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RESUME

Cette these présente trois méthodes pour I’identification des rigidités des structures
d’usage commun dans I’ingénierie civile, a partir de données dynamiques
expérimentales.

La premieére méthode est développée pour des structures composees pour portiques.
La deuxiéme méthode proposée est appliquée a des structures constituées pour des
poutres isostatiques. La troisieme est une méthodologie d’estimation des rigidités en
flexion (El) et au cisaillement (GA/y) pour une structure constituée de murs dont les
énergies de déformation en flexion et cisaillement peuvent étre soit du méme ordre de
grandeur, soit I’une prépondérante par rapport a I’autre.

Pour chaque méthode, des simulations numériques sont effectuées pour identifier les
dommages structuraux ou les variations des rigidités, en termes de localisation et de
magnitude de ces dommages. L'incidence et I'impact des erreurs et bruits sur les
valeurs estimées des rigidités structurales sont analysés.

Les méthodologies sont également appliquées pour localiser des dommages
mécaniques ou des réductions de section sur modéles de laboratoire.

A partir des concepts dynamiques de base et considérant une typologie donnée de
structure, la thése développe les concepts et formulations permettant d’identifier les
rigidités résiduelles des structures considérées. Les méthodes peuvent étre aisément
mises en ceuvre pour déterminer les éventuels dommages (localisation et intensité) qui
peuvent affecter une structure, par exemple apres un séisme. Peu de mesures sont
requises a cet effet : des essais de vibration libre et du matériel peu onéreux de

mesures sont amplement suffisants dans le cas particulier des structures étudiées.

MoTts CLEs : Analyse dynamique, Dommage structural, Poutre isostatiques, Murs de
contreventement, consoles, portiques, Maintenance et inspection, Bruits et signal.
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STRUCTURES

ABSTRACT

This thesis presents three methods to estimate and locate damage in framed buildings,
simply-supported beams and cantilever structures, based on experimental
measurements of their fundamental vibration modes. Numerical simulations and
experimental essays were performed to study the effectiveness of each method.

A numerical simulation of a multi-storey framed building, a real bridge and a real
chimney were carried out to study the effectiveness of the methodologies in
identifying damage. The influence of measurement errors and noise in the modal data
was studied in all cases.

To validate the experimental effectiveness of the damage estimation methods, static
and dynamics tests were performed on a framed model, a simply supported beam, and
a cantilever beam in order to determine the linear behavior changes due to the
increase of the level of damage.

The structural identification algorithms during this thesis were based on the
knowledge type of the stiffness matrix or flexibility matrix to reduce the number of
modal shapes and required coordinates for the structural assessment. The methods are
intended to develop tools to produce a fast response and support for future decision
procedures regarding to structures widely used, by excluding experimental

information, thereby allowing a cost reduction of extensive and specific testing.

KeywoRrbps: Dynamic analysis, structural damaged, simple supported beam, Shear
wall building, cantilevers, Framed Buildings, monitoring of structures, noise and
signals.
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1. INTRODUCTION







1.1 JUSTIFICATION

The performance of a structure is subjected to possible changes during its lifetime.
Circumstances leading to changes in the initial configuration of any structure or
reinforcement of the same leads to modification of the initial behavior of the structure, as

well as, damages produced by permanent or eventual actions.

Caracas, 1967 2,300 buildings were damaged or destroyed

Guatemala, 1976 222,000 buildings (30% of the total) and 1,215 schools were
damaged

Armenia, 1988 The earthquake destroyed some 5,100 buildings in the larger

town of Spitak, which included 100% of the houses. In the
total region, an estimated number of 100,000 households were

destroyed

Loma Prieta, 1989 Numerous roads and bridges were damaged. 22,000 homes
were damaged and 1,500 homes were destroyed or rendered

uninhabitable.

Oregon, 1993 Over 30,000 buildings destroyed and 1,300 bridges damaged
Northridge, 1994 41,600 buildings and 300 bridges were damaged.
Bam, Iran, 2003 85% of buildings damaged or destroyed
and infrastructure damaged in the Bam
area
Peru, 2007 35,500 buildings destroyed and 4,200 damaged

Table 1.1 Summary of structures damaged by historical earthquakes

In big cities such as Caracas, San Francisco, Tokyo, among others, there are bridges,
buildings, hospitals, and schools that need to be maintained under proper conditions in
order to resist any daily action; moreover, such structures must be constructed so that it
can resist future earthquake events. For example, the Federal Highway Administration of
the U.S. Department of Transportation reported that approximately 15% of the 585,000

bridges in the U.S. are considered structurally deficient. Inadequate load capacity is the




most significant factor contributing to structural deficiency. The U.S. has been replacing
deficient bridges at a rate of 5,600 each year [1].

After an extreme event, such as an earthquake, the resistance capacity of a structure shall
be kept under supervision in order to assess whether the condition of the structure can
sustain future use. Table 1.1 shows a summary of structures damaged after important

seismic events.

Among evaluation tasks with regard to structural safety, first, an evaluation of not only
the structures whose damages can be visualized shall be carried out in order to establish
whether the structure can provide habitability, but also the structures slightly affected or

even those structures whose damages cannot be visualized shall be assessed.

A vyear later, hidden damages were discovered in many steel-frame buildings, which
appeared to withstand the Northridge quake. Important cracks in the beam-column

connections were hidden beneath fire-proofing and wall cladding [2].

Structural engineering must have the tools that allow it to solve problems of maintenance,
analysis and correction of structural models, and also determination of structural damage.
The structural engineer must be able to assess possible damage of a structure using visual
inspection and the aid of nondestructive testing. These are some of the existing
nondestructive tests: Acoustic Emission (AE), X-Ray Radiography, Infrared
Thermography (IRT), Ultrasonic Thickness Testing (UT), Magnetic Thickness Gauging,
and Strain Gage Application. However, hidden damages in the structural elements (those
pertaining to the resistance system) are not always easily discovered due to the fact that
these are not visible or are difficult to access; such is the case of beams of bridges,
beams of roofs, etc. In addition, the nondestructive techniques require that the area of
study be accessible, and they also provide a local result of the condition of the structure.
The nondestructive techniques may be classified as global or local. One of the advantages

of a global method is that measurements at one location are sufficient to assess the



condition of the whole structure. Vibration-based methods are usually global methods of
structural analysis; and in many cases, they are easy to use and can be applied at low cost.
Over the past three decades, different methods that use structural dynamics as a
nondestructive method of global assessment, from which information regarding
mechanical properties of the structure and its possible loss of stiffness are gathered, have

been developed.

Vibration-based methods can be applied for monitoring of structures, calculation of
damage after an extreme event such as an earthquake, or as a tool to assess the
vulnerability of the structure. The application of vibration-based methods requires that a
dynamic response of the structure be obtained in a steady, intermittent, or occasional

manner.

In the continuous measurement, a shift from a preventive time-based to a predictive
condition-based maintenance strategy is achieved. This shift reduces both the risk of a
serious failure of the structure and the overall maintenance costs by excluding

unnecessary inspection activities.

Engineers and researchers in areas of structural, mechanical, or aerospace engineering
have developed several methods to assess the damage based on the modal analysis.
Chapter 2 presents a summary of more than 100 works that have been classified as

follows:

e Natural frequency changes

e Mode-shape-based methods

e Mode shape curvatures

e Modal strain energy

e Dynamic flexibility

¢ Residual force vector method

e Model-updating-based methods
e Damping



e Neural network methods
e Genetic algorithm methods

e Nonlinear methods

The various methods presented herein have advantages and disadvantages depending on
the objectives to be achieved, the availability of instruments, and the type of structure to

be analyzed. In general, these methods are classified into two groups:

a) Methods that require a limited use of a few sensors and testing of easy execution.
These methods provide information on the global condition of the structure,
determining whether the structure is damaged or not.

b) Methods that require a large number of sensors and measurement of many degrees
of freedom. These methods allow for the location and quantification of the

damage in the structures.

Taking into consideration the differences between methods a) and b), this study has
developed methods of detection of stiffness of structures that allow for the location and
quantification of the damage in structures using a limited number of sensors and testings

of easy execution.

The algorithms of structural identification developed during this study are based on
knowledge of the form of the matrix of stiffness or flexibility to reduce the number of
modal shapes and necessary coordinates for the structural assessment. This work is
mainly intended to suggest and demonstrate the efficiency of methods that allow for the
estimation of the stiffness of framed buildings, cantilever, or simply supported beams,
just using one or two modal shapes and their corresponding frequencies.

It is a great advantage that just little experimental information is required because it does
not require measurements of rotational coordinates that are difficult to obtain; however, it
is possible to determine the condition of the damage or stiffness from various sections or
stories of the structure. For that reason, these methods act as a first step intended to

develop tools that will produce a rapid response and support for future decision



procedures regarding structures widely used, by excluding experimental information,

thereby allowing for the reduction of the cost of extensive and specific testings.

1.2 OBJECTIVES

This study is intended to present and experimentally validate methods to assess changes

of stiffness of structural systems. The following structural systems are considered:

framed buildings, simply supported beams, and systems that can be modeled as a

cantilever.

The specific objectives can be summed up as follows:

Develop a method that allows for the assessment of the changes in stiffness in the
framed building, considering its modal shapes, modal frequencies, mass of the
structure, and geometric configuration.

Establish the influence of the errors of experimental measurement and the severity
of the damage in the method of identification of framed buildings.

Carry out experimental free vibration test in a three-story framed model on a
reduced scale, determining its natural frequencies and its corresponding modal
shapes.

Estimate changes in stiffness of a framed model based on the method developed
in this work.

Develop a method that allows for the estimation of the flexure stiffness of simply
supported beams, considering its modal shapes, modal frequencies, mass of the
structure, and geometric configuration.

Establish the influence of the errors of experimental measurement and the severity
of the damage in the method of identification of structures composed of simply
supported beams.

Carry out experimental free vibration test in a simply supported beam specimen,
determining its natural frequencies and its corresponding modal shapes.



e Estimate changes in stiffness in an experimental simply supported beam
specimen, based upon the method developed in this work.

e Develop a method that allows for the estimation of the flexural stiffness and shear
stiffness of cantilever structures or shear wall buildings, considering its modal
shapes, modal frequencies, mass of the structure, and geometric configuration.

e Establish the influence of model of masses used in the identification of structures
composed of shear walls.

e Establish the influence of the errors of experimental measurement and the severity
of the damage in the method of identification of simulated structures such as
cantilever.

e Application of the method of identification of structures composed of walls to
structures of low-height confined masonry.

e Carry out experimental free vibration test in a cantilever model, determining its
natural frequencies and its corresponding modal shapes.

e Estimate changes in stiffness in a cantilever model based on the method

developed in this work.

1.3 CONTENTS OF THE STUDY

This study introduces three methods of structural identification for the three different
types of the abovementioned structures. Each method is described in separate
chapters and is validated using numeric and experimental simulations considering
dynamic data. One chapter is intended to detail the dynamic testings of the three

models constructed.
The contents of the different chapters in the thesis are as follows:
Chapter 2 introduces some aspects related to the damage in structures and a summary

of some of the methods used to determine the damage in structural systems

considering dynamic data.



Chapter 3 describes some theoretical aspects related to the free vibration test, the
determination of the dynamic properties using this testing technique, and some

recommendations to perform the testing and the processing of data obtained.

Chapter 4 describes a series of experimental test developed in this study and its
results. The results and procedures used in the vibration tests and static load tests are
presented therein; in addition, this chapter presents the numeric simulations of the

models.

Chapter 5 presents the method of identification of changes in stiffness of the framed

buildings. This method is validated through its numeric and experimental application.

Chapter 6 presents the identification of the changes in flexural stiffness of the simply
supported beams. This method is validated through its numeric and experimental

application.

Chapter 7 is dedicated to the method of identification of the stiffness in structures that
can be simulated using cantilever or those composed of shear walls. This method is

validated through its application to numeric and experimental simulations.

Finally, Chapter 8 presents the final conclusions and comments on possible future
developments.
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2. STRUCTURAL DAMAGE: METHODS OF
IDENTIFICATION USING EXPERIMENTAL
STRUCTURAL DYNAMICS
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2.1 INTRODUCTION

Structural damage can be identified using visual inspection or range-location techniques
such as acoustic or ultrasonic methods, magnetic field methods, radiographs, eddy-
current methods, and thermal field methods. These methods require that the area of study
be accessible in order to provide a local outcome of the state of the structure. The need
for systems for identifying damage using techniques that may provide details on the
overall condition of the structure and on those areas that are difficult to access has led to
the development of methods that examine changes in the vibration characteristics of the

structure.

An outlook since the study of the basic concepts of structural dynamics shows that
changes in stiffness and mass properties cause changes in modal parameters (vibration
frequencies, mode shapes, and modal damping); over the last three decades, a significant
number of research studies have been carried out in order to provide methods for
identifying structural damage using dynamic data for numerous applications involving
detection of structural damages and monitoring of structure for civil, mechanical, and

aerospace engineering.

This chapter presents several aspects related to structural damage and a summary of some
of the methods used to determine damage in structural systems using dynamic data. The
methods are classified according to the type of technique used to identify the damage

using the evaluated data.

2.2 STUDY OF DAMAGE

During its lifetime, a structure is subjected to various physical, chemical, and biological
actions that may cause damage to the structure depending on intensity, duration, and
location; these damages produce changes in aesthetics, functionality, or mechanical

capability of the building structure.
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Damage may occur on different elements of the building structure; these elements are

classified into four groups [3]:

Structural elements: elements that form systems of vertical and lateral load
resistance.

Architectonic elements: elements that do not contribute to resistance of
applications but whose main functions are decorative or filling, such as divisive
walls, windows, and coating.

Installations: systems that provide services to building structures, such as water
pipes, gas pipes, electricity systems, and systems of sewers.

Contents: elements present in building structures but are not part of the structure,

such as machinery, equipments, and furniture.

The last three elements mentioned above are considered nonstructural elements. The

dynamic behavior of the system may be influenced by the arrangement and linkage of

nonstructural elements of the structural system. In general, these elements affect the

stiffness of structural systems or modify the center of vibration of the building structure.

Likewise, the mass of elements considered as contents will produce an effect on the

vibration of the structure to a high or low degree.

The state of functionability and repair of the structure may be determined by the type of

elements that are damaged and the magnitude of the damage. The study of the scope of

the damage is based on two conditions:

The calculation of the damage after an extreme event such as an explosion, fire, or
seism. It is of vital importance to consider the state of the structure and of its
installations as well as the decisions to be taken in order to repair it or demolish it.
Structural Health Monitoring (SHM). Structural monitoring allows to check
continually the condition of the structure. This task is mandatory for structures of

social or economic value, such as bridges, hospitals, schools, and oil platforms
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2.2.1 DAMAGE ESTIMATION AFTER AN EXTREME EVENT

If a structure is subjected to an extreme event, it is necessary to immediately evaluate the
condition of the structure. In the event of a seism, damage suffered by the structure is
classified according to the magnitude of the damage, functionability, necessary repairs, or

a combination of all of them.

2.2.1.1 Classification according to damage observed

Park et al. [4] suggested that the following five states of damage be considered for a
structure of concrete that has suffered a seism:

e No damage: it shows a maximum of just a few fissures in the concrete.

e Slight damage: it shows fissures in various structural elements.

e Moderate damage: it shows severe cracking along with falling concrete.

e Severe damage: it shows crushed concrete and loss of coating of steel bars.

e Collapse.

2.2.1.2 Classification according to functionability

Anagnostopoulos et al. [5] suggested three levels of functionability in a structure
according to the damage:
e Usable: The level of damage is low, hence the structure can be put to use
immediately after the seism.
e Temporarily usable: The level of damage is between moderate and severe. The
structure requires repairs, hence it can not be used temporally.
e Total loss or completely non-usuable: The level of damage is such that the
structure may suffer a total or partial collapse. The structure cannot be put to use

after the seism.
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2.2.1.3 Classification according to level of repair required

Bracci et al. [6] suggested four levels of damage according to the repair required in the

structure:

No damage or some damage.
Reparable
Irreparable

Collapse

2.2.1.4 Combined Classification

The EERI [7] established five levels of damage. This classification is based on level of

damage, time required for repair, and risk to dwellers in the building:

No damage

Minor damage: Minor damage in non-structural elements. The structure will be
usable in less than a week.

Moderate damage: Considerable damage in non-structural elements. The structure
may not be usable up to a period of three months. The risk of loss of human life is
minimum.

Severe damage: Severe structural damage. The structure may not be usable for a
long period of time. As the final option, the structure may be demolished. The risk
of loss of human life is high.

Total collapse or very severe damage: Damage to the structure is irreparable. The
risk of loss of human life is very high.

The abovementioned classifications are just a few of the many existing classifications,

which vary according to the level of complexity and the method used. This study only

attempts to show the importance of an evaluation of a structure after an extreme event has

occurred, especially in the case of a seism.
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2.2.2 STRUCTURAL HEALTH MONITORING (SHM)

Structural Health Monitoring (SHM) is the practice of monitoring a structure over its
lifetime to detect changes in its structural properties that may indicate a reduction in
performance. It may be used to monitor aeronautical, mechanical, civil, electrical, and

other systems.

SHM is mandatory for a building structure, which due to its social value, economic value,
or due to the fact that it houses productive activities or service activities, may be
classified as a structure of vital importance, such as hospitals, schools, bridges, historical
monuments, or buildings, electrical installations, oil installations, nuclear installations,

governmental, or financial building structures.

Depending on the type of structure, a continuous or periodic monitoring may be
established in order to assure a good structural performance and proper functioning of the
system. This task is a vital tool for the decision of actions to be taken regarding

maintenance, repair, or restoration of a building structure.

Knowing the integrity of in-service structures on a continuous real-time basis is very

important with regard to security and structural maintenance. In effect, SHM:

e Indicates possible structural damage present.

e Evaluates effectiveness of tasks of structural maintenance.

e Allows optional use of the structure, minimizes downtime, and prevents
catastrophic failures.

e Evaluates the structural capacity to withstand the effects of extreme events.

e Moreover, monitoring programs may be used to compare and calibrate theoretical

structural models.
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2.3 DAMAGE IDENTIFICATION METHODS USING MODAL DATA

The idea of using vibration measurements to detect damage was proposed by Cawley and
Adams [8]. It is based on the fact that damage will reduce the local stiffness of the
structure, which in turn reduces the natural frequencies of the whole structure. Most
studies use vibration measurements to detect damage examine changes in modal

properties.

A system of classification of damage identification methods, as presented by Rytter [9],
defines four levels of damage identification, as follows:

* Level 1: Detection of the existence of damage in the structure

* Level 2: Determination of the geometric location of the damage

* Level 3: Quantification of the severity of the damage

* Level 4: Prediction of the remaining service life of the structure

The next section presents a review of some methodologies for damage estimation in
structures using modal data. The methods in this review can be classified mostly as Level
1, Level 2, or Level 3 because these levels are most often related directly to structural
dynamics testing and modeling issues. Level 4 is generally categorized under the fields of
fracture mechanics, fatigue-life analysis, or structural design assessment and, as such, is

not addressed in the structural vibration or modal analysis studies.

2.3.1 SURVEY OF PREVIOUS LITERATURE

A detailed survey of the technical literature and interviews of selected experts to
determine the state-of-art of the damage-detection field (using modal analysis
procedures) as of 1979 was presented by Richardson [10]. The survey focused on
monitoring of structural integrity for nuclear power plants, large structures, rotating
machinery, and offshore platforms, with by far the largest number of literature surveys
associatedwith rotating machinery. The author stated that while monitoring of overall
vibration levels of rotating machinery had become commonplace, attempts to relate
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structural damage to measured modal changes were still at their primitive stages. Several
doctoral dissertations that address damage detection and related issues have recently been
published. Each dissertation contains a survey of literature and a development of the
theory relevant to its scope. These dissertations included Rytter [9], Hemez [11], Kaouk
[12], and Doebling [13]. Mottershead and Friswell [14] presented a survey of the
literature related to dynamic finite element model (FEM) updating, which has been used
extensively for detection of structural damage. Their review included a long list of
references on the topic of model updating. Bishop [15] reviewed the literature in the field
of neural networks. Neural-network-based damage identification methods are reviewed in
Section 2.3.9

2.3.2 CHANGES IN NATURAL FREQUENCY

Any structural system that experiences changes in stiffness and mass will experience
changes in natural frequency of the vibration in the structure. As a result, the presence of
damage or deterioration in a structure causes changes in the resonant frequencies of the
structure. The above reasoning and the possibility of measuring frequencies of vibrations
favored the development of methods to detect structural damage. A bibliographical
assessment shows a list of case studies of applications involving detection of structural
damage. A brief overview of the advantages and disadvantages of the most important

case studies are given below.

