calculus, see (Barendregt, 1984). An in-depth survey
of categorical logic can be found in (Lambek and Scott, 1989). Finally, references on linear logic
and its semantics can be found in (Bierman, 1995; Girard, 1987; Troelstra, 1992).

5.1 Lambda Calculus

The origin of higher-order computation lies in the 1930’s when Kleene (1935a,b) described a formal
system called lambda calculus, in order to capture the notion of computable function. Lambda
calculus was shown (Church, 1936) universal in the sense that any computable function can be
interpreted as an expression in the language.

In this section we briefly describe the core lambda calculus. For a thoughtful development of
the theory see for example (Barendregt, 1984).

5.1.1 The Language

In the lambda calculus, functions are described explicitly as formulae. The function f : x 7→ f(x) is
written as the lambda-abstraction λx.f(x). The application of a function to an argument is simply
the juxtaposition of the two expressions. Thus

“ let f : x 7→ x2 in f(2) ”

becomes (λx.x2)(2) in lambda calculus.
Formally, a lambda-term is an expression made of the following grammar, written in BNF1

form:
Term M,N ::= x | (λx.M) | (MN) | 〈M,N〉 | fst(M) | snd(M) | ∗,

where x ranges over an infinite set of variables. The term λx.M stands for the function that inputs
x and outputs M , the term MN represents the application of a function M to an argument N , the
term 〈M,N〉 represents the pair composed of M and N , ∗ is the 0-tuple, and fst(M) and snd(M)

1The BNF formulation was first introduced by Naur et al. (1960) for a formal definition of the language ALGOL’60.

41

5.1. Lambda Calculus 42

the left and right projections of the pairing. We speak of term combinator or term operator when
referring to each token in the grammar definition.

The formalism extends transparently to higher-order functions: In lambda calculus, we can
simply write λf.λg.λx.f(g(x)) for the composition operator f, g 7→ f ◦ g. And the expression

“ let H : (f, g) 7→ (x 7→ f(g(x))) in
let a : x 7→ x2 in
let b : x 7→ x+ 3 in (H(a, b))(z) ”

for some variable z simply becomes

(λf.λg.λx.f(g(x)))(λx.x2)(λx.x + 3)(z). (5.1.1)

5.1.2 Free and Bound Variables

In (5.1.1), in the term (λf.λg.λx.f(g(x)) it should be understood that x is local, and that the x in
(λx.x2) does not interfere with the one of the previous formula. We say that the variable x in λx.x2

is bound by the lambda-abstraction. On the other hand, the variable z is not bound by anything:
we say it is free. We define the set of free variables of a given term by induction as follows:

FV (x) = {x}, FV (λx.M) = FV (M) \ {x},
FV (MN) = FV (M) ∪ FV (N), FV (〈M,N〉) = FV (M) ∪ FV (N),

FV (fst(M)) = FV (snd(M)) = FV (M), FV (∗) = {}.
A variable that is not free is said to be bound. A term is called closed if it does not have any free
variable, and open if it has at least one free variable.

5.1.3 α-Equivalence

It should be understood that λx.x2 is the same term as, say, λt.t2. We say that the two terms are
α-equivalent. However, λf.λg.λx.f(g(x)) and λg.λg.λx.g(g(x)) are not α-equivalent: the g in the
expression refers to the innermost λg.

Definition 5.1.1 (Barendregt, 1984). For any term M , we define the syntactic variable substitution
M [x := y] as the term M where all syntactic occurrences of x (whether they are free or not) are
replaced by y. We define a change of bound variables in M to be the replacement of a subterm λx.N
by λt.N [x := t], provided that t does not occur anywhere in N .

We say that M is α-equivalent to N , written M ≈ax N , if N results from M by a series of
changes of bound variables.

Convention 5.1.2. Terms are considered up to α-equivalence from now on.

5.1.4 Operational Meaning of Lambda Calculus

We now discuss the operational meaning of the calculus by defining a rewriting system.

Substitution

A term of the form (λx.M)N is understood as “M with N in place of x”. The process of replacing
N by x is called substitution, and we write the resulting term by M [N/x]. Of course, we are only
allowed to modify the free occurrences of x, and one should check that the process does not bind
any free variables. For example, the term (λx.yx)[(fx)/y] is not the same as λx.(fx)x: indeed, the
variable x in fx is free. Instead, using the α-equivalent formulation (λt.yt)[(fx)/y] one sees that
the term is in fact λt.(fx)t.

5.1. Lambda Calculus 43

Definition 5.1.3. Given a term M and a term P , we define the substitution of x in M by P , written
M [P/x], by the following:

x[P/x] = P,

∗[P/x] = ∗,
(MN)[P/x] = (M [P/x])(N [P/x]),

(〈M,N〉)[P/x] = 〈M [P/x], N [P/x]〉,
(fst(M)[P/x] = fst(M [P/x]),

(snd(M)[P/x] = snd(M [P/x]),

(λy.M)[P/x] = λy.(M [P/x]) (if y 6= x and y 6∈ FV (P)).

We write M [Mi/xi, . . . ,Mn/xn] for M [Mi/xi] . . . [Mn/xn].

Reduction of Terms

The simply-typed lambda calculus is a language describing operations: application of a function
to an argument, projection of a pair. To express these operations we develop a set of rules, called
reduction rules. They come in two flavors: the β-reductions, which perform operations and enforce
the implicit meaning of the term:

(λx.M)N →β M [N/x], (βλ)

fst〈M,N〉 →β M, (β1
〈〉)

snd〈M,N〉 →β N, (β2
〈〉)

and η-reductions simplifying terms:

λx.(Mx) →η M, (ηλ)

〈fst(M), snd(M)〉 →η M. (η〈〉)

Each term on the left side of these rule is called a redex.
A context is a “term with a hole”, defined formally by the syntax

C[−] ::= [−] | (λx.C[−]) | (C[−]M) | (MC[−]) | 〈M,C[−]〉 | 〈C[−],M〉 | fst(C[−]) | snd(C[−]),

where M stands for any term. Given a term N and a context C[−], we write C[N] for the context
C[−] where [−] is syntactically replaced with N . In this setting, we naturally extend the notion of
reduction, as follows: Given any context C[−], if N is a redex reducing to N ′, then the reduction
→i extends to C[N] →i C[N ′], for i = β, η. A term with no subterm in redex form is said to be in
normal form.

We denote by →∗ the reflexive transitive closure of the relation →. The relation →∗
β satisfies

a property called the Church-Rosser theorem that we only mention here. For a proof of this result
consult e.g. (Barendregt, 1984).

Theorem 5.1.4 (Church-Rosser theorem). Suppose that M , N and P are lambda-terms such that
M →∗

β N and such that N →∗
β P . Then there exists a lambda-term Z such that N →∗

β Z and
P →∗

β Z.

5.1.5 Typed Lambda Calculus

In mathematics, to a function one usually associates a domain and a codomain. So for example,
when we mention the identity function id , it is always associated to a given space. Although one
may lose some generality, we gain in legibility.

5.1. Lambda Calculus 44

Type System

Similarly, in order to be able to manipulate lambda-terms more easily, one can associate a type to
each lambda-term. A type is an expression providing some information about the term. One can
associate a type system to the untyped lambda calculus defined in Section 6.1 as follows:

Type A,B ::= ι | ⊤ | A×B | A⇒ B.

We choose an arbitrary constant type ι, and types are constructed by induction. If A and B are
types, then A × B is the type for binary products, and A⇒ B is the type for functions from A to
B. Finally, ⊤ stands for the type of the 0-tuple.

A typed term is the data consisting of the term and its type. The type of an open term is a
function of the type of its free variables. For example, the type of λx.(yx) should be a function type
A⇒ B, depending on the type of y. We define the notion of a typing judgement to formalize the
concept. A typing judgement is an expression

x1 : A1, . . . xn : An ⊲M : B

where the free variables of M are contained in {x1, . . . xn}, and B is the type of M when each xi has
type Ai. The set {x1 : A1, . . . xn : An} is called the typing context of the judgement, and it might
be empty.

Typing Rules

The typed version of the lambda calculus presented in Section 6.1 is called the simply-typed lambda
calculus. A typing judgement is said to be valid if it is derived from a typing derivation, or typing
tree. A valid typing derivation is constructed using the following inductive rules:

∆, x : A ⊲ x : A
(ax),

∆, x : A ⊲M : B

∆ ⊲ λx.M : A⇒B
(λ),

∆ ⊲M : A⇒ B ∆ ⊲ N : A
∆ ⊲MN : B

(app),

∆ ⊲M : A ∆ ⊲ N : B
∆ ⊲ 〈M,N〉 : A×B

(×.I),
x : A ⊲ ∗ : ⊤ (⊤.I),

∆ ⊲M : A×B

∆ ⊲ fst(M) : A
(×.E1),

∆ ⊲M : A×B

∆ ⊲ snd(M) : B
(×.E2).

Properties of Typed Terms

On one hand, we have a description of some intended properties of the language through a type
system: for example, a term M of type A ⇒ B can only by applied to an argument of type A.
On the other hand, we have a rewriting system by means of reduction rules, accounting for the
operational behavior of the language. Are these two descriptions compatible?

The main results that should be satisfied (and are verified in the case of the simply-typed
lambda calculus) are the following.

Lemma 5.1.5 (Substitution). If ∆ ⊲ N : A and ∆, x : A ⊲ M : B are valid typing judgements,
then ∆ ⊲M [N/x] : B is valid.

Theorem 5.1.6 (Subject reduction). If ∆ ⊲ M : A and if M →βη M ′ then ∆ ⊲ M ′ : A is
valid.

They state that the type of a term remains constant along the reduction process. A third
important result states the consistency of well-typed closed terms, in the sense that a well-typed
closed term will reduce until reaching a normal form. The result is stated as follows:

5.2. Proofs as Computations 45

Theorem 5.1.7 (Progress). If M is a closed, well-typed term, then either M is a normal form or
M →β M

′.

Axiomatic Equivalence

We say that two valid typing judgements ∆ ⊲ M : A and ∆ ⊲ N : A are axiomatically equivalent,
written ∆ ⊲M ≈ax N : A, if the relation can be derived from

∆ ⊲ (λx.M)N ≈ax M [N/x] : A, ∆ ⊲λx.(Mx) ≈ax M : A⊸B,

∆ ⊲ fst〈M,N〉 ≈ax M : A, ∆ ⊲ snd〈M,N〉≈ax N : B,

∆ ⊲ 〈fst(M), snd(M)〉≈ax M : A×B, ∆ ⊲x ≈ax ∗ : ⊤,
and from one congruence rule per term construct, such as

∆ ⊲M ≈ax M
′ : A⇒ B ∆ ⊲ N ≈ax N

′ : A

∆ ⊲MN ≈ax M
′N ′ : B.

Curry Style Versus Church Style

While defining the type system, we wrote

“ A typed term is the data consisting of the term and its type. ”

There are actually two distinct ways of typing a term. One can adopt the Church-style typing
convention, and consider that all of its subterms are typed. Or one can adopt the Curry-style typing
convention, and see only the outside term as typed. From the point of view of the programmer, it
is simpler to type a lambda-term in a Curry-style fashion. However, to be able to check whether a
typed term is valid or not it is easier to have it Church-style typed.

These two ways of typing terms might or might not be equivalent: it is a question of under-
standing the meaning of the term. For example, consider the Curry-style typing judgement

x : A ⊲ (λf.x)(λy.y) : A.

The type of the variable x is given. However, the type of the variable y is not mentioned anywhere
and might be anything. For each possible type B, the typing derivation

x : A, f : B⇒B ⊲ x : A

x : A ⊲ λf.x : (B⇒ B) ⇒A

x : A, y : B ⊲ y : B

x : A ⊲ λy.y : B⇒B

x : A ⊲ (λf.x)(λy.y) : A

is valid. Therefore the data consisting of a set of typed variables, a term and a type does not
uniquely determine a typing derivation. In a Curry-style type system, the axiomatic equivalence is
really defined on typing derivations, and not typing judgements.

Obviously, in this simple example the term reduces to x, and thus all possible typing derivations
live in the same axiomatic equivalence class. But in some more complicated language, this might
not be the case, and the correspondence between typing derivations and typing judgements might
not be one-to-one.

5.2 Proofs as Computations

Let us consider a typing derivation. We can concentrate on the meaning of terms, and understand
the typing tree as a computation. But it is also possible to focus on the types, and see the typing
tree as a proof in some logical system.

5.2. Proofs as Computations 46

A1, . . . , An ⊲ Ak
Ax

Γ ⊲ ⊤ ⊤I
Γ ⊲ A Γ ⊲ B

Γ ⊲ A×B
×I Γ ⊲ A×B

Γ ⊲ A
×E1

Γ ⊲ A×B
Γ ⊲ B

×E2

Γ, A ⊲ B

Γ ⊲ A⇒B
⇒I

Γ ⊲ A⇒B Γ ⊲ A
Γ ⊲ B

⇒E

Γ ⊲ B
Γ, A ⊲ B

W
Γ, A,A ⊲ B

Γ, A ⊲ B
C

Table 5.1: Intuitionistic logic: natural deduction rules

5.2.1 Intuitionistic Logic

The logic behind the simply typed lambda calculus described in Section 5.1.5 is called intuitionistic
logic. Formulae are constructed as expressions coming from the grammar

Formula A,B ::= ι | ⊤ | A×B | A⇒B,

where ι ranges over a set of constants. × is the conjunction, and ⇒ is the implication.
A sequent in intuitionistic logic is a pair (Γ, B), written as Γ ⊲ B, where Γ is a multiset (possibly

empty) of formulae {A1, . . . , An} and B is a formula. We read the sequent as “A1 and A2 and. . . and
An implies B”, and we call Γ the context of the sequent.

A sequent is called valid it can be derived from a proof. Proofs are trees of formulae defined
inductively. In intuitionistic logic a proof is said to be constructive: the proof of A × B should
include the proof of A and the proof of B. The proof of A⊸B should be a map from the proofs of
A to the proofs of B.

We will concentrate on natural deduction style proof rules, first introduced by by Gentzen
(1934), where we mainly deal with the right side of the sequents. The proofs associated with the
formulae presented above are constructed using the rules in Table 5.1. The rules come in two flavors:

1. the axiom Ax and two structural rules: the weakening rule W and the contraction rule C,

2. introduction and elimination for each connective (except for the null-ary connective ⊤ which
has only an introduction rule).

5.2.2 Curry-Howard Isomorphism

Being able to write proofs, we now turn to the question of an equivalence relation of proofs. Given
two proofs of the same sequent, when can we say that they are equal ? For example, it is reasonable
to expect that

A,B ⊲ A
Ax

A,B ⊲ B
Ax

A,B ⊲ A×B
×I

A,B ⊲ A
×E1

and A,B ⊲ A
Ax (5.2.1)

are the same proof. Indeed, in the first case we do not use A,B ⊲ B: the proof only “forgets” it in
the last step.

By comparing the rules for building proofs and the typing rules of the simply-typed lambda
calculus, one can give a computational interpretation of proofs. It is known as the Curry-Howard
isomorphism. Under this scheme, one can say that two proofs are equivalent if they represent two
axiomatically equivalent lambda-terms.

5.3. Categorical Logic 47

If we re-interpret the reduction rules for the lambda calculus in the context of proof of intuition-
istic linear logic, one finds a formal definition of the “similar look” of the two proofs of Equation 5.2.1.
The first proof correspond to the typing judgement x : A, y : B ⊲ π1(〈x, y〉) : A and the second to
the typing judgement x : A, y : B ⊲ x : A.

Interpreted in the context of proofs, the β-reduction rules correspond to the removal of an
introduction followed by an elimination. We can construct the following rewrite system of proofs:

π1....
Γ ⊲ A

π2....
Γ ⊲ B

Γ ⊲ A×B
×I

Γ ⊲ A
×E1

π1....
Γ ⊲ A,

π1....
Γ ⊲ A

π2....
Γ ⊲ B

Γ ⊲ A×B
×I

Γ ⊲ B
×E2

π2....
Γ ⊲ A,

π1....
Γ, A ⊲ B

Γ ⊲ A⇒B
⇒I

π2....
Γ ⊲ A

Γ ⊲ B
⇒E2

π∗
1....

Γ ⊲ B,

where π∗
1 is π1 without the A in the context and whenever an axiom of π1 is of the form Γ, A,∆ ⊲ A

it is replaced by the proof
π2....

Γ,∆ ⊲ A.

5.3 Categorical Logic

A proof can be set in relation with a term in a suitable language. However, while this describes the
equivalence classes of proofs, it does not give out the internal structure of the theory.

The structure of the proof system can be extracted using a categorical description of the sit-
uation. In categorical logic, we consider a category whose objects are formulae and whose arrows
A → B are equivalence classes of proofs of the sequent A ⊲ B. Equivalently, objects are types and
arrows are equivalence classes of typing judgements x : A ⊲M : B.

In this section we describe the category generated by the language of Section 5.1.5 (or, equiva-
lently, of the proof theory defined in Section 5.2.1).

Definition 5.3.1. Given a cartesian closed category (C,×,⇒, T), let

Φ : hom(A×B,C)
∼−→ hom(A,B⇒ C)

be the canonical isomorphism and εA,B : (A⇒B) ×A→ B the counit of the adjunction.
Given a map ψ from type variables to objects of C, one defines an interpretation of any type by

induction:

[[A×B]]ψ = [[A]]ψ × [[B]]ψ, [[A⇒ B]]ψ = [[A]]ψ ⇒ [[B]]ψ,

and one can interpret valid typing judgements of the simply-typed lambda calculus as morphisms
in C:

[[x1 : A1, . . . xn : An ⊲M : B]]ψ : [[A1]]ψ × · · · [[An]]ψ → [[B]]ψ.

5.4. Lambda Calculus and Side Effects 48

Axiom:

∆, x : A ⊲ x : A π2 : [[∆]] × [[A]] → [[A]]

Unit:

∆ ⊲ ∗ : ⊤ ©[[∆]] : [[∆]] → T

Product:

∆ ⊲M : A ∆ ⊲ N : A
∆ ⊲ 〈M,N〉 : A×B

f : [[∆]] → [[A]] g : [[∆]] → [[B]]

〈f, g〉 : [[∆]] → [[A]] × [[B]]

Application:

∆ ⊲M : A⇒ B ∆ ⊲ N : A
∆ ⊲MN : B

f : [[∆]] → [[A]] ⇒ [[B]] g : [[∆]] → [[A]]

[[∆]]
〈f,g〉−−−→ ([[A]] ⇒ [[B]]) × [[A]]

εA,B−−−→ [[B]],

Abstraction:

∆, x : A ⊲M : B

∆ ⊲ λx.M : A⇒B

f : [[∆]] × [[A]] → [[B]]

Φ(f) : [[∆]] → [[A]] ⇒ [[B]]

Table 5.2: Interpretation of the simply typed lambda calculus

They are defined by induction as in Table 5.2. The denotation of a context ∆ = x1 : A1, . . . xn : An
is defined by

[[∆]]ψ = [[A1]]ψ × · · · [[An]]ψ.

If the context ∆ is empty, then [[∆]] = ⊤. For legibility one drops the ψ on the symbol [[−]]ψ.

Lemma 5.3.2. The interpretation is sound: If ∆ ⊲M ≈ax M
′ : A then

[[∆ ⊲M : A]] = [[∆ ⊲M ′ : A]].

Definition 5.3.3. Let Cst
λ be the category defined as follows:

• Objects are types of the simply typed lambda calculus.

• Arrows from A to B are β-equivalence classes of typing judgements x : A ⊲M : B.

• The identity map on A is x : A ⊲ x : A, and the composition of x : A ⊲ M : B and
y : B ⊲ N : C is x : A ⊲ (λy.N)M : C.

Lemma 5.3.4. The category Cst
λ is cartesian closed.

Theorem 5.3.5. The simply-typed lambda calculus is an internal language for cartesian categories:
In Cst

λ , we have
[[x : A ⊲M : B]]Cst

λ
≈ax (x : A ⊲M : B).

5.4 Lambda Calculus and Side Effects

5.4.1 Pure Versus Impure Calculus.

The simply typed lambda calculus as model of computation is slightly restrictive: It allow only pure
computations, that is, computations with no side effects. A program is said to produce some side
effect if the returned value does not entirely describe the behaviour of the program. Here are several
examples of side effects:

5.4. Lambda Calculus and Side Effects 49

1. Probabilistic choice. A program that tosses a coin along the computation will have side effects:
two runs of the program might not give the same output value.

2. Non-termination. A program that can diverge (i.e. not return anything) will have side effects,
since no value can describe the behaviour of the program.

3. External state. A program that read and/or write some data on some external state is subject
to side-effects: the value the program output might depend on the external state.

5.4.2 Reduction Strategies

In the event of side effects, the order of reduction of the redexes might influence the output, or even
the behaviour of the program (in the case of divergence, for example). The description of a program
allowing side effects has to come with a description of values and a choice of reduction strategy. The
values are special terms that do not reduce anymore under the chosen strategy. For a simply-typed
lambda calculus with side effects, the values are defined as

Value V,W ::= x | λx.M | 〈V,W 〉 | ∗.

Two main strategies are the following:

1. Call-by-name. In this strategy, one first applies functions to arguments before evaluating them.
The rules for the application is

M →M ′

MN →M ′N
,

(λx.M)N →M [N/x]
.

2. Call-by-value. In this strategy, one reduces arguments to values before applying a function to
them. Rules for application can be written as follows:

N → N ′

MN →MN ′
, M →M ′

MV →M ′V
,

(λx.M)V →M [V/x]
.

In the following we will concentrate on a model for call-by-value based computation.

5.4.3 Towards a Semantics

The categorical analysis developed in Section 5.3 does not apply to a lambda calculus with side
effects. In order to make categorical sense of the calculus, one has to separate the analysis of the
values from the analysis of the computations (that is, the arbitrary terms).

The semantics is due to Moggi (1988, 1989, 1991). A categorical model for a lambda calculus
with side effects is a cartesian category (C,×, T) together with a strong monad (T, µ, η, t).

Definition 5.4.1 (Moggi, 1991). A strong monad over a monoidal category C is a monad (T, η, µ)
together with a natural transformation tA,B : A⊗ TB → T (A⊗B), call the tensorial strength, such

5.4. Lambda Calculus and Side Effects 50

that the diagrams

(5.4.1) ⊤⊗ TA
λ //

t

%%KKKKKKKKKK TA (A⊗B) ⊗ TC

t

��

A⊗ (B ⊗ TC)

id⊗t
��

αoo

A⊗B

id⊗η
��

η

%%KKKKKKKKKK T (⊤⊗A),

Tλ

OO

T ((A⊗B) ⊗ C) A⊗ T (B ⊗ C)

t

��
A⊗ TB

t // T (A⊗B) T (A⊗ (B ⊗ C)),

T (α)

hhQQQQQQQQQQQQQ

A⊗ T 2B

id⊗µ

OO

t // T (A⊗ TB)
Tt // T 2(A⊗B)

µ
ggOOOOOOOOOOO

(5.4.4)

(5.4.5)

commute.

Remark 5.4.2 (Moggi, 1991). If the category C is symmetric, the tensorial strength t induces two
natural transformations TA⊗ TB → T (A⊗B), namely

Ψ1 : TA⊗ TB
σT A,T B−−−−−→ TB ⊗ TA

tT B,A−−−−→ T (TB ⊗A)
(σT B,A;tA,B)∗−−−−−−−−−→ T (A⊗B),

Ψ2 : TA⊗ TB
tT A,B−−−−→ T (TA⊗B)

(σT A,B ;tB,A)∗−−−−−−−−−→ T (B ⊗A)
TσB,A−−−−→ T (A⊗B).

Note that since σTA,B; tB,A : TA ⊗ B → T (B ⊗ A), (σTA,B; tB,A)∗ is a morphism T (TA ⊗ B) →
T (B⊗A). Note also that Ψ1 and Ψ2 might not be equal: the map Ψ1 “evaluates” the second variable
and then the first one. The map Ψ2 does the opposite. The strong monad is called commutative if
Ψ1 = Ψ2.

Lemma 5.4.3. If T is a commutative strong monad on a symmetric monoidal category C, then the
two natural transformations Ψ1 and Ψ2 make both T monoidal.

The category C is not quite cartesian closed. Indeed, from a computation x : A ⊲ M : B one
retrieve a value λx.M : A⇒ B. We ask the category to have exponentials in the following sense.

Definition 5.4.4. A symmetric monoidal category (C,⊗,⊤) together with a strong monad (T, η, µ)
is said to have T -exponentials (Moggi, 1991), or Kleisli exponentials, if it is equipped with a bifunctor
⊸ : Cop × C → C, and a natural isomorphism

Φ : C(A,B⊸ C)
∼=−−−−−→ C(A⊗B, TC).

Lemma 5.4.5. The map Φ induces a natural transformation εA,B : (A⊸B)⊗A→ TB defined by
Φ(idA⊸B).

5.4.4 Computational Model for Call-By-Value

The typed lambda calculus developed by Moggi (1991) for dealing with side-effects is called a com-
putational lambda calculus. It is interpreted in a computational model, that is:

• a cartesian category (C,×, T),

• with a strong monad (T, µ, η, t) satisfying the mono requirement,

• and Kleisli exponentials A⇒B for every A, B objects in C.

The values are interpreted as maps in C, and the computations in CT . The category C is called the
category of values and the category CT the category of computations.

5.5. Intuitionistic Linear Logic 51

5.5 Intuitionistic Linear Logic

Linear logic is a resource-sensitive logic developed by Girard (1987). It tries to address the fact that
in classical logic, the introduction rule for the conjunction ×

∆ ⊲ A ∆ ⊲ B
∆ ⊲ A×B

×I

can be derived from two distinct rules, respectively an additive and a multiplicative one:

∆ ⊲ A ∆ ⊲ B
∆ ⊲ A×B

×aI , ∆ ⊲ A Γ ⊲ B
∆,Γ ⊲ A×B

×mI ,

where ∆ and Γ are disjoint. If these two rules are “the same” in classical logic, it is because of the
existence of the weakening and contraction rules

∆ ⊲ B
∆, A ⊲ B

W,
∆, A,A ⊲ B

∆, A ⊲ B
C.

Using (W) and (×mI) one can recover (×aI):

∆,Γ ⊲ A ∆,Γ ⊲ B

∆,Γ,∆,Γ ⊲ A×B
×mI

∆,Γ ⊲ A×B
W,

and using (C) and (×aI) one can recover (×mI):

∆ ⊲ A
∆,Γ ⊲ A

W
Γ ⊲ A

∆,Γ ⊲ B
W

∆,Γ ⊲ A×B
×aI .

In linear logic, the contraction and weakening rules are not valid in general, so for example A and
A× A are not isomorphic, and the product is split into its additive and multiplicative components
× and ⊗.

In the intuitionistic multiplicative fragment, formulae are defined by

A,B ::= ι | ⊤ | A⊗B | A⊸B | !A,

where ι ranges over a set of constants, ⊗ is the multiplicative conjunction, called the tensor, ⊤
stands for the unit of the tensor, and A⊸B is the implication corresponding to the tensor. !(−) is
a unary constructor for allowing weakening and contraction:

!A, !A ⊲ B

!A ⊲ B
(C),

⊲ B
!A ⊲ B

(W).

5.6 Linear Calculi and their Interpretations

Numerous interpretations of intuitionistic linear logic have been proposed, both at an abstract level
and at a computational level.

Very good references for this section are the Ph.D. theses of Bierman (1993) and Maneggia
(2004) and the review of Melliès (2002).

5.6. Linear Calculi and their Interpretations 52

5.6.1 Earlier Models

One of the first well-known categorical descriptions of the system of proofs of linear logic was (Seely,
1989). The paper discusses the required structures for a model of linear logic, where the structure
of the operator “!” is captured by a comonad arising in the context of an adjunction between a
cartesian category and a symmetric monoidal category.

In his thesis, Lafont (1988a,b) also describes a model of intuitionistic linear logic where the
modality ! is this time defined in terms of a comonoid structure. The logic is thought of as a type
system. In that spirit, the type !A is defined via its constructors and destructors, as would be the
types of integers or booleans.

Abramsky (1993) and Wadler (1992) describe a computational interpretation of intuitionistic
linear logic, with a typed lambda calculus whose typing rules follows closely the inference rules of
the logic. The calculus is a lambda calculus with special term constructs to account for duplicable
terms.

5.6.2 Bierman’s Linear Category

The formulation generalizing all of the above descriptions is the one proposed by Bierman (1993)
in his Ph.D. thesis, simplified afterward by Benton et al. (1992, 1993). The categorical description
comes with a complete lambda calculus that we skip for the purpose of this thesis.

For the definition of the category, we prefer here the terminology given in Schalk (2004), and
use the concept of linear exponential comonad.

Definition 5.6.1. Let (C,⊗,⊤, α, λ, ρ, σ) be a symmetric monoidal category. Let (L, δ, ǫ, dL, dL)
be a monoidal comonad. We say that L is a linear exponential comonad provided that

1. each object in C of the form LA is equipped with a commutative comonoid (LA,△A, ♦A),
where △A : LA→ LA⊗ LA and ♦A : LA→ ⊤;

2. △A and ♦A are monoidal natural transformations, i.e. the following diagram

LA⊗ LB

dL
A,B

��

△A⊗△B // (LA⊗ LA) ⊗ (LB ⊗ LB)

sw

��
(LA⊗ LB) ⊗ (LA⊗ LB)

dL
A,B⊗dL

A,B

��
L(A⊗ B)

△(A⊗B)

// L(A⊗B) ⊗ L(A⊗B)

(5.6.1)

and the diagrams

(5.6.2) ⊤
λ−1
⊤ //

dL
⊤ ��

⊤⊗⊤
dL
⊤⊗dL

⊤��
L⊤ △⊤

// L⊤⊗ L⊤

LA⊗ LB
♦A⊗♦B//

dL
A,B ��

⊤⊗⊤
λ⊤

��
L(A⊗B)

♦A⊗B

// ⊤

(5.6.3)

⊤ id //

dL
⊤ %%LL

LLLL
LLL ⊤;

L⊤
♦⊤

77pppppppppp
(5.6.5)

commutes.

5.6. Linear Calculi and their Interpretations 53

3. The maps

△A : (LA, δA) → (LA⊗ LA, (δA ⊗ δA); dA),

♦A : (LA, δA) → (⊤, dL⊤)

are L-coalgebra morphisms, i.e.

(5.6.6)

LA
△A //

δA

��

LA⊗ LA

δA⊗δA
��

L2A⊗ L2A

dL
LA,LA��

L2A
L△A

// L(LA⊗ LA),

LA
♦A //

δA

��

⊤

dL
⊤

��
L2A

L♦A

// L⊤;

(5.6.7)

4. Every map δA is a comonoid morphism (LA,♦A,△A) → (L2A,♦LA,△LA), i.e.

(5.6.8)

LA
δA //

△A

��

L2A,

△LA

��
LA⊗ LA

δA⊗δA

// L2A⊗ L2A

LA
δA //

♦A ��6
66

66
6 L2A.

♦LA����
��

��

⊤

(5.6.9)

Definition 5.6.2 (Bierman, 1993). A linear category is a symmetric monoidal category (C,⊗,⊤)
with finite products (×, 1), together with a linear exponential comonad L.

Benton (1994) gave a clean formulation of the above category in terms of adjunctions. We follow
Barber (1997) by not mentioning the cartesian closedness, and use the exposition of Melliès (2002)
as reference.

Definition 5.6.3. A linear-non-linear category consists of

• A symmetric monoidal closed category (C,⊗,⊤);

• a category (M,×, 1) with finite products;

• a symmetric monoidal adjunction

M

U

'' C.
F

gg ⊥

Lemma 5.6.4. Every linear category defines a linear-non-linear category, where (M,×, 1) is the
category of coalgebras of the comonad.

Theorem 5.6.5. Every linear-non-linear category is a linear category.

Chapter 6

A Lambda Calculus for Quantum

Computation

The question this thesis tries to address is the question of the meaning and the description of higher-
order quantum information, in the paradigm of the QRAM model. That is, programs are written
on a classical device but are given access to quantum information.

In this chapter we will describe a typed lambda calculus for quantum computation, together
with an operational semantics. The requirements we have in mind for the language are the following:

1. The language should have classical control. That is, the structural aspect of the programs
(pairing, tests, etc.) should be classical. Such a language will be described in Section 6.1.

2. We want the program to manipulate quantum data. So quantum information should be thought
of as part of the code as much as possible. We give in Section 6.2 an abstract machine and an
operational semantics for giving sense to the language.

3. We want the language to be as natural as possible for the programmer. In particular, the
compiler should be the one to make sure that valid programs do not duplicate quantum vari-
ables. We do not want to have special term constructs for this. In Section 6.3 we define a type
system to rule out invalid programs.

The work presented in this chapter appeared in my M.Sc. thesis (Valiron, 2004a). It was also
published in (Selinger and Valiron, 2006a, 2005).

6.1 The Language

We adapt the lambda calculus described in Section 5.1 to manipulate classical data and quantum
data. We focus primarily on the classical booleans 0 and 1, on the measurement, the creation of
quantum bits and the unitary operations.

Definition 6.1.1. A lambda-term is an expression made of the following core grammar, written in
BNF form:

Term M,N,P ::= x |MN | λx.M | ifM then N else P | 0 | 1 | meas | new | U |
∗ | 〈M,N〉 | let 〈x, y〉 = M in N,

where x ranges over an infinite set of term variables and U a set of unitary gates; the term ifM then
N elseP stands for a test on P with output M if true, N else; the constant terms 0 and 1 stand for the

54

6.1. The Language 55

boolean values false and true respectively; the constant terms meas , new and U stand respectively
for the measurement, the creation and the application of a unitary gate on a quantum bit; the terms
let 〈x, y〉 = M in N stands for the retrieval of the content of a pair.

We identify terms up to α-equivalence, defined as in Section 5.1.3.

Convention 6.1.2. We sometimes use the shorthand notations

〈M1, . . . ,Mn〉 = 〈M1, 〈M2, . . .〉〉,
M1M2 . . .Mn = (. . . ((M1M2)M3) . . .Mn)

let x = M in N = (λx.N)M,
λ〈x, y〉.M = λz.(let 〈x, y〉 = z in N),

λx1 . . . xn.M = λx1.λx2. . . . λxn.M,
let x y1 . . . yn = M in N = let x = (λy1 . . . yn.M) in N.

The notions of free and bound variables and of substitution are defined as in Chapter 5. We
give the full definition for further reference.

Definition 6.1.3. The set FV (M) of free variables of a term M is defined as follows:

FV (∗) = ∅, FV (x) = {x},
FV (U) = ∅, FV (λx.M) = FV (M) \ {x},

FV (new) = ∅, FV (MN) = FV (M) ∪ FV (N),

FV (meas) = ∅, FV (〈M,N〉) = FV (M) ∪ FV (N),

FV (0) = ∅, FV (ifM then N else P) = FV (M) ∪ FV (N) ∪ FV (P),

FV (1) = ∅, FV (let 〈x, y〉 = M in N) = FV (M) ∪ (FV (N) \ {x, y}).
Definition 6.1.4. Given a term M and a term P , we define the substitution of x in M by P , written
M [P/x], by the following:

x[P/x] = P

c[P/x] = c

∗[P/x] = ∗
(MN)[P/x] = (M [P/x])(N [P/x])

(〈M,N〉)[P/x] = 〈M [P/x], N [P/x]〉
(ifM then N1 else N2)[P/x] = ifM [P/x] then N1[P/x] else N2[P/x]

(λx.M)[P/x] = λx.M

(λy.M)[P/x] = λy.(M [P/x]) (if y 6= x and y 6∈ FV (P))

If y = x or z = x:

(let 〈y, z〉 = M in N)[P/x] = (let 〈y, z〉 = (M [P/x]) in N)

If y 6= x and z 6= x (and y, z 6∈ FV (P)):

(let 〈y, z〉 = M in N)[P/x] = (let 〈y, z〉 = (M [P/x]) in (N [P/x])).

Example 6.1.5. Using this calculus, one can produce terms that compute quantum algorithms.
For example, a fair coin can be implemented as follows:

meas(H(new 0)),

where H is the Hadamard gate.

6.2. Operational Semantics 56

6.2 Operational Semantics

Although we want the language to perform quantum computation, no quantum bit was added into
the terms of the language. For example we might want to represent the constant function outputting
a quantum bit, as follows:

λx.(α|0〉 + β|1〉).
The reason why we do not allow such a notation is the problem of entanglement. As noted in
Section 3.3.2, it is not always possible to write a two quantum bit system in the form |φ〉 ⊗ |ψ〉.
Therefore, if x is the variable corresponding to the first quantum bit and y the one corresponding
to the second in an entangled state, it is not possible to write classically the term

(λf.fx)(λt.(gy)t),

as there is no means of writing x and y.

6.2.1 Abstract Machine

This non-local nature of quantum information forces us to introduce a level of indirection for rep-
resenting the state of a quantum program. Following the scheme of the QRAM model, we describe
an abstract machine consisting of a lambda-term M , a array of quantum bits Q (the QRAM), and
a map linking variables in M to quantum bits in Q:

Definition 6.2.1. A quantum closure is represented by a triple [Q,L,M], where

• Q is a normalized vector of ⊗ni=1C2, for some n > 0, called the quantum array.

• M is a lambda term,

• L is an injective function from a set |L| of term variables to {1, . . . , n}, where FV (M) ⊆ |L|.
L is called the linking function.

We write |Q| = n. If L(xi) = i, we will sometimes write L as the ordered list |x1 · · ·xn〉. The idea
is that the variable xi is bound in the term M to qubit number L(xi) of the state Q. We also call
the pair (Q,L) a quantum context. If there are no quantum bits, i.e. if Q ∈ C, we write Q = |〉.
Similarly, if L is empty we write L = |〉.

The purpose of the linking function is to assign specific free variables of M to specific quantum
bits in Q. The notion of α-equivalence extends naturally to quantum closure, for instance, the states
[|1〉, |x〉, λy.x] and [|1〉, |z〉, λy.z] are equivalent. We therefore extend the notion of α-equivalence to
quantum closures:

[Q, |x · · · y · · · z〉,M] =α [Q, |x · · · y′ · · · z〉,M [y′/y]]

if y′ 6∈ FV (M) ∪ {x, . . . , y, . . . , z}.

6.2.2 Evaluation Strategy

Although we solved the problem of entanglement, there is another issue that prevents us from blindly
using substitution, namely the probabilistic nature of the measurement.

Consider the term plus to be the boolean addition function, defined as

plus = λxy.if x then (if y then 0 else 1) else (if y then 1 else 0).

Now, consider the term M = (λx.plus x x)(meas(H(new 0))). Depending of the choice made in
reducing the term, we obtain a different answer, as shown below, using an intuitive reduction system.

6.2. Operational Semantics 57

Call-By-Value.

Reducing this in the empty environment, using the call-by-value reduction strategy (as defined in
Section 5.4.2), we obtain the following reductions:

[|〉, |〉,M] → [|0〉, |p〉, (λx.plus x x)(meas(H p))]

→ [
1√
2
(|0〉 + |1〉), |p〉, (λx.plus x x)(meas p)]

→
{

[|0〉, |p〉, (λx.plus x x)(0)]

[|1〉, |p〉, (λx.plus x x)(1)]

→
{

[|0〉, |p〉,plus 0 0]

[|1〉, |p〉,plus 1 1]
→
{

[|0〉, |p〉, 0]

[|1〉, |p〉, 0]

(6.2.1)

where the two branches are taken with probability 1
2 each. Thus, under call-by-value reduction, this

program produces the boolean value 0 with probability 1.

Call-By-Name

Reducing the same term under the call-by-name strategy, we obtain in one step

[|〉, |〉,M] → [|〉, |〉,plus (meas(H(new 0))) (meas(H(new 0)))],

and then with probability 1
4 ,

[|01〉, |pq〉, 1], [|10〉, |pq〉, 1], [|00〉, |pq〉, 0], [|11〉, |pq〉, 0].

Therefore, the boolean output of this function is 0 or 1 with equal probability.

Mixed Strategy

Finally, if we mix the two reduction strategies, the program can even reduce to an ill-formed term.
Namely, reducing by call-by-value until we reach the term

[
1√
2
(|0〉 + |1〉), |p〉, (λx.plus x x)(meas p)],

and then changing to call-by-name, we obtain in one step the term

[
1√
2
(|0〉 + |1〉), |p〉,plus(meas p)(meas p)],

which is not a valid program since there are two occurrences of the quantum bit p.

Remark 6.2.2. In call-by-name, a measurement of the form meas M is carried over along β-
reductions. There is no possible way to “force” the measurement to happen. Therefore, one cannot
obtain the behavior of the reductions in (6.2.1) using a call-by-name procedure. However, it is
possible to simulate a call-by-name reduction in call-by-value by encapsulating terms in lambda-
abstractions. For example, to carry over the term meas M using a call-by-value reduction strategy,
one can write the term as λy.meas M , with y a fresh variable.

Convention 6.2.3. Following Remark 6.2.2, we consider the call-by-value reduction strategy in the
remainder of this chapter.

6.2. Operational Semantics 58

6.2.3 Probabilistic Reduction Systems

In order to formalize the operational semantics of the quantum lambda calculus, we introduce the
notion of a probabilistic reduction system. Note that several notions of probabilistic rewrite systems
have been studied in the literature (see e.g. Bournez and Hoyrup, 2003; Sen et al., 2003). However,
these works study rewrite system in a very general setting. For the purpose of this work, where our
probabilistic reduction is quite simple, we define an abstract notion of probabilistic reduction only
to capture the notion of value and error state and not to study the system itself.

Definition 6.2.4. A probabilistic reduction system is a tuple (X,U,R, prob) where X is a set of
states, U ⊆ X is a subset of value states, R ⊆ (X \U)×X is a set of reductions, and prob : R → [0, 1]
is a probability function, where [0, 1] is the real unit interval. Moreover, we impose the following
conditions:

• For any x ∈ X , Rx = { x′ | (x, x′) ∈ R } is finite.

• ∑x′∈Rx
prob(x, x′) 6 1

We call prob the one-step reduction, and denote x→p y to be prob(x, y) = p. Let us extend prob to
the n-step reduction

prob0(x, y) =

{

0 if x 6= y

1 if x = y

prob1(x, y) =

{

prob(x, y) if (x, y) ∈ R

0 else

probn+1(x, y) =
∑

z∈Rx

prob(x, z)probn(z, y),

and the notation is extended to x→n
p y to mean probn(x, y) = p.

Definition 6.2.5. We say that y is reachable in one step with non-zero probability from x, denoted
x→>0 y when x→p y with p > 0. We say that y is reachable with non-zero probability from x,
denoted x→∗

>0 y when there exists n > 0 such that x→n
p y with p > 0.

Definition 6.2.6. We can then compute the probability to reach u ∈ U from x: It is a function
from X × U to R defined by probU (x, u) =

∑∞
n=0 probn(x, u). The total probability for reaching U

from x is

probU (x) =

∞
∑

n=0

∑

u∈U
probn(x, u).

On the other hand, there is also the probability to diverge from x, or never reaching anything. This
value is

prob∞(x) = lim
n→∞

∑

y∈X
probn(x, y).

We define the error probability of x to be the number

proberr (x) = 1 − probU (x) − prob∞(x).

Lemma 6.2.7. For all x ∈ X, probU (x) + prob∞(x) 6 1. That is, 0 6 proberr (x) 6 1.

Definition 6.2.8. In addition to the notion of reachability with non-zero probability, there is also
a weaker notion of reachability, given by R: We will say that y is reachable in one step from x,
written x y, if xRy. By the properties of R, x→>0 y implies x y. As usual, ∗ denotes the
transitive reflexive closure of , and we say that y is reachable from x if x ∗ y.

6.2. Operational Semantics 59

Definition 6.2.9. In a probabilistic reduction system, a state x is called an error-state if x 6∈ U
and

∑

x′∈X prob(x, x′) < 1. An element x ∈ X is consistent if there is no error-state e such that
x ∗ e.

Lemma 6.2.10. If x is consistent, then proberr (x) = 0.

Remark 6.2.11. We need the weaker notion of reachability x y, in addition to reachability with
non-zero probability x→>0

∗y, because a null probability of getting a certain result is not an absolute
warranty of its impossibility. In the QRAM, suppose we have a qubit in state |0〉. Measuring it
cannot theoretically yield the value 1, but in practice, this might happen with small probability,
due to imprecision of the physical operations and decoherence. Therefore, when we prove subject
reduction (see Theorem 6.4.5), we will use the stronger notion. In short: a type-safe program should
not crash, even in the event of random QRAM errors.

Remark 6.2.12. The converse of Lemma 6.2.10 is false. For instance, if X = {a, b}, U = ∅, a→1 a,
and a→0 b, then b is an error state, and b is reachable from a, but only with probability zero. Hence
proberr (a) = 0, although a is inconsistent.

6.2.4 Reduction System

We define a probabilistic call-by-value reduction procedure for the quantum lambda calculus. Note
that, although the reduction itself is probabilistic, the choice of which redex to reduce at each step
is deterministic.

Definition 6.2.13. A value is a term of the following form:

Value V,W ::= x | λx.M | 0 | 1 | meas | new | U | ∗ | 〈V,W 〉.

A quantum closure of the form [Q,L, V] where V is a value is called a quantum value-state.
The reduction rules are shown in Table 6.1. We write [Q,L,M] →p [Q′, L′,M ′] for a single-

step reduction of states which takes place with probability p. In the rule for reducing the term
U〈xj1 , . . . , xjn〉, U is an n-ary built-in unitary gate, j1, . . . , jn are pairwise distinct, and Q′ is the
quantum state obtained from Q by applying this gate to qubits j1, . . . , jn. In the rule for measure-
ment, |Q0〉 and |Q1〉 are normalized states of the form

|Q0〉 =
∑

j

αj |φ0
j 〉 ⊗ |0〉 ⊗ |ψ0

j 〉, |Q1〉 =
∑

j

βj |φ1
j 〉 ⊗ |1〉 ⊗ |ψ1

j 〉,

where φ0
j and φ1

j are i-qubit states (so that the measured qubit is the one pointed to by xi). In the
rule for new , Q is an n-qubit state, so that Q⊗ |i〉 is an (n+ 1)-qubit state.

Definition 6.2.14. We define a weaker relation . This relation models the transformations
that can happen in the presence of decoherence and imprecision of physical operations. We define
[Q,M] [Q′,M ′] to be [Q,M] →p [Q′,M ′], even when p = 0, plus the additional rule, if Q and Q′

are vectors of equal dimensions: [Q,M] [Q′,M].

Lemma 6.2.15. Let X be the state of all quantum closures and U the set of quantum value-states,
Let prob be the function such that for x, y ∈ X, prob(x, y) = p if x→py and 0 else. Then (X,U, ,→)
is a probabilistic reduction system.

Remark 6.2.16. This probabilistic reduction system has error states, for example, the states
[Q,L,H(λx.x)] or [Q, |xyz〉, U〈x, x〉]. Such error states correspond to run-time errors. In the next
section, we introduce a type system designed to rule out such error states.

6.3. Type System 60

[Q,L, (λx.M)V] →1 [Q,L,M [V/x]]

[Q,N] →p [Q′L, ,N ′]

[Q,L,MN] →p [Q′, L,MN ′]

[Q,M] →p [Q′, L,M ′]

[Q,L,MV] →p [Q′, L,M ′V]

[Q,L,M1] →p [Q′, L,M ′
1]

[Q,L, 〈M1,M2〉] →p [Q′, L, 〈M ′
1,M2〉]

[Q,L,M2] →p [Q′, L,M ′
2]

[Q,L, 〈V1,M2〉] →p [Q′, L, 〈V1,M
′
2〉]

[Q,L, if 0 then M else N] →1 [Q,L,N]

[Q,L, if 1 then M else N] →1 [Q,L,M]

[Q,L,U〈xj1 , . . . , xjn〉] →1 [Q′, L, 〈xj1 , . . . , xjn〉]

[α|Q0〉 + β|Q1〉, L,meas xi] →|α|2 [|Q0〉, L, 0]

[α|Q0〉 + β|Q1〉, L,meas xi] →|β|2 [|Q1〉, L, 1]

[Q, |x1 . . . xn〉,new 0] →1 [Q⊗ |0〉, |x1 . . . xn+1〉, xn+1]

[Q, |x1 . . . xn〉,new 1] →1 [Q⊗ |1〉, |x1 . . . xn+1〉, xn+1]

[Q,L, P] →p [Q′, L, P ′]

[Q,L, if P then M else N] →p [Q′, L, if P ′ then M else N]

[Q,L,M] →p [Q′, L,M ′]

[Q,L, let 〈x1, x2〉 = M in N] →p [Q′, L, let 〈x1, x2〉 = M ′ in N]

[Q,L, let 〈x1, x2〉 = 〈V1, V2〉 in N] →1 [Q,L,N [V1/x1, V2/x2]]

Table 6.1: Reductions rules of the quantum lambda calculus

6.3 Type System

We will now define a type system designed to eliminate all run-time errors arising from the reduction
system of the previous section, such as the ones shown in Remark 6.2.16.

6.3.1 Types

In the lambda calculus we just defined, we need to be able to account for higher-order, products
(and unit), classical booleans and quantum booleans. Since we do not want to have specific term
construct for dealing with duplication and non-duplication, the information has to be encoded into
the type system. We use a type system inspired from linear logic. By default, a term of type A is
assumed to be non-duplicable, and duplicable terms are given the type !A instead.

Definition 6.3.1. Formally, we define the following type system for the lambda calculus of Sec-
tion 6.1 as follows:

qType A,B ::= bit | qbit | !A | (A⊸B) | ⊤ | (A⊗B).

The constant types bit and qbit stand respectively for the classical and the quantum booleans; the
type !A is for duplicable elements of type A; the type A⊸ B for functions from A to B; the type
A⊗B for pairs of elements of types A and B; finally ⊤ stands for the type of the term ∗.

We call the operator “!” the exponential.

Convention 6.3.2. We write !nA for !!! . . .!!A, with n repetitions of !. We also use the notation
A⊗n for the n-fold tensor product A⊗ . . .⊗A = (. . . (A⊗A) . . .⊗A).

The typing rules will ensure that any value of type !A is duplicable. However, there is no harm
in using it only once; thus, such a value should also have type A. We use a subtyping relation
(Breazu-Tannen et al., 1989; Pierce, 2002) to capture this notion.

6.3. Type System 61

Definition 6.3.3. We define a subtyping relation <: on types as follows, using the overall condition
on n and m that (m = 0) ∨ (n > 1):

!nbit <: !mbit
(bit),

!nqbit <: !mqbit
(qbit),

!n⊤<: !m⊤ (⊤),

A1 <:B1 A2 <:B2

!n(A1 ⊗A2)<: !m(B1 ⊗B2)
(⊗),

A <:A′ B <:B′

!n(A′⊸B)<: !m(A⊸B′)
(⊸).

Lemma 6.3.4. (qType, <:) is reflexive and transitive. If we define an equivalence relation + by
A + B iff A<:B and B <:A, (qType/+, <:) is a poset.

Proof. The proof uses the fact that (m = 0) ∨ (n > 1) can be rewritten as (n = 0) ⇒ (m = 0)
(where ⇒ means “implies”). Then the result follows from the reflexivity and the transitivity of the
implication.

Lemma 6.3.5. If A<: !B, then A = !A′ for some type A′. Dually, if A is not of the form !A′ and
if A<:B, then B is not of the form !B′.

Proof. By inspection of the cases.

6.3.2 Typing Rules

In their definition in Section 6.1, we implicitly considered the terms to be typed in a Church-style
fashion. Considering terms this way is closer to the programmer approach: the types of the internal
subterms have to be figured out by the compiler.

Definition 6.3.6. A typing judgement is the given of a set ∆ = {x1 : A1, . . . , xn : An} of typed
variables, of a term M and of a type B, written as ∆ ⊲M : B. We call the set ∆ the typing context,
or simply the context.

Given two contexts ∆1 and ∆2, we write (∆1,∆2) for the context consisting of the variables in
∆1 and in ∆2. When described in this form, it is assumed that |∆1| ∩ |∆2| = ∅.

A typing derivation is called valid if it can be inferred from the rules of Table 6.2. We write !∆
for a context of the form {x1 : !A1, . . . , xn : !An}. We use the notation |∆| to represent the set of
(untyped) variables {x1, . . . , xn} contained in ∆. In the table, the symbol c spans the set of term
constants {meas,new , U, 0, 1}. To each constant c we associate a term Ac, as follows:

A0, A1 = bit , Anew = bit⊸ qbit , AU = qbit⊗n⊸ qbit⊗n, Ameas = qbit⊸ !bit .

Remark 6.3.7. The type !Ac is understood as being the “most generic” one for c, as enforced by
the typing rule (ax 2). For example, we defined Anew to be bit⊸ qbit . Since new can take any type
B such that !Ac <:B, the term new can be typed with all the types in the poset:

!(!bit⊸ qbit)
<:[[[[

!(bit⊸ qbit)
<:[[[[[
<:cc cc

!bit⊸ qbit .
bit⊸ qbit

<:ccc cc

This implies, as expected, that no created quantum bit can have the type !qbit .

Remark 6.3.8. Note that the type system enforces the requirement that variables holding quantum
data cannot be freely duplicated; thus λx.〈x, x〉 is not a valid term of type qbit ⊸ qbit ⊗ qbit . On
the other hand, we allow variables to be discarded freely.

Note also that due to rule (λ2) the term λx.M is duplicable only if all the free variables of M
(other that x) are duplicable. This follows the call-by-value approach: since λx.M is a value, if it is
duplicated it will be duplicated as a syntactic string of symbols, thus duplicating every single free
variable of it (other than x).

6.4. Properties of the Type System 62

A<:B
∆, x : A ⊲ x : B

(ax 1)
!Ac <:B

∆ ⊲ c : B
(ax 2)

Γ1, !∆ ⊲ P : bit Γ2, !∆ ⊲M : A Γ2, !∆ ⊲ N : A

Γ1,Γ2, !∆ ⊲ if P then M else N : A
(if)

Γ1, !∆ ⊲M : A⊸B Γ2, !∆ ⊲ N : A

Γ1,Γ2, !∆ ⊲MN : B
(app)

x : A,∆ ⊲M : B

∆ ⊲ λx.M : A⊸B
(λ1)

If FV (M) ∩ |Γ| = ∅:
Γ, !∆, x : A ⊲M : B

Γ, !∆ ⊲ λx.M : !n+1(A⊸B)
(λ2)

!∆,Γ1 ⊲M1 : !nA1 !∆,Γ2 ⊲M2 : !nA2

!∆,Γ1,Γ2 ⊲ 〈M1,M2〉 : !n(A1 ⊗A2)
(⊗.I)

∆ ⊲ ∗ : !n⊤ (⊤)

!∆,Γ1 ⊲M : !n(A1 ⊗A2) !∆,Γ2, x1:!
nA1, x2:!

nA2 ⊲ N : A

!∆,Γ1,Γ2 ⊲ let 〈x1, x2〉 = M in N : A
(⊗.E)

Table 6.2: Typing rules

Definition 6.3.9. A quantum closure [Q,L,M] is well-typed (or valid) of type A in the typing
context Γ, written Γ � [Q,L,M] : A, if

• |L| ∩ |Γ| = ∅,

• FV (M) \ |Γ| ⊆ |L|, and

• Γ, x1 : qbit , . . . , xk : qbit ⊲M : A is a valid typing judgement, where

{x1, . . . , xk} = FV (M) \ |Γ|.

A well-typed quantum closure is closed if |Γ| = ∅, and a closed well-typed quantum closure is also
called a program.

6.4 Properties of the Type System

We briefly state the properties of the type system that are similar to the properties of the simply-
typed lambda calculus of Section 5.1.5. For a full development, we refer the reader to (Valiron,
2004a).

6.4.1 Safety Properties

Lemma 6.4.1. If Γ<:∆ and A<:B, and if ∆ ⊲M : A is a valid typing judgement, then Γ ⊲ B.

Lemma 6.4.2. If V is a value and if ∆ ⊲ V : A is a valid typing judgement, where for all x ∈ FV (V)
then x is duplicable (i.e. there exists a type B such that {x : !B} ⊆ ∆), then ∆ ⊲ V : !A is valid.

Lemma 6.4.3 (Substitution). If V is a value, and if !∆,Γ1, x : A ⊲M : B and !∆,Γ2 ⊲ V : A are
two valid typing judgements, then !∆,Γ1,Γ2 ⊲M [V/x] : B is valid.

6.4. Properties of the Type System 63

Remark 6.4.4. Note that all the rules of affine intuitionistic logic (Troelstra, 1992) are derived rules
of our type system except for a general promotion rule: Indeed, although the typing judgement ⊲
meas 0 : qbit is valid, the judgement ⊲ meas 0 : !qbit is not valid. However, as stated in Lemma 6.4.2,
the promotion rule is true for values:

!∆ ⊲ V : A
!∆ ⊲ V : !A

.

This point will be further developed in Chapter 8 when we will look for a categorical model of the
language.

Theorem 6.4.5 (Subject reduction). Given a program [Q,L,M] of type B such that there exists
[Q′, L′,M ′] with [Q,L,M] ∗ [Q′, L′,M ′], then [Q′, L′,M ′] is a program of type B.

Theorem 6.4.6 (Progress). Let [Q,L,M] be a program of type B. Then [Q,L,M] is not in
an error state in the sense of Definition 6.2.9. In particular, either it is a value, or there exists
some state [Q′, L′,M ′] such that [Q,L,M] →p [Q′, L′,M ′]. Moreover, the total probability of all
possible single-step reductions from [Q,L,M] is 1.

6.4.2 Type Inference Algorithm

The fact that a well-typed term behaves well is a good property. However, it still remains to provide
a type for the term. For a large class of classical lambda calculus, such a task can be automated
using a type inference algorithm.

In these cases, the algorithm is built on the fact that each term admits a principal type, that
is, a most general type from which all the other types can be derived. For example, in simply typed
lambda calculus, the term M = λfx.fx admits a principal type of the form (X ⇒ Y) ⇒ (X ⇒ Y).
Here, X and Y are type variables, and any valid type can be written in this form, for some value of
X and Y .

The quantum lambda calculus we defined does not satisfy the principal type property. Indeed,
consider again the term M = λfx.fx. Naively, a principal type would be (1) the most general and
(2) the smallest with respect to the subtyping relation. The most general type would have a structure
of the form (X⊸ Y)⊸ (X⊸ Y). Since !((X⊸ Y)⊸ !(X⊸ Y)) and (X⊸ Y)⊸ !(X⊸ Y) are
not valid types for M , the valid types for the term M , ordered by the subtyping relation (from left
to right) are as follows:

!((X⊸Y)⊸(X⊸Y)) //

++XXXXXXXXXXXX
(X⊸Y)⊸(X⊸Y)

++WWWWWWWWWWWW

!(!(X⊸Y)⊸(X⊸Y)) // !(X⊸Y)⊸(X⊸Y).

!(!(X⊸Y)⊸!(X⊸Y)) //

33ffffffffffff
!(X⊸Y)⊸!(X⊸Y)

33gggggggggggg

Note that there is no smallest element.
It is however possible to find a type inference algorithm for the quantum lambda calculus.

Indeed, well-typed terms in the quantum lambda calculus are well-typed in a simply-typed version
of the language. That is to say, a valid typing derivation in the quantum lambda calculus is an
intuitionistic typing derivation indexed with “!”. Following this idea it is possible to extract a type
inference algorithm for the quantum lambda calculus. The algorithm proceeds by first finding the
most general intuitionistic type for the given term, and then placing “!” whenever it is necessary.
We refer the reader to (Valiron, 2004a) for the full discussion.

6.5. Examples of Algorithms 64

6.5 Examples of Algorithms

It turns out that some quantum algorithms can be efficiently understood as elements of higher-order
types. We give in this section the implementation of two non-trivial quantum algorithm, the Deutsch
algorithm and the teleportation procedure.

The latter one is of particular interest, since the usual formulation (see Section 3.4.1) is com-
pletely sequential.

6.5.1 The Deutsch Algorithm

The simplest example to interpret in a higher-order setting is the Deutsch algorithm. We refer the
reader to Section 3.4.3 for its definition. It can be implemented in the quantum lambda calculus in
the following way:

let Deutsch Uf =
let tens f g = λ〈x, y〉.〈fx, gy〉 in
let 〈x, y〉 = (tens H (λx.x))(Uf 〈H(new 0), H(new 1)〉) in

meas x,

using the notations of Convention 6.1.2. Note that Uf is a variable that stands for a function from a
two-qubit state to a two-qubit state. And indeed the function Deutsch is a higher-order function:

⊲ Deutsch:!((qbit ⊗ qbit⊸ qbit ⊗ qbit)⊸ bit)

is a well-typed typing judgment. Note that Deutsch is duplicable, and that Uf does not need to
be duplicable, since it is used only once.

Also note that ideally, instead of Uf the algorithm takes the Boolean function f . Although one
can write the type of the function U− : f 7→ Uf as

(bit⊸ bit)⊸ (qbit ⊗ qbit⊸ qbit ⊗ qbit),

this function is not representable in the quantum lambda calculus.

6.5.2 The Teleportation Procedure

Consider the teleportation algorithm as it is described in Section 3.4.1. We can embed each quantum
circuit part of the procedure in a function. There is a function EPR : !(⊤⊸ (qbit ⊗ qbit)) that
creates an entangled state, as in the step (1):

EPR = λx.CNOT 〈H(new 0),new 0〉.

There is a function BellMeasure : !(qbit⊸ (qbit⊸ bit ⊗ bit)) that takes two qubits, rotates and
measures them, as in step (2):

BellMeasure = λq2.λq1.(let 〈x, y〉 = CNOT 〈q1, q2〉 in 〈meas(Hx),meas y〉

We also can define a function U : !(qbit ⊸ (bit ⊗ bit⊸ qbit)) that takes a qubit q and two bits x, y
and returns Uxyq, as in step (3):

U = λq.λ〈x, y〉.if x then (if y then U11q else U10q)
else (if y then U01q else U00q),

6.5. Examples of Algorithms 65

where the operators Uxy are defined as in Section 3.4.1. The teleportation procedure can be seen as
the creation of two non-duplicable functions f and g

f : qbit⊸ bit ⊗ bit ,
g : bit ⊗ bit⊸ qbit ,

such that (g ◦ f)(x) = x for an arbitrary qubit x. We can construct such a pair of functions by the
following code:

let 〈x, y〉 = EPR ∗ in
let f = BellMeasure x in
let g = U y
in 〈f, g〉.

Note that, since f and g depend on the state of the qubits x and y, respectively, these functions
cannot be duplicated, which is reflected in the fact that the types of f and g do not contain a
top-level “!”.

The Dense Coding Procedure

Note that the two functions f and g defined in the previous section also satisfy a dual property,
namely that (f ◦ g)〈x, y〉 = 〈x, y〉 for an arbitrary pair of classical bits. It turns out that this is
precisely the higher-order description of the dense coding protocol of Section 3.4.2.

The pair of functions 〈f, g〉 creates an isomorphism between qbit and bit ⊗ bit . This is not
in contradiction with the non-duplicability of quantum information since the functions are non-
duplicable: one can use the function g only once to “retrieve” the quantum bit encoded into two
classical booleans.

Tensor and Space-Like Separation

These two protocols have in common the fact that two parts of the algorithm take place in two
different places. This space-like separation is modeled in the type system by the tensor product.
It is interesting to note that an interpretation of these two complex protocols can be efficiently
interpreted as one single higher-order term.

