Contrast enhancement in digital imaging using histogram equalization

Résumé : Aujourd’hui, des appareils capables de capter et de traiter les images peuvent être trouvés dans les systèmes complexes de surveillance ou de simples téléphones mobiles. Dans certaines applications, le temps nécessaire au traitement des images n’est pas aussi important que la qualité du traitement (par exemple, l’imagerie médicale). Par contre, dans d’autres cas, la qualité peut être sacrifiée au profit du facteur temps. Cette thèse se concentre sur ce dernier cas, et propose deux types de méthodes rapides pour l’amélioration du contraste d’image. Les méthodes proposées sont fondées sur l’égalisation d’histogramme (EH), et certaines s’adressent à des images en niveaux de gris, tandis que d’autres s’adressent à des images en couleur. En ce qui concerne les méthodes EH pour des images en niveaux de gris, les méthodes actuelles tendent à changer la luminosité moyenne de l’image de départ pour le niveau moyen de l´interval de niveaux de gris. Ce n’est pas souhaitable dans le cas de l’amélioration du contraste d’image pour les produits de l’électronique grand-public, où la préservation de la luminosité de l’image de départ est nécessaire pour éviter la production de distortions dans l’image de sortie. Pour éviter cet inconvénient, des méthodes de Biégalisation d’histogrammes pour préserver la luminosité et l’amélioration du contraste ont été proposées. Bien que ces méthodes préservent la luminosité de l’image de départ tout en améliorant fortement le contraste, elles peuvent produire des images qui ne donnent pas une impression visuelle aussi naturelle que les images de départ. Afin de corriger ce problème, nous proposons une technique appelée multi-EH, qui consiste à décomposer l’image en plusieurs sous-images, et à appliquer le procédé classique de EH à chacune d’entre elles. Bien que produisant une amélioration du contraste moins marquée, cette méthode produit une image de sortie d’une apparence plus naturelle. Nous proposons deux fonctions de décalage par découpage d’histogramme, permettant ainisi de concevoir deux nouvelle méthodes de multi-EH. Une fonction de coût est également utilisé pour déterminer automatiquement en combien de sous-images l’histogramme de l’image d’entrée sera décomposée. Les expériences montrent que nos méthodes sont meilleures pour la préservation de la luminosité et produisent des images plus naturelles que d´autres méthodes de EH. Pour améliorer le contraste dans les images en couleur, nous introduisons une méthode 5 Résumé 6 générique et rapide, qui préserve la teinte. L’égalisation d’histogramme est fondée sur l’espace couleur RGB, et nous proposons deux instantiations de la méthode générique. La première instantiation utilise des histogrammes 1D R-red, G-green, et B-bleu afin d’estimer l’histogramme 3D RGB qui doit être égalisé, alors que le deuxième instantiation utilise des histogrammes 2D RG, RB, et GB. L’égalisation d’histogramme est effectué en utilisant des transformations de décalage qui préservent la teinte, en évitant l’apparition de couleurs irréalistes. Nos méthodes ont des complexités de temps et d’espace linéaire, par rapport à la taille de l’image, et n’ont pas besoin de faire la conversion d’un espace couleur à l’autre afin de réaliser l’amélioration du contraste de l’image. Des évaluations objectives comparant nos méthodes et d’autres ont été effectuées au moyen d’une mesure de contraste et de couleur afin de mesurer la qualité de l’image, où la qualité est établie comme une fonction pondérée d’un indice de “naturalité” et d’un indice de couleur. Nous analysons 300 images extraites d’une base de données de l’Université de Berkeley. Les expériences ont montré que la valeur de contraste de l’image produite par nos méthodes est en moyenne de 50% supérieure à la valeur de contraste de l’image original, tout en conservant une qualité des images produites proche de celle des images originales
Type de document :
Thèse
Other [cs.OH]. Université Paris-Est, 2008. English. 〈NNT : 2008PEST0226〉
Liste complète des métadonnées

Littérature citée [136 références]  Voir  Masquer  Télécharger

https://tel.archives-ouvertes.fr/tel-00470545
Contributeur : Abes Star <>
Soumis le : mardi 6 avril 2010 - 18:51:28
Dernière modification le : mercredi 28 juin 2017 - 13:12:48
Document(s) archivé(s) le : mardi 14 septembre 2010 - 17:16:24

Fichier

2008PEST0226_0_1.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-00470545, version 1

Collections

Citation

David Menotti Gomes. Contrast enhancement in digital imaging using histogram equalization. Other [cs.OH]. Université Paris-Est, 2008. English. 〈NNT : 2008PEST0226〉. 〈tel-00470545〉

Partager

Métriques

Consultations de
la notice

658

Téléchargements du document

2211