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Chapter 1

IntroductionRobots are ma
hines but dedi
ated to perform not a unique stati
 task. They are designedand endowed with a relative monitored freedom in su
h a way they 
an deal with dynami
requirements. Their designed body stru
ture allows them performing di�erent kind of au-tonomous a
tions and therefore intera
ting with their environment with prede�ned goals.These intera
tions 
an also lead to ex
hanged for
es between the robot and the environment.Roboti
 a
tions are generated by a
tuators embedded in the robot stru
ture. The robot
an perform an a
tion only if the latter is ordered and well formulated a

ording to robots'sown language, provided of 
ourse that the required a
tion �ts and lies within the robot's
apabilities. This language is that the robot's a
tuators understand and thus a

ordinglygenerate an a
tion, that will be transmitted to the robot's stru
ture. The a
tions separatelygenerated by ea
h of the a
tuators will result in an a
tion at the stru
ture's end-element.The robot is servoed to perform a task in its environment, and therefore needs informationabout this latter in order to be able to intera
t with it. Su
h information are generallya�orded thanks to sensors atta
hed to the stru
ture of the robot. They 
an be either pro-prio
eptive or extero
eptive allowing respe
tively sensing the state of the robot or sensingthat of the environment. The task to be performed by the robot is 
on
eived in a languagedi�erent from that understandable by the robot's a
tuators. Su
h task orders 
an be for-mulated, as for examples, by: move to position A then to position B; perform motion witha 
ertain velo
ity and then smoothly stop right arriving to a 
ertain position; grab the doorand then 
orre
tly �x it in the 
ar body; push the surfa
e with a 
ertain for
e and performba
k-and-forth motions for polishing; perform welding by following a 
ertain path; et
. Thetask orders 
an not be dire
tly 
ommuni
ated to the robot sin
e the latter's a
tuators donot understand the language with whi
h the ordered task is formulated. The a
tuators 
anperform a

ording to orders formulated only in a
tuator's language. A bu�er between thetwo languages is 
onsequently 
ru
ial to translate the orders to be thus understood and thena

omplished by the robot. The te
hni
al �eld related to su
h bu�ers is well known by theterm Automatic Control in general, when dealing with ma
hines, and more parti
ularly by
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buffer
orders command

state information

High−level Language Low−level Language
robot

Figure 1.1: Sketch about robotics control

Robot Control when dealing with robots. The sensors provide with robot's or environment'sstate information that are fed ba
k to the bu�er, that then 
omputes the 
ommands whi
h�nally are sent to the robot. A sket
h is given in Fig. 1.1.Depending on kind of the task to be performed by the robot, di�erent types of sensors are
onsidered. In the 
ase only the proprio
eptive sensors, as the robot's en
oders for example,are used to 
onvey the information relative to the pose of the robot, the servoing te
hniqueis known as Position-based Servoing. Su
h te
hniques require prior knowledge about the
onsidered environment, as a CAD model representing its geometry for instan
e. They areprone to errors in the task a

omplishment if a 
hange has o

urred in a 
onsidered part ofthe environment. An alternative 
onsists in using extero
eptive sensors, as vision ones that
an enable the robot per
eiving the environment with whi
h it is intera
ting. This approa
his well known as Visual Servoing (VS) te
hnique, that we draw a global s
heme on Fig. 1.2,grossly representing the di�erent involved steps with the 
orresponding data �ow.Visual sensors provide an image of the environment, thus re�e
ting its state. The informa-tion 
ontained in the image is extra
ted and then fed ba
k for robot servoing. In the 
asethe information is dire
tly used to 
ompute the 
ommand to the robot, the visual servoingte
hnique is referred by Image-based visual servoing (IBVS) te
hnique. If however the infor-mation is pro
essed to be transformed in 3D poses information, that is used to 
ompute the
ommand, then the visual servoing te
hnique is referred by Position-based visual servoing(PBVS) one. Otherwise, part of the information is transformed in poses inputs whi
h arethen 
ompounded with other image information to 
ompute the 
ommand. In this 
ase werefer to Hybrid Visual Servoing te
hnique. Reviews are presented in [41℄ and [17, 18℄ . In



7

Figure 1.2: A typical visual servoing scheme.visual servoing, the feedba
k information used for 
omputing the 
ommand is referred to as
visual feature.Roboti
s has 
ome into being with a main obje
tive to enhan
e the 
apabilities of humansand to a�ord what the latter 
ould not. It was in fa
t a follow-up of the development ofme
hani
al ma
hines, whi
h at that time already a�orded the human with valuable servi
es.Su
h ma
hines were however restrained for performing a unique task and were limited inautonomy. This fueled the desire to make them versatile with a broad range of servi
es andwith as higher as possible autonomy. More, investigations have already been undertaken tomake these ma
hines smart, even with higher skills than human. Mu
h of the e�orts there-fore has been, and still are being in an in
reasing rate, devoted for enhan
ing the robotsautonomy and 
apabilities, as we have taken part through this thesis.Roboti
s �nds appli
ations in numerous areas ranging from, but not limited to, the �eld ofautomotive industry, aerospa
e, under-water, nu
lear, military, and re
ently in the medi
alintervention �eld. The latter represents the �eld this thesis is mainly targeting. We intro-du
e this area in Chapter 2. Visual sensors a�ord roboti
 systems with per
eption of theirenvironment and 
onsequently with more abilities for autonomous a
tions with enhan
edsafety. Su
h sensors thus are of great interest, perhaps indispensable, for many appli
ations
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of the medi
al roboti
s �eld, where the environment with whi
h the robot is intera
ting istypi
ally di�
ult to model. Possible 
ontinual environment's state 
hanges, that may o
-
ur, make su
h di�
ulties stronger. Many of the medi
al roboti
 systems use, indeed, visualsensors, and therefore are endowed with 
apabilities of intera
ting with their environment.Those sensors are generally based on modalities su
h as opti
al, magneti
 resonan
e (MR),X-ray �uoros
opy or CT-s
an, ultrasound, et
. We provide in the next 
hapter a reviewabout roboti
 systems guided with these imaging modalities, that we present in more detailsfor the 
ase of ultrasound, sin
e our work 
on
erns this latter �eld.A gap, however, still remains to be addressed before medi
al roboti
s be
ome 
ommon pla
efor large appli
ations range, due mainly to the fa
t that the information provided by mostof su
h sensors is not yet well exploited in servoing. E�orts are therefore needed to dealwith su
h issue and investigate how those sensors 
ould be used, their information exploitedand translated in a language understood by the robot (i. e., new modeling along with visualservoing te
hniques needs to be developed), so the latter behaves a

ordingly and a
hievesthe required medi
al task. This thesis 
on
erns su
h obje
tives, and more parti
ularly it in-vestigates how 2D ultrasound sensors, through their valuable information, 
an be exploitedin medi
al roboti
 systems in order to a�ord the latter with enhan
ed autonomy and 
apa-bilities.
ContributionsOur work 
on
erns the exploitation of 2D ultrasound images in the 
losed loop of visualservoing s
heme for automati
 guidan
e of a robot arm, that 
arries at its end-e�e
tor a 2Dultrasound probe; we 
onsider in this work 6 degrees of freedom (DOFs) anthropomorphi
medi
al robot arms. We develop a new visual servoing method that allows for automati
positioning of a robotized 2D ultrasound probe with respe
t to an observed soft tissue [54℄[57℄ [55℄, and [56℄. It allows to 
ontrol both the in-plane and out-of-plane motions of the2D ultrasound probe. This method makes dire
t use of the observed 2D ultrasound images,
ontinuously provided by the probe transdu
er, in the servoing loop (see Fig. 1.3). It ex-ploits the shape of the 
ross-se
tion lying in the 2D image, by translating it in feedba
ksignals to the 
ontrol loop. This is a
hieved by making use of image moments, that afterbeing extra
ted are 
ompounded to build up the feedba
k visual features (an introdu
tionabout image moments is given in Chapter 3). The 
hoi
e of the 
omponents of the visualfeatures ve
tor is also determinant. These features are transformed in a 
ommand signalto the probe-
arrier robot. To do so, we �rst develop the intera
tion matrix that relatesthe image moments time variation to the probe velo
ity. This intera
tion matrix is subse-quently used to derive that related to the 
hosen visual features. The latter matrix is 
ru
ial
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Figure 1.3: An overall scheme of the ultrasound (US) visual servoing method using
image moments, with the corresponding data flow.in the design of the visual servo s
heme, sin
e it is involved in the 
ontrol law. We proposesix relevant visual features to 
ontrol the 6 DOFs of the robot. The method we developallows for automati
 rea
hing a target image starting from one totally di�erent, and doesnot require a prior 
alibration step with regard to parameters representing the environmentwith whi
h the probe transdu
er is intera
ting. It is furthermore based on visual featuresthat 
an be readily 
omputed after having segmented the 
ross-se
tion of interest in theimage. These features do not warp but truly re�e
t the information 
onveyed by the image.They are unlikely to misrepresenting the a
tual information of an image from whi
h theyare extra
ted. These features are moreover relatively robust to image noise, whi
h is ofgreat interest when dealing with the ultrasound modality whose images are, inherently, verynoisy. An image moments-based servoing system, namely the one presented in the presentdissertation, will then be, at its turn, robust to image noise. We will see this in Chapter 5.
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The method we propose has numerous potential medi
al appli
ations. First, it 
an be usedfor diagnosis by providing an appropriate view of the organ of interest. As instan
e, in[1℄ only the probe in-plane motions are automati
ally 
ompensated to keep tubes 
enteredin the image. However, if the tubes are for example 
urved, they may vanish from theimage while the robotized probe is manipulated by the operator. Indeed, 
ompensatingonly in-plane motions is not enough to follow su
h tubes. With the method we propose,however, it would be possible that the probe automati
ally follows the tubes's 
urvaturesthanks to the 
ompensation of the out-of-plane motions. Another potential appli
ations isneedle insertion. Sin
e the method we propose allows to keep the a
tuated probe on anorgan desired 
ross-se
tion, it therefore would a�ord to stabilize an a
tuated needle withrespe
t to the targeted organ. This would prevent the needle from eventual bending orbreaking when the organ moves. The assumption and 
onstraint assumed for example in[38℄, where the needle is me
hani
ally 
onstrained to lie in the probe observation plane, thuswould be over
ome sin
e the system would automati
ally stabilize the needle in the desiredplane (organ's sli
e). Another appli
ation is image 3-D registration, where 
urrently in theLagadi
 group we have a 
olleague who works to exploit this method for that topi
.This thesis brings and states new modeling of the ultrasound visual information with re-spe
t to the environment with whi
h the robot is intera
ting. It is important to noti
e thedi�eren
e from the modeling of opti
al systems visual information, for example, whi
h 
anbe found in di�erent literature works. In 
ase of opti
al systems, like a 
amera for example,the transmitted image 
onveys information of 3D world s
enes that are proje
ted on theimage plane. In 
ontrast, a 2D ultrasound transdu
er transmits a 2D image of the se
tionresulting from the interse
tion of the probe observation beam with the 
onsidered obje
t. Inpra
ti
e, the ultrasound beam is approximated with a perfe
t plane. A 2D ultrasound probethus provides information only in its observation plane but none outside of it. Consequently,the modeling in 
ase of opti
al systems quite di�ers from that of 2D ultrasound systems(this 
ontrast is sket
hed in Fig. 1.4). Most of the visual intera
tion modeling, and thusvisual servoing methods, are however devoted for opti
al systems. Therefore, they 
an notbe applied in 
ase of 2D ultrasound due to the highlighted di�eren
e. New modeling needtherefore to be developed in order to design visual servoing systems using 2D ultrasound.We �rst derive the image velo
ity of points of the 
ross-se
tion ultrasound image. Thisvelo
ity is analyti
ally modeled, and is related as fun
tion of the probe velo
ity. It is thenused for deriving the analyti
al form of the image moments time variation as fun
tion of theprobe velo
ity. This latter formulae we obtain is nothing but the 
ru
ial intera
tion matrixrequired in the 
ontrol law of the visual servoing s
heme. The modeling is developed andpresented in Chapter 3.Another 
hallenging issue is that the intera
tion matrix strongly depends on the 3D shape
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(a) (b)

Figure 1.4: Difference between an optical system and a 2D ultrasound one in the man-
ner they interact with their respective environments: (a) a 2D ultrasound probe ob-
serves an object, through the cross-section resulting from the intersection of its planar
beam with that object - (b) a perspective camera observes two 3D objects, which reflect
rays that are projected on the camera’s lens. (The camera picture, at the top, is from
http://www.irisa.fr/lagadic/).of the soft tissue with whi
h the roboti
 system is intera
ting, when probe out-of-plane mo-tions are involved. A �rst resolution that 
ould be proposed is the use of a pre-operative 3Dmodel, of the 
onsidered soft tissue, that would be used to derive the intera
tion. However,doing so would arise di�
ulties along with more 
hallenges. Firstly, the pre-operative modelshould be available. This suggest an o�-line pro
edure in order to obtain it. Furthermore,it would also require to register the pre-operative model with the 
urrent observed image.The above issue is addressed in the present dissertation. Indeed, we develop an e�
ientmodel-free visual servoing method that allows the system for automati
 positioning withoutany prior knowledge of the shape of the observed obje
t, its 3D parameters, nor its lo
ationin the 3D spa
e. This model-free method e�
iently estimates the 3D parameters involvedin the 
ontrol law. The estimation is performed on-line during the servoing is applied. Thisis presented in Chapter 4.The developed methods have been validated from simulations and experiments, wherepromising results have been obtained. This is presented in Chapter 5. The simulations
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onsist in s
enarios where a 2D virtual probe is intera
ting with either a 3D mathemati
almodel, a realisti
 obje
t re
onstru
ted from a set of real B-s
an ultrasound images previously
aptured, or a binary obje
t re
onstru
ted from a set of binary images. The experimentshave been 
ondu
ted using a 6 DOFs medi
al robot arm 
arrying a 2D ultrasound probetransdu
er. The robot arm was intera
ting with an ultrasound phantom whi
h, inside, 
on-tained a soft tissue obje
t, and also with soft tissue obje
ts immersed in a water-�lled tank.We �nally 
on
lude this do
ument by providing some orientations for prospe
tive investi-gations.



Chapter 2

Prior ArtThe fo
us of this thesis is robot automati
 guidan
e from 2D ultrasound images. Morepre
isely, the obje
tive of our investigations is to develop new modeling for image-basedvisual servoing. It is therefore ne
essary to position our work between the former ones thatdealt with robot guidan
e from 2D ultrasound, and thus the 
ontributions that this thesisbrings 
an also be 
ontrasted from those of the literature works. This is the s
ope of thepresent 
hapter. In this dissertation, in fa
t, we develop new methods aimed at more ef-fe
tive and broad exploitation of an imaging modality, namely the ultrasound imaging, formedi
al roboti
s 
ontrol. Consequently, it seems fundamental to �rst provide an overviewabout medi
al roboti
s, from the point of view of roboti
s 
ontrol, and to introdu
e medi
alrobot guidan
e performed with main imaging modalities. After doing so, we �nally 
anstart dealing in more details with works that investigate the use of the ultrasound imagesfor robot 
ontrol.The remainder of the 
hapter is organized as follows. We present in the next se
tion ashort introdu
tion to medi
al roboti
s, along to human-ma
hine interfa
es. These latter are
ommonly used for the inter
ommuni
ation between the 
lini
ian and the medi
al roboti
system for pro
edure monitoring. We also provide a 
lassi�
ation that ea
h of whi
h re�e
tsa spe
i�
 manner that, a

ording to, the 
lini
ian intera
ts and orders the roboti
 system fortask a
hievements. Subsequently, we introdu
e the most used imaging modalities as opti
al,X-ray and/or CT, MRI, and ultrasound. The ultrasound modality represents the imagingwhose employing, in guiding automati
 roboti
 pro
edures, is investigated in the presentthesis. Therefore, those remaining imaging modalities are brie�y presented. The examplesof literature investigations related to those modalities are provided only to illustrate their
orresponding �eld. We thus generally 
ite only one work for ea
h of those �elds, sin
e theyare beyond the fo
us of this thesis. As for works dealing with ultrasound-based automati
guidan
e, we �nally present and organize them a

ording to a 
ertain 
lassi�
ation, as 
anbe seen later. We afterwards brie�y re
all the 
ontributions that this thesis brings to the
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Figure 2.1: Da Vinci robot (Photo: www.intuitivesurgical.com)�eld of 2D ultrasound-based roboti
 automati
 guidan
e.
2.1 Medical roboticsSome parts of this se
tion are inspired from [78℄.Medi
al roboti
s has 
ome into being to enhan
e and extend the 
lini
ian 
apabilities inorder to perform medi
al appli
ations with better pre
ision, dexterity, and speed leadingto medi
al pro
edures of shortened operative time, redu
ed error rate, and of redu
ed mor-bidity (see [78℄); its goal is not to repla
e the 
lini
ian. As examples to illustrate su
hobje
tives, roboti
 systems 
ould 
ompensate for the surgeon's hand tremors to removethem during an intervention, or 
ould be used to 
arry heavy tools with 
are. These sys-tems 
ould assist and provide the 
lini
ian with valuable information whi
h are organizedand displayed on s
reens for visualization. The 
lini
ian 
ould intera
t with the system toobtain desired information, on whi
h 
orre
t de
isions 
an be made. The 
onveyed infor-mation have therefore to be pertinent with at the same time not overwhelming the 
lini
ian.Medi
al robots 
an be 
lassi�ed a

ording to di�erent ways [78℄: by manipulator design (e. g.,kinemati
s, a
tuation); level of autonomy (e. g., programmed, teleoperated, 
onstrained 
o-operative 
ontrol); targeted anatomy or te
hnique (e. g., 
ardia
, intravas
ular per
utaneous,laparos
opi
, mi
rosurgi
al); intended operating environment (e. g., in-s
anner, 
onventionaloperating room); or by the devi
es used for sensing the information (e. g., 
amera, ultra-
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sound, MR, CT, et
). An example of a well known medi
al robot is shown on Fig. 2.1. Su
hrobot is used for minimally invasive surgi
al pro
edures.In 
ontrast to industrial robots that generally deal with manufa
tured obje
ts, medi
alrobots instead intera
t with human patients. Therefore, mu
h 
onstraints and di�
ultiesarise when dealing with medi
al roboti
s. The se
urity is one of the requirements thatmedi
al roboti
s typi
ally must ful�ll. Consequently, su
h robots are rigorously expe
ted topossess a

ura
y, and dexterity. The versatility is also of great interest allowing to performa range of robotized medi
al pro
edures with minimal 
hanges to the medi
al room setup.The robot should not be 
umbersome in order to allow the 
lini
al sta� unimpeded a

essto the patient, espe
ially for the surgeon during the pro
edure. It 
an be ground-, 
eiling-,or patient-mounted. Su
h 
hoi
e is subje
t to the tradeo� between the robot size, heavi-ness, and a

ess to the patient. Sterilization also must be addressed, espe
ially for surgi
alpro
edures. The patient 
an be in 
onta
t with parts of the robot, and 
onsequently allpre
autions must be taken in order to prevent any possible 
ontamination of the surgi
al�eld. The 
ommon pra
ti
e for sterilization is the use of bags to 
over the robot, and eithergas, soak, or auto
lave steam to sterilize the end-e�e
tor holding the surgi
al instrument.As introdu
ed above, medi
al roboti
 systems use mainly visual sensors, whose modalityis 
hosen depending on the kind of the appli
ation to perform. Ea
h modality presents spe-
i�
 advantages but also su�ers from drawba
ks. Soft tissues, for example, are well imagedand their stru
tures well dis
riminated with the Magneti
 Resonan
e Imaging (MRI). Thismodality is extensively used to dete
t and then lo
alize tumors for their treatment, and issubje
t to di�erent investigations to exploit it for robotized tumor treatment, where therobot 
ould assist needle insertion for better tumor targeting (e. g., [30℄). Su
h imagingis a�orded by s
anners of high intensity magneti
 �eld. Therefore, ferromagneti
 materialsexposed to su
h �eld undergo intense for
es and 
ould be
ame dangerous proje
tiles. Conse-quently, 
ommon roboti
 
omponents do not apply sin
e they are generally made from su
hmaterials, and are therefore pre
luded for this imaging modality. Moreover, the streamingrate at whi
h the image are provided by the 
urrent MRI systems is relatively low to envisagereal-time roboti
 appli
ations. As for bones, they are well imaged with X-ray modality (orCT). Su
h imaging has been therefore the subje
t to investigations and has found its use,for example, in roboti
ally-assisted orthopedi
 surgery as spine surgery, joint repla
ement,et
. This modality 
an, however, be harmful to the patient body due to its radiation. Op-ti
al imaging sensors have also been 
onsidered. One of the most medi
al appli
ation usingsu
h sensors 
on
erns endos
opi
 surgery, where generally a small 
amera is 
arried andpassed inside the patient's body through a small in
ision port, while two or more surgi
alinstruments are passed through separate other small in
isions (see Fig. 2.2). The 
amerais positioned in su
h a way it gives an appropriate view of the surgi
al instruments. The
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Figure 2.2: Example of endoscopic surgery robot (Da Vinci robot) in action. (Photo:
http://biomed.brown.edu/.../Roboticsurgery.html)surgeon thus 
an handle those surgi
al instruments and 
an observe their intera
tion withsoft tissues thanks to the 
onveyed images by the 
amera. Su
h pro
edures have alreadybeen robotized, where ea
h instrument is separately 
arried by a robot arm. Both instru-ments are remotely operated by the surgeon through hapti
 devi
es. This kind of roboti
systems is already 
ommer
ialized, as the one shown in Fig. 2.2, and these robotized pro-
edures have be
ome 
ommonpla
e in some medi
al 
enters. Resear
h works are howeverstill being 
ondu
ted in order to automati
ally assist the surgeon, by visually servoing theinstrument-holder arms (e. g., [47℄, [60℄).Another appli
ation of opti
al systems whi
h new works have started to investigate is themi
rosurgery roboti
s (e. g., [31℄). It is introdu
ed in Se
tion 2.2. Other appli
ations 
ouldbe 
onsidered but are however extremely invasive (e. g., [36℄, [7℄). Therefore, the range ofpotential appli
ations based on opti
al imaging sensors seems to be restrained to few appli-
ations as endos
opi
 surgery, wherein at least two in
isions are required, leading to possiblehemorrhage and trauma for the patient. Bleeding 
an also hinder and, perhaps, pre
ludevisualization if blood en
ounters the 
amera lens, thus 
ompromising the pro
edure. Opti
alsensors require free spa
e up to the region to visualize, whi
h represents a strong 
onstraintthat generally 
ould not be satis�ed when dealing with medi
al pro
edures; where the 
am-era is inside the body and en
ounters soft tissue walls from either sides. The 
amera alsoneeds to be passed inside the body up to the region to operate on, whi
h is however notalways possible for some regions. We 
an note indeed that, as instan
e, most of endos
opi
pro
edures are laparos
opi
ally performed (i.e., through the abdomen), and thus the 
ameraalong with the instruments is passed through a patient body's region that is relatively less
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(a) (b)

Figure 2.3: An example of a typical robotic system teleoperated through a human-
machine interface: three medical slave robot arms (left) are teleoperated by a user
thanks to a master handle device, and the procedure is monitored by the user through
display screens (right). (Photo: http://www.dlr.de/).
ompli
ated in term of a

ess sin
e, for example, the fewer presen
e of bones. In 
ontrast,MR, X-ray, and ultrasound imaging modalities provide internal body images without anyin
ision, and thus 
ir
umvent the 
onstraints imposed when using opti
al systems and theire�e
ts. But as introdu
ed above, MRI and X-ray present drawba
ks. The former modal-ity 
urrently does not provide images in real-time, and pre
ludes ferromagneti
 materials.The latter is harmful. Ultrasound modality, however, provides internal body images non-invasively and is 
onsidered healthy for patient. More parti
ularly, 2D ultrasound providesimages with high streaming rate. This latter trait is of great interest when dealing withrobot servoing for real-time appli
ations. This thesis 
on
erns this modality, where it aimsat addressing the issue of exploiting 2D ultrasound images for automati
ally performingrobotized medi
al appli
ations.During a medi
al pro
edure, it is 
ru
ial that the 
lini
ian is present to supervise andmonitor the appli
ation. Therefore the 
lini
ian should be able to order and intera
t with therobot. This is performed through an interfa
e well known by the term of Human-machine

interface.
2.1.1 Human-machine interfacesHuman-ma
hine interfa
es (HMI) play an important role in medi
al roboti
s, more parti
u-larly they allow the 
lini
ian for supervising the pro
edure. An HMI is grossly 
omposed of adisplay s
reen on whi
h di�erent information are displayed, and a handle devi
e with whi
hthe 
lini
ian 
an send orders to the roboti
 system. Su
h devi
e 
ould be a joysti
k, or sim-
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ply a mouse with whi
h hand 
li
ks are performed on the display s
reen. The 
lini
ian thus
an intera
tively send the orders to the robot through the HMI, and inversely, 
an re
eiveinformation about the 
lini
al �eld's state (see Fig. 2.3). However, the 
lini
ian should re-
eive important and pre
ise information, while at the same time not be overwhelmed by su
hdata in order to take de
isions based only on pertinent information. An issue is the abilityof the system to estimate the impre
ision of the 
onveyed information, su
h as registrationerrors, in order to prevent the 
lini
ian making de
isions based on wrong information [78℄.An example of a human-ma
hine interfa
e developed for roboti
ally assisted laparos
opi
surgery is presented in [61℄.
2.1.2 Operator-robot interaction paradigmsDepending on the 
on�guration re�e
ting the manner the operator 
ommands the roboti
system, di�erent paradigms 
ould be 
onsidered, as those presented in the following.
Self-guided robotic system paradigmIn su
h a 
on�guration, the robot autonomously performs a series of a
tions after a 
lini
ianhad previously indi
ated required obje
tives. That operator is in fa
t out-of-loop with re-gard to the intera
tion of the robot with its environment, ex
ept for restrained a
tions su
has monitoring the development of the pro
edure and de�ning new obje
tives for the robot,or stopping the pro
edure. Endowed with su
h a paradigm, a roboti
 system 
ould a�ordwith valuable servi
es that otherwise 
ould not be performed. Su
h a system requires there-fore intelligent 
losed-loop servoing te
hniques to enable the robot undertaking autonomousa
tions, espe
ially when intera
ting with 
omplex environments. The servoing te
hniquesdeveloped through this thesis are ranged mainly within this paradigm 
lass.In 
ontrast to this 
on�guration, the below presented paradigms 
onsist is the 
ase wherethe operator is involved within the intera
tion loop. Su
h 
on�gurations 
an therefore be
onsidered, with regard to the task to perform, belonging to the open-loop servoing 
lasses.
Haptic interfaces: master-slave paradigmHapti
 interfa
e systems have brought pertinent assistan
e for medi
al interventions. Typi-
al systems 
onsist of robot arms that 
an 
arry di�erent variety of medi
al instruments (seeFig. 2.3 top). By handling master devi
es, the 
lini
ian manipulates the instrument 
arriedby the robot end-e�e
tor (see Fig. 2.3 bottom). The 
lini
ian 
an remotely manipulate therobot, and 
an feel what is being done thanks to re�e
ted for
es from the instrument (e. g.,[49℄). For
e sensors atta
hed between the 
arried instrument and its holder estimate the
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Figure 2.4: Cooperative manipulation: a microsurgical instrument held by
both an operator and a robot. Device, developed by JHU robotics group,
aimed at injecting vision-saving drugs into tiny blood vessels in the eye (Photo:
http://www.sciencedaily.com).for
es applied on the manipulated patient's tissue. The for
es en
ountered by the instru-ment are sensed, s
aled, and then sent to the master handle. This latter moves a

ording tothese sent for
es, and thus it re�e
ts the sensed for
es to the 
lini
ian who is operating onit. The 
lini
ian therefore 
an feel the sensed for
es and 
onsequently 
an be aware aboutthe e�e
ts of the intera
tion between the instrument and the patient's tissue. Inversely,the for
es applied by the 
lini
ian on the master handle are s
aled, transmitted, and thentransformed in motions of the slave instrument. Inter
ommuni
ating for
es as su
h allows toe�e
tively slowing down abrupt motions that 
ould be the result from ba
klash movementsof the operator, and to attenuate hand tremor whi
h 
an be of great interest for surgi
alpro
edures. It however does not allow the operator dire
t a

ess to the instrument, whi
hthus 
an not be freely manipulated (see [78℄).One known appli
ation of the master-slave paradigm 
on
erns endos
opi
 surgery. Su
hpro
edures (they have been introdu
ed above), whether roboti
ally or freehand performed,su�er from low dexterity be
ause of the e�e
t of the entry port pla
ement, through whi
hthe surgi
al instrument or the 
amera holder is passed. Another appli
ation 
on
erns mi-
rosurgery roboti
s (it is introdu
ed in Se
tion 2.2). It su�ers however from the fa
t that
urrent master-slave systems are not rea
tive to small for
es.
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Figure 2.5: Hand-held instrument for microsurgery. (Photo:
http://www3.ntu.edu.sg/).

Cooperative manipulationIn this 
ase, both the 
lini
ian and the robot hold the same instrument, e. g. [31℄, (seeFig. 2.4). This paradigm keeps some advantages of the master-slave one, sin
e it allowse�e
tively slowing down abrupt surgeon's hand motions, and attenuating surgeon's handtremor. In 
ontrast to master-slave, this paradigm allows the surgeon to dire
tly manip-ulate the instrument, and be more 
loser to the patient, whi
h is really appre
iated bysurgeons [78℄.
Hand-held configurationAnother 
on�guration 
onsists in hand-held instruments (see Fig. 2.5), that �nd su

ess inhand tremor 
an
ellation (e. g. [85℄). Embedded inside the instrument are inertial sensorsthat dete
t tremor motions and speed whi
h both, by low amplitude a
tuators, are theninertially 
an
eled. The advantage of su
h a 
on�guration is that beyond of leaving thesurgeon 
ompletely unimpeded, it lets the operating room un
umbersome, with less setup
hanges. However, heavier tools are not supported and the instrument 
an not be left sta-tionary in position [78℄.After we have presented an introdu
tion to the medi
al roboti
 �eld, we now surveyexploitation of main imaging modalities in guiding su
h systems. We �rst introdu
e med-i
al roboti
 systems guided with opti
al images. Then, we present roboti
 guidan
e withX-ray (or CT-s
an) and MRI imaging modality, respe
tively. They are dis
ussed brie�y,su
h that we present only few examples for illustration, sin
e they are beyond the s
opeof this thesis. Finally, we 
onsider guidan
e using the ultrasound modality. We dis
uss itwith more details, sin
e it represents the fo
us of this thesis. In parti
ular, we provide a
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Figure 2.6: Microsurgery robotics: micro-surgical assistant workstation with retinal-
surgery model. (Photo: http://www.cs.jhu.edu/CIRL/).detailed survey on works that are investigating the exploitation of 2D ultrasound imagingfor automati
 guidan
e of medi
al roboti
 systems, as the work presented in this dissertation.
2.2 Optical imaging-based guidance: microsurgery

roboticsSin
e endos
opi
 roboti
s, introdu
ed above in Se
tion 2.1, have be
ome 
ommonpla
e inthe medi
al �eld, only mi
rosurgery roboti
s is 
onsidered in this se
tion. Mi
rosurgi
alroboti
s is nothing but surgi
al roboti
s related to tasks performed at a small s
ale, e. g.[31℄, (see Fig. 2.6). The typi
al sensor used to provide visual information about the softtissue environment is the mi
ros
ope. In 
ontrast to free hand performed mi
rosurgery,robots enhan
e the surgeon 
apabilities for performing tasks with �ne 
ontrol and pre
isepositioning. In many 
ases, mi
rosurgi
al robots are based on for
e-re�e
ting master-slaveparadigm. The 
lini
ian remotely moves the slave by manipulating the master and applyingfor
es on it. Inversely, the for
es en
ountered by the slave are s
aled, ampli�ed, and sentba
k to the master manipulator that moves a

ordingly. The operator thus 
an feel theen
ountered for
es, and therefore is aware about the for
es applied on the manipulated softtissue. Furthermore, this 
on�guration allows to produ
e redu
ed motions on the slave.A

ordingly, this paradigm 
onsiderably prevents the manipulated soft tissue from possi-ble damages that 
an be the result of abrupt operator's hand motion with/or high appliedfor
es. This 
on�guration however su�ers from two main disadvantages. One disadvantage
onsists in the 
omplexity and the 
ost of su
h systems, sin
e they are 
omposed of two mainme
hani
al systems: the master and the slave. Also, su
h a 
on�guration does not allow the
lini
ian dire
tly manipulate the instrument [78℄. Mi
orsurgery roboti
s �nds appli
ation,
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Figure 2.7: ACROBAT robot in orthopaedic surgery aimed at hip reparation. (Photo:
http://medgadget.com).as instan
e, in the domain of ophthalmi
 surgery (e. g., [31℄).
2.3 X-ray-based guidanceA well-known appli
ation of X-ray imaging is orthopaedi
 surgery. In orthopaedi
 surgeryroboti
s (see Fig. 2.7), the surgeon is assisted by the robot in order to enhan
e the pro
edureperforman
e. As in knee or hip repla
ement, rather than the bone is manually 
ut, it isautomati
ally performed by the robot, under the supervision of the surgeon. This allowsto e�e
tively 
ut the bone in su
h a way to appropriately ma
hine the desired hole for theimplant. Preoperative x-ray images provide key 3D points used for planning a path thatthe robot will then follow during the 
utting pro
edure.Sin
e bones are easily well imaged with 
omputed X-ray tomography (CT) or X-ray �u-oros
opy modalities, the employed visual sensors are based on these modalities. Duringthe surgi
al pro
edure, the patient's bones are atta
hed rigidly to the robot's base withspe
ially designed �xation tools. The image frame pose is estimated either by tou
hingdi�erent points on the surfa
e of the patient's bones or by tou
hing preimplanted �du
ialmarkers. The surgeon manually brings and position the robot surgi
al instrument at thebone surfa
e to operate on. Then, the robot automati
ally moves the instrument to 
utthe desired shape, while in the same the robot 
omputer 
ontrols the traje
tory and thefor
es applied on the bones. Sin
e se
urity must be rigorously addressed in surgi
al roboti
s,di�erent 
he
kpoints are prede�ned in order to allow the surgi
al pro
edure to be restarted
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if it was prematurely stopped or paused for whether reasons.For better se
urity of bone ma
hining, the presented roboti
 system 
on�guration 
an beenhan
ed with the 
onstrained hand guiding 
on�guration. The robot is 
onstrained by the
omputer so that the 
utter remains within a volume to be ma
hined [42℄.One of the �rst prototype of orthopaedi
 surgery roboti
s was developed in the late 1980's,named ROBODOC system [77℄, and its �rst 
lini
al use was in 1992 [78℄. A similar robotis shown in Fig. 2.7. Nowadays, hundreds of orthopaedi
 robots are present in di�erenthospital 
enters, and over thousands of surgi
al operations have been performed with su
hsystems. However, before a medi
al robot system is 
lini
ally used, battery of tests haveto be performed to validate the system and thus, ensure total se
urity of the patient andthe 
lini
ian sta� during the surgi
al operation. Of 
ourse, the system must demonstrateenhan
ements in the surgi
al pro
edure performan
e as pre
ision, dexterity, et
, to justifyits use rather than the surgi
al operation is manually performed.X-ray images have also been 
onsidered for image-based visual servoing. A roboti
 sys-tem for tra
king stereota
ti
 rode �du
ials within CT images is presented in [24℄. Theimage 
onsists in a 
ross-se
tion plane wherein the rods appear as spots. Those rods areradiopaque in order to ease their visualization in the X-ray (CT) images. The obje
tive isto automati
ally position the robot in su
h a way the spots are kept at desired positions inthe image. To do so, an image-based visual servoing was used, where the spots image 
oor-dinates 
onstitute the feedba
k visual features. From ea
h new a
quired image the spots areextra
ted to update the a
tual visual features, whi
h then are 
ompared to that of the de-sired 
on�guration. The a

ording inferred error is used to 
ompute the 
ontrol law whi
h,at its turn, is ordered to the robot in form of 
ontrol velo
ity. Sin
e the ja
obian matrixrelating the 
hanges of the visual features to the probe velo
ity is required, that related tothe spots image 
oordinates is presented in [24℄. To do so, the rodes are represented with3D straight lines whose interse
tion with the image plane is analyti
ally formulated. Thesystem has been tested for small displa
ements from 
on�guration where the desired imagerelated to desired spot's 
oordinates is 
aptured. The issue investigated in [24℄, the modelingaspe
t more pre
isely, in fa
t 
an be ranged within the s
ope of this thesis. Indeed, in [24℄,the image used in the servoing loop provides a 
ross-se
tion sight of the environment withwhi
h the robot is intera
ting. Similarly, this thesis deals with 
ross-se
tion images in theservoing loop, ex
ept that these images are provided by a 2D ultrasound transdu
er. A bigdi�eren
e is that only simple geometri
al primitives, namely straight lines, are 
onsideredin [24℄, while this thesis deals with whatever-shaped volume obje
ts. We present in thisdo
ument a general modeling method, that, indeed, 
an be applied to the simple 
ase ofstraight lines, as des
ribed in Se
tion 3.7.3.
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(a) (b)

Figure 2.8: MRI-based needle insertion robot (a) High field MRI scanner (Photo:
http://www.bvhealthsystem.org) - (b) MRI needle placement robot [30] (Photo:
www2.me.wpi.edu/AIM-lab/index.php/Research).

