J. K. Wideman, J. L. Brown, J. N. Miles, and O. Ozcan, Skin-friction measurements in three-dimensionnal, supersonic shock-wave/boundary-layer interaction, AIAA Journal, p.33, 1995.

J. W. 14-naughton and J. L. Brown, Skin friction measurements in complex flows, using two image thin -oil -film interferometry, 1998.

P. R. Westphal, R. A. Kennely, &. Jr, and A. Drake, Skin friction footprint of the vortex/boundary layer interaction, 1997.

J. W. 17-naughton and M. Sheplak, Modern developpements in shear stress measurement, Progress in Aerospace Science, pp.515-570, 2002.

A. S. Kheireddine, S. K. Chaturvedi, and D. S. Parmar, Novel technique for skin friction measurement in wind tunnel environment utilizing polymer dispersed liquid crystals, 15th Applied Aerodynamics Conference, 1997.
DOI : 10.2514/6.1997-2218

D. R. Buttsworth, S. J. Elston, and T. V. Jones, Directional sensitivity of skin friction measurements using nematic liquid crystal, Measurement Science and Technology, vol.9, issue.11, pp.1856-1865, 1998.
DOI : 10.1088/0957-0233/9/11/011

N. 20-fujisawa, S. S. Funatani, and . Kosaka, Measurement of shear-stress distribution by liquid-crystal coating, Optical tech and Image Processing for Fluids and Solids Diagnostics, 2002.

G. K. Batchelor, The theory of homogenous turbulence. 35 HINZE, J.O, 1953.

K. 36-muthreich, Psp -ctivities or eads during the passed period, 2000.

E. W. Hendricks and . Ladd, Skin friction measurement in flows over tethered polymer coatings, 1991.

H. Schlichting, The boundary layer theory, 1960.
DOI : 10.1007/978-3-662-52919-5

R. S. Snedker, C. Donaldson, and . Dup, A study of free jet impingement : Free jet turbulent structure and impingment heat transfer, pp.45-46, 1971.

F. Ballio, S. Franzetti, and M. G. Tanda, Pressure fluctuations induced by turbulent circular jets impinging on a flat plate

F. Girat, C. J. Chia, and O. Trass, Characterization of the Impingement Region in an Axisymmetric Turbulent Jet, Industrial & Engineering Chemistry Fundamentals, vol.16, issue.1, p.21, 1977.
DOI : 10.1021/i160061a007

L. Bradbury, The impact of an asymmetric jet onto a normal ground, Aeronautical Quarterly, vol.23, 1972.

R. Hadef, A. Haddad, and F. Khaldoun, Comparaison de deux modèles de turbulence dans la simulation d'un jet turbulent axisymétrique, Rev. Energ. Ren, vol.3, pp.17-27, 2000.

D. J. 44-phares, G. T. Smedley, and C. F. Richard, The wall shear stress produced by the normal impingement of a jet on a flat surface, Journal of Fluid Mechanics, vol.418, pp.351-375, 2000.
DOI : 10.1017/S002211200000121X

P. Bakke, An experimental investigation of a wall jet, Journal of Fluid Mechanics, vol.2, issue.05, pp.467-472, 1957.
DOI : 10.1017/S002211205600041X

P. O. Witze and H. A. Dwyer, Impinging axisymmetric turbulent flows : The wall jet, the radial jet and opposing free jets, pp.2-33, 1977.

N. V. Swamy and P. Bandyopadhyay, Mean and turbulence characteristics of three-dimensional wall jets, Journal of Fluid Mechanics, vol.7, issue.03, pp.541-562, 1975.
DOI : 10.1017/S002211207500273X

A. Sigalla, Summary, Journal of the Royal Aeronautical Society, vol.2, issue.576, pp.873-877, 1958.
DOI : 10.1017/S002211205600041X

M. Stanislas, J. M. Foucault, N. Miliat, and N. Perenne, Characterization of different piv algorithms using the europiv synthetic image generator and real images from a turbulent boundary layer, Particle Image Velocimetry : Recent Improvements, pp.163-185, 2003.

