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Abstract

This work takes place in the framework of Knowledge Discovery in Databases (KDD), often called
”Data Mining”. This domain is both a main research topic and an application field in companies.
KDD aims at discovering previously unknown and useful knowledge in large databases. In the last
decade many researches have been published about association rules, which are frequently used in
data mining. Association rules, which are implicative tendencies in data, have the advantage to
be an unsupervised model. But, in counter part, they often deliver a large number of rules. As
a consequence, a postprocessing task is required by the user to help him understand the results.
One way to reduce the number of rules - to validate or to select the most interesting ones - is to
use interestingness measures adapted to both his/her goals and the dataset studied. Selecting the
right interestingness measures is an open problem in KDD. A lot of measures have been proposed to
extract the knowledge from large databases and many authors have introduced the interestingness
properties for selecting a suitable measure for a given application. Some measures are adequate for
some applications but the others are not.

In our thesis, we propose to study the set of interestingness measure available in the literature,
in order to evaluate their behavior according to the nature of data and the preferences of the user.
The final objective is to guide the user’s choice towards the measures best adapted to its needs and
in fine to select the most interesting rules.

For this purpose, we propose a new approach implemented in a new tool, ARQAT (Association
Rule Quality Analysis Tool), in order to facilitate the analysis of the behavior about 40 interest-
ingness measures. In addition to elementary statistics, the tool allows a thorough analysis of the
correlations between measures using correlation graphs based on the coefficients suggested by Pear-
son, Spearman and Kendall. These graphs are also used to identify the clusters of similar measures.

Moreover, we proposed a series of comparative studies on the correlations between interestingness
measures on several datasets. We discovered a set of correlations not very sensitive to the nature of
the data used, and which we called stable correlations.

Finally, 14 graphical and complementary views structured on 5 levels of analysis: ruleset anal-
ysis, correlation and clustering analysis, most interesting rules analysis, sensitivity analysis, and
comparative analysis are illustrated in order to show the interest of both the exploratory approach
and the use of complementary views.

Keywords: Knowledge Discovery in Databases (KDD), interestingness measures, postprocessing of
association rules, clustering, correlation graph, stability analysis.
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Chapter 1

Introduction

This work takes place in the framework of knowledge discovery in databases (KDD), often called data
mining. In the context of KDD, the extraction of rules in forms of association rules is a technique
that is used frequently. The technique has the advantages to offer a simple model and unsupervised
algorithms but it delivers a huge number of rules. So it is necessary to implement a postprocessing
step to help the user to reduce the number of rules discovered.

One of the most attractive area in the knowledge discovery research is the automatic analysis of
changes and deviation [PSM94] or the development of good measures of interestingness of discovered
patterns [ST96]. As the number of discovered rules increases, end-users, such as data analysts and
decision makers, are frequently confronted with a major challenge: how to validate and select the
most interesting ones of those rules. More precisely, we are interested in the postprocessing of
association rules with a set of interestingness measures. The main goal of our work relies on studying
the behavior – theoretical and experiment – of interestingness measures for association rules.

1.1 The KDD process

Knowledge Discovery in Databases (KDD) is a research framework first introduced by Frawley et
al. [FPSM91]. A general definition of KDD is given in [FPSS96]: ”KDD is the nontrivial process
of identifying valid, novel, potentially useful, and ultimately understandable patterns in data”.
The KDD process is well examined in the literature [BA96] [FPSS96] [HMS01]. Interaction and
iteration in many steps with user’s decisions are the principal features of the process. The KDD
process is illustrated in Fig. 1.1 [FPSS96]. The user interacts with the process by making decisions.
The process operates on the following basic steps: (i) identifying the goal from the user’s point
of view – based on the relevant knowledge about the domain –, (ii) creating a target data, (iii)
data preprocessing, (iv) data reduction and projection, (v) matching the goals of the KDD process,
(vi) exploratory analysis, (vii) data mining, (viii) interpreting mined patterns, (ix) acting on the
discovered knowledge. These steps can be divided into three tasks: the preprocessing of data
(steps i → vi), the mining of data (steps vii) and the postprocessing of data (steps viii → ix).
The principal notions of the KDD process can be found in [KZ96].

The domain knowledge or background knowledge is the supplementary knowledge on the form,
the data content, the data domain, the special situations and the process goal. The domain knowl-
edge helps the process to focus on the research content. Most of the knowledge comes from the
domain expert. The basic knowledge contains the information on the knowledge that is already

1
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Figure 1.1: The steps in a KDD process.

saved in the system. A dictionary1, a taxonomy, or a constraint of domain knowledge is an example
of this kind of knowledge [KZ02]. The structures such as decision tree or rules are used frequently.
The procedures to extract the knowledge from data are called the discovery algorithms. Contingency
tables, subgroup patterns, rules, decision trees, functional relations, clusters, taxonomies and con-
cept hierarchies, probabilistic, causal networks, and neural networks are some forms of knowledge
(i.e. pattern) [KZ02].

1.1.1 KDD system

A system implementing the steps of the KDD process is considered as a Knowledge Discovery System
(KDS). It finds the knowledge that it has not before implicitly in its algorithms or explicitly in its
domain knowledge. In this case, a knowledge (i.e. interesting and utility) is a relation or a pattern
in the data [FPSM91]. A KDS includes a collection of components to identify or to extract the new
patterns from the real data [MCPS93]. Interest and utility are considered as two important aspects.

The components in a KDS can differ from each others but we can determine some principle
functions such as the control, the data interface, the focus, the pattern extraction, the evaluation
and the knowledge base. The control function manages the user’s demands and the parameters of
other components. The data interface creates the questions on the data and then treats them. The
focus determines what portion of the data to analyze. The pattern extraction collects the algorithms
to extract the patterns. The evaluation evaluates the interests and utilities of extracted patterns.
The knowledge base stores the specific information about the domain.

1.1.2 Who is the user?

Application is the final goal of any KDS. This application is used in a society, a company, etc. to
supply the recommended analysis and actions. Its users can be a commercial person to see the
important events in the business [BA96] (e.g. a decider, a decision-maker, a manager). A data
analyst searches exploratory the basic tendencies or the patterns in a domain can become a user.

1.1.3 Postprocessing of association rules

In the framework of data mining [FPSS96], association rules [AIS93a] are a key tool aiming at dis-
covering interesting implicative patterns in data. Since the precursor works about finding interesting
patterns [PS91] [AIS93b] [AS94] in knowledge discovery in databases, the validation of association
rules [AIS93a] [AMS+96] still remains a research challenge.

1A dictionary contains the relations between items and values.
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Association rules

Association rule is one of the most important forms to represent the discovered knowledge in the
mining task [AIS93a] [AS94] [AMS+96]. The first representation is of the form X1∧X2∧ ...Xk → Y1

in which the antecedent is composed of many elements and the consequence is of only one element.
Each element in the antecedent or consequent represents an item in a dataset. The transactions
containing the bought items of the clients (e.g. in a supermarket) are often used as the datasets to
analyze. The standard form X1∧X2∧ ...∧Xk → Y1∧Y2∧ ...∧Yl is well developed with the Apriori
algorithm [AS94] [AMS+96]. In this form, both of the two parts of a rule (i.e. the antecedent and
the consequence) are composed with many items (i.e. a set of items or itemset), taking an important
role in KDD.

Measures of interestingness

To evaluate the patterns issued from the second task (the mining task) [Sec. 1.1], the notion of
interestingness is introduced [PSM94]. The patterns are transformed in value by interestingness
measures. The interestingness value of a pattern can be determined explicitly or implicitly in a
KDS. The patterns may have different ranks because their ranks depend strongly on the choice of
interestingness measure. The interestingness measures are classified into two categories [ST96]: sub-
jective measures and objective measures. The subjective measures rely on the goals, the knowledge,
and the belief of the user [PT98] [LHML99]. The objective measures are statistical indexes [AIS93a]
[BA99] [BGGB05a] [BGGB05b]. The properties of the objective measures are briefly studied in
[PS91] [MM95] [BA99] [HH01] [TKS04] [GCB+04] [Fre99] [Gui04] [VLL04].

In the literature, many surveys deal with the interestingness measures according to two different
aspects : the definition of a set of principles to select a suitable interestingness measure, and their
comparison with theoretic criteria or experiments on data.

In the perspective to establish the principles of a best interestingness measure, Piatetsky-Shapiro
[PS91] presented a new interestingness measure, called Rule-Interest (RI), and proposed three fun-
damental principles for a measure on a rule X → Y : RI = 0 when X and Y are independent, RI
monotonically increases with X ∧ Y , RI monotonically decreases with X or Y . Hilderman and
Hamilton [HH01] proposed five principles : minimum value, maximum value, skewness, permutation
invariance, transfer. Tan et al. [TKS02] [TKS04] defined five interestingness principles : symme-
try under variable permutation, row/column scaling invariance, anti-symmetry under row/column
permutation, inversion invariance, null invariance. Freitas [Fre99] proposed an ”attribute surpris-
ing” principle. Gras et al. [GCB+04] [Gui04] proposed a set of ten criteria to design a good
interestingness measure.

Among these reviews, some examine the comparison of the interestingness measures from their
classification.

- Bayardo and Agrawal [BA99] concluded that the best rules according to all the interestingness
measures must reside along a support/confidence border.

- Kononenco [Kon95] analyzed the biases of eleven measures for estimating the quality of multi-
valued attributes and showed that the values of information gain, j-measure, gini-index, and
relevance tend to linearly increase with the number of values of an attribute.

- Gavrilov et al. [GAIM00] studied the similarity between the measures for classifying them.

- Hilderman and Hamilton [HH01] proposed five principles for ranking summaries generated from
databases by using sixteen diversity measures and illustrate that : (1) six measures satisfied
the five principles proposed, (2) nine remaining measures satisfied at least one principle.
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- By studying twenty-one measures, Tan et al. [TKS02] [TKS04] showed that none of the
measures is adapted with all the cases and that the correlation of measures increases when
support decreases.

- By using a method of multi-criteria decision-making aid integrating eight criteria, Vaillant et
al. [VLL04] [LMP+04] extracted a pre-order on twenty measures and identify four clusters of
measures.

- Carvalho et al. [CFE05] [CFE03] evaluated eleven objective interestingness measures in order
to rank them according to their effective interest for a decision maker.

- Choi et al. [CAK05] used an approach of multi-criteria decision-making to find the best
association rules.

- Blanchard et al. [BGGB05a] [BGGB05b] classified eighteen objective measures into four clus-
ters according to three criteria : independence, equilibrium, and descriptive or statistical
characteristics.

- Huynh et al. [HGB05b] proposed a clustering approach by correlation graph which allows to
identify eleven clusters on thirty-four interestingness measures.

Finally, two experimental tools are available : HERBS [VPL03] and ARQAT [HGB05a].

Postprocessing

Although the association rule model has the advantage of allowing an unsupervised extraction of rules
and of illustrating implicative tendency in data, it has the disadvantage of producing a prohibitive
number of rules. The final stage of the rule validation will let the user facing a main difficulty: how
he/she can extract the most interesting rules among the large amount of discovered rules.

It is necessary to help the user in his/her validation task by implementing a preliminary stage
of postprocessing of discovered rules. The postprocessing task aims at reducing the amount of rules
by preselecting a reduced number of rules potentially interesting for the user. This task must take
into account both his/her preferences and the data structure.

To solve this problem, five complementary postprocessing approaches are proposed in the liter-
ature: constraints, pruning, grouping, summarizing, and visualizing. The first approach considers
the whole set of rules as a database on which the user can extract the subsets of rules by requesting
some integrated constraints [BBJ00] [SVA97] [WHP06]. The second one allows a significant re-
duction by pruning the redundant or uninteresting rules [LGB04] [TKR+95] [BKGG03] [BGGB05a]
[BGGB05b]. The third one finds a special subset of rules that represents the underlying relationships
[LHM99] [LHH00]. The fourth one groups the rules having the same properties into a meta-rule (e.g.
a cover) that is more understandable [TKR+95] [DL98]. The last one uses graphical representations
to improve the readability of the results [BGB03b].

Since the introduction of support and confidence measures [AS94], many interestingness measures
have been proposed in the literature [BA99] [HH01] [TKS04]. This abundance of interestingness
measures leads to a second problem: how to help the user to choose the interestingness measures
that are the best adapted to its goals and its data, in order to detect the most interesting rules.

We proposed a data-analysis technique for calculating the most suitable objective interestingness
measures on a ruleset or a set of rulesets. For this purpose, some clustering techniques such as AHC
[KR90], PAM [KR90] or correlation graph [HGB06d] are used with the correlation values, in order
to partition a set of interestingness measures into kc clusters. The subset of representative measures
on the studied data is then constituted by the kc ”central of gravity” obtained.
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1.2 Postprocessing models

Together with the huge patterns discovered by the KDS at the mining step, there are many models
have been proposed to evaluate the discovered patterns [ST95] [LHML99] and to identify the most
interesting ones [ST96]. Fig. 1.2 [ST95] [LHML99] shows the four main models that are widely used
in the literature. In Fig. 1.2 (a), the patterns mined by the KDS are immediately considered as the
most interesting ones. In Fig. 1.2 (b), the uninteresting patterns are filtered out by an interestingness
filter. In Fig. 1.2 (c), the KDS interacts with an interestingness engine. The last model in Fig. 1.2
(d) [LHML99] uses a post-analysis component IAS (Interestingness Analysis System) to help the
user identify interesting patterns.

Figure 1.2: Postprocessing models.

The fist model (a) in these four main models is the simplest approach. The KDS outputs the
patterns directly to the user. The user can not interact with the KDS because the KDS works
independently. When the KDS delivers a considerable number of patterns, it is difficult to the user
to realize which ones are the interesting or uninteresting to learn about. The second model (b)
depends on the efficiency of the interestingness filter. A lot of number of uninteresting patterns can
be cut out by the interestingness filter but like the first model, no user interaction that are integrated
into the filter process. The third model (c) is more flexible than the two previous models (a) and
(b). It implements an interestingness engine to communicate with the KDS. The domain knowledge
can be used efficiently in this model and many users can interact separately or parallel to determine
his/her own interests. The fourth model (d) evaluates the patterns issued from the KDS by an
independent system. The system includes several tools to rank the patterns with user’s interactions.
One important feature of the last model is that it allows to use interestingness measures to examine
the patterns. Each tool can work independently.

1.3 Clustering techniques

Clustering aims at finding the similar elements in data and to group them into the same group or
cluster [KR90] [DHS01]. The number of cluster has to be predetermined [HBV01] [KR90]. The
notion of similarity can be understood according to the domain knowledge, the context or the user’s
point of view. The clustering process is used with no prior knowledge so it is also called unsupervised
leaning.

The clustering methods can be divided into 4 groups [JMF99] [HBV01] such as partitioning
clustering, hierarchical clustering, density-based clustering and grid-based clustering. Partitioning
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clustering and hierarchical clustering are two methods that are used frequently. The datasets can
be available in one of the following matrices [KR90]:

- an q × p attribute-value matrix. Columns are attributes and rows are the values of each
elements according to the corresponding attributes,

- an q × q dissimilarity matrix. In this matrix, the difference between each pair of attributes
are calculated. This value is considered as a dissimilarity value or a distance value. Noted
that d(i, j) = d(j, i) and d(i, i) = 0 where d(, ) is the dissimilarity or distance between any two
attributes i and j.

In the following, we will describe the two techniques that are used in our work.

1.3.1 Partitioning clustering

The elements in a dataset is divided into kc clusters. The number of clusters kc is given by the
user. How we can determine the ”best” partition with a value of kc is always an attractive prob-
lem [HBV01] [Sap90]. The best partition depends on the point of views of the user or it can be
determined automatically by a ”quality index”. Some methods in this clustering type are PAM (Par-
titioning Around Medoids) – more robust than the k-means [McQ67] –, CLARA (Clustering Large
Applications), CLARANS (Clustering Large Application Based on Randomized Search) [KR90].

1.3.2 Hierarchical clustering

The elements in a dataset is firstly grouped into small clusters. These small clusters are then merged
into bigger ones. The result is represented by a tree called dendrogram [KR90]. The method that uses
the small clusters to merge into bigger clusters is called agglomerative method (i.e. Agglomerative
Hierarchical Clustering – AHC). Inversely, the method that processes, from bigger cluster into smaller
cluster, is called divisive method.

1.4 Thesis contribution

In recent years, the problem of finding interestingness measures to evaluate association rules has
become an important issue in the postprocessing stage in KDD. Many interestingness measures
may be found in the literature, and many authors have discussed and compared interestingness
properties in order to improve the choice of the most suitable measures for a given application. As
interestingness depends both on the data structure and on the decision-maker’s goals, some measures
may be relevant in some context, but not in others. Therefore, it is necessary to design new contextual
approaches in order to help the decision-maker select the most suitable interestingness measures and
as a final goal, select the most interesting association rules.

In our thesis, we focus on the interestingness measures technique in the pruning approach, espe-
cially on the objective interestingness measures. Postprocessing of association rules with interest-
ingness measures is our main research. Our thesis contributions are:

• A dedicated ARQAT tool (Association Rule Quality Analysis Tool) for the postprocessing of
association rules [HGB05a]. ARQAT is used to study the specific behavior of a set of interest-
ingness measures in the context of specific datasets and in an exploratory analysis perspective.
More precisely, ARQAT is a toolbox designed to help a data-analyst to capture the most
suitable measures and as a final purpose, the most interesting rules within a specific ruleset.
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Similarly with the model (d) in Fig. 1.2, ARQAT tool has some strong features in comparison
with IAS tool: (i) allows ranking the discovered patterns with a set of interestingness mea-
sures, (ii) easily determines the most interesting patterns with complementary views, (iii) the
comparisons can be drawn on many datasets.

• A representative measure approach, especially with correlation graph (CG), agglom-
erative hierarchical clustering (AHC), and partitioning around medoids (PAM) techniques.
This approach reflects the postprocessing of association rules, implemented by the ARQAT
tool2. The approach is based on the analysis the dissimilarities computed from interestingness
measures on the data to find the most suitable measures.

• A comparative study on the stable clusters between interestingness measures. The result is
used to compare and discuss the behavior of 40 interestingness measures on two prototypical
and opposite datasets (i.e. a correlated one and a weakly correlated one) and on other two
real-life datasets. We focus on the discovery of the stable clusters obtained from the data
analyzed between these 40 measures, showing unexpected stabilities.

1.5 Thesis structure

The remaining of the document is structured in seven chapters as follows.
In the first chapter, the association rules discovery process is introduced. We start from the prob-

lem of basket market transactions to the association approach with binary representation. Finding
frequent itemsets as well as generating rules with anti-monotonicity property is also examined. We
classify the improvements from the Apriori algorithm into five principal groups: database pass,
computation, itemset compaction, search space and data type.

Chapter 3 gives an overview on the measures of interestingness with two types: subjective mea-
sures and objective measures. Two important aspects of the subjective measures such as actionability
and unexpectedness are introduced. In this chapter, we analyze an association rule X → Y objec-
tively by a function f(n, nX , nY , nXY ) with four parameters. We also conduct a detail survey on
several important properties of an objective measure studied in the literature. As a result, this sur-
vey gives us a classification of 40 objective measures. Some mathematical relations between these
objective measures are also given in this chapter.

Chapter 4 examines five principal approaches in the postprocessing step of association rules that
are well studied in the literature: constraints, pruning, summarization, grouping and visualizing.
We proposed our new technique representative measures as a pruning approach. This new technique
uses AHC, PAM or correlation graph as a means to achieve the most interesting rules.

Chapter 5 represents the ARQAT tool, a new tool for the postprocessing step of association rules
written in Java. The tool provides five principal tasks with 14 views. The tool is structured into
three analyzed phases: preprocessing, evaluation and display.

Chapter 6 analyzes some principal opposite types of rulesets: correlated vs weakly correlated,
real-life vs synthetic. To have a general analysis on these rulesets, we extracted a sample rulesets
from each original rulesets. The sample rulesets contains only the most interesting rules due to some
objective measures. We also introduce couple and multiple as two abstract types of rulesets. The
couple rulesets is used to evaluate the behaviors on objective measures on an original ruleset with its
sample ruleset. The multiple ruleset is used to evaluate on many rulesets. These two types of rulesets
are also named commonly as complement ruleset. This chapter gives some results on evaluating the

2Some other representations with AHC and PAM are illustrated with the R tool – http://www.r-project.org/.
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efficiency of the sample models, distributions of interestingness values, joint-distribution matrix,
correlation analysis, interesting rules analysis, and ranking of measures by sensitivity values.

Chapter 7 examines the stable clusters of measures between 40 objective measures on three well-
known correlation coefficients: Pearson, Spearman and Kendall. A comparative study on the stable
behaviors of measures in a rulesets over all these three coefficients is also evaluated.

Finally, chapter 8 gives a summarization of our thesis contribution on the postprocessing step
in a KDD process with association rules. We open some future research topics such as improving
the sample model, improving the cluster evaluation, hierarchy view, and the aggregated measures
by Choquet’s or Sugeno’s integral.



Chapter 2

Discovery of association rules

Discovering association rules between items in large databases is a frequent task in KDD. The
purpose of this task is to discover hidden relations between items of sale transactions. This later is
also known as the market basket database1. An example of such a relation might be that 90% of
customers that purchase bread and butter also purchase milk [AIS93a].

2.1 From the data ...

We consider a database of sale transactions in Tab. 2.1 as a basket data. Each record in this
database consists of items bought in a transaction. The problem is how we can find some interesting
(i.e. hidden) relations existing between the items in these transactions or some interesting rules that
a manager (a user, a decider or a decision-maker) who owns this database can take some valuable
decisions. Some rules derived from this database can be {Wine} → {Cheese} or {Bread, Chocolate}
→ {Milk}.

To facilitate the process of finding the hidden relations mentioned above, the database can be
normalized [AS94] [AMS+96]. For instance, the database in Tab. 2.1 is a normalized database
because all of its items in the four records are in lexicographic orders.

Tid Items

100 {Bread, Chocolate, Milk}
200 {Cheese, Chocolate, Wine}
300 {Bread, Cheese, Chocolate, Wine}
400 {Cheese, Wine}

Table 2.1: A normalized database of sale transactions.

Definition 2.1.1 (Normalized database [AS94] [AMS+96]). A database D is said normalized if

items in each record of D are kept sorted in their lexicographic order. Each database record is a
1In our work, the words database and dataset can be used interchangeable.

9
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transaction represented by a <Tid, item> pair. The transaction is determined by its transaction

identifier Tid.

2.2 ... To association approach

Association rules are rules of the form If X then Y with a percentage of trust (e.g., 2%, 5%, 90%,
...). The formal statement of the problem is given in [AMS+96]. Let I = {i1, i2, ..., im} be a set of
literals, called items. Let D be a set of transactions, where each transaction T is a set of items such
that T ⊆ I. Associated with each transaction is a unique identifer, called its TID. A set of items
X ⊂ I is called itemset. A transaction T is said contains X, if X ⊆ T . The approach presented in
this section is also known as the Apriori algorithm [AS94][AMS+96].

Definition 2.2.1 (Association rule). An association rule is an implication of the form X → Y ,

where X ⊂ I, Y ⊂ I, and X ∩ Y = ∅.
More precisely [AMS+96], I = {i1, i2, ..., im} is set of attributes over the binary domain {0, 1}.

A tuple T of the database D is represented by identifying the attributes with value 1. We also called
this approach is a binary association rule approach. An example of this transformation is given in
Tab. 2.2.

TID Bread Cheese Chocolate Milk Wine

100 1 0 1 1 0
200 0 1 1 0 1
300 1 1 1 0 1
400 0 1 0 0 1

Table 2.2: Binary representation of transactions.

Definition 2.2.2 (Support). The rule X → Y has support s in the transaction set D if s% of

transactions in D contain X ∪ Y .

Definition 2.2.3 (Confidence). The rule X → Y has confidence c if c% of transactions in D that

contain X also contain Y .

The rule X → Y holds in the transaction set D with confidence c and support s. It will be
retained when its support and confidence greater than the user-specified minimum support (minsup)
and minimum confidence (minconf ).

The process of discovering all association is performed via two steps [AIS93a] [AS94] [AMS+96]:
(i) finding all frequent itemsets with minsup and minconf (all others are infrequent itemsets), (ii)
generating rules with the frequent itemsets found.
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(a)

(b) Monotonicity (c) Anti-monotonicity

Figure 2.1: Lattice structure.

2.2.1 Monotonicity

A lattice structure is proposed to hold the search space containing all the possibly combinatory cases
between the items in the transaction set in the process of finding association rules. The use of this
lattice structure leads to an combinatorial explosion of itemsets in the search space 2n, including the
empty set, with n is the number of items. For example, for a search space of 5 items, the number of
search elements is 25 = 32. If we note the five items in Tab. 2.1 as A, B, C, D, and E for short, all
the combinations between the first four items in form of a lattice is represented in Fig. 2.1 (a).

To overcome the combinatory problem, the monotonicity (anti-monotonicity respectively) prop-
erty is used to prune unnecessary cases efficiently.

Definition 2.2.4 (Monotonicity/Anti-monotonicity). If a set X has a property t then all its sub-

sets/supersets also have the property t.

Reconsider the lattice constructed from four items {A, B, C, D} in Fig. 2.1 (a). If {A, B, C} are
in grey then all its subsets {AB, AC, BC, ABC} are in grey with the monotonicity property (see
Fig. 2.1 (b)). For the anti-monotonicity property (see Fig. 2.1 (c)), if {A, B} are in grey then all
its supersets {AB, AC, AD, BC, BD, ABC, ABD, ACD, BCD, ABCD} are also in grey.