2.4 MRI-guided roboticsMR imaging systems, as X-ray ones, provide in-depth images of observed elements. How-ever, MRI systems provide images non-invasively and thus are 
onsidered not harmful forpatient body. Moreover, they provide well 
ontrasted images of soft tissues. This advan-tages stimulated di�erent investigations in order to exploit this modality for automati
allyguiding robotized pro
edures. In [30℄, for example, a pneumati
ally-a
tuated roboti
 systemguided by MRI for needle insertion in prostate interventions is presented. A 2 DOFs robotarm is used to automati
ally position a passive stage, on whi
h a manually-inserted needleis held [see Fig. 2.8(b)℄. Inside the room of a MRI s
anner [e. g., see Fig. 2.8(a)℄, the patientis lying in a semi-lithotomy position on a bed. Both the robot arm holder, a needle insertionstage, and the robot 
ontroller are also inside the s
anner room, while the surgeon is in aseparated room to monitor the pro
edure through a human ma
hine interfa
e. The mainissue while dealing with a MRI s
anner 
onsists in the di�
ulty for the 
hoi
e of 
ompatibledevi
es. Due to the high magneti
 �eld in the MRI s
anners, ferromagneti
 or 
ondu
tivematerials are pre
luded. Su
h materials 
an for instan
e either be dangerously proje
ted,
ause artifa
ts and distortion in the MRI image, or 
reate heating near the patient's body.Most of the standard available devi
es are however made from either materials, and there-fore are not 
ompatible with the MR modality.It is proposed in [30℄ the use of pneumati
 a
tuators, that have been tailored sin
e the non
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total MRI-
ompatibility at their original state. The manipulator is lo
ated near the bed inthe s
anner room, for the intera
tion with the patients body, where its end-e�e
tor pose isdete
ted thanks to atta
hed �du
ial markers extra
ted from the observed MRI image. In or-der to avoid ele
tri
al signals passing through the s
anner room and thus keeping the imagequality, the robot 
ontroller is pla
ed in a shielded en
losure near the robot manipulator,and the 
ommuni
ation between the 
ontrol room and the 
ontroller is through a �ber opti
Ethernet 
onne
tion. A PID 
ontrol law is used for the pneumati
 a
tuators servoing.During the pro
edure, the surgeon indi
ates both a target and a skin entry point. A
-
ordingly, the robot automati
ally brings the needle tip up to the entry point with a 
or-responding orientation. Subsequently, through the sli
ers of the human-ma
hine softwareinterfa
e, the surgeon monitors the manual insertion of the needle, whi
h then slides alongits holder axis to rea
h the target. The use of the MR images is limited to dete
t the targetand needle tip lo
ations. The automati
 positioning of the robot up to the entry point isa�orded with a position-based visual servoing. Su
h an approa
h however is well-known forits relatively low positioning a

ura
y, if 
ompared for example to the image-based visualservoing. The main 
ontribution presented in [30℄ seems in fa
t 
onsisting in the design ofa MRI-
ompatible roboti
 system.The propulsion e�e
t that a magneti
 �eld 
an apply on ferromagneti
 materials hasbeen exploited to perform automati
 positioning and tra
king of untethered ferromagneti
obje
t, using its MRI images in a visual servoing loop [28℄. The MR �eld is used both tomeasure the position of the obje
t and to propel the latter to the desired lo
ation. Priorthat the pro
edure takes pla
e, a path through whi
h the obje
t has to move is plannedo�-line. It is represented by su

essive waypoints to be followed by the obje
t. During thepro
edure that is performed under a MR �eld, the a
tual position is measured and 
omparedto the desired one of the planned path, and the di�eren
e is sent to a 
ontroller that usesit to 
ompute the magneti
 propulsion �eld to be applied on the obje
t. That propulsion isexpe
ted to move the obje
t from the a
tual position to that desired. Experimental resultsare reported, su
h that the system was tested using both a phantom and a live swine undergeneral anesthesia. The feedba
k was updated at a rate of 24 Hz for the phantom 
ase.The in-vivo obje
tive was to 
ontinuously tra
k and position the obje
t in su
h a way ittravels within and along the swine's 
arotid artery by following the pre-planned path. Theobje
t 
onsisted in a 1.5 mm diameter sphere made of 
hrome and steel. The proposedvisual servoing method 
onsists however in a position-based one. As mentioned just above,it is well-known for its relatively low positioning a

ura
y.The limitation that MRI systems 
urrently su�er from 
onsists (to our knowledge) in
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the low streaming rate at whi
h the images are provided. This 
onsiderably hinders theexploitation of su
h images for real-time roboti
 guidan
e appli
ations. Image-based visualservoing, for example, requires that the update along with the pro
essing of the image has tobe performed within the rate at whi
h the robot operates. The 2D ultrasound modality, nev-ertheless, beyond of being non-invasive, provides the images at a relatively high streamingrate. This makes su
h a modality a relevant 
andidate for real-time roboti
 automati
-guidan
e appli
ations where in-depth images are required.
2.5 Ultrasound-based guidanceUltrasound imaging represents an important modality of medi
al pra
ti
e, and is being thesubje
t of di�erent investigations for enhan
ed use. Ten years ago, one out of four imaging-based medi
al pro
edures was performed with this modality and the proportion is in
reasingfor di�erent appli
ations in the foreseeable future [84℄.We report in this se
tion investigations that deal with automati
 guidan
e from the ul-trasound imaging modality. In parti
ular, we survey in more details works dealing withthe use of 2D ultrasound images for automati
ally guiding roboti
 appli
ations, as it is thes
ope of our work presented in this do
ument. The remainder of this se
tion is organized asfollows. First, in Se
tion 2.5.1, we present an example of an investigation about the use ofthe ultrasound modality to simulate and then to plan the insertion of needle in soft tissue.Then, we present in Se
tion 2.5.2 works that exploit 3D ultrasound images to guide surgi
alinstruments, where the obje
tive was either positioning or tra
king. Afterwards, the worksthat deal with guidan
e using 2D ultrasound are surveyed. We 
lassify them into two main
ategories depending on whether the 2D ultrasound image is only used to extra
t and thusto estimate 3D poses of features used in position-based visual servoing, or the 2D ultra-sound image is dire
tly used in the 
ontrol law. The former, namely 2D ultrasound-guidedposition-based visual servoing, is presented in se
tion 2.5.3, while the latter, namely 2Dultrasound-guided image-based visual servoing, is presented in Se
tion 2.5.4.
2.5.1 Ultrasound-based simulationsIn [23℄, a simulator of sti� needle insertion for 2D ultrasound-guided prostate bra
hytherapyis presented. The obje
tive is to simulate the intera
tion e�e
t between the needle and thetissue 
omposed of the prostate and its surrounding region. For that, the for
es, applied
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by the sti� needle on the tissue, and the tissue are modelled by making use of the infor-mation provided by the ultrasound image. A non-homogeneous phantom, 
omposed fromtwo layers and a hollow 
ylindri
al obje
t, has been made up to mimi
 a real 
on�guration.The external and internal layers are designed to mimi
 respe
tively the prostate and itssurrounding soft tissue, while the 
ylinder is designed to simulate the re
tum. To mimi
prostate rotation around the pubi
 bone, the internal layer is 
omposed of a 
ylinder, witha hemisphere at ea
h end, 
onne
ted to the base of another 
ylinder. The elasti
ity of ea
hof the two layers is represented with Young's moduli and Poisson ratios. While the Poissonratios are pre-assigned, the obje
tive is to estimate the Young's moduli of ea
h layer. Thefor
es are �tted with a pie
e-wise linear model of three parameters, that are identi�ed usingNelder-Mead sear
h algorithm [3℄. When the needle intera
ts with the tissue, the displa
e-ments of this latter are measured from the images provided by the ultrasound probe, using
time delay estimator with prior estimates (TDPE) [87, 88℄, without any prior markers insidethe tissue. These measurements together with the probe positions and the measured for
esare used to estimate the Young's moduli and the for
e model parameters. The soft tissuedispla
ements are then simulated by making up a mesh of 4453 linear tetrahedral elementsand 991 nodes, using the linear �nite element method [89℄ with linear strain.
2.5.2 3D ultrasound-guided roboticsIn the ultrasound modality, in fa
t, we distinguish two main modalities, that are 3D ultra-sound and 2D ultrasound modalities. Works related to the former modality are presented inthis se
tion, while those related to the latter are subsequently 
onsidered. In the following,we present works where 3D ultrasound images have been exploited for automati
 positioningof surgi
al instruments or for tra
king moving target.
3D ultrasound-based positioning of surgical instrumentSubsequently in [75℄ and [62℄, a 3D ultrasound-guided robot arm-a
tuated system for au-tomati
 positioning of surgi
al instrument is presented (see Fig. 2.9). The se
ond workfollows-up and improves the system streaming speed of the �rst work, where 25 Hz rate isobtained instead of 1 Hz streaming rate at whi
h the �rst prototype operated. The pre-sented system 
onsists of a surgi
al instrument sleeve a
tuated by a robot arm, a motionless3D ultrasound transdu
er, and a host 
omputer for 3D ultrasound monitoring with the 
or-responding image pro
essing and for robot 
ontrolling. The obje
tive was to automati
allyposition the instrument tip at a target 3D position indi
ated in the 3D ultrasound imagevolume, from whi
h the 
urrent instrument tip 3D position is estimated. A marker is at-
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(a) (b)

Figure 2.9: 3D ultrasound-guided robot. (a) Experimental setup for robot tests - (b)
Marker attached to the instrument tip. (Photos: (a) taken from [62], and (b) from
http://biorobotics.bu.edu/CurrentProjects.html).ta
hed to the tip of the instrument in order to dete
t its 3D pose with respe
t to a 
artesianframe atta
hed to the 3D ultrasound image volume. This marker 
onsists of three ridgesof same size surrounding a sheath that �ts over the instrument sleeve [see Fig. 2.9(b)℄. Ane
hogeni
 material is used to 
oat the marker in order to improve the visibility of this latter,and thus to fa
ilitate its dete
tion. The ridges are 
oiled on the sleeve in su
h a way theyform su

essive sinusoids lagged by 2π/3 rad. From the 3D ultrasound volume, a lengthwise
ross-se
tion 2D image of the instrument shaft along with the marker is sought to thenbe extra
ted. In su
h 2D image, the ridges appear as su

essive 
rests whose respe
tivedistan
es from a referen
e point lying on the shaft are used to determine the instrumentsleeve 3D pose. For image dete
tion of the 
rest, the extra
ted image is rotated in su
h away the instrument appears horizontal, and then a sub-image 
entered on the instrumentis extra
ted to be super-sampled by a fa
tor of 2 using linear interpolation. The error be-tween the estimated instrument position and the target one is fed ba
k, through the host
omputer, to a position-based servo s
heme based on a proportional-derivative (PD) law,with whi
h the robot arm is servoed to position the instrument tip to the spe
i�ed target.Experiments have been 
arried out using a sti
k immersed in a water-�lled tank. The sti
kpasses through a spheri
al bearing to mimi
 the physi
al 
onstraints of minimally invasivesurgi
al pro
edures, where the instrument passes through an in
ision port and 
onsequentlyits movements are 
onstrained a

ordingly [see Fig. 2.9(a)℄. With a motion range of about20 mm of the instrument, it is reported that the system performed with less than 2 mm ofpositioning error.
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Figure 2.10: An estimator model [86] for synchronization with beating hear mo-
tions using 3D ultrasound is tested with the above photographed experimental setup.
(Photo: taken from [86]).

Synchronization with beating heart motionsIn [86℄, an estimator model for syn
hronization to beating heart motions using 3D ultrasoundimaging is presented. The obje
tive is to predi
t mitral valve motions, and then use thatestimation to feed-forward the 
ontroller of a robot a
tuating an instrument, whose motionsare to be syn
hronized with the heart beatings. This 
ould allow the surgeon to operateon the beating heart as on a motionless organ. Moreover, su
h a system 
ould over
ome,for example, the requirements of using a 
ardiopulmonary bypass, and thus would sparepatients its adverse e�e
ts. It was assumed that the mitral valve periodi
ally translatesalong one axis, while its rotational motions have been negle
ted. The translational motionsare then represented with a time varying Fourier series model that allows for rate and signalmorphology evolving over time [63℄. For the identi�
ation of the model parameters, three es-timators have been tested: an Extended Kalman �lter (EKF), an autoregressive model withleast squares (AR), and an auto regressive model with fading memory estimator. Theirperforman
es are assessed with regards to predi
tion a

ura
y of time-
hanging motions.From 
ondu
ted simulations, it was noted that the EKF outperformed the two other esti-mators, by more mitigating the estimation error espe
ially for motions with rate 
hanging.Experiments have been 
ondu
ted on an arti�
ial target immersed in a water-�lled tank(see Fig. 2.10). The target was 
ontinuously a
tuated in su
h a way to mimi
 the heart mi-tral valve beating motions, at 60 beating per minute average rate for 
onstant motions. Aposition-based proportional-derivative (PD) 
ontroller is employed for robot servoing. Thesystem was submitted to both 
onstant and 
hanging rate motions. As 
on
luded from thesimulations, it was noted from the experiments that the EKF provided well predi
tions of
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the beating heart motions 
ompared to the others estimation approa
hes, with an obtainedpredi
tion error of less than 2 mm. This error is of about 30% less than that obtained withthe two other estimators. In other but separate works, [36℄ and [7℄, low tra
king errorshave been obtained but, however, that was a
hieved using extremly invasive systems. In theformer work, �du
ial markers atta
hed to the heart are tra
ked by employing a high speedeye-to-hand 
amera of 500 Hz streaming rate; the 
hest is being opened in su
h a way the�du
ial points 
an be viewed by that external 
amera. The information 
onveyed by thislatter are used to visually servo a robot arm that a

ordingly has to 
ompensate for heartmotions. As for the latter work, sonomi
rometry sensors operating at 257 Hz streamingrate have been sutured to a por
ine heart. Currently, 3D ultrasound modality su�ers fromlow imaging quality along with time delayed streaming of the order of 60 ms, whi
h 
oulda

ount for the relatively lower obtained performan
es 
ompared to those two works (i. e.,[36℄ and [7℄).
2.5.3 2D ultrasound-guided position-based visual servoingAs has been already highlighted in this do
ument, the 2D ultrasound imaging systemsprovide images at a su�
ient rate to envisage real-time automati
 roboti
 guidan
e. In thefollowing, we present a survey of works that investigated the use this imaging modality inguiding automati
 medi
al pro
edures. In parti
ular, this se
tion is dedi
ated to works wherethe image is used only in position-based visual servoing s
hemes. We 
lassify these worksa

ording to the targeted medi
al pro
edure. We distinguish: kidney stones treatment;bra
hytherapy treatment; and tumor biopsy and ablation pro
edure.
Kidney stones treatmentAn ultrasound-based image-guided system for kidney stone lithotripsy therapy is presentedin [48℄. The lithotripsy therapy aims to erode the kidney stones, while preventing 
ollat-eral damages of organs and soft tissue of the vi
inity. The stones are fragmented thanksto high intensity fo
used ultrasound (HIFU). The HIFU transdu
er extra
orporeally emitshigh intensive ultrasound waves that strike the stones. The 
rushed stones are then natu-rally eva
uated by the patient through urination.For the su

ess and e�e
tiveness of the pro
edure, that 
an lead to shortened time of patienttreatment and to spare the organs of the vi
inity from being harmed, it is important to keepthe stone under the pulse of the HIFU throughout the pro
edure. However, the kidney issubje
t to displa
ements 
aused by patient respiration, heartbeat, et
, and 
onsequently thekidney stone may get out of the beam fo
us.
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The obje
tive of the proposed system is to keep tra
k of the kidney stone under the HIFUtransdu
er, throughout the lithotripsy pro
edure, by visual servoing using ultrasound im-ages. The system is mainly 
omposed of two 2D ultrasound transdu
ers, a HIFU transdu
er,a stage 
artesian robot whose end e�e
tor holds the HIFU transdu
er rigidly linked to thetwo ultrasound transdu
ers, and a host 
omputer. This latter monitors the visual servoingand the data �ow through the di�erent 
orresponding steps. The end-e�e
tor 
an applytranslational motions along its three orthogonal axes in the 3D spa
e. The two ultrasoundprobes, whose respe
tive beam planes are orthogonal to ea
h other, provide two ultrasoundB-s
an images of the stone in the kidney. By image pro
essing on both the two images,the stone is identi�ed and its position in the 3D spa
e is determined. The inferred lo
ationrepresents the target 3D position on whi
h the HIFU fo
al has to be. The error, betweenthe desired position and the 
urrent position of the HIFU transdu
er, is fed ba
k to thehost 
omputer that derives the 
ontrol law. The 
ommand is sent to the 
artesian robotthat moves a

ordingly along its three axes in order to keep the kidney stone under its fo
us(i. e., thus the fo
us of the HIFU).
Ultrasound-guided brachytherapy treatmentA robot manipulator guided by 2D ultrasound for per
utaneous needle insertion is pre-sented in [6℄. The obje
tive is to automati
ally position the needle tip at a prostate desiredlo
ation in order to inje
t the radioa
tive therapy seeds. The target is manually sele
tedfrom a preoperative image volume. It is 
hosen in su
h a way (whi
h is the goal of thebra
hytherapy) the seeds have as important as possible e�e
t on the lesion while at thesame time not harming the surrounding tissues. The roboti
 system is mainly 
omposed oftwo roboti
 parts 
orresponding respe
tively to a ma
ro and a mi
ro roboti
 system, and ofa 2D ultrasound probe for the imaging. The ma
ro robot allows to bring and position theneedle tip at the skin entry point, while subsequently the mi
ro robot performs �ne motionsto insert and then position the needle tip at the desired lo
ation. By visualizing the volumeimage of the prostate, displayed on a human-ma
hine interfa
e, the surgeon indi
ates to therobot the target lo
ation where the seeds have to be dropped (see Fig. 2.11). Before that,the volume is �rst made up from su

essive 
ross-se
tion images of the prostate. While therobot's end e�e
tor is rotating the 2D ultrasound probe, the latter s
ans the region 
ontain-ing the prostate by a
quiring su

essive 2D ultrasound images at 0.7 degree intervals. Theneedle target position is expressed with respe
t to the robot frame, thanks to a previousregistration of the volume image. A position-based proportional-integral-derivative (PID)
ontroller is then fed ba
k with the error between the needle tip 
urrent position, measuredfrom the robot en
oders, and the desired one. The 
ommand is sent to the robot, that



2.5. ULTRASOUND-BASED GUIDANCE 32

Figure 2.11: Ultrasound volume visualization through a graphical interface. Three
sights (bottom) of an ultrasound volume are respectively provided by three slicer
planes (top). (Photo: taken from [6]).moves a

ordingly to position the needle tip at the target lo
ation. The proposed te
hniquehowever is position-based, where the image is only used to determine the target lo
ation.Compared therefore to image-based servoing te
hniques, this method 
an be 
onsidered asan open-loop servoing method. As su
h, it has the drawba
k of not 
ompensating displa
e-ments of the target that 
an o

ur during the servoing. Su
h displa
ements 
an be 
aused,as instan
e, by patient's body motion resulting from breathing, or by the prostate tissueshifting due to the for
es it undergoes from the needle during the insertion. This la
k ofobserved images in the servoing s
heme 
ould a

ount for the errors obtained in the 
on-du
ted experiments. The needle de�e
tion is also not addressed. The de�e
tion is mainlydue to the for
es endured by the needle during the insertion.
Ultrasound-guided procedures for tumor biopsy and ablationA 2D ultrasound-guided 
omputer-assisted roboti
 system for needle positioning in biopsypro
edure is presented in [58℄. The obje
tive is to assist the surgeon in orienting the needlefor the insertion. The system is mainly 
omposed of a robot arm, a needle holder mountedon the robot's end-e�e
tor, a 2D ultrasound probe, and a host 
omputer. The needle 
anlinearly slide on its holder. Firstly, the eye-to-hand 2D ultrasound probe is manually po-sitioned and oriented in order to have an appropriate view of the region to be targeted.It is then kept motionless at that 
on�guration throughout the pro
edure. The observed
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images are 
ontinuously displayed through a human ma
hine interfa
e on whi
h the surgeonindi
ates the target position to be rea
hed by the needle tip. Subsequently, the surgeonalso indi
ates the patient's skin entry point, through whi
h the needle will enter to rea
hthe target. A 3D straight line traje
tory is planned to then be performed by the needle tip,starting from the skin entry point to rea
h the target point. That traje
tory is determinedfrom the 3D 
oordinates of those sele
ted two points (the entry and target point) after beingexpressed in an appropriate frame. The robot automati
ally brings the needle tip to thepatient's skin entry point, in su
h a manner the dire
tion of the needle interse
ts the targetpoint (i.e., the needle is 
ollinear with that straight line). The a
tive roboti
 assistan
eends at this stage, where the surgeon then manually inserts the needle by sliding it downto rea
h the target, while in the same time observing the 
orresponding image displayed inthe interfa
e s
reen. Experiments have been 
ondu
ted in ideal 
onditions, where the target
onsists of a wooden sti
k immersed in water-�lled tank. The ultrasound image is only usedto determine the two target points, but is not involved in the servoing s
heme. Errors ofa millimeter order had been reported. Sin
e the experiments are 
ondu
ted in water, theneedle does not undergo for
es, whi
h is however not the 
ase in 
lini
al 
onditions, due asinstan
e to the intera
tion with soft tissue. Su
h for
es 
an 
ause de�e
tion of the needle,whi
h had also been highlighted in that work.Combining 2D ultrasound images to other imaging modalities 
ould enhan
e the qual-ity of the obtained images. In [29℄, an X-ray-assisted ultrasound-based imaging system forbreast biopsy is presented. The prin
iple 
onsists in 
ombining stereota
ti
 X-ray mam-mography (SM) with ultrasound imaging in order to dete
t as well as possible the lesionslo
ation, and then be able of harvesting relevant samples for the biopsy. The X-ray modal-ity provides images with high sensitivity for most lesions, but is not as safe and fast as 2Dultrasound. The presented pro
edure begins by �rst keeping motionless the patient tissuefor diagnosis, by using a spe
ial apparatus. A 2D ultrasound probe s
ans that region ofinterest with 
onstant velo
ity by a
quiring su

essive 2D ultrasound images at similar dis-tan
e intervals. A 
orresponding 3D volume is made up from those a
quired images, andintera
tively displayed through a human-ma
hine interfa
e. A 
lini
ian 
an then inspe
tthe volume, by 
ontinuously visualizing its 
ross-se
tion 2D ultrasound images. This is per-formed by sliding a 
ross-se
tional plane. Any dete
ted lesion 
an be indi
ated to the host
omputer by mouse hand 
li
king (a prior registration of the 3D volume and the tissue isassumed to be already performed). Then, both the 2D ultrasound probe and the needleguide are positioned in su
h a way they are aligned on the indi
ated lesion to biopsy. Subse-quently, the needle is automati
ally inserted trough the tissue to target the lesion, while atthe same time being monitored by the 
lini
ian that observes the 
orresponding 2D ultra-sound image. Another image volume of the region of interest is taken in order to verify if the
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needle has well and truly targeted the lesion, by means of a similar a
quisition-
onstru
tion-visualization pro
ess detailed above. Combining the SM modality to the ultrasound one,the system pre
ision is 
laimed to be in
reased.An ultrasound-guided roboti
ally-assisted system for ablative treatment is presented in[11℄. The obje
tive is to assist the surgeon for su
h a medi
al pro
edure, by �rstly a�ordinga relevant view of the lesion within the soft tissue to fa
ilitate its dete
tion with enhan
edpre
ision. Then, it would 
onsist in robotizing the needle insertion for a

urate targeting,rather than doing it manually. The setup is 
omposed of a freehand-a
tuated 
onventional2D ultrasound probe, a needle for the insertion a
tuated by a 5 DOFs robot arm, and a host
omputer for the monitoring of the appli
ation. The 2D ultrasound probe is handled by a
lini
ian and swept to take a 3D s
an of the region of interest, by 
ontinually a
quiring su
-
essive 2D ultrasound images. Thanks to a marker atta
hed to the probe, the path followedby this latter along with the re
orded images is intra-operatively registered to re
onstru
ta 
orresponding 3D ultrasound volume. This volume is then intera
tively explored and vi-sualized by the 
lini
ian for inspe
tion of the region of interest, and thus dete
tion of anypossible tumors. The image point position of a dete
ted lesion a

ompanied with a patient'sskin entry point is manually indi
ated by the 
lini
ian, and then transmitted to the host
omputer. An algorithm was developed for aligning the dire
tion of the needle, in su
h away it has to perform a 3D straight line to rea
h the target tumor lo
ation from the skinentry point. The robot then automati
ally brings the tip of the needle up to the entry point,while in the same time performing the alignment, and �nally the needle is inserted to rea
hthe target lo
ation. Experiments have been 
arried out both on a 
alf liver embedded withan olive for tumor mimi
king and on a set of 8 mm of diameter pins immersed in water-�lledtank. A

ording to the pin experiments, it is reported that the system performed with ana

ura
y of about 2.45 mm with 100% of su

ess rate.Similarly, but with improvements with respe
t to the manner the su

essive 2D ultrasoundimages are a
quired then registered, another work is presented in [10℄. It is proposed to holdthe 2D ultrasound probe by a se
ond robot arm, rather than doing it by free-hand. A s
anperformed roboti
ally is expe
ted to result in a more better 3D volume image quality, inalignment of the su

essive sli
es and in 
onsisten
y of distan
es between su

essive sli
es,than if it would has been done free-hand. To 
ompare the s
an performan
e whether it isroboti
ally or free-hand performed, experiments have been 
ondu
ted using a me
hani
alphantom 
omposed of four pins. An ele
tromagneti
 tra
ker has been atta
hed to ea
h ofthe ultrasound probe and the needle guide robot tip, for extra
tion of their respe
tive 3Dposes with respe
t to a base frame. This latter is atta
hed to a tra
ker lo
ated on the op-erating table. It is 
laimed that the use of su
h sensors rather than, for instan
e, the robot
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en
oders is more advantageous is the sense that it permits qui
k 
on�guration of the exper-imental setup when using more or less robots, and that it simpli�es modular repla
ementof the end-e�e
tor. Three roboti
 s
ans and three free-hand s
ans have been 
ondu
ted onthe phantom. It has been 
on
luded that the roboti
 s
an approa
h outperformed that offree-hand, where besides of obtaining a 3D image of better quality with the former, a rateof 7 su

ess out of 7 trials has been obtained with the roboti
 s
an for a rate of 3 su

essout of 4 trials with the free-hand s
an.Using 2D ultrasound imaging modality to position instrument tip at desired target lo
a-tion has been 
onsidered in [74℄, where a 2D ultrasound-guided roboti
ally-a
tuated systemis presented. The system 
onsists of two personal 
omputers, a 2D ultrasound probe, anele
tromagneti
 tra
king devi
e, and a robot arm. One 
omputer monitors ultrasound im-age a
quisition and pro
essing, whereas the latter 
omputer insures robot 
ontrol. This
ontrol 
omputer 
onveys the di�erent data, 
onsisting of the target and 
urrent 
ontrolfeatures with 
orresponding variables of the 
ontrol servoing s
heme, through a serial linkrunning at 155.200 bps. Image a
quisition is performed at a rate of 30 frames per se
ond.The ele
tromagneti
 tra
king devi
e 
onsists of a �xed base transmitter and two remotetra
king re
eivers. Ea
h re
eiver provides its 
orresponding 3D spa
e pose with respe
t tothe transmitter base, by transmitting its six degrees of freedom to the 
omputer througha serial line 
onne
tion. One re
eiver is mounted on the ultrasound s
an head, while these
ond was initially used for 
alibration and then is atta
hed to the robot for registrationand tra
king. The target to be rea
hed by the robot tip 
onsists in the 
enter of an obje
tof interest. It is dete
ted using the 2D ultrasound probe. Firstly, a s
an of the region 
on-taining the target obje
t is performed by a
quiring su

essive 2D ultrasound images. Then,ea
h a
quired image is segmented to extra
t the 
orresponding obje
t 
ross-se
tion. Fromthe set of all those segmented 
ross-se
tions, the 
enter of the target obje
t is estimated.The 
enter 3D 
oordinates represent the target 3D lo
ation at whi
h the robot tip has to bepositioned. For image segmentation, ea
h 2D ultrasound image is �rst segmented a

ordingto an empiri
ally 
hosen threshold, then subsampled by 1/4 fa
tor to redu
e the 
omputa-tional time of the next step, wherein the image is 
onvolved by a 2D Gaussian kernel of 10radius and of 5 pixels deviation, and �nally an automati
 identi�
ation of the image se
tionof interest is applied by sear
hing pixels of high intensity. The target is assumed roughlyspheri
al. The robot is servoed in position by a proportional derivative (PD) 
ontrol law,with an error limit-based rule is added in order to prevent possible velo
ity ex
ess relativeto important displa
ements orders.Experiments have been 
arried out using a tank 
ontaining a salt water layer at its bottomand an oil layer at its top. A grape, of approximately 20 mm diameter, served as a roughly
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Figure 2.12: A biopsy robot. (Photo: taken from [64]).spheri
al target. It was put between these two layers of respe
tively oil and water. Thanksto gravity and buoyan
y for
es and the immis
ibility between the two liquids, the grape�oated within the plane delineating the water surfa
e from the oil one, and 
an freely slidealong this plane. To dete
t the target lo
ation, a s
an 
entered on the grape is performed bytaking su

essive 
ross-se
tion ultrasound images as des
ribed above. In 
onditions wherethe grape is maintained �xed, the robot tip tou
hed the target with a rate of 53 out of 60trials.For needle pla
ement in prostate biopsy pro
edure, a 2D ultrasound-guided roboti
system is presented in [64℄ (see Fig. 2.12). The obje
tive is to perform needle positioning ofenhan
ed a

ura
y. The system 
onsists of a biopsy needle gun, a robot holder platform, ahost 
omputer, and a 2D ultrasound probe. The fun
tions of the 
omputer 
onsist mainly inthe monitoring of the pro
edure. This ranges from ultrasound image a
quisition, pro
essingalong with registration, s
reen-displaying for visualization, needle motion planning, androbot motion 
ontrol. The robot 
an be moved and thus positioned appropriately near thepatient's perineal wall, prior to an intervention, thanks to 4 wheels on whi
h it 
an translate.It 
an subsequently be maintained motionless with enhan
ed stability, after the operatorhad depressed a foot pedal, whi
h 
auses the robot to be slightly raised and be supported by4 rubber-padded legs in pla
e of the wheels. The robot 
an be further adjusted, by tuningthe height and tilt of its operating table. This will allow to position the ultrasound probehorizontally with respe
t to patient's re
tum, in order to obtain as good as possible qualityof the ultrasound images, and also to prevent the probe transdu
er ramming into the re
tal
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wall during the pro
edure whi
h 
ould lead to possible damages. The robot table's base iskept in the adjusted pose throughout the pro
edure, by means of lo
ks. Subsequently, theneedle is manually positioned at the skin entry point by adjusting 2 pairs of linear slidesand a pair of lead s
rews. Following, su

essive transverse ultrasound images of the prostateare a
quired at 1 mm distan
e interval of robot motion, and re
orded. They are used tomake up a 3D model of the prostate. This is performed semi-automati
ally, where �rstly theurologist have to delineate the prostate's boundary in ea
h of several sele
ted images, amongthose a
quired, by indi
ating boundary points with hand-
li
ks. A NURBS (non-uniformrational B-splines) modeling algorithm then pro
esses separately ea
h sli
e with its assignedset of indi
ated points, in order to extra
t the 
orresponding boundary. The algorithm,�nally, �ts the su

essive 
reated edges with a surfa
e simulating that of the prostate. Adesigned graphi
al interfa
e allows for the display of the 2D ultrasound images along with the
onstru
ted 3D surfa
e of the prostate. The urologist 
an thus intera
tively indi
ate on theinterfa
e the biopsy target and needle entry points, by visualizing observed images. Thesetwo points are thereby expressed in 3D spa
e with respe
t to robot frame. The 
omputerthen 
al
ulates the 3D straight line path, that the needle has to perform to rea
h thebiopsy point from the entry point. This path with the indi
ated points and the 3D surfa
eare intera
tively simulated and displayed on the interfa
e. This latter provides, also, afun
tionality that allows to position the ultrasound probe where an indi
ated image has beenpreviously a
quired and re
orded, and thus to verify if the observed image do 
orresponds tothat re
orded. This aims to 
he
k whether or not the prostate has deformed or shifted. Afterthe roboti
 system being tested in phantom and 
adaveri
 trials, 
lini
al experiments havebeen 
ondu
ted. The patient, under general anesthesia, is lying in lithotomy position on theoperating bed. Inside the patient's prostate, 
opper seeds are dropped. They serve as �du
ialtargets in order to be able of prospe
tively assessing the performan
e of the pro
edure. Upona 3D path is planned, the needle is slid down manually along its holder to rea
h the seedtarget lo
ation. The urologist will then only have to trigger the biopsy �re gun, 
ausingsequential a
tuation of needle's inner 
ore and outer sheath, and thus a tissue sample is 
uto� and housed in a slot at the needle's distal end. To verify needle positioning a

ura
y, theprostate is at the end of the positioning imaged with C-arm �uoros
opy. Over 8 di�erentpatients, 17 needle pla
ement pro
edures have been 
ondu
ted, where some adjustmentswere given to the latter trials at the aim of obtaining better results than that of the �rsttrials. To explain the out
ome of the �rst trials, it was hypothesized that the needle bentand strayed from its desired path, due to for
es it undergoes while traversing the prostatetissue. An absolute positioning error ranging from 2.3 to 6.5 mm has been obtained. For these
ond set of the experiments, a thi
ker needle is employed and is supported by a 
ustom-designed devi
e. This aims at minimizing possible bending of the needle. It was noti
edthat the positioning a

ura
y enhan
ed, where the absolute positioning error dropped to2.5 mm.
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Most of the works, presented so far, that investigated the use of ultrasound imaging, andthe 2D ultrasound imaging more parti
ularly, in automati
ally guiding roboti
 tasks havehowever not dire
tly used the observed image in the servoing loop. They instead employedposition-based visual servoing, where the image is only used to obtain 3D positions of 
on-
erned features. It is well-known that the position-based visual servoing methods su�er fromthe relatively low a

ura
y in term of positioning errors. This is due to the fa
t that the
ontrol is performed on estimated lo
ations (usually in the robot working frame). As su
h,the a

ura
y of the positioning 
onsequently relies heavily on that of the estimation andthat of the robot. In 
ontrast, a 
ontrol that is performed dire
tly on the observed image,namely image-based visual servoing, would result in more a

ura
y. The reason is that animage provides homogeneous sensing of the a
tual features, whose measures the servoingis applied on; the a

ura
y in this 
ase is of 
ourse a�e
ted by the image resolution. Inthe following se
tion, we present works that used the 2D ultrasound images (or part of theinformation 
onveyed by the image) dire
tly in the visual servoing s
heme.
2.5.4 2D ultrasound-guided image-based visual servoingThe main 
hallenge when dealing with 2D ultrasound images in robot servoing 
onsists inthe ability to 
ontrol the out-of-plane motions. Indeed, as pointed out in Chapter 1, a 2Dultrasound image provides information only in its observation plane and none outside ofthis latter. This 
hallenge 
orresponds mainly to a physi
al and mathemati
al modelingproblem. More parti
ularly, the di�
ulty 
onsists in the ability to relate the di�erential
hanges of the visual features to displa
ements of the roboti
 system. Su
h relation, thatis well-known by the term Interaction Matrix, is in fa
t 
ru
ial to be able to build animage-based visual servoing s
heme [41℄. A 
ouple of works 
onsidered the intera
tion withgeometri
ally known surgi
al instruments. These latter are geometri
ally represented andtheir 3D model related. From su
h models, the intera
tion matrix is then derived. A more
omplex modeling problem 
onsists in the 
ase where 
onsidering not only manufa
turedobje
ts (as surgi
al instruments for example) but also soft tissue obje
ts. The �rst works inthis latter 
ontext 
onsidered however only the 
ontrol of probe in-plane motions. Re
ently,a 
ouple of works dealt with out-of-plane motions 
ontrol. This latter is mainly the subje
tof this thesis. In 
ontrast to the existing literature works, we model the exa
t form of theintera
tion matrix, and then address the problem of 
ontrolling both in-plane and out-of-plane motions.
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(a) (b)

Figure 2.13: 2D ultrasound-based instrument guidance. (a) Sketch of the forceps
(depicted in green) intersecting the probe observation plane (delineated with blue
lines) in two points M1 and M2, whose coordinates are used in the servoing scheme
- (b) Robot actuating the forceps instrument. (Photos: (a) taken from [79], and (b)
from [81]).

Control of the interaction with geometrically-known surgical instrumentsA 2D ultrasound-based servoing te
hnique for automati
 positioning of a surgi
al instrumentfor a beating heart inter
ardia
 surgery pro
edure is presented in [81, 80, 79℄. The instru-ment 
onsists of surgi
al laparos
opi
 for
eps a
tuated by a robot arm [see Fig. 2.13(b)℄. Aneye-to-hand 2D ultrasound probe is employed for the observation, and thus for providingboth the surgeon and the roboti
 system with real-time images, in order to insure pro
eduremonitoring. It observes both the for
eps's pair of pin
ers and the heart. The obje
tive isto automati
ally position the for
eps instrument in su
h a way it interse
ts the ultrasoundimage plane at desired image positions, that were anteriorly indi
ated on the image by anoperator. The 2D ultrasound 
ross-se
tion image provides two image points that result fromthe interse
tion of the ultrasound planar beam with the for
eps [see Fig. 2.13(a)℄. Thesepoints are fed ba
k to a visual servo s
heme, that 
omputes the 
ommands to move therobot a

ordingly, in order that the observed points 
onverge to the target ones. Previousto that, the points with the 
orresponding target ones are extra
ted to be transmitted infour independent features inputs to the servo s
heme. Two 
on�gurations of the feedba
kvisual features ve
tor are proposed, depending on the 
hoi
e of the elements forming thisve
tor. In the �rst 
on�guration, the feedba
k visual features ve
tor 
orresponds to the fourimage 
oordinates of the two points. In the se
ond 
on�guration, the segment in the imageformed by the two image points relates the feedba
k ve
tor. Two elements of the ve
tor
orrespond to the two image 
oordinates of a point lying in that segment, while the remain-ing two other elements 
orrespond respe
tively to the segment's length and orientation with
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respe
t to one of the image axes. In-vivo experiments have been 
ondu
ted on a pig heart,where the system performed a task in a reported duration of about 1 min. The proposedte
hnique deals with images of instruments of known geometry, where the for
eps's pair ofpin
ers have been respe
tively modeled with two 3-D straight lines.In the 
ontext des
ribed above, where a motionless eye-to-hand 2D ultrasound probe isemployed to guide automati
 positioning of instrument 
arried by a robot arm, a NonlinearModel Predi
tive Control s
heme is proposed in [69℄. The obje
tive is to perform automati
positioning of the instrument tip while at the same time to respe
t some 
onstraints, namelyto keep the instrument in the probe observation plane and to take into a

ount the robotme
hani
al joints limits. The �rst 
onstraint if not satis�ed would yield the instrument get-ting out of the observation plane, thus leading the feature points vanishing from the image.Sin
e su
h features are required in the visual 
ontrol s
heme, the robot guidan
e would fail.As for the se
ond 
onstraint, if not satis�ed the robot would get out of its workspa
e orwould rea
h singularities. The robot thus would be me
hani
ally trapped, and 
onsequentlywould not be able to move a

ording to the ordered servoing 
ommands; i. e., leading totask failure.So far, in the present 
hapter, positioning with respe
t to observed soft tissues has not yetbeen introdu
ed. Dealing however with soft tissue ultrasound images in the servoing s
hemeallows dire
t intera
tion and positioning with the observed soft tissue, as 
an be seen in thefollowing.
Control of the interaction with soft tissues: In-plane motions controlA roboti
ally-assisted system for medi
al diagnosti
 ultrasound is presented in [1℄. Thesystem 
onsists of a master hand 
ontroller, a slave robot manipulator that 
arries a 2Dultrasound transdu
er, and a monitoring host 
omputer (see Fig. 2.14). The obje
tive isto automati
ally assist the ultrasound 
lini
ian when performing the diagnosti
. While theultrasound transdu
er is remotely moved by the 
lini
ian through the master hand, theroboti
 system 
an automati
ally 
ompensate for the unwanted motions in su
h a way thetransdu
er keeps a 
ertain view 
on�guration with respe
t to the patient body. This isa�orded by a servo s
heme paradigm wherein the operator's motion 
ommands and a visualservoing 
ontroller share the 
ontrol of the robot holder motion. The primary envisageduse for the system is 
arotid artery examination. The task then 
onsists in automati
allykeeping the 
enter of one, or more, artery in the middle of the ultrasound image, while atthe same time the transdu
er is being teleoperated over the patient's ne
k by the remote
lini
ian.
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Figure 2.14: Robotic system for medical diagnostic ultrasound [1]. (Photo: S. E. Sal-
cudean’s research group web page http://www.ece.ubc.ca).The artery is thus kept in the middle of the image thanks to the visual servoing s
heme,whi
h automati
ally 
ontrols 3 DOFs of the robot holder in the probe observation plane.It 
ontrols the two translations along the image's two axes and the rotation around theaxis orthogonal to the image plane, respe
tively. The remaining DOFs are being operatedby the 
lini
ian through the master hand. The visual servoing is fed ba
k with the 
enter
oordinates of ea
h of the artery in the ultrasound image. Before this, image pro
essing isapplied on ea
h of the a
quired 2D ultrasound image to dete
t and tra
k the boundary ofea
h artery. The image 
oordinates of points lying on a boundary are used to 
ompute the
orresponding 
enter 
oordinates in the image. Five dete
tion and tra
king te
hniques havebeen tested and 
ompared. These te
hniques 
onsists in the Cross Correlation algorithm[67℄, the Sequential Similarity Dete
tion (SSD) algorithm [13℄, the Star algorithm [33℄, theStar-Kalman algorithm inspired from [5℄, and the Dis
rete Snake Model algorithm modi�edfrom [20℄. They have been tested on su

essive 2D ultrasound images, 
aptured at a rateof 30 frames/se
 from an ultrasound phantom. In this latter, three plasti
 tubes are posi-tioned along three di�erent axes. During the a
quisition, in-plane motions are performed bymoving ba
k-and-forth the ultrasound transdu
er along one axis of the image plane, with
onstant absolute velo
ity. A

ording to the obtained results, the Star-Kalman and theSSD algorithms outperformed the other te
hniques, where the former algorithm showed tobe more advantageous with less 
omputational time. That 
on
lusion is, however, inferredfrom trials where the image variations are due to motions of the transdu
er only along itsimage axis. Therefore, only plane motions have been performed, and 
onsequently motionsin the transdu
er's out-of-plane have not been 
onsidered. Indeed, out-of-plane motions(e. g., motions along the axis orthogonal to the image plane) lead to deformations in the ul-
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trasound image itself (e. g., boundary shrinking/stret
hing) rather than it is simply shifted,as in the presented 
ase. Thus, the te
hniques that better performed for motions withinthe image plane might, perhaps, present drawba
ks or 
ompletely not apply in out-of-planemotions 
ase, and vi
e versa.The system was tested experimentally, where two features that represent the visual feedba
k
orrespond to the 
enter 
oordinates of two pipes of the phantom. The system operated ata rate up to 30 Hz. Two main appli
ations of the system have been 
onsidered. The �rst
on
erns a 3-D ultrasound imaging system, that 
an be used to make up a 3D image of as
anned region of interest (the artery in this 
ase) from su

essive 2D 
entered ultrasoundimages a
quired during the s
an's sweep. That sweep is monitored by the visual servoing
ontroller in su
h a way the artery remains 
entered in the image. Inputting those 
apturedimages whether to a Stradx tool [35℄ or to a Star-Kalman based re
onstru
tion, a 3D imageis outputted. The latter re
onstru
tion algorithm showed to be more advantageous withshortened 
omputational time, sin
e only the 
oordinates of the 
ontour points extra
tedfrom ea
h a
quired image are stored, rather than the full image when using the Stradx tool.As for the se
ond appli
ation of the roboti
 system, it 
on
erns tele-ultrasound exam. A
lini
ian is lo
ated at a remote pla
e, and 
an from there supervise the pro
edure whi
htakes pla
e in a di�erent lo
ation. The 
lini
ian 
an visualize the pro
edure developmentthanks to the display, on di�erent s
reens, of images about the operation room. Theseimages are respe
tively provided by two observing 
ameras and the ultrasound transdu
er,both lo
ated in the operating room where the patient is under diagnosti
 assisted by therobot. By handling the master devi
e, the te
hni
ian's 
ommands are sent to the 
arryingrobot. Data transmission between the two sites is performed through an Internet 
onne
-tion.A 2D ultrasound-guided robot for per
utaneous needle pla
ement for 
hole
ystostomytreatment is presented in [38℄. The robot possesses 2 a
tive DOFs used for automati
 nee-dle insertion (see Fig. 2.15). The intraoperative 2D ultrasound images, of the gallbladderalong with the needle, are dire
tly used in a visual servo s
heme that 
omputes the 
ontrol
ommands. The robot will thus position the needle a

ordingly, while in the same time
ompensating for possible target shifting. The latter 
an o

ur due, as instan
e, to patient'sheart beating, breathing, or pain that 
ould rise due to lo
al anesthesia. Prior to insertion,the needle is me
hani
ally 
onstrained to lay in the same plane of that of the ultrasoundbeam. That 
on�guration is kept throughout the pro
edure. This is a
hieved using 5 passiveDOFs that the robot also possesses. Those DOFs furthermore allow to position the needleat the skin entry point right prior the insertion. The gallbladder is dete
ted in the imageusing a motion optimized a
tive 
ontour model, while the needle dire
tion is extra
ted using
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Figure 2.15: 2 DOFs robot for 2D ultrasound-based needle insertion. (Photo: taken
from [38]).the Hough transform [39℄. The system performan
e was assessed through phantom exper-iments, video simulations, and animal experiments. The roboti
 system operated at a rateof about 3 Hz, at whi
h the needle path planning is updated. It performed with gallbladderre
ognition error of less than 1.5 mm under ordinary breathing 
onditions, and with needlepositioning error of about 2 mm in animal trials.
Control of the interaction with soft tissues: Both in-plane and out-of-plane
motions controlAn ultrasound visual servoing te
hnique using the 2D ultrasound modality for soft tissuemotion robotized tra
king and stabilization is presented in [46℄. It makes use of spe
kle in-formation, 
ontained in the B-s
an images, in separately 
ontrolling the probe in-plane andout-of-plane motions in order to maintain the probe observation plane on a target B-s
anultrasound image. Although ultrasound spe
kle was 
onsidered in di�erent works as noiseto redu
e, it is in fa
t not a random noise but 
oherent re�e
tions of small 
ells 
ontainedin soft tissue. The B-s
an observation plane is in reality of millimeter order thi
k and, as
onsequen
e, su

essive a
quired B-s
an images overlap in spa
e thus resulting in 
orrela-tion of spe
kle between ea
h of them (see Fig. 2.16). Spe
kle information have been usedto estimate multi-dimensional �ow of 2D ultrasound images [12℄, and its 
orrelation usedfor sensorless estimation of the 3D pose of freehand 2D ultrasound probes, as in [34℄. Inthe latter work, the spe
kle 
orrelation is approximated by an exponential fun
tion basedon image intensity, in order to estimate the displa
ement between two plane of su

essivea
quired B-s
an images [see Fig. 2.16(b)℄.
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(a) (b)