R. J. Adrian, Particle-Imaging Techniques for Experimental Fluid Mechanics, Annual Review of Fluid Mechanics, vol.23, issue.1, pp.261-304, 1991.
DOI : 10.1146/annurev.fl.23.010191.001401

F. Sacarano, Iterative image deformation methods in PIV, Measurement Science and Technology, vol.13, issue.1, pp.1-19, 2001.
DOI : 10.1088/0957-0233/13/1/201

R. S. Snedker, C. Donaldson, and . Dup, A study of free jet impingement : Mean properties of free impinging jets, pp.45-47, 1971.

L. Song and J. Abraham, The Structure of Wall-Impinging Jets: Computed Versus Theoretical and Measured Results, Journal of Fluids Engineering, vol.125, issue.6, 2003.
DOI : 10.1115/1.1625686

D. J. 59-phares, G. T. Smedley, and R. C. Flagan, The wall shear stress produced by the normal impingement of a jet on a flat surface, Journal of Fluid Mechanics, vol.418, 1983.
DOI : 10.1017/S002211200000121X

K. Kataoka, Y. Kamiyama, S. Hashimoto, and T. Komai, Mass transfer between a plane surface and an impinging turbulent jet: the influence of surface-pressure fluctuations, Journal of Fluid Mechanics, vol.90, issue.-1, pp.91-105, 1982.
DOI : 10.1021/i160061a008

F. Y. Kong, J. A. Schetz, and F. Collier, Turbulent boundary layer over solid and porous surfaces with small roughness, 19th Aerospace Sciences Meeting, 1982.
DOI : 10.2514/6.1981-418

J. P. Lacharme, Vélocimétrie LASER Doppler Bidimensionnelle pourécoulementpourécoulement turbulent supersonique : quelques aspects spécifique des processus de mesure, Thèse de l'université d'Aix-Marseille II, 1984.

W. G. Tidermann and D. K. Mclaughlin, Biasing correction for individual realization of laser anemometer measurements in turbulent flows, Phys. Fluids, vol.16, pp.2082-2088, 1973.

D. F. Durao, J. Laker, and J. H. Whitelaw, Bias effects in laser Doppler anemometry, Journal of Physics E: Scientific Instruments, vol.13, issue.4, 1980.
DOI : 10.1088/0022-3735/13/4/018

W. K. George, P. Buchhave, and J. L. Lumley, The mesurement of turbulence with the laser doppler anemometer, Ann. Rev. Fluid Mech, issue.11, pp.443-503, 1979.

. Les-franges-d, interférence sont orthogonalesàorthogonalesà la plaque plane et défilent dans le sens inversè a l'´ ecoulement principal. L'inclinaison de l'axe optique d'´ emission par rapportàrapportà l'horizontale de la veine d'essais est de 1 o . Ceci permet de limiter la réflexion des faisceaux LASER sur la plaque plane, Les figures H.1 et H.2 représentent l'orientation des faisceaux et du volume de mesure dans l'´ ecoulement de jet de paroi

P. Sur-le-revêtement, surface inhomogène et réfléchissante), l'impact génère un halo lumineux mul- Fig. H.5 ? Représentation des points sondés par

I. La-figure, 9 représente la distribution des vitesses lorsque le volume de mesure englobe la sous-couche visqueuse. Dans cet exemple, le volume de mesure est centré en y = 21µm

. Le-grand-nombre-d, ´ echantillons mesurés en chaque point de mesure permet une bonne convergence des moments statistiques des moments d'ordre 1 et 2. En outre l'incertitude sur les mesures de vitesse est de 0, p.34

. Dans-lesécoulementàlesécoulementlesécoulementà-faible-vitesse, les contraintes de cisaillement provoquent une augmentation de températurè a la paroi de l'ordre de 0, 1K