The somewhat low sensitivity of natural frequency to damage requires high levels of
damage and measurements made with high accuracy in order to obtain reliable results.
However, some studies have shown that resonant frequencies have much less statistical
variation from random error sources than other modal parameters [16].

Cawley and Adams [8] established that the ratio of the frequency changes in the two
modes is only a function of damage location. To locate the damage, theoretical frequency
shifts, due to damage at selected positions on the structure, are calculated and compared

with measured values. The pair giving the lowest error indicates the location of the
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damage. The formulation does not account for possible multiple-damage locations. The
results are based on FE models of aluminum and CFRP plates.

Stubbs and Osegueda [17, 18] developed damage detection methods based on modal
changes. The method relates frequency shifts to changes in member stiffness using the
sensitivity of modal frequency changes. Stiffness reductions were located by solving an
inverse problem, since damage is defined as a reduction in the stiffness of one of the
elements forming the structure. The authors point out that this frequency-change
sensitivity method relies on sensitivity matrices that are computed using a FEM. This
requirement increases the computational burden of these methods and also increases the

dependence on an accurate available numerical model.

Sanders et al. [19] used the frequency sensitivity method of Stubbs and Osegueda [17]
combined with an internal-state-variable theory to detect damage in composite beams.
The damage theory includes parameters, which indicate two possible types of damage:
matrix micro-cracking (identified by changes in the extensional stiffness) and transverse
cracks in the 90-degree plies (identified by changes in the flexural stiffness). The
technique is applicable in general to any internal variable theory that can predict changes

in stiffness resulting from changes in the measured parameters.

Hearn and Testa [20] developed a damage detection method that examines the ratio of
changes in natural frequency for various modes. In this case, the mass is invariable and
second-order terms in the formulation are neglected. The authors then summarize a two-
step procedure, both qualitative and quantitative, for correlating changes in the measured
frequency ratios with the damage location.

Chen et al. [21]questioned the effectiveness of using the changes in natural frequencies to
indicate damage in a structure. The first four frequencies of a steel channel exhibited no
shifts greater than 5%, due to a single notch that is severe enough to cause the channel to
fail at its design load. Given that it is acknowledged that frequency variation due to
incidental/ambient vibration and environmental effects can be as high as 5-10%, they
argued that lower frequency shifts would not necessarily be useful damage indicators.
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Messina and Williams [22] proposed a correlation coefficient that compares changes in a
structure’s resonant frequencies with predictions based on a frequency-sensitivity model
derived from a finite element model. This approach is termed Multiple Damage Location
Assurance Criterion (MDLAC). Tests have shown that 10-15 modes are required to give
sufficient discrimination for reliable damage localization. Applications in the analytical
and experimental cases showed the capacity of prediction of the proposed methods. The
authors note that, in practice, errors in frequency measurements can alter the patterns of
change in apparent frequency and affect the ability of the MDLAC approach to give a
correct prediction.

De Roeck et al. [23] monitored the Z24 Bridge in Switzerland over the course of a year.
Environmental effects of air temperature, humidity, rain, wind speed, and wind direction
were monitored along with readings recorded from 16 accelerometers on an hourly basis.
Following a progressive damage testing program, it was demonstrated that once the
effects of environmental influences were filtered out, stiffness degradations could be

detected if the corresponding frequency shifts were more than just 1%.

Boltezar et al. [24] devised a method for locating transverse cracks in flexural vibrations
of free-free beams by following an inverse problem. The method is based on the
assumption that the crack stiffness does not depend on the frequency of vibration (i.e., the
values of the crack stiffness, which is modeled as a linear torsional spring, must be the
same at the crack position for all of the measured natural frequencies). As a result, by
plotting the relative stiffness along the length of the beam for at least two distinct natural
frequencies, the crack location can be identified by the intersection of these curves.

Sampaio et al. [25] proposed the detection and relative damage quantification indicator
(DRQ), based on the use of the frequency domain assurance criterion (FDAC), as an
effective damage indicator, capable of distinguishing a positive occurrence from a false

alarm.
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Zang et al. [26] presented two criteria to correlate measured frequency responses from
multiple sensors and proposed indicators for structural damage detection using them.
The first criterion is the global shape correlation (GSC) function, which is sensitive to
differences in mode shape but not to relative scales. The second criterion, based on actual
response amplitudes, is the global amplitude correlation (GAC). An experimental test on
a bookshelf structure was conducted, but it was concluded that further studies would be

needed to develop approaches that could accurately assess structural states and damage.

The vast information available regarding the use of the frequency changes of vibrations
to estimate the damage in structures has contradictory points of views regarding the
efficiency or nonefficiency of the use of this parameter. Some studies have established
that the relatively low sensitivity of natural frequency to damage requires high levels of
damage and measurements made with high accuracy in order to achieve reliable results.
Moreover, the capacity to locate damage is somewhat limited, as natural frequencies are
global parameters and modes can only be associated with local responses at high
frequencies. Successful identification algorithms have generally been limited to
identification of a single or a few damage locations. Equally, the most successful
applications have been with respect to small laboratory structures. Only frequency shifts
have been used in identifying damage in full-scale structures.

2.3.3 METHODS BASED ON MODE SHAPES

One of the parameters that characterize the dynamic response of a structure is its mode
shape. The natural feature of vibration from a system can be obtained by a sampled
dynamic array of sensors. This section describes two of the most common methods used
in damage estimation. The first is based on the analysis of the changes in the mode
shapes, whereas the second is based on the analysis of the changes in the curves of those

mode shapes.

22



2.3.3.1 Comparison of modes shapes

Several methods are used to compare two sets of mode shapes. Brief overviews of some

of them are presented here.

Yuen [27] examined changes in the mode shape and mode-shape-slope parameters. The
changes in these parameters were simulated for a reduction in stiffness in each structural
element, and then the predicted changes were compared with the measured changes to
determine the damage location. The author identified the need for some

orthonormalization process in order to account for higher mode shapes.

The MAC (Modal Assurance Criterion), which is probably the most common means of
establishing a correlation between experimental and analytical models, is defined by
Allemang and Brown [28]. The MAC value can be considered as a measure of the
similarity of two mode shapes. An MAC value of 1 is a perfect match and a value of 0
means they are completely dissimilar. Thus, a decrease in MAC value may be an

indication of damage.

The COMAC (Coordinate Modal Assurance Criterion) is used to calculate a correlation
factor between the undamaged and damaged experimental coordinates in all mode shapes
for a specific degree of freedom [29]. The COMAC is a pointwise measure of the
difference between two sets of mode shapes and takes a value between 1 and 0. A low
COMAC value would indicate discordance at a point and thus is also a possible indicator
of damage location.

The MSF (Modal Scale Factor) represents the slope of the best straight line through the
points for a pair of mode shapes, which in this case is the undamaged and damaged mode
shapes [30]. This criterion gives no indication as to the quality of the fit of the points to

the straight line, simply its slope.
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The RD (relative Difference) used is the Relative difference between the shapes of the
scaled modes [31]. This criterion uses the graphical comparison of the mode shapes in

order to indicate the position of damage.

Mayes [32] presented a method for model error localization based on changes in mode
shape known as structural translational and rotational error checking (STRECH). By
taking ratios of relative modal displacements, STRECH assesses the accuracy of the
structural stiffness between two different structural degrees of freedom (DOF). STRECH
can be applied to compare the results of a test with an original FEM or to compare the
results of two tests.

2.3.3.2 Mode shape curvatures

The Euler—Bernoulli equation evidently shows that the bending curvature of the beam is
inversely proportional to its stiffness. Damage at any section results in an increase
incurvature at that section, which is local in nature. Hence, curvature-based methods can

be used to identify damage.

Mode shape curvature (MSC) method was first presented by Pandey et al. [33]. The
location of the damage is assessed by the largest absolute difference between the mode

shape curvatures of the damaged and undamaged structure

Salawu and Williams [34] used a mode shape curvature measure computed using a
central difference approximation. They compared the performance of this relative
difference method with that of a mode shape relative difference method. They
demonstrated that the change in curvature does not typically give a good indication of the
damage using experimental data. They pointed out that the most important factor is the
selection of the modes that are used in the analysis.

Wahab and De Roeck [35] applied a curvature-based method to the Z24 Bridge in
Switzerland successfully. They introduced a damage indicator named the curvature
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damage factor, CDF, the difference in curvature before and after damage averaged over a

number of modes.

Ho and Ewins [36] attempted to evaluate using both simulated and experimental data that
whether the presumption that damage is located at the point where the change in mode
shape is the greatest is valid, since the differentiation process enhances the experimental
variations inherent to mode shapes. They addressed five methods based on mode shapes
and their derivatives: flexibility index (FI), mode shape curvature (MSC), mode shape
curvature square (MSCS), mode shape slope (MSS), and mode shape amplitude
comparison (MSAC).

The review shows some contradictions from the some authors over the use of mode
shapes alone in damage detection. Ren and De Roeck [37] cast doubts on the use of mode
shapes in large structures, whereas Wahab and De Roeck [35] presented promising

results when applied to a bridge.

2.3.4 MODAL STRAIN ENERGY

The distribution of strain energy along a structure can be measured between any two
points. Experimental results show that the damage at any point of the structure causes an
increase in the curvature, thereby leading to higher values of strain energy at the region of
damage location. The difference between the strain energy distributions of undamaged

and damaged structures can be used to indicate the severity of damage.

Kim and Stubbs [38] proposed a damage identification method based on the decrease in
modal strain energy between two structural DOF, as defined by the curvature of the
measured mode shapes. Kim and Stubbs [39] derived a new damage index, which
improved the accuracy of damage localization in a simulated two-span beam, compared
with Kim and Stubbs . By assuming that damage has only highly localized effects on
mode shape curvature, Stubbs and Kim [40] used only post-damage data to localize and

estimate severity of damage of an experimental two-span beam.
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Farrar and Doebling [41] were successful in using Kim and Stubbs [38] damage index in
localizing controlled damage to a bridge. They found that this method outperformed the
method involving the direct comparison of mode shape curvature before and after the

damage.

Law et al. [42] proposed the use of the elemental energy quotient (EEQ), defined as the
ratio of the modal strain energy of an element to its kinetic energy. The difference in the
EEQ before and after damage is normalized and averaged over several modes and used as

an indicator of the region of damage location.

Choi and Stubbs [42] developed a method to locate and determine the size of damage in a
structure by measuring time-domain responses in a set of measurement points. The mean
strain energy for a specified time interval is obtained for each element of the structure
and is used in turn to build a damage index that represents the ratio of the stiffness

parameters of the pre-damaged and post-damaged structures:

Patil and Maiti [43] proposed damage index behavior as an indicator of the amount of
strain energy stored in the crack (or torsional spring). The method is based on the concept
that the strain energy U of a beam containing a crack is reduced because the beam can
deform more easily to the same extent than an uncracked beam. This work provided an
experimental verification of an energetic method for prediction of the location and size of
multiple cracks based on the measurement of natural frequencies for slender cantilevered

beams with two or three normal edge cracks.

2.3.5 DYNAMIC FLEXIBILITY

The flexibility matrix is defined as the inverse of the static stiffness matrix. Each column
of the flexibility matrix represents the displacement pattern of the structure associated
with a unit force applied at the corresponding DOF. The measured flexibility matrix can
be estimated from the mass-normalized measured mode shapes and frequencies. Due to

the inverse relation to the square of the modal frequencies, the dynamic flexibility matrix
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IS very sensitive to changes in the lower order modes, whereas the stiffness matrix is
more sensitive to higher order modes. Damage is then identified by comparison of the
flexibility matrices of the structure in the undamaged (obtained using a FE model in

general) and damaged states.

Pandey and Biswas [44] identify damage in beam-type tructures using changes in the
flexibility matrix of the structure. Using numerical and experimental examples of the
different types of beams, Pandey and Biswas [44, 45] demonstrated the uses of changes

in the flexibility matrix for locating damage in beam- type structures.

Doebling and Paterson [46] presented a method for synthesizing a statically complete
flexibility matrix, which reproduces specific partitions of the dynamically measured
flexibility matrix. A statically complete flexibility matrix based on the assumed elemental
connectivity of the structure is scaled such that it reproduced (approximately) the

statically complete partitions of the dynamically measured flexibility matrix.

Lim [47] proposed the unity check method for locating modeling errors and used the
location of the entry with maximum magnitude in each column to determine the error
location. He applied the method to FEM examples and also investigated the sensitivity of
the method to non-orthogonality in the measured modes. Lim [48] extended the unity
check method to the problem of damage detection. He defined a least-squares problem
for changes in the elemental stiffness—that are consistent with the unity check error—in

potentially damaged members.

Ho and Ewins [36] presented the stiffness error matrix as an indicator of errors between
measured parameters and analytical stiffness and mass matrices. For damage
identification, the stiffness matrix generally provides more information than the mass
matrix, so it is more widely used in the error matrix method.

Park, et al. [49] presented a weighted error matrix, where the entries are divided by the
variance in natural frequency resulting from damage in each member. The authors

applied their formulation to both beam models and plate models.
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Yan and Golinval [50] presented a damage localization technique based on a combined
consideration of measured flexibility and stiffness. The covariance-driven subspace
identification technique is applied to identify parameters of structural modes and then
used to assemble the flexibility matrix. The stiffness matrix is obtained by a pseudo-
inversion of the flexibility matrix. Damage localization is achieved by a combined
assessment of changes in the two measured matrices in moving from the reference state

to the damaged state.

By knowing the stiffness or flexibility matrix topology, it is possible to reduce the
number of modal forms and the number of coordinates necessary for structural
estimation. In general, this reduces the number of measurement points on the structures,
which drastically reduces the costs and the number of tests needed. The damage is
estimated from the mass-normalized measured mode shapes and frequencies. On the
basis of this approach, methods are developed for estimation of damage in framed
structures [51, 52], shear wall buildings and cantilevers [53], and simply-supported-
beams [54]. These methods are verified through laboratory models and numerical

simulations.

2.3.6 RESIDUAL FORCE VECTOR METHOD (RFV)

The residual force method is used for quantification and localization of the damage in
structures. This method is based on identifying the difference in modal properties
between the undamaged and damaged structures.

Sheinman [55] proposed numerical examples of a closed-form algorithm for damage
identification using RVF. In a study, Kosmatka and Ricles [56] identified single damage
events (stiffness loss, connection loosening, lump mass addition) in a laboratory test. In
this work, measurements were made at each DOF to obtain complete mode shapes. A

weighted sensitivity algorithm estimated the magnitude of stiffness/mass change. As
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expected, it was found that increased correlation between the analytical model and the

baseline modal properties improved the estimates of damage severity.

Farhat and Hemez [57] minimized the norm of the RFV by updating both stiffness and
mass elemental parameters in a sensitivity-based algorithm. Incomplete mode shapes
were expanded by minimising the RFV. This methodology was verified on a simulated
cantilever and a simulated plane truss. It was important that identification includes modes
that stored sufficient strain energy in the damaged elements. Brown et al. [58] applied the
method to lightly damped structures. The mass and stiffness matrices are first updated
and then the remaining RFV is absorbed by the damping matrix. The method worked

well in numerical studies with damping less than 3%.

Castello et al. [59] presented the use of a continuum damage model where a scalar
parameter represented the local cohesion state of the material. The method was

established on a simulated cantilever and a planar truss with up to two damage locations.

Ge and Lui [60] proposed the method that uses finite element modeling and locates
damage by the use of a pseudo structure residual force. Matrix condensation is then
applied to extract the degrees of freedom associated with the damaged elements. Damage
is evaluated using a proportional damage model that makes use of the measured
frequencies of the damaged structures. Numerical examples are considered and the
validity of the method is demonstrated by applying the procedure to detect damage in the

structures.

2.3.7 MODEL UPDATING BASED METHODS

Model updating can be defined as the process of correcting the numerical values of
individual parameters in a mathematical model using data obtained from an associated
experimental model such that the updated model describes the dynamic properties of the
subject structures more correctly. A typical way to establish a numerical model for a civil
structure or mechanical system is via the use of the finite-element method. Closely

related to model updating is the model-based method for damage determination, which
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serves as an indicator of damage and can be used to quantify the location and extent of
damage.

Baruch [61] proposed a method by which a given stiffness and flexibility matrix can be
corrected optimally by using corrected mode shapes and natural frequencies obtained
from vibration test. The procedure assumes that the mass matrix is correct. Berman [62]
introduced a formulation that modifies the mass matrix and assumes that the measured
modes are exact. Consequently, Berman and Nagy [63] combined the mass-matrix
adjustment procedure of Berman with the stiffness matrix adjustment procedure of
Baruch [61] to create the so-called analytical model improved (AMI) procedure.

Kabe [64] proposed the matrix adjustment procedure (KMA) using constrained
minimization theory. This work presented error function that is independent of the
system’s mass properties and magnitudes of stiffness coefficient. The minimization of the
error function minimizes the percentage change to each stiffness coefficient. The
optimally adjusted stiffness matrix is obtained by minimizing this error function subject
to symmetry constraints, connectivity constraints, and constraints derived from a system

of force Equilibrium equations.

Chen and Garba [65] proposed a method for minimizing the norm of the perturbations of
model property with a zero modal force error constraint. They also enforced a
connectivity constraint to impose a known set of load paths onto the allowable
perturbations. The updates are thus obtained at the element parameter level, rather than at

the matrix level. This method is demonstrated on a truss FEM.

Kim and Bartkowicz [66] investigated damage detection capabilities with respect to
various matrix updating methods, model reduction methods, mode shape expansion
methods, number of damaged elements, number of sensors, number of modes, and levels
of noise. The authors developed a hybrid model reduction/eigenvector expansion

approach to match the order of the undamaged analytical model and the damaged test

30



mode shapes in the matrix updating method. They also introduced a more realistic noise

level into frequencies and mode shapes for numerical simulation.

Zimmerman and Kaouk [67] presented the basic minimum rank perturbation theory
(MRPT) algorithm. A nonzero entry in the damage vector is interpreted as an indication
of the location of damage. The resulting perturbation has the same rank as the number of

modes used to compute the modal force error.

Kaouk and Zimmerman [68] presented a technique that can be used to implement the
MRPT algorithm with no original FEM. The technique involves using a baseline data set
to correlate an assumed mass and stiffness matrix, so that the resulting updates can be
used as the undamaged property matrices. Zimmerman et al. [69] extended the theory to
determine matrix perturbations directly from measured FRFs. This method is
implemented by solving for the perturbation in the dynamic impedance matrix from the

generalized off-resonance, dynamic-force residual equation.

Zimmerman and Kaouk [70] implemented such an eigenstructure assignment technique
for damage detection. They included algorithms to improve the assignability of the mode
shapes and to preserve sparsity in the updated model. They applied their technique to the

identification of the elastic modulus of a cantilevered beam.

Li and Smith [71, 72] presented a hybrid model updating technique for damage
identification that uses a combination of the sensitivity and optimal-update approaches.
This method constraints the stiffness matrix perturbation to preserve the connectivity of
the FEM, and the solution minimizes the magnitude of the vector of perturbations to the

elemental stiffness parameters.
Sheinman [55] proposed an algorithm for updating the stiffness and mass matrices and

for damage detection and location. It is found that only one mode is needed for exact

locating the damage and very few modes for determining the extent of the damage. The
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method preserves the initial connectivities and assumes that both the stiffness and mass
matrices can be defectives.

Cobb and Liebst [73] presented a method that uses a mathematical optimization strategy
to minimize deviations between measured and analytical model frequencies and partial

mode shapes.

Teughels et al. [74] presented a sensitivity-based finite element updating method that
used the experimental modal data. The damage identification procedure is performed in
two updating steps. In the first step, the initial FE model is tuned to a reference state of
the structure, using the measured vibration data of the undamaged structure. In the second
step, the reference FE model is updated to obtain a model which can reproduce the
measured vibration data of the damaged state. The damage is identified by comparing
both the reference and the damaged FE model.

Jaishi and Ren [75] presented a methodology for sensitivity-based finite element model
updating. In this work, the objective function consisting of the model flexibility residual
is formulated and its gradient is derived. The proposed method is applied in the
laboratory to the tested reinforced concrete beam, which is damaged.

The damage scheme proposed by Titurus et al. [76, 77] consists of model updating of the
baseline finite element model, followed by the use of the sensitivity matrix along with the
vector of changes of the chosen dynamic properties for locating the damage.

2.3.8 DAMPING

Similar to the frequency changes, the damping changes are used to estimate structural
damage. However, crack detection in a structure based on damping is advantageous over
detection schemes based on frequencies and mode shapes in that damping changes can be
used to detect the nonlinear, dissipative effects that cracks produce. Modena, Sonda, and

Zonta [78] showed that visually undetectable cracks cause very little change in resonant
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frequencies and larger changes in damping and that the detection of such cracks requires
higher mode shapes.