2.2.2 Frequent itemsets

The itemsets that have transaction support above minsup are called frequent itemsets2. A k-itemset
is an itemset has itself k items. To discover frequent itemsets, multiple passes over the database are

2The term frequent itemset is also known as large or covering itemset in [AS94] [AMS+96]. Infrequent itemset is
called small itemsets.
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performed. Firstly, the support of each item is counted and the item type (frequent/infrequent) is
determined by using minsup value.

Candidate itemsets

In the next passes, the frequent itemsets discovered in the previous pass is held as a seed set to
generate new potentially frequent itemsets or candidate itemsets using the monotonicity property.
The support counts for these candidate itemsets are also determined during this process. Among
these candidate itemsets at the end of a database pass, those ones have the support count above the
minsup threshold are held, the others are cut by using the anti-monotonicity property. The process
will finish when no new frequent itemsets appear.

Algorithm

Let Lk be the set of frequent k-itemsets. Let Ck be the set of candidate k-itemsets. The algorithm
to find all frequent itemsets can be represented as follows [AMS+96].

Algorithm FindFrequentItemset

L1 = frequent 1-itemsets;
for (k = 2; Lk−1 6= ∅; k++) do begin

Ck = apriori-gen(Lk−1);
forall transactions t ∈ D do begin

Ct = subset(Ck, t);
forall candidates c ∈ Ct do

c.count++;
end;
Lk = c ∈ Ck|c.count ≥ minsup

end
return

⋃
k Lk

The apriori-gen function returns a superset of the set of all frequent (k − 1)-itemsets from the
previous pass Lk−1. It works in two steps: (i) joints Lk−1 with Lk−1 and (ii) prunes all itemsets
c ∈ Ck in which (k-1)-subset of c is not in Lk−1. For instance, let L3 be {ABC, ABD, ACD, ACE,
BCD}. The candidate C4 will be {ABCD, ACDE}. Because the itemset {ADE} is not in L3 so the
itemset {ACDE} will be deleted and only the itemset {ABCD} exists in C4. Fig. 2.2 illustrates a
complete example with three database passes for the transactions in Tab. 2.1.

2.2.3 Rule generation

The rule generated in this process has the form X → Y in which X and Y are two itemsets, |X| > 0,
|Y | > 0, support(X∪Y )

support(X) ≥ minconf [AS94] [AMS+96]. X and Y are called the antecedent and the
consequent of the rule X → Y respectively. Given a frequent itemset L, all the rules X → (L−X)
are outputted where X ⊆ L and the previous conditions are held. The RuleGeneration algorithm
creates firstly all the rules with one item in the consequent. The consequents of these rules are used
as a seed set (as the function apriori-gen in Sec. 2.2.2) to generate all the rules with two items in
the consequent and so on.



13

Database D
TID Items

100 A C D
200 B C E
300 A B C E
400 B E

Counting−−−−−−→

C1

Itemset Support

{A} 2
{B} 3
{C} 3
{D} 1
{E} 3

Pruning−−−−−→

L1

Itemset Support

{A} 2
{B} 3
{C} 3
{E} 3

C2

Itemset

{A B}
{A C}
{A E}
{B C}
{B E}
{C E}

Counting−−−−−−→

C2

Itemset Support

{A B} 1
{A C} 2
{A E} 1
{B C} 2
{B E} 3
{C E} 2

Pruning−−−−−→

L2

Itemset Support

{A C} 2
{B C} 2
{B E} 3
{C E} 2

C3

Itemset

{B C E}
Counting−−−−−−→

C3

Itemset Support

{B C E} 2
Pruning−−−−−→

L3

Itemset Support

{B C E} 2

Figure 2.2: An example of finding all frequent itemsets with three database passes.

A remark for the RuleGeneration algorithm can be drawn. If the rule X → Y are held then
all the rules X ∪ (Y − Y ′) → Y ′ are also held where Y ′ ⊆ Y . For example, if the rule AB → CD is
held, then the other rules such as ABC → D and ABD → C are also held. D in ABC → D and C
in ABD → C hold the role of Y ′ respectively.

2.3 Algorithm improvement

The volume of association rules tends to be huge and the time execution to be expensive. To improve
the efficiency of finding association rules, several strategies are proposed. We classify these strategies
into five subgroups: database pass, computation, itemset compaction, search space and data type.
Excellent surveys can be found in [CHY96] [ZB03] [TSK06] [CR06] [Zak99].

2.3.1 Database pass

The principal Apriori algorithm requires multiple passes over the database: for finding the candi-
dates of k-itemsets, k passes are executed (see Fig. 2.2). The approaches proposed in this strategy
aims at reducing a significance number of scans, performing efficiently in I/O times.

Partition

Partition [SON95] uses at most two passes on the database. It generates a set of all potentially
frequent itemsets in the first scan. The counters for each of the itemsets are set up, together with
their actual support is measured, in the second one.
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Algorithm RuleGeneration

forall large k-itemsets lk, k ≥ 2 do begin
H1 = {consequents of rules from lk with one item in the consequent}
call ap-genrules(lk, H1);

end

procedure ap-genrules(lk: large k-itemset, Hm: set of m-item consequents)
if (k < m + 1) then begin

Hm+1 = apriori-gen(Hm);
forall hm+1 ∈ Hm+1 do begin

conf = support(lk)/support(lk − hm+1);
if (conf ≥ minconf) then

output the rule (lk − hm+1 → hm+1)
with confidence = conf and support = support(lk)

else
delete hm+1 from Hm+1

end
call ap-genrules(lk, Hm+1);

end

The database in the first step is divided into a number of non-overlapping partitions. Each
partition is considered one at a time and all frequent itemsets for that partition are generated.
Then, these frequent itemsets are merged to generate a set of all potentially frequent itemsets. The
supports for these merged itemsets are generated and the frequent itemsets are identified in the
second step. Each partition is read into the memory only one time according to its appropriate size.

DIC

Dic [BMUT97] finds frequent itemsets with fewer database passes based on the idea of item reorder-
ing. By keeping the number of itemsets which are counted in any pass, the number of passes is then
reduced efficiently. It means that the support of an itemset can be counted whenever it may be
necessary to count instead of waiting until the end of the previous pass. For instance, Apriori can
produce 3 passes for counting 3-itemsets while Dic produces 1.5 passes. And in the first pass with
1-itemset, Dic can count some itemsets that are in 2-itemsets or 3-itemsets. Four possible states
(confirmed frequent, confirmed infrequent, suspected frequent, suspected infrequent) for an itemset
are used during the time that the itemsets are counted in one pass.

Sampling

Sampling [Toi96] can find association rules very efficiently in only one database pass and two passes
in the worst case. A random sample S is picked and used to find frequent itemsets with the concept
of negative border.

Let S be a set of itemsets. The border Bd(S) of S is defined as a set of itemsets such that all
subsets of Bd(S) are in S and none of the supersets of Bd(S) is in S [MT96]. The positive border
Bd+(S) (the negative border Bd−(S) respectively) contains the itemsets such that Bd+(S) = {x|x ∈
Bd(S), x ∈ S} (Bd−(S) = {x|x ∈ Bd(S), x 6∈ S} respectively). We have Bd(S) = Bd+(S)∪Bd−(S)
and Bd(S) can be very small even for large S. For instance, consider Fig. 2.1 (b) where S = {A,
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B, C, AB, AC, BC, ABC}. In S, only ABC has all its supersets are not in S so Bd+(S) = {ABC}.
We can see the same situation with the negative border when only D has all its subsets are in S
(e.g. {∅}) and D is not in S, so we have Bd−(S) = {D}. The border set of S can be established as
Bd(S) = Bd+(S) ∪Bd−(S) = {ABC} ∪ {D} = {D,ABC}.

2.3.2 Computation

To resolve the problem of expensive cost of time calculations, some approaches based on the parallel
and distributed techniques are proposed [AS96] [PCY95] [Zak99]. The task can be parallel with
the whole or partitioned database. The database can be distributed across the multiprocessors.
Overall, four techniques are introduced: (i) count distribution, (ii) data distribution, (iii) candidate
distribution, and (iv) rule distribution.

Assuming a shared-nothing architecture with n processors in which each processor has a private
memory and a private disk. The processors are connected by a communication network and can
communicate only by passing messages. Data is distributed on the disks attached to the processors
and the disk of each processor has approximately an equal number of transactions.

Count distribution

In this approach, the support counts for Lk in the pass k are distributed. Except the first pass
is special, from the second pass we have five tasks in each pass: (i) a processor Pi generates the
complete Ck taking as argument the frequent itemset Lk−1 of the pass k − 1. The same Ck will be
generated overall processors Pi because of the same Lk−1, (ii) the local support for each candidate
is counted with a pass from the processor Pi on its data Di, (iii) the global count for Ck are
determined by exchange with the local Ck counted by each processor P i, (iv) Lk is computed from
Ck in each processor P i, (v) the continuation is depended on each processor P i independently. The
most important feature of the count distribution is that no data are exchanged between processors
except the counts.

Data distribution

This approach is used to better exploit the total memory in a system with n processors. The purpose
is to count in a single pass a candidate set that would require n passes in the count distribution
approach. So that every processor must broadcast its local data to all other processors in every pass.
On a machine with very fast communication, this approach will work viable.

Candidate distribution

Each processor in this approach may proceed independently with both the data and the candidates
partitioned. In a pass k, the algorithm divides the frequent itemset Lk−1 between processors in such
a way that a processor P i can generate a unique Ci

m (m ≥ k) independent of all other processors
(Ci

m ∩ Cj
m = ∅, i 6= j). Because the data is partitioned so that a processor can count candidates in

Ci
m independent of all other processors.
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Rule distribution

The above three techniques are about generating frequent itemsets. This technique is to generate
rule by parallel implementation. By partitioning the set of all frequent itemsets into each processors,
then the proportions of rules are generated conformably.

2.3.3 Frequent itemset compaction

Because of the combinatory cases between items in a set of transactions, the problem of compacting
a lattice structure is introduced. Two useful representations of the frequent itemsets are frequent
closed itemsets and maximal frequent itemsets. We have the following relation between these three
sets: {maximal frequent itemsets} ⊆ {frequent closed itemsets} ⊆ {frequent itemsets}.

Frequent closed itemsets

A closed itemset is a maximal set of items common to a restricted set of transactions [PBTL99]. It
will be called a frequent closed itemset if its support count is greater or equal to minsup threshold.
For instance, the database D in Tab. 2.1 or in Fig. 2.2 has the itemset BCE is a closed itemset
because it satisfies the closed condition with two transactions TID=200 and TID=300. It is also a
frequent closed itemset when its support count is 2 ≥ minsup. The useful meaning of this technique
is that 50% of customers purchase at most three items Cheese, Chocolate, and Wine. The total set
of frequent closed itemsets for the transactions in the database D is {AC, BE, C, BCE}.

The closed itemset lattice is often much smaller than the itemset lattice. By using a closure
mechanism based on the Galois connection and two properties that (i) the support of an itemset T
is equal to the support of its closure and (ii) the set of maximal frequent itemsets3 is identical to
the set of maximal frequent closed itemsets. With a reduced set of frequent closed itemsets instead
of a larger frequent itemsets then the set of association rules can be reduced without the loss of
information.

Maximal frequent itemset

A maximal frequent itemset [BCF+05] is a frequent itemset and all its superset are infrequent. This
technique is especially efficient when the itemsets are very long (more than 15 to 20 items). By
using a cut through the lattice structures so all itemsets above the cut are frequent itemsets, and
all their subsets below are infrequent. All the combinations above the cut (i.e. frequent itemsets)
form the positive border when all the combinations below the cut (i.e. infrequent itemsets) form the
negative border.

In Fig. 2.1 (b), if we consider all the nodes in grey are frequent and not in grey are infrequent,
then only one itemset ABC is a maximal frequent itemsets because all its supersets are infrequent.

2.3.4 Search space

Due to the explosive combination of the candidate itemsets while searching the frequent itemsets,
many authors have proposed some efficient search space techniques in which we can ignore the step
of finding candidate itemsets and we can go directly to find the frequent itemsets. Most of them

3The meaning of maximal set in this case is used in a normal way. This is not understandable like the next
approach with maximal frequent itemset.
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are based on tree structures. We will present such three attractive structures: (i) FP-tree, (ii)
lexicographic tree, and (iii) T-tree and P-tree.

FP-tree

FP-tree (Frequent-Pattern Tree) [HPYM04] is a tree structure for mining frequent itemsets efficiently
without candidate generation. It is defined as: (i) one root labeled as ”null”, a set of item-prefix
subtrees as the children of the root, and a frequent-item-header table (ii) each node of the item-prefix
subtree consists of three fields: item-name, count, and node-link where item-name registers which
item this node represents, count registers the number of transactions represented by the portion
of the part reaching this node, and node-link links to the next node in the FP-tree carrying the
same item-name, or null if there is none (iii) each entry in the frequent-item-header consists of two
fields: (iii-1) item-name and (iii-2) head of node-link (a pointer pointing to the first node in the
FP-tree carrying the item-name). For instance, in Fig. 2.3, an FP-tree is constituted from a set of
transactions in Tab. 2.1, ordered by support count in Tab. 2.3.

TID Items bought (Ordered) frequent items

100 A C D C:3 A:2

200 B C E B:3 C:3 E:3

300 A B C E B:3 C:3 E:3 A:2

400 B E B:3 E:3

Table 2.3: Ordering items with support count (minsup = 2).

Figure 2.3: An FP-tree constituted from a set of transactions.

FP-tree mines completely the set of frequent itemsets by itemset fragment growth. The FP-
growth algorithm uses this tree to find frequent itemset efficiently with both long and short itemsets.
It can be considered as an order of magnitude faster than the Apriori algorithm. Tab. 2.4 shows
the conditional FP-tree constituted from the FP-tree in Fig. 2.3 for extracting frequent itemsets.

COFI-tree [EHZ03] and CATS-tree [CZ03] are two tree structures that are inspired from the
FP-tree to reduce the memory space needed.
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Item Conditional pattern-base Conditional FP-tree

A {(C:1), (BCE:1)} {(C:2)}|A
E {(BC:2), (B:1)} {(B:3)}|E
C {(B:2)} {(B:2)}|C
B ∅ ∅

Table 2.4: Mining frequent itemsets with conditional FP-tree.

Lexicographic tree

By constructing successively the nodes of a lexicographic tree of itemsets, the set of frequent item-
sets are constituted [AAP01]. Fig. 2.4 show a lexicographic tree established from 5 items. The
frequent itemsets are represented as nodes of the lexicographic tree to reduce the CPU time for
counting frequent itemsets. The support counts of the frequent itemsets, in a top-down manner, are
determined by projecting the transactions onto the nodes of the tree. It illustrates an advantage
of visualizing itemset generation with the flexibility of picking the correct strategy during the tree
generation phase as well as transaction projection phase.

The lexicographic tree is defined as: (i) a vertex exists in the tree corresponding to each frequent
itemset (the root corresponds to the null itemset), (ii) let I = {i1, i2, ..., ik} be a frequent itemset,
where i1, i2, ..., ik are listed in lexicographic order and the parent of the node I is the itemset
{i1, i2, ..., ik−1}. The levels in a lexicographic tree correspond the itemset sizes. The possible states
for a node are: generated, examined, null, active or inactive.

Figure 2.4: Lexicographic tree.

T-tree and P-tree

P-tree and T-tree that are two tree structures quite similarly for counting the support of itemsets
based on Rymon’s set enumeration tree [CGL04]. T-tree (Total Support Tree) is implemented to
reduce number of links needed and providing direct indexing. P-tree (Partial Support Tree) is used
with the concept of partial support. Fig. 2.5 illustrates an example with 5 items {A, B, C, D, E}.

2.3.5 Data type

Due to the different types of data, many authors have conducted their researches to discovery as-
sociation rules adapted to different data types such as quantitative and categorical [SA96], interval
[MY97], spatial [KH95], temporal [CP00], ordinal [Gui02], multimedia [ZHZ00], text [AAFF05],
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Figure 2.5: P-tree in the form of Rymon’s set enumeration tree.

multidimensional [LHF98], and taxonomy-based [SA95]. We will present in this part the two
most important data types are recently developed and widely used: quantitative/categorical and
taxonomy-based.

Quantitative and categorical

When an attribute (i.e. an item) is quantitative or categorical then boolean attributes can be
considered a special case of categorical attributes [SA96]. Fig. 2.6 shows a People table with
three non-key attributes: Age, NumCars (quantitative), and Married (categorical). A possible
quantitative association rule is: < Age : 30..39 > and < Married : Y es >→< NumCars : 2 >.

TID Age Married NumCars

100 23 No 1
200 25 Yes 1
300 29 No 0
400 34 Yes 2
500 38 Yes 2

Figure 2.6: Quantitative and categorical items.

Many fields as the number of attribute values are established instead of just one field in the
table. For a quantitative attribute, its values will be partitioned into intervals and then map each
< attribute, interval > pair to a boolean attribute as in the boolean field. The number of intervals
can be calculated as: 2n

m(K−1) where n is the number of quantitative attributes, m is the minimum
support (as a fraction) and K is the partial completeness level (see how we can find K in [SA96]).
Fig. 2.7 shows this mapping for the non-key attributes of the People table given in Fig. 2.6.

Taxonomy-based

When there is a taxonomy on the items in the transactions of a database (see Fig. 2.8), the
association rules can be generated for all levels (e.g. generalized – [SA95] or at different levels
(e.g. multiple-level association rules – [HF99]). For example, a generalized association rule is an
association rule X → Y that is no item in Y is an ancestor of any item in X. The reason for
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TID Age:20..29 Age:30..39 Married:Yes Married:No NumCars:0 NumCars:1 NumCars:2

100 1 0 0 1 0 1 0
200 1 0 1 0 0 1 0
300 1 0 0 1 1 0 0
400 0 1 1 0 0 0 1
500 0 1 1 0 0 0 1

Figure 2.7: Mapping to the boolean problem.

the condition that no item in Y should be an ancestor of any item in X is that a rule of the form
”x → ancestor(x)” is trivially true with 100% confidence, and hence redundant. The rules are
called generalized association rules because both X and Y can contain items from any level of the
taxonomy, a possibility not entertained by the formalism introduced in [AIS93a].

Figure 2.8: A taxonomy of items.

Inspired from a similar example illustrated in [SA95], given a set of items {Cheese, Cow Milk,
Emmental, Raclette, Ewe Milk, Roquefort, Bread, White Bread, Brown Bread}, Fig. 2.8 shows the
corresponding taxonomy being composed of these items. Consider the set of transactions shown
in Fig. 2.9 (a) with minsup = 2. Then the frequent itemsets corresponding to these itemsets are
illustrated in Fig. 2.9 (b).

TID Items bought

100 Roquefort
200 Emmental, Brown Bread
300 Raclette, Brown Bread
400 White Bread
500 White Bread
600 Emmental

(a) D

Adding taxonomy items−−−−−−−−−−−−−−−−−−→

Itemset Support

{Emmental} 2
{Cow Milk} 3
{Cheese} 4
{White Bread} 2
{Brown Bread} 2
{Bread} 4
{Cow Milk, Brown Bread} 2
{Cheese, Brown Bread} 2
{Cow Milk, Bread} 2
{Cheese, Bread} 2

(b) Frequent itemsets

Figure 2.9: Adding taxonomy items to find frequent itemsets.
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2.4 Summary

Mining association rules is one of the most attractive problems in KDD. In this chapter, we have
presented the principal keys in the Apriori algorithm to resolve this challenge. We have classified
the recent techniques in this domain into five different subgroups: database pass, computation,
itemset compaction, search space, data type. Some concrete examples are also provided.



Chapter 3

Measures of interestingness

Over the last decade the KDD community has recognized this challenge – often referred to as interest-
ingness – as an important and difficult component of the KDD process [?] [ST96] [LHML99] [HH01]
[TKS04]. To tackle this problem, the most commonly used approach is based on the construction of
interestingness measures (called measure for short).

In defining association rules, Agrawal et al. [AIS93a] [AS94] [AMS+96], introduced two measures:
support and confidence. These are well adapted to Apriori algorithm constraints, but are not
sufficient to capture the whole aspects of the rule interestingness. To push back this limit, many
complementary measures have been then proposed in the literature (see [PSM94] [ST96] [SM99]
[BA99] [HH01] [TKS04] [TS06] [McG05] [GH06] [Omi03] for a survey). They can be classified into
two categories [ST96]: subjective and objective. Subjective measures explicitly depend on the user’s
goals and his/her knowledge or beliefs. They are combined with specific supervised algorithms
in order to compare the extracted rules with the user’s expectations [ST96] [PT98] [LHML99].
Consequently, subjective measures allow the capture of rule novelty and unexpectedness in relation
to the user’s knowledge or beliefs. Objective measures are numerical indexes that only rely on the
data distribution. Interestingness refers to the degree to which a discovered pattern is of interest
to the user and is driven by factors such as novelty, utility, relevance and statistical significance
[FPSM91] [PSM94].

3.1 Subjective measures

Subjective measures [PSM94] [ST95] [ST96] are studied in a domain-independent context. The
interestingness of a pattern is evaluated subjectively from the user point of view. How a pattern can
be interesting is determined by the two following approaches [ST96]: (i) a pattern is unexpectedness
if it is ”surprising” to the user [ST95], and (ii) a pattern is actionability if the user can act on it to
his advantage [PSM94].

3.1.1 Actionability

Actionability is a subjective measure that allows the user taking some specific actions in response to
the newly discovered knowledge [ST96]. How we can capture actionable patterns is a difficult issue
because the actions from a point of view can change with the time and is is not easy to maintain
them.

22
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The actionable patterns can be found by a system [PSM94] via the discovery of deviation of
patterns, an action hierarchy [AT97] or mining patterns that respond to actions [JWTF05].

3.1.2 Unexpectedness

Unexpectedness is a subjective measure that provides unexpected patterns contradicting the user’s
expectations which depend strongly on his/her beliefs [ST96] [PT99]. Beliefs can be classified into
categories: (i) hard beliefs (i.e., unchanged constraints, depending strongly on the user’s point of
view), and (ii) soft beliefs (i.e., the user is willing to change with a degree of believe). Degree of
soft beliefs can be assigned in different approaches: Bayesian, Dempster-Shafer, frequency, Cyc, or
statistic.

A pattern is always interesting if it contradicts the set of hard belief. For soft belief, the inter-
estingness of pattern p is computed as:

I(p,B, ξ) =
∑

αi∈B

wi|d(αi|p, ξ)− d(αi|ξ)|

where wi is a weight function associated with each soft belief αi in the soft belief system B,∑
αi∈B wi = 1, and ξ is the previous evidence.

3.2 Objective measures

In the following, we consider a finite set T of transactions. We denote an association rule by X → Y
where X and Y are two disjoint itemsets. The itemset X (respectively Y ) is associated with a
transaction subset tX = T (X) = {T ∈ T , X ⊆ T} (respectively tY = T (Y )). The itemset X
(respectively Y ) is associated with tX = T (X) = T − T (X) = {T ∈ T , X 6⊆ T} (respectively
tY = T (Y )). In order to accept or reject the general trend to have Y when X is present, it is quite
common to consider the number nXY of negative examples (contra-examples, counter-examples) of
the rule X → Y . Each rule is described by the four parameters : n = |T |, nX = |tX |, nY = |tY |,
nX = |tX |, nY = |tY |.

Let us denote that, for clarity, we also keep the probabilistic notations p(X) (respectively p(Y ),
p(X ∩ Y ), p(X ∩ Y )) as the probability of X (respectively Y , X ∩ Y , X ∩ Y ). This probability
is estimated by the frequency of X: p(X) = nX

n (respectively p(Y ) = nY

n , p(X ∩ Y ) = nXY

n ,
p(X ∩ Y ) = nXY

n ).

Figure 3.1: The cardinalities of a rule X → Y and the ”surprisingness” of negative examples.



24

An interestingness value is then calculated by a numerical function on the cardinalities of a rule:
m(X → Y ) = f(n, nX , nY , nXY ) ∈ R. The higher the interestingness value, the more interesting
the rule.

Example. Given two disjoint itemsets X and Y as follows. The itemset X has one item and
the itemset Y has three items. The association rule is of the form X → Y . The item of the premise
presents a logical expression and the items in the conclusion differentiate each others by the symbol
∩.

X = {stalk surf above = SMOOTH}
Y = {BROAD ∧BRUISES ∧ EDIBLE}
where n = 100, nX = 50, nY = 80, nXY = 10 respectively.
Given an interestingness measure, namely Pavillon, determined by the negative examples m(X →

Y ) = f(n, nX , nY , nXY ) = nY

n − nXY

nX
.

For a coherent representation of the measure formula, some intermediatory parameters can be
easily established:

nXY = nX − nXY ,
nX = nX − nXY ,
nY = nY − nXY ,
nXY = nY − nX + nXY ,
nXY = n− nY − nXY .
Therefore, the interestingness value of the association rule X → Y with respect to the interest-

ingness measure m is then computed : m(X → Y ) = 80−10
100 − 10

50 = 0.5.

3.2.1 Criteria

To quantify the interestingness of an objective measure, also called quality measure, some criteria are
proposed to understand their behaviors [Bla68] [PS91] [MM95] [Fre99] [HH01] [TKS04] [GCB+04]
[VLL04] [Gui04] [LT04] [LVL05] [LLV05] [GH06] [RZ06] [GK06]. Several important criteria discuss
below are evaluated in Tab. 3.2. To understand the behaviors of a set of objective measures, a
special study on this problem is examined in Chap. 7.

