B. Chapitre, Résultats de l'application du recuit simulé pendant 5 minutes Job T Parametre LBA Avant l'application Apres l'application shop varié du recuit du recuit LB (a) UB (a) LB (b) UB (b) Temps, p.81

. Tab, 1 Application du recuit simulé (temps maximal : 300 secondes) dans le cas du job-shop 6x6

T. Job and L. Parametre, Avant l'application Apres l'application shop varié du recuit du recuit LB (a) UB (a) LB (b) UB (b) Temps Défaut 1961

B. Chapitre, Résultats de l'application du recuit simulé pendant 5 minutes Job T Parametre LBA Avant l'application Apres l'application shop varié du recuit du recuit LB (a) UB (a) LB (b) UB (b) Temps

N. Absi, Modélisation et résolution de problèmes de lot-sizing à capacité nie, 2005.

N. Absi and S. Kedad-sidhoum, The multi-item capacitated lot-sizing problem with setup times and shortage costs, European Journal of Operational Research, vol.185, issue.3, 2006.
DOI : 10.1016/j.ejor.2006.01.053

URL : https://hal.archives-ouvertes.fr/hal-00506261

P. Afentakis, Parallel heuristic algorithm for lot-sizing in multi-stage productions systems, IIE Transactions (Institute of Industrial Engineers), vol.19, issue.1, p.3442, 1987.

P. Afentakis and B. Gavish, Optimal Lot-Sizing Algorithms for Complex Product Structures, Operations Research, vol.34, issue.2, p.249, 1986.
DOI : 10.1287/opre.34.2.237

P. Afentakis, B. Gavish, and U. Karmarkar, Computationally ecient optimal solutions to the lot sizing problem in multi-stage assemby systems, Management Science, vol.30, issue.2, p.222239, 1984.

A. Aggarwal and J. Park, Improved Algorithms for Economic Lot Size Problems, Operations Research, vol.41, issue.3, p.549571, 1993.
DOI : 10.1287/opre.41.3.549

D. Aksen, K. Altinkemer, C. , and S. , The single-item lot-sizing problem with immediate lost sales, European Journal of Operational Research, vol.147, issue.3, p.558566, 2003.
DOI : 10.1016/S0377-2217(02)00331-4

R. Anthony, Planning and Control Systems : A Framework for Analysis. Division of Research, 1965.

E. Arkin, D. Joneja, and R. Roundy, Computational complexity of uncapacitated multi-echelon production planning problems, Operations Research Letters, vol.8, issue.2, p.6166, 1989.
DOI : 10.1016/0167-6377(89)90001-1

K. Baker, P. Dixon, M. Magazine, and E. Silver, An Algorithm for the Dynamic Lot-Size Problem with Time-Varying Production Capacity Constraints, Management Science, vol.24, issue.16, p.17101720, 1978.
DOI : 10.1287/mnsc.24.16.1710

G. Barbarosoglu and L. Ozdama, Analysis of solution space-dependent performance of simulated annealing: the case of the multi-level capacitated lot sizing problem, Computers & Operations Research, vol.27, issue.9, pp.9-895903, 2000.
DOI : 10.1016/S0305-0548(99)00064-7

R. Bartak, On the boundary of planning and scheduling : a study, Proceedings of the Eighteenth Workshop of the UK Planning and Scheduling Special Interest Group

G. Belvaux and L. Wolsey, bc ??? prod: A Specialized Branch-and-Cut System for Lot-Sizing Problems, Management Science, vol.46, issue.5, p.724738, 2000.
DOI : 10.1287/mnsc.46.5.724.12048

G. Bitran and D. Tirupati, Logistics of Prod, Handbooks in Operations Research and Management Science, vol.4, 1993.

G. Bitran, Y. , and H. , Computational Complexity of the Capacitated Lot Size Problem, Management Science, vol.28, issue.10, pp.10-11741186, 1982.
DOI : 10.1287/mnsc.28.10.1174

N. Brahimi, S. Dauzère-pérès, N. Najid, and A. Nordli, Single item lot sizing problems, European Journal of Operational Research, vol.168, issue.1, p.116, 2006.
DOI : 10.1016/j.ejor.2004.01.054