During vibration tests of prestressed reinforced concrete hollow panels, Zonta, Modena,
and Bursi [79] observed that cracking in reinforced concrete specimens results in a
frequency splitting in the frequency domain and the beat phenomenon of the free decay
signals in the time domain. The authors claimed that crack formation in prestressed
reinforced concrete triggers a nonviscous dissipative mechanism, making damping more
sensitive to damage, and they proposed to use this dispersive phenomenon as a feature for
detecting damage.

Keye et al. [80] developed a method which is capable of relating modal damping

deviations caused by structural damage to the damage location on the structure.

2.3.9 NEURAL NETWORK METHODS

Neural networks are computing systems with the ability to learn from trainings and are
developed to imitate the way humans manage and process information. On the basis of
trained neural networks, the behavior of complex system may be modeled and predicted,
even without a priori information about the structural or mathematical model. In the
fields of dynamic system identification, prediction and control, application of neural

networks has increased considerably in recent years.

Neural networks have been applied successfully in many diverse applications including
vibration-based damage identification [81-84]. In general, neural networks are
particularly applicable to problems where a significant database of information is
available but where it is difficult to specify an explicit algorithm.

Both Ramu and Johnson [85] and Pandey and Barai [86] applied back propagation neural
networks to identify damage. In both cases, the network was found to be effective, except

that the topology of the network was found to be critically important for performance.
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Marwala [87] demonstrated the use of the committee approach on a damaged
experimental cylinder. Three networks were trained and their outputs combined to give

better predictions than those by the three networks separately.

2.3.10 GENETIC ALGORITHM METHODS

Some damage identification structures based on optimizing processes employ genetic
algorithms (GA). Genetic algorithms are methods for optimization of functions based on
the random variation and selection of a population of solutions. They are part of what
may be described as evolutionary algorithms, which have been developed since the 1950s
[88].

Many authors, for example Chiang and Lai [89] and Moslem and Nafaspour [90],
described a two-stage process where the RFV is used to locate damage initially and then
in a second stage a GA is successfully used to quantify the damage in the identified
elements. The method was demonstrated on a simulated truss structure of 13 elements,

with up to 3 elements being damaged.

Ostachowicz et al. [91] identified the location and magnitude of an added concentrated
mass on a simulated rectangular plate by using the shifts in the first four natural
frequencies. A genetic algorithm was employed to overcome the problem of multiple

peaks in the objective function.

2.3.11 NON-LINEAR METHODS

It is clear from the literature that non-linear damage assessment methods are very less
investigated than linear assessment methods. To incorporate the non-linear behavior of a

cracked beam, a bilinear spring is often used to model the crack.
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Van Den Abeele and De Visscher [92] considered the amplitude dependency of the
dynamic behavior of a gradually damaged RC beam. The non-linearity is quantified as a
function of the damage and compared with linear damage assessment techniques. A time
stepping model is described by Neild [93] to understand the non-linearities in the
vibration characteristics. The model is capable of including damage in the form of a
moment-rotation relationship over the cracked region. The beam test showed that there is
a change of nonlinear behavior with damage. The change is the greatest at low damage

levels.

Vanlanduit et al. [94] employed vibration characteristics to detect cracks during a fatigue
test on a steel bar. To perform this test, an experimental setup is developed to
simultaneously estimate static and dynamic response, as well as linear and non-linear
vibration features. In this setup, it turned out that the non-linear dynamic response is far
more sensitive to damage than the static non-linear and the linear elastic responses. Also,
a double crack could be detected using a non-linear identification technique near the

region of fatigue failure.

2.4 CONCLUSION

Various methods that use modal data to determine structural damage and to provide
damage assessments of the structures have been described in the literature. These
methods can be used for estimation of damage after an extreme event or for structural

monitoring

According to the literature review, it is clear that an ideal methodology for the damage
estimation cannot be established. Each method presents advantages and disadvantages
depending on the desired applications. Many methods are not available for damage
quantification, and there are only limited methods to establish the presence and location
of damage.
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One of the limitations that is frequently encountered is the capacity to detect small
damages. The methodologies require high levels of damage and measurements made with

high accuracy in order to obtain reliable results.

Several studies continue to focus on laboratory tests and numerical simulations. These
tests and simulations, while beneficial in terms of testing proposed detection algorithms,

cannot replicate the environmental effects to which real structures are subjected to.

Depending on the chosen algorithm less or more number of sensors are needed. The
algorithms which use few sensors are limited to Level 1 identification.

Some methods require complete data on the mode shapes so that all coordinates of the
finite-element prototype are included in the model. However, measurement of all the
fundamental frequencies and mode shapes, including rotational modes, is impractical in

Some cases.

It is clear that although some promising work has been reported on damage detection
using linear methods, there are still major problems to be overcome, particularly those of
sensitivity and effect of environmental conditions, experimental error, and

incompleteness.
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3. INTRODUCTION TO EXPERIMENTAL STRUCTURAL
DYNAMICS
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3.1 INTRODUCTION

The process of prognosis of structural damage involves a preceeding stage of recognition
of modal parameters. There are various techniques of dynamic test of structures such as
free vibration, forced vibration, and environmental vibration; each one involves a test
procedure, data processing, and dynamic properties (frequencies, buffers, and mode
shapes). The extraction of dynamic features of the structural models studied herein was
included in the test of free vibration; for that reason, this chapter is intended to present
theoretical aspects regarding dynamic tests of free vibration, detection of dynamic
properties based on this test technique, some recommendations to carry out the test, and

the processing of data obtained.

3.2 FREE VIBRATION TEST

In the free vibration test, the structure is subjected to an initial condition of velocity or
movement displacement, allowing it to vibrate freely and thereby enabling the recording
of its resulting movement.

In the event of an initial condition of velocity applied to the structure, a compulsive force
must be applied to the structure so that the time frame is shorter than that of the period of
the system. In order to do so, several techniques are applied: strike the structure with
heavy weights, produce small explosions, launch rockets from the structure, among
others [95].

For the application of an initial deformation to the structure, a steel cable containing a
steel fuse designed to break at certain force is tightened to it. Then, using heavy duty
machinery or other system, the steel cable is tightened until the fuse breaks. Figure 3.1
shows a graph of this test. In most cases, it is convenient to apply force in a horizontal

way (6=0), so the modes of vertical vibrations are not excited.
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Figure 3.1 Free vibrations test

3.2.1 THEORY OF TEST SCREENING

The equation of movement for a structural system of N degrees of freedom that is
subjected to a free vibration can be written as:

Mii(t) + Cu(t) + Ku(t) =0 (3.1)
where:

M = Mass matrix

C = Damping matrix

K = Stiffness matrix

ii(2),u(t),u(t) = acceleration, velocity, and displacement vector

For most structures K and M are symmetric and positive definite matrices.

Through the following transformation of coordinates,

)= 47,0 2
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where ¢, = mode shape “i”

Considering that the C matrix complies with the conditions of orthogonality [96],

equation 3.1 is modified as follows

77;' (t) + Zé/ia)iﬁi (t) + a)i277i (t) =0 (33)

Since,

n, (t) = principal coordinates
w, = circular natural frequency “i”

¢ ;= modal damping factor “i”

The solution to equation (3.3) is (clough):

- it

m; (t)=e

1; (0) Cos(a)dit){’—?l%flﬂl@&n (a)dit)J
i

P —

(3.4)

where:

0, = o 1-¢7 (35)

In case of systems of low damping (¢ <<1), @, = ;.

1

The values of 7,(0) and 7,(0) are determined by the initial conditions of the system and

can be demonstrated by the following equation:

¢ Mu,
1,(0) = M
B Mg
1;(0) = Y (3.6)

r
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Since, M, = ¢/ My,

In case of #(0) =0 , considering that 77,(0) = 0 and equation (3.4), it can be written as:

—é’ia)it[ni (0) Cos(a)dl_t)—i-[g"ir]i (O)Sin(a)dit)]]

ni(0)=e (37)
If the system has an initial deformation «(0) contained only in mode shape “i”:  (3.8)
With A = constant (3.8
Substituting (3.8) in (3.6), by condition of orthogonality:

7,0) = {ff " J.‘:ii 39)
Considering the above equations, equation (3.2) is written as:

u(t) = ¢l.Rl.e(_§i aConteg ) (3.10)
Where:

The above equations show that with a given deformation in equation 3.8, the structure

vibrates solely in mode “i”, oscillating as a system of 1DOF. For that reason, the
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frequency of such mode can be obtained directly from the time recorded. The value of the
damping factor can be obtained from the equation of logarithmic decrease for systems of
1DOF [97].

Considering the neper logarithm of the quotient of two maximum peaks (separated “n”
periods) of equation 3.10, the following is obtained: (3.11)

1 umax‘. (tl)
lamlliion 019

Since,

Unayi(t;)= peak positive at time t;
_2z

T
ay

In practice, the initial deformation up does not have the form of the first mode, even
though it is common that the initial deformation is predominant. For structures with
separate frequencies, the superior modes damps faster than the first, with the structure
vibrating in its fundamental frequency, immediately after the recording is initiated. For
that reason, using the records in the time domain, solely in just a few cases, the frequency

of the second mode can be obtained.

Previous observations are also valid for the records of velocity or acceleration, with the
observation of superior modes being more feasible in these cases, due to the fact that

equation (3.10) would be multiplied by w; in the case of velocity and @/ in the case of

acceleration, in the case of a low damping.

3.2.2 FREQUENCY DOMAIN ANALYSIS

Due to the limitations in the time-domain analysis for the study of the superior modes,

this method is based on work performed in the frequency domain. In this way, the
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frequencies, damping factors and modal shapes corresponding to the last modes can be
obtained.
Fourier’s techniques are used in this study, and the following is a brief overview of those

techniques:

3.2.2.1 Frequency domain equations
The following section presents the equations to obtain the frequency (w) and the damping

factor (C) of a system through its transformation to the frequency.

3.2.2.2 Single degree-of-freedom systems (SDOF)

The displacement of a SDOF subject to free vibration is:

—Cw,tCos(w,t —y)

u(t) = pe (3.12)
where p depends on the initial conditions. Let us introduce the equality of Euler

e’ =cosx+ jsinx

Substituting equation (3.12) in Euler’s equation gives equation (3.13)

u(t) = pe (ej (@t=a) | o= (w”t_“)) (3.13)

In order to account for the frequency domain in the above equation, the transformed

equation of Fourier [98] can be applied, defined by:

h(p) = h(e)e™dt (3.14)
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Applying the transformed equation of Fourier to the displacement result yields equation
(3.15)

_ e e 3.15
u(p)= J(p wd)+§w J(p+e,)+iw (319

3.2.2.2.1 Initial condition of displacement

Considering an initial displacement with a variable of velocity rule and low damping

(£<<1), the following equation is obtained:

u(p) == £+ Jiple) — /" (3.16)
@ Jl (plw)?f + (2 (pl @)
_ 2?(1?9/0))2 (3.17)
1-(p/ o)

If z=(p/w), we will obtain:

u(z) = o 4 CE (3.18)
@ \/1 z? 2(2
tgo = 2522 (3.19)
1-z

Simplifying equation (3.18):

u(z) = Yo SQF )+ (=207~ 2F) (3.20)
o (-2 +(2&)

Generally, the module of the transformed equation is used to characterize the result,

assuming again that ({<<1), which results in equation (3.21)
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u, z

@ Ju-22F + 2y

(3.21)

()] =

3.2.2.2.2 Determination of the @

Equation (3.21) is used to determine as to when the maximum of |u(z)| occurs. The

optimum result is described by Genatios [96]:

U 1

T (3.22)

12y =1z =D =

In a graph of z vs. w, the point where the module is maximum corresponds to the

frequency. Figure 3.2 shows the procedure.

L=J(Z) A

0 1 z

Figure 3.2 Determination of the o

3.2.2.2.3 Determination of the £

There are various methods to calculate the damping factor; in this case, let us determine

the damping factor according to the method of band width [97]. Let us examine the value
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of |lu(2)|=|u(2)| . / /2 .In the curve of answer in the frequency, there are two points that

have that value

(2| = u(z,)|=[u(z)] ., 1~/2, This value is:

u\z
” ( )”max — Uy 1 — u, z (323)
oo ed2l2 o oo 4 gy
Where z; = z; or z,, Equation 3.23 may be rewritten as
2 =2(1-2¢%)z" + (1-8%)=0 (3.24)

Whose roots are given by

2 =\1-20+207 ) z, =41+ 20 + 207 (3.25)

Assuming (£<<1) and neglecting high-order terms in , we arrive at the result
z;=1-24 and z, =1+ 24 (3.26)
Using the binomial expansion, we get

1

21=(1—2§2)1’2=1—52§+--- (3.27)

z, =(1+2£%)"? =1+%2§+.--

Or, since (£<<1),

z,—z,=2¢ (3.28)
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Thus,

_1p2—p1
5_2 w

(3.29)

Figure 3.3 shows the band-width method

Up) |

A

A 4
A
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»| £ = Ap, +Apz w
Ap, 2w, 2w,

Figure 3.3 Response curve showing band-width method
3.2.2.3 Multiple degree-of-freedom systems (MDOF)

In the case of systems of MDOF, the displacement can be expressed as the sum of the
modal contributions (eq. 3.2):

)= 47,0 2

Let us consider the transformed equation of Fourier of equation (3.4), and the result is:
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The above expression can be written for DOF “j” as:
N

U, (o) :;Uﬂ
where:

N g ¢ M 20 +z,(1-22—(2£.)%) -
Uji :z¢k¢k u(o) ( éll +Zl( Zl ( 41) )l (331)

o P M, o, (1-2)* +(2¢.z,)?

Therefore, under common suppositions (low damping and well-separated frequencies),
modal interference can be neglected in the area of the resonance and the same techniques
can be applied to determine the frequency of resonance and damping factor @, and ¢,.
The modal forms can be constructed by evaluating the magnitude of the displacement
(eq. 3.31) and the corresponding phase for the frequency of interest.

3.3 DATA PROCESSING

3.3.1 FOURIER ANALYSIS OF SIGNALS

Time-domain data is very difficult to interpret, which makes it necessary to work in the
frequency domain. The process of converting the analogue time-domain signal into a
digital frequency-domain signal is carried out inside a spectrum analyzer, where the
energy of a signal is separated into various frequency bands through a set of filters, and

the method used is called Fourier transform.

49



Fourier transform is a method of analysis that is used on linear systems to recast a
problem in a format that can be solved more readily than is possible in the original
format. For the application of transient response prediction of structures, the Fourier
transform is widely used. More specifically, a version known as the discrete Fourier
transform (DFT) is often used, as this can very readily be implemented by using an

efficient set of algorithms on computers, known as the “fast Fourier transform’ (FFT).

3.3.2 FOURIER RESPONSE INTEGRAL

For any signal x(z), which is periodic, an interval T can be decomposed into a constant
part and infinite series of harmonic contributions. When superimposed, these result in the
original total time-signal function. This harmonic decomposition results in a Fourier

series for the signal [99]:

X(1)=Y X, e (3.32)
T
X = ijx(t Je " d (3.33)
n T

0

w, 1s the fixed repetition frequency of the excitation corresponding to the period T. The
frequencies of the harmonic components are multiples of the frequency w,. By letting
T — o, equation (3.33) becomes an integral, so that for a continuous function we get the

Fourier transform pair [99]:

x(t) = [ X (w)“do (3.34)
1 7 it
X(w)=— j xX(t)e " dt (3.35)
2r =,
which are known as the direct and inverse Fourier transforms, respectively.
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3.3.3 DISCRETE FOURIER TRANSFORM (DFT)

The Discrete Fourier Transform (DFT) is an approximate formula for calculating the
coefficients of the Fourier series. In most practical applications, a signal is discretized
taking a section and dividing it into J discrete points (at t=ty k=1..J). The Fourier

representation of the section is then [99]:

J-1 N
() =x, = zXnelk(Zfr/J)n

(3.36)
n=0
where
J 2
X, :§Zxke_lk(2ﬂ/‘])n forn=1..,3 (3.37)
k=1

Equation (3.36) is known as the discrete Fourier series of signal and equation (3.37) is

known as its discrete Fourier transform (DFT).

3.3.4 FAST FOURIER TRANSFORM (FFT)

The Fast Fourier Transform, which allows very efficient and accurate evaluations of the
discrete Fourier transforms, is based on an algorithm developed by Cooley and Tukey
[100]. The complete calculation requires fewer operations than evaluation of the
transform directly, and this means that are fewer rounding errors in the computation.
Overall, this results in quicker and more accurate procedure, which is widely used in

practice.
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3.3.5 RELATED TOPICS IN SIGNAL ANALYSIS
In the Fourier transformation of any signal, there is a basic relationship between the

sampling duration, 7; the number of discrete values, J; the sampling rate, f;. and the

frequency resolution, Af =1/T . The range of spectrum is 0-f,,q, Where f,,, is the Nyquist

frequency given by f, =1/2T as the size of transform N is generally fixed for a given

analyzer at a power of 2 (256, 512, 1024, etc.). f,,, and Af are determined by sample time
length 7. This fact introduces constraints and descretisation approximations, which may
lead to errors. Hence, there is a need to limit the length of the time history. Some

important features to reduce these errors are:

3.3.5.1Aliasing
Two sinusoidal signals of different frequencies can produce identical signals. Figure 3.4

shows an example of this phenomenon, where the crosses represent the sampled data
points. The problem is caused by a sampling rate that is very low, as a result of which
high frequencies appear as low frequencies. The problem can be avoided by maintaining
the sampling rate below the Nyquist frequency, which is twice the highest frequency of

interest.

Figure 3.4 Aliasing phenomena

3.3.5.2 Leakage

One problem with the analysis of vibration data is that the signal is assumed to be
periodic over the sampling interval chosen. In general, this will not be true and leads to a
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problem known “Leakage”. Figure 3.5 illustrates the problem, showing a sinusoidal
signal with one sampling interval equal to an integer multiple of the signal period and a
second different sampling interval. As the signal is sinusoidal, the Fourier transform
should only be non-zero at one frequency. In the second case, leakage has caused some of
the power contained in the frequency of the sinusoidal to “leak” into adjacent
frequencies. Leakage can be corrected by the use of window functions.

Time Domain Frequency Domain

NANAAN
VYUY

Time Domain Frequency Domain

Figure 3.5 Sample length and leakage of spectrum

3.3.5.3 Windowing

The windowing involves multiplying the original signal by a prescribed time function
before performing the Fourier transform. The result of this mathematical operation is to
provide a sampled time waveform that appears to be continuous and periodic.
Discontinuities are “filled in” by forcing the sampled signal to be equal to zero at the

beginning and end of the sampling period (window).

However, in using a window, there is a trade-off between the ability to resolve
frequencies and the resolution of amplitudes. If the window function (Rectangular
Window) is not applied, the frequency and amplitude resolution is excellent, provided the

signal is periodic and fits the time sample exactly. For example, with a sine wave that
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starts at zero at the beginning of the sample, it would also need to finish at zero to give
good resolution. If it does not, the waveform has the characteristics of a sine wave and a
square wave -- that gives rise to “leakage” into the bins on either side of the main
frequency on our FFT. Most windows, for this reason, ensure that the signal starts and
finishes in our time sample at the same level, thus avoiding the need for a synchronous
signal.

There are many available windowing functions. Rectangular (actually no window), Flat-
Top, Hamming, Kaiser—Bessel, and Hanning are some of the windowing functions
available. Perhaps, the most commonly used window is Hanning (raised cosine). It is
good to analyze sine waves, as it provides a good compromise on both frequency and

amplitude resolution.

3.3.5.4 Averaging
When an FFT is produced, the instrument uses a digitized time waveform and performs

the mathematical operation to produce the FFT. However, observation of only one
section of time waveform may exclude some peak caused by the influence of a random
vibration. To minimize this, it is common to consider several sections of the time
waveform, calculate several FFTs, and display an average result. Four averages are

commonly taken.

Averaging is available in most FFT analyzers to assist in interpreting data. Averaging
provides more repeatable results in data collection and is an early indication of machine
deterioration. Averaging also helps in the interpretation of complex, noisy signals.

3.4 PRACTICAL CONSIDERATIONS IN THE FREE VIBRATIONS
TEST

The following text presents some recommendations to carry out dynamic tests of free

vibration. These recommendations are acquired from experience acquired during the
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performance of dynamic tests at the Institute of Materials and Structural Models (IMME)
of the Universidad Central de Venezuela. This summary is taken from Genatios [96],
Genatios [95], Genatios et al. [101], Lopez et al. [102], and Garcia [103].