Figure 2.16: Speckle correlation between two successive B-scan image planes acquired
by a 2D ultrasound probe (displayed in blue) [46]. (a) Two successive B-scan images,
whose respective planes are spaced by a distance d, and where two corresponding
patches I1 and I2 are shown on their respective grids (displayed in green) - (b) Cor-
relation curves between the two B-scan planes considered for 25 patches. The curves
are function of the distance d between the two planes. (These two figures have been
kindly provided by Alexandre Krupa).That prin
iple is exploited in [46℄ to estimate the B-s
an probe out-of-plane motions, thatwould bring the probe to its target plane from its 
urrent one. The obje
tive is in fa
t toestimate the target image plane with respe
t to the observed one. The out-of-plane motionsare related to translations along the axis orthogonal to the probe observation plane (image)and rotations around the two image's axes. To estimate those movements, di�erent pat
hesare atta
hed to the ultrasound image, whi
h are dis
riminated a

ording to their respe
tiveallo
ated pixel 
oordinates. For ea
h pat
h of the observed (
urrent) image, its distan
efrom its 
orresponding pat
h belonging in the target image is 
omputed a

ording to thede
orrelation te
hnique introdu
ed above using their respe
tive intensity information. Notethat the target image has been previously saved as a pixel intensity array. Prior that theexponential fun
tion is applied, the intensity of the B-s
an image is de
ompressed to be ex-pressed on a linear s
ale [72℄. This is performed sin
e the outputted B-s
an image's intensityis 
ompressed a

ording to a logarithmi
 s
ale whereas the original raw radio-frequen
y sig-nal (RF) provided by the transdu
er is expressed on a linear s
ale. The estimated distan
esare used to geometri
ally represent the target image pose with respe
t to the observed one,by de�ning for ea
h distan
e a 3D position with respe
t to a frame atta
hed to the observedimage. The pat
hes of the target image are then �tted with a plane, de�ned by its normal
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ve
tor and its distan
e from the observed image's one. This plane is nothing but an esti-mation of the target image's one.The four elements of the target plane, that are the three 
omponents of its normal ve
-tor and its distan
e from the 
urrent image's plane, are fed ba
k to a 3D visual servoings
heme that then 
omputes the velo
ity 
ommand [51℄ for the out-of-plane motions of theultrasound probe. The in-plane motions are however separately 
ontrolled by a di�erent 2Dvisual servoing s
heme. The latter is fed ba
k with a visual feature ve
tor of three 
ompo-nents. This ve
tor relates the rigid in-plane motion from the plane of the observed imageto that of the target. Two of its elements 
orrespond to two translations respe
tively alongea
h of the image's two axes, while the latter element 
orresponds to a rotation around theimage's orthogonal axis (elevation axis). These three elements represent the di�eren
es ofrespe
tively the displa
ement and the rotation from the observed image to the target one.They are extra
ted using the image tra
king te
hnique [37℄. It 
onsists in minimizing anintensity fun
tion whi
h is based on a motion model.The approa
h has been tested in both simulations and experiments. The simulations 
on-sist in a s
enario where a virtual 2D ultrasound probe intera
ts with a realisti
 ultrasoundvolume, made up from a set of parallel real 2D ultrasound images. The latter have been,at a previous time, su

essively 
aptured at an equivalent distan
e interval during motionsof a 2D ultrasound probe along its orthogonal axis. The motions have been performedwith 
onstant velo
ity. The experiments have been 
ondu
ted using two di�erent setups.In the �rst one, a 2D ultrasound probe was 
arried by a 2 DOFs robot, that provides twotranslations respe
tively along the horizontal probe axis and along the axis orthogonal tothe probe. The se
ond setup 
onsists of a 6 DOFs medi
al robot 
arrying a 2D ultrasoundprobe. In both the simulations and the experiments, the roboti
 task was fo
used in tra
kinga target ultrasound B-s
an image, sin
e the proposed approa
h is devoted for tra
king byallowing only slight displa
ements from the target image. This limitation however has beenalleviated, where it is proposed to register up to a 
ertain width the 
ontinually a
quiredimages. This would allow to re
over the path followed by the probe, by sta
king the di�erentdispla
ements between ea
h su

essive images. The approa
h is devoted solely for B-s
animages, and requires a 
alibration step through whi
h parameters involved in the 
orrelationexponential fun
tion are estimated. In fa
t, those parameters vary depending on the imagedsoft tissue. Note that the approa
h heavily relies on the estimated target plane, on whi
hthe probe's plane has to be automati
ally positioned. Consequently, any estimation errorswill be, undoubtedly, re�e
ted in positioning errors of the ultrasound probe leading to driftsfrom the a
tual target.
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In the Lagadi
 group, IRISA/INRIA Rennes, wherein this PhD work has been 
on-du
ted, a former preliminary work [4℄ dealt with the 
ontrol of both in-plane and out-of-plane motions of a 2D ultrasound probe intera
ting with egg-shaped obje
ts. The obje
tivewas to automati
ally position the probe with respe
t to su
h an obje
t. It was attemptedfor use in a 
ontext where a robot arm a
tuates the probe, whi
h 
ontinually provides 2D
ross-se
tion images of the observed obje
t. These images are fed ba
k to a visual servoings
heme, that subsequently 
omputes the 
ommand velo
ity. The robot will then have toposition the probe transdu
er, by moving a

ording to the ordered velo
ity, in su
h a waythat at the 
onvergen
e the observed 
ross-se
tion image 
orresponds to desired one. Theprobe observation plane interse
ts the obje
t of interest, whi
h results in a 
ross-se
tion ul-trasound image. Assuming the soft tissue being egg-shaped, the 
ontour of the 
ross-se
tionis �tted with a third order polynomial, whose 
oe�
ients are used as the feed-ba
k visualfeatures. The method has been tested is simulation, where the s
enario 
onsists of a mathe-mati
ally modeled virtual 2D ultrasound probe and an egg-shaped obje
t. Their respe
tiveposes (position and orientation) are assumed known with respe
t to a base frame. Thosemathemati
al models of the obje
t and the probe are used to simulate their intera
tion,and thus providing the 
ontour of the 
ross-se
tion image. The 
ontour is 
hara
terizedwith a set of its points 
oordinates. The proposed approa
h, however, is dedi
ated to softtissue with known geometry, namely egg shaped obje
ts. It relies, moreover, on visual fea-tures that have no physi
al signi�
ation and are not robust to image noise. Extra
tingthese features from the image 
an, sometimes, be
ome 
hallenging, and is prone to failures.This 
onsequently 
an threaten the system stability. In roboti
s, in general, and in medi
alroboti
s, more parti
ularly, the robustness is an important trait that has to be addressed,espe
ially when dealing with the ultrasound modality, that inherently provides very noisyimages. The work we present in this dissertation exploits instead visual information thatare robust to image noise. Su
h information 
an moreover be readily extra
ted after theimage would have been segmented. These features we sele
t to feedba
k the visual servoings
heme 
onsists in 
ombination of image moments; the latter are presented in Chapter 3.Moreover, we develop the exa
t form of the intera
tion matrix related to these features. Theformulae we develop is general in the sense that it 
an be applied to di�erent shapes, sayto whatever 
onsidered 
losed volumes. We in fa
t developed new theoreti
al foundationsthat yield us able to derive su
h a matrix. The 
orresponding modeling is presented alsoin Chapter 3. Another main 
ontribution brought though this thesis is that we propose ane�
ient estimation method that endow the roboti
 system with the 
apability of intera
tingwith obje
ts without any prior knowledge of their shape, 3D parameters, nor lo
ation in the3D spa
e. This is presented in Chapter 4. Only the image, along with robot odometry, isused to 
ompute the 
ontrol law, as presented in Chapter 5.
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2.6 ConclusionWe have provided through this 
hapter an overview about image-based medi
al roboti
 sys-tems, and more parti
ularly about ultrasound-guided ones. We started by giving a shortintrodu
tion to roboti
s 
ontrol and medi
al roboti
s. Di�erent paradigms re�e
ting themanner a medi
al robot is 
ommanded have been presented. We re
all that this thesis is
on
erned with the self-guided paradigm, where the robot 
ompletely autonomously inter-a
ts with its environment thanks to 
losed-loop servoing te
hniques developed and presentedin this do
ument. The intervention of the operator only 
onsists in indi
ating to the sys-tem the obje
tives of a required task, right prior that the robot is laun
hed to perform thepro
edure.It was highlighted that usually medi
al roboti
 systems use mainly visual sensing for mon-itoring the intera
tion with their respe
tive environment. Examples of most investigatedimaging modalities for guiding medi
al roboti
 systems have been introdu
ed with some ex-amples for illustration. These modalities range from, but are not limited to, opti
al, MRI,X-ray or CT, and ultrasound. They provide with valuable sensing allowing for intera
tionmonitoring. Ea
h of them provides, indeed, with parti
ular information about its envi-ronment, that 
ould be greatly relevant for 
ertain range of medi
al appli
ations. Opti
alimaging systems, as instan
e, provide images of open-spa
e �elds, and therefore �nd theiruse in minimally invasive surgery. They are however restrained to some appli
ations likeendos
opi
 surgery roboti
s, and re
ently in mi
rosurgery roboti
s. This is due to the fa
tthat they 
an not provide internal anatomi
al views, unless they are inserted inside thepatient's body. This latter resolution is however not appropriate for many kinds of appli-
ations, be
ause of the possible trauma and hemorrhage that 
ould result, and sin
e somebody's regions are not readily a

essible and viewed. Yet, internal images are in most of the
ases required in medi
al roboti
s sin
e medi
al robots are usually intera
ting with body'sparts that are not naked-eye viewed. In 
ontrast to opti
al imaging, MRI, CT, and ultra-sound provide internal anatomi
al images without any disse
tion. X-ray, or CT, showedhowever to be invasive and harmful for the patient body. As for the MRI modality, evenif it is 
onsidered noninvasive, the images are not provided at a su�
ient rate to envisagereal-time roboti
 appli
ations. Con
erning the ultrasound modality, it is 
onsidered thanksto its noninvasiveness as not harmful to the patient body, and more parti
ularly 2D ultra-sound modality 
an provide images with a relatively high streaming rate.We introdu
ed in this 
hapter works related to automati
 guidan
e using ultrasound im-ages, and 
lassi�ed them a

ording to di�erent 
lasses. It is perhaps useful to summarizethem. We distinguished: ultrasound-based simulation; 3D ultrasound-guided roboti
s; 2Dultrasound-based position-based visual servoing; and 2D ultrasound-based image-based vi-
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sual servoing. Also, within the last 
lass we distinguished the following 
ategories: posi-tioning of surgi
al instruments; positioning with respe
t to observed soft tissue where onlyprobe in-plane motions are 
ontrolled; and positioning with respe
t to observed soft tissuewhere both probe in-plane and out-of-plane motions are 
ontrolled. This thesis falls withinthe latter 
ategory.



Chapter 3

ModelingBuilding a visual servoing s
heme requires the modeling of the intera
tion matrix thatrelates the time variation of the feedba
k visual features to the motions of the robot. Su
hintera
tion matrix is in fa
t 
ru
ial for 
omputing the 
ontrol law. In 
ase of opti
al systems,like a perspe
tive 
amera 
arried by a robot arm for example, the intera
tion matrix isgenerally already available thanks to the amount of works that have 
onsidered su
h asensor (e. g., see [41℄ and [17, 18℄). It is however not the 
ase for roboti
 systems using 2Dultrasound imaging modality as sour
e of visual information. This thesis 
on
erns automati
guidan
e of a general robot arm from observed 2D ultrasound images. These images areprovided by a 2D ultrasound probe 
arried at the robot end-e�e
tor. We need thereforeto model the intera
tion matrix for the 
ase of 2D ultrasound in order to allow the robotautomati
 intera
tion with its environment. One of the 
hallenging issue, however, 
on
ernsthe fa
t that a 2D ultrasound probe intera
ts with its environment by su
h a manner thatwas, so far, di�
ult to model. This is addressed in the present 
hapter. Firstly, we used the
on
ept of image moments to 
onstru
t the feedba
k visual features. This 
on
ept seems
ompletely relevant when dealing with the ultrasound modality, as dis
ussed in Se
tion 3.1.Then, we propose new theoreti
al foundations that allow us to model the analyti
al formof the image point velo
ity as fun
tion of the robot velo
ity. This fundamental modelingis subsequently used to obtain the exa
t analyti
al form of the intera
tion matrix thatrelates the image moments time variations as fun
tion of the probe velo
ity. The modelingmethod we propose 
an be applied for general-shaped obje
ts. We theoreti
ally test andthus validate this general result on some simple shapes like spheres, 
ylinders, and 3-Dstraight line-shaped wires.
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3.1 Image moments: a brief state-of-the-artImage moments are mathemati
al entities whose inferred values 
an des
ribe the 
on�gura-tion of se
tions in the image; by �
on�guration� we mean also the se
tion's shape, thoughimpli
itly . Su
h 
on�gurations are mainly 
orrelated to the se
tion's geometry. They 
ouldbe as instan
e the lo
ation, orientation, 
ontrast, or size of a se
tion in the image. Aftertheir original version being introdu
ed in the �eld of mathemati
s, moments, or image mo-ments as 
urrently referred when dealing with images, were �nally 
onsidered for patternre
ognition �eld. Based on the theory of algebrai
 invariants, fun
tions of moments thatare insensitive to parti
ular se
tion's 
hanges, su
h as translation and rotation in the image,and size are presented in [40℄. Su
h fun
tions are indeed of great interest for pattern re
og-nition appli
ations. The fa
t that image moments 
an des
ribe se
tion's 
on�guration, they
an therefore be used to dis
riminate between the di�erent se
tions. Ea
h se
tion 
ouldbe assigned with a parti
ular value, more parti
ularly numeri
al value. However, if a 
on-sidered se
tion is subje
t to 
on�guration 
hanges su
h those mentioned above (translationand rotation of the se
tion in the image), its assigned value likely would vary. In the 
asesu
h 
hanges o

ur, the 
onsidered se
tion 
an no longer be assigned with a 
ertain value,and 
onsequently 
an not be dis
riminated and thus re
ognized. But image moments thatare invariants to su
h 
hanges would keep their initial value, and 
onsequently they 
an beused as pointer for a 
onsidered image se
tion, still under the mentioned 
hanges. This isillustrated in Fig. 3.1. Su
h image moments are 
alled moment invariants [40℄. We willsee in 
hapter 5 that su
h invarian
e properties are of great interest for the sele
tion of thefeedba
k visual features, sin
e these latter we propose are based on image moments.Consider a se
tion lying in a plane Π, that is de�ned by an orthogonal frame (u, v) (seeFig. 3.2). The two-dimensional moments of a density distribution fun
tion ρ(x, y) and of
(i+ j)th order related to this se
tion are de�ned in terms of the surfa
e integral by [40℄:

mij =

∫ +∞

−∞

∫ +∞

−∞
xi yj ρ(x, y) dx dy (3.1)where (x, y) represent the 2-D 
oordinates of a point P lying in the se
tion. We 
an thereforenote that moments are strongly 
orrelated to the shape of the se
tion, as 
an be dedu
edfrom the term produ
t xi yj . In the 
ase Π represents a plane of a 2D image, then we will re-fer to 2D image moments. The 
ouple (x, y) will then represent the pixel 
oordinates of point

P. The fun
tion ρ(x, y) 
ould be related to the pixel intensity of the image, its 
olor, or else.
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(a) (b)

Figure 3.1: Illustration of moment invariants with two different images of a same pair
of pliers. (a) Initial image whose boarders are delineated with a rectangle - (b) Final
image of the pliers after configuration changes in the position, rotation, and scale.
Ordinary image moments values of respectively the images (a) and (b) are different,
whereas those of the invariant moments to position, rotation, and scale are the same.
The latter values can thus be assigned to the pliers for prospective identification.Su

essive resear
h works have then followed by applying image moment invariants forpattern re
ognition appli
ations. We 
an 
ite as example, the use of moment invariantsfor automati
 re
ognition of air
raft shapes and types from images, as in [25℄ [8℄. Theyhave also been used for pose estimation of planar obje
ts [59℄. Along with the widespreadof moments invariants for wide range of appli
ations, theoreti
al studies with obje
tives ofmaking these fun
tions more powerful have also been reported. Moment invariants to image
ontrast 
hanges that at the same time keep their initial insensitivity to image translation,rotation, and s
ale are presented in [50℄. Obje
ts whi
h present symmetries might be dif-�
ult to identify with moments, sin
e the latter 
ould tend to vanish (i. e., to be null) asmore as the symmetry appears in the image while the obje
t 
on�guration 
hanges. Todeal with su
h limitations, moment invariants to image translation, rotation, and s
ale, butdedi
ated for dete
ting obje
ts that present N -fold rotation symmetry are presented in [32℄.Another formulation of image moments quite inspired from the existing version is presentedin [19℄. It 
onsists in de�ning a new version of image moments as fun
tion of only image
oordinates of the points lying on the boundary of the 
onsidered se
tion, instead of those ofthe whole points lying within the se
tion image (su
h version's moments do not 
orrespondto those of the old version when expressed on the 
ontour using the Green's theorem). Su
hformulation is aimed at de
reasing the 
omputational time of image moments by 
onsid-ering fewer number of points involved in the 
omputation than if the whole points of the
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Figure 3.2: Section lying on a plane Π.se
tion are 
onsidered. This version's moments have also been made invariant to imagetranslation, rotation, and s
ale 
hanges. Adjusting the original formulation of moment in-variants, introdu
ed in [40℄, and generalizing them to the 
ase of n-dimensional momentinvariants through a generalized fundamental theorem is presented in [52℄. There are alsoother interesting works about image moments devoted for the �elds of pattern re
ognitionand 
omputer vision, but we settle for those 
ited above and in Se
tion. 3.2. A surveyabout image moments is available in [66℄. The obje
tive of the present se
tion 
on
ernsthe introdu
tion of image moments and the illustration of their usefulness, sin
e the visualte
hniques we propose through this thesis exploit these information. Dealing with imagemoments for pattern re
ognition or 
omputer vision is not the obje
tive of the present thesisand is beyond its s
ope.One of the trait of image moments is that they 
an generi
ally represent an image se
-tion, without prior knowledge about this latter. Image moments 
an be readily 
omputedfrom a segmented image. These features are relatively robust to image noise, 
ompared forexample to features 
omposed of 
oordinates of points. Another but typi
al trait to imagemoments is that they do not require mat
hing of points in the image but only a globalsegmentation. We will see that this trait is of tremendous interest for visual servoing basedon 2D ultrasound. Indeed, this trait mat
hes one of the key solutions that 
ould enableaddressing the modeling issue of 2D ultrasound. This will be re
alled at an appropriatestep of the modeling te
hnique, in Se
tion 3.5.2 more pre
isely. Moment invariants, moreparti
ularly, provide with information about the 
on�guration of the se
tion, with respe
tto the image, in a de
oupled way. This latter property makes image moments relativelyamenable in order to build independent visual features and thus to develop partially, orperhaps totally, de
oupled visual servoing s
hemes in a natural way. These features areintuitive with geometri
al meaning, where their low order 
ompletely and dire
tly relay in-
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formation about the size, the 
enter of gravity, and the orientation of se
tion in the image.Therefore, a set of features based on image moments 
an be dire
tly related to a pose of a3-D s
ene in the spa
e (the 
ase of planar s
ene being pointed out and reported in [50℄).All these traits make image moments a potential entity for deriving relevant visual fea-tures, that 
an be used as feedba
k in visual servoing s
hemes. Su
h features 
an endowthe roboti
 system with the 
apability of automati
ally rea
hing 
on�gurations from whi
hthe robot 
an provide desired images of the s
ene, and thus positioning with respe
t to thelatter. Su
h systems do not deal with 
oordinates, or the like, but dire
tly with shapes ofobje
ts. However, the key solution related to the development of visual servoing s
hemesis the ja
obian matrix that relates the di�erential variations of the sele
ted set of visualfeatures to the di�erential 
hanges of the 
on�guration of the roboti
 system [27℄ [41℄. Su
hja
obian is well known by the term interaction matrix when the velo
ity spa
e 
onsideredis SE3. It is, indeed, in most of the 
ases, 
hallenging to model and obtain su
h matrix,espe
ially when this 
on
erns its analyti
al form.We provide in what follows a brief state of the art about works that investigated the mod-eling of su
h matrix, in 
ase of opti
al systems, in systems using 
amera as sour
e of visualinformation more parti
ularly. We emphasize that the modeling in 
ase of opti
al systemsquite di�ers from that of 2D ultrasound, as has been shown in the previous 
hapter. In thisthesis we model and thus provide the exa
t analyti
al form of the intera
tion matrix thatrelates the di�erential 
hanges of the image moments to the di�erential 
hanges in the 
on�g-uration of a general 6 DOFs robot arm that 
arries a 2D ultrasound probe at its end-e�e
tor.
3.2 Discussion with regards to image momentsSimilarly to di�erent other pattern re
ognition and 
omputer vision features, image mo-ments present also some inherent drawba
ks. Moment invariants might su�er, in some
on�gurations, from information suppression, loss, and redundan
y [2℄, and from o

lusion.The suppression e�e
t is related to the 
ase where the information of the se
tion's 
entralarea are reje
ted. The information loss is related to the 
ase where the information relayedby the image higher order harmoni
s are �ltered. As for redundan
y, it o

urs when asele
ted set of moments-based features represents di�erent se
tions.The suppression e�e
t 
an be noti
ed from the relationship (3.1). Sin
e in this thesis wedeal with moment invariants, we 
an dire
tly 
onsider for 
larity that the se
tion is 
enteredin the image. We 
an �rst remark that the image moments fun
tion is strongly 
orrelatedto the se
tion shape, and this is ensured through the image pixel 
oordinates x and y. More
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the value of x is high more is that of xi. The same applies for y. We 
an subsequentlyremark that more the point is far from the 
enter more higher is the value x or y. Thefarthest points 
orrespond, in a general sense, to those lying on the se
tion's boundary. Therelationship (3.1) mainly 
ontains produ
ts of the power of x with that of y. Therefore, thepoints lying more farther from the se
tion 
enter have higher values and thus have moree�e
t than those 
loser to the 
enter. Consequently, the farther points have more weight onimage moments's inferred value than those 
loser. This e�e
t is more felt when momentsof higher order are employed. Indeed, higher is the order larger is the di�eren
e betweenthe values xi yj of respe
tively the farther points and those 
loser. The suppression e�e
t
an be embodied in a 
on
rete sense. If, for example, the image intensity fun
tion is in-trodu
ed in the de�nition of image moments relationship, and if, as instan
e, the 
entralarea have large intensity information, this latter would partly, or almost totally, suppresseddue to the e�e
t of the farthest area, as we just des
ribed; this information would be swal-lowed up by that 
onveyed by the farthest regions. If, however, the se
tion has no valuableintensity information in its 
enter-
loser area, there would be no information suppressionthat 
ould be 
aused by the above dis
ussed e�e
t of moment invariants. Nevertheless,this drawba
k presented above is pre
luded in our 
ase (in the servoing system we propose,more pre
isely). Indeed, only the shape of the se
tion in the image is exploited in the 
on-trol law, i. e., the image is �rst segmented and binarized. Thanks to the formulation weuse in this thesis in the de�nition of image moments, these latter are no longer a�e
tedby information suppression. More pre
isely, we exploit solely the geometri
 shape of these
tion in the image. We do not 
onsider, for example, image 
ontrast information in thede�nition of moments. The geometry of the se
tion is mainly represented by the boundaryforms of the latter. There is therefore no information in the 
entral part of the se
tionthat 
ould relay valuable information with regards to the se
tion shape. Owing to whathas been dis
ussed above, the se
tion geometry information are 
onsequently not subje
tto suppression e�e
t sin
e the valuable information are present in the farther points not inthe 
loser to the se
tion 
enter. We exploit, to summarize, only the boundary of the se
tion.High-order moments are also well-known to be vulnerable to image noise, as 
an be 
learlynoti
ed from the fa
t that a moment's order 
orresponds to the power at whi
h the 
oordi-nates are elevated. However, the visual information we present in this dissertation employonly up to the third order moments.As for information loss, it is related to se
tion's parts whose boundary presents 
urvatureswith high frequen
y. This is illustrated by Fig. 3.3, on whi
h we 
an distinguish the part thatpossesses high harmoni
s. Su
h part is vulnerable to the information loss e�e
t. That is,the information relayed by su
h part would be �ltered by moment invariants fun
tions andthus lost. However, usual 
onsidered obje
ts 
ould unlikely possess parts with a 
ertain level
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Section in the image

High−harmonic region

Figure 3.3: Image section subject to the effect of information loss inherent to image
moments (typical example, grossly sketched). The section’s part, roughly enclosed
by a dashed rectangle, presents high-harmonic curvatures.of high-harmoni
s sus
eptible to yield them vulnerable to su
h e�e
t. Moreover, we employonly up to the third order moments, and thus we 
learly do not deal with high harmoni
sand therefore we do not 
onsider them in the 
ontrol law. Note that the information lossis somewhat related, say similar, although inversely, to the 
hara
teristi
 of vulnerability toimage noise.Finally, the o

lusion e�e
t represents the 
ase when a part, or whole, of the 
on
ernedse
tion disappears from the image. The image moments represent mainly the shape of theobserved se
tion in the image. When an o

lusion o

urs, it is 
lear that the se
tion wouldbe warped in the image, sin
e at least part of it would vanish from the image. In that 
ase,the image moments values would 
onsequently 
hange sin
e they represent another shapedi�erent from the original one. Therefore, the image moments initial values, representing these
tion in its whole form, 
ould no longer represent that se
tion. Nevertheless, we assumethat the whole se
tion 
an be imaged and no part of it would disappear. This assumptionshows to be 
onsistent sin
e a 2D ultrasound probe 
an provide in-depth information, andthus the 
on
erned se
tion 
ould be imaged even though there are other soft tissues lyingbetween it and the probe transdu
er. Con
erning the redundan
y e�e
t, we prefer to dis
ussit in Chapter 5, 
onsidering that doing so is more appropriate.The above 
ited drawba
ks 
ould, in some 
ases, be
ome favorable [2℄; although these draw-ba
ks are pre
luded in our 
ase, as has been des
ribed. If the 
entral part of the imagese
tion possesses highly-noisy information, the suppression e�e
t would reje
t the 
arriednoise. Similarly, the e�e
t of information loss will �lter and thus reje
t the noise 
arried byhigh-harmoni
s parts.
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3.3 Image moments-based visual servoing with op-

tical systems: state of the artOne important and 
ru
ial step in the modeling of the intera
tion matrix is already a
quiredwhen dealing with opti
al imaging roboti
 systems, whatever the kind of the visual featuresused as feedba
k information in the servoing s
heme. Indeed, the ja
obian matrix that re-lates the di�erential 
hanges of the image points 
oordinates with respe
t to the variationof the 
on�guration of the roboti
 system is, in most of the 
ases, say in all, available. Afterobtaining a se
ond ja
obian that this time relates the di�erential 
hanges of the visual fea-tures to the di�erential 
hanges of those image points 
oordinates, it would be easy to derivethe global intera
tion matrix that relates the visual features to the robot 
on�guration. If,as an example, the 
onsidered visual features are 
oordinates of the points in the image, these
ond ja
obian matrix is nothing but the identity matrix.This 
an be formulated and thus illustrated by the following relationships. Let ve
tors sand x be respe
tively the set of the visual features and the set of points's image 
oordinates,and let ve
tor q be the 
on�guration of a roboti
 system, whatever the imaging modalityused as sour
e of visual information. The ja
obian matrix Lx relates the di�erential 
hanges
ẋ of x to the di�erential 
hanges q̇ of q by: ẋ = Lx q̇. Su
h matrix is indeed available forthe 
ase of opti
al systems. The di�erential 
hanges ṡ of s 
an be written as:

ṡ = ∂s
∂x

ẋ

= ∂s
∂x

Lx q̇ = Ls q̇

(3.2)The entity Ls = ∂s
∂x

Lx is the global ja
obian matrix that relates s to q, where ∂s
∂x

repre-sents the se
ond ja
obian matrix that relates s to x. This latter matrix is the one equal toidentity if the visual features are the 
oordinates of the points in the image (i. e., s = x).Therefore, in 
ase using opti
al systems, modeling the intera
tion matrix generally 
omesto only obtain the matrix ∂s
∂x
, sin
e the ja
obian matrix Lx is in most of the 
ases alreadyavailable.A �rst work toward modeling the intera
tion matrix relating the image moments time vari-ation in the 
ase of perspe
tive 
amera was attempted in [9℄. Coarse approximations havehowever been assumed for that. A visual features ve
tor 
omposed of the area (size), thegravity 
enter, and the orientation of the se
tion in the image was 
onsidered to automati-
ally 
ontrol only 4 DOFs of a robot arm. Another work [83℄ used neural network to estimate
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the intera
tion matrix. Finally, an exa
t form of su
h matrix was obtained, provided thatthe observed obje
t 3-D model with respe
t the 
amera is well-known [15, 16℄. Six visualfeatures 
orresponding respe
tively to the area, the 
oordinates of the 
enter of gravity, theorientation, and two other third order moments of the se
tion in the image were sele
ted to
ontrol the 6 DOFs of the robot. The 
orresponding visual servoing s
heme has been vali-dated from both simulations and experiments using planar obje
ts. A 
ombination of imagemoments yielding the visual servoing partially de
oupled is presented in [76℄. Six visualfeatures have been proposed to 
ontrol the 6 DOFs of a robot arm holding the 
amera. Themethod was �rst developed for the 
ase a planar obje
t is parallel to the image plane of aperspe
tive 
amera and, then, generalized to the 
ase where the planar obje
t is not paral-lel. The 
ommands generated and then sent by su
h de
oupled visual servoing s
heme allowthe robot performing appropriate 3-D traje
tories. The proposed visual servoing s
hemeis devoted to images wherein the se
tion is represented either by 
ontinuous 
ontours orby dis
rete points. It has been validated from both simulations and experiments where,on
e again, the observed obje
ts are planar. Another advantage of obtaining a partiallyde
oupled (or totally de
oupled at the best) servoing s
hemes is that the 
omputationaltime required to 
ompute the pseudo inverse (or the inverse) of the intera
tion matrix 
anbe shortened; even though this advantage 
ould be 
onsidered at a relatively fewer interest.This 
an be ensured thanks to the properties related to sparse matri
es, as the developedone in [76℄. Note that dealing with the intera
tion matrix in terms of de
oupling is equiva-lent as dealing with the de
oupling of the 
ontrol s
heme, sin
e this latter uses mainly theintera
tion matrix to 
ompute the 
ommands to the robot.As has been dis
ussed in Chapter 1 (in Se
tion Contributions, more pre
isely), the mod-eling in 
ase of opti
al systems quite di�ers from that of 2D ultrasound; the latter 
onsiststhe �eld this thesis is addressing. The intera
tion matrix developed for opti
al systems,whi
h has been introdu
ed hereinbefore, does not apply in the present 
ase. Even worse,the elemental ja
obian matrix that relates the image points variation to the sensor velo
ityis not available in this 
ase; we re
all that we refer to the matrix Lx introdu
ed by (3.2) (in
ase of opti
al systems, the ja
obian is however generally available). Yet, su
h ja
obian is
ru
ial and required in order to develop the intera
tion matrix and thus to derive the visualservoing s
heme. Through the works presented in this dissertation, we have �nally been ableto model su
h ja
obian and then to obtain the intera
tion matrix that relates the imagemoments variations to the 
on�guration of a general robot arm (and thus to the robotizedsensor velo
ity) holding the 2D ultrasound probe, and thereby to derive a 
orrespondingvisual servoing s
heme. The intera
tion matrix form we provide is analyti
al. This 
hapterprovide theoreti
al foundations, whi
h, based on it visual servoing methods 
an be derived.This is thoroughly presented in what follows.
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Figure 3.4: Representation of an ultrasound image. The image’s boundary is rep-
resented by the outer rectangle, where (X, Y ) represent the 2D orthogonal frame
attached to the image.

3.4 Modeling objectivesThe s
enario 
onsists of a 2D ultrasound probe transdu
er a
tuated by a general 6 DOFsrobot arm. This robot and thus the transdu
er are intera
ting with a soft tissue obje
t.In a 
ontinuous streaming, 2D ultrasound images of the observed obje
t are provided bythe 2D ultrasound transdu
er. The roboti
 task 
onsists in automati
ally positioning thetransdu
er with respe
t to the obje
t, using the observed ultrasound images. These latter infa
t have to automati
ally guide the robot and thus monitor its motions in su
h a way thetransdu
er, 
arried by the robot, automati
ally rea
h and stabilize at a desired 
on�gurationwith respe
t to the obje
t. Automati
ally a
hieving su
h task ne
essitates the developmentof a visual servoing te
hnique whi
h, at its turn, requires appropriate visual features to feedba
k the robot system and thus 
orre
t its motions. We re
all that we propose to exploitimage moments information, along with its derivative form that are the famous momentinvariants. This has already been des
ribed in Se
tion 3.1.The 
ontrol system paradigm with whi
h we are 
on
erned 
onsists in servoing the robotwith velo
ity 
ommands. It 
ould be 
onsidered as a relatively high-level 
ontrol 
ompared,for example, to torque 
ontrol. The system we propose 
an, nevertheless, be 
onne
ted tothe robot low-level in order to envisage torque 
ontrol. The robot is assumed, of 
ourse,that it already possesses its own low-level 
ontrol system enabling it to move a

ording tothe ordered 
ommand velo
ity. The visual servoing s
heme, thus, 
omputes velo
ity 
om-mands whi
h a

ordingly the robot will move. The modeling obje
tive be
omes, therefore,
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to �rstly provide the ja
obian matrix Lx, involved in (3.2), that relates the image pointstime variation to the sensor velo
ity and thus to the robot velo
ity. Then, we use Lx tomodel the intera
tion matrix Ls that relates the image moments time variation to the sensorvelo
ity.More pre
isely, let the (i + j)th order image moment mij , previously introdu
ed by (3.1),now relate solely the shape of a se
tion S in the image. This entity is thus de�ned by thisdouble integration:
mij =

∫ ∫

S
f(x, y) dx dy (3.3)with

f(x, y) = xi yj (3.4)where (x, y) are the image 
oordinates of point P = (x, y) belonging to se
tion S (seeFig. 3.4). Note that sin
e we 
onsider only the shape of the se
tion in the image in thede�nition of image moments, the fun
tion ρ(x, y) involved in (3.1) is now ρ(x, y) = 1. Notethat we assume that the ultrasound beam is a perfe
t plane, and that the whole a
tual
ross-se
tion lies in the imaged.Consider a 6 DOFs robot arm that 
arries at its end-e�e
tor a 2D ultrasound probe trans-du
er (see Fig. 3.5). A 3-D 
artesian frame {Rs} is atta
hed the probe sensor. This bodyframe is de�ned by the three orthogonal axes X, Y , and Z. (X, Y ) are de�ned in su
ha way they lie in the image plane, while Z axis is normal to the latter (see Fig. 3.5, 3.6,and 3.7). Let 6 dimension ve
tor v represent the velo
ity of the transdu
er (probe) in the3-D spa
e. More pre
isely, it represents the body frame velo
ity of {Rs} expressed in {Rs}.It is denoted by v = (v,ω), where v = (vx, vy, vz) and ω = (ωx, ωy, ωz) representrespe
tively the translational and the rotational velo
ity of the probe. The s
alar 
ompo-nents (vx, vy, vz) are respe
tively along axes X, Y , and Z of the probe, while the s
alar
omponents (ωx, ωy, ωz) are respe
tively around X, Y , and Z. This is represented onboth Fig. 3.5 and 3.7. Note that dealing with either the probe velo
ity or the robot one isequivalent, provided that the kinemati
 transformation (i. e., the homogeneous transforma-tion matrix) from the robot end-e�e
tor to probe atta
hed frame is known. Obtaining su
hmatrix is referred to as hand-eye calibration. If su
h matrix is not enough a

urate, thenthe 
orresponding errors would be 
onsidered as perturbations to the visual servoing s
heme.



3.4. MODELING OBJECTIVES 60

Cross−section of the observed object

Robot arm

Probe observation
plane

Ultrasound probe
transducer Z

X

Y

{Rs}

Figure 3.5: A 2D ultrasound probe carried by a robot arm. The probe is interacting
with an object, where a cross-section resulting from the intersection of the probe
observation plane with the object is shown. The frame (X, Y, Z) attached to the
probe is also depicted. The vectors X and Y lies in the probe observation plane,
whereas Z is orthogonal to it.The modeling obje
tive is �nally to write the time variation ṁij of image moment mij ,de�ned by (3.3) and (3.4), as fun
tion of the probe velo
ity in a linear form. This obje
tive
an be formulated as follows:

ṁij = Lmij
v (3.5)where Lmij

is the intera
tion matrix related to mij denoted by:
Lmij

=
[

mvx mvy mvz mωx mωy mωz

]

(3.6)su
h that the six 
omponents of Lmij
represent the s
alars whose analyti
al form is whatwe want to obtain.



3.4. MODELING OBJECTIVES 61

Ultrasound planar beam

2D ultrasound image

2D ultrasound probe
transducer

Xo
Yo

observed cross-section

P

S

{Ro}
Y

X x

y

Zo

P

S

X
{Rs}

Z

YObject O

Figure 3.6: Interaction between a 2D ultrasound probe and an object. 3D cartesian
frames {Rs} and {Ro} are attached respectively to the probe and to the object (left).
A cross-section S results from this intersection, where a point P that belongs to it
is shown. The ultrasound planar beam that observes this cross-section reflects it on
a 2D ultrasound image (right). Both S and P are shown on that image, where the
image coordinates (x, y) of P in the 2D image frame (X, Y ) are also depicted. Note
that the two axes X and Y constituting the image frame (left) clearly correspond to
those forming the probe frame {Rs} (right).The time variation ṁij of image moment mij 
an be expressed as fun
tion of the imagepoint velo
ity (ẋ, ẏ), in form of a double integral over se
tion S as follows [16℄:

ṁij =

∫ ∫

S

[

∂f

∂x
ẋ+

∂f

∂y
ẏ + f(x, y)

(

∂ẋ

∂x
+
∂ẏ

∂y

)]

dx dy (3.7)that we prefer to write in the following form that 
an be readily used afterwards:
ṁij =

∫ ∫

S

[

∂

∂x
(ẋ f(x, y)) +

∂

∂y
(ẏ f(x, y))

]

dx dy (3.8)The above relationship requires the analyti
al form of the image point velo
ity (ẋ, ẏ) asfun
tion of probe velo
ity v, in order it 
an be expressed as fun
tion of this latter, and thus
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to obtain the intera
tion matrix Lmij
. Therefore, we �rstly need to model the analyti
alform of the ja
obian matrix Lx, de�ned by (3.2). It relates the image point velo
ity (ẋ, ẏ),of point P = (x, y), to the probe velo
ity v. We present below new theoreti
al foundationsto obtain Lx.