URL : https://hal.archives-ouvertes.fr/hal-00468355

P. Brucker, Scheduling Algorithms, 1998.

J. Carlier and P. Et-chrétienne, Problèmes d'ordonnancement : modélisation , complexité, algorithmes, 1988.

D. Cattrysse, J. Maes, V. Wassenhove, and L. , Set partitioning and column generation heuristics for capacitated dynamic lotsizing, European Journal of Operational Research, vol.46, issue.1, pp.1-3847, 1990.
DOI : 10.1016/0377-2217(90)90296-N

H. Chen, D. Hearn, L. , and C. , A new dynamic programming algorithm for the single item capacitated dynamic lot size model, Journal of Global Optimization, vol.13, issue.3, p.285300, 1994.
DOI : 10.1007/BF01098363

W. Chen and J. Thizy, Analysis of relaxations for the multi-item capacitated lot-sizing problem, Annals of Operations Research, vol.15, issue.9, p.2972, 1990.
DOI : 10.1007/BF02248584

C. Chung, J. Flynn, L. , and C. , An eective algorithm for the capacitated single item lot size problem, European Journal of Operational Research, vol.75, issue.2, p.427440, 1994.

A. Clark and V. Armentano, The application of valid inequalities to the multi-stage lot-sizing problem, Computers & Operations Research, vol.22, issue.7, p.680, 1995.
DOI : 10.1016/0305-0548(94)00060-L

A. R. Clark and V. A. Armentano, Echelon stock formulations for multistage lotsizing with lead times, International Journal of Systems Science, vol.24, issue.9, p.17591775, 1993.

A. R. Clark and H. Scarf, Optimal policies for a multi-echelon inventory problem, Management Science, vol.6, issue.4, p.475490, 1960.

B. Coleman and M. Mcknew, An Improved Heuristic for Multilevel Lot Sizing in Material Requirements Planning, Decision Sciences, vol.17, issue.3, p.156, 1991.
DOI : 10.1016/0360-8352(83)90013-X

D. Connolly, An improved annealing scheme for the QAP, European Journal of Operational Research, vol.46, issue.1, p.93100, 1990.
DOI : 10.1016/0377-2217(90)90301-Q

N. Cossard, Optimisation d'une Chaine Logistique sur un Site Industriel Réparti, 2005.

S. Dauzère-pérès and J. Lasserre, Integration of lotsizing and scheduling decisions in a job-shop, European Journal of Operational Research, vol.75, issue.2, p.413426, 1994.
DOI : 10.1016/0377-2217(94)90085-X

S. Dauzère-pérès and J. Lasserre, On the importance of sequencing decisions in production planning and scheduling, International Transactions in Operational Research, vol.9, issue.6, p.779793, 2002.
DOI : 10.1111/1475-3995.00388

S. Dauzère-pérès, W. Roux, and J. Lasserre, Multi-resource shop scheduling with resource exibility. Dauzère-Pérès, S. and Lasserre, J.B, vol.107, p.289305, 1998.

N. Dellaert, J. Jeunet, and N. Jonard, A genetic algorithm to solve the general multi-level lot-sizing problem with time-varying costs, International Journal of Production Economics, vol.68, issue.3, p.241257, 2000.
DOI : 10.1016/S0925-5273(00)00084-0

M. Diaby, H. Bahl, M. Karwan, and S. Zionts, Capacitated lot-sizing and scheduling by Lagrangean relaxation, European Journal of Operational Research, vol.59, issue.3, p.444458, 1992.
DOI : 10.1016/0377-2217(92)90201-J

A. Drexl and K. Haase, Proportional lotsizing and scheduling, International Journal of Production Economics, vol.40, issue.1, p.7387, 1995.
DOI : 10.1016/0925-5273(95)00040-U

A. Drexl and A. Kimms, Lot sizing and scheduling ??? Survey and extensions, European Journal of Operational Research, vol.99, issue.2, p.221235, 1997.
DOI : 10.1016/S0377-2217(97)00030-1

D. Merle, O. Goffin, J. Trouiller, C. Vial, and J. , A Lagrangian Relaxation of the Capacitated Multi-Item Lot Sizing Problem Solved with an Interior Point Cutting Plane Algorithm, 1997.
DOI : 10.1007/978-1-4757-3145-3_23

S. Elmaghraby, The Economic Lot Scheduling Problem (ELSP): Review and Extensions, Management Science, vol.24, issue.6, p.587598, 1978.
DOI : 10.1287/mnsc.24.6.587