Before the execution of a dynamic test, it is required and mandatory to perform a
simulation of the structure to be tested and the techniques to be applied. This will allow
to determine the band of frequency that is to be studied, thereby, defining the type of test
to be used and the resources for measurement and excitation of the structure. Also,
through the simulation of a modal analysis, possible problems of processing of the signal
can be avoided and the most suitable strategy for the test and the most suitable processing
technique can be established [103].

Genatios [96] suggests that before a dynamic test of free vibration is performed, it is
recommended to ask yourself four questions, the answers of which will determine the

strategy of a test to be applied:

a) Where to apply the initial displacement? At what level of the structure?
b) Where to measure? At what level?
c) What kinds of record to use?

d) What is the influence of the structural typology on the answer?

The answers to these questions will allow deciding on the test strategies to be
implemented, in particular, if we want to study the first mode above the superior ones.

a) Site of application of the load. The form of the initial condition (displacement or
velocity) given to the structure will define the initial component which will
determine the amplitude of each vibration mode. If a deformation containing
strong components of the superior modes is introduced, these (the components)
will strongly appear in the Fourier transform of the answer. In the case of a
regular building, if a load is applied on a lower floor, we will have a major
contribution of the superior modes in the answer. Whereas if a load is applied on
the last floor, the initial deformation is similar to the first mode of vibration, and it
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b)

is convenient for the study of the fundamental mode, in which case the
contribution of the superior modes will be reduced.

Site of measurement of the answer. In case of maximization of the answer of the
superior modes and following recommendations given above, data will be
collected from the site where major contributions of the superior modes will be
produced. It is suggested that measurement instruments be placed at inferior

levels, where superior modes have greater participation.

In the case of study of the fundamental mode of a regular building, the last floor will

have priority for the placement of instruments, if the first mode is required to be

registered. If there is a need to precisely record a certain mode or frequency, it has to

be observed that the instruments should not to placed in an area where a possible

“node” (point where a modal coordinate is null or close to zero) might be present for

that vibration mode, since a good recording of the desired frequency will not be

obtained. Whereas if we want to eliminate the influence of an undesired mode, it is

advised that measurements be taken where its coordinate is minimum [102].

Let us review the answer of displacement and acceleration for a NGDL system

N
u() = ¢m,(0) 3.2)
i=1
S 2
ii(t) = 3~ (@} )ém,(2) (3.38)
i=1
c) From the above equations, it is observed that in the case of the result of

d)

accelerations, the result to each mode is multiplied by »’. The values of @, will

increase as the mode increases. For that reason, it is recommended to use the
records of acceleration for the study of the superior modes and the records of
displacement to determine the properties of the first mode. The case of the records
of velocities is an intermediate case, since they are multiplied by w [102].

The structural typology has a strong influence on the possible separation of the

natural frequencies of the vibration of a building. As frequencies are quite close to
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each other, there is a less possibility of modal interference as it is easier to carry
out the modal analysis.

3.5 PRACTICAL CONSIDERATIONS FOR THE TEST AND
APPLICATION OF FOURIER TRANSFORM

As already stated, there is a need to work in the frequency domain, in order to obtain the
greatest possible information of the last mode shapes. The FFT, which is the most
common technique applied for the modal analysis, is applied in this study. The following
recommendations are provided in order to make proper use of the Fourier transform [96]:

e Define a value as Aw,<Cw
e Define a value mmax as to be a minimum of four times greater than the maximum
frequency of vibration expected to be measured.

e If Aw and wmax are established, then the number of points to be analyzed will be

determined by n = zwma%w, n being the result of elevate 2 to a integral base of

M, such that » > Zwma%
(0]

The following values are defined: Az = %

The resultant discrete time record is determined by these variables.

3.6 CONCLUSIONS

In the bibliographic summary of the Chapter 2, a review of some methods was made to
determine damage in structures using modal analysis. This review shows the link
between the type of dynamic test and the method of damage detection. So, the type of

method for damage identification to be applied is determined by the specificity of the
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requirement or the damage to be measured. The objectives pursued in the dynamic test
have to be established a priori in order to correspond to the method of identification
chosen. The type of test, the form, and the site of excitation of the structure, and the
instruments and location of the transducers are established according to the variables to
be measured.

It is recommended that the performance of a previous numeric simulation of the structure
be considered, in order to obtain an approximation of possible values of frequency and
modal forms. It is also recommended that a simulation of the modal analysis be
performed, in order to control the variables that determine the processing of the signal.
The test of free vibration allows to perform a single dynamic test which depends on the
initial condition input into the system. The processing of data obtained from a test of free
vibration can be performed following the method commonly used for the analysis of the

frequency domain.
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4. TEST PROGRAMME OF EXPERIMENTAL MODELS
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4.1 INTRODUCTION

This chapter describes a series of experimental test developed in this work and its results.
The aim of the test performed on three models was to assess the change in linear behavior
with increase in the extent of damage. In addition to the vibration tests, static load tests
and numerical simulation were also performed. For each model, the principal objectives
of its test programme can be summarized as follows:

e Geometric and mechanical characterization of model.

e Determination of modal parameters from numerical simulation.

e Obtaining the flexibility matrix from static test.

e Determination of modal parameters from free vibration test.

4.2 FRAMED BUILDING EXPERIMENTAL MODEL

The structural model (figure 4.1) is a simplified frame building of three levels and one
span. The model has 4 steel columns of 4 mm width, with rigid acrylic plastic slabs.
Simplified hypothesis are applied to represent the structural model in terms of lateral
floor displacements, depending only on the flexural behavior of the columns. A single
lateral stiffness coefficient can then be determined for each level. Table 4.1 presents the

geometric and mechanical properties of the model.

Total height 32.09 cm

Bay length 0.20 m

Cross-section of Floor 1 0.1777 m x 3.86 x 10 °m
the columns Floor 2 0.1798 m x 3.86 x 10 °m
(W X t) Floor 3 0.1772 m x 3.86 x 10 °m
Total mass (model and accelerometers) 2.716 kg

Modulus of elasticity 213.6 GPa

Table 4.1 Geometric and mechanical properties of the model
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Figure 4.1 Tested model

4.2.1 MATERIALS

Strain tests were conducted on steel specimens in order to determine elastic modulus.
Three tensile specimens were tested and the results summarized in Table 4.2.
Representative strain—stress curves for #1, #2, and # 3 deformed specimens are shown in
Figure 4.2

Specimen | Maximun Stress (Mpa) Modulus (Gpa)
1 545.69 218.91
2 534.15 216.94
3 501.39 204.94

Table 4.2 Steel Properties
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Figure 4.2 Strain—Stress Curves of Steel

4.2.2 ANALYTICAL MODEL

The Framed model was modelled analytically with undeformable slab with lumped mass
values and columns with infinite axial stiffness. K is a banded matrix and M is a diagonal

matrix:
0.9331 0 0
MASS MATRIX M = 0 09324  0|kg (4.1)
0 0 0.9034
4.100 -2.015 0
STIFFNESS MATRIX K =|-2.015 4.065 -2.049 |* (kN Im) 4.2)

0 -2.049 2.049
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0.480 0.480 0.480
F=|0.480 0.976 0.976| (m/kN) (4.3)

0.480 0.976 1.464

FLEXIBILITY MATRIX

Using matrices (4.1) and (4.2), the natural frequencies and mode shapes were obtained:

s (rad/s) ®; (rad/s) w3 (rad/s)
20.09 56.15 80.39

Table 4.3 Natural frequencies from analytical model

| >

floor
floor
floor

Mode shape 1 Mode shape 2 Mode shape 3

Figure 4.3 Mode Shapes from analytical model

423 FLEXIBILITY TEST

The flexibility characteristics of the model structure for the lateral displacement degrees
of freedom at each floor level were obtained. From the mass matrix and the flexibility
experimental matrix, the frequencies and the mode shapes are calculated and then

compared with the analytical and experimental results from the free vibration test.
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The structure was loaded at each floor slab level, as illustrated in Figure 4.4. During the

tests, displacement transducers (LDVT'S) were used to measure the lateral displacements

at each floor level.

O 2

LVDT
Displacement M

/ Transducer

/ Load

|-

Figure 4.4 Test for determining the lateral Flexibility of the framed model

The results of the tests are shown in equation (4.4) in the form of the flexibility matrix of

structure; each column “j” of the matrix (4.4) is generated during the loading of the floor

at level “j”. The terms f1; to f3; of column “}” represent the lateral displacements at the

successive floor levels (1-3) of the structure as shown in Figure 4.5, when loaded with a

load applied at level 3.

FLEXIBILITY MATRIX

STIFFNESS MATRIX

0.534 0.533 0.532
F=| 0533 1.089 1.088 |(m/kN)
0.532 1.088 1.646

3.655 -1.787 O
K =|-1787 3577 -1.787 |* (kN /m)
0 -1.787 1.789
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Floor Level Displacement

Load

Figure 4.5 Correspondence of the flexibility coefficients, 3" column of the flexibility
matrix.

The natural frequencies and mode shapes derived from the matrices (4.5) and (4.1) are:

®; (rad/s) ®; (rad/s) w3 (rad/s)
19.94 55.23 79.22

Table 4.4 Natural frequencies from flexibility test

\ AN

floor
floor
floor

Mode shape 1 Mode shape 2 Mode shape 3

Figure 4.6 Mode Shapes from flexibility test

4.2.4 FREE VIBRATION TEST

To verify the experimental effectiveness of the damage estimation method presented in
chapter 5, we tested the dynamic mode shapes of one model structure. The physical

parameter of the model is identified by using the dynamic data from the assays.
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The model was subjected to a free vibration test, applying an initial displacement or
velocity in the slab. As a result, a total of 3 responses in the lateral direction (along the X-
axis) were recorded in one series. Six series for each case of study (section 5.4) was
recorded. Each series contained the accelerations of slabs due to initial displacement or
velocity in one of the three slabs.

4.2.4.1 System identification

The model was clamped to an experiment bench, and submitted to free vibration tests by
applying specified initial displacements or velocities to each slab (along the x-axis). The
acceleration was measured by three accelerometers (Kinemetrics FBA-11 single-axis
force balance) placed in each slab. Each accelerometer was connected to one channel of
Altus K2 Digital Recorder. Altus K2 is a signal conditioner unit that is used to improve
the quality of the signals by removing undesired frequency contents (filtering) and
amplifying the signals. More details on Altus K2 can be accessed at

www.kinemetric.com [104].

For each channel, the analog signal passed through a signal-conditioning amplifier and
then through a simple, RC-analog, anti-alias filters. The DSP (digital signal processor)
filters and decimates the 2000 sps data from the ADCs (analog-to-digital) using multi-
rate FIR (finite impulse response) filters. After decimation, the number of samples in
each record was 8192 with a sampling interval of 4 ms, corresponding to a sampling
frequency of 250 Hz and a Nyquist frequency of 125 Hz. The signals converted to a
digital form are stored on the hard disk of a data-acquisition computer. Figure 4.7 shows
the instrumentation system used in the framed model test.
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/'

Altus K2

1 2 3

Figure 4.7 Instrumentation system

4.2.4.2 Modal parameters

Figure 4.8 presents a schematic representation of output-only modal identification. The
time response (figure 4.9) was converted to a frequency domain by applying FFT to 8192
points (Figure 4.10). The experimental modal identification was carried out using the
peak picking technique [105], and this method yielded satisfactory result because the

damping was low and the mode shapes were well separated.

The dynamic properties were assessed using a software system developed to process
structural dynamic signals in experimental tests (SADEX) (Figure 4.11) [106]. For this
test, the damping was estimated using the half power method and logarithmic decrement
[107]. Once the natural frequency was estimated, its corresponding mode shape was

constructed by inspection of the amplitude and phase angle of spectral density.

Modal

Parameters
Estimation of

Response
time series
X

FFT

power spectral
density

PP
method

Functions

S
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Figure 4.8 Schematic representation of output-only modal identification
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Figure 4.11 SADEX structural software identification

The three identified frequencies of the test framed model for undamaged and each
damaged state are summarized in Table 4.5. Figures 4.12-4.14 show the mode shapes

and Table 4.6 presents the damping ratios.
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o1 (rad/s) sy (rad/s) 3 (rad/s)
Undamaged 19.16 52.72 78.56
Case b 17.09 49.83
Case c 14.95 47.19 76.82
Cased 16.46 43.54 62.77

Table 4.5 Natural frequency from the free vibration test

Ci & Gs
Undamaged | 0.0183 0.0205 0.0115
Case b 0.0217 0.0109
Casec 0.0273 0.0112 0.0142
Cased 0.0140 0.0188

Table 4.6 Damping ratio from the free vibration test

floor

—eo—Casea|
— —&— — Caseb)
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Figure 4.12 First mode shape from free vibration test
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Figure 4.13 Second mode shape from free vibration test
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Figure 4.14 Third mode shape from free vibration test
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4.3 SIMPLE SUPPORTED BEAM EXPERIMENTAL MODEL

We have tested the method on a wide-flanged steel I-beam (IPN 80), with an 80 mm deep
web and a 42 mm wide flange. The beam is 4100 mm long, with 4 meters suspended
between the two outermost supports. This part of the beam is divided into 5 sections of

800 mm. The outer supports are elastomeric bearings (Figure 4.15).

In order to obtain lower values of the beam’s modal frequencies and facilitate the process
of obtaining a variety of modal shapes, the beam was supported by flanges. Table 4.7

presents the geometric and mechanical properties of the model.

Total Length 4.05m
Section Length 0.80m
1,:=5.69 cm”, 1,,=74.9 cm”®, A= 7.66 cm*

Total weight (model and accelerometers)  22.84 kg
Elastic Modulus 209.5 GPa

Table 4.7 Geometric and mechanical properties of the simply supported beam
Measurement Coordinate

o L

L 800 mm

4000 mm

Figure 4.15 Tested model

4.3.1 MATERIALS

The simple supported beam was loaded in the middle of the span (figure 4.16) in order to
determine EI coefficient. The average EIl is obtained from the Force Vs displacement

graphic (figure 4.17). Finally the elastic modulus is obtained from the equation (4.7).
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Figure 4.17 Beam force Vs Displacement

Average EI 12.607 kN
Modulus Elasticity (E) 215.01 GPa
Inertia Section 5.83 cm*

Table 4.8 Steel Properties
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4.3.2 ANALYTICAL MODEL

The simple supported beam was modeled analytically considering only flexure

deformation and lumped mass values.

5961 O 0 0

MASS MATRIX 4| @ 567/ 0 0 g (4.7)
0O 0 5678 0
0o 0 5.967

2.3854 -2.2953 0.9985 -0.2496 |

0.9985 -2.5449 3.3840 -2.2953

-0.2496 0.9985 -2.2953 2.3854 |

0.4416 0.6210 0.5520 0.3174]

FLEXIBILITY MATRIX ~ j_| 06210 0.9936 09384 055201, ' (4 / k) (4.9)
05520 0.9384 0.9936 0.6210

0.3174 0.5520 0.6210 0.4416 ]

Using of matrices (4.7) and (4.8) the natural frequencies and mode shapes were obtained:

; (rad/s) y (rad/s) w3 (rad/s) 4 (rad/s)
25.57 100.92 223.47 372.08

Table 4.9 Natural frequencies from analytical model
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First mode shape Second mode shape

SN AN

Third mode shape Four mode shape

Figure 4.18 Mode Shapes from analytical model

4.3.3 FLEXIBILITY TEST

The flexibility characteristics of the beam for the lateral displacement degrees of freedom
at each point were obtained. From the mass matrix and the flexibility experimental
matrix, the frequencies and the mode shapes are calculated and then compared with the

analytical and experimental results from the free vibration test.

The beam was loaded at each floor slab level, as illustrated in Figure 4.19. During the
tests, displacement transducers (LDVT'S) were used to measure the lateral displacements

at each point.

Load

1 - -

{0 40 e SR

Displacement Transducer

Figure 4.19 Test for determining the lateral Flexibility of the simply supported beam
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The results of the tests are shown in equation (4.10) in the form of the flexibility matrix
of structure; each column “j” of the matrix (4.10) is generated during the loading of the
coordinate at point “j”. The terms fi; to fa; of column “j” represent the vertical
displacements at the successive points (1-4) of the structure as shown in Figure 4.20,

when loaded with a load applied at point 3.

0.4415 0.6285 0.5523 0.3164

0.5523 0.9357 0.9639 0.6055

0.3164 0.5474 0.6055 0.4438

3.7630 -4.3198 2.6250 -0.9359

STIFFNESS MATRIX g _| ~#3198 65329 -5.1695 2.0746 1., oo (kv /m) (4.11)
2.6250 -5.1695 55102 -3.0126

-0.9359 2.0746 -3.0126 2.4436

Displacement
Figure 4.20 Correspondence of the flexibility coefficients, 3" column of the flexibility

matrix.

The natural frequencies and mode shapes derived from the matrices (4.11) and (4.8) are:

;1 (rad/s) ®; (rad/s) w3 (rad/s) w4 (rad/s)
25.65 101.58 220.08 506.79

Table 4.10 Natural frequencies from flexibility test
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Figure 4.21 Mode Shapes from flexibility test

4.3.4 FREE VIBRATION TEST

To verify the experimental effectiveness of the damage estimation method presented in
chapter 6, we tested the dynamic mode shapes of one model structure. The physical

parameter of the model is identified by using the dynamic data from the assays.

4.3.4.1 System identification

Free vibrations were induced by applying the appropriate initial displacements or
velocities to each measurement coordinate. The resulting motion was measured using 4
accelerometers (Kinemetrics FBA-11, single-axis force balance) placed at equal intervals
along the beam. Each accelerometer was connected to one channel of an Altus K2 Digital
Recorder. This unit is also a signal conditioner, and removes unphysical frequency
components (filtering) from the data before amplifying the signal. More details on Altus

K2 can be accessed at www.kinemetrics.com [104].
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Each channel also passes through a simple, RC-analog, anti-alias filter. The DSP (digital
signal processor, also part of the Altus 2K system) filters and decimates the 2000 sps data
from the ADC (analog-to-digital converter) using multi-rate FIR (finite impulse response)
filters. After decimation, each record consisted of 8192 data points with a sampling
interval of 4 ms. This period corresponds to a sampling frequency of 250 Hz and a
Nyquist frequency of 125 Hz. The digital signals are stored on the hard disk of the data
acquisition computer. Figure 4.22 shows the instrumentation system used in the simply

supported beam test.

accelerometer FBA-11

I |

li

i

= !j Altus K2

1 2 3

I

Figure 4.22 Instrumentation system

4.3.4.2 Modal parameters

Figure 4.23 presents a schematic representation of output-only modal identification. The
time response (figure 4.24) was converted to a frequency domain by applying FFT to
8192 points (Figure 4.25). The experimental modal identification was carried out using
the peak picking technique [105], and this method yielded satisfactory result because the

damping was low and the modes were well separated.

The dynamic properties were assessed using a software system developed to process
structural dynamic signals in experimental tests (SADEX) (Figure 4.26) [106]. For this
test, the damping was estimated using the half power method and logarithmic decrement
[107]. Once the natural frequency was estimated, its corresponding mode shape was

constructed by inspection of the amplitude and phase angle of spectral density.
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Figure 4.23 Schematic representation of output-only modal identification
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Figure 4.24 Acceleration time response Framed model (4™ point)
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Figure 4.25 Power spectral densities (3th point)
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Figure 4.26 SADEX structural software identification

The three identified frequencies of the test beam for undamaged and each damaged state

are summarized in Table 4.11. Figures 4.27-4.29 show the mode shapes and Table 4.12

presents the damping ratios.

wl (rad/s) w2 (rad/s) 3 (rad/s)
Undamaged 25.50 97.60
Case b 25.12 95.87
Casec 24.93 95.68 219.55
Case d 23.01 87.63 196.93

Table 4.11 Natural frequency from the free vibration test

i & &
Undamaged | 0.0094 0.0144 0.0115
Case b 0.0089 0.0142
Case c 0.0095 0.0200 0.0189
Case d 0.0098 0.0188 0.0300

Table 4.12 Damping ratio from the free vibration test

—e+— Casea|
—-#--Caseb)|
—-a—- Casec]
--x--- Cased

Figure 4.27 First mode shape from free vibration test
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Figure 4.28 Second mode shape from free vibration test
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Figure 4.29 Third mode shape from free vibration test
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4.4 CANTILEVER BEAM

The model test item is a wide-flanged steel 1-beam (IPN 80), consisting of a 80 mm deep
web and a 42 mm wide flange. The Beam is 3.03 meters in length, divided in 5 sections.
The model was fixed at the reinforced concrete beam (figure 4.30).

In order to obtain lower values of the modal frequencies and to obtain more mode shapes
with the equipment available, the beam was excited in axis X direction (figure 4.30).
Previous numerical simulations established a predominant flexural behavior for the beam.
For this reason, the experimental study is limited only for estimate coefficients El for

each section.