Variation

The interestingness value monotonically increases with nXY and monotonically decreases with nXY

or nXY . Notice that nα varies when the other parameters are fixed. A rule may have the same order
with two measures satisfied the above properties (i.e. conjuncture).

The decrease of value must be slowly with the first appearance of negative examples by chance,
noisy, or error of observation [GCB+04]. Then it decreases quickly when the observation of negative
examples confirms the strong absence of the rule. The value of a measure must also decrease when
the situation of trivial observations appeared (i.e. not containing any information in the sense of
Shannon entropy).

In addition, the measure has not to vary linearly with the number of negative examples.

Particular situation

Two particular cases: independence and equilibrium are examined. They are also called the ”sub-
jective” (i.e. ”subject”) aspect of an objective measure.
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Independence is a situation in which the antecedent and the consequent of a rule are statisti-
cally independent nXY = nXnY

n or nXY = nXnY

n , so we have m(X → Y ) = f(n, nX , nY ,
nXnY

n ) =
constant.

Equilibrium is a situation in which the numbers of examples and negative examples of a rule are
the same: nXY = nXY = nX

2 , so we have m(X → Y ) = f(n, nX , nY , nX

2 ) = constant.

By examining the interestingness value changes from the independence or equilibrium value, the
measure are evaluated like the deviation from independence or equilibrium.

Fixing a threshold of interestingness is necessary when one would like to observe a strict range
of interestingness values. When nXY = 0 the implicative rule becomes a ”logical” rule that has not
the implicative tendency.

Paradoxical phenomenon

The value of a measure must not be the same when two paradoxical situations appear. For example,
the symmetric situation m(X → Y ) = m(Y → X); or the contrary situation m(X → Y ) = m(X →
Y ).

Countable

The analytical property of a measure are countable to give an order or preorder structure. It allows
to evaluate the structure induced on the set of principal variables.

Diversification

A measure must be sufficiently flexible and general analysis to process on different types of variables.

Discriminative ability

The criminative ability of a measure is not influenced with noisy or big volume of data (i.e. n ↗).
The value of a measures does not vary when its cardinalities vary with a coefficient α (i.e. m(X →
Y ) = f(n, nX , nY , nXY ) = f(α · n, α · nX , α · nY , α · nXY )) is called descriptive measure, statistical
measure vice versa [LT04]. Descriptive or statistical aspect of a measure also called the ”nature” of
a measure.

Interpretable

The formula and the algorithms to measure the rule interestingness have shortly execution time.
Their definition are intuitively appreciable and the obtained value holds a signification to interpret.

Imbalance

Taking into account with the small number of examples (i.e. nXY ¿ n) because they can be the
nuggets of knowledge.



26

Attribute interestingness

When a rule is considered as a whole, it may lead to the situation in which two rules will have the
same value of interestingness. In fact, these two rules can have different degrees of interestingness
for the user, depending on which attributes occur in the rule antecedent. To resolve this problem,
one has to consider the interestingness of individual attributes occurring in the rule antecedent.

Quasi-

The problem of quasi-implication, quasi-conjunction and quasi-equivalence are considered to deter-
mine some special cases between objective measures [Bla05].

- A quasi-implication measure is a measure which satisfies the condition m(X → Y ) = m(Y →
X) where f(n, nX , nY , nXY ) = f(n, n− nY , n− nX , nXY ).

- A quasi-conjunction measure is a measure which satisfies the condition m(X → Y ) = m(Y →
X) where f(n, nX , nY , nXY ) = f(n, nY , nX , nXY ).

- A quasi-equivalence measure is a measure which satisfies the condition m(X → Y ) = m(Y →
X) = m(Y → X) = m(X → Y ) where f(n, nX , nY , nXY ) = f(n, nY , nX , nXY ) = f(n, nY , nX , nXY )
= f(n, nX , nY , nXY ).

We have: {quasi-equivalence} = {quasi-implication} ∩ {quasi-conjunction}.

3.2.2 Classification

A classification according to the ”nature” and the ”subject” of the objective measures, firstly pro-
posed by Blanchard et al. [HGB+06a], is given in Tab. 3.3. On the column, we can see that most of
the measures are descriptive. Another observation shows that IPEE is the only statistical measure
computing the deviation from equilibrium.

The classification also gives a quick view on the mutual relations between objective measures.
It will help us to understand why the objective measures can be clustered. For instance, most of
the measures issued from the Confidence measure are descriptive and deviation from equilibrium:
Confidence, Descriptive Confirmed-Confidence, Example & Contra-Example, and Laplace.

3.2.3 Mathematical relation

Observing the relations between measures mathematically are useful when one desires to discover the
constraints on interestingness values between them. Tab. 3.4 gives some relationships discovered.

This work is useful and interesting for reducing the quantity of measures. If one measure strongly
depends the other measures, we will not consider it any more. For instance, if we have two measures
TauxDeLiaison and Lift that have a mathematical relation TauxDeLiaison = Lift−1, we will only
select Lift for both of them. From line 15 and 16 (Tab. 3.4), we can see that the two measures Yule’s
Q and Yule’s Y have a close relation with the Odds Ratio measure. If the value of the Conviction
measure increases, the value of the Loevinger measure will also increase (line 9, Tab. 3.4).

In addition, we can calculate the interestingness value of a measure by using the interestingness
values from the measures participating in the corresponding formula. For example, the value of
Rule Interest measure (line 2, Tab. 3.4) can be calculated by the other measures such as Support,
Confidence and Pavillon.
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3.3 Summary

Ranking association rules by interestingness measures is a research domain that attracts many au-
thors in the literature. Two classes of measures are identified: subjective and objective measures. We
have examined some important properties that are widely discussed to give a general panorama on
this problem. Some mathematical between objective measures are illustrated to show the constraints
on the interestingness values.
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N◦ Interestingness Measure f(n, nX , nY , nXY ) Reference

1 Causal Confidence 1− 1
2 ( 1

nX
+ 1

n
Y

)nXY [Kod01]

2 Causal Confirm
nX+n

Y
−4n

XY
n [Kod01]

3 Causal Confirmed-Confidence 1− 1
2 ( 3

nX
+ 1

n
Y

)nXY [Kod01]

4 Causal Support
nX+n

Y
−2n

XY
n [Kod01]

5 Collective Strength
(nX+n

Y
−2n

XY
)(nX n

Y
+n

X
nY )

(nX nY +n
X

n
Y

)(n
XY

+n
XY

) [TKS04]

6 Confidence 1− n
XY
nX

[AS94]

7 Conviction
nX n

Y
nn

XY
[TKS04]

8 Cosine
nX−n

XY√
nX nY

[Kod01]

9 Dependency |n
Y
n − n

XY
nX

| [Kod01]

10 Descriptive Confirm
nX−2n

XY
n [Kod01]

11 Descriptive Confirmed-Confidence/ 1− 2
n

XY
nX

[Kod01]

Ganascia

12 EII (α = 1)

√
ϕ× I

1
2α [BKGG03]

13 EII (α = 2)

√
ϕ× I

1
2α [BKGG03]

14 Example & Contra-Example 1− n
XY

nX−n
XY

[GBPP96]

15 F-measure
2(nX−n

XY
)

nX+nY
[vR79]

16 Gini-index
(nX−n

XY
)2+n2

XY
nnX

+
n2

XY
+(n

Y
−n

XY
)2

nn
X

− n2
Y

n2 − n2
Y

n2 [TKS04]

17 II 1−∑n
XY

k=max(0,nX−nY )

C
nX−k
nY

Ck
n

Y

C
nX
n

[GBPP96]

18 Implication index
n

XY
−

nX n
Y

n√
nX n

Y
n

[GBPP96]

19 IPEE 1− 1
2nX

∑n
XY

k=0 Ck
nX

[BGGB05a]

20 Jaccard
nX−n

XY
nY +n

XY
[TKS04]

21 J-measure
nX−n

XY
n log2

n(nX−n
XY

)
nX nY

+
n

XY
n log2

nn
XY

nX n
Y

[TKS04]

22 Kappa
2(nX n

Y
−nn

XY
)

nX n
Y

+n
X

nY
[TKS04]

23 Klosgen

√
nX−n

XY
n (

n
Y
n − n

XY
nX

) [TKS04]

24 Laplace
nX+1−n

XY
nX+2 [TKS04]

25 Least Contradiction
nX−2n

XY
nY

[AK02]

26 Lerman
nX−n

XY
−nX nY

n√
nX nY

n

[GBPP96]

27 Lift/Interest factor
n(nX−n

XY
)

nX nY
[PSS00]

28 Loevinger/Certainty factor 1− nn
XY

nX n
Y

[Loe47]

29 Mutual Information
nX−n

XY
n

log(
n(nX−n

XY
)

nX nY
)+

n
XY
n

log(
nn

XY
nX n

Y
)+

n
XY
n

log(
nn

XY
n

X
nY

)+
n

XY
n

log(
nn

XY
n

X
n

Y
)

min(−(
nX
n

log(
nX
n

)+
n

X
n

log(
n

X
n

)),−(
nY
n

log(
nY
n

)+
n

Y
n

log(
n

Y
n

)))
[TKS04]

30 Odd Multiplier
(nX−n

XY
)n

Y
nY n

XY
[LT04]

31 Odds Ratio
(nX−n

XY
)(n

Y
−n

XY
)

n
XY

n
XY

[TKS04]

32 Pavillon/Added value
n

Y
n − n

XY
nX

[TKS04]

33 Phi-Coefficient
nX n

Y
−nn

XY√
nX nY n

X
n

Y
[TKS04]

34 Putative Causal Dependency 3
2 +

4nX−3nY
2n − ( 3

2nX
+ 2

n
Y

)nXY [Kod01]

35 Rule Interest
nX n

Y
n − nXY [PS91]

36 Sebag & Schoenauer
nX

n
XY

− 1 [SS88]

37 Support
nX−n

XY
n [AS94]

38 TIC
√

TI(X → Y )× TI(Y → X) [BGGB05b]

39 Yule’s Q
nX n

Y
−nn

XY
nX n

Y
+(nY −n

Y
−2nX )n

XY
+2n2

XY

[TKS04]

40 Yule’s Y

√
(nX−n

XY
)(n

Y
−n

XY
)−√n

XY
n

XY√
(nX−n

XY
)(n

Y
−n

XY
)+
√

n
XY

n
XY

[TKS04]

Table 3.1: A list of objective measures.
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N◦ Interestingness Measure Ind. Equ. Sym. Var. Des. Sta.

1 Causal Confidence ◦ ◦ ◦ ◦ • ◦
2 Causal Confirm ◦ ◦ ◦ • • ◦
3 Causal Confirmed-Confidence ◦ ◦ ◦ ◦ • ◦
4 Causal Support ◦ ◦ • • • ◦
5 Collective Strength • ◦ • • • ◦
6 Confidence ◦ • ◦ ◦ • ◦
7 Conviction • ◦ ◦ ◦ • ◦
8 Cosine ◦ ◦ • • • ◦
9 Dependency • ◦ ◦ • • ◦
10 Descriptive Confirm ◦ • ◦ ◦ • ◦
11 Descriptive Confirmed-Confidence/ ◦ • ◦ ◦ • ◦

Ganascia
12 EII (α = 1) • ◦ ◦ • ◦ •
13 EII (α = 2) • ◦ ◦ • ◦ •
14 Example & Contra-Example ◦ • ◦ ◦ • ◦
15 F-measure ◦ ◦ • • • ◦
16 Gini-index • ◦ ◦ ◦ • ◦
17 II • ◦ ◦ • ◦ •
18 Implication index • ◦ ◦ ◦ ◦ •
19 IPEE ◦ • ◦ ◦ ◦ •
20 Jaccard ◦ ◦ • • • ◦
21 J-measure • ◦ ◦ ◦ • ◦
22 Kappa • ◦ • • • ◦
23 Klosgen • ◦ ◦ • • ◦
24 Laplace ◦ • ◦ ◦ • ◦
25 Least Contradiction ◦ • ◦ • • ◦
26 Lerman • ◦ • • ◦ •
27 Lift/Interest factor • ◦ • • • ◦
28 Loevinger/Certainty factor • ◦ ◦ • • ◦
29 Mutual Information • ◦ ◦ • • ◦
30 Odd Multiplier • ◦ ◦ • • ◦
31 Odds Ratio • ◦ • • • ◦
32 Pavillon/Added Value • ◦ ◦ • • ◦
33 Phi-Coefficient • ◦ • • • ◦
34 Putative Causal Dependency ◦ ◦ ◦ ◦ • ◦
35 Rule Interest • ◦ • • ◦ •
36 Sebag & Schoenauer ◦ • ◦ ◦ • ◦
37 Support ◦ ◦ • ◦ • ◦
38 TIC • ◦ ◦ • • ◦
39 Yule’s Q • ◦ • • • ◦
40 Yule’s Y • ◦ • • • ◦

Table 3.2: Some matched properties of objective measures (Ind.: Independency, Equ.: Equilibrium,
Sym.: Symmetry, Var.: Variation, Des.: Descriptive, Sta.: Statistical. < • >: matched, < ◦ >:
unmatched).