G. Fandel and C. Stammen-hegene, Simultaneous lot sizing and scheduling for multi-product multi-level production, International Journal of Production Economics, vol.104, issue.2, p.308316, 2006.
DOI : 10.1016/j.ijpe.2005.04.011

A. Federgruen and M. Tzur, A Simple Forward Algorithm to Solve General Dynamic Lot Sizing Models with n Periods in 0(n log n) or 0(n) Time, Management Science, vol.37, issue.8, p.909925, 1991.
DOI : 10.1287/mnsc.37.8.909

A. Federgruen and M. Tzur, The dynamic lot-sizing model with backlogging: A simpleo(n logn) algorithm and minimal forecast horizon procedure, Naval Research Logistics, vol.15, issue.4, p.459478, 1993.
DOI : 10.1002/1520-6750(199306)40:4<459::AID-NAV3220400404>3.0.CO;2-8

M. L. Fisher, The lagrangian relaxation method of solving integer programming problems, Management Science, vol.27, issue.1, p.118, 1981.

B. Fleischmann, The discrete lot-sizing and scheduling problem, European Journal of Operational Research, vol.44, issue.3, p.337348, 1990.
DOI : 10.1016/0377-2217(90)90245-7

B. Fleischmann and H. Meyr, The general lotsizing and scheduling problem, Operations-Research-Spektrum, vol.17, issue.1, p.1121, 1997.
DOI : 10.1080/07408178508975308

M. Florian, J. Lenstra, R. Kan, and H. , Deterministic Production Planning: Algorithms and Complexity, Management Science, vol.26, issue.7, p.669679, 1980.
DOI : 10.1287/mnsc.26.7.669

P. Franca, V. Armentano, R. Berretta, C. , and A. , A heuristic method for lot-sizing in multi-stage systems, Computers & Operations Research, vol.24, issue.9, pp.9-861874, 1997.
DOI : 10.1016/S0305-0548(96)00097-4

V. Giard, Gestion de la production et des ux 3e édition, gestion, 2003.

D. Giglio and R. Minciardi, Integration of production planning and scheduling in manufacturing systems, IEEE International Conference on Systems, Man and Cybernetics, 2002.
DOI : 10.1109/ICSMC.2002.1176448

P. Gilmore and R. Gomory, A Linear Programming Approach to the Cutting-Stock Problem, Operations Research, vol.9, issue.6, p.849859, 1961.
DOI : 10.1287/opre.9.6.849

P. Gilmore and R. Gomory, A linear programming approach to the cutting stock problempart ii, Operations Research, vol.14, p.94120, 1963.

F. Glover, HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS, Decision Sciences, vol.15, issue.1, p.156166, 1977.
DOI : 10.1093/comjnl/16.2.135

F. Glover, Future paths for integer programming and links to articial intelligence, Computers and Operations Research, vol.13, p.533549, 1986.

F. Glover, Tabu search fundamentals and uses. Tech. rep., Revised and Expanded, 1995.

M. Gopalakrishnan, K. Ding, J. Bourjolly, M. , and S. , A tabusearch heuristic for the capacitated lot-sizing problem with set-up carryover, Management Science, vol.47, issue.6, p.851863, 2001.

D. Gupta and T. Magnusson, The capacitated lot-sizing and scheduling problem with sequence-dependant setup costs and setup times, Computers and Operations Research, vol.32, issue.4, p.727747, 2005.

E. Gutiérrez, W. Hernandez, and G. Suer, Genetic algorithms in capacitated lot sizing decisions, Computer Research Conference, 2001.

K. Haase and A. Kimms, Lot sizing and scheduling with sequencedependent setup costs and times and ecient rescheduling opportunities, International Journal Production Economics, vol.66, issue.2, p.159169, 2000.
DOI : 10.1016/s0925-5273(99)00119-x

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.1908

P. Hansen, The steepest ascent mildest descent heuristic for combinatorial programming, Presented at the Congress on Numerical Methods in Combinatorial Optimization

F. Harris, How many parts to make at once. The Magazine of Management, p.135136, 1913.

T. Harrison, L. , and H. , Lot Sizing in Serial Assembly Systems with Multiple Constrained Resources, Management Science, vol.42, issue.1, 1936.
DOI : 10.1287/mnsc.42.1.19

M. Held, P. Wolfe, and H. Crowder, Validation of subgradient optimization, Mathematical Programming, vol.8, issue.1, p.6288, 1974.
DOI : 10.1007/BF01580223

K. Hindi, Solving the clsp by a tabu search heuristic, Journal of the Operational Research Society, vol.47, p.151161, 1996.