6.5.3 Type Derivation of the Teleportation Protocol

To illustrate the linear type system from Section 6.3.2, we give a complete derivation of the type of the
quantum teleportation term. The notation (L.x.y.z) means that Lemma.x.y.z is used. Computing
some subtypes:

1 α2 !nα <: α

2 α2 !mβ <: β

3 ⊸, 1, 2 !k(α⊸ !mβ)<: (!nα⊸ β)

4 (L.6.3.4) A<: A

5 D, 4 !A<:A

Computing the type of EPR:

6 const , 3 ⊲ new : bit⊸ qbit

7 const , 5 ⊲ 0:bit

6.5. Examples of Algorithms 66

8 app, 6, 7 ⊲ new 0:qbit

9 const , 3 ⊲ H :qbit⊸ qbit

10 app, 9, 8 ⊲ H(new 0):qbit

11 ⊗ .I, 10, 9 ⊲ 〈H(new 0),new 0〉 : qbit ⊗ qbit

12 const , 3 x:⊤ ⊲ CNOT :(qbit ⊗ qbit)⊸ (qbit ⊗ qbit)

13 app, 12, 11 x:⊤ ⊲ CNOT 〈H(new 0),new 0〉:qbit ⊗ qbit

14 λ2, 13 ⊲ λx.CNOT 〈H(new 0),new 0〉:!(⊤⊸ (qbit ⊗ qbit))

Computing the type of BellMeasure:

15 var , 1 y:qbit ⊲ y:qbit

16 const , 3 ⊲ meas :qbit⊸ bit

17 app, 16, 15 y:qbit ⊲ meas y:bit

18 var , 1 x:qbit ⊲ x:qbit

19 app, 9, 18 x:qbit ⊲ Hx:qbit

20 app, 16, 19 x:qbit ⊲ meas(Hx):bit

21 var , 1 q1:qbit ⊲ q1:qbit

22 var , 1 q2:qbit ⊲ q2:qbit

23 ⊗ .I, 21, 22 q2:qbit , q1:qbit ⊲ 〈q1, q2〉:qbit ⊗ qbit

24 const , 3 ⊲ CNOT :(qbit ⊗ qbit)⊸ (qbit ⊗ qbit)

25 app, 24, 23 q2:qbit , q1:qbit ⊲ CNOT 〈q1, q2〉:qbit ⊗ qbit

26 ⊗ .I, 20, 17 x:qbit , y:qbit ⊲ 〈meas(Hx),meas y〉:bit ⊗ bit

27 ⊗ .E, 25, 26 q2:qbit , q1:qbit ⊲ let 〈x, y〉 = CNOT 〈q1, q2〉
in〈meas(Hx),meas y〉:bit ⊗ bit

28 λ1, 27 q2:qbit ⊲ λq1.(let 〈x, y〉 = CNOT 〈q1, q2〉
in 〈meas(Hx),meas y〉):qbit⊸ bit ⊗ bit

29 λ2, 28 ⊲ λq2.λq1.(let 〈x, y〉 = CNOT 〈q1, q2〉
in 〈meas(Hx),meas y〉):!(qbit⊸ (qbit⊸ bit ⊗ bit))

Computing the type of U:

30 var , 1 q:qbit ⊲ q:qbit

31 const , 3 ⊲ Uij :qbit⊸ qbit

32 app, 30, 31 q:qbit ⊲ Uijq:qbit

33 var , 1 y:bit ⊲ y:!bit

34 var , 1 x:bit ⊲ x:!bit

35 if , 33, 32, 32 q:qbit , y:bit ⊲ if y then Ui1q else Ui0q:qbit

36 if , 34, 35, 35 q:qbit , x:bit , y:bit ⊲ if x then (if y then U11q else U10q)

else (if y then U01q else U00q):qbit

37 λ1, 36 q:qbit ⊲ λ〈x, y〉.if x then (if y then U11q else U10q)

else (if y then U01q else U00q):bit ⊗ bit⊸ qbit

38 λ2, 37 ⊲ λq.λ〈x, y〉.if x then (if y then U11q else U10q)

6.5. Examples of Algorithms 67

else (if y then U01q else U00q):!(qbit⊸ (bit ⊗ bit⊸ qbit))

Finally, computing the type of the pair 〈f, g〉:

39 ⊤ ⊲ ∗:⊤
40 (L.6.4.2), 14, 5 ⊲ EPR:⊤⊸ (qbit ⊗ qbit)

41 app, 40, 39 ⊲ EPR∗:qbit ⊗ qbit

42 (L.6.4.2), 29, 5 ⊲ BellMeasure:qbit⊸ (qbit⊸ bit ⊗ bit)

43 var , 1 x:qbit ⊲ x:qbit

44 app, 42, 43 x:qbit ⊲ BellMeasure x:qbit⊸ bit ⊗ bit

45 var , 1 y:qbit ⊲ y:qbit

46 (L.6.4.2), 38, 5 ⊲ U:qbit⊸ (bit ⊗ bit⊸ qbit)

47 app, 46, 45 y:qbit ⊲ U y:bit ⊗ bit⊸ qbit

48 var , 1 f :qbit⊸ bit ⊗ bit ⊲ f :qbit⊸ bit ⊗ bit

49 var , 1 g:bit ⊗ bit⊸ qbit ⊲ g:bit ⊗ bit⊸ qbit

50 ⊗, 48, 49 g:bit ⊗ bit⊸ qbit , f :qbit⊸ bit ⊗ bit ⊲ 〈f, g〉:
(qbit⊸ bit ⊗ bit) ⊗ (bit ⊗ bit⊸ qbit)

51 let , 47, 50 f :qbit⊸ bit ⊗ bit , y:qbit ⊲ letg = U y in 〈f, g〉:
(qbit⊸ bit ⊗ bit) ⊗ (bit ⊗ bit⊸ qbit)

52 let , 44, 51 x:qbit , y:qbit ⊲ letf = BellMeasure x in letg = U y

in 〈f, g〉):(qbit⊸ bit ⊗ bit) ⊗ (bit ⊗ bit⊸ qbit)

53 let , 41, 52 ⊲ let〈x, y〉 = EPR∗ in letf = BellMeasure x

in letg = U y in 〈f, g〉)):
(qbit⊸ bit ⊗ bit) ⊗ (bit ⊗ bit⊸ qbit)

6.5.4 Reduction of the Teleportation Term

As an illustration of the reduction rules of the quantum lambda calculus we show the detailed
reduction of the term from the teleportation example from Section 6.5.2. The reduction of the
teleportation term corresponds to the equality g ◦ f = id . We use the following abbreviations:

Mp,p′ := let f = BellMeasure p in let g = U p′ in g(f p0)

Bp1 := λq1.(let 〈p, p′〉 = CNOT 〈q1, p1〉 in 〈meas(Hp),meas p′〉)

Up2 := λ〈x, y〉. (if x then (if y then U11p2 else U10p2)
else (if y then U01p2 else U00p2))

The reduction of the term is then as follows:








α|0〉 + β|1〉,
let 〈p, p′〉 = EPR∗

let f = BellMeasure p
in let g = U p′

in g(f p0)









→1 [α|0〉 + β|1〉, let 〈p, p′〉 = CNOT 〈H(new 0),new 0〉 in Mp,p′]

→1 [(α|0〉 + β|1〉) ⊗ |0〉, let 〈p, p′〉 = CNOT 〈Hp1,new 0〉 in Mp,p′]

6.5. Examples of Algorithms 68

→1

[

(α|0〉 + β|1〉) ⊗ 1√
2
(|0〉 + |1〉), let 〈p, p′〉 = CNOT 〈p1,new 0〉 in Mp,p′

]

→1

[

(α|0〉 + β|1〉) ⊗ 1√
2
(|0〉 + |1〉) ⊗ |0〉, let 〈p, p′〉 = CNOT 〈p1, p2〉 in Mp,p′

]

→1

[

(α|0〉 + β|1〉) ⊗ 1√
2
(|00〉 + |11〉), let 〈p, p′〉 = 〈p1, p2〉 in Mp,p′

]

→1



(α|0〉 + β|1〉) ⊗ 1√
2
(|00〉 + |11〉),

let f = BellMeasure p1

in let g = U p2

in g(f p0)





→1
∗
[

(α|0〉 + β|1〉) ⊗ 1√
2
(|00〉 + |11〉), Up2(Bp1p0)

]

→1

[

(α|0〉 + β|1〉) ⊗ 1√
2
(|00〉 + |11〉), Up2

(

let 〈p, p′〉 = CNOT 〈p0, p1〉
in 〈meas(Hp),meas p′〉

)]

→1

[

1√
2

(

α|000〉 + α|011〉
+β|110〉+ β|101〉

)

, Up2

(

let 〈p, p′〉 = 〈p0, p1〉
in 〈meas(Hp),meas p′〉

)]

→1

[

1√
2

(

α|000〉 + α|011〉
+β|110〉+ β|101〉

)

, Up2〈meas(Hp0),meas p1〉
]

→1









1

2









α|000〉 + α|011〉
+α|100〉+ α|111〉
+β|010〉+ β|001〉
−β|110〉 − β|101〉









, Up2〈meas p0,meas p1〉



























1
2 ;;vvvv

1
2

##H
HHH

[

1√
2

(

α|000〉 + α|011〉
+β|010〉+ β|001〉

)

, Up2〈0,meas p1〉
]

[

1√
2

(

α|100〉 + α|111〉
−β|110〉 − β|101〉

)

, Up2〈1,meas p1〉
]



















1/2 66mmmm
1/2

((QQQQ

1/2 66mmmm
1/2

((QQQQ

[(

α|000〉 + β|001〉
)

, Up2〈0, 0〉
]

[(

α|011〉 + β|010〉
)

, Up2〈0, 1〉
]

[(

α|100〉 − β|101〉
)

, Up2〈1, 0〉
]

[(

α|111〉 − β|110〉
)

, Up2〈1, 1〉
]

→1
∗ [(

α|000〉 + β|001〉
)

, U00p2

]

→1
∗ [(

α|011〉 + β|010〉
)

, U01p2

]

→1
∗ [(

α|100〉 − β|101〉
)

, U10p2

]

→1
∗ [(

α|111〉 − β|110〉
)

, U11p2

]



















→1

→1

→1

→1

[(α|000〉 + β|001〉), p2]
[(α|010〉 + β|011〉), p2]
[(α|100〉 + β|101〉), p2]
[(α|110〉 + β|111〉), p2]

= [|00〉 ⊗ (α|0〉 + β|1〉), p2]
= [|01〉 ⊗ (α|0〉 + β|1〉), p2]
= [|10〉 ⊗ (α|0〉 + β|1〉), p2]
= [|11〉 ⊗ (α|0〉 + β|1〉), p2]

6.5.5 Reduction of the Superdense Coding Term

As another example of the reduction rules, we give the reduction of the superdense coding example
from Section 6.5.2. This reduction shows the equality f ◦ g = id . Of the four possible cases, we
only give one case, namely (f ◦ g)〈0, 1〉 = 〈0, 1〉; the remaining cases are similar. We use the same
abbreviations as above.









|〉,
let 〈p, p′〉 = EPR∗

let f = BellMeasure p
in let g = U p′

in f(g〈0, 1〉)









6.6. Towards a Denotational Semantics 69

→1
∗





1√
2
(|00〉 + |11〉),

let f = BellMeasure p0

in let g = U p1

in f(g〈0, 1〉)





→1
∗
[

1√
2
(|00〉 + |11〉), Bp0(Up1〈0, 1〉)

]

→1
∗
[

1√
2
(|00〉 + |11〉), Bp0(U01p1)

]

→1

[

1√
2
(|01〉 + |10〉), Bp0p1

]

→1

[

1√
2
(|01〉 + |10〉), let 〈p, p′〉 = CNOT 〈p1, p0〉 in 〈meas(Hp),meas p′〉

]

→1

[

1√
2
(|11〉 + |10〉), let 〈p, p′〉 = 〈p1, p0〉 in 〈meas(Hp),meas p′〉

]

→1

[

1√
2
(|11〉 + |10〉), 〈meas(Hp1),meas p0〉

]

→1 [|10〉, 〈meas p1,meas p0〉]
→1

∗ [|10〉, 〈0, 1〉]

6.6 Towards a Denotational Semantics

In this chapter, we described a lambda calculus for dealing with quantum information. Given a
typing judgement

x : A ⊲M : B,

we can now give an operational description of the behavior of the term M .
Another approach for understanding the language is to understand this expression as the syn-

tactic representation of a function from some space A to some space B. A denotational semantics
is the description of a theory of mathematically structured spaces, where types are interpreted as
spaces and typing judgements as structure-preserving maps between these spaces.

The difficulty in the case of the quantum lambda calculus is two-fold:

1. We need to account for probabilistic and quantum effects,

2. while keeping track of duplicable and non-duplicable data.

The remainder of this thesis is devoted to the study of these problems.

Chapter 7

The Linear Fragment

In this chapter, we restrict the quantum lambda calculus to the purely linear case, namely the
fragment of the language where each value, classical and quantum, must be used exactly once.
The linear quantum lambda calculus differs from its nonlinear cousin in that it is less sensitive to
the evaluation order of terms. We give a denotational semantics for this language in a category
of completely positive maps, and we show that it is fully abstract with respect to the operational
semantics.

The plan of the chapter is as follows. First we briefly describe the language and the type system.
Then we develop for it an operational semantics similar to the one developed in Section 6.2.4, and we
define a notion of axiomatic equivalence of terms. Finally we build a denotational semantics for the
language, and we show the soundness of the axiomatic equivalence with respect to the operational
semantics, as well as the full abstraction of the denotational semantics. An extended abstract of the
results presented in this chapter has been published in Selinger and Valiron (2006b).

7.1 A Linear Lambda Calculus for Quantum Computation

In Chapter 6, we defined a lambda calculus for quantum computation with classical control. This
language was defined in a Curry-style manner. Although this makes sense from the point of view of
the programmer, this typing paradigm is harder to tackle for the semantics. Indeed, we shall define
the interpretation of a valid typing judgement by induction on its typing derivation. A one-to-one
correspondence between typing judgements and typing derivation is therefore required.

We begin by re-adapting the definitions and results from Chapter 6 to the requirements of this
study.

Definition 7.1.1. The linear quantum lambda calculus has the following (explicitly typed) terms:

Types A,B ::= bit | qbit | A⊸B | ⊤ | A⊗B,

Term M,N,P ::= xA |MN | λxA.M | 〈M,N〉 | let 〈xA, yB〉 = M in N |
ifM then N else P | 0 | 1 | new | meas | U |
let ∗ = M in N | ∗ | ΩA

x
A1
n ,...,xAn

n
.

Ω is a non-terminating term and let ∗ = M in N is used to match 0-tuples. The remaining terms
are as in Definition 6.1.1. We identify terms up to α-equivalence. The set of free variables of a term
M is written FV (M). In the following, we often write c for an arbitrary constant of the language,
i.e., 0, 1, meas , new , U , or ∗.

70

7.1. A Linear Lambda Calculus for Quantum Computation 71

x : A ⊲ xA : A
(ax 1)

⊲ c : Ac
(ax 2)

⊲ ∗ : ⊤ (⊤.I)
Γ1 ⊲ P : bit Γ2 ⊲M : A Γ2 ⊲ N : A

Γ1,Γ2 ⊲ if P then M else N : A
(if)

Γ1 ⊲M : A⊸B Γ2 ⊲ N : A

Γ1,Γ2 ⊲MN : B
(app)

∆, x : A ⊲M : B

∆ ⊲ λxA.M : A⊸B
(λ)

Γ1 ⊲M1 : A1 Γ2 ⊲M2 : A2

Γ1,Γ2 ⊲ 〈M1,M2〉 : A1 ⊗A2
(⊗.I)

⊲ ∗ : ⊤ (⊤.I)
∆ ⊲ ΩA∆ : A

(Ω)

Γ1 ⊲M : A1 ⊗A2 Γ2, x1:A1, x2:A2 ⊲ N : A

Γ1,Γ2 ⊲ let 〈x1, x2〉 = M in N : A
(⊗.E)

Γ1 ⊲M : ⊤ Γ2 ⊲ N : A

Γ1,Γ2 ⊲ let ∗ = M in N : A
(⊤.E)

Table 7.1: Typing rules for the linear quantum lambda calculus

We use the same shortcuts as in Conventions 6.1.2 and 6.3.2. Also, as we did in the previous
chapter, to each term constant c, we associate a fixed type Ac, namely

meas : qbit⊸ bit , 0, 1 : bit , new : bit⊸ qbit , U : qbit⊗n⊸ qbit⊗n.

The only difference is the suppression of the type constructor “!”, and therefore of subtyping.
As before, a typing context ∆ is a set of typed variables, written as ∆ = {x1 : A1, . . . , xn : An}.

A typing judgement is an expression ∆ ⊲M : A, where ∆ is a list of distinct typed variables called
a typing context, M is a term, and A is a type. We say that a typing judgement is valid if it follows
from the typing rules given in Table 7.1. In this table, if ∆ = {x1 : A1, . . . , xn : An} we write ΩA∆ in
place of ΩA

x
A1
n ,...,xAn

n

.

Remark 7.1.2. Note that, unlike the language of the previous chapter, there is no type constructor
!A. Also note that we added the term construct let ∗ = M in N . Operationally, if we understand a
“command” as a function that outputs the unit term ∗, this term is used for being able to “use” a
command in a program. Semantically, it is simply the destructor associated to ⊤.

Definition 7.1.3. Given a term M , we define the set of its free variables using the same definition
as in Definition 6.1.3, modulo the indexing on the term. We extend the definition of FV to the
terms Ω and let ∗ = M in N as follows:

FV (ΩA
x

A1
1 ,...,xAn

n
) = {x1, . . . , xn}, FV (let ∗ = M in N) = FV (M) ∪ FV (N).

Lemma 7.1.4. Suppose that ∆ ⊲M : A is a valid typing judgement. Then the set of free variables
FV (M) is equal to |∆|.

Proof. Consider a typing derivation π of ∆ ⊲M : A. We prove the result by induction on π.

(ax 1). The derivation is of the form x : A ⊲ x : A, and FV (x) = {x}.

(ax 2). The derivation is of the form ⊲ c : A, and FV (c) = ∅.

(⊗.I). The derivation is of the form ⊲ ∗ : ⊤, and FV (∗) = ∅.

7.1. A Linear Lambda Calculus for Quantum Computation 72

(if). The derivation is of the form ∆,Γ ⊲ if P then N1 else N2 : A, where

∆ ⊲ P : bit , ∆ ⊲ N1 : A, ∆ ⊲ N2 : A.

By induction hypothesis, FV (P) = |∆|, FV (N1) = |Γ| and FV (N2) = |Γ|. Therefore,

FV (if P then N1 else N2) = FV (P) ∪ FV (N1) ∪ FV (N2) = |∆| ∪ |Γ| = |∆,Γ|.

(Ω). The derivation is of the form ∆ ⊲ ΩA∆ : A, and FV (ΩA∆) = |∆|.

(λ). The derivation is of the form ∆ ⊲ λx.N : A⊸ B, where ∆, x : A ⊲ N : B. By induction,
FV (N) = |∆, x : A|, which is |∆| ∪ {x}. Thus FV (λx.N) = |∆|.

(app). The derivation is of the form Γ1,Γ2 ⊲ N1N2 : A, where Γ1 ⊲ N1 : A and ∆2 ⊲ N2 : A. By
induction hypothesis, FV (N1) = |Γ1| and FV (N2) = |Γ2|. Therefore, FV (N1N2) = FV (N1) ∪
FV (N2) = |Γ1,Γ2|.

(⊗.I). The derivation is of the form Γ1,Γ2 ⊲ 〈N1, N2〉 : B ⊗ c, where Γ1 ⊲ N1 : C and ∆2 ⊲ N2 :
D. By induction hypothesis, FV (N1) = |Γ1| and FV (N2) = |Γ2|. Therefore, FV 〈N1, N2〉 =
FV (N1) ∪ FV (N2) = |Γ1,Γ2|.

(⊤.E). The derivation is of the form Γ1,Γ2 ⊲ let ∗ = N1 in N2 : A, where Γ1 ⊲ N1 : A and
∆2 ⊲ N2 : A. By induction hypothesis, FV (N1) = |Γ1| and FV (N2) = |Γ2|. Therefore,
FV (let ∗ = N1 in N2) = FV (N1) ∪ FV (N2) = |Γ1,Γ2|.

(⊗.E). The derivation is of the form Γ1,Γ2 ⊲ let 〈xB , yC〉 = N1 in N2 : A, where Γ1 ⊲ N1 : A and
∆2, x : B, y : C ⊲ N2 : A. By induction hypothesis, FV (N1) = |Γ1| and FV (N2) = |Γ2, x : B, y :
C|. Therefore, FV (let 〈xB, yC〉 = N1 in N2) = FV (N1) ∪ (FV (N2) \ {x, y}) = |Γ1,Γ2|.

Lemma 7.1.5. Consider a valid typing judgement ∆ ⊲ M : A. Then the type A is completely
determined by ∆ and M , and there exists only one derivation for the typing judgement.

Proof. The proof is done by induction on the size of the term M , using Lemma 7.1.4 and noticing
that for every term construct only one possible typing rule does apply.

Definition 7.1.6. Let Γ ⊲ N : A be a valid typing judgement, let M be a term such that FV (M)∩
|Γ| = ∅, and let x be a term variable. We define the substitution of x in M by N , written M [N/x],
as we did it in Definition 6.1.4 (modulo the type indexation). We extend this definition to the two
term constructs ΩC∆ and let ∗ = M in N as follows. If ∆ = (∆′, x : B) for some type B, we define
ΩC∆′,x:B[N/x] as the term ΩC∆′,Γ. If x 6∈ |∆|, the substitution ΩC∆[N/x] is simply equal to ΩC∆. Finally,
the rule for the last construct is (let ∗ = M1 in M2)[N/x] = (let ∗ = M1[N/x] in M2[N/x]). Note
that we only make use of the typing context of N in the rule concerning Ω.

Lemma 7.1.7. In the context of Definition 7.1.6, suppose that the variable x does not belong to
FV (M). Then M [N/x] = M .

Proof. The proof is done by induction on M .

M ≡ y. Then y 6= x, and for all N , y[N/x] = y.

M ≡ c and M ≡ ∗. In both cases, M [N/x] = N by definition.

M ≡ ΩC∆. By definition, FV (M) = |∆|. Since x does not belong to FV (M), it does neither belong
to |∆|. Therefore, from the definition of the substitution, ΩC∆[N/x] = ΩC∆.

7.1. A Linear Lambda Calculus for Quantum Computation 73

M ≡ λy.P . If y = x, then x 6∈ FV (λy.P) and by definition (λy.P)[N/x] = λy.P . If y 6= x, for x not
being a free variable of M one needs x not to be a free variable of P . In which case induction
hypothesis applies: P [N/x] = P . Therefore, M [N/x] = N .

M ≡ P1P2. Since FV (P1P2) = FV (P1) ∪ FV (P2), if x 6∈ FV (M), x is neither in FV (P1) nor in
FV (P2). Since (P1P2)[N/x] = (P1[N/x])(P2[N/x]), by induction hypothesis this means that
(P1P2)[N/x] = P1P2.

M ≡ if P1 then P2 else P3. Since FV (if P1 then P2 else P3) = FV (P1) ∪ FV (P2) ∪ FV (P3), if x 6∈
FV (M), x is neither in FV (P1) nor in FV (P2) nor in FV (P3). Since (if P1thenP2elseP3)[N/x] =
if P1[N/x] then P2[N/x] else P3[N/x]), by induction hypothesis this means that (if P1 then P2 else
P3)[N/x] = (if P1 then P2 else P3).

M ≡ (let ∗ = P1 in P2). Since FV (let ∗ = P1 in P2) = FV (P1)∪FV (P2), if x 6∈ FV (M), x is neither
in FV (P1) nor in FV (P2). Since

(let ∗ = P1 in P2)[N/x] = (let ∗ = P1[N/x] in P2[N/x]),

by induction hypothesis this means that (let ∗ = P1 in P2)[N/x] = (let ∗ = P1 in P2).

M ≡ 〈P1, P2〉. Since FV (〈P1, P2〉) = FV (P1) ∪ FV (P2), if x 6∈ FV (M), x is neither in FV (P1) nor
in FV (P2). Since (〈P1, P2〉)[N/x] = 〈P1[N/x], P2[N/x]〉), by induction hypothesis this means
that 〈P1, P2〉[N/x] = 〈P1, P2〉.

M ≡ (let 〈yC , zD〉 = P1 in P2). Since

FV (let 〈yC , zD〉 = P1 in P2) = FV (P1) ∪ (FV (P2) \ {y, z}),

if x 6∈ FV (M), x is neither in FV (P1) nor in FV (P2)\{y, z}. By induction hypothesis P1[N/x] =
P1. There are two cases:

If x = y or x = z. Then (let 〈yC , zD〉 = P1 in P2)[N/x] = (let 〈yC , zD〉 = P1[N/x] in P2), and
we have the result.

If x 6= y and x 6= z. Then since x is not in FV (P2) \ {y, z}, it is not in FV (P2). By induction
hypothesis P2[N/x] = P2. Since (let 〈yC , zD〉 = P1 in P2)[N/x] = (let 〈yC , zD〉 = P1[N/x] in
P2[N/x]), we have the result.

Lemma 7.1.8 (Substitution). Suppose that ∆, x : A ⊲ M : B and Γ ⊲ N : A are two valid typing
judgements such that |∆| ∩ |Γ| = ∅. Then ∆,Γ ⊲M [N/x] : B is a valid typing judgement.

Proof. We prove the result by induction on the size of M .

Case M ≡ y. The typing rule for obtaining ∆, x : A ⊲ M : B is (ax 1). That is A = B, x = y and
∆ is empty. Thus ∆,Γ ⊲M [N/x] : B becomes Γ ⊲ N : A, which is valid by hypothesis.

Case M ≡ c. The typing rule for obtaining ∆, x : A ⊲ M : B is (ax 2). Thus ∆, x : A ⊲ c : B is
valid if (∆, x : A) is empty, and it is not. This case is therefore not to be considered.

Case M ≡ ΩB∆′ . The typing rule for obtaining ∆, x : A ⊲M : B is (Ω). Thus ∆′ = (∆, x : A). Since
ΩB∆,x:A[N/x] = ΩB∆,Γ, the result is obtained by applying back the typing rule (Ω).

Case M ≡ λyC .P . The typing rule for obtaining ∆, x : A ⊲ M : B is (λ). Thus B = C⊸D and
∆, x : A, y : C ⊲ P : D. A corollary is that y 6= x, thus that M [N/x] = λyC .(P [N/x]).

By induction hypothesis, ∆,Γ, y : C ⊲ P [N/x] : D is valid. Applying rule (λ), we get ∆,Γ ⊲
λyC .(P [N/x]) : C⊸D, which is the desired result.

7.1. A Linear Lambda Calculus for Quantum Computation 74

Case M ≡ if P then N1 else N2. The only possible typing rule for obtaining ∆, x : A ⊲ M : B is
(if). Then (∆, x : A) splits into (∆1,∆2), where

∆1 ⊲ P : bit , ∆2 ⊲ N1 : B, ∆2 ⊲ N2 : B.

Note that the contexts ∆1 and ∆2 do not intersect. There are two possible cases:

x ∈ |∆1|. In this case ∆0 = (∆′
1, x : A). We are in the setting of the lemma: by induction

hypothesis, ∆′
1,Γ ⊲ P [V/x] : bit .

From Lemma 7.1.4, FV (N1) = |∆2| and FV (N2) = |∆2|. Therefore x is neither in FV (N1)
nor in FV (N2). From Lemma 7.1.7, M [N/x] = (if P [V/x] then N1 else N2).

Thus, applying (if), we get that ∆,Γ ⊲ if P [V/x] then N1 else N2 : B is valid.

x ∈ |∆2|. In this case ∆1 = (∆′
2, x : A). We are in the setting of the lemma: by induction

hypothesis, ∆′
2,Γ ⊲ N1[V/x] : B and ∆′

2,Γ ⊲ N2[V/x] : B

From Lemma 7.1.4, FV (P) = |∆1|. Therefore x is not in FV (P). From Lemma 7.1.7,
M [N/x] = (if P then N1[N/x] else N2[N/x]).

Thus, applying (if), we get that ∆,Γ ⊲ if P then N1[N/x] else N2[N/x] : B is valid.

Cases M ≡ N1N2, 〈N1, N2〉 and (let ∗ = N1 in N2). In each case the term M can be written in the
form f(N1, N2), and there is only one possible typing rule for obtaining ∆, x : A ⊲M : B, namely
respectively (app), (⊗.I) and (⊤.E). Then (∆, x : A) splits into (∆1,∆2), where ∆1 ⊲ N1 : C1

and ∆2 ⊲ N2 : C2, for some types C1 and C2 depending on the rule used:

If the rule used is. . . f(N1, N2) is. . . C1 is. . . C2 is. . . and B is. . .
(app) N1N2 C⊸D C D
(⊗.I) 〈N1, N2〉 C D C ⊗D
(⊤.E) let ∗ = N1 in N2 ⊤ C C

Note that for i = 1, 2, the contexts ∆i and Γ do not intersect. There are two possible cases:
x ∈ |∆1|, or x ∈ |∆2|. Since they are symmetric by exchanging the role of the indices 1 and 2,
we only prove one of them.

Suppose that x ∈ |∆1| In this case ∆1 = (∆′
1, x : A). We are in the setting of the lemma: by

induction hypothesis, ∆′
1,Γ ⊲ N1[V/x] : C1. From Lemma 7.1.4, FV (N2) = |∆2|. Therefore x

is not in FV (N2). From Lemma 7.1.7, M [N/x] = f(N1[N/x], N2).

Applying back the typing rule used, the judgement ∆,Γ ⊲ f(N1[N/x], N2) : B is valid.

Case M ≡ (let 〈yC , zD〉 = N1 in N2). This case is similar to the previous ones: There is only one
possible typing rule for obtaining ∆, x : A ⊲ M : B, namely (⊗.E). Then (∆, x : A) splits into
(∆1,∆2), where ∆1 ⊲ N1 : C ⊗D and ∆2, y : C, y : D ⊲ N2 : B.

Note that for i = 1, 2, the contexts ∆i and Γ do not intersect. There are two possible cases:
x ∈ |∆1|, or x ∈ |∆2|.

x ∈ |∆1|. In this case ∆1 = (∆′
1, x : A). We are in the setting of the lemma: by induction

hypothesis, ∆′
1,Γ ⊲ N1[V/x] : C ⊗ D. From Lemma 7.1.4, FV (N2) = |∆2, y : C, z : D|.

Therefore x is not in FV (N2). From Lemma 7.1.7, M [N/x] = (let 〈yC , zD〉 = N1[N/x]inN2).

Applying back the typing rule (⊗.E), the judgement ∆,Γ ⊲ let 〈yC , zD〉 = N1[N/x] inN2 : B
is valid.

7.2. Operational Semantics 75

x ∈ |∆2|. Since (∆2, y : C, y : D) is a typing context, x is different from y and z: We have
then ∆2 = (∆′

2, x : A). We are in the setting of the lemma, and by induction hypothesis,
∆′

2,Γ, y : C, z : D ⊲ N2[V/x] : B.

From Lemma 7.1.4, FV (N1) = |∆1|. Therefore x is not in FV (N1). From Lemma 7.1.7,
M [N/x] = (let 〈yC , zD〉 = N1 in N2[N/x]).

Applying back the typing rule (⊗.E), the judgement ∆,Γ ⊲ let 〈yC , zD〉 = N1 inN2[N/x] : B
is valid.

Remark 7.1.9. Note that, in the non-linear case, the Substitution Lemma only holds when N = V
is a value. However, in the linear calculus considered here, it holds for general N .

7.2 Operational Semantics

We develop in this section an operational semantics similar to the one given in Section 6.2, and
prove some of its properties.

7.2.1 Small Step Semantics

We adopt the definitions of quantum closures and programs from Section 6.2.1 to the linear case.

Definition 7.2.1. A quantum closure is a triple [Q,L,M] where Q is a normalized vector in
⊗ni=1C2, for some n > 0, L is a bijective function from a set |L| of term variables to {0, . . . , n− 1},
and M is a term. As before, Q is called a quantum array, and L is called a linking function. Note
that the only difference from Definition 6.2.1 lies in the fact that L is a bijective function. We use
the notations of Definition 6.2.1, and consider quantum closure up to α-equivalence. Finally, we use
the notion of well-typed quantum closure and program of Definition 6.3.9.

Definition 7.2.2. We define the call-by-value reduction strategy on program by structural induc-
tion. For this purpose we need the notion of a value. As in Definition 6.2.13, we define a value term
to be of the form

V,W ::= x | c | ∗ | λx.M | 〈V,W 〉.
A value program is a program of the form [Q,L, V], where V is a value term. We set the rules to be
the “classical” ones found in Table 7.2, plus the following “quantum” rules. In the first two rules,
decompose Q into

Q =
∑

j

αj |ψ0
j 〉 ⊗ |0〉 ⊗ |ψ̃0

j 〉 +
∑

j

βj |ψ1
j 〉 ⊗ |1〉 ⊗ |ψ̃1

j 〉,

where |ψ0
j 〉, |ψ1

j 〉 ∈ C
2i−1

and |ψ̃0
j 〉, |ψ̃1

j 〉 ∈ C
2n−i

are basis vectors. Then, if

α =
∑

j

|αj |2, β =
∑

j

|βj |2,

[Q, |x1 · · ·xn〉,meas xi] →m0
α [

∑

j |ψ0
j 〉 ⊗ |ψ̃0

j 〉, |x1 · · ·xi−1xi+1 · · ·xn〉, 0],

[Q, |x1 · · ·xn〉,meas xi] →m1

β [
∑

j |ψ1
j 〉 ⊗ |ψ̃1

j 〉, |x1 · · ·xi−1xi+1 · · ·xn〉, 1].

In the second set of rules, if w is a fresh term variable not yet in use:

[Q, |x1 · · ·xn〉,new 0] →n0
1 [Q⊗ |0〉, |x1 · · ·xnw〉, w],

7.2. Operational Semantics 76

[Q,L,Ω] →ω
1 [Q,L,Ω] [Q,L, (λxB.M)V] →β

1 [Q,L,M [V/x]]

[Q,L, let 〈xB, yC〉 = 〈V,W 〉 in N] →⊗
1 [Q,L,N [V/x,W/y]]

[Q,L, let ∗ = ∗ in N] →⊤
1 [Q,L,N]

[Q,L, if 0 then M else N] →if 0
1 [Q,L,N]

[Q,L, if 1 then M else N] →if 1
1 [Q,L,M]

[Q,L,N] →κ
p [Q′, L′, N ′]

[Q,L,MN] →κ
p [Q′, L′,MN ′]

[Q,L,M1] →κ
p [Q′, L′,M ′

1]

[Q,L, 〈M1,M2〉] →κ
p [Q′, L′, 〈M ′

1,M2〉]

[Q,L,M] →κ
p [Q′, L′,M ′]

[Q,L,MV] →κ
p [Q′, L′,M ′V]

[Q,L,M2] →κ
p [Q′, L′,M ′

2]

[Q,L, 〈V1,M2〉] →κ
p [Q′, L′, 〈V1,M

′
2〉]

[Q,L, P] →κ
p [Q′, L′, P ′]

[Q,L, if P then M else N] →κ
p [Q′, L′, if P ′ then M else N]

[Q,L,M] →κ
p [Q′, L′,M ′]

[Q,L, let 〈x1, x2〉 = M in N] →κ
p [Q′, L′, let 〈x1, x2〉 = M ′ in N]

[Q,L,M] →κ
p [Q′, L′,M ′]

[Q,L, let ∗ = M in N] →κ
p [Q′, L′, let ∗ = M ′ in N]

Table 7.2: Reduction rules for the linear quantum lambda calculus

[Q, |x1 · · ·xn〉,new 1] →n1
1 [Q⊗ |1〉, |x1 · · ·xnw〉, w].

Finally, if Q′ is the result of applying U to the quantum bits L(x1), . . . , L(xn) in Q:

[Q,L,U〈x1, . . . , xn〉] →U
1 [Q′, L, 〈x1, . . . , xn〉].

Note that each reduction rule is named, and has a probability associated to it.

Remark 7.2.3. Note that since we want a linear language, we modified the measurement rule from
the rule in Definition 6.2.13 by deleting the quantum bit measured from the quantum array. The
two other differences from Table 6.1 are the (classical) rules concerning Ω and let ∗ = M in N . The
former was defined to be a non-terminating term: it remains unchanged along the reduction. The
latter matches 0-tuples. The rule follows the fact that the only 0-tuple is ∗.

Definition 7.2.4. A program [Q,L,M] reducing with the ω-rule is called a fixed point.

Lemma 7.2.5. Suppose that P is a value program. Then it does not reduce. Now suppose that P
is a fixed point. Then the only possible programs P ′ such that P →κ

p P
′ are fixed points.

Proof. For the former, proof by case distinction. For the latter, proof by induction on the reduction
P →κ P ′.

Lemma 7.2.6. Suppose that V is a value such that x1 : qbit , . . . , xn : qbit ⊲ V : A⊸B. Then V is
either of the form λxA.N or it is one of the three term constants new, meas and U . If V is of type
A⊗B, then it is of the form 〈V1, V2〉. If it is of type bit , it is either 0 or 1. Finally, if it is of type
qbit , it is a term variable.

Proof. The proof for the type A⊸ B is done by case distinction: V cannot be a variable xi since
qbit is not of the form A⊸B, it cannot be ∗ and it cannot be of the form 〈V1, V2〉. Therefore it is

7.2. Operational Semantics 77

either a lambda-abstraction or a term constant. The only term constants with the right types are
the one offered in the lemma. The proof for the type A ⊗ B is done similarly. The proofs for the
last two cases are done by case distinction.

7.2.2 Safety Properties

Theorem 7.2.7 (Subject reduction). If P is a program of type A such that P →ρ P
′, then P ′ is

also a program of type A.

Proof. We prove the result by induction on the derivation of the relation P→ρP
′. If P ≡ [Q,L,M],

we suppose that FV (M) = {x1, . . . , xn} ⊆ |L|.

Case (→β
1). The only possible typing rule yielding x1 : qbit , . . . , xn : qbit ⊲ (λxB .M)V : A is (app).

It means that there exists ∆ and Γ such that (∆,Γ) = (x1 : qbit , . . . , xn : qbit) and such that
∆ ⊲ (λxB .M) : B⊸A and Γ ⊲ P : B are valid. The former can only be originated from typing
rule (λ). It means that ∆, x : B ⊲ M : A is valid. From Lemma 7.1.8, ∆,Γ ⊲ M [V/x] : B is
valid. Therefore, [Q, |x1 . . . xn〉,M [V/x]] is a program of type A.

Case (→⊗
1). The only possible typing rule for getting x1 : qbit , . . . , xn : qbit ⊲ let 〈xB, yC〉 =

〈V,W 〉 in M : A is (⊗.E). It means that there exists ∆ and Γ such that (∆,Γ) = (x1 :
qbit , . . . , xn : qbit) and such that Γ ⊲ 〈V,W 〉 : B ⊗C and ∆, x : B, y : C ⊲M : A are valid. The
former can only be originated from typing rule (⊗). Thus Γ = (Γ1,Γ2) with Γ1 ⊲ V : B and
Γ2 ⊲W : C.

From Lemma 7.1.8, ∆, x : B,Γ2 ⊲ M [W/y] : A is valid. From Lemma 7.1.8, ∆,Γ1,Γ2 ⊲

M [W/y][V/x] : A is valid. Therefore the typing judgement ∆,Γ ⊲M [V/x,W/y] : A is valid and
the quantum context [Q, |x1 . . . xn〉,M [V/x,W/y]] is a program of type A.

Case (→⊤
1). The only possible typing rule for getting x1 : qbit , . . . , xn : qbit ⊲ let ∗ = ∗ in N : A is

(⊤.E). It means that there exists ∆ and Γ such that (∆,Γ) = (x1 : qbit , . . . , xn : qbit) and such
that ∆ ⊲ ∗ : ⊤ and Γ ⊲M : A are valid.

The typing judgement ∆ ⊲ ∗ : ⊤ being originated from (⊤.E), one has |∆| = ∅. Therefore
Γ = (x1 : qbit , . . . , xn : qbit)

This makes [Q, |x1 . . . xn〉, N] a program of type A.

Cases (→if 0
1) and (→if 1

1). The only possible typing rule yielding x1 : qbit , . . . , xn : qbit ⊲ if 0 then
MelseN : A is (if). It means that there exists ∆ and Γ such that (∆,Γ) = (x1 : qbit , . . . , xn : qbit)
and such that ∆ ⊲ 1 : bit , Γ ⊲M : A and Γ ⊲ N : A are valid.

The typing judgement ∆ ⊲ 1 : bit being originated from (ax 2), one has |∆| = ∅. Therefore
Γ = (x1 : qbit , . . . , xn : qbit)

Therefore, [Q, |x1 . . . xn〉,M] and [Q, |x1 . . . xn〉, N] are programs of type A.

Case (→ω
1). In this case, the term P and the term P ′ are the same: therefore, if P is a program of

type A, so is P ′.

Cases (→m0
α) and (→m1

β). In these cases, FV (meas xi) = {xi}. The typing judgement xi : qbit ⊲
meas xi : A being valid, since meas : qbit⊸ bit , by typing rule (app) we have A = bit . Therefore
⊲ 0 : A and ⊲ 1 : A are valid: in both cases, since one removes xi from |L|, the program P ′ is of
type A.

Cases (→n0
1) and (→n1

1). In these case, FV (new 0) = FV (new 1) = ∅. The judgements ⊲ new 0 : A
and ⊲ new 1 : A are valid, thus since Anew = bit⊸ qbit , the type A is equal to qbit . Thus P ′ is
a program of type A.

7.2. Operational Semantics 78

Case (→U
1). Since AU = qbit⊗n⊸ qbit⊗n for some n, one has

x1 : qbit , . . . , xn : qbit ⊲ U〈x1, . . . , xn〉 : qbit⊗n.

Thus A = qbit⊗n. But we also have x1 : qbit , . . . , xn : qbit ⊲ 〈x1, . . . , xn〉 : qbit⊗n. Therefore, P ′

is a program of type A.

The cases corresponding to the induction steps are directly coming from Lemma 7.1.4.

Theorem 7.2.8 (Progress). If P is a program of type A, then either P is a value program, or P
reduces using the reduction system of Definition 7.2.2.

Proof. Consider a valid program [Q, |x1 . . . xn〉,M] of type A. Then x1 : qbit , . . . , xn : qbit ⊲M : A
is valid. Let π be a typing derivation of this typing judgement. We prove the result by induction on
π.

Cases (ax 1), (ax 2), (⊤.I), (λ). In all of these cases, the term M is a value. Thus P is a value
program.

Case (if). The term M is of the form ifM ′ then N1 else N2. There exist contexts ∆ and Γ such
that (∆,Γ) = (x1 : qbit , . . . , xn : qbit) and such that ∆ ⊲ M ′ : bit and Γ ⊲ N1, N2 : A. From
Lemma 7.1.4, |∆| = FV (M ′). Thus the quantum context [Q, |x1 . . . xn〉,M ′] is a program of
type bit . By induction hypothesis, either it is a value program or it reduces to some closure
[Q′, L′,M ′′].

The only value of type bit being 0 and 1, if it is a value, then M ′ is respectively the term constant
0 and 1, and P reduces using respectively rules (→if 0

) and (→if 1
). If it is not a value, then by

congruence P reduces to [Q′, L′, ifM ′′N1N2].

Thus, in any case the program P reduces.

Case (app). The term M is of the form N1N2. There exist contexts ∆ and Γ such that (∆,Γ) =
(x1 : qbit , . . . , xn : qbit) and such that ∆ ⊲ N1 : B⊸A and Γ ⊲ N2 : B for some type B.

If N2 is not a value: then the program [Q, |x1 . . . xn〉, N2] reduces by induction hypothesis, and
by congruence we are done.

If N2 is a value, and if N1 is not a value, then this time [Q, |x1 . . . xn〉, N1] reduces by induction
hypothesis, and by congruence we are done.

If N2 and N1 are values, then from Lemma 7.2.6, N1 can only be one of the following:

N1 ≡ λxB .N . Then P reduces using rule (→β)

N1 ≡ new . Then B = bit . The only values of type bit being 0 and 1, the program P reduces
using either rule (→n0) or (→n1).

N1 ≡ meas . Then B = qbit . The only values of type qbit being variables, N2 must be a term
variable. Since |Γ| ⊆ {x1 . . . xn}, N2 = xj for some j. Then P reduces using either rule
(→m0) or (→m1).

N1 ≡ Uk. Then B = qbit⊗k. The only values of type qbit⊗k being of the form 〈y1, . . . yk〉, and
since |Γ| ⊆ {x1 . . . xn}, N2 = 〈xσ(1), . . . , xσ(k)〉 for some injective map σ : {1, . . . , k} →
{1, . . . , n}. Then P reduces using rule (→U).

Case (⊗.I). The term M is of the form 〈N1, N2〉 and A = B1 ⊗ B2. There exist contexts ∆ and Γ
such that (∆,Γ) = (x1 : qbit , . . . , xn : qbit) and such that ∆ ⊲ N1 : B1 and Γ ⊲ N2 : B2.

If N1 is not a value: then the program [Q, |x1 . . . xn〉, N1] reduces by induction hypothesis, and
by congruence we are done.

7.2. Operational Semantics 79

If N1 is a value but not N2, then this time [Q, |x1 . . . xn〉, N2] reduces by induction hypothesis,
and by congruence we are done.

If they are both value, so is M and by definition P is a value program.

Case (⊗.E). The term M is of the form let 〈xB, yC〉 = N1 inN2. There exist contexts ∆ and Γ such
that (∆,Γ) = (x1 : qbit , . . . , xn : qbit) and such that ∆ ⊲ N1 : B⊗C and Γ, x : B, y : C ⊲ N2 : A
are valid.

If N1 is not a value: then since |∆| ⊆ {x1 . . . xn}, the program [Q, |x1 . . . xn〉, N1] reduces by
induction hypothesis and P reduces using congruence.

If N1 is a value, then it is of the form 〈V,W 〉, and then P reduces using rule (→⊗).

Case (⊤.E). The term M is of the form let ∗ = N1 in N2. There exist contexts ∆ and Γ such that
(∆,Γ) = (x1 : qbit , . . . , xn : qbit) and such that ∆ ⊲ N1 : ⊤ and Γ ⊲ N2 : A are valid.

If N1 is not a value: then since |∆| ⊆ {x1 . . . xn}, the program [Q, |x1 . . . xn〉, N1] reduces by
induction hypothesis and P reduces using congruence.

If N1 is a value, then it is equal to ∗, and then P reduces using rule (→⊤).

Case (Ω). The term M is of the form ΩAx1,...xn
. Therefore P reduces using the reduction rule

(→ω).

7.2.3 Normalization

The language being linear, the reduction has a strong relation on the length of the terms.

Definition 7.2.9. Let l(M) be the length of a term M , defined recursively as an integer greater or
equal to 1 as follows:

l(xA) = l(c) = l(∗) = l(Ω) = 1,

l(λxA.M) = 1 + l(M),

l(let 〈xB, yC〉 = M in N) = 1 + l(M) + l(N),

l(let ∗ = M in N) = 1 + l(M) + l(N),

l(if P then M else N) = 1 + l(P) + max(l(M), l(N)),

l(MN) = 1 + l(M) + l(N),

l(〈M,N〉) = 1 + l(M) + l(N).

Lemma 7.2.10. Suppose that ∆, x : A ⊲ M : B and Γ ⊲ N : A are valid. Then l(M [N/x]) <
l(M) + l(N).

Proof. The proof is done by structural induction on M .

M ≡ xC . The computation goes like this: l(x[N/x]) = l(N) < l(x) + l(N).

M ≡ c, ∗, Ω, and yC (with y 6= x). In all of these cases, M [N/x] = M . Therefore l(M [N/x]) =
l(M), which by definition is strictly smaller than l(M) + l(N).

M ≡ λyC .M ′. If y = x then M [N/x] = M . As in the previous case, we obtain the result using the
definition.

If y 6= x, then M [N/x] = λyA.(M ′[N/x]). By induction hypothesis, l(M ′[N/x]) < l(M ′) + l(N).
Therefore, since l(M) = 1+l(M ′), l(M [N/x]) = 1+l(M ′[N/x]) < 1+l(M ′)+l(N) = l(M)+l(N).

7.2. Operational Semantics 80

M ≡ if P then N1 else N2. We have l(M) = 1 + l(P) + max(l(N1), l(N2)) and

M [N/x] = if P [N/x] then N1[N/x] else N2[N/x].

The valid judgement ∆, x : A ⊲ M : B can only come from the typing rule (if). That is,
(∆, x : A) splits into (Γ1,Γ2), where Γ1 ⊲ P : bit and Γ2 ⊲ N1, N2 : A.

If x ∈ |Γ1|, then x 6∈ |Γ2|, and from Lemma 7.1.4 x is neither in FV (N1) nor in FV (N2),
therefore from Lemma 7.1.7 N2[N/x] = N2 and N1[N/x] = N1. The length of M [N/x] is then
1 + l(P [N/x]) + max(l(N1), l(N2)). By induction hypothesis, l(P [N/x]) < l(P) + l(N), thus
l(M [N/x]) < l(M) + l(N).

If x ∈ |Γ2|, then x 6∈ |Γ1|, and from Lemma 7.1.4 x 6∈ FV (P), therefore from Lemma 7.1.7
P [N/x] = N1. The length of M [N/x] is then

1 + l(P) + max(l(N2[N/x]), l(N1[N/x])).

By induction hypothesis, l(N1[N/x]) < l(N1) + l(N) and l(N2[N/x]) < l(N2) + l(N), thus as
expected l(M [N/x]) < l(M) + l(N).

In the four remaining cases. The term M is respectively of the form

let 〈yC , zD〉 = N1 in N2), N1N2,

let ∗ = N1 in N2, 〈N1, N2〉.

In all of these cases, we have l(M) = l(N1) + l(N2) + 1. In the first cases, by α-equivalence one
can assume that x 6= x, y. Therefore, M [N/x] becomes respectively:

let 〈yC , zD〉 = N1[N/x] in N2[N/x]), (N1[N/x])(N2[N/x]),

let ∗ = N1[N/x] in N2[N/x], 〈N1[N/x], N2[N/x]〉.

The valid judgement ∆, x : A ⊲ M : B can only come from respectively the typing rule (⊗.E),
(app), (⊤.E), (⊗.I). That is, (∆, x : A) splits into (Γ1,Γ2), where

Γ1 ⊲ N1 : C1, Γ2,Λ ⊲ N2 : C2,

for some types C1, C2 and some context Λ, with x 6∈ |Λ|.
If x ∈ |Γ1|, then x 6∈ |Γ2|, and from Lemma 7.1.4 x 6∈ FV (N2), therefore from Lemma 7.1.7
N2[N/x] = N2. The length of M [N/x] is then 1 + l(N1[N/x]) + l(N2). By induction hypothesis,
l(N1[N/x]) < l(N1) + l(N), thus l(M [N/x]) < l(M) + l(N).

If x ∈ |Γ2|, then x 6∈ |Γ1|, and from Lemma 7.1.4 x 6∈ FV (N1), therefore from Lemma 7.1.7
N1[N/x] = N1. The length of M [N/x] is then 1 + l(N2[N/x]) + l(N1). By induction hypothesis,
l(N2[N/x]) < l(N2) + l(N), thus as expected l(M [N/x]) < l(M) + l(N).

Lemma 7.2.11. If [Q,L,M] is a program such that [Q,L,M]→κ [Q′, L′,M ′], then either x 6= ω
and l(M ′) < l(M) or κ = ω and l(M ′) = l(M). In the latter case, [Q,L,M] = [Q′, L′,M ′].

Proof. The proof is done by induction on the derivation of the reduction [Q,L,M]→κ [Q′, L′,M ′].

Case (→β). The term M and the term M ′ are respectively of the form (λxA.N)N ′ and N ′[N/x].
Since P is a program, M is well-typed: By Lemma 7.2.10, since l(M) = l(N) + l(N ′) + 2, the
length l(M ′) verifies l(M ′) < l(N ′) + l(N) < l(M).

7.2. Operational Semantics 81

Case (→⊗). The term M and the term M ′ are respectively of the form (let 〈xA, yB〉 = 〈V,W 〉 inN)
and N [W/y, V/x]. Since P is a program, M is well-typed: By Lemma 7.2.10, since l(M) =
l(N) + l(V) + l(W) + 2, the length of M ′ verifies

l(M ′) = l(N [W/y][V/x]) < l(N [W/y]) + l(V) < l(N) + l(V) + l(W) < l(M).

Case (→⊤). The term M and the term M ′ are respectively of the form (let ∗ = ∗ in N) and N .
Since l(M) = 2 + l(N), as requested l(M ′) < l(M).

Cases (→if 0
) and (→if 1

). The term M and the term M ′ are respectively of the form if 0 thenN else
N ′ and N ′, or if 1 thenN elseN ′ and N . In both cases l(M) = 2+max(l(N), l(N ′)), this strictly
larger than both l(N) and l(N ′): the inequality l(M ′) < l(M) is verified.

Case (→ω). In this case, κ = ω and [Q,L,M] = [Q′, L′,M ′].

Cases (→m0) and (→m1). The term M has the form meas x: l(M) = 3. The term M ′ is the term
constant 0 or the term constant 1: l(M ′) = 1 < l(M).

Cases (→n0) and (→n1). The term M has the form new 0 or new 1: l(M) = 3. The term M ′ is a
term variable: l(M ′) = 1 < l(M).

Case (→U). The term M is of the form U〈x1, . . . , xn〉 and the term M ′ the form 〈x1, . . . , xn〉.
Therefore

l(M ′) = l〈x1, . . . , xn〉 < 2 + l〈x1, . . . , xn〉 = 1 + l(U) + l〈x1, . . . , xn〉 = l(M).

The cases corresponding to the congruence are straightforward using the induction hypothesis.

Theorem 7.2.12 (Normalization). Let P = [Q,L,M] be a program, and let (Pn)n be a sequence
of programs Pn = [Qn, Ln,Mn] such that P0 = P and such that for all n, either Pn →κn

ρn
Pn+1 or

Pn = Pn+1 if Pn does not reduce. Then Pl(M) is either a value or a fixed point, and for all n > l(M),
Pn = Pl(M).

Proof. If (Pn)n is the sequence described in the hypothesis, we show by induction on n that either
Pn is a value, or it is a fixed point, or l(Mn) 6 l(M) − n: If n = 0: since P0 = P , we are done.
Suppose the result is true for n. Then either Pn is a value, or from Theorem 7.2.8 there exists P ′

such that Pn → P ′, and thus Pn+1 is such that Pn →κn Pn+1. From Lemma 7.2.11, either κn = ω
or l(Mn+1) < l(Mn). Since by induction hypothesis l(Mn) 6 l(M) − n, by definition we have
l(Mn+1) 6 l(M) − (n+ 1).

We have l(Mn) > 1 for all n. Therefore the n for which Pn reduce are smaller than l(M).
And for n = l(M), Pn is either a fixed point (in which case it will remain so for all larger n by
Lemma 7.2.5) or a value (in which case it will remain so for all larger n since values do not reduce,
also by Lemma 7.2.5).

7.2.4 Quantum Context and Reduction

When describing the reduction rules, we carefully separated the quantum context from the lambda-
term. In this subsection we show that the precise order of quantum bits in the quantum array does
not matter.

Definition 7.2.13. If σ is a permutation of {1, . . . , n}, we extend σ to N with σ(j) = j for j > n,
and we define σ̄ to be the corresponding permutation of quantum bits

σ̄|x1 · · ·xn · · ·xn+k〉 = |xσ(1) · · ·xσ(n)xn+1 · · ·xn+k〉.

7.2. Operational Semantics 82

We say that (Q1, L1) is σ-equivalent to (Q2, L2) if Q1 and Q2 have the same size, Q2 = σ̄(Q1) and
L2 = σ−1 ◦ L1. We write (Q1, L1) =α

σ (Q2, L2). We define an equivalence relation called alpha-
equivalence on quantum contexts by (Q1, L1) =α (Q2, L2) if there exists a σ such that (Q1, L1) =α

σ

(Q2, L2).

The alpha-equivalence is sound with respect to the semantics:

Lemma 7.2.14. Suppose that [Q, |x1 . . . xn〉,M] →p [Q′, |y1 . . . ym〉,M ′]. Then for all permuta-
tions σ on {1, . . . , n}, there exists a permutation τ on {1, . . . ,m} such that [σ̄Q, σ|x1 . . . xn〉,M]→p

[τ̄Q′, τ |y1 . . . ym〉,M ′].

Proof. The proof is done by induction on the derivation of the reduction [Q, |x1 . . . xn〉,M] →p

[Q′, |y1 . . . ym〉,M ′]. In the classical cases of Table 7.2, since the quantum context is not touched,
choose τ = σ and apply the same rule that was used at first. For the rules (→n0

1) and (→n1
1), again,

since σ only act on the n first quantum bits of the context, applying the permutation before or
after the addition of a new quantum bit to the quantum array does not change the output. Thus,
choosing τ = σ ∪ {n+ 1 7→ n+ 1} solves the problem.

Now, suppose that we are in the case of the rule (→U1). In this situation we apply a unitary
map on some quantum bits in the array, referred to by L. Since we perform σ both on L and on Q,
it does not modify the actual unitary map performed. Therefore, again choosing τ = σ gives us the
answer.

In the cases (→m0
α) and (→m1

β), the sizes of the quantum array and of the linking function
change along the reduction by the removal of the entity number i. However, in the program
[σ̄Q, σ|x1 . . . xn〉,meas xσ(i)] the reduction operation will remove entity number σ(i). Therefore, if
f and g are the maps

f(j) =

{

j if j < i,

j + 1 if j > i,
g(j) =

{

j if j < σ(i),

j − 1 if j > i,

define τ as g ◦ σ ◦ f .
Finally, the induction cases are easy application of the induction hypothesis.

7.2.5 Reduction to Values

In the reduction process, what we are really seeking is the final result of the computation. In this
section we explicate the relation of programs to values.

Definition 7.2.15. We use the notion defined in Section 6.2.3: If X is the set of closed valid
programs and U the set of values, let probU : X × U → [0, 1] be the map probU (P, V) that returns
the total probability for a program P to end up on the value V in zero or more steps. This function
is called the big-step reduction.

We also define the small-step reduction operation prob : X ×X → [0, 1]: for closed programs
P, P ′, we define prob(P, P ′) = p if there is a single-step probabilistic reduction P→pP

′, prob(V, V) =
1 if V is a value program, and prob(P, P ′) = 0 in all other cases. Note that for all well-typed P ,
∑

P ′∈X prob(P, P ′) = 1.

Lemma 7.2.16. The reduction system defined in Definition 7.2.2 is a probabilistic reduction system.

Proof. By case distinction.

Definition 7.2.17. Given a set Z, let CZ be the set of probability distributions over it. We curry
the small-step reduction prob : X × X → [0, 1] to the map prob ′ : CX → CX : prob ′(

∑

i αiPi) =
∑

i αi
∑

P ′∈X prob(Pi, P
′)P ′. Similarly, we curry the function probU : X × U → [0, 1] to the map

prob ′
U : CX → CU : prob ′

U (
∑

i αiPi) =
∑

i αiprobU (Pi, V)V .

7.3. Denotational Semantics 83

Definition 7.2.18. If P is a closed well-typed program of type bit , and b ∈ {0, 1}, we define (P ⇓b) =
∑

V ∈Ub
prob ′(P, V), where Ub is the set of valid programs with term the value b. We say that P

evaluates to b with probability P ⇓ b. The definition of P ⇓ b can be extended in the same way to
probability distributions of programs.

Lemma 7.2.19. Let P : A be a program such that P →κ
ρ P

′. Then either prob′(P) = P ′, ρ = 1 and

κ 6= m0,m1, or prob ′(P) = αP0 + βP1, with P →m0
α P0 and P →m1

β P1

Proof. By induction on the reduction P →κ
ρ P

′.

Definition 7.2.20. We define a formal probability distribution of quantum closures to be Γ �
∑

i ρi[Qi, Li,Mi] : A, where each Γ � [Qi, Li,Mi] : A is valid and
∑

ρi 6 1. The distribution is said
to be closed if |Γ| = ∅.

Lemma 7.2.21. If � P : A is valid, so is � prob ′P : A and � prob ′
UP : A.

Proof. The lemma is a corollary of Theorem 7.2.7.

Due to the strong normalization theorem, applying the map prob ′
U is applying the map prob ′

finitely many times.

Theorem 7.2.22. If [Q,L,M] is a program, then the reduction satisfies

prob ′l(M)[Q,L,M] =

n
∑

i=1

ρi[Qi, Li, Vi] +

m
∑

j=1

ρ′jPj ,

with prob ′
U [Q,L,M] =

∑n
i=1 ρi[Qi, Li, Vi], the Pj being fixed points,

∑

i ρi +
∑

j ρ
′
j = 1, and

n+m < 2l(M).

Proof. Corollary of Theorem 7.2.12.

7.3 Denotational Semantics

In Section 4.3 the notion of completely positive map is used to model the notion of quantum com-
putation. We aim to show that the linear subset of the quantum lambda calculus has the category
CPM as a fully abstract model. Note that the interpretation will not be “onto” all completely
positive maps, but will only be “onto up to scalar multiplies”.

7.3.1 Modeling the Linear Quantum Lambda Calculus

We interpret the language in the category defined in Section 4.3.2.

Lemma 7.3.1. The following statements are valid.

1. Let σ, τ be any signatures. Then 0 : σ → τ is completely positive.

2. The maps

ι :
1, 1 → 2

(a, b) 7→
(

a 0
0 b

)

,
p :

2 → 1, 1
(

a b
c d

)

7→ (a, d)

are completely positive.

7.3. Denotational Semantics 84

[[x : A ⊲ x : A]](v) = v [[⊲ 0 : bit]](x) = (x, 0)

[[⊲ ∗ : ⊤]](x) = x [[⊲ 1 : bit]](x) = (0, x)

[[∆ ⊲ Ω : A]] = 0 : [[∆]] → [[A]]

[[⊲ new : bit⊸ qbit]] = Φ(ι) : 1 → [[bit]] ⊗ [[qbit]]

[[⊲ meas : qbit⊸ bit]] = Φ(p) : 1 → [[qbit]] ⊗ [[bit]]

[[⊲ U : qbit⊗n⊸ qbit⊗n]] = Φ(U) : 1 → 22n

[[∆, x : A ⊲M : B]] = f : [[∆]] ⊗ [[A]] → [[B]]

[[∆ ⊲ λx.M : A⊸B]] = Φ(f) : [[∆]] → [[A]] ⊗ [[B]]

[[∆ ⊲M : A⊸B]] = Φ(g) : [[∆]] → [[A]] ⊗ [[B]]

[[Γ ⊲ N : A]] = f : [[Γ]] → [[A]]

[[∆,Γ ⊲MN : B]] : x⊗ y 7→ g(x⊗ (fy)) : [[∆]] ⊗ [[Γ]] → [[B]]

[[∆ ⊲ P : bit]] : x 7→ (px, qx) : [[∆]] → [[bit]]

[[Γ ⊲M : A]] = f : [[Γ]] → [[A]]

[[Γ ⊲ N : A]] = g : [[Γ]] → [[A]]

[[∆,Γ ⊲ if P then M else N : A]] : x⊗ y 7→ (px)(fy) + (qx)(gy)

[[∆ ⊲M : A]] = f : [[∆]] → [[A]]

[[Γ ⊲ N : B]] = g : [[Γ]] → [[B]]

[[∆,Γ ⊲ 〈M,N〉 : A⊗B]] : x⊗ y 7→ fx⊗ gy : [[∆]] ⊗ [[Γ]] → [[A]] ⊗ [[B]]

[[∆ ⊲M : A⊗B]] = f : [[∆]] → [[A]] ⊗ [[B]]

[[Γ, x : A, y : B ⊲ N : C]] = g : [[Γ]] ⊗ [[A]] ⊗ [[B]] → [[C]]

[[∆,Γ ⊲ let 〈x, y〉 = M in N : C]] : u⊗ v 7→ g(v ⊗ (fu)) : [[∆]] ⊗ [[Γ]] → [[C]]

[[∆ ⊲M : ⊤]] = f : [[∆]] → 1

[[Γ ⊲ N : C]] = g : [[Γ]] → [[C]]

[[∆,Γ ⊲ let ∗ = M in N : C]] : u⊗ v 7→ (fu)(gv) : [[∆]] ⊗ [[Γ]] → [[C]]

Table 7.3: Denotational semantics for typing judgements.

3. The maps
1 → 1, 1
a 7→ (a, 0),

1 → 1, 1
a 7→ (0, a).

are completely positive.

Proof. The maps defined in the lemma are completely positive since they have positive characteristic
matrices.

Definition 7.3.2. We set the denotation of types to be

[[bit]] = (1, 1), [[A⊗B]] = [[A]] ⊗ [[B]],

[[qbit]] = (2), [[A⊸B]] = [[A]] ⊗ [[B]],

and the denotation of contexts to be

[[x1 : A1, . . . , xn : An]] = [[A1]] ⊗ · · · ⊗ [[An]], [[∅]] = 1.

The denotation of a typing judgement of the form ∆ ⊲M : A is a linear map

[[∆ ⊲M : A]] : [[∆]] → [[A]],

7.3. Denotational Semantics 85

defined inductively on the typing derivation of ∆ ⊲ M : A as in Table 7.3. Note that from
Lemma 7.1.7 this typing derivation is unique, so the definition makes sense. Here, Φ : hom(σ ⊗
σ′, τ)

∼−→ hom(σ, σ′ ⊗ τ) is the bijection of Definition 4.3.4 and ι and p are respectively the quantum
bits creation and the measurement operation of Lemma 7.3.1.

Definition 7.3.3. We also define the denotation of a valid quantum closure. Consider a valid
quantum closure ∆ � [Q,L,M] : A where L = |x1 · · ·xny1 · · · ym〉 and |Q| = n+m. The quantum
context (Q,L) can be seen as a map g : 1 → 2⊗n ⊗ 2⊗m such that g(1) = Q. Then if f is the
morphism

[[∆, x1 : qbit , . . . , xn : qbit ⊲M : A]] : [[∆]] ⊗ 2⊗n → [[A]],

one defines [[∆ � [Q,L,M] : A]] as the composition

[[∆]]
id [[∆]]⊗g // [[∆]] ⊗ 2⊗n ⊗ 2⊗m

f⊗id2⊗m // [[A]] ⊗ 2⊗m
id [[A]]⊗tr

// [[A]].

One extends this definition to probabilistic distributions of valid quantum closures using linearity:

[[∆ �
∑

i

ρiPi : A]] =
∑

i

ρi[[∆ � Pi : A]].

Lemma 7.3.4. Let ∆ ⊲ M : A be a valid typing judgement. Then [[∆ ⊲M : A]] is a completely
positive map. Let Γ � [Q,L,M] : A be a valid quantum closure. Then [[Γ � [Q,L,M] : A]] is a
completely positive map.

Proof. We prove that [[∆ ⊲M : A]] is a completely positive map by induction on the typing derivation
of ∆ ⊲M : A.

(ax 1) and (⊤.I). The identity map is completely positive since CPM is a category.

(ax 2). The denotations of the term constants meas , new , U , 0 and 1 are completely positive map
from Lemma 7.3.1.

(Ω). The map 0 is completely positive from Lemma 7.3.1.

(λ). From the monoidal closedness of CPM, the image of f by Φ is completely positive.

(app). Since Φ−1 sends completely positive matrices to completely positive matrices. Thus g is
completely positive. The final denotation is completely positive since composition and tensors
of completely positive maps are completely positive.

(if). The denotation can be reformulated as

[[∆]] ⊗ [[Γ]]
[[P]]⊗id−−−−−→ (1 ⊕ 1) ⊗ [[Γ]] = [[Γ]] ⊕ [[Γ]]

f⊕g−−−→ [[A]] ⊕ [[A]]
tr⊗id [[A]]−−−−−−→ [[A]].

(⊗.I), (⊗.E) and (⊤.E). In these three cases, the denotation is the tensor of two completely positive
maps: it is therefore a completely positive map.

This proves that the denotation of a valid term is a completely positive map. The fact that the
denotation of Γ � [Q,L,M] : A is also completely positive comes from the fact that completely
positive maps are closed under composition and tensor, and that the trace operator and the identity
are themselves completely positive maps.

7.3. Denotational Semantics 86

Lemma 7.3.5 (Substitution). Suppose that |Γ| ∩ |∆| = ∅ and

[[∆, x : A ⊲M : B]] = G : [[∆]] ⊗ [[A]] → [[B]],

[[Γ ⊲ N : A]] = F : [[Γ]] → [[A]],

[[∆,Γ ⊲M [N/x] : B]] = H : [[∆]] ⊗ [[Γ]] → [[B]].

Then for all d ∈ V[[∆]] and all g ∈ V[[Γ]], we have H(d⊗ g) = G(d⊗ (Fg)).