30

````````Subject
Nature

Descriptive Statistical

Equilibrium – Confidence (6) – IPEE (19)
– Descriptive Confirm (10)
– Descriptive Confirmed-Confidence (11)
– Example & Contra-Example (14)
– Laplace (24)
– Least Contradiction (25)
– Sebag & Schoenauer (36)

Independence – Collective Strength (5) – EII α = 1 (12)
– Conviction (7) – EII α = 2 (13)
– Dependency (9) – II (17)
– Gini-index (16) – Implication Index (18)
– J-measure (21) – Lerman (26)
– Kappa (22) – Rule Interest (35)
– Klosgen (23)
– Lift (27)
– Loevinger (28)
– Mutual Information (29)
– Odd Multiplier (30)
– Odds Ratio (31)
– Pavillon (32)
– Phi-Coefficient (33)
– TIC (38)
– Yule’s Q (39)
– Yule’s Y (40)

Others – Causal Confidence (1)
– Causal Confirm (2)
– Causal Confirmed-Confidence (3)
– Causal Support (4)
– Cosine (8)
– F-measure (15)
– Jaccard (20)
– Putative Causal Dependency (34)
– Support (37)

Table 3.3: A classification of objective measures.

N◦ Formulae

1 Laplace =
Confidence×(n×Support+1)
n×Support+2×Confidence

2 RuleInterest = n×Support
Confidence × Pavillon

3 Lift = Confidence
Confidence−P avillon

4 Wang = Support
Confidence × (Confidence− α)

5 Gray&Orlowska = (Liftk − 1)× ( Support
Lift )m

6 Jmeasure = Support× log2(Lift) + (Support−DescriptiveConfirm)× log 2( 1
Conviction )

7 JmeasureV ariant = Support× log2(Lift)

8 Jaccard = Support
Support

Confidence
+Confidence−P avillon−Support

9 Loevinger = 1− 1
Conviction

10 CausalConfirm = CausalSupport− 2× Support + 2×DescriptiveConfirm
11 CausalConfirmedConfidence = DescriptiveConfirmedConfidence− Confidence + CausalConfidence

12 Consine2 = Lift× Support
13 RuleInterestV ariant = |RuleInterest|
14 TauxDeLiaison = Lift− 1

15 Y ule′sQ = OddsRatio−1
OddsRatio+1

16 Y ule′sY =
√

OddsRatio−1√
OddsRatio+1

17 LeastContradiction = DescriptiveConfirm
Confidence−P avillon

18 Klosgen =
√

Support× Pavillon

19 Sebag&Schoenauer = Support
Support−DescriptiveConfirm

Table 3.4: Some relations between objective measures



Chapter 4

Postprocessing approaches

Several syntheses on the postprocessing techniques of association rules are introduced in [BVV00]
[NS05]. The postprocessing step is considered to be ”an important step to help the user discover
the useful knowledge nuggets in the huge set of generated association rules”. In this chapter we
reorganize the principal approaches in five important groups, including our proposed method with
representative measures.

The first group is to use some constraints on association rules to filter the most interesting rules.
Most of them are integrated into the mining process to efficiently reduce the number of rules and
time execution (Fig. 1.2 (a) (c)). The second group eliminates the unnecessary or useless ones.
The third group summarizes the elements corresponds to the underlying relationships. The fourth
group is to group or cluster around the rules with similar property. It will be useful for the domain
expert to evaluate all these rules together rather than individually. The last group visualizes the
association rules in a graphical way to help the user choose the most interesting ones or to interact
with them visually.

4.1 Constraints

4.1.1 Boolean expression constraints

A taxonomy of items (see Fig. 2.8 [Chap. 2] for an example) is used to filter out when a subset of
association rules is interested by the user [SVA97]. For instance, those containing at least one item
from a user-defined subset of items. Such constraints can be integrated into the mining algorithm
(i.e. generalized association rules) as a postprocessing step to reduce dramatically the execution
time. These constraints are considered such as boolean expressions1 over the presence or absence of
items in the rules. With a given taxonomy, the boolean expression is of the form ancestors(item) or
descendants(item) rather than just a single item.

As an example inspired from the example illustrated in [SVA97] with a taxonomy (Fig. 2.8
[Chap. 2]), the constraint expression (Emmental ∧ White Bread ∨ (descendants(Cheese) ∧ ¬ an-
cestors(Brown Bread))) will give any rules that are (i) contain both Emmental and White Bread or
(ii) contain Cheese or any descendants of Cheese and do not contain Brown Bread or any ascendants
of Brown Bread (e.g., Bread).

1The boolean expression is in disjunctive normal form (DNF).
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4.1.2 Constrained association query

To support a human-centered exploratory mining of association with constraints on attributes, a
constrained association query (CAQ) structure is proposed [NLHP98]. The results are optimized
via two properties anti-monotonicity and succinctness.

A CAQ is defined to be a query of the form: {(S1, S2)|C}, where C is a set of constraints on S1, S2

and S1, S2 are the sets of variables. Note that a CAQ does not make the notion of antecedent and
consequent of an association explicitly. Single variable constraints (1-var) are useful in conditioning
the antecedent and/or consequent separately, and two variable constraints (2-var) are useful in
constraining them jointly. The constraints cover domain, class, and aggregation constraints. A set
variable is either an identifier of the form S or is an expression of the form S.A, where A is an
attribute in the minable view. A frequency constraints of the form freq(Si) saying that that the
support of Si must exceed some given threshold.

For instance, assume that the minable view to be trans(TID, Itemset), itemInfor(Item, Type,
Price).

1-var constraints: S ⊂ Item says that S is a set variable on the Item domain, S.price ≤ 100 says
all items in S are of price less than or equal to $100, {snacks, sodas} ⊆ S.Type says S should include
some items whose type is snacks and some items whose type is sodas, S.Type∩{snacks, sodas} = ∅
says S should exclude such items.

2-var constraints: S1.Type ∩ S2.Type = ∅, max(S1.P rice) ≤ avg(S2.P rice), {(S1, S2)|S1 ⊂
Item&S2 ⊂ Item&count(S1) = 1&count(S2) = 1&freq(S2)} asks for all pairs of single items
satisfying frequency constraints.

4.1.3 Minimum improvement constraints

Motivated by the principle of Occam’s Razor (i.e. plurality should not be posited without necessity)
a minimum improvement constraints approach is proposed [BAG00]. With a fix consequent, the user
can eliminate unnecessary rules by specifying a minimum improvement constraint. The necessary
rules are defined as those have confidence greater than the confidence of any of its simplifications.
A rule Xs → Y is said a simplification of a rule X → Y if Xs ⊂ X. Then the improvement of a rule
X → Y is defined as:

imp(X → Y ) = MIN({conf(X → Y )− conf(Xs → Y )|XsY X}), ∀XS ⊂ X

Figure 4.1: Rymon’s set-enumeration tree for U = {A,B, C, D}.
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A rule is less predictive power or undesirable when it has negative improvement. When the
improvement of a rule is positive, it then considered as a desirable constraint. Given U is the set of
all items that are not in the consequent. With the power set of U , rules which satisfy the minimum
support, confidence and improvement constraints will be hold. Rymon’s set-enumeration tree (see
Fig. 4.1) [Rym92] is used to present the subset search problem of U efficiently.

4.1.4 Action hierarchy

By using the actionable definition (Sec. 3.1.1 [Chap. 3]), a taxonomy of action or an action hierarchy
is proposed as constraints on association rules [AT97]. A hierarchy of actions is illustrated from more
general actions at the top of the hierarchy to more specific actions at the bottom (see Fig. 4.2). The
actions can be described in several stages: incremental or step-by-step.

Figure 4.2: Fragment of an action tree for the supermarket management.

When the action tree is completed, the actionable pattern corresponding for an action on the tree
will be assigned (i.e. by the data mining queries or a pattern template [KMR+94]). For example, the
node ”Based on customer demographics” of the tree in Fig. 4.2 can be assigned a query [KMR+94]

ChildrenAge∗ → Category(0.5, 0.01)

to find all rules representing the product categories that the customer with children are buying.

4.1.5 AND-OR taxonomy

A knowledge-based approach with an AND-OR taxonomy (AO-taxonomy as short) as constraints, is
developed to mine generalized association rules (Sec. 2.3.5 - [Chap. 2]) [Sub98]. An AO-taxonomy
has a single root and contains AND-nodes and OR-nodes (Fig. 4.3). An AND-taxonomy (OR-
taxonomy) is a node has enough support if all (at least τ) of its child nodes have support ≥ minsup.
An AND-node is represented by the symbol •, (+, τ = c) for OR-node. The complement of a node
¬X is hold if supp(¬X) ≥ minsup.

4.1.6 Minimal set of unexpected patterns

A set of constraints is developed to find a minimal set of unexpected patterns [PT00] [PT06]. From
the definition of unexpectedness [PT98], a rule X → Y is said to be unexpected with respect to the
belief Xb → Yb if it satisfies all the following conditions: (i) Y ∩Yb = ∅, (ii) supp(X ∩Xb) ≥ minsup,
(iii) the rule XXb → Y hold (the rule XXb → ¬Yb also hold logically).
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Figure 4.3: An AND-OR taxonomy.

Y is the minimal set of X if and only if the following conditions hold: (i) Y ⊆ X, (ii) ∀xi ∈
X, ∃yi ∈ Y such that yi ²M xi, (iii) ∀y1, y2 ∈ Y, y1 2M y2. The operator ²M for a couple of rules
X1 → Y1 ²M X2 → Y2 if X2 ² X1 and Y1 = Y2

2.
For instance, with the belief diaper → beer let the set of all unexpected patterns be {diaper ∧

weekday → not beer, diaper∧unemployed → not beer, diaper∧weekday∧unemployed → not beer,
weekday → not beer, unemployed → not beer}. The minimal set of unexpected patterns in this
case is {weekday → not beer, unemployed → not beer}.

4.1.7 Interestingness preprocessing

The Interestingness Preprocessing Step (IPS) [Sah01] eliminates uninteresting rules independently
of the domain, user and task. It can be integrated into the interestingness process as in Fig. 4.4.
It simply filters out the unnecessary rules but does not consider the outputted rules as potentially
interesting or having interestingness. Two IPS methods are proposed by considering the influence
of confidence value:

Figure 4.4: IPS in the interestingness process.

• IPS1 (Overfitting). The method tries to delete any rule r = X → Y if there exists a rule
r′ = X ′ → Y ′ such that: (i) X ′ ⊂ X, (ii) Y ′ = Y , and (iii) confidence(r′) ≥ confidence(r),
support(r′) > support(r).

• IPS2 (Transition). The method tries to to delete any rule r, r = X → Y , for which ∃r2, r3

such that (i) r2 = X → Y ∧ Z, and (ii) r3 = Y → Z where confidence(r3)=1.

2²: logical implication, ²M logical implication in the sense of minimality.
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4.1.8 Negative association rules

Negative association rules is introduced to find what items a customer is not likely to buy [SON98]
[BBJ00]. A statement ”60% of the customers who buy potato chips do not buy bottled water” is an
example of this type of rule.

The domain knowledge is used in form of a taxonomy for grouping similar items. One of the
fundamental assumptions in this approach is that uniformity assumption, i.e., the items that belong
to the same parent in a taxonomy are expected to have similar types of associations with other
items. By considering only those cases where an expected support can be computed based on the
taxonomy, the class of negative rules generated is not all possible negative rules but a subset of those
rules. If additional domain knowledge is incorporated, it may be possible to mine additional types
of negative rules.

A negative rule X 6→ Y is measured by an interestingness measure RI = ε[sup(X∪Y )]−sup(X∪Y )
sup(X) ,

where ε[sup(X ∪ Y )] is the expected support of an itemset. The expected support value (i.e. based
on a taxonomy) is calculated as:

ε[sup(p, q, r, ..., t)] =
sup(p ∪ q ∪ r′ ∪ · · · ∪ t′)× sup(r)× · · ·sup(t)

sup(r′)× · · ·sup(t′)

where p′, q′, ..., r′ are siblings of p, q, ..., t respectively.
Given a database of customer transactions D and a taxonomy T on the set of items, find all rules

X 6→ Y such that: (i) sup(X) ≥ minsup and sup(Y ) ≥ minsup, and (ii) RI(X 6→ Y ) ≥ minRI.
minsup and minRI are both specified by the user.

4.1.9 Substitution

A model based on the idea of understanding the choice made by consumers which corresponding to
the purchase of some items instead of others, is called substitution rules [THC02] [THC05].

To find concrete itemset, some complement items will be added to an itemset. For example with
six items {A,B,C,D,E,F}, the itemset {BF} will become {ABCDEF}. A positive frequent itemset
[THC05] X = {x1, x2, ..., xk} is called a concrete itemset if and only if (i) k = 1, or (ii) k ≥ 2,
SX >

∏
xi∈X Sxi and Chi(X) ≥ χ2

df(X),α, where
∏

xi∈X Sxi corresponds to the expected support
for itemset X and χ2

df(X),α is the value of chi-square distribution with degree of freedom df(X) at
probability α.

Given two itemsets X and Y, X is a substitute for Y , denoted by X . Y , if and only if (i) both
X and Y are concrete, (ii) X and Y are negatively correlated, and (iii) the negative association rule
X → Y is valid.

4.1.10 Cyclic/Calendric

The transaction model [AMS+96] is added a time attribute that describes the time when the
transaction was executed [ORS98]. This method is to find association rules that display regular
hourly, daily, weekly, etc., variation that has the appearance of cycles. For example, such a rule
(Day = monday) ∪X → Y .

A cycle c [ORS98] is a tuple (l, o) consisting of a length l (in multiples of the time unit) and an
offset o (the first time unit in which the cycle occurs), 0 ≤ o ≤ l. An association rule that has a
cycle is referred as cyclic.

An extended version of cyclic, called calendric association rules [RMS98], using a calendar
algebra to describe complicated temporal phenomena of interest to the user.



36

4.1.11 Non-actionable

A significant rule or a non-redundant rule is not potentially useful for action so finding actionable
rules is still a major problem. Instead of finding such actionable rules, an approach is proposed to
find rules that are not actionable [LHM01]. A rule is said non-actionable rule if is not a potentially
actionable rule. A rule is said potentially actionable rule if (i) it does not have any descendant rules,
or (ii) it still significant with respect to ”→ Y ” after removing the data tuples that can be covered
by its descendant potentially actionable rules. A rule R′ : X ′ → Y ′ is a descendant rule of a rule
R : X → Y (R is also called an ancestor rule of R′) if we have Y = Y ′ and X ⊆ X ′.

4.1.12 Softness

To handle interestingness on mined patterns, an approach on soft constraints is proposed in [BB05].
The constraints are represented flexibly or as a ”soft function”. λ-interesting and top-k are two
different problems are considered in this technique.

Based on the fuzzy semiring, a soft constraint C [BB05] on itemsets is defined by a quintuple <
Agg, Att, θ, t, α >, where (i) Agg ∈ {supp,min, max, count, sum, range, avg, var,median, std,md},
(ii) agg will calculate on the attribute (Att), (iii) θ ∈ {≤,≥}, (iv) t ∈ < the center of the interval
(see Fig. 4.5), associated with the semiring value 0.5, (v) α ∈ <+ is the softness parameter or the
width of the interval.

Figure 4.5: Softness interval.

4.2 Pruning

4.2.1 Rule cover

A set of rules can be pruned by a rule cover with a user- and domain- independent way [TKR+95].
A rule cover3 is a subset of the original set of rules such that the cover matches all the rows that
the original set matches. Consider a collection Γ of rules with the same consequent Y :

Γ = Xi → Y |i = 1, ..., n

A subset ∆ ⊆ Γ is a rule cover, if
⋃

X→Y ∈Γ

m(XY ) =
⋃

X→Y ∈∆

m(XY )

∆ is called a structural rule cover for Γ if there is no rule X
′ → Y such that X

′ ∈ X for all rules
X → Y ∈ ∆. A structural cover is a cover and contains the most general rules of the original ruleset.
Given two rules R1 : AB → C and R2 : ABD → C. R2 has no additional predictive information
than R1 so one can prune R2 from the structural rule cover.

3The usage of the term cover is borrowed from database theory.
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4.2.2 Maximum entropy

An approach based on maximum entropy for removing redundant association rules is proposed
in [JS02]. A constraint C on a set of attributes I is a pair C = (I, p) where I ⊆ I, p ∈ [0, 1]. The
set of constraints generated by an association rule X → Y is defined as:

C(X → Y ) = {(X, sup(X)), (X ∪ Y, sup(X ∪ Y ))}

The maximum entropy distribution is computed by using the Generalized Iterative Scaling (GIS)
algorithm [Rat97]. Let C = {C1, C2, ..., Cn} be a set of constraints, where Ck = (Ik, pk), 1 ≤ k ≤ n.
GIS proceeds by assigning some initial values to each probability in P C , and iteratively updating
them until all the constraints are satisfied. Let P C(i) denote the distribution after i iterations.
Updating in each iteration is performed according to the formula (assuming that 0

0 = 0):

P C(i+1) = P C(i)
∏ [

pk

P C(i)(Ik)

] 1
C

Let C = {(X, sup(X)), (Y, sup(Y )), (X ∪ Y, sup(X ∪ Y ))}, X, Y ⊂ I, X ∩ Y = ∅ be a set of
constraints. The maximum entropy distribution induced by C is given in Tab. 4.1.

P C(X → Y ) Y Y

X sup(X∪Y )
nX∪Y

sup(X)−sup(X∪Y )
nX−nX∪Y

X sup(Y )−sup(X∪Y )
nY −nX∪Y

1−sup(X)−sup(Y )+sup(X∪Y )
|I|−nX−nY +nX∪Y

Table 4.1: Maximum entropy induced.

4.2.3 Relative interestingness

The interestingness of a given rule can be captured through the amount of change in information
relative to the common sense rules [HLL00][HLSL00]. Tab. 4.2 shows a rule structure with exception
[Suz97]. Exceptions are usually minority, either unknown/new or omitted. They represent a way
that contradicts the common belief. A common sense rule represents a common phenomenon that
comes with high support and confidence in a particular domain while an exception rule is weak in
terms of support but having high confidence similar to those common sense rule. A weak rule of low
support may not be a reliable.

The interestingness of a rule can be considered as a function with three parameters: support,
confidence and the knowledge about common sense rules. The knowledge of a rule XX ′ → Y is
composed of the knowledge of the two rules X → Y and X ′ → Y .

X → Y common sense rule
X ′ → ¬Y reference rule
XX ′ → ¬Y exception rule

Table 4.2: Rule structure for exceptions.
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4.2.4 Interestingness-based filtering

Interestingness criteria are used to select only the most interesting rules [AT01]. Subjective and
objective measures can be used as a part of this approach and the validation system can support
different interestingness criteria. The domain expert can specify interestingness-based filters using
a syntax similar to the syntax of the template-based filters (Sec. 4.2.8). For instance, the following
statement specifies that all the high gain and unexpected rules should be accepted.

ACCEPT : INTERESTINGNESS{gain > 0.5, unexpected}

4.2.5 Ranking subset of contingency table

By looking at a small set of contingency tables, a whole set of association rules can be ranked with
a desirable measure [TKS04]. A smaller set of contingency tables is provided to the expert for
ranking and this information is used to determine the most appropriate measure. A small subset of
contingency tables have to optimize the two following criteria: (i) small enough to rank manually,
(ii) large enough to choose to best measure, (iii) diverse enough. The subset is then computed by
the RANDOM or DISJOINT algorithms.

Fig. 4.6 shows the whole process of this technique. Let T be the set of all contingency tables
and S be the tables selected by a subset selection algorithm. A subset that minimizes the difference
between the similarity matrices computed from the subset SS (i.e. by using the Pearson’s cofficient)
and the entire set of contingency tables ST will be selected. The subset is then considered as a good
representative for T . The difference is determined as:

d(SS , ST ) = maxi,j |ST (i, j)− SS(i, j)|

4.2.6 Rule template

Rule templates [KMR+94], also called meta-rules, that describe the structure of interesting rules.
A set of rules is described by the template. Which items in the antecedent and the consequent is
determined clearly. A template is an expression

A1, ..., Ak → Ak+1

where Ai is an item, a class or an expression. A rule is considered interesting if it matches an
inclusive template, uninteresting if it matches a restrictive template.

Another specification language [LHWC99] allows to specify three levels of domain knowledge:
general impressions (i.e. a more generalized form of templates [LHC97]), reasonably precise concepts
and precise knowledge. This meta-knowledge allows them to classify the discovered association rules
into two categories: conforming and unexpected rules.

4.2.7 Uninteresting rules

A subjective approach is introduced in [Sah99] to find rules that are not interesting by eliminating a
substantial portion of uninteresting association rules discovered. The approach can be incorporated
into the mining process effectively [Sah02b]. The user can interact with a few and simple classification
questions. Four possible classifications are given in Tab. 4.3 For example, the rule Husband →
Married is classified as TNI because the word ”husband” has the meaning as a male partner in
marriage.
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Figure 4.6: Ranking subset of contingency tables.

4.2.8 Template-based rule filtering

Figure 4.7: The profile building process.

An approach called template-based rule filtering operator is developed in [AT01]. Fig. 4.7 shows
a model to illustrate. It allows the expert to specify in general terms the types of rules that he or
she either wants to accept (accepting template) or reject (rejecting template). After a template is
specified, unvalidated rules are ”matched” against it. Rules that match an accepting template are
accepted and put into user profiles, and rules that match a rejecting template are rejected. Rules
that do not match a template remain unvalidated.

The operator is formally defined as a language with various constraints that the expert can
impose on (Fig. 4.8): (i) the syntactic structure of the body (antecedent) and the head (consequent)
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Rule type Rule meaning

TNI True-Not-Interesting

NTI Not-True-Interesting

NTNI Not-True-Not-Interesting

TI/I True-Interesting/Interesting

Table 4.3: Rule classifications with a subjective measure.

of the rule, (ii) basic statistical parameters of the rule, (iii) the factual information about a user for
whom the rule was discovered.

template → action : tmpl expression
action → ACCEPT | REJECT
tmpl expression → atom tmpl | atom tmpl logic oper tmpl expression
atom tmpl → inverse pos atom tmpl
logic oper → AND | OR
inverse → ε | NOT
pos atom tmpl → rule | stats | facts
rule → rule part set oper { trans term list }
rule part → BODY | HEAD | RULE
stats → STATS { stat term list }
facts → FACTS { fact term list }
set oper → = | 6= | ⊂ | ⊆ | ⊃ | ⊇
trans term list → trans term | trans term , trans term list
trans term → attr term | aggr attr term
attr term → attr name | attr name compar oper value | attr name = value set
stat term list → stat term | stat term , stat term list
stat term → stat name | stat name compar oper stat value
stat name → supp | conf
. . . . . . . . .

Figure 4.8: A fragment of the template specification language.

4.2.9 Merging

Adjacent intervals of numeric values are merged, in a bottom-up manner with a modification of a
B-tree (M-tree, Fig. 4.9), to maximize the interestingness of a set of association rules [WTL98]. The
user specifies a template of the form C1 → C2 where C1 and C2 are conjunctions of uninstantiated
and instantiated attributes: (i) each attribute appears at most once in the template, (ii) C2 contains
only categorical attributes, and (iii) all numeric attributes are uninstantiated.

4.2.10 Correlation between objective measures and real human interest

An approach is proposed to compute the correlation between the interestingness values issued from
objective measures and the real human interest [CFE05]. Given a ruleset, each rule is assigned an
interestingness value. For each measure, all the discovered rules are ranked according to the value
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Figure 4.9: The leaf level of the M-Tree.

of that measure (from best value to worst value). Then an average rank is computed for each rule
by calculating the average rank value of each rule. See Tab. 4.4 for an example with five measures
and nine rules.

XXXXXXXXXRules
Measures Ranking

m1 m2 m3 m4 m5 Average

r1 1 2 1 1 7 2.4
r2 2 3 2 2 3 2.4
r3 3 1 4 3 5 3.2
r4 4 4 3 4 4 3.8
r5 5 6 5 5 2 4.6
r6 6 7 6 7 1 5.6
r7 7 5 7 6 6 6.2
r8 6 7 5 6 7 6.2
r9 5 7 7 6 6 6.2

Table 4.4: An example of average ranking.

The user is shown a set of 9 rules consists of three groups, each group has 3 rules: (i) the lowest
rank (highest interestingness values), (ii) the median ranks (average interestingness values), and (iii)
the highest ranks (lowest interestingness values). These 9 rules will then be assigned a subjective
degree of interestingness from the user. The correlation between the ranks and the subjective degree
of interestingness of these selected rules is then calculated by the Pearson’s coefficient.

4.3 Summarization

4.3.1 Direction setting

After pruning insignificant rules, a special subset of association rules that represents the underlying
relationship in the data is summarized [LHM99]. This subset is called direction setting (DS) rules
(see Fig. 4.10). DS rules are the positively correlated association rules that set the direction for
non-direction setting (DS) rules to follow. The essential aspects or relevant details can be viewed
efficiently.

4.3.2 GSE pattern

An approach with GSE patterns (i.e. General rule, Summary & Exception) is introduced in [LHH00].
A GSE pattern consists of three components: a single general rule (an if-then rule), a summary and
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Figure 4.10: The process of finding DS rules.

a set of exceptions. A general relation is illustrated by the general rule. Some important information
is highlighted by the summary. Unexpected rules with respect to the general rule is given in the set
of exceptions. It has the following form:

X → ci (sup, conf)
Summary
Except E1, ..., En

4.4 Grouping

4.4.1 Differentiating with support values

After have put the rules with the same consequent Y into a cover (Sec. 4.2.1), the set of rules in
the cover may still be quite large. Each corresponding set of rules (i.e. in a cover) can be made
more understandable by restructuring or ordering based on their interestingness values issued from
the support measure [AIS93a]. Such a method [TKR+95] calculates a different interval in support
values to grouping the rules .

General speaking, the distance between between two rules X → Y and X ′ → Y ′ is defined as
the amount of rows in the set of transactions to differ the two rules:

d(X → Y,X ′ → Y ′) = sup(XY ) + sup(X ′Y ′)− 2 ∗ sup(XY X ′Y ′)

4.4.2 Neighborhood

An approach in terms of neighborhood-based unexpectedness by using a syntax-based distance is
proposed in [DL98]. The distance function is defined to give different scales of importance for
different parts of rules to differentiate. It differentiates three parts: (i) the symmetric difference of
all items in the two rules, (ii) the symmetric difference of the antecedent of the two rules, (iii) the
symmetric difference of the consequent. The itemset distance between two rules R = X → Y and
R′ = X ′ → Y ′ – given three positive real numbers δ1, δ2, δ3 – is computed as:

d(R,R′) = δ1 ∗ |(XY )ª (X ′Y ′)|+ δ2 ∗ |X ªX ′|+ δ3 ∗ |Y ª Y ′|

where ª denotes the symmetric difference between two elements (e.g. X ª Y = X − Y ∪ Y −X).
The user can give its preferences by giving the values of δ1, δ2, δ3.

An r-neighborhood N (R, r) of a rule R (r > 0) is the following set of rules:

N (R, r) = {Ri|d(Ri, R) ≤ r,Ri : a potential rule, i > 0}

Three techniques are proposed to capture interesting rules: (i) unexpected confidence, (ii) sparse
neighborhoods, and (iii) collection of rules. Suppose M is the set of rules and R is a rule in M and
r > 0.
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(a) Unexpected confidence (b) Sparse neighborhoods

Figure 4.11: Interesting rules with r-neighborhood.

• A rule R is considered interesting with the unexpected confidence in its r-neighborhood if

||conf(R)− avg(R, r)| − std(R, r)| À 0

where avg(R, r), std(R, r) are the average confidence and the standard deviation of the set M∩
N(R, r)−{R} respectively. Fig. 4.11 (a) gives an example with five rules R1, ..., R5. We have
avg(R3, r) = 0.3175, sdt(R3, r) = 0.026. So conf(R3) - avg(R3, r) = 0.4325À std(R3, r)=0.026.

• A rule R is considered interesting (i.e. of the isolated type) if it has an unexpectedly sparse
r-neighborhood : N (R0, r) is large but |M ∩N(R0, r)| is relatively small. Fig. 4.11 (b) shows
that the r0-neighborhood of R1 and R2 can both be sparse neighborhoods. R1 is more sparse
than R2 if N (R1, r0 = N (R2, r0).

• Given two positive numbers r0 < r1. The r0-neighborhood of R0 has unexpected confidence
in its r1-neighborhood if (i) std(M ∩ N (R0, r0)) is small and (ii) N (R0, r0) is much larger or
smaller than avg(M ∩ (R0, r1)−N (R0, r0)).