J. Hiriart-urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms II, grundlehren der mathematischen wissenschaften ed, 1993.

Y. Hung, C. Chen, C. Shih, H. , and M. , Using tabu search with ranking candidate list to solve production planning problems with setups, Computers & Industrial Engineering, vol.45, issue.4, p.615634, 2003.
DOI : 10.1016/j.cie.2003.09.006

Y. Hung and K. Chien, A multi-class multi-level capacitated lot sizing model, Journal of the Operational Research Society, vol.51, pp.11-1309, 2000.

A. Jain and S. Meeran, Deterministic job-shop scheduling: Past, present and future, European Journal of Operational Research, vol.113, issue.2, p.390434, 1999.
DOI : 10.1016/S0377-2217(98)00113-1

R. Jans and Z. Degraeve, Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches, European Journal of Operational Research, vol.177, issue.3, p.18551875, 2007.
DOI : 10.1016/j.ejor.2005.12.008

H. Jodlbauer, An approach for integrated scheduling and lot-sizing, European Journal of Operational Research, vol.172, issue.2, p.386400, 2006.
DOI : 10.1016/j.ejor.2004.09.050

S. Kang, K. Malik, T. , and L. , Lotsizing and scheduling on parellel machines with sequence-dependent setup costs, Management Science, vol.45, issue.2, p.273289, 1999.

B. Karimi, S. Fatemi-ghomi, W. , and J. , The capacitated lot sizing problem: a review of models and algorithms, Omega, vol.31, issue.5, p.365378, 2003.
DOI : 10.1016/S0305-0483(03)00059-8

U. Karmarka, S. Kekre, and S. Kekre, Dynamic lot-sizing problem with startup and reservation costs, Operations Research, vol.35, issue.3, p.389398, 1987.

E. Katok, H. Lewis, H. , and T. , Lot Sizing in General Assembly Systems with Setup Costs, Setup Times, and Multiple Constrained Resources, Management Science, vol.44, issue.6, p.859877, 1998.
DOI : 10.1287/mnsc.44.6.859

Y. Kim, K. Park, and J. Ko, A symbiotic evolutionary algorithm fo the integration of process planning and job shop scheduling, Computers and Operations research, vol.30, issue.8, p.11511171, 2003.

A. Kimms, Competitive methods for multi-level lot sizing and scheduling: tabu search and randomized regrets, International Journal of Production Research, vol.355, issue.8, p.22792298, 1996.
DOI : 10.1007/BF01720518

A. Kimms, Improved lower bounds for the proportional lot sizing and scheduling problem, Working Paper No, vol.414, 1996.

A. Kimms, A genetic algorithm for multi-level, multi-machine lot sizing and scheduling, Computers & Operations Research, vol.26, issue.8, p.829848, 1999.
DOI : 10.1016/S0305-0548(98)00089-6

A. Kimms and A. Drexl, Proportional lotsizing and scheduling : Some extensions, p.85101, 1998.
DOI : 10.1002/(sici)1097-0037(199809)32:2<85::aid-net2>3.0.co;2-e

S. Kirkpatrick, J. Gelatt, and M. Vecchi, Optimization by simulated annealing, Science, vol.200, p.671680, 1983.

J. Krarup and O. Bilde, Plant location, set covering and economic lot sizes : An o(mn) algorithm for structured problems, in optimierung bei graphentheoretischen and ganzzahligen probleme, p.155180, 1977.

R. Kuik and M. Salomon, Multi-level lot-sizing problem: Evaluation of a simulated-annealing heuristic, European Journal of Operational Research, vol.45, issue.1, p.2537, 1990.
DOI : 10.1016/0377-2217(90)90153-3

R. Kuik, M. Solomon, V. Wassenhove, and L. , Batching decisions: structure and models, European Journal of Operational Research, vol.75, issue.2, p.243263, 1994.
DOI : 10.1016/0377-2217(94)90072-8

R. Kuik, L. Van-wassenhove, and J. Maes, LINEAR PROGRAMMING, SIMULATED ANNEALING AND TABU SEARCH HEURISTICS FOR LOTSIZING IN BOTTLENECK ASSEMBLY SYSTEMS, IIE Transactions, vol.53, issue.1, p.6272, 1993.
DOI : 10.1007/BF01720782