Proof. We show that H = (id [[∆]]⊗F);G by induction on the typing derivation of ∆, x : A ⊲M : B.

(ax 1). We are considering the judgement x : A ⊲ x : A. We have |∆| = ∅, A = B and F = id [[A]].
Since x[N/x] = N , we have as required H = G = F ;G.

(ax 2) and (⊤.I). These cases are not to be considered: the typing contexts must contain (x : A).

(Ω). Since Ω[N/x] = Ω, and since (id [[∆]] ⊗ 0);G = 0, the result is true.

(λ). In this case, M is of the form λyC .M ′ and A is of the form C⊸D. Also, the typing judgement
∆, y : C, x : A ⊲ M ′ : D is valid. Note that y 6= x. By induction hypothesis, if G′ is the map
[[∆, y : C, x : A ⊲M ′ : D]], the map [[∆, y : C,Γ ⊲M ′[N/x] : D]] is H ′ verifying for all d ∈ V[[∆]],
for all g ∈ V[[Γ]], for all c ∈ V[[C]], H

′(d⊗ c⊗ g) = G′(d⊗ c⊗ F (g)). Applying Φ, we get

Φ(H ′)(d⊗ g) =
∑

c∈B[[C]]

c⊗H ′(d⊗ c⊗ g) =
∑

c∈B[[C]]

c⊗G′(d⊗ c⊗ F (g)) = Φ(G′)(d⊗ F (g)),

that is, [[∆,Γ ⊲ (λyC .M ′)[N/x] : C⊸D]].

(app). The term M is of the form M1M2 and the context (∆, x : A) splits into (∆1,∆2), such that
∆1 ⊲M1 : C⊸B and ∆2 ⊲M2 : C for some type C. Let

G1 = [[∆1 ⊲M1 : C⊸B]], G2 = [[∆2 ⊲M2 : C]].

There are two cases

x ∈ |∆1|. The context ∆1 splits into (∆′
1, x : A). From Lemma 7.1.4, the variable x belongs to

FV (M1) but not to FV (M2). From Lemma 7.1.7, M [N/x] = (M1[N/x])M2. Let G′
1 be the

denotation [[∆′
1,Γ ⊲M1[N/x] : C⊸D]]. By induction hypothesis, for all d ∈ V∆′

1
, for all g ∈

VΓ, G′
1(d⊗ g) = G1(d ⊗ F (g)). If d′ ∈ V[[∆2]], this means that H = [[∆,Γ ⊲M1[N/x]M2 : B]]

is
H(d⊗ d′ ⊗ g) = Φ−1(G1)(d⊗G2(d

′) ⊗ F (g)).

Since G(d⊗ a⊗ d′) = Φ−1(G1)(d⊗G2(d
′) ⊗ a), we have as required

H(d⊗ d′ ⊗ g) = G(d⊗ d′ ⊗ F (g)).

x ∈ |∆2|. The context ∆1frm−e splits into (∆′
2, x : A). From Lemma 7.1.4, x belongs to

FV (M2) but not to FV (M1). From Lemma 7.1.7, M [N/x] = M1(M2[N/x]). Let G′
2 be the

denotation [[∆′
2,Γ ⊲M2[N/x] : C]]. By induction hypothesis, for all d ∈ V∆′

2
, for all g ∈ VΓ,

G′
2(d⊗ g) = G2(d⊗ F (g)). If d′ ∈ V[[∆1]], this means that H = [[∆,Γ ⊲M1M2[N/x] : B]] is

H(d′ ⊗ d⊗ g) = Φ−1(G1)(d
′ ⊗G2(d⊗ F (g))).

Since G(d⊗ a⊗ d′) = Φ−1(G1)(d
′ ⊗G2(d⊗ a)), we have as required

H(d⊗ d′ ⊗ g) = G(d′ ⊗ d⊗ F (g)).

7.3. Denotational Semantics 87

(if). The term M is of the form if P thenM1 elseM2 and the context (∆, x : A) splits into (∆1,∆2),
such that ∆1 ⊲ P : bit and ∆2 ⊲M1,M2 : A. Let

(p, q) = [[∆1 ⊲ P : bit]], G1 = [[∆2 ⊲M1 : A]], G2 = [[∆2 ⊲M2 : A]].

There are two cases.

x ∈ |∆1|. The context ∆1 splits into (∆′
1, x : A). From Lemma 7.1.4, x ∈ FV (P) and x is

either in FV (M1) nor in FV (M2). From Lemma 7.1.7, M [N/x] = if P [N/x] thenM1 elseM2.
Suppose that g ∈ V[[Γ]], d

′ ∈ V[[∆′
1]]

, d ∈ V[[∆2]]. Let (p′, q′) = [[∆′
1,Γ ⊲ P [N/x] : bit]]. By

induction hypothesis, this is

(p′(d′ ⊗ g), q′(d′ ⊗ g)) = (p′, q′)(d′ ⊗ g) = (p, q)(d′ ⊗ F (g)) = (p(d′ ⊗ F (g)), q(d′ ⊗ F (g))),

thus [[∆′
1,Γ,∆2 ⊲ if P [N/x] then M1 else M2 : A]] is

H(d′ ⊗ g ⊗ d) = p(d′ ⊗ F (g))G1(d) + q(d′ ⊗ F (g))G2(d) = G(d′ ⊗ d⊗ F (g)),

that is the requested form.

x ∈ |∆2|. The context ∆2 splits into (∆′
2, x : A). From Lemma 7.1.4, x ∈ FV (P) and x is

either in FV (M1) nor in FV (M2). From Lemma 7.1.7, M [N/x] = if P [N/x] thenM1 elseM2.
Suppose that g ∈ V[[Γ]], d

′ ∈ V[[∆′
2]]

, d ∈ V[[∆1]]. Let

G′
1 = [[∆′

2,Γ ⊲M1[N/x] : A]], G′
2 = [[∆′

2,Γ ⊲M2[N/x] : A]].

By induction hypothesis, this is

G′
1 = G1(d

′ ⊗ F (g)), G′
2 = G2(d

′ ⊗ F (g)).

thus [[∆1,∆
′
2,Γ ⊲ if P then M1[N/x] else M2[N/x] : A]] is

H(d⊗ d′ ⊗ g) = p(d)G1(d
′ ⊗ F (g)) + q(d)G2(d

′ ⊗ F (g)) = G(d⊗ d′ ⊗ F (g)),

which is in the requested form.

The three last cases are proved similarly.

Lemma 7.3.6. Suppose that P : A is a program of type A such that prob ′P =
∑

i ρiPi then

[[P : A]] =
∑

i

ρi[[Pi : A]]

Proof. Suppose that P = [Q,L,M], where L = |x1 . . . xn〉. If P does not reduce, then prob ′P = P
and we are done. If P reduce to some P ′ via some rule κ, we use Lemma 7.2.19, and proceed by
case distinction:

First, suppose that κ 6= m0,m1. We prove the result by induction on a derivation of the
reduction.

(→β
1). In this case, M ≡ (λxB .N)N ′, and then P ′ = [Q,L,N [N ′/x]]. By definition and Theo-
rem 7.2.7, since P is of type A we have

x1 : qbit , . . . , xn : qbit ⊲ (λxB .N)N ′ : A, x1 : qbit , . . . , xn : qbit ⊲ N [N ′/x] : A.

The former being valid, its context splits as (∆,Γ) where ∆, x : B ⊲ N : A and Γ ⊲ N ′ : B.
Let F = [[∆, x : B ⊲ N : A]] and G = [[Γ ⊲ N ′ : B]]. By definition, [[∆,Γ ⊲ (λxB .N)N ′ : A]] is
equal to d ⊗ g 7→ F (d ⊗ G(g)), if d ∈ V[[∆]] and g ∈ V[[Γ]]. By Lemma 7.3.5, this is precisely the
denotation of the latter. Thus, [[� P ′ : A]] = 1 · [[� P : A]].

7.3. Denotational Semantics 88

(→⊗
1). In this case, M ≡ (let 〈xB , yC〉 = 〈V,W 〉 in N), and then P ′ = [Q,L,N [V/x,W/y]]. By
definition and Theorem 7.2.7, since P is of type A we have

x1 : qbit , . . . , xn : qbit ⊲M : A, x1 : qbit , . . . , xn : qbit ⊲ N [V/x][W/y] : A.

The former being valid, its context splits as (∆,Γ1,Γ2) where ∆, x : B, y : C ⊲ N : A, Γ1 ⊲ V : B
and Γ2 ⊲W : C. Let

F = [[∆, x : B, y : C ⊲ N : A]], G1 = [[Γ1 ⊲ V : B]], G2 = [[Γ2 ⊲W : C]].

By definition, [[Γ1,Γ2 ⊲ 〈V,W 〉 : B ⊗ C]] is the map G1 ⊗ G2. By definition still, the map
[[∆,Γ1,Γ2 ⊲M : A]] is ((id ⊗ G1 ⊗ G2);F). By Lemma 7.3.5, this is the denotation of the
latter. Thus, [[� P ′ : A]] = 1 · [[� P : A]].

(→⊤
1). In this case, M ≡ (let ∗ = ∗ in N), and then P ′ = [Q,L,N]. Since P is of type A we have

x1 : qbit , . . . , xn : qbit ⊲M : A, x1 : qbit , . . . , xn : qbit ⊲ N : A.

Since [[⊲ ∗ : ⊤]] = id1, the denotation of the former is equal to the denotation of the latter: we
have as requested [[� P ′ : A]] = 1 · [[� P : A]].

(→if 0
1) and (→if 1

1). In this case, M ≡ (if 0 then N else N ′) (respectively M ≡ (if 1 then N else N ′)),
and then P ′ = [Q,L,N ′]. Since P is of type A we have

x1 : qbit , . . . , xn : qbit ⊲ if 0 then N else N ′ : A,

x1 : qbit , . . . , xn : qbit ⊲ if 1 then N else N ′ : A,

x1 : qbit , . . . , xn : qbit ⊲ N,N ′ : A,

and ⊲ 0, 1 : bit . Since [[⊲ 0 : bit]](a) = (a, 0) and [[⊲ 1 : bit]](a) = (0, a), the denotation of M is
then equal to the denotation of N ′ (respectively, of N). Therefore [[� P ′ : A]] = 1 · [[� P : A]].

(→ω
1). Since P = P ′, they have the same denotation.

(→n0
1) and (→n1

1). We prove the case (→n0
1), the other one is similar. The term M is of the form

new 0, and A = qbit . The denotation of ⊲ M : qbit is the map f such that f(1) = |0〉〈0|. The
denotation of P is

G = 1
g−−−→ 2⊗n

f⊗id−−−−→ 2 ⊗ 2⊗n
id⊗tr−−−−−→ 2,

where g is the map g(1) = QQ∗. Since Q is a normalized vector, G(1) = |0〉〈0|.
Now, P ′ = [Q⊗ |0〉, |x1 . . . xnw〉, w] : qbit and its denotation is

G′ = 1
g′−−−→ 2 ⊗ 2⊗n

id⊗id−−−−−→ 2 ⊗ 2⊗n
id⊗tr−−−−−→ 2,

where g′(1) = |0〉〈0| ⊗QQ∗. The map G′ is therefore equal to G.

(→U
1). This case is similar: the denotation of P is of the form

G = 1
g−−−→ 2⊗i ⊗ 2⊗(n−i) f⊗id−−−−→ 2⊗i ⊗ 2⊗(n−i) id⊗tr−−−−−→ 2⊗i,

where F = Φ−1(U), and g is QQ∗. The denotation of P ′ is

G′ = 1
g′−−−→ 2⊗i ⊗ 2⊗(n−i) id⊗id−−−−−→ 2⊗i ⊗ 2⊗(n−i) id⊗tr−−−−−→ 2⊗i,

where g′ is g; (Φ−1(U) ⊗ id). Therefore they are the same map.

7.3. Denotational Semantics 89

The induction cases are trivial.
Finally, suppose that κ = m0 or m1. Then P →m0

α P0 and P →m1

β P0 for some P0 and some P1.
we prove the result again by induction on the derivation of one of the reduction.

Base case. We use the notation in Definition 7.2.2. In both cases, M is of the form meas xi, and
A = bit . By α-equivalence one can assume that i = 1: in this case Q is of the form

∑

j

αj |0〉 ⊗ |ψ̃0
j 〉 +

∑

j

βj |1〉 ⊗ |ψ̃1
j 〉 = |0〉 ⊗

∑

j

αj |ψ̃0
j 〉 + |1〉 ⊗

∑

j

βj |ψ̃1
j 〉.

Since the denotation [[x1 : qbit ⊲ meas x1 : bit]] is the map p of Definition 7.3.2, the denotation
[[� [Q,L,M] : bit]] is the map

G = 1
g−−−→ 2 ⊗ 2⊗(n−1) p⊗tr−−−−→ 1 ⊕ 1.

The value g(1) is QQ∗, that is

|0〉〈0| ⊗
∑

j,k

αjα
∗
k|ψ̃0

j 〉〈ψ̃0
k| + |1〉〈1| ⊗

∑

j,k

βjβ
∗
k |ψ̃1

j 〉〈ψ̃1
k|

+ |0〉〈1| ⊗
∑

j,k

αjβ
∗
k|ψ̃0

j 〉〈ψ̃1
k| + |1〉〈0| ⊗

∑

j,k

βjα
∗
k|ψ̃1

j 〉〈ψ̃0
k|.

Since |ψ0
j 〉, |ψ1

j 〉, |ψ0
j 〉 and |ψ1

j 〉 are basis vectors, applying id ⊗ tr on g(1) yields

α|0〉〈0| + β|1〉〈1| + δ|0〉〈1| + γ|1〉〈0|,

for some values δ, γ, and where α and β are as in Definition 7.2.2. Thus, G(1) is precisely
(α, β) = [[prob ′P : A]].

The induction cases are trivial.

Lemma 7.3.7. Suppose that P : A is a fixed point. Then [[P]] is the zero map.

Proof. Write P as [Q,L,M]. The proof is done by structural induction on M .

Theorem 7.3.8 (Soundness). Given a program P : A,

[[P : A]] = [[prob ′
UP : A]].

Proof. By induction on n, using Lemma 7.3.6 one can prove that [[prob ′nP]] = [[prob ′P]]. From
Theorem 7.2.22, there exists an integer n such that prob ′nP = prob ′

UP +
∑

i Pi with Pi being fixed
points. Therefore, from Lemma 7.3.7, [[P : A]] = [[prob ′nP]] = [[prob ′

UP : A]].

7.3.2 Fullness of the First-Order Fragment

In this section we will show a result analog as Theorem 4.3.16, namely that any superoperator is
the image of a term. For proving this result, we use the same techniques as in (Selinger, 2004b).

Lemma 7.3.9. Suppose that n = 2s and m = 2t, and let F : C
n×n → C

m×m be a contraction.
Then there exists a valid typing judgement x1 : qbit , . . . , xs : qbit ⊲ M : qbit⊗t whose denotation is
the map F .

7.3. Denotational Semantics 90

Proof. By definition, the map F can be written in the form F (A) = UAU∗, where U ∈ Cm×n is a
contraction. There exists matrices U1, U2 and U3 such that

U ′ =

(

U U1

U2 U3

)

is unitary of size Cl×l. Without loss of generality, one can assume that l = 2p: one can always
extend U ′ to

(

U ′ 0
0 I2p−l

)

where I2p−l is the identity matrix. The requested program performs the following:

• Allocation of the variables y1 : qbit , . . . , yl−s : qbit , and let the list of variables (z1, . . . , zl) be
(x1, . . . , xs, y1, . . . , yl−s);

• application of the unitary U ′ to 〈z1, . . . , zl〉;

• measurement of the variables zt, . . . , zl: if the outcome is 〈0, . . . , 0〉, the program returns the

term 〈z1, . . . , zt〉. Otherwise it outputs the term Ωqbit⊗t

x1:qbit,...,xs:qbit
.

Lemma 7.3.10. Let F : C2s×2s → C2t×2t

be a superoperator and E ◦ G is decomposition from

Theorem 3.1.32. One can construct another decomposition E′ ◦G′, where G′ : C2s×2s → C2t+k×2t+k

is a contraction and E′ : C
2t+k×2t+k → C

2t×2t

is a partial trace operator, for some integer k.

Proof. The proof uses Lemma 3.1.29 to adjust the size of the output space of the sub-unitary E′ to
a power of 2.

Lemma 7.3.11. Let E : C2t+k×2t+k → C2t×2t

be a partial trace operator. Then there exists a valid
typing judgement x1 : qbit , . . . , xt+k : qbit ⊲M : qbit⊗t whose denotation is E.

Proof. The requested term M measures the variables xt+1, . . . , xt+k, perform a test on the result
and in all cases returns 〈x1, . . . , xt〉.

Lemma 7.3.12. Let σ = (1, 1)⊗n ⊗ 2⊗m, and σ′ = 2⊗(m+n). Then the measurement operator

µσ : Vσ′ → Vσ is the image of some typing judgement x : qbit⊗(m+n)
⊲M : bit⊗n ⊗ qbit⊗m.

Proof. The requested term M measures the variables xt+1, . . . , xt+k and stores the results in (z1 :
bit , . . . , zk : bit). It outputs the product 〈z1, . . . , zk, x1, . . . , xt〉.

Theorem 7.3.13. For any types A = U1⊗· · ·⊗Un and B = V1⊗· · ·⊗Vm, where each Ui and Vj is
either bit or qbit , if F : [[A]] → [[B]] is any superoperator, then there exists a valid typing judgement
x : A ⊲M : B of denotation F .

Proof. Without loss of generality, one can assume that A = bit⊗k ⊗ qbit⊗l and that B = bit⊗s ⊗
qbit⊗t. The map F : [[A]] ⊗ [[B]] is of the form (F1, . . . F2k), where each Fi : V2l → V(1,1)⊗s⊗2t is a
superoperator. From Theorem 4.3.15, Fi splits into Mi ◦ Ei ◦ Gi, where Gi is a contraction, Ei is
a partial trace operator, and Mi is a measurement operator. Using Lemma 7.3.10, one can assume
that all of them goes from images of tensors of bit ’s and qbit ’s. Therefore, using Lemma 7.3.12,
Lemma 7.3.11 and Lemma 7.3.9, the Fi’s are representable by some terms Mi. The function F is
represented by a term that does a test on its input bit and perform the corresponding Mi.

Corollary 7.3.14. For every type A = U1 ⊗ · · · ⊗ Un, where each Ui is either bit or qbit , and for
every hermitian positive element v ∈ V[[A]] of trace at most 1, v = [[⊲M : A]](1) for some closed valid
term M .

7.3. Denotational Semantics 91

Proof. Consider the function F : C → V[[A]] defined by F (1) = v. Since χF = v is positive, and since
tr(v) 6 1, F is a superoperator. From Theorem 7.3.13 it is the image of some typing judgement
⊲M : A.

7.3.3 Fullness up to Scalar Multiple

Theorem 7.3.13 does not hold for generic types. However, a weaker statement does hold. We
explicate it in this section.

Definition 7.3.15. Given a type A, we define the canonical first-order representation §A of A by
the following: §bit = bit , §qbit = qbit , §⊤ = ⊤, §(A⊗B) = §A⊗ §B, §(A⊸B) = §A⊗ §B.

Lemma 7.3.16. For all types A, [[A]] = [[§A]].

Proof. Proof by structural induction on A.

Definition 7.3.17. We define the §-size s(A) of a type A as follows. First, s(bit) = s(qbit) =
s(⊤) = 1. Then, s(A⊸B) = 2s(A) + s(B). Finally, s(A⊗B) = s(A) + s(B).

Lemma 7.3.18. For all types A, s(A) > 1. Also, s(§A) 6 s(A), with equality if and only if A = §A.

Proof. Proof by structural induction on A.

Next, we want to write a correspondence between types A and §A, in the form of typing
judgements x : A ⊲ ΥA

x⇓ : §A and x : §A ⊲ ΥA
x⇑ : A whose denotations are multiples of the identity

function. The correspondences are built by induction on the §-size of A:

• knowing the result for A we deduce it for bit⊸ A, qbit⊸ A and ⊤⊸ A;

• knowing the result for A and B we deduce it for A⊗B;

• knowing the result for C⊸ (D⊸B) we deduce it for (C ⊗D)⊸B;

• knowing the result for C⊸D and (§C ⊗ §D)⊸B we deduce it for (C⊸D)⊸B.

The detailed definition goes as follows:

Definition 7.3.19. We define the terms ΥA
x⇓ and ΥA

x⇑ by induction on the §-size of A. First,

Υbit
x⇓ = Υbit

x⇑ = x, Υqbit
x⇓ = Υqbit

x⇑ = x, Υ⊤
x⇓ = Υ⊤

x⇑ = x

Then,

ΥA⊗B
x⇓ = let 〈y, z〉 = x in 〈ΥA

y⇓,Υ
B
z⇓〉,

ΥA⊗B
x⇑ = let 〈y, z〉 = x in 〈ΥA

y⇑,Υ
B
z⇑〉.

For types of the form A⊸B, we first consider the case where A = ⊤, A = bit and A = qbit :

Υ⊤⊸B
x⇓ = 〈∗, let tB = x∗ in ΥB

t⇓〉
Υ⊤⊸B
x⇑ = let 〈y⊤, z§B〉 = x in λt. let ∗ = y in ΥB

z⇑

Υbit⊸B
x⇓ = if meas(H(new 0)) then 〈1, let tB = x1 in ΥB

t⇓〉
else 〈0, let tB = x0 in ΥB

t⇓〉
Υbit⊸B
x⇑ = let〈ybit , z§B〉 = x in

7.3. Denotational Semantics 92

λtbit .if x then if t then ΥB
z⇑ else Ω

else if t then Ω else ΥB
z⇑

Υqbit⊸B
x⇓ = let〈u, v〉 = NC〈H(new 0),new 0〉 in 〈u, let tB = xv in ΥB

t⇓〉
Υqbit⊸B
x⇑ = let〈yqbit , z§B〉 = x in

λtqbit . let 〈y′, t′〉 = NC〈y, t〉 in

let 〈y′′, t′′〉 = 〈Hy′, t′〉 in

if meas y′′ then Ω else ΥB
z⇑

Then, when A is of the form C ⊗D, we proceed the following way:

Υ
(C⊗D)⊸B
x⇓ = let fC⊸(D⊸B) = λtC .λuD.(x〈t, u〉) in

let 〈u§C , v§D⊗§B〉 = Υ
C⊸(D⊸B)
f⇓ in

let 〈y§D, z§B〉 = v in 〈〈u, y〉, z〉
Υ

(C⊗D)⊸B
x⇑ = λtC⊗D. let 〈yC , zD〉 = t in let 〈u§C⊗§D, v§B〉 = x in

let 〈w§C , s§D〉 = x in

let a = 〈w, 〈s, v〉〉 in ((Υ
C⊸(D⊸B)
a⇑)y)z

Finally, when A is of the form C⊸D, we reduce C⊸D to §C ⊗ §D to fall back on the previous
case. The details are as follows:

Υ
(C⊸D)⊸B
x⇓ = let f (§C⊗§D)⊸B = λt§C⊗§D.x(ΥC⊸D

t⇑) in Υ
(§C⊗§D)⊸B
f⇓

Υ
(C⊸D)⊸B
x⇑ = λtC⊸D.Υ

(§C⊗§D)⊸B
x⇑ ΥC⊸D

t⇓

Lemma 7.3.20. For every types A, the typing judgements x : A ⊲ ΥA
x⇓ : §A and x : §A ⊲ ΥA

x⇑ : A

are valid. Moreover, there exist constants λ, λ′ > 0, such that [[ΥA
x⇓]] = λid [[A]] and [[ΥA

x⇑]] = λ′id [[A]].

Proof. The proof that the typing judgements are valid is an easy induction on the §-size of A.
The proof that their denotation is a multiple of the identity is also done by induction on the

§-size of A. We provide the computation for the difficult cases, namely when the type is bit ⊸ B
and qbit⊸B.

Case Υbit⊸B
x⇑ . We are considering

f = [[x : bit ⊗ §B ⊲ Υbit⊸B
x⇑ : bit⊸B]] : [[B]] ⊕ [[B]] → [[B]] ⊕ [[B]].

An element (a, b) ∈ [[§B]] ⊕ [[§B]] corresponds to a probability a to get the boolean 0 and a
probability b to get the boolean 1 for the bit . This means that f(a, b) = ([[ΥB

z⇑]](a), [[ΥB
z⇑]](b)).

By induction hypothesis, [[ΥB
z⇑]] = λid for some λ > 0. Thus we have then f = λid .

Case Υbit⊸B
x⇓ . We are considering

f = [[x : bit⊸B ⊲ Υbit⊸B
x⇓ : qbit ⊗ §B]] : [[B]] ⊕ [[B]] → [[B]] ⊕ [[B]].

A function g ∈ V[[bit⊸B]] is sent to 1
2 ([[ΥB

z⇓]](g(1, 0)), [[ΥB
z⇓]](g(0, 1))), where we identify the function

g and its representation. By induction hypothesis, [[ΥB
z⇓]] = λid for some λ > 0. Thus g ∈

V[[bit⊸B]], represented by (g(1, 0), g(0, 1)), is sent to 1
2λg. This means that f = 1

2λid .

7.3. Denotational Semantics 93

Case Υqbit⊸B
x⇑ . We are considering

f = [[x : qbit ⊗ §B ⊲ Υqbit⊸B
x⇑ : bit⊸B]] : 2 ⊗ [[B]] → 2 ⊗ [[B]].

We interpret the term as in the definition. Suppose that x = 〈y, z〉 and t are respectively the
matrix of blocks and the quantum bits

(

A B
C D

)

,

(

a b
c d

)

,

where the blocks A, B, C and D belongs to V[[B]]. Then the products 〈y, t, z〉 and 〈y′, t′, z〉 are
respectively









aA bA aB bB
cA dA cB dB
aC bC aD bD
cC dC cD dD









,









aA bA bB aB
cA dA dB cB
cC dC dD cD
aC bC bD aD









.

Applying H on y′ yields a matrix with first entry

1

2
λ(aA+ bB + cC + dD),

if [[ΥB
z⇑]] = λid , corresponding to the probability for y′′ to be |0〉. Thus,

f

(

A B
C D

)(

a b
c d

)

=
1

2
λ(aA + bB + cC + dD),

meaning that x maps to a multiple of the function qbit → [[B]] of same denotation. That is,
f = 1

2λid .

Case Υqbit⊸B
x⇓ . We are considering

f = [[x : qbit⊸B ⊲ Υqbit⊸B
x⇓ : bit ⊗ §B]] : 2 ⊗ [[B]] → 2 ⊗ [[B]].

In this case, the function f(x) creates a pair of two quantum bits in state








1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1









,

and applies (a multiple of) the function x on each 2 × 2 block: it is precisely (a multiple of) the
characteristic function of x: the function f is indeed a multiple of the identity.

Theorem 7.3.21 (Fullness up to scalar multiple). For any types A and B, there exists a constant
λ > 0 such that if F : [[A]] → [[B]] is any superoperator, then there is a valid typing judgement
x : A ⊲M : B of denotation λF .

Proof. For the given types A and B, consider the terms ΥA
a⇓ and ΥB

b⇑. From Lemma 7.3.20, they
have for denotation respectively λid and λ′id , for some λ, λ′. We claim that any superoperator
[[A]] → [[B]] can be interpreted modulo a factor of λλ′.

Indeed, consider a superoperator F : [[A]] → [[B]]. From Theorem 7.3.13, there exists a valid
typing judgement y : §A ⊲ N : §B of denotation F . Let a : A ⊲M : B be the term

a : A ⊲ let y = ΥA
a⇓ in let b = N in ΥB

b⇑ : B.

It has denotation λλ′F .

7.4. Equivalence Classes of Terms 94

(β) Γ ⊲ (λx.M)N ≈ax M [N/x] : A
(η) Γ ⊲ λx.Mx ≈ax M : A⊸B
(β⊗) Γ ⊲ let 〈x, y〉 = 〈N,P 〉 in M ≈ax M [N/x, P/y] : A
(η⊗) Γ ⊲ let 〈x, y〉 = M in 〈x, y〉 ≈ax M : A⊗B
(β∗) Γ ⊲ let ∗ = ∗ in M ≈ax M : A
(η∗) Γ ⊲ let ∗ = M in ∗ ≈ax M : ⊤
(β1

if) Γ ⊲ if 1 then M else N ≈ax M : A
(β0

if) Γ ⊲ if 0 then M else N ≈ax N : A
(Ω) Γ ⊲M [Ω/x] ≈ax Ω : A
(ηif) Γ ⊲ ifB then M [1/x] else M [0/x] ≈ax M [B/x] : A
(id) Γ ⊲ meas(new M) ≈ax M : bit

Table 7.4: Axiomatic equivalence

7.4 Equivalence Classes of Terms

Being able to build terms, we need some tools to compare them. One can compare them through
syntactic manipulations, or one can have a finer approach using the two semantics we have built:
in the case of the operational semantics, the behavior of the terms is what defines the equivalence,
and in the case of the denotational semantics, the equivalence is expressed by the denotation of the
terms.

7.4.1 Axiomatic Equivalence

A first notion of equality of terms can be defined by a set of syntactic rules. This is known as the
axiomatic equivalence.

Definition 7.4.1. We define an equivalence relation ≈ax on typing judgements. We write the
relation as Γ ⊲ M ≈ax N : A, and we define it to be the smallest relation satisfying the rules in
Table 7.4, the alpha-equivalence and one congruence rule (ξ) per term constructor. This means for
example:

Γ ⊲M ≈ax M
′ : A⊸B ∆ ⊲ N ≈ax N

′ : A

Γ,∆ ⊲MN ≈ax M
′N ′ : B

(ξapp)

Γ, x : A ⊲M ≈ax M
′ : B

Γ ⊲ λx.M ≈ax λx.M
′ : A⊸B

(ξλ)

We call it the axiomatic equivalence relation. We extend it to quantum closures in the following
way: if ∆ � [Q,L,M] : A and ∆ � [Q,L,M ′] : A are two well-typed quantum closures where
FV (M) \ |∆| = FV (M ′) \ |∆| = {x1, . . . , xn}, then we write ∆ � [Q,L,M] ≈ax [Q,L,M ′] : A
when

∆, x1 : qbit , . . . , xn : qbit ⊲M ≈ax M
′ : A.

Lemma 7.4.2. The order of the arguments in an application does not matter. Similarly, one can
apply the arguments as a pairing or sequentially. More precisely:

[Q,L, ((λxy.M)N)P] ≈ax [Q,L, ((λyx.M)P)N]

[Q,L, let 〈x, y〉 = 〈N,P 〉 in M] ≈ax [Q,L, ((λxy.M)N)P]

Proof. By application of rule (β) and rule (β⊗).

7.4. Equivalence Classes of Terms 95

7.4.2 Operational Context

To say that two arbitrary terms have the same behavior, we need a way to observe them. The only
observable types at our disposal are the types bit and ⊤. So the fact that two terms M and M ′ have
the same behavior can be understood as the fact that in whichever context C[−] we “use” them,
if C[−] : bit , then C[M] reduces to 0, respectively, 1, with the same probability as C[M ′]. Such a
term C[−] is called an operational context.

Definition 7.4.3. We define a formal operational context to be a formula defined by the following
BNF:

C[−] ::= [−] | (C[−]M) | (MC[−]) | λx.C[−] | 〈C[−],M〉 | 〈M,C[−]〉 |
let 〈x, y〉 = C[−] in M | let 〈x, y〉 = M in C[−] |
let ∗ = C[−] in M | let ∗ = M in C[−] |
if C[−] then M else N | ifM then C[−] else C′[−].

We call [−] the hole of the context.

The notions of well-typed contexts and free variables in contexts are defined the same ways as for
terms. Note that there exists a new notion: the notion of captured variables, which are the variables
whose scope includes the hole. We can make this more precise by speaking of typed contexts:

Definition 7.4.4. A typed operational context is a typing tree with root Γ′ ⊲ C[−] : B, considering
the additional axiom Γ ⊲ [−] : A, i.e., a typing tree of the form

Γ ⊲ [−] : A

...
Γ′ ⊲ C[−] : B.

We say that this context is of type B, with free variables Γ′, a hole of type A, and captured variables
Γ. We also use the notation Γ′ ⊲ C[Γ ⊲ − : A] : B for a typed operational context.

Lemma 7.4.5. If
Γ ⊲ [−] : A

...
Γ′ ⊲ C[−] : B.

is a valid typing derivation, then so is

∆,Γ ⊲ [−] : A

...
∆,Γ′ ⊲ C[−] : B,

provided the variables that occur in ∆ are fresh.

Proof. By easy induction on the typing derivation of Γ′ ⊲ C[−] : B.

7.4.3 Operational Equivalence

We define a notion of operational equivalence, based on the reduction rules and observations of type
bit , as in Danos and Harmer (2002). (Equivalently, it would suffice to consider observations of type
⊤).

7.5. Soundness and Full Abstraction 96

Definition 7.4.6. Let ⊲ C[Γ ⊲ − : A] : bit be a closed typed operational context of type bit , and
let R = [Q,L,M] be a well-typed quantum closure with typing judgement Γ � [Q,L,M] : A. In
this case we define the substitution C[R] by [Q,L,C[M]], where M is syntactically replacing [−] in
C[−]. We linearly extend this definition to probabilistic distributions of quantum closures of the
form Γ �

∑

i ρiRi : A by setting C[
∑

i ρiRi] =
∑

i ρiC[Ri].

Lemma 7.4.7. In Definition 7.4.6, the substitution is well typed and a valid typing judgement for
it is � [Q,L,C[M]] : bit .

Proof. This lemma is a direct consequence of Lemma 7.4.5.

Definition 7.4.8. Given two well-typed quantum closures Γ � R,R′ : A, we say that R is opera-
tionally equivalent to R′ with respect to Γ if for all closed typed operational contexts ⊲ C[Γ ⊲ − :
A] : bit , C[R] ⇓ 0 = C[R′] ⇓ 0 and C[R] ⇓ 1 = C[R′] ⇓ 1. In this case, we write Γ � R ≈op R

′ : A. If
M,M ′ are terms, we say that Γ ⊲M ≈op M

′ : A if Γ � [|〉, |〉,M] ≈op [|〉, |〉,M ′] : A.

7.4.4 Denotational Equivalence

The last equivalence we can define is the denotational equivalence. This equivalence relation is simply
stated:

Definition 7.4.9. We say that two typing judgements Γ ⊲M,M ′ : A are denotationally equivalent if
[[Γ ⊲M : A]] and [[Γ ⊲M ′ : A]] are the same map in CPM. In that case we write Γ ⊲M≈denM

′ : A.
We extend this definition to quantum closures: Γ � R≈denR

′ : A is true if [[Γ � R : A]] = [[Γ � R′ : A]].

7.5 Soundness and Full Abstraction

The three defined equivalence relations we have built have the expected behavior: The axiomatic
equivalence is sound with respect to the operational equivalence and the denotational semantic is
fully abstract with respect to the operational semantics:

Theorem 7.5.1 (Soundness). If Γ ⊲M ≈ax M
′ : A then Γ ⊲M ≈op M

′ : A.

Remark 7.5.2. An immediate consequence of soundness and Lemma 7.4.2 is that the order of
evaluation does not affect the outcome:

Γ ⊲ ((λxy.R)M)N ≈op ((λyx.R)N)M.

Theorem 7.5.3 (Full abstraction). The denotational semantics is fully abstract with respect to the
operational equivalence of typing judgements, i.e.

[[Γ ⊲M : A]] = [[Γ ⊲M ′ : A]] if and only if Γ ⊲M ≈op M
′ : A.

Remark 7.5.4. The presence of the non-terminating term Ω is necessary for full abstraction to
hold. Without it, every program terminates with probability 1, and there is only one definable map
bit → ⊤. Thus, although λf.(f0) and λf.(f1) of type (bit⊸⊤)⊸⊤ have different denotations, no
context will distinguish them.

7.5. Soundness and Full Abstraction 97

7.5.1 Proof of the Soundness Theorem

Assume Theorem 7.5.3. It suffices to show that if Γ ⊲M ≈ax M
′ : A then Γ ⊲M ≈den M

′ : A. We
show this by structural induction on the proof of Γ ⊲M ≈ax M

′ : A.
The cases (β), (β⊗), (β∗), (β1

if) and (β0
if) are similar as in the proof of Lemma 7.3.6.

We detail the remaining cases

(η). If [[Γ ⊲M : A⊸B]] = Φ(g) : [[∆]] → [[A]] ⊗ [[B]], then the denotation [[Γ, x : A ⊲Mx : B]] is a
map f : [[Γ]] ⊗ [[A]] → [[B]], with

f(x⊗ y) = g(x⊗ idA(y)) = g(x⊗ y).

(η⊗). If f = [[Γ ⊲M : A⊗B]], if g = [[Γ ⊲ let 〈x, y〉 = M in 〈x, y〉 : A⊗B]] and if a ∈ [[Γ]], we have
g(a) = (idA ⊗ idB)(f(a)) = f(a).

(η∗). If f = [[Γ ⊲M : ⊤]], if g = [[Γ ⊲ let ∗ = M in ∗ : ⊤]], and if a ∈ [[Γ]], then g(a) is equal to
id⊤(1) · f(a), that is, f(a).

(ηif). In this case, the context Γ splits into (Γ1,Γ2), where Γ1 ⊲ B : bit and Γ2, x : bit ⊲M : A. If
(p, q) is the denotation of the former and f the denotation of the latter, if a ∈ [[Γ1]] and b ∈ [[Γ2]],
p(a)f(0, b) + q(a)f(b, 0) = f(0, b · p(a)) + f(b · q(a), 0) = f((p(a), q(a)) ⊗ b).

(id). This last case is done by noticing that [[x : bit ⊲ meas(new x) : bit]] is the identity.

7.5.2 Full Abstraction: Preliminary Lemmas

Lemma 7.5.5. For any two programs P, P ′ of type bit , they have the same denotation if and only
if for all b ∈ {0, 1}, P ⇓ b = P ′ ⇓ b.
Proof. Consider two well-typed programs P, P ′ : bit . Suppose they have the same denotation f .
Then from Lemma 7.3.8, f is also the denotation of prob ′

UP and of prob ′
UP

′. But by definition,
[[prob ′

UP]] = (p, q), where p = (prob ′
UP) ⇓ 0 = P ⇓ 0 and q = (prob ′

UP) ⇓ 1 = P ⇓ 1, and similarly
for P ′. Thus P ⇓ 1 = P ′ ⇓ 1 and P ⇓ 0 = P ′ ⇓ 0. The argument being reversible, we get the other
implication.

Lemma 7.5.6. If [[Γ ⊲M :A]] = [[Γ ⊲M ′:A]] and C[Γ ⊲ − : A] : bit is a valid context, then
[[C[M] : bit]] = [[C[M ′] : bit]].

Proof. The proof uses Lemma 7.3.5.

Lemma 7.5.7. Let A be a type and let v 6= v′ be hermitian positive elements in V[[A]]. Then there
exists a valid typing judgement x : A ⊲M : bit such that [[M]](v) 6= [[M]](v′).

Proof. By Lemma 7.3.20, it suffices, without loss of generality, to consider the case where A =
bit⊗n ⊗ qbit⊗m. Then [[A]] = (2m, . . . 2m), v = (v1, . . . v2n) and v′ = (v′1, . . . v

′
2n). If v and v′

differ, there exists some i for which vi 6= v′i. By Theorem 3.1.13 there exists orthonormal bases
of eigenvectors corresponding to vi and v′i. Since they differ, there exists a vector w such that
w∗viw 6= w∗v′iw (otherwise, vi and v′i would have the same eigenvectors and eigenvalues, making
them equal).

Consider the map
f : (2m, . . . , 2m) −→ 1, 1

(w1, . . . , wn) 7−→ (w∗wiw, 0)

From Theorem 4.3.11, this is a superoperator. By definition, f(v) 6= f(v′) and by Theorem 7.3.13,
it is representable by some valid typing judgement x : A ⊲M : bit .

7.5. Soundness and Full Abstraction 98

Lemma 7.5.8. Given any type A and any hermitian positive v ∈ V[[A]], there exists a closed term
M : A and λ > 0 such that [[M]](1) = λv.

Proof. If v = 0, let M = Ω. Else, from Corollary 7.3.14, there exists a valid typing judgement
⊲ N : §A such that v/Tr(v) = [[⊲ N : A]](1). Then let M = let x = N in ΥA

x⇑ : A. From
Lemma 7.3.20, [[⊲M : A]](1) and v are collinear.

7.5.3 Proof of the Full Abstraction Theorem

If [[Γ ⊲M : A]] = [[Γ ⊲M ′ : A]], take any valid context C[Γ ⊲ − : A] : bit for those two terms. Then
from Lemma 7.5.6, [[⊲ C[M] : bit]] = [[⊲ C[M ′] : bit]]. From Lemma 7.5.5, C[M]⇓ b = C[M ′]⇓ b, for
b ∈ {0, 1}. Since this holds for arbitrary contexts, M and M ′ are operationally equivalent.

The opposite implication follows from Lemma 7.5.7 and Lemma 7.5.8. Consider two typing
judgements Γ ⊲M,M ′:A with denotations

F=[[Γ ⊲M : A]] and G = [[Γ ⊲M ′ : A]],

such that F 6= G.. Since the vector space V[[Γ]] is spanned by hermitian positive elements, there
exists a hermitian positive v ∈ V[[Γ]] such that F (v) 6= G(v).

If Γ = x1:A1, . . . , xn:An, let B = A1 ⊗ . . . ⊗ An. By Lemma 7.5.8, there exists a closed term
R : B such that [[R : B]](1) = λv, for some λ > 0. By Lemma 7.5.7, there exists a term x : A ⊲ S : bit
such that [[x : A ⊲ S : bit]](Fv) 6= [[x : A ⊲ S : bit]](Gv). Now consider C[Γ ⊲ − : A] : bit defined by

let 〈x1, . . . xn〉 = R in let x = [−] in S.

Then [[C[M]]](1) 6= [[C[M ′]]](1), hence by Lemma 7.5.5, C[M] ⇓ b 6= C[M ′] ⇓ b, for some b ∈ {0, 1}.
It follows that M 6≈opM

′, which completes the proof of full abstraction.

Chapter 8

Structure of the Linear-Non-Linear

Fragment

In the previous chapter, we described a semantics for the linear fragment of the quantum lambda
calculus of Chapter 6. Doing so, we omitted the issue of duplicability. This chapter and the
following ones are concerned with the study of the linear-non-linear fragment of the lambda calculus
described in Chapter 6. An extended abstract of the work presented here has been published in
(Selinger and Valiron, 2008).

8.1 Computations and Values

In Chapter 7, we developed an interpretation of computations as completely positive linear maps
between specific vectors spaces. Due to the strict linearity, there was no need to distinguish between
values and computations within the denotation. In the case of the general quantum lambda calculus,
the computations are not the whole story. Due to the probabilistic behavior of the measurement, in
order to give a categorical description of the quantum lambda calculus, the analysis of the values has
to be separated from the analysis of the computations. For this purpose we will use the semantics
described in Section 5.4.3 and describe a computational model to handle the probabilistic side effect.

8.2 Duplicability Versus Non-Duplicability

While the strong monad handles the probabilistic nature of the computation, it does not deal with
the question of the non-duplicability.

Coecke and Pavlovic (2007) offer a solution for duplication at first order using the notion of
classical objects. The idea is that the boolean structure (1, 1) admits a “copy” operator such as

δbit :
1, 1 −→ 1, 1, 1, 1

(a, b) 7−→ (a, 0, 0, b),

sending the Boolean 0 to the pair 〈0, 0〉 and the Boolean 1 to the pair 〈1, 1〉. This approach does
not generalize well at higher-order. Indeed, consider the set of functions (⊤⊸ bit) and the set of
pairs of functions (⊤⊸ bit)⊗ (⊤⊸ bit). Using the denotation in Chapter 7, a function f : ⊤⊸ bit
is represented by a pair (a, b) where a is the probability of outputting the Boolean 0 and b the
probability of getting the Boolean 1. Thus, in the denotation, it is the same entity as a boolean. If
we define δ⊤⊸bit as the same “copy” operator, δ⊤⊸bit (f) becomes the pair of functions that outputs

99

8.3. Structure of the Exponential 100

〈0, 0〉 with probability a and 〈1, 1〉 with probability b. This is not how we expect the duplication of
f to behave.

8.2.1 Computations as Proofs

Instead of working at the level of the denotational semantics, we will study the language at a
syntactic level and work out the required structure from there, using the powerful Curry-Howard
isomorphism of Section 5.2.2.

Our type system has a particular type construct, namely “!”, attached to the subtyping relation
defined in Definition 6.3.3. As was noted in (Valiron, 2004a), it is possible to rewrite this subtyping
relation in the following way:

A<:A′ B <: B′

A′⊸B <: A⊸B′ (⊸)
A<: A′ B <:B′

A⊗B <:A′ ⊗B′ (⊗)

α <: α (ax) A<:B
!A<:B

(D)
!A<:B
!A<: !B

(!)

This formulation of the subtyping relation guides us to the theory of linear logic.

8.3 Structure of the Exponential “!”

The model of linear logic offered by Bierman (1993) and described in Section 5.6.2 is almost a perfect
fit. However, it is slightly too general for our purpose. In this section we describe the modifications
that are needed.

8.3.1 Idempotency

Indeed, the “!” operator of the type system of the quantum lambda calculus is idempotent, in the
sense that x : !A ⊲ x : !!A and x : !!A ⊲ x : !A are inverse one of each other. This is not reflected in
the definition of a generic comonad, where the map

LLA
LǫA−−→ LA

δA−−→ LLA

is not equal to the identity.

Definition 8.3.1 (Taylor (1999)). A comonad (L, ǫ, δ) on some category is said to be idempotent
if δ : L →̇ LL is an isomorphism.

Example 8.3.2. Consider any category C. The functor idC is an idempotent comonad, with the
comultiplication and the counit being the identity natural transformation.

Based on the idea of classical objects of Coecke and Pavlovic (2007), a non-trivial example can
be constructed. The setting is the category of finite Hilbert spaces. There is no canonical “copy”
operation E → E ⊗E on a given space E unless a basis has been arbitrarily chosen. We define the
category ClasObj based on the category fdHilb of finite Hilbert spaces.

Example 8.3.3. Let ClasObj be the category with

• Objects: pairs (E,BE) where E is a finite dimensional Hilbert space and BE is a set of
orthonormal vectors of E. We write 〈BE〉 for the subspace of E generated by BE , and E⊥BE

for the subspace of E orthogonal to 〈BE〉.

8.3. Structure of the Exponential 101

• Arrows from (E,BE) → (F,BF): linear maps from E to F such that for all b ∈ BE , f(b) ∈
BF ∪ {0}.

We define a functor L from ClasObj to ClasObj as follows: For any object (E,BE), L(E,BE) is the
object (〈BE〉, BE) and for any morphism f : (E,BE) → (F,BF), Lf is the restriction of the linear
map f : E → F to the subspace generated by BE .

If ǫ(E,BE) : L(E,BE) → (E,BE) is the canonical linear injection and if δ(E,BE) : L(E,BE) →
LL(E,BE) is the linear identity, (L, ǫ, δ) is an idempotent comonad.

Lemma 8.3.4. If (L, ǫ, δ) is an idempotent comonad, then δL = Lδ, Lǫ = ǫL and δ−1 = Lǫ.

Proof. Equation (2.6.1) states that δ;Lδ = δ; δL. Multiplying on the left by δ−1, we get Lδ = δL.
Equation (2.6.2) says δ; ǫL = δ;Lǫ. Multiplying on the left by δ−1, we get ǫL = Lǫ. Finally, since
δ;Lǫ = id , again multiplying on the left by δ−1 we get the last required equation: Lǫ = δ−1.

Lemma 8.3.5. Suppose that (L, ǫ, δ, dL, dL) is an idempotent monoidal comonad. Then ǫ⊤; dL⊤ =
idL⊤.

Proof. Consider the following diagram:

L⊤
LdL

⊤

""E
EE

EE
EE

E

ǫ⊤

��

Lid⊤=idL⊤

��

L2⊤
ǫL⊤=Lǫ⊤

FF
F

##FF
FF

⊤
dL
⊤

// L⊤.

The equality is obtained from Lemma 8.3.4, the lower triangle by naturality of ǫ and the upper
triangle by functoriality of L on the monoidality of ǫ (Equation (2.8.8)).

Example 8.3.6. The category ClasObj from Example 8.3.3 inherits a symmetric monoidal structure
from fdHilb in the following manner:

(E,BE) ⊗ (F,BF) = (E ⊗ F, {e⊗ f | e ∈ BE , f ∈ BF }), ⊤ = (C, {1}),

and the tensor product of two morphisms f and g is the morphism of Hilbert spaces f ⊗ g. If we
define the maps

dL⊤ : ⊤ −→ L⊤, dL(E,BE),(F,BF) : L(E,BE) ⊗ L(F,BF) −→ L((E,BE) ⊗ (F,BF)),

as the identities of the respective Hilbert spaces C and E ⊗ F , then the comonad (L, ǫ, δ, dL, dL) is
monoidal.

8.3.2 Coherence Property for Idempotent Comonads

We want to be able to define a map [[A]] → [[B]], image of the relation A<:B. Since by Lemma 6.3.4
(<:) is an ordering relation, we would like to have a similar notion on the images. The category C
has an idempotent comonad. In the following we will show a coherence property for the comonad,
and use it to define the image of A<:B.

8.3. Structure of the Exponential 102

Definition 8.3.7. Consider a category C with an idempotent comonad (L, δ, ǫ). Let (F1, . . . Fn) be
a list of functors Fi : Cmi × (Cop)li → C. Suppose A is the set of elements of the form

A,B ::= a | Fi(A1, . . . , Ami , B1, . . . , Bli) | LA,

where a spans over a given alphabet A. Given a map G : A → |C|, we build the A-G-category CG a
follows:

• The set of objects is A.

• Arrows are arrows of C, defined by induction as follows:

– for all objects A in CG, the arrows idG(A), ǫG(A) and δG(A) are arrows of CG.

– If f : A→ B is an arrow in CG then so are Lf : LA
L(f)−−−→ LB,

Fi(X1, . . . f . . . , Xli , Y1, . . . Ymi) =

Fi(G(X1), . . . f . . . , G(Xli), G(Y1), . . . G(Ymi)),

Fi(X1, . . . , Xli , Y1, . . . f . . . , Ymi) =

Fi(G(X1), . . . , G(Xli), G(Y1), . . . f . . . , G(Ymi)).

Finally, if f : A→ B and g : B → C are arrows of CG, (f ; g) : A→ C is also an arrow of
CG.

Theorem 8.3.8. Consider a category C, an alphabet A and a list of functors (F1, . . . , Fn) as in
definition 8.3.7. If f : A→ B and g : A→ B are two maps of CG, they are equal.

Following Kelly’s methodology Kelly and Laplaza (1980), we define the free category verifying
the conditions, and show that this free category is in fact a poset. Without loss of generality, we
consider only one Fi, that we name ⋉ : Cop × C → C.

Definition 8.3.9. Given an alphabet A, we define the graph G as follows: the vertices of G are

Vertices A,B ::= a | (A⋉B) | LA,

where a ranges over A, and the arrows are two-fold. First, for each vertex A there exists arrows
δA : LA→ LLA and ǫA : LA→ A. Then for each arrow f : A→ B all expansions of f with respect
to (L,⋉) are arrows in the graph.

Then we define K to be the free category generated by G. We write idA for the identity on A.
We call the arrows idA, ǫA and δA elementary arrows.

We define a set of relations R. This set contains first (2.6.1) and (2.6.2), the equations of
functoriality of L and of naturality of ǫ and δ, so that (L, δ, ǫ) is a comonad. It contains the
equations for the bifunctoriality of ⋉. We also request equations LǫA; δA = idL2A and ǫLA = LǫA.
Furthermore, we request all expansions of the above relations with respect to (L,⋉) to belong to R.

Finally, we define the category D to be K/R.

Lemma 8.3.10. In D, ⋉ is a bifunctor and (L, δ, ǫ) is an idempotent comonad.

Proof. All the requested equations are there.

Definition 8.3.11. We define a map K : |D| → |D| by induction

K(a) = a K(L2A) = K(LA)

K(La) = La K(A⋉B) = (KA) ⋉ (KB)

8.3. Structure of the Exponential 103

K(L(A⋉B)) = L((KA) ⋉ (KB))

and a set of maps ζA : A→ KA, one for each object A:

ζa = ida : a→ a, ζLa = idLa : La→ La, (8.3.1)

ζL2A = L2A
δ−1

A−−→ LA
ζLA−−→ K(LA),

ζA⋉B = (KA) ⋉B
ζA⋉ζB−−−−→ A⋉ (KB).

(8.3.2)

We define subsets LSubVert and SubVert of vertices:

LSubVert U ::= a | A⋉B,
SubVert A,B ::= U | LU.

An element in SubVert is called a subvertex, and an element of LSubVert a linear subvertex. We
define a partial ordering relation 6 on subvertices (where A,B ∈ SubVert and U, V ∈ LSubVert):

a 6 a

U 6 V

LU 6 V

U 6 V

LU 6 LV

A 6 A′ B 6 B′

A′
⋉B 6 A⋉B′

and a map mA,B for each A 6 B:

U
mU,V−−−→ V

mLU,V = LU
ǫU ;mU,V−−−−−→ V

U
mU,V−−−→ V

mLU,LV = LU
LmU,V−−−−→ LV

ma = a
ida−−→ a

A
mA,A′−−−−→ A′ B

mB,B′−−−−→ B′

mA′⋉B,A⋉B′ = A′
⋉B

mA,A′⋉mB,B′−−−−−−−−−→ A⋉B′

Lemma 8.3.12. For all A, ζA is an isomorphism.

Proof. Proof by induction on A, knowing that δA is an isomorphism.

Lemma 8.3.13. For any vertex A, KA is a subvertex.

Proof. Proof by induction on A.

Lemma 8.3.14. For any vertex A, there exists a unique linear subvertex U and a unique n > 0
such that A = LnU . In that case, KA = U if n = 0, KA = LU otherwise.

Proof. Proof by induction on A.

Lemma 8.3.15. If U is a subvertex, then K(LU) = L(KU).

Proof. Proof by case distinction.

Lemma 8.3.16. If U is a subvertex, then

LU
ζLU−−→ K(LU) = LU

LζU−−−→ L(KU)

Proof. Proof using Lemma 8.3.15 and by case distinction on the possible ζLU .

Lemma 8.3.17. 6 is an partial ordering relation on subvertices.

Proof. For A,B and C subvertices.

8.3. Structure of the Exponential 104

• Reflexivity: A 6 A: proved by structural induction on A.

• Antisymmetry: A 6 B and B 6 A implies A = B: proved by structural induction on A.

• Transitivity: A 6 B and B 6 C implies A 6 C: proved by structural induction on A.

Lemma 8.3.18. If A 6 B and B 6 C are in SubVert,

A
mA,B−−−−→ B

mB,C−−−−→ C = A
mA,C−−−−→ C. (8.3.3)

Proof. We prove by induction on the derivation of A 6 C that for all B such that A 6 B and
B 6 C, Equation (8.3.3) is valid.

• If it is an axiom, then A = C are a or ⊤ and the only for B is to be the same as A and B: we
are done.

• Suppose it is true for sub-derivations of LU 6 LW , U and W being linear subvertices. By
case distinction the only B such that LU 6 B and B 6 LW is B = LV , where V is a linear
subvertex. Then by functoriality of L and and by induction hypothesis, the result is true.

• Suppose it is true for sub-derivations of LU 6W , U and W being linear subvertices. By case
distinction the only possible B such that LU 6 B and B 6 W are B = V or LV , V a linear
subvertex.

– If B = V : then mLU,V = LU
ǫU−→ U

mU,V−−−→ V , and mLU,V ;mV,W is

LU
mLU,V //

ǫU !!B
BB

BB
BB

B

mLU,W

00

(a)

V

mV,W

��

U

mU,W A
AA

AA
AA

A

mU,V}}}

>>}}}

(b)

(c)

W

where the (a) and (c) commute by definition, and (b) commutes by induction hypothesis.

– If B = LV : then mLU,LV = LU
LmU,V−−−−→ LV , mLV,W = LV

ǫV−−→ V
mV,W−−−−→ W , and

mLU,LV ;mLV,W is

LU
LmU,V //

ǫU

��

(a)

mLU,W

66

LV

mLV,W

��

ǫV

}}{{
{{

{{
{{

U
mU,V //

mU,V //(d)

V (b)

mV,W

BB
B

 B
BB(c)

W,

where (a) commutes by naturality of ǫ, (b) and (d) by definition and (c) by induction
hypothesis.

8.3. Structure of the Exponential 105

• If it is true for sub-derivations of (D′′ ⋉ E) 6 (D ⋉ E′′), then by case distinction the only
possible B such that (D′′

⋉ E) 6 B and B 6 (D ⋉ E′′) is B = (D′
⋉ E′) for some vertices

D′ and E′. Then D 6 D′ 6 D′′ and E 6 E′ 6 E′′′, and by induction hypothesis we get the
result.

Lemma 8.3.19. For any subvertex A, mA,A = idA.

Proof. Proof by induction on A.

Lemma 8.3.20. Given any arrow f : A→ B, KA 6 KB.

Proof. We prove it by induction on the construction of f : first the result is true for any elementary
arrow and for the identity ion objects. Then it is true by induction on any expansion of such
arrows, using the definition. Finally, from Lemma 8.3.17, 6 is transitive and thus it is true for any
composition of expansions.

Lemma 8.3.21. For any map g : A→ B, the following diagram commutes:

A
g //

ζA

��

B

ζB

��
KA

mA,B // KB.

Proof. First note that mA,B is well-defined using Lemma 8.3.20. Then we proceed by case distinc-
tions.

• First, g can be the identity, then it’s done.

• It can be an elementary arrow. In the case δA, the following diagram has to commute:

LA
δA //

ζLA

��

L2A

ζL2A

��
K(LA) mK(LA),K(L2A)

// K(L2A).

By definition K(L2A) = K(LA), and from Lemma 8.3.18 mK(LA),K(LA) = idK(LA). Thus
diagram becomes:

LA
δA //

ζLA

��

id
HHH

H

$$HH
HH (a)

L2A

ζL2A

��

ǫLA

zzuuu
uuu

uuu

LA

ζLA $$H
HH

HH
HH

HH
(b)

K(LA) id //

(c)

K(LA),

where (a) commutes by property of comonads, (b) commutes by definition, (c) by vacuity.

8.3. Structure of the Exponential 106

• In the case ǫA, from Lemma 8.3.14 A can be either a subvertex U or of the form LB. In the
case A = LB, using the same equality as above, the following diagram has to commute:

L2B
ǫLB //

ζL2B

��

(a)

(b)

LB

ζLB

��
ζLB

ssss

yysss
s

K(LA) id // K(LA),

and (a) commutes by definition, and (b) by vacuity. In the case A = LU , the diagram that
needs to commute, using Lemma 8.3.14 and Lemma 8.3.15 is:

LU
ǫU //

ζLU

��

U

ζU

��
L(KU) id // L(KU),

which commutes by definition of ζLU .

• Then it can be the expansion f of an elementary arrow: we prove this case by induction on
such an expansion. The base case has been done, it remains to show the general case. Suppose
then that the result is true for some expansion f : A → B. Then we need to show that the
diagram commute for LF , for f ⋉X and for X ⋉ f .

• Finally, it can be a composition f of such expansions. By induction on the number of expan-
sions composed, we show that the diagram commutes for f . What remains to be shown is the
iterative case: Suppose f : A → B is such a composition, and g : B → C is an expansion, we
want the following diagram to commute:

A
f //

ζA

��

f ;g

%%
B

g //

ζB

��

C

ζC

��
KA

mKA,KB //

mKA,KC

88KB
mKB,KC // C.

The upper triangle commutes by definition, the lower one using Lemma 8.3.18, the left square
by induction hypothesis and the right square because we just proved the result for expansions.

Corollary 8.3.22. In D, any two arrows f, g : A→ B are equal.

Proof. From Lemma 8.3.21, they are both equal to ζA;mKA,KB; ζ−1
B .

Proof of Theorem 8.3.8. We prove the theorem when (F1, . . . FN) consists only of one functor ⋉ :
Cop × C → C.

Consider the free category D with an idempotent comonad described in Definition 8.3.9. There
is an inclusion I : D → CG, and any arrow in CG is the image of an arrow in D. Let f, g : A→ B be
arrows of CG. There exists f ′ and g′ in D such that I(f ′) = f and I(g′) = g. From Corollary 8.3.22,
f ′ = g′. Thus f = g.

8.4. Linear Category for Duplication 107

8.3.3 Duplicable Pairs and Pairs of Duplicable Elements

Unlike the work of Benton et al. (1993); Bierman (1993), we want to think of the type !(A ⊗B)
as a type of pairs of elements of type A and B: we want to use the same operation to access the
components as one would use for a pair of type A⊗B, without having to use a dereliction operation.

This immediately raises a concern: consider a pair of elements 〈x, y〉 of type !(A⊗B). Are x
and y duplicable? In the usual linear logic interpretation, they are not. Having a infinite supply
of pair of shoes does not mean one has an infinite supply of right shoes: we cannot discard the left
shoes. On the other hand, in our interpretation of “classical” data as residing in “classical” memory
and therefore being duplicable, if the string 〈x, y〉 is duplicable, then so should be the elements x
and y. In other words, we want the duplication to “permeate” the pairing.

The choice of such a “permeable” pairing is more or less forced on us by our desire to have no
explicit term syntax for structural rules. Consider the following untyped terms, which can be typed
if t is of type !(A⊗ !(B ⊗ C)):

let 〈x, u〉 = t in let 〈y, z〉 = u in 〈〈z, y〉, x〉, (8.3.4)

let 〈x, u〉 = t in 〈let 〈y, z〉 = u in 〈z, y〉, x〉. (8.3.5)

First, we expect these two terms to be axiomatically equal. Term (8.3.5) should be of type
!(!(C ⊗B) ⊗A), regardless of the permeability of the pairing: if 〈y, z〉 is duplicable, so should
be 〈z, y〉. Now, consider the term (8.3.4) with a non-permeable pairing. In the naive type system,
u ends up being of type B ⊗ C, and the variables y and z in the final recombination end up being
respectively of type B and C. It is not possible to make 〈z, y〉 of the duplicable type !(C ⊗B).

We therefore choose a permeable pairing. Is will be reflected, albeit subtly, in the typing rules
(⊗.I) and (⊗.E) of Table 9.1. To enforce it in the semantics, we will pick a strong monoidal comonad
to model the operator “!”.

8.4 Linear Category for Duplication

We now have enough background to define a candidate for the categorical model of the quantum
lambda-calculus. As it was advertised, the structure of the categorical semantics will closely follow
the one proposed by Bierman (1993), but with the added twist of a computational monad à la Moggi
(1991).

Definition 8.4.1. A linear category for duplication is a category C with the following structure:

• a symmetric monoidal structure (⊗,⊤, α, λ, ρ, σ);

• an idempotent, strongly monoidal, linear exponential comonad (L, δ, ǫ, dL, dL, ♦,△);

• a strong monad (T, µ, η, t);

• a Kleisli exponential⊸, that is, a natural bijective map of arrows

Φ : C(A⊗B, TC) → C(A,B⊸C)

and a bifunctor ⊸ : Cop × C → C.

The computational linear category is defined as the Kleisli category CT .

Categories with a combination of a monad and a comonad have been studied by many authors
(Barr, 1990; Hyland and Schalk, 2003; Power and Watanabe, 2002). However, none of them are
equivalent to linear categories for duplication: either the monad and the comonad commute or the
comonad is not idempotent.

8.4. Linear Category for Duplication 108

Example 8.4.2. Consider the category ClasObj of Examples 8.3.3 and 8.3.6. It is symmetric
monoidal closed, and it has a idempotent, monoidal comonad (L, ǫ, δ, dL, dL). Note that the co-
herence maps dL⊤ and dLA,B are isomorphisms: the comonad L is strongly monoidal. We can make
ClasObj into a non-trivial linear category for duplication, as follows:

• For every object (E,BE), define the arrows

♦(E,BE) : L(E,BE) −→ ⊤ △(E,BE) : L(E,BE) −→ L(E,BE) ⊗ L(E,BE)

v 7−→
∑

e∈BE

〈v|e〉, v 7−→
∑

e∈BE

〈v|e〉(e⊗ e).

Equipped with these two maps, the comonad L becomes an idempotent, strongly monoidal,
linear exponential comonad.

• Consider the functor T : ClasObj → ClasObj sending the object (E,BE) to (0, ∅) and the
morphism f : (E,BE) → (F,BF) to Tf = id (0,∅). Together with the maps

η(E,BE) : (E,BE) → T (E,BE) = x 7→ 0,

µ(E,BE) : TT (E,BE) → T (E,BE) = id (0,∅),

t(E,BE),(F,BF) : (E,BE) ⊗ T (F,BF) → T ((E,BE) ⊗ (F,BF)) = id (0,∅),

the functor T is a strong monad.

• Remember that ClasObj is a symmetric monoidal category. At first sight, the functor (−) ⊗
(F,BF) does not have a right adjoint. However, if one defines the object

(E,BE)⊸ (F,BF) = (0, ∅),

there is a natural isomorphism

ClasObj ((E,BE) ⊗ (F,BF), T (G,BG))
∼−→ ClasObj ((E,BE), (F,BF)⊸ (G,BG)),

making⊸ into a Kleisli exponential.

With the structure defined above, ClasObj is a linear category for duplication.

Remark 8.4.3. A linear category for duplication gives rise to a double adjunction

CL

UL

&&⊥ C
FL

gg

UT

((
⊥ CT , .

FT

ff

Here the left adjunction arises from the co-Kleisli category CL of the comonad L. It is as in the
linear-non-linear models of Benton (1994), and CL is a category of classical (non-quantum) values.
The right adjunction arises from the Kleisli category CT of the computational monad T , as in Moggi
(1991). Here CT is a category of (effectful) quantum computations.

Example 8.4.4. In Example 8.4.2, the category quantum values is the category ClasObj and the
category of classical values ClasObjL is equivalent to the category FinSet. Since the image of any
object by T is (0, ∅), one can say that the category of computations ClasObj T contains only one
element: the diverging computation.