3.5 Image point velocity modelingWhen a 2D ultrasound probe sweeps a region of a soft tissue, the variation of the se
tionin the image strongly depends on the shape of that obje
t. Therefore, the image velo
ity ofpoints lying in the image se
tion also heavily relies on the obje
t shape. In 
ontrast, this isnot the 
ase when dealing with opti
al imaging systems. When, for example, an eye-in-hand
amera is observing an obje
t while performing motions, the image points displa
ementsand thus the image points velo
ity grossly are not a�e
ted by the obje
t shape. The alreadyexisting intera
tion matrix that relates the image points velo
ity to the 
amera one doesnot hold in our 
ase and, thus, 
an not be used.To make the illustration of this di�eren
e more fair and rigorous, 
onsider two di�erentroboti
 systems 
onsisting respe
tively of a 2D ultrasound probe 
arried by a robot arm, asin our 
ase, and of a perspe
tive 
amera also 
arried by another robot arm. Ea
h system isobserving and thus intera
ting with its 
orresponding obje
t. For the 2D ultrasound probe,the interse
tion of the transdu
er observation planar beam with the obje
t results in a 
ross-se
tion whi
h then is re�e
ted in the ultrasound image (see Fig. 3.5). In 
ase of the 
amera,however, the obje
t surfa
e en
ountering the image rays is proje
ted and thus re�e
ted inthe 
amera image (see Fig. 1.4 of Chapter 1). Let P be a point lying in the 
ross-se
tion ofthe obje
t observed by the 2D ultrasound probe, and let U be another point lying on these
ond obje
t surfa
e observed under the �eld of view of the 
amera. It is 
lear that whenthe 
amera moves, point U remains at the same position. This fa
t is 
orre
t provided of
ourse that the obje
t is motionless, and that U is kept within the 
amera �eld of view.We 
an 
onsequently 
onsider U as physically the same point. It is quite not the 
ase forpoint P. Indeed, when the 2D ultrasound probe is moved and thus positioned at another
ross-se
tion, the points in the image are those who belong to this new 
ross-se
tion whi
h,physi
ally and thus its 3D lo
ation, does not 
orrespond to the initial one (see Fig. 3.8).Consequently, the 3-D lo
ation of the new point P is di�erent from that previously 
apturedat the initial probe position, even if these two points represent a same image point. That is,the two points P(t0 + ∆t), obtained at time t0 + ∆t after the probe was moved, and P(t0),obtained at the initial time t0, are not physically the same (referring to this di�eren
e, be-tween the two points, by the term �not the same physical entities� 
ould also be employed).
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Figure 3.7: Representation of the probe velocity velocity vector on the ultrasound
imageNew te
hnique to how to model the image point velo
ity as fun
tion of the probe one need
onsequently to be developed. Note that the statement we provide above is valid when theprobe out-of-plane motions o

ur. If only the in-plane motions o

ur, it is 
lear that point
P 
an be physically the same. However, we made a statement for a general 
ase, where allthe probe motions are involved, and not for the spe
i�
 
ase of in-plane motions. Note alsothat the modeling we present in this 
hapter is valid whether only probe in-plane motions,only out-of-plane motions, or both motions are 
onsidered.This manner, dis
ussed above, that a

ording to, a 2D ultrasound probe intera
ts with itsenvironment yielded 
onsequently the modeling of this intera
tion quite 
hallenging. Thiswas made worse, be
ause of the strong dependen
e of the image points variations on theshape of the observed obje
t.Consider obje
t (organ) O with whi
h the probe is intera
ting. Let {Ro} be a 3-D 
artesianframe atta
hed to this obje
t (see Fig. 3.6). Let sRo be the rotation matrix representingthe orientation of {Ro} with respe
t to probe frame {Rs}, and sto = (tx, ty, tz) be thetranslation ve
tor de�ning the origin of {Ro} with respe
t to {Rs}. Consider now point Pwhi
h, we re
all, lies on 
ross-se
tion S (see Fig. 3.5 and Fig. 3.6). This point lies in the3D-spa
e, where its 
oordinates with respe
t to obje
t frame {Ro} are denoted by ve
torposition oP = (ox, oy, oz). The 
oordinates of P in probe frame {Rs} are denoted by ve
torposition sP, whi
h represents nothing but the image 
oordinates of P. It is thus given by
sP = (x, y, 0), (see Fig. 3.6 right). Its �rst two elements x and y represent respe
tivelythe abs
issa and the ordinate of this point in the ultrasound image. Note that its third
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element is equal to zero sin
e this point lies within the probe observation plane and thushas no elevation in Z dire
tion. The image 
oordinates of point P 
an thus be expressed asfun
tion to its 3-D 
oordinates in the obje
t frame as follows (see Appendix A.4):
sP = sRo

oP + sto (3.9)We re
all that our modeling �rst obje
tive is to write the image point velo
ity (ẋ, ẏ) asfun
tion of probe velo
ity v. This image velo
ity is en
losed in the ve
tor sṖ, that is equalto sṖ = (ẋ, ẏ, 0). That is the reason why we derive with respe
t to time t ve
tor sP givenby the relationship (3.9). This yields:
sṖ = sṘo

oP + sRo
oṖ + sṫo (3.10)where sṘo, sṫo, and oṖ represent the time variation of respe
tively rotation matrix sRo,translation ve
tor sto, and ve
tor position oP. The above relationship requires however atleast a brief interpretation before we should 
ontinue. The entity sṖ represents the velo
ityof point P in the image, while oṖ represents its velo
ity in the 3-D spa
e. Point P, as wasintrodu
ed, is a moving �particle� that slides through the observed obje
t a

ording to thedispla
ements of the probe planar beam (see Fig. 3.8). It is in fa
t not a 
on
rete point,but a virtual one. If the 2D ultrasound probe is stabilized on a 
ross-se
tion of the obje
t,point P 
an therefore be atta
hed to a 
orresponding physi
al point. Otherwise, it 
ouldbe related to obje
t's physi
al points only instantaneously. Virtual point P thus moveswith oṖ velo
ity with respe
t to the observed obje
t. As illustration, if a 
amera systemis 
onsidered then the term oṖ would be null referring, as we have dis
ussed above, to thefa
t that point P would be motionless in the 3-D spa
e, provided of 
ourse that the obje
tis motionless. It is quite di�erent in the 
ase of 2D ultrasound. In our 
ase, indeed, P ismoving in the 3D-spa
e and 
onsequently oṖ 6= 0. Note that, for notational 
onvenien
e,the term �0� 
orresponds to the 3 × 1 null matrix 03×1. It will be frequently en
ounteredin the rest of this dissertation.Till now, the probe velo
ity v has not yet appeared in the relationship (3.10). Sin
e the ob-je
tive is to write sṖ as fun
tion of v, we will now make this latter appear. Let us therefore
onsider the following fundamental kinemati
 relationship:
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Figure 3.8: Three points P1, P and P2 lying in the ultrasound cross-section. They
represent therefore the image points. They have been captured at a first time t0
and at another time t0 + ∆t after the probe had been moved from its initial location
(pose). We can note that each point is not physically the same as its corresponding
point lying in the other cross-section section (image), although they represent a same
image point.

{

sṘo = − [ω]×
sRo

sṫo = −v + [sto]× ω

(3.11)where [a]× denotes the skew symmetri
 matrix asso
iated to ve
tor a (see Appendix A.2).This above relationship relates time variation sṘo of rotation matrix sRo and time variation
sṫo of translation ve
tor sto as fun
tion of probe velo
ity v = (v,ω). Thus repla
ing thisrelationship in (3.10), we have:

sṖ = − [ω]×
sRo

oP − v + [sto]× ω + sRo
oṖ (3.12)Re
alling the ve
tor 
ross-produ
t properties (see Appendix A.2), we then have:
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sṖ = −v − [ω]×
sRo

oP − [ω]×
sto + sRo

oṖ (3.13)that 
an be written:
sṖ = −v − [ω]× (sRo

oP + sto) + sRo
oṖ (3.14)Re
alling the expression of sP given by (3.9), we �nally obtain:

sṖ = −v − [ω]×
sP + sRo

oṖ (3.15)that we prefer to write in the following appropriate form:
sṖ = −v + [sP]× ω + sRo

oṖ (3.16)whi
h represents the expression of image velo
ity sṖ = (ẋ, ẏ, 0) of point P as fun
tion ofprobe velo
ity v = (v,ω), its image 
oordinates sP = (x, y, 0), rotation matrix sRo, and itsvelo
ity oṖ in the 3-D spa
e.We want in fa
t to obtain the image point velo
ity as fun
tion of the velo
ity of only theprobe. It is however not the 
ase for the relationship (3.16), where the velo
ity oṖ is alsoinvolved. Entity oṖ therefore needs to be repla
ed. Point P results from the interse
tionof the probe observation plane with the obje
t. Its velo
ity oṖ represents the velo
ity ofits displa
ements in the 3D spa
e a

ording to the displa
ements of the ultrasound planarbeam. Point P always remains in the probe planar beam emitted by the probe even whenthis latter moves. Therefore oṖ is obviously related to the probe motions, and thus is in-evitably 
onstrained by probe velo
ity v. Indeed, this is shown in what follows where weestablish two 
onstraints that point P 
an ful�ll. Those two 
onstraints then are used torepla
e oṖ as fun
tion of v in the relationship (3.16). A �rst key solution to obtain them
onsists in dealing with the surfa
e of the observed obje
t.
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Figure 3.9: Contour points - (a) A point P that lies on the cross-section’s contour C
is depicted along with the observed object in the 3-D space. Both its two locations
when the 2D ultrasound probe had been positioned at two different poses are shown.
The normal vector ∇F to the object surface at P is also shown - (b) A 2D ultrasound
image provided by the probe transducer.Let OS be the set of points that lie on the obje
t surfa
e. Let also C be the 
ontourof 
ross-se
tion S (see Fig. 3.9). It is therefore nothing but the 
ontour in the image of S.Term P now denotes a point that lies only on 
ontour C (P ∈ C), and not in the interior of
S as it was so far 
onsidered. Therefore, P lies on the obje
t surfa
e.
3.5.1 First constraintThe obje
t surfa
e 
an be de�ned by a s
alar relationship of the form:

F (oP) = F (ox, oy, oz) = 0 (3.17)where F is a s
alar fun
tion that represents the shape of obje
t O. The above relationshipstates that any point that lies on the obje
t surfa
e, as the 
ase for P, satis�es F = 0. Were
all that oP = (ox, oy, oz) represent the 3-D 
oordinates of P in obje
t frame {Ro}.When the 2D ultrasound probe moves and thus sweeps the observed obje
t, point P alsomoves a

ordingly in the 3-D spa
e in su
h a way it always remains within the probe planar
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Figure 3.10: Point P sliding on the object surface when the probe plane is moving.
Its 3-D position oPt1 when the probe is at an initial position at time t1, and its 3-D
position oPt2 when the probe is at another position at time t2 are depicted. We can
see that oPt1 6=o Pt2 . The path that P had followed is also depicted. Such path lies
on the object surface.beam. This is due to the fa
t that P results from the interse
tion of that planar beam withthe obje
t. Virtual point P, as now de�ned, always lies on 
ontour C of the image, andtherefore it remains on obje
t surfa
e OS, even with the displa
ements of the 2D ultrasoundprobe (i. e., ∀ probe positions, P ∈ OS), provided of 
ourse that the probe plane does notget out of the obje
t. Consequently, P always satis�es the relation (3.17) throughout itsmotions. That is, when P has moved from an initial lo
ation oPt1 , 
aptured at time t1, toanother di�erent lo
ation oPt2 , 
aptured at time t2, (oPt1 6= oPt2), fun
tion F is still equalto zero, i. e., F (oPt1) = F (oPt2) = 0, due to the fa
t that P is still on the obje
t surfa
e(see Fig. 3.10). Consequently, sin
e F (oP) remains 
onstant, its time derivative is equal tozero. This 
an be formulated by:

Ḟ (ox, oy, oz) = 0 , ∀P ∈ OS (3.18)Assuming obje
t O is rigid, we 
an write:
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Ḟ ( ox, oy, oz) = ∂F
∂ox

oẋ+ ∂F
∂oy

oẏ + ∂F
∂oz

oż

= o∇F⊤ oṖ
(3.19)where o∇F = ( ∂F

∂ox ,
∂F
∂oy ,

∂F
∂oz ) is the gradient ve
tor of F . It is expressed in obje
t frame

{Ro}. It represents the normal ve
tor to the obje
t surfa
e at point P (see Fig. 3.9). Sin
e
Ḟ (oP) = 0, we �nally obtain:

o∇F⊤ oṖ = 0 (3.20)whi
h represents the �rst 
onstraint on velo
ity of point P in the 3-D spa
e. This 
onstraintstates that velo
ity ve
tor oṖ in the 3-D spa
e of point P is orthogonal to normal ve
tor ∇F.Consider plane π to whi
h ∇F is orthogonal. The relationship (3.20) states, in fa
t, thatve
tor oṖ lies on π (see Fig. 3.11(a)). There is however an in�nity of possible orientationswith whi
h a ve
tor 
an lie on a de�ned plane. This is, therefore, also the 
ase for ve
tor oṖ(see Fig. 3.11(b)). Yet, point P represents a �particle� whose velo
ity, namely oṖ, should
learly have an orientation in the 3-D spa
e and thus on π (sin
e oṖ lies on π). This isdes
ribed in the following, where we show that oṖ 
an satisfy a se
ond 
onstraint relatedto its orientation on π.
3.5.2 Second constraintEntity oṖ is a velo
ity that represents the di�erential displa
ements of point P, over a dtdi�erential time span, from a 3-D spa
e position oP(t), at time t, to position oP(t+ dt), attime t+dt (see Fig. 3.12). Note that in 
ontrast to P that is a virtual point, both oP(t+dt)and oP(t) are physical points. Indeed, oP represents the 3D 
oordinates of a point atta
hedto the surfa
e of the obje
t, while P represents a parti
le that is not atta
hed to the obje
tsurfa
e but instead slides on it; at time t point P 
oin
ides with oP(t), while at time t+dt itinstead 
oin
ides with point oP(t+dt). � Note also that we made above a statement for the
ase of general probe motions where both in-plane and out-of-plane motions are involved.In the 
ase only the in-plane motions are involved, point P 
an be atta
hed to the obje
tsurfa
e and, thus, 
an be 
onsidered as a physical point. � However, when the out-of-planemotions are involved, there is an in�nity of points on the 
ontour (obje
t surfa
e) withwhi
h P 
an 
oin
ide at time t + dt, sin
e P is a virtual one (i. e., there is an in�nity of
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Figure 3.11: Orthogonality between vectors o∇F and oṖ deduced from the first con-
straint, given by the relationship (3.20) - (a) Vector oṖ lies within plane π, represented
by its normal o∇F - (b) Vector oṖ can lie on π with an infinity of possible directions
- (c) Evolution of image point P due to an out-of-plane motion.possibilities for point a oP(t + dt)). This is represented with Fig. 3.11(
). We illustratethis in the following. Consider a soft tissue obje
t whose surfa
e is exa
tly �tted with agrid that en
loses it. � Su
h grid is made, for example, from a material that yields it wellvisualized in the 2D ultrasound image. � The grid 
onsists of lines that homogeneouslytravel along the obje
t surfa
e. The 
ross-se
tion 2D ultrasound image thus shows mainlydis
rete points in the image, points that result from the interse
tion of the grid with theultrasound beam. In fa
t, doing so, the problem is translated into a dis
rete one, in termsof the set of 
onsidered image points. When the probe moves, along its orthogonal axis,for example, the interse
tion points a

ordingly slide on the grid's lines. Let us therefore
onsider one point to make the illustration more fair. The velo
ity of the point in the imageis sṖ, while in the 3D spa
e it is oṖ. It is 
lear that the grid 
an �t the obje
t with anin�nity of 
on�gurations (as two examples of extreme 
on�gurations: the grid's lines mighttravel along a sagittal plane of the obje
t or along its 
oronal plane). Therefore, there is anin�nity of dire
tions with whi
h P might slide on the obje
t surfa
e, sin
e the point slides ona grid's line, whi
h 
an have an in�nity of 
on�gurations and thus of dire
tions; of 
ourse,the point must remain on the obje
t surfa
e (this is already satis�ed thanks to the �rst
onstraint formulated by the relationship (3.20)). Yet, both the in�nity of grids des
ribethe same soft tissue obje
t. Consequently, we 
an freely de�ne a dire
tion for the motions of
P in the 3D spa
e, and thus the dire
tion of oṖ (on the tangent plane, of 
ourse). De�ning adire
tion 
omes to set and perform a mat
hing between the two points oP(t) and oP(t+dt).Sin
e however, as des
ribed above, the se
ond point oP(t+ dt) 
an have an in�nity of lo
a-tions on the 
ontour, a 
orresponden
e between these two points 
ould be performed onlythrough a virtual mat
hing. In other words, a 
orresponden
e rule (proto
ol) between the
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Z
Z

o
P(t)

o
P(t + dt)

time = t + dt time = t

oṖ

S

Figure 3.12: Velocity oṖ (in red), in the 3-D space, of a contour point P.points need to be set, with whi
h the virtual matching has to 
omply. This is done in thefollowing, where between the in�nity of dire
tions that oṖ might have, we 
hoose one thatseems quite tangible. To summarize, this 
omes to 
hoose a point P(t+ dt) to lo
ate P(t)on the 
ontour C(t+ dt). Note that this way to pro
eed is valid sin
e the point velo
ity wemodel will be used to determine the variation of image moment, that thanks to its integrale�e
t requires only that the point have to be lo
ated on C(t+dt). In other words, 
hoosinganother lo
ation for P(t + dt) would modify the result of image point velo
ity, but wouldnot 
hange the result of image moment time variation.Velo
ity oṖ is in fa
t generated by the probe out-of-plane motions. When the probe planesweeps a surfa
e of a 
onsidered obje
t, point P moves a

ordingly in su
h a way it remainswithin the probe plane. Su
h sweep motions are mainly represented by the probe out-of-plane motions. If for example only the probe in-plane motions are performed, then velo
ity
oṖ would be null. The out-of-plane motions lead the probe plane gets out of the initialplane. Su
h motions are generated by the velo
ities vz, ωx, and ωy of the probe. Considerthe Z axis of the probe frame {Rs} (e. g., see Fig. 3.9 and Fig. 3.7 ). It represents in fa
tthe orthogonal ve
tor to the in-plane motions (vx, vy, ωz). Sin
e, as we highlighted above,ve
tor oṖ would be null if only the in-plane motions are involved, its tangible dire
tionseems therefore a

ording to the probe Z axis, whi
h is orthogonal to su
h motions. Letus make su
h statement more illustrated. Consider a 
ylindri
al obje
t whi
h is orthogonalto the probe plane. When the probe moves along its orthogonal axis Z, it is 
lear thatthe most tangible dire
tion that point P moves along is the Z dire
tion (i. e., the dire
tionof oṖ is Z). Consequently, we sele
t the Z axis as the dire
tion that, a

ording to, the
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π

Z

o∇F

oṖ
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(a)

π

N

Zs

US observation plane

oṖ

observed contour C(t)

Zs

∇F

(b)

Figure 3.13: Direction of oṖ within the plane π. Note that both oṖ and oṄ lie within
the plane π, which is not necessarily the case for the vector Z and the contour C.
This latter lies within the ultrasound image plane.point oP would move. � Note that by �a

ording to the dire
tion� we do not mean �alongthe dire
tion�, as it is more pre
isely des
ribed afterwards. � Su
h statement represents infa
t a proto
ol for the virtual mat
hing. Ea
h virtual point would move in the 3-D spa
ea

ording to the dire
tion of Z, i. e., the point P moves from the position oP(t) a

ordingto the dire
tion Z to rea
h the position oP(t + dt). The mat
hing obje
tive is that all thepoints lying in 
ontour C(t), at time t, mat
h their respe
tive 
orresponding points on theprobe plane at time t + dt, in su
h a way that the whole of mat
hed points 
an 
onstitute
ontour C(t + dt). In other words, the obje
tive is to model the 
on�guration 
hanges of
ontour C in the image as fun
tion of the probe velo
ity. We 
an re
all (Se
tion 3.1) thatthe visual features we use, namely the image moments, do not require mat
hing of the pointsin the image but only mat
hing of the 
ontour. This is therefore (although already roughlyhighlighted) of great interest in our 
ase, where only the 
ontour 
an be mat
hed but notthe points that are instead virtually mat
hed. Indeed, image moments do not require tospe
ify whi
h point 
orresponds to another one on the pre
edent image, but instead theyonly require that the new points (as oP(t + dt)) lie on the 
ontour C(t + dt). That is thereason why, as introdu
ed in this 
hapter, image moments represent relevant visual featureswhen dealing with the 2D ultrasound imaging modality.Hen
e, ve
tor oṖ lies a

ording to the dire
tion of Z. However, the latter does not lie inplane π as it is the 
ase for oṖ. Therefore, the proje
tion of Z on π represents the ve
tor
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whose dire
tion is that of oṖ [see Fig. 3.13(a)℄. � That is the reason why above we distin-guished between the term �a

ording to� and �in dire
tion of� when referring to the relationbetween the ve
tors Z and oṖ.Let therefore ve
tor N be normal to the plane formed by ∇F and Z [see Fig. 3.13(b)℄. Thisve
tor 
an be obtained from the following ve
tor 
ross-produ
t:
oN = oZs × o∇F (3.21)where oN is the expression of N in obje
t frame {Ro}. Sin
e oN is orthogonal to the planeformed by Z and ∇F wherein ve
tor oṖ is lying, the two ve
tors oN and oṖ are 
onsequently
learly orthogonal. This 
an be formulated by:

oN⊤ oṖ = 0 (3.22)whi
h represents the se
ond 
onstraint on the dire
tion of ve
tor velo
ity oṖ.
3.5.3 Virtual point velocityAfter having established two 
onstraints given by the relationships (3.20) and (3.22), imagepoint velo
ity (ẋ, ẏ) 
an �nally be related as fun
tion of probe velo
ity v. The previouslyobtained relationship of the image point velo
ity (3.16) is a system of three s
alar equa-tions with �ve s
alar unknowns sṖ = (ẋ, ẏ, 0) and oṖ = (oẋ, oẏ, oż). Thanks to the two
onstraints (3.20) and (3.22), whi
h represent two s
alar relationships, the whole numberof equations is raised to �ve s
alar relationships, thus equalizing the number of unknowns,and therefore yielding to a unique solution of this relationships system.Firstly, going ba
k to the relationship (3.16), it 
an be written:

sR⊤
o

sṖ = −sR⊤
o v + sR⊤

o [sP]× ω + oṖ (3.23)
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Multiplying it on
e by o∇F⊤ and then by oN⊤, we obtain after re
alling the 
onstraints(3.20) and (3.22):
{

o∇F⊤ sR⊤
o

sṖ = −o∇F⊤ sR⊤
o v + o∇F⊤ sR⊤

o [sP]× ω

oN⊤ sR⊤
o

sṖ = −oN⊤ sR⊤
o v + oN⊤ sR⊤

o [sP]× ω

(3.24)Expressions s∇F and sN of respe
tively ve
tors ∇F and N in probe frame {Rs} 
an beobtained by:
{

s∇F = sRo
o∇F

sN = sRo
oN = sZs × s∇F

(3.25)Repla
ing the above relationships in (3.24), we have:
{

s∇F⊤ sṖ = − s∇F⊤
v + s∇F⊤ [sP]× ω

sN⊤ sṖ = − sN⊤
v + sN⊤ [sP]× ω

(3.26)that represents a system of two s
alar equations with two s
alar unknowns ẋ and ẏ, whi
hyields to the unique following solution:
{

ẋ = −vx −Kx vz − y Kx ωx + xKx ωy + y ωz

ẏ = −vy −Ky vz − y Ky ωx + xKy ωy − xωz
(3.27)with:

{

Kx = fx fz /
(

f2
x + f2

y

)

Ky = fy fz /
(

f2
x + f2

y

) (3.28)su
h that s∇F = ( fx, fy, fz ).
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The �nal obtained relationship (3.27) relates the image velo
ity of points lying on the image
ontour as fun
tion of the probe velo
ity.The ja
obian matrix Lx is �nally derived from (3.27) as follows:
Lx =

[

−1 0 −Kx −y Kx xKx y

0 −1 −Ky −y Ky xKy −x

]

(3.29)We 
an note that the terms relating probe-in-plane motions (vx, vy, ωz) require only theimage 
oordinates (x, y) of the 
onsidered point lying on the image 
ontour, while the termsrelating out-of-plane motions (vz, ωx, ωy) require also the knowledge of normal ve
tor s∇Fexpressed in probe frame {Rs}. Note also that this ja
obian is not a�e
ted by the ampli-tude of s∇F, but only its dire
tion. This 
an be dedu
ed sin
e its the 
ase for the two
onstraints (3.20) and (3.22) used to derive Lx. Indeed, those two relationships employ onlythe dire
tion of s∇F to 
onstrain oṖ. An easy way to verify this, is that if the amplitudeof s∇F is varied, 
oe�
ients Kx and Ky remain un
hanged.This �rst result we obtained above is now exploited to develop the relationship of imagemoment time variation ṁij as fun
tion of probe velo
ity v, as was introdu
ed and des
ribedby (3.2). This is presented in the following se
tion.
3.6 Image moments time variation modelingThe modeling obje
tive is now to relate time variation ṁij of image moment mij as fun
tionof probe velo
ity v a

ording to the linear relationship (3.5). To do that, we go ba
k torelationship (3.8). However, that relationship is fun
tion of image velo
ity of the wholepoints lying in image se
tion S. It requires therefore the relationship of that image velo
ity.In the previous se
tion, the image velo
ity we modeled is nevertheless that of points lyingonly on the image 
ontour C, and not that of the whole se
tion points. Consequently, therelationship (3.8) 
an not be used as is. It requires instead to be formulated as fun
tionof the image velo
ity (ẋ, ẏ) of only the points lying on se
tion's 
ontour C. This 
an beperformed thanks to the Green's theorem [73℄.The Green's theorem states indeed a relationship between a line integral around a simple
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losed 
urve and a double integral over a planar region bounded by that 
urve. This istherefore equivalent to our 
ase, where the planar region 
orresponds to image se
tion Sand its bounding 
urve to 
ontour C. Considering two s
alar fun
tions Fx and Fy, theGreen's theorem is given by:
∮

C
Fx dx+

∮

C
Fy dy =

∫ ∫

S

(

∂Fy

∂x
− ∂Fx

∂y

)

dx dy (3.30)This formula 
an thus be used to express (3.8), whi
h is formulated as a double integralover se
tion S, in a form of a line integral around 
ontour C. Identifying the se
ond term of(3.8) to the se
ond term of (3.30), we dire
tly dedu
e Fx = −ẏ f(x, y) and Fy = ẋ f(x, y).Repla
ing this result in the �rst term of the formula (3.30), the image moment time varia-tion is then expressed as a line integral around C as follows:
ṁij = −

∮

C
[ f(x, y) ẏ ] dx+

∮

C
[ f(x, y) ẋ ] dy (3.31)whi
h is fun
tion of image velo
ity (ẋ, ẏ) of points lying only on 
ontour C. We 
an thereforedire
tly use the previous result of the image velo
ity of 
ontour points (3.27) in the aboverelationship. Before doing that, let us express image moment mij also as a line integralaround C.The Green's theorem given by the formula (3.30) in on
e again employed, but this time on(3.3). Identifying the se
ond term of the former relationship to the latter one, we 
an �ndthat (Fx = − 1

j+1 x
i yj+1, Fy = 0) is one solution. Repla
ing this result in the �rst term of(3.30), we 
an thus formulate:

mij =
−1

j + 1

∮

C
xi yj+1 dx (3.32)Similarly, we 
an also �nd that (Fx = 0, Fy = 1
i+1 x

i+1 yj) is another solution. Repla
ingalso this result in the �rst term of (3.30), we 
an furthermore formulate mij by:
mij =

1

i+ 1

∮

C
xi+1 yj dy (3.33)
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Finally, repla
ing the image velo
ity of 
ontour points (3.27) in (3.31), then identifyingimage moments a

ording to (3.32) and (3.33), we obtain the six elements of intera
tionmatrix Lmij
, presented by (3.6), that relates image moment time variation ṁij as fun
tionof probe velo
ity v. We obtain:



































mvx = −imi−1,j

mvy = −j mi,j−1

mvz = xmij − ymij

mωx = xmi,j+1 − ymi,j+1

mωy = −xmi+1,j + ymi+1,j

mωz = imi−1,j+1 − j mi+1,j−1

(3.34)

where:
{

xmij =
∮

C x
i yj Ky dx

ymij =
∮

C x
i yj Kx dy

(3.35)We thus have rea
hed the modeling obje
tive, 
onsisting in relating image moment timevariation ṁij as fun
tion of probe velo
ity v in a linear form (3.5) as presented in Se
-tion 3.4.Similarly to the image point velo
ity (3.27), we note that elements (mvx, mvy, mωz) of theintera
tion matrix related to the probe-in-plane motions (vx, vy, ωz) require only informa-tion from the observed image, namely image moments. As for elements (mvz, mωx, mωz)related to the out-of-plane motions (vz, ωx, ωy), however they furthermore ne
essitate theknowledge of normal ve
tor s∇F to the obje
t surfa
e at ea
h of the 
ontour points. Thenormal ve
tor is in fa
t en
losed in 
oe�
ients Kx and Ky, of (3.28), involved in the aboverelationship. Note also that the intera
tion matrix is insensitive to s∇F's amplitude, sin
eit is as su
h for ja
obian matrix Lx used to derive it, as shown earlier.
3.7 Interpretation for simple shapesIn this se
tion, the above developed theoreti
al foundations are applied in order to bevalidated on some simple shapes, like spheres and 
ylinders.
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Figure 3.14: A 2D ultrasound probe interacting with a spherical object. When it
performs a differential displacements vz along its z axis, the initial value of the image
section radius r(t) changes to the value r(t + dt), (depicted in red).

3.7.1 Spherical objectsConsider the 
ase where a 2D ultrasound probe intera
ts with a spheri
al obje
t. Let R bethe radius of this sphere. Obje
t frame {Ro} is atta
hed to the sphere 
enter. Ve
tor position
sto thus de�nes in this 
ase the 
oordinates of the sphere 
enter in the probe frame, androtation matrix sRo des
ribes the orientation of {Ro} with respe
t to probe frame {Rs} (seeFig. 3.14). We �rst want to derive the 
orresponding analyti
al form of intera
tion matrix
Lmij

by applying the general relationship (3.34) we obtained above. Before, we need toderive also the analyti
al form of 
oe�
ients Kx and Ky involved in the relationship (3.27)of the image point velo
ity as fun
tion of probe velo
ity v, sin
e these two 
oe�
ients arerequired in the intera
tion matrix formula (3.34). So, we use the general relationship of Kxand Ky given by (3.28), by applying it to this 
ase.
Image point velocityIn this 
ase, the relationship (3.17) is satis�ed by any point P lying on the sphere surfa
e.It is therefore given by:

F (ox,o y,o z) = (ox/R)2 + (oy/R)2 + (oz/R)2 − 1 = 0 (3.36)where we re
all that oP = (ox, oy, oz) is a ve
tor position de�ning the 3-D 
oordinates of
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point P in obje
t (sphere) frame {Ro}. It 
an be expressed as fun
tion of image 
oordinates
sP = (x, y, 0) of P as given by (3.9):

oP = sR⊤
o (sP − sto) (3.37)Normal ve
tor o∇F to the sphere surfa
e at P is the gradient ve
tor of s
alar fun
tion F ,and thus is given by o∇F = (∂F

∂x ,
∂F
∂y ,

∂F
∂z ). We obviously obtain o∇F = 2

R2

o
P. Repla
ing

oP with the above relationship, yields:
o∇F =

2

R2
sR⊤

o (sP − sto) (3.38)that we express in {Rs} by multiplying with rotation matrix sRo:
s∇F =

2

R2
sRo

sR⊤
o (sP − sto) (3.39)Sin
e sRo

sR⊤
o = I, we obtain after re
alling that sP = (x, y, 0) and that sto = (tx, ty, tz)(Se
tion 3.5, pp. 63):

s∇F = 2
R2 (sP − sto)

= 2
R2 (x− tx, y − ty, − tz)

⊤ (3.40)Repla
ing this result in the relationship (3.28) of the 
oe�
ients Kx and Ky, yields:
{

Kx = −tz (x− tx)/
(

(x− tx)2 + (y − ty)
2
)

Ky = −tz (y − ty)/
(

(x− tx)2 + (y − ty)
2
) (3.41)The above relationship 
an in fa
t be expressed in a more simple and appropriate form.We �rst formulate (3.36) as follows:

F (ox, oy, oz) = oP⊤ oP −R2 = 0 (3.42)
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Substituting oP a

ording to (3.37) and re
alling that sRo
sR⊤

o = I, the equation (3.42)be
omes:
(sP − sto)

⊤ (sP − sto) −R2 = 0 (3.43)then repla
ing sP and sto with their respe
tive expressions yields:
(x− tx)2 + (y − ty)

2 + t2z −R2 = 0 (3.44)The above relationship states that the interse
tion of a planar beam with a sphere is a disk(or a 
ir
le if the spheri
al obje
t is hollow) of radius r =
√

R2 − t2z and of 
enter 
oordi-nates (tx, ty) in the image.Let a be the area of se
tion S in the image. In this 
ase it represents the area of the diskregion (or of the region surrounded by the 
ir
le if the obje
t is hollow). It is therefore givenby a = π r2 = π (R2 − t2z). Substituting (x − tx)2 + (y − ty)
2 a

ording to (3.44) in (3.41)and taking into a

ount the expression of the area a, we �nally obtain the expressions of

Kx and Ky in the 
ase of a spheri
al obje
t as follows:
{

Kx = −π tz (x− tx)/a

Ky = −π tz (y − ty)/a
(3.45)We 
an note that the image point velo
ity, from its parameters Kx and Ky obtained above,does not require rotation matrix sRo between the obje
t and the probe frames. This 
anbe explained by the fa
t that a sphere does not possess any orientation in the 3-D spa
e.

Interaction MatrixThe three elements (mvz
, mωx

, mωy
), of the intera
tion matrix Lmij , that relate imagemoment time variation ṁij as fun
tion of the probe out-of-plane motions (vz, ωx, ωy) areformulated by (3.34) for a general 
ase. We want to obtain their spe
i�
 and simple formin the 
ase of a spheri
al obje
t. We use the simple form of the 
oe�
ients Kx and Kygiven by (3.45), derived for the sphere 
ase. These two 
oe�
ients are involved in thosethree elements of the intera
tion matrix. The three other elements (mvx

, mvy
, mωz

), of the
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intera
tion matrix, that relate the in-plane motions are already given by (3.34) in a simpleand appropriate form, sin
e they are fun
tion of only the image moments. Repla
ing (3.45)in (3.35), we have:
{

xmij = πtz [(j + 1)mij − j ty mi,j−1] /a
ymij = πtz [−(i+ 1)mij + i txmi−1,j ] /a

(3.46)and then obtain the term involved in the three elements (mvz
, mωx

, mωy
) of Lmij

, as follows:
xmij − ymij =

π tz
a

[(i+ j + 2)mij − itxmi−1,j − jty mi,j−1] (3.47)As introdu
ed, image moments 
an des
ribe the 
on�guration of a se
tion in the image.Sin
e this 
ase 
on
erns an intera
tion with a spheri
al obje
t, the observed se
tion in theimage is a disk or 
ir
le. Consequently, the 
on�guration in the image of su
h se
tion
an be des
ribed just with three parameters that obviously are: the area a and the image
oordinates (xg, yg) of the gravity 
enter of the se
tion. These three parameters 
an beexpressed in terms of image moments as follows (e. g., [40℄):










a = m00

xg = m10/m00

yg = m01/m00

(3.48)The intera
tion matri
es that relate the time variation of a, xg and yg 
an be obtained byapplying the relationship of image moment time variation ṁij given by (3.34), and thenusing the result (3.47) we obtained for the 
ase of a spheri
al obje
t. We denote, even in ageneral 
ase, these three matri
es by La, Lxg
, and Lyg

referring respe
tively to a, xg, and
yg. They are obtained as follows:

La = [ 0 0 avz aωx aωy 0 ]

Lxg
= [ −1 0 xgvz

xgωx
xgωy

yg ]

Lyg
= [ 0 −1 ygvz

ygωx
ygωy

−xg ]

(3.49)with:
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





























































avz = 2π tz
aωx = π tz ( 3 yg − ty)

aωy = −π tz ( 3xg − tx)

xgvz
= π tz/a (xg − tx)

xgωx
= π tz/a [ 4n11 − yg (tx + 3xg) ]

xgωy
= π tz/a [ −4n20 + xg (tx + 3xg) ]

ygvz
= π tz/a ( yg − ty)

ygωx
= π tz/a [ 4n02 − yg (ty + 3 yg) ]

ygωy
= π tz/a [ −4n11 + xg (ty + 3 yg) ]

(3.50)

where:
nij = mij/a (3.51)The elements of these intera
tion matri
es that are related to the out-of-plane motions 
anbe expressed in more simple form. We 
an indeed �rst noti
e that sin
e (tx, ty) representthe 
enter of the disk (or 
ir
le), as 
on
luded from the relationship (3.44), they are thereforenothing but the gravity 
enter (xg, yg) of the se
tion in the image, i. e., (tx = xg, ty = yg).We show in Appendix B.2 that the entities n20, n11, and n02, involved in (3.50), also 
anbe expressed in a more simple form.Finally, we obtain a more simple form of La, Lxg

and Lyg
in 
ase of a spheri
al obje
t, by re-pla
ing (B.30), (B.25), and (B.20) in (3.50), and re
alling that (tx = xg, ty = yg), as follows:

La = 2π tz [ 0 0 1 yg −xg 0 ]

Lxg
= [ −1 0 0 0 −tz yg ]

Lyg
= [ 0 −1 0 tz 0 −xg ]

(3.52)These matri
es depend only of the gravity 
enter image 
oordinates (xg, yg), and elevation
tz of the sphere 
enter with respe
t to the probe frame.
VerificationIn 
ase the probe performs a motion along its axis Z, we 
an 
al
ulate time variation ȧof area a with another method di�erent from the general one of this thesis. This allows
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us to 
he
k the identi
alness of the two methods respe
tive results, and thus to verify the
orre
tness and the validity of the developed theoreti
al foundations of this thesis whenapplied to this 
ase. The probe velo
ity is, in this 
ase, v = (0, 0 , vz, 0, 0, 0), sin
e onlya translational motion along Z is performed. The element of the intera
tion matrix (3.52)involved in su
h motions is avz
, obtained equal to 2π tz. Assuming su
h probe motions, this
oe�
ient is 
al
ulated below with another method. Note however that the result that weobtain would be still valid for the 
ase where all the probe motions are applied.Let h be the elevation of the probe frame from the sphere origin (see Fig. 3.14). It istherefore nothing but h = −tz, where we re
all that sto = (tx, ty, tz) is the ve
tor positionde�ning the 
oordinates of the origin of frame {Ro} in probe frame {Rs}. Sin
e ve
tor Z of

{Rs} is orthogonal to the probe observation plane, sphere radius R thus 
an be expressedas fun
tion of elevation h and radius r of the se
tion in the image (see again Fig. 3.14) asfollows:
R2 = r2 + h2 (3.53)that we derivate with respe
t to time t, as follows:
RṘ = r ṙ + h ḣ (3.54)The sphere radius is 
onstant and thus its time derivative Ṙ is null, i. e., Ṙ = 0. Sin
e hrepresents the elevation it is 
lear that ḣ = vz. We thus have from (3.54) after re
alling that

h = −tz:
rṙ = −h vz = tz vz (3.55)Sin
e the image 
ross-se
tion is a disk (or a 
ir
le), area a of the region it 
overs is given by

a = π r2. Time derivating a yields:
ȧ = 2π r ṙ (3.56)Finally repla
ing r ṙ with its expression (3.55), we obtain
ȧ = 2π tz vz (3.57)and thus:
avz

= 2π tz (3.58)This result is identi
al to that previously obtained (3.52) with the general modeling ap-proa
h. This 
onsequently theoreti
ally validates the general modeling te
hnique of this
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thesis, when applied to the 
ase of spheri
al obje
t, 
on
erning the element involved in theprobe motion along its Z axis.
3.7.2 Cylindrical objectsConsider now the 
ase where a 2D ultrasound probe intera
ts with a 
ylindri
al obje
t(see Fig. 3.15). When the probe performs translational motions along its Z axis, that is
v = (0, 0 , vz, 0, 0, 0), image se
tion area a 
learly does not vary. This means that,even in a general 
ase, the 
oe�
ient avz

that relates time variation ȧ of a to probe velo
ity(ȧ = avz
vz) is null (avz

= 0). We want to verify that, by using the general result (3.34) weobtained, and applying it on this 
ase, we 
an indeed retrieve that expe
ted result, that is
avz

= 0. This is shown in what follows.The 
oe�
ient avz

orresponds to the element mvz

of the formula (3.34), for i = j = 0 sin
e
a = m00. It is thus expressed as follows:

avz
= mvz

= xm00 − ym00 (3.59)using (3.35) yields:
avz

=

∮

C
Ky dx−

∮

C
Kx dy (3.60)then substituting Kx and Ky with their respe
tive expressions given by (3.28), we have:

avz
=

∮

C

fy fz

f2
x + f2

y

dx−
∮

C

fx fz

f2
x + f2

y

dy (3.61)where we re
all that s∇F = (fx, fy, fz) represents the normal to the obje
t surfa
e (the
ylindri
al surfa
e in this 
ase) at point P.The previous relationship (3.17) represents a 
onstraint satis�ed by any point lying onthe surfa
e of a general obje
t. When the obje
t is 
ylinder-shaped, as in this 
ase, it isformulated as follows:
F (ox,o y, oz) = (ox/a1)

2 + (oy/a2)
2 − 1 = 0 (3.62)
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Figure 3.15: A 2D US probe interacting with a cylinder-shaped object. The probe
performed an out-of-plane motion with velocity vz during ∆t time span.where a1 and a2 represent the half length values of the 
ylindri
al obje
t main axes (seeFig. 3.15). We re
all that ve
tor position oP = (ox, oy, oz) represents the 3-D 
oordinatesof point P in the obje
t frame, and sP = (x, y, 0) its image 
oordinates. From the aboverelationship, we 
an set the following 
hange of 
oordinates:

{

ox = a1Cθ
oy = a2 Sθ

; 0 6 θ < 2π (3.63)with Cθ = cos(θ) and Sθ = sin(θ), su
h that θ represents the angle in the image.Normal ve
tor o∇F expressed in {Ro} 
an be derived from fun
tion F , given by (3.62), as
o∇F = ( ∂F

∂ox ,
∂F
∂oy ,

∂F
∂oz , ). We thus have:

o∇F =







2 ox/a2
1

2 oy/a2
2

0






(3.64)substituting ox and oy with their respe
tive expressions (3.63) as fun
tion of angle θ, yields:

o∇F = 2







Cθ/a1

Sθ/a2

0






(3.65)that 
an be expressed in probe frame {Rs} by multiplying with rotation matrix sRo:
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s∇F = 2 sRo







Cθ/a1

Sθ/a2

0






(3.66)Coe�
ient avz

, whi
h is formulated in (3.61) as a line integral around image 
ontour C, 
anbe expressed as an integral over angle θ as follows:
avz

=

∫ 2π

0

fz

f2
x + f2

y

(fy
dx

dθ
− fx

dy

dθ
) dθ (3.67)From (3.63) and using the relationship (3.9), image 
oordinates sP = (x, y, 0) 
an be ex-pressed as fun
tion of angle θ. After denoting rkl the elements of the rotation matrix su
hthat rkl = sRo(k, l), the derivative of x and y with respe
t to θ are:



















dx/dθ = − a1(r11 − r13/r33 r31)Sθ

+ a2(r12 − r13/r33 r32)Cθ

dy/dθ = − a1(r21 − r23/r33 r31)Sθ

+ a2(r22 − r23/r33 r32)Cθ

(3.68)repla
ing this in (3.67), we have:
avz

=

∫ 2π

0

(ǫ1Cθ
2 + ǫ2Cθ Sθ + ǫ3 Sθ

2)(ǫ4Cθ + ǫ5 Sθ)

ǫ6Cθ2 + ǫ7Cθ Sθ + ǫ8 Sθ2
dθ (3.69)where ǫk|k=1..8

are 3D parameters su
h that ǫk = ǫk(
sRo, a1, a2). We then obtain:

avz
=

[

σ0
∑

ri
ψi(ri) ln(tan(θ/2) − ri) +

∑

σk
σk tan(θ/2)/[tan(θ/2)2 + 1]

]2 π

0

(3.70)where σk are also 3-D parameters, su
h that σk = σk(
sRo, a1, a2). The entity ψi is a s
alarfun
tion of the s
alar ri, where ri|i represent the roots of the polynomial ǫ6 r4 − 2 ǫ7 r

3 +

2 (−ǫ6 + 2ǫ8)r
2 + 2 ǫ7 r + ǫ6. Consequently, ri is fun
tion of only a1, a2 and sRo, i. e.,

ri = ri(
sRo, a1, a2). Therefore, in 
ontrast to the entities ψi, ri, and σk, only tan(θ) isfun
tion of the angle θ.Finally, sin
e tan(0) = tan(π) = 0, we easily obtain from (3.70) that avz

= 0. This resultwe obtained by applying the general relationship (3.34) on the 
ase of a 
ylindri
al obje
texa
tly 
orresponds to that expe
ted above.
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Figure 3.16: A 2D ultrasound probe interacting with a 3D straight line-shaped wire
(left). The observed point P in the image is sketched on the right. It velocity oṖ in
the 3-D space is shown in red. Note that its orientation is arbitrarily set. It could
either as depicted or in the inverse direction, depending on the probe motions.