C. Lee, S. Cetinkaya, and A. Wagelmans, A Dynamic Lot-Sizing Model with Demand Time Windows, 13841395. Compilation and indexing terms, 2001.
DOI : 10.1287/mnsc.47.10.1384

C. Lemaréchal, Lagrangian Relaxation, 2000.
DOI : 10.1007/3-540-45586-8_4

C. Lemaréchal and C. Sagastizabal, Variable metric bundle methods: From conceptual to implementable forms, Mathematical Programming, vol.2, issue.3, p.393410, 1997.
DOI : 10.1007/BF02614390

M. Loparic, Y. Pochet, and L. Wolsey, The uncapacitated lot-sizing problem with sales and safety stocks, Mathematical Programming, vol.89, issue.3, p.487504, 2001.
DOI : 10.1007/PL00011411

S. Lundy and A. Mees, Convergence of an annealing algorithm, Mathematical Programming, vol.2, issue.5, p.111124, 1978.
DOI : 10.1007/BF01582166

J. Maes, J. Mcclain, and L. Wassenhove, Multilevel capacitated lotsizing complexity and LP-based heuristics, European Journal of Operational Research, vol.53, issue.2, 1991.
DOI : 10.1016/0377-2217(91)90130-N

A. Manne, Programming of Economic Lot Sizes, Management Science, vol.4, issue.2, p.115135, 1958.
DOI : 10.1287/mnsc.4.2.115

A. Martel and A. Gascon, Dynamic lot-sizing with price changes and price-dependent holding costs, 114128. Compilation and indexing terms, 1998.
DOI : 10.1016/S0377-2217(97)00325-1

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, issue.6, p.10871092, 1953.
DOI : 10.1063/1.1699114

H. Meyr, Simultaneous lotsizing and scheduling by combining local search with dual reoptimization, European Journal of Operational Research, vol.120, issue.2, p.311326, 2000.
DOI : 10.1016/S0377-2217(99)00159-9

H. Millar, Y. , and M. , Lagrangian heuristics for the capacitated multiitem lot-sizing problem with backordering, International Journal of Production Economics, vol.34, issue.1, p.115, 1994.

M. Minoux, Programmation mathématique. Dunod France, 1983.

J. Orlicky, Material Requirement Planning, 1975.

J. Ouenniche, F. Boctor, and A. Martel, The impact of sequencing decisions on multi-item lot sizing and scheduling in ow shops, International Journal Production Research, vol.37, pp.10-22532270, 1999.

L. Ozdamar and G. Barbarosoglu, An integrated lagrangean relaxation-simulated annealing approach to the multi-level multi-item capa- BIBLIOGRAPHIE citated lot sizing problem, International Journal of Production Economics, vol.68, issue.3, p.319331, 2000.

R. G. Parker and R. Rardin, Discrete optimization, 1988.

M. Pinedo, Scheduling : Theory, Algorithms and Systems, prentice-hall ed, 2001.

Y. Pochet and L. Wolsey, Solving multiitem lotsizing problems using strong cutting planes, Management Science, vol.37, issue.1, p.5367, 1991.
DOI : 10.1287/mnsc.37.1.53

B. Polyak, Minimization of unsmooth functionals, USSR Computational Mathematics and Mathematical Physics, vol.9, issue.3, p.593597, 1967.
DOI : 10.1016/0041-5553(69)90061-5

B. Polyak, Minimization of unsmooth functionals, USSR Computational Mathematics and Mathematical Physics, vol.9, issue.3, p.1429, 1969.
DOI : 10.1016/0041-5553(69)90061-5

A. Robert, Optimisation des batches de production, 2007.

J. Rogers, A Computational Approach to the Economic Lot Scheduling Problem, Management Science, vol.4, issue.3, p.264291, 1958.
DOI : 10.1287/mnsc.4.3.264

N. Rota and A. Martel, Supply chain ow planning methods : a review of the lot-sizing literature. Working Paper DT-2001-AM-1, 2001.