Chapter 9

A Computational Lambda Calculus

for Duplication

In this chapter, we describe a subset of the lambda calculus for quantum computation of Chapter 6.
We focus primarily on the type system and language, and not on the structure of the actual “built-
in” quantum operations (such as unitary operators and measurements). The language will be a
generic call-by-value linear lambda calculus, which is parametric on some primitive operations that
are not further explained. It should be understood, however, that the need to support primitive
quantum operations motivates particular features of the type system.

9.1 An Indexed Lambda Calculus

We describe a linear typed lambda calculus with higher-order functions and pairs. The language
is designed to manipulate both classical data, which is duplicable, and quantum data, which is
non-duplicable. For simplicity, we assume the language is strictly linear, and not affine linear as in
Chapter 6. This means duplicable values are both copyable and discardable, whereas non-duplicable
values must be used once, and only once.

9.1.1 Type System

We define a type system together with a subtyping relation similar as in Section 6.3. The only
difference is that type constants are parametrized.

Definition 9.1.1. The set of types is

Type A,B ::= α | (A⊸B) | (A⊗B) | ⊤ | !A,

where α ranges over type constants. While the remainder of this thesis does not depend on the
choice of type constants, in our main application this is intended to include a type qbit of quantum
bits, and a type bit of classical bits. The meaning of the types is the same as in Section 6.3. The
type system comes also with the subtyping relation of Definition 6.3.3.

Remark 9.1.2. The type system satisfies Lemmas 6.3.4 and 6.3.5.

109

9.1. An Indexed Lambda Calculus 110

9.1.2 Terms

The language is a computational language: it is divided into values on the one hand, and general
terms, or computations, on the other.

As in Chapter 7, our goal is to find a semantics for the language. The semantics has to be
compositional, that is, the semantics of a given term has to be derived from the semantics of its
subterm. We are focusing on a language close to the one of Chapter 6. In this language, consider
the following two typing judgements, where V and W are values:

x : A ⊲ V : !B, y : B ⊲W : C.

The typing judgement x : A ⊲ let y = V in W : C has two valid typing derivations:

x : A ⊲ V : !B y : !B ⊲W : C

x : A ⊲ let y = V in W : C,

x : A ⊲ V : B y : B ⊲W : C

x : A ⊲ let y = V in W : C.

In order to be able to define a semantics for judgements like x : A ⊲ let y = V in W : C, we will use
indexed terms. The purpose of the indexing will be to make sure that each valid typing judgement
has a reasonably unique typing tree.

Definition 9.1.3. We define the notion of core values, extended values and terms as follows:

CoreValue U,U ′ ::= xA | cA | ∗n | λnxA.M | 〈U,U ′〉n,

ExtValue V,W ::=U | 〈V,W 〉n | let xA = V in W | let 〈xA, yB〉n = V in W |
let ∗ = V in W,

Term M,N ::=U | 〈M,N〉n | (MN) | let 〈xA, yB〉n = M in N | let ∗ = M in N,

where n is an integer, c ranges over a set of constant terms, x over a set of term variables and α over
a set of constant types. We abbreviate (λ0xA.M)N by let xA = N in M , λnx!m⊤. let ∗ = x⊤ in M
by λn∗m.M and we omit numerical indexes when they are null.

Core values and extended values are often simply called values when the context is clear. General
terms are also called computations.

Remark 9.1.4. A technicality we introduced is the distinction between core values and extended
values. The core values have the same structure as the values of Section 6.2.4. The need for extended
values comes from the fact that we wish to have a destructor for the unit type ⊤ in the category of
values, so that we are allowed to write the judgement

x : A, y : ⊤ ⊲ let ∗ = y⊤ in xA : A.

However, as it will be further developed in Remark 9.1.30, this term will cause problem with sub-
stitution in certain situations. We are forced to restrict the substitution to core values.

Convention 9.1.5. We use the notations . , .. and ... as place holders for xA, ∗ and 〈xA, yB〉n
(not respectively). We use typed version of them when we want to enforce the underlying type. For
example, . A can stand for xA, ∗ if A = ⊤, or 〈xB, yC〉n if A = !n(B ⊗ C).

We also define a notion of untyped terms as terms with no index:

PureTerm M,N ::= x | c | ∗ | λx.M | (MN) | 〈M,N〉 |
let 〈x, y〉 = M in N | let ∗ = M in N .

The erasure operation Erase : Term → PureTerm is defined as the operation of removing the types
and integers attached to a given indexed term. If M = Erase(M̄), we say that M̄ is an indexation
of M . We define notions of free variables and α-equivalence on terms, denoted by =α, in the usual
way (see for example Section 6.1).

9.1. An Indexed Lambda Calculus 111

A<:B

!∆, x : A ⊲ xB : B
(ax 1)

!Ac <:B

!∆ ⊲ cB : B
(ax 2)

!∆ ⊲ ∗n : !n⊤ (⊤.I)

∆, x : A ⊲M : B

∆ ⊲ λ0xA.M : A⊸B
(λ1)

!∆, x : A ⊲M : B

!∆ ⊲ λn+1xA.M : !n+1(A⊸B)
(λ2)

Γ1, !∆ ⊲M : A⊸B Γ2, !∆ ⊲ N : A

Γ1,Γ2, !∆ ⊲MN : B
(app)

!∆,Γ1 ⊲M : !nA1 !∆,Γ2 ⊲ N : !nA2

!∆,Γ1,Γ2 ⊲ 〈M,N〉n : !n(A1 ⊗A2)
(⊗.I)

!∆,Γ1 ⊲M : ⊤ !∆,Γ2 ⊲ N : A

!∆,Γ1,Γ2 ⊲ let ∗ = M in N : A
(⊤.E)

!∆,Γ1 ⊲M : !n(A1 ⊗A2) !∆,Γ2, x1 : !nA1, x2 : !nA2 ⊲ N : A

!∆,Γ1,Γ2 ⊲ let 〈xA1
1 , xA2

2 〉n = M in N : A
(⊗.E)

Table 9.1: Typing rules for the linear-non-linear quantum lambda calculus

Lemma 9.1.6. Suppose that V is a core value (respectively an extended value). Then if M is a
term such that Erase(M) = Erase(V) then M is a core value (respectively an extended value).

Lemma 9.1.7. Suppose that M and M ′ are two terms such that Erase(M) = Erase(M ′). Then
FV (M) = FV (M ′) = FV (Erase(M ′)).

Definition 9.1.8. The indexation of terms induces a partial map from terms to types, called the
raw type of M . We write M : A to say that A is the raw type of M , or that M is raw-typed, and
we define it inductively as follows:

xA : A, {M : A⊸B}N : B,

cB : B, 〈{M : !nA}, {N : !nB}〉n : !n(A⊗B),

∗n : !n⊤, let 〈xA, yB〉n = M in {N : C} : C,

λnxA.{M : B} : !n(A⊸B), let ∗ = M in {N : C} : C.

We use the notation {M : A} to say “the term M when it is of type A”.

9.1.3 Typing Judgements

Definition 9.1.9. We define the notion of typing context of Definition 6.3.6.
A typing judgement is a tuple ∆ ⊲M : A, where M is an indexed term, A is a type, and ∆ is a

typing context. As before, to each constant term c we assign a type !Ac. A valid typing judgement
is a typing judgement that can be derived from the typing rules in Table 9.1.

Definition 9.1.10. We define a special derived rule called (let);

!∆,Γ1, x : A ⊲M : B !∆,Γ2 ⊲ N : A

!∆,Γ1,Γ2 ⊲ let xA = N in M : B
(let).

It is derived using Definition 9.1.3, stating that let xA = N in M is the term (λ0xA.M)N :

!∆,Γ1, x : A ⊲M : B

!∆,Γ1 ⊲ λ
0xA.M : B

(λ1)
!∆,Γ2 ⊲ N : A

!∆,Γ1,Γ2 ⊲ (λ0xA.M)N : B
(app).

9.1. An Indexed Lambda Calculus 112

Lemma 9.1.11. Consider a valid typing judgement ∆ ⊲M : A. Then FV (M) ⊆ |∆|.

Proof. Proof by induction on the size of M .

Case M ≡ xB . The only applicable rule is (ax 1). Then the typing judgement is of the form !∆, x :
A ⊲ xB : B. We thus have FV (M) = {x} ⊆ |∆| ∪ {x} = |∆, x : A|.

Cases M ≡ cB and M ≡ ∗n. In both cases FV (M) = ∅. The result is true by vacuity.

Case M ≡ λnxA.N . The only applicable rule is (λi), with i = 1 if n = 0, i = 2 otherwise. Thus
there exists some B such that the typing judgement is of the form ∆ ⊲ λnxA.N : !n(A⊸B)
with ∆, x : A ⊲ N : B. By induction hypothesis, we have FV (N) ⊆ |∆, x : A| = |∆| ∪ {x}. By
definition of free variables, FV (λnxA.N) = FV (N) \ {x} ⊆ |∆|.

Case M ≡ NP , 〈N,P 〉n and let ∗ = M in N . The applicable rules are respectively (app), (⊗.I) and
(⊤.E). The context ∆ splits into !∆′, Γ1, Γ2 such that !∆′,Γ1 ⊲ N : B and !∆′,Γ2 ⊲ P : C for
some types B and C. By induction hypothesis, FV (N) ⊆ |!∆′,Γ1| and FV (P) ⊆ |!∆′,Γ2|. Since
FV (M) = FV (N) ∪ FV (P), we have FV (M) ⊆ |!∆′| ∪ |Γ1| ∪ |Γ1| = |∆|.

Case M ≡ let 〈xA1 , yA2〉n = N in P . The only applicable rule is (⊗.E). There exists some type B
for which the typing judgement ∆ ⊲ let 〈xA1 , yA2〉n = N inP : B is valid. Moreover, ∆ splits into
!∆′,Γ1,Γ2 such that !∆′,Γ1 ⊲ N : !n(A1 ⊗An) and such that !∆′,Γ2, x : !nA1, y : !nA2 ⊲ P : B.
By induction hypothesis, FV (N) ⊆ |!∆′,Γ1| = |!∆′| ∪ |Γ1| and FV (P) ⊆ |!∆′,Γ2, x : !nA1, y :
!nA2| = |!∆′|∪|Γ2|∪{x, y}. By definition of free variables, FV (M) = FV (N)∪(FV (P)\{x, y}).
Thus FV (M) ⊆ |∆|.

And this closes the proof of Lemma 9.1.11.

Lemma 9.1.12. Consider a term M and any valid typing judgement ∆ ⊲ M : B. Then the raw
type A of M exists, and the type B is equal to A.

Proof. Proof by structural induction on M , looking at a typical typing judgement ∆ ⊲M : A.

Case M ≡ xB . The only applicable rule is (ax 1). Then the typing judgement is of the form !∆, x :
A ⊲ xB : B. We thus have M : B.

Case M ≡ cB. The only applicable rule is (ax 2). Thus the typing judgement is of the form !∆ ⊲
cB : B. We thus have M : B.

Case M ≡ ∗n. The only applicable rule is (⊤.I). The type B is of the form !n⊤ and the typing
judgement is of the form !∆ ⊲ ∗n : !n⊤. Thus we have M : B.

Case M ≡ λ0xA.N . The only applicable rule is (λ1). Thus there exists some B such that the typing
judgement is of the form ∆ ⊲ λ0xA.N : A⊸B with ∆, x : A ⊲ N : B. By induction hypothesis,
we have N : B. Thus λ0xA.N : A⊸B.

Case M ≡ λn+1xA.N . The only applicable rule is (λ2). Then ∆ = !∆′, and there exists some B
such that the typing judgement is of the form !∆′

⊲ λn1xA.N : !n+1(A⊸B). The judgement
is inferred from !∆′, x : A ⊲ N : B. By induction hypothesis, we have N : B. This makes
λn1xA.N : !n+1(A⊸B).

Case M ≡ NP . The only applicable rule is (app). The context ∆ splits into !∆′, Γ1, Γ2 such that
!∆′,Γ1 ⊲ N : A⊸ B and !∆′,Γ2 ⊲ P : A. By induction hypothesis, N : A⊸ B and M : A.
Thus NP : B.

9.1. An Indexed Lambda Calculus 113

Case M ≡ 〈N,P 〉n. The only applicable rule is (⊗.I). This means ∆ ⊲ 〈N,P 〉n : !n(A⊗B), and
the context ∆ splits into !∆′,Γ1,Γ2 such that !∆′,Γ1 ⊲ N : !nA and such that !∆′,Γ2 ⊲ P : !nB.
By induction hypothesis, N : !nA and P : !nB. Thus l〈N,P 〉n : !n(A⊗B)

Case M ≡ let ∗ = N in P . The only applicable rule is (⊤.E). For some type A, the typing judge-
ment ∆ ⊲ let ∗ = N in P : A is valid and ∆ splits into !∆′,Γ1,Γ2 such that !∆′,Γ1 ⊲ N : ⊤ and
such that !∆′,Γ2 ⊲ P : A. By induction hypothesis, P : A. This means let ∗ = N in P : A.

Case M ≡ let 〈xA1 , yA2〉n = N in P . The only applicable rule is (⊗.E). We have the valid typing
judgement ∆ ⊲ let 〈xA1 , yA2〉n = N in P : B for some type B and ∆ splits into !∆′,Γ1,Γ2 such
that !∆′,Γ1 ⊲ N : !n(A1 ⊗ An) and such that !∆′,Γ2, x : !nA1, y : !nA2 ⊲ P : B. By induction
hypothesis, P : B. We deduce that M : B.

Therefore, regardless of the chosen typing judgement ∆ ⊲M : A, A is always equal to the raw type
of M .

Remark 9.1.13. Although the type A in a valid typing judgement ∆ ⊲ M : A is only dictated
by M , the context ∆ cannot be chosen arbitrarily for the judgement to be valid. Consider the
term fA⊸A(fA⊸AxA) : A. The context (f : !(A⊸ A), x : A) makes a valid typing judgement, but
(f : A⊸A, x : A) does not.

Lemma 9.1.14. Consider a valid typing judgement ∆ ⊲M : B and the subtyping relation ∆′<:∆.
Then ∆′ ⊲M : B is valid.

Proof. Let π be a derivation of ∆ ⊲M : B The proof is done by induction on the size of π.

Case (ax 1). The typing judgement is of the form !∆̇, x : A ⊲ xB : B with A <: B. We have then
∆ = (!∆̇, x : A). Since ∆′ <: ∆, the context ∆′ is of the form (!∆̇′, x : !A′), where !∆̇′ <: !∆̇ and
A′<:A. Note that !∆̇′ is duplicable from Lemma 6.3.5. Since A<:B, we have A′<:B. Applying
rule (ax 1), we have that !∆̇′, x : A′ ⊲ xB : B is valid.

Cases (ax 2) and (⊤.I). The typing judgements are respectively of the form !∆̇ ⊲ cB : B and !∆̇ ⊲
∗n : !n⊤, where ∆ = !∆̇. Since ∆′ <: ∆, from Lemma 6.3.5 ∆′ = !∆̇′. We can therefore apply
(ax 2) (respectively (⊤.I)) and get that !∆̇′ ⊲M : B is valid.

Case (λ1). There exists some B such that the typing judgement is of the form ∆ ⊲ λ0xA.N : A⊸B
with ∆, x : A ⊲ N : B. Since (∆′, x : A) <: (∆, x : A), by induction hypothesis, we have
∆′, x : A ⊲ N : B. Applying (λ1), we get that ∆ ⊲ λ0xA.N : A⊸B is valid.

Case (λ2). We have ∆ = !∆̇, and there exists some B such that the typing judgement is of the
form !∆̇ ⊲ λn1xA.N : !n+1(A⊸B). The judgement is inferred from !∆̇, x : A ⊲ N : B. Since
∆′<: !∆̇, from Lemma 6.3.5 ∆′ = !∆̇′. We have therefore (!∆̇′, x : A)<: (!∆̇, x : A). By induction
hypothesis, we have !∆̇′, x : A ⊲ N : B. Finally, we can apply the typing rule (λ2) in order to
get that !∆̇′ ⊲ λn1xA.N : !n+1(A⊸B) is valid.

Cases (app), (⊗I), (⊤.E) and (⊗.E). The term M is respectively of the form

M ≡ NP, M ≡ 〈N,P 〉n,
M ≡ let ∗ = N in P, M ≡ let 〈xD1 , yD2〉n = N in P.

The typing context ∆ splits into (!∆̇,Γ1,Γ2) such that !∆̇,Γ1 ⊲ N : B1 and such that !∆̇,Γ2,Λ ⊲
P : B2, for some types B1, B2 and a context Λ that is empty for the first three cases and equal
to (x : D1, y : D2) in the last case.

9.1. An Indexed Lambda Calculus 114

Since ∆′ <: ∆, the context ∆′ splits into (!∆̇′,Γ′
1,Γ

′
2), where !∆̇′ <: !∆̇, Γ′

1 <: Γ1 and Γ′
2 <: Γ2.

By induction hypothesis, in each of the four cases, !∆̇′,Γ′
1 ⊲ N : B1 and !∆̇′,Γ′

2,Λ ⊲ P : B2 are
valid. Applying the typing rule corresponding to the case considered, we get that ∆′ ⊲M : B is
valid.

Thus, by induction the lemma is valid.

Lemma 9.1.15. Let Γ ⊲ V : !A be a valid typing judgement with V a core value. Then Γ = !∆ for
some context ∆.

Proof. The proof is done by induction on the structure of V . Base cases:

Case V = xB . The only typing rule available for it is (ax 1). The type B is therefore of the form !B′.
The typing judgement is then of the form !∆, x : A ⊲ x!B′

: !B′, with A<: !B. By Lemma 6.3.5,
the type A is of the form !A′, and the context Γ is of the requested form.

Case V = cB. Here, the only typing rule available for it is (ax 2). The typing judgement is therefore
of the form !∆ ⊲ cB : B: the lemma is true in this case.

Case V = ∗m. The only typing rule available for it is (⊤.I). The typing judgement is therefore of
the form !∆ ⊲ ∗n+1 : !n+1⊤: as in the previous case, the lemma is true.

Case V = λmxB.M . There are two available typing rules for validating Γ ⊲ λmxB .M : !A, but
only one, that is (λ2), for a duplicable lambda abstraction. This means m = n + 1, and !A =
!n+1(B⊸C). The fact that Γ is of the form !∆ is one of the requirement of this typing rule.

The only inductive case is the following.

Case V = 〈V1, V2〉m. The only available typing rule is (⊗.I), stating that the type !A is of the form
!n+1(B ⊗ C), that m = n + 1 and that Γ = !∆,Γ1,Γ2, with !∆ ⊲ V1 : !n+1B and !∆,Γ2 ⊲ V2 :
!n+1C being valid typing judgements. Since V1 and V2 are core values, the induction hypothesis
applies, and Γ1 is of the form !Γ′

1 and Γ2 is of the form !Γ′
2. This makes Γ of the requested form.

Hence, by structural induction on V , Lemma 9.1.15 is valid.

Lemma 9.1.16. Consider the following valid typing judgement: ∆, x : A ⊲M : B. Then for every
free instance xA

′

in M , A<:A′.

Proof. Proof by induction on the size of the derivation of ∆, x : A ⊲M : B.

Case (ax 1). The typing judgement is of the form !∆, y : A ⊲ yB : B, with A <: B. If y = x, then
the result is true since xB is the only free variable. If y 6= x, there is no instance of x, so the
result is true by vacuity.

Case (ax 2). The typing judgement is of the form !∆ ⊲ cB : B: there is no free variable, the result
is true by vacuity.

Cases (λ1) and (λ2). The typing judgement is of the form ∆, x : A ⊲ λnyB.M : !n(B⊸ C), with
∆, x : A, y : B ⊲ M : C and y 6= x. By induction hypothesis, for every free instance xA

′

of M
one has A<:A′. Thus it is also true for every free instance xA

′

of λnyB.M .

Cases (app), (⊗.I), (⊤.E) and (⊗.E). The term M is respectively of the form

M ≡ NP, M ≡ 〈N,P 〉n,
M ≡ let ∗ = N in P , M ≡ let 〈yD1 , zD2〉n = N in P.

9.1. An Indexed Lambda Calculus 115

The typing context ∆, x : A splits into !∆̇,Γ1,Γ2 such that !∆̇,Γ1 ⊲ N : B1 and such that
!∆̇,Γ2,Λ ⊲ P : B2, for some types B1, B2 that depend on the rule used and for some context Λ,
empty in the three first cases and equal to (y : D1, z : D2) in the last case. Using α-equivalence
one can assume that x is different from y and z. There are three cases, depending on where x : A
is to be found.

Found in Γ1. Then there is no free instance of x in P , and by induction hypothesis every free
instance xA

′

in N are such that A<:A′. Then for all free instances xA
′

in M , A<:A′.

Found in Γ2. Then there is no free instance of x in N , and by induction hypothesis every free
instance xA

′

in P are such that A<:A′. Then for all free instances xA
′

in M , A<:A′.

Found in !∆. Applying induction hypothesis on both typing judgements, we get that or all free
instances xA

′

in N and in P , thus in M , A<:A′.

Thus by induction, the lemma is valid.

Lemma 9.1.17. Consider a valid typing judgement ∆ ⊲ M : A, where M is of the form 〈N,P 〉n,
NP , let ∗ = N in P or let 〈yC , zD〉n = N in P . If x : B (x 6= y, z) is in ∆ such that B is not of the
form !B′ then x cannot be free both in N and in P .

Proof. The proof is done by case distinction on the first typing rule used in the derivation of ∆ ⊲
M : A.

Definition 9.1.18. In a typing judgement ∆ ⊲ M : A, a term variable x ∈ |∆| is called dummy if
x 6∈ FV (M).

Lemma 9.1.19. Let ∆, x : A ⊲ M : B be a valid typing judgement where x is a dummy variable
for M . Then

1. the type A is of the form !A′;

2. the typing judgement ∆ ⊲M : B is valid;

3. for any fresh variable y and any type C, the typing judgement ∆, x : A, y : !C ⊲ M : B is
valid.

Proof. We prove the result by induction on the size of the derivation of ∆, x : A ⊲M : B.

Case (ax 1). The typing judgement is of the form !∆′, z : D ⊲ zE : E, with D <: E. If there is a
dummy variable x, it is in |∆′| and is therefore duplicable. If we write !∆′ = (!∆′′, x : A), by
rule (ax 1) the typing judgement !∆′′, z : D ⊲ zE : E is valid. Now, if for some fresh variable y if
we consider the typing judgement !∆′, z : D, y : !C ⊲ zE : E, it is valid by the same rule (ax 1).

Case (ax 2) and case (⊤.I). The typing judgement has a context of the form !∆′. If there is a dummy
variable x, it is in |∆′| and is therefore duplicable. Removing this variable from the context does
not change the validity of the judgement. Now, if we extend the context to !∆′, y : !C, the typing
judgement is again valid by the same rule (ax 2) or (⊤.I).

Case (λ1) and case (λ2). The typing judgement is ∆, x : A ⊲ λnzD.N : !n(D⊸E), such that
∆, x : A, z : D ⊲ N : E is valid. If x 6∈ FV (λnzD.N), then x is not in FV (N) (since x 6= z), and
by induction hypothesis its type is of the form !A′.

Now, consider some fresh y and some type C. By induction hypothesis, ∆, y : !C, x : A, z :
D ⊲ N : E and ∆, z : D ⊲ N : E are valid. If the rule applied was (λ1), then the integer
n is 0, and one can again apply (λ1) to get ∆, x : A, y : !C ⊲ λnzD.N : !n(D⊸E) and
∆ ⊲ λnzD.N : !n(D⊸E). If the rule applied was (λ2), then the integer n is greater than 0 and
the context ∆ is of the form !∆′. Then rule (λ2) can again be applied to get !∆′, x : A, y : !C ⊲
λnzD.N : !n(D⊸E) and !∆′ ⊲ λnzD.N : !n(D⊸ E).

9.1. An Indexed Lambda Calculus 116

Cases (app), (⊗.I), (⊤.E) and (⊗.E). The term M is respectively of the form

M ≡ NP, M ≡ 〈N,P 〉n,
M ≡ let ∗ = N in P, M ≡ let 〈xD1 , yD2〉n = N in P.

The typing context (∆, x : A) splits into !∆′,Γ1,Γ2 such that !∆′,Γ1 ⊲ N : B1 and such that
!∆′,Γ2 ⊲ P : B2, for some types B1, B2 that depend on the rule used.

First let us prove that ∆, x : A, y : !C ⊲ M : B is valid when y is a fresh variable and C is any
type. By induction hypothesis, !∆′,Γ1, y : !C ⊲ N : B1 is valid. So applying back the rule that
was used, we get that ∆, x : A, y : !C ⊲M : B is valid.

Second, let us show that if x 6∈ FV (M), then its type is of the form !A′ and ∆ ⊲M : B is valid.
There are three cases, depending on where x is to be found.

Found in Γ1. Then since x ∈ |!∆′,Γ1| but x 6∈ FV (N), by induction hypothesis the type of x
in the context is of the form !A, and if Γ1 = (Γ′

1, x : A), we have !∆,Γ′
1 ⊲ N : B1 valid.

Applying back the typing rule used, we get ∆ ⊲M : B valid.

Found in Γ2. Then since x ∈ |!∆′,Γ2| but x 6∈ FV (P), by induction hypothesis the type of x in
the context is of the form !A, and if Γ2 = (Γ′

2, x : A), we have !∆,Γ′
2 ⊲ P : B2 valid. Applying

back the typing rule used, we get ∆ ⊲M : B valid.

Found in !∆′. Then the type of x is automatically of the form !A. By induction hypothesis, if
!∆′ = (!∆′′, x : A), both !∆′′,Γ1 ⊲ N : B1 and !∆′′,Γ2 ⊲ P : B2 are valid. Applying back the
typing rule used, we get ∆ ⊲M : B valid.

And this ends the proof.

9.1.4 Type Casting and Substitution Lemma

We now wish to define a set of call-by-value equations on typed terms. To be able to define a
well-typed β-reduction rule, we first need a substitution lemma. Given a value x : A ⊲ V : B
and a term y : B ⊲ M : C, one expects x : A ⊲ M [V/y] : C to be well typed. Unfortunately,
in the presence of Church-style type indices and subtyping, the naive notion of substitution is not
technically well-typed. For example, consider the following valid typing derivations:

A⊸ A<: !A⊸A

x : A⊸A ⊲ x!A⊸A : !A⊸ A,

A <:A

y : A ⊲ yA : A

⊲ λ0yA.yA : A⊸A.

Having two valid typing judgements of the form x : B ⊲ M : C and ⊲ V : B, it is reasonable to
expect to be able to substitute V for x in M . Doing so yields the following typing judgement:

⊲ λ0yA.yA : !A⊸ A,

which is not technically valid due to the superscript on the bound variable. The standard trick to
resolve this issue (see e.g. Pierce, 2002) is to use implicit typecasting, or coercion. In this section we
give a precise definition of substitution using typecasting.

Definition 9.1.20. Given M : A and A <: B, we define the map TypeCast(M,B), written {M :
A<:B}, or simply {M <:B}, by induction on M as follows:

• Base cases:

{xA <:B} = xB , {cA <:B} = cB, {∗n <: !m⊤} = ∗m.

9.1. An Indexed Lambda Calculus 117

• Induction cases:

{λnxA.M <: !k(A′
⊸B′)} = λkxA

′

.{M <: B′},
{M{N : A}<:B} = {M <:A⊸B}N,

{〈M,N〉n <: !m(A⊗B)} = 〈{M <: !mA}, {N <: !mB}〉m,
{let 〈xA, yB〉n = M in N <: C} = let 〈xA, yB〉n = M in {N <: C},

{let ∗ = M in N <:C} = let ∗ = M in {N <: C} .

Lemma 9.1.21. Suppose N : A and A<:A′. Then

{let xB = M in N <:A′} = (let xB = M in {N <:A′}).

Proof. Using Definition 9.1.20:

{let xB = M in N <:A′} = {(λ0xB .N)M <:A′}
= {λ0xB.N <:B⊸ A′}M
= (λ0xB .{N <:A′})M
= (let xB = M in {N <:A′}).

And this ends the proof.

Lemma 9.1.22. Suppose that M : A and that A<:A′<:A′′. Then {{M<:A′}<:A′′} = {M<:A′′}.

Proof. Proof by induction on the size of M .

Lemma 9.1.23. Suppose that M : A. then {M <:A} = M .

Proof. Proof by structural induction on M .

Lemma 9.1.24. If the raw type A of M exists and if A <:A′, then {M <: A′} is well-defined and
of raw type A′.

Proof. Proof by structural induction on M .

Lemma 9.1.25. Suppose M : A and A<:A′. Then Erase(M) = Erase{M <:A′}.

Proof. Proof by structural induction on M .

Lemma 9.1.26. Consider a valid typing judgement ∆ ⊲M : A and the subtyping relation A<:A′.
Then ∆ ⊲ {M <:A′} : A′ is valid.

Proof. Proof by induction on the size of M .

Lemma 9.1.27. Suppose M : A and A<:A′. If M is a core value (respectively an extended value),
so is M ′ = {M <:A′}.

Proof. Lemma 9.1.25 states that Erase(M) = Erase(M ′) and Lemma 9.1.6 that since M is a (core,
extended) value, so is M ′.

9.1. An Indexed Lambda Calculus 118

Definition 9.1.28. Given two valid typing judgements !∆,Γ1 ⊲ V : A and !∆,Γ2, x : A ⊲ M : B
where V is a core value, where M is any term, and where |Γ1| ∩ |Γ2| = ∅, we define the substitution
M [V/x] (capture avoiding) of x by V in M as follows: we replace each free instance xA

′

(where
A<:A′ from Lemma 9.1.16) in M by {V <:A′}. This is formally defined as follows:

(xA
′

)[V/x] = {V <:A′},
(cB)[V/x] = cB,

(∗n)[V/x] = ∗n,
(MN)[V/x] = (M [V/x])(N [V/x]),

(〈M,N〉n)[V/x] = 〈M [V/x], N [V/x]〉n,
(let ∗ = M in N)[V/x] = let ∗ = (M [V/x]) in (N [V/x]),

(λnxC .M)[V/x] = λnxC .M,

(λnyC .M)[V/x] = λnyC .(M [V/x]) (if y 6= x and y 6∈ FV (V)).

If y = x or z = x:

(let 〈yC , zD〉n = M in N)[V/x] = (let 〈yC , zD〉n = (M [V/x]) in N).

If y 6= x and z 6= x (and y, z 6∈ FV (V)):

(let 〈yC , zD〉n = M in N)[V/x] = (let 〈yC , zD〉n = (M [V/x]) in (N [V/x])).

Definition 9.1.29. Suppose that !∆,Γi ⊲ Vi : Ai are valid typing judgements, for i = 1 . . . n, where
Vi is a core value. Suppose that !∆,Γ, x1 : A1, . . . , xn : An ⊲ M : B is valid. By α-equivalence one
can assume that the xi’s are not free in any Vj ’s. Assuming this, we define the multiple substitution
M [V1/x1, . . . Vn/xn] by induction on n:

• If n = 0, we defineM [] to be M .

• If n 6= 0, we define M [V1/x1, . . . Vn/xn] to be (M [V1/x1, . . . Vn−1/xn−1])[Vn/xn], using Defini-
tion 9.1.28.

Remark 9.1.30. Note that we only allowed substitution by core values, and not by extended values
nor by general terms. This is due to the strict linearity of the type system. Suppose that we are
given the valid typing judgements

x : ⊤ ⊲ let ∗ = x⊤ in ∗1 : !⊤, y : !⊤ ⊲ c : Ac.

If we were allowed to substitute term variables by extended values, then one could substitute the
former term in place of y in the latter term. However, doing so yield the non-valid typing judgement

x : ⊤ ⊲ c : Ac.

The problem comes from the fact that an object of type ⊤ can be weakened, although it is not
explicitly duplicable.

Lemma 9.1.31. In Definition 9.1.28, if x 6∈ FV (M), M [V/x] = M .

Proof. One proves by structural induction on M that if x 6∈ FV (M) then M [V/x] = M .

Case M ≡ yC . Since x 6∈ FV (M), y 6 x. Then by definition M [V/x] = M .

9.1. An Indexed Lambda Calculus 119

Cases M ≡ ∗n and M ≡ cB. Again, by definition M [V/x] = M .

Case M ≡ λnyC .N . If y = x then by definition (λnyC .N)[V/x] = λnyC .N and we are done. If
y 6= x, the substitution (λnyC .N)[V/x] is equal to λnyC .(N [V/x]). Then by induction hypothesis,
N [V/x] = N , and thus M [V/x] = M .

Cases M ≡ NP , M ≡ 〈N,P 〉n and M ≡ (let ∗ = N in P). By induction hypothesis, N [V/x] = N
and P [V/x] = P . Using the definition of substitution, M [V/x] = M .

Case M ≡ (let 〈yC , zD〉n = N in P). Using α-equivalence one can suppose that y and z are not
free variables of V . Then, if y = x or z = x, M [V/x] = (let 〈yC , zD〉n = N [V/x] in P). By
induction hypothesis N [V/x] = N and thus M [V/x] = M . If x 6= y and x 6= z, M [V/x] =
(let 〈yC , zD〉n = N [V/x] in P [V/x]). By induction hypothesis N [V/x] = N and P [V/x] = P ,
thus making M [V/x] = M .

Then Lemma 9.1.31 is valid.

Lemma 9.1.32. In Definition 9.1.28, if M is a core value, so is M [V/x], and if M is an extended
value, so is M [V/x].

Proof. By induction on the structure of M we prove that if M is a core value, so is M [V/x]. Base
cases:

Case M ≡ yB. If y 6= x, thenM [V/x] = M , and it is a core value. If y = x, thenM [V/x] = {V <:B},
which is a core value from Lemma 9.1.27.

Cases M ≡ ∗n and M ≡ cB. In both cases M [V/x] = M , already in the form of a core value.

Case M ≡ λnyC .N . In this situation M [V/x] is of the form λ . . ., which is a core value.

Induction case:

Case M ≡ 〈V1, V2〉n, with V1, V2 core values. We have M [V/x] = 〈V1[V/x], V2[V/x]〉n. By induction
hypothesis, V1[V/x] and V2[V/x] are core values, making the term 〈V1[V/x], V2[V/x]〉n = M [V/x]
into a core value.

This exhausts the possibilities. Thus, by structural induction, M [V/x] is a core value is M is. We
do the same for extended values, and prove that M [V/x] is an extended value if M is, by structural
induction on M . The base cases are the same as the base cases for core values, replacing the word
“core” by the word “extended”, and remembering that any core value is an extended value. The
induction cases go as follows.

Cases M ≡ 〈V1, V2〉n and (let ∗ = V1 in V2). In this case, V1 and V2 are extended values. Write
f(V1, V2) for M . Then we have M [V/x] = f(V1[V/x], V2[V/x]). By induction hypothesis, V1[V/x]
and V2[V/x] are extended values, making the term M [V/x] into an extended value.

Case M ≡ (let yC = V1 in V2) (respectively M ≡ (let 〈yC , zD〉n = N in P)). We write f(V1, V2) in
place of M . Modulo α-equivalence one can assume that y (resp. y and z) is not a free variable
of V . If y = x (resp. y = x or z = x) then M [V/x] = f(V1[V/x], V2). If y 6= x (resp. y 6= x and
z 6= x), M [V/x] = f(V1[V/x], V2[V/x]). By induction hypothesis, V1[V/x] (and V2[V/x] in the
second case) are extended values. This means that in both cases, M [V/x] is an extended value.

This exhausts the possible cases, and the proof by induction is done: if M is an extended value, so
is M [V/x]

9.1. An Indexed Lambda Calculus 120

Lemma 9.1.33 (Substitution Lemma). Given two valid typing judgements !∆,Γ1 ⊲ V : A and
!∆,Γ2, x : A ⊲M : B such that V is a core value and such that |Γ1| ∩ |Γ2| = ∅, the typing judgement
!∆,Γ1,Γ2 ⊲M [V/x] : A is valid.

Proof. The proof is done by induction on the size of M .

Case M ≡ yB. Then the derivation of the typing judgement of M starts with the rule (ax 1). This
implies that Γ2 = !Γ′

2 and the typing judgement of M is !∆, !Γ′
2, x : A ⊲ yB : B.

If y = x, then A <: B and M [V/x] = !∆,Γ1 ⊲ {V <: B} is well-defined. From Lemma 9.1.26
!∆,Γ1 ⊲M [V/x] : B is well-typed. Using Lemma 9.1.19 !∆,Γ1, !Γ

′
2 ⊲M [V/x] : B is valid.

If y 6= x, then M [V/x] = yB. Since !∆,Γ2, x : A ⊲ yB : B is valid, A has to be of the form !A′.
Then by Lemma 9.1.15, Γ1 is of the form !Γ′

1. From Lemma 9.1.19 !∆, !Γ′
1, !Γ

′
2 ⊲ y

B : B is valid.

Case M ≡ cB (resp. M ≡ ∗n). A derivation of M starts with rule (ax 2) (resp. rule (⊤.I)). In both
cases the context (Γ2, x : A) is duplicable: Γ2 = !Γ′

2 and A = !A′. The core value V is then in
fact of type !A′. By Lemma 9.1.15, Γ1 is of the form !Γ′

1 for some context Γ′
1.

In both cases, the substitution M [V/x] yields back M . Thus, !∆, !Γ′
1, !Γ

′
2 ⊲M [V/x] : B is valid

by applying the typing rule (ax 2) (resp. (⊤.I)).
Case M ≡ λnyC .N . The typing judgement for the term M is of the form !∆,Γ2, x : A ⊲ λnyC .N :

!n(C⊸D), and any typing derivation starts with either (λ1) or (λ2) depending on the value n.
In both cases, the judgement !∆,Γ2, x : A, y : C ⊲ N : D is valid.

Note that x cannot be equal to y in this situation. Using α-equivalence, one can furthermore
choose y such that it does not belong to Γ1.

The induction hypothesis can be applied on the judgements !∆,Γ1 ⊲ V : B and !∆,Γ2, y : C, x :
A ⊲ N : D, and we get the valid typing judgement

!∆,Γ1,Γ2, y : C ⊲ N [V/x] : D. (9.1.1)

Note that since x 6= y, the substitution (λnyC .N)[V/x] = λnyC .(N [V/x]). There are two cases,
depending on n.

If n = 0, applying (λ1) on Equation (9.1.1) gives that !∆,Γ1,Γ2 ⊲ (λ0yC .N)[V/x] : C⊸ D is
valid.

If n 6= 0, then (λ2) is the first rule for the derivation of M , and (Γ2, x : A) is of the form
(!Γ′

2, x : !A′). Since A = !A′ is duplicable and since V is a core value, by Lemma 9.1.15 the
context Γ1 is of the form !Γ′

1. The rule (λ2) can then be applied on Equation (9.1.1) to get the
valid typing judgement !∆,Γ1,Γ2 ⊲ (λ0yC .N)[V/x] : !n(C⊸D).

Cases M ≡ N1N2, 〈N1, N2〉n, (let ∗ = N1 in N2) and (let 〈yC , zD〉n = N1 in N2).
A typing derivation of !∆,Γ2, x : A ⊲M : B starts with

....
!∆′,Γ21 ⊲ N1 : B1

....
!∆′,Γ22,Λ ⊲ N2 : B2

!∆,Γ2, x : A ⊲ f(N1, N2) : B
(X),

where (!∆′,Γ21,Γ22) = (!∆,Γ2, x : A), where M = f(N1, N2), where

if f(N1, N2) is. . . (X) is. . . B is. . . B1 is. . . B2 is. . .
N1N2 (app) D C⊸D C
〈N1, N2〉n (⊗.I) !n(C ⊗D) !nC !nD
let ∗ = N1 in N2 (⊤.E) D ⊤ D
let 〈yC , zD〉n = N1 in N2 (⊗.E) E !n(C ⊗D) E

9.1. An Indexed Lambda Calculus 121

for some types C, D and E, and where Λ is empty in the three first cases and equal to (y :
!nC, z : !nD) in the last case.

By α-equivalence one can assume that in the last case, the variables y and z in Λ does not occur
anywhere in the other contexts.

From Lemma 9.1.19, one can assume that Γ21 and Γ22 do not contain any duplicable variables,
implying that |!∆| ⊆ |!∆′|. Thus there exists some context !Ψ such that !∆′ = (!Ψ, !∆). In
particular, this means that

(!Ψ,Γ21,Γ22) = (Γ2, x : A). (9.1.2)

This equation is the main result that will allow us to apply the induction hypothesis, and thus
finish the proof.

The variable x : A belongs to either !Ψ, Γ21 or Γ22. We study each one of these three possibilities.

x ∈ |!Ψ|. In this case, A = !A′ and !Ψ = (!Ψ′, x : !A′). The contexts (!∆′,Γ21) and (!∆′,Γ22,Λ)
becomes respectively (!Ψ′, !∆,Γ21, x : !A′) and (!Ψ′, !∆,Γ22,Λ, x : !A′), meaning that the
typing judgements !Ψ′, !∆,Γ21, x : !A′ ⊲ N1 : B1 and !Ψ′, !∆,Γ22,Λ, x : !A′ ⊲ N2 : B2 are
valid.

Since !Ψ = (!Ψ′, x : !A′), Equation (9.1.2) implies that (!Ψ′,Γ21,Γ22) = Γ2. Since |Γ1|∩|Γ2| =
∅, the set |Γ1| does not intersect |Ψ′|, |Γ21| nor |Γ22|. This means that the typing context
(!Ψ′, !∆,Γ21,Γ22,Γ1) is valid. Together with the fact that Λ does not intersect anything, the
requirements on the contexts in the following are satisfied.

By Lemma 9.1.19, the typing judgement !Ψ′, !∆,Γ1 ⊲ V : !A′ is valid.

One can apply the induction hypothesis and get that !Ψ′, !∆,Γ21,Γ1 ⊲ N1[V/x] : B1 and
!Ψ′, !∆,Γ22,Λ,Γ1 ⊲ N2[V/x] : B2 are valid.

Since A = !A′, from Lemma 9.1.15 the context Γ1 is of the form !Γ′
1.

Using the fact that f(N1[V/x], N2[V/x]) = f(N1, N2)[V/x] and applying the typing rule (X),
one gets that !Ψ′, !∆,Γ21,Γ22, !Γ

′
1 ⊲ f(N1, N2)[V/x] : B is valid. One can rewrite this typing

judgement as !∆,Γ1,Γ2 ⊲M [V/x] : B.

Case x ∈ |Γ21| and case x ∈ |Γ22|. The two cases are symmetrical (modulo the use of Λ, which
does not bring any difficulty), by inverting the role of 1 and 2 in the indices. We provide the
proof for 2.

The context Γ22 is of the form (Γ′
22, x : A). This means that !Ψ, !∆,Γ22,Λ, x : A ⊲ N2 : B2

is valid.

Equation (9.1.2) implies that (!Ψ,Γ21,Γ
′
22) = Γ2. Since |Γ1| ∩ |Γ2| = ∅, the set |Γ1| does

not intersect |Ψ′|, |Γ21| nor |Γ22|. This means that the typing context (!Ψ′, !∆,Γ21,Γ
′
22,Γ1)

is valid. Together with the fact that Λ does not intersect anything, the requirements on the
contexts in the following are satisfied.

By Lemma 9.1.19 the typing judgement !Ψ, !∆,Γ1 ⊲ V : A is valid.

One can apply the induction hypothesis: the judgement !Ψ, !∆,Γ′
22,Λ,Γ1 ⊲ N2[V/x] : B2 is

valid.

Since (!Ψ, !∆) = !∆′, the typing judgement !Ψ, !∆,Γ21 ⊲ N1 : B1 is valid.

Since x ∈ |Γ22|, x is not a free variable of N1. From Lemma 9.1.31, this means that
f(N1, N2)[V/x] = f(N1, N2[V/x]). (In the case x ∈ |Γ21|, the substitution f(N1, N2)[V/x] is
equal to f(N1[V/x], N2).)

One can then apply the typing rule (X) and get that !Ψ′, !∆,Γ21,Γ
′
22,Γ1 ⊲ f(N1, N2)[V/x] : B

is valid.

By definition, the context of this typing judgement is (!∆,Γ1,Γ2). This makes !∆,Γ1,Γ2 ⊲

M [V/x] : B a valid typing judgement.

9.1. An Indexed Lambda Calculus 122

Hence, by structural induction on the typing derivation of !∆,Γ2, x : A ⊲ M : B, Lemma 9.1.33 is
valid.

Lemma 9.1.34. Suppose that !∆,Γ1 ⊲ V : A and !∆,Γ2, x : A ⊲M : B such that V is a core value
and such that |Γ1|∩|Γ2| = ∅. Suppose moreover that B<:B′. Then {M [V/x]<:B′} = {M<:B′}[V/x].

Proof. By induction on the size of M .

Case M ≡ xB . In this case, the typing judgement !∆,Γ2, x : A ⊲M : B comes from the rule (ax 1),
meaning that A<:B.

By definition, {M [V/x]<:B′} = {{V <:B}<:B′} and {M <:B′}[V/x] = {V <:B′}. They are
equivalent from Lemma 9.1.22.

Case M ≡ cB, ∗n and yB, with y 6= x. In these three cases, M [V/x] = M and {M <: B′}[V/x] =
{M <:B′}, making the result true by vacuity.

Case M ≡ λnyC .N . By α-equivalence one can assume that y 6= x. since M is well-typed of type B,
there exists a type D such that B = !n(C⊸D). Therefore, B′ = !m(C′⊸D′), with D <:D′,
C′ <: C and m = 0 if n = 0. One has

{M [V/x]<: B′} = {(λnyC .N [V/x])<: !m(C′⊸D′)} = λmyC
′

.{N [V/x]<:D′}

which is by induction hypothesis λmyC
′

.{N <:D′}[V/x]. Therefore

{M [V/x]<:B′} = λmyC
′

.{N <:D′}[V/x] = (λmyC
′

.{N <:D′})[V/x]
= {λnyC .N <: !m(C′⊸D′)}[V/x] = {M <: B′}[V/x].

Case M ≡ NP . Since M is of type B, there exists a type C such that N : C⊸ B and such that
P : C. We have therefore:

{M [V/x]<:B′} = {(N [V/x])(P [V/x]) <:B′}
= (N [V/x]){P [V/x]<: C⊸B′}
= (N [V/x])({P <: C⊸B′}[V/x]) (by ind. hyp.)

= (N{P <: C⊸B′})[V/x]
= {NP <:B′}[V/x]

= {M <:B′}[V/x].

Case M ≡ (let 〈yC , zD〉n = N in P). By α-equivalence one can assume that x 6= y, z. Since M is of
type B, so in P . We have therefore:

{M [V/x]<:B′} = {let 〈yC , zD〉n = N [V/x] in P [V/x]<:B′}
= let 〈yC , zD〉n = N [V/x] in {P [V/x]<:B′}
= let 〈yC , zD〉n = N [V/x] in {P <:B′}[V/x] (by ind. hyp.)

= (let 〈yC , zD〉n = N in {P <:B′})[V/x]
= {let 〈yC , zD〉n = N in P <:B′}[V/x]
= {M <: B′}[V/x].

The remaining cases are similar.

9.2. Equational Logic of Typed Terms 123

9.2 Equational Logic of Typed Terms

Definition 9.2.1. We define an equivalence relation on (indexed) typing judgements. We write
∆ ⊲ M ≈ax M

′ : A, or simply M ≈ax M
′, to indicate that ∆ ⊲ M : A and ∆ ⊲ M ′ : A are

equivalent. Axiomatic equivalence is defined as the reflexive, symmetric, transitive, and congruence
closure of

• the rules from Tables 9.2, Table 9.3, so long as both sides of the equivalences are well-typed.
We recall from Convention 9.1.5 that the symbols . and .. are place holders for xA, ∗, or
〈xA, yB〉n.

• the following two rules:

Rule (app<:). Suppose that A<:B. If ∆ = (!∆′,Γ1,Γ2) such that

!∆′,Γ1 ⊲ N : B⊸C, !∆′,Γ2 ⊲ P : A,

then ∆ ⊲ N{P <:B} ≈ax {N <: A⊸ C}P : C.

Rule (let⊗<:). Suppose that A<:A′, B <:B′, and n′ = 0 if n = 0.

If ∆ = (!∆′,Γ1,Γ2) such that

!∆′,Γ1 ⊲ N : !n(A⊗B), !∆′,Γ2, x : !n
′

A′, y : !n
′

B′ ⊲ P : E,

then

∆ ⊲
(

let 〈xA′

, yB
′〉n

′

= {N <: !n
′

(A′ ⊗B′)} in P
)

≈ax

(

let 〈xA, yB〉n = N in P
)

: E.

Lemma 9.2.2. Suppose that A<:A′. If ∆ = (!∆̇,Γ1,Γ2) such that

!∆̇,Γ1 ⊲ N : A, !∆̇,Γ2, x : A′ ⊲ P : E,

then
∆ ⊲

(

let xA
′

= {N <:A′} in P
)

≈ax

(

let xA = N in P
)

: E.

Proof. By definition.

Convention 9.2.3. The rule stated in Lemma 9.2.2 will be referred to using the symbol (letx<:).

Lemma 9.2.4. The equivalences of Table 9.4 are derivable.

Proof. Proof by case distinction.

Lemma 9.2.5. Suppose that ∆ ⊲ M ≈ax M
′ : A and that ∆′ <: ∆ and A <: A′. Then ∆′ ⊲

{M <:A′} ≈ax {M ′ <:A′} : A′.

Proof. We have ∆ ⊲M : A and ∆ ⊲M ′ : A. From Lemma 9.1.14, ∆′ ⊲M : A and ∆′ ⊲M ′ : A are
valid. From Lemma 9.1.26, ∆′ ⊲ {M <:A′} : A′ and ∆′ ⊲ {M ′ <: A′} : A′ are valid. It remains to
prove that they are axiomatically equivalent. We prove it by induction on the size of the derivation
of ∆ ⊲M ≈ax M

′ : A.

Base case: β-η-rules.

9.2. Equational Logic of Typed Terms 124

(βλ)∆ ⊲ let x = V in M ≈axM [V/x] : A
(β⊗)∆ ⊲ let 〈x, y〉n = 〈V,W 〉n in M ≈axM [V/x,W/y]: A
(β∗)∆ ⊲ let ∗ = ∗ in M ≈axM : A
(ηλ)∆ ⊲ λ

nxA.{V <:A⊸B}xA ≈axV : !n(A⊸B).
(β2
λ)∆ ⊲ let xA = N in xA ≈axN : A.

(η⊗)∆ ⊲ let 〈xA, yB〉n = N in 〈x!nA, y!nB〉n≈axN : !n(A⊗B).
(η∗)∆ ⊲ let ∗ = {N <: ⊤} in ∗n ≈axN : !n⊤.

Table 9.2: Axiomatic equivalence axioms: beta-eta-rules

(let1)
∆ ⊲let . =

(let .. = M in N) in P
≈ax

let .. = M in
let . = N in P

: A

(let2)
∆ ⊲let . = V in

let .. = W in M
≈ax

let .. = W in
let . = V in M

: A

(letapp)
∆ ⊲let xA⊸B = M in

let yA = N in xy
≈axMN : B

(letλ)∆ ⊲ let xD = V in λnyA.M ≈axλ
nyA.let xD = V in M : !n(A⊸B)

(let⊗)
∆ ⊲let x!nA = M in

let y!nB = N in 〈x!nA, y!nB〉n ≈ax 〈M,N〉n : !n(A⊗B)

Table 9.3: Axiomatic equivalence axioms: commutation rules

Case (βλ). In this case, M = (let xB = V in N) and M ′ = N [V/x]. From Lemma 9.1.21,
{M <:A′} = (let xB = V in {N <:A′}). From Lemma 9.1.34, {M ′<:A′} = {N <:A′}[V/x].
Using equivalence rule (βλ), ∆′ ⊲ let xB = V in {N <:A′} ≈ax {N <:A′}[V/x] : A′.

Case (β⊗). We have M = (let 〈xB , yC〉n = 〈V,W 〉n in N) and M ′ = N [V/x,W/y]. From
Definition 9.1.20, {M <:A′} = (let 〈xB , yC〉n = 〈V,W 〉n in {N <:A′}). From Lemma 9.1.34,
{M ′ <: A′} = {N <: A′}[V/x,W/y]. Using equivalence rule (β⊗), ∆′ ⊲ let 〈xB , yC〉n =
〈V,W 〉n in {N <:A′} ≈ax {N <:A′}[V/x,W/y] : A′.

Case (β∗). In this case, the term M is (let ∗ = ∗ in N) and M ′ = N . From Definition 9.1.20,
{M <: A′} = (let ∗ = ∗ in {N <:A′}). Using equivalence rule (β∗), we obtain the axiomatic
equivalence ∆′ ⊲ let ∗ = ∗ in {N <:A′}≈ax{N <:A′} : A′.

Case (ηλ). In this case, M = λnxB .{V <: B ⊸ C}xB , M ′ = V , A = !n(B⊸C) and A′ =
!m(B′⊸ C′) with m = 0 if n = 0, C <: C′ and B′ <:B.

From Definition 9.1.20, {M <:A′} = λmxB
′

.{{V <:B⊸C}xB <:C′} = λmxB
′

.{{V <:B⊸
C}<:B⊸ C′}xB. From Lemma 9.1.22, {M <:A′} = λmxB

′

.{V <:B⊸ C′}xB .

We have ∆′ ⊲ V : !n(B⊸C). Since x 6∈ |∆′| and since xB = {xB′

<:B}, by equivalence rule
(app<:) and by Lemma 9.1.22 we have ∆′, x : B′ ⊲ {V <:B⊸C′}xB≈ax {V <:B′⊸C′}xB′

:

C′. Thus by congruence ∆′ ⊲ {M <:A′} ≈ax λ
mxB

′

.{V <:B′⊸ C′}xB′

: !m(B′⊸ C′).

From Lemma 9.1.22, {V <:B′⊸ C′} = {{V <: !m(B′⊸ C′)}<: B′⊸ C′}. Using rule (ηλ),
by transitivity we get that ∆′ ⊲ {M<: !m(B′⊸ C′)}≈ax {V <: !m(B′⊸ C′)} : !m(B′⊸ C′).

Case (β2
λ). In this case, M = (let xA = N in xA) and M ′ = N .

From Definition 9.1.20, {M<:A′} = (let xA = N in xA
′

). From Lemma 9.2.2, ∆′ ⊲ (let xA =
N in xA

′

) ≈ax (let xA
′

= {N <:A′} in xA
′

) : A′. Applying rule (β2
λ), we get that this is

equivalent to ∆′ ⊲ {N <:A′} : A′.

Case (η⊗). In this case, M = (let 〈xB , yC〉n = N in 〈x!nB, y!nC〉n) and M ′ = N . We also have

9.2. Equational Logic of Typed Terms 125

(αlet) ∆, y : A ⊲M : B ≈ax ∆, x : A ⊲ let yA = xA in M : B

(let !λ) !∆ ⊲ let x!C = V in λy.M ≈ax λ
n+1y. let x!C = V in M : !n+1(A⊸B)

(let⊗1) ∆ ⊲ 〈V, let . = M in N〉 ≈ax let . = M in 〈V,N〉 : !n(A⊗B)

(let⊗2) ∆ ⊲ 〈let . = M in N,V 〉 ≈ax let . = M in 〈N,V 〉 : !n(A⊗B)

(letapp1) ∆ ⊲ V (let . = M in N) ≈ax let . = M in V N : B

(letapp2) ∆ ⊲ (let . = M in N)V ≈ax let . = M in NV : B

Table 9.4: Axiomatic equivalence: derived rules

A = !n(B ⊗ C), and since A<:A′, A′ = !m(B′ ⊗ C′) with m = 0 if n = 0, with B <: B′ and
with C <: C′.

From Definition 9.1.20, {M<:A′} = (let 〈xB , yC〉n = N in 〈x!mB′

, y!mC′〉n). From equivalence
rule (let⊗<:),

∆′ ⊲ let 〈xB , yC〉n = N in 〈x!mB′

, y!mC′〉n

≈ax let 〈xB′

, yC
′〉m = {N <: !m(B′ ⊗ C′)} in 〈x!mB′

, y!mC′〉n : A′.

Applying rule (η⊗), we get that this is equivalent to ∆′ ⊲ {N <:A′} : A′

Case (η∗). In this case, M = (let ∗ = {N <: ⊤} in ∗n), M ′ = N and A = !n⊤. Since A <: A′,
A′ = !m⊤ with m = 0 if n = 0.

From Definition 9.1.20, {M <:A′} = (let ∗ = {N <: ⊤} in ∗m).

From Lemma 9.1.22, {N <: ⊤} = {{N <: !m⊤}<: ⊤}.
From rule (η∗), ∆′ ⊲ let ∗ = {{N <: !m⊤}<: ⊤} in ∗m ≈ax{N <: !m⊤}.

And this prove the lemma for the β-η-rules of Table 9.2.

Next base cases: commutation rules.

Case (let1). Here, M = (let −1 = (let −2 = N2 in N1) in P) and M ′ = (let −2 = N2 in let −1 =
N1 in P).

Using Definition 9.1.20, {M <: A′} = (let −1 = (let −2 = N2 in N1) in {P <: A′}) and
{M ′ <: A′} = (let −2 = N2 in let −1 = N1 in {P <:A′}). Using equivalence rule (let1), we
find that ∆′ ⊲ {M <:A′} ≈ax {M ′ <:A′} : A′.

Case (let2). This case is similar to the previous one. Here, M = (let −1 = V in let −2 = W inN)
and M ′ = (let −2 = W in let −1 = V in N).

Using Definition 9.1.20, {M<:A′} = (let −1 = V inlet −2 = W in{N <:A′}) and {M ′<:A′} =
(let −2 = W in let −1 = V in {N <:A′}). Using equivalence rule (let2), we find that
∆′ ⊲ {M <:A′} ≈ax {M ′ <:A′} : A′.

Case (letapp). Here, M = (let xB⊸A = N in let yB = P in (xB⊸AyB)) and M ′ = NP . Us-
ing Definition 9.1.20, {M <: A′} = (let xB⊸A = N in let yB = P in (xB⊸A′

yB)). From
Lemma 9.2.2,

∆′
⊲ let xB⊸A = N in let yB = P in (xB⊸A′

yB)

≈ax let xB⊸A′

= {N <:B⊸ A′} in let yB = P in (xB⊸A′

yB) : A′.

9.2. Equational Logic of Typed Terms 126

Rule (letapp) says that this is equivalent to ∆′ ⊲ {N<:B⊸A′}P : A′. The result is obtained
by using Definition 9.1.20: {M ′ <:A′} = {N <: B⊸ A′}P .

Case (letλ). In this case, M = (let xD = V in λnyB.N), M ′ = λnyB.(let xD = V in N),
A = !n(B⊸ C) and A′ = !m(B′⊸ C′) with m = 0 if n = 0, C <: C′ and B′ <:B.

Using Definition 9.1.20, {M <: A′} = (let xD = V in λmyB
′

.{N <: C′}) and {M ′ <: A′} =
λmyB

′

.(let xD = V in {N <: C′}).
Using equivalence rule (letλ), we have as required that ∆′ ⊲ {M <:A′} ≈ax {M ′ <:A′} : A′.

Case (let⊗). In this situation, M = (let x!nB = N inlet y!nC = P in〈x!nB, y!nC〉n), M ′ = 〈N,P 〉n,
A = !n(B ⊗ C) and A′ = !m(B′ ⊗ C′) with m = 0 if n = 0, C <: C′ and B <:B′.

Using Definition 9.1.20, {M <: A′} = (let x!nB = N in let y!nC = P in 〈x!mB′

, y!mC′〉m) and
{M ′ <:A′} = 〈{N <: !mC′}, {P <: !mD′}〉m.

Using twice Lemma 9.2.2, we get that ∆′ ⊲ {M <: A′} ≈ax (let x!mB′

= {N <: !mB′} in
let y!mC′

= {P <: !mC′} in 〈x!mB′

, y!mC′〉m) : A′.

Applying (let⊗) and transitivity gives the required result.

Rules concerning typecasting. For these two rules, we use in each case the notation of Definition 9.2.1.
In both cases, we have ∆ ⊲ M ≈ax M

′ : C. We want to show that if ∆′ <: ∆ and C <: C′ then
∆′ ⊲ {M <: C′} ≈ax {M ′ <: C′} : C′.

The fact that ∆′ ⊲ {M <:C′} : C′ and that ∆′ ⊲ {M ′<:C′} : C′ is proved using Lemma 9.1.14
and Lemma 9.1.26.

The fact that they are axiomatically equivalent is proved as follows.

Case (app<:). We have M = N{P <:B} and M ′ = {N <:A⊸ C}P .

Consider {M <: C′}. From Definition 9.1.20, it is equal to {N <: B⊸ C′}{P <: B}. Using
rule (app<:), we infer that ∆ ⊲ {M <: C′} ≈ax {{N <: B⊸ C′} <: A⊸ C′}P : C′. Using
Lemma 9.1.22, we deduce that ∆′ ⊲ {N <: A⊸ C′}P : C′. We conclude by noticing that
from Definition 9.1.20, {M ′ <: C′} = {N <:A⊸C′}P .

Case (let⊗<:). Here, M = (let 〈xA′

, yB
′〉n

′

= {N <: !n
′

(A′ ⊗B′)}inP) and M ′ = (let 〈xA, yB〉n =
N in P).

The term {M <: C′} is equal to let 〈xA′

, yB
′〉n

′

= {N <: !n
′

(A′ ⊗B′)} in {P <: C′} by
Definition 9.1.20. The term {M ′ <: C′} is equal from the same definition to the term
let 〈xA, yB〉n = N in {P <: C′}.
They are axiomatically equivalent because of the equivalence rule (let⊗<:).

And this ends the base cases.

Rules specific to equivalence relations. The reflexivity, the symmetry, the transitivity are trivial.

Reflexivity. In this case, M = M ′. Therefore {M <: A′} = {M ′ <: A′}. One has that ∆′ ⊲
{M <:A′} ≈ax {M ′ <:A′} : A′ by reflexivity.

Symmetry. Here, ∆ ⊲ M ≈ax M
′ : A′ was proved by first proving ∆ ⊲ M ′

≈ax M : A′. By
induction hypothesis, we conclude that ∆′ ⊲ {M ′ <:A′}≈ax {M <:A′} : A′. We then apply
again symmetry.

Transitivity. Here, ∆ ⊲ M ≈ax M
′ : A′ was proved introducing a third term M ′′ such that

∆ ⊲ M ≈ax M
′′ : A and ∆ ⊲ M ′′ ≈ax M

′ : A. By induction hypothesis, this means that
∆′ ⊲ {M <:A′}≈ax {M ′′<:A′} : A′ and ∆ ⊲ {M ′′<:A′}≈ax {M ′<:A′} : A′. We can then
apply transitivity to get the result.

9.2. Equational Logic of Typed Terms 127

Congruence rules. There is one congruence rule per term constructor. We list the cases in the
following.

Case M ≡ λnxC .N . Then M ′ ≡ λnxC .N ′, the type A is of the form !n(C⊸D) and the type A′

is of the form !n(C⊸D) with D <:D′. We have ∆, x : C ⊲ N ≈ax N
′ : D, and ∆ is of the

form !∆̇ if n 6= 0.

By induction hypothesis, ∆′, x : C ⊲ {N <:D′} ≈ax {N ′ <:D′} : D′. It is then possible to
apply the congruence rule for (λi) to get the result.

Cases M ≡ N1N2, 〈N1, N2〉n, (let ∗ = N1 in N2) and (let 〈yC , zD〉n = N1 in N2).
In each case we use the shortcut notation f(N1, N2) in place of the corresponding construct.

Then M ′ ≡ f(N ′
1, N

′
2) for some terms N ′

1 and N ′
2, and the typing judgements ∆ ⊲M,M ′ : A

comes from

!∆̇,Γ1 ⊲ N1 : B1, !∆̇,Γ2,Λ ⊲ N2 : B2,

!∆̇,Γ1 ⊲ N
′
1 : B1, !∆̇,Γ2,Λ ⊲ N

′
2 : B2,

and from the application of a typing rule (X), where ∆ = (!∆̇,Γ1,Γ2), and where

if f(N1, N2) is. . . (X) is. . . A is. . . B1 is. . . B2 is. . .
N1N2 (app) D C⊸D C
〈N1, N2〉n (⊗.I) !n(C ⊗D) !nC !nD
let ∗ = N1 in N2 (⊤.E) D ⊤ D
let 〈yC , zD〉n = N1 in N2 (⊗.E) E !n(C ⊗D) E

for some types C, D and E, and where Λ is empty in the three first cases and equal to
(y : !nC, z : !nD) in the last case. By α-equivalence one can assume that in the last case, the
variables y and z in Λ does not occur anywhere in the other contexts.

The type A′ is such that A <: A′. Its structure is then governed by the one of A. Let us
construct B′

1 and B′
2 as follows:

if f(N1, N2) is. . . A′ is. . . B′
1 is. . . B′

2 is. . .
N1N2 D′ C⊸D′ C
〈N1, N2〉n !m(C′ ⊗Dm) !mC′ !mD′

let ∗ = N1 in N2 D′ ⊤ D′

let 〈yC , zD〉n = N1 in N2 E′ !n(C ⊗D) E′

for some types C′, D′ and E′ such that C <: C′, D <:D′ and E <:E′.

Note that in each case, B1 <: B′
1 and B2 <: B′

2. One can therefore apply the induction
hypothesis, and get that

!∆̇′,Γ′
1 ⊲ {N1 <:B′

1} : B′
1, !∆̇′,Γ′

2,Λ ⊲ {N2 <:B′
2} : B′

2,

!∆̇′,Γ′
1 ⊲ {N ′

1 <:B′
1} : B′

1, !∆̇′,Γ′
2,Λ ⊲ {N ′

2 <:B′
2} : B′

2,

are valid, where ∆′ = (!∆̇′,Γ′
1,Γ

′
2), where !∆̇′ <: !∆̇, Γ′

1 <: Γ1 and Γ′
2 <: Γ2.

One can apply the congruence rule for (X) and get that

∆′
⊲ {N1 <:B′

1}{N2 <:B′
2} ≈ax {N ′

1 <:B′
1}{N ′

2 <:B′
2}′ : A′.

Using Definition 9.1.20 and Lemma 9.1.23, this means that ∆′ ⊲ {M<:A′}≈ax{M ′<:A′} : A′.

and this closes the list of possible cases.