Total Length 3.03m
1,=5.83 cm”, 1,,=74.9 cm*, A= 7.66 cm*
Total weight (model and accelerometers)  24.76 kg
Elastic Modulus 215.01 GPa
Table 4.13 Geometric and mechanical properties of the simply supported beam

Measurement

: 0.598 m
coordinate

0.597 m

0.604 m

0.602 m

0.602 m

S

Figure 4.30 Tested model
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4.4.1 MATERIALS

The steel beam utilized for the cantilever construction was the same utilized in the simple

supported beam. For this reason the mechanical characteristic are same of section 4.3.1

Average EI

12.607 kN

Modulus Elasticity (E) | 215.01 GPa

Inertia Section

5.83 cm*

Table 4.14 Steel Properties

4.4.2 ANALYTICAL MODEL

The cantilever beam was modeled analytically considering only flexure deformation and

lumped mass values.

5.249 0 0 0 0
0 5.438 0 0 0
MASSMATRIX | o 7 .o o, |k (4.12)
0 0 0 5.374 0
0 0 0 0 3579

1.0877
-0.6867

= 0.2758
-0.0698
0.0116

STIFFNESS MATRIX ©

0.0058
0.0144
0.0231
0.0317
0.0403

FLEXIBILITY MATRIX P

Using of matrices (4.12) and (4.14)

obtained:

-0.6186 0.8184 -0.5588 0.1521 |*10%(kN /m)

-0.6867 0.2758 -0.0698 0.0116

0.8440 -0.6186 0.2434 -0.0405

(4.13)

0.2434 -0.5588 0.5828 -0.2151

-0.0405 0.1521 -0.2151 0.0948

0.0144 00231 00317 0.0403]
0.0461 0.0809 01152 01496
0.0809 01563 0.2337 03112
01152 0.2337 0.3678 05050
01496 03112 05050 0.7160 |

, (m/kN) (4.14)

the natural frequencies and mode shapes were
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;1 (rad/s) y (rad/s) w3 (rad/s) w4 (rad/s) s (rad/s)

13.49 82.41 226.97 432.80 634.57

Table 4.15 Natural frequencies from analytical model

\ N </
S
<

First Second Third Four Fifth
Mode shape Mode shape Mode shape Mode shape Mode shape

Figure 4.31 Mode Shapes from analytical model

84



443 FLEXIBILITY TEST

The flexibility characteristics of the cantilever beam for the lateral displacement degrees
of freedom at each level were obtained. From the mass matrix and the flexibility
experimental matrix, the frequencies and the mode shapes are calculated and then

compared with the analytical and experimental results from the free vibration test.

The beam was loaded at each level, as illustrated in Figure 4.32. During the tests,
displacement transducers (LDVT'S) were used to measure the lateral displacements at
each level.

LVDT

Displacement
A Transducer

Load

Figure 4.32 Test for determining the lateral Flexibility of the simply supported beam

The results of the tests are shown in equation (4.15) in the form of the flexibility matrix
of structure; each column “j” of the matrix (4.15) is generated during the loading of the
coordinate “j”. The terms fj to f5; of column “j” represent the lateral displacements at the
successive points (1-5) of the beam as shown in the Figure 4.33, when loaded with a load

applied at coordinate 4.
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0.0058 0.0145 0.0232 0.0325 0.0411]
0.0145 0.0462 0.0808 0.1179 0.1523
0.0232 0.0808 0.1558 0.2393 0.3167
0.0325 0.1179 0.2393 0.3895 0.5320
0.0411 0.1523 0.3167 0.5320 0.7498 |

FLEXIBILITY MATRIX ,(m/kN) (4.15)

1.0861 -0.6861 0.2690 -0.0640 0.0116 |
-0.6861 0.8397 -0.5944 0.2238 -0.0407
0.2690 -0.5944 0.7426 -0.4905 0.1404 |*10° (kN/m)
-0.0640 0.2238 -0.4905 0.5148 -0.2001
0.0116 -0.0407 0.1404 -0.2001 0.0916 |

STIFFNESS MATRIX K- (4.16)

Displacement

Level

Load

Figure 4.33 Correspondence of the flexibility coefficients, 4th column of the flexibility

matrix.

The natural frequencies and mode shapes derived from the matrices (4.12) and (4.16) are:

; (rad/s) y (rad/s) w3 (rad/s) w4 (rad/s) s (rad/s)
13.22 80.42 223.79 417.81 623.33
Table 4.16 Natural frequencies from flexibility test
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First Second Third
Mode shape Mode shape Mode shape

Figure 4.34 Mode Shapes from flexibility test
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4.4.4 FREE VIBRATION TEST

To verify the experimental effectiveness of the damage estimation method presented in
chapter 7, we tested the dynamic mode shapes of one model structure. The physical
parameter of the model is identified by using the dynamic data from the assays. Free
vibrations were induced by applying the appropriate initial displacements or velocities to
each measurement coordinate, as a result, a total of 5 responses in the lateral direction
(along the X-axis ) were recorded in one series (figure 4.30). 10 series for each case of
study was recorded. Each series contain the accelerations of coordinates due to initial

displacement or velocity in one of the five coordinates.

4.4.4.1 System identification

The cantilever model was campled at the big concreted beam. The resulting motion was
measured using 4 accelerometers (Kinemetrics FBA-11, single-axis force balance) placed
in each measured coordinate. Each accelerometer was connected to one channel of an
Altus K2 Digital Recorder. This unit is also a signal conditioner, and removes unphysical
frequency components (filtering) from the data before amplifying the signal. More details

on Altus K2 can be accessed at www.kinemetrics.com [104].

Each channel also passes through a simple, RC-analog, anti-alias filter. The DSP (digital
signal processor, also part of the Altus 2K system) filters and decimates the 2000 sps data
from the ADC (analog-to-digital converter) using multi-rate FIR (finite impulse response)
filters. After decimation, each record consisted of 8192 data points with a sampling
interval of 4 ms. This period corresponds to a sampling frequency of 250 Hz and a
Nyquist frequency of 125 Hz. The digital signals are stored on the hard disk of the data
acquisition computer. Figure 4.35 shows the instrumentation system used in the simply
supported beam test.
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_— accelerometer FBA-11

Altus K2 :

1 2 3

Figure 4.35 Instrumentation system

4.4.4.2 Modal parameters

Figure 4.36 presents a schematic representation of output-only modal identification. The
time response (figure 4.37) was converted to a frequency domain by applying FFT to
8192 points (Figure 4.38). The experimental modal identification was carried out using
the peak picking technique [105], and this method yielded satisfactory result because the

damping was low and the modes were well separated.

The dynamic properties were assessed using a software system developed to process
structural dynamic signals in experimental tests (SADEX) (Figure 4.39) [106]. For this
test, the damping was estimated using the half power method and logarithmic decrement
[107]. Once the natural frequency was estimated, its corresponding mode shape was

constructed by inspection of the amplitude and phase angle of spectral density.
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Figure 4.36 Schematic representation of output-only modal identification

10

0.0 H

-1.0

Normalized acceleration

T T T
5 10 15
Time (s)

Figure 4.37 Acceleration time response Framed model (2nd Level)
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Figure 4.38 Power spectral densities (3" Level)
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Figure 4.39 SADEX structural software identification

The identified frequencies of the test beam for undamaged and each damaged state are
summarized in Table 4.17. Figures 4.40-4.42 show the mode shapes and Table 4.18

presents the damping ratios.

o (rad/s) w, (rad/s) w3 (rad/s)
Undamaged 12.46 78.96 218.78
Case b 11.89 78.39 207.47
Case c 11.87 77.24 202.49

Table 4.17 Natural frequency from the free vibration test

&1 & &
Undamaged | 0.0120 0.0029 0.0024
Case b 0.0137 0.0030 0.0039
Casec 0.0143 0.0041

Table 4.18 Damping ratio from the free vibration test
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Figure 4.40 First mode shape from free vibration test
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Figure 4.41 Second mode shape from free vibration test
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Figure 4.42 Third mode shape from free vibration test

4.5 CONCLUSIONS

The dynamics and static tests were performed on framed model, simply supported beam,
and cantilever beam to determine the changes in linear behavior with increase in the level
of damage. The assays were performed at increasing levels damage. For each model,

dynamic parameters were determined from the analytical study, flexibility test, and free
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vibration test. The free vibration responses were measured. This allowed the time-
frequency relationship to be estimated from the spectral density using the FFT. The
dynamic parameters derived from the free vibration test will be used in the damage

estimation described in chapters 4, 5, and 6.
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5. STIFFNESS IDENTIFICATION OF FRAMED MODELS
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5.1 INTRODUCTION

An original identification method is proposed in this chapter to estimate damage location
and severity in framed buildings based on experimental dynamic data. In the first part of
this chapter stiffness identification procedures are developed, and two methodologies are
presented: when the mass matrix is known and when it is unknown. The identification
procedure requires an experimental test as well as an analytical model, in order to
establish an initial undamaged condition of the structure. To study the effectiveness and
accuracy of the identification damage methodology under noise conditions, a numerical
simulation of a multi-storey framed building is carried out. The frame building scale
model and the performed experimental test, leading to the dynamic identification of the
structure, are described. Different controlled damage conditions of the structure are
considered, and their dynamic properties are evaluated by experimental procedures.

5.2 FRAMED BUILDING STIFFNESS ASSESSMENT

Two identification methodologies are summarized for the assessment of stiffness changes
on framed structures with shear behavior. The first methodology requires the knowledge
of the mass matrix. The second methodology admits the mass matrix as an unknown

variable that needs to be identified before the stiffness matrix is evaluated.

5.2.1 STIFFNESS VARIATIONS ESTIMATION

K and M are the stiffness and mass matrices, and N is the number of degrees of freedom.
An experimental test must be carried out before the damage conditions appear on the
structure, in order to know the exact initial dynamic parameters: modal frequencies and

shapes of at least one eigenpair (one frequency and its corresponding modal shape).

The structural system is considered as non damped and is subjected to free vibration tests.

The system complies:
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K® =M (5.1)

A is the matrix that includes the eigenvalues (4 = @?), with «; as the ith modal frequency

and @ is the matrix containing the eigenvectors (modal shapes).

Framed buildings with shear behavior can be modeled with undeformable slab with
lumped mass values and columns with infinite axial stiffness. K is then a banded matrix

and M is a diagonal matrix:

k,+k, —k, 0
K- —.kz ky, + k, —.k3 : (5.2)
: . _kN
0 —ky ky
' 0
m,
M= : (5:3)
My
|0 my,

m; is the lumped mass value for the ith floor and ; is the stiffness value of ith floor.

To represent stiffness variations at the i level, the initial &; is multiplied by «, a reduction

factor, so K becomes:

ok, +a,k, —a,k, e 2 0
K= ~ a‘zkz ke, + a3k — gsks : (5.4)
: ) —ayky
0 e —agky,  ayky
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K and M from eq. (5.3) and (5.4) can be introduced to eg. (5.1) for a particular ¢ mode:

ak, +a,k, —a,k, o 0 m, . 0 a4 0
—ak, gk, +ak, m, 4| 19](5.5)

: . : —i| - L G

Ay kg T ayky —ayky my_y ¢;V_l 0

—ayky ayky 0 my 8 0

Each equation from this (5.5) system becomes:

(i, + a2k2)¢3 - a2k2¢az - /1am1¢j =0
- a2k2¢; +(ayk, + a3k3)¢5 - a3k3¢j - /1am2¢az =0

: (5.6)
- aN—lkN—l¢aN72 +(ayaky, tayky )%\H - aNkN¢aN - /lamN—1¢:/71 =0
- O‘N]CN%V_l + aNkN%V - ﬂ'amN%V =0
As ¢; values are unknown eq. (5.7) can be rewritten as follows:
ke k(S -4 0 Jal [ amg |
ky (87 —4,) ks (¢[f2 '—¢f ) sz i /1,,nfz¢f (5.7)
kN—l (¢j] - ¢j] 72) k/v (¢aN - ¢aN ) Oyg ﬂ’amN—1¢tjv N
| 0 ky() =L ax | | Amyd, |
leadingto:  [A] (x) = (c) (5.8)

with x as the vector of unknowns «; The solution of eq (5.8) will determine the stiffness

changes of the structure.
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5.2.2 STIFFNESS CHANGES EVALUATION AND MASS VALUES
ESTIMATION

The second methodology applies when mass characteristics are unknown. It allows the
evaluation of the mass values (m;) and stiffness changes coefficients for each floor (a;) of
a framed building. This methodology requires a previous knowledge of at least two
experimental frequencies and their corresponding modal shapes. Initial stiffness values
are also required; they can be obtained by experimental means or estimated by analytical
F/E models. The mass characteristics of each level are considered as constant even if the

structure is affected by stiffness damage.

The initial equations are identical to (5.1) to (5.5):

ak, +a,k, —a,k, 0 m, 0 @ 0
—a,k, ak, +a,k, m;, ¢ 0 (59)

: - : - - N G

Ay akyy+ayky —ayky My ¢ 0

—ayky ayky 0 my || ¢¥ 0

Equation (5.9) can be expanded for modes (eigenvalues) a and b, so it incluyes w,, @,

modal frequencies and the corresponding modal shapes ¢,, .

(ouky + a2k2)¢i - a2k2¢az - /,Laml¢c]z- =0
(aky + azkz)ﬁ _a2k2¢b2 _ﬂ’bml(é; =0
- a2k2¢; +(a,k, + a3k3)¢02 - a3k3¢: - ﬂ’am2¢az =0
- a2k2¢1} +(ak, + a3k3)¢172 - 0‘3]‘3%°> - 2’bm2¢b2 =0 (5 10)

—ay ka8, (@ Tk —ayky g —Amy 4 =0

- aN—lkN—1¢L{V72 + (aN—lkN—l +tay kzv )¢15\H - aNkN¢bN - /Imef1¢ZV7l =0
_O‘NkN(é(f\F1 + aNkN%V _/?'amN¢cfv =0

—aykyg) " raykyg, —A,myg,) =0

a; and m; are unknowns. The equation can be rearranged as:
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k1¢j _ﬂa¢t]1- kz (¢; _¢112)
kg, —nd, ki (d-4)
0 0 k(f-4) -48] ki(dr-4))
0 0 k2(¢bz_¢11) _/1b¢bz k3(¢172_¢:) 0 [l

(5.11)

o
S
o o o o

0 0 ky@ ' -4") A8
NA N N LN —0—
0 0 kjv (¢h _¢b ) ;Lb¢b J

This system of equations /4] (b) = (0) is singular, so the solution requires an additional
value. A convenient solution can be obtained if a particular mass value my of a given
floor level such as N, is imposed as a known or normalization value, leading to the

following equation:

(kgr —A8h k(-¢0) 0 0 0 @ 0
k1¢j 7lb¢b1 kz(¢b1 7¢bz) 0 0 0 my 0 5 12
0 0 k(-4 -A2d k(4 -4]) 0 0 a, o |(5:12)
0 0 k2(¢hz _¢2) _/1})¢b2 k3(¢b2 _¢/73) 0 0 m, _ 0
: k(@2 =40%) = 2,807 k(@) =4)) | ana 0
0 0 0 k N (¢I;V71 - ¢1;V72 ) - /lb ¢bN71 k N (¢bN71 - ¢ziv ) My 4 0
L 0 0 0 0 0 k.\' (¢:Ll _¢:’)__ Ay | _/‘anw%M_

The solution allows the evaluation of all mass and stiffness values for each level «/ my

and m;/myas a function of my

5.3 NUMERICAL STUDY

To demonstrate the effectiveness of the identification procedures developed in the section
5.2, a numerical study using a finite element model of the reinforced concrete multi-
storey framed building was conducted. Dynamic parameters are determined in two
different conditions: a) undamaged and b) damage in two stories of the building. The

influence of simulated noise in the modal data is also presented.

101



5.3.1 NUMERICAL MODEL

Figure 5.1 shows the geometric characteristics of the structural axis considered for the
numerical study. This structural axis has five stories and six bays of 8 m., the cross-
section of the columns are 0.80 m of diameter. The system floor is a slab with columns
capitals and drop panels. The thickness of the slab is 0.20 m. The modulus of elasticity is
E=25,000MN/m?.

Natural frequencies and mode shapes for the structural axis was calculated by
performing a finite element analysis with SAP2000 [108]. The slab masses are lumped to

the nodes belonging to each floor. The building is clamped at the ground level.

X, X, X, X, Xs Xs X7

4

L. -

Figure 5.1 Numerical model of the structural axis.

5.3.2STUDY CASES
Two cases of study were established: a) initial undamaged structure and b) 40% stiffness

reduction at the first and 20% at the third level. The damage identification was performed

by each mode shape and its frequency.

5.3.3 EFFECTS OF ERRORS IN DYNAMICS MEASUREMENTS

In order to study the effect of noise on the measurement of modal shapes and frequencies
on the damage estimation method, the modal shapes and frequencies obtained from the

numerical simulation were corrupted using the Sohn and Law algorithm [109]:
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4, (n) =¢(1+LRJ
100 (5.13)

Where ¢.(n) is the corrupted modal shape, ¢is the uncorrupted modal shape obtained
from numerical simulations, p is a specified percentage of noise level, and R is a random
number between 0 and 1. A set of ten vibration tests was carried out. It was used the

normally distributed random number from Matlab [110].

Three study cases were proposed to study the effect of measurement noise on the damage
identification:

Case a: frequency is corrupted and modal shape uncorrupted

Case b: frequency is uncorrupted and modal shape corrupted

Case c: frequency is corrupted and modal shape corrupted with same noise level.

Tree values noise level were considered: 2%, 5% and 10%.

5.3.3.1 Results
The damage identification with different level of noise in frequency or mode shapes, and

different order modes was performed to verify the efficiency and accuracy of the
proposed method. Tables 5.1, 5.2 and 5.3 identified the errors in the damage

identification for the defined cases in 5.3.2. The following observations can be made:

1. The quality of the damage identification is very more sensitive to the perturbation of
the mode shapes than that of frequencies.

2. The quality of damage identification is independent of the mode shape utilized.

3. The damage identification with level noise in the modal parameters give a reasonable
agreement between the damage estimated and damage assumed

4. In all cases the methodology identifies with precision the location of the stiffness
changes as well as the variation of stiffness. For the study noise level the relative error of
the estimation remain smaller that 10%. Only for the case b and ¢ when the identification
is made with the modal shape 5, a larger relative error was obtained (32.6 and 32.8%).
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Noise Level (%)

Mode shape 1 Mode shape 2 Mode shape 3 Mode shape 4 Mode shape 5

Storey 2 5 10 2 5 10 2 5 10 2 5 10 2 5 10
1 0.08 0.15 0.26 0.11 0.17 0.29 0.06 0.13 0.24 0.09 0.16 0.27 0.37 0.45 0.56
2 022 0.16 0.04 8.25 8.32 8.45 0.12 0.18 0.30 0.02 0.05 0.17 0.03 0.03 0.15
3 0.00 0.06 0.15 0.10 0.16 0.25 0.11 0.16 0.25 0.03 0.08 0.17 0.09 0.15 0.24
4 040 0.34 0.22 0.19 0.12 0.01 0.06 0.13 0.24 0.24 0.30 041 0.00 0.07 0.19
5 0.71 0.64 0.53 0.40 0.33 0.22 0.11 0.04 0.08 0.06 0.01 0.12 0.13 0.20 0.31

Table 5.1 Relative errors Case a
Noise Level (%)

Mode shape 1 Mode shape 2 Mode shape 3 Mode shape 4 Mode shape 5

Storey 2 5 10 2 5 10 2 5 10 2 5 10 2 5 10
1 066 143 3.31 0.33 0.95 210 1.94 493 10.1 0.75 1.88 3.99 6.78 16.4 32.6
2 052 199 4.25 6.02 289 1.25 214 540 113 0.22 0.48 0.98 1.34 338 7.24
3 2.10 5.11 9.89 1.03 257 543 0.30 0.65 1.26 1.10 2.86 6.11 059 1.43 2.96
4 1.16 4.06 9.06 0.31 0.43 0.65 0.38 0.98 2.03 0.25 0.35 0.52 0.07 0.11 0.20
5 111 2.03 2.69 044 0.44 0.44 0.18 0.23 0.31 0.14 0.20 0.31 0.04 0.02 0.14

Table 5.2 Relative errors Case b
Noise Level (%)

Mode shape 1 Mode shape 2 Mode shape 3 Mode shape 4 Mode shape 5

Storey 2 5 10 2 5 10 2 5 10 2 5 10 2 5 10
1 112 267 5.4 0.23 0.85 2.00 1.84 484 10 0.85 1.99 4.09 6.89 16.6 32.8
2 0.27 0.98 2.35 6.12 3.00 1.15 224 550 114 0.12 0.38 0.88 124 328 7.14
3 2.01 5.01 9.78 1.11 2.65 552 038 0.73 1.34 1.18 295 6.20 0.67 151 3.00
4 0.80 2.70 6.44 0.21 0.33 0.55 0.28 0.88 1.93 0.35 045 0.62 0.03 0.01 0.09
5 0.28 0.27 1.15 0.34 0.34 0.34 0.08 0.13 0.21 0.04 0.10 0.21 0.14 0.07 0.04

Table 5.3 Relative errors Case ¢
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5.3.4 INFLUENCE OF DAMAGE SEVERITY

To study the effect of damage severity on the stiffness identification, multiple damage
scenarios with 2% noise in frequency and modes were performed. The structure is
subjected to different simulated damage cases. Table 5.4 shows the damages cases.
Damage is simulated by reducing the stiffness of Level. Each damage case is identifying

with each modal shape its frequency.