B. Roy and B. Sussman, Les problèmes d'ordonnancement avec contraintes disjonctives, 1964.

M. Salomon, L. Kroon, R. Kuik, and L. Van-wassenhove, Some Extensions of the Discrete Lotsizing and Scheduling Problem, Management Science, vol.37, issue.7, p.801812, 1991.
DOI : 10.1287/mnsc.37.7.801

M. Salomon, R. Kuik, and L. Wassenhove, Statistical search methods for lotsizing problems, Annals of Operations Research, vol.5, issue.4, p.468, 1993.
DOI : 10.1007/BF02023005

M. Salomon, M. Solomon, L. Van-wassenhove, Y. Dumas, and S. Dauzère-pérès, Solving the discrete lotsizing and scheduling problem BIBLIOGRAPHIE with sequence dependent set-up costs and set-up times using the traveling salesman problem with time windows, European Journal of Operational Research, vol.100, issue.3, p.494513, 1997.

A. Segerstedt, A capacity-constrained multi-level inventory and production control problem, International Journal of Production Economics, vol.45, issue.1-3, p.449461, 1996.
DOI : 10.1016/0925-5273(96)00017-5

J. Shapiro, Mathematical Programming : Structures and Algorithms, 1979.

D. Shaw and A. Wagelmans, An Algorithm for Single-Item Capacitated Economic Lot Sizing with Piecewise Linear Production Costs and General Holding Costs, Management Science, vol.44, issue.6, p.831838, 1998.
DOI : 10.1287/mnsc.44.6.831

R. Sikora, D. Chhajed, and M. Shaw, Integrating the lot-sizing and sequencing decisions for scheduling a capacitated ow line, Computers and Industrial Engineering, vol.30, issue.4, p.659679, 1996.

A. Staggemeier, C. , and A. , A survey of lot-sizing and scheduling models, 23rd Annual Symposium of the Brazilian Operational Research Society (SOBRAPO) in Proceedings of XXXIII Simposio Brasileiro de Pesquisa Operacional -SBPO anonymous, 2001.

O. Tang, Simulated annealing in lot sizing problems, International Journal of Production Economics, vol.88, issue.2, p.173181, 2004.
DOI : 10.1016/j.ijpe.2003.11.006

H. Tempelmeier and M. Derstroff, Lagrangean-based heuristic for dynamic multi-level multi-item constrained lotsizing with setup times, Management Science, vol.42, issue.5, p.738757, 1996.

J. Thizy, V. Wassenhove, and L. , Lagrangean Relaxation for the Multi-Item Capacitated Lot-Sizing Problem: A Heuristic Implementation, IIE Transactions, vol.14, issue.7, p.308313, 1985.
DOI : 10.1080/07408178508975308

C. Timpe, Solving planning and scheduling problems with combined integer and constraint programming, OR Spectrum, vol.24, issue.4, p.431448, 2004.

F. Toledo and V. Armentano, A Lagrangian-based heuristic for the capacitated lot-sizing problem in parallel machines, European Journal of Operational Research, vol.175, issue.2, p.10701083, 2006.
DOI : 10.1016/j.ejor.2005.06.029

W. Trigeiro, A simple heuristic for the capacitated lot sizing problem, IIE Transactions, vol.19, p.6772, 1989.

W. Trigeiro, L. Thomas, and J. Mcclain, Capacitated lot sizing with set-up times, Management Science, vol.35, issue.3, p.353366, 1989.

C. Van-hoesel, Models and algorithms for single item Lot-sizing problems, 1991.

S. Vob and D. L. Woodruff, Introduction to Computational Optimization Models for Production Planning in a Supply Chain, 2006.

T. Vollmann, W. Berry, and D. Whybark, Manufacturing Planning and Control Systems

A. Wagelmans, S. Van-hoesel, and A. Kolen, Economic Lot Sizing: An O(n log n) Algorithm That Runs in Linear Time in the Wagner-Whitin Case, Operations Research, vol.40, issue.1-supplement-1, 1992.
DOI : 10.1287/opre.40.1.S145

H. Wagner and T. Whitin, Dynamic version of the economic lot size model, Management Science, vol.5, issue.1, p.8996, 1958.

L. Wolsey, Integer programming, 1998.

J. Xie, D. , and J. , Heuristic genetic algorithms for general capacitated lot-sizing problems, Computers & Mathematics with Applications, vol.44, issue.1-2, pp.1-2, 2002.
DOI : 10.1016/S0898-1221(02)00146-3

X. Zhang, Y. , and S. , Integrated optimization of production planning and scheduling for a kind of job-shop, The International Journal of Advanced Manufacturing Technology, vol.29, issue.7-8, 2005.
DOI : 10.1007/s00170-003-2042-y

P. Zipkin, Foundations of Inventory Management, 2000.