9.3. The Category Cλ 128

Lemma 9.2.6. If !∆,Γ1, x : A ⊲M : B is a valid typing judgement, and if !∆,Γ2 ⊲ V ≈ax V
′ : A are

axiomatically equivalent core values such that |Γ1|∩|Γ2| = ∅, then !∆,Γ1,Γ2 ⊲M [V/x]≈axM [V ′/x] :
B are axiomatically equivalent typing judgements.

Proof. First note that !∆,Γ1,Γ2 ⊲ M [V/x] : B and !∆,Γ1,Γ2 ⊲ M [V ′/x] : are valid typing judge-
ments from Lemma 9.1.33. We prove that they are axiomatically equivalent by induction on the size
of M .

Cases M ≡ yC, cC and ∗n. In these cases, either M [V/x] = M and M [V ′/x] = M or M [V/x] =
{V : A<:C} and M [V ′/x] = {V ′ : A<:C} In the former case we have axiomatic equivalence be
reflexivity of the relation and in the latter case we have it using Lemma 9.2.5.

Case M ≡ λnyC .N . Note that since !∆,Γ1, x : A ⊲ M : B is well-typed, we have x 6= y and
B = !n(C⊸D) for some type D. In particular, M [V/x] = λnyC .(N [V/x]) and M [V ′/x] =
λnyC .(N [V ′/x]).

The typing tree of the typing judgement starts with typing rule (λi) and has for hypothesis
!∆,Γ1, x : A, y : C ⊲ N : D. The integer i = 1 if n = 0, otherwise i = 2. In the latter, (Γ1, x : A)
is of the form (!Γ̇1, x : !Ȧ).

By induction hypothesis, !∆,Γ1, y : C ⊲ N [V/x] ≈ax N [V ′/x] : D. Applying congruence, we get
the result.

The remaining cases are done similarly.

The following result stipulates that all the indexations of a given erasure live in the same
axiomatic class. In other words, the axiomatic equivalence class of a term is independent of its
indexation.

Theorem 9.2.7. If Erase(M) = Erase(M ′) and if ∆ ⊲ M,M ′ : A are valid typing judgements,
then M ≈ax M

′.

The proof of Theorem 9.2.7 requires some machinery that we develop in Chapter 10.

9.3 The Category Cλ
The language of Section 9.1 together with its axiomatic equivalence can be made into a syntactic
category.

Lemma 9.3.1. We can define a category as follows: Objects are types, and arrows A → B are
axiomatic classes of valid typing judgements of the form x : A ⊲ V : B, where V is an extended
value. We define the composition of arrows x : A ⊲ V : B and y : B ⊲ W : C to be x : A ⊲ let y =
V in W : C. The identity on A is set to be the arrow x : A ⊲ x : A.

Proof. The composition of two arrows yields an arrow axiomatically equivalent to a value due to
Axiom (βλ) and Lemmas 9.1.32 and 9.1.33. Composition is associative due to Axiom (let1). The
arrow x : A ⊲ x : A is indeed the identity on A due to axioms (αlet) and (β2

λ).

Definition 9.3.2. The category described in Lemma 9.3.1 will be referred as Cλ.

9.3. The Category Cλ 129

9.3.1 Monoidal Structure

Lemma 9.3.3. If we equip Cλ with the arrows

αA,B,C = x : A⊗ (B ⊗ C) ⊲ let 〈y, z〉 = x in

let 〈t, u〉 = z in 〈〈y, t〉, u〉 : (A⊗B) ⊗ C,

λA = x : ⊤⊗A ⊲ let 〈y, z〉 = x in let ∗ = y in z : A,

ρA = x : A⊗⊤ ⊲ let 〈y, z〉 = x in let ∗ = z in y : A,

σA,B = x : A⊗B ⊲ let 〈y, z〉 = x in 〈z, y〉 : B ⊗A,

and with the map of arrows (x : A ⊲ V : B) ⊗ (y : C ⊲ W : D) = z : A ⊗ B ⊲ let 〈x, y〉 =
z in 〈V,W 〉 : C ⊗D, then (Cλ,⊗,⊤) is a symmetric monoidal category.

Proof. We need to show that α, λ, ρ and σ are isomorphic natural transformations, that they
satisfy Equations (2.7.1), (2.7.2), (2.7.3), (2.7.4), (2.7.5) and (2.7.6), and that the constructor ⊗ is
a bifunctor.

Isomorphisms. Let’s show that α, λ, ρ and σ are isomorphisms. It is sufficient to exhibit their
inverse:

α−1
A,B,C = x′ : (A⊗B) ⊗ C ⊲ let 〈y′, z′〉 = x′ in let 〈t′, u′〉 = y′in

〈t′, 〈u′, z′〉〉 : A⊗ (B ⊗ C),

λ−1
A = x′ : A ⊲〈∗, x′〉 : ⊤⊗A,

ρA = x′ : A ⊲〈x′, ∗〉 : A⊗⊤,
σA,B = x′ : B ⊗A ⊲ let 〈y′, z′〉 = x′ in 〈z′, y′〉 : A⊗B,

Naturality of α, λ, ρ and σ. Let’s consider λ. Let f = a : A ⊲ V : A′ be any arrow A → A′. We
need to show that the diagram

⊤⊗A
λA //

⊤⊗f
��

A

f

��
⊤⊗A

λA′ // A′

commutes, i.e. λA; f = (⊤⊗f);λA′ . The arrow ⊤⊗f is b : ⊤⊗A ⊲ let 〈t, a〉 = bin 〈t, V 〉 : ⊤⊗A′.
So the left hand side of the equation is

b : ⊤⊗A ⊲ let x = (let 〈t, a〉 = b in 〈t, V 〉) in

let 〈y, z〉 = x in let ∗ = y in z

≈ax let 〈t, a〉 = b in let x = 〈t, V 〉 in

let 〈y, z〉 = x in let ∗ = y in z by (let1)

≈ax let 〈t, a〉 = b in let 〈y, z〉 = 〈t, V 〉 in let ∗ = y in z by (βλ)

≈ax let 〈t, a〉 = b in let ∗ = t in V by (β⊗).

The right hand side of the equation is

x : ⊤⊗A ⊲ let a = (let 〈y, z〉 = x in let ∗ = y in z) in V

≈ax let 〈y, z〉 = x in let ∗ = y in let a = z in V : A′ by (let1)

≈ax let 〈y, a〉 = x in let ∗ = y in V : A′ by (αlet).

9.3. The Category Cλ 130

Both side are then alpha equivalent, which proves that λ is a natural transformation.

The proof of naturality of ρ is exactly similar.

For σA,B, consider two arrows f = a : A ⊲ V : A′ and g = b : B ⊲W : B′. We aim to show that

A⊗B
σA,B //

f⊗g
��

B ⊗A

g⊗f
��

A′ ⊗B′
σA′,B′

// B′ ⊗A′

commutes, i.e. σA,B; (g ⊗ f) = (f ⊗ g);σA′,B′ . The left hand side is the arrow:

x : A⊗B ⊲ let c = (let 〈y, z〉 = x in 〈z, y〉) in

let 〈b, a〉 = c in 〈W,V 〉
≈ax let 〈y, z〉 = x in let c = 〈z, y〉 in

let 〈b, a〉 = c in 〈W,V 〉 by (let1)

≈ax let 〈y, z〉 = x in let 〈b, a〉 = 〈z, y〉 in 〈W,V 〉 by (βλ)

≈ax let 〈a, b〉 = x in 〈W,V 〉 : B′ ⊗A′ by (αlet).

The right hand side is

x : A⊗B ⊲ let c = (let 〈a, b〉 = x in 〈V,W 〉) in

let 〈y, z〉 = c in 〈z, y〉
≈ax let 〈a, b〉 = x in let c = 〈V,W 〉 in

let 〈y, z〉 = c in 〈z, y〉 by (let1)

≈ax let 〈a, b〉 = x in let 〈y, z〉 = 〈V,W 〉 in 〈z, y〉 by (βλ)

≈ax let 〈a, b〉 = x in 〈W,V 〉 : B′ ⊗A′ by (β⊗),

which is axiomatically equivalent to the left hand side.

To prove the naturality of α, let’s choose three functions f = a : A ⊲ V : A′, g = b : B ⊲W : B′

and h : c : C ⊲ U : C′. It is enough to show that

A⊗ (B ⊗ C)
αA,B,C //

f⊗(g⊗h)

��

(A⊗B) ⊗ C

(f⊗g)⊗h
��

A′ ⊗ (B′ ⊗ C′) αA′,B′,C′

// (A′ ⊗B′) ⊗ C′

commutes, i.e. that αA,B,C ; ((f ⊗ g) ⊗ h) = (f ⊗ (g ⊗ h));αA′,B′,C′ .

Let’s write down the components of this equation:

f ⊗ g = d : A⊗B ⊲ let 〈a, b〉 = d in 〈V,W 〉 : A′ ⊗B′

g ⊗ h = i : B ⊗ C ⊲ let 〈b, c〉 = i in 〈W,U〉 : B′ ⊗ C′

Then

(f ⊗ g) ⊗ h e : (A⊗B) ⊗ C ⊲

9.3. The Category Cλ 131

let 〈d, c〉 = e in

〈

let 〈a, b〉 = d
in〈V,W 〉 , U

〉

≈ax let 〈d, c〉 = e in let 〈a, b〉 = d in

〈〈V,W 〉, U〉 : (A′ ⊗B′) ⊗ C′ by (let⊗2)

f ⊗ (g ⊗ h) j : A⊗ (B ⊗ C) ⊲

let 〈a, i〉 = j in

〈

V,
let 〈b, c〉 = i in
〈W,U〉

〉

≈ax let 〈a, i〉 = j in let 〈b, c〉 = i in

〈V, 〈W,U〉〉 : A′ ⊗ (B′ ⊗ C′) by (let⊗1).

Finally,

αA,B,C = x : A⊗ (B ⊗ C) ⊲ let 〈x1, x2〉 = x in

let 〈x3, x4〉 = x2 in

〈〈x1, x3〉, x4〉 : (A⊗B) ⊗ C

αA′,B′,C′ = y : A′ ⊗ (B′ ⊗ C′) ⊲ let 〈y1, y2〉 = y in

let 〈y3, y4〉 = y2 in

〈〈y1, y3〉, y4〉 : (A′ ⊗B′) ⊗ C′

Now let’s consider the left hand side of the equation:

x : A⊗ (B ⊗ C) ⊲ let e =





let 〈x1, x2〉 = x in
let 〈x3, x4〉 = x2 in
〈〈x1, x3〉, x4〉



 in

let 〈d, c〉 = e in

let 〈a, b〉 = d in 〈〈V,W 〉, U〉
≈ax let 〈x1, x2〉 = x in let 〈x3, x4〉 = x2 in

let e = 〈〈x1, x3〉, x4〉 in

let 〈d, c〉 = e in

let 〈a, b〉 = d in 〈〈V,W 〉, U〉 by (let1)

≈ax let 〈x1, x2〉 = x in let 〈x3, x4〉 = x2 in

let 〈d, c〉 = 〈〈x1, x3〉, x4〉 in

let 〈a, b〉 = d in 〈〈V,W 〉, U〉 by (βλ)

≈ax let 〈x1, x2〉 = x in let 〈x3, x4〉 = x2 in

let 〈a, b〉 = 〈x1, x3〉 in 〈〈V,W 〉, U〉[x4/c] by (β⊗)

≈ax let 〈x1, x2〉 = x in let 〈x3, x4〉 = x2 in

〈〈V,W 〉, U〉[x1/a, x3/b, x4/c] by (β⊗)

≈ax let 〈a, x2〉 = x in let 〈b, c〉 = x2 in

〈〈V,W 〉, U〉 : (A′ ⊗B′) ⊗ C′ by (αlet).

9.3. The Category Cλ 132

The right hand side is

j : A⊗ (B ⊗ C) ⊲ let y =





let 〈a, i〉 = j in
let 〈b, c〉 = i in
〈V, 〈W,U〉〉



 in

let 〈y1, y2〉 = y in

let 〈y3, y4〉 = y2 in 〈〈y1, y3〉, y4〉
≈ax let 〈a, i〉 = j in let 〈b, c〉 = i in

let y = 〈V, 〈W,U〉〉 in

let 〈y1, y2〉 = y in

let 〈y3, y4〉 = y2 in

〈〈y1, y3〉, y4〉 by (let1)

≈ax let 〈a, i〉 = j in let 〈b, c〉 = i in

〈〈V,W 〉, U〉 : (A′ ⊗B′) ⊗ C′ by (βλ),(β⊗) twice,

which is axiomatically equivalent to the left hand side. Thus α is a natural transformation.

Bifunctoriality of ⊗. First we need to show that ⊗ is well defined on equivalence classes. Given
x : A ⊲ V ≈ax V

′ : B and x : C ⊲W ≈ax W
′ : D:

z : A⊗ C ⊲ let 〈x, y〉 = z in 〈V,W 〉
≈ax let 〈x, y〉 = z in 〈V ′,W ′〉 : B ⊗D

since 〈V,W 〉 ≈ax 〈V ′,W ′〉.
Then we need to show that (− ⊗B) and (A⊗−) are functors, and that they verify

(f ⊗B); (A′ ⊗ g) = (A⊗ g); (f ⊗B′)

for every f : A→ A′ and every g : B → B′.

(idA ⊗ idB) is (x : A ⊲ x : A) ⊗ (y : B ⊲ y : B), which is by definition z : A ⊗ B ⊲ let 〈x, y〉 =
z in 〈x, y〉 : A⊗ B, which is by Rule (η⊗) the identity z : A ⊗ B ⊲ z : A⊗ B. So both (− ⊗ B)
and (A⊗−) preserves identities.

Let f be x : A→ V : A′ and f ′ be y : A′ →W : A′′. ((f, f ′) ⊗B) is

z : A⊗B ⊲ let 〈x, t〉 = z in 〈let y = V in W, t〉
≈ax let 〈x, t〉 = z in let y = V in 〈W, t〉 by (let⊗2).

On another hand, (f ⊗ B); (f ′ ⊗B) is

z : A⊗B ⊲ let u = (let 〈x, t〉 = z in 〈V, t〉)in
let 〈y, v〉 = u in 〈W, v〉

≈ax let 〈x, t〉 = z in let u = 〈V, t〉in
let 〈y, v〉 = u in 〈W, v〉 by (let1)

≈ax let 〈x, t〉 = z in let 〈y, v〉 = 〈V, t〉 in 〈W, v〉 by (βλ)

≈ax let 〈x, t〉 = z in let y = V in

9.3. The Category Cλ 133

let v = t in 〈W, v〉 by (β⊗),(βλ)

≈ax let 〈x, t〉 = z in let y = V in 〈W, t〉 by (βλ),

and thus the two morphisms are equals.

Using (let⊗1) in place of (let⊗2), we can show that (A⊗ (g; g′)) = (A⊗ g); (A⊗ g′), for g : B → B′

and g′ : B′ → B′′.

Finally, we must show that if f is x : A ⊲ V : A′ and g is y : B ⊲ U : B′, then (f⊗B); (A′⊗g) =
(A⊗ g); (f ⊗B′). The left hand side is

z : A⊗B ⊲ let z′ = (let〈x, t〉 = z in 〈V, t〉)in
let 〈u, y〉 = z′ in 〈u,W 〉

≈ax let 〈x, t〉 = z in let z′ = 〈V, t〉 in

let 〈u, y〉 = z′ in 〈u,W 〉 by (let1)

≈ax let 〈x, t〉 = z in let〈u, y〉 = 〈V, t〉 in 〈u,W 〉 by (βλ)

≈ax let 〈x, t〉 = z in let u = V in

let y = t in 〈u,W 〉 by (β⊗), (βλ)

≈ax let 〈x, y〉 = z in 〈V,W 〉 by (βλ), (αlet).

The right hand side is

z : A⊗B ⊲ let z′ = (let〈u, y〉 = z in 〈u,W 〉)in
let 〈x, t〉 = z′ in 〈V, t〉

and by (let1), (βλ), (β⊗), (βλ), (βλ) and (αlet), this is axiomatically equivalent to let〈x, y〉 =
z in 〈V,W 〉. Thus the required equality hold, and ⊗ is bifunctorial.

Commutative diagrams. We need to verify Equations (2.7.1), (2.7.2), (2.7.3), (2.7.4), (2.7.5) and
Equation (2.7.6).

Equations (2.7.1). We want to prove that

αA,B,C⊗D;αA⊗B,C,D = (idA ⊗ αB,C⊗D);αA,B⊗C,D;αA,B⊗C ⊗ idD.

For the left hand side, the components are as follows:

αA,B,C⊗D = x : A⊗ (B ⊗ (C ⊗D)) ⊲ let 〈x1, x2〉 = x in

let 〈x3, x4〉 = x2 in

〈〈x1, x3〉, x4〉 : (A⊗B) ⊗ (C ⊗D)),

αA⊗B,C,D = y : (A⊗B) ⊗ (C ⊗D)) ⊲ let 〈y1, y2〉 = y in

let 〈y3, y4〉 = y2 in

〈〈y1, y3〉, y4〉 : ((A ⊗B) ⊗ C) ⊗D)).

Then

αA,B,C⊗D;αA⊗B,C,D = x : A⊗ (B ⊗ (C ⊗D)) ⊲

let y =





let 〈x1, x2〉 = x in
let 〈x3, x4〉 = x2 in

〈〈x1, x3〉, x4〉



 in





let 〈y1, y2〉 = y in
let 〈y3, y4〉 = y2 in

〈〈y1, y3〉, y4〉





9.3. The Category Cλ 134

≈ax let 〈x1, x2〉 = x in let 〈x3, x4〉 = x2 in

let y = 〈〈x1, x3〉, x4〉 in let 〈y1, y2〉 = y in by (let1)

let 〈y3, y4〉 = y2 in 〈〈y1, y3〉, y4〉
≈ax let 〈x1, x2〉 = x in let 〈x3, x4〉 = x2 in

let 〈y1, y2〉 = 〈〈x1, x3〉, x4〉 in by (let1)

let 〈y3, y4〉 = y2 in 〈〈y1, y3〉, y4〉
≈ax let 〈x1, x2〉 = x in let 〈x3, x4〉 = x2 in by (β⊗)

let 〈y3, y4〉 = x4 in 〈〈〈x1, x3〉, y3〉, y4〉

For the right hand side, the components are as follows:

αB,C⊗D = x : B ⊗ (C ⊗D) ⊲ let 〈x1, x2〉 = x in

let 〈x3, x4〉 = x2 in

〈〈x1, x3〉, x4〉 : (B ⊗ C) ⊗D,

αA,B⊗C = y : A⊗ (B ⊗ C) ⊲ let 〈y1, y2〉 = y in

let 〈y3, y4〉 = y2 in

〈〈y1, y3〉, y4〉 : (A⊗B) ⊗ C,

αA,B⊗C,D = z : A⊗ ((B ⊗ C) ⊗D) ⊲ let 〈z1, z2〉 = z in

let 〈z3, z4〉 = z2 in

〈〈z1, z3〉, z4〉 : (A⊗ (B ⊗ C)) ⊗D,

and idA = t : A ⊲ t : A, idD = u : D ⊲ u : D. Then we compute idA ⊗ αB,C⊗D and
αA,B⊗C ⊗ idD:

idA ⊗ αB,C⊗D = a : A⊗ (B ⊗ (C ⊗D)) ⊲

let 〈t, x〉 = a in

〈

t,
let 〈x1, x2〉 = x in
let 〈x3, x4〉 = x2 in
〈〈x1, x3〉, x4〉

〉

≈ax let 〈t, x〉 = a in let 〈x1, x2〉 = x in

let 〈x3, x4〉 = x2 in 〈t, 〈〈x1, x3〉, x4〉〉 by (let⊗1)

αA,B⊗C ⊗ idD = b : (A⊗ (B ⊗ C)) ⊗D ⊲

let 〈y, u〉 = b in

〈

let 〈y1, y2〉 = y in
let 〈y3, y4〉 = y2 in
〈〈y1, y3〉, y4〉 , u

〉

≈ax let 〈y, u〉 = b in let 〈y1, y2〉 = y in

let 〈y3, y4〉 = y2 in 〈〈〈y1, y3〉, y4〉, u〉 by (let⊗2).

Let’s compose idA ⊗ αB,C⊗D and αA,B⊗C,D:

(idA ⊗ αB,C⊗D);αA,B⊗C,D =

a : A⊗ (B ⊗ (C ⊗D)) ⊲ let z =

(

let 〈t, x〉 = a in let 〈x1, x2〉 = x in
let 〈x3, x4〉 = x2 in 〈t, 〈〈x1, x3〉, x4〉〉

)

in

let 〈z1, z2〉 = z in let 〈z3, z4〉 = z2 in 〈〈z1, z3〉, z4〉

9.3. The Category Cλ 135

≈ax let 〈t, x〉 = a in let 〈x1, x2〉 = x in

let 〈x3, x4〉 = x2 in let z = 〈t, 〈〈x1, x3〉, x4〉〉 in

let 〈z1, z2〉 = z in let 〈z3, z4〉 = z2 in 〈〈z1, z3〉, z4〉 by (let1)

≈ax let 〈t, x〉 = a in let 〈x1, x2〉 = x in let 〈x3, x4〉 = x2 in

let 〈z1, z2〉 = 〈t, 〈〈x1, x3〉, x4〉〉 in

let 〈z3, z4〉 = z2 in 〈〈z1, z3〉, z4〉 by (βλ)

≈ax let 〈t, x〉 = a in let 〈x1, x2〉 = x in let 〈x3, x4〉 = x2 in

let 〈z3, z4〉 = 〈〈x1, x3〉, x4〉 in 〈〈t, z3〉, z4〉 by (β⊗)

≈ax let 〈t, x〉 = a in let 〈x1, x2〉 = x in

let 〈x3, x4〉 = x2 in 〈〈t, 〈x1, x3〉〉, x4〉 : (A⊗ (B ⊗ C)) ⊗D by (β⊗)

Now we can compute the right hand of the equation:

(idA ⊗ αB,C⊗D);αA,B⊗C,D;αA,B⊗C ⊗ idD =

a : A⊗ (B ⊗ (C ⊗D)) ⊲ let b =

(

let 〈t, x〉 = a in let 〈x1, x2〉 = x in
let 〈x3, x4〉 = x2 in 〈〈t, 〈x1, x3〉〉, x4〉

)

in

let 〈y, u〉 = b in let 〈y1, y2〉 = y in

let 〈y3, y4〉 = y2 in 〈〈〈y1, y3〉, y4〉, u〉
≈ax let 〈t, x〉 = a in let 〈x1, x2〉 = x in let 〈x3, x4〉 = x2 in

let b = 〈〈t, 〈x1, x3〉〉, x4〉 in let 〈y, u〉 = b in

let 〈y1, y2〉 = y in let 〈y3, y4〉 = y2 in 〈〈〈y1, y3〉, y4〉, u〉 by (let1)

≈ax let 〈t, x〉 = a in let 〈x1, x2〉 = x in let 〈x3, x4〉 = x2 in

let 〈y, u〉 = 〈〈t, 〈x1, x3〉〉, x4〉 in let 〈y1, y2〉 = y in

let 〈y3, y4〉 = y2 in 〈〈〈y1, y3〉, y4〉, u〉 by (βλ)

≈ax let 〈t, x〉 = a in let 〈x1, x2〉 = x in let 〈x3, x4〉 = x2 in

let 〈y1, y2〉 = 〈t, 〈x1, x3〉〉 in

let 〈y3, y4〉 = y2 in 〈〈〈y1, y3〉, y4〉, x4〉 by (β⊗)

≈ax let 〈t, x〉 = a in let 〈x1, x2〉 = x in let 〈x3, x4〉 = x2 in

let 〈y3, y4〉 = 〈x1, x3〉 in 〈〈〈t, y3〉, y4〉, x4〉 by (β⊗)

≈ax let 〈t, x〉 = a in let 〈x1, x2〉 = x in

let 〈x3, x4〉 = x2 in 〈〈〈t, x1〉, x3〉, x4〉 : ((A⊗B) ⊗ C) ⊗D by (β⊗),

and this is alpha-equivalent to αA,B,C⊗D;αA⊗B,C,D. Thus Equation (2.7.1) is verified.

Equation (2.7.2). We want to show that αA,⊤,C ; (ρA⊗ idC) = idA⊗λC . We first write down the
components of the equation:

αA,⊤,C = a : A⊗ (⊤⊗ C) ⊲ let 〈a1, a2〉 = a in

let 〈a3, a4〉 = a2 in 〈〈a1, a3〉, a4〉 : (A⊗⊤) ⊗ C,

λC = b : ⊤⊗ C ⊲ let 〈b1, b2〉 = b in let ∗ = b1 in b2 : C,

ρA = c : A⊗⊤ ⊲ let 〈c1, c2〉 = c in let ∗ = c2 in c1 : A,

and idA = u : A ⊲ u : A and idC = v : C ⊲ v : C. Then we construct ρA⊗ idC and idA⊗λC :

ρA ⊗ idC = x : (A⊗⊤) ⊗ C ⊲ let 〈c, v〉 = x in

〈

let 〈c1, c2〉 = c in
let ∗ = c2 in c1

, v

〉

9.3. The Category Cλ 136

≈ax let 〈c, v〉 = x in let 〈c1, c2〉 = c in

let ∗ = c2 in 〈c1, v〉 : A⊗ C by (let⊗2),

idA ⊗ λC = y : A⊗ (⊤⊗ C) ⊲ let 〈u, b〉 = y in

〈

u,
let 〈b1, b2〉 = b in
let ∗ = b1 in b2

〉

≈ax let 〈u, b〉 = y in let 〈b1, b2〉 = b in

let ∗ = b1 in 〈u, b2〉 : A⊗ C by (let⊗1).

We then compose αA,⊤,C and ρA ⊗ idC :

a : A⊗ (⊤⊗ C) ⊲ let x =

(

let 〈a1, a2〉 = a in
let 〈a3, a4〉 = a2 in 〈〈a1, a3〉, a4〉

)

in

let 〈c, v〉 = x in let 〈c1, c2〉 = c in

let ∗ = c2 in 〈c1, v〉
≈ax let 〈a1, a2〉 = a in let 〈a3, a4〉 = a2 in

let x = 〈〈a1, a3〉, a4〉 in

let 〈c, v〉 = x in let 〈c1, c2〉 = c in

let ∗ = c2 in 〈c1, v〉 by (let1)

≈ax let 〈a1, a2〉 = a in let 〈a3, a4〉 = a2 in

let 〈c, v〉 = 〈〈a1, a3〉, a4〉 in let 〈c1, c2〉 = c in

let ∗ = c2 in 〈c1, v〉 by (βλ)

≈ax let 〈a1, a2〉 = a in let 〈a3, a4〉 = a2 in

let 〈c1, c2〉 = 〈a1, a3〉 in let ∗ = c2 in 〈c1, a4〉 by (β⊗)

≈ax let 〈a1, a2〉 = a in let 〈a3, a4〉 = a2 in

let ∗ = a3 in 〈a1, a4〉 : A⊗ C by (β⊗),

which is alpha-equivalent to idA ⊗ λC : Diagram 2.7.2 commutes.

Equation (2.7.3). We want to show λ⊤ = ρ⊤.

λ⊤ = x : ⊤⊗⊤ ⊲ let 〈y, z〉 = x in let ∗ = y in z

≈ax let 〈y, z〉 = x in

let ∗ = y in let ∗ = z in ∗ : ⊤ by (η∗)

ρ⊤ = x : ⊤⊗⊤ ⊲ let 〈y, z〉 = x in let ∗ = z in y

≈ax let 〈y, z〉 = x in

let ∗ = z in let ∗ = y in ∗ by (η∗)

≈ax let 〈y, z〉 = x in

let ∗ = y in let ∗ = z in ∗ : ⊤ by (let2).

Thus the equation holds.

Equation (2.7.4). We want σA,B;σB,A = idA⊗B.

σA,B = x : A⊗B ⊲ let 〈x1, x2〉 = x in 〈x2, x1〉 : B ⊗A

σB,A = y : B ⊗A ⊲ let 〈y1, y2〉 = y in 〈y2, y1〉 : A⊗B

σA,B;σB,A = x : A⊗B ⊲ let y = (let 〈x1, x2〉 = x in 〈x2, x1〉) in

let 〈y1, y2〉 = y in 〈y2, y1〉

9.3. The Category Cλ 137

≈ax let 〈x1, x2〉 = x in

let y = 〈x2, x1〉 in

let 〈y1, y2〉 = y in 〈y2, y1〉 by (let1)

≈ax let 〈x1, x2〉 = x in

let 〈y1, y2〉 = 〈x2, x1〉 in 〈y2, y1〉 by (βλ)

≈ax let 〈x1, x2〉 = x in 〈x1, x2〉 by (β⊗)

≈ax x : A⊗B by (η⊗),

and thus (2.7.4) holds.

Equation (2.7.5). We want σB,⊤;λB = ρB. The components are:

σB,⊤ = x : B ⊗⊤ ⊲ let 〈x1, x2〉 = x in 〈x2, x1〉 : B ⊗⊤,
λB = y : ⊤⊗B ⊲ let 〈y1, y2〉 = y in let ∗ = y1 in y2 : B,

ρB = x : B ⊗⊤ ⊲ let 〈x1, x2〉 = x in let ∗ = x2 in x1 : B.

Let’s compute the left hand side:

σB,⊤;λB = x : B ⊗⊤ ⊲ let y = (let 〈x1, x2〉 = x in 〈x2, x1〉) in

let 〈y1, y2〉 = y in let ∗ = y1 in y2

≈ax let 〈x1, x2〉 = x in let y = 〈x2, x1〉 in

let 〈y1, y2〉 = y in let ∗ = y1 in y2 by (let1)

≈ax let 〈x1, x2〉 = x in

let 〈y1, y2〉 = 〈x2, x1〉 in let ∗ = y1 in y2 by (βλ)

≈ax let 〈x1, x2〉 = x in let ∗ = x2 in x1 : B by (β⊗),

which is exactly ρB.

Equation (2.7.6). We want

αA,B,C ;σA⊗B,C ;αC,A,B = (idA ⊗ σB,C);αA,C,B; (σA,C ⊗ idB).

Left hand side. Let’s write down the components:

αA,B,C = x : A⊗ (B ⊗ C) ⊲ let 〈x1, x2〉 = x in

let 〈x3, x4〉 = x2 in 〈〈x1, x3〉, x4〉 : (A⊗B) ⊗ C,

σA⊗B,C = y : (A⊗B) ⊗ C ⊲ let 〈y1, y2〉 = y in 〈y2, y1〉 : C ⊗ (A⊗B),

αC,A,B = z : C ⊗ (A⊗B) ⊲ let 〈z1, z2〉 = z in

let 〈z3, z4〉 = z2 in 〈〈z1, z3〉, z4〉 : (C ⊗A) ⊗B.

Let’s compose αA,B,C and σA⊗B,C :

αA,B,C ;σA⊗B,C = x : A⊗ (B ⊗ C) ⊲

9.3. The Category Cλ 138

let y =

(

let〈x1, x2〉 = x in
let 〈x3, x4〉 = x2 in 〈〈x1, x3〉, x4〉

)

in

let 〈y1, y2〉 = y in 〈y2, y1〉
≈ax let 〈x1, x2〉 = x in let〈x3, x4〉 = x2 in

let y = 〈〈x1, x3〉, x4〉 in

let 〈y1, y2〉 = y in 〈y2, y1〉 by (let1)

≈ax let 〈x1, x2〉 = x in let〈x3, x4〉 = x2 in

let 〈y1, y2〉 = 〈〈x1, x3〉, x4〉 in 〈y2, y1〉 by (βλ)

≈ax let 〈x1, x2〉 = x in let〈x3, x4〉 = x2 in

〈x4, 〈x1, x3〉〉 : C ⊗ (A⊗B) by (β⊗).

Let’s compute the complete left hand side:

αA,B,C ;σA⊗B,C ;αC,A,B = x : A⊗ (B ⊗ C) ⊲

let z =

(

let〈x1, x2〉 = x in
let〈x3, x4〉 = x2 in 〈x4, 〈x1, x3〉〉

)

in

let 〈z1, z2〉 = z in let 〈z3, z4〉 = z2 in 〈〈z1, z3〉, z4〉
≈ax let 〈x1, x2〉 = x in let〈x3, x4〉 = x2 in

let z = 〈x4, 〈x1, x3〉〉 in let〈z1, z2〉 = z in

let 〈z3, z4〉 = z2 in 〈〈z1, z3〉, z4〉 by (let1)

≈ax let 〈x1, x2〉 = x in let〈x3, x4〉 = x2 in

let 〈z1, z2〉 = 〈x4, 〈x1, x3〉〉 in

let 〈z3, z4〉 = z2 in 〈〈z1, z3〉, z4〉 by (βλ)

≈ax let 〈x1, x2〉 = x in let〈x3, x4〉 = x2 in

let 〈z3, z4〉 = 〈x1, x3〉 in 〈〈x4, z3〉, z4〉 by (β⊗)

≈ax let 〈x1, x2〉 = x in

let 〈x3, x4〉 = x2 in 〈〈x4, x1〉, x3〉 : (C ⊗A) ⊗B by (β⊗).

Right hand side: let’s right down the components:

idA = a : A ⊲a : A,

σB,C = b : B ⊗ C ⊲ let 〈b1, b2〉 = b in 〈b2, b1〉 : C ⊗B,

thus

idA ⊗ σB,C = x : A⊗ (B ⊗ C) ⊲ let 〈a, b〉 = x in

〈a, let 〈b1, b2〉 = b in 〈b2, b1〉〉
≈ax let 〈a, b〉 = x in

let 〈b1, b2〉 = b in 〈a, 〈b2, b1〉〉 by (let⊗1).

idB = c : B ⊲ c : B,

σA,C = d : A⊗ C ⊲ let 〈d1, d2〉 = d in 〈d2, d1〉 : C ⊗A,

thus

σA,C ⊗ idB = y : (A⊗ C) ⊗B ⊲ let 〈d, c〉 = y in

9.3. The Category Cλ 139

〈let 〈d1, d2〉 = d in 〈d2, d1〉, c〉
≈ax let 〈d, c〉 = y in

let 〈d1, d2〉 = d in

〈〈d2, d1〉, c〉 : (B ⊗A) ⊗B by (let⊗2).

Finally,

αA,C,B = z : A⊗ (C ⊗B) ⊲ let 〈z1, z2〉 = z in

let 〈z3, z4〉 = z2 in 〈〈z1, z3〉, z4〉 : (A⊗ C) ⊗B.

Let’s compose idA ⊗ σB,C and αA,C,B:

(idA ⊗ σB,C);αA,C,B = x : A⊗ (B ⊗ C) ⊲

let z =

(

let 〈a, b〉 = x in
let 〈b1, b2〉 = b in 〈a, 〈b2, b1〉〉

)

in

let 〈z1, z2〉 = z in

let 〈z3, z4〉 = z2 in 〈〈z1, z3〉, z4〉
≈ax let 〈a, b〉 = x in let 〈b1, b2〉 = b in

let z = 〈a, 〈b2, b1〉〉 in let〈z1, z2〉 = z in

let 〈z3, z4〉 = z2 in 〈〈z1, z3〉, z4〉 by (let1)

≈ax let 〈a, b〉 = x in let 〈b1, b2〉 = b in

let 〈z1, z2〉 = 〈a, 〈b2, b1〉〉 in

let 〈z3, z4〉 = z2 in 〈〈z1, z3〉, z4〉 by (βλ)

≈ax let 〈a, b〉 = x in let 〈b1, b2〉 = b in

let 〈z3, z4〉 = 〈b2, b1〉 in 〈〈a, z3〉, z4〉 by (β⊗)

≈ax let 〈a, b〉 = x in let 〈b1, b2〉 = b in

〈〈a, b2〉, b1〉 : (A⊗ C) ⊗B by (β⊗).

Let’s compute the complete right hand side:

(idA ⊗ σB,C);αA,C,B; (σA,C ⊗ idB) = x : A⊗ (B ⊗ C) ⊲

let y =

(

let 〈a, b〉 = x in let 〈b1, b2〉 = b in
〈〈a, b2〉, b1〉

)

in

let 〈d, c〉 = y in let 〈d1, d2〉 = d in 〈〈d2, d1〉, c〉
≈ax let 〈a, b〉 = x in let 〈b1, b2〉 = b in

let y = 〈〈a, b2〉, b1〉 in let 〈d, c〉 = y in

let 〈d1, d2〉 = d in 〈〈d2, d1〉, c〉 by (let1)

≈ax let 〈a, b〉 = x in let 〈b1, b2〉 = b in

〈〈b2, a〉, b1〉 : (C ⊗A) ⊗B by (βλ) and (β⊗) twice.

And this is alpha equivalent to the left hand side. So the equation holds.

9.3.2 Monadic Structure

Definition 9.3.4. We define the term λ∗.M to be λy.(let ∗ = y in M), for M a fresh variable.

9.3. The Category Cλ 140

Lemma 9.3.5. The following axiomatic relations are satisfied:

∆ ⊲ (λ∗.M)∗ ≈ax M : A (β∗)

∆ ⊲ (λ∗.V ∗) ≈ax V : ⊤⊸A (η∗)

Proof. Proof by simple calculation.

Lemma 9.3.6. Let ηA be the arrow x : A ⊲ λ∗.x : ⊤⊸A and

(x : A ⊲ V : ⊤⊸B)∗ = y : ⊤⊸A ⊲ λ∗. let x = (y∗) in (V ∗) : ⊤⊸B.

Then (⊤⊸−, η,−∗) is a Kleisli triple in Cλ.
Proof. We need to check Equations (2.5.3), (2.5.4) and (2.5.5).

Equation (2.5.3). We want η∗A = id⊤⊸A:

ηA = x : A ⊲ λ∗.x : ⊤⊸A thus

η∗A = y : ⊤⊸A ⊲ λ∗. let x = (y∗) in ((λ∗.x)∗) : ⊤⊸A

= y : ⊤⊸A ⊲ λ∗. let x = (y∗) in x⊤⊸A by (β∗), (βλ)

= y : ⊤⊸A ⊲ λ∗.y∗ : ⊤⊸A by (β2
λ)

= y : ⊤⊸A ⊲ y : ⊤⊸A by (η∗), (ηλ)

= id⊤⊸A.

Equation (2.5.4). We want ηA; f∗ = f :

ηA = x : A ⊲ λ∗.x : ⊤⊸A, f = y : A ⊲ V : ⊤⊸B,

thus

f∗ = z : ⊤⊸A ⊲ λ∗. let y = (z∗) in (V ∗) : ⊤⊸B, and

ηA; f∗ = x : A ⊲ letz = λ∗.x in

λ∗. let y = (z∗) in (V ∗) : ⊤⊸B

= x : A ⊲ λ∗. let y = ((λ∗.x)∗) in (V ∗) : ⊤⊸B by (βλ)

= x : A ⊲ λ∗. let y = x in (V ∗) : ⊤⊸B by (β∗)

= y : A ⊲ λ∗.V ∗ : ⊤⊸B by (αlet)

= y : A ⊲ V : ⊤⊸B by (η∗), (ηλ)

= f

Equation (2.5.5). We want f∗; g∗ = (f ; g∗)∗. If

f = x : A ⊲ V : ⊤⊸B, g = y : B ⊲W : ⊤⊸C,

then

f∗ = z : ⊤⊸A ⊲ λ∗. let x = (z∗) in (V ∗) : ⊤⊸B,

g∗ = t : ⊤⊸B ⊲ λ∗. let y = (t∗) in (W∗) : ⊤⊸C.

Let’s compute

f∗; g∗ = z : ⊤⊸A ⊲ let t = (λ∗. let x = (z∗) in (V ∗))

9.3. The Category Cλ 141

in λ∗. let y = (t∗) in (W∗) : ⊤⊸C,

= z : ⊤⊸A ⊲ λ∗. let y =

(λ∗. let x = (z∗) in (V ∗))∗ in (W∗) : ⊤⊸C by (βλ)

= z : ⊤⊸A ⊲ λ∗. let y = (let x = (z∗) in (V ∗))
in (W∗) : ⊤⊸C by (β∗), (βλ)

= z : ⊤⊸A ⊲ λ∗. let x = (z∗) in

let y = (V ∗) in (W∗) : ⊤⊸C by (let1).

Next we need

f ; g∗ = x : A ⊲ let t = V

in λ∗. let y = (t∗) in (W∗) : ⊤⊸C,

= x : A ⊲ λ∗. let t = V in

let y = (t∗) in (W∗) : ⊤⊸C by (letλ),

and thus

(f ; g∗)∗ = z : ⊤⊸A ⊲ λ∗. let x = (z∗) in

λ∗.(let t = V in let y = (t∗) in (W∗))∗ : ⊤⊸C

= z : ⊤⊸A ⊲ λ∗. let x = (z∗) in

let t = V in let y = (t∗) in (W∗) : ⊤⊸C by (β∗), (βλ)

= z : ⊤⊸A ⊲ λ∗. let x = (z∗) in

let y = (V ∗) in (W∗) : ⊤⊸C by (βλ)

= f∗; g∗

This ends the proof.

Lemma 9.3.7. Define the following maps:

ηA = x : A ⊲ λ∗.x : ⊤⊸A,

µA = x : ⊤⊸(⊤⊸A) ⊲ λ∗.(x∗)∗ : ⊤⊸A,

tA,B = z : A⊗ (⊤⊸B) ⊲ let 〈x, y〉 = z in λ∗.〈x, y∗〉 : ⊤⊸(A⊗B),

and define ⊤⊸(x : A ⊲ V : B) as the arrow

y : ⊤⊸A ⊲ λ∗. let x = (y∗) in V : ⊤⊸B.

Then (⊤⊸−, η, µ, t) is a strong monad.

Proof. The fact that (⊤⊸−, η, µ) is a monad is a corollary of Lemmas 9.3.6 and 2.5.3. It remains
to show that tA,B is natural in A and B, and that it satisfies Equations (5.4.1), (5.4.5) and (5.4.4).

Naturality of tA,B in A. We must show that given a map f : A→ A′, the diagram

A⊗ (⊤⊸B)
tA,B //

f⊗(⊤⊸B)

��

⊤⊸(A⊗B)

⊤⊸(f⊗B)

��
A′ ⊗ (⊤⊸B)

tA′,B

// ⊤⊸(A′ ⊗B)

9.3. The Category Cλ 142

commutes. If f is the value t : A ⊲ V : A′, then

f ⊗ (⊤⊸B) : u : A⊗ (⊤⊸B) ⊲ let 〈t, u′〉 = u in 〈V, u′〉 : A′ ⊗ (⊤⊸B),

⊤⊸(f ⊗B) : v : ⊤⊸(A⊗B) ⊲ λ∗.





let v′ = v∗ in
let〈t, v′′〉 = v′ in
〈V, v′′〉



 : ⊤⊸(A′ ⊗B).

One needs to show that f ⊗ (⊤⊸B); tA′,B = tA,B;⊤⊸(f ⊗B). The right hand side is

z : A⊗ (⊤⊸B) ⊲ let v =

(

let 〈x, y〉 = z in
λ∗.〈x, y∗〉

)

in λ∗.





let v′ = v∗ in
let 〈t, v′′〉 = v′ in
〈V, v′′〉





≈ax λ∗.









let 〈x, y〉 = z in
let v = λ∗.〈x, y∗〉 in
let v′ = v∗ in
let 〈t, v′′〉 = v′ in 〈V, v′′〉









by (letλ) and (let1)

≈ax λ∗.





let 〈x, y〉 = z in
let v′ = 〈x, y∗〉 in
let 〈t, v′′〉 = v′ in 〈V, v′′〉



 by (βλ) and (β∗)

≈ax λ∗.









let 〈x, y〉 = z in

let v′ =

(

let b = y∗ in
let a = x in 〈a, b〉

)

in

let 〈t, v′′〉 = v′ in 〈V, v′′〉









by (let⊗)

≈ax λ∗.





let 〈x, y〉 = z in let b = y∗ in
let a = x in let v′ = 〈a, b〉 in
let 〈t, v′′〉 = v′ in 〈V, v′′〉



 by (let1)

≈ax λ∗.
(

let 〈x, y〉 = z in let b = y∗ in
let a = x in let 〈t, v′′〉 = 〈a, b〉 in 〈V, v′′〉

)

by (βλ)

≈ax λ∗.
(

let 〈x, y〉 = z in let b = y∗ in 〈V [x/t], b〉
)

by (β⊗) and (βλ)

≈ax λ∗.
(

let 〈x, y〉 = z in let b = y∗ in
let b′ = b in let a′ = V [x/t] in 〈a′, b′〉

)

by (let⊗)

≈ax λ∗.





let 〈x, y〉 = z in
let b′ = (let b = y∗ in b) in
let a′ = V [x/t] in 〈a′, b′〉



 by (let1)

≈ax λ∗.
(

let 〈x, y〉 = z in let b′ = y∗ in
let a′ = V [x/t] in 〈a′, b′〉

)

by (β2
λ)

≈ax λ∗.
(

let 〈x, y〉 = z in 〈V [x/t], y∗〉
)

by (let⊗).

The left hand side is

u : A⊗ (⊤⊸B) ⊲ let z = (let 〈t, u′〉 = u in 〈V, u′〉) in

let 〈x, y〉 = z in λ∗.〈x, y∗〉
≈ax let 〈t, u′〉 = u in

let z = 〈V, u′〉 in

9.3. The Category Cλ 143

let 〈x, y〉 = z in λ∗.〈x, y∗〉 by (let1)

≈ax let 〈t, u′〉 = u in

let 〈x, y〉 = 〈V, u′〉 in λ∗.〈x, y∗〉 by (βλ)

≈ax let 〈t, u′〉 = u in λ∗.〈V, u′∗〉. by (β⊗)

Since they are α-equivalent, they are axiomatically equivalent, and the diagram commutes.

Naturality of tA,B in B. One needs to show that given a map f : B → B′, the diagram

A⊗ (⊤⊸B)
tA,B //

A⊗(⊤⊸ f)

��

⊤⊸(A⊗B)

⊤⊸(A⊗f)

��
A′ ⊗ (⊤⊸B′)

tA,B′

// ⊤⊸(A⊗B′)

commutes. That is to say, tA,B;⊤⊸(A⊗f) = A⊗(⊤⊸ f); tA,B′ . If f is the value t : B ⊲ V : B′,
one has:

A⊗ (⊤⊸ f) : u : A⊗ (⊤⊸B) ⊲ let 〈t′, u′〉 = u in

〈t′, λ∗. let t = u′∗ in V 〉 : A′ ⊗ (⊤⊸B′)

⊤⊸(A⊗ f) : v : ⊤⊸(A⊗B) ⊲ λ∗.
(

let v′ = v∗ in
let 〈t′, t〉 = v′ in t′, V

)

: ⊤⊸(A⊗B′).

This ends the proof.

Lemma 9.3.8. Consider the functor ⊸ : Cλop ×Cλ → Cλ, defined on arrows by

A⊸ (x : B ⊲ V : C) = y : A⊸B ⊲ λz. let x = yz in V : A⊸ C,

(x : A ⊲ V : B)⊸ C = y : B⊸ C ⊲ λx.yV : A⊸ C,

and the map ΦA,B,C : Cλ(A,B⊸ C) → Cλ(A⊗B,⊤⊸C):

(x : A ⊲ V : B⊸C) −→ (t : A⊗B ⊲ λ∗. let 〈x, y〉 = t in V y : ⊤⊸C) .

With these structures, Cλ has (⊤⊸−)-exponentials, as in Definition 5.4.4.

Proof. We define Φ−1
A,B,C :

(t : A⊗B ⊲ V : ⊤⊸C) −→ (x : A ⊲ λy. let t = 〈x, y〉 in V ∗ : B⊸ C) ,

and we show that they are inverse of each other. Given x : A ⊲ V : B⊸ C, let’s apply Φ−1
A,B,C ◦

ΦA,B,C . We get

x : A ⊲ λy. (let t = 〈x, y〉 in (λ∗. let 〈x, y〉 = t in V y)∗)
≈ax λy. (let t = 〈x, y〉 in let 〈x, y〉 = t in V y) by (β∗)

≈ax λy. (let 〈x, y〉 = 〈x, y〉 in V y) by (βλ)

≈ax λy.(V y) by (β⊗)

≈ax V : B⊸C by (ηλ).

Similarly, if we apply ΦA,B,C ◦ Φ−1
A,B,C to t : A⊗B ⊲ V : ⊤⊸C, we get

t : A⊗B ⊲ λ∗. let 〈x, y〉 = t in (λy. let t = 〈x, y〉 in V ∗)y

9.3. The Category Cλ 144

≈ax λ∗. let 〈x, y〉 = t in let t = 〈x, y〉 in V ∗ by (βλ)

≈ax λ∗. let t = 〈x, y〉 in let 〈x, y〉 = t in V ∗ by (let2)

≈ax λ∗. let 〈x, y〉 = 〈x, y〉 in V ∗ by (βλ)

≈ax λ∗.V ∗ by (β⊗)

≈ax V : ⊤⊸ C

and thus Φ−1
A,B,C is the inverse of ΦA,B,C . To finish the proof it is enough to show that ⊸ is

bifunctorial. We need to show that (−⊸B) and (A⊸−) are functors, and that (f⊸B); (A⊸g) =
(A′⊸ g); (f⊸B), if f : A→ A′ and g : B → B′.

First consider idA⊸ idB: If idA = a : A ⊲ a : A and idB = b : B ⊲ b : B, it is the arrow

x : A⊸B ⊲λa. let b = xa in b

≈axλa.xa by (β2
λ)

≈axx by (ηλ)

Then consider f = x : A ⊲ V : A′ and f ′ = y : A′ ⊲W : A′′. We compute (f⊸B) and (f ′⊸B):

t : A′′⊸B ⊲λy. let b = tW in b

≈axλy.tW : A′⊸B by (β2
λ),

z : A′
⊸B ⊲λx. let b = zV in b

≈axλx.zV : A⊸B by (β2
λ).

The composition of these two functions is

t : A′′⊸B ⊲ let z = λy.tW in λx.zV

≈axλx.(λy.tW)V by (βλ)

≈axλx. let y = V in tW : A⊸B by definition.

Let’s compute (f ; f ′)⊸B:

t : A′′
⊸B ⊲λx. let b = t(let y = V in W) in b

≈axλx.t(let y = V in W) by (β2
λ)

≈axλx. let y = V in tW : A⊸B by (letapp1),

which is precisely (f ′⊸B); (f ⊸B).
Now consider g = x : B ⊲ V : B′ and g′ = y : B′ ⊲W : B′′. We compute (A⊸g) and (A⊸g′):

t : A⊸B ⊲λa. let x = ta in V : A⊸B′,

z : A⊸B′ ⊲λa′. let y = za′ in W : A⊸B′′.

The composition of these two functions is

t : A⊸B ⊲ let z = (λa. let x = ta in V) in

λa′. let y = za′ in W

≈axλa
′. let y = (λa. let x = ta in V)a′ in W by (βλ)

≈axλa
′. let y = (let x = ta′ in V) in W by (βλ)

9.3. The Category Cλ 145

≈axλa
′. let x = ta′ in let y = V in W by (let1),

which is exactly A⊸ (g; g′).
Remains to show that if f = x : A ⊲ U : A′ and g = y : B ⊲ V : B′ then (A′⊸ g); (f ⊸B′) =

(f⊸B); (A⊸ g).
Let us write down the components of the equations:

A′⊸ g = x1 : A′⊸B ⊲λx2. let y = x1x2 in V : A′⊸B′

A⊸ g = y1 : A⊸B ⊲λy2. let y = y1y2 in V : A⊸B′

f⊸B′ = z : A′⊸B′ ⊲λx.zU : A⊸B′

f⊸B = t : A′
⊸B ⊲λx.tU : A⊸B

Computing (A′⊸ g); (f⊸B′), we get

x1 : A′⊸B ⊲ let z = (λx2. let y = x1x2 in V) in λx.zU

≈axλx.(λx2 . let y = x1x2 in V)U by (βλ)

≈axλx. let y = x1U in V : A⊸B′ by (βλ)

The other hand of the equation, (f⊸B); (A⊸ g), is

t : A′⊸B ⊲ let y1 = λx.tU in λy2. let y = y1y2 in V

≈axλy2. let y = (λx.tU)y2 in V by (βλ)

≈axλx. let y = tU in V by (αlet),

and thus the equation holds.

9.3.3 Comonadic Structure

The goal is to have the type constructor ! to be a comonad. Ideally, we would like the following to
be a derived typing rule:

!∆ ⊲ V : A
!∆ ⊲ V : !A.

However, in the context of indexed terms, the correct statement of this property is slightly more
technical. It means there should be another indexation of the original value, well-typed of duplicable
type.

Definition 9.3.9. We define a map ! on extended values in the following way:

!(xB) = x!B !(〈V,W 〉n), = 〈!V , !W 〉n+1
,

!(cB) = c!B, !(let ∗ = V in W) = let ∗ = V in !W,

!(∗n) = ∗n+1, !(let 〈xA, yB〉n = V in W) = let 〈xA, yB〉n+1
= !V in !W,

!(λnxA.M) = λn+1xA.M, !(let xA = V in W) = let x!A = !V in !W.

We call !V the promotion of V .

Lemma 9.3.10. Given a valid typing judgement !∆ ⊲ V : A, the typing judgement !∆ ⊲ !V : !A is
valid.

Proof. Proof by structural induction on the derivation of !∆ ⊲ V : A

9.3. The Category Cλ 146

Lemma 9.3.11. Consider an extended value V . Then Erase(!V) = Erase(V).

Proof. Proof by structural induction on V .

Lemma 9.3.12. If ∆ ⊲ V ≈ax W : A, then !∆ ⊲ !V ≈ax !W : !A

Proof. By structural induction on the derivation of ∆ ⊲ V ≈ax W : A. We fully develop the case
(βλ).

Suppose that ∆ ⊲ let xA = V in W : B is valid. Then so is ∆ ⊲ W [V/x] : B. We have
!(let xA = V in W) = (let x!A = !V in !W). From Lemma 9.3.10,

!∆ ⊲ let x!A = !V in !W : !B

is valid. We therefore have !∆ ⊲ !W [!V /x] : !B, and by rule (βλ), they are axiomatically equivalent.
Now, using 9.3.10, Lemma 9.3.11 and Theorem 9.2.7, we have !∆ ⊲ !(W [V/x]) ≈ax !W [!V /x] :

!B. Therefore,
!∆ ⊲ !(let xA = V in W) ≈ax !(W [V/x]) : !B.

The other cases are handled similarly.

Lemma 9.3.13. Given the map ! sending A to !A and sending x : A ⊲ V : B to x : !A ⊲ !V : !B,
and given the arrows

ǫA = x : !A ⊲ xA : A, δA = x : !A ⊲ x!2A : !2A,

(!, ǫ, δ) is an idempotent comonad in Cλ.

Proof. We show the functoriality of !.
First, from Lemma 9.3.12, ! is a well-defined function on equivalence class of arrows.
Then, given x : A ⊲ V : B and y : B ⊲W : C we need to show that

!(x : A ⊲ V : B); !(y : B ⊲W : C) ≈ax !(x : A ⊲ let y = V in W : C).

Both hands ends up being by definition of composition equal to

x : !A ⊲ let y!B = !V in !W : !C.

Finally, the image !idA of the unit on A is !(x : A ⊲ x : A), which is by definition x : !A ⊲ x : !A,
namely the unit on !A.

Using Lemmas 9.1.25, 9.3.11 and Theorem 9.2.7, the equations

x : !A ⊲ {!V <: B} ≈ax V : B,

x : !A ⊲ {!V <: !!B} ≈ax {!V :> !!B} : !!B

are valid, making ǫ and δ natural transformations.
The facts that δA is an isomorphism and that δ and ǫ verify Equation (2.6.1) and (2.6.2) use

similar techniques.

9.3. The Category Cλ 147

αA,B,C = x : A⊗(B⊗C) ⊲ let〈y, z〉 = xin
let〈t, u〉 = z in 〈〈y, t〉, u〉 : (A⊗B)⊗C

λA = x : ⊤⊗A ⊲ let 〈y, z〉 = x in let ∗ = y in z : A
ρA = x : A⊗⊤ ⊲ let 〈y, z〉 = x in let ∗ = z in y : A
σA,B = x : A⊗B ⊲ let 〈y, z〉 = x in 〈z, y〉 : B ⊗A
ηA = x : A ⊲ λ∗.x : ⊤⊸A
µA = x : ⊤⊸(⊤⊸A) ⊲ λ∗.(x∗)∗ : ⊤⊸A
tA,B = z : A⊗ (⊤⊸B) ⊲ let 〈x, y〉 = z in λ∗.〈x, y∗〉 : ⊤⊸(A⊗B)
ǫA = x : !A ⊲ xA : A

δA = x : !A ⊲ x!2A : !2A
d!
A,B = z : !A⊗ !B ⊲ let 〈x, y〉 = z in 〈x, y〉 : !(A⊗B)

d!
⊤ = z : ⊤ ⊲ let ∗ = z in ∗ : !⊤

△A = x : !A ⊲ 〈x, x〉 : !A⊗ !A
♦A = x : !A ⊲ ∗ : ⊤

(x : A ⊲ V : B) ⊗ (y : C ⊲W : D) =
z : A⊗B ⊲ let 〈x, y〉 = z in 〈V,W 〉 : C ⊗D

(x : A ⊲ V : B)⊸ (y : C ⊲W : D) =
z : B⊸ C ⊲ λx.(let y = zV in W) : A⊸D

(x : A ⊲ V : ⊤⊸B)∗ =
y : ⊤⊸A ⊲ λ∗. let x = (y∗) in (V ∗) : ⊤⊸B

ΦA,B,C (x : A ⊲ V : B⊸ C) =
t : A⊗B ⊲ λ∗. let 〈x, y〉 = t in V y : ⊤⊸C

Table 9.5: Definitions of maps and operations on maps in Cλ

9.3.4 The Category Cλ is a Linear Category for Duplication

Lemma 9.3.14. Given the maps

d!
A,B = z : !A⊗ !B ⊲ let 〈x!A, y!B〉1 = z in 〈x!A, y!B〉1 : !(A⊗B),

d!
⊤ = z : ⊤ ⊲ let ∗ = z⊤ in ∗ : !⊤,

(!, δ, ǫ, d, d) is a strong symmetric monoidal comonad in Cλ.

Proof. The proof makes heavy use of Lemmas 9.1.25, 9.3.11 and Theorem 9.2.7.

Lemma 9.3.15. If we define the maps

△A = x : !A ⊲ 〈x!A, x!A〉0 : !A⊗ !A, ♦A = x : !A ⊲ ∗0 : ⊤,

the functor “!” is a linear exponential comonad.

Proof. Again, the proof makes heavy use of Lemmas 9.1.25, 9.3.11 and Theorem 9.2.7.

Theorem 9.3.16. Together with the maps and the operations on maps defined in Table 9.5, Cλ is
a linear category for duplication.

Proof. This is a corollary of Lemmas 9.3.1, 9.3.3, 9.3.6, 9.3.7, 9.3.8 and 9.3.15.

Chapter 10

Proof of Theorem 9.2.7

In Chapter 9, we defined a typed lambda-calculus with explicit indexing. The type system is based
on linear logic: a special type operator “!” is used to distinguish duplicable and non-duplicable
terms. We recall Definitions 9.1.1 and 9.1.3 giving the set of terms and types:

Type A,B ::= α | (A⊸B) | (A⊗B) | ⊤ | !A,

CoreValue U,U ′ ::= xA | cA | ∗n | λnxA.M | 〈U,U ′〉n,

ExtValue V,W ::= U | 〈V,W 〉n | let xA = V in W | let 〈xA, yB〉n = V in W |
let ∗ = V in W,

Term M,N ::= U | 〈M,N〉n | (MN) | let 〈xA, yB〉n = M in N | let ∗ = M in N .

Terms are separated into core values, extended values and computations. We introduced the notion
of valid typing judgement in Section 9.1.2, and we provided an axiomatic equivalence relation on
valid typing judgement in Section 9.2. For the axiomatic equivalence relation a notion of substitution
is required. This does not come for free due to the subtyping relation: an explicit typecasting is
needed and is introduced in Definition 9.1.20: If a term M is valid with type A and if A <: B, we
inductively define a valid term {M <: B} of type B.

One of the desired properties derived from the axiomatic equivalence relation is Theorem 9.2.7,
stating that if any two terms are equal without their indexation, they are axiomatically equivalent.
In other words, the meaning of a term is not related to the indexation of the term. This chapter is
uniquely devoted to the proof of Theorem 9.2.7. The main technical obstacle to a direct proof of this
theorem, is the possible “wild” use of the application inside any given term. In order to restrict this,
we use the notion of “normalization by evaluation” of (Filinski, 2001) and (Ohori, 1999): we work
with a subclass of terms that we call neutral terms on which the result can be proved directly. We
then define two rewriting systems yielding in two steps neutral terms from any given terms. A weak
normalization result is shown, adapting the techniques described in (Girard et al., 1990, Ch. 4): we
show that terms admit a well-founded measure of convergence, which decreases with each reduction
of the rewriting system.

10.1 A Handy Tool: Neutral Terms

In this section we define the notion of neutral terms. We prove some useful results and then that
any term is axiomatically equivalent to a neutral term.

148

10.1. A Handy Tool: Neutral Terms 149

Definition 10.1.1. Following Filinski (2001) and Ohori (1999), the notions of neutral value and
neutral term are defined as follows (omitting indexes for readability when possible):

NValue V,W ::= x | c | ∗ | λx.M | 〈V,W 〉,
NTerm M,N ::= V | xV | cV | let . = xV in M | let . = cV in M |

let 〈y, z〉 = x in M | let 〈y, z〉 = c in M |
let ∗ = x in M | let ∗ = c in M,

where . means any of x, 〈x, y〉 or ∗. A neutral typing judgement is a typing judgement ∆ ⊲M : A
where M is a neutral term.

Lemma 10.1.2. Suppose that M is a neutral term and that Erase(M) = Erase(N). Then N is a
neutral term.

Proof. Proof by structural induction on M .

Lemma 10.1.3. For valid neutral terms ∆ ⊲ M,M ′ : B, if Erase(M) = Erase(M ′) then ∆ ⊲
M ≈ax M

′ : B.

Proof. We prove it by induction on Ṁ = Erase(M). Note that we also have Ṁ = Erase(M ′). Base
cases:

Cases Ṁ ≡ x, c or ∗. In each case, there is only one typing rule available for ∆ ⊲ M : B and
∆ ⊲ M ′ : B, namely (ax 1) in the fist case, (ax 2) in the second case and (⊤.I) in the last case.
The terms M and M ′ are determined by the type B, so M = M ′ and the result is correct by
reflexivity.

Induction cases:

Case Ṁ ≡ λx.Ṅ . In this case, M is of the form λnxA.N and M ′ is of the form λn
′

xA
′

.N ′, where
Ṅ = Erase(N) = Erase(N ′). Since they are well-typed, from Lemma 9.1.12 the type B is the
raw type of M and M ′ (as in Definition 9.1.8). This implies that A = A′, n = n′ and that B is
equal to !n(A⊸ C) for some type C. Typing trees for ∆ ⊲ M : B and ∆ ⊲ M ′ : B start with
a typing rule of the form (λi), with i = 1 if n = 0, i = 2 otherwise, and we have the following
valid typing judgements:

∆, x : A ⊲ N : C, ∆, x : A ⊲ N ′ : C.

By induction hypothesis, ∆, x : A ⊲ N ≈ax N
′ : C. By congruence, we have ∆ ⊲M ≈ax M

′ : B.

Case Ṁ ≡ 〈U̇ , V̇ 〉. M is of the form 〈N,P 〉n andM ′ is of the form 〈N ′, P ′〉n
′

, where U̇ = Erase(N) =
Erase(N ′) and V̇ = Erase(P) = Erase(P ′). Since M and M ′ are well-typed, from Lemma 9.1.12
the type B is the raw type of M and M ′. This implies that n = n′ and that B is equal to
!n(A⊗ C) for some types A and C. Typing trees for ∆ ⊲ M : B and ∆ ⊲ M ′ : B start with a
typing rule of the form (⊗.I), and we have the following valid typing judgements:

!∆̇,Γ1 ⊲ N : !nA, !∆̇′,Γ′
1 ⊲ N

′ : !nA, !∆̇,Γ2 ⊲ P : !nC, !∆̇′,Γ′
2 ⊲ P

′ : !nC,

where ∆ = (!∆̇,Γ1,Γ2) = (!∆̇′,Γ′
1,Γ

′
2).

From Lemma 9.1.19, it is possible to have Γ1, Γ2, Γ′
1 and Γ′

2 containing only non-duplicable
variables. From Lemma 9.1.17, the sets |Γ1| ∩ |Γ2| and |Γ′

1| ∩ |Γ′
2| are empty. From Lemma 9.1.7,

FV (N) = FV (N ′) and FV (P) = FV (P ′).

10.1. A Handy Tool: Neutral Terms 150

This means that Γ1 = Γ′
1, Γ2 = Γ′

2 and !∆̇ = !∆̇′. We can then apply the induction hypothesis
twice and deduce

!∆̇,Γ1 ⊲ N ≈ax N
′ : !nA, !∆̇,Γ2 ⊲ P ≈ax P

′ : !nC.

Finally, using the congruence rule of the axiomatic equivalence relation, we get that ∆ ⊲M ≈ax

M ′ : B.

Case Ṁ ≡ xV̇ . Since M and M ′ are well-typed, from Lemma 9.1.12 the type B is the raw type of M
and M ′. This implies that M is of the form xA1⊸BV1 and M ′ is of the form xA2⊸BV2, for some
neutral values V1 and V2 and some types A1 and A2. The typing judgements ∆ ⊲ M,M ′ : B
comes from the typing rule (app): the variable x occurs in ∆. The context ∆ can thus be split
into (∆̇, x : !n(A′⊸B′)) for some integer n where, from Lemma 9.1.16, A1 <:A′, A2 <: A′ and
B′ <:B.