4.4.3 Triple factors

Based on the agglomerative hierarchical clustering method for exploring interestingness, a new simi-
larity measure between two rules is proposed [Sah02a]. The measure integrates the features discussed
in the two sections Sec. 4.4.1 and Sec. 4.4.2. It seems to be more ”natural” according to the au-
thor because it can differentiate naturally two rules by a triple of factors such as their antecedents,
consequents and attributes. The difference between two rules R = X → Y and R′ = X ′ → Y ′ is
calculated as follows:

d(R, R′) = [1 + diff(X, X ′)] |X⊕X′|
|X∪X′| γ1+

[1 + diff(Y, Y ′)] |Y⊕Y ′|
|Y ∪Y ′| γ2+

[1 + diff(X ∪ Y, X ′ ∪ Y ′)] |(X∪Y )⊕(X′∪Y ′)|
|X∪Y ∪X′∪Y ′| γ3

where diff is a measure inspired from Sec. 4.4.1 to calculate the different proportion in supporting
each portion in a rule:

diff(X, Y ) = sup(X) + sup(Y )− 2 ∗ sup(X ∪ Y )

Also inspired from Sec. 4.4.2, the occurrences of the three parameters γ1, γ2 and γ3 reflect user
preferences.
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4.4.4 Average distance

To select the rules that have the highest predictive power, a method is proposed to select the k rules
that have the highest average distance between them [GB98]. The most heterogeneous set of rules
that is possible to has high predictive capabilities in the assumption (i.e. antecedent of a rule) will
be able chosen. Unlike the other works [KS96] [PS91] [MM95] [SA95] [ST96] [LHML99], the authors
do not try to measure the interestingness of a rule. The distance between two rules R = X → Y and
R′ = X ′ → Y ′ is based on three attribute factors: (i) the number of attributes (i.e. items) in one
rule and absent in the other, (ii) the number of attributes in both rules with overlapping4 values,
and (iii) the number of attributes in both rules with values slight or null overlapping.

d(R, R′) =

{
α1γ1+α2γ2−α3γ3

γ4
if β = 0

2 otherwise

where γ1 is the number of attributes in rule R and not in rule R′ plus the number of attributes
in rule R′ and not in rule R, γ2 is the number of attributes both in rule R and in rule R′, but with
slightly overlapping values (i.e. an overlapping is considered if it is bellow 66%), γ3 is the number
of attributes in both rules, with overlapping values (i.e. an overlapping is considered if it is above
66%), γ4 is the number of attributes in rule R plus the number of attributes in rule R′, and β is the
number of attributes both in rule R and in rule R′ but with non overlapping values.

Figure 4.12: Overlapping of an attribute.

Fig. 4.12 shows a case when an attribute has a overlapping zone with both R and R′. The
overlapping zone is an interval from 40 to 70. The overlapping percent for R is 70−40

70−20 = 30
50 = 60%.

The parameters γ1, γ2 and γ3 are weighted by constants α1, α2 and α3. The values of these
three constants are chosen as α1 = 1 and α2 = α3 = 2 to limit the measure value between −1 and
1. If the two rules have few attributes in common then the measure value is 1. The measure value
is 1 indicating that the rules overlap strongly. It returns a value of 2 when the rules do not overlap
absolutely.

4.4.5 Attribute hierarchy

A similarity measure using the notion of attribute hierarchies (i.e. a taxonomy of items) to find
similar rules among all the discovered rules is proposed [AT01]. At the beginning, the human
expert organizes an hierarchy of attributes/items. All the items are contained in the leaf nodes.
The leaf nodes are then combined into some non-leaf nodes or aggregated attributes. Leaf-nodes and
non-leaf nodes can also be combined into non-leaf nodes recursively (see Fig. 4.13 for an example).

The rules is then grouped by the following steps: specifying rule aggregation level, obtaining
aggregating rules, and grouping rules.

4This technique is very useful with the quantitative association rules.
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Figure 4.13: An attribute hierarchy.

4.4.6 Probability distance

A CMPB (Conditional Market-Basket Probability) distance between two rules R = X → Y and
R′ = X ′ → Y ′, based on a conditional probability, is proposed in a new agglomerative clustering
technique using multi dimensional scaling (MDS) and self organizing map (SOM) [GSG99]:

d(R,R′) = p((X ∪ Y ) ∨ (X ′ ∪ Y ′)|(X ∪ Y ) ∨ (X ′ ∪ Y ′))

= 1− sup(X∪Y ∪X′∪Y ′)
sup(X∪Y )+sup(X′∪Y ′)−sup(X∪Y ∪X′∪Y ′)

4.5 Visualizing

4.5.1 Rule visualizer

RuleVisualizer is a prototype tool for visualizing the association rules with the aid of templates [KMR+94].
The tool consists of three components: selection, browsing and graph. The first component (Fig.
4.14 (a)) specifies the criteria for rules to be presented: support, confidence and commonness. The
other two components (Fig. 4.14 (b)(c)) present rule visually. A single rule is presented by a bar
graph: the leftmost and rightmost bars represent the confidence and support of the rule while the
middle bar represents the commonness. Several rules can be visualized simultaneously.

4.5.2 Human-centered rummaging

A rummaging model is proposed to let the user navigate/interacts as he/she wishes through the
voluminous ruleset [BGB03b] [BGB03a]. It focuses on the successive limited subsets of association
rules to explore (see Fig. 4.16). A series of local explorations by trial and error through the whole
ruleset from which only the selected portion is gradually visited. The rules are grouped by subsets
and combined by the neighborhood relation (see Fig. 4.15).

4.6 Representative measures

Instead of selecting only one measure as discussed in the approach of ranking a subset of contingency
tables [Sec. 4.2.5], a set of objective measures called representative measures, representing different
point of views on the datasets are captured [HGB06b]. Our approach is a pruning technique [Sec.
4.2] for the postprocessing of association rules.

Three data analysis techniques are used to illustrate: agglomerative hierarchical clustering
(AHC), partitioning around medoids (PAM) [KR90], and correlation graph (CG). Each of these
techniques is used as a means for achieving the results.

These three techniques are used with a q×q dissimilarity matrix, where d(i, j) = d(j, i), measuring
the difference or dissimilarity between two measures mi and mj . AHC finds the most similar clusters
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(a) Selection

(b) Browsing (c) Graph

Figure 4.14: RuleVisualizer prototype.

according to the average linkage method. PAM, is more robust than the k-means method, is to find
a subset m1, m2, ...,mk ⊂ 1, ..., q which minimizes the objective function

∑q
i=1 mint=1,...,kd(i,mt).

CG, is a new approach implemented in the ARQAT tool (Chap. 5) while the results issued from
AHC and PAM are illustrated with the R5 tool.

4.6.1 Dissimilarity between measures

Let R(D) = {r1, r2, ..., rp} denote input data as a set of p association rules derived from a dataset
D. Each rule X → Y is described by its itemsets (X,Y ) and its cardinalities (n, nX , nY , nXY ).
Let M be the set of q available measures for our analysis M = {m1,m2, ..., mq}. Each measure
is a numerical function on rule cardinalities: m(X → Y ) = f(n, nX , nY , nXY ). For each measure
mi ∈M, we can construct a vector mi(R) = {mi1, mi2, ..., mip}, i = 1..q, where mij corresponds to
the calculated value of the measure mi for a given rule rj .

We can then have a matrix (p× q) of interestingness values:

µ =




m11 m12 . . . m1q

m21 m22 . . . m2q

. . . . . . . . . . . .

mp1 mp2 . . . mpq




5http://www.r-project.org/
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(a) Local exploration (b) Neighborhood navigation

Figure 4.15: The neighborhood relation for rummaging.

(a) Specialization and generalization (b) Metaphor

Figure 4.16: Visualization with the ARVis platform.

Definition 4.6.1 (Similarity). The similarity µ between two measures mi and mj is determined by
the absolute correlation value calculated from a Pearson’s, Spearman’s or Kendall’s coefficient ρ.

µ(mi,mj) = |ρ(mi,mj)|

Definition 4.6.2 (Dissimilarity). The dissimilarity ψ between two measures mi and mj is defined
by:

ψ(mi,mj) = 1− µ(mi,mj) = 1− |ρ(mi,mj)|

As correlation is symmetrical, the q(q−1)
2 dissimilarity/similarity values can be stored in one half

of a matrix q × q.
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ψ =




ψ11 ψ12 . . . ψ1q

ψ21 ψ22 . . . ψ2q

. . . . . . . . . . . .

ψq1 ψq2 . . . ψqq




with: ψii = 0, and ∀(i, j), i 6= j, ψij ≥ 0, ψij = ψji

Example. Given three measures m1, m2, m3 and five association rules r1,r2,r3,r4,r5. The inter-
estingness of each rules with respect to each measure is illustrated the left partial table (Tab. 4.5).
The dissimilarity values calculated between each couple of measures from the Pearson’s coefficient
are presented in the right partial table (Tab. 4.5). The dissimilarity values can be illustrated in a
half of 3× 3 table in which the dissimilarity of the measure with itself is zero.

R(D) m1 m2 m3

r1 0.84 0.89 0.91
r2 0.86 0.90 0.93
r3 0.88 0.94 0.97
r4 0.94 0.95 0.99
r5 0.83 0.87 0.84

ψij m1 m2 m3

m1 0.09 0.14
m2 0.04
m3

Table 4.5: Dissimilarity values for three interestingness measures and five association rules.

4.6.2 AHC

Fig 4.17 illustrates a result obtained from a ruleset with a subset of 35 measures. The horizontal line
goes throughout the cluster dendrogram has the small dissimilarity 0.15 determining the clusters of
measures having strong relation. The user can intuitively choose a representative measure among the
measures in a cluster. Intuitively, the user can choose the biggest cluster contains the measures Lift,
Rule Interest, Phi-Coefficient, Kappa, Similarity Index, Putative Causal Dependency, Dependency,
Klosgen, Pavillon for their first choice. In this cluster we can easily see two strong related clusters
with four measures for each. This cluster gives the strongest effect on evaluation the similarity
between two parts of an association rule. Another observation illustrates the existence of a confidence
cluster with Causal Confidence, Causal Confirmed-Confidence, Laplace, Confidence, Descriptive
Confirmed-Confidence. The user can then select this cluster to discover all the rules have the effect
of high confidence.

The hierarchical structure also allows the user clearly seeing the clusters of measures that are
connected closely with the hierarchical level computed.

4.6.3 PAM

The PAM clustering results are illustrated by three figures. The first one (Fig. 4.18) presents
the results under a graphical form by projecting the measures according to the two principal axes
obtained by a principal component analysis (PCA) [LMF82]. Each measure is presented by a symbol;
each cluster, by a number. In spite of the deformation by projection, this visualization is very useful
to have a synthetic view of the clustering. This graphical presentation is also useful to validate the
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Figure 4.17: Clusters of measures with AHC on a ruleset.

choice of the number k of clusters, for example here k = 16 (the choice of these sixteen clusters is
issued from the preliminary work presented in [HGB05c]).

Tab. 4.6 provides the obtained clusters and their medoids/representative measures. Tab. 4.7
details the numerical characteristics of the clusters. One can see that cluster 1 (Causal Confidence,
Causal Confirmed-Confidence, Confidence, Descriptive Confirmed-Confidence, Laplace) and cluster
2 (Causal Confirm, Descriptive Confirm, Example & Contra-Example, Least Contradiction) are the
largest and the least separated from the others since they have the lowest separation values (column
6, Tab. 4.7). Thus, the measures of these two clusters offer a very close point of views on the rules.
This proximity is confirmed by observing the measures constitute these two clusters, as one can
find the measures derived from the confidence measure. Furthermore, when observing the diameter
(column 5, Tab. 4.7), we remark that cluster 1 is smaller than cluster 2. As a result, the measures
of cluster 1 offer a more similar point of view on the rules than those of cluster 2. The clusters 5
(Conviction), 14 (Sebag-Schoenaueur), and 15 (Support) are constituted from only one measure and
have the greatest values of separation. They illustrate a very different point of view on the studied
rules.

4.6.4 Correlation graph

The third one is a graph-based view of the correlation matrix [HGB05b] [HGB06d] [HGB06c]. As
graphs are a good means to offer relevant visual insights on data structure, the correlation matrix
is used as the relation of an undirected and valued graph, called ”correlation graph”. In a correla-
tion graph, a vertex represents a measure and an edge value is the correlation value between two
vertices/measures. We also add the possibility to set a minimal threshold τ (maximal threshold
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Figure 4.18: Measures and clusters projected on the two principal axes of a PCA. The measures are
presented by the symbols and the clusters are represented by the numbers.

θ respectively) by absolute value to retain only the edges associated with a high correlation (re-
spectively low correlation). When considering a large set of measures, the graph-based view of the
correlation matrix may be quite complex. In order to highlight the more ”natural” clusters, we
propose to construct two types of subgraphs : the correlated (CG+) and the uncorrelated (CG0)
partial subgraph. In this section we present the different filtering thresholds for their construction.
We also extend the correlation graphs to graphs of stable clusters (CG0 and CG+) in order to
compare several rulesets (see Chap. 7).

These two subgraphs can then be processed in order to extract clusters of measures: each cluster
is defined as a connected subgraph. In CG+, each cluster gathers correlated or anti-correlated
measures that may be interpreted similarly: they deliver a close point of view on data. Moreover,
in CG0, each cluster contains uncorrelated measures, i.e. measures that deliver a different point of
view. Hence, as each graph depends on a specific ruleset, the user can use the graphs as data insight,
which graphically help him/her select the minimal set of the measures best adapted to his/her data.
If a CG+ graph contains twelve clusters on 36 measures, the user can select the most representative
measure in each cluster, and then retain it to validate the rules.

In order to make the interpretation of the large set of correlation values easier, we introduce the
following definitions:

Definition 4.6.3 (τ -correlated/θ-uncorrelated). Two measures mi and mj are τ -correlated with
respect to the dataset D if their absolute correlation value is greater than or equal to a given
threshold τ : |ρ(mi,mj)| ≥ τ . And, conversely, two measures mi and mj are θ-uncorrelated with
respect to the dataset D if the absolute value of their correlation value is lower than or equal to a
threshold value θ: |ρ(mi,mj)| ≤ θ.
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N◦ Name of measures Representative measure

1 Causal Confidence, Causal Confirmed-Confidence, Causal Confirmed-Confidence
Confidence, Descriptive Confirmed-Confidence, Laplace

2 Causal Confirm, Descriptive Confirm, Example & Contra-Example
Example & Contra-Example, Least Contradiction

3 Causal Support,Kappa, Lerman, Phi-Coefficient, Phi-Coefficient
Rule Interest, Yule’s Q, Yule’s Y

4 Collective Strength Collective Strength
5 Conviction Conviction
6 Cosine, Jaccard Jaccard
7 Dependency, Gini-index, J-measure J-measure
8 EII, EII 2, IPEE EII 2
9 II II
10 Klosgen, Pavillon, Putative Causal Dependency Klosgen
11 Lift Lift
12 Loevinger Loevinger
13 Odds Ratio Odds Ratio
14 Sebag & Schoenauer Sebag & Schoenauer
15 Support Support
16 TIC TIC

Table 4.6: Clusters of the measures obtained with PAM.

For θ-uncorrelated measures, we use a statistical test of significance by choosing a level of sig-
nificance of the test α = 0.05 for hypothesis testing (common values for α are: α = 0.1, 0.05, 0.005).
The threshold θ is then calculated by the following formula: θ = 1.960/

√
p in a population of size p

[Ros87]. The assignment τ = 0.85 of τ -correlated is used because this value is widely acceptable in
the literature.

Figure 4.19: An illustration of the correlation graph.

As the correlation coefficient is symmetrical, the q(q − 1)/2 correlation values can be stored in
one half of the table q× q. This table (M×M) can also be viewed as the relation of an undirected
and valued graph called correlation graph, in which a vertex value is a measure and an edge value is
the correlation value between two vertices/measures. For instance, Fig. 4.19 can be the correlation
graph obtained on five association rules R(D) = {r1, r2, r3, r4, r5} extracted from a dataset D and
three measures M = {m1,m2,m3} whose values and correlations are given in Tab. 4.8.

4.6.5 Correlated versus uncorrelated graphs

Unfortunately, when the correlation graph is complete, it is not directly human-readable. We need
to define two transformations in order to extract more limited and readable subgraphs. By using
definition 4.6.3, we can extract the correlated partial subgraph (CG+): the subgraph composed of
edges associated with a τ -correlated. On the same way, the uncorrelated partial subgraph (CG0)
where we only retain edges associated with correlation values close to 0 ( θ-uncorrelated).

These two partial subgraphs can then be used as a visualization support in order to observe the
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N◦ Size Maximal distance Average distance Diameter Separation

1 5 0.01705323 0.01260525 0.0641897 0.08648391
2 4 0.11602732 0.05102810 0.1267685 0.08648391
3 7 0.12459517 0.04592671 0.2599846 0.05986472
4 1 0.00000000 0.00000000 0.0000000 0.29375570
5 1 0.00000000 0.00000000 0.0000000 0.36002724
6 2 0.03107980 0.01553990 0.0310798 0.13697222
7 3 0.06636710 0.03336282 0.1212970 0.08094671
8 3 0.10800499 0.04583550 0.1251634 0.13059529
9 1 0.00000000 0.00000000 0.0000000 0.20598756
10 3 0.04345866 0.02029654 0.0548010 0.06509976
11 1 0.00000000 0.00000000 0.0000000 0.05986472
12 1 0.00000000 0.00000000 0.0000000 0.11382888
13 1 0.00000000 0.00000000 0.0000000 0.33963367
14 1 0.00000000 0.00000000 0.0000000 0.36002724
15 1 0.00000000 0.00000000 0.0000000 0.42706165
16 1 0.00000000 0.00000000 0.0000000 0.19300332

Table 4.7: The supplementary information obtained on the clusters of a ruleset.

R×M m1 m2 m3

r1 0.84 0.89 0.91
r2 0.86 0.90 0.93
r3 0.88 0.94 0.97
r4 0.94 0.95 0.99
r5 0.83 0.87 0.84

M×M m1 m2 m3

m1 0.91 0.86
m2 0.96
m3

Table 4.8: Correlation values for three measures and five association rules.

correlative liaisons between measures. We can also observe the clusters of measures corresponding
with the connected parts of the graphs.

4.7 Summary

Postprocessing of association rules is a difficult stage in the KDD process. A huge amount of rules
in which the number of useful rules in point of view of the user is large. So the postprocessing task
plays an important role to help the user focus on the most interesting ones. Fives such principal
tasks are divided into groups: constraints, pruning, grouping, summarization and visualization.



Chapter 5

ARQAT tool

In this chapter, we present a new tool ARQAT to study the specific behavior of a set of objective
measures in the context of several specific datasets and in an exploratory data analysis perspective.
The tool implements 14 graphical and complementary views structured on 5 levels of analysis: ruleset
analysis, correlation and clustering analysis, most interesting rules analysis, sensitivity analysis, and
comparative analysis. The tool is described and illustrated on several datasets in order to show the
interest of both the exploratory approach and the use of complementary views.

5.1 Principles

ARQAT (Fig. 5.1) is an exploratory analysis tool that embeds 40 objective measures (extended to
60 objective measures) studied in surveys (See Tab. 3.1 Chap. [3] for a complete list of selected
measures). It provides graphical views structured in five task-oriented groups: ruleset analysis, cor-
relation and clustering analysis, most interesting rules analysis, sensitivity analysis, and comparative
analysis.

The ARQAT input is a set of association rules R and a set of objective measures M. Each
association rule X → Y must be associated with the four cardinalities n, nX , nY , and nXY . More
precisely, n is the number of transactions, nX (respectively nY ) the number of transactions satisfying
the itemset X (respectively Y ), and nXY is the number of transactions satisfying X ∩ Y (negative
examples).

In the first stage, the input ruleset is preprocessed in order to compute the interestingness
values of each rule, and the correlations between all measures pairs. The results are stored in two
tables:

• an interestingness table (R×M) where rows are rules and columns are interestingness mea-
sures,

• and a correlation matrix (M×M) crossing measures.

At this stage, the ruleset may also be sampled (filtering box in Fig. 5.1) in order to focus the
study on a more restricted subset of rules.

In the second stage, the data-analyst can drive the graphical exploration of results through a
classical web-browser. ARQAT is structured in five groups of task-oriented views.

53
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Figure 5.1: ARQAT structure.

• The first group (1 in Fig. 5.1) is dedicated to ruleset and simple interestingness statistics to
better understand the structure of the measure table (R×M).

• The second group (2) is oriented to the study of measure correlation in table (M×M) and
measure clustering in order to select the most suitable measures.

• The third group (3) focuses on rule ordering to select the most interesting rules.

• The fourth group (4) proposes to study the sensitivity of measures.

• The last group (5) offers the possibility to compare the results obtained from different rulesets.

5.2 Modules

ARQAT is composed of three principal submodules: preprocessing, evaluation, and display (Fig.
5.2). Besides these three principal modules, there are the other two support modules: utility and
graph. The Utility module supports the above modules to simplify the input/output facilities and
some helpful manipulations. The Graph module helps the results issued from this tool to view the
clusters obtained in a web browser. The ARQAT model is followed the framework (d) introduced
in Fig. 1.2 - [Chap. 1].
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Figure 5.2: ARQAT modules.

5.3 Preprocessing

The preprocessing module (Fig. 5.3) firstly filters the input ruleset to have its list of cardinalities
f(n, nX , nY , nXY ). From these cardinalities, a list of interestingness values is computed with the
help of objective measures. The interestingness values are then calculated and used to sampling
the original ruleset to have a corresponding sample ruleset. The sample ruleset contains itself a set
of most interesting rules where the number of rules is strongly less than the original ruleset. The
sample rulesets are used to conduct a comparative study.

Figure 5.3: Preprocessing of rulesets.

5.3.1 Filtering

A ruleset, normally, has two files to identify its information achieved. The first one is an item names
containing the support count [AIS93a] for each itemset with own name. The second one is usually a
list of rules and contains some supplementary information for each rule (i.g. the support count for
the rule). The other information, for example, are the interestingness values computed from some
restricted objective measures (i.e. about five objective measures) such as the support count lift,
support, confidence,.... We are not interested in these few interestingness values and recalculate all
of them in the later stage for a more general analysis with 40 objective measures.

The input rulesets can be in the formats such as CSV, PMML, ARFF files. The cardinality set
obtained is issued normally in the CSV format.
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Figure 5.4: The filtering module.

5.3.2 Interestingness calculation

Each ruleset with its list of four cardinalities (n, nX , nY , nXY ) is then calculated by an objective
measure. The value obtained is called an interestingness value and stored in an interestingness set.
The interestingness set is then sorted to have a rank set. The elements in the rank set is ranked due
to its corresponding interestingness values. The higher the interestingness value the higher the rank
obtained.

The other two necessary set are also created. The first set is an order set. Each element of the
order set is an order mapping f : 1 → 1 for each element in the corresponding interestingness set.
The value set contains the list of interestingness values correspond to the position of the elements
int the rank set (i.e. mapping f : 1 → 1).

For example, with 40 objective measures, one can obtain 40 interestingness sets, 40 order sets,
40 rank sets and 40 value sets respectively (see Fig. 5.5). Each dataset type is saved in a corre-
sponding folder. For instance, all the interestingness sets are stocked in an folder with the name
INTERESTINGNESS. The other three folder names are ORDER, RANK and VALUE.

Figure 5.5: The calculation module.
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5.3.3 Sampling

Definition 5.3.1 (Sample set). The sample set is defined as a union of the k most interesting rules

of each objective measure.

SampleSet =
i=q,j=p⋃

i=1,j=1

rij{rank(rij) ≤ k}

where q is the number of objective measures, p is the number of association rules. k is a parameter
given by the user to quantify the interval of most interesting rules. The rule rank corresponds to
the inversely statistical rank (i.e. the first most interesting rule has the rank of ”1”).

Figure 5.6: The sampling module.

5.4 Evaluation

5.4.1 Basic statistics

Ruleset characteristics

Each characteristic type is determined by a string representing its equation respectively. The purpose
is to show the distributions underlying rule cardinalities, in order to detect ”borderline cases”.
For instance, Tab. 5.1 gives 16 necessary characteristic types in our study in which the first line
gives the number of ”logical” rules (i.e. rules without negative examples). The percentage of each
characteristic type in the ruleset is also computed.

Initially, the counter of each characteristic type is set to zero. Each rule in the ruleset is then
examined by its cardinalities to match the characteristic types. The complexity of the algorithm is
linear O(p).
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N◦ Type

1 (nXY = 0)
2 (nX = nXY ) ∧ (nY 6= nXY ) ∧ (n 6= nY )
3 (nY = nXY ) ∧ (nX 6= nXY ) ∧ (n 6= nX)
4 (nX = nXY ) ∧ (nY = nXY ) ∧ (n 6= nX)
5 (nX = n) ∧ (nY 6= n)
6 (nY = n) ∧ (nX 6= n)
7 (nX = n) ∧ (nY = n)
8 (nX < nY )
9 (nX < nY /2)
10 (nX < nY /4)
11 (nX < nY /6)
12 (nX < nY /8)
13 (nX < nY /10)
14 (nX == nY )
15 (nXY == nX/2)
16 (nXY == (nX ∗ nY )/2

Table 5.1: Characteristic types (remind that nXY = nX − nXY ).

Figure 5.7: Evaluating some characteristics of a ruleset.

Histogram

To draw the histogram for each measures from its interestingness values, we used the JFreeChart
package1. We added to this package a new histogram, namely inversely cumulative distribution, to
explore the sensitivity concept (Sec. 5.4.1) proposed in our study. Tab. 5.2 gives an example with
the four histogram types mentioned above.

Definition 5.4.1 (Cumulative distribution). A cumulative distribution is a plot whose heights

shows the proportion of data values that are smaller than or equal to any given number [Ros87].

This concept it is quite related with the well-known histogram representation.

For our purpose, we take inversely the cumulative distribution representation in order to show
1http://www.jfree.org/jfreechart/index.php
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```````````Histogram
Bins

1 2 3 4 5 6 7 8 9 10

Frequency 7 1 12 9 20 30 70 9 2 65

Relative frequency 0.031 0.004 0.053 0.040 0.88 0.133 0.311 0.040 0.008 0.288

Cumulative 7 8 20 29 49 79 149 158 160 225

Inverse cumulative 225 218 217 205 196 176 146 76 67 65

Table 5.2: Frequency and inverse-cumulative in bins.

Figure 5.8: Frequency and inverse-cumulative histograms of the Lift measure.

the number of rules that have been ranked higher than an eventually specified minimum threshold.
Intuitively, the user can see exactly the number of rules that he will have to deal with in the case in
which he/she will choose a particular value for the minimum threshold.

The number of bins are directly dependent of the dataset size p. It is generated by the following
Sturges formula:

BinWidth =
Max−Min

SturgesFormula
with Sturges Formula = 1 + 3.3 ∗ log(p)

Distribution

Statistical significance Symbol Formula

Min min min(vi)
Max max max(vi)

Mean mean
∑p

i=1 vi

p

Variance var
∑p

i=1(vi−mean)2

p−1

Standard deviation std
√

var

Skewness skewness
∑p

i=1(vi−mean)3

(p−1)×std

Kurtosis kurtosis
∑p

i=1(vi−mean)4

(p−1)×var2 − 3

Table 5.3: Some statistical indicators on a measure m.

The distribution of each measure can be useful to the users. From this information the user can
have a quick evaluation on the ruleset. Some significant statistical characteristics about minimum
value, maximum value, average value, standard deviation value, skewness value, kurtosis value are