3.7.3 Interaction with a 3D straight lineThe modeling te
hnique we proposed in this thesis 
an also be applied to the 
ase where a2D ultrasound probe intera
ts with 3D straight line-shaped wire (see Fig. 3.16), althoughsu
h a geometri
al primitive does not 
orrespond to a 
losed volume. The interse
tion of theprobe plane with the wire results in a point P in the image, instead of a se
tion in the image.Sin
e we deal with only one image point the 
on
ept of image moments seems not relevant tothis 
ase. We 
onsider therefore only the modeling of the image velo
ity sṖ = (ẋ, ẏ, 0) of P.Let 3-D ve
tor u represent the orientation of that 3-D straight line, denoted D. We takeba
k the relationship (3.16) in order to model the image point velo
ity. Its is 
lear thatpoint P slides on D. Consequently, ve
tor 3-D velo
ity oṖ of P and ve
tor u of D are
ollinear. It is well known that the ve
tor 
ross-produ
t of two 
ollinear ve
tors is null, andthus we have:
ou × oṖ = 0 (3.71)where ou is the expression of u in the obje
t frame. The above 
onstraint 
an be expressedin probe frame {Rs} instead of {Ro} by multiplying with sRo. We thus have:
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( sRo
ou ) × ( sRo

oṖ ) = 0

⇔ su × ( sRo
oṖ ) = 0

⇔ [su]×
sRo

oṖ = 0

(3.72)Going ba
k to the relationship (3.16) and multiplying it by [su]×, we have:
[su]×

sṖ = − [su]× v + [su]× [sP]× ω + [su]×
sRo

oṖ (3.73)taking then into a

ount the 
onstraint (3.72), yields:
[su]×

sṖ = − [su]× v + [su]× [sP]× ω (3.74)sin
e [su]× is a skew symmetri
 matrix, its rank is equal to two (rank([su]×) = 2), whi
hrepresents the number of independent equations at the left of the above system. Thereforethe number of independent equations is equal to the number of unknowns sṖ = (ẋ, ẏ, 0),whi
h �nally leads to the unique following solution (ẋ, ẏ):
(

ẋ

ẏ

)

=

[

−1 0 ux

uz

0 −1 uy

uz

]

v +

[

ux

uz
y − ux

uz
x y

uy

uz
y − uy

uz
x − x

]

ω (3.75)This result we obtain is identi
al to that given in [44℄.
3.8 ConclusionIn this 
hapter we have modeled the exa
t analyti
al form (3.34) of the intera
tion matrixthat relates the image moments time variation to the velo
ity of a 2D ultrasound probe
arried by a general 6 DOFs robot arm. To do that, we have developed new theoreti
alfoundations that analyti
ally states the image points velo
ity as fun
tion of the probe ve-lo
ity, as given by (3.27). We re
all that the image velo
ity was modeled for the pointslying only on the image 
ontour, that we denoted C, and not for all the points lying onthe whole image se
tion, that we denoted S. Thanks to the Green's theorem, the image
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moments time variation was formulated as fun
tion of only the image 
ontour points, whosedeveloped image velo
ity relationship was used to analyti
al derive that of image momentstime variation. The obtained relationships represent the intera
tion matrix Lmij
. We notedthat three elements of the intera
tion matrix that relate the probe-in-plane motions requireinformation only from the observed image, that are image moments. In 
ontrast, the remain-ing three elements that relate the probe-out-of-plane motions also require the knowledge ofnormal ve
tor ∇F to the obje
t surfa
e at ea
h of the 
ontour points. Finally, the modelingmethod we proposed is valid for general shaped obje
ts.We tested this general result in the 
ase where a 2D ultrasound probe is intera
ting with aspheri
al obje
t, a 
ylindri
al obje
t, or a 3-D straight line-shaped wire. We have obtained asimpli�ed form (3.52) of the intera
tion matrix for the 
ase of the spheri
al obje
t. Moreover,we have theoreti
ally validated the 
orre
tness of an element that relate the area timevariation to probe velo
ity. This was a
hieved by 
al
ulating that element with anothermodeling approa
h, suitable for that 
ase. Applying the general method on 
ylindri
alobje
ts, we have found that an element, of the intera
tion matrix, that relates the imagearea time variation to the probe velo
ity, is null. This theoreti
al result also validates themodeling approa
h of this thesis.





Chapter 4

Normal vector on-line estimationIn the previous 
hapter we have modeled the analyti
al form of the intera
tion matrix (3.34)that relates the image moments time variation to the probe velo
ity. It was noted that thenormal ve
tor to the surfa
e of the observed obje
t, at ea
h point lying on the 
ontour ofthe image se
tion, appears in this matrix. This normal ve
tor 
ould be derived if a pre-operative 3-D model of the obje
t is available. That would also ne
essitate a di�
ult step tolo
alize the obje
t frame with respe
t to the sensor frame (the probe frame in this 
ase). Inthis 
hapter, we propose e�
ient methods to estimate on-line the normal ve
tor, and thusbypass and over
ome those limitations imposed by any pre-operative model. These meth-ods 
an valuably endow the roboti
 system with the 
apability of automati
ally intera
tingwith obje
ts without any prior knowledge of their shape, 3-D parameters, nor their 3-Dlo
ation (pose). They are dis
riminated a

ording to the geometri
al primitives 
onsideredto estimate the normal ve
tor. We propose to separately use straight line, 
urved line, andquadri
 surfa
e primitives.Let point P lie in the 2D ultrasound image. More parti
ularly, let this point belong to
ontour C of image se
tion S. Consequently, this point lies on the surfa
e of observed obje
t
O. The obje
tive is in fa
t to obtain the ve
tor normal to the obje
t surfa
e at point P (seeFig. 4.1). We already denoted this ve
tor by ∇F in the previous 
hapter.
4.1 On-line estimation methods based on linesLet ve
tor di be tangent to the obje
t surfa
e at 
onsidered point P, su
h that it belongsto the probe beam (image), as 
an be seen on Fig. 4.1. Let ve
tor dt be also tangent to theobje
t surfa
e at P but, in 
ontrast to di, it does not lie in the probe observation plane.Therefore, performing the ve
tor 
ross-produ
t on these two ve
tors 
learly gives ve
tor ∇F
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Figure 4.1: Normal vector to the object surface, along with two tangent vectors di

and dt, at point P.(see Fig. 4.1). This is formulated as follows:
s∇F = sdi × sdt (4.1)where s∇F, sdi, and sdt are the expressions in probe frame {Rs} of ve
tors ∇F, di, and dt,respe
tively. Note that we are interested only in the dire
tion of s∇F, not its amplitude.Indeed, the intera
tion matrix is not a�e
ted by the amplitude of s∇F but only its dire
tion,as already shown in Chapter 3. This said, we 
an set s∇F to a unitary ve
tor.Sin
e ve
tor sdi lies in the probe observation plane and is, moreover, expressed in the probeframe, it 
an be extra
ted from the observed 2D ultrasound image. It is however not the 
asefor ve
tor sdt. Indeed, this ve
tor does not lie in the probe observation plane, and therefore
an not be extra
ted from solely the observed image. We need therefore to estimate sdt inorder to obtain s∇F. Su
h an estimation seems e�
ient sin
e we do not have to estimatein whole the normal ve
tor but only a part of it, whi
h is ve
tor sdt, sin
e its se
ond part,ve
tor sdi, is already available. In this se
tion, we present two methods to estimate sdt.The prin
iple 
onsists in making use of the su

essive a
quired 2D ultrasound images toestimate 3-D lines that are tangent to the surfa
e of the observed obje
t. The estimationis performed for ea
h point of the image 
ontour. It is subsequently used to extra
t anestimate of ve
tor sdt, tangent at ea
h of those points. As presented in what follows, the�rst method is based on the estimation of 3-D straight lines, while the se
ond method, even
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Figure 4.2: Straight line tangent to the object surface at point P.if it has the same 
on
ept as the �rst one, is based on estimating 3-D 
urved lines. Notethat the methods are des
ribed for estimating sdt at one point P, but the same prin
iple isapplied for all the other image 
ontour points; sin
e the intera
tion matrix requires s∇F atea
h of the 
ontour points.
4.1.1 Straight line-based estimation methodLet 3-D straight line D be tangent to the obje
t surfa
e at point P (see Fig. 4.2). It isassumed not lying within the probe observation plane. Sin
e both D and dt are tangent tothe obje
t surfa
e and do not lie within the image plane, we 
an set that the dire
tion of
D in nothing but ve
tor dt we want to estimate, as shown in Fig. 4.2. We thus propose inthis se
tion to estimate D, from whi
h we then infer sdt.Consider that the probe is performing out-of-plane motions while at same time a
quiringsu

essive 2D ultrasound images of the 
onsidered obje
t. From ea
h of the a
quired images,
ontour C is extra
ted. Su
h 
ontour is subsampled in a set of L points (P1, · · · ,PL) lyingon it. We denote su
h set by Cp. � In pra
ti
e, we use around L =400 image points to
hara
terize the 
ontour. � Within the image, these points are arranged su
h that the �rstpoint P1 interse
ts the X axis of image frame 
entered on se
tion S. The remaining pointsare su

essively lo
ated by traveling around C in 
ounter
lo
kwise dire
tion, as depi
ted inFig. 4.3. We 
an 
onsider Cp as a ve
tor whose elements are those 
ontour points. Point
P 
orresponds to element Pi of Cp. Let point P(t) lie on image 
ontour C(t) at time t,
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Figure 4.3: Arrangement of image contour points in a set Cp = [P1,P2, · · · ,PL].
The first point P1 intersects the X axis of the frame centered on image section S.
The image 2D cartesian frame is indicated with its (X, Y ) axes (bottom left).and P(t+ dt) lie on subsequent 
ontour C(t+ dt), extra
ted after the probe had performeda di�erential out-of-plane motion during a duration dt (see Fig. 4.4). Elements P(t) and
P(t + dt) have the same index in their respe
tive sets Cp(t) and CP(t + dt) (i. e., P(t)
orresponds to a point Pi of set Cp(t), and P(t + dt) to a point Pi of Cp(t + dt), wheresubs
ript i is their 
ommon index). Note that we assume that number L of points extra
tedfrom ea
h of the su

essive images is 
onstant all along the estimation. A straight line thatpasses through these two points P(t) and P(t + dt) is therefore tangent to the surfa
e ofthe observed obje
t. Su
h straight line thus 
orresponds to D that we want to estimate(see Fig. 4.4). Theoreti
ally, two points are enough to estimate D. This however is notthe 
ase in pra
ti
e due to di�erent fa
tors. Indeed, due to measurement perturbations,as instan
e, the re
orded points 
ould be either too 
lose to ea
h other or, inversely, mis-aligned. Either 
on�guration would lead to a wrong estimation of D. That is the reasonwhy we use in the estimation more points; respe
tively extra
ted from the su

essive images.Considering su

essively extra
ted points from the su

eeding a
quired images, where thesepoints have a same index in their respe
tive set CP, the estimation prin
iple then 
onsistsin �tting them with straight line D. The latest extra
ted point 
orresponds to P, at whi
h
D should be tangent to the obje
t surfa
e. To do so, the estimation is also performed byassigning di�erent weights to the extra
ted points, su
h that the 
urrent (new) point P is
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X[t+dt]

X[t]
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Figure 4.4: Image contour 3D evolution with a corresponding tangent straight line
D. In the 3-D space, the contour lies on the surface of the observed object. Contour
C(t) is extracted from the ultrasound image at time t, while C(t + dt) is extracted
at time t + dt after the probe had performed an out-of-plane motion. Contour’s first
point P1 at time t and that at time t + dt are indicated. They correspond to the
intersection of X axis of the centered image frame with the contour, respectively at
time t and at time t + dt. The X axis of time t is denoted X[t], while that of time
t + dt is denoted X[t+dt].assigned with the highest weight; the values of the di�erent assigned weights are arrangedin a de
reasing fashion. In fa
t, ea
h new extra
ted point, along with its assigned highestweight, updates the estimation of D in su
h a way this latter adjusts its orientation tobe
ome tangent to the obje
t surfa
e at P (see Fig. 4.5). In other words, 
onsider the twosu

essive points P[k−1] and P[k] respe
tively a
quired at the pre
edent sample time k − 1and the 
urrent one k (note that k refers to time t in the dis
rete domain). At time k−1, Dis 
onsidered already estimated to be tangent to the surfa
e at P[k−1]. The obje
tive is tore-estimate D in su
h a way it be
omes tangent at P[k]. The latter, along with its assignedhighest weight, leads D adjusting its orientation to be
ome tangent to the surfa
e at P[k].Let {Ri} be a 3-D 
artesian frame in whi
h D is estimated (see Fig. 4.2). It 
orrespondsto initial probe frame {Rs(t0)}. Let point h lie on D (see Fig. 4.2). Its expression in {Ri}is ih. A point P that lies on D satis�es the following relationship:

(

ih − iP
)

× idt = 0 (4.2)
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where iP = (ix, iy, iz) and idt = (dx, dy, dz) are the expressions of respe
tively P and dtin frame {Ri}. 3-D 
oordinates ve
tor iP is obtained from image 
oordinates sP = (x, y, 0)using the robot odometry, a

ording to the 
lassi
al relationship (A.9) by iP = sR⊤
i ( sP −

sti). Rotation matrix sRi and translation ve
tor sti are obtained from the robot odometry.They de�ne respe
tively the orientation and the origin of {Ri} with respe
t to {Rs}. Theabove relationship 
an be formulated in its minimal form as follows:
{

ix = η1
iz + η0

iy = τ1
iz + τ0

(4.3)where η1 = dx/dz and τ1 = dy/dz are 3-D parameters representing the orientation of D.The elements η0 and τ0 are also 3D parameters, but are moreover related to the lo
ation of
D sin
e they are fun
tion of both idt and iP0. Ve
tor idt 
an be expressed as:

idt = dz







dx/dz

dy/dz

1






= dz







η1

τ1
1






(4.4)The dire
tion of a ve
tor 
ross-produ
t, as that of the relationship (4.1), is a�e
ted solelyby the dire
tion of the ve
tors and not their amplitude. Therefore, we only need to estimatethe dire
tion of dt. This 
omes to estimate parameters η1 and τ1 sin
e they represent itsorientation, as 
an be seen from the above relationship. The model used for the estima-tion is the relationship (4.3), where 
oordinates (ix, iy, iz) are the input information while

Θ = (η1, τ1, η0, τ0) is the ve
tor to estimate.The system (4.3) 
an be formulated as follows:
Y = Φ⊤Θ (4.5)where

Y = (ix, iy) and Φ⊤ =

(

iz 0 1 0

0 iz 0 1

)

(4.6)We propose to use a stabilized re
ursive least-squares algorithm [43℄. The prin
iple 
onsistsin �nding an estimate Θ̂ of ve
tor Θ that minimizes the following quadri
 sum J(Θ̂[k]) ofthe residual errors:
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Probe observation plane

Probe motion

Observed spherical object

D at time t1 < t2

Z

Z

Z

P

P

P

D at time t2 < t3

D at time t3

(b)

Figure 4.5: Evolution of estimated 3-D straight line for the case a 2D ultrasound
probe is interacting with a spherical object. (a) Upper sight showing point P lying
on the sphere surface, both being observed by the probe planar beam - (b) Transverse
sight: the probe is performing an out-of-plane motion by moving along its Z axis,
while at the same time straight line D continually adjusts its orientation to remain
tangent to the sphere surface at P.
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J(Θ̂[k]) =
k
∑

i=t0

β(i−t0) (Y[i] − Φ⊤
[i] Θ̂[i])

⊤ (Y[i] − Φ⊤
[i] Θ̂[i]) (4.7)where Θ̂[i] is the estimate and (Y[i], Φ[i]) are the measures at sample time i. The s
alar

β ∈]0, 1] is a forgetting fa
tor assigned to the estimation errors Y[i] − Φ⊤
[i] Θ̂[i]. It isemployed to give highest weights to the newly re
orded measures. Ve
tor Θ̂[k] minimizing

J is expressed in a re
ursive form as fun
tion of the 
urrent measures (Y[k], Φ[k]) and thepre
edent estimate Θ̂[k−1], as follows [43℄:
Θ̂[k] = Θ̂[k−1] + F[k] Φ[k]

(

Y[k] − Φ⊤
[k] Θ̂[k−1]

)

(4.8)where F[k] represents the 
ovarian
e matrix at time k. It is given by the following relation-ship, also re
ursive:
F−1

[k] = β F−1
[k−1] + Φ[k] Φ

⊤
[k] + (1 − β) β0 I4 (4.9)where I4 is the 4 × 4 identity matrix. Its dimension refers to the four parameters of Θto estimate. The term (1 − β) β0 I4 
orresponds to a stabilization element. It is added inorder to prevent the matrix F−1

[t] be
oming ill-
onditioned. The latter might o

ur whenthere is not enough ex
itation in the input information (Y, Φ). This is mainly 
aused byla
k of probe out-of-plane motions. The algorithm is initialized by setting F[t0] = f0 I4, with
f0 ∈]0, 1/β0], and Θ[t0] = Θ0, where Θ0 might be arbitrarily sele
ted. However, in orderto obtain initial estimate Θ0 that is expe
ted 
loser to the a
tual parameters Θ and thusyielding the estimation more faster, we use another di�erent algorithm to estimate Θ0 aspresented in Se
tion 4.3.Then, estimate id̂t of tangent ve
tor idt 
an be derived after obtaining estimate Θ̂ =

(η̂1, τ̂1, η̂0, τ̂0) and repla
ing the �rst two parameters (η̂1, τ̂1) in (4.4). We 
an obtain itas an unitary ve
tor as follows:
id̂t = (η̂1, τ̂1, 1)/‖(η̂1, τ̂1, 1)‖ (4.10)
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Its expression sd̂t in the probe frame 
an be obtained using the rotation matrix sRi. Asalready said, this matrix is obtained using the robot odometry. Thus, the estimate sd̂t of
sdt is obtained as follows:

sd̂t = sRi
id̂t (4.11)Finally, repla
ing this result in the relationship (4.1), normal ve
tor s∇F is estimated.Re
all that the estimation method we presented in this se
tion is des
ribed to estimatethe normal ve
tor for only one point P lying on image 
ontour C. It is in fa
t applied forall the points extra
ted from the 
ontour.

4.1.2 Curved line-based estimation methodAlthough the above presented method of using 3-D straight lines to estimate the tangentve
tor presents some advantages as the shortened pro
essing time, sin
e only four param-eters are estimated, it however heavily relies on the assigned weights as means to adjustthe orientation of the straight line, in su
h a way this latter be
omes tangent to the obje
tsurfa
e. To improve this, we present in this se
tion an estimation method based on 3-D
urved lines instead of straight ones (see Fig. 4.6). This has the advantage to deal moree�e
tively with the 
urvature of the observed obje
t, if 
urvature there is. Tangent ve
tor
dt to the obje
t surfa
e 
an then be simply obtained as the tangent to the estimated 
urve.Let K denote the tangent 
urve to estimate. Its analyti
al model, stating the 
onstraintthat any point P lying on it must satisfy, 
an be formulated as follows:

{

ix = η2
iz2 + η1

iz + η0
iy = τ2

iz2 + τ1
iz + τ0

(4.12)where iP = (ix, iy, iz) is the expression of point P in frame {Ri}. Elements ηp|p=0,2
and

τq|q=0,2
are 3-D parameters representing the shape of K.Sin
e K is 
onsidered tangent to the obje
t surfa
e at P, its tangent ve
tor at that point isnothing but ve
tor dt we want to estimate. We 
an formulate su
h ve
tor by:
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Xi Yi

{Ri}

∇F
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S

P

C(t)

K

Z

Objet O

Figure 4.6: Curved line K tangent to the object surface at point P.

idt =







∂ ix/∂ iz

∂ iy/∂ iz

∂ iz/∂ iz






=







∂ ix/∂ iz

∂ iy/∂ iz

1






(4.13)Applying this on the relationship (4.12), the tangent ve
tor is expressed as follows:

idt =







2 η2
iz + η1

2 τ2
iz + τ1
1






(4.14)Coordinate iz of P is 
onsidered available, after the point would have been extra
ted fromthe image and then expressed in frame {Ri} thanks to the robot odometry. We there-fore need to obtain an estimate of the parameters (η2, τ2, η1, τ1) whi
h then would yieldthat of dt. The model on whi
h the estimation is based is that given by (4.12), whi
hexpresses the 
onstraint satis�ed by any point lying on K. The input information feed-ing the estimation are 
oordinates (ix, iy, iz), while the parameters ve
tor to estimate is

Θ = (η2, τ2, η1, τ1, η0, τ0). The 
urve model (4.12) 
an then be re-formulated in anexpression as that of (4.5), but with:
Y =

[

ix
iy

] and Φ⊤ =

[

iz2 0 iz 0 1 0

0 iz2 0 iz 0 1

]

(4.15)
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dt

C(t)

P(t)
P(t + dt)

P1 at t

C(t + dt)

X[t+dt]

X[t]

P1 at t + dt K

di

Figure 4.7: Contour 3-D evolution with its tangent curve.

We propose to use again the stabilized least-squares re
ursive algorithm [43℄ to perform theestimation. It has already been introdu
ed in Se
tion 4.1.1, where estimate Θ̂[k] of Θ at
urrent sample time k is given by the re
ursive expression (4.8), but 
ovarian
e matrix F[k]at time k is now given by the following re
ursive expression:
F−1

[k] = β F−1
[k−1] + Φ[k] Φ

⊤
[k] + (1 − β) β0 I6 (4.16)where the 6× 6 identity matrix I6 is employed, instead of I4 used in (4.9), sin
e in this 
asethe size of parameters ve
tor Θ be
omes equal to six.The estimation prin
iple is similar to that of the straight line 
ase. Ea
h new extra
tedpoint updates the algorithm with its 
oordinates involved in the input variables Y and Φ.In this 
ase, in fa
t, 
urve K has to �t points extra
ted from the su

essive a
quired images(see Fig. 4.7). These points have a same index in their 
orresponding set CP, similarlyas for the straight line estimation. A forgetting fa
tor β is used to infer di�erent weightsassigned to these extra
ted points in su
h a way to take more into a

ount the re
entlyextra
ted points. This has the advantage to perform a lo
al estimation, and thus yieldingthe estimation more a

urate and robust, sin
e K is restrained to �t only a lo
al surfa
e (seeFig. 4.8). Indeed, more β is smaller, for example, less previous points are taken into a

ountin the estimation. The e�e
t is like that of an estimation performed over a window of datainformation, thus allowing the 
urve more adapting to the obje
t surfa
e and sparing it the



4.2. QUADRIC SURFACE-BASED ESTIMATION METHOD 102

Probe motion

Observed spherical object

Probe observation plane

Z

Z

P

K at time t2

K at time t1 < t2

P

Figure 4.8: Transverse sight showing the evolution of the estimated 3-D curved line K
at point P, for the case a 2D ultrasound probe is interacting with a spherical object.
The objective is to estimate K in such a way this latter would be tangent to the
object surface at P. The upper sight is similar to that depicted on Fig. 4.5(a).e�e
t of far points, that 
ould 
ompromise the estimation. Indeed, only one 
urve mightnot be su�
ient to �t both those far points and re
ent ones.Estimate Θ̂ = (η̂2, τ̂2, η̂1, τ̂1, η̂0, τ̂0) of Θ being obtained, that of idt 
an then be derivedby repla
ing the result in (4.14), that we set as a unitary ve
tor by:

id̂t =







2 η̂2
iz + η̂1

2 τ̂2
iz + τ̂1
1






/

∥

∥

∥

∥

∥

∥

∥

2 η̂2
iz + η̂1

2 τ̂2
iz + τ̂1
1

∥

∥

∥

∥

∥

∥

∥

(4.17)whose expression in {Rs} is derived by sd̂t = sRi
id̂t. Finally, the estimate of normal ve
tor

∇F is obtained by substituting sdt with its estimate sd̂t in (4.1).
4.2 Quadric surface-based estimation methodIn this se
tion, we propose to estimate the lo
al surfa
e of the 
onsidered obje
t and thenuse it to derive an estimate of ∇F.The estimation 
onsists in �tting a quadri
 surfa
e to a 
loud of points of the obje
t 
on-sidered lo
al surfa
e, i. e., �tting a quadri
 to lo
al surfa
e of the obje
t (see Fig. 4.9). Thepoints are obtained from the su

essive 
ontours C extra
ted from su

eeding a
quired 2D
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X

{Rs}
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Figure 4.9: Quadric surface Q that, ideally, should exactly fit the local surface sur-
rounding point P. The current observed segment is also shown, where its starting
point P{1} and ending one P{N} are indicated on it. The segment is centered on P.ultrasound images.Let Q be a quadri
 surfa
e (see Fig. 4.9). Any point iP = (ix, iy,i z) lying on Q satis�esthe following 
onstraint:

̥(ix, iy, iz) = γ20
ix2 + γ02

iy2 + γ11
ix iy

+ γ10
ix+ γ01

iy + γ00
iz − 1 = 0

(4.18)where γpq|
p,q=0,2

are 3-D parameters representing the shape of quadri
 surfa
e Q.The obje
tive is to estimate parameters γpq using the 
loud of points lying on the lo
alsurfa
e surrounding point P (see Fig. 4.9). Let P{j}|j=1,N
be points lying on 
ontour C,su
h that P{j} is adja
ent to P{j+1} and that P = P{(N+1)/2} (see Fig. 4.9). The set ofpoints P{j}|j=1,N

in fa
t de�nes a segment that is 
entered on P. Note that these points,and thus the 
orresponding segment, are nothing but part of set Cp, previously de�nedin Se
tion 4.1.1 (see Fig. 4.3). Similarly to the prin
iple used in the 
ases of the straightand the 
urved line, ea
h two su

essive points P{j}[k] and P{j}[k−1], extra
ted respe
tivelyfrom the image a
quired at time k and that a
quired at pre
edent sample time k − 1, havethe same index in their 
orresponding ve
tor Cp. Within their respe
tive segment, theirposition is indi
ated with subs
ript j. The estimation we propose uses the su

essively
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a
quired segments to estimate quadri
 Q that best �ts the 
loud of points extra
ted fromthose segments. The parameters ve
tor to estimate is Θ = (γ20, γ02, γ11, γ10, γ01, γ00).Point P{j}[k] is assumed lying on Q, then satis�es the 
onstraint (4.18), whi
h 
an be re-formulated as follows:
Yj = Φ⊤

j Θ (4.19)with :
Yj = 1 and Φ⊤

j =
[

ix2
j ,

iy2
j ,

ixj×iyj ,
ixj ,

iyj ,
izj
]⊤

(4.20)where P{j} = (ixj ,
iyj ,

izj) is the expression of point P{j} in frame {Ri}. Applying theformulation (4.20) on all points P{j}|j=1,N
of the 
ontour segment, then sta
king the obtained
onstraint relationships, yields:













Y1

Y2...
YN













=













Φ⊤
1

Φ⊤
2...

Φ⊤
N













Θ (4.21)

that 
an be formulated Y = Φ⊤ Θ as (4.5), but with:
Y =













1

1...
1













and Φ⊤ =













Φ⊤
1

Φ⊤
2...

Φ⊤
N













(4.22)

where Y and Φ⊤ are of dimension N and N×6, respe
tively. We re
all that N 
orrespondsto the width of a 
ontour segment (i. e., number of points lying on the 
ontour segment).The relationship (4.5) a

ording to (4.22) states the 
onstraint satis�ed by the 
ontour seg-ment 
entered on P. When the 2D ultrasound probe performs out-of-plane motions while atthe same time a
quiring su

essive 2D ultrasound images, su

essive segments are extra
ted.Those segments represent the 
loud of points lying on the obje
t lo
al surfa
e surrounding
P. We propose to use again the stabilized least-squares re
ursive algorithm, that gives theestimate Θ̂ of Θ by the re
ursive relationship (4.8), and its involved 
ovarian
e matrix by
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(4.16). Ea
h 
urrent (observed) segment updates the estimation algorithm. The assignedforgetting fa
tor β enables to take more into a

ount the re
ently a
quired segments andthus prevent the“old” segments 
ompromising the estimation. To illustrate this, if for exam-ple the 2D ultrasound probe performed a 
omplete s
an of the observed obje
t by sweepingit and at the same time a
quiring its images su

essively, then a 3D volume of the obje
tis made up, it is unlikely that one quadri
 might be su�
ient to �t the whole surfa
e ofthat 
onstru
ted volume. That is the reason why an estimated lo
al surfa
e is expe
ted torelatively �t well the obje
t surfa
e in the neighborhood of a 
onsidered point, at whi
hve
tor ∇F is expe
ted to be normal.
∇F 
an be analyti
ally expressed from the quadri
 surfa
e relationship, using the following
lassi
al formula:

i∇F =







∂̥/∂ix

∂̥/∂iy

∂̥/∂iz






(4.23)where i∇F is the expression of ∇F in {Ri}. Thus applying (4.23) on (4.18) yields:

i∇F =







2 γ20
ix+ γ11

iy + γ10

2 γ02
iy + γ11

ix+ γ01

γ00






(4.24)Repla
ing estimated parameters Θ̂ in the above relationship, estimate i∇F̂ of i∇F is ob-tained. Then, using rotation matrix sRi that de�nes the orientation of {Ri} with respe
t toframe {Rs}, the desired estimate s∇F̂ of normal ve
tor s∇F is �nally obtained as follows:

s∇F̂ = sRi
i∇F̂ (4.25)

4.3 Sliding least squares estimation algorithmWe presented above three methods to estimate the normal ve
tor. Both of these methodsemploy a re
ursive algorithm to perform the estimation online. Su
h algorithm requires aninitial ve
tor parameters Θ0 to start the re
ursive estimation. If these initial parameters are
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far from the a
tual ones, the re
ursive algorithm would take relatively large duration beforeestimate Θ̂ be
omes 
loser to a
tual one Θ. This would undoubtedly be re�e
ted on thevisual servoing performan
es, where the 
ommands are sent at a real-time streaming rateto the robot. Indeed, the 
ontrol 
ommand depends on the normal ve
tor, as we will see inChapter 5. If this ve
tor is not well estimated, for a large time duration, thus the 
ommandwould be yielded erroneous. That is the reason why it is ne
essary to obtain a relativelygood estimate in the �rst few iterations of the servoing, or before the servoing is laun
hed.To do so, we propose to �rst perform an estimation dire
tly on a window (set) of re
ordedmeasurements. We propose for that to use a Sliding Least Squares (SLS) algorithm [22℄.We apply it only at the beginning for �rst iterations. Right after, the re
ursive algorithmwill then take pla
e during all the estimation. The SLS algorithm, in fa
t, behaves similarlyto the Non-Re
ursive least squares one. Its parti
ularity is that it tends to take into a
-
ount in the estimation only the part of the measurement that 
onveys wealthy information.Consider di�erent measurements Y[i] and Φ⊤
[i] re
orded and saved on a window of NLS size(i = k − NLS + 1 up to i = k). Their weighted 
orrelations are 
al
ulated as follows (see[22℄):

Γ =
k
∑

i=k−NLS+1

(

β(k−i)

m2
[i]

Φ[i] Φ
⊤
[i]

)

(4.26)

w =

k
∑

i=k−NLS+1

(

β(k−i)

m2
[i]

Φ[i]Y[i]

)

(4.27)where we re
all that β is a forgetting fa
tor assigned to the di�erent measurements, insu
h a way to take more into a

ount the fresh ones. We set the s
alar m[i] as the maxnorm of the matrix Φ[i] Φ
⊤
[i], that is m[i] = ‖Φ[i] Φ

⊤
[i] ‖max. It is employed for normalizationbetween the di�erent measurements. The estimation obje
tive is to obtain an estimate Θ̂that best �ts the model relationship (4.5), for whole of those registered measurements. If thealgorithm would have 
onsisted in a weighted non-re
ursive method, the estimate would beobtained as Θ̂ = Γ−1 w. However, when the measurements do not 
onvey enough wealthyinformation, matrix Γ tends to be ill-
onditioned. The SLS algorithm instead deals withsu
h eventuality. Its prin
iple 
onsists in pro
essing the valuable parts of the informationdi�erently from the other part, that is suspe
ted at the origin of the ill-
onditioning. Thislatter part is dete
ted using the eigenvalues. The dis
rimination is performed a

ording to athreshold ǫ0; an eigenvalue, or its normalized value, smaller than the threshold is 
onsideredas related to the singularity. More pre
isely, 
onsider the eigenvalue de
omposition of matrix

Γ, sin
e the latter is symmetri
 a

ording to (4.26), as follows:
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Sliding algorithm Recursive algorithm

sample time k

Θ0

t0

Θ[t0]

t0 + NLS

Figure 4.10: Estimation contrivance consisting in applying firstly the sliding algorithm
for only the first NLS iterations, and then the recursive algorithm solely throughout
the estimation.