CASE Damage Damage
Location severity (%)
a Level 1 80
Level 2 20
b Level 1,2 80
Cc Level 1,2,3 80
d Level 1,2, 3,4 80

Table 5.4 Simulated damage cases

5.3.4.1 Results

The effects of multiple and severe stiffness reductions on the damage identification have
investigated. Tables 5.5, 5.6, 5.7 and 5.8 show the relative error in stiffness estimation

defined in Table 5.4. The collected results show that:

1. It is found that the damage identification is affected by damage severity of the
structure. In contrast with the study in section 5.3.3 in very levels the relative
errors are greater that the noise level.

2. For the large damage in any level, the quality of damage identification dependent
of the mode shape utilized. When the first’s three modes shapes were utilized, the
methodology identifies with acceptable precision the location of the stiffness
changes as well as the variation of stiffness. The unacceptable errors were
obtained when the damage identification was performed with the modal shape 5.
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Mode Shape

Level 1 2 3 4 5
1 0.02 1.10 3.52 -7.00 -33.78
2 -0.24 4.09 -0.31 1.26 2.5
3 4.91 -2.43 -3.56 -4.37 -4.09
4 -0.68 2.27 1.34 -0.58 -0.56
5 5.84 0.01 -2.76 -2.60 -3.25
Table 5.5 Relative Errors Case a
Mode Shape
Level 1 2 3 4 5
1 -0.01 0.76 10.52 -4.10 -77.50
2 -0.28 16.45 -6.22 1.19 6.00
3 -1.01 -3.39 -5.53 -4.90 -7.93
4 -1.02 2.53 2.63 -18.68 0.53
5 7.31 1.62 -1.29 1.58 -3.24
Table 5.6 Relative Errors Case b
Mode Shape
Level 1 2 3 4 5
1 0.01 0.72 -0.80 -30.90 -1031.40
2 0.01 -0.78 0.80 9.01 72.39
3 0.02 -3.21 -3.33 -5.68 -8.02
4 -1.32 3.47 2.80 3.54 0.51
5 10.61 3.34 0.33 -0.61 -3.20
Table 5.7 Relative Errors Case ¢
Mode Shape
Level 1 2 3 4 5
1 -0.01 0.46 0.87 -3.27 -289.83
2 -0.03 -0.51 -0.28 1.74 -2.20
3 0.05 -3.58 -3.62 -3.94 4.36
4 -0.10 1.04 0.82 0.92 -1.53
5 12.18 2.91 -0.68 -0.78 -1.48

Table 5.8 Relative Errors Case d
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5.4 EXPERIMENTAL ASSESSMENT

To verify the experimental effectiveness of the damage estimation method presented, we
tested the dynamic modes of one model structure. The physical parameter of the model,
experimental test developed and its results are describes in section 4.2.

5.4.1STUDY CASES AND IDENTIFICATION RESULTS

Initial stiffness characteristics of the model were modified following defined patterns in
order to simulate damage conditions and then verify the identification procedures. To
simulate the structural damage, the width of the steel columns was decreased, leading to

four case studies:

Case a: initial undamaged structure (reference case to establish stiffness modifications).
Case b: 18% columns stiffness reduction at the first level.

Case c: 40% columns stiffness reduction at the first level.

Case d: 19% stiffness reduction at the 2nd level and 40% at the third level.

Figure 5.2 Modal Shapes 1, 2 and 3 for each case
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o1 (rad/s) wz (rad/s) w3 (rad/s)
Undamaged 19.16 52.72 78.56
Case b 17.09 49.83
Casec 14.95 47.19 76.82
Case d 16.46 43.54 62.77

Table 5.9 Experimental Modal frequency for each case

Case b Case c Case d
Real Identified Real Identified Real Identified
Value Value Value
Mode 1l Mode?2 Mode3 Mode1l Mode?2 Mode3 Model Mode2 Mode3
o 0.82 0.71 0.75 0.61 0.60 0.49 0.51 -- 1 0.98 0.96 0.96
o 1 0.99 1.01 0.98 1 1 0.98 -- 0.81 0.76 0.71 0.60
o3 1 0.99 0.98 0.99 1 1.01 0.97 -- 0.60 0.56 0.57 0.55

Table 5.10 Stiffness changes for each level with known mass values.

Case b Casec Cased
Stiffness Real Identified Real Identified Real Identified
variation value value value
o 0.82 0.70 0.60 0.48 1.00 0.98
o 1.00 0.97 1.00 1.00 0.81 0.62
o 1.00 0.98 1.00 0.97 0.60 0.58
my/ms 1.03 1.01 1.03 1.04 1.03 1.04
my/ms 1.03 1.03 1.03 1.06 1.03 1.06

Table 5.11 Stiffness values changes identification and mass adjustment at each level.
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The mode shapes and frequencies for each study case are show in figure 5.2 and table
5.9. The damage identification was performed for the methods presented in section 5.2.
The first case (a), corresponding to the undamaged condition, was employed as a
reference to determine the efficiency of the identification procedures and to evaluate the

damage coefficients o,

Table 5.10 shows obtained damage coefficients for cases b, ¢ and d. from the
identification methodology with mass is known (section 5.2.1). “Identified values” are
the results of the proposed identification algorithm. The results show adequate
approximations of damage values for each floor, and also show the location of the
damage. The quality of damage identification is independent of the mode shape utilized.
However, the damage coefficients were less accuracy when the damage identification

was made with mode shape 3.

Table 5.11 shows the application of the identification procedure with mass estimation
(section 5.2.2). “Real values” are the same already shown in table 5.10, used as reference
values. m1/m3 and m2/ma3 ratios are the results of the mass estimation. The identification
procedure permits good quality adjustments of o; and m; allowing mass ratios

identification, damage values assessment and damage localization.

5.5 CONCLUSIONS

Two identification procedures are proposed. They may be applied to framed buildings
with shear behavior to evaluate the structural damage in terms of stiffness reduction
values, as well as to determine the location of these stiffness variations. Thought, the
methodologies presented has an application limited to framed structures, the procedures
here described have the advantage of using only a coordinate for floor and a limited
number of modals (1 or 2 according to the case). This represents an advantage beside
other methods, in which even if they are of more extensive application, they require a

complex and expensive experimental test, with major number coordinates of
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measurement, being some of them difficult to obtain the rotational coordinates and
refined FE models.

The numerical simulation demonstrated a reasonable agreement between the damage
estimated and damage assumed. The numerical results demonstrated that the method is
independent of the order mode shape utilized. Also, demonstrated that the quality of the
damage identification is very more sensitive to the perturbation of the mode shapes than
that of frequencies. However, the frequency is more stable that the mode shape in real
dynamic test. Important level errors in measured mode shapes would affect the damage
identification, for this reason special attention would have in the signal processing. It is
found that the damage identification is affect by damage severity of the structure. For the
large damage in any level, the quality of damage identification dependent of the mode
shape utilized. When de damage severity is large the low modes shapes identifies with
best precision that the high modes shapes.

Both methods are applied to an experimental model of a three level framed building. The
undamaged structure is evaluated and three cases representing various damage conditions
are studied. Both identification methods proved adequate to identify the stiffness
reduction and damage location.
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6. DAMAGE IDENTIFICATION OF SIMPLY-SUPPORTED
BEAMS
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6.1 INTRODUCTION

A method for identification and quantification of damage based in the known modal
shapes and vibration frequencies of the simply-supported beams is presented in this
chapter. Damage is defined in terms of changes in sections stiffness. To apply this
methodology, it is necessary to previously determine the two modal frequencies of the
system with their respective modal shapes and the system mass matrix. A numeric
simulation of a real bridge is performed to study the effectiveness of the methodology in
identifying damage and the influence of measurement errors and noise in the modal data
is also present. A dynamic-test experiment is run on one simply-supported wide-flanged

steel beam which suffers a progressive damage in three sections.

Bridges are indispensable to modern society; the deterioration or partial collapse of a
single structure can have a drastic impact on the economic and social activity of a region
or city [111]. For this reason, the analysis of serviceable conditions and their
vulnerabilities are commonly spoken of in the scientific literature [112]. Throughout its
lifetime, a bridge suffers damage due to the strain caused by continuous traffic, the
weight of vehicles, impacts, corrosion, and moderate earthquakes. It is necessary to
remark that some structures built a few decades ago now appear vulnerable in the light of
new standards [113, 114].

The focus of this study is on those bridges relying on simply supported beams, which are
commonly used for pedestrians, cars, and trains. National Bridge Inventory statistics
show that one-third of all steel bridges are simply supported [115]. This paper suggests a
method to estimate the stiffness of simply supported beams, which can later be applied to
the study of bridges.
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6.2 ESTIMATION OF FLEXURE DAMAGE IDENTIFICATION IN
SIMPLY-SUPPORTED BEAMS

An algorithm for identification of flexure in simply-supported beams it is described. The
application of this method requires a previous experimental analysis, in which at least
two modal frequencies, modal shapes and system mass matrix must be known. It is

shown briefly the method description and the expressions derived from its formulation.

hz hN+1
L | | |
I 1 1 I 1 1
/ : T _O
E)  (EN, ED g

Figure 6.1 Simply-supported beam

The dynamic parameters of the structure in figure 6.1 can be obtained from [98]:

(4" —F.M)$, =0 (6.1)

with:

F= flexibility matrix

M= mass matrix

A=, @ =i" modal frequency

¢i= i" eigenvector .

Introducing in the equation (6.1) £ and M matrixes, and developing each equation for the

modal frequencies @,y @, and the modal shapes ¢,y @, we obtain the present system:
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1 1 2
(Fiyy + oot fiyMp )@y oo+ (frimyy +...+f1]\,m]\,]\,)goéV =g, /o

1 N 1, 2
(fumyy + ..o+ fiyMy )@ oo e (fuyy + oo+ fiyma )0, =0, 0,
: (6.2)
1 N Ny 2
(Foatuy oot fayMy )0, + oot (g + oot fryman )0, =0, @
1 N N 2
(Foamy + oot fayMy )@y + o (g +. + fyymay Jo, =0, o,

For the beam showed in figure 6.1, each flexibility value can be evaluated as follows:

F(,j)=a(j)z, @) -7, ))

N+1 N+1

a()=>h /D h  j=L..N
1=+ =1
(6.3)
N+1 1 B N+1
i h2 th 2h /-1 i h th -1 h /-1
e Y | DT byl (8 |
=1 i Z h, k=1 =2 / Z h, k=1 k=1
7,(0) = = % - 7
N+1 hZ th h /-1 n h zhk h /-1 N+1
e RO Y | HDIPLrs = (8 Y B2/ | ey
Sa2(ED), z h 3 = Sa(ED), Z h 2 = k=I+1
k=1 ‘ 1L k=1 ‘
o 24l hlz ;hk /-1 hk N hl k:lhk /-1 hl N+l i=1..,N
(8 ) = z§12(E1)1 %h k;flk +? ’ 1;1(151)1 fh kZthk—i_? k:ZH:lhk Jj=L..N
k=1 * k=1 ‘
With:

h;= length section “i”

E=elasticity modulus of the section “I”

;= Inertia modulus of the section “I”

N: number of coordinates of measure in the beam.

The goal of this procedure is the evaluation of the stiffness coefficients (El);, for each
section “i”, with i = 1 to N+1. Considering equations (6.2) and (6.3) we come to:
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Equation (6.4) defines a system of N+/ equations with N+/ unknowns, where the
unknown are coefficients (EI) of each section. This fact imposes the requirement of two
modal shapes and their corresponding frequencies in order to produce N+ equations.

The corresponding two modal shapes are:

T/ R SV S O S (65)

The two modal shapes define the following coefficients:

(0] (& Snp {5 80 )]
i=2.,N j=2.,i
wor-p(sn Sl -gnp HE- )

i=1.,N-1 j=i+l., N

Bt A L
LeN=5 (Zh M?Ulh"} _11(?]+§1h"H (6.6)

i=1.,N j=i+1l.,N+1

h2Na oh it
A.67) = {ZL (121}11]}( 3j " k—lhkjy

i=1,N j=1.i

AALJ)——[NZV j

t =i+l

—

N . N N N+ . N+1
=3 yzzz[z@, /L}w L=-S
k=1 1=1 k=1 \u=k+1 =1
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Thus,
A(, j) = A, )+ A, G, 7)) + 4,6 ) + A, )

With:
hi=length section “i”
my, the Ik mass coefficient

¢! modal coordinate k of modal shape “a”

@, modal frequency of mode “a”

The system (6.4) can be rewritten as:

[4]x)=(c) (6.7)

Where (x) is the unknown vector, that includes the stiffness coefficients EZ of each

section of the beam.

6.3 NUMERICAL STUDY

To demonstrate the effectiveness of our damage identification method in simply
supported beams, we begin by conducting a numerical study using a finite element model
of a real bridge. The dynamic parameters of the undamaged model are compared to a
scenario where various sections of the deck have been damaged. The effect of noise on

the measurement of modal shapes and natural frequencies is also studied.

6.3.1 NUMERICAL MODEL

Figure 6.2 shows the geometric characteristics of a bridge model from Nelson et al.
[115], which is also used in this study. The bridge is composed of three simply supported
spans. The lateral spans are 12.2 m long, and the central span is 24.4 m. long. The deck is

supported on eight steel girders spaced 1.83 m apart; the deck is thus 15 m wide (Figure
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6.2).

The natural frequencies and mode shapes of the bridge were calculated by performing a
finite element analysis with SAP2000 [108]. Following Nelson et al. [115], the deck
sections are composed of a material equivalent to homogeneous steel, with an elastic

modulus of 200 GPa [115]. Table 6.1 shows the elastic proprieties of the middle span and
the two end spans [115].

This study is limited to measurements of the middle span. In the simulation the middle

span is divided into eight sections, defining seven coordinates of measurement for the

modal shapes (figure 6.3).

Span A (m? I,(m* I,(m*) Weight (KN/m)
End 0.51 0.03 9.78 39.00
Center 0.68 0.11 13.00 52.00

Table 6.1 Elastic properties of deck sections [115]

48.8 m

12.2m

244m 122m

T T u|

11.8 cm /_‘

ITTTTITT

»!
7@183m=1281m T

15.01m

Deck

Figure 6.2 Geometrical characteristics of the bridge [115]

118



[ 8@3.05m=244m g

Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Section 8

e e———
A_._._._._._._.ﬁ

Figure 6.3 Numerical model of the middle span

6.3.2 STUDY CASES

Two cases were examined: a) the initial (undamaged) structure, b) damage in four
sections (see Table 6.2). The natural frequencies and shapes of the middle section’s

vertical vibration modes are obtained (Figure 6.4).

Section 1 2 3 4 5 6 7 8

Elg/Els  0.90 1.0 0.70 0.70 0.80 1.0 1.0 1.0

Table 6.2 Stiffness for case b

a‘) undamage | damaged
——undamage -®- - damaged
T, (s) 0.200 0.220
T, (S) 0.049 0.052
c)

—&— undamage -®- - -damaged b)

Figure 6.4 a) first mode shapes, b) second mode shape, c¢) period
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6.3.3 EFFECTS OF ERRORS IN DYNAMIC MEASUREMENTS

In order to study the effect of noise on the measurement of modal shapes and frequencies
on the damage estimation method, the modal shapes obtained from the numerical

simulation were corrupted using the Sohn and Law algorithm [109]:

é.(n) = ¢(1+LRJ
100 6.8)

Where ¢.(n) is the corrupted modal shape, ¢is the uncorrupted modal shape obtained
from numerical simulations, p is a specified percentage of noise level, and R is a random
number between 0 and 1. A set of ten vibration tests was carried out. It was used the

normally distributed random number from Matlab [110].

Three cases were used to study the effect of measurement noise on damage identification:
a. The frequency is corrupted and the mode shape is uncorrupted
b: The frequency is uncorrupted and the mode shape is corrupted
c: Both frequency and mode shape are corrupted at the same signal-to-noise level.
Six values noise level were considered: 0.1%, 0.5%, 1%, 2%, 5% and 10%.

6.3.3.1 Results

Tables 6.3, 6.4 and 6.5 show the results of our damage estimation procedure. The
location of the damage is identified with precision, as are the changes in stiffness. The
damage identification is affected by noise in the measurement, but is usually quite good.
The quality of damage identification does not depend on whether measurement errors
reside in the frequencies or modal shapes.
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Noise Level
Section 0.1% 0.5% 1% 2% 5% 10%
1 -0.04 0.04 -0.03 0.39 1.12 1.01
2 0.02 0.02 0.00 -0.29 -0.50 -0.66
3 -0.01 0.00 0.01 0.29 0.15 0.70
4 0.01 0.02 -0.05 -0.34 -0.09 -0.97
5 -0.01 -0.04 0.05 0.34 0.00 0.87
6 0.01 0.06 -0.04 -0.32 0.15 -0.60
7 0.01 -0.06 0.05 0.28 -0.16 0.45
8 -0.01 0.08 -0.07 0.15 0.38 -0.62

Table 6.3 Relative Errors Case a

Noise Level
Section 0.1% 0.5% 1% 2% 5% 10%
1 -0.01 -0.23 0.54 0.79 -1.39 1.99
2 0.10 -0.05 0.21 1.02 0.29 0.03
3 0.03 -0.14 0.40 0.89 -0.59 1.08
4 0.07 -0.10 0.25 0.99 -0.13 0.56
5 0.04 -0.15 0.40 0.89 -0.65 1.15
6 0.09 0.06 0.23 1.00 0.15 0.20
7 0.01 -0.20 0.44 0.86 -1.01 1.58
8 0.14 0.02 0.10 1.09 0.89 -0.74

Table 6.4 Relative Errors Case b

Noise Level
Section 0.1% 0.5% 1% 2% 5% 10%
1 -0.09 0.18 1.36 1.96 -3.73 1.03
2 0.02 -0.14 0.41 -1.37 0.10 -0.56
3 -0.02 -0.07 0.52 0.98 -1.55 -1.78
4 0.00 -0.06 0.56 -0.71 -1.21 0.58
5 -0.03 -0.17 0.45 0.81 -1.51 -0.41
6 0.00 0.12 0.88 -0.84 -0.61 -3.15
7 -0.04 -0.29 0.00 0.73 -2.16 3.48
8 0.06 0.27 1.36 -1.48 0.31 -8.63

Table 6.5 Relative Errors Case ¢

6.3.4 SEVERE DAMAGE
To study the effect of damage severity on the stiffness identification, we examined

multiple scenarios with a 2% random measurement error in the frequencies and modal
shapes. The structure was subjected to several different types of simulated damage. Table
6.6 defines the individual cases. In each case damage is simulated simply by reducing the

stiffness of one or more sections in the finite element model.

121



CASE Damage Location Damage severity (%)

a Section 1 10
Section 3, 4 30
Section 5 20
b Section 1 10
Section 3 90
Section 4 80
Section 5 20
c Section 1 10
Section 3, 90
Section 4, 5 80
d Section 1 10
Section 3, 6 90
Section 4, 5 80
e Section 1 10
Section 3, 6 90
Section 4,5, 7 80

Table 6.6 Simulated damage cases

6.3.4.1 Results

The effects of multiple damage and severe stiffness reductions on the damage
identification are presented in Table 6.7, which reports the relative error in our stiffness
estimation relative to the actual damage defined in Table 6.6. Taken together, these
results show that the method works just as well when the damage is severe or there are
multiple damaged sections. In all cases the methodology identifies the location of damage

and quantifies the stiffness variations with precision.