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computed (Tab. 5.3). The shape information of the last two arguments are also determined. In
addition, the histograms like frequency and inverse cumulative are also drawn (see Sec. 5.4.1).

Assume that R is the set of p association rules. Each association rule ri (i = 1..p) has an
interestingness value vi computed from a measure m.

Sensitivity

The sensitivity of an interestingness measure is referred at the number of most interesting rules that
an interested user should have to analyze, and if these rules are still well distributed (have different
assigned ranks), or all have ranks equal to the maximum assigned value for the specified data set.
Tab. 5.4 shows a structure to be evaluated by the user.

rank measure
inverse-cumulative bins

histogram best rules
1 2 3 . . .

Table 5.4: Sensitivity structure.

Average

Due to the fact that the number of bins is not the same when we have many rulesets to evaluate the
sensitivity, so the number of rules that returned in the last interval also has not the same significance.
Assume that the total number of measures to rank is fixed, the average ranks is used. The latter
one is calculated according to the rank of each measure obtained from each ruleset. A weight can
be assigned to each ruleset to favorite the level of importance, given by the user.

We use the average ranks to rank the measure over a set of rulesets based on the sensitivity
values computed. The complement rulesets are benefited from this evaluation.

rank measure
ruleset 1 ruleset 2 . . .

avg. rank
rank first bin last bin image best rule . . . . . .

Table 5.5: Average structure to evaluate sensitivity on a set of rulesets.

An average structure (see Tab. 5.5) is constructed to have a quick evaluation on a set of rulesets.
Each row represents a measure. The first two columns are represent the current rank of the mea-
sure. For each ruleset, the rank, first bin, last bin, image and best rule assigned for each measure
are represented. A remark is that the first and last bins are taken from the inversely cumulative
distribution. The last column is the average rank of each measure calculated from all the rulesets
studied.

Scatterplot

The purpose of this technique is to check the pairwise relationships between variables.
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Figure 5.9: Drawing scatterplot view.

Definition 5.4.2 (Scatterplot matrix). Given a set of variables, the scatterplot matrix contains all

the pairwise scatter plots of the variables on a single page in a matrix format. That is, if there are

variables, the scatterplot matrix will have rows and columns and the row and column of this matrix

is a plot of versus.

In ARQAT, both the scatterplots on value and on rank are drawn to give a more insight into the
intuitive view between each of the pairwise of any couple of measures.

(a) On value (b) On rank

Figure 5.10: An example of two scatterplots on the ruleset Mushroom.

5.4.2 Correlation analysis

Correlation

To compare the measures, we calculate all the correlations between the studied measures using the
Person’s, Spearman’s or Kendall’s coefficient (Fig. 5.11). The correlation values are stocked in a
square matrix as given in Tab. 5.6.

• Pearson’s coefficient
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Figure 5.11: Computing correlation values.

m1 m2 . . . mq

m1 0 v1,2 . . . v1,q

m2 0 . . . v2,q

. . . 0 . . .
mq 0

Table 5.6: Matrix of correlation values.

The correlation value between any two measures mi,mj{i, j = 1..q} on the set of rules R is
calculated by using a Pearson’s correlation coefficient ρ(mi,mj) [Ros87], where mi, mj are the
average values calculated of vector mi(R) and mj(R) respectively:

ρP (mi,mj) =
∑p

k=1[(mik −mi)(mjk −mj)]√
[
∑p

k=1(mik −mi)2][
∑p

k=1(mjk −mj)2]
(5.4.1)

R×M m1 m2 m3

r1 0.95 0.97 0.10
r2 0.80 0.91 0.30
r3 0.87 0.91 0.94
r4 0.90 0.80 0.94
r5 -0.60 0.70 0.95

M×M m1 m2 m3

m1 0.83 -0.42
m2 -0.73
m3

Table 5.7: Pearson’s values for three measures and five association rules.

• Spearman’s coefficient

The correlation value between any two objective measures mi,mj , {i, j = 1..q} on a ruleset
R will be calculated by using the Spearman’s rank correlation coefficient ρS [LD98]. The
Spearman coefficient uses the ordering of the two interestingness values.
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ρS(mi,mj) =
∑p

k=1[(mik −mi)(mjk −mj)]√
[
∑p

k=1(mik −mi)2][
∑p

k=1(mjk −mj)2]
(5.4.2)

where mi, mj are the average ranks calculated from vectors mi(R) and mj(R) respectively. mik

and mjk are the ranks of the rule rk with respect to the two interestingness values calculated
from the measures mi, mj respectively.

Interestingness values

R(D) m1 m2 m3

r1 0.95 0.97 0.10
r2 0.80 0.91 0.30
r3 0.87 0.91 0.94
r4 0.90 0.80 0.94
r5 -0.60 0.70 0.95

⇒

Ranks

R(D) m1 m2 m3

r1 5 5 1
r2 2 4 2
r3 3 4 4
r4 4 2 4
r5 1 1 5

⇒

Correlation values

M×M m1 m2 m3

m1 0.67 -0.67
m2 -0.92
m3

Table 5.8: Spearman’s values for three measures and five rules.

If there are no ties2 in the rankings3:

ρS(mi, mj) = 1− 6
p(p2 − 1)

p∑

k=1

d2
k (5.4.3)

If there are ties:

ρS(mi, mj) =
p(p2−1)

6 −∑p
k=1 d2

k − 1
12Tu − 1

12Tv√
(p(p2−1)

6 − 2Tu)(p(p2−1)
6 − 2Tv)

(5.4.4)

where dk (k = 1..p) is the difference in statistical rank between the two objective measures mi

and mj for the same association rule rk. Tu = 1
12

∑
tu(t2u−1), Tv = 1

12

∑
tv(t2v−1), the rank of

rule ru is a tie and tu is the number of tie beginning from the position u {u = 1..p} of the ranking
issued from mi (v, tv, mj respectively). The range of ρS(mi,mj) is −1 ≤ ρS(mi,mj) ≤ 1.

• Kendall’s coefficient

The correlation value between any two objective measures mi,mj , {i, j = 1..q} on a ruleset R
will be calculated by using the Kendall’s rank correlation coefficient ρK [LD98]. The Kendall
coefficient uses the ordering of the two interestingness values.

Considering all pairs of objective measure values (mik,mjk) and (mit,mjt) {k, t = 1..p} com-
puted from two rules rk and rt . A pair is called:

- concordant if (mik < mjk and (mit < mjt)) or (mik > mjk and (mit > mjt)), and

- discordant if (mik < mjk and (mit > mjt)) or (mik > mjk and (mit < mjt)).

2Tie: equal value.
3Five possible methods can be used: average, first, min, max, and random (here we use the max method). It

is usually arranged in a decreasing order (or may be in an increasing order). In the experiment results, we use the
increasing order to give a clear and ”natural” view to the user.
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where mik, mjk, mit, mjt (i, j = 1..m, k, t = 1..p) are the interestingness values of the objective
measures mi and mj for the association rules rk, rt respectively.

The Kendall rank correlation coefficient value ρK is then calculated as:

ρK(mi,mj) =
nconcordant − ndiscordant

p(p−1)
2

(5.4.5)

where nconcordant, ndiscordant, are the number of concordant and discordant pairs respectively.
p is the number of association rules. The range of ρK(mi,mj) is −1 ≤ ρK(mi,mj) ≤ 1.

If mik = mjk or mit = mjt or both (i.e., a tie). Ties are not counted as concordant or discor-

dant. The dominator

(
p

2

)
= p(p−1)

2 will be replaced by

√√√√
[(

p

2

)
− tu

]
×

[(
p

2

)
− tv

]

when there is a large number of ties, where tu (tv respectively) is the number of ties involving
u (v respectively).

Interestingness values

R(D) m1 m2 m3

r1 0.95 0.97 0.10
r2 0.80 0.91 0.30
r3 0.87 0.91 0.94
r4 0.90 0.80 0.94
r5 -0.60 0.70 0.95

⇒

Ranks

R(D) m1 m2 m3

r1 5 5 1
r2 2 4 2
r3 3 4 4
r4 4 2 4
r5 1 1 5

⇒

Correlation values

M×M m1 m2 m3

m1 0.53 -0.53
m2 -0.89
m3

Table 5.9: Kendall’s values for three measures and five rules.

(0.95, 0.97) (0.80, 0.91) (0.87, 0.91) (0.90, 0.80) (-0.60, 0.70)

( 0.95, 0.97) – • • • •
( 0.80, 0.91) – – ◦ •
( 0.87, 0.91) – ◦ •
( 0.90, 0.80) – •
(-0.60, 0.70) –

Table 5.10: An example of concordant and discordant between the pairs of interestingness values
computed from two objective measures m1 and m2 (< • >: concordant, < ◦ >: discordant).

So that: ρK(m1,m2) = 7−2√
(10−0)(10−1)

= 5√
90

= 0.53

Line chart

From a pair of a rule and its corresponding interestingness value or rank, we draw a line chart to
focus on the most interesting zone concentrated by a set of rules.
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Figure 5.12: An example of a line chart on Mushroom ruleset.

Summary

Summary is a structure created to hold the correlation value between each pair of measures and
more interestingly, its cluster type (e.g. τ -cluster or θ-cluster). The number of lines (couple of
measures) in a summary is n(n−1)

2 . The first two columns are the names of the measure pair.
The next three columns are the correlation value calculated from the three well-known correlation
coefficients Pearson, Spearman and Kendall (shortly P, S and K). The next three columns (PS, PK,
and SK) are the stable clusters computed from the precedent three correlation values on each couple
of coefficients. the last column is the stable cluster computed from the over all the three coefficients
P, S and K.

Figure 5.13: Summary scheme.

Measure 1 Measure 2 P S K PS PK SK PSK

Figure 5.14: A summary structure (P: Pearson, S: Spearman, K: Kendall).

Consider two measures namely Causal Confidence and Causal Confirm with their correlation
values calculated from the P, S and K coefficients are 0.89, 0.84, 0.88 respectively. Easily, we
can determine these three correlation values will determine three corresponding τ -clusters with a
τ theshold = 0.85. Then we have PS, SK, PSK are neither a τ -cluster nor a θ-cluster but PK
is a τ -cluster. The average value calculated are PS = 0.89+0.84

2 = 0.87, PK = 0.89+0.88
2 = 0.89,

SK = 0.84+0.88
2 = 0.86, PSK = 0.89+0.84+0.88

3 = 0.87. Although the four average values are all
greater than the τ -threshold but there is only PK is a τ -cluster.
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Measure1 Measure 2
P S K PS PK SK PSK

value cluster . . . . . .

Figure 5.15: Stable combinations with correlation values (P: Pearson, S: Spearman, K: Kendall).

Figure 5.16: Summary scheme extracted from a ruleset (A lighter color box shows a τ -cluster, the
otherwise a black box is a θ-cluster).

Clustering

From the summary table discovered from each single ruleset (see also the synthesis subsection in Sec.
5.4.3), we find the connected components to form clusters. There are two types of clusters: τ -cluster
(correlated) and θ-cluster (uncorrelated). The information from each column of a summary (P, S,
K, PS, PK, SK, PSK) is considered to group the measures into the corresponding cluster types. So
that, with a summary we have 2× 7 = 14 cluster tables.

Matrix

The user has supplied three ways to intuitively evaluate the relation between each pair of measures.
The first one is a significant matrix, represented by different colors assigned for each level of signifi-
cance, to give an overview of the entire relation. The second one is a value matrix in which is pair of
measures is computed by a coefficient or an average value. The third one gives a matrix with each
cell is a scatterplot image. With the latter one, the user can have a quick comparison between the
correlation value calculated with the cloud of pixels formed by the two measures. The latter is also
implemented to resolve the gap between a correlation value and its scatterplot form.
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Figure 5.17: Clustering measures.

For the combination of coefficient (PS, PK, SK or PSK), a combination of value and cluster type
is given in Fig. 5.18. These combinations are made on the value but not on the image (scatterplot).

Figure 5.18: Combination of cluster type for a cell in a matrix ([b] and [c] are only visualized for
τ -cluster but it is the same for θ-cluster). [a] is visualized for the matrix with only one coefficient
such as P, S or K. [b] is visualized for the matrix with two coefficients PS, PK or SK. [c] is visualized
for the matrix with three coefficients PSK.

Graph

As graphs are a good means to offer relevant visual insights on data structure, the correlation matrix
is used as the relation of an undirected and valued graph, called ”correlation graph”. In a correla-
tion graph, a vertex represents a measure and an edge value is the correlation value between two
vertices/measures. We also add the possibility to set a minimal threshold τ (maximal threshold θ re-
spectively) by absolute value to retain only the edges associated with a high correlation (respectively
low correlation); the associated subgraphs are denoted by CG+ and CG0.

The value assigned for an edge is given from the correlation value calculated from Pearson (P),
Spearman (S) or Kendall (K) coefficients. More general, an average correlation value is obtained
when we interest in a combination between these coefficients: PS, PK, SK, or PSK.
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The graph module is constructed to facilitate the view of the clusters discovered in the analyzed
process. The user can drag and drop a node (i.e. an interestingness measure) to see the cluster.

5.4.3 Comparative study

Representative

In a cluster, all the measures can be represented by a single measure called representative measure.
How we can choose a representative measure? The first way is that we let the user to select the
measure that he/she feels the best. In the second way, we sort all the measures in the cluster by
their number of relations with the other measures in the same cluster. From this point of view, the
user can identify the ”central of gravity” of the cluster.

Sample

Given a set of measures and a sample type (i.e. union or intersection), a set of rules is computed
satisfying the two precedent conditions. Notice that the first ten most interesting rules of each
measure with its corresponding ruleset are also stored before.

Figure 5.19: A process to compute a sample.

Synthesis

We proposed a stable hierarchy to discover the stable clusters between measures over all possibly
combination sets of rulesets (see Fig. 5.20). This is the most interesting and important in ARQAT
tool. In the above section (Sec. 5.13), a quick observation is computed via the four stable clusters in
a ruleset (PS, PK, SK and PSK). In this component, we continue to examine a widely set of rulesets
to discover the stable behaviors of measures. This widely set includes a couple set (between an
original ruleset and its sample ruleset) and a multiple set (over all the original and sample rulesets,
over all the original rulesets and over all the sample rulesets). If the number of original rulesets is
4, then the number of sample rulesets is 4, the number of couple rulesets is 4 and the number of
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Figure 5.20: A stable hierarchy on a set of rulesets.

multiple rulesets is 3. Given k original rulesets, the total rulesets to evaluate is k + k + k + 3 =
3k + 3 = 3(k + 1).

The set of all the original and sample rulesets is called ”ALL” rulesets. The other rulesets (couple
and multiple) are called ”COMPLEMENT” rulesets. The entire rulesets are called ”SINGLE”
rulesets.

A summary structure is hold to determine the stable clusters and their average values calculated.
A cluster is a τ -cluster (θ-cluster) if and only if all the clusters at the same level are all τ -cluster
(θ-cluster).

Figure 5.21: A summary computed from all the rulesets (original and sample).
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Inside

This module gives special or complementary views on the most interesting rules from a cluster. The
options given include: (a) the distributions of each measure in the cluster, (b) correlation values and
scatterplot, (c) correlation graph, (d) km most interesting rules of each measure, (e-f) union and
(g-h) intersection of the km most interesting rules in the cluster, (i-j) union and (k-l) intersection
of the km most interesting rules of the other clusters in related with the cluster. We will describe
some important features. The value of km in our study is km = 10. The cardinalities and the rule
form are also showed to illustrate the measure properties of understanding the way that is a measure
ranks a rule.

• The first km most interesting rules of each measure

This is a list of the km highest ranked rules for each measure from the currently analyzed
cluster, providing also access to the values that the interestingness values have assigned for
the selected rules (see Fig. 5.25 (d)).

• Intersection of the km most interesting rules in a cluster

We choose the km most interesting rules of each cluster and give the user an overview of their
intersection. The rank of each rule is used to validate the result. The Y-axis holds the rank
of the rule for the corresponding measure. Each rule is represented with parallel coordinates
among interestingness measure values (see Fig. 5.25 (g)(h)). We can see the intersection in a
horizontal line and if we obtain many rules having the same rank value so we will print these
rules with only one line. If the user want to capture a small group of the most interesting rules
for making their decision, he/she can use these rules for their first choice.

• Union of the km most interesting rules in a cluster

With the same technique as above, we introduce the union of the km most interesting rules in
each cluster, in order to give the user a more specific view in the cluster. The measures have
the set of highest ranks (more interesting) rely concentratively on the low value of the Y-axis
(see Fig. 5.25 (e)(f)).

• Union of all the clusters in relation to the current cluster

Based on the km most interesting rules in the current cluster, we draw the parallel coordinates
of each rule on other clusters. The user can see the zone that is the most interesting with
the highest value (low zone) as in the Sec. 5.4.3. The effect of the ten most interesting rules
on the other clusters gives the user a general sampling of the entire cluster. With the union
approach, many best rules may be presented and compared (see Fig. 5.25 (i)(j)).

• Intersection of all the clusters in relation to the current cluster

By decreasing the quantity of the km most interesting rules in one cluster, we will observe
the rank distribution. The intersection is less interesting than the union because we generally
do not have any interesting zone. Using the intersection in relation to the current cluster is
important when the user just finds a small set of interesting and close rules (see Fig. 5.25
(k)(l)).

Union/Intersection

As in the above analysis of the union or intersection of the km most interesting rules in a cluster.
We give another view with all the set of measures. By the disagree between measures when the
number of measures is considerable, the intersection is often empty.
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Figure 5.22: Union of the ten most interesting rules from all the measures on the LBD ruleset.

5.5 Display

Figure 5.23: ARQAT Display.

The display module outputs all of the results in the HTML formats. The user can visualize
and navigate through out a web browser to examine the aspects considered. Fig. 5.24 shows the
principal links to access the evaluation results of a ruleset. All of the ruleset types such as original,
sample, couple, and multiple are treated identically.
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Figure 5.24: Principal menu (extracted).

5.6 Utility

The utility module contains some common tools to facilitate the input/output process. It holds
the descriptions of the files to analyze, the data file formats such as CSV, ARFF4, PMML5. The
common names, parameters used in the platform are also implemented int this module.

One of the most important component of this module is the statistics sub-package. This com-
ponent implements the calculations of the τ , θ values and the other useful methods to compute the
correlation values between measures such as Pearson’s, Spearman’s and Kendall’s coefficients.

5.7 Summary

The ARQAT tool is organized in 14 complementary views with 5 analysis tasks. It processes the
data via three stages preprocessing, evaluation and display. Three important correlation coefficients
such as Pearson, Spearman and Kendall are implemented. A stable hierarchy is proposed to conduct
comparative studies on several rulesets. A lot of views outputted in HTML files gives the user useful
views to select the suitable measures or the most interesting rules. The intermediate data created
during the process are stocked and be available to other postprocessing studies.

4ARFF and Sparse ARFF
5Supporting the current version PMML 3.0 with the help of parsing an XML document of the package XMLtp

(http://mitglied.tripod.de/xmltp/).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.25: A set of complementary views on a cluster.



Chapter 6

Studies: on general evaluation

Making comparisons from the postprocessing of association rules have become a research challenge in
KDD. By evaluating interestingness values calculated from interestingness measures on association
rules, some approaches are proposed in this chapter to answer the questions: How we can capture
the different aspects on the datasets via the behaviors of interestingness measures.

6.1 Datasets

A set of four datasets are collected, in which two datasets have opposite characteristics (i.e. correlated
vs weakly corelated) and the others are two real-life datasets. Tab. 6.1 gives a quick description on
theses four datasets studied.

Dataset Number of items
Transactions

Total Average length

D1 128 8416 23

D2 81 9650 5

D3 92 2883 8.5

D4 30 2299 10

Table 6.1: Dataset description.

• Mushroom

The categorical Mushroom dataset (D1) from Irvine machine-learning database repository
[NHBM98] has 23 nominal attributes corresponding to the species of gilled mushrooms (i.e.,
edible or poisonous).

• T5I2D10k

The synthetic T5I2D10k dataset (D2) is obtained by simulating the transactions of customers
in retailing businesses. The dataset was generated using the IBM synthetic data generator
[AS94]. D2 has the typical characteristic of the Agrawal dataset T5I2D10k (T5: average size
of the transactions is 5, I2: average size of the maximal potentially large itemsets is 2, D10k:
number of items is 100).

74



75

• LBD

The LBD dataset (D3) is a set of lift breakdowns from the breakdown service of a lift manu-
facturer.

• EVAL

The EVAL dataset (D4) is a dataset of profiles of worker’s performances which was used by the
company PerformanSe to calibrate a decision support system in human resource management
[Fle96].

The T5I2D10k synthetic dataset is generated according to the properties of market basket data
that are typical weakly correlated data. In this dataset, the number of frequent patterns is small
in compared with the total number of patterns. The Mushroom dataset constituted of correlated
data, the proportion of patterns that are frequent is important.

The two datasets LBD and EVAL are called real-life datasets because both of them are issued
from the real activities captured. While the other two datasets, T5I2D10k and Mushroom, are
generated by simulating the real activities. For example, the size of a next transaction of the
T5I2D10k is constructed by approximating a Poisson distribution with mean µ equal to T .

6.2 Rulesets

From the datasets discussed in the above section, the corresponding rulesets (i.e., the set of associa-
tion rules) are generated with the rule mining techniques. Some abstract rulesets are also extracted
to evaluate the behavior of interestingness measures1.

Ruleset Number of rules θ τ

R1 123228 0.005 0.85

R2 102808 0.006 0.85

R3 43930 0.009 0.85

R4 28938 0.011 0.85

Ruleset Number of rules θ τ

R′1 11213 0.0185 0.85

R′2 8006 0.0219 0.85

R′3 8868 0.0208 0.85

R′4 6092 0.0251 0.85

(a) Original (b) Sample

Table 6.2: Rulesets extracted.

• Original

The ruleset R1 is generated (respectively R2, R3, R4) from the dataset D1 (respectively D2,
D3, D4) using the Apriori algorithm [AS94][AMS+96] (see Tab. 6.2 (a)).

• Sample

A sample ruleset R′
1 (respectively R′

2, R
′
3, R

′
4) of each the above ruleset is extracted from the

R1 ruleset (respectively R2, R3, R4) as the union of the first 1000 rules (≈ 1%, ordered by
decreasing interestingness values) issued from each objective measures (see Tab. 6.2 (b)).

1In this chapter and the next chapter, we use the notion of interestingness measures and objective measures
interchangeable.
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• Complement

To evaluate the stable behavior of the measures on several rulesets, we have established some
abstract rulesets namely couple rulesets (Rk vs R′k) and multiple rulesets (All, AllOriginal,
and AllSample). These two type of rulesets are called complement rulesets (see Sec. 5.4.3
[Chap. 5]).

6.3 Used measures

In our experiment, we compared and analyzed the 40 objective measures defined in Tab. 3.1 [Chap.
3]. We must notice that EII(α = 1) and EII(α = 2) are two entropic versions of the II measure.

6.4 Efficiency of the sample model

Figure 6.1: Characteristics of the rulesets.

Based on the characteristics analyzed on the four original rulesets, we will evaluate the efficiency
of the sample rulesets. One of the most easily method is to examine the sample rules with the same
regard to the properties of objective measures.

Before evaluating the efficiency of the sample model, we can examine some ruleset characteristics
showing the distributions underlying rule cardinalities, in order to detect ”borderline cases”. For
instance, in Fig. 6.1 and Fig. 6.2, the first line on each ruleset gives the number of ”logical” rules
(i.e. rules without negative examples). We can notice that the number of logical rules is here very
high (≈13%) on the R1 ruleset, but very low or zero on the others.

One of the most important properties discussed in Chap. 3 on objective measures is that a rule
is seemed to be interesting if its cardinalities satisfy the condition nX < nY . We can see from row 8
to row 13 in the characteristic table (Fig. 6.1 and Fig. 6.2), the percents on the right column (i.e.
the sample rulesets) is higher on the left column (i.e. the original rulesets). Among these sample
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Figure 6.2: Characteristics of the rulesets (cont.).

rulesets, the weekly correlated ruleset R′2 has the most efficiency with the value (nX < nY ) goes
from 50% to 78% and (nX < nY

10 ) goes from 24% to 44%.

6.5 Distribution of interestingness values

Figure 6.3: Variation of the measure IPEE on the R1 ruleset.

The interestingness distribution view (Sec. 5.4.1 [Chap. 5]), draws the histograms for each
measure. The distributions are also completed with classically statistical indexes such as minimum,
maximum, average, standard deviation, skewness and kurtosis values. In Fig. 6.4, one can see
that Causal Confidence (line 1), Causal Confirmed-Confidence (line 3), Confidence (line 6) have an
irregular distribution and a great number of rules with 100% confidence while it is very different
from Causal Confirm (line 2).

An observation on the interestingness values from the all the measures on the R1 ruleset gives
us three principal zones of distribution (Tab. 6.3). The first zone consists of the measures which
interestingness values concentrate on the left – trending towards their minimum values –, on the
right – trending towards their maximum values –, or on the center – trending towards their average
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Figure 6.4: Distribution of some measures on the R1 ruleset (extracted).

values –. Besides, IPEE has two unconnected poles of interestingness values: at minimum trend and
at maximum trend (see Fig. 6.3).

Trend Mesures

Left Collective Strength, Conviction, Dependency, EII, EII 2, Gini-index,
Jaccard, J-measure, Lift, Mutual Information, Odd Multilier, Odds Ratio,
Sebag & Schoenauer, Support, TIC

Right Causal Confidence, Causal Confirmed-Confidence, Confidence,
Descriptive Confirmed-Confidence, Example & Contra-Example, II, IPEE,
Laplace, Least Contradiction, Loevinger, Yule’s Q

Center Causal Confirm, Causal Support, Cosine, Descriptive Confirm, F-measure,
Implication index, Kappa, Klosgen, Lerman, Pavillon, Phi-Coefficient,
Putative Causal Dependency, Rule Interest, Yule’s Y

Table 6.3: Trends on interestingness values

6.6 Joint-distribution matrix

The joint-distribution analysis shows the scatterplot matrix of all measure pairs. This graphical
matrix is very useful to see the details of the relationships between measures. These relationships
also depend on the seven summary types P, S, K, PS, PK, SK, PSK (Sec. 5.4.2 [Chap. 5]). For
instance, Fig. 6.6 shows a small part in the scatterplot matrix on the interestingness values between
measures.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.5: Some agreement and disagreement shapes.

Fig. 6.5 shows four agreement shapes: Implication index vs Kappa (a), IPEE vs Laplace (b),
Pavillon vs Rule Interest (c), and Yule’s Q vs Yule’s Y (7) (highly correlated). On the other hand,
four disagreement shapes on Confidence vs Odds Ratio (e), Cosine vs Support (f), TIC vs Yue’s Q
(g), and II vs Support (h) (highly uncorrelated) is also be noticed.

6.7 Correlation analysis

This task aims at delivering the clustering of measures and facilitating the choice of a subset of
measures that is best-adapted to describe the ruleset. The correlation values between measure pairs