Using Lemma 9.1.19, one can construct the typing derivations π and π′ of the form

x : !n(A′⊸B′) ⊲ xAi⊸B : Ai⊸B
(ax 1)

....
∆̇i ⊲ Vi : Ai

∆̇, x : !n(A′⊸B′) ⊲ xAi⊸BVi : B
(app)

where

∆̇i =

{

∆̇, x : !n(A′′⊸B′) if x ∈ FV (Vi),

∆̇ otherwise,

for i = 1, 2. From Lemma 9.1.7, FV (V1) = FV (V2). This makes ∆̇1 = ∆̇2. Call it ∆̇′. From
Lemma 9.1.26, ∆̇′ ⊲ {V1 <: A′} : A′ and ∆̇′ ⊲ {V2 <: A′} : A′ are valid. Applying induction
hypothesis, they are axiomatically equivalent.

Finally, applying axiomatic equivalence rule (app<:), the axiomatic equivalence

∆ ⊲ xAi⊸BVi ≈ax x
A′⊸B{Vi <:A′} : B,

is valid for i = 1, 2. This makes ∆ ⊲M ≈ax M
′ : B valid by congruence and by transitivity.

Case Ṁ ≡ cV . This case is similar to the previous case.

Since M and M ′ are well-typed, from Lemma 9.1.12 the type B is the raw type of M and M ′.
This implies that M is of the form cA1⊸BV1 and M ′ is of the form cA2⊸BV2, for some neutral
values V1 and V2 and some types A1 and A2 such that !Ac <:A1⊸B and !Ac <:A2⊸B. The
type Ac is therefore of the form A′⊸B′, with A1 <:A′, A2 <:A′ and B′ <:B.

The typing judgements ∆ ⊲M,M ′ : B comes from the typing rule (app). Using Lemma 9.1.19,
one can construct the typing derivation

⊲ cAi⊸B : Ai⊸B
(ax 1)

....
∆ ⊲ Vi : Ai

∆ ⊲ cAi⊸BVi : B
(app)

for i = 1, 2. From Lemma 9.1.26, ∆ ⊲ {V1<:A′} : A′ and ∆ ⊲ {V2<:A′} : A′ are valid. Applying
induction hypothesis, they are axiomatically equivalent.

Finally, applying axiomatic equivalence rule (app<:), the axiomatic equivalence

∆ ⊲ cAi⊸BVi ≈ax c
A′⊸B{Vi <:A′} : B,

is valid for i = 1, 2. This makes ∆ ⊲M ≈ax M
′ : B valid by congruence and by transitivity.

10.1. A Handy Tool: Neutral Terms 151

Case Ṁ ≡ (let . = .. V̇ in Ṗ). The placeholder . stands for ∗, y or 〈y, z〉, and the placeholder ..

for x or c. By α-equivalence one can assume that when relevant, the variables y, z are different
from x and are not free in V̇ .

The terms M and M ′ are well-typed. From Lemma 9.1.12 the type B is the raw type of
M and M ′. One can conclude that M = (let .

1 = ..A1⊸B1V1 in P1) and M ′ = (let .
2 =

..A2⊸B2V2 in P2), where V̇ = Erase(V1) = Erase(V2), Ṗ = Erase(P1) = Erase(P2), and where
(i being 1, 2)

if . is. . . .
i is. . . Bi is. . .

∗ ∗ ⊤
y yCi Ci
〈y, z〉 〈yCi , zDi〉ni !ni(Ci ⊗Di)

for some types Ci and Di and for some integers ni.

In the case .. = x, the variable x is free in M and in M ′. From Lemma 9.1.11 it is in ∆. From
Lemma 9.1.16, the type of x in ∆ is of the form !n(A′⊸B′), with A1 <:A′, A2 <:A′, B′ <:B1

and B′ <:B2.

In the case .. = c, we have !Ac<: (A1⊸B1) and !Ac <: (A2⊸B2). Let !n(A′⊸B′) be Ac. We
then have A1 <:A′, A2 <:A′, B′ <:B1 and B′ <:B2.

In both cases, this means that if . is







∗
y
〈y, z〉

then B′ is







⊤
C′

!n
′

(C′ ⊗D′),
where C′ <: Ci,

D′<:Di, and n′ > ni. Using respectively the identity, the axiomatic equivalence rule (letx<:) and
the rule (let⊗<:), we get that

∆ ⊲ let .
i = ..Ai⊸BiVi in Pi ≈ax let . ′ = ..Ai⊸B′

Vi in Pi : B, (10.1.1)

such that if . is







∗
y
〈y, z〉

then . ′ is







∗
yC

′

〈yC′

, zD
′〉n

′

.

One can split ∆ as (!∆̇,Γ1,Γ2) such that Γ1 contains the free variables of V̇ that are not duplicable
and Γ2 contains the free variables of Ṗ that are not duplicable: from Lemma 9.1.17, |Γ1| and |Γ2|
do not intersect. Invoking Lemma 9.1.7 and Lemma 9.1.19, for i = 1, 2 one can write a typing
derivation

!∆̇,Γ1 ⊲
..Ai⊸B′

Vi : B′

....
!∆̇,Γ2,Λ ⊲ Pi : B

!∆̇,Γ1,Γ2 ⊲ let . ′ = ..Ai⊸B′

Vi in Pi : B
(X)

where if . is







∗
y
〈y, z〉

then (X) is







(⊤.E)
(let)
(⊗.E)

and Λ is







()
(y : C′)
(y : !n

′

C′, z : !n
′

D′).

One can apply the induction hypothesis on each branch of the derivation. Using the congruence
rules of the axiomatic relation and Equation (10.1.1) we obtain finally that ∆ ⊲M ≈ax M

′ : B.

Case Ṁ ≡ (let . = .. in Ṗ). The placeholder . stands for ∗ or 〈y, z〉, and the placeholder .. for x
or c. By α-equivalence one can assume that when relevant, the variables y, z are different from
x.

10.2. Term Rewriting System Number One 152

The terms M and M ′ are well-typed. From Lemma 9.1.12 the type B is the raw type of M and
M ′. One can conclude that M = (let .

1 = ..B1 in P1) and M ′ = (let .
2 = ..B2 in P2), where

Ṗ = Erase(P1) = Erase(P2) and where (i being 1, 2)

if . is. . . .
i is. . . Bi is. . .

∗ ∗ ⊤
y yCi Ci
〈y, z〉 〈yCi , zDi〉ni !ni(Ci ⊗Di)

for some types Ci and Di and for some integers ni.

In the case .. = x, the variable x is free in M and in M ′. From Lemma 9.1.11 it is in ∆. From
Lemma 9.1.16, the type A′ of x in ∆ is such that A′ <:B1 and A′ <:B2.

In the case .. = c, we have !Ac <:B1 and !Ac <:B2. Let A′ be !Ac.

In both cases, this means that if . is







∗
y
〈y, z〉

then A′ is







⊤
C′

!n
′

(C′ ⊗D′),
where C′ <: Ci,

D′<:Di, and n′ > ni. Using respectively the identity, the axiomatic equivalence rule (letx<:) and
the rule (let⊗<:), we get that

∆ ⊲ let .
i = ..Bi in Pi ≈ax let . ′ = ..A

′

in Pi : B, (10.1.2)

such that if . is







∗
y
〈y, z〉

then . ′ is







∗
yC

′

〈yC′

, zD
′〉n

′

.

Invoking Lemma 9.1.19, for i = 1, 2 one can write a typing derivation

....
Γ ⊲ ..A

′

: A′

....
∆,Λ ⊲ Pi : B

∆ ⊲ let . ′ = ..A
′

in Pi : B
(X)

where, if . is







∗
y
〈y, z〉

then (X) is







(⊤.E)
(let)
(⊗.E)

and Λ is







()
(y : C′)
(y : !n

′

C′, z : !n
′

D′),
and where, if

.. = c, Γ = () and if .. = x, Γ = (x : A′).

One can apply the induction hypothesis on each branch of the derivation. Using the congruence
rules of the axiomatic relation and Equation (10.1.2) we obtain finally that ∆ ⊲M ≈ax M

′ : B.

This ends the list of cases and proves Lemma 10.1.3.

10.2 Term Rewriting System Number One

We define a rewriting system of valid terms yielding neutral terms. We want the denotation to
stay constant through the rewriting. The rewriting will be two-fold. First we get rid of “complex
computations”, and then we get rid of beta-reductions. Note that we are not interested in confluence:
the only thing we want is normalization.

10.2. Term Rewriting System Number One 153

Definition 10.2.1. We define the notion of intermediate neutral value and of intermediate neutral
term as follows:

INValue V,W ::= xA | cA | ∗n | λnxA.M | 〈V,W 〉n,
INTerm M,N ::= V | xA⊸BV | cA⊸BV | let . = M in N,

where . is a placeholder for any of ∗, xA or 〈xA, yB〉n.

Lemma 10.2.2. A neutral term is in intermediate neutral form.

Proof. The proof is done by inspection of the cases.

Remark 10.2.3. A term in intermediate neutral form is not automatically in neutral form. The
two main examples of terms that are intermediate neutral but not neutral are

let xA = (let yB = M in N) in P, let xA = V in M,

where V is a core value.

Lemma 10.2.4. Suppose that ∆ ⊲M,M ′ : B are valid typing judgements. Suppose moreover that
Erase(M) = Erase(M ′) and that M is an intermediate neutral term (respectively value). Then M ′

is also an intermediate neutral form (respectively value).

Proof. Proof by induction on the size of M .

Lemma 10.2.5. Suppose that ∆ = (!∆′,Γ1,Γ2), that !∆′ ⊲ V : A and !∆′,Γ2, x : A ⊲M : B. If V
is an intermediate neutral value and if M is an intermediate neutral term (respectively intermediate
neutral value), then M [V/x] is an intermediate neutral term (respectively an intermediate neutral
value).

Proof. Proof by induction on the size of M . The interesting case is when M is of the form xA⊸BW :
in this situation, the value V is of type A⊸B, that is, of the form λ0yA.N whereN is an intermediate
neutral term of type B. Then M [V/x] = (λ0yA.N)W which is by definition (let yA = V in N), an
intermediate neutral term. Note that in this case, M cannot be a value.

Definition 10.2.6. We define the rewrite system number one of terms as the reflexive closure of
the relation defined as follows. Given x, y fresh variables, provided that MN : B, that M : A⊸B
is not a lambda-abstraction, and that M and N are not both term variables,

MN →1 let xA⊸B = M in let yA = N in xA⊸ByA. (rw1.c1)

Provided that 〈M,N〉n : !n(A⊗B), and that M and N are not both term variables,

〈M,N〉n →1 let x!nA = M in let y!nB = N in 〈x!nA, y!nB〉n. (rw1.c2)

Finally, we add one congruence rule for each term constructor in the following way: for each rule,
M and N are terms such that M →1 M

′ and N →1 N
′.

λnxA.M →1 λ
nxA.M ′, (rw1.ξ1)

MN →1 M
′N ′, (rw1.ξ2)

〈M,N〉n →1 〈M ′, N ′〉n, (rw1.ξ3)

let 〈xA, yB〉n = M in N →1 let 〈xA, yB〉n = M ′ in N ′, (rw1.ξ4)

let ∗ = M in N →1 let ∗ = M ′ in N ′ . (rw1.ξ5)

10.2. Term Rewriting System Number One 154

Lemma 10.2.7. Suppose that ∆ ⊲ M : C is a valid typing judgement, where M →1 M
′. Then

∆ ⊲M ′ : C is valid and ∆ ⊲M ≈ax M
′ : C.

Proof. The proof is done by induction of the reduction M →1 M
′.

If reflexivity was used. Then M = M ′ and the result is immediate.

Case (rw1.c1). Here, M ≡ NP . From Lemma 9.1.12, B = C. Suppose that ∆ ⊲ NP : B, where
N : A⊸B. Then one can split ∆ into (!∆̇,Γ1,Γ2) where

π1....
!∆̇,Γ1 ⊲ N : A⊸B

π2....
!∆̇,Γ2 ⊲ P : A

!∆̇,Γ1,Γ2 ⊲ NP : B
(app)

is a valid typing derivation. Then if x and y are fresh variables, the derivation

π1....
!∆̇, Γ1 ⊲ N : A⊸ B

π2....
!∆̇, Γ2 ⊲ P : A

x : A⊸ B ⊲ xA⊸B : A⊸ B y : A ⊲ yA : A

x : A⊸ B, y : A ⊲ xA⊸ByA : B
(app)

!∆̇, Γ2, x : A⊸ B ⊲ let yA = P in xA⊸ByA : B
(let)

!∆̇, Γ1, Γ2 ⊲ let xA⊸B = N in let yA = P in xA⊸ByA : B
(let)

is valid. The typing judgements ∆ ⊲ NP : B and ∆ ⊲ let xA⊸B = N in let yA = P in xA⊸ByA :
B are axiomatically equivalent by rule (letapp).

Case (rw1.c2). Here, M ≡ 〈N,P 〉n. From Lemma 9.1.12, C = !n(A⊗B). We have therefore
∆ ⊲ 〈N,P 〉n : !n(A⊗ B). One can split ∆ into (!∆̇,Γ1,Γ2) where

π1....
!∆̇,Γ1 ⊲ N : !nA

π2....
!∆̇,Γ2 ⊲ P : !nB

!∆̇,Γ1,Γ2 ⊲ 〈N,P 〉n : !n(A⊗B)
(app)

is a valid typing derivation. Then if x and y are fresh variables, the derivation

π1....
!∆̇, Γ1 ⊲ N : !nA

π2....
!∆̇, Γ2 ⊲ P : !nB

x : !nA ⊲ x!
n

A : !nA y : !nB ⊲ y!
n

B : !nB

x : !nA, y : !nB ⊲ 〈x!
n

Ay!
n

B〉n : !n(A ⊗ B)
(⊗.I)

!∆̇, Γ2, x : !nA ⊲ let y!
n

B = P in 〈x!
n

Ay!
n

B〉n : !n(A ⊗ B)
(let)

!∆̇, Γ1, Γ2 ⊲ let x!
n

A = N in let y!
n

B = P in 〈x!
n

Ay!
n

B〉n : !n(A ⊗ B)
(let)

is valid. The two typing judgements are axiomatically equivalent by rule (let⊗).

Case (rw1.ξ1). We have M ≡ λnxA.N . Suppose that ∆ ⊲ λnxA.N : C. Then C = !n(A⊸B) for
some type B, the judgement comes from ∆, x : A ⊲ N : B using rule (λi), where i = 1 if n = 0,
i = 2 otherwise. By induction hypothesis, if N →1 N

′ then ∆, x : A ⊲ N ′ : B is valid. Then,
if n is non null, ∆ is duplicable, and one can apply (λ2) to get ∆ ⊲ λnxA.N ′ : C. Otherwise,
n = 0 and we apply (λ1) to get ∆ ⊲ λnxA.N ′ : C.

By induction hypothesis, ∆, x : A ⊲ N ≈ax N
′ : B. Therefore, by congruence ∆ ⊲ λnxA.N ≈ax

λnxA.N ′ : C.

10.2. Term Rewriting System Number One 155

Cases (rw1.ξ2), (rw1.ξ3), (rw1.ξ4) and (rw1.ξ5). We have M = f(N,P), where f(N,P) is respec-
tively NP , 〈N,P 〉n, (let ∗ = N in P) and (let 〈xA, yB〉n = N in P). Suppose that ∆ ⊲ f(N,P) :
C. Then ∆ split into (!∆̇,Γ1,Γ2) and the typing judgement is originated from the typing rule
(X) and the judgements !∆̇,Γ1 ⊲ N : C1 and !∆̇,Γ2,Λ ⊲ P : C2, where

if f(N,P) is. . . (X) is. . . C1 is. . . C2 is. . . C is. . .
NP (app) A⊸B A B
〈N,P 〉n (⊗.I) !nA !nB !n(A⊗B)
let ∗ = N in P (⊤.E) ⊤ B B
let 〈xA, yB〉n = N in P (⊗.E) !n(A⊗B) D D,

with some types A, B and D, and such that Λ is empty in the three first cases and equal to
(x : !nA, y : !nB) in the last case.

By induction hypothesis, ifN →1 N
′ and P →1 P

′, then !∆̇,Γ1 ⊲ N
′ : C1 and !∆̇,Γ2,Λ ⊲ P

′ : C2

are well-typed. Then, applying (X) we get that ∆ ⊲ f(N ′, P ′) : C is valid.

By induction hypothesis again, !∆̇,Γ1 ⊲ N≈ax N
′ : C1 and !∆̇,Γ2,Λ ⊲ P ≈ax P

′ : C2. Therefore,
by congruence ∆ ⊲ f(N,P) ≈ax f(N ′, P ′) : C.

This closes the proof of Lemma 10.2.7.

Lemma 10.2.8. Suppose that M,N : C and that Erase(M) = Erase(N). If M →1 M
′, then there

exists N ′ such that Erase(M ′) = Erase(N ′) and such that N →1 N
′.

Proof. The proof is done by induction on the reduction M →1 M
′.

If reflexivity was used. Then M = M ′ and the result is immediate by setting N = N ′.

Case (rw1.c1). The term M is of the form M1M2, where M1 : A⊸ B and where M1M2 : B. In
this case, M ′ = (let xA⊸B = M1 in let yA = M2 in xA⊸ByA). If N is such that Erase(M) =
Erase(N), then N = N1N2, where Erase(N1) = Erase(M1) and Erase(N2) = Erase(M2).

Since the raw type of N is B, there exists a term A′ such that N1 : A′ ⊸ B. If we define
N ′ = (let xA

′⊸B = N1 in let yA
′

= N2 in xA
′⊸ByA

′

), then by reduction rule (rw1.c1), we have
N →1 N

′, and by definition of the map Erase, the terms M ′ and N ′ have the same erasure.

Case (rw1.c2). The term M is of the form 〈M1,M2〉n, where 〈M1,M2〉n : !n(A⊗B). In this case,
M ′ = (let x!nA = M1 in let y!nB = M2 in 〈x!nA, y!nB〉n). IfN is such that Erase(M) = Erase(N),
then N = 〈N1, N2〉m, where Erase(N1) = Erase(M1) and Erase(N2) = Erase(M2).

Since N : !n(A⊗B), the raw type of N is !n(A⊗B) If we define N ′ = (let x!mA = N1 in
let y!mB = N2 in 〈x!mA, y!mB〉m), then by reduction rule (rw1.c2), we have N →1 N ′, and by
definition of the map Erase, the terms M ′ and N ′ have the same erasure.

Case (rw1.ξ1). The term M is of the form λnxA.Ṁ . In this case, M ′ = λnxA.Ṁ ′, where Ṁ →1 Ṁ
′.

Since Erase(M) = Erase(N), the term N is also of the form λmxA
′

.Ṅ , with Erase(Ṁ) =
Erase(Ṅ). By induction hypothesis there exists Ṅ ′ such that Ṅ →1 Ṅ

′. Let N ′ = λmxA
′

.Ṅ ′.
One has Erase(Ṅ) = Erase(Ṅ ′). Using congruence rule (rw1.ξ1), we deduce that N →1 N

′.

Cases (rw1.ξ2), (rw1.ξ3), (rw1.ξ4) and (rw1.ξ5). In these cases, the term M is equal to f(M1,M2),
where f(M1,M2) is respectively of the form M1M2, 〈M1,M2〉n, (let ∗ = M1 in M2) and of the
form (let 〈xA, yB〉n = M1 in M2), with M1 →1 M

′
1 and M2 →1 M

′
2. We have that M →1 M

′

where M ′ = f(M ′
1,M

′
2).

10.2. Term Rewriting System Number One 156

Since Erase(M) = Erase(N), the term N = g(N1, N2), where g(N1, N2) is respectively of the
form N1N2, 〈N1, N2〉m, (let ∗ = N1 in N2) and (let 〈xA′

, yB
′〉m = N1 in N2).

By induction hypothesis, N1 →1 N ′
1 and N2 →1 N ′

2 such that Erase(N ′
1) = Erase(M ′

1) and
Erase(N ′

2) = Erase(M ′
2). This means, using respectively rules (rw1.ξ2), (rw1.ξ3), (rw1.ξ4) and

(rw1.ξ5), that g(N1, N2) →1 g(N
′
1, N

′
2).

Since Erase(g(N ′
1, N

′
2)) = Erase(f(M ′

1,M
′
2)), we can define N ′ = g(N ′

1, N
′
2) and we have that

Erase(M ′) = Erase(N ′) and N →1 N
′.

This closes the proof of Lemma 10.2.8.

Definition 10.2.9. We define the non-negative integer measure m(M) of a typed term M by
induction on M as follows (we omit indices for legibility):

m(x)=0,

m(c)=0,

m(∗)=0,

m(xy)=0,

m(〈x, y〉)=0,

m(λx.N)=m(N),

m(NP)=1 +m(N) +m(P),

m(〈N,P 〉)=1 +m(N) +m(P),

m(let ∗ = N in P)=m(N) +m(P),

m(let x = N in P)=m(N) +m(P),

m(let 〈x, y〉 = N in P)=m(N) +m(P).

In the case m(NP), we assume that N is not a lambda-abstraction. In the cases m(NP) and
m(〈N,P 〉), we assume that N and P are not both term variables.

Lemma 10.2.10. Suppose that M →1 M
′. Then M is a lambda abstraction if and only if M ′ is.

Proof. The proof is done by case inspection: there are only two possible reductions of the form
λnxA.N →1 M

′, namely (rw1.ξ1), and the identity. In both cases, M ′ is of the form λnxA.N ′.
Similarly, the only rules of the form M →1 λ

nxA.N ′ are (rw1.ξ1), and the trivial one. Again,
M is of the form λnxA.N in both cases.

Lemma 10.2.11. Suppose that M →1 M
′ where M 6= M ′. Then m(M ′) < m(M).

Proof. Proof by induction on the reduction. Note that reflexivity is not a possibility since we want
M 6= M ′.

Case (rw1.c1). In this case, M ′ = let xA⊸B = N in let yA = P in xA⊸ByA and M = NP for
some types A and B, where N is not a lambda-abstraction and N and P are not both term
variables. Since m(M) = 1 +m(N) +m(P) and m(M ′) = m(N) +m(P), the strict inequality
m(M ′) < m(M) is valid.

Case (rw1.c2). In this case, M ′ = let x!nA = N in let y!nB = P in 〈x!nA, y!nB〉n andM = 〈N,P 〉n for
some types A andB, whereN and P are not both term variables. Sincem(M) = 1+m(N)+m(P)
and m(M ′) = m(N) +m(P), the inequality m(M ′) < m(M) is valid.

Case (rw1.ξ1). In this case, M = λnxA.N and M ′ = λnxA.N ′ where N →1 N ′. By induction
hypothesis, m(N ′) < m(N). By definition, we then have that m(M ′) = m(N ′) < m(N) =
m(M).

10.2. Term Rewriting System Number One 157

Case (rw1.ξ2). We have M = NP , where N → N ′ and P →1 P
′. The terms N and P therefore

cannot be both a term variable. By induction hypothesis, m(N ′) < m(N) or N ′ = N , and
m(P ′) < m(P) or P ′ = P , but equality do not hold for both.

If N is a lambda abstraction, m(NP) = m(N) +m(P). Using Lemma 10.2.10, the term N ′ is
a lambda abstraction: we have m(N ′P ′) = m(N ′) + m(P ′). One can conclude that m(M ′) =
m(N ′) +m(P ′) < m(N) +m(P) = m(M).

If N is not a lambda abstraction, then we have m(NP) = 1+m(N)+m(P). By Lemma 10.2.10
N ′ is not a lambda-abstraction: m(N ′P ′) = 1+m(N ′)+m(P ′). Thereforem(M ′) = 1+m(N ′)+
m(P ′) < 1 +m(N) +m(P) = m(M).

Case (rw1.ξ3). We have M = 〈N,P 〉n, where N → N ′ and P →1 P
′. The terms N and P therefore

cannot be both a term variable. By induction hypothesis, m(N ′) < m(N) or N ′ = N , and
m(P ′) < m(P) or P ′ = P (but equality do not hold for both).

We have m(〈N,P 〉n) = 1+m(N)+m(P) and m(〈N ′, P ′〉n) = 1+m(N ′)+m(P ′). This is enough
to say that m(M ′) = 1 +m(N ′) +m(P ′) < 1 +m(N) +m(P) = m(M).

Cases (rw1.ξ4) and (rw1.ξ5). We have M respectively of the form (let ∗ = N in P) and of the form
(let 〈xA, yB〉n = N in P), with N →1 N

′ and P →1 P
′. We have that M → M ′ where M ′ is

respectively. (let ∗ = N ′ in P ′) and (let 〈xA, yB〉n = N ′ in P ′)

By induction hypothesis, m(N ′) < m(N) or N ′ = N , and m(P ′) < m(P) or P ′ = P (but not
N ′ = N and P ′ = P). Since in both cases, m(M) = m(N)+m(P) and m(M ′) = m(N ′)+m(P ′),
we have m(M ′) < m(M).

This ends the induction, and proves the lemma.

Lemma 10.2.12. Rewrite system number one is normalizing: For any term M and any sequence
(Mi)i such that M = M0 and such that for all i > 0, Mi →1 Mi+1, there exists a number n such
that for all i > n, Mi = Mi+1.

Proof. We prove the lemma by contradiction. Suppose there exists a term M and a sequence (Mi)i
such that M = M0 and such that for all i > 0, Mi →1 Mi+1 and such that for all n there exists a
number n′ > n such that Mn′ 6= Mn.

Define a sequence (n(i))i as follows. First, n(0) = 0. Then, for all i > 0, define n(i+1) as the first
number n′ > n(i) such that Mn′ 6= Mn(i). Note that in this case, for all i we have Mn(i) = Mn(i+1)−1

and Mn(i+1)−1 6= Mn(i+1). By Lemma 10.2.11, this means that m(Mn(i+1)) 6 m(Mn(i)) − 1. We
prove by induction on i that for all i, m(Mn(i)) 6 m(M) − i:

Case i = 0. In this case, Mn(0) = M0 = M , therefore m(Mn(i)) = m(M) − 0.

Case i > 0. Suppose that m(Mn(i)) 6 m(M) − i. Since m(Mn(i+1)) < m(Mn(i+1)−1), we have
m(Mn(i+1)) 6 m(Mn(i)) − 1 6 m(M) − i− 1 6 m(M) − (i+ 1).

Therefore, by induction on i, m(Mn(i)) 6 m(M)−i. But for i > m(M), the value m(Mi) is negative,
contradicting the non-negativity of the measure. Therefore there exists a number n such that for all
i > n, Mi = Mi+1.

Lemma 10.2.13. Suppose that ∆ ⊲ M : B is valid and that for all M ′ such that M →1 M ′,
M = M ′. Then M is in intermediate neutral form.

Proof. We prove the lemma by induction on the size of M .

Case M ≡ xA, cA and ∗n. Then M is in intermediate neutral form.

10.3. Term Rewriting System Number Two 158

Case M ≡ λnxA.N . The only applicable rule is (rw1.ξ1), meaning that the set of possible M ′ is
the set of terms of the form λnxA.N ′, where N →1 N

′. Since M = M ′, we have N = N ′. By
induction hypothesis, N is in intermediate neutral form. This makes M in intermediate neutral
form.

Case M ≡ NP . There are three possible subcases:

Case N and P are both term variables. Then M is in intermediate neutral form.

Case N ≡ λnxA.Ṅ . The only applicable rewriting rule is (rw1.ξ2). Since ∆ ⊲ M : B is valid,
n = 0 and M ≡ let xA = P in Ṅ .

In this case, the set of M ′ such that M →1 M ′ is spanned by all the terms of the form
let xA = P ′ in Ṅ ′, when Ṅ →1 Ṅ

′ and P →1 P
′. Since M ′ = M , one has Ṅ ′ = Ṅ and

P ′ = P . By induction hypothesis, this means that Ṅ and P are in intermediate neutral form.

The term M is thus in intermediate neutral form.

Otherwise. It is always possible to apply rule (rw1.c1), in which case M ′ is not equal to M . This
case is not to be considered.

Case M ≡ 〈N,P 〉n. There are two possible subcases:

Case N and P are both term variables. Then M is in intermediate neutral form.

Otherwise. It is always possible to apply rule (rw1.c2), in which case M ′ is not equal to M . This
case is not to be considered.

Cases M ≡ (let ∗ = N in P) and (let 〈xA, yB〉n = N in P). For these two cases, the only applica-
ble rules are respectively (rw1.ξ5) and (rw1.ξ4), which means that M ′ is respectively equal to
(let ∗ = N ′ in P ′) and (let 〈xA, yB〉n = N ′ in P ′), with N →1 N

′ and P →1 P
′. Since M = M ′,

we have N = N ′ and P = P ′. By induction hypothesis, N and P are in intermediate neutral
form. This makes M in intermediate neutral form.

By exhaustion of the cases, the lemma is verified.

10.3 Term Rewriting System Number Two

We now define a rewriting system that takes intermediate neutral terms and returns neutral terms.
The proof of the convergence of the rewriting system requires several notions of measures on terms.

10.3.1 The Rewriting System

Definition 10.3.1. We define the rewrite system number two of valid typed intermediate neutral
terms. We write M →2 N if either M = N , or M →2β N or M →2c N , where (→2β) and (→2c)
are defined as follows. First,

let xA = V in M →2β M [V/x], (rw2.β1)

let 〈xA, yB〉n = 〈V,W 〉n in M →2β M [V/x,W/y], (rw2.β2)

let ∗ = ∗ in M →2β M, (rw2.β3)

(provided that x, y are fresh variables). Then,

let . = (let .. = M in N) in P

→2c let .. = M in let . = N in P , (rw2.c1)

10.3. Term Rewriting System Number Two 159

let x!n(D⊸C) = λnyD.R in let . C
′

= xD
′⊸C′

S in P

→2c let x!n(D⊸C) = λnyD.R in

let yD
′

= S in let . C
′

= {R<: C′} in P , (rw2.c2)

let x!n(C⊗D) = 〈V,W 〉n in let 〈yC′

, zD
′〉m = x!m(C′⊗D′) in P

→2c let x!n(C⊗D) = 〈V,W 〉n in

let y!mC′

= {V <: !mC′} in let z!mD′

= {W <: !mD′} in P , (rw2.c3)

let x!n⊤ = ∗n in let ∗ = x⊤ in P

→2c let x!n⊤ = ∗n in P, (rw2.c4)

where . ranges over {∗, zA, 〈zA, tB〉n} and .. over {∗, uC , 〈uC , vD〉n}, where z, t, u, v are fresh vari-
ables. Then we add one congruence rule for each term constructor in the following way: for each
rule, M and N are terms such that M →2i M

′ and N →2i N
′, where i is β or c.

λnxA.M →2i λ
nxA.M ′, (rw2.ξ1)

MN →2i M
′N ′, (rw2.ξ2)

〈M,N〉n →2i 〈M ′, N ′〉n, (rw2.ξ3)

let 〈xA, yB〉n = M in N →2i let 〈xA, yB〉n = M ′ in N ′, (rw2.ξ4)

let ∗ = M in N →2i let ∗ = M ′ in N ′ . (rw2.ξ5)

If M →2i N if and only if M = N , we say that M is in →2i-normal form.

Lemma 10.3.2. Let M be an intermediate neutral term (respectively intermediate neutral value).
If M →2 N , then N is an intermediate neutral term (respectively intermediate neutral value).

Proof. Proof by structural induction on M .

Lemma 10.3.3. If Erase(M) = Erase(N) and if M →2 M
′ there exists N ′ such that Erase(M ′) =

Erase(N ′) and such that N →2 N
′.

Proof. Proof by induction on the reduction M →2 M
′.

Lemma 10.3.4. Suppose that ∆ ⊲ M : A is a valid typing judgements such that M →2 N . Then
∆ ⊲ N : A is valid and ∆ ⊲M ≈ax N : A.

Proof. Proof by induction on the reduction M →2 N .

Lemma 10.3.5. Let M be an intermediate neutral term. If M is in →2β-normal form and in
→2c-normal form then it is a neutral term.

Proof. Proof by structural induction on M .

Lemma 10.3.6. Suppose that V is an intermediate neutral value such that V →2 V
′. Suppose that

M →2 M
′. Then M [V/x] →∗

2 M [V ′/x] and M [V/x] →∗
2 M

′[V/x].

Proof. Proof by structural induction on M .

Lemma 10.3.7. Let V and W be intermediate neutral values and let M be a neutral term.

• If (let xA = V in N) →∗
2 M then N [V/x] →∗

2 M ;

• If (let 〈xA, yB〉n = 〈V,W 〉n in N) →∗
2 M then N [V/x,W/y] →∗

2 M ;

10.3. Term Rewriting System Number Two 160

• If (let ∗ = ∗ in N) →∗
2 M then N →∗

2 M ;

Proof. We prove the result for all the cases in parallel. We consider a term P of the form (let xA =
V in N), (let 〈xA, yB〉n = 〈V,W 〉n in N) or (let ∗ = ∗ in N) reducing to a neutral term M in n step
and proceed be induction on n.

In each case, there is at least one reduction possible (using respectively (rw2.β1), (rw2.β2) and
(rw2.β3)), and then the reduction P →∗

2 M can be decomposed into P →2 M
′ →2

∗ M. The first
reduction can be one of the following cases:

(rw2.β1), (rw2.β2) and (rw2.β3). Then M ′ is respectively of the form N [V/x], N [V/x,W/y] and N ,
and we are done.

(rw2.c2). Then M ′ is of the form let xA = V in N ′. By induction hypothesis, N ′[V/x] reduces to
M . Since N [V/x] = N ′[V/x], we have the result.

(rw2.c3). This case is similar to the previous one. M ′ is of the form

let xA1
1 = V1 in let xA2

2 = V2 in N ′,

and V = 〈V1, V2〉n. Applying the induction hypothesis twice and noticing that N [V/x] →2

N ′[V1/x1, V2/x2], we obtain that N [V/x] →∗
2 M

(rw2.c4). In this case, V = ∗n and M ′ is of the form let xA = ∗n in N ′. Applying induction
hypothesis, we get that N ′[V/x] →∗

2 M . Since N [V/x] →2 N
′[V/x], we get the result.

Congruence cases. These cases are taken care of by using the induction hypothesis, Lemma 10.3.6
and Lemma 10.3.2.

10.3.2 Height of Terms

Definition 10.3.8. Let h(M) be the height of the term M to be the positive integer defined as
follows:

h(xA) = h(cA) = h(∗n) = 1,

h(λnxA.M) = h(M) + 1

h(〈V,W 〉n) = h(V) + h(W) + 1,

h(cA⊸BV) = h(V) + 1,

h(xA⊸BV) = h(V) + 1,

h(let . = M in N) = 2h(M) + h(N).

Lemma 10.3.9. Suppose that M : A and that A<:B. Then h{M <:B} = h(M).

Proof. Proof by structural induction on M .

Lemma 10.3.10. For all intermediate neutral terms P , Q and R, the following equality is valid:

h(let .. = P in let . = Q in R) < h(let . = (let .. = P in Q) in R).

Proof. We have

h(let . = (let .. = P in Q) in R) = 22h(P)+h(Q) + h(R)

= 22h(P) · 2h(Q) + h(R)

10.3. Term Rewriting System Number Two 161

and

h(let . = (let .. = P in Q) in R) = 2h(P) + 2h(Q) + h(R).

Since for all x > 1 and for all y, z > 2, the inequalities 2x < 22x

and y + z 6 y · z hold, the lemma
is valid.

10.3.3 Degree of Terms

Definition 10.3.11. We define the degree δ(A) of a type A as follows:

δ(⊤) = 1, δ(α) = 1, δ(!A) = δ(A),

δ(A⊗B) = δ(A⊸B) = max(δ(A), δ(B)) + 1.

The degree of an intermediate neutral term is defined as follows:

d(xA) = 0, d(xA⊸BM) = d(M),

d(cA) = 0, d(cA⊸BM) = d(M),

d(∗n) = 0, d(λnxA.M) = d(M).

d(〈V,W 〉n) = max(d(V), d(W))

d(let xA = V in NC) = max(d(V), d(N), δ(A⊸ C))

d(let 〈xA, yB〉n = 〈V,W 〉n in NC) = max(d(V), d(W), d(N), δ(A⊸C), δ(B⊸C))

d(let ∗ = ∗ in NC) = max(d(N), d(⊤⊸ C))

d(let . = (let .. = M in N) in P) = d(let .. = M in let . = N in P)

and in all other cases,

d(let . = M in N) = max(d(M), d(N))

Lemma 10.3.12. For all types A, δ(A) > 0.

Proof. Proof by structural induction on A.

Lemma 10.3.13. For all terms M , d(M) > 0.

Proof. Proof by structural induction on M , using Lemma 10.3.12.

Lemma 10.3.14. If A<:B, then δ(A) = δ(B).

Proof. By structural induction on a derivation of A<:B.

Lemma 10.3.15. Suppose that M : A and that A<:B. Then d(M) = d{M <:B}.

Proof. By structural induction on M .

Lemma 10.3.16. Suppose that M is a neutral term. Then d(M) = 0.

Proof. Proof by structural induction on M .

10.3. Term Rewriting System Number Two 162

Lemma 10.3.17. The following inequalities are valid:

d(let 〈xA, yB〉n = M in NC) 6 max(δ(A⊸ C), δ(B⊸ C), d(M), d(N)),

d(let xA = M in NC) 6 max(δ(A⊸ C), d(M), d(N)),

d(let ∗ = M in NC) 6 max(δ(⊤⊸ C), d(M), d(N)),

d(let . A = M in N) > max(d(M), d(N)).

Proof. The proof is done by induction on the height of let . A = M in NC . We proceed by case
distinction on (. A = M).

Cases (xA = V),(〈xA, yB〉n = 〈V,W 〉n) and (∗ = ∗). In these three cases, the result is true by the
definition of the degree.

Case (. A = (let ..B = P in Q)). By definition:

d(let . A = M in N) = d(let ..B = P in let . A = Q in N), (10.3.1)

max(δ(A⊸C), d(M), d(N)) =

max(δ(A⊸ C), d(let ..B = P in Q), d(N)), (10.3.2)

max(d(M), d(N)) = max(d(let ..B = P in Q), d(N)), (10.3.3)

We prove the equality by case distinction on (..B = P):

Subcase (xB = V). The terms in Equations (10.3.1)-(10.3.3) become

d(let . A = M in N) = max(d(P), d(let . A = Q in N), δ(B⊸ C)),

max(δ(A⊸ C), d(M), d(N)) = max(d(P), d(Q), d(N), δ(A⊸ C), δ(B⊸ C)),

max(d(M), d(N)) = max(d(P), d(Q), d(N), δ(B⊸ C)).

By induction hypothesis,

max(d(Q), d(N)) 6 d(let . A = Q in N) 6 max(d(Q), d(N), δ(A⊸ C)).

Therefore,

max(d(P), d(Q), d(N), δ(B⊸C))

6 max(d(P), d(let . A = Q in N), δ(B⊸C))

6 max(d(P), d(Q), d(N), δ(A⊸C), δ(B⊸C)).

Subcases (〈xB , yB′〉n = 〈V,W 〉n) and (∗ = ∗). These cases are similar to the previous one.

Subcase (..B = (let ...D = R in S)). Then

max(δ(A⊸ C), d(M), d(N))

= max(δ(A⊸C), d(let ...D = R in let ..B = S in Q), d(N)), (10.3.4)

max(d(M), d(N)) = max(d(let ...D = R in let ..B = S in Q), d(N)). (10.3.5)

By definition,

d(let . A = (let ..B = (let ...D = R in S) in Q) in N)

10.3. Term Rewriting System Number Two 163

= d(let ..B = (let ...D = R in S) in let . A = Q in N)

= d(let ...D = R in let ..B = S in let . A = Q in N)

= d(let . A = (let ...D = R in let ..B = S in Q) in N).

Since the height of the right hand side is smaller than the height of the left hand side, one
can apply the induction hypothesis and use Equations (10.3.4) and (10.3.4) to get that

max(d(M), d(N))

= max(d(let ...D = R in let ..B = S in Q), d(N))

6 d(let . A = (let ..B = (let ...D = R in S) in Q) in N)

6 max(δ(A⊸ C), d(let ...D = R in let ..B = S in Q), d(N))

= max(δ(A⊸ C), d(M), d(N)).

Subcase: catch-all case. The terms in Equations (10.3.1)-(10.3.3) become

d(let . A = M in N) = max(d(P), d(let . A = Q in N)),

max(δ(A⊸C), d(M), d(N)) = max(d(P), d(Q), d(N), δ(A⊸C)),

max(d(M), d(N)) = max(d(P), d(Q), d(N)).

We conclude by using the induction hypothesis:

max(d(Q), d(M)) 6 d(let . A = Q in N) 6 max(δ(A⊸C), d(Q), d(M)).

Last case: catch-all case. Here, d(let . A = M in N) = max(d(M), d(N)), which makes the result
immediate.

This closes the proof of Lemma 10.3.17.

10.3.4 Last Notion of Measure: Number of a Term

Definition 10.3.18. Let eiA1,...,An
be 1 when i = max(δ(A1), . . . , δ(An)) and 0 otherwise. We define

the i-th number ni(M) of M to be a non-negative integer as follows:

ni(xA) = 0, ni(xA⊸BM) = ni(M),

ni(cA) = 0, ni(cA⊸BM) = ni(M),

ni(∗n) = 0, ni(λnxA.M) = ni(M).

ni(〈V,W 〉n) = ni(V) + ni(W)

ni(let xA = V in NC) = ni(V) + ni(N) + eiA⊸C

ni(let 〈xA, yB〉n = 〈V,W 〉n in NC) = ni(〈V,W 〉n) + ni(N) + eiA⊸C,B⊸C

ni(let ∗ = ∗ in NC) = ni(N) + ei⊤⊸C

ni(let . A = (let ..B = M in N) in P) = ni(let ..B = M in let . A = N in P)

and in all other cases,

ni(let . = M in N) = ni(M) + ni(N)

We define n(M) = nd(M)(M), and call it the maximal number of M .

10.3. Term Rewriting System Number Two 164

Lemma 10.3.19. Suppose that M : A and that A<:B. Then ni(M) = ni{M <:B}.

Proof. Proof by structural induction on M .

Lemma 10.3.20. For all i we have ni(let . = M in N) > max(ni(M), ni(N)).

Proof. Proof by induction on M .

Lemma 10.3.21. Suppose that M : C and that i > d(M). Then ni(M) = 0.

Proof. The proof is done by double induction on the size and on the height of M .

Case M ≡ 〈V,W 〉n. If i > d(M), then i > d(V) and i > d(W). By induction hypothesis (the size
of V and the size of W being strictly smaller than the size of M), we have ni(V) = ni(W) = 0.
Since ni(M) = ni(V) + ni(W), it is also null.

Case M ≡ (let 〈xA, yB〉n = 〈V,W 〉n in N). Here, d(M) = max(d(V), d(W), d(N), δ(A⊸C), δ(B⊸
C)), and ni(M) = ni(V) + ni(W) + ni(N) + eiA⊸C,B⊸C . If i > d(M), by induction hypothesis,

ni(V) = ni(W) = ni(N) = 0. Also, by definition eiA⊸C,B⊸C = 0. Thus ni(M) = 0

Case M ≡ (let . = (let .. = N in P) in Q). In this case, M →2c M
′ where M ′ = let .. = N in

let . = P in Q. By Lemma 10.3.10, h(M ′) < h(M). Since d(M) = d(M ′) and ni(M) = ni(M ′),
by induction hypothesis ni(M) = 0.

The remaining cases are similar.

10.3.5 Putting Everything Together

The degree, the number and the height of a term are related: if M is not neutral, there exists N
such that M →2 N and such that the triple (d(N), n(N), h(N)) is smaller with the lexicographic
order to the triple (d(M), n(M), h(M)).

Definition 10.3.22. We define a function µ from intermediate neutral terms to N3 as follows:

µ(M) = (d(M), n(M), h(M)).

We consider the lexicographic ordering on N3: (a, b, c) < (a′, b′, c′) if and only if

(

a < a′
)

∨
(

(

a = a′
)

∧
(

b < b′
)

)

∨
(

(

a = a′
)

∧
(

b = b′
)

∧
(

c < c′
)

)

.

Lemma 10.3.23. Suppose that (an, bn, cn)n is a sequence in N3 such that for all n, the inequality
(an+1, bn+1, cn+1) 6 (an, bn, cn) holds. Then there exists an integer n0 such that for all n > n0,
(an, bn, cn) = (an0 , bn0 , cn0).

Proof. Consider the sequence (an)n. By definition, an+1 6 an. Since this is a decreasing sequence of
natural numbers: there exists na such that an = ana for all n > na. Consider the sequence (bn)n>na .
By definition, it is a decreasing sequence of natural numbers. Again, there exists some nb > na such
that for all n > nb, bn = bnb

. Finally, consider the sequence (cn)n>nb
. Again by definition, it is a

decreasing sequence of natural numbers: there exists some n0 > nb such that or all n > n0, cn = cn0 .
Thus, for all n > n0, (an, bn, cn) = (an0 , bn0 , cn0).

Lemma 10.3.24. Suppose that let xA = V in M : B, where V is an intermediate neutral value and
M an intermediate neutral term. Suppose moreover that let xA = V in M is in normal form with
respect to →2c. Then

10.3. Term Rewriting System Number Two 165

1. d(M [V/x]) 6 max(d(M), d(V), δ(A));

2. for all i > max(d(M), d(V), δ(A) + 1), ni(M [V/x]) = ni(M) + ξM · ni(V), where ξM is the
number of free occurrences of x in M .

Proof. First note that is let xA = V in M is in normal form with respect to →2c, then any subterm
of V and M are also in normal form with respect to →2c. The proof is done by induction on the
size of M plus the size of V . Cases where M is an intermediate neutral value:

Case M ≡ xB . Then A<:B, and M [V/x] = {V <:B}.

1. From Lemma 10.3.15, d{V <:B} = d(V) 6 max(d(M), d(V), δ(A) + 1).

2. From Lemma 10.3.19, for all integers i, ni{V <:B} = ni(V) = ni(M) + 1 · ni(V).

Cases M ≡ yB, M ≡ cB and M ≡ ∗n. In these three cases, M [V/x] = M .

1. d(M [V/x]) = d(M) 6 max(d(M), d(V), δ(A) + 1).

2. Since ξM = 0, for all integers i, ni(M [V/x]) = ni(M) + ξM · ni(V).

Case M ≡ λnyC .N . The type B is of the form !n(C⊸D), with N : D.

Using α-equivalence one can assume that y 6= x. Therefore, the term M [V/x] is equal to
λnyC .(N [V/x]). By induction hypothesis,

d(N [V/x]) 6 max(d(N), d(V), δ(A)),

∀i > max(d(N), d(V), δ(A) + 1), ni(N [V/x]) = ni(N) + ξN · ni(V).

Note that M [V/x] = λnyC .N [V/x]. Therefore:

1. Since d(M) = d(N) and d(M [V/x]) = d(N [V/x]),

d(M [V/x]) 6 max(d(N), d(V), δ(A) + 1) = max(d(M), d(V), δ(A) + 1).

2. Since x 6= y, we have ξM = ξN . Finally, since ni(M) = ni(N) and since d(M) = d(N), for
all i > max(d(M), d(V), δ(A) + 1),

ni(M [V/x]) = ni(N [V/x]) = ni(N) + ξN · ni(V) = ni(M) + ξM · ni(V).

Case M ≡ 〈W1,W2〉n. The substitution M [V/x] is equal to 〈W1[V/x],W2[V/x]〉n, and the type B
is of the form !n(B1 ⊗B2) with W1 : !nB1 and W2 : !nB2.

By induction hypothesis, for j = 1, 2

d(Wj [V/x]) 6 max(d(Wj), d(V), δ(A)),

∀i > max(d(Wj), d(V), δ(A) + 1), ni(Wj [V/x]) = ni(Wj) + ξWj · ni(V).

Note that M [V/x] = 〈W1[V/x],W2[V/x]〉n.

1. The degree of M [V/x] satisfies the following:

d(M [V/x]) = max(d(W1[V/x]), d(W2[V/x]))

6 max(d(W1), d(W2), d(V), δ(A))

= max(d(M), d(V), δ(A)).

10.3. Term Rewriting System Number Two 166

2. Since ξM = ξW1 + ξW2 and since for j = 1, 2 we have d(M) > d(Wj), then for all i greater
or equal to max(d(M), d(V), δ(A) + 1),

ni(M [V/x]) = ni(W1[V/x]) + ni(W2[V/x])

= ni(W1) + ξW1 · ni(V) + ni(W2) + ξW2 · ni(V)

= ni(M) + ξM · ni(V).

The cases where M is not a value are the following.

Case M ≡ xC⊸BW . Here, W is an intermediate neutral value with W : C. From Lemma 9.1.16,
A<: C⊸B. This means that A = !n(C′⊸B′), where B′ <:B and C <: C′.

Since V is of type !n(C′⊸B′), it is of the form λnyC
′

.N , and then

M [V/x] = {λnyC′

.N <: C⊸B}(W [V/x])

= (λ0yC .{N <:B})(W [V/x])

= (let yC = W [V/x] in {N <:B}).

By induction hypothesis,

d(W [V/x]) 6 max(d(W), d(V), δ(A)),

∀i > max(d(W), d(V), δ(A) + 1), ni(W [V/x]) = ni(W) + ξW · ni(V).

From Lemma 10.2.5, W [V/x] is an intermediate neutral value. Note that M [V/x] = (let yC =
W [V/x] in {N <:B}).

1. Using Lemma 10.3.14, δ(A) = δ(C′ ⊸ B′) = δ(C ⊸ B). From Lemma 10.3.15, we have
d{N <:B} = d(N). Finally, d(N) = d(V) and d(M) = d(W). Thus,

d(M [V/x]) = max(d(W [V/x]), d{N <:B}, δ(C⊸B))

6 max(d(W), d(V), δ(A), d{N <:B}, δ(C⊸B))

6 max(d(M), d(V), δ(A)).

2. From Lemma 10.3.19, ni{N <: B} = ni(N). By definition, ni(N) = ni(V) and ni(W) =
ni(M). Finally, ξM = 1 + ξW . Since d(M) = d(W), for all i > max(d(M), d(V), δ(A) + 1),
we have eiC⊸B = 0 and thus

ni(M [V/x]) = ni(W [V/x) + ni{N <:B} = ni(W) + ξW · ni(V) + ni{N <:B}
= ni(M) + ξW · ni(V) + ni(V) = ni(M) + ξM · ni(V).

Cases M ≡ cC⊸BW and M ≡ yC⊸BW , with y 6= x. The term W is an intermediate neutral value
such that W : C and the term M [V/x] is respectively cC⊸B(W [V/x]), yC⊸B(W [V/x]). From
Lemma 10.2.5, W [V/x] is an intermediate neutral value. By induction hypothesis,

d(W [V/x]) 6 max(d(W), d(V), δ(A)),

∀i > max(d(W), d(V), δ(A) + 1), ni(W [V/x]) = ni(W) + ξW · ni(V).

Note that M [V/x] = cC⊸B(W [V/x]).

1. The degree of M [V/x] is equal to d(W [V/x]). Thus d(M [V/x]) 6 max(d(W), d(V), δ(A)) =
max(d(M), d(V), δ(A)).

10.3. Term Rewriting System Number Two 167

2. Since d(M) = d(W) and ξM = ξW , for all i > max(d(M), d(V), δ(A) + 1),

ni(M [V/x]) = ni(W [V/x]) = ni(W) + ξW · ni(V) = ni(M) + ξM · ni(V).

Case M ≡ (let yC = W in N). Here, the term W is an intermediate neutral value, and W : C and
N : B. Using α-equivalence, one can assume that y 6= x. We have M [V/x] = (let yC =
W [V/x] in N [V/x]).

By induction hypothesis,

d(W [V/x]) 6 max(d(W), d(V), δ(A)),

d(N [V/x]) 6 max(d(N), d(V), δ(A)),

∀i > max(d(W), d(V), δ(A) + 1), ni(W [V/x]) = ni(W) + ξW · ni(V),

∀i > max(d(N), d(V), δ(A) + 1), ni(N [V/x]) = ni(N) + ξN · ni(V).

From Lemma 10.2.5, W [V/x] is an intermediate neutral value. Note that the degree d(M) is
equal to max(d(W), d(N), δ(C⊸B)):

1. The degree of M [V/x] satisfies

d(M [V/x]) = max(d(W [V/x]), d(N [V/x]), δ(C⊸B))

6 max(d(W), d(V), δ(A), d(N), d(V), δ(A), δ(C⊸B))

= max(d(M), d(V), δ(A)).

2. Note that ξM = ξW + ξN , that d(M) > d(W) and d(M) > d(N), and that ni(M) =
ni(W) + ni(N) + eiC⊸B. For all i > max(d(M), d(V), δ(A) + 1), we have

ni(M [V/x]) = ni(W [V/x]) + ni(N [V/x]) + eiC⊸B

= ni(W) + ξW · ni(V) + ni(N) + ξN · ni(V) + eiC⊸B

= ni(M) + ξM · ni(V).

Case M ≡ let 〈yC , zD〉n = 〈W1,W2〉n in N .
Idem.

Case M ≡ let ∗ = ∗ in N .
Idem.

Case M ≡ let . = (let .. = N in P) in Q. In this case,

Ṁ = (let .. = N in let . = P in Q)

is such that M →2c Ṁ but M 6= Ṁ . Therefore M is not in →2c-normal form: We do not consider
this case.

Catch-all case: M ≡ let . = N in P . Here, . is respectively ∗, yC and 〈yC , zD〉n. By α-equivalence,
one can assume that x 6= y and x 6= z. Then by definition, the term M [V/x] is equal to
(let . = N [V/x] in P [V/x]). We claim that if we are indeed in the catch-all case, then so is
(let . = N [V/x] in P [V/x]).

We study the four other possible cases for (. = N [V/x]):

Case (yC = W). Here, W is a value. For W = N [V/x] to be a value, N must be a value: we are
not in the catch-all case.

10.3. Term Rewriting System Number Two 168

Case (〈yC , zD〉n = 〈V1, V2〉n). This situation occurs either when N is a core value of the form
〈W1,W2〉n, not possible since we are in the catch-all case, or when N is the variable x!n(C⊗D)

and V = 〈V1, V2〉n. We have

(let xA = V in M)

= (let x!n(C⊗D) = 〈W1,W2〉n in let 〈yC , zD〉n = x!n(C⊗D) in P)

→2c let x!n(C⊗D) = 〈W1,W2〉n in let y!nC = W1 in let z!nD = W2 in P .

which contradicts the hypothesis of the lemma. Therefore this case is not to be considered.

Case (∗ = ∗). This case is obtained when either N = ∗, not possible since we are in the catch-all
case, or when N = x⊤ and V = ∗n. In this situation, A = !n⊤. We have

(let xA = V in M) = (let x!n⊤ = ∗n in let ∗ = x⊤ in P

→2c let x!n⊤ = ∗n in P

which contradicts the hypothesis of the lemma. Therefore this case is not to be considered.

Case (. C = (let ..D = Q in R)). There are two subcases. Either N ≡ let ..D = S in T , but then
we are not in the catch-all case, or we have N ≡ xD⊸CS with S a value and V ≡ λnyD

′

.R.
In this case,

(let xA = V in M) = (let x = λy.R in let . C = (let yD = S in R) in P)

→2c let x = λy.R in let yD = S in let . C = R in P,

which contradicts the hypothesis of the lemma. Therefore this case is not to be considered.

Thus the term M [V/x] = (let . C = N [V/x] in P [V/x]) is in the catch-all form. By induction
hypothesis,

d(N [V/x]) 6 max(d(N), d(V), δ(A)),

d(P [V/x]) 6 max(d(P), d(V), δ(A)),

∀i > max(d(N), d(V), δ(A) + 1), ni(N [V/x]) = ni(N) + ξN · ni(V),

∀i > max(d(P), d(V), δ(A) + 1), ni(P [V/x]) = ni(P) + ξP · ni(V).

Now:

1. Since the degrees d(M) and d(M [V/x]) are respectively equal to max(d(P), d(N)) and equal
to max(d(P [V/x]), d(N [V/x])), we have d(M [V/x]) 6 max(d(M), d(V), δ(A)).

2. We have ξM = ξN + ξP , d(M) > d(N) and d(M) > d(P). Therefore, for all integer
i > max(d(M), d(V), δ(A) + 1),

ni(M [V/x]) = ni(N [V/x]) + ni(P [V/x])

= ni(N) + ξN · ni(V) + ni(P) + ξP · ni(V)

= ni(M) + ξM · ni(V).

Thus, by induction the degree of M [V/x] is smaller or equal to max(d(M), d(V), δ(A)), and for all
integers i bigger or equal to max(d(M), d(V), δ(A) + 1), ni(M [V/x]) = ni(M) + ξM · ni(V).

Lemma 10.3.25. Suppose that M : B is in →2c-normal form. Then one of the following three
statements is valid:

10.3. Term Rewriting System Number Two 169

1. M is in →2β-normal form.

2. n(M) = 0 and there exists N 6= M such that M →2 N with d(N) < d(N).

3. n(M) 6= 0 and there exists N 6= M such that M →2 N with d(M) < d(N) or d(M) = d(N)
and n(N) < n(M).

Proof. Suppose that M is not in →2β-normal form. We prove the result by induction on M .

Case M ≡ (let . = (let .. = P in Q) in R). In this case, M is not in →2c-normal form. Therefore
this case is not to be considered.

Case M ≡ (let xA = V in P). The degree of M is equal to max(d(V), d(P), δ(A⊸B)), and n(M) =

nd(M)(P) + nd(M)(V) + e
d(M)
A⊸B. Note that since M is in →2c-normal form, so are V and P .

Subcase n(M) = 0. We construct a term N such that d(N) < d(M) and M →2β N .

From Lemma 10.3.13, nd(M)(P) = nd(M)(V) = e
d(M)
A⊸B = 0. Since d(M) > δ(A⊸ B), this

means d(M) > δ(A⊸B). Note that d(V), d(P) 6 d(M).

Suppose that d(V) = d(M). Then n(V) = nd(M)(V) = 0. Since M is in →2c-normal form, so
is V . Then by induction hypothesis, there exists V ′ such that V →2β V

′ with d(V ′) < d(V).
From Lemma 10.3.2 the term V ′ is an intermediate neutral value. If d(V) < d(M), define
V ′ to be V . Therefore, in both cases we obtain an intermediate neutral value V ′ such that
V →2β V

′ with d(V ′) < d(M).

Suppose that d(P) = d(M). Then n(P) = nd(M)(P) = 0. By induction hypothesis, there
exists P ′ such that P →2β P ′ with d(P ′) < d(P). If d(P) < d(M), define P ′ to be P .
Therefore, in both cases we obtain a term P ′ such that P →2β P

′ with d(P ′) < d(M).

Define N to be (let xA = V ′ in P ′). Since V ′ is an intermediate neutral value, d(N) =
max(d(V ′), d(P ′), δ(A⊸B)).

Since d(V ′), d(P ′), δ(A⊸B) < d(M), we also have d(N) < d(M).

Subcase n(M) 6= 0. We construct a term N such that M →2β N with d(N) < d(M) or with
d(M) = d(N) and n(N) < n(M).

Suppose that nd(M)(P) 6= 0. From Lemma 10.3.21 and since d(P) 6 d(M), the degree of P
is equal to the degree of M . Therefore, n(P) 6= 0 and we can apply the induction hypothesis:
there exists a term P ′ such that P →2β P ′, d(P ′) = d(P) and n(P ′) < n(P). Let N be
(let xA = V in P ′). We have M →2β N with d(N) = max(d(V), d(P ′), δ(A⊸ B)) = d(M)

and n(N) = nd(M)(P ′) + nd(M)(V) + e
d(M)
A⊸B < n(M)

Now, suppose that nd(M)(V) 6= 0. Similarly, from Lemma 10.3.21 and since d(V) 6 d(M),
the degree d(V) = d(M). This means n(V) 6= 0 and we can apply the induction hypothesis:
there exists a term V ′ such that V →2β V ′, d(V ′) = d(V) and n(V ′) < n(V). Let N be
(let xA = V ′ in P). We have M →2β N with d(N) = max(d(V ′), d(P), δ(A⊸ B)) = d(M)

and n(N) = nd(M)(P) + nd(M)(V ′) + e
d(M)
A⊸B < n(M)

Finally, suppose that both nd(M)(V) and nd(M)(P) are null. Then n(M) = eiA⊸B = 1. Let N
be P [V/x]. Since V is an intermediate neutral value, M →2β N . By Lemma 10.3.24, d(N) 6
max(d(P), d(V), δ(A)) 6 d(M) and for all i > max(d(P), d(V), δ(A)+1), ni(N) = ni(P)+ξP ·
ni(V). If d(N) < d(M), we are done. If d(N) = d(M), then d(M) > max(d(P), d(V), δ(A) +
1), thus n(N) = nd(M)(N) = 0. Hence d(N) < d(M), and we are also done.

The two cases M ≡ (let 〈xA, yB〉n = 〈V,W 〉n in P) and N ≡ (let ∗ = ∗ in M) are done similarly.
Finally, the congruence cases are trivial.

10.3. Term Rewriting System Number Two 170

Definition 10.3.26. We say that an intermediate term M satisfies reduction if the following is
valid:

“ If M →2c N , then there exists N ′ such that M →∗
2 N

′ and µ(N ′) < µ(M). ”

Lemma 10.3.27. Let M be an intermediate neutral term satisfying reduction, then either M is a
neutral term or there exists N such that µ(N) < µ(M) and M →∗

2 N .

Proof. Consider an intermediate neutral term M satisfying reduction. If it is already a neutral term,
we are done. If it is not, from Lemma 10.3.5 then it is not in →2-normal form. There are two cases:

M is not in →2c-normal form. By the reduction property of M there is N such that M →∗
2 N and

µ(N) < µ(M).

M is in →2c-normal form. It is not in →2β-normal form, and from Lemma 10.3.25 there exists N
such that M →2β N with µ(N) < µ(M).

In both cases, we have as requested the existence of some intermediate neutral term N such that
M →∗

2 N with µ(N) < µ(M).

Corollary 10.3.28. Let M be an intermediate neutral term satisfying reduction. Then there exists
a neutral term N such that M →∗

2 N .

Proof. Let S be the set of terms M such that M →∗
2 M

′. Let I = µ(S). From Lemma 10.3.23, this
set has a minimum element. Let N ∈ S be a term such that µ(N) is this minimum. Lemma 10.3.27
states that N is neutral.

Lemma 10.3.29. Every intermediate term satisfies reduction, as stated in Definition 10.3.26.

Proof. Suppose that M →2c N . We prove the result by induction on the size M . Case distinction
on the last rule used in the derivation of M →2c N :

Case (rw2.c1). In this case, by definition, the two sides of the relation have the same degree and
the same maximal number, but a smaller height by Lemma 10.3.10. Choose N ′ to be equal to
N and this satisfies the lemma.

Case (rw2.c2). Suppose that P : B. The left hand side is

M = (let x!n(D⊸C) = λnyD.R in let . C
′

= xD
′⊸C′

S in P.)

Its degree is d(M) = max(d(R), δ((D⊸ C)⊸ B), d(S), d(P)). Note that S is an intermediate
value.

The right hand side is

N = (let x!n(D⊸C) = λnyD.R in let yD
′

= S in let . C
′

= {R<: C′} in P).

Its degree is

d(N) = max(d(R), δ((D⊸ C)⊸B), d(S), δ(D′⊸B), d(let . C
′

= {R<: C′} in P)).

From Lemma 10.3.17, we get d(N) = d(M).

We proceed by case distinction on d(M) to find the term N ′.

10.3. Term Rewriting System Number Two 171

Suppose that d(M) > δ((D⊸C)⊸B). Consider X being the terms among R, S and P such
that d(X) = d(M). Whether X are or not in →2c-normal form, one of Lemma 10.3.25 or
the induction hypothesis applies: Either X is in β-normal form, and thus by Lemma 10.3.16
d(X) = 0, or X reduces to X ′ with d(X ′) < d(X) or with d(X ′) = d(X) = d(M) and
n(X ′) < n(M). In this last case, since d(X ′) = d(M), this means that n(N ′) < n(M) and
d(N ′) = d(M) if N ′ is M with X ′ in place of X .

Otherwise, we have a term N ′ with M →2 N
′ and d(N ′) < d(M).

Suppose that d(M) = 1 + δ(D⊸ C) and d(M) > 1 + δ(B). The terms R and S are smaller than
M : By induction hypothesis they satisfy the lemma. Then by Lemma 10.3.28, there exist
neutral terms R′ and S′ such that R →∗

2 R′ and S →∗
2 S′. By Lemma 10.3.16, we have

d(R′) = 0 and d(S′) = 0.

Since let x!n(D⊸C) = λnyD.R in P is smaller than M , by the induction hypothesis one can
apply Lemma 10.3.28, and it reduces to a neutral term P ′. From Lemma 10.3.7, P [V/x]
reduces to the same neutral term P ′. Therefore M reduces to

M →2 let yD = S′[λnyD.R′/x] in let . C
′

= {R′ <: C′} in P [λnyD.R/x]

→2 let yD = S′[λnyD.R′/x] in let . C
′

= {R′ <: C′} in P ′.

Let N ′ be this last term. Since from Lemma 9.1.32, S′[λnyD.R′/x] is a value, the term
let xD⊸C = λnyD.R′ in S′ is in 2c-normal form. Thus Lemma 10.3.24 applies:

d(N ′) = max(δ(D⊸B), d(S′[λnyD.R′/x]), d(let . C
′

= {R′ <: C′} in P ′))

6 max(δ(D⊸B), d(S′), d(R′), δ(D⊸ C), d(let . C
′

= {R′ <: C′} in P ′)).

6 max(δ(D⊸B), d(S′), d(R′), δ(D⊸ C), d({R′ <: C′}), d(P ′), δ(C′⊸B)).

Since d(S′) = d(R′) = d(P ′) = 0 (they are neutral), and since d(M) > δ(D) + 1, d(M) >
δ(C) + 1 and d(M) > δ(B) + 1, we have d(N ′) < d(M).

Suppose that d(M) = 1 + δ(B). Let Q = (let yD
′

= S in let . C
′

= {R<: C′} in P). The term Q
is smaller than M , so induction hypothesis applies.

Suppose that Q is not in →2c-normal form. Then there exists Q′ such that Q →∗
2 Q

′ with
µ(Q′) < µ(Q). Let N ′ = (let x!n(D⊸C) = λnyD.R in Q′). Note that M →∗

2 N
′. We have

d(N ′) = max(δ((D⊸C)⊸B), d(R), d(Q′)) = 1+δ(B) = d(M), and n(N ′) 6 n(M). Finally,
since h(Q′) < h(Q), we have h(N ′) < h(M). Therefore µ(N ′) < µ(M).