Case
Section a b C d e
1 0.36 -1.93 -2.47 2.06 -1.92
2 -0.95 1.54 -1.65 0.97 -0.26
3 -0.33 0.09 -1.86 1.45 -0.23
4 -0.47 0.14 -1.86 1.43 -1.07
5 -0.64 0.63 -1.89 1.48 0.30
6 -0.35 -0.71 -1.56 1.41 -0.73
7 -0.50 1.44 -2.40 2.08 0.05
8 -0.57 -2.22 -1.05 -0.42 -2.52

Table 6.7 Relative errors. Severe Damage
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6.4. EXPERIMENTAL ASSESSMENT

To verify the effectiveness of this damage estimation method, we also tested the dynamic
modes of a physical model. The dynamical parameters of the model are determined from
the experimental data (section 3.3).

6.4.1 STUDY CASES AND ESTIMATION RESULTS

After measuring the natural vibration modes, damage was introduced into the beam in
several stages. To reduce the stiffness of a beam segment, cracks were made in the
flanges (figure 6.5). These cracks were in the center of the affected section. Four cases

were established:

Case a: Initial undamaged beam

Case b: Beam with damage in the 2" section

Case c: Beam with damage in the 2" and 3" sections
Case d: Beam with damage in the 2", 3and 4™ sections

Section 1 Section 3 Section 5
le ale ale ale alea !

|« »« g »¢ L] »|

Co .

[l
I «—

Crack in Section 2
Caseb

Figure 6.5 Studied Case with damage in 2" section (case b)

A variety of free vibration tests were performed for each of the cases described above. In
this manner we were able to compare several records, and to choose those which
provided the most information on the structure. The modal frequencies and mode shapes
determined for each case are reported in Table 6.8 and Figures 6.7, 6.8 and 6.9

respectively. Given the beam mass and this experimental information, a linear system is
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formed (6.4) from the expressions described in (6.6). Solving system (6.4), we obtain the

stiffness changes for every case relative to the initial structure (case a).

Table 6.9 shows the final damage estimations for cases b, ¢, and d. In each case, the

damaged and undamaged sections are identified correctly. In the undamaged sections, the

maximum error in the stiffness estimation is 2%. The methodology precisely estimated

the degree of damage in other sections as well, in terms of a change in stiffness relative to

case (a).

, (rad/s) s (rad/s)

Undamaged
Case b
Casec
Cased

97.60 ---
95.87 ---
95.68 219.55
87.63 196.93

Table 6.8 Natural frequency from the free vibration test

—+— Casea|
—-a - Caseb)|
--4—- Casec]
---x-- Cased|

Figure 6.6 First mode shape from free vibration test

—e— Casea|
—-= - Caseb
—-4—- Casec|
---x-- Cased,|

Figure 6.7 Second mode shape from free vibration test
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»x

Figure 6.8 Third mode shape from free vibration test

Case b Casec Cased
Damage in the 2"  Damage in the 2"  Damage in the 2",
section and 3"section 3™ and 4" section
Section Eld El, El# El, Eld El,
1 0.99 1.01 1.02
2 0.92 0.93 0.93
3 0.99 0.89 0.90
4 0.99 0.99 0.63
5 0.99 0.99 1.00
Table 6.9 Stiffness changes estimation
6.5 CONCLUSION

The damage identification procedure for a simply supported beam was proposed The
methodology requires that the mass matrix and two of the beam’s natural vertical

vibration modes (shape and frequency) are known beforehand

The damage identification procedure was illustrated with a numerical example: a finite
element model of a real bridge. Damage to the model was successfully estimated with
low relative error. It has been shown that the method also behaves satisfactorily under
noisy conditions. The quality of damage identification does not depend on whether

measurement errors reside in the frequencies or modal shapes.

The accuracy of our damage identification method is also unaffected by the severity of
damage. Whether the stiffness of a section is greatly reduced or multiple sections are
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affected, the method accurately estimates the location and magnitude of stiffness
changes.

A real steel beam was progressively damaged and subjected to the same method. In all

three cases, the estimation method performed just as well as in the numerical models.

This approach can be applied not only to simply supported beams but also to simply
supported girder bridges. It has two important advantages: only a small number of natural
vibration modes need to be known beforehand, and stiffness changes can be accurately
estimated using a small number of dynamical tests. Furthermore, this method requires
only measurements along a single axis; rotational coordinates and refined FE models are

unnecessary.
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7. IDENTIFICATION METHOD FOR FLEXURE AND
SHEAR BEHAVIOR OF CANTILEVER STRUCTURES
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7.1 INTRODUCTION

The shear wall buildings, masonry wall buildings, Industrial Chimneys, Towers,
tanks, balconies and cantilever projections could be modeled as a cantilever fixed at
the foundation. Flexural and Shear deformation are present in those structures;
depending on the geometric parameters a structure will be able to have bending
deformation behavior or shear.

This chapter presents an identification method for the assessment of flexure and
shears stiffness of cantilever structures or shear wall buildings. The method estimates
stiffness whenever flexural (E1) or shear (GA) values are relevant or are irrelevant. An
initial formula includes both shear and flexural components.

Three numeric simulations and one experimental application are performed to study
the effectiveness of the methodology. A numerical simulation of a real chimney is
performed to study the effectiveness of the method to identify damage. After, a shear
wall building is simulated to study the influence of the initial mass model on the
stiffness identification of shear wall buildings. Finally the method is applied on the
stiffness identification of a confined masonry structure and the influence of the
geometry and openings are also studied.

The last part of this chapter presents an experimental application of an Identification

methodology of one steel cantilever which suffers damage in two sections.

7.2. SHEAR AND FLEXURAL STIFFNESS EVALUATION FOR
CANTILEVER STRUCTURES AND SHEAR WALL BUILDINGS

7.2.1GENERAL METHODOLOGY FOR FLEXURAL AND SHEAR
STIFFNESS EVALUATION

Figure 7.1 shows the structural model considering flexural and shear behavior, rigid
slabs, non vertical deformations and consistent masses. The structure is idealized
with N dynamic degrees of freedom (dof), with an unknown flexibility matrix F (or its
corresponding stiffness matrix K) and a known mass matrix M. accepted that the
dynamic analysis allows the research of m modal frequencies and their corresponding

mode shapes with m<N.

Consider the equation of motion for an undamped N degrees-of-freedom (DOF)

structure, given by:
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Mii+ Ku = f(¢)
Where

M=mass matrix
K=Stiffness Matrix
ti=acceleration vector
u=displacement vector

f(r)=excitation vector force

Hy = N Hy -

— N-1 —
Hya Hya

— N-2 —

— 2 —
H, H,

— 1 —
H, Hy

———

Figure 7.1 N dof Structural Model

Consider the corresponding characteristics equation:
(K-AM)p =0

Equation (7.2) can be rewritten as:

(A =F.M)¢ =0

With

F= Flexibility matrix,

A=, o= i" modal frequency, i=1to N

¢=i" eigenvector.
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Ely, GA

Ely.; GAy,

Ely., GA\,

El,, GA,

El,, GA,

(7.2)
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Equation (7.3) corresponds to:

14, - 0 fo o S [ o my ]| 4 0
R e I | T )
0 e U A S o S lmaa o My ¢aN 0

with :
m;= ij coefficient of the matrix M

fi= ij coefficient of the matrix ¥

¢! = coordinate of the i" level of mode shape a
1/ 2, =1/ @} and w, modal frequency of mode “a”.

Considering two eigenvalues related to modal frequencies @, and @, and the mode

shapes ¢,and ¢, equation (7.2) becomes:

Opnmll+...+f1Nle)goi F oo (i +...+f1NmNN)¢);V :qoi/cof
(fllmn+...+lele)go; +..........+(f11mlN+...+f1NmNN)goZV =g0,f/a)b2
: (7.5)
0’N1m11+...+fNNle)goi F oo My +...+fNNmNN)¢éV =¢2’/w5
(lemll+"‘+fNNmN1)¢lly+“""""+O(NlmlN+"'+fNNmNN)¢bN :go;v/wbz

Each flexibility value can be derived as follows:

Nooq N 1 ..
fi= Z‘@%fc ‘1kng(i,j) +;Eﬂk '1k§Min(iJ) VoiLJ
y (7.6)

1:if k < Min(i, j)

with Zlkng(i,j){ 0: otherwise

a,.jk=H{[2Hlj[zj:H,J+%(iHl+Zj:HIJJrH?’f} p.=H, (1.7)

I=k+1 I=k+1 I=k+1 I=k+1
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Where:

H,= story height of level “k”

E;= elasticity modulus of the material of level “k”
I;= Inertia modulus of level “k”

G= shear modulus the material of level “k”

(A i Iy)= shear transversal surface of level “k”.

The goal of this procedure is the evaluation of the stiffness coefficients (E1); and
(GA/y), for each level “k”, with £ =1 to N. Combined equations (7.5), (7.6) and (7.7)

it yields:

afy by 0 0| L(ED), o ?
ap, by 0 0 1(Galy), 4 o,
ayy by, o any biy || U(ED), ¢, 1o

_az,l by, v dw bil\)/zv_ 1/(GA/7)N 4 o

Involving the following coefficients definitions:

N N N N
aiak = szlu'¢: 'aijk'lksMin(i,j) biak = B« 'szlu'¢:1ksMin(i,j)
I=k u=1 I=k u=1
X N N . N N
u u
aj = Zmlu'¢b 'aijk'lksMin(i,j) bik = ﬂk'zzmlu'¢b 1ksMin(i,j)
I=k u=1 I=k u=1

(7.8)

fork=1toN (7.9)

Equation (7.8) defines a system of 2N equations with 2N unknowns, as two unknown

coefficients (EI) and (GA/y) are considered for each level. This fact requires the

knowledge of two mode shapes and their corresponding frequencies so as the problem

to be well posed.

7.2.2 ONE STORY STRUCTURE AND SOME SINGULARITIES

A one store system leads to a singularity. Given matrix /4/, equations (7.5) to (7.7):
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“b || LIEL L w?
albl 1b1 ( )l — ¢a /a)a (710)
a, b ||\1(GAly), ¢ | o}
As there is only 1 dof w,=w,=w. The determinant is equal to:

a® b H;
L?ﬁ bz}=mf?l(¢i¢;—¢;¢f)=0 (7.1

1 1

7.2.3 GENERAL CASE AND SINGULARITY IN THE HIGHEST
LEVEL «N»

A singularity is found at the highest level “N”, so the last two equations of eq. (7.8)

shall have a particular treatment. The solution for the first N-7 levels is (i = 1, N-1):

Cal b, 0 0 |( 1/(ED), ¢ o
a; by 0 0 1(GATy), ¢ o,

: : : = : (7.12)
ayay byag T V(ET) 4 ¢Lfv N a)j
_a][i/—l,l b/}il—l,l al}i/—l,N—l b}}\)/—l,N—l_ 1(GAly) v - 2 a)bz

7.2.4 DAMAGE AND RESIDUAL PROPERTIES

It is assumed that the damage affecting the k-# storey stiffness might be expressed

through the following damage indicators:

(EI), =(1-D!).(EI)° (7.13)
GA/y =(1-DY).(G4/)° |
(G4, =a-D)).C);

Where:

D/ = damage indicator that affects the “flexural coefficient” for storey “i”
D; = damage indicator that affects the “shear coefficient”

(EI)? = its initial “flexural coefficient”

(G% )fz its initial “shear coefficient”
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Due to the singularity of the sub-matrix involving the N-z4 storey, it is assumed that

the same level of damage affects both the flexural and shear coefficient:

ab 1 +bP 1
NN* /7 =770 NN~ 4 /<0
(B G,
N N-1

o3 e, (G/»

Df, =Dy, =1- (7.14)

Once the residual factor values (E7 and GA) for each storey are known, the stiffness

matrix is completely known.

7.2.5 FLEXURE STIFFNESS EVALUATION

Structures with predominant flexural behavior (so shear terms can be neglected), only
(EI) terms are significant. In this case a pair of eigenvalues is solely required so the
flexure stiffness values can be obtained from the simplified system of equations

obtained from eq. (7.8):

ay 0 - 0 |(1NED),) (¢ ]e?

as ioal . RUED, t=]| ¢ e} (7.15)
: 0 : :

agy, oay ay |[U(ED, ) (g el

7.2.6 SHEAR STIFFNESS EVALUATION

In the case of significant values of shear stiffness compared to the flexure stiffness,
this latter one can be neglected and only (GA/y) terms are significant. Only one

eigenpair is required and shear stiffness coefficients are given by:
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(b 0 - o 0 |[1(GAlY)) (¢ ]e?

by by . P RUNGAly), b=| 4] (7.16)
s 0 : :

bya o by e by [UGAl )] \ gY@l

7.3 NUMERICAL STUDY
To demonstrate the effectiveness of the identification procedures developed in the

section 7.2, a numerical study using a finite element model of the steel chimney
conducted. Simulated real steel chimney without damage and with assumed damage
sections are considered. Figure 7.2 shows the geometric values of the steel chimney
employed for the numerical study, from Ambrosini et al. [116]. The chimney is a
cylindrical steel structure of 28 m high with 0.914 m diameter, cross section is 12 mm
at the base and 3 mm at the top (figure 7.2). The simulated steel chimney is divided
into 10 two-dimensional sections (Figure 7.2). Three sections (No. 2, 5 and 8) are
assumed to be subjected to 10%, 30% and 10% stiffness reduction. The modal data
(mode shapes and frequencies) before and after damage (Fig. 3) have been calculated
by using the finite element program SAP2000 [108].

El10 GA10 4500 mm

9000 mm 4
EI9 GA9 4500 mm

3mm T
EI EI8 GA8 2500 mm
4mm EI7 GAT 2500 mm

5000 mm

4 mm T
E_l El6 GA6 2000 mm
gmm | ao00mm EI5 GAs | 2000 mm

8 mm 914 mm T
4 El4 GA4 2500 mm

10 mm T
5000 mm EI3 GA3 2500 mm

10 mm 4
EI T El2 GA2 2500 mm

122mm | 5000 mm T
ElL GAL 2500 mm

Figure 7.2 A simulated steel chimney [116]
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7.3.1 EFFECTS OF ERRORS IN DYNAMICS MEASUREMENTS

In order to study the effect of noise on the measurement of mode shapes and
frequencies for the stiffness identification method, the mode shapes obtained from the

numerical simulation were corrupted using the Sohn and Law algorithm [109]:

b0 =d[1r;2oR)
! 100 (7.17)

Where ¢.(n) is the corrupted mode shape, ¢ is the uncorrupted mode shape obtained
from numerical simulations, p is a specified percentage of noise level, and R is a
random number between 0 and 1. A set of ten vibration tests was carried out.
Normally distributed random number from Matlab [110] was used.

Three study cases were proposed to study the effect of measurement noise on the
damage identification:

Case a: frequency is corrupted and modal shape uncorrupted

Case b: frequency is uncorrupted and modal shape corrupted

Case c: frequency is corrupted and modal shape corrupted with same noise level.

Six values noise level were considered: 0.1%, 0.5, 1, 2%, 5% and 10%.

7.3.3.1 Results

The stiffness identification is carried out using Egs. (7.12) and (7.14) with noisy mode
shapes and mass matrix, the coefficients £/ and GA were obtained for undamaged and

damaged states.

The damage identification with different level of noise in frequency or mode shapes
was performed to verify the efficiency and accuracy of the proposed method. Tables
7.1 to 7.6 show the relative errors in the damage identification for the defined cases in

7.3. The following observations can be made:

1. The quality of the damage identification is more sensitive to the perturbation of the

mode shapes than that of frequencies.
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2. The estimation of coefficients GA is made with less precision than coefficients EI.
As expected a better adjustment of the flexural coefficient was obtained than the shear
coefficient, for the chimney is mainly characterized by a flexural behavior

3. The damage identification with level noise in the modal parameters give a
reasonable agreement between the damage estimated and damage assumed. For the EI
coefficients, in all cases the methodology identifies with precision the location of the
stiffness changes as well as the variation of stiffness. For the study noise level the
relative error of the estimation remain smaller that 9%.

4. The Shear coefficients (GA) are identified with acceptable precision. Only the large
error was present and was not corrected, for example in section 8 case ¢ with noise

level 5%, the obtained error is closed to 20%.

Noise Level
Section 0.1% 0.5% 1% 2% 5% 10%
1 0.00 0.00 0.00 0.00 0.00 -0.01
2 0.00 0.00 0.00 0.00 0.00 -0.01
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.01 -0.04
5 0.00 -0.01 0.00 -0.01 -0.01 0.13
6 0.00 0.00 0.00 0.00 0.00 0.03
7 0.00 0.00 0.00 0.00 0.01 -0.06
8 0.00 0.00 0.00 0.00 -0.01 0.04
9 0.00 0.00 0.00 0.00 0.00 0.01
10 0.00 0.00 0.00 0.00 0.00 0.03
Table 7.1 Relative error Coefficients El case a
Noise Level
Section 0.1% 0.5% 1% 2% 5% 10%
1 0.00 0.00 0.00 0.00 0.01 0.00
2 0.00 -0.01 0.01 0.10 0.12 0.06
3 0.00 -0.02 -0.01 0.12 0.17 -0.15
4 0.00 -0.01 0.00 -0.31 -0.50 0.08
5 0.04 -0.40 -0.56 -2.47 -3.43 -4.13
6 0.01 -0.07 -0.26 -0.64 -0.79 -4.05
7 -0.01 0.07 0.12 0.13 0.32 0.85
8 -0.04 0.00 0.03 -0.29 0.96 1.44
9 -0.10 -0.01 0.37 0.06 -0.38 3.15
10 0.35 -0.79 -1.78 -1.36 3.01 8.41

Table 7.2 Relative error Coefficients GA case a
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Noise Level

Section 0.1% 0.5% 1% 2% 5% 10%
1 0.00 0.00 0.00 0.00 0.01 0.00
2 0.00 -0.01 0.01 0.10 0.12 0.06
3 0.00 -0.02 -0.01 0.12 0.17 -0.15
4 0.00 -0.01 0.00 -0.31 -0.50 0.08
5 0.04 -0.40 -0.56 -2.47 -3.43 -4.13
6 0.01 -0.07 -0.26 -0.64 -0.79 -4.05
7 -0.01 0.07 0.12 0.13 0.32 0.85
8 -0.04 0.00 0.03 -0.29 0.96 1.44
9 -0.10 -0.01 0.37 0.06 -0.38 3.15
10 0.35 -0.79 -1.78 -1.36 3.01 8.41

Table 7.3 Relative error Coefficients El case b
Noise Level

Section 0.1% 0.5% 1% 2% 5% 10%
1 0.00 0.01 -0.05 -0.12 -0.28 0.01
2 -0.02 0.48 -0.02 -0.66 -1.90 7.73
3 0.00 -0.20 0.17 -0.38 -1.44 -0.80
4 -0.03 -0.09 -0.11 -0.72 0.77 -0.16
5 -0.93 -3.01 4.20 5.10 3.03 1.72
6 -0.18 -2.42 -0.08 -5.43 3.57 3.98
7 0.39 -0.75 1.48 3.52 -0.79 3.99
8 0.59 -1.29 -2.17 -1.32 0.77 -3.13
9 1.23 -4.60 5.49 3.13 3.73 6.52
10 0.35 -0.79 -1.78 -1.36 3.01 8.41

Table 7.4 Relative error Coefficients GA case b
Noise Level

Section 0.1% 0.5% 1% 2% 5% 10%
1 0.00 0.00 0.00 0.00 0.00 0.01
2 0.00 0.02 0.01 -0.06 -0.27 -0.02
3 0.00 0.02 0.04 -0.03 -0.09 0.28
4 0.00 0.02 -0.11 0.17 -0.19 -0.80
5 0.01 -0.60 -1.19 2.01 -3.69 -8.11
6 0.02 -0.08 -0.38 0.25 -2.12 -2.34
7 -0.01 0.06 0.12 -0.06 0.17 1.31
8 -0.02 -0.01 0.09 -0.07 -0.28 1.22
9 0.01 -0.01 -0.03 -2.96 0.49 8.00
10 -0.09 -0.10 0.76 431 0.76 5.75

Table 7.5 Relative error Coefficients El case ¢
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Noise Level
Section 0.1% 0.5% 1% 2% 5% 10%
1 0.00 -0.13 0.07 -0.01 0.08 -0.29
2 -0.02 1.11 -0.93 0.16 -1.74 -3.03
3 0.05 -1.47 0.48 -0.26 0.52 -1.80
4 -0.05 -3.19 111 -2.73 1.84 1.49
5 0.01 1.61 -6.13 0.64 -8.79 -8.43
6 -0.37 -3.17 -0.82 0.85 5.79 3.96
7 0.35 -0.60 2.12 -3.06 4.25 3.93
8 -0.40 5.78 0.21 -0.32 -1.87 -7.14
9 -0.78 0.62 1.46 5.60 18.90 5.93
10 -0.09 -0.10 0.76 431 0.76 5.75

Table 7.6 Relative error Coefficients GA case ¢

7.3.2 INFLUENCE OF DAMAGE SEVERITY

To study the effect of damage severity on the stiffness identification, multiple damage
scenarios in frequency and modes were performed with 2% noise. The chimney was
subjected to different simulated damage cases shown in table 7.7. The damage was

simulated by reducing the stiffness section.