are computed by using the Pearson’s, Spearman’s or Kendall’s correlation coefficients and stored in
the correlation matrix (M×M). Two visual representations are proposed. The first one is a simple
summary matrix in which each significant correlation value is visually associated with a different
color (a level of gray). For instance, the dark cell from Fig. 6.7 shows a low correlation value between
II and Support. The other 110 gray cells correspond to high correlation values.

The second one (Fig. 6.8) is a graph-based view of the correlation matrix, called correlation
graph (Sec. 5.4.2 [Chap. 5]) with two types: CG0 and CG+.

These two subgraphs can then be processed in order to extract clusters of measures: each cluster
is defined as a connected subgraph. In CG+, each cluster gathers correlated or anti-correlated
measures that may be interpreted similarly: they deliver a close point of view on data. Moreover,
in CG0, each cluster contains uncorrelated measures, i.e. measures that deliver a different point of
view.

Hence, as each graph depends on a specific ruleset, the user can use the graphs as data insight,
which graphically help him/her select the minimal set of the measures best adapted to his/her data.
For instance in Fig. 6.8, CG+ graph contains 10 clusters on 40 measures. The user can select the
most representative measure in each cluster (Sec. 4.6 [Chap. 4]), and then retain it to validate the
rules.

A close observation on the CG0 graph (Fig. 6.8) shows an uncorrelated cluster formed by the
measures II and Support (also the two dark cells in Fig. 6.7). This observation is confirmed on
Fig. 6.6, particularly with the scatterplot (h) in Fig. 6.5. CG+ graph shows a trivial cluster where
Yule’s Q and Yule’s Y are strongly correlated. This is also confirmed in Fig. 6.5 (d), showing a
functional dependency between the two measures. These two examples show the interest of using
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Figure 6.6: Scatterplot matrix of joint-distributions on the R1 ruleset (extracted).

the scatterplot matrix complementarily (Fig. 6.6) with the correlation graphs CG0, CG+ (Fig. 6.8)
in order to evaluate the nature of the correlation links, and overcome the limits of the correlation
coefficient.

6.8 Interesting rule analysis

In order to help a user select the most interesting rules, two specific views are implemented. The
first view (Fig. 6.9) collects a set of a given number of interesting rules for each measure in one
cluster, in order to answer the question: how interesting are the rules according to this cluster. The
selected rules can be visualized with parallel coordinate drawing (Fig. 6.10) alternatively. The main
interest of such a drawing is to rapidly see the measure rankings of the rules.

These two views can be used with the measure values of a rule or alternatively with the rank
of the value. For instance, Fig. 6.9 and Fig. 6.10 use the rank to evaluate the union, for all the
measures in cluster C1, of the ten most interesting rules for each measure (see Fig. 6.8). The Y-axis
in Fig. 6.10 holds the rule rank for the corresponding measure. By observing the concentration
lines on low rank values, one can obtain four measures: Confidence(4 → 62), Descriptive Confirmed-
Confidence(6 → 11), Example & Contra-Example(7 → 14), and IPEE (10 → 19) (on points 1, 2, 3,
4 respectively) that are good for a majority of interesting rules. This can also be retrieved from the

24 → 6: 4 is the order of the measures in the corresponding cluster, 6 is the exact position of the measure in the
table of all objective measures studied.
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Figure 6.7: Coefficient matrix on the R1 ruleset.

columns with the names of the corresponding measures in Fig. 6.9. Among these four measures,
IPEE is the most suitable choice because of the lowest rule ranks obtained.

6.9 Ranking measures by sensitivity values

6.9.1 On a ruleset

The sensitivity evaluation is based on the number of rules that falls in each interval is compared
to rank the measures . For a measure on a ruleset, the most significance interval will be the last
bin (i.e., interval) of the inversely cumulative distribution. To have an approximation view on the
sensitivity value, the number of rules has the maximum value is also retained. Fig. 6.11 shows the
first seven measures that obtain the highest ranks. A remark is that the number of rules in the first
interval is not always the same for all the measures because of the affectation of the number of NaN
values.

An example of ranking two measures is given in Fig. 6.12 on the R1 ruleset. The measure
Implication index is ranked at the 13th place from a set of 40 measures while the measure Rule
Interest is ranked at the 14th place. The meaning for this ranking is that the measure Implication
index is more sensitive than the measure Rule Interest on the R1 ruleset even if the number of the
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(a) CG0 (b) CG+

Figure 6.8: CG0 and CG+ graphs on the R1 ruleset (clusters are highlighted with a gray back-
ground).

most interesting rules returned with the maximum value is greater for the measure Rule Interest
(3 > 2). The differences counted from each couple intervals, beginning from the last interval are
quite important because the user will feel easier when looking at 11 rules in the last interval of the
measure Implication index instead of looking at 64 rules from the same interval of the measure Rule
Interest.

6.9.2 On a set of rulesets

In Fig. 6.13, we can see the measure Implication Index goes strongly from place 13rd in the R1

ruleset to place 9th over all the original rulesets while the measure Rule Interest goes lightly from
place 14th to place 13rd.

6.10 Summary

This chapter gives an overview on some aspects of the datasets studied (e.g. characteristics, ...) to
the user. The efficiency of the sample model, variation of interestingness values, joint-distribution
matrix, correlation analysis, interesting rules analysis, and ranking measures by sensitivity values
both on a ruleset and a set of rulesets are represented.
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Figure 6.9: Union of the ten most interesting rules for each measure of cluster C1 on the R1 ruleset
(extracted).

Figure 6.10: Plot of the union of the ten most interesting rules for each measure of cluster C1 on
the R1 ruleset.
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Figure 6.11: Sensitivity rank on the R1 ruleset (extracted).

Figure 6.12: Comparison of sensitivity values on a couple of measures of the R1 ruleset.

Figure 6.13: Sensitivity rank on all the original rulesets (extracted).



Chapter 7

Comparative studies

In the context of data mining, we use Pearson’s, Spearman’s and Kendall’s correlation coefficients in
order to compare the behavior of 40 objective measures of association rules. Via a the graph-based
approach [Sec. 4.6.4, Chap. 4], we can visualize not only the strong but also the weak correlations
between interestingness measures. We propose to discover the stable clusters of objective measures
(i.e. subsets of objective measures delivering a close rule ranking) by making comparative study on
two opposite datasets (a highly correlated one and a lowly correlated one) and two real-life datasets.
The results – are performed with the techniques such as correlation graph, AHC and PAM [Sec.
4.6.4/4.6.2/4.6.3, Chap. 4] –, show that the correlation between objective measures depends on data
nature and rule ranks, and also show some stable clusters of measures.

7.1 Graph of stable clusters

In order to facilitate the comparison between several correlation matrices, we have introduced some
extensions to define the stable clusters between objective measures.

Definition 7.1.1 (CG+/CG0 graph). The CG+ graph (respectively CG0 graph) of a set of k

rulesets R = {R(D1), ...,R(Dk)} is defined as the average graph of intersection of the k partially

correlated (respectively uncorrelated) subgraphs CG+k (respectively CG0k) calculated onR. Hence,

each edge of CG+ (respectively CG0) is associated with the average value of the corresponding edge

in the k CG+k graphs. Therefore, the CG+ (respectively CG0) graph allows visualizing the strongly

(respectively weakly) stable correlations, as being common to k studied rulesets.

Definition 7.1.2 (Stable cluster). We call τ -stable (respectively θ-stable) cluster a connected part

of the CG+ (respectively CG0) graph.
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7.2 Comparative analysis: Pearson’s coefficient

7.2.1 Discussion

The analysis aims at finding stable relations between the objective measures studied over the eight
rulesets affecting by Pearson’s coefficient [Sec. 5.4.2, Chap. 5]. We investigate in: (i) the CG0
graphs in order to identify the objective measures that do not agree for ranking the rules, (ii) the
CG+ graph in order to find the objective measures that do agree for ranking the rules.

Ruleset
Number of correlations Number of clusters

τ -correlated θ-uncorrelated CG+ CG0

R1 110 1 10 39
R2 75 0 14 40
R3 99 11 10 29
R4 108 4 9 36

R′
1 114 8 11 32

R′
2 82 12 14 29

R′
3 103 17 7 23

R′
4 105 32 8 20

Table 7.1: Comparison of correlations with Pearson’s coefficient.

7.2.2 CG+ and CG0

Fig. 7.2 and Fig. 7.3 show the CG+ graphs obtained from the eight corresponding rulesets. As
seen before, the sample rulesets and the original rulesets have close results so we can use the sample
rulesets (R′

1, R
′
2, R

′
3 and R′

4) for representing the original rulesets. This observation is useful when
we evaluate the CG+ graphs but not for CG0 graphs (Fig. 7.4 and Fig. 7.5).

As in [Sec. 4.6, Chap. 4] for the representative measure within a cluster, the user can choose a
cluster to examine. For example, with the CG+ graph of R1 (Fig. 7.2), one can choose the second
cluster as the largest one containing twenty measures for his/her first choice. In this cluster one
can obtain Lerman as the representative measure by choosing the measure has a strong relation
with the others (column 4 in Fig. 7.1). One can also see the weak relation between TIC and the
other measures of the cluster with the number of relations is only 1. Generally, one can use the 10
representative measures obtained from Fig. 7.1 to replace the 40 studied measures (25%).

Tab. 7.1 also shows a quite stable tendency in counting the number of τ -correlated: 110(R1) →
114(R′

1), 75(R2) → 82(R′
2), 99(R3) → 103(R′

3), 108(R4) → 105(R′
4) but a quite different with

θ-uncorrelated: 1(R1) → 8(R′
1), 0(R2) → 12(R′

2), 11(R3) → 17(R′
3), 4(R4) → 32(R′

4).

7.2.3 CG0 graphs: uncorrelated stability

CG0 graphs first show that there are no θ-stable clusters appearing on the eight rulesets studied in
Fig. 7.4 and Fig. 7.5. Secondly, there is no CG0 graph from these rulesets.
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Figure 7.1: τ -cluster on R1 with Pearson’s coefficient.

7.2.4 CG+ graph: correlated stability

From Tab. 7.1, we can see that, R1 (R′1) is approximately 1.5 times as correlated as R2 (R′2). R3

(R′3) is approximately as correlated as R4 (R′4). As seen in Fig. 7.6, seven τ -stable clusters found
come from the rulesets studied.

By briefly analyzing these τ -stable clusters, some interesting observations are drawn.
(C1), the largest cluster, (Confidence, Causal Confidence, Causal Confirmed-Confidence, Descrip-

tive Confirmed-Confidence, Laplace) has most of its measures extended from Confidence measure.
From this cluster, we can easily see a highly connected component – each vertex must have an edge
with the other vertices – indicating the strong agreement of the five measures. According to the
classification in Tab. 3.3 [Chap. 3], this cluster is associated with the descriptive measures that are
sensible to equilibrium.

(C2)(C5)(C6), another three clusters, have themselves each a highly connected components which
are formed by (Cosine, Jaccard, F-measure), (Phi-Coefficient, Lerman, Kappa) and (Implication
Index, Klosgen). Most of these measures are similarity measures. These three clusters are useful to
measure the deviation from independence (see the classification in Tab. 3.3 [Chap. 3]).

(C3), this cluster (Dependency, Pavillon, Putative Causal Dependency) is interesting because
almost all the measures of this cluster are reasonably well correlated.

(C4), is a statistical cluster formed by EII and EII 2, which are two measures obtained with
different parameters of the same original formula.

(C7), Yule’s Q and Yule’s Y, brings out a trivial observation because these measures are de-
rived from Odds Ratio measure. Both measures are in the group of measuring the deviation from
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CG+ (R1) CG+ (R′
1)

CG+ (R2) CG+ (R′
2)

Figure 7.2: CG+ graphs with Pearson’s coefficient.

independence (see the classification in Tab. 3.3 [Chap. 3]).
In looking for τ -stable clusters, we have found the τ -correlated that exist between various mea-

sures. Seven τ -stable clusters have been identified. Each τ -stable cluster, that forms a subgraph in a
CG+ graph, also contains a highly connected component. Therefore, we can choose a representative
measure for each one of these clusters. For example with our experiment, we have chosen seven rep-
resentative measures from the 40 objective measures studied. How we can choose a representative
measure is also an interesting study for the future. In the first approach, the user can choose the
measure that is the best one from his/her point of view. The second approach is that we can select
the measure that has the highest number of relations with the others (e.g., the measures Descriptive
Confirmed-Confidence, Jaccard, Lerman, Klosgen, Pavillon, EII(α = 1), and Yule’s Q from Fig.
7.6). The stronger the τ -stable cluster, the more interesting the representative measure. An im-
portant observation is that, the existence of highly connected graphs represents a strong agreement
with a τ -stable cluster. We have reached significant information: τ -stable clusters can be obtained
from different measures and rulesets. The different measures imply taking into account both their
mathematical definitions and their respective properties.
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CG+ (R3) CG+ (R′
3)

CG+ (R4) CG+ (R′
4)

Figure 7.3: CG+ graphs with Pearson’s coefficient (cont.).

7.3 Comparative analysis: Spearman’s coefficient

To resolve the outlier problem on Pearson’s coefficient, an analysis with Spearman’s coefficient is
performed.

7.3.1 Discussion

As in the precedent discussion, this analysis also aims at finding stable relations between the objective
measures studied over the eight rulesets with Spearman’s coefficient (see Sec. 5.4.2 [Chap. 5]). The
same aspects are investigated in: (i) the CG0 graphs, and (ii) the CG+ graph.

7.3.2 CG+ and CG0

Fig. 7.8 and Fig. 7.9 show the CG+ graphs obtained from the eight corresponding rulesets. As the
same precedent observation, we can use the sample rulesets (R′

1, R
′
2, R

′
3 and R′

4) for representing
the original rulesets. This observation is also helpful for the CG+ graphs but not for the CG0 graphs



90

CG0 (R1) CG0 (R′
1)

CG0 (R2) CG0 (R′
2)

Figure 7.4: CG0 graphs with Pearson’s coefficient.

(Fig. 7.10 and Fig. 7.11).
As in Sec. 4.6 [Chap. 4] for the representative measure within a cluster, the user can choose a

cluster to examine. For example, with the CG+ graph of R1 (Fig. 7.2), one can choose the first
cluster as the largest one containing twenty-four measures for his/her first choice. In this cluster
one can obtain Putative Causal Dependency as the representative measure by choosing the measure
has a strong relation with the others (column 4 in Fig. 7.7). One can also see the weak relation
between TIC and the other measures of the second cluster in the precedent analysis with Pearson’s
coefficient is now broken and TIC is currently an independent cluster. The same number of the
representative measures obtained from Fig. 7.7 to replace the 40 studied measures (25%) as in the
discussion with Pearson’s coefficient.

Tab. 7.2 also shows a quite stable tendency in counting the number of τ -correlated: 113(R1) →
113(R′

1), 95(R2) → 90(R′
2), 182(R3) → 171(R′

3), 208(R4) → 189(R′
4) but a quite different with

θ-uncorrelated: 0(R1) → 14(R′
1), 3(R2) → 13(R′

2), 4(R3) → 36(R′
3), 8(R4) → 32(R′

4).
With Spearman’s coefficient, the number of τ -correlated in the real-life rulesetsR3,R4 (R′3,R′4)

is twice as correlated as in the first two rulesets R1,R2 (R′1,R′2).
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CG0 (R3) CG0 (R′
3)

CG0 (R4) CG0 (R′
4)

Figure 7.5: CG0 graphs with Pearson’s coefficient (cont.).

7.3.3 CG0 graphs: uncorrelated stability

As the same observation with Pearson’s coefficient from the precedent section. There are no θ-stable
clusters that appear on CG0 graphs obtained from the eight rulesets studied (Fig. 7.4 and Fig. 7.5).
There is no CG0 graph from these rulesets.

7.3.4 CG+ graph: correlated stability

From Tab. 7.2, we can see that R1 (R′1) is approximately 1.2 times as correlated as R2 (R′2). R3

(R′3) is approximately 0.9 times as correlated as R4 (R′4). As seen in Fig. 7.12, six τ -stable clusters
found come from the rulesets studied.

By comparing the CG+ graph obtained with which is established by Pearson’s coefficient in the
precedent section, some remarks can be drawn.

- In general, there are not much different between the two graphs.

- With clusters C1(with Pearson’s coefficient)-C1(with Spearman’s coefficient) (C6-C4, C7-C5
respectively), we can see the participation of Example & Contra-Example (Lift, Odds Ratio
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Figure 7.6: CG+ graph with Pearson’s coefficient.

Ruleset
Number of correlations Number of clusters

τ -correlated θ-uncorrelated CG+ CG0

R1 113 0 10 40
R2 95 3 10 37
R3 182 4 7 36
R4 208 8 8 32

R′
1 113 14 12 26

R′
2 90 13 10 30

R′
3 171 36 9 17

R′
4 189 32 7 24

Table 7.2: Comparison of correlations with Spearman’s coefficient.

respectively) in cluster C1 formed with Spearman’s coefficient. Both of these two clusters have
the strong agreement between measures.

- Inversely observation in clusters C2-C2 (C3-C6 respectively) with the disappearance of Cosine
(Dependency respectively) measure.

- The couple clusters C3-C5 are identical.

- The disappearance of the cluster C4 with EII and EII 2.

7.4 Comparative analysis: Kendall’s coefficient

Another important coefficient, namely Kendall’s coefficient, is integrated in our analysis. Despite
the close results between Pearson’s and Spearman’s coefficients, the results obtained from Kendall’s
coefficient are not the same.
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Figure 7.7: τ -cluster on R1 with Spearman’s coefficient.

7.4.1 Discussion

In comparing Tab. 7.2 and Tab. 7.3, both of these two tables come from the two commonly
rank coefficients Spearman and Kendall respecively, we can see a strong decrease of the number
of τ -correlated computing with Kendall’s coefficients over all the original rulesets. For instance,
R1 − S(113) → R1 −K(37) (33%), R2 − S(95) → R2 −K(56) (59%), R3 − S(182) → R3 −K(88)
(48%), R4 − S(208) → R4 − K(106) (51%) with an average percent of decrease of ≈ 48%!. The
decrease of number of τ -correlated from sample rulesets also gives a similar change: R′1−S(113) →
R′1 − K(27) (24%), R′2 − S(90) → R′2 − K(35) (39%), R′3 − S(171) → R′3 − K(80) (47%),
R′4 − S(189) → R′1 −K(61) (32%). The average percent of number of τ -correlated in the sample
rulesets is smaller than in the original rulesets, varies from 48% to 35.5%.

This observation expresses the rules in the sample rulesets have a strong attachment in ranking
relatively with each other after the sample process. Both of the two average decreases 48% and
35.5% also says that the relative increase or decrease of ranks (or interestingness values) between
the objective measures over all the rulesets often lays down approximately 50%.

For θ-uncorelated, there are not much changes in the first two original rulesets but a strong change
happens with the last two original rulesets: R3−S(4) →R3−K(46) (115%),R4−S(8) →R3−K(47)
(59%). The same observations with the two sample rulesets. This is conformable with the above
observation when the number of τ -correlated decrease then the number of θ-uncorrelated increase.
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CG+ (R1) CG+ (R′
1)

CG+ (R2) CG+ (R′
2)

Figure 7.8: CG+ graphs with Spearman’s coefficient.

7.4.2 CG+ and CG0

Fig. 7.13 show the representative measures correspond to each cluster found with Kendall’s coeffi-
cients in the R1 ruleset. Fig. 7.14 and Fig. 7.15 shows eight CG+ graphs obtained with Kendall’s
coefficients. As discussed before, there are fewer τ -correlated between the 40 objective measures.

We can see eight CG0 graphs on Fig. 7.16 and Fig. 7.17. The number of θ-uncorrelated arises
strongly on the real-life rulesets (R3, R′3, R4, R′4) around the measure TIC as a center.

7.4.3 CG0 graphs: uncorrelated stability

Although there are a lot of θ-uncorrelated in the last four CG0 graphs (Fig. 7.17) but the CG0
graphs over the eight CG0 graphs on R1, R′1, R2, R′2, R3, R′3, R4, R′4 are empty.
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CG0 (R3) CG0 (R′
3)

CG0 (R4) CG0 (R′
4)

Figure 7.9: CG+ graphs with Spearman’s coefficient (cont.).

7.4.4 CG+ graph: correlated stability

With five τ -stable clusters, the CG+ graph is the which one has the fewest of τ -stable clusters (see
Fig. 7.18) in comparison with the other CG+ graphs obtained with Pearson’s and Spearman’s coef-
ficients (see Fig. 7.6 and Fig. 7.12). The number of τ -correlated (i.e., that is stable) decreases from
20 (in CG+ graph with Pearson’s coefficient) and 19 (in CG+ graph with Spearman’s coefficient) to
12 in the CG+ graph with Kendall’s coefficient. The clusters such as (EII, EII 2), (Yule’s Q, Yule’s
Y) in the other two CG+ graphs with Pearson’s and Spearman’s coefficients are disappeared. In
Fig. 7.18 we can easily see the ”Confidence” cluster from the last two CG+ graphs is now divided
into two ”Confidence” clusters (Causal Confidence, Causal Confirmed-Confidence) and (Laplace,
Confidence, Descriptive Confirmed-Confidence, Example & Contra-Example).

7.5 Comparative analysis: all coefficients

For each complement ruleset (couple or multiple rulesets) we also conduct the experimental results
on CG+ graphs with PS, PK, SK and PSK summaries (Sec. 5.4.2 [Chap. 5]).
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CG+ (R1) CG+ (R′
1)

CG+ (R2) CG+ (R′
2)

Figure 7.10: CG0 graphs with Spearman’s coefficient.

7.5.1 Discussion

In this section we will give an example on the CG+ graphs obtained from R1 on a summary
combination S, P, K, PS, PK, SK, PSK. A first view on R1 is illustrated in Tab. 7.4;

7.5.2 CG0 graphs: uncorrelated stability

As seen from the previous three sections, the CG0 graph is often empty. It is also the same for this
part.

7.5.3 CG+ graph: correlated stability

Fig. 7.19 shows four CG+ obtained from the R1 ruleset with PS, PK, SK and PSK respectively.
The firs three CG+ graphs with P, S, and K are illustrated before in the three studied sections with
Pearson’s, Spearman’s and Kendall’s coefficients. In (PS) we can see a strong agreement between
Pearson’s and Spearman’s coefficients in the CG+ graph. The last three CG+ graphs are closer
with the results on Kendall’s coefficients (on PK, SK and PSK).
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CG0 (R3) CG0 (R′
3)

CG0 (R4) CG0 (R′
4)

Figure 7.11: CG0 graphs with Spearman’s coefficient (cont.).

7.6 Comparative analysis: with AHC and PAM

Our aim is to discover the behaviors of the measures via two views the strong relation and the relative
distance between measures when they are applied to the dissimilarity matrixes obtained from the
rulesets studied. We use the two techniques AHC and PAM for each of these views respectively.
The dissimilarity between each pair of measures is calculated from Pearson’s coefficient.

7.6.1 On a ruleset

The first comparative study is conducted with the two techniques AHC and PAM on the same ruleset
R1 [HGB05c]. As a first result, a subset of 35 measures are used for evaluating. Tab. 7.5 gives
the clusters of measures obtained from the AHC technique on the R1 ruleset with a dissimilarity
interval = 0.15. Tab. 7.6 represents the clusters obtained from the PAM technique. As discussed
above, we can see the clusters that are agreed by both AHC and PAM in Tab. 7.7.

The subset of 35 measures are numbered from 0 to 34 as the following orders [HGB05c]: Causal
Confidence (0), Causal Confirm (1), Causal Confirmed-Confidence (2), Causal Support (3), Collec-
tive Strength (4), Confidence (5), Conviction (6), Cosine (7), Dependency (8), Descriptive Confirm
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Figure 7.12: CG+ graph with Spearman’s coefficient.

Ruleset
Number of correlations Number of clusters

τ -correlated θ-uncorrelated CG+ CG0

R1 37 2 24 38
R2 56 5 18 35
R3 88 46 19 1
R4 106 47 13 1

R′
1 27 28 24 18

R′
2 35 17 22 25

R′
3 80 87 19 1

R′
4 61 72 16 1

Table 7.3: Comparison of correlations with Kendall’s coefficient.

(9), Descriptive Confirmed-Confidence (10), EII (11), EII 2(12), Example & Contra-Example (13),
Gini-index (14), II (15), Jaccard (16), J-measure (17), Kappa (18), Klosgen (19), Laplace (20), Least
Contradiction (21), Lift (22), Loevinger (23), Odds Ratio(24), Pavillon (25), Phi-Coefficient (26),
Putative Causal Dependency (27), Rule Interest (28), Sebag & Schoenauer (29), Similarity Index1

(30), Support (31), TIC (32), Yule’s Q (33), Yule’s Y (34).

7.6.2 On two opposite rulesets

We experiment on two opposite rulesetsR1,R2 together with their samplesR′1,R′2. Another subset
of 36 objective measures are used this second comparative study [HGB06e]: Causal Confidence (0),
Causal Confirm (1), Causal Confirmed-Confidence (2), Causal Support (3), Collective Strength (4),
Confidence (5), Conviction (6), Cosine (7), Dependency (8), Descriptive Confirm (9), Descriptive
Confirmed-Confidence (10), EII (11), EII 2 (12), Example & Contra-Example (13), Gini-index (14),
II (15), IPEE (16), Jaccard (17), J-measure (18), Kappa (19), Klosgen (20), Laplace (21), Least
Contradiction (22), Lerman (23), Lift(24), Loevinger (25), Odds Ratio (26), Pavillon (27), Phi-
Coefficient (28), Putative Causal Dependency (29), Rule Interest (30), Sebag & Schoenauer (31),

1This is another name of the Lerman measure in Tab. 3.1 [Chap. 3].
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Figure 7.13: τ -cluster on R1 with Kendall’s coefficient.

Support (32), TIC (33), Yule’s Q (34), Yule’s Y (35).
To have a complete evaluation with the two techniques AHC and PAM, three approaches are

conducted: (i) evaluating with AHC on R1, R′1, R2, R′2; (ii) evaluating with PAM on R1, R′1,
R2, R′2; and (iii) evaluating with AHC and PAM on R1, R′1, R2, R′2.

With AHC

Tab. 7.8 shows the clusters obtained from the four rulesets R1, R′1, R2, R′2 in columns respectively.
Tab. 7.9 gives details on the agreed clusters between each ruleset pairs R1 ∩R′

1,R2 ∩R′
2, R

′
1 ∩R

′
2,

R1 ∩R2. The content in the last column is the agreed clusters over all the four rulesets R1 ∩R′
1 ∩

R2 ∩R′
2.

With PAM

The same purpose as the precedent section on evaluating with AHC on the four rulesets illustrated
in Tab. 7.10 and Tab. 7.11.
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CG+ (R1) CG+ (R′
1)

CG+ (R2) CG+ (R′
2)

Figure 7.14: CG+ graphs with Kendall’s coefficient.

Agreed clusters

Tab. 7.12 shows the clusters of measures that are agreed with both AHC and PAM on the four
rulesets R1, R′1, R2, and R′2.

7.7 Summary

Discovering the behaviors of interestingness measures is a research challenge. The results obtained
can help the user to understand different hidden aspect on a specific ruleset or a set of rulesets.
We have conducted comparative studies with three techniques CG, AHC and PAM. The datasets
that have opposite characteristics are chosen to evaluate. By analyzing the stable clusters or agreed
clusters, some stable/agreed clusters are found indicating an invariance with the nature of the
dataset!
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CG+ (R3) CG+ (R′
3)

CG+ (R4) CG+ (R′
4)

Figure 7.15: CG+ graphs with Kendall’s coefficient (cont.).

P S K PS PK SK PSK

τ -correlated 110 113 37 73 36 36 36

θ-uncorrelated 1 0 2 0 0 0 0

CG+ 10 10 24 5 5 5 5

CG0 39 40 38 0 0 0 0

Table 7.4: Comparison of correlation with all coefficients on the R1 ruleset.
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CG0 (R1) CG0 (R′
1)

CG0 (R2) CG0 (R′
2)

Figure 7.16: CG0 graphs with Kendall’s coefficient.

Cluster R1

1 Causal Confidence, Causal Confirmed-Confidence, Confidence,
Descriptive Confirmed-Confidence, Laplace

2 Causal Confirm, Descriptive Confirm, Example & Contra-Example,Least Contradiction
3 Causal Support
4 Collective Strength
5 Conviction
6 Cosine, Jaccard
7 Dependency, Kappa, Klosgen, Lift, Pavillon, Phi-Coefficient,

Putative Causal Dependency, Rule Interest, Similarity Index
8 EII, EII 2
9 Gini-index, J-measure
10 II
11 Loevinger
12 Odds Ratio
13 Sebag & Schoenauer
14 Support
15 TIC
16 Yule’s Q, Yule’s Y

Table 7.5: Clusters of measures with AHC on R1 (dissimilarity interval = 0.15).
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CG0 (R3) CG0 (R′
3)

CG0 (R4) CG0 (R′