Γ = QΛQ⊤ (4.28)where diagonal matrix Λ 
ontains eigenvalues λi|i=1,n
. These latter are positive (λi|i

> 0),and are arranged in non-in
reasing fashion, that is, λi > λi+1. They should be normalizedby λ1. The n× n matrix Q is orthogonal (Q−1 = Q⊤), and is given as:
Q = [q1 q2 · · ·qn] (4.29)where qi|i is an n × 1 eigenve
tor asso
iated to value λi. A

ording to the SLS algorithm,estimate Θ̂[k] at sample time k is thus given by:

Θ̂[k] =











Γ−1 w if λn > ǫ0
(

∑l
i=1

1
λi

qi q
⊤
i

)

w +
(

∑NLS

i=l+1 qi q⊤
i

)

Θ̂[k−1] if λl > ǫ0 and λl+1 6 ǫ0

Θ̂[k−1] if λ1 6 ǫ0
(4.30)Note that when λn > ǫ0 all the other eigenvalues are also larger than ǫ0, and when λ1 6 ǫ0all the remaining eigenvalues are also not larger than ǫ0.We re
all that our goal is to obtain an initial estimate Θ̂ that is 
loser to the a
tual one Θ.For that, we apply the SLS algorithm for only the �rst NLS iterations to obtain an estimate

Θ̂[t0+NLS−1], that is expe
ted 
loser to Θ. This estimate is then employed as the initialparameters ve
tor Θ0 for laun
hing the re
ursive algorithm; this latter then is applied solelythroughout the estimation. This is depi
ted on Fig. 4.10.
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4.4 Simulation resultsThe methods we developed above are tested in simulations and their performan
es assessed.These simulations are 
lassi�ed in two distin
t sets. In the �rst simulation trials, ea
hmethod is applied to estimate its 
orresponding geometri
 primitives. These �rst trials al-low to test that the stated primitives 
an be estimated using the developed methods, andthus to verify the validity of these latter. As for the se
ond set's trials, they are 
ondu
tedon a simulated ellipsoidal obje
t. This latter is provided from a 3-D mathemati
al modelwe designed. Therefore, the surfa
e normal ve
tor 
an be mathemati
ally derived and itsnumeri
al value inferred. Su
h value serves in fa
t as ground truth datum. Comparingthat obtained value with the estimated ones (separately obtained with ea
h of the threeestimation methods), the validity of these methods in estimating the normal ve
tor to thesurfa
e of the obje
t, namely the ellipsoid, is veri�ed.The three estimation methods have been implemented in the C++ programming language.Some of the 
orresponding arithmeti
 and matrix operations, as addition and multipli
ationfor example, are 
oded using the ViSP C++ library [53℄. The simulations are performedusing a PC 
omputer running LINUX operating system.
4.4.1 Interaction with straight linesWe apply the straight line-based method in estimating simulated 3-D straight lines. Todo so, the intera
tion of a virtual 2D ultrasound probe with three 3-D straight lines issimulated. This intera
tion is mathemati
ally modeled, from whi
h the interse
tion of thevirtual probe image plane with those lines is derived. This interse
tion thus results in threeimage points, whose 
oordinates are obtained from the mathemati
al model. We assumethe knowledge of the full mathemati
al model (dire
tion and a belonging 3-D point) of ea
hof those straight lines. We �nally 
ompare the a
tual 3-D parameters of the straight lineswith those estimated.The simulation is 
ondu
ted by moving with 
onstant velo
ity the virtual 2D ultrasoundprobe. This latter 
ontinuously a
quires 2D 
ross-se
tion images of those lines, while atthe same time the estimation method is applied separately using ea
h of the three imagepoints. The image point 2D 
oordinates update the estimation algorithm, as des
ribed inSe
tion 4.1.1, after they would have been expressed in the fame {Ri} using the pose (posi-tion and orientation) of this latter with respe
t to probe frame {Rs} (su
h pose is a�ordedby the mathemati
al model). The sampling time is set to 40 ms, and the probe 
onstantvelo
ity to v = (−0.07, − 0.04, − 0.03, 0, 0, 0) (m/s and rad/s). The estimation pa-rameters involved in the re
ursive relationship (4.8) and (4.9) are set to β = 0.8, f0 = 1e5,
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Figure 4.11: Estimation of three 3-D straight lines - (a) Interaction of a virtual 2D
ultrasound probe with three 3-D straight lines. The probe has applied a motion with
constant velocity and the resulting trajectory (cm, cm, cm) is plotted in magenta.
The segments swept by the 2D ultrasound probe plane during that motion are also
shown, where line #1 is depicted in red, line #2 in green, and line #3 in blue. Probe
frame’s X, Y, and Z axes at the initial pose are shown in red, green, and blue color
respectively. Whereas, at the final pose the Z axis is depicted in black color - (b),
(c), and (d) show the obtained 3-D parameters estimation errors of respectively line
#1, line #2, and line #3 versus iteration number.
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and β0 = 1
20·f0

. These parameters have been empiri
ally tuned. The initial value Θ0 of Θis arbitrarily set to Θ0 = [ 3, 5, − 0.4, 1]⊤. In this simulation we do not employ the SLSalgorithm to obtain Θ0, but we use solely the re
ursive algorithm in order to �rst analyze itsbehavior espe
ially with regards to 
onvergen
e time. The 
orresponding simulation resultsare shown on Fig. 4.11. We 
an verify that both the three straight lines have been wellestimated, as 
an be seen respe
tively on Fig. 4.11(b), 4.11(
), and 4.11(d). The errorsbetween the 3-D parameters a
tual values Θ and those estimated Θ̂ 
onverge to zero, forea
h line. We 
an noti
e that the 
onvergen
e time related to line #3 is relatively higherthan that obtained for the two other lines. This 
an be explained due to the orientationof this line that tends to be parallel to the probe observation plane, as 
an be seen onFig. 4.11(a) (blue line). Indeed, a

ording to the formulation (4.4), the third element dzof the orientation ve
tor is assumed not null, sin
e otherwise parameters η1 and τ1 wouldequal to in�nity (∞). This o

urs when the straight line is parallel to the probe observationplane. Finally, as 
on
lusion the obtained results validate the straight-line based method inestimating dire
tion dt of 3-D straight lines.
4.4.2 Interaction with curved linesWe apply the 
urved line-based method, presented in Se
tion 4.1.2, on simulated 3-D 
urvedline. Similarly to the previous se
tion, the intera
tion of a virtual 2D ultrasound probe with a3-D 
urve is simulated with a mathemati
al model we designed, where the 
urve relationshipis of the form given by (4.12). The model provides the image points 2D 
oordinates resultingfrom the interse
tion of the probe image plane with the 
urve. The estimation is performedwhile the probe is moved with 
onstant velo
ity v = (−0.07, − 0.04, − 0.03, 0, 0, 0)(m/sand rad/s). The estimation algorithm is fed and thus updated with the image 2D 
oordi-nates of interse
tion point 
ontinually extra
ted from the 
ross-se
tion image, as des
ribedby (4.15). Before these 
oordinates are used, they are expressed in frame {Ri} using the pose(position and orientation) of the probe's atta
hed frame {Rs}. The parameters of the re
ur-sive algorithm are empiri
ally set to β = 0.8, f0 = 1e5, and β0 = 1

20·f0

, as before. We re
allthat the algorithm is given by the relationships (4.8) and (4.16). The initial estimate is set to
Θ0 = (1, 1, 1, 1, 1, 1), while a
tual 
urve is of parameters Θ = (2, 1.5, 0.3, 0.5, 0.4, 0.2).The 
orresponding simulation results are shown on Fig. 4.12. The estimated 
urve 
onvergesto the a
tual one, as 
an be seen on Fig. 4.12(a) where both 
urves are plotted. Indeed, the
urves superimpose on ea
h other. � At ea
h iteration the estimated parameters ve
tor Θ̂ isused to 
ompute the 3-D 
oordinates of a point of the estimated 
urve. The whole of pointsobtained as su
h, all along the probe motion and the estimation, 
onstitute the estimated
urve that is plotted on Fig. 4.12(a). � Note, however, that even though the estimated 
urve
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�physically� 
orresponds to the a
tual one, the estimated parameters Θ̂ do not 
orrespondto a
tual one Θ. This may explained by the fa
t that the mathemati
al relation (4.12)between the points 3-D 
oordinates (ix, iy, iz) of a 
urve and its 
orresponding parameters
(η2, τ2, η1, τ1, η0, τ0) is not a one to one mapping. Nevertheless, this does not hinder ourobje
tive sin
e the algorithm is able to well estimate the parameters that represent the a
-tual 
urve, whi
h is our goal. Indeed, from those estimated parameters the derived ve
tor dtwould 
learly be tangent to a
tual 
urve K, as shown on Fig. 4.12(b) where we 
an see thatthe errors ve
tor between a
tual tangent ve
tor dt and estimated one d̂t 
onverges to zero.A

ordingly, the obtained result shows the validity of the 
urve-based method in estimat-ing tangent ve
tor dt to 3-D 
urves, of shape represented by relationships of the form (4.12).
4.4.3 Interaction with quadric surfacesThe quadri
 surfa
e-based estimation method, presented in Se
tion 4.2, is now tested insimulation. The s
enario 
onsists in a 2D virtual probe intera
ting with a simulated 3-Dsurfa
e. The intera
tion is again represented with a mathemati
al model we designed. Tosimulate the surfa
e, we employed a relationship of the form given by (4.18). The intera
tionmodel provides the image 
oordinates of the points lying on 
ontour C of image 
ross-se
tion
S. These 
oordinates, after being expressed in initial probe frame {Ri}, are then used to
ompute the input variable Φ a

ording to (4.22); the input Y being already provided o�-line before the estimation is laun
hed. The two inputs 
ontinually feed and thus updatethe estimation algorithm, whi
h estimate Θ a

ording to the relationships (4.8) and (4.16).However, before this re
ursive algorithm is laun
hed, a SLS algorithm of pre-de�ned windowlength is applied in order to �rstly obtain estimates Θ̂, that are expe
ted to be relatively
loser to the a
tual parameters Θ. The re
ursive algorithm will then take pla
e, instead ofthe sliding one. Note that this 
ontrivan
e, whi
h has already been introdu
ed at the end ofSe
tion 4.3, will be most often applied for performing the estimation with either the straightline-, 
urved line-, or quadri
 surfa
e-based estimation methods, as 
an be en
ountered inthe remaining of the dissertation. Note also that in 
ontrast to the two previous simulationswhere the re
ursive algorithm was used solely, the SLS is employed in this 
ase sin
e wenoti
ed that it was quite di�
ult to estimate the surfa
e using only the re
ursive algorithm.The estimation is performed while the virtual probe moves with 
onstant velo
ity alongits orthogonal axis Z; the probe plane being horizontal to the plane (X0, Y0) of the baseframe {R0}. The algorithm parameters are empiri
ally set to β = 1.0, f0 =1e2, β0 = 1

20×f0

,
ǫ0 = 1e-20, N = 21, and NLS = 21. We re
all that N represents the number of points de�n-ing a segment. The initial estimated parameters are arbitrarily set to Θ0 = (0, 0, 0, 0, 0, 0).The quadri
 surfa
e a
tual parameters are Θ = (0.09, 0.07, 0.04, 0.02, 0.01, 0.05). We
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Figure 4.12: Estimating 3-D curves with which a 2D virtual probe is interacting. (a)
The estimation is performed while the probe performs motion with constant velocity,
where its resulting path is plotted in magenta (cm, cm, cm). The X, Y, Z axes of
the probe attached frame {Rs} at the initial time are respectively depicted in red,
green, and blue. At the final time they are whereas plotted respectively with red,
green, and black (we recall that the X, Y axes are those representing the probe image
plane). The actual curve is plotted with red, while the estimated one with green.
Those curves superimpose on each other. (b) Tangent vector estimation errors vector
e = (ex, ey, ez) = dt − d̂t versus iteration number.
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(a) (b)

Figure 4.13: Interaction with a quadric surface plotted on (a) - (b) The obtained
errors on estimating that surface using the quadric surface-based estimation method.�rst test solely the SLS algorithm, presented in Se
tion 4.3. The 
orresponding simulationresults are shown on Fig. 4.13. We 
an see that the a
tual surfa
e, shown on Fig. 4.13(a), hasbeen well estimated as 
an be 
on
luded from the estimation errors shown on Fig. 4.13(b).The latter �gure indeed shows the error between elevation z of the a
tual surfa
e and thatof the estimated one, for ea
h swept 
oordinates (x, y). Those errors are obtained of orderranging from 1e-5 to 1e-8 
m, and those related to the estimated parameters Θ̂ are of orderranging from 1e-8 to 1e-12 (expressed in their 
orresponding units).We noti
ed that the re
ursive algorithm, if applied alone, had not performed well. In that
ase the obtained estimation errors between the a
tual surfa
e elevations and those of theestimated one are of an order ranging from 1e-1 to 1e0 m. The estimation errors related to
Θ are not satisfying too. But by applying the SLS algorithm for only one window at thebeginning of the estimation then laun
hing the re
ursive algorithm, the obtained errors onthe surfa
e estimation are 
onsiderably dropped. Indeed, their order is obtained rangingfrom 1e-7 to 1e-9 
m. As for the estimation errors on the parameters Θ, their order rangesfrom 1e-8 to 1e-13.We presented above results obtained from the �rst set of trials. Those simulations havebeen performed to estimate 3-D primitives ranging from straight lines, 
urved lines, andquadri
 surfa
e. The obtained results are satisfa
tory, as pointed out above. Those simu-lations aimed at verifying that tangent ve
tor dt 
an a
tually be estimated with the pre-sented methods, when simple primitives are 
onsidered. In what follows, we 
onsider more
omplex geometri
 primitives. The three estimation method are applied to estimate normal
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ve
tor ∇F to the surfa
e of a simulated obje
t, namely an ellipsoid, and their 
orrespondingperforman
es are also assessed. These trials represent the se
ond set of simulations we high-lighted earlier. They are 
ondu
ted in two main di�erent 
onditions. The �rst one 
onsistsin the 
ase of perfe
t 
ontext, where no noise is 
onsidered. The se
ond 
ondition, whereas,
onsists in the 
ase where measurement noise is present. They are presented in what follows.
4.4.4 Ellipsoid objects: perfect and noisy casesThe intera
tion of a virtual 2D ultrasound probe with an ellipsoidal obje
t is simulated bymeans of a 3-D mathemati
al model we designed. This model allows to extra
t 
ontour C of
ross-se
tion S lying in the probe observation plane, as shown for example on Fig. 4.14(a),4.14(b), and 4.14(
). In fa
t, the extra
tion 
onsists in obtaining the 2D image 
oordinatesof points lying on the 
ontour. The simulations presented in the remaining of this 
hapterare 
ondu
ted using 400 extra
ted points to 
hara
terize the image 
ontour, at ea
h iteration.The probe is moved with 
onstant velo
ity as shown on Fig. 4.14, while the image 
ontourpoints 
oordinates are extra
ted at ea
h iteration. During the motion, normal ve
tor s∇Fto the ellipsoid is estimated, separately using the three estimation methods. The estimate
s∇F̂ is 
ompared to the a
tual one s∇F, and the 
orresponding error is inferred. Thisallows us to verify if the normal ve
tor has been well estimated. The a
tual normal ve
toris 
omputed using again the mathemati
al model. Indeed, this latter en
loses the ellipsoid3-D model that is expressed as follows:

F = (ox/a1)
2 + (oy/a2)

2 + (oz/a3)
2 − 1 = 0 (4.31)where a1, a2 and a3 are 3-D parameters that represent the ellipsoid shape (i. e., the ellipsoidhalf length values), whereas (ox,o y,o z) are the 3-D 
oordinates of point oP, that lies onthe ellipsoid surfa
e. These 
oordinates are expressed in frame {Ro} atta
hed to the 
enterof the ellipsoidal obje
t. Using the above relationship, the a
tual normal ve
tor 
an be
al
ulated by applying (4.23) as follows:

o∇F =







2 ox/a2
1

2 oy/a2
2

2 oz/a2
3






(4.32)whi
h 
an be expressed in {Rs} by s∇F = sRo

o∇F. The point 3-D 
oordinates are 
al
u-lated from its image 
oordinates (x, y), using the relationship (3.37) presented in Chapter 3.
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Figure 4.14: Simulation of a 2D ultrasound probe that interacts with an ellipsoidal
object. It is afforded by the mathematical model. The probe performs a motion with
constant velocity - (a) The frame {Rs} of its initial and final poses is indicated. At
the initial time the frame’s (X, Y, Z) axes are depicted respectively with the (red,
green, blue) lines. Whereas at the final pose, the probe Z axis is depicted with a black
line. The probe path is plotted in magenta. The intersection of the probe observation
plane with the ellipsoid results in a cross-section, whose contour at the initial and
final probe poses is respectively depicted with green and red - (b) Another image of
the interaction taken from a different sight angle - (c) The contour image at the initial
and final poses is respectively indicated with green and red color - (d) Evolution of
the probe 3-D coordinates (cm, cm, cm) during the motion versus iterations, while
the θu orientations (deg, deg, deg) are shown in (e).
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(a) (b)

Figure 4.15: Normal vector estimation errors ef obtained using the straight line-
based method. The probe is interacting with an ellipsoidal object - (a) Using the
contrivance that consists in applying the recursive algorithm, right after the SLS
one would have been applied for the first NLS iterations. The estimator parameters
are set to β = 0.95 and f0 =1e8 - (b) Applying the SLS algorithm throughout the
estimation. The estimator parameters are set to β = 0.5 and f0 =1e8.The involved rotation matrix sRo and the translation ve
tor st0 are provided by the inter-a
tion mathemati
al model. This latter also provides the image 
oordinates (x, y). Theestimation error ef 
onsists in the square root of the ve
torial error ef = s∇F− s∇F̂. Forea
h point, it is thus given by:

ef = ‖ef‖2 =
√

ef
⊤ ef =

√

e2fx + e2fy + e2fz (4.33)where ef = (efx, efy, efz). Below, we �rst present results obtained in the ideal 
ase, whereno perturbation is introdu
ed. We then 
onsider the 
ase of measurement noises.
Straight lines-based estimationWe apply the straight line-based method to estimate the normal to the surfa
e of the ellip-soidal obje
t.We present results of two di�erently performed estimations. In the �rst simulation we em-
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Figure 4.16: Normal vector estimation errors ef obtained using the straight line-based
method, in the presence of additive measurement noise of 0.3 mm amplitude. Simu-
lation where a virtual 2D ultrasound probe is interacting with an ellipsoidal object
- (a) Using the contrivance that consists in first employing the SLS algorithm, for
only one window, and then applying the recursive method during all the estimation.
The estimator parameters have been tuned to β = 0.95 and f0 =1e8 - (b) Applying
the SLS algorithm, alone, throughout the estimation. The estimator parameters have
been tuned to β = 0.5 and f0 =1e8.ploy the 
ontrivan
e that 
onsists in applying �rstly the SLS algorithm for only the �rst
NLS iterations and then in using the re
ursive one. As pointed out, this 
ontrivan
e allowsto obtain after the SLS algorithm being a
hieved (after the �rst NLS iterations) an estimate
Θ̂ that is expe
ted to be 
loser to the a
tual one Θ. The estimation 
onvergen
e time wouldbe, as a result, 
onsiderably shortened. Note that this is of great interest in the 
ontextwhere the image is varying, and thus when the normal ve
tor is also 
hanging, as it is the
ase in the simulations we present and in general pra
ti
al 
ases. As for the se
ond simula-tion, the SLS algorithm is applied all along the virtual probe motion. Obtained results areshown on Fig. 4.15. We 
an see that the estimation errors are quite dropped to zero with thetwo algorithms (respe
tively performed in the �rst and the se
ond simulation). However,we 
an noti
e two folds obtained with the re
ursive algorithm. They are grossly 
enteredon two points of the image 
ontour. The tangent ve
tor at those two points likely tendsto be parallel to the image plane, whi
h 
ould a

ount for the lesser dropped estimationerrors at those points and their 
lose neighborhood. These results therefore suggest thatthe se
ond algorithm outperforms the �rst one, as 
an be 
learly seen on Fig. 4.15(b) wherethe obtained estimation errors are nearly null. That 
on
lusion however showed to be notvalid in other 
ontexts. Indeed, in the presen
e of measurements noise that 
omparison's
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Figure 4.17: Image coordinates (x, y) in cm of one point lying on the contour, per-
turbed with an additive measurement noise of 0.3 mm amplitude. The two coordi-
nates x and y are plotted with respect to the iteration number.
on
lusion is dramati
ally reversed. In su
h noise 
ontext we noti
ed that the re
ursivealgorithm has been able to estimate the normal ve
tor, whereas it is not the 
ase whenusing the SLS algorithm. This 
an be seen on Fig. 4.16, that shows results obtained fromsimulations 
ondu
ted in the presen
e of measurement noise in the image. This 
onsideredperturbation 
onsists in a 0.3 mm amplitude random white Gaussian noise. Its e�e
ts onthe evolution of the image 
oordinates of one 
ontour point, during the probe motion, isshown on Fig. 4.17. This noise is added to the original extra
ted image points 
oordinates
(x, y) and their derivatives with respe
t to the angle in the image. We noti
e peaks at twopoints of the image 
ontour, with both algorithms. Those peaks indi
ate that the estimationhas not been well performed at those two 
ontour points. They seem in fa
t as su

essors,although worse, of the two folds obtained in the ideal 
ase. Nevertheless, it is unlikely thatsu
h two peaks might 
ompromise the system performan
e. Indeed, the obje
tive of esti-mating the normal ve
tor is to use it in order to 
ompute the 
ontrol law. We do not useonly a 
ouple but at least hundreds of image points, and thus of estimated normal ve
torsto 
ompute the 
ontrol law; we re
all that we use 400 points in the simulations we presentin the present 
hapter. Consequently, the obtained two peaks 
onstitute an error with aweight of only 2/400, whi
h is negligible. They are therefore 
onsidered as modeling errors,and thus 
an be redu
ed by the servoing s
heme thanks to its 
losed loop.
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Curved lines-based estimationSimilarly as des
ribed above, we now apply the 
urved line-based method to estimate thenormal ve
tor to the ellipsoidal obje
t surfa
e. The virtual probe is moving with 
onstantvelo
ity, where the resulting intera
tion with the ellipsoid is shown on Fig. 4.14. During thatmotion, the estimation is performed at ea
h of the 400 image 
ontour points. The estimatesare then 
ompared to the a
tual values of the normal ve
tor, and the estimation error efgiven by (4.33) is inferred. The a
tual values are 
omputed from the intera
tion mathemati-
al model, a

ording to the relationship (4.32). Again, the estimation is performed a

ordingto two di�erent approa
hes. The former approa
h employs the 
ontrivan
e 
onsisting in ap-plying �rstly the SLS algorithm for only the �rst NLS iterations and then applying there
ursive method for the remaining of the estimation. The se
ond approa
h is performed byapplying solely the SLS algorithm throughout the estimation. Their 
orresponding resultsare then 
ompared.We �rst 
onsider the ideal 
ase where the system is not subje
t to perturbations. Cor-responding simulation results are shown on Fig. 4.18. We 
an note that the sliding leastsquares estimation approa
h slightly outperformed the re
ursive one, as 
an be seen respe
-tively on Fig. 4.18(b) and Fig. 4.18(a).We now 
onsider the 
ase where a noise perturbs the image. This measurement noise isagain set as random white Gaussian noise of 0.3 mm amplitude. Obtained simulation re-sults are shown on Fig. 4.19. We 
an noti
e that, again, the estimation using the slidingalgorithm slightly outperformed that using the re
ursive paradigm.The performan
es of the straight line- and the 
urved line-based estimation methods willbe 
ompared to that of the quadri
 surfa
e-based estimation, as it is presented in Se
tion 4.5.
Quadric surface-based estimationIn the same s
enario, we also applied the quadri
 surfa
e-based method to estimate the nor-mal ve
tor to the ellipsoid surfa
e. Similarly, the estimation is performed a

ording to twoapproa
hes. We �rst 
onsider the ideal 
ase, and then the 
ase where an additive measure-ment noise is 
onsidered. To �t the quadri
 surfa
e, we tune N to N = 21 points (segmentwidth) and the window size to NLS = 21 iterations. The estimator parameters β0 and ǫ0 aretuned to β0 = 1

20×f0

and ǫ0 =1e-20. Corresponding obtained results are shown on Fig. 4.20.We 
an 
on
lude from these results that the estimation employing the re
ursive method hasoutperformed that employing the SLS algorithm. The re
ursive algorithm has grossly wellestimated the normal ve
tor, but only in the ideal 
ase. In the noisy 
ase they are however
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(a) (b)

Figure 4.18: Normal vector estimation errors ef obtained using the curved line-based
method, in the ideal case. The scenario consists in an interaction of a virtual 2D
ultrasound probe with an ellipsoidal object - (a) Using the contrivance that consists
in applying the recursive method, right after the SLS algorithm would have been
applied for only the first NLS iterations. The estimator parameters have been tuned
to β = 0.9 and f0 = 5×1e3 - (b) Using the SLS algorithm throughout the estimation.
The estimator parameters have been tuned to β = 0.9 and f0 = 5×1e3.both not satisfa
tory. A more detailed dis
ussion is given in the following se
tion.
4.5 DiscussionThe obtained results suggest that the 
urved line-based method has outperformed the twoother methods. Indeed, the 
urved line-based method has been able to provide a good es-timate of the normal ve
tor s∇F both in ideal 
ases, where no perturbation is o

urring,and in 
ases where measurements noises are present in the image. The straight line-basedmethod has not performed as the 
urved-based one in the presen
e of measurement noise.As for the quadri
-based one, the performan
es are even less better than that of both thetwo �rst methods, espe
ially in the presen
e of measurement noise, where the results arenot satisfa
tory. This method is furthermore 
omputationally more expensive, sin
e it usesa segment to update its estimate at ea
h iteration, instead of using only one point as it isthe 
ase for the two �rst methods.We presented results that as a
tual as possible re�e
t the performan
es of ea
h of the three
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(a) (b)

Figure 4.19: Normal vector estimation errors ef obtained using the curved line-based
method, in the presence of an additive measurement noise of 0.3 mm amplitude -
(a) Using the contrivance that consists is applying the recursive method, right after
the SLS algorithm would have been applied for only one window. The estimator
parameters are set β = 0.95 and f0 =1e2 - (b) Using the SLS algorithm throughout
the estimation. The estimator parameters are set to β = 0.95 and f0 =1e2.estimation methods. Indeed, the performan
e depends on the tuned estimation parameters
β, f0, β0, NLS , and ǫ0 (and also N for the quadri
 surfa
e-based method). The parameters,as highlighted, have been empiri
ally tuned in order to obtain as best as possible estima-tion results, separately for ea
h of the three methods. The tuning has been performed atea
h time the simulation 
ondition 
hanged (perfe
t or noisy) and at ea
h time a di�erentestimation method is employed. To do so, we have performed many di�erent trials wherethe estimator parameters are tuned a

ording to the famous di
hotomy manner. We thushave presented results that we 
onsider have been tuned in order they have allowed ea
hmethod to perform as best as possible. During those trials, we noti
ed that the performan
eof both the straight line- and the 
urved line-based method is only slightly a�e
ted by thevariations of those parameters. Note that large variations of the parameters have been
onsidered. As for the quadri
-based method, we obtained another 
on
lusion. Indeed, theperforman
es of this method heavily rely on the values of the estimation parameters, andis quite a�e
ted by their variations. It is nevertheless important to note that the slidingestimation algorithm, we presented in Se
tion 4.3, 
orresponds to a ve
torial algorithm,that is, the input measure Y is a ve
tor and not a s
alar. Yet, the original formulationof this algorithm is stated for s
alar inputs measures [22℄. We have in fa
t tried to adapt
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(a) (b)

(c) (d)

Figure 4.20: Normal vector estimation errors ef obtained using the quadric surface-
based estimation. The results obtained in the ideal case are shown on (a) and (b),
while those obtained in the presence of perturbation are shown on (c) and (d) -
(a) The estimation is performed by employing the recursive method, right after the
SLS algorithm has been employed for only one window. The remaining estimator
parameters are tuned to β = 0.5 and f0 =1e8 - (b) Employing the SLS algorithm
throughout the estimation. The remaining estimator parameters are tuned to β = 1.0
and f0 =1e2 - (c) Employing the recursive algorithm after the SLS one. The estimator
parameters are tuned to β = 1.0 and f0 =1e2 - (d) Employing the SLS algorithm
alone. The estimator parameters are tuned to β = 1.0 and f0 =1e2.
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the original algorithm to a ve
torial 
ase. It 
ould be therefore possible that some modi�-
ations have not been rigorously taken into a

ount. We performed other trials but usingthe original s
alar sliding algorithm. To do so, the estimation model (4.3), �rstly, has beende
omposed in two s
alar equations. Ea
h equation has been 
onsidered as an estimationmodel (with η1 and η0 as parameters for the former s
alar system to estimate, and τ1 and
τ0 as parameters for the latter s
alar system). Then, ea
h of the obtained estimates are
ombined and the estimate of the normal ve
tor is derived. The same approa
h is under-taken for the 
urve system (4.12). We obtained similar results, with both straight line- and
urved line-based method (using the s
alar formulation), to those previously obtained withthe ve
torial algorithm respe
tively, ex
ept that in the noisy 
ase we obtained better resultwith s
alar straight line-based estimation than previously. Nonetheless, the performan
es ofthis latter method are still lower than that of the 
urved line-based estimation. As for thequadri
-based estimation method, the s
alar algorithm, as is, seems not relevant, sin
e thisestimation method inherently uses a segment of points (and thus a ve
tor of measures) toupdate the estimate. That is the reason why we presented in Se
tion 4.3 a ve
torial versionof the sliding algorithm. The low out
ome of the quadri
-based estimation method 
ould beexplained by the fa
t that this method estimates in whole the normal ve
tor and thus theestimation errors are expe
ted to be larger than those obtained with the two �rst methods.Indeed, these latter methods estimate instead only a part sdt of the normal ve
tor, whilethe se
ond part is dire
tly extra
ted from the observed image. Moreover, �tting a surfa
eto a 
loud of points seems more 
onstrained than �tting a line to a set of points.
4.6 ConclusionWe proposed in this 
hapter three methods to estimate on-line the normal ve
tor to the sur-fa
e of an obje
t with whi
h a 2D ultrasound probe is intera
ting. We re
all that su
h normalve
tor appears in the intera
tion matrix that relates the image moments time variation tothe probe velo
ity, as developed and presented in the previous 
hapter. The estimation isperformed without any prior knowledge of the shape, 3-D parameters, nor lo
ation in the3-D spa
e of the observed obje
t. Doing so, we over
ome the limitation and 
onstraintsimposed if the resolution of developing a pre-operative model of the observed obje
t wouldbe envisaged.The three methods we proposed are based on respe
tively straight line, 
urved line, andquadri
 surfa
e primitives. Their performan
es have been 
ompared. They have been testedin di�erent simulation trials, where satisfa
tory results have been obtained with the 
urved-line based estimation method. The straight line-based method showed to be relatively moresensitive to measurements noise. As for the quadri
 surfa
e-based method, besides of beingeven more sensitive to the noise, it requires rigorous tuning of its estimation parameters.





Chapter 5

Visual ServoingIn the present 
hapter, we �nally design novel ultrasound-based image moments-based vi-sual servoing s
hemes. These latter will allow to automati
ally position a 2D ultrasoundprobe in order to rea
h and maintain a desired 
ross-se
tion image. After having modeledintera
tion matrix Lmij
that relates image moment time variation ṁij to probe velo
ity v,in Chapter 3, and having developed te
hniques to estimate on-line normal ve
tor s∇F tothe obje
t surfa
e, in Chapter 4, visual servoing s
hemes 
an now be designed whether wehave a pre-operative 3-D model of the observed obje
t or not. The se
tion in the image 
anbe des
ribed by a 
ombinations set of image moments mij en
losed in a ve
tor we denote s,that we use as feedba
k visual features in the 
ontrol s
heme. The servoing obje
tive, statedabove, thus 
an be formulated as to automati
ally move the probe in order that the ve
tor

s be
omes identi
al with the features ve
tor s∗ that des
ribes the desired image se
tion.Ve
tor s∗ is nothing but ve
tor s 
omputed on the desired image. As already introdu
edand dis
ussed in Se
tion 3.1, a set of 
ombinations of image moments 
an be used to repre-sent the image se
tion. Thus, ve
tor s∗ represents the desired image se
tion. Consequently,when s be
omes equal to s∗, it means that the observed image well and truly 
orrespondsto the desired one. So, the servoing obje
tive 
an be mathemati
ally formulated as to movethe robot in order that visual error e = s − s∗ 
onverges to zero. To build the servoings
heme, we need to relate ve
tor s as fun
tion of probe velo
ity v. To do so, we use themodeling results we obtained, i. e., the relationships (3.34) and (3.35), sin
e s = s(mij). Wethus write time variation ṡ of s as fun
tion of v in the following linear form:
ṡ = Ls v (5.1)where Ls is the intera
tion matrix related to s. Su
h matrix, along with the visual features

s it relates, in any visual servoing s
hemes, is 
ru
ial to design the 
ontrol law and has
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predominant e�e
t on the robot behavior [82, 27, 71, 14℄. We use a 
lassi
al 
ontrol law[26℄, as follows, su
h that the visual error e is expe
ted to 
onverge to zero exponentially(to smoothly stop at the desired image). When dim(s) = 6, that 
ontrol law is:
vc = −λ L̂−1

s (s − s∗) (5.2)where vc is the probe velo
ity 
ommand sent to the low-level robot 
ontroller, λ is a pos-itive 
ontrol gain, and L̂−1
s is the inverse of the estimated intera
tion matrix Ls. Su
hobtained 
ontrol s
heme is known to be lo
ally asymptoti
ally stable when a 
orre
t esti-mation L̂s of Ls is used (that is, as soon as Ls L̂−1

s > 0) [26℄. The global 
onvergen
e 
annot be ensured in our 
ase with this 
ontrol law. This is due to the fa
t that the obje
tsurfa
e might have lo
al minima (i. e., 
on
ave regions) in whi
h the probe 
ould be trapped.When less than six visual features are en
losed in s (i. e., matrix Ls be
omes not square),the pseudo inverse L̂+
s of the estimated intera
tion matrix Ls is employed in (5.2), insteadof the inverse L̂−1

s . This pseudo inverse is given by:
L̂+

s = L̂⊤
s

(

L̂s L̂⊤
s

)−1
(5.3)Matrix (L̂s L̂⊤

s ) should be of full rank.In 
ase a pre-operative 3-D model of the observed obje
t is used to obtain an approxi-mate s∇F̃ of the normal ve
tor in the 
ontrol law, the servoing method is referred to as
model-based visual servoing method. A 
orresponding visual servoing s
heme is presentedon Fig. 5.1. If otherwise, neither prior knowledge of the shape of the obje
t, its 3-D param-eters, nor its lo
ation is used, but instead the normal ve
tor is on-line estimated with oneof the methods developed and presented in Chapter 4, the servoing method is referred to as
model-free visual servoing method. A 
orresponding visual servoing s
heme is presented onFig. 5.2. Note that the estimate of the normal ve
tor is denoted s∇F̂, while its approximatefrom a pre-operative 3-D model is denoted s∇F̃.As for the sele
tion of the visual features, if the observed obje
t presents asymmetri
parts we 
an de�ne six independent visual features. The �rst three visual features 
an bede�ned to 
ontrol the probe-in-plane motions, while the last three elements 
an be de�nedto 
ontrol the probe out-of-plane motions. The whole of these six visual features thus 
ande�ne the 
omplete probe motion.
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Figure 5.1: Model-based visual servoing scheme. Note that s∇F̃ is an approximate
of s∇F.

5.1 Visual features selectionWhen the 2D ultrasound probe performs in-plane motions, se
tion S only shifts and rotatesin the image. Su
h 
on�gurations 
hanges of the image se
tion 
an be observed respe
tivelyby the 
oordinates of its gravity 
enter and the orientation of its main angle in the image.2D image 
oordinates (xg, yg) of an obje
t gravity 
enter have already been introdu
edin Chapter 3 and are expressed in terms of image moments up to the �rst order by therelationship (3.48). We sele
t them as the �rst two elements of s. The third element
onsists in the main angle of the se
tion with respe
t to image X axis (see Fig. 5.3). It isde�ned by:
α =

1

2
arctan

(

2µ11

µ20 + µ02

)

(5.4)where µij is the (i+ j)th order 
entral image moment. It is de�ned by the following doubleintegral over image se
tion S:
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Figure 5.2: Model-free visual servoing scheme.

µij =

∫ ∫

S
(x− xg)

i (y − yg)
j dx dy (5.5)An (i+ j)th order 
entral image moment 
an thus be de�ned as fun
tion of image momentsof up to the (i + j)th order. We provide the expressions of up to the third order 
entralimage moments, as follows:











µ20 = m20 −m10 xg

µ11 = m11 − yg m10 = m11 − xg m01

µ02 = m02 −m01 yg

(5.6)and


















µ30 = m30 − 3m20 xg + 2m10 x
2
g

µ03 = m03 − 3m02 yg + 2m01 y
2
g

µ21 = m21 − 2m11 xg −m20 yg + 2m01 x
2
g

µ12 = m12 − 2m11 yg −m02 xg + 2m10 y
2
g

(5.7)
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S

Figure 5.3: Sketch representing image coordinates (xg, yg) of gravity center of ob-
served section S, and main orientation α of the latter.Consider now the probe out-of-plane motions. In the following, we des
ribe how to obtainthree independent visual features that 
an relate su
h motions. These features thus wouldrepresent the last three elements of s. In 
ontrast to in-plane motions, when out-of-planemotions o

ur the se
tion in the image generally deforms. Its size varies and its shape
hanges. Therefore, the obje
tive 
onsists to derive three visual features that are respe
tivelysensitive to su
h modi�
ations of the se
tion in the image, while at the same time they areinsensitive to modi�
ations due to probe in-plane motions, in order they are independentfrom the �rst three features of s. Firstly, sin
e the size variation 
an 
learly be relatedto the area a of the se
tion in the image, we 
an sele
t the fourth element of the visualfeatures ve
tor as √

a. Note that we applied the square root to a sin
e the three element
(xg, yg,

√
a), thus brought together, have a same unit, that is meter is this 
ase. Se
ondly,as for the shape variations, they 
an be related by image moments from the se
ond andhigher orders. However, as highlighted above, the last three features should be insensitiveto in-plane motions; area a obviously satis�es su
h 
ondition. As for the prospe
tive lasttwo visual features, they 
an be obtained from moment invariants, introdu
ed in Se
tion 3.1.Indeed, image moments 
an be made invariant to image translation, rotation, and images
ale 
hanges. These traits are 
onsequently of great interest in the present 
ase. Let us �rstsear
h for the �fth element of s; the same manner to pro
eed is afterwards applied for thesixth element. A visual feature 
orresponding to a 
ombination of moments of the se
ondand higher orders that are invariant to s
ale 
hange is expe
ted independent from the imagearea, and thus also from √

a. This 
an be explained by the fa
t that s
ale 
hanges aremainly related to those of the image se
tion area. As a result, a visual feature invariant tos
ale would grossly be insensitive to area a, and thus independent from it. Moreover, whenthis visual feature is also invariant to translation and rotation, it would be independentrespe
tively from gravity 
enter 
oordinates (xg, yg) and orientation α. In other words,
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su
h feature would be independent also from the in-plane motions. To summarize, thisfeature would be therefore independent from the �rst four elements (xg, yg, α,
√
a). Wesele
t this �fth feature from moment invariants of the se
ond order. Finally, the sixth visualfeature is similarly sele
ted as an invariant image moment to translation, rotation, and s
ale,but is obtained from 
ombination of third order image moments. Indeed, sin
e this sixthfeature would be obtained from third order image moments, wile the �fth feature is fromthe se
ond order ones, the former feature is expe
ted independent from the latter one. Wethus 
an 
hoose these last two features from su
h moment invariants, already provided inthe literature. We employ features provided in [76℄. We denote them respe
tively by φ1 and

φ2. They are expressed in terms of image moments as follows:
{

φ1 = I1/I2
φ2 = I3/I4

(5.8)where I1 = µ2
11 −µ20 µ02, I2 = 4µ2

11 +(µ20 −µ02)
2, I3 = (µ30 − 3µ12)

2 +(3µ21 −µ03)
2, and

I4 = (µ30 + µ12)
2 + (µ21 + µ03)

2.The visual features ve
tor s we propose is thus:
s = (xg, yg, α,

√
a, φ1, φ2) (5.9)Time variation ṡ of s 
an now be analyti
ally related to probe velo
ity v, using intera
tionmatrix Lmij given by (3.34). We obtain, after arranging the elements related to the probein-plane motions (vx, vy, ωz) and those to the out-of-plane motions (vz, ωx, ωy), as follows:

ṡ =





















−1 0 yg xgvz
xgωx

xgωy

0 −1 −xg ygvz
ygωx

ygωy

0 0 −1 αvz αωx αωy

0 0 0 avz

2
√

a
aωx

2
√

a
aωy

2
√

a

0 0 0 φ1vz φ1ωx φ1ωy

0 0 0 φ2vz φ2ωx φ2ωy







































vx

vy

ωz

vz

ωx

ωy



















(5.10)

The detailed form of some elements is not provided be
ause of their tedious form. We 
annote that the sele
tion of s given by (5.9) yields the visual servoing s
heme partially de-
oupled. Indeed, we 
an �rst remark from (5.10) that the last three elements (
√
a, φ1, φ2)
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of s are invariant to the in-plane motions. Moreover, the �rst elements (xg, yg, α) presenta good de
oupling property for the in-plane motions, owing to the triangular part they form.Although the sele
tion (5.9) yields good de
oupling properties, as also shown from resultsof simulations we 
ondu
ted, we however noti
ed from further simulations that element φ1is relatively less robust to image noise than, for example, the length of the image se
tionmain axis. We denote the latter feature by l1. It is expressed in terms of image momentsas follows [16℄:
l1

2 =
2

a

(

µ02 + µ20 +

√

(µ20 − µ02)
2 + 4µ2

11

)

(5.11)Therefore, the �fth element φ1 
ould be, in some 
ases, substituted by l1. Su
h sele
tion isof 
ourse subje
t to a trade-o� between probe de
oupling motions, obtained with the formerfeature, and more robustness to image noise with the latter.The remainder of the 
hapter presents visual servoing results. It is organized as follows.In Se
tion 5.2, we test both the model-based and model-free visual servoing methods in sim-ulations where the probe intera
ts with an ellipsoidal obje
t. We 
onsider, for that, bothideal 
ases where no perturbation is present and the 
ases where additive measurementsnoise perturbs the image. In Se
tion 5.3 and Se
tion 5.4, we present results obtained fromsimulations respe
tively on realisti
 3-D ultrasound obje
t and on an asymmetri
 binaryobje
t. Finally, ex-vivo experimental results obtained with both a spheri
al obje
t, an ul-trasound phantom, a lamb kidney, and a gelatin-made soft tissue obje
t relatively 
omplexare reported in Se
tion 5.5.
5.2 Simulation results with an ellipsoidal objectThe s
enario 
onsists of a virtual 2D ultrasound probe that intera
ts with an ellipsoidalobje
t. The virtual roboti
 task 
onsists to automati
ally position the probe in su
h a wayto rea
h a target image, starting from one totally di�erent. To do so, the probe is servoedby the 
ontrol s
heme we developed in this thesis. The 
ommand velo
ity are generatedwith the 
ontrol law (5.2). Note however that sin
e the obje
t is ellipsoidal, the observed
ross-se
tion is an ellipse in the image. Consequently, we 
an de�ne only �ve independentvisual features from the image. Thus, instead of using L̂−1

s , the pseudo inverse L̂+
s given by(5.3) is employed in (5.2).The intera
tion of the probe with the obje
t is simulated using the mathemati
al model wedeveloped and whi
h has been introdu
ed in Se
tion 4.4.4. This model allows to position
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and move the probe. It provides the observed image in form of 
ontour points set, fromwhi
h the visual features s are 
omputed. In the following simulations, we use 400 image
ontour points to 
ompute the visual features along with the intera
tion matrix. The inter-a
tion mathemati
al model also provides the pose (position and orientation) of the probe(i. e., of its atta
hed frame, already denoted {Rs}) with respe
t to a base frame. With thismodel, we 
an test both the model-based and model-free visual servoing methods. Indeed,it 
an also provide a 3-D mathemati
al (pre-operative) model of the ellipsoid in form of 3-Dparameters and pose with respe
t to probe frame {Rs}; the 3-D parameters 
onsist in theellipsoid half-length values (a1, a2, and a3), as formulated by (4.31) in Se
tion 4.4.4. Withthose data, normal ve
tor s∇F 
an be obtained a

ording to (4.32), and then 
an be usedto 
ompute intera
tion matrix Ls involved in the 
ontrol law.In the following, we �rstly present results from simulation performed using the model-basedvisual servoing method, where the obje
t pre-operative model is used to 
ompute the 
on-trol law. Su
h results are essential to test the validity of the theoreti
al foundations of theintera
tion matrix modeling, developed and presented in Chapter 3. Indeed, a pre-operativemodel provides us with a ground truth. s∇F 
an be exa
tly known, and 
onsequently nomodeling error 
an be introdu
ed in the intera
tion matrix formula (3.34) and (3.35). If theintera
tion matrix is truly exa
t, the visual features errors should 
onverge to zero exponen-tially and at the same time. If however they do no 
onverge as so, this would mean that themodeling is not exa
t. Afterwards, we present results obtained using the model-free visualservoing method, based on the 
urved lines estimation te
hnique presented in Se
tion 4.1.2,sin
e this te
hnique has shown to be better than the straight lines and quadri
 surfa
eestimation te
hniques a

ording to the results reported in the previous 
hapter. Never-theless, visual servoing results with these two te
hniques 
an be found in Appendix C.1.We re
all that the mode-free visual servoing we propose uses only the image 
ontour pointsand the robot odometry to estimate the normal ve
tor, and thus to 
ompute the 
ontrol law.The following simulations are 
ondu
ted with an ellipsoidal obje
t whose half length valuesare (a1, a2, a3) = (1, 2.5, 4) 
m. The 
ontrol gain λ is set to 0.7, and the sampling timeto 40 ms.
5.2.1 Model-based visual servoingThe ellipsoidal obje
t, with whi
h the probe is intera
ting, is exa
tly known. Both itshalf length values (a1, a2, a3) and its pose with respe
t to {Rs} are used to 
ompute theexa
t value of s∇F, as related by (4.32). We �rst sele
t the feedba
k visual features as
s = (xg, yg, α,

√
a, l1). The 
orresponding simulation results are shown on Fig. 5.4. The
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feedba
k visual features errors e exponentially 
onverge to zero [see Fig. 5.4(f)℄, and therea
hed se
tion image 
orresponds to the desired one (see Fig. 5.4(e)), despite the largedi�eren
e between this target image and the initial one. Moreover, the probe motions are
orre
t and smooth as 
an be seen on Fig. 5.4(g) and Fig. 5.4(a). Both the translationaland rotational motions are large, as 
an be seen respe
tively on Fig. 5.4(
) and Fig. 5.4(d).These results, 
onsequently, validate the proposed model-based visual servoing method.More parti
ularly, they validate the theoreti
al foundations along with the intera
tion ma-trix modeling we developed and presented in Chapter 3.With the above sele
ted visual features s, we 
an noti
e that the rotational motions areslightly 
oupled as 
an be seen on Fig. 5.4(d). We 
an remark indeed that the rotationalmotions θuy and θuz interse
t1. The origin of that 
an be explained by the fa
t that the twolast elements √
a and l1 of s are not totally independent. Indeed, both these two featuresare related to the size of the se
tion in the image. Let us therefore sele
t another visualfeature instead of l1 that would yield the probe motions more de
oupled. Sin
e √

a relatessolely the size of the se
tion in the image, a prospe
tive visual feature would be nothingbut 
ombination of moments invariants to image s
ale, as has already been highlighted andexplained above in Se
tion 5.1. We have already proposed φ1 as �fth visual feature. Nev-ertheless, this feature shows to be relatively more sensitive to image noise than l1, as willbe seen later from results we present in this se
tion. In fa
t, sin
e the feature l1 showedto be relatively robust to image noise, as will be also seen afterwards, we want to deriveanother feature 
lose to l1. Thus, the obtained feature might well satisfy both de
ouplingand robustness properties. Using the invariants presented in [50℄, we 
an dedu
e, that forexample, the feature l1/√a is invariant to both in-plane motions and image s
ale. In thefollowing, we present su

essively results obtained with l1/
√
a and then with φ1, as �fthvisual feature instead of l1, to subsequently 
ompare the 
orresponding performan
e.In the same s
enario in whi
h the pre
edent simulation has been 
ondu
ted, we sele
t now

l1/
√
a as the �fth visual feature, that is, s = (xg, yg, α,

√
a, l1/

√
a). The 
orrespondingsimulation results are shown on Fig. 5.5. We 
an see that the task has been well performed,as in the pre
edent simulation, where the feedba
k visual features errors 
onverge to zeroexponentially and the rea
hed image 
orresponds to the desired one. Nevertheless, we 
annote that indeed, as expe
ted, the rotational motions are relatively de
oupled, even thoughslightly, 
omparing to those obtained with l1 as �fth feature, as 
an be seen respe
tively onon Fig. 5.5(
) and Fig. 5.4(d). We 
an note indeed that the rotational motions θuy and θuzdo not interse
t; although their plots are 
lose to ea
h other during the �rst iterations.