Now, suppose that Q is in →2c normal form. Then so is N , and we have the result using
Lemma 10.3.25.

Case (rw2.c3). Suppose that P : B. The left hand side is

M = (let x!n(C⊗D) = 〈V,W 〉n in let 〈yC′

, zD
′〉m = x!m(C′⊗D′) in P)

Its degree is d(M) = max(d(V), d(W), δ((D ⊗ C)⊸B), d(P)). The right hand side is

N = (let x!n(C⊗D) = 〈V,W 〉n in

let y!mC′

= {V <: !mC′} in let z!mD′

= {W <: !mD′} in P),

and its degree is the same as the one of M .

We proceed by case distinction on d(M) to find the term N ′. The cases are treated similarly as
in the previous case.

10.4. Proof of Theorem 9.2.7 172

Suppose that d(M) > δ((D ⊗ C)⊸B). Using Lemma 10.3.16, one can find V ′, W ′ and P ′ such
that V →∗

2 V
′, W →∗

2 W and P →∗
2 P

′ such that

d(let x!n(C⊗D) = 〈V ′,W ′〉n in let 〈yC′

, zD
′〉m = x!m(C′⊗D′) in P ′) < d(M).

Suppose that d(M) = 1 + δ(D ⊗ C) and d(M) > 1 + δ(B). Since V , W , and let x = 〈V,W 〉ninP
are strictly smaller than M , the induction hypothesis applies and they satisfy the lemma.
Thus Lemma 10.3.28 applies and they reduces to some neutral terms V ′, W ′ and P ′. From
Lemma 10.3.7, P [〈V,W 〉n/x] also reduces to P ′. Therefore M reduces to

N ′ = (let 〈yC′

, zD
′〉m = 〈V ′,W ′〉n in P ′).

We have

d(N ′) = max(d(V ′), d(W ′), d(P ′), δ(C′
⊸B), δ(D′

⊸B)).

From Lemma 10.3.16, d(N ′) < d(M).

Suppose that d(M) = 1 + δ(B). This time, we choose

Q = (let y!mC′

= {V <: !mC′} in let z!mD′

= {W <: !mD′} in P)

The term Q being smaller than N , the induction hypothesis applies.

Suppose that it is not in →2c-normal form. Then there exists Q′ such that Q →∗
2 Q

′ with
µ(Q′) < µ(Q). Let N ′ = (let x!n(C⊗D) = 〈V ′,W ′〉n in Q′). We have M →∗

2 N ′, with
d(N ′) = d(M), n(N ′) 6 n(M), and h(N ′) < h(M). Thus µ(N ′) < µ(M).

Now, suppose that it is in →2c-normal form. Then so is N , and we have the result by
Lemma 10.3.25.

Case (rw2.c4). In this case,

M = (let x!n⊤ = ∗n in let ∗ = x⊤ in P), N = (let x!n⊤ = ∗n in P).

Note that d(M) = d(N), that n(N) = n(P) 6 n(M) and that h(N) < h(M). Therefore
µ(N) < µ(M). Choose N ′ = N .

Cases (rw2.ξ1)-(rw2.ξ5). One can assume that M is not in one of the form requested by the previous
cases. The induction hypothesis can therefore be applied and the result is obtained directly.

By case exhaustion, the lemma is then true.

Lemma 10.3.30. Suppose that M is an intermediate neutral term. Then either M is a neutral
term or there exists N such that µ(N) < µ(M) and M →∗

2 N .

Proof. From Lemma 10.3.29, every intermediate term satisfies reduction. Then from Lemma 10.3.27,
for all intermediate neutral term M , either M is a neutral term or there exists N such that µ(N) <
µ(M) and M →∗

2 N .

10.4 Proof of Theorem 9.2.7

The proof of Theorem 9.2.7 is done in two steps, by reducing first to intermediate neutral terms and
then to neutral terms. We make these steps explicit in Lemma 10.4.1 and Lemma 10.4.2.

10.4. Proof of Theorem 9.2.7 173

Lemma 10.4.1. Suppose that ∆ ⊲M,N : A are two valid typing judgements such that Erase(M) =
Erase(N). Then there exists two intermediate neutral terms M ′ and N ′ such that ∆ ⊲ M ′ : A and
∆ ⊲ N ′ : A are valid, such that Erase(M ′) = Erase(N ′) and such that ∆ ⊲ M ≈ax M

′ : A and
∆ ⊲ N ≈ax N

′ : A.

Proof. Let S be the set of all possible sequences of terms (Mi)i such that M0 = 0 and Mi →1 Mi+1.
From Lemma 10.2.12, one can define the function f from S to the integers picking out the

smallest n such that for all i > n, Mi = Mn.
Consider the function g mapping a sequence (Mi)i in S to the value m(Mf((Mi)i)). Since the

measure yields non-negative integers, the set g(S) is a subset of the non-negative integers. It contains
then an attainable minimal element m0. Let (Mi)i be a sequence of S such that g((Mi)i) = m0.

Let n0 = f((Mi)i). We claim that Mn0 is an intermediate neutral term. Indeed, suppose
otherwise. Then by Lemma 10.2.13, there exists a term M ′ such that Mn0 →1 M

′ and M ′ 6= Mn0 .
We can now construct a sequence of terms (Ṁi)i as follows: Ṁi = Mi for all i = 0 . . . n0, Ṁi = M ′

for all i > n0. Note that (Ṁi)i belongs in S. However, using Lemma 10.2.11 we deduce that
g((Ṁi)i) < m0, contradicting the minimality of m0.

Now, using Lemma 10.2.8, one can construct a sequence of terms (Ni)i such that N0 = N and
such that for all i, Erase(Ni) = Erase(Mi) and Ni →1 Ni+1. Using Lemma 10.2.7, for all i the
typing judgements ∆ ⊲ Mn0 , Nn0 : B are valid, and ∆ ⊲ M ≈ax Mn0 : B and ∆ ⊲ N ≈ax Nn0 : B.
Using Lemma 10.2.4, the term Nn0 is in intermediate neutral form. This makes the terms M ′ = Mn0

and N ′ = Nn0 fulfill the requirements of the lemma.

Lemma 10.4.2. Suppose that ∆ ⊲M,N : A are two valid typing judgements, where M and N are
intermediate neutral terms such that Erase(M) = Erase(N). Then there exists two neutral terms M ′

and N ′ such that Erase(M ′) = Erase(N ′) and such that ∆ ⊲M ≈ax M
′ : A and ∆ ⊲ N ≈ax N

′ : A.

Proof. Consider two valid typing judgements ∆ ⊲ M,N : A such that M and N are intermediate
neutral terms with Erase(M) = Erase(N).

Using Lemma 10.3.30, it is possible to construct sequences of terms (Mi)i such that M0 = M ,
and such that for all i, either Mi is a neutral value or Mi →∗

2 Mi+1 with µ(Mi+1) < µ(Mi). From
Lemma 10.3.23, there exists n0 such that for all n > n0, µ(Mn) = µ(Mn0). Using the definition of
the sequence, this means that for all n > n0, Mn = Mn0 is a neutral term. Using Lemma 10.3.3, one
can build a sequence (Nn)n such that for all n, Erase(Nn) = Erase(Mn) and such that Nn →∗

2 Nn+1.
From Lemma 10.3.4, the typing judgements ∆ ⊲ Mn0 , Nn0 : A are valid, and ∆ ⊲ M ≈ax Mn0 : A
and ∆ ⊲ N ≈ax Nn0 : A.

The requested terms M ′ and N ′ can be respectively taken as Mn0 and Nn0 .

We are now ready to prove Theorem 9.2.7.

Proof of Theorem 9.2.7. Suppose that M and N are two terms such that Erase(M) = Erase(N)
and such that ∆ ⊲M,N : A are valid typing judgements.

Using Lemma 10.4.1, there exists two intermediate neutral terms M ′ and N ′ such that ∆ ⊲
M ′, N ′ : A and such that ∆ ⊲ M ≈ax M

′ : A and ∆ ⊲ N ≈ax N
′ : A and such that Erase(M ′) =

Erase(N ′). Using Lemma 10.4.2, there exists two neutral terms M ′′ and N ′′ such that Erase(M ′′) =
Erase(N ′′) and such that ∆ ⊲ M ′ ≈ax M

′′ : A and ∆ ⊲ N ′ ≈ax N
′′ : A. Using Lemma 10.1.3, we

have ∆ ⊲M ′′ ≈ax N
′′ : A.

We obtain ∆ ⊲M ≈ax N : A using the transitivity of the axiomatic relation.

Chapter 11

Categorical Semantics

In Chapter 8, we described the categorical structure believed to be required for interpreting the
language described in Chapter 9. In this chapter, we show that one can indeed interpret the language
in a linear category for duplication, and we prove a soundness and completeness result.

11.1 Denotational Semantics

The ambient category this section is concerned with is a linear category for duplication C, with the
notation of Definition 8.4.1.

Convention 11.1.1. For notation purposes, we assume the category to be strict monoidal. This
can be safely assumed, thanks to Theorem 2.8.2.

11.1.1 Interpretation of the Type System

Definition 11.1.2. We define an interpretation of the type system to be a map Θ that assigns to
each constant type α an object Θ(α). Each type A is interpreted as an object of C:

[[α]]Θ = Θ(α), [[⊤]]Θ = ⊤,
[[!A]]Θ = L[[A]]Θ, [[A⊗B]]Θ = [[A]]Θ ⊗ [[B]]Θ, [[A⊸B]]Θ = [[A]]Θ⊸ [[B]]Θ.

Consider the alphabet {α | α is a constant type}, and the set A of types. If G(A) = [[A]]Θ, we
are in the context of Theorem 8.3.8, with the list of Fi’s being (⊗,⊸): any two maps A→ B in CG
are equal.

Definition 11.1.3. Given a valid subtyping A <: B, there exists a unique arrow [[A]]Θ → [[B]]Θ in
CG, as defined in Theorem 8.3.8. We extend the map Θ to interpret A <: B as this unique arrow
and we denote it by IA,B.

11.1.2 Interpretation of the Language

Convention 11.1.4. Typing contexts were defined as sets. In the case we are interested in, we
need them to be lists. We will therefore consider them to be lists in this section, the typing rules of
Table 9.1 being physically unchanged. In order to still be able to reorder typing contexts, we add a
set of new rules (Xs), one for each permutation s on {1, . . . , n}:

x1 : A1, . . . , xn : An ⊲M : A

xs(1) : As(1), . . . , xs(n) : As(n) ⊲M : A
(Xs)

174

11.1. Denotational Semantics 175

Definition 11.1.5. We define the denotation of a typing context ∆ = (x1 : A1, . . . , xn : An) by the
following:

[[∆]] = [[A1]] ⊗ · · · ⊗ [[An]].

Definition 11.1.6. We use the following shortcut definitions, where A,B,A1, . . . , An are types and
where ∆, Γ1 and Γ2 are typing contexts:

• Given a natural transformation n : F →̇G, we write nA in place of n[[A]]. If ∆ = {x1 : A1 . . . xn :
An} we define n∆ = nA1 ⊗ · · · ⊗ nAn .

• For the coherence map dLA,B : LA ⊗ LB → L(A ⊗ B), if ∆ = {x1 : A1 . . . xn : An}, we define

dL!∆ to be the map

L[[A1]] ⊗ · · · ⊗ L[[An]]
id⊗dL

[[An−1]],[[An]]−−−−−−−−−−−→ L[[A1]] ⊗ · · · ⊗ L[[An−1 ⊗An]]
...−→ L[[A1 ⊗ · · · ⊗An]].

• We define Split !∆,Γ1,Γ2
to be the canonical map from the monoidal structure and using the

map △A : LA→ LA⊗ LA from Definition 2.7.3:

Split !∆,Γ1,Γ2
: [[!∆]] ⊗ [[Γ1]] ⊗ [[Γ2]] → [[!∆]] ⊗ [[Γ1]] ⊗ [[!∆]] ⊗ [[Γ2]].

• Given f : [[!∆]] ⊗ [[Γ1]] → [[A]] and g : [[!∆]] ⊗ [[Γ2]] → [[B]], we define the map f ⊗!∆ g :
[[!∆]] ⊗ [[Γ1]] ⊗ [[Γ2]] → [[A]] ⊗ [[B]] as follows:

[[!∆]] ⊗ [[Γ1]] ⊗ [[Γ2]]
Split !∆,Γ1,Γ2−−−−−−−−→ [[!∆]] ⊗ [[Γ1]] ⊗ [[!∆]] ⊗ [[Γ2]]

f⊗g−−−→ [[A]] ⊗ [[B]]

Lemma 11.1.7. Suppose that f : [[!∆,Γ2]] → [[A]]. Suppose that !Γ1 is a context of fresh variables.
Then

Split !∆,!Γ1,Γ2
; (♦!∆,!Γ1 ⊗ f) = (σ[[!∆]],[[!Γ1]] ⊗ idΓ2); (♦!Γ1

⊗ f) : [[!∆, !Γ1,Γ2]] → [[A]].

Proof. Using the equations of comonoids.

Lemma 11.1.8. Suppose that f : [[!∆,Γ1]] → [[A]] and that g : [[!∆,Γ2]] → [[B]]. Suppose moreover
that !Λ is a context of fresh variables. Then

(♦!Λ ⊗ f) ⊗!Λ,!∆ (♦!Λ ⊗ g) = ♦!Λ ⊗ (f ⊗!∆ g) : [[!Λ, !∆,Γ1,Γ2]] → [[A]] ⊗ [[B]].

Proof. It is enough to show that the maps

[[!Λ, !∆,Γ1,Γ2]]
Split(!Λ,!∆),Γ1,Γ2−−−−−−−−−−−→ [[!Λ, !∆,Γ1, !Λ, !∆,Γ2]]

♦!Λ⊗f⊗♦!Λ⊗g−−−−−−−−−−→ [[A1]]⊗[[A2]]

and

[[!Λ, !∆,Γ1,Γ2]]
♦!Λ⊗id−−−−−→ [[!∆,Γ1,Γ2]]

Split !∆,Γ1,Γ2−−−−−−−−→ [[!∆,Γ1, !∆,Γ2]]
f⊗g−−−→ [[A1]]⊗[[A2]]

are equal. This is done using the comonoid structure of ([[!Λ]],△!Λ,♦!Λ).

Lemma 11.1.9. Suppose that f : [[!Λ, !∆,Γ1]] → [[A]] and that g : [[!∆,Γ2]] → [[B]]. Then,

f ⊗!Λ,!∆ (♦!Λ ⊗ g) = (id !Λ ⊗ Split !∆,Γ1,Γ2
); (f ⊗ g) : [[!Λ, !∆,Γ1,Γ2]] → [[A]] ⊗ [[B]].

Proof. Proof using the comonoid structure of ([[!Λ]],△!Λ,♦!Λ).

11.1. Denotational Semantics 176

Lemma 11.1.10. Suppose that f : [[Γ1]] → [[A]] and that g : [[A]] → [[B]]. Then, if !∆ is a context of
fresh variables,

(♦∆ ⊗ f); g = ♦∆ ⊗ (f ; g) : [[!∆,Γ1]] → [[B]].

Proof. In our strict monoidal category, the map (♦∆ ⊗ f); g is

(♦∆ ⊗ f); g = (♦∆ ⊗ f);λA; g

= (♦∆ ⊗ f); (id⊤ ⊗ g);λB by naturality of λ,

= (♦∆ ⊗ (f ; g));λB by bifunctoriality of ⊗.

And this map is precisely ♦∆ ⊗ (f ; g).

Lemma 11.1.11. Suppose that f : [[!∆,Γ1]] → [[A]], g : [[!∆,Γ2]] → [[B]], h : [[A]] → [[C]] and
k : [[B]] → [[D]]. Then

(f ;h) ⊗!∆,Γ1,Γ2 (g; k) = (f ⊗!∆,Γ1,Γ2 g); (h⊗ k) : [[!∆,Γ1,Γ2]] → [[C]] ⊗ [[D]].

Proof. The proof uses the bifunctoriality of ⊗.

Lemma 11.1.12. Suppose that f : [[!∆,Γ1]] → [[A]], g : [[!∆,Γ2]] → [[B]]. Then

(f ⊗!∆ g);σA,B = (id !∆ ⊗ σ[[Γ1]],[[Γ2]]); (g ⊗!∆ f) : [[!∆,Γ1,Γ2]] → [[B ⊗A]].

Proof. The proof is done using the correspondence between the symmetry and the comonoid multi-
plication.

Definition 11.1.13. The map Θ as in Definition 11.1.2 is said to be an interpretation of the language
if moreover it assigns to each constant term c : !Ac an arrow Θ(c) : ⊤ → [[!Ac]] in C.

Given a linear category for duplication C, it is possible to interpret the typing derivation of a
well-typed value as a map in C and the typing derivation of a valid computation as a map in the
Kleisli category CT .

• If x1 : A1, . . . xn : An ⊲ V : B is a value with typing derivation π, its value interpretation [[π]]
v
Θ

is an arrow [[A1]] ⊗ . . .⊗ [[An]] →C [[B]];

• if x1 : A1, . . . xn : An ⊲ M : A is a term with typing derivation π, its computational interpre-
tation [[π]]cΘ is an arrow [[A1]] ⊗ . . .⊗ [[An]] →C T ([[B]]).

We define them inductively in Tables 11.1, 11.2 and 11.3. Moreover, considering Convention 11.1.4,
if s is a permutation on {1, . . . , n}:

[[xs(1) : As(1), . . . , xs(n) : As(n) ⊲M : A]]
c

=

σ[[A1,...,An]],[[As(1),...,As(n)]]; [[x1 : A1, . . . , xn : An ⊲M : A]]c,

[[xs(1) : As(1), . . . , xs(n) : As(n) ⊲M : A]]
v

=

σ[[A1,...,A]],[[As(1),...,As(n)]]; [[x1 : A1, . . . , xn : An ⊲M : A]]
v
.

Convention 11.1.14. We say that two morphisms

f [[x1 : A1, . . . , xn : An]] → [[A]], g : [[xs(1) : As(1), . . . , xs(n) : As(n)]] → [[A]]

are equal whenever f = σ[[A1,...,An]],[[As(1),...,As(n)]]; g.

11.1. Denotational Semantics 177

[[!∆, x : A ⊲ x : B]]
v
Θ = [[!∆]] ⊗ [[A]]

♦∆⊗IA,B−−−−−−→ [[B]]

[[!∆ ⊲ c : B]]
v
Θ = [[!∆]]

♦∆−−→ ⊤ Θ(c)−−−→ [[Ac]]
IAc,B−−−−→ [[B]]

[[!∆ ⊲ ∗ : !n⊤]]
v
Θ = [[!∆]]

♦∆−−→ ⊤ dL
⊤−−→ L⊤ I!⊤,!n⊤−−−−−→ Ln⊤

[[∆, x : A ⊲M : B]]cΘ = [[∆]] ⊗ [[A]]
f−→ T ([[B]])

[[∆ ⊲ λ0xA.M : A⊸B]]
v

Θ = [[∆]]
Φ−1(f)−−−−−→ [[A]]⊸ [[B]]

[[!∆, x : A ⊲M : B]]
c
Θ = [[!∆]] ⊗ [[A]]

f−→ T ([[B]])

[[!∆ ⊲ λn+1xA.M : !n+1(A⊸B)]]
v

Θ = [[!∆]]
δ!∆;dL

!∆−−−−−→ L[[!∆]]
L(Φ−1f);I!(A⊸B),!n+1(A⊸B)−−−−−−−−−−−−−−−−−−−→ Ln+1([[A]]⊸ [[B]])

Table 11.1: Interpretation of core values.

Lemma 11.1.15. Suppose that

f = [[!∆,Γ1 ⊲ N : A]]
c
, g = [[!∆,Γ2, x : A ⊲ P : B]]

c
.

Then
[[!∆,Γ1,Γ2 ⊲ let xA = N in P : B]]

c
= (f ⊗!∆ id);σ; t; g∗.

Proof. The proof is done by computing [[!∆,Γ1,Γ2 ⊲ (λ0xA.P)N : B]]
c
.

Lemma 11.1.16. Given a valid typing judgement ∆ ⊲ M : B with no dummy variables, there
exists fc : [[∆]] → T [[B]] such that for any dummy context !Λ and for any typing derivation π of
!Λ,∆ ⊲M : B,

[[π]]c = [[!Λ]] ⊗ [[∆]]
♦!Λ⊗fc−−−−−→ T [[B]].

Moreover, if M = V is a value, there exists some fv : [[∆]] → [[B]] such that for any dummy context
!Λ and for any typing derivation π of !Λ,∆ ⊲ V : B,

[[π]]
v

= [[!Λ]] ⊗ [[∆]]
♦!Λ⊗fv−−−−−→ [[B]].

Proof. Consider a typing judgement ∆ ⊲ M : A where |∆| = FV (M). We prove the lemma by
structural induction on M .

Case M ≡ λ0xB.N . In this case, A = B⊸ C, and if ∆ ⊲ λ0xB.N : B⊸ C is valid, then so is
∆, x : B ⊲ N : C. By hypothesis, |∆| = FV (M). Thus |∆| = FV (N) \ {x}.
Let ∆̇ be the subcontext of (∆, x : B) consisting of the free variables of N .

The induction hypothesis states that there exists a function f ′
c : [[∆̇]] → T [[C]] such that for all

dummy typing contexts !Λ̇ and for all typing derivations π′ the denotation [[π′]]c is ♦!Λ̇ ⊗ fc.

There are two cases.

If x ∈ FV (N). Then |∆̇| = |∆, x : B|. We define the requested fv and fc respectively by Φ−1(f ′
c)

and Φ−1(f ′
c); ηB⊸C .

If x 6∈ FV (N). In this case, from Lemma 9.1.19 the type B is of the form !Ḃ. The context
|∆̇| = |∆|, and x is a dummy variable. We define the requested fv and fc respectively by
Φ−1(♦!Ḃ ⊗ f ′

c) and Φ−1(♦!Ḃ ⊗ f ′
c); ηB⊸C .

11.1. Denotational Semantics 178

[[!∆,Γ1 ⊲ V : A]]
v
Θ = [[!∆]]⊗[[Γ1]]

f−→ [[A]]

[[!∆,Γ2, x : A ⊲W : B]]
v
Θ = [[!∆]]⊗[[Γ2]]⊗[[A]]

g−→ [[B]]
[[!∆,Γ1,Γ2 ⊲ let x = V in W : B]]

v
Θ =

[[!∆]]⊗[[Γ1]]⊗[[Γ2]]
(f⊗!∆id);σ−−−−−−−→ [[!∆]]⊗[[Γ2]]⊗[[A]]

g−→ [[B]]

[[!∆,Γ1,⊲ V : !n(A1 ⊗A2)]]
v
Θ = [[!∆]]⊗[[Γ1]]

f−→ Ln([[A1]] ⊗ [[A2]])

[[!∆,Γ2, x : !nA1, y : !nA2 ⊲W : C]]
v
Θ = [[!∆]]⊗[[Γ2]]⊗Ln[[A1]] ⊗ Ln[[A2]]

g−→ [[C]]

[[!∆,Γ1,Γ2 ⊲ let 〈x, y〉n = V in W : C]]
v
Θ =

[[!∆]]⊗[[Γ1]]⊗[[Γ2]]
f⊗!∆id−−−−−→ Ln([[A1]]⊗[[A2]])⊗[[!∆]]⊗[[Γ2]]

“

(dLn

[[A1]],[[A2]])
−1⊗id

”

;σ

−−−−−−−−−−−−−−−→ [[!∆]]⊗[[Γ2]]⊗Ln[[A1]]⊗Ln[[A2]]
g−→ [[C]]

[[!∆,Γ1 ⊲ V : ⊤]]
v
Θ = [[!∆]] ⊗ [[Γ1]]

f−→ ⊤
[[!∆,Γ2 ⊲W : C]]

v
Θ = [[!∆]] ⊗ [[Γ2]]

g−→ [[C]]

[[!∆,Γ1,Γ2 ⊲ let ∗ = V in W : C]]
v
Θ = [[!∆]]⊗[[Γ1]]⊗[[Γ2]]

f⊗!∆g−−−−→ [[C]]

[[!∆,Γ1 ⊲ V : !nA]]
v
Θ = [[!∆]] ⊗ [[Γ1]]

f−→ Ln[[A]]

[[!∆,Γ2 ⊲W : !nB]]
v
Θ = [[!∆]] ⊗ [[Γ2]]

g−→ Ln[[B]]

[[!∆,Γ1,Γ2 ⊲ 〈V,W 〉n : !n(A⊗B)]]
v
Θ =

[[!∆]] ⊗ [[Γ1]] ⊗ [[Γ2]]
f⊗!∆g−−−−→ Ln[[A]] ⊗ Ln[[B]]

dLn

A,B−−−→ Ln([[A]] ⊗ [[B]])

Table 11.2: Interpretation of extended values.

Consider a dummy context !Λ for M and a typing derivation π of !Λ,∆ ⊲M : A. It starts with

π′
....

!Λ,∆, x : B ⊲ N : C

!Λ,∆ ⊲ λ0xB.N : B⊸ C
(λ1)

for some derivation π′. By definition,

[[π]]v = Φ−1([[π′]]
c
) [[π]]c = Φ−1([[π′]]

c
); ηB⊸C .

We aim at showing that [[π]]
v

= ♦!Λ ⊗ fv and that [[π]]
c

= ♦!Λ ⊗ fc.

There are two cases.

If x ∈ FV (N). By induction hypothesis, [[π′]]c = ♦!Λ ⊗ f ′
c. By naturality of Φ,

[[π]]
c

= Φ−1(♦!Λ ⊗ f ′
c); ηB⊸C = ♦!Λ ⊗ Φ−1(f ′

c); ηB⊸C ,

[[π]]v = Φ−1(♦!Λ ⊗ f ′
c) = ♦!Λ ⊗ Φ−1(f ′

c).

If x 6∈ FV (N). By induction hypothesis, [[π′]]c = ♦!Λ⊗♦!Ḃ⊗f ′
c. By naturality of Φ,

[[π]]c = Φ−1(♦!Λ ⊗♦!Ḃ ⊗ f ′
c); ηB⊸C = ♦!Λ ⊗ Φ−1(♦!Ḃ ⊗ f ′

c); ηB⊸C ,

[[π]]
v

= Φ−1(♦!Λ ⊗♦!Ḃ ⊗ f ′
c) = ♦!Λ ⊗ Φ−1(♦!Ḃ ⊗ f ′

c).

11.1. Denotational Semantics 179

First, if U is a core value, [[∆ ⊲ U : A]]
c
Θ = [[∆ ⊲ U : A]]

v
Θ; ηA.

[[!∆,Γ1 ⊲M : A⊸B]]
c
Θ = [[!∆,Γ1]]

f−→ T ([[A⊸B]])

[[!∆,Γ2 ⊲ N : A]]
c
Θ = [[!∆,Γ2]]

g−→ T ([[A]])

[[!∆,Γ1,Γ2 ⊲MN : B]]
c
Θ = [[!∆,Γ1,Γ2]]

f⊗!∆g−−−−→ T [[A⊸B]]⊗T [[A]]
Ψ1−−→ T [[(A⊸B)⊗A]]

ε∗A,B−−−→ T [[B]]

[[!∆,Γ1 ⊲M : !n(A1 ⊗A2)]]
c
Θ = [[!∆,Γ1]]

f−→ TLn[[A1 ⊗A2]]

[[!∆,Γ2, x : !nA1, y : !nA2 ⊲ N : C]]
v
Θ= [[!∆,Γ2]]⊗Ln[[A1]]⊗Ln[[A2]]

g−→ T [[C]]

[[!∆,Γ1,Γ2 ⊲ let 〈x, y〉n = M in N : !nC]]
c
Θ =

[[!∆,Γ1,Γ2]]
f⊗!∆id−−−−−→ TLn[[A1⊗A2]]⊗[[!∆,Γ1]]

“

T(dLn
)
−1⊗id

”

;σ;t

−−−−−−−−−−−−−→ T ([[!∆,Γ1]]⊗Ln[[A1]]⊗Ln[[A2]])
g∗−→ T [[C]]

[[!∆,Γ1 ⊲M : ⊤]]
c
Θ = [[!∆,Γ1]]

f−→ T (⊤)

[[!∆,Γ2 ⊲ N : C]]
c
Θ = [[!∆,Γ2]]

g−→ T [[C]]
[[!∆,Γ1,Γ2 ⊲ let ∗ = M in N : C]]

c
Θ =

[[!∆,Γ1,Γ2]]
f⊗!∆g−−−−→ T (⊤) ⊗ T [[C]]

Ψ1−−→ T [[C]]

[[!∆,Γ1 ⊲M : !nA]]
c
Θ = [[!∆,Γ1]]

f−→ TLn[[A]]

[[!∆,Γ2 ⊲ N : !nB]]
c
Θ = [[!∆,Γ2]]

g−→ TLn[[B]]

[[!∆,Γ1,Γ2 ⊲ 〈M,N〉n : !n(A⊗B)]]
c
Θ =

[[!∆,Γ1,Γ2]]
f⊗!∆g−−−−→ TLn[[A]]⊗TLn[[B]]

Ψ1;TdLn

A,B−−−−−−→ TLn[[A⊗B]]

Table 11.3: Interpretation of computations.

Case M ≡ λn+1xB.N . In this case, A = !n+1(B⊸ C), and if ∆ ⊲ λn+1xB .N : B⊸C is valid, then
so is ∆, x : B ⊲ N : C. By hypothesis, |∆| = FV (M). Thus |∆| = FV (N) \ {x}.
Let ∆̇ be the subcontext of (x : B,∆) consisting of the free variables of N .

The induction hypothesis states that there exists a function f ′
c : [[∆̇]] → T [[C]] such that for all

dummy typing contexts !Λ̇ and for all typing derivations π′ the denotation [[π′]]c is ♦!Λ̇ ⊗ fc.

Note that ∆ is of the form !∆̈. There are two cases.

If x ∈ FV (N). Then |∆̇| = |x : B,∆|. We define the requested fv and fc respectively by

fv = δ∆; dL∆;LΦ−1(f ′
c); I!(B⊸C),!n+1(B⊸C),

fc = δ∆; dL∆;LΦ−1(f ′
c); I!(B⊸C),!n+1(B⊸C); η!n+1(B⊸C).

If x 6∈ FV (N). In this case, from Lemma 9.1.19 the type B is of the form !Ḃ. The context
|∆̇| = |∆|, and x is a dummy variable. We define the requested fv and fc respectively by

fv = δ∆; dL∆;LΦ−1(♦!Ḃ ⊗ f ′
c); I!(B⊸C),!n+1(B⊸C),

fc = δ∆; dL∆;LΦ−1(♦!Ḃ ⊗ f ′
c); I!(B⊸C),!n+1(B⊸C); η!n+1(B⊸C).

11.1. Denotational Semantics 180

Consider a dummy context !Λ for M and a typing derivation π of !Λ,∆ ⊲M : A. It starts with

π′
....

!Λ,∆, x : B ⊲ N : C

!Λ,∆ ⊲ λn+1xB.N : B⊸ C
(λ2)

for some derivation π′. By definition,

[[π]]
v

= δ!Λ,∆; dL!Λ,∆;LΦ−1([[π′]]
c
); I!(B⊸C),!n+1(B⊸C),

[[π]]
c

= δ!Λ,∆; dL!Λ,∆;LΦ−1([[π′]]
c
); I!(B⊸C),!n+1(B⊸C); η!n+1(B⊸C).

We aim at showing that [[π]]v = ♦!Λ ⊗ fv and that [[π]]c = ♦!Λ ⊗ fc.

One can show that for all g : [[∆]] → [[D]],

δ!Λ,∆; dL!Λ,∆;L(♦!Λ ⊗ id∆);L(id⊤ ⊗ g) = ♦!Λ ⊗ (δ∆; dL∆;Lid∆;Lg) (11.1.1)

by using the monoidality of dL and δ, and by using the fact that the category is strict. There
are two cases.

If x ∈ FV (N). By induction hypothesis, [[π′]]c = ♦!Λ ⊗ f ′
c. By naturality of Φ, Φ−1(♦!Λ ⊗ f ′

c) =
♦!Λ ⊗ Φ−1(f ′

c). One can then conclude, by using the functoriality of L and ⊗ and replacing
g with Φ−1(f ′

c) in Equation 11.1.1.

If x 6∈ FV (N). By induction hypothesis, [[π′]]c = ♦!Λ⊗♦!Ḃ⊗f ′
c.

By naturality of Φ, Φ−1(♦!Λ ⊗♦!Ḃ ⊗ f ′
c) = ♦!Λ ⊗ Φ−1(♦!Ḃ ⊗ f ′

c) One can then conclude, by
using the functoriality of L and ⊗ and replacing g with Φ−1(♦!Ḃ ⊗ f ′

c) in Equation 11.1.1.

Case M ≡ NP . In this case, one can split ∆ into (!∆̇,Γ1,Γ2), where Γ1 consists of all the free
variables in N but not in P , Γ2 of all the free variables in P but not in N , and !∆̇ of all the
free variables both in N and in P . Note that these are the only possibilities, since ∆ does not
contain any dummy variables.

Using Lemma 9.1.19, If ∆ ⊲ NP : A, then there exists some B such that !∆̇,Γ1 ⊲ N : B⊸ A
and !∆̇,Γ2 ⊲ P : B.

By induction hypothesis, there exists f ′
c : [[!∆̇]] ⊗ [[Γ1]] → T [[B⊸ A]] such that for all dummy

contexts !Λ for N and for all typing derivations π1 for !Λ, !∆̇,Γ1 ⊲ N : B⊸ A the denotation
[[π1]]

c
= ♦!Λ ⊗ f ′

c.

Similarly, by induction hypothesis, there exists g′c : [[!∆̇]]⊗ [[Γ2]] → T [[B]] such that for all dummy
contexts !Λ for P and for all typing derivations π2 for !Λ, !∆̇,Γ2 ⊲ P : B the denotation [[π2]]

c
=

♦!Λ ⊗ g′c.

Let fc be the map

[[!∆̇]]⊗[[Γ1]]⊗[[Γ2]]
f ′

c⊗!∆̇g
′
c−−−−−→ T [[B⊸A]]⊗T [[B]]

Ψ1−−→ T ([[B⊸A]]⊗[[B]])
ε∗A,B−−−→ T [[A]].

Consider a dummy context !Λ for NP and a valid derivation π for !Λ,∆ ⊲ NP : A. This
derivation starts with

π1....
!∆̈, Γ̈1 ⊲ N : B′⊸A

π2....
!∆̈, Γ̈2 ⊲ P : B′

!Λ,∆ ⊲ NP : A.
(app)

11.1. Denotational Semantics 181

The context (!Λ,∆) is equal to (!∆̈, Γ̈1, Γ̈2). From Lemma 9.1.12, B′ = B. From Lemma 9.1.11,
we have |!∆̇| ⊆ |!∆̈|, |Γ1| ⊆ |!∆̈, Γ̈1| and |Γ2| ⊆ |!∆̈, Γ̈2|. Let us split !∆̈, Γ̈1 and Γ̈2 into

!∆̈ = (!∆̈dnNP ,!∆̈dNPn, !∆̈dNnP , !∆̈dPnN),

Γ̈1 = (Γ̈dNPn1 , Γ̈dPnN1),

Γ̈2 = (Γ̈dNPn2 , Γ̈dNnP2),

where for each context of the form XdY1...YknZ1...Zl , if x ∈ |XdY1...YknZ1...Zl |, then x ∈ FV (Z1)∩
· · · ∩ FV (Zl) but x 6∈ FV (Y1) ∪ · · · ∪ FV (Yk). We did not include the four contexts Γ̈dnNP1 ,
Γ̈dnNP2 , Γ̈dNnP1 and Γ̈dPnN2 , which are empty by definition: otherwise the context (∆̈, Γ̈1, Γ̈2)
would have duplicates. We can rewrite the following contexts:

!Λ = (!∆̈dNPn, Γ̈dNPn1 , Γ̈dNPn2), Γ1 = (!∆̈dPnN , Γ̈dPnN1),

!∆̇ = !∆̈dnNP , Γ2 = (!∆̈dNnP , Γ̈dNnP2).

Note that Γ̈dNPn1 , and Γ̈dNPn2 , are duplicable.

By definition, [[π]]
c

= ([[π1]]
c ⊗!∆̈ [[π2]]

c
) ; Ψ1; ε

∗
A,B. We want to show that [[π]]

c
= ♦!Λ ⊗ fc. We

have from the induction hypothesis that if f ′
♦ is the morphism ♦!∆̈dNPn,!∆̈dNnP ,Γ̈dNPn

1
and if g′♦ is

the morphism ♦!∆̈dNPn,!∆̈dPnN ,Γ̈dNPn
2

, then [[π1]]
c

and [[π2]]
c

are respectively f ′
♦ ⊗ f ′

c and g′♦ ⊗ g′c,
and

f ′
♦ : [[!∆̈dNPn, !∆̈dNnP , Γ̈dNPn1]] → ⊤
g′♦ : [[!∆̈dNPn, !∆̈dPnN , Γ̈dNPn2]] → ⊤
f ′
c : [[!∆̈dnNP , !∆̈dPnN , Γ̈dPnN1]] → T [[B⊸A]],

g′c : [[!∆̈dnNP , !∆̈dNnP , Γ̈dNnP2]] → T [[B]].

Now, since from Lemma 11.1.8 and Lemma 11.1.9,

(♦!∆̈dNPn ⊗ ♦!∆̈dNnP ⊗♦Γ̈dNPn
1

⊗ f ′
c)

⊗!∆̈dNPn,!∆̈dnNP ,!∆̈dPnN ,!∆̈dNnP (♦!∆̈dNPn ⊗♦!∆̈dPnN ⊗♦Γ̈dNPn
2

⊗ g′c)

= ♦!∆̈dNPn ⊗♦Γ̈dNPn
1

⊗♦Γ̈dNPn
2

⊗ (f ′
c ⊗!∆̈dnNP g

′
c),

the denotation [[π]]
c

is then equal to

[[π]]
c

=
(

♦!∆̈dNPn ⊗♦Γ̈dNPn
1

⊗♦Γ̈dNPn
2

⊗ (f ′
c ⊗!∆̇ g′c)

)

; Ψ1; ε
∗
A,B

=
(

♦!Λ ⊗ (f ′
c ⊗!∆̇ g′c)

)

; Ψ1; ε
∗
A,B.

One concludes using Lemma 11.1.10.

The remaining cases are handled similarly.

Theorem 11.1.17. Given a valid typing judgement ∆ ⊲M : B with two typing derivations π and
π′, for any interpretation Θ we have [[π]]

c
Θ = [[π′]]cΘ (and [[π]]

v
Θ = [[π′]]vΘ if M is a value).

Proof. We consider denotations with respect to Θ. The context ∆ splits into (!Λ, ∆̇), where !Λ is a
dummy context and where |∆̇| = FV (M).

From Lemma 9.1.19, ∆̇ ⊲M : A is valid. We are in the context of Lemma 11.1.16: there exists
a function fc : [[∆̇]] → T [[A]] such that [[π]]c and [[π′]]c are both equal to ♦!Λ ⊗ fc. If M is a value,
then there exists a function fv : [[∆̇]] → [[A]] such that [[π]]

v
and [[π′]]v are both equal to ♦!Λ ⊗ fv.

11.2. Soundness of the Denotation 182

Definition 11.1.18. Given a interpretation Θ of the language in a category C, we define the
denotation of a valid typing judgement ∆ ⊲M : A with typing derivation π to be [[∆ ⊲M : A]]

c
Θ =

[[π]]
c
Θ and [[∆ ⊲M : A]]

v
Θ = [[π]]

v
Θ if M is a value.

Remark 11.1.19. From Theorem 11.1.17, Definition 11.1.18 is valid.

11.2 Soundness of the Denotation

The axiomatic equivalence and the categorical semantics are two faces of the same coin. Indeed,
as we will prove in this section, two terms in the same axiomatic equivalence class have the same
denotation. A corollary is that the indexation of terms does not influence the denotation. This
proves semantically the fact that it is safe to work with untyped terms. An alternate justification
of this fact is of course the operational semantics, which was given in Section 6.

Lemma 11.2.1. Suppose that ∆′ <: ∆ and that ∆ ⊲M : A. Then

[[∆′
⊲M : A]]

c
= I∆′,∆; [[∆ ⊲M : A′]]

c
.

If M = V is a value, we have moreover

[[∆′ ⊲ V : A]]
v

= I∆′,∆; [[∆ ⊲ V : A′]]
v
.

Proof. Proof by induction on the size of M .

Lemma 11.2.2. Suppose that ∆ ⊲M : A and that A<:A′. Then

[[∆ ⊲ {M <:A′} : A′]]
c

= [[∆ ⊲M : A]]c;T (IA,A′).

If M = V is a value, from Lemma 9.1.27, {V <:A′} is a value. Then

[[∆ ⊲ {V <:A′} : A′]]
v

= [[∆ ⊲ V : A]]
v
; IA,A′ .

Proof. Proof by induction on the size of M .

Lemma 11.2.3. Suppose that ∆ ⊲ M : A is a valid typing judgement and that !Λ is a context of
dummy variables for M . Then

[[!Λ,∆ ⊲M : A]]c = ♦Λ ⊗ [[∆ ⊲M : A]]c.

If M = V is a value,
[[!Λ,∆ ⊲ V : A]]

v
= ♦Λ ⊗ [[∆ ⊲ V : A]]

v
.

Proof. Proof by induction on the size of M .

Lemma 11.2.4 (Substitution). Given two valid typing judgements !∆,Γ1, x : A ⊲ M : B and
!∆,Γ2 ⊲ V : A, the typing judgement !∆,Γ1,Γ2 ⊲ M [V/x] : B is valid. Let h be the denotation
[[!∆,Γ1,Γ2 ⊲M [V/x] : B]]

c
and h′ be [[!∆,Γ1,Γ2 ⊲W [V/x] : B]]

v
, in the case where M = W is a

value. Then they are defined by

[[!∆]] ⊗ [[Γ1]] ⊗ [[Γ2]]

Split !∆,Γ1,Γ2

��

h // T ([[B]])

[[!∆]]⊗[[Γ1]]⊗[[!∆]]⊗[[Γ2]]
id⊗[[!∆,Γ2⊲V :A]]v // [[!∆]]⊗[[Γ1]]⊗[[A]],

[[!∆,Γ1,x:A⊲M :B]]c

OO
(11.2.1)

11.2. Soundness of the Denotation 183

[[!∆]] ⊗ [[Γ1]] ⊗ [[Γ2]]

Split !∆,Γ1,Γ2

��

h′

// [[B]]

[[!∆]]⊗[[Γ1]]⊗[[!∆]]⊗[[Γ2]]
id⊗[[!∆,Γ2⊲V :A]]v // [[!∆]]⊗[[Γ1]]⊗[[A]].

[[!∆,Γ1,x:A⊲W :B]]v

OO
(11.2.2)

Proof. Let v be the map [[!∆,Γ2 ⊲ V : A]]
v
. We do the proof by induction on the size of M .

Cases where M is a core value. Case M ≡ xB. The term M is a core value: we have to show Equa-
tion (11.2.1) and Equation (11.2.2). We show the former, the latter being exactly similar.

The typing derivation !∆,Γ1, x : A ⊲ xB : B comes from typing rule (ax 1). This means that
Γ1 is of the form !Γ′

1, and that A<:B. Using Lemma 11.2.2, the map h is

h = [[!∆, !Γ′
1,Γ2 ⊲ {V <:B} : B]]

c
= [[!∆, !Γ′

1,Γ2 ⊲ V : A]]
c
;T (IA,B).

Since V is a core value and using Lemma 11.2.3 and 11.1.7,

h = [[!∆, !Γ′
1,Γ2 ⊲ V : A]]

v
; ηA;T (IA,B)

= Split !∆,!Γ′
1,Γ2

; (♦∆,Γ′
1
⊗ [[!∆,Γ2 ⊲ V : A]]v); ηA;T (IA,B). (11.2.3)

By definition
[[!∆, !Γ′

1, x : A ⊲ xB : B]]
c

= ♦∆,Γ′
1
⊗ IA,B; ηB.

Thus

Split !∆,!Γ′
1,Γ2

; (id ⊗ [[!∆,Γ2 ⊲ V : A]]
v
); [[!∆, !Γ′

1, x : A ⊲ xB : B]]
c

= Split !∆,!Γ′
1,Γ2

; (id ⊗ [[!∆,Γ2 ⊲ V : A]]
v
); (♦∆,Γ′

1
⊗ IA,B ; ηB)

= Split !∆,!Γ′
1,Γ2

; (♦∆,Γ′
1
⊗ ([[!∆,Γ2 ⊲ V : A]]

v
; IA,B ; ηB) (bifunc. of ⊗)

which is equal to Formula (11.2.3), the naturality of η.

Case M ≡ ∗n, cB and yB, where y 6= x. Again in these cases, the term M is a core value: we
have to show Equation (11.2.1) and Equation (11.2.2). We show the former, the latter being
exactly similar.

The typing judgement !∆,Γ1, x : A ⊲ M : B comes from respectively rules (⊤.I), (ax 2)
and (ax 1). In all of these cases, Γ1 is of the form !Γ′

1 and A of the form !A′. From
Lemma 9.1.15, the context Γ2 is of the form !Γ′

2. Since the term M [V/x] is equal to M
is all three cases, the maps h and h′ are of the form ♦!∆,!Γ′

1,!Γ
′
2
; g, for some map g. The map

[[!∆, !Γ′
1, x : !A′ ⊲M : B]] is of the form ♦∆,Γ′

1,A
′ ; g for the same map g. The bottom part of

Diagram (11.2.1) is

Split !∆,!Γ′
1,!Γ

′
2
; (id ⊗ [[!∆, !Γ′

2 ⊲ V : A]]
v
);♦∆,Γ′

1,A
′ ; g = ♦∆,Γ′

1,Γ
′
2
; g

using Equation (2.7.11). This is precisely the map [[!∆, !Γ′
1, x : !A′ ⊲M : B]], ending the proof

for this case.

Case M ≡ λ0yC .N . In this case, B = C ⊸ D for some type D, and the typing judgement
!∆,Γ1, x : A ⊲ M : B comes from typing rule (λ1). That is, !∆,Γ1, y : C, x : A ⊲ N : C is
valid.

We have y 6= x: this means that M [V/x] = λ0yC .N [V/x]. By induction hypothesis, the
morphism k = [[!∆,Γ1, y : C,Γ2 ⊲ N [V/x] : D]]

c
satisfies the following commutative diagram:

[[!∆,Γ1, y : C,Γ2]]

Split !∆,(Γ1,y:C),Γ2

��

k // T ([[D]])

[[!∆,Γ1, y : C]]⊗[[!∆,Γ2]]
id⊗[[!∆,Γ2⊲V :A]]v // [[!∆,Γ1, y : C]]⊗[[A]],

[[!∆,Γ1,y:C,x:A⊲N :D]]c

OO

11.2. Soundness of the Denotation 184

Now, by definition,

[[!∆,Γ1,Γ2 ⊲M [V/x] : C⊸D]]v = Φ−1(k),

[[!∆,Γ1,Γ2 ⊲M [V/x] : C⊸D]]c = Φ−1(k);µC⊸D,

[[!∆,Γ1 ⊲M : C⊸D]]
v

= Φ−1[[!∆,Γ1, y : C ⊲ N : D]]
c
,

[[!∆,Γ1 ⊲M : C⊸D]]
c

= (Φ−1[[!∆,Γ1, y : C ⊲ N : D]]
c
);µC⊸D.

Equations (11.2.1) and (11.2.2) are derived using the naturality of Φ.

Case M ≡ λn+1xC .N . This case is similar to the previous one. The only difference is in that the
equations under consideration are encapsulated into

f 7→ δ!∆; dL!∆;L(f); I!(A⊸B),!n+1(A⊸B).

Cases M ≡ (let . C = N in P). In all these cases, the typing judgement !∆,Γ1, x : A ⊲ M : B
comes from a typing rule (X) with hypotheses

!∆′,Γ11 ⊲ N : C, !∆′,Γ12,Λ ⊲ P : B,

for some context Λ, where (!∆′,Γ11,Γ12) = (!∆,Γ1, x : A). If we call f and g the following maps:

f = [[!∆′,Γ11 ⊲ N : C]]
c
, g = [[!∆′,Γ12,Λ ⊲ P : B]]

c
,

we have

[[!∆,Γ1, x : A ⊲M : B]]
c

= (f ⊗!∆ id); (T (F) ⊗ id);σ; t; g∗

for a given map F , depending on . C . If M is an extended value, so are N and P . If we call f ′

and g′ the following maps:

f ′ = [[!∆′,Γ11 ⊲ N : C]]
v
, g′ = [[!∆′,Γ12,Λ ⊲ P : B]]

v
,

we have

[[!∆,Γ1, x : A ⊲M : B]]
v

= (f ′ ⊗!∆ id); (F ⊗ id);σ; g′.

Note that we might need to add a permutation in front of f , g, f ′ or g′, depending on the order
of their respective input.

By α-equivalence one can assume that the variables occurring in Λ does not occur anywhere in
the other contexts. From Lemma 9.1.19, one can assume that Γ11 and Γ12 do not contain any
duplicable variables, implying that |!∆| ⊆ |!∆′|. Thus there exists some context !Ψ such that
!∆′ = (!Ψ, !∆). In particular, this means that

(!Ψ,Γ11,Γ12) = (Γ1, x : A). (11.2.4)

This equation is the main point that will allow us to apply the induction hypothesis, and thus
finish the proof. The variable x : A belongs to either !Ψ, Γ11 or Γ12. We study each one of these
three possibilities.

If x ∈ |!Ψ|. In this case, A = !A′ and !Ψ = (!Ψ′, x : !A′). The contexts (!∆′,Γ11) and (!∆′,Γ12,Λ)
becomes respectively (!∆, !Ψ′,Γ11, x : !A′) and (!∆, !Ψ′,Γ12,Λ, x : !A′), meaning that the
typing judgements !∆, !Ψ′,Γ11, x : !A′ ⊲ N : C and !∆, !Ψ′,Γ12,Λ, x : !A′ ⊲ P : B are valid.

11.2. Soundness of the Denotation 185

Since A = !A′ and since V is a value, by Lemma 9.1.15 the context Γ2 is of the form !Γ′
2. We

have M [V/x] = (let . C = N [V/x] in P [V/x]), and

!∆, !Ψ′,Γ11,Γ2 ⊲ N [V/x] : C, !∆, !Ψ′,Γ12,Γ2,Λ ⊲ P [V/x] : B

are valid typing judgements, such that by induction hypotheses their respective computational
denotations ḟ and ġ are

[[!∆, !Ψ′,Γ11,Γ2]]

Split !∆,(!Ψ′,Γ11),Γ2

��

ḟ // T [[C]]

[[!∆, !Ψ′,Γ11]]⊗[[!∆,Γ2]]
id⊗[[!∆,Γ2⊲V :A]]v // [[!∆, !Ψ′,Γ11]]⊗[[A]],

f

OO
(11.2.5)

[[!∆, !Ψ′,Γ12,Λ,Γ2]]

Split !∆,(!Ψ′,Γ12,Λ),Γ2

��

ġ // T [[B]]

[[!∆, !Ψ′,Γ12,Λ]]⊗[[!∆,Γ2]]
id⊗[[!∆,Γ2⊲V :A]]v // [[!∆, !Ψ′,Γ12,Λ]]⊗[[A]],

g

OO
(11.2.6)

By definition, the denotation h = [[!∆,Γ1, !Γ
′
2 ⊲M [V/x] : B]]

c
is equal to

[[!∆, !Ψ′,Γ11,Γ12, !Γ
′
2]]

sw1;Split ;sw2−−−−−−−−−→[[!∆, !Ψ′,Γ11, !Γ
′
2, !∆, !Ψ

′,Γ12, !Γ
′
2]]

ḟ⊗id−−−→ T [[C]]⊗[[!∆, !Ψ′,Γ12, !Γ
′
2]]

T (F)⊗id−−−−−−→ T [[Λ]]⊗[[!∆, !Ψ′,Γ12, !Γ
′
2]]

σ;t−−→ T ([[!∆, !Ψ′,Γ12, !Γ
′
2]]⊗[[Λ]])

T (id⊗σ)−−−−−→ T ([[!∆, !Ψ′,Γ12,Λ, !Γ
′
2]])

ġ∗−→ T [[B]].

Using Equations (11.2.5) and (11.2.6), one can rewrite h as follows:

[[!∆, !Ψ′,Γ11,Γ12, !Γ
′
2]]

sw1;Split ;sw2−−−−−−−−−→ [[!∆, !Ψ′,Γ11, !Γ
′
2, !∆, !Ψ

′,Γ12, !Γ
′
2]]

(id⊗!∆v)⊗id−−−−−−−−→ [[!∆, !Ψ′,Γ11]]⊗[[A]]⊗[[!∆, !Ψ′,Γ12, !Γ
′
2]]

f⊗id−−−→ T [[C]]⊗[[!∆, !Ψ′,Γ12, !Γ
′
2]]

T (F)⊗id−−−−−−→ T [[Λ]]⊗[[!∆, !Ψ′,Γ12, !Γ
′
2]]

σ;t−−→ T ([[!∆, !Ψ′,Γ12, !Γ
′
2]]⊗[[Λ]])

T (id⊗σ)−−−−−→ T ([[!∆, !Ψ′,Γ12,Λ, !Γ
′
2]])

TSplit !∆,(!Ψ′,Γ12,Λ),!Γ′
2−−−−−−−−−−−−−−→T ([[!∆, !Ψ′,Γ12,Λ, !∆, !Γ

′
2]])

T (id⊗v)−−−−−→ T ([[!∆, !Ψ′,Γ12,Λ]] ⊗ [[A]])

g∗−→ T [[B]],

where sw1 and sw2 are permutations. Note that the map Split !∆,(!Ψ′,Γ12,Λ),!Γ′
2

is △∆ followed
by a permutation. It is then possible to lift the second occurrence of v to the top, thus getting
h in the required format.

The computation for h′ = [[!∆,Γ1,Γ2 ⊲M [V/x] : B]]
v

is similar.

11.2. Soundness of the Denotation 186

If x ∈ |Γ11|. This time, the context Γ11 is of the form (!Γ′
11, x : A), and Γ1 can be split into

(!∆, !Ψ,Γ′
11,Γ12). We have M [V/x] = (let . C = N [V/x] in P), and

!∆, !Ψ,Γ′
11,Γ2 ⊲ N [V/x] : C, !∆, !Ψ,Γ12,Λ ⊲ P : B

are valid typing judgements. By induction hypothesis, the computational denotation of the
former is

[[!∆, !Ψ,Γ′
11,Γ2]]

Split !∆,(!Ψ,Γ′
11),Γ2

��

ḟ // T [[C]]

[[!∆, !Ψ,Γ′
11]]⊗[[!∆,Γ2]]

id⊗[[!∆,Γ2⊲V :A]]v // [[!∆, !Ψ,Γ′
11]]⊗[[A]],

f

OO
(11.2.7)

By definition, the denotation h = [[!∆,Γ1,Γ2 ⊲M [V/x] : B]]
c

is equal to

[[!∆, !Ψ,Γ′
11,Γ12,Γ2]]

perm−−−→ [[!∆, !Ψ,Γ′
11,Γ2,Γ12]]

Split (!∆,!Ψ),(Γ′
11 ,Γ2),Γ12−−−−−−−−−−−−−−−→[[!∆, !Ψ,Γ′

11,Γ2]]⊗[[!∆, !Ψ,Γ12]]

ḟ⊗id−−−→ T [[C]]⊗[[!∆, !Ψ,Γ12]]

(T (F)⊗id);σ;t−−−−−−−−−→ T [[!∆, !Ψ,Γ12,Λ]]

g∗−→ T [[B]].

Using the Equation (11.2.7), this is equal to

[[!∆, !Ψ,Γ′
11,Γ12,Γ2]]

perm−−−→ [[!∆,Γ′
11,Γ2,Γ12]]

Split(!∆,!Ψ),(Γ′
11 ,Γ2),Γ12−−−−−−−−−−−−−−−→[[!∆, !Ψ,Γ′

11,Γ2]]⊗[[!∆, !Ψ,Γ12]]

Split !∆,(!Ψ,Γ′
11),Γ2

⊗id

−−−−−−−−−−−−−−→ [[!∆, !Ψ,Γ′
11]]⊗[[!∆,Γ2]]⊗[[!∆, !Ψ,Γ12]]

id⊗v⊗id−−−−−−→ [[!∆, !Ψ,Γ′
11]]⊗[[A]]⊗[[!∆, !Ψ,Γ12]]

f⊗id−−−→ T [[C]]⊗[[!∆, !Ψ,Γ12]]

(T (F)⊗id);σ;t−−−−−−−−−→ T [[!∆, !Ψ,Γ12,Λ]]

g∗−→ T [[B]],

where perm is a permutation. Using the coherence properties of the symmetry and the
comonoid multiplication, the map

perm ;Split (!∆,!Ψ),(Γ′
11,Γ2),Γ12

; (Split !∆,(!Ψ,Γ′
11),Γ2

⊗ id); (id ⊗ v ⊗ id)

= [[!∆, !Ψ,Γ′
11,Γ12,Γ2]]

Split!∆,(!Ψ,Γ′
11,Γ12),Γ2−−−−−−−−−−−−−−→[[!∆, !Ψ,Γ′

11,Γ12]]⊗[[!∆,Γ2]]

(id⊗v)−−−−→ [[!∆, !Ψ,Γ′
11,Γ12]]⊗[[A]],

that is, (id ⊗!∆ v): the map h is in the requested form.

Again, the computation for h′ = [[!∆,Γ1,Γ2 ⊲M [V/x] : B]]v is similar.

Case x ∈ |Γ12|. The context Γ12 is of the form (!Γ′
12, x : A), and Γ1 is equal to (!∆, !Ψ,Γ11,Γ

′
12).

We have M [V/x] = (let . C = N in P [V/x]), and

!∆, !Ψ,Γ11 ⊲ N : C, !∆, !Ψ,Γ′
12,Λ,Γ2 ⊲ P [V/x] : B

11.2. Soundness of the Denotation 187

are valid typing judgements. By induction hypothesis, the computational denotation of the
latter is

[[!∆, !Ψ,Γ′
12,Λ,Γ2]]

Split !∆,(!Ψ,Γ′
12,Λ),Γ2

��

ġ // T [[B]]

[[!∆, !Ψ,Γ′
12,Λ]]⊗[[!∆,Γ2]]

id⊗[[!∆,Γ2⊲V :A]]v // [[!∆, !Ψ,Γ′
12,Λ]]⊗[[A]],

g

OO
(11.2.8)

By definition, the denotation h = [[!∆,Γ1,Γ2 ⊲M [V/x] : B]]
c

is equal to

[[!∆, !Ψ,Γ11,Γ
′
12,Γ2]]

Split (!∆,!Ψ),Γ11,(Γ12 ,Γ2)−−−−−−−−−−−−−−−→[[!∆, !Ψ,Γ11]]⊗[[!∆, !Ψ,Γ′
12,Γ2]]

f⊗id−−−→ T [[C]]⊗[[!∆, !Ψ,Γ′
12,Γ2]]

(T (F)⊗id);σ;t−−−−−−−−−→ T [[!∆, !Ψ,Γ′
12,Γ2,Λ]]

T (id⊗σ)−−−−−→ T [[!∆, !Ψ,Γ′
12,Λ,Γ2]]

ġ∗−→ T [[B]].

Using the Equation (11.2.8), this is equal to

[[!∆, !Ψ,Γ11,Γ
′
12,Γ2]]

Split (!∆,!Ψ),Γ11,(Γ12 ,Γ2)−−−−−−−−−−−−−−−→[[!∆, !Ψ,Γ11]]⊗[[!∆, !Ψ,Γ′
12,Γ2]]

f⊗id−−−→ T [[C]]⊗[[!∆, !Ψ,Γ′
12,Γ2]]

(T (F)⊗id);σ;t−−−−−−−−−→ T [[!∆, !Ψ,Γ′
12,Γ2,Λ]]

T (id⊗σ)−−−−−→ T [[!∆, !Ψ,Γ′
12,Λ,Γ2]]

TSplit !∆,(!Ψ,Γ′
12

,Λ),Γ2−−−−−−−−−−−−−−→ T ([[!∆, !Ψ,Γ′
12,Λ]]⊗[[!∆,Γ2]])

T (id⊗v)−−−−−→ T ([[!∆, !Ψ,Γ′
12,Λ]]⊗[[A]])

g∗−→ T [[B]].

Using the same technique as in the case where x ∈ |!Ψ|, one can move up the occurrence of
v, and thus get h in the requested form.

Again, the computation for h′ = [[!∆,Γ1,Γ2 ⊲M [V/x] : B]]
v

is similar.

Cases M ≡ NP and M ≡ 〈N,P 〉n. As in the previous case, the typing judgement !∆,Γ1, x : A ⊲
M : B comes from a typing rule (X) with hypotheses

!∆′,Γ11 ⊲ N : C, !∆′,Γ12,⊲ P : D,

for some types C and D, where (!∆′,Γ11,Γ12) = (!∆,Γ1, x : A). If we call f and g the following
maps:

f = [[!∆′,Γ11 ⊲ N : C]]
c
, g = [[!∆′,Γ12 ⊲ P : d]]

c
,

we have

[[!∆,Γ1, x : A ⊲M : B]]c = (f ⊗!∆ g);F

11.2. Soundness of the Denotation 188

for a given map F , depending if M is of the form NP or of the form 〈N,P 〉n. If M is an extended
value, so are N and P . If we call f ′ and g′ the following maps:

f ′ = [[!∆′,Γ11 ⊲ N : C]]
v
, g′ = [[!∆′,Γ12 ⊲ P : D]]

v
,

we have

[[!∆,Γ1, x : A ⊲M : B]]
v

= (f ′ ⊗!∆ g);G,

for a given map G, depending if M is of the formNP or of the form 〈N,P 〉n. From Lemma 9.1.19,
one can assume that Γ11 and Γ12 do not contain any duplicable variables, implying that |!∆| ⊆
|!∆′|. Thus there exists some context !Ψ such that !∆′ = (!Ψ, !∆). In particular, this means that

(!Ψ,Γ11,Γ12) = (Γ1, x : A). (11.2.9)

The variable x : A belongs to either !Ψ, Γ11 or Γ12. The study of each one of these three
possibilities is similar as in the previous case.

This ends the list of cases: the lemma is verified.

Theorem 11.2.5 (Soundness). If ∆ ⊲M≈axM
′ : A then we have [[∆ ⊲M : A]]

c
Θ = [[∆ ⊲M ′ : A]]

c
Θ

(and [[∆ ⊲M : A]]
v
Θ = [[∆ ⊲M ′ : A]]

v
Θ if M and M ′ are values) for every interpretation Θ.

Proof. Proof by induction on the size of the derivation of M ≈ax M
′. Case distinction on the last

rule used. The cases corresponding to reflexivity, symmetry, transitivity and congruence are trivial.
We prove the result for the other cases:

Rule (βλ). Here, we are considering ∆ ⊲ let x = V in M ≈ax M [V/x] : A. We have directly from
Lemma 11.2.4 that [[M [V/x]]]

c
= [[let x = V in M]]

c
, and [[M [V/x]]]

v
= [[let x = V in M]]

v
if they

are extended values.

Rule (β⊗). We are considering ∆ ⊲ let 〈xC , yD〉n = 〈V,W 〉n in M ≈ax M [V/x,W/y] : A. By
α-equivalence one can assume that x is not free in W : we have M [V/x,W/y] = (M [W/y])[V/x].

One can split ∆ into (!∆′,Γ1,Γ2,Γ3), such that |Γ1| contains only the free variables of V , |Γ2|
only the free variables of W and |Γ3| only the ones of M . From Lemma 9.1.19, the typing
judgements

!∆′,Γ1 ⊲ V : !nC, !∆′,Γ2 ⊲W : !nD, !∆′,Γ3, x : !nC, y : !nD ⊲M : A,

are valid. Let f , g and h be the denotations

f = [[!∆′,Γ1 ⊲ V : !nC]]
v
,

g = [[!∆′,Γ2 ⊲W : !nD]]
v
,

h = [[!∆′,Γ3, x : !nC, y : !nD ⊲M : B]]
c
.

From Lemma 11.2.4,

[[!∆′,Γ3, x : !nC,Γ2 ⊲M [W/y] : A]]
c

= (id ⊗!∆′ [[!∆′,Γ2 ⊲W : !nD]]
v
); [[!∆′,Γ3, x : !nC, y : !nD ⊲M : A]]

c
,

thus, still from Lemma 11.2.4,

[[!∆′,Γ3,Γ2,Γ1 ⊲ (M [W/y])[V/x] : A]]
c

11.2. Soundness of the Denotation 189

= (id !∆′,Γ3,Γ2 ⊗!∆′ f); [[!∆′,Γ3,Γ2, x : !nC ⊲M [W/y] : A]]
c

= (id !∆′,Γ3,Γ2 ⊗!∆′ f); (id !∆,Γ3 ⊗ σ); (id !∆,Γ3,x:!nC ⊗!∆′ g);h

On another hand, by definition we have

[[!∆′,Γ1,Γ2 ⊲ 〈V,W 〉n : !n(C ⊗D)]]
c

= ((f ; η!nC) ⊗!∆′ (g; η!nD)); Ψ1;Td
Ln

C,D,

[[!∆′,Γ1,Γ2,Γ3 ⊲ let 〈xC , yD〉n = 〈V,W 〉n in M : A]]
c

=
((

((f ; η!nC) ⊗!∆′ (g; η!nD)); Ψ1;Td
Ln

C,D

)

⊗!∆ id
)

;

(

T
(

dL
n

C,D

)−1

⊗id

)

;σ; t;h∗

= ((((f ;η!nC)⊗!∆′(g;η!nD));Ψ1)⊗!∆id) ;(TdL
n

C,D⊗id);

(

T
(

dL
n

C,D

)−1

⊗id

)

;σ;t;h∗

= ((((f ; η!nC) ⊗!∆′ (g; η!nD)); Ψ1) ⊗!∆ id) ;σ; t;h∗

= (((f ; η!nC) ⊗!∆′ (g; η!nD)) ⊗!∆ id) ; (Ψ1 ⊗ id);σ; t;h∗

= ((f ⊗!∆′ g) ⊗!∆ id) ; ((η!nC ⊗ η!nD) ⊗ id); (Ψ1 ⊗ id);σ; t;h∗

= ((f ⊗!∆′ g) ⊗!∆ id) ; (η!n(C⊗D) ⊗ id);σ; t;h∗

= ((f ⊗!∆′ g) ⊗!∆ id) ;σ;h

which makes the same map (modulo permutation of inputs) as in the previous calculation.