4)

Figure 7.17: CG0 graphs with Kendall’s coefficient (cont.).

Figure 7.18: CG+ graph with Kendall’s coefficient.
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CG+ (R1) with PS. CG+ (R1) with PK.

CG+ (R1) with SK. CG+ (R1) with PSK.

Figure 7.19: CG+ graphs with PS, PK, SK and PSK summaries on R1.

Cluster R1

1 Causal Confidence, Causal Confirmed-Confidence, Confidence,
Descriptive Confirmed-Confidence, Laplace

2 Causal Confirm, Descriptive Confirm, Example & Contra-Example, Least Contradiction
3 Causal Support, Kappa, Lift, Phi-Coefficient, Rule Interest, Similarity Index
4 Collective Strength
5 Conviction
6 Cosine, Jaccard
7 Dependency, Klosgen, Pavillon,Putative Causal Dependency
8 EII, EII 2
9 Gini-index, J-measure
10 II
11 Loevinger
12 Odds Ratio
13 Sebag & Schoenauer
14 Support
15 TIC
16 Yule’s Q, Yule’s Y

Table 7.6: Clusters of measures with PAM on the R1 ruleset.
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Cluster R1

1 Causal Confidence, Causal Confirmed-Confidence, Confidence, Descriptive Confirmed-Confidence, Laplace
2 Causal Confirm, Descriptive Confirm, Example & Contra-Example, Least Contradiction
3 Collective Strength
4 Conviction
5 Cosine, Jaccard
6 Dependency, Klosgen, Pavillon,Putative Causal Dependency
7 EII, EII 2
8 Gini-index, J-measure
9 II
10 Kappa, Lift, Phi-Coefficient, Rule Interest, Similarity Index
11 Loevinger
12 Odds Ratio
13 Sebag & Schoenauer
14 Support
15 TIC
16 Yule’s Q, Yule’s Y

Table 7.7: Clusters agreed with both AHC and PAM on the R1 ruleset.

R1 R′1 R2 R′2
0,2,5,10,21 0,2,5,10,21 0,2,5,8,10,11,12,16,21,25,27,29 0,2,5,8,10,21,25,27,29

1,9,13,22 1,9,13,22 1,9 1,9
3 3,19,20,23,24,27,28,30 3 3
4 4 4 4,32
6 6 6,31 6,31

7,17 7,17 7,17,19,23,28 7,17,19,23,28,30,34,35
8,14,18 8,14,18

11,12,16 11,12 11,12,16
13 13

14,18 14,18,20
15 15 15,34,35 15

16
19,20,23,27,28,29,30,34,35

20
22 22

24 24 24,26
25 25,29
26 26 26

30
31 31
32 32 32
33 33 33 33

34,35

Table 7.8: Clusters of measures with AHC (measures are represented by their orders).
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R1 ∩R
′
1 R2 ∩R

′
2 R′1 ∩R

′
2 R1 ∩R2 R1 ∩R

′
1 ∩R2 ∩R

′
2

0,2,5,10,21 0,2,5,8,10,21,25,27,29 0,2,5,10,21 0,2,5,10,21 0,2,5,10,21
1,9,13,22 1,9 1,9 1,9 1,9

3 3
4 4
6 6,31

7,17 7,17,19,23,28 7,17 7,17 7,17
8,14,18

11,12 11,12,16 11,12 11,12,16 11,12
13

14,18 14,18 14,18 14,18
15 15

19,20,23,27,28,30 19,23,28,30 19,23,28 19,23,28
22

24
25,29

26 26
27,29

31
32 32
33 33 33 33 33

34,35 34,35 34,35 34,35 34,35

Table 7.9: Cluster comparison from AHC (measures are represented by their orders).

R1 R′1 R2 R′2
0,2,5,10,21 0,1,2,5,10,21 0,2,5,8,10,21,25,27,29 0,2,5,8,10,21,25,27,29

1,9,13,22 1,9 1,9
3,19,23,28,30,34,35 3,19,20,23,24,27,28,30 3 3

4 4 4 4,14,18,20
6 6 6,31 6,31

7,17 7,17 7,17,19,23,28 7,17,19,23,28,30
8,14,18 8,14,18

9,13,22
11,12,16 11,12 11,12,16 11,12,16

13 13
14,18,30

15 15 15,34,35 15,34,35
16

20,27,29 20
22 22

24 24 24,26
25 25,29
26 26 26
31 31
32 32 32 32
33 33 33 33

34,35

Table 7.10: Clusters of measures with PAM (measures are represented by their orders).
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R1 ∩R
′
1 R2 ∩R

′
2 R′1 ∩R

′
2 R1 ∩R2 R1 ∩R

′
1 ∩R2 ∩R

′
2

0,2,5,10,21 0,2,5,8,10,21,25,27,29 0,2,5,10,21 0,2,5,10,21 0,2,5,10,21
1,9 1,9

3,19,23,28,30 3
4 4
6 6,31

7,17 7,17,19,23,28 7,17 7,17 7,17
8,14,18
9,13,22

11,12 11,12,16 11,12 11,12,16 11,12
13

14,18 14,18 14,18 14,18
15 15,34,35

19,23,28,30 19,23,28 19,23,28
20,27

22
24

25,29
26 26

27,29
31
32 32 32 32 32
33 33 33 33 33

34,35 34,35 34,35 34,35

Table 7.11: Cluster comparison from PAM (measures are represented by their orders).

Agreed cluster R1 ∩R
′
1 ∩R2 ∩R

′
2

1 Causal Confidence, Causal Confirmed-Confidence, Confidence,
Descriptive Confirmed-Confidence, Laplace

2 Cosine, Jaccard
3 EII, EII 2
4 Gini-index, J-measure
5 Kappa, Lerman, Phi-Coefficient
6 Support
7 TIC
8 Yule’s Q, Yule’s Y

Table 7.12: Clusters agreed with both AHC and PAM on the R1, R′1, R2, and R′2 rulesets.



Chapter 8

Conclusions and perspectives

In the last decade, the designing of interestingness measure to evaluate association rules has become
a challenge in the context of KDD. This is because association rule [AIS93a] [AS94] [AMS+96] is one
of the few models dedicated to unsupervised discovery of rule tendencies in data. It is unfortunately
confronted to a major difficulty: the user must cope with a large amount of extracted rules in order
to validate and select the best ones [PS91]. One way to reduce the cost of the user’s task is to
help him/her with a postprocessing task of association rules. Five postprocessing approaches are
proposed in this task: constraints, pruning, grouping, summarizing and visualizing. In this chapter,
we describe the main results of our work in the postprocessing of association rules and propose some
future researches.

8.1 Main results

Postprocessing of association rules is an important task in the KDD process. The enormous number
of rules discovered in the mining task requires not only an efficient postprocessing task but also an
adapted results with the user’s preferences. Depending on the user’s point of view, each interest-
ingness measure reflects his/her own interests on the data. An interestingness measure has its own
ranking on the discovered rules, the most important rules have the highest ranks. As we known, it is
difficult to have a common ranking on a set of association rules for all the interestingness measures.
As much interestingness measures appeared, the problem is more difficult. As a solution, a set of
interestingness measures having the same or next to a common ranking on a set of association rules
will be classified into a group. In this group, a representative measure that has the strongest relations
with the other measures in the group will be held. Now we can reduce all the measures in this group
into a representative measure. The original set of interestingness measures will become a smaller set
of representative measures. This is the principal approach of our thesis in the postprocessing task
of association rules in KDD.

The main results of our thesis can be evaluated as the following:

- We have strengthened some important features to the IAS model [LHML99] in our approach,
implemented in the ARQAT tool [Chap. 5].

- We have conducted a global survey on the principal properties of interestingness measures,
particularly on objective interestingness measures. An important set of objective measures
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(i.e., with 40 measures) is collected and each measure can have its own formula with four
parameters n, nX , nY , nXY . The principal properties on objective measures considered in our
study are: variation, particular situation, paradoxical phenomenon, countable, diversification,
discriminative ability, interpretable, imbalance, attribute interestingness and quasi- [Chap. 3].
A classification of objective measures on some important properties are performed. Some
interesting relation on mathematical formula are also introduced.

- A quick review on five principal approaches in the postprocessing task in the KDD process on
association rules [Chap. 4].

- We have introduced a new approach in the postprocessing task, called representative measure.
The experimentations are performed on three strong techniques AHC, PAM and correlation
graph. Three common correlation coefficients of Pearson, Spearman and Kendall are imple-
mented [Chap. 4].

- The results are performed on both real-life and synthetic datasets. The datasets are also
studied both on correlated and weakly correlated datasets [Chap. 6]. The new exploratory
approach (graphical and interactive) permits a quick interpretation of the results

- We have proposed a sample model reduced from a dataset. Some important features on the
variation of interestingness values, joint-distribution matrix, correlation values, most interest-
ing rules, sensitivity values and comparative studies are represented [Chap. 6].

- We have introduced an important notion of stable clusters between interestingness measures.
As a result, another important notion of graph of stable clusters is also given [Chap. 7]. Some
stable clusters issued from different datasets have shown unexpected stabilities.

- Complementary points of view and implemented measures allow an expert to better understand
the correlations existing between the interestingness measures on his/her ruleset. A lot of
tasks/views will give a fine/precise study of association rules.

8.1.1 ARQAT tool

We have designed and described the features of a new tool, ARQAT (Association Rule Quality
Analysis Tool) [HGB05a] developed at the Polytechnic school of Nantes university, implementing
an exploratory data-analysis approach for studying the behavior of interestingness measures on a
specific dataset. Technically, ARQAT is a graphical tool, written in Java over 8000 lines of codes, and
embeds a set of 14 graphical views. The user operates on an interface through a classical web-browser,
using web technologies. The main features of the tool are: (1) ruleset analysis, (2) correlation
and clustering analysis, (3) most interesting rules analysis, (4) sensitivity analysis, (5) comparative
analysis. For exchange facilities, three common file formats are used for importing/exporting the
rulesets: PMML (XML data-mining standard), CSV (Excel and SAS) and ARFF (used by WEKA).
ARQAT will be freely available at http://www.polytech.univ-nantes.fr/arqat.

With ARQAT, we have shown the interest of such an exploratory approach, where the intensive
use of graphical and complementary visualizations improves and facilitates data insight for the user.
ARQAT is a first step toward a larger analysis platform in the postprocessing of association rules.
Most of the important experimental results are all issued from this tool. Some other intermediate
results, e.g. with the agglomerative hierarchical clustering (AHC) and partitioning around medoids
(PAM) representations, are computed from the R1 tool.

1http://www.r-project.org/
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8.1.2 Correlation graph

The new approach called correlation graph is implemented by ARQAT. Two graph types CG+ and
CG0 are proposed to evaluate measures by using graphs as a visual insight on the data. With this
approach, the decision-maker has a few measures to decide. These graphical representations will
help him/her to select the most interesting rules to examine.

We also improved our clustering results by using three common correlation coefficients: Pearson,
Spearman and Kendall. Both the value and rank aspects are considered.

8.1.3 Representative measure

In order to improve the postprocessing of association rules, we have presented a new approach to
finding a minimum set of suitable objective measures, called representative measures. The new
approach finds the representative measures with the help of AHC, PAM or correlation graph (CG)
particularly. These techniques allow the user to obtain not only the suitable measures representing
the hidden aspects in the dataset, but also a graphical representation to evaluate the clustering
results.

With a cluster of objective measures, we will find the ”central of gravity” of this cluster. For
example [HGB06b], when we applied to a rule-based dataset about 120000 association rules with
36 objective measures, we obtained a reduced set of sixteen representative measures. The result
obtained also facilitates the validation of the most interesting rules.

8.1.4 Comparison study

To understand the behavior of the interestingness measures on a specific dataset, we have studied
and compared the various interestingness measures described in the literature in order to help the
decision-maker to better understand the behavior of the measures in the stage of postprocessing of
association rules. Our approach is the first step towards the process of evaluating the knowledge
issued in the form of association rules in the domain of knowledge quality research.

We use a data analysis approach based on the dissimilarity computed between interestingness
measures in order to evaluate the behavior of 40 interestingness measures. We also determine some
stable clusters with significant results: cluster that seems independent from the nature of data and
the selection of rules. The stable clusters denote an interesting relations between measures because
they remark the stable behaviors. We also evaluate the behavior of the measures on some important
clusters agreed with each others. An interpretation of this clustering results has been proposed.
With these results, the decision-maker will decide what measures are interesting to capture the best
knowledge.

The evaluation of numerous measures on the datasets having opposite characteristics is an im-
portant method. Based on two types of correlation graphs CG+ and CG0, we have found such stable
clusters, called τ -stable in the CG+ graphs but not in the CG0 graphs. We have introduced the
notions of couple and multiple rulesets to examine the behaviors of interestingness measures on many
rulesets efficiently. The stable clusters are evaluated on three situations with Pearson’s, Spearman’s
and Kendall’s coefficients. In particular, the stable clusters issued from these three coefficients are
also observed. The results with the techniques AHC and PAM are also illustrated.
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8.1.5 Cluster evaluation

Besides, we have also proposed a way to study the km most interesting rules of each cluster, the
union and intersection of the ten most interesting rules of all the cluster in relation to the current
cluster. The union of the km most interesting rules for all the clusters is also presented for the user’s
choice. For the first presentation of the results, we just use 40 measures for implementation.

Other functions such as ranking the measures by sensitivity values, ruleset characteristics, distri-
bution of interestingness measures, smart views of scatterplot matrix both on interestingness values
and rankings, summary tables will help the user to understand the different aspects in the datasets
graphically and exploratory.

8.2 Perspectives

Here we propose some future approaches based on our results obtained to improve the strength of
the postprocessing task of association rules.

8.2.1 Improving the sample model

Having a sample ruleset from an original ruleset is a completely new result from our approach. Each
interestingness measure will have a set of the most interesting association rules from an original
ruleset. This set of rules obtained by ranking the original ruleset with the corresponding interesting-
ness values. The most interesting rules are the ones that have the highest values of interestingness.
The sample ruleset is the created by collecting all the most interesting rules calculated from all the
interestingness measures. The number km (see Sec. 5.4.3 [Chap. 5]) of rules that have highest ranks
of each will be chosen by the user. To improve the efficiency of the sample model, we can proceed
with the following directions:

- Evaluating the relation between the variation of the value of km with the characteristic values
of each ruleset calculated from the sample ruleset.

- Continuing to develop the criteria on the characteristic types for each ruleset that have the
close relation with the criteria on interestingness values [Chap. 3]. This work leads to a
”better” sample ruleset and the sample ruleset will be considered as the most representative
sample of the original ruleset. It will help the user to choose the value of km easier.

- With an association rule, each interestingness measure will give a different interestingness
value. We will exchange this value into a common interval. Each association rule will be
assigned an average value of interestingness calculated from all the interestingness measures.
The sample ruleset is now considered as the set of association rules that have the highest values
of the average interestingness. The value of km is given by the user normally.

- Using the sample ruleset in the study of aggregated rules in comparison with the original
ruleset.

8.2.2 Improving the cluster evaluation

The cluster (i.e. of interestingness measures) evaluation can be improved by studying the relation
between the size of value km with the most interesting rules found.
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When we evaluate the relation between a target cluster with the other clusters, each rule in
the target cluster can be assigned a value as the average rank calculated from the same rule in the
other clusters. Another technique is to use the bagging predictors to get an aggregated predictor of
rules [Bre96]. From this result, we can find a more small set of representative rules for each cluster.
The integration with a or many domain knowledge will give an experience view in the process of
evaluation. The most suitable measure in a cluster can be obtained with the technique of random
forests [Bre01] (i.e., by choosing the best features).

8.2.3 Hierarchy view

Different types of the stable hierarchy such as original, sample, couple, multiple, all, complement,
single rulesets issued from a set of rulesets will be evaluated to have a hierarchy view on the set of
ruleset.

8.2.4 Aggregation technique

One of the means to reduce the number of rules consists to develop the numeric indicators called
interestingness measures that allows to choose the most interesting rules. However, numerous in-
terestingness measures are available in the literature (we have collected about 40 interestingness
measures) and but they do not adapted to the user’s demand. In reality, we have to combine
numerous measures to create an aggregated measure that is more performance.

It is necessary to implement an aggregated technique by Choquet’s or Sugeno’s integral to form
an aggregated measure [Koj04] [Mar00]. In order to experiment and validate the proposed solutions,
this work can be applied on the experimental data on which the interestingness values have already
calculated.

Improving the clustering analysis with aggregation techniques to facilitate the user’s decision
making from the most suitable interestingness measures is still an attractive challenge.

8.3 Publication

Book chapter

- Xuan-Hiep Huynh, Fabrice Guillet, Julien Blanchard, Pascale Kuntz, Régis Gras, and
Henri Briand. A graph-based clustering approach to evaluate interestingness measures :
a tool and a comparative study. (Chapter 2) Quality measures in data mining. Springer-
Verlag, 2006 (To appear).

National journal

- Xuan-Hiep Huynh, Fabrice Guillet, and Henri Briand. Comparaison des mesures d’intérêt
de règles d’association : une approche basée sur des graphes de corrélation. Revue des
Nouvelles Technologies de l’Information, RNTI-E-6(2). Cépaduès Edition, France, pp.
549-560, 2006.

- Xuan-Hiep Huynh, Fabrice Guillet, and Henri Briand. ARQAT: plateforme exploratoire
pour la qualité des règles d’association. Revue des Nouvelles Technologies de l’Information,
Extraction des connaissances : état et perspectives, RNTI-E-5. Cépaduès Edition, France,
2006 (To appear).
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- Xuan-Hiep Huynh, Fabrice Guillet, and Henri Briand. Une plateforme exploratoire pour
la qualité des règles d’association : apports pour l’analyse implicative. Revue ” Quaderni
di Ricerca in Didattica”, Italy, pp. 339-349, 2005.

International conference

- Xuan-Hiep Huynh, Fabrice Guillet, and Henri Briand. Clustering interestingness mea-
sures with positive correlation. ICEIS’05, Proceedings of the 7th International Conference
on Enterprise Information Systems. Miami, USA, pp. 248-253, 2005.

- Xuan-Hiep Huynh, Fabrice Guillet, and Henri Briand. ARQAT: an exploratory analysis
tool for interestingness measures. ASMDA’05, Proceedings of the 11th International
Symposium on Applied Stochastic Models and Data Analysis. Brest, France, pp. 334-
344, 2005.

- Xuan-Hiep Huynh, Fabrice Guillet, and Henri Briand. A data analysis approach for
evaluating the behavior of interestingness measures. DS’05, Proceedings of the 8th Inter-
national Conference on Discovery Science, LNAI 3735. Springer-Verlag, Singapore, pp.
330-337, 2005.

- Xuan-Hiep Huynh, Fabrice Guillet, and Henri Briand. Extracting representative measures
for the post-processing of association rules. IEEE RIVF’06, Proceedings of the 4th IEEE
International Conference on Computer Sciences: Research & Innovation - Vision for the
Future. Ho Chi Minh city, Vietnam, pp. 99-105, 2006 (Best paper of track ”Software
Engineeing, Knowledge Engineering, Agents and Interfaces”).

- Xuan-Hiep Huynh, Fabrice Guillet, and Henri Briand. Discovering the stable clusters
between interestingness measures. ICEIS’06, Proceedings of the 8th International Con-
ference on Enterprise Information Systems. Cyprus, pp. 196-201, 2006.

- Xuan-Hiep Huynh, Fabrice Guillet, and Henri Briand. Evaluating interestingness mea-
sures with linear correlation graph. IEA-AIE’06, Proceedings of the 19th International
Conference on Industrial, Engineering & Other Applications of Applied Intelligent Sys-
tems, LNCS 4031. Springer-Verlag, Annecy, France, pp. 312-321, 2006.

- Xuan-Hiep Huynh, Fabrice Guillet, and Henri Briand. A graph-based approach for com-
paring interestingness measures. IEEE ICEIS’06, Proceedings of the First IEEE Inter-
national Conference on Engineering of Intelligent Systems. Islamabad, Pakistan, pp.
375-380, 2006.

National conference/National workshop

- Xuan-Hiep Huynh. Une approche exploratoire pour la qualié des règles d’association.
JDOC’05, Actes de 5èmes Journées des Doctorants. Nantes, France, pp. 89-92, 2005.

- Xuan-Hiep Huynh, Fabrice Guillet, and Henri Briand. ARQAT: plateforme exploratoire
pour la qualité des règles d’association. DKQ’05, Actes d’Atelier Qualité des Données et
des Connaissances - Associé à EGC’05, 5èmes Journées Francophones d’Extraction et de
Gestion des Connaissance. Paris, France, pp. 58-68, 2005.

- Xuan-Hiep Huynh, Fabrice Guillet, and Henri Briand. Extraction de mesures d’intérêt
représentatives pour le post-traitement des règles d’association. DKQ’06, Actes d’Atelier
Qualité des Données et des Connaissances - Associé à EGC’06, 6èmes Journées Franco-
phones d’Extraction et de Gestion des Connaissances. Lille, France, pp. 45-54, 2006.
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[EHZ03] M. El-Hajj & O. R. Zäıane – “COFI-tree mining: a new approach to pattern growth
with reduced candidacy generation”, FIMI’03, Workshop on Frequent Itemset Mining
Implementations in conjunction with IEEE ICDM’03 (2003), p. 1–10.

[Fle96] L. Fleury – “Knowledge discovery in a human resource management database (In
French)”, Ph.D. Thesis, University of Nantes (1996).



117

[FPSM91] W. J. Frawley, G. Piatetsky-Shapiro & C. J. Matheus – “Knowledge discovery
in databases: an overview”, Knowledge Discovery in Databases (1991), p. 1–27.

[FPSS96] U. M. Fayyad, G. Piatetsky-Shapiro & P. Smyth – “From data mining to knowl-
edge discovery”, Advances in Knowledge Discovery and Data Mining (1996), p. 1–34.

[Fre99] A. A. Freitas – “On rule interestingness measures”, Knowledge-Based Systems Jour-
nal 12(5-6) (1999), p. 309–315.

[GAIM00] M. Gavrilov, D. Anguelov, P. Indyk & R. Motwani – “Mining the stock market:
which measure is best?”, KDD’00, Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining (2000), p. 487–496.

[GB98] P. Gago & C. Bentos – “A metric for selection of the most promising rules”,
PKDD’98, Proceedings of the Second European Conference on the Principles of Data
Mining and Knowledge Discovery (1998), p. 19–27.

[GBPP96] R. Gras, H. Briand, P. Peter & J. Philippé – “Implicative statistical analy-
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Résumé : 

Ce travail s'insère dans le cadre de l'extraction de connaissances dans les données (ECD), souvent dénommé 

"fouille de données". Ce domaine de recherche multidisciplinaire offre également de nombreuses applications en 

entreprises. L'ECD s'attache à la découverte de connaissances cachées au sein de grandes masses de données. Parmi les 

modèles d'extraction de connaissances disponibles, celui des règles d'association est fréquemment utilisé. Il offre 

l'avantage de permettre une découverte non supervisée de tendances implicatives dans les données, mais, en retour, 

délivre malheureusement de grandes quantités de règles. Son usage nécessite donc la mise en place d'une phase de post-

traitement pour aide l'utilisateur final, un décideur expert des données, à réduire la masse de règles produites. Une 

manière de réduire la quantité de règles consiste à utiliser des indicateurs numériques de la qualité des règles, appelés 

"mesures d'intérêts". La littérature propose de nombreuses mesures de ce type, et étudie leurs propriétés. 

Cette thèse se propose d'étudier la panoplie de mesures d'intérêts disponibles, afin d'évaluer leur comportement en 

fonction d'une part de la nature des données et d'autre part des préférences du décideur. L'objectif final étant de guider 

le choix de l'utilisateur vers les mesures les mieux adaptées à ses besoins et in fine de sélectionner les meilleures règles. 

A cette fin, nous proposons une nouvelle approche implémentée dans un nouvel outil, ARQAT (Association Rule 

Quality Analysis Tool), afin de faciliter l'analyse du comportement des 40 mesures d'intérêt recensées. En plus de 

statistiques élémentaires, l'outil permet une analyse poussée des corrélations entre mesures à l'aide de graphes de 

corrélation s'appuyant sur les coefficients proposés par Pearson, Spearman et Kendall. Ces graphes sont également 

utilisés pour l'identification de clusters de mesures similaires. 

En outre, nous avons proposé une série d'études comparatives sur les corrélations entre les mesures d'intérêt sur 

plusieurs jeux de données. A l'issue de ces études, nous avons découvert un ensemble de corrélations peu sensibles à la 

nature des données utilisées, et que nous avons appelées corrélations stables. 

Enfin, 14 graphiques et vues complémentaires structurées à 5 niveaux d'analyse : l'analyse de jeu de règles, 

l'analyse de corrélation et de clustering, l'analyse des meilleures règles, l'analyse de sensibilité, et l'analyse comparative 

sont illustrées afin de montrer l'intérêt de l'approche exploratoire et de l'utilisation des vues complémentaires. 

Mots-clés :

Extraction des Connaissances à partir de Données (ECD), mesures d'intérêt, post-traitement de règles d'association, 

clustering, graphe de corrélation, analyse de stabilité. 

Abstract:

This work takes place in the framework of Knowledge Discovery in Databases (KDD), often called "Data Mining". 

This domain is both a main research topic and an application field in companies. KDD aims at discovering previously 

unknown and useful knowledge in large databases. In the last decade many researches have been published about 

association rules, which are frequently used in data mining. Association rules, which are implicative tendencies in data, 

have the advantage to be an unsupervised model. But, in counter part, they often deliver a large number of rules. As a 

consequence, a postprocessing task is required by the user to help him understand the results. One way to reduce the 

number of rules - to validate or to select the most interesting ones - is to use interestingness measures adapted to both 

his/her goals and the dataset studied. Selecting the right interestingness measures is an open problem in KDD. A lot of 

measures have been proposed to extract the knowledge from large databases and many authors have introduced the 

interestingness properties for selecting a suitable measure for a given application. Some measures are adequate for 

some applications but the others are not. 

In our thesis, we propose to study the set of interestingness measure available in the literature, in order to evaluate 

their behavior according to the nature of data and the preferences of the user. The final objective is to guide the user's 

choice towards the measures best adapted to its needs and in fine to select the most interesting rules. 

For this purpose, we propose a new approach implemented in a new tool, ARQAT (Association Rule Quality 

Analysis Tool), in order to facilitate the analysis of the behavior about 40 interestingness measures. In addition to 

elementary statistics, the tool allows a thorough analysis of the correlations between measures using correlation graphs 

based on the coefficients suggested by Pearson, Spearman and Kendall. These graphs are also used for identifying the 

clusters of similar measures. 

Moreover, we proposed a series of comparative studies on the correlations between interestingness measures on 

several datasets. We discovered a set of correlations not very sensitive to the nature of the data used, and which we 

called stable correlations. 

Finally, 14 graphical and complementary views structured on 5 levels of analysis: ruleset analysis, correlation and 

clustering analysis, most interesting rules analysis, sensitivity analysis, and comparative analysis are illustrated in order 

to show the interest of both the exploratory approach and the use of complementary views. 

Keywords:  

Knowledge Discovery in Databases (KDD), interestingness measures, postprocessing of association rules, clustering, 

correlation graph, stability analysis. 