1θu representation is defined by a unitary vector u, representing the rotation axis, and rotation
angle θ around this axis.
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Figure 5.4: Model-based visual servoing on simulated ellipsoidal object. The visual
features are s = (xg, yg, α,

√
a, l1). (a) and (b): The initial cross-section is plotted in

green, while the reached one is plotted in red. The probe initial frame is depicted with
the cartesian frame’s (X, Y, Z) axes respectively plotted with (red, green, blue) lines,
while the final frame is plotted with (red, green, black) lines. The path performed by
the probe is plotted in magenta. The visual features and their corresponding errors
are in (cm, cm, rad, cm, cm). The abscissa of (c), (d), (f), (g), (h) corresponds to the
number of iterations. It will be maintained as such for all the coming figures; this of
course concerns the vectors that have been plotted on those indicated figures.
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We �nally test φ1, that is, s = (xg, yg, α,
√
a, φ1). The 
orresponding simulation resultsare shown on Fig. 5.6. We 
an note that the de
oupling performan
e on the rotationalmotions is better than those obtained either with l1 or l1/√a, as 
an be seen on Fig. 5.6(d).Indeed, we 
an note that the rotational motions θuy and θuz neither interse
t nor are 
loseto ea
h other. The performan
e 
an also be 
learly noti
ed from the plots of probe velo
ityshown on Fig. 5.6(g). Indeed, velo
ity 
omponent vz 
onverge with a 
onsiderably slightba
k-and-forth behavior during the �rst iterations, 
ompared to the former obtained resultswith l1 and l1/√a.The above three simulations have been 
ondu
ted to 
ompare the performan
e of thevisual servoing s
hemes in terms of probe motions de
oupling, more parti
ularly this 
on-
erned the rotational motions. It is however important to 
ompare their performan
es interms of robustness to image noise, espe
ially sin
e the ultrasound images are inherently verynoisy. To do so, we perform simulations with the three di�erent visual servoing s
hemes,that is, the visual features ve
tor's �fth element is respe
tively sele
ted as l1, l1√

a
, and φ1 inthe s
enario where a measurement noise of 0.3 mm amplitude is present in the image. Thisnoise is set as a random white Gaussian noise. The impa
t that su
h noise 
an have onthe image 
oordinates of one point lying on 
ontour C is shown on Fig. C.3(b). The 
orre-sponding simulations results are shown on Fig. 5.7. The obtained respe
tive performan
esin terms of robustness to image noise are the inverse of those previously obtained in terms ofmotion de
oupling. Indeed, we 
an see that feature l1 is more robust to noise 
omparing to

l1√
a
and φ1. The robustness is re�e
ted on the performan
e of the visual servoing s
heme interms of probe behavior, as 
an be seen on the obtained velo
ity 
ommands. This di�eren
eof robustness 
an be related to the denominators of these features. Feature φ1 is less robustsin
e its denominator is a se
ond order moment; more the moment is of higher order less itis robust, as dis
ussed in Chapter 3.Finally, we 
an 
on
lude that both of the simulation results we obtained and presentedin this se
tion validate the proposed model-based visual servoing method and its robustnessto image noise. In the following, we test the model-free visual servoing method. In fa
t,from the intera
tion mathemati
al model used in the above simulations, we exploit this timeonly the image 
ontour 
oordinates and the probe pose. We re
all that the latter, in pra
-ti
e, 
an be obtained from the robot odometry. Thus, we do not use any prior knowledgeof the shape, 3-D parameters, nor lo
ation (pose) of the obje
t to 
ompute the 
ontrol law.The servoing method is tested both in a perfe
t 
ase, where no noise is present, and in 
asewhere additive measurements noises are introdu
ed.Note however that sin
e only �ve visual features are employed, although the rea
hed image
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Figure 5.5: Model-based visual servoing on simulated ellipsoidal object. The visual
features are s = (xg, yg, α,

√
a, l1√

a
). They are plotted in (cm, cm, rad, cm, unit/10),

similarly as their corresponding errors.
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Figure 5.6: Model-based visual servoing on simulated ellipsoidal object. The visual
features are s = (xg, yg, α,

√
a, φ1). They are plotted in (cm, cm, rad, cm, unit/10),

similarly as their corresponding errors.
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Figure 5.7: Model-based visual servoing on simulated ellipsoidal object, in the
presence of additive measurement perturbations of 0.3 mm amplitude. The results
obtained with l1 as fifth feature are shown on (a) and (b) - Those obtained with l1√

a

are shown on (c) and (d) - Those obtained with φ1 are shown on (e) and (f).
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orresponds to the desired one, the pose rea
hed by the probe would unlikely 
orrespond tothat where the desired image had been 
aptured. This 
an be explained by the fa
t thatbe
ause of the obje
t symmetry the probe 
an have an in�nity of lo
ations from whi
h it 
an
onvey a same image. To 
ontrol the 6 DOFs of the roboti
 system, and thus to automati-
ally position the probe with respe
t to the observed obje
t, at least six independent visualfeatures are required. Of 
ourse, afterwards we present results obtained with an asymmetri
obje
t by 
ontrolling six visual features.
5.2.2 Model-free visual servoing using the curved line-based

normal vector estimationIn the present se
tion, we test the model-free servoing that uses the 
urved line-based nor-mal ve
tor on-line estimation method, des
ribed in Se
tion 4.1.2.The virtual probe is �rstly moved in open-loop with 
onstant velo
ity while at the sametime the SLS algorithm, des
ribed in Se
tion 4.3, is applied in order to obtain an initialestimate Θ0. Note that this open-loop motion is applied for only the �rst NLS iterations; inthis 
ase we set NLS =20 iterations. Right after, the servoing is laun
hed, where the re
ur-sive algorithm related by the relationships (4.8) and (4.16) takes pla
e, instead of the SLSone, throughout the servoing. The estimator parameters are empiri
ally tuned to β = 0.9,
f0 = 5×1e3, β0 = 1

20×f0

, and ǫ0 =1e-10. The 
orresponding simulation results are shownon Fig. 5.8, while the estimated parameters are plotted in Fig. 5.9. We 
an see that thevisual features errors exponentially 
onverge to zero, and the rea
hed image 
orrespondsto the desired one. Also, 
orre
t and smooth probe behavior and motions have been ob-tained. These results thus validate the model-free visual servoing method that employs the
urved line-based estimation. The plots of Fig. 5.9 in fa
t highlights the 
onsisten
y of theestimated parameters between the whole points of the 
ontour. Indeed, sin
e the obje
tsurfa
e is smooth (i. e., the partial derivatives of the surfa
e are 
ontinuous), the variationof the normal ve
tor when traveling along the obje
t surfa
e, and thus around 
ontour Calso, should be smooth, too; it is the 
ase for the results we obtained. If it was not as su
h,this would mean that the normal ve
tor is not well estimated. Doing so, that is, analyzingthe 
onsisten
y of the estimated parameters, 
ould be therefore adopted as a �rst indi
atorabout the estimation performan
e.An additive measurement noise of 0.4 mm amplitude is now introdu
ed in the image. Theestimator parameters β and f0 are now tuned to β = 0.95 and f0 =1e2. Note that theseparameters are adjusted to values slightly di�erent from the previous ones, used above, only
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Figure 5.8: Model-free visual servoing using the curved line-based estimation
method, in a perfect condition where no measurement noise is present. The visual
features and their corresponding errors are in (cm, cm, rad, cm, cm).
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Figure 5.9: Estimated parameters Θ̂ corresponding to the results shown on Fig. 5.8.
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at the aim to adapt the system to noises and, thus, it 
ould behave better than if the previ-ous parameters are used. The 
orresponding simulation results are shown on Fig. 5.10, andthe estimated parameters on Fig. 5.11. We 
an see that the results are satisfa
tory, whi
hvalidates the robustness of this model-free method with respe
t to measurement perturba-tions. Note that the system still well 
onverged in perfe
t 
onditions with these values of theestimator parameters, but however the performan
e had slightly de
reased. The simulationsdes
ribed below relate this. Note, nevertheless, that tangent ve
tor sdi, involved in the nor-mal ve
tor 
omputation [relationship (4.1)℄, is in this simulation dire
tly 
omputed as pixeldi�eren
e between the adja
ent 
ontour points; we re
all that sdi 
orresponds to the ve
tortangent to 
ontour C in the image. Performing dire
tly a pixel di�eren
e is well-known tode
rease the system stability. In pra
ti
e and in more realisti
 simulations that we presentafterwards, we do not 
ompute sdi as su
h. We instead employ �rstly an image pro
essingalgorithm to extra
t a 
ontour of the se
tion in the image. The extra
tion in fa
t 
onsists to�t a parametri
 
ontour to the a
tual edge of the se
tion in the image. Thus, the extra
ted
ontour would be �ltered from eventual noises. We then 
ompute sdi from that 
ontour,thus mitigating the noise e�e
t on the estimation. The system robustness therefore 
an onlybe expe
ted better.The results we showed are those we 
onsider obtained using su�
iently well tuned estima-tor parameters. The tuning has been performed empiri
ally, while making a 
ompromisebetween estimation speed, a

ura
y, robustness to image noise; we modi�ed the parametersa

ording to a di
hotomy manner. Nevertheless, we noti
ed that the system still 
onvergesand well behaves for di�erent values of the parameters, and generally it was relatively easyto tune these latter. In fa
t the system performan
e is not dramati
ally 
ompromised withparameters wise 
hanges. To show this, we 
ondu
ted di�erent set of simulations, wherein ea
h set only one parameter is modi�ed. In the �rst set we su

essively varied β. Wepresent on Fig. 5.12 results separately obtained for β = 1.0, 0.5, and 0.04, while the remain-ing parameters are �xed throughout the tests to f0 = 5×1e3, β0 = 1
20×f0

, and ǫ0 =1e-10.We 
an noti
e that when β = 0.5 the system performan
e is better. In the se
ond set, thesystem is tested when starting with di�erent values of initial estimate Θ0. For that, weassigned di�erent values to parameter ǫ0, sin
e the latter is involved in the SLS algorithm,that is employed to obtain Θ0. The remaining parameters are �xed to β = 0.9, f0 = 5×1e3,and β0 = 1
20×f0

. Results obtained for ǫ0 =1e-40, 1e-5, and 1.0 are shown on Fig. 5.13. We
an 
on
lude that the visual servoing system using the 
urved line-based estimation is quitetolerant to the values that the two parameters β and ǫ0 might have. We also tested thesystem for di�erent values of f0 and NLS . It was noti
ed that it grossly dis
losed similarperforman
es for di�erent values of f0, expe
t for very small ones, as 0.01 for example, wherethe 
onvergen
e be
omes relatively quite slow. The system also 
onverged for di�erent val-ues of NLS .
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Figure 5.10: Model-free visual servoing using the curved line-based estimation
method, in the presence of an additive measurement noise of 0.4 mm amplitude. The
visual features and their corresponding errors are in (cm, cm, rad, cm, cm).
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Figure 5.11: Estimated parameters Θ̂ corresponding to the results shown on Fig. 5.10.
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We re
all that results obtained with the straight line- and the quadri
 surfa
e-based es-timation methods are respe
tively presented in Se
tion C.1.1 and C.1.2. We 
on
lude thatthe quadri
-based model-free servoing method 
onsiderably underperformed the two othermethods. In addition, it was quite di�
ult to tune its estimation parameters. In fa
t, we arenot surprised about this out
ome, be
ause of the low performan
es this estimation methodhad already shown in Se
tion 4.4.4. The other drawba
k of this method, as highlighted inthe previous 
hapter, 
onsists in the fa
t that it is relatively 
omputationally expensive.Indeed, this method uses at ea
h iteration a segment of N points to estimate and thus toupdate normal ve
tor s∇F, in 
ontrast to the two other methods (respe
tively based onstraight and 
urved line estimation) where only one point is used to update the estimation.
5.3 Simulation results with realistic ultrasound im-

agesIn the present se
tion, the 
urved line-based model-free visual servoing method is testedon a realisti
 simulated obje
t. The latter 
onsists in an ultrasound image volume, madefrom a previously performed s
an of an ultrasound phantom 
ontaining an egg-shaped ob-je
t. The s
an has been performed by a
quiring 100 real B-s
an images with a 
onventional2D ultrasound probe, that swept the phantom by moving with 
onstant velo
ity along itsorthogonal Z axis. The images were su

essively 
aptured at ea
h 0.1 mm interval of theprobe motion. Using a software presented in [45℄, the intera
tion of a virtual 2D ultrasoundprobe with the obje
t volume is simulated. This software simulator is built from the Visu-alization Toolkit (VTK) software [70℄ system and ViSP [53℄. It allows to move and positionthe probe, and 
an provide the 
orresponding realisti
 ultrasound image along with a 3Dview of the intera
tion, as 
an be seen respe
tively on Fig. 5.14(a) and Fig. 5.14(b). In thefollowing, we test the servoing method, by using this simulator. This allows us to verifyits validity on realisti
 ultrasound images. The method uses only the observed image andthe probe pose (robot odometry), also provided by the simulator, to 
ompute the 
ontrollaw. The latter is then applied on the virtual probe that moves a

ordingly. However, weneed to extra
t from the observed image the se
tion 
ontour, sin
e it is used to 
ompute thefeedba
k visual features and the intera
tion matrix, both involved in the 
ontrol law. 2Dultrasound images are, yet, very noisy and di�
ult to segment. Moreover, su
h extra
tionshould be not time 
onsuming, but it should instead be performed as fast as possible in aduration within the real-time servoing streaming rate. This latter 
onstraint is more di�-
ult to satisfy when this 
on
erns roboti
 appli
ations, be
ause of the high streaming rate
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Figure 5.12: Results obtained by employing the model-free visual servoing using
the curved line-based estimation for different values of the parameter β. The visual
features errors are in (cm, cm , rad, cm, cm), and the probe velocity is in (cm/s and
rad/s).
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Figure 5.13: Results obtained by employing the model-free visual servoing using
the curved line-based estimation for different values of the parameter ǫ0. The visual
features errors are in (cm, cm , rad, cm, cm), and the probe velocity is in (cm/s and
rad/s).
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(a) (b)

Figure 5.14: Simulating the interaction of a virtual 2D ultrasound probe with a real
ultrasound 3D volume - (a) A 3D view of the probe observation plane intersecting
(observing) the egg-shaped object - (b) Observed 2D ultrasound image.at whi
h the systems perform. If this 
onstraint is not satis�ed, the system performan
ewould be totally 
ompromised and, even more, its stability would be deeply threatened. Weuse the image pro
essing algorithm presented in [21℄ to segment and tra
k the se
tion in theultrasound image. This algorithm is based on a snake approa
h, and a polar parametriza-tion to model the 
ontour. It has shown to be relatively fast. Sin
e image pro
essing isbeyond the s
ope of this thesis, it is not detailed in this do
ument. Note that this algorithmis employed in all the simulations and experiments presented in the remainder of this 
hapter.The segmentation provides 
oordinates of points lying on image se
tion 
ontour C, as 
an beseen as instan
e on Fig. 5.15. These points, more pre
isely their image 2D 
oordinates, arethen used to 
ompute feedba
k visual features ve
tor s, on-line estimate normal ve
tor s∇F,and �nally 
ompute the 
ontrol law (5.2). Note however that, in this 
ase, the observedse
tion in the image is nearly an ellipse [see Fig. 5.14(b) for example℄. Consequently, we 
ande�ne only �ve independent visual features from the image. We sele
t them, similarly as inSe
tion 5.2.2 (and also Se
tion C.1.1 and C.1.2), s = (xg, yg, α,

√
a, l1). A

ordingly, pseudoinverse L+

s is employed in (5.2) instead on inverse L−1
s , sin
e matrix Ls is not square in this
ase.The task that has to be performed by the virtual probe 
onsists to automati
ally rea
h a�rst desired image starting from one di�erent, and then to rea
h a se
ond target. This al-lows us to verify that the re
ursive algorithm 
an re-estimate s∇F, after the observed imagehas not 
onveyed wealthy information during a while. Indeed, when the �rst target image
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Figure 5.15: A Screenshot of the graphical human-machine interface (top left), along
with a 3D view of the interaction between the virtual probe plane with a realistic
object (top middle), and also along with the observed image whose section is con-
toured with green and where the contour of the target image section is displayed in
red (right). Right the user would have pushed the button “servo” (round button at
top left), the servoing would be launched.would have been rea
hed, the probe would stand roughly motionless until the se
ond targetwould be sent to the 
ontroller. During that time span, the observed image is roughly thesame and, as 
onsequent, there would not be information to stimulate the re
ursive esti-mator. This might yield the 
ovarian
e matrix F[k] ill-
onditioned, thus 
ompromising theestimation. Moreover, the algorithm might be trapped and might not be pulsed even thoughnew images would then 
onvey wealthy information. However, thanks to stabilization term
(1 − β) β0 I introdu
ed both in the re
ursive relationships (4.9) and (4.16), it is expe
tedthat 
ovarian
e matrix F[k] is prevented from be
oming ill-
onditioned when there are notenough probe motions.The simulation s
enario 
onsists to �rst position the probe on an image [see the se
tion im-age 
ontoured in green, shown on Fig. 5.16(a)℄ totally di�erent from both the two targets.
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Then, it is moved in open-loop with 
onstant velo
ity v = ( − 0.4, 0, − 0.3, 0, 0, 0)(
m/s and rad/s) during the �rst NLS iterations, where the SLS algorithm is being appliedin order to obtain an initial estimate Θ0. Right after, the servoing is laun
hed where there
ursive algorithm takes pla
e instead of the SLS one. The re
ursive algorithm is solelyapplied throughout the servoing. The 
ontrol gain is set to λ = 0.7. The �rst initial esti-mate, before that the SLS algorithm is applied, is arbitrarily set to Θ[t0] = 0 (04 when usingthe straight line-based estimation, and 06 when either using the 
urved line- or the quadri
surfa
e-based estimation). The estimator parameters are tuned to β = 0.9, f0 = 5×1e3,
β0 = 1

20×f0

, ǫ0 =1e-10, and NLS = 20 iterations. The 
orresponding results are shown onFig. 5.16 and Fig. 5.17. We 
an see that the su

essive rea
hed images 
orrespond to the de-sired ones, and the visual errors 
onverge to zero. These results thus show the validity of the
urved line-base model-free visual servoing method on realisti
 ultrasound images. More-over, they show its robustness as 
an be 
learly seen how mu
h the images are of low quality.Due to the fa
t that the snake shook when tra
king the a
tual se
tion 
ontour, be
ause ofthe very noisy images and sin
e the se
tion is low 
ontrasted from the image ba
kground,the probe velo
ity has 
onsequently not been smooth, as 
an be seen on Fig. 5.16(f). Usinga more powerful 
ontour dete
tion would undoubtedly, and perhaps 
onsiderably, improvethe system behavior.Results obtained using the straight line- and the quadri
 surfa
e-based estimation methodsare respe
tively reported in Se
tion C.2.1 and C.2.2. As expe
ted (see for example Se
-tion C.1.2), the latter method again underperformed the two other methods.The trials presented so far were able to use only �ve independent visual features in thevisual servoing s
heme. This was due to the fa
t that the se
tion in the image was roughlyellipsoid, that is, symmetri
. In su
h 
ases, however, although the desired se
tion in theimage is rea
hed, the pose rea
hed by the probe would unlikely 
orrespond to the desiredpose (i. e., pose where the target image had been 
aptured). The reason is that when theimage is symmetri
 (i. e., the obje
t is symmetri
) a desired image 
an 
orrespond to anin�nity of probe poses. In fa
t, to be able to rea
h a desired pose using the image, at leastsix independent visual features are required to 
ontrol the 6 DOFs of the roboti
 system. Inthe next se
tion, we perform simulations on a virtual obje
t whi
h is grossly non-symmetri
,su
h that the six 
hosen visual features are all independent.



5.3. SIMULATION RESULTS WITH REALISTIC ULTRASOUND
IMAGES 151

(a) (b)

(c) (d)

0 500 1000 1500 2000
−1

−0.5

0

0.5

1
Visual features errors

 

 

e
1

e
2

e
3

e
4

e
5

(e)

0 500 1000 1500 2000
−0.6

−0.4

−0.2

0

0.2

0.4
Probe Velocity response (cm/s and rad/s)

 

 

v
x

v
y

v
z

ω
x

ω
y

ω
z

(f)

0 500 1000 1500 2000
−2

−1

0

1

2

3
Visual features

 

 

x
g

y
g α a1/2 l

1

(g)

Figure 5.16: Model-free visual servoing using the curved line-based estimation
method performed on a realistic ultrasound 3D volume. The visual features and their
corresponding errors are in (cm, cm, rad, cm, cm).
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Figure 5.17: Estimated Parameters Θ̂ corresponding to the results shown on Fig. 5.16.
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5.4 Simulation results with a binary objectThe 
urved line-based model-free visual servoing method is now tested on a virtual binaryobje
t, whi
h is grossly asymmetri
. The sele
ted features are s = (xg, yg, α,
√
a, l1, φ2).Note that in this 
ase Ls is a 6 × 6 matrix and, thus, a square matrix. Therefore, we 
andire
tly employ the 
ontrol law (5.2) as is. The task now 
onsists, besides of rea
hing thedesired image, to also rea
h the pose where that image had been 
aptured. We use for thesimulations the same software des
ribed in Se
tion 5.3, but, whi
h is now loaded with sli
eimages of the binary obje
t. We similarly load 100 sli
es.The s
enario is similar to that des
ribed in Se
tion 5.3. Two target images are su

essivelysent to the visual servoing system, where the latter target is ordered after the former wouldhave been automati
ally rea
hed. At initial time t0, the probe is positioned by the userat a pose di�erent from those where the two target images had been 
aptured. Then, itis moved in open-loop with 
onstant velo
ity v = (0, − 0.1, 0.12, 0, 0, 0) (
m/s andrad/s) for the �rst 100 iterations. During that time, the SLS algorithm is applied in orderto obtain initial estimate Θ0. Before the open-loop motion is performed, initial estimate

Θ̂[t0] is arbitrarily set Θ̂[t0] = 0. Note, however, that this open-loop motion yields the probe(and thus the a
tual image) more farther from both the �rst and se
ond targets. At theend of this motion, the 
orresponding pose represents that from whi
h the model-free visualservoing is laun
hed. As for the dete
tion and tra
king of the 
ontour, whi
h 
onsists toextra
t the 2D image 
oordinates of points lying on it, and whi
h is required to 
ompute the
ontrol law, we similarly use the snake dete
tion algorithm also introdu
ed in Se
tion 5.3.The 
ontrol gain is set to λ = 0.2. The estimator parameters are tuned to β = 0.8, f0 =1e6,
β0 = 1

20×f0

, ǫ0 =1e-10, and NLS = 20 iterations. The 
orresponding simulation results areshown on Fig. 5.18 and 5.19. They are quite satisfa
tory, sin
e the visual features errors
onverge to zero, exponentially. The two poses rea
hed by the probe 
orrespond also tothose where the �rst and se
ond target images had been 
aptured, respe
tively. The ob-tained positioning errors are (1.28×1e-3, -8.4×1e-4, -1.9×1e-4, 0.086, 0.378, 0.03)(
mand deg) for the former and (4.5×1e-4, 4.1×1e-6, -1.13×1e-5, -0.12, -0.22, 0.008)(
m anddeg) for the latter automati
 positioning. These results show the validity of the method inautomati
ally positioning the probe with respe
t to an observed obje
t. They also show therelevan
e of the sele
ted six visual features to 
ontrol the 6 DOFs of the system.
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Figure 5.18: Model-free visual servoing that uses the curved line-based estimation,
tested on a simulated binary object.
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Figure 5.19: Estimated parameters Θ̂ corresponding to the results shown on Fig. 5.18.
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Figure 5.20: Experimental setup - A 6 DOFs medical robot arm (right) actuating a 2D
ultrasound probe (left), which is interacting with an object immersed in a water-filled
tank. The observed image is displayed on the imaging system screen (middle).

5.5 Experimental resultsIn the following, we �nally present experimental results obtained with the model-free visualservoing that uses the line-based estimation. We employ 6 DOFs anthropomorphi
 robotarms. All the experiments have been 
ondu
ted with a medi
al robot arm similar to theHippo
rate roboti
 system [65℄, ex
ept the last one where a new a
quired robot has beenemployed as presented in Se
tion 5.5.5. The robot 
arries at its end-e�e
tor a 5-2 MHz 2Dbroadband US transdu
er (see Fig. 5.20 for example). The latter a
quires the images at astreaming rate of 25 frames/s. A blo
k diagram shown on Fig. 5.21 illustrates the di�erentsteps involved in the servoing along with the 
orresponding data �ow. The servoing methodhas been implemented in the C++ programming language under LINUX operating system,and the 
ontrol law is 
omputed using an ordinary personal 
omputer. We 
onsider �rsta simple 
ase of a spheri
al obje
t with whi
h the probe is intera
ting, the 
ase of a rela-tively symmetri
 obje
t en
losed in an ultrasound phantom, and then a more 
omplex 
aseof non-symmetri
al soft tissue obje
t. Both the spheri
al and soft tissue obje
ts are sepa-rately immersed in a water-�lled tank. The latter experiment allows us to experimentallytest the automati
 positioning with respe
t to an observed obje
t and, thus, the validityof the model-free visual servoing method in 
ontrolling the 6 DOFs of the roboti
 system.We 
on
lude these tests by 
arrying out an experiment where we take ba
k the ultrasound
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Figure 5.21: Architecture of the model-free servoing method, where the different
involved steps along with the corresponding data flow, up to hardware setups, are
presented.phantom. In the latter, in fa
t, two relatively-symmetri
 obje
ts 
an be observed in a samea
quired image. The roboti
 task of this experiment 
onsists in tra
king both the two se
-tions, instead of only one. We will show that by doing so the probe 
an be positionedand thus stabilized with respe
t to the two obje
ts, although the symmetry of ea
h one.Therefore, we provide a solution to address the problem of symmetry, pointed out in thisdo
ument.
5.5.1 Experimental results with a spherical objectThe roboti
 system is intera
ting with a ping-pong ball of 4 
m diameter. Note that wedo not use any prior knowledge about the ball in the servoing. No information about itsdiameter nor lo
ation is exploited. Sin
e the observed image is a sphere, we 
an de�ne onlythree independent visual features, as has been des
ribed in Se
tion 3.7.1. Therefore, thefeedba
k visual features ve
tor we sele
t is s = (xg, yg,

√
a), where its elements have already
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Figure 5.22: Experiment using the model-free visual servoing that uses the curved
line-based estimation, where the probe interacts with a spherical object -(a) Initial
image captured right before launching the servoing, where the actual section is con-
toured with green. The contour of the desired image section is displayed with red
and superimposed on the initial image - (b) Target image automatically reached after
visual servoing - (c) Visual features errors in (cm ,cm, cm) (d) Probe velocity applied
on the probe.been de�ned in terms of image moments by the relationship (3.48). The roboti
 task 
on-sists in �rst learning a desired image se
tion, then moving away the probe transdu
er fromthat target by applying open-loop motion with 
onstant velo
ity. During that motion, theSLS algorithm presented in Se
tion 4.3 is employed for only the �rst NLS = 60 iterations, inorder to obtain initial estimate Θ0. Right after, when the probe rea
hes a distant lo
ation,the servoing is laun
hed where the re
ursive least squares estimation algorithm presentedin Se
tion 4.1.2 is employed throughout the trial. The 
ontrol gain is set to λ = 0.1. As forthe estimator parameters, they are tuned to β = 0.8, f0 =1e6, β0 = 1

(20×f0)
, and ǫ0 = 1e-10.Note that in this experiment, we have employed the straight line-based estimation method.Corresponding experimental results are shown on Fig. 5.22. The visual features errors 
on-verge to zero, roughly exponentially, as 
an be seen on Fig. 5.22(
), and the rea
hed imagese
tion 
orresponds to the desired one as 
an be seen on Fig. 5.22(b). The robot behavior
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Figure 5.23: The probe transducer interacting with an ultrasound phantom.is 
orre
t, where smooth motions have been applied as 
an be seen on Fig. 5.22(d). Theseresults thus give a �rst experimental validation of the model-free visual servoing methodbased on line estimation.
5.5.2 Exprimental results with an ultrasound phantomThe model-free visual servoing method based on straight line estimation is tested on anultrasound phantom (see Fig. 5.23). In this 
ase the ultrasound transdu
er is in 
onta
twith the phantom and applies a 2 N for
e on it. For that, the velo
ity vz of the probeis 
onstrained by for
e 
ontrol. We noti
ed however that feature l1 was 
oupled with thearea, likely due to the relatively-symmetri
 shape in the image of the phantom obje
t. Wethus removed that feature from the visual features ve
tor, whi
h is now s = (xg, yg, α,

√
a).The estimator parameters are tuned to β = 0.95, f0 =1e8, and β0 = 1

20×f0

. The roboti
task 
onsists to automati
ally rea
h two su

essive target images; the se
ond target is sentto the 
ontroller after the �rst one would have been rea
hed. Corresponding results areshown on Fig. 5.24. The visual features errors 
onverge to zero roughly exponentially [seeFig. 5.24(e)℄. Both the two target images have been rea
hed as 
an be seen respe
tively onFig. 5.24(b) and 5.24(d). The motions of the probe are also 
orre
t as 
an be noti
ed fromthe applied probe velo
ity, shown on Fig. 5.24(f).
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Figure 5.24: Experimental results with an ultrasound phantom using the model-free
visual servoing method based on straight line estimation (the current contour is in
green and the desired one in red): (a) Initial and first target image - (b) First target
reached after visual servoing - (c) A second target image is sent to the robot - (d) The
second target image is reached after visual servoing - (e) Visual error time response
(cm, cm, rad, cm)- (f) Control velocity applied to the probe.
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5.5.3 Ex-vivo experimental results with a lamb kidneyWe test the model-free visual servoing method based on straight line estimation on a mo-tionless lamb kidney immersed in the water-�lled tank. Similarly, the roboti
 task 
onsiststo automati
ally rea
h two su

essive target images. The feedba
k visual features ve
toris s = (xg, yg, α,
√
a, l1). We have not used six visual features be
ause of the symmetry ofthe se
tion in the image. The estimator parameters are tuned to β = 0.8, f0 =1e5, and

f0 = 1
20×f0

. Corresponding results are shown on Fig. 5.25. The visual features errors 
on-verge to zero [see Fig 5.25(e)℄. Both to the two rea
hed images 
orrespond to the desiredones, as 
an be seen respe
tively on Fig. 5.25(b) and 5.25(d). The robot behavior is 
orre
tas 
an be noti
ed from the relatively smooth applied probe velo
ity shown on Fig. 5.25(f).These results therefore experimentally validate the model-free servoing method on real softtissue.Note that in the experiments presented above, less than six visual features have beenused. As su
h, the pose rea
hed by the probe would unlikely 
orrespond to that where thedesired image had been 
aptured, as already highlighted in Se
tion 5.2.1. In the following,we present experimental results obtained with six visual features at least.
5.5.4 Experimental results with a motionless soft tissueWe test the servoing method on a grossly asymmetri
 gelatin-made soft tissue obje
t. Su
hasymmetry yields the six visual features independent, whi
h allows to 
ontrol the 6 DOFsof the roboti
 system and, thus, to automati
ally position the probe with respe
t to theobje
t. In other words, the probe should automati
ally re
over the pose with respe
t tothe obje
t where the desired image had been 
aptured. The feedba
k visual features are
s = (xg, yg, α,

√
a, φ1, φ2). Note that we used the 
urved line-based estimation method.As before, the roboti
 task 
onsists in �rst a
quiring a desired image, then moving away theprobe from the 
orresponding lo
ation where this image had been 
aptured. The motionis performed during 70 iterations in open-loop with 
onstant velo
ity. During this movingaway, the SLS algorithm is applied for the �rst NLS = 60 iterations. This allows to obtaininitial estimate Θ0. Right after the re
ursive algorithm takes pla
e, instead of the SLS one,and then is solely applied throughout the trial. The 
ontrol gain is set to λ = 0.05, andthe estimator parameters are tuned to β = 0.8, f0 =1e6, β0 = 1

20×f0

and ǫ0 =1e-10. The
orresponding experimental results are shown on Fig. 5.26. The six visual errors 
onvergeto zero, roughly exponentially, as 
an be seen on Fig. 5.26(
), and the rea
hed image se
-tion 
orresponds to the desired one as 
an bee seen on Fig. 5.26(b). Moreover, the probeautomati
ally 
ame ba
k quite near the pose where the desired image had been 
aptured
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Figure 5.25: Experimental results with a lamb kidney using the model-free visual
servoing method based on straight line estimation (the current contour is in green
and the desired one in red): (a) Initial and first target image - (b) First target reached
after visual servoing - (c) A second target image is sent to the robot - (d) The second
target image is reached after visual servoing - (e) Visual error time response (cm, cm,
rad, cm, cm)- (f) Control velocity applied to the probe.
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Figure 5.26: Experimental results obtained with the model-free visual servoing
method based on curved line estimation, where the probe is interacting with a soft
tissue object that possesses asymmetric regions - (a) Initial image captured right
before launching the servoing, where the actual section is contoured with green. The
contour of the desired image section is displayed with red and superimposed on the
initial image (b) Desired image reached after visual servoing - (c) Visual features
errors in (cm, cm, rad, cm, unit, 10×unit) - (d) Probe Velocity - (e) Trajectory
performed by the probe, where that obtained during the open-loop motion is plotted
in magenta and that obtained during the servoing is plotted with green. The position
where the desired image had been captured in indicated with the read stared point.
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[see Fig. 5.26(e)℄. The 
orresponding obtained positioning errors are (0.4, 0.6, -0.2) mm and(0.05, -0.7, -0.8) degree respe
tively for the position and the θu rotation2. The robot behav-ior is 
orre
t, where smooth motions have been performed as 
an be seen on Fig. 5.26(d),despite the noisy images. Thus, these results experimentally validate the servoing methodfor both rea
hing a desired ultrasound image and re
overing the lo
ation where that imagehad been 
aptured.
5.5.5 Tracking two targetsIn 
ase the observed obje
t is not asymmetri
, it is still possible to stabilize the probe withrespe
t to it. We propose two solutions for that. They are des
ribed in Chapter 6. Letus 
onsider here the se
ond solution, that 
onsists to rather 
onsider a 
ouple of targetsinstead of only one, as was so far 
onsidered in this work. As observed obje
t, we take ba
kthe ultrasound phantom used in the experiment reported in Se
tion 5.5.2. We have seenthat when 
onsidering only one target se
tion image, it is unlikely that the probe retrievesthe pose where that target image is 
aptured and thus it would not be possible to stabilizethe probe with respe
t to the phantom (obje
t). However, in this experiment we 
onsidertwo target se
tions, as 
an be seen on Fig. 5.27(i). From ea
h observed se
tion, �ve visualfeatures are 
omputed. As a result, the system is fed ba
k with 10 visual information. Notehowever that velo
ity 
omponent vz is servoed by for
e 
ontrol in order that the probe exertsa 
ouple of newton for
e along its Y axis (see Fig. 3.5 and 3.7 for the probe axes 
on�g-uration). The phantom is put on a manually-driven tray. The task 
onsists to tra
k thetwo target se
tion images when the phantom is arbitrarily and manually moved. Note thatin 
ontrast to the above presented results, we employed in this experiment a new a
quired6 DOFs anthropomorphi
 robot arm. Corresponding experimental results3 are shown onFig. 5.27. We 
an see that the robotized probe automati
ally tra
ks the moving ultrasoundphantom, and stabilizes with respe
t to it. The observed image se
tions superimpose onthe target ones [see Fig. 5.27(i)℄. Note that sin
e we used a basi
 
ontrol law, the systemresponse is relatively slow and presents delays. Employing a tra
king-dedi
ated 
ontrol law,the system rea
tivity would in
rease. We have not estimated and thus not predi
ted thephantom motions to then eventually forward the information in the robot motions 
ontrol.In this work, only the observed image along with the robot odometry is used to 
ompute the
ommands to 
ontrol the robot. However, estimating the phantom movements, as using forexample a Kalman �lter, the results are expe
ted to be better. Note also that we have been

2θu representation is defined by a unitary vector u, representing the rotation axis, and rotation
angle θ around this axis.

3The corresponding video can be found at http://www.irisa.fr/lagadic/team/old/Rafik.Mebarki-
eng.html.



5.5. EXPERIMENTAL RESULTS 165

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Figure 5.27: Tracking two target sections: sequences taken during the tracking - (i)
Observed 2D ultrasound image. The two observed cross-sections are contoured with
green, while the contours of their respective targets are in red. The contour of each
observed cross-section superimposes on its corresponding target.
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onstrained by the 
omputational time, sin
e the image pro
essing takes a large amount ofresour
es. To 
ope with that, we have used only 50 image points to 
hara
terize the 
on-tour of ea
h observed se
tion. As so, the 
ontour is not enough sub-sampled, whi
h 
ould
ompromise the a

ura
y of both the normal ve
tor estimation and the 
omputed 
ommandvelo
ity. We noti
ed shakiness of the snake during the phantom displa
ements.
5.6 ConclusionWe presented new visual servoing methods to automati
ally position a robotized 2D ul-trasound probe in order to rea
h and maintain desired 
ross-se
tion images. Firstly, wepresented simulation results that have shown the validity of the model-based visual servoingmethod, where the obje
t 3-D model is required. The latter 
onstraint, as emphasized,
onsiderably limits visual servoing based on ultrasound images. Thanks, however, to thenormal ve
tor estimation methods, we developed model-free visual servoing methods thatover
ome that 
onstraint. Indeed, these methods do not require any prior knowledge of theshape of the observed obje
t, its 3D parameters, nor its lo
ation in the 3D spa
e. They in-stead on-line estimate normal ve
tor s∇F to then employ it in the 
ontrol law. We presentedthree di�erent model-free servoing methods, a

ording to the geometri
al primitive they usefor the estimation. We distinguished servoing methods that use respe
tively straight line-,
urved line-, and quadri
 surfa
e-based estimation method. In this 
hapter, we reported sim-ulation results obtained with method based on 
urve estimation, while those obtained withthe straight line- and the quadri
 surfa
e-based methods are presented in Appendix C. Theresults showed the validity of the two methods based on straight and 
urved line primitives.They suggested that these two methods outperform the quadri
 surfa
e-based method. Thelatter one, indeed, showed to be 
onsiderably less robust to image noise, and has failed forimportant probe displa
ements. For small displa
ements, the probe velo
ity was neverthe-less too shaky. Su
h performan
es were in fa
t expe
ted from the simulations presented inChapter 4. In those simulations, we noti
ed that the 
urved line-based estimation showedto be more e�e
tive. Then, we reported experimental results where we have tested themodel-free visual servoing based on line estimation. They have been obtained with botha spheri
al obje
t, an ultrasound phantom, a lamb kidney, and a relatively 
omplex softtissue obje
t. The probe automati
ally rea
hed the desired 
ross-se
tion images. Moreover,it automati
ally 
omes ba
k quite near to the pose where the desired image is 
aptured onthe gelatin-made soft tissue obje
t. Finally, 
onsidering two target se
tions simultaneously,on the the ultrasound phantom, the latter has been automati
ally tra
ked by the robotizedprobe. All those results thus experimentally validated the model-free visual servoing wepropose in this dissertation. Consequently, and more pre
isely, they validate both the the-
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oreti
al foundations developed in Se
tion 3, the normal ve
tor on-line estimation methodpresented in Chapter 4, and the sele
tion of feedba
k visual features s in the present 
hapter.