The case of the value denotation is similar.

Rule (β∗). We have ∆ ⊲ let ∗ = ∗ in M ≈axM : A.

The typing judgement ∆ ⊲ let ∗ = ∗ in M : A comes from rule (⊤.E). The typing judgements
⊲ ∗ : ⊤ and ∆ ⊲M : A are valid, and since [[⊲ ∗ : ⊤]]c = id⊤, if we call

g = [[∆ ⊲M : A]]
c
, h = [[∆ ⊲ let ∗ = ∗ in M : A]]

c
,

then h = (η⊤ ⊗ g); Ψ1 = g. Similarly, if M is an extended value, and if we call

g′ = [[∆ ⊲M : A]]
v
, h′ = [[∆ ⊲ let ∗ = ∗ in M : A]]

v
,

then h′ = (id⊤ ⊗ g′) = g′.

Rule (ηλ). We have ∆ ⊲ λnxA.{V <:A⊸B}xA ≈ax V : !n(A⊸B). Both V and λnxA.{V <:A⊸
B}xA are values.

Let f = [[∆ ⊲ V : !n(A⊸B)]]v.

If n 6= 0. Then from Lemma 9.1.15, ∆ = !∆′.

Let g = [[∆, x : A ⊲ {V <:A⊸B}xA : B]]
c
. From Lemma 11.2.2, we have

g = ((f ; I!n(A⊸B),A⊸B; ηA⊸B) ⊗ ηA); Ψ1; ε
∗
A,B

= ((f ; I!n(A⊸B),A⊸B) ⊗ idA); (ηA⊸B ⊗ ηA); Ψ1; ε
∗
A,B

= ((f ; I!n(A⊸B),A⊸B) ⊗ idA); εA,B.

By naturality of Φ,

Φ−1
(

((f ; I!n(A⊸B),A⊸B) ⊗ idA); εA,B
)

= f ; I!n(A⊸B),A⊸B; Φ−1(εA,B)

11.2. Soundness of the Denotation 190

= f ; I!n(A⊸B),A⊸B.

Thus, if h = [[∆ ⊲ λnxA.{V <:A⊸B}xA : !n(A⊸B)]]
v
,

h = δ∆′ ; dL∆;L(Φ−1(g)); I!(A⊸B),!n(A⊸B)

= δ∆′ ; dL∆;L(f ; I!n(A⊸B),A⊸B); I!(A⊸B),!n(A⊸B)

= δ∆′ ; dL∆;L(f);L(I!n(A⊸B),A⊸B); I!(A⊸B),!n(A⊸B)

= δ∆′ ; dL∆;L(f); ǫ!n(A⊸B)

= δ∆′ ; dL∆; ǫ∆; f

= f.

If n = 0. The computation is similar, although simpler since there is no reference to ! nor to L.
Indeed, {V <:A⊸B} = V from Lemma 9.1.23, and if g = [[∆, x : A ⊲ V xA : B]]

c
,

g = (f ; ηA⊸B) ⊗ (ηA); Ψ1; ε
∗
A,B

= (f ⊗ idA); (ηA⊸B) ⊗ (ηA); Ψ1; ε
∗
A,B

= (f ⊗ idA); εA,B.

By naturality of Φ, if h = [[∆ ⊲ λ0xA.{V <:A⊸B}xA : A⊸B]]
v
,

h = L(Φ−1(g)) = f

Finally, in the case of the computational denotation, since both terms are core values, we have
the result by definition.

Rule (β2
λ). We have ∆ ⊲ let xA = N in xA ≈ax N : A. By α-equivalence one can assume that x is

not a free variable of N .

Suppose that N is an extended value, and let f be [[∆ ⊲ N : A]]
v
. Then if h is the denotation

[[∆ ⊲ let xA = N in xA : A]]
v
, we have

h = (f ⊗ id⊤);σA,⊤; idA = f.

Now, suppose that N is any term, and let f ′ be [[∆ ⊲ N : A]]c. From Lemma 11.1.15, if h′ =
[[∆ ⊲ let xA = N in xA : A]]

c
,

h′ = (f ′ ⊗ id⊤);σT ([[A]]),⊤; t; id∗
A = (f ′ ⊗ id⊤);σA,⊤; idA = f ′.

Rule (η⊗). We have ∆ ⊲ let 〈xA, yB〉n = N in 〈x!nA, y!nB〉n ≈ax N : !n(A⊗B). By α-equivalence
one can assume that neither x nor y are free variables of N .

Suppose that N is an extended value, and let f be [[∆ ⊲ N : !n(A⊗B)]]
v
. Then if h is the deno-

tation [[∆ ⊲ let 〈xA, yB〉n = N in 〈x!nA, y!nB〉n : !n(A⊗B)]]
v
, using the fact that the category is

strongly monoidal and monoidal strict,

h = (f ⊗ id⊤);

(

(

dL
n

[[A]],[[B]]

)−1

⊗ id⊤

)

;σ!n(A⊗B),⊤; dL
n

[[A]],[[B]]

= f ;
(

dL
n

[[A]],[[B]]

)−1

; dL
n

[[A]],[[B]]

= f.

11.2. Soundness of the Denotation 191

Now, suppose that N is any term, and let f ′ be [[∆ ⊲ N : !n(A⊗ B)]]
c
. If h′ is the denotation

[[∆ ⊲ let 〈xA, yB〉n = N in 〈x!nA, y!nB〉n : !n(A⊗B)]]
c
,

h′ = (f ′ ⊗ id⊤);

(

T
(

dL
n

[[A]],[[B]]

)−1

⊗ id⊤

)

;σT [[!n(A⊗B)]],⊤; t;
(

dL
n

[[A]],[[B]]; η
)∗

= f ′;T
(

dL
n

[[A]],[[B]]

)−1

;TdL
n

[[A]],[[B]]

= f ′.

Rule (η∗). We have ∆ ⊲ let ∗ = {N <: ⊤} in ∗n ≈axN : !n⊤.

Suppose that N is an extended value, and let f be [[∆ ⊲ N : !n⊤]]
v
. Then if h is the denotation

[[∆ ⊲ let ∗ = {N <: ⊤} in ∗n : !n⊤]]
v
, using Lemma 11.2.2 and Lemma 8.3.5,

h = ((f ; I!n⊤,⊤) ⊗ dL
n

⊤) = f ; I!n⊤,⊤; dL
n

⊤ = f.

Now, suppose that N is any term, and let f ′ be the denotation [[∆ ⊲ N : !n⊤]]
c
. If h′ is the

denotation [[∆ ⊲ let ∗ = {N <: ⊤} in ∗n : !n⊤]]
c
,

h′ = ((f ′;TI!n⊤,⊤) ⊗ (dL
n

⊤ ; η!n⊤)); Ψ1

= ((f ′;TI!n⊤,⊤) ⊗ (η⊤;TdL
n

⊤)); Ψ1

= (f ′ ⊗ η⊤); (TI!n⊤,⊤ ⊗ TdL
n

⊤); Ψ1

= (f ′ ⊗ η⊤); Ψ1;T (I!n⊤,⊤ ⊗ dL
n

⊤)

= f ′;T (I!n⊤,⊤; dL
n

⊤)

= f ′.

Rule (let1). We have

∆ ⊲ (let . C = (let ..D = M in N) in P ≈ax let ..D = M in let . C = N in P : A.

Using Lemma 9.1.19, there exist contexts !∆′, Γ1, Γ2, Γ3, Λ1 and Λ2 such that Λ1 contains the
variables in . , Λ2 the variables in .. , such that ∆ = (!∆′,Γ1,Γ2,Γ3) and such that

!∆′,Γ1 ⊲M : D, !∆′,Γ2,Λ1 ⊲ N : C, !∆′,Γ3,Λ2 ⊲ P : A.

Let h1 and h2 be

h1 = [[!∆′,Γ1,Γ2,Γ3 ⊲ (let . C = (let ..D = M in N) in P : A]]
c
,

h2 = [[!∆′,Γ1,Γ2,Γ3 ⊲ let ..D = M in let . C = N in P : A]]
c
.

Let us define the following maps:

fM = [[!∆′,Γ1 ⊲M : D]]
c

fN = [[!∆′,Γ2,Λ1 ⊲ N : C]]
c

fP = [[!∆′,Γ3,Λ2 ⊲ P : A]]
c

g1 = [[!∆′,Γ1,Γ2 ⊲ let ..D = M in N : C]]
c

g2 = [[!∆′,Γ2,Λ1,Γ3 ⊲ let . C = N in P : A]]
c

11.2. Soundness of the Denotation 192

There exists a map F : [[D]] → [[Λ1]] and a map G : [[C]] → [[Λ2]], respectively based upon the
value of . and .. , such that

g1 = (fM ⊗!∆′ id !∆′,Γ2); (TF ⊗ id !∆′,Γ2);σT [[Λ1]],[[!∆′,Γ2]]; t; f
∗
N ,

g2 = (fN ⊗!∆′ id !∆′,Γ3); (TG⊗ id !∆′,Γ3);σT [[Λ2]],[[!∆′,Γ3]]; t; f
∗
P ,

h1 = (g1 ⊗!∆′ id !∆′,Γ3); (TG⊗ id !∆′,Γ3);σT [[Λ2]],[[!∆′,Γ3]]; t; f
∗
P ,

h2 = (fM ⊗!∆′ id !∆′,Γ2,Γ3); (TF ⊗ id !∆′,Γ2,Γ3);σT [[Λ1]],[[!∆′,Γ2,Γ3]]; t;T (id⊗σ[[Γ3]],[[Λ1]]); g
∗
2 .

Using Lemma 11.1.11, one can rewrite h1 as

h1 = (((fM ;TF)⊗!∆′ id !∆′,Γ2) ⊗!∆′ id !∆′,Γ3); ((σ; t; f∗
N ;TG) ⊗ id !∆′,Γ3);σ; t; f∗

P .

Using Lemma 11.1.12, one can show that

T [[Λ1]]⊗[[!∆′,Γ2,Γ3]]
σ⊗t−−→ T [[!∆′,Γ2,Γ3,Λ1]]

T (id⊗σ)−−−−−→ T [[!∆′,Γ2,Λ1,Γ3]]

T ((fN ;TG)⊗!∆′ id)−−−−−−−−−−−−→ T (T [[Λ2]]⊗[[!∆′,Γ3]])

is equal to

T [[Λ1]]⊗[[!∆′,Γ2,Γ3]]
(id⊗σ);σ−−−−−−→ [[!∆′,Γ3,Γ2]]⊗T [[Λ1]]

t−→ T [[!∆′,Γ3,Γ2,Λ1]]

T (id⊗!∆′(fN ;TG))−−−−−−−−−−−−→ T ([[!∆′,Γ3]] ⊗ T [[Λ2]])
Tσ−−→ T (T [[Λ2]]⊗[[!∆′,Γ3]]).

Now, using Equations (5.4.5) and (5.4.4), the following diagram is commutative:

[[!∆′,Γ3,Γ2]]⊗T [[Λ1]]

t

**UUUUUUUUUUUUUUUUU

Split⊗id

��
[[!∆′,Γ3, !∆

′,Γ2]]⊗T [[Λ1]]

t

**UUUUUUUUUUUUUUUUU

id⊗t
��

T [[!∆′,Γ3,Γ2,Λ1]]

TSplit=T (Split⊗id)

��
[[!∆′,Γ3]]⊗T [[!∆′,Γ2,Λ1]]

t //

id⊗T (fN ;TG)

��
id⊗(f∗

N ;TG)

**

T [[!∆′,Γ3, !∆
′,Γ2,Λ1]]

T (id⊗(fN ;TG))

��
[[!∆′,Γ3]]⊗T 2[[Λ2]]

t //

id⊗µ
��

T ([[!∆′,Γ3]]⊗T [[Λ2]])

T (t)

��
[[!∆′,Γ3]]⊗T [[Λ2]]

t %%LLLLLLLLLL
T 2[[!∆′,Γ3,Λ2]]

µ
zzttttttttt

T [[!∆′,Γ3,Λ2]]

This is enough to say that h1 = h2.

The case where M , N and P are extended values is similar, without the need for the equations
of strong monadicity.

Rule (let2). We have

∆ ⊲ let . = V in let .. = W in M ≈ax let .. = W in let . = V in M : A,

11.2. Soundness of the Denotation 193

where V and W are core values. Using Lemma 9.1.19, there exist contexts !∆′, Γ1, Γ2, Γ3, Λ1 and
Λ2 such that Λ1 contains the variables in . , Λ2 the variables in .. , such that ∆ = (!∆′,Γ1,Γ2,Γ3)
and such that

!∆′,Γ3,Λ1,Λ2 ⊲M : A, !∆′,Γ1 ⊲ V : C, !∆′,Γ2 ⊲W : D.

Let h1 and h2 be

h1 = [[!∆′,Γ1,Γ2,Γ3 ⊲ let . = V in let .. = W in M : A]]
c
,

h2 = [[!∆′,Γ1,Γ2,Γ3 ⊲ let .. = W in let . = V in M : A]]
c
.

Let us define the following maps:

fM = [[!∆′,Γ3,Λ1,Λ2 ⊲M : A]]
c

fV = [[!∆′,Γ1 ⊲ V : C]]
v

fW = [[!∆′,Γ2 ⊲W : D]]
v

g1 = [[!∆′,Γ1,Γ3,Λ2 ⊲ let . = V in M : A]]
c

g2 = [[!∆′,Γ2,Γ3,Λ1 ⊲ let .. = W in M : A]]
c

There exists a map F : [[C]] → [[Λ1]] and a map G : [[D]] → [[Λ2]], respectively based upon the
value of . and .. , such that

g1 = ((fV ; ηC ;TF) ⊗!∆′ id !∆′,Γ3,Λ2);σT [[Λ1]],[[!∆′,Γ3,Λ2]]; t; (id ⊗ σ[[Λ2]],[[Λ1]]); f
∗
M ,

g2 = ((fW ; ηD;TG) ⊗!∆′ id !∆′,Γ3,Λ1);σT [[Λ2]],[[!∆′,Γ3,Λ1]]; t; f
∗
M ,

h1 = ((fV ; ηC ;TF) ⊗!∆′ id !∆′,Γ2,Γ3);σT [[Λ1]],[[!∆′,Γ2,Γ3]]; t; g
∗
2 ,

h2 = id⊗σ[[Γ1]],[[Γ2]]⊗id ; ((fW ; ηD;TG) ⊗!∆′ id !∆′,Γ1,Γ3);σT [[Λ2]],[[!∆′,Γ1,Γ3]]; t; g
∗
1 .

We now want to show that h1 = h2. Using Equation (5.4.4) stating that ηA⊗B = (idA⊗ηB); tA,B,
we rewrite h1:

h1 = ((fV ; ηC ;TF)⊗!∆′ id !∆′,Γ2,Γ3);σT [[Λ1]],[[!∆′,Γ2,Γ3]]; t; g
∗
2

= ((fV ;F ; η[[Λ1]]) ⊗!∆′ id !∆′,Γ2,Γ3);σT [[Λ1]],[[!∆′,Γ2,Γ3]]; t; g
∗
2

= ((fV ;F) ⊗!∆′ id !∆′,Γ2,Γ3);σ[[Λ1]],[[!∆′,Γ2,Γ3]]; (id !∆′,Γ2,Γ3⊗η[[Λ1]])t; g
∗
2

= ((fV ;F) ⊗!∆′ id !∆′,Γ2,Γ3);σ[[Λ1]],[[!∆′,Γ2,Γ3]]; η; g
∗
2

= ((fV ;F) ⊗!∆′ id !∆′,Γ2,Γ3);σ[[Λ1]],[[!∆′,Γ2,Γ3]]; g2.

Similarly one can rewrite g1, g2 and h2:

g1 = ((fV ;F) ⊗!∆′ id !∆′,Γ3,Λ2);σ[[Λ1]],[[!∆′,Γ3,Λ2]]; (id ⊗ σ[[Λ2]],[[Λ1]]); fM ,

g2 = ((fW ;G) ⊗!∆′ id !∆′,Γ3,Λ1);σ[[Λ2]],[[!∆′,Γ3,Λ1]]; fM ,

h2 = id⊗σ[[Γ1]],[[Γ2]]⊗id ; ((fW ;G) ⊗!∆′ id !∆′,Γ1,Γ3);σ[[Λ2]],[[!∆′,Γ1,Γ3]]; g1.

The term h1 becomes:

h1 = ((fV ;F) ⊗!∆′ id !∆′,Γ2,Γ3);σ[[Λ1]],[[!∆′,Γ2,Γ3]]; g2

= ((fV ;F) ⊗!∆′ id !∆′,Γ2,Γ3);σ[[Λ1]],[[!∆′,Γ2,Γ3]]; ((fW ;G) ⊗!∆′ id !∆′,Γ3,Λ1);

σ[[Λ2]],[[!∆′,Γ3,Λ1]]; fM

= ((fV ;F) ⊗!∆′ id !∆′,Γ2,Γ3); (idΛ1⊗((fW ;G)⊗!∆′ id !∆′,Γ3);σ[[Λ1,Λ2]],[[!∆′,Γ3]]; fM

11.2. Soundness of the Denotation 194

= ((fV ;F) ⊗!∆′ ((fW ;G)⊗!∆′ id !∆′,Γ3));σ[[Λ1,Λ2]],[[!∆′,Γ3]]; fM .

A similar computation shows that h2 also yields this term.

In the case where M is an extended value, the only computation needed is the last one.

Rules (letapp) and (let⊗). We have

∆ ⊲ let xA⊸B = M in let yA = N in xA⊸ByA ≈ax MN : B,

∆ ⊲ let x!nA = M in let y!nB = N in 〈x!nA, y!nB〉n ≈ax 〈M,N〉n : !n(A⊗B).

Note that both of these equations are of the form

∆ ⊲ let xC = M in let yD = N in P ≈ax P (M,N) : E,

for some types C, D and E and some term construct P (−,−).

We can compute the computational interpretation in both cases. The value interpretation can
be done only in the second case. However, the proof being a subset of the one required for the
computational interpretation, we omit it.

Using α-equivalence, one can assume that x and y does not occur in M nor in N . Using
Lemma 9.1.19, there exist contexts !∆′, Γ1 and Γ2 such that ∆ = (!∆′,Γ1,Γ2) and such that

!∆′,Γ1 ⊲M : C, !∆′,Γ2 ⊲ N : D.

Let h1 and h2 be

h1 = [[!∆′,Γ1,Γ2 ⊲ let xC = M in let yD = N in P (x, y) : B]]
c
,

h2 = [[!∆′,Γ1,Γ2 ⊲ P (M,N) : B]]
c
.

Let us define the following maps:

fM = [[!∆′,Γ1 ⊲M : C]]
c
,

fN = [[!∆′,Γ2 ⊲ N : D]]
c
,

g = [[!∆′,Γ2, x : C ⊲ let yD = N in P (x, y) : B]]
c
,

k = [[x : C, y : D ⊲ P (x, y) : B]]c.

By definition and from Lemma 11.1.15, there exists a map F : [[C ⊗D]] → T (B) such that

k = (ηC ⊗ ηD); Ψ1;F
∗,

g = (fN ⊗ idC);σT [[D]],[[C]]; t; k
∗,

h1 = (fM ⊗!∆′ id !∆′,Γ2);σT [[C]],[[!∆′,Γ2]]; t; g
∗,

h2 = (fM ⊗!∆′ fN); Ψ1;F
∗,

Using Equation (5.4.4) of the tensorial strength, let us rewrite k:

k = (ηC ⊗ ηD); Ψ1;F
∗

= (ηC ⊗ ηD);σT [[C]],T [[D]]; tT [[D]],[[C]];TσT [[D]],[[C]];T t[[C]],[[D]];µ;F ∗

= (ηD ⊗ ηC); tT [[D]],[[C]];TσT [[D]],[[C]];T t[[C]],[[D]];µ;F ∗

= (ηD ⊗ idC); ηT [[D]]⊗[[C]];TσT [[D]],[[C]];T t[[C]],[[D]];µ;F ∗

11.2. Soundness of the Denotation 195

= (ηD ⊗ idC);σT [[D]],[[C]]; t[[C]],[[D]];F
∗

= (idC ⊗ ηD); t[[C]],[[D]];F
∗

= η[[C]]⊗[[D]];F
∗

= F.

Let us rewrite g:

g = (fN ⊗ idC);σT [[D]],[[C]]; t; k
∗ = (fN ⊗ idC);σT [[D]],[[C]]; t;F

∗

Let us rewrite h1:

h1 = (fM ⊗!∆′ id !∆′,Γ2);σT [[C]],[[!∆′,Γ2]]; t; g
∗

= (fM ⊗!∆′ id !∆′,Γ2);σT [[C]],[[!∆′,Γ2]]; t;T (fN ⊗ idC);TσT [[D]],[[C]];T t;F
∗

= (fM ⊗!∆′ fN);σT [[C]],T [[D]]; t;T (idT [[D]] ⊗ idC);TσT [[D]],[[C]];T t;F
∗

= (fM ⊗!∆′ fN);σT [[C]],T [[D]]; t;TσT [[D]],[[C]];T t;F
∗

= (fM ⊗!∆′ fN); Ψ1;F
∗

= h2.

Rule (letλ). We have

∆ ⊲ let xD = V in λnyA.M ≈ax λ
nyA. let xD = V in M : !n(A⊸B),

where V is a core value. Using α-equivalence, one can assume that x does not occur in M nor
in V , and that y 6= x. Using Lemma 9.1.19, there exist contexts !∆′, Γ1 and Γ2 such that
∆ = (!∆′,Γ1,Γ2) and such that

!∆′,Γ2, x : D, y : A ⊲M : B, !∆′,Γ1 ⊲ V : D,

Let h1 and h2 be

h1 = [[!∆′,Γ1,Γ2 ⊲ let xD = V in λnyA.M : !n(A⊸B)]]
c
,

h2 = [[!∆′,Γ1,Γ2 ⊲ λ
nyA. let xD = V in M : !n(A⊸B)]]

c
.

Let us define the following maps:

fM = [[!∆′,Γ2, x : D, y : A ⊲M : B]]
c

fV = [[!∆′,Γ1 ⊲ V : D]]
v

g1 = [[!∆′,Γ2, x : D ⊲ λnyA.M : !n(A⊸B)]]
c

g2 = [[!∆′,Γ1,Γ2, y : A ⊲ let xD = V in M : B]]
c

There are four cases: n can be null or not, and M can be an extended value or not (allowing us
to compute the value interpretation). We fully develop the computational interpretation of the
case n = 0 since the other three cases are done using similar calculations.

From Lemma 9.1.15, Γ1 and Γ2 are respectively of the form !Γ′
1 and !Γ′

2, and D = !D′. By
definition, we have

g1 = δ!∆′,!Γ′
2,x:!D

′ ; dL!∆′,!Γ′
2,x:!D

′;LΦ−1(fM); I!(A⊸B),!n(A⊸B); η!n(A⊸B)

g2 = ((fV ; ηD) ⊗!∆′ id !∆′,Γ2,y:A);σT [[D]],[[!∆′,Γ2,y:A]]; t;T (id ⊗ σA,D); f∗
M ,

11.2. Soundness of the Denotation 196

h1 = ((fV ; ηD) ⊗!∆′ id !∆′,Γ2);σT [[D]],[[!∆′,Γ2]]; t; g
∗
1 ,

h2 = δ!∆′,!Γ′
1,!Γ

′
2
; dL!∆′,!Γ′

1,!Γ
′
1
;LΦ−1(g2); I!(A⊸B),!n(A⊸B); η!n(A⊸B).

We want to show that h1 = h2. Let us rewrite g2, using Equation (5.4.4) of strong monadicity
of T :

g2 = ((fV ; ηD) ⊗!∆′ id !∆′,Γ2,y:A);σT [[D]],[[!∆′,Γ2,y:A]]; t;T (id ⊗ σA,D); f∗
M

= (fV ⊗!∆′ id !∆′,Γ2,y:A);σ[[D]],[[!∆′,Γ2,y:A]]; (id ⊗ ηD); t;T (id ⊗ σA,D); f∗
M

= (fV ⊗!∆′ id !∆′,Γ2,y:A);σ[[D]],[[!∆′,Γ2,y:A]]; η!∆′,Γ2,y:A,x:D;T (id ⊗ σA,D); f∗
M

= (fV ⊗!∆′ id !∆′,Γ2,y:A);σ[[D]],[[!∆′,Γ2,y:A]]; (id ⊗ σA,D); η!∆′,Γ2,x:D,y:A; f∗
M

= (fV ⊗!∆′ id !∆′,Γ2,y:A);σ[[D]],[[!∆′,Γ2,y:A]]; (id ⊗ σA,D); fM

= (fV ⊗!∆′ id !∆′,Γ2,y:A); (σ[[D]],[[!∆′,Γ2]] ⊗ idA); fM

= ((fV ⊗!∆′ id !∆′,Γ2) ⊗ idA); (σ[[D]],[[!∆′,Γ2]] ⊗ idA); fM .

By naturality of Φ,

Φ−1(g2) = (fV ⊗!∆′ id !∆′,Γ2);σ[[D]],[[!∆′,Γ2]]; Φ
−1(fM).

The map h2 is reformatted using the naturality of dL and of δ:

h2 = δ!∆′,!Γ′
1,!Γ

′
2
; dL!∆′,!Γ′

1,!Γ
′
1
;LΦ−1(g2); I!(A⊸B),!n(A⊸B); η!n(A⊸B)

= δ!∆′,!Γ′
1,!Γ

′
2
; dL!∆′,!Γ′

1,!Γ
′
1
;L(fV ⊗!∆′ id !∆′,Γ2);Lσ[[D]],[[!∆′,Γ2]];LΦ−1(fM);

I!(A⊸B),!n(A⊸B); η!n(A⊸B)

= (fV ⊗!∆′ id !∆′,Γ2);σ[[D]],[[!∆′,Γ2]]; δ!∆′,!Γ′
2,y:!D

′ ; dL!∆′,!Γ′
2,y:!D

′;LΦ−1(fM);

I!(A⊸B),!n(A⊸B); η!n(A⊸B).

Note that g1 is of the form g′1; η!n(A⊸B). Again using Equation (5.4.4):

h1 = ((fV ; ηD) ⊗!∆′ id !∆′,Γ2);σT [[D]],[[!∆′,Γ2]]; t; g
∗
1

= (fV ⊗!∆′ id !∆′,Γ2);σ[[D]],[[!∆′,Γ2]]; (id ⊗ ηD); t; g∗1
= (fV ⊗!∆′ id !∆′,Γ2);σ[[D]],[[!∆′,Γ2]]; η!∆′,Γ2,y:D; g∗1
= (fV ⊗!∆′ id !∆′,Γ2);σ[[D]],[[!∆′,Γ2]]; η!∆′,Γ2,y:D; (g′1; η)

∗

= (fV ⊗!∆′ id !∆′,Γ2);σ[[D]],[[!∆′,Γ2]]; η!∆′,Γ2,y:D;T (g′1)

= (fV ⊗!∆′ id !∆′,Γ2);σ[[D]],[[!∆′,Γ2]]; g
′
1; η!n(A⊸B)

= (fV ⊗!∆′ id !∆′,Γ2);σ[[D]],[[!∆′,Γ2]]; δ!∆′,!Γ′
2,y:!D

′ ; dL!∆′,!Γ′
2,y:!D

′;LΦ−1(fM);

I!(A⊸B),!n(A⊸B); η!n(A⊸B)

= h2.

Rule (app<:). The setting is the following: A<:B, ∆ = (!∆′,Γ1,Γ2) and

!∆′,Γ1 ⊲ N : B⊸ C, !∆′,Γ2 ⊲ P : A.

We are considering the relation ∆ ⊲ N{P <: B} ≈ax {N <:A⊸ C}P : C.

In this situation, only the computational interpretation makes sense. If

f = [[!∆′,Γ1 ⊲ N : B⊸ C]]
c
, g = [[!∆′,Γ2 ⊲ P : A]]

c
,

11.2. Soundness of the Denotation 197

then, since IB⊸C,A⊸C = (IA,B)⊸ C, we have

[[∆ ⊲ N{P <:B} : B]]c = (f ⊗!∆′ (g;TIA,B)); Ψ1; ε
∗
B,C

= (f ⊗!∆′ g); (id ⊗ TIA,B); Ψ1; ε
∗
B,C

= (f ⊗!∆′ g); Ψ1; ((id ⊗ IA,B); εB,C)∗,

and

[[∆ ⊲ {N <:A⊸ C}P : C]]
c

= ((f ;TIB⊸C,A⊸C) ⊗!∆′ g); Ψ1; ε
∗
A,C

= (f ⊗!∆′ g); (TIB⊸C,A⊸C ⊗ id); Ψ1; ε
∗
A,C

= (f ⊗!∆′ g); Ψ1; ((IB⊸C,A⊸C ⊗ id); εA,C)∗

= (f ⊗!∆′ g); Ψ1; (((IA,B⊸ C) ⊗ id); εA,C)∗.

The two denotations are equal by naturality of Φ. Indeed, since

C(A⊸ C,A⊸ C)
Φ //

(IA,B⊸C);−
��

C((A⊸C) ⊗A, TC)

((IA,B⊸C)⊗A);−
��

C(B⊸ C,A⊸ C)
Φ

// C((B⊸C) ⊗A, TC),

we have Φ(IA,B⊸ C) = ((IA,B⊸ C) ⊗A); εA,C . Since

C(B⊸ C,B⊸ C)
Φ //

−;(IA,B⊸C)

��

C((B⊸ C) ⊗B, TC)

((B⊸C)⊗IA,B);−
��

C(B⊸C,A⊸C)
Φ

// C((B⊸ C) ⊗A, TC),

we have Φ(IA,B⊸ C) = ((B⊸ C) ⊗ IA,B); εB,C . Thus,

((B⊸ C) ⊗ IA,B); εB,C = ((IA,B⊸ C) ⊗A); εA,C .

Rule (let⊗<:). In this case, A<:A′, B <:B′, and n′ = 0 if n = 0. We have ∆ = (!∆′,Γ1,Γ2) with

!∆′,Γ1 ⊲ N : !n(A⊗B), !∆′,Γ2, x : !n
′

A′, y : !n
′

B′
⊲ P : E,

and we consider the following relation:

∆ ⊲
(

let 〈xA′

, yB
′〉n

′

= {N <: !n
′

(A′ ⊗B′)} in P
)

≈ax

(

let 〈xA, yB〉n = N in P
)

: E.

By α-equivalence, one can assume that x, y do not occur in N .

Let f , g, h1 and h2 be the following maps:

f = [[!∆′,Γ1 ⊲ N : !n(A⊗B)]]
c
,

g = [[!∆′,Γ2, x : !n
′

A′, y : !n
′

B′ ⊲ P : E]]
c
,

h1 = [[!∆′,Γ1,Γ2 ⊲ let 〈xA′

, yB
′〉n

′

= {N <: !n
′

(A′ ⊗B′)} in P : E]]
c
,

h2 = [[!∆′,Γ1,Γ2 ⊲ let 〈xA, yB〉n = N in P : E]]
c
.

11.3. Completeness 198

By definition, we have

h1 = ((f ; I!n(A⊗B),!n′(A′⊗B′)) ⊗!∆′ id !∆′,Γ2); (T (dL
n′

A′,B′)−1 ⊗ id);

σT [[x:!n′A′,y:!n′B′]],[[!∆′,Γ2]]
; t; g∗,

h2 = (f ⊗!∆′ id !∆′,Γ2); (T (dL
n

A,B)−1 ⊗ id);

σT [[x:!nA,y:!nB]],[[!∆′,Γ2]]; t; (I(!∆′,Γ2,x:!nA,y:!nB),(!∆′,Γ2,x:!n
′A′,y:!n′B′); g)

∗.

These two maps are the same since

I!n(A⊗B),!n′(A′⊗B′) = LnIA,A′ ⊗ Ln
′

IB,B′

and
I(!∆′,Γ2,x:!nA,y:!nB),(!∆′,Γ2,x:!n

′A′,y:!n′B′) = id !∆′,Γ2 ⊗ LnIA,A′ ⊗ Ln
′

IB,B′ .

For the same reasons the value interpretation of the two terms in relation are the same.

This ends the list of possible cases. Theorem 11.2.5 is then verified.

Corollary 11.2.6. If Erase(M) = Erase(M ′) and if ∆ ⊲ M,M ′ : A are valid typing judgements,
then [[M]]

c
= [[M ′]]c (and [[M]]

v
= [[M ′]]v if M and M ′ are values).

Proof. Corollary of Theorems 9.2.7 and 11.2.5.

11.3 Completeness

Recall the category Cλ from Section 9.3. Since the category Cλ is a linear category for duplication,
one can interpret the language in it. This section states that the defined lambda calculus is an
internal language of linear categories for duplication.

Since the category Cλ is a monoidal category, one can w.l.o.g. generalize the notion of pairing
to finite tensor products of terms.

Definition 11.3.1. We define the following shortcut notations for terms:

〈〉n = ∗n, 〈xA〉n = x!nA, 〈x1, x2 . . .〉n = 〈x1, 〈x2 . . .〉0〉n,

(let 〈〉n = M in N) = (let ∗ = {M <: ⊤} in v N),

(let 〈xA〉n = M in N) = (let x!nA = M in N),

(let 〈x1, x2 . . .〉n = M in N) = (let 〈x1, z2〉n = M in let 〈x2 . . .〉n = z2 in N),

and for types:

A1 ⊗A2 ⊗ · · · ⊗An = A1 ⊗ (A2 ⊗ (· · · ⊗An) · · ·).

Lemma 11.3.2. The following derived typing rules are correct:

!∆,Γ1 ⊲M : !n(A1 ⊗ · · · ⊗Ak)
!∆,Γ2, x1 : !nA1, . . . , xk : !nAk ⊲ N : B
!∆,Γ1,Γ2 ⊲ let 〈x1, . . . , xk〉n = M in N : B,

(11.3.1)

11.3. Completeness 199

and
!∆,Γ1 ⊲M1 : !nA1

!∆,Γ2 ⊲M2 : !nA2

· · ·
!∆,Γk ⊲Mk : !nAk
!∆,Γ1, . . . ,Γk ⊲ 〈M1, . . .Mk〉n : !n(A1 ⊗ · · · ⊗Ak).

(11.3.2)

Proof. Proof by induction on k.

Lemma 11.3.3. In the setting of Equation 11.3.2 in Lemma 11.3.2, if for all i we have fi =
[[!∆,Γi ⊲Mi : !nAi]]

c
, then

[[Γ1, . . . ,Γk ⊲ 〈M1, . . .Mk〉n : !n(A1 ⊗ · · · ⊗Ak)]]
c

= (f1 ⊗!∆ · · · ⊗!∆ fk); Ψ1;Td
Ln

A1,...,Ak
.

In the case where all the Mi are extended values, if f ′
i is f ′

i = [[!∆,Γi ⊲Mi : !nAi]]
v
, then

[[Γ1, . . . ,Γk ⊲ 〈M1, . . .Mk〉n : !n(A1 ⊗ · · · ⊗Ak)]]
c

= (f1 ⊗!∆ · · · ⊗!∆ fk); d
Ln

A1,...,Ak
.

Proof. Proof by induction on k.

Lemma 11.3.4. In the setting of Equation 11.3.1 in Lemma 11.3.2, if

f = [[!∆,Γ1 ⊲M : !n(A1 ⊗ · · · ⊗Ak)]]
c
,

g = [[!∆,Γ2, x1 : !nA1, . . . , xk : !nAk ⊲ N : B]]
c
,

then

[[!∆,Γ1,Γ2 ⊲ let 〈x1, . . . , xk〉n = M in N : B]]
c

= (f ⊗!∆ id); (T (dL
n

A1,...,An
)−1 ⊗ id);σ; t; g∗.

In the case where M and N are extended values, if

f = [[!∆,Γ1 ⊲M : !n(A1 ⊗ · · · ⊗Ak)]]
v
,

g = [[!∆,Γ2, x1 : !nA1, . . . , xk : !nAk ⊲ N : B]]
v
,

then

[[!∆,Γ1,Γ2 ⊲ let 〈x1, . . . , xk〉n = M in N : B]]
v

= (f ⊗!∆ id); (T (dL
n

A1,...,An
)−1 ⊗ id);σ; g.

Proof. Proof by induction on n.

Lemma 11.3.5. In Cλ, a valid typing judgement x1 : A1, . . . xn : An ⊲M : B has for computational
denotation (t : A1 ⊗ · · · ⊗An ⊲ let 〈x1, . . . xn〉 = t in λ∗.M : ⊤⊸B). If M = V is a value, the value
interpretation is (t : A1 ⊗ · · · ⊗An ⊲ let 〈x1, . . . xn〉 = t in V : B).

Proof. Proof by structural induction on M , using Lemmas 11.3.3 and 11.3.4. For each case, one
writes the categorical morphism corresponding to the term and one interprets it in Cλ.

Theorem 11.3.6 (Completeness). In Cλ, Θ being the identity, one has [[x : A ⊲M : B]]
c
Θ ≈ax (x :

A ⊲ λ∗.M : ⊤⊸B) and [[x : A ⊲ V : B]]
v
Θ ≈ax (x : A ⊲ V : B).

Proof. Corollary of Lemma 11.3.5.

11.4. Towards a Denotational Model 200

11.4 Towards a Denotational Model

In Chapters 8-11, we developed the categorical requirements for modeling a generic call-by-value
linear lambda calculus, i.e., its type system (which includes subtyping) and equational laws. We
have not yet specialized the language to a particular set of built-in operators, for example, those
that are required for quantum computation.

However, since the quantum lambda calculus of Chapter 6 is the main motivation behind our
work, we will comment very briefly on what additional properties would be required to interpret its
primitives. The quantum lambda calculus of Chapter 6 is obtained by instantiating and extending
the call-by-value language of Chapter 9 with the following primitive types, constants, and operations:

Types: bit , qbit
Constants: 0 : !bit , 1 : !bit

new : !(bit⊸ qbit), U : !(qbitn⊸ qbitn), meas : !(qbit⊸ !bit)

Operations:
Γ1, !∆ ⊲ P : bit Γ2, !∆ ⊲M : A Γ2, !∆ ⊲ N : A

Γ1,Γ2, !∆ ⊲ if P then M else N : A
(if)

In the intended semantics, !bit ∼= bit , while !qbit is empty. new creates a new qubit, and meas
measures a qubit.

The denotational semantics of these operations is already well-understood (see Section 4.3) in
the absence of higher-order types. They can all be interpreted in the category Q of superoperators
described in Section 4.3. The part that is not yet well-understood is how these features interact
with higher-order types.

In light of our present work, we can conclude that a model of the quantum lambda calculus
consists of a linear category for duplication (C, L, T,⊸), such that the associated category of compu-
tations CT contains the category Q as a full monoidal subcategory. To construct an actual instance
of such a model is still an open problem.

Bibliography

Samson Abramsky. Computational interpretations of linear logic. Theoretical Computer Science,
111(1-2):3–57, April 1993.

Samson Abramsky and Bob Coecke. A categorical semantics of quantum protocols. In Proceedings
of the 19th Symposium on Logic in Computer Science, LICS’04, pages 415–425, Turku, Finland,
July 2004. IEEE, IEEE Computer Society Press.

Dorit Aharonov. Quantum computation. In Dietrich Stauffer, editor, Annual Reviews of Computa-
tional Physics VI. World Scientific, 1999. Also available on arXiv as quant-ph/9812037.

Thorsten Altenkirch and Jonathan Grattage. QML: Quantum data and control. Draft, February
2005a.

Thorsten Altenkirch and Jonathan Grattage. A functional quantum programming language. In
Prakash Panangaden, editor, Proceedings of the 20th Symposium on Logic in Computer Science,
LICS’05, pages 249–258, Chicago, Illinois, US., June 2005b. IEEE, IEEE Computer Society Press.

Andrew G. Barber. Linear Type Theories, Semantics and Action Calculi. PhD thesis, Laboratory
for Foundation of Computer Sciences, Edinburgh University, Scotland, UK., 1997. Also available
as report ECS-LFCS-97-371.

Henk P. Barendregt. The Lambda-Calculus, its Syntax and Semantics, volume 103 of Studies in
Logic and the Foundation of Mathematics. North Holland, 1984.

Michael Barr. Accessible categories and models of linear logic. Journal of Pure and Applied Algebra,
69:219–232, 1990.

John S. Bell. On the Einstein Podolsky Rosen paradox. Physics, 1:195–200, 1964.

Paul Benioff. The computer as a physical system: A microscopic quantum mechanical Hamiltonian
model of computers as represented by Turing machines. Journal of Statistical Physics, 22(5):
563–591, May 1980.

Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models (extended abstract).
In Leszek Pacholski and Jerzy Tiuryn, editors, Computer Science Logic, Eighth International
Workshop, CSL’94, Selected Papers, volume 933 of Lecture Notes in Computer Science, pages
121–135, Kazimierz, Poland, September 1994. European Association for Computer Science Logic,
Springer Verlag.

Nick Benton and Philip Wadler. Linear logic, monads and the lambda calculus. In Proceedings of the
11th Symposium on Logic in Computer Science, LICS’96, pages 420–431, New Brunswick, New
Jersey, US., July 1996. IEEE, IEEE Computer Society Press.

201

BIBLIOGRAPHY 202

Nick Benton, Gavin Bierman, Martin Hyland, and Valeria C. V. de Paiva. Linear lambda-calculus
and categorical models revisited. In Computer Science Logic, Sixth International Workshop,
CSL’92, Selected Papers, volume 702 of Lecture Notes in Computer Science, San Miniato, Italy,
September 1992. European Association for Computer Science Logic, Springer Verlag.

Nick Benton, Gavin Bierman, Valeria C. V. de Paiva, and Martin Hyland. A term calculus for
intuitionistic linear logic. In Marc Bezem and Jan Friso Groote, editors, Proceedings of the Inter-
national Conference on Typed Lambda Calculi and Applications, TLCA’93, volume 664 of Lecture
Notes in Computer Science, pages 75–90, Ultrech, Netherlands, March 1993. Springer Verlag.

Stefano Bettelli, Tommaso Calarco, and Luciano Serafini. Toward an architecture for quantum
programming. The European Physical Journal D - Atomic, Molecular and Optical Physics, 25(2):
181–200, August 2003. Also found on arXiv:cs.PL/0103009.

Gavin Bierman. On Intuitionistic Linear Logic. PhD thesis, Computer Science department, Cam-
bridge University, England, UK., December 1993. Available as Technical Report 346, August
1994.

Gavin Bierman. What is a categorical model of intuitionistic linear logic. In Mariangiola Dezani-
Ciancaglini and Gordon D. Plotkin, editors, Proceedings of the Second International Conference
on Typed Lambda Calculi and Applications, TLCA’95, volume 902 of Lecture Notes in Computer
Science, pages 78–93, Edinburgh, Scotland, UK., April 1995. Springer Verlag.

Olivier Bournez and Mathieu Hoyrup. Rewriting logic and probabilities. In 14th International
Conference on Rewriting Techniques and Applications, pages 61–75, Valencia, Spain, june 2003.

Val Breazu-Tannen, Thierry Coquand, Carl A. Gunter, and Andre Scedrov. Inheritance and explicit
coercion. In Proceedings of the Fourth Symposium on Logic in Computer Science, LICS’89 IEE
(1989), pages 112–129.

Hans J. Briegel and Robert Raussendorf. Computational model for the one-way quantum computer:
Concepts and summary. To be found on arXiv: quant-ph/0207183, July 2002.

Man-Duen Choi. Completely positive linear maps on complex matrices. Linear Algebra and its
Applications, 10(3):285–290, June 1975.

Alonzo Church. An unsolvable problem of elementary number theory. American Journal of Mathe-
matics, 58(2):345–363, 1936.

Bob Coecke. Quantum information-flow, concretely, abstractly. In Peter Selinger, editor, Proceedings
of the Second International Workshop on Quantum Programming Languages, volume 33 of TUCS
General Publication, pages 57–73, Turku, Finland, July 2004. TUCS.

Bob Coecke and Éric O. Paquette. POVMs and Naimark’s theorem without sums. In Peter Selinger,
editor, Preliminary Proceedings of the Fourth International Workshop on Quantum Programming
Languages, Oxford, UK., July 2006. To appear in ENTCS.

Bob Coecke and Dusko Pavlovic. Quantum measurements without sums. In Goong Chen,
Louis Kauffman, and Samuel J. Lomonaco, editors, Mathematics of Quantum Computation and
Quantum Technology, pages 559–592. Taylor and Francis CRC Press, 2007. Also arXiv:quant-
ph/0608035.

Vincent Danos and Russ S. Harmer. Probabilistic game semantics. ACM Transactional on Compu-
tational Logic, 3(3):359–382, July 2002.

BIBLIOGRAPHY 203

Vincent Danos, Elham Kashefi, and Prakash Panangaden. The measurement calculus. Journal of
the ACM, 54(2), 2007.

David Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer.
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 400
(1818):97–117, July 1985.

David Deutsch. Quantum computational networks. Proceedings of the Royal Society of London.
Series A, Mathematical and Physical Sciences, 425(1868):73–90, 1989.

David S. Dummit and Richard M. Foote. Abstract Algebra. John Wiley and Sons, second edition,
1999. ISBN 0-471-36857-1.

Samuel Eilenberg and Gregory M. Kelly. Closed categories. In Samuel Eilenberg, David K. Harrison,
Saunders Mac Lane, and Helmut Röhrl, editors, Proceedings of the Conference on Categorical
Algebra, La Jolla 1965, pages 421–562, University of California, San Diego, California, US., June
1965. Springer Verlag.

Albert Einstein, Boris Podolsky, and Nathan Rosen. Can quantum-mechanical description of physical
reality be considered complete? Phys. Rev., 47(10):777–780, May 1935.

Andrzej Filinski. Normalization by evaluation for the computational lambda-calculus. In Samson
Abramsky, editor, Proceedings of the Fifth International Conference on Typed Lambda Calculi
and Applications, TLCA’01, volume 2044 of Lecture Notes in Computer Science, pages 151–165,
Krakow, Poland, May 2001. Springer Verlag.

Simon J. Gay. Quantum programming languages: Survey and bibliography. Mathematical Structures
in Computer Science, 16:581–600, 2006.

Simon J. Gay and Rajagopal Nagarajan. Communicating quantum processes. In Proceedings of
the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
145–157, Long Beach, California, US., January 2005. ACM, ACM Press. Preliminary version in
Selinger (2004a); also arXiv:quant-ph/0409052.

Jean-Yves Girard. Between logic and quantic: a tract. In Thomas Ehrhard, Jean-Yves Girard,
Paul Ruet, and Philip Scott, editors, Linear Logic in Computer Science, volume 316 of London
Mathematical Society Lecture Note Series, chapter 10. Cambridge, UK., 2004.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.

Jean-Yves Girard, editor. La Machine de Turing, volume 131 of Points Sciences. Editions du Seuil,
1995. Contains (Turing, 1936) and (Turing, 1950) in integrality, with comments.

Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, volume 7 of Cambridge Tracts
In Theoretical Computer Science. Cambridge University Press, 1990.

Martin Hyland and Andrea Schalk. Glueing and orthogonality for models of linear logic. Theoretical
Computer Science, 294(1–2):183–231, February 2003.

Proceedings of the Fourth Symposium on Logic in Computer Science, LICS’89, Pacific Grove, Cali-
fornia, US., June 1989. IEEE, IEEE Computer Society Press.

Gregory M. Kelly and Miguel L. Laplaza. Coherence for compact closed categorie. Journal of Pure
and Applied Algebra, 19:193–213, December 1980.

BIBLIOGRAPHY 204

Stephen C. Kleene. A theory of positive integers in formal logic, part I. American Journal of
Mathematics, 57(1):153–173, January 1935a.

Stephen C. Kleene. A theory of positive integers in formal logic, part II. American Journal of
Mathematics, 57(2):219–244, April 1935b.

Emanuel H. Knill. Conventions for quantum pseudocode. Technical Report LAUR-96-2724, Los
Alamos National Laboratory, Los Alamos, New Mexico, US., 1996.

Yves Lafont. The linear abstract machine. Theoretical Computer Science, 59:157–180, 1988a.

Yves Lafont. Logiques, Catégories et Machines. PhD thesis, Université Paris 7, 1988b.

Marie Lalire and Philippe Jorrand. A process algebraic approach to concurrent and distributed com-
putation: operational semantics. In Peter Selinger, editor, Proceedings of the Second International
Workshop on Quantum Programming Languages, volume 33 of TUCS General Publication, pages
109–126, Turku, Finland, July 2004. TUCS.

Joachim Lambek and Philip Scott. Introduction to Higher Order Categorical Logic, volume 7 of
Cambridge studies in advanced mathematics. Cambridge University Press, 1989.

Serge Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer Verlag, third edition,
2002.

Serge Lang. Real and Functional Analysis, volume 142 of Graduate Texts in Mathematics. Springer
Verlag, third edition, 1993.

Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in
Mathematics. Springer Verlag, 1998.

Paola Maneggia. Models of Linear Polymorphisms. PhD thesis, University of Birmingham, 2004.

Ernest G. Manes. Algebraic Theories, volume 26 of Graduate Texts in Mathematics. Springer Verlag,
1976.

Paul-André Melliès. Categorical models of linear logic revisited. Preprint, 2002.

Eugenio Moggi. Computational lambda-calculus and monads. Technical Report ECS-LFCS-88-66,
Laboratory for Foundation of Computer Sciences, Edinburgh University, Scotland, UK., 1988.

Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of the Fourth Sympo-
sium on Logic in Computer Science, LICS’89 IEE (1989), pages 14–23.

Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1):55–92,
July 1991.

Peter Naur et al. Report on the algorithmic language ALGOL 60. Communications of the ACM, 3
(5):299–314, May 1960.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 2002.

Harumichi Nishimura and Masanao Ozawa. Computational complexity of uniform quantum circuit
families and quantum turing machines. Theoretical Computer Science, 276(1–2):147–181, April
2002.

BIBLIOGRAPHY 205

Atsushi Ohori. A Curry-Howard isomorphism for compilation and program execution. In Jean-
Yves Girard, editor, Proceedings of the Fourth International Conference on Typed Lambda Calculi
and Applications, TLCA’99, volume 1581 of Lecture Notes in Computer Science, pages 280–294,
L’Aquilla, Italy, April 1999. Springer Verlag.

Bernhard Ömer. Quantum programming in QCL. Master’s thesis, Institute of Information Systems,
Technical University of Vienna, 2000.

Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

John Power and Hiroshi Watanabe. Combining a monad and a comonad. Theoretical Computer
Science, 280(1–2):137–162, 2002.

John Preskill. Lecture notes for quantum computation. Available1 online, 1999.

Robert Raussendorf and Hans J. Briegel. A one-way quantum computer. Phys. Rev. Lett., 86(22):
5188–5191, 2001.

Jeff W. Sanders and Paolo Zuliani. Quantum programming. In Roland Backhouse and Jose N.
Oliveira, editors, Proceedings of the Fifth International Conference on Mathematics of Program
Construction, volume 1837 of Lecture Notes in Computer Science, pages 80–99, Ponte de Lima,
Portugal, July 2000. Springer Verlag.

Andrea Schalk. What is a model for linear logic. Unpublished manuscript, 2004.

Robert A.G. Seely. Linear logic, *-autonomous categories and cofree coalgebras. In John W. Gray
and Andre Scedrov, editors, Categories in Computer Science and Logic (Boulder, CO, 1987),
volume 92 of Contemporary Mathematics, pages 371–382. Amer. Math. Soc., 1989.

Peter Selinger, editor. Proceedings of the Second International Workshop on Quantum Programming
Languages, volume 33 of TUCS General Publication, Turku, Finland, July 2004a. TUCS.

Peter Selinger. Control categories and duality: on the categorical semantics of the lambda-mu
calculus. Mathematical Structures in Computer Science, 11(2):207–260, 2001.

Peter Selinger. Towards a quantum programming language. Mathematical Structures in Computer
Science, 14(4):527–586, August 2004b.

Peter Selinger. Towards a semantics for higher-order quantum computation. In Peter Selinger,
editor, Proceedings of the Second International Workshop on Quantum Programming Languages,
volume 33 of TUCS General Publication, pages 127–143, Turku, Finland, July 2004c. TUCS.

Peter Selinger. Dagger compact closed categories and completely positive maps. In Peter Selinger,
editor, Proceedings of the Third International Workshop on Quantum Programming Languages,
Chicago, Illinois, US., July 2005.

Peter Selinger and Benôıt Valiron. A lambda calculus for quantum computation with classical
control. Mathematical Structures in Computer Science, 16:527–552, 2006a.

Peter Selinger and Benôıt Valiron. A lambda calculus for quantum computation with classical con-
trol. In Pawel Urzyczyn, editor, Proceedings of the Seventh International Conference on Typed
Lambda Calculi and Applications, TLCA’05, volume 3461 of Lecture Notes in Computer Sci-
ence, pages 354–368, Nara, Japan, April 2005. Springer Verlag. Journal version appeared in
(Selinger and Valiron, 2006a).

1http://www.theory.caltech.edu/people/preskill/ph229/

BIBLIOGRAPHY 206

Peter Selinger and Benôıt Valiron. On a fully abstract model for a quantum linear functional
language. In Peter Selinger, editor, Preliminary Proceedings of the Fourth International Workshop
on Quantum Programming Languages, pages 103–115, Oxford, UK., July 2006b. To appear in
ENTCS. Available2 online.

Peter Selinger and Benôıt Valiron. Linear-non-linear model for a computational call-by-value lambda
calculus. In Proceedings of the Eleventh International Conference on Foundations of Software
Science and Computation Structures (FOSSACS 2008), volume 4962 of Lecture Notes in Computer
Science, pages 81–96, Budapest, Hungaria, April 2008.

Koushik Sen, Nirman Kumar, Jose Meseguer, and Gul Agha. Probabilistic rewrite theories: Unifying
models, logics and tools. Technical Report UIUCDCS-R-2003-2347, University of Illinois, 2003.

Peter W. Shor. Algorithms for quantum computation: Discrete log and factoring. In Proceedings of
the 35th Annual Symposium on Foundations of Computer Science, pages 124–134, Santa Fe, New
Mexico, US., November 1994. IEEE, IEEE Computer Society Press.

Paul Taylor. Practical Foundations of Mathematics, volume 59 of Cambridge studies in advanced
mathematics. Cambridge University Press, 1999.

Anne S. Troelstra. Lectures in Linear Logic, volume 29 of CSLI Lecture Notes. Center for the Study
of Language and Information, Stanford, California, US., 1992.

Alan M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Pro-
ceedings of the London Mathematical Society, Series 2, 42, 1936. Can be found integrally, and
commented, in (Girard, 1995).

Alan M. Turing. Computing machinery and intelligence. Journal of the Mind Association, 59(236):
433–460, 1950. Can be found integrally, and commented, in (Girard, 1995).

Benôıt Valiron. A functional programming language for quantum computation with classical control.
Master’s thesis, University of Ottawa, 2004a.

Benôıt Valiron. Quantum typing. In Peter Selinger, editor, Proceedings of the Second International
Workshop on Quantum Programming Languages, volume 33 of TUCS General Publication, Turku,
Finland, July 2004b. TUCS.

André van Tonder. Quantum computation, categorical semantics and linear logic. On arXiv: quant-
ph/0312174, 2003.

André van Tonder. A lambda calculus for quantum computation. SIAM Journal of Computing, 33
(5):1109–1135, 2004. available on arXiv as quant-ph/0307150.

Philip Wadler. There is no substitute for linear logic. Manuscript, presented at Mathematical
Foundations of Programming Semantics: Eighth International Workshop, Oxford, UK., 1992.

William K. Wootters and Wojciech H. Zurek. A single quantum cannot be cloned. Nature, 299:
802–803, October 1982.

2http://www.mathstat.dal.ca/∼selinger/qpl2006/proceedings.html

Index

ΥA
x⇓, 91

ΥA
x⇑, 91

adjunction, 8
composition, 9
left/right adjoint, 8
unit,counit, 8

alpha-equivalence, 42
arrow, 6
axiomatic equivalence, 45, 94, 123

Bσ, 37
basis along x,y,z, 23
Bell’s algorithm, 27
Bell’s inequalities, 27
Bloch sphere, 22, 27
BNF, 41
bound variable, 42, 55
bra, 23

Cλ, 128
call-by-name, 49, 57
call-by-value, 49, 57, 75
canonical first-order representation, 91
Cat, 7
categorical semantics, 174
category, 6

cartesian category, 10
cartesian closed, 47
equivalence of, 8
functor category, 8
linear, 53
linear-non-linear, 53
opposite category, 7
product category, 7
small,locally small, 6
trivial category, 6

characteristic matrix, 20, 38
Church-Rosser theorem, 43
Church-style, 45
classical object, 99, 100

classical objects, 37
co-Eilenberg-Moore category, 12
co-Kleisli category, 11
coalgebra, 12
coherence map, 14
commutation of diagrams, 8
commutative comonoid, 13
comonad, 11

idempotent, 100
coherence properties, 101

completely positive map, 20
completeness, 48, 199
composition, 6
computation

category of, 50
concurrent quantum computation, 34
consistency, 59
context, 43
contraction, 20, 39, 51
controlled gate, 24
controlled-not gate, 24
coproduct, 10

binary, 10
copying, 26, 99, 100
CPM, 37
Curry-Howard isomorphism, 46
Curry-style, 45

dagger category, 36
compact-closed, 36

degree of
a term, 161
a type, 161

denotation, 84, 85
denotational equivalence, 96
denotational semantics, 83
dense-coding algorithm, 30, 65
density matrix, 18
Deutsch Algorithm, 64
Deutsch algorithm, 31
diagonal structure, 14

207

INDEX 208

Dirac convention, 23
dummy variable, 115

Einstein locality criterion, 27
entanglement, 26
equational logic, 123
erasure operation, 110
error state, 59
evaluation strategy, 56
exchange gate, 24

faithful, 7
fixed point, 76
free coalgebra, 12
free variable, 42, 55, 71
full, 7
full abstraction, 96
full embedding, 7
fullness, 89
functional, 18
functor, 7

diagonal functor, 7
identity functor, 7
terminal functor, 7

H, 24
Hadamard gate, 24
height of a term, 160
hermitian form, 17
hidden variable theory, 27
Hilbert space, 18
homset, 6

identity, 6
induced tensor, 16
initial object, 9
intermediate neutral value, 153
interpretation, 174
intuitionistic Linear Logic, 51
intuitionistic logic, 46
isomorphism, 6

ket, 23
Kleisli category, 10
Kleisli exponential, 50
Kleisli triple, 10
Kraus Representation Theorem, 20, 39

lambda calculus, 41
lambda-term, 54, 70, 110

closed, 42

combinator, 42
indexed, 110
open, 42
operator, 42
variables, 41

length, 79
linear category, 51
linear category for duplication, 107, 147
linear exponential comonad, 52
linear lambda calculus, 70
linear logic, 51
Löwner order, 20, 38

map, 6
measure of a term, 156
measurement operator, 39
measurements, 23
mixed state, 26
mixed strategy, 57
monad, 10

commutative strong, 50
computational, 50
strong, 49

monoidal category, 13
strict, 13
symmetric, 13

monoidal comonad, 16
symmetric, 16

monoidal functor, 14
lax, symmetric, strong, 14

morphism, 6

Naimark Theorem, 21, 37
natural isomorphism, 7
natural transformation, 7

composition, 8
identity, 8
monoidal, 16

NC , 24
neutral term, 149
no-cloning, 26
norm, 17

induced norm, 18
normal form, 43
normalization, 79

Theorem, 81
normed vector space, 18
not gate, 24
i-th number of a term, 163

objects, 6

INDEX 209

observable, 23
operational context, 95

formal, 95
typed, 95

operational equivalence, 96
operational semantics, 75
operator, 18

adjoint, 18
hermitian, 18
positive, 18
self adjoint, 18

partial trace, 21, 39
Pauli matrices, 21
phase-shift gate, 24
Φ, 38
placeholder, 110
positive definite, 17
positive map, 19
probabilistic reduction system, 58
product, 9

binary, 10
product category, 7
program, 62
progress, 45, 63, 78

Q, 38
QML, 33
QRAM model, 35
quantum array, 56
quantum bit, 23
quantum circuit, 25, 32
quantum closure, 56

closed, 62
well-typed, 62

quantum computation, 17
measurement based, 34
models of, 32

quantum flow-chart language, 37
quantum Turing machine, 33
quantum value state, 59
qubit, 23

ray, 21
reachability, 58
reduction rules, 43

β-reduction, 43
η-reduction, 43

reduction strategy, 49
rewrite system

number one, 153
number two, 158

safety properties, 62, 77
scalar product, 17
sesquilinear form, 17
Set, 6
side effect, 48
signature, 37
§-size, 91
small step semantics, 75
Solovay-Kitaev Theorem, 24
soundness, 48, 89, 96, 188
Spectral Theorem, 18
subject reduction, 44, 63, 77
substitution, 43, 55, 72, 118
substitution Lemma, 44, 62, 73, 86, 120
subtyping relation, 61, 100
superoperator, 20, 38

T -exponential, 50
teleportation algorithm, 28, 64
tensor product of vector spaces, 19
tensorial strength, 49
terminal object, 9
trkn, 21
trn, 21
trace characteristic matrix tuple, 39
type casting, 116
type inference algorithm, 63
type system, 44, 60, 70, 109
typing context, 44, 111
typing derivation, 44
typing judgement, 44, 61, 111

valid, 44
typing rules, 61, 111
typing tree, 44

UC , 24
unitary, 18
unitary gates, 24

value, 59
category of, 50

van Tonder’s lambda calculus, 33

weakening, 51

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Notions of Category Theory
	Categories and Functors
	Natural Transformations
	Adjoint Functors
	Products and Coproducts
	Monads
	Comonads
	Symmetric Monoidal Categories and Comonoids
	Monoidal Categories
	Commutative Comonoids

	Monoidal Comonads and Coalgebras

	Quantum Computation
	Mathematical Formalism
	Generalities on Finite Dimensional Hilbert Spaces
	Tensor Products of Hilbert Spaces
	Completely Positive Maps
	Superoperators
	The 2-Dimensional Hilbert Space

	Quantum Foundations
	Quantum Bits
	Operations
	Mixed States

	Quantum Effects
	No Cloning
	Entanglement
	Bell's Inequalities

	Some Algorithms and Uses of Quantum Effects
	Teleportation
	Dense Coding
	The Deutsch Algorithm

	A Tour in Existing Models of Quantum Computation
	The Various Paradigms
	Unitary Gates as Computation.
	Concurrent Quantum Computation
	Measurement-Based Quantum Computation
	The QRAM Model

	Formalism of Hilbert Spaces
	Dagger Compact-Closed Categories
	Classical Objects

	A Flow-Chart Language
	The language
	The Category of Superoperators
	Interpretation of the Flow-Chart Language

	Extension to Higher-Order

	Lambda Calculus and Semantics of Higher-Order Computation
	Lambda Calculus
	The Language
	Free and Bound Variables
	Alpha-Equivalence
	Operational Meaning of Lambda Calculus
	Typed Lambda Calculus

	Proofs as Computations
	Intuitionistic Logic
	Curry-Howard Isomorphism

	Categorical Logic
	Lambda Calculus and Side Effects
	Pure Versus Impure Calculus.
	Reduction Strategies
	Towards a Semantics
	Computational Model for Call-By-Value

	Intuitionistic Linear Logic
	Linear Calculi and their Interpretations
	Earlier Models
	Bierman's Linear Category

	A Lambda Calculus for Quantum Computation
	The Language
	Operational Semantics
	Abstract Machine
	Evaluation Strategy
	Probabilistic Reduction Systems
	Reduction System

	Type System
	Types
	Typing Rules

	Properties of the Type System
	Safety Properties
	Type Inference Algorithm

	Examples of Algorithms
	The Deutsch Algorithm
	The Teleportation Procedure
	Type Derivation of the Teleportation Protocol
	Reduction of the Teleportation Term
	Reduction of the Superdense Coding Term

	Towards a Denotational Semantics

	The Linear Fragment
	A Linear Lambda Calculus for Quantum Computation
	Operational Semantics
	Small Step Semantics
	Safety Properties
	Normalization
	Quantum Context and Reduction
	Reduction to Values

	Denotational Semantics
	Modeling the Linear Quantum Lambda Calculus
	Fullness of the First-Order Fragment
	Fullness up to Scalar Multiple

	Equivalence Classes of Terms
	Axiomatic Equivalence
	Operational Context
	Operational Equivalence
	Denotational Equivalence

	Soundness and Full Abstraction
	Proof of the Soundness Theorem
	Full Abstraction: Preliminary Lemmas
	Proof of the Full Abstraction Theorem

	Structure of the Linear-Non-Linear Fragment
	Computations and Values
	Duplicability Versus Non-Duplicability
	Computations as Proofs

	Structure of the Exponential
	Idempotency
	Coherence Property for Idempotent Comonads
	Duplicable Pairs and Pairs of Duplicable Elements

	Linear Category for Duplication

	A Computational Lambda Calculus for Duplication
	An Indexed Lambda Calculus
	Type System
	Terms
	Typing Judgements
	Type Casting and Substitution Lemma

	Equational Logic of Typed Terms
	The Category of Values
	Monoidal Structure
	Monadic Structure
	Comonadic Structure
	The Category of Values is a Linear Category for Duplication

	Proof of Theorem 9.2.7
	A Handy Tool: Neutral Terms
	Term Rewriting System Number One
	Term Rewriting System Number Two
	The Rewriting System
	Height of Terms
	Degree of Terms
	Last Notion of Measure: Number of a Term
	Putting Everything Together

	Proof of Theorem 9.2.7

	Categorical Semantics
	Denotational Semantics
	Interpretation of the Type System
	Interpretation of the Language

	Soundness of the Denotation
	Completeness
	Towards a Denotational Model

	Bibliography
	Index