Chapter 6

ConclusionsThe resear
h work presented in this dissertation lies mainly within the �eld of image-basedvisual servoing. It investigated the exploitation of 2D ultrasound images for automati
guidan
e and thus positioning of robotized 2D ultrasound probes with respe
t to observedsoft tissues. The s
enario 
onsists of a 2D ultrasound probe 
arried and thus a
tuated bythe end-e�e
tor of a general medi
al robot arm. The latter is servoed in velo
ity thanksto the visual servoing s
hemes we developed and presented in this do
ument. The 
on-trol law of the visual servoing s
heme indeed 
omputes the velo
ity that the robot has toa
hieve in order to rea
h the desired ultrasound image. As highlighted, the 
ontrol law ofan image-based visual servoing s
heme requires the intera
tion matrix related to the feed-ba
k visual features. The intera
tion matrix, in fa
t, relates the di�erential 
hanges of thevisual features to di�erential displa
ements (
on�guration 
hanges) of the robot. However,the analyti
al form of su
h matrix was not available for 2D ultrasound imaging systems,due to the fa
t that the latter intera
t with their environment with a manner that was, sofar (before our works), 
hallenging to model. These systems 
ompletely di�er from opti
alsystems, for instan
e, whose use in roboti
 automati
 guidan
e is the subje
t of extensiveinvestigations in the �eld of visual servoing. In parti
ular, for opti
al imaging systems, asperspe
tive 
ameras for example, the intera
tion matrix related to di�erential 
hanges ofthe image points 
oordinates is already available. From that matrix, that related to di�er-ent visual features 
an be derived. It was not the 
ase for 2D ultrasound imaging systems.Another main 
hallenge when dealing with these systems 
onsists in the fa
t that the imagefeature variations strongly depend on the 3-D shape of the obje
t with whi
h the probeis intera
ting. The 
hallenge 
orresponds mainly to a mathemati
al modeling problem. A
ouple of investigation works, that have been presented in Chapter 2, provided the intera
-tion matrix for only a simple 3-D geometri
al primitive, namely 3-D straight line. The workpresented in this dissertation addressed all those 
ited 
hallenges. We developed, indeed,general methods that endow the the roboti
 system with the 
apability of dealing withobje
ts of whatever shapes, in order to automati
ally position the probe with respe
t to
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them. Doing so required mainly to develop new theoreti
al foundations in term of modelingte
hniques. Our 
ontributions 
an be summarized as follows:(a) We have proposed to use visual features based on image moments as feedba
k forvisual servoing s
hemes, to automati
ally 
ontrol the robot from the observed 2Dultrasound images. This dire
tion seems judi
ious sin
e the image moments show tobe relevant in 
ase of 2D ultrasound images. Indeed, 
omputing the image momentsneeds only a global segmentation of the se
tion in the image, and thus does notrequire mat
hing of points in the image ex
ept for the se
tion in the image. This isof great interest when dealing with 2D ultrasound sin
e, as des
ribed in the presentdo
ument, the points of the image do not mat
h to those of the pre
edent image. Thisis explained by the fa
t that the observed points are not the same, in 
ontrast to opti
alsystems for example. A preliminary exploration work [54℄ validated the relevan
e ofour 
hoi
e for image moments. However the intera
tion matrix related to imagemoments was approximated. Moreover, the 
onsidered observed obje
t is assumedgrossly ellipsoidal, and its 3-D parameters are assumed roughly known. This hasbeen addressed and presented in this dissertation, where the exa
t form of intera
tionmatrix Lmij
, related to image moment mij , has been modeled;(b) To obtain the intera
tion matrix, its exa
t form, more pre
isely, we �rst highlightedthat a key solution would be to 
onsider only the image velo
ity of the points lying onthe 
ontour of the se
tion in the image (the 
ontour and the se
tion in the image havebeen respe
tively denoted by C and S). The image moments time variation, thanksto the Green's theorem, 
an be formulated as fun
tion of the velo
ity of those 
ontourpoints. The obje
tive then 
onsisted to obtain su
h image velo
ity;(
) The image 
ontour points indeed 
orrespond to points sliding on the surfa
e of theobserved obje
t. We have shown that su
h points 
an satisfy two 
onstraints, that
onsist in the relationships (3.20) and (3.22). Ea
h 
onstraint 
orresponds to a s
alarmathemati
al relationship. Using these two 
onstraints, we then have been able tomodel an exa
t form of the image velo
ity of the 
ontour points. The formulae isgiven by the relationship (3.27) a

ording to (3.28). Su
h image velo
ity, denoted

(ẋ, ẏ), is expressed as fun
tion of velo
ity v of the robot end-e�e
tor (or of frame
{Rs} atta
hed to the robotized probe);(d) Using the image velo
ity relationship, we �nally derived the exa
t form of intera
tionmatrix Lmij

, as given by the relationship (3.34) a

ording to (3.35). It was noti
edthat the intera
tion matrix requires the knowledge of the image 
oordinates of thepoints lying on the image 
ontour, and also ve
tor s∇F normal to the surfa
e ofthe observed obje
t at ea
h of the 
onsidered 
ontour points. The obtained results
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have been veri�ed on simple 3-D geometri
al primitives, like spheres and 
ylinders,for 
ertain 
on�gurations. We then have designed a visual servoing s
heme where thefeedba
k visual features are 
ombinations of image moments. Six relevant indepen-dent visual features have been proposed to 
ontrol the 6 DOFs of the roboti
 system.A 
lassi
al 
ontrol law has been employed in the servoing s
heme. The 
ontrol lawrequires the intera
tion matrix, or its estimate, at ea
h iteration. If the matrix isexa
t, the visual features errors are expe
ted to 
onverge to zero exponentially. Thislatter 
hara
teristi
 has been exploited to verify again the exa
titude of the inter-a
tion matrix. To do so, we performed simulations where the s
enario 
onsisted ofa virtual 2D ultrasound probe that intera
ts with an ellipsoidal obje
t. This obje
twas assumed exa
tly known. Its half length values an its pose are used to 
omputethe a
tual values of the image 
oordinates and the normal ve
tor, that are used to
ompute the 
ontrol law. We have noti
ed that, indeed, as expe
ted, the feedba
kvisual features errors 
onverge to zero exponentially [e. g. Fig. 5.4(f)℄. This validates,on
e again, the 
orre
tness of the developed intera
tion matrix;(e) Another problemati
, as pointed out above, 
onsisted in the fa
t that the variationsof the image information depend strongly on the 3-D shape of the observed obje
t.This 
an be noti
ed from the involvement of s∇F in elements Kx and Ky, given by(3.28), that are required in the expression of the image point velo
ity and, hen
e, ofintera
tion matrix Lmij
. Computing this normal ve
tor would have suggested the useof a 3-D pre-operative model of the observed obje
t. Su
h resolution however wouldhave greatly hindered the visual servoing, where the 3-D model has to be registeredto the obje
t at ea
h iteration; besides that the a

ura
y of the extra
ted normalve
tor would be dire
tly and heavily based on that of the registered 3-D model.Our work over
ame su
h limitations, where we proposed model-free visual servoingmethods that do not require any prior information about the shape, 3-D parameters,nor 3-D lo
ation (position and orientation) of the observed obje
t. To do so, we havedeveloped estimation methods to on-line estimate the normal ve
tor. We proposedthree estimation te
hniques:

· straight line-based estimation;
· 
urved line-based estimation;
· and quadri
 surfa
e-based estimation.Even though that opting for quadri
 surfa
e primitives for the estimation seems themore natural dire
tion that one 
ould take, we have noti
ed from di�erent performedsimulations that the quadri
 surfa
e-based estimation 
onsiderably underperformedthe �rst two methods, that rather well performed in di�erent 
onditions. In fa
t, weexpe
ted su
h di�eren
e of out
omes. This 
an be explained by the fa
t that the
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two �rst methods do not estimate in whole the normal ve
tor but only a part of it.Indeed, these two te
hniques de
ompose a normal ve
tor into two tangent ve
tors.The former tangent ve
tor 
an be extra
ted from the image, while only the latterneeds to be estimated. Doing so, we spare the obtained normal ve
tor value the e�e
tof a part that would add errors if the normal ve
tor would have to be estimated inwhole; thus only the errors on the estimation of the se
ond tangent ve
tor have animpa
t on the normal ve
tor. Moreover, �tting a line to a set of su

essive pointsseems less 
onstrained than �tting a surfa
e to a 
loud of points. Experiments havebeen 
ondu
ted, where we tested the model-free visual servoing methods that use theline-based estimation. The 
orresponding results have experimentally validated themethods.Thus, the previous 
ited 
hallenges that were fa
ed and that hindered roboti
s automati
guidan
e from 2D ultrasound images are now addressed thanks to the theoreti
al founda-tions and the methods we have presented in this do
ument. We have provided through thisthesis basi
s on whi
h new investigation and thus developments 
an now be undertaken.Nevertheless, some of the proposed methods 
ould be improved. It was proposed in thisdissertation to employ a stabilized re
ursive least squares algorithm to perform the estima-tion of s∇F. It would be interesting instead to test a Kalman �lter (KF), or an ExtendedKalman �lter (EKF), in order to verify whi
h algorithm gives the best out
ome in terms ofestimation a

ura
y, speed, and robustness. Let us point out that in [86℄ it was 
on
ludedthat an EKF estimator outperformed a least squares one in terms of a

ura
y and speedin predi
ting periodi
 motions; mimi
king mitral valve motions for heart surgery. The 3-Dultrasound imaging was employed in that work. Another point is that we have performedsimulations and experiments mainly on motionless observed obje
ts. Dealing with mov-ing obje
ts 
ould be 
onsidered with the developed methods as is. This in fa
t 
ould bete
hni
ally addressed by making the roboti
 system performing at high sampling streamingrates. Indeed, a
quiring the images and then ordering the 
ommand velo
ity at a su�
ientlyhigh streaming rate, su
h that the motions of the obje
t between two samples 
ould be ne-gle
ted, the estimation algorithm would be insensitive to the obje
t motions. The modeledintera
tion matrix is also 
on
erned if moving obje
ts are 
onsidered, but this again 
ouldbe similarly addressed. However, if the motions of the observed obje
t be
ome faster withregards to the streaming rate, su
h that its displa
ements between two a
quired images 
annot be negle
ted, the proposed methods might fail. That is the reason why this should befurther investigated. Nevertheless, we think that the 
on
epts we have proposed and usedin the modeling of the intera
tion matrix and in the estimation of the normal ve
tor 
an betaken ba
k and adapted for the 
ase of moving obje
ts.
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We have proposed six visual features to 
ontrol the 6 DOFs of the roboti
 system and thusto automati
ally position the probe at a desired 
ross-se
tion of the observed obje
t. The2D ultrasound probe 
an automati
ally 
ome ba
k to the pose (position and orientation)where a desired image is 
aptured. This 
an be a
hieved provided that obje
t is asymmet-ri
. If it is not the 
ase, a desired image 
an 
orresponds to an in�nity of 
ross-se
tions(sli
es), and 
onsequently the probe might fail to automati
ally retrieve the 
orrespondingpose. Nevertheless, su
h issue might be addressed by employing not only one 2D ultrasoundprobe but, instead, a 
ouple of probes; as example to illustrate, two orthogonal probes 
anbe employed. Both probes should of 
ourse be a
tuated by the same roboti
 system. Ea
ha
quired image from ea
h of the probes would provide di�erent se
tion and also would targeta di�erent 
ross-se
tion. The task would then 
onsist to rea
h both desired 
ross-se
tions.In fa
t, the whole information provided by all the probes should be enough to extra
t atleast six independent visual information. This 
an be a�orded by means of, for example,a selection matrix using the task function approach [68℄. When all the probes would rea
htheir respe
tive target 
ross-se
tions, the 
onsidered probe would thus 
learly be positionedat the desired 
ross-se
tion that we are interested in; the other probes with the imaged
ross-se
tions are only 
onsidered to add visual information, no more. A se
ond solution,whi
h is a dual solution of the above-mentioned one, would be to rather 
onsider di�erenttarget se
tions in the same image, instead of only one se
tion. Indeed, we have shown inSe
tion 5.5.5 that by 
onsidering two target se
tions the robotized probe has been able tostabilize with respe
t to a moving ultrasound volume, the 3-D phantom in this 
ase.Another issue is that if the shape (
losed surfa
e) of the obje
t possesses lo
al minima, thevisual servoing method might be trapped by these latter, in 
ase the probe traje
tory woulden
ounter them. A resolution that 
ould be proposed 
onsists in using path of images thatwould su

essively guide the probe up to the desired image of the target 
ross-se
tion thatwe are interested in. Su
h resolution 
ould be also used to guide the probe from relativelyfar lo
ations. As for the sele
tion of the six visual features, we suggested to use φ1 [given bythe relationship (5.8)℄ as �fth feature, if the image noise is not 
onsiderably high to a 
ertainextent that would 
ompromise the system stability. If it is not the 
ase (i. e., the noise ishigh) we re
ommended to instead use l1 [relationship (5.11)℄ as �fth feature. This latterindeed showed to me more robust to image noise. The advantage of φ1 is that it has rathershowed to yield the probe motions more de
oupled. The 
hoi
e between φ1 and l1 is thussubje
t to a 
ompromise between motion de
oupling and robustness. However, it wouldbe ni
e to �nd, or to investigate for, a feature that 
ould well satisfy both the two traits:de
oupling and robustness. The same applies for the sixth feature, where we proposed φ2.In a pra
ti
al s
enario, the probe is in 
onta
t with the patient skin. Therefore, the inter-a
tion for
es need to be 
ontrolled. In some of the experiments we have 
ondu
ted, where



174

the probe was in 
onta
t with the soft surfa
e of the ultrasound phantom, we have 
on-strained probe velo
ity 
omponent vy with a proportional for
e 
ontroller, in su
h a way theprobe 
ould exert a 
ouple of newtons for
e along its Y axis. However, su
h an approa
his rudimentary, sin
e one DOF of the system is no longer used and thus lost by the visualservo 
ontroller to 
ompensate for all in-plane and out-of-plane motions. As su
h, somemotions 
ould no longer be 
ompensated to keep the target in the image. Moreover, in
ase the probe is oriented with respe
t to the 
onta
t surfa
e, the for
e along Y axis wouldnot 
orrespond to the amount of exerted for
es on that surfa
e. Therefore, 
ontrolling vzwould no longer allow to 
ontrol all the 
onta
t for
es. That is the reason why we proposeto investigate for a more sophisti
ated approa
h. However, we provide a dire
tion for this.A system where visual servoing and for
e 
ontrol share the 
ommand of the robot motionsshould be 
onsidered. The task function approach again 
ould be useful, where the 
ontrollaw 
an be 
omputed based on the priority given to the fun
tions to a
hieve: vision or for
e.To do so, we propose to 
onsider at least two modes. The �rst mode would 
orrespond tothe 
ase where the exerted for
es are below a pre-�xed threshold and thus are 
onsideredno dangerous for the patient body, while the se
ond mode would 
onsist in the 
ase wherethese for
es are above the threshold. In the �rst mode, the priority should be given to thevisual servoing rather than to the for
e 
ontrol. As for the se
ond mode, the priority shouldbe inverted, that is, giving more importan
e to 
ontrol the for
es than keeping the target inthe image. The system of 
ourse should swit
h to either modes depending on the amountof exerted for
es with respe
t to the threshold.Dealing with deformable obje
ts (mimi
king soft tissue deformations) should also be inves-tigated in the future works. Doing so seems to be a strong 
hallenge. A preliminary keysolution would be to order the roboti
 system with variable desired image, and not withstati
 one as it is the 
ase for most of visual servoing s
hemes. In 
ase the obje
t deformsperiodi
ally, the se
tion in the image would also periodi
ally vary. Consequently, the vari-ation of the 
ross-se
tion and thus of the se
tion in the image 
ould be predi
ted. Theobje
tive would be then to send to the visual servoing s
hemes the predi
ted images of thedesired 
ross-se
tion. If the images are well predi
ted and syn
hronized with respe
t to theobje
t deformations, we expe
t that the 2D US probe 
ould be automati
ally positioned atthe desired 
ross-se
tion of the observed obje
t. It would be likely assumed that the obje
tdeforms homogeneously, su
h that shear deformations would not be 
onsidered.Finally, the methods developed through this thesis have brought basi
s on whi
h, weexpe
t, new te
hniques 
ould now be developed. These theoreti
al foundations 
ould alsobe 
ombined with other di�erent te
hniques dedi
ated for roboti
s 
ontrol. Although themethods we developed fo
used on roboti
 guidan
e using 2D ultrasound images, they mightbe extended to MRI and X-ray. These two latter modalities provide indeed, like ultrasound,
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full information in their observation plane, and thus both of these three modalities intera
twith their environments by the same manner. Therefore the modeling methods developedin this thesis 
an apply to the two latter modalities. Ultimately, the imaging modalitiesdis
ussed in this thesis might be 
omplementary and thus exploited in a synergisti
 manner.





Appendix A

Some fundamentals in coordinate
transformations

A.1 Scalar productLet ve
tors a and b be of same dimension n de�ned respe
tively by a = (a1, a2, ..., an) and
b = (b1, b2, ..., bn). The s
alar produ
t a · b of a and b is de�ned by:

a · b = b · a = a⊤b = b⊤a =
k=n
∑

k=1

ak bk (A.1)If a and b are orthogonal, we have:
a · b = 0 (A.2)

A.2 Skew-symmetric matrixThe skew-symmetri
 matrix [a]× asso
iated to ve
tor a = (ax, ay, az) is given by:
[a]× =







0 −az ay

az 0 −ax

−ay ax 0






(A.3)The following property 
an be dedu
ed:

[a]⊤× = −[a]× (A.4)
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Figure A.1: Points projection

A.3 Vector cross-productLet a and b be ve
tors. Their 
ross-produ
t 
an be written as:
a× b = [a]× b (A.5)with the following property:
a× b = − b× a (A.6)The resulted ve
tor is orthogonal to the plane formed by a and b. This 
an be written bythe following s
alar produ
t:

(a× b) · a = (a× b) · b = 0 (A.7)If a and b are parallel, we therefore have:
a× b = 0 (A.8)
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A.4 Points ProjectionLet P a point of the 3-D spa
e, where {Ra} and {Rb} are 3-D 
artesian frames (see Fig A.1).The 
oordinates of P in the frame {Ra} are given by the ve
tor position aP = (ax, ay, az).Let also, aRb be the rotation matrix de�ning the orientation of the frame {Rb} with respe
tto the frame {Ra}, and atb be the ve
tor position de�ning the origin of {Rb} in the frame
{Ra}. Therefore the 3-D 
oordinates bP = (bx, by, bz) of P in the frame {Rb} 
an beobtained as follows:

bP = aR⊤
b ( aP − atb) (A.9)

A.5 Rotation matrix propertiesA rotation matrix is an orthogonal matrix. Considering a rotation matrix R, the orthogo-nality is expressed as follows:
R⊤ = R−1 (A.10)that 
an be also written by:

R⊤ R = RR⊤ = I3 (A.11)A rotation matrix possesses the following property:
aRb = bR−1

a = bR⊤
a (A.12)



Appendix B

Calculus

B.1 Integral of trigonometric functionsWe provide in this se
tion 
al
ulus results of some trigonometri
 fun
tions integration thathas been used in Se
tion 3.7.1.Consider a real s
alar θ. We obviously have:
∫ 2π

0
sin θ dθ = 0 (B.1)

∫ 2π

0
cos θ dθ = 0 (B.2)Consider now the 
omplex entity eiθ, of the s
alar θ, and its 
onjugate e−iθ, where i is theimaginary unit su
h that i2 = −1. Theses two 
omplex entities 
an be written:

{

eiθ = cos θ + i sin θ

e−iθ = cos θ − i sin θ
(B.3)From whi
h it 
an be dedu
ed:

{

cos θ = 1
2 (eiθ + e−iθ)

sin θ = 1
2 i (eiθ − e−iθ)

(B.4)
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The above relationship is used to 
al
ulate �rst the integral of the fun
tion sin2 θ. Thesame approa
h 
an then be followed to 
al
ulate the integral of the remaining fun
tions,presented in the following, that we need in Se
tion B.2. We have from (B.4):
sin2 θ = −1

4

(

e2iθ + e−2iθ − 2
)

(B.5)Integrating the above relationship gives:
∫ 2π

0
sin2 θ dθ = −1

4

[

1

2i

(

e2iθ − e−2iθ
)

− 2θ

]2π

0

(B.6)whi
h yields:
∫ 2π

0
sin2 θ dθ = π (B.7)Similarly following the above approa
h, we have:

∫ 2π

0
cos2 θ sin θ dθ = 0 (B.8)

∫ 2π

0
cos θ sin2 θ dθ = 0 (B.9)

∫ 2π

0
cos2 θ sin2 θ dθ =

π

4
(B.10)

∫ 2π

0
sin3 θ dθ = 0 (B.11)

∫ 2π

0
cos θ sin3 θ dθ = 0 (B.12)

∫ 2π

0
sin4 θ dθ =

3π

4
(B.13)
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B.2 Calculus of nij, spherical caseIn this se
tion, we express in a simple and appropriate form the elements n20, n11, and n02given by (3.51). From the obtained equation (3.44) that states the relationship of pointslying on the image 
ontour in 
ase of sphere shaped obje
t, we 
an set the following 
hangeof 
oordinates:
{

x = tx + r Cθ

y = ty + r Sθ
0 6 θ < 2π (B.14)with Cθ = cos(θ) and Sθ = sin(θ), where θ represents the angle in the image.Sin
e tx = xg and ty = yg, the above relationship system be
omes:

{

x = xg + r Cθ

y = yg + r Sθ
(B.15)The image moment mij 
an be formulated as a line integral around the image 
ontour C,as given by (3.32). We use this relationship to 
al
ulate the se
ond order image moments

m20, m11 and m02.Applying (3.32), the moment m20 is thus expressed as:
m20 = −

∮

C
x2 y dx (B.16)

= −
∫ 2 π

0
x2 y

dx

dθ
dθ (B.17)substituting x and y with their 
orresponding expressions given by (B.15), we have:

m20 = r3 yg

∫ 2π

0
Cθ2 Sθ + r2 x2

g

∫ 2π

0
Sθ2 + 2r3 xg

∫ 2π

0
CθSθ2 + r4Cθ2Sθ2 (B.18)then using the result of some trigonometri
 integrations provided in Appendix B.1, thenre
alling that the area a of the image se
tion is a = πr2, we obtain

m20 = a(x2
g + r2/4) (B.19)repla
ing, �nally, this in (3.51), n20 = m20/a, yields:
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n20 = (x2
g + r2/4) (B.20)Similarly for the moment m11, it 
an be expressed as follows:

m11 = −1

2

∮

C
x y2 dx (B.21)

=

∫ 2π

0
x y2 dx

dθ
(B.22)substituting x and y with their respe
tive expressions given by (B.15) yields:

m11 = 1
2 r

4
∫ 2π
0 CθSθ3dθ + 1

2 r
3 xg

∫ 2π
0 Sθ3dθ +

r3 yg

∫ 2π
0 CθS2θ dθ + r2 xg yg

∫ 2π
0 Sθ2dθ +

1
2 r

2 y2
g

∫ 2π
0 Cθ Sθ dθ + 1

2 r xg y
2
g

∫ 2π
0 Sθ dθ

(B.23)

after using 
al
ulus results of Appendix B.1, we obtain m11 as follows:
m11 = a xg yg (B.24)whi
h yields sin
e n11 = m11/a:
n11 = xg yg (B.25)We follow the same steps for m02. It 
an be expressed by:

m02 = −1

3

∮

C
y3 dx (B.26)

= −1

3

∫ 2π

0
y3 dx

dθ
dθ (B.27)substituting y with its expression given by (B.15), we have:

m02 =
1

3
r4
∫ 2π

0
Sθ4dθ + r3 yg

∫ 2π

0
Sθ3dθ + r2 y2

g

∫ 2π

0
Sθ2dθ (B.28)
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we �nd:
m02 = a(y2

g + r2/4) (B.29)and thus:
n02 = (y2

g + r2/4) (B.30)



Appendix C

Supplementary simulation results
of model-free visual servoing

C.1 Model-free servoing on the ellipsoid

C.1.1 Using the straight line-based methodWe use the straight line-based te
hnique, des
ribed in Se
tion 4.1.1 to on-line estimate thenormal ve
tor to the obje
t surfa
e, namely the surfa
e of the ellipsoidal obje
t in this
ase. The estimation is performed at ea
h of the 400 
ontour points. When the servoing isapplied, the new a
quired image with its extra
ted 
ontour points update the estimation.The new 
omputed value of the normal ve
tor then is used to 
ompute the 
ontrol law.An open-loop motion with 
onstant velo
ity is applied to the probe before the servoing islaun
hed. During that motion, the SLS algorithm des
ribed in Se
tion 4.3 is �rstly applied.This allows us to obtain an initial estimate Θ0, whi
h is expe
ted more 
loser to the a
tualone Θ. This aims to spare the robotized probe possible ba
klash, that might result fromwrong estimation of the normal ve
tor in the 
ontrol law. Right after the SLS algorithmhas been performed for the �rst iterations, the re
ursive algorithm formulated by the rela-tionships (4.8) and (4.9) is applied throughout the servoing.The estimator parameters have been empiri
ally tuned to β = 0.95, f0 =1e8, β0 = 1
20×f0

,
NLS = 10, and ǫ0 =1e-10. The 
orresponding simulation results are shown on Fig. C.1. Thevisual features errors exponentially 
onverge to zero as 
an be seen on Fig. C.1(e), and therea
hed image 
orresponds to the desired one despite the large di�eren
e with the initialone as 
an be seen on Fig. C.1(d). The system behavior is quite 
orre
t [see Fig. C.1(f)℄,and the probe motions are smooth [see Fig. C.1(a), C.1(b), and C.1(
)℄. These results aresimilar to those obtained with the model-based servoing. Consequently, they validate themodel-free visual servoing method that is based on straight line estimation. The estimated
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parameters Θ̂ are shown on Fig. C.2.We now 
onsider the 
ase where an additive measurement noise perturbs the image. Sim-ilarly to the simulations 
ondu
ted for the model-based servoing, the noise 
onsists in arandom white Gaussian signal of 0.4 mm amplitude. The 
orresponding simulation resultsare shown on Fig. C.3. The results are satisfa
tory, where the visual features errors expo-nentially 
onverge to zero and the rea
hed image 
orresponds to the desired one. The probebehavior is 
orre
t as 
an be seen on Fig. C.3(g), despite the e�e
t of the noise on the imageas 
an be seen on Fig. C.3(b). The estimated parameters are plotted on Fig. C.4. Othersimulations have been 
ondu
ted to test up to what noise amplitude the servoing system
an still perform. We have noti
ed that the system did not 
onverge when the measurementnoise is over 0.5 
m amplitude. However, note again that a pixel di�eren
e is performed to
ompute di, as it is the 
ase for the simulations presented in Se
tion 5.2.2.We test the system for di�erent values of the estimator parameters. We 
onsider twosets of simulations. In the �rst one, parameter β is varied while the remaining parametersare �xed to f0 =1e8, β0 = 1
20×f0

, ǫ0 =1e-10, NLS = 10. We show on Fig. C.5 resultsobtained for β set to 1.0, 0.5, and 0.04. We noti
ed that the system well behaved for β'svalues ranging from 0.5 to 1.0. It diverged only for values below 0.04.In the se
ond set we 
onsider the 
ase where ǫ0 is varied and the remaining parametersare �xed throughout the tests to β = 0.95, f0 =1e8, β0 = 1
20×f0

, NLS = 10. We show onFig. C.6 results obtained for ǫ0 equal to 1e-40 and 1e-7. The results for ǫ0 =1e-10 havealready been reported earlier in this appendix. We 
an noti
e that the servoing system isquite tolerable to the values that ǫ0, and thus Θ0, might have.The system has also been tested for di�erent values of NLS and of f0. It was noti
ed that itsimilarly behaves for NLS values ranging for example, from 5 to 30, and for f0 values above1. For very small values of this latter, for example below 0.001, the 
onvergen
e is relativelyslow. We thus 
an 
on
lude that the model-fee servoing using the straight line-based methodis quite tolerant also to the values that f0 and NLS might have.
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Figure C.1: Model-free visual servoing using the straight line-based estimation
method, in a perfect case where no perturbation is present. The visual features and
their corresponding errors are in (cm, cm, rad, cm, cm).
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Figure C.2: Estimated parameters Θ̂ corresponding to the experiment whose results
are shown on Fig. C.1.
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Figure C.3: Model-free visual servoing using the straight line-based estimation tech-
nique, in the presence of an additive measurement noise of 0.4 cm amplitude. The
visual features and their corresponding errors are in (cm, cm, rad, cm, cm).
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Figure C.4: Estimated parameters Θ̂ corresponding to the results shown on Fig. C.3.
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Figure C.5: Results obtained by employing the model-free visual servoing using the
straight line-based estimation for different values of the parameter β. The visual
features errors are in (cm, cm , rad, cm, cm), and the probe velocity is in (cm/s and
rad/s).
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Figure C.6: Results obtained by employing the model-free visual servoing using the
straight line-based estimation for different values of the parameter ǫ0. The visual
features errors are in (cm, cm , rad, cm, cm), and the probe velocity is in (cm/s and
rad/s).
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C.1.2 Using the quadric surface-based methodThe model-free visual servoing method that uses the quadri
 surfa
e-based estimation, pre-sented in Se
tion 4.2, is �nally tested. The simulation s
enario is the same as before. TheSLS algorithm is applied for only the �rst NLS iterations in order to obtain an initial esti-mate Θ0. Then, the servoing is laun
hed where the re
ursive algorithm, formulated by therelationships (4.8) and (4.16), is employed, instead of the SLS one, throughout the servoing.We �rstly test the method in a perfe
t 
ondition where no measurement noise is present.The estimator parameters are tuned to β = 1.0, f0 =1e2, NLS = 21, and ǫ0 =1e-20. As forlength N of the 
ontour segments, that update the algorithm at ea
h iteration, as des
ribedin Se
tion 4.2, it is tuned to N = 21. The 
orresponding simulation results are shown onFig. C.7, while the estimated parameters are plotted in Fig. C.8. The results are also sat-isfa
tory, whi
h validates the model-free visual servoing method based on quadri
 surfa
eestimation, for a perfe
t 
ondition.The method is now tested when measurement perturbations are present in the image. Thenoise also 
onsists in a random white Gaussian signal of 0.4 
m amplitude. The 
orrespond-ing simulation results are shown on Fig. C.9 and Fig. C.10. We 
an see that they are 
learlynot satisfa
tory. The probe velo
ity is shaky, as 
an be seen on Fig. C.9(g), whi
h resultsalso in a shaky probe path as 
an be seen on Fig. C.9(a). Thus, we 
an 
on
lude that themodel-free method based on quadri
 surfa
e estimation is not robust. Moreover, it was noteasy to tune the estimator parameters, 
ompared to the two previously tested model-freeservoing methods.
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Figure C.7: Model-free visual servoing using the quadric surface-based estimation
method, in a perfect case where no measurement noise is present. The visual features
and their corresponding errors are in (cm, cm, rad, cm, cm).
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Figure C.8: Estimated parameters Θ̂ corresponding to the results shown on Fig. C.7.
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Figure C.9: Model-free visual servoing using the quadric surface-based estimation
method, when measurement noises of 0.4 mm amplitude are introduced in the image.
The visual features and their corresponding errors are in (cm, cm, rad, cm, cm).
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Figure C.10: Estimated parameters Θ̂ corresponding to results shown on Fig. C.9.
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C.2 Simulations with realistic ultrasound imagesIn this se
tion we test the straight line- and the quadri
 surfa
e-based model-free visualservoing methods using realisti
 ultrasound images. The images are a�orded with the simu-lator des
ribed in Se
tion 5.3. The task to be a
hieved by the virtual probe is also presentedin that se
tion.
C.2.1 Straight line-based estimationThe estimator parameters are tuned to β = 0.8, f0 =1e4, β0 = 1

20×f0

, ǫ0 =1e-10, and
NLS = 10 iterations. The 
orresponding results are shown on Fig. C.11 and Fig. C.12.The visual features errors 
onverge to zero as 
an be seen on Fig. C.11(e), and both twotarget image se
tions have been rea
hed as 
an be seen respe
tively on Fig. C.11(b) andFig. C.11(d). These results show the validity of the model-free method that uses the straightline-based estimation.
C.2.2 Quadric surface-based estimationFinally, we test the servoing method that uses the quadri
 surfa
e-based estimation. Theestimator parameters are tuned to β = 1.0, f0 =1e5, β0 = 1

20×f0

, ǫ0 =1e-20, NLS = 17 iter-ations, and N = 17 points. Corresponding results are shown on Fig. C.13 and Fig. C.14. In
ontrast to those previously obtained with the two other servoing methods, these results arehowever not satisfa
tory, where both the visual features do not 
onverge smoothly, as 
anbe seen on Fig, C.13(e), and the probe velo
ity is very shaky, as 
an be seen on Fig. C.13(f).Moreover, it was relatively tedious to tune the estimator parameters, where we noti
ed thatwith this method the system is highly sensitive to their variation. The obtained out
omewas in fa
t expe
ted, be
ause of the low performan
es this servoing method had previouslyshown in the simulation presented in Se
tion C.1.2. Those performan
es indeed seem toagree with the present ones.
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Figure C.11: Model-free visual servoing using the straight line-based estimation
method performed on a realistic ultrasound 3D volume - (a) Initial image, whose
section is contoured with green, captured right before the servoing is launched. The
contour, of the first target image section, is displayed in red and is superimposed on
the image - (b) The first target is automatically reached, where the observed (green)
and the desired contour (red) now become superimposed - (d) The second target (red)
is ordered - (d) The second target is automatically reached. The visual features and
their corresponding errors are in (cm, cm, rad, cm, cm).
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Figure C.12: Estimated Parameters Θ̂ corresponding to the results shown on
Fig. C.11.
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Figure C.13: Model-free visual servoing using the quadric surface-based estimation
method performed on a realistic ultrasound 3D volume. The visual features and their
corresponding errors are in (cm, cm, rad, cm, cm).
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Figure C.14: Estimated Parameters Θ̂ corresponding to the results shown on
Fig. C.13.
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C.3 Simulations with the binary volumeFollowing the results shown in Se
tion 5.4, the straight line- and the quadri
-based model-free servoing methods are tested on a binary obje
t.
C.3.1 Straight line-based estimationThe estimator parameters are tuned to β = 0.8, f0 =1e6, β0 = 1

20×f0

, ǫ0 =1e-10, and
NLS = 10 iterations. The 
orresponding simulation results are shown on Fig. C.15 andFig. C.16. The visual features errors 
onverge to zero, roughly exponentially, as 
an beseen on Fig. C.15(e), and the rea
hed images 
orrespond to the desired ones as 
an be seenrespe
tively on Fig. C.15(b) and C.15(d), despite the large initial di�eren
es. The systembehavior is quite 
orre
t as 
an bee seen on Fig. C.15(f), and the path performed by theprobe is thus also quite smooth as 
an be seen on Fig. C.15(g). More, the obje
tive hasbeen a
hieved, sin
e the two rea
hed poses 
orrespond respe
tively to the poses were the �rstand se
ond target images had been 
aptured. We obtained positioning errors of ( 4.4×1e-4,9.1×1e-4, 2.7×1e-4, 0.0469, 0.0745, -0.0573)(
m and deg) for the former and (0, 4.2x1e-4,-2.09x1e-3, -0.2865, -0.3323, -0.0017 )(
m and deg) for the latter positioning.
C.3.2 Quadric surface-based estimationAs for the model-free method based on quadri
 surfa
e estimation, it has 
onsiderablyunderperformed the straight and the 
urved lines-based estimation methods. In the samesimulation 
onditions this method has 
ompletely diverged. For small displa
ements fromthe target image, it nevertheless 
onverged the system to the desired target as 
an be seenon Fig. C.17. The estimator parameters were tuned to β = 0.7, f0 =1e2, β0 = 1

20×f0

,
ǫ0 =1e-20, NLS = 41 iterations, and N = 41 points. However, the probe velo
ity is tooshaky, as 
an be 
learly seen on Fig. C.17(e), although the images are not noisy but perfe
tly
ontrasted (image se
tion in bla
k and the ba
kground in white). This shakiness is thus dueto the quadri
-based method itself and not to image noise. Indeed, in this same simulation
ondition the two other methods performed quite well, as 
an be seen on Fig. C.19.
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Figure C.15: Model-free visual servoing that uses the straight line-based esti-
mation, tested on a simulated binary object (a) Initial image acquired right before
launching the servoing, where the actual section is contoured with green. The con-
tour of the target image section is displayed in red and superimposed on the image
- (b) The first target is reached - (c) The second target is ordered - (d) The second
target image is reached - (g) The probe initial pose frame is indicated by its cartesian
frame whose (X, Y, Z) axes are respectively represented by the red, green and blue
segments. The probe path is plotted in green. At the poses of the first and second
target, the Z axis is represented with a black segment - (h) and (e) The visual features
and their corresponding errors are in (cm ,cm, rad, cm, cm, 10×unit).
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Figure C.16: Estimated parameters Θ̂ corresponding to the results shown on
Fig. C.15.
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Figure C.17: Model-free visual servoing that uses the quadric surface-based esti-
mation, tested on a simulated binary object for relatively small displacements.
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(c) (d)
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Figure C.18: Estimated parameters Θ̂ corresponding to the results shown on
Fig. C.17.
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Figure C.19: Comparison of the performances obtained with the model-free servoing
method that uses the quadric surface-based estimation (Fig. C.17, that are also
reported here on the two figures at the bottom) to those obtained with the two
methods that use respectively the straight line- (top) and the curved line-based
estimation (middle).
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RésuméCette thèse présente de nouvelles méthodes permettant de guider automatiquement unesonde é
hographique a
tionnée par un robot médi
al. Nous proposons d'utiliser des in-formations visuelles basées sur des moments 2D extraits de l'image é
hographique. Celané
essite l'obtention de la matri
e d'intera
tion qui lie 
es informations à la vitesse de lasonde (ou bien du robot porteur de 
ette dernière). Nous présentons de nouvelles basesthéoriques qui ont permis de développer l'expression analytique exa
te de 
ette matri
e.Nous avons également élaboré six informations visuelles indépendantes permettant de 
on-tr�ler les 6 degrés de liberté de la sonde et ainsi pouvoir positionner automatiquement lasonde par rapport à l'objet observé. Le système robotique est aussi 
apable d'interagir ave
des objets dont au
une 
onnaissan
e préalable sur leur forme, paramètres 3D, ni positiondans l'espa
e 3D est disponible. Pour 
ela, nous avons développé une méthode e�
a
e quiestime en-ligne les paramètres 3D intervenant dans la matri
e d'intera
tion.En�n, nous présentons des résultats de simulations et d'expérimentations obtenus re-spe
tivement à partir d'objet 3D simulés, et d'une plate-forme expérimentale 
onstitué unrobot médi
al à 6 degrés de liberté portant une sonde qui interagit ave
 des objets immergésdans une bassine d'eau. Ces résultats ont validé les méthodes développées dans 
ette thèseet ont montré leur robustesse au bruit des images é
hographiques.Mots 
lés : Robotique médi
ale, asservissement visuel, imagerie é
hographique, mod-élisation, 
ommande sans modèle.



Abstra
tThis dissertation presents a new 2D ultrasound-based visual servoing method. The maingoal is to automati
ally guide a robotized 2D ultrasound probe held by a medi
al robot inorder to rea
h a desired 
ross-se
tion ultrasound image of an obje
t of interest. This methodallows to 
ontrol both the in-plane and out-of-plane motions of a 2D ultrasound probe. Itmakes dire
t use of the 2D ultrasound image in the visual servo s
heme, where the feed-ba
k visual features are 
ombinations of image moments. To build the servo s
heme, wedevelop the analyti
al form of the intera
tion matrix that relates the image moments timevariation to the probe velo
ity. That modeling is theoreti
ally veri�ed on simple shapeslike spheri
al and 
ylindri
al obje
ts. In order to be able to automati
ally position the 2Dultrasound probe with respe
t to an observed obje
t, we propose six relevant independentvisual features to 
ontrol the 6 degrees of freedom of the roboti
 system. Then, the systemis endowed with the 
apability of automati
ally intera
ting with obje
ts without any priorinformation about their shape, 3D parameters, nor 3D lo
ation. To do so, we develop on-lineestimation methods that identify the parameters involved in the built visual servo s
heme.We 
ondu
ted both simulation and experimental trials respe
tively on simulated volu-metri
 obje
ts, and on both obje
ts and soft tissues immersed in a water-�lled tank. Su
-
essful results have been obtained, whi
h show the validity of the developed methods andtheir robustness to di�erent errors and perturbations espe
ially those inherent to the ultra-sound modality.Keywords: Medi
al roboti
s, visual servoing, 2D ultrasound imaging, kinemati
s mod-eling, model-free servoing.