CASE Damage Location Damage severity (%)

a Section 2 70

Section 5 30

Section 8 10
b Section 2, 5 70

Section 8 10
c Section 2, 5, 8 70
d Section 2, 3,5, 8 70
e Section 2, 3,4, 5, 8 70
e Section 2,3,4, 5,6, 8 70
f Section 2,3,4,5,6,7,8 70

Table 7.7 Simulated damage cases

7.3.2.1 RESULTS

The effect of multiple and severe stiffness reductions on the damage identification
was carried out. Tables 7.8 and 7.9, show the relative error in stiffness estimation
defined in Table 3.3. The following observations were generated through review of
the obtained results:

1. The Flexure stiffness coefficients (£/) which had acceptable precision were
corrected. The Shear coefficients (GA) had unacceptable precision and major errors,
and were not corrected, for example in section 8 case g, the obtained errors reached
up to 100%. Such as in section 7.3, it was expected a better adjustment of the flexural

coefficient than the shear coefficient, because of the chimney mainly flexural
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behavior.
2. In spite of the important damage in cases e, f and g, the methodology managed to

identify with acceptable precision the damage zones for the estimation of El

coefficients.
Case
Section a b c d e f g
1 0.06 0.00 -0.03 0.00 -0.01 -0.06 -0.02
2 0.13 0.63 -0.63 0.17 0.17 -0.10 0.27
3 0.85 1.12 0.03 -0.50 -0.70 -0.27 -0.90
4 -1.59 -0.98 -1.83 151 2.67 1.63 1.13
5 -0.07 1.77 0.10 2.63 -3.27 -1.43 0.03
6 -2.25 2.85 3.69 9.60 -14.20 2.07 -1.50
7 -0.43 -2.07 -4.75 -7.66 0.71 3.36 1.43
8 1.71 -0.13 -1.60 -3.30 -1.50 10.53 -2.80
9 2.57 -0.73 -1.18 -10.57 -14.88 10.10 -1.00
10 -1.26 14.78 -3.62 22.39 28.56 20.99 -16.40
Table 7.8 Relatives Errors EI coefficients
Case
Section a b c d e f g
1 -2.36 -0.04 1.07 0.05 0.59 2.45 111
2 -24.67 -250 -25.33 -3.13 -23.23 -28.87 -5.97
3 10.38 8.86 24.42 -3.20 -20.97 -18.53 -2.60
4 712 -13.53 26.62 7.40 -23.37 -21.20 5.37
5 -6.77 3.37  -37.10 19.17 -33.33 -34.20 -0.23
6 16.88 31.30 -1.82 -1.24 36.46 -42.67 -23.37
7 23.40 1.62 25.97 24.44 41.77 80.82 66.09
8 5.49 2271 -40.84 -16.03 15.87 -33.40 -125.17
9 66.23 24.25 16.68 39.24 27.61 52.07 81.45
10 -1.26 14.78 -3.62 22.39 28.56 20.99 -16.40

Table 7.9 Relatives Errors G4 coefficients
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7.4 INFLUENCE OF MASS MODELS AND NONPARAMETRIC
MASS NORMALIZATION ON STRUCTURAL STIFFNESS
IDENTIFICATION: CASE OF BUILDING SHEAR WALLS

Generally, stiffness identification methods for buildings are based on simplified mass
models [52, 117]. Often, lumped masses at each store are supposed, leading to
diagonal mass matrices. In the analysis of the shear wall buildings the Consistent
mass models are less often employed. In this section, the influence of the initial mass
model on the stiffness identification of shear wall buildings is discussed. As the initial
lumped mass model leads to poor identification results, the influence of consistent
mass models is evaluated. A nonparametric mass matrix normalizing procedure based
on experimental data is introduced, leading to more accurate results for the stiffness

identification of the analyzed shear wall buildings.

7.4.1 NONPARAMETRIC MASS MATRIX ADJUSTMENT

A direct nonparametric adjustment procedure for the initial structural mass matrix has
been presented in earlier work [118, 119]. Let us consider a structural system with an

unknown mass matrix M and an initial theoretical mass matrix A7 .

Let us denote by M the adjusted mass matrix to be evaluated, which has dimensions
(NxN), where N is the number of degrees of freedom and @ is the eigenvector matrix.
The real structure has N eigenvectors. This matrix has N rows and m columns, where

m is the number of mode shapes obtained experimentally (m<N).

7.4.2 MASS MATRIX ADJUSTMENT

To obtain M, a function f{M) is defined; it represents the “distance” between M and

M:
Sy =M (- a1y -M (7.18)
M must satisfy the orthogonality condition:

O' MO = (7.19)
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A minimization problem under equality constraint may be solved by means of

Lagrange’s theorem, with the following objective function:

h(M,A) = f(M)+ Ag(M) (7.20)

where A = Lagrange’s operators matrix.

Minimizing the function i (M, A) requires the following conditions:

Mj 0 (7.21)

oM ),

and

Mj -0 (7.22)
O\ p

Finally, this leads to:

2-M*(M-M)-M*+®-A-d' =0 (7.23)
O (M-M)-®+M,~1=0 (7.24)

where: M, =®' - M - .

As M and A are unknowns, the solution can be written as, [118, 119]:

M=M+M-®M*(I-M,) M0 M (7.25)
7.4.3 NUMERICAL STUDY

A dynamic analysis was performed with the SAP2000 software [108], using the
finite-element method (FEM) and various mass models for each shear-wall structure.
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The corresponding dynamic parameters (w,¢) are numerically obtained. Afterwards,
the stiffness identification is carried out using Egs. (7.12) and (17.14) with dynamic
parameters and the previously adjusted mass matrix (by applying Eq. 7.25); the
coefficients El and GA were estimated for each floor.

The stiffness coefficients used in the FEM are reference values to be compared with
the estimated coefficients. The relative difference between these results, or the error

matrix, is evaluated using the following expressions:

Error: A(EL) = [%jﬂoo (7.26)
and

Error: A(GA4,) = (%J*wo (7.27)
where:

E7" = flexure stiffness for storey “i” (FEM values)
EI" = the estimated flexure stiffness for storey “i”
GA" = shear stiffness for storey “i” (FEM values)

GA’ = the estimated shear stiffness for storey “i”

7.4.3.1 FEM modeling

Plane shell elements are used for the wall model [108]. They simulate membrane or
plate behavior (Figure 7.3). Compatible lateral displacements are considered for each
floor because this condition leads to better results than free lateral displacements.
Actually, this condition has been previously evaluated; it might lead to less than 2%

relative error [120].Wall masses are uniformly distributed for each FE node, and the
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slab mass is lumped to the nodes belonging to each floor. The building is clamped at

ground level.

Figure 7.1 Shell Element

7.4.3.2 Mass Models

Four mass matrix configurations are analyzed:

a) Diagonal Mass matrix (MD): it is the simplest and the most used procedure; it

considers the structural masses as lumped at each level.

b) Consistent mass matrix (MC): The structure is modeled as a cantilever involving
plane beams with 3 DOF per node, and a consistent mass model is assigned to each
beam (Figure 7.4). The system degrees of freedom are 2N, and Guyan reduction is

used to condense rotational DOF [121] (vertical displacements are neglected).

-> 156 22L 54 -13L
4 [Pl a2 13L -31°
> 4 420 156 —22L
Sim ar’
p, mass density of the beam

A, cross-sectional area of the beam
L, length of the beam

1
>
Do

Figure 7.2 Beam element and consistent mass matrix
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c¢) Adjusted diagonal mass matrix (MDA): This matrix is obtained from the original
diagonal (MD) matrix by applying the nonparametric normalization. This

normalization requires two eigenpairs.

d) Adjusted consistent mass matrix (MCA): This matrix is obtained from the
adjustment of the consistent mass matrix by applying the nonparametric

normalization.

7.4.3.3 Results

Four mass models have been considered. For each model, the flexural and shear
stiffness are calculated for each floor. For illustrative purposes, a five-story building
with 1, 2, or 3 bays is considered (Figure 7.5). To evaluate the numerical accuracy of

the estimation procedure, a ten-story structure is considered as an additional example.

7.4.3.3.1 Structures with five stories

The following set of values is adopted for the models:
L,=3 m (bay length)

H,=3 m (story height)

e, = 0.2 m (wall thickness)

E=25 10° MPa (elasticity modulus)

G=10.4 10° MPa (shear modulus)

The lumped masses at each storey level are 500, 1000, 1500 kg for the cases of 1, 2

and 3 bays respectively.

1“
.

Figure 7.3 Buildings with 5 stories and different numbers of bays
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A summary of the results is given in Tables 7.10-7.12. The accuracy of the stiffness

prediction depends on the mass model:

1. Mass models MDA and MCA provide the best results, with relative errors of
flexural stiffness (E7) and shear stiffness (GAly) less than 10%. The largest relative
error (~15%) corresponds to the top (fifth) story. The MCA mass model provides

better stiffness identification.

2. Mass models MD and MC provide acceptable results for the first two stories, but

the relative error becomes very large for upper stories.

|Error| (%) |Error| (%)
MC MD MCA MDA MC MD MCA MDA
(El)y 3.7 27 1.9 0.5 (GA), 12 7 9 7
(ED)2 0.6 14 7.3 1.7 (GA): 13 2 4 3
(El)s 17 56 0.60 0.6 (GA); 30 18 2 3
(El)4 72 134 5 3.4 (GA), 1080 60 2 4
(EDs 154 80 6.2 5.1 (GA)s 154 80 6 5

Table 7.10 Relative errors for the flexural and shear stiffness: 5 storey building with 3

bays
|[Error| (%) |[Error| (%)
MC MD MCA MDA MC MD MCA MDA
(El)1 1.6 5 0.4 1.2 (GA), 11 09 6 5
(El)2 0.9 11 1.8 1.2 (GA), 17 14 3 0.4
(EDs 12 61 0.9 1.8 (GA)3 50 38 3 1
(ED4 63 134 15 4.1 (GA)4 258 78 3 4
(EDs 138 88 1.2 11 (GA)s 138 88 1 11

Table 7.11 Relative errors of the flexural and shear stiffness: 5 storey building with 2
bays
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|Error| (%)

MC MD MCA MDA
(El)y, 09 18 04 1.3
(E), 11 26 07 08
(El)s 7 580 04 0.1
(E), 43 114 06 14
(E)s 139 97 13 15

|[Error| (%)

MC MD MCA MDA
(GA); 12 43 5 01
(GA), 30 70 4 08
(GA); 139 87 3 5
(GA), 153 97 4 7
(GA); 138 97 1 15

Table 7.12 Relative errors of the flexural and shear stiffness: 5 storey building with 1

7.4.3.3.2 Structure with 10 stories

bay

To investigate the effect of the number of stories on the accuracy of the stiffness

prediction, an additional ten-story structure is considered with the following

properties:

L=9 m (total bays length)

H,= 3 m (storey height)

e, = 0.3 m (wall thickness)

E= 25 10® MPa (modulus of elasticity)
G=10.4 10° MPa (shear modulus)
M= 1500 kg (lumped mass by story)

|[Error| (%)

MC MD MCA MDA
(El)) 15 12 08 08
(El, 11 14 26 26
(E)s 23 9 1 1
(E1) 3 7 16 16
(El)s 8 22 2 22
(Es 22 377 12 13
(El), 53 137 22 24
(El)s 87 105 1.9 3
(El)s 99 100 96 33
(E)p 101 100 6.7 8

|Error| (%)

MC MD MCA MDA
GA: 10 20 7 7
GA), 10 31 24 24
GA; 15 38 22 21
GA), 25 46 16 16
(GA)s 52 58 18 18
GA% 190 71 22 2
A7 287 g5 17 14
GA 124 o5 03 05
(GA), 103 99 22 3
(GA), 101 100 67 83

Table 7.13 Relative errors of the flexural and shear stiffness: 10 storey building with

3 bays
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A summary of the results in this case is given in Table 7.13. Results obtained for this
case were similar to those reported in the previous section. The accuracy of stiffness

prediction depends on the mass model:

1. Mass models MDA and MCA provide the best results, with relative errors of
flexural stiffness (£7) and shear stiffness (GA/) less than 10%. The MCA mass model

provides better stiffness identification.

2. Mass models MD and MC provide acceptable results for the first five stories, but

the relative error becomes very large for the upper stories.
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7.5 LATERAL STIFFNESS IDENTIFICATION OF CONFINED
MASONRY STRUCTURES

Now and for many years, many countries suffer from a lack of housing, especially for
low-income people. The traditional way of tackling this problem is by construction of
mass housing. This housing is generally built with the same repetitive characteristics
throughout the whole country. In many countries in Latin America and Europe, shear
walls and confined masonry are extensively used, with the latter preferred by those
building their own homes. This chapter considers a large number of existing
structures which need to be evaluated for the purpose of estimating their future
performance in possible situations such as an earthquake and their likely condition

after its occurrence.

The method developed in section 7.2 was applied on stiffness identification of
confined masonry structures. The influence of the geometry and openings was
studied.

7.5.1 NUMERICAL STUDY

Figure 7.6 shows the assessment procedure used in the numeric simulation. The
dynamic analysis was performed with SAP2000 [108] using the finite element method
(FEM) and various mass models for each structure. Dynamic parameters are
determined to apply the mass matrix adjustments and the stiffness identification
procedure presented in sections 7.2 and 7.4. EI and GA values are then estimated for
each story. Once the residual rigidity values (EI and GA) for each story are known,

the flexibility matrix has been completely estimated.
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Mass Matrix
|::> F, 0, o, By |:> Adjustement

4

Flexibility matrix El and GA
estimation estimation

The Sap2000 simulation

Figure 7.4 Evaluation process of the estimation method

The numerical values obtained with the FEM are considered as “exact” or reference

values to determine the quality of the identification results.

MEF
ii

MEF _ p*
ErrorE, = (E’FE‘] *100 (7.28)

With:
F"™ = ii flexibility coefficient of the flexibility matrix (FEM values)

F,; = Estimated ii flexibility coefficient of the flexibility matrix.

7.5.2 DESCRIPTION OF THE FINITE-ELEMENT SIMULATION

Figure 7.7a shows a confined masonry structure, with the masonry wall confined by
reinforced-concrete (RC) vertical and horizontal elements; a planar finite element
model of the structure was constructed using the SAP2000 software [108]. The
vertical and horizontal confined elements were modeled by quadrilateral planar
“shell” elements. The shell elements have bending and membrane stiffness with three
degrees of freedom at each node (Figure 7.7b) [108]. The masonry wall was modeled
using a quadrilateral planar “plane” element. The plane element has two degrees of
freedom at each node (Figure 7.7b). The shell and plane elements have the same

dimension (w x t =0.15 m x 0.15).
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Compatible lateral displacements are considered for each floor because this condition
leads to better results than free lateral displacements. Actually, the impact of this
condition was previously evaluated; it might lead to less than 2% relative error for a
wall without openings and 5% for a wall with openings [120]. Wall masses are
uniformly distributed for each FE node and the slab mass is lumped to the nodes
belonging to each floor. The building is fixed at ground level, and the analysis is

linear.

CONFINED ELEMENTS

O]

IUZ

—
MASONRY Ux

I ) ) 0t Al A i
| Y O T T D T

SHELL PLANE

(@) (b)

Figure 7.5 Confined masonry model simulated in SAP2000

7.5.3 PROPERTIES OF THE STRUCTURE TO BE ANALYZED

Figure 7.8 shows the geometrical and mechanical characteristics of the confined
masonry structure. Dimensions and material properties are the same in all analyses.
The models vary only in the number of stories and bays. Figure 7.8 shows the

property values for materials in common use in Venezuela.
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Lv

Hp

Masonry Concrete

Elasticity Modulus (Mpa)
Shear Modulus (Mpa)
Mass (kg/m?)

7000 25400
2800 14200
1000 2500

Lv= 3 m (bay length)

Hp= 3 m (story height)
Wall thinckness = 0.15 m

The lumped masses at each storey level is 42 kg for bay

Figure 7.6 General characteristics of the confined masonry structure employed

7.5.4 LATERAL STIFFNESS ESTIMATION UNDER DIFFERENT

GEOMETRY CONDITIONS

A study of confined masonry structures with different numbers of floors (3, 4, or 5)

and numbers of bays (1, 2, or 3) has been performed to verify the efficiency and

accuracy of the proposed identification method. Table 7.14 gives the relative error

values for estimation of the lateral flexibility coefficients (Fj;) for the nine cases. In

this study, small errors were observed throughout. The results for all the cases are

well-specified, with relative error values less than 1.65%.

Error Fii (%)

Fi1 Fa3 Fas Fss
5 storey building
1 bay 1.65 0.21 0.05 -0.14
2 bays 1.65 0.27 0.07 0.32
3 bays 1.42 0.27 0.04 -0.62
4 storey building
1 bay 1.09 0.04 -0.10
2 bays 1.11 0.04 -0.25
3 bays 1.34 0.06 -0.54
3 storey bulding
1 bay 0.53 0.08
2 bays 0.82 0.14
3 bays 1.11 0.17

Table 7.14 Stiffness estimation results for two different geometries
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7.5.5 LATERAL STIFFNESS ESTIMATION WITH OPENINGS IN THE
WALL SECTION

The five-story, one-bay model is used to calibrate the stiffness identification method
for a shear wall with openings. The study is performed for shear-wall buildings with
window and door openings. The geometrical and mechanical properties of the model

under study are the same as in section 7.5.3.

7.5.5.1 Shear wall with window openings
The analysis was performed for the cases of a/b ratio equal to 0.2, 0.3, 0.4, and 0.5, as

shown in Figure 7.9. The relative errors were similar in all cases because the effect of
openings was not found to be significant. Nevertheless, the errors were greater for

larger a/b ratios.

Error F; (%)
b(m) alb Fu F2 Fas Fas Fss
0.6 0.2 044 005 -0.03 0.01 -0.6
0.9 0.3 -0.03 -0.03 -0.04 0.01 -0.06
I:II b 1.2 0.4 -0.89 -0.21 -0.13 -0.03 -0.10
15 0.5 -205 -0.52 -0.28 -0.10 -0.15

(b)

Figure 7.7 Walls with windows openings

B—I
Qo

a)

7.5.5.2 Shear wall with door openings

In this section, the lateral stiffness estimation of a five-floor, one-bay confined
masonry building with variations in door height and width is discussed; results are
shown in Figures 7.10 and 7.11.

7.5.5.2.1 Door height variation

For the chosen structure, various ratios of door and story height (H/Hv) from 0.5 to
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0.8 were investigated (Figure 7.10a). Figure 7.10b illustrates that as the H/Hv ratio

increases, the quality of the results decreases, but is usually quite good.

Because of this, an additional structural behavior study was performed by increasing
the number of bays while maintaining an H/Hv ratio of 0.8 (Figure 7.10c). A slight
increase in the error with increasing number of bays is observed. A large increase in
door height increases wall flexibility, especially in the area near the slab. This
invalidates the assumption of a cantilever structure (used in section 7.2) in this

simulation, especially given the behavior of the zone adjacent to the slab floor.

Error F; (%)
H(m) H/Hv Fuu  Fy Faz  Fus Fss
15 0.5 -094 -0.17 -0.13 -0.05 -0.10
1.8 0.6 -2.09 -041 -0.22 -0.09 -0.13
2.1 0.7 -436 -091 -044 -0.22 -0.17
3m 2.4 0.8 -897 -195 -093 -055 -0.27

(b)

= Error Fii (%)
0.90 Bays Fu Fa Fas Fa Fss

o ) o )
.

1 -897 -195 -0.93 -055 -0.27
2 -9.08 -242 -1.38 -098 -0.50
3 -9.76 -282 -1.80 -150 -0.63
4 -996 -301 -2.06 -182 -0.83

Figure 7.8 Walls with door openings. Case: Height variation.

7.5.5.2.2 Width door variation
The estimation errors for the lateral flexibility of the confined masonry structure are

shown in Figure 7.11a. The increased L/Lv ratio does not affect the quality of the

stiffness estimation (Figure 7.11b).
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Lv Error F; (%)

[ L (m) L/Lv Fll F22 F33 F44 F55

an 0.9 0.3 -209 -041 -022 -0.09 -0.13
12 04 -241 -050 -0.28 -0.14 -0.16

= 15 0.5 -223 -051 -031 -0.14 -0.20

L 1.8 0.6 -153 -0.38 -0.27 -0.12 -0.24

B 2.1 078 -041 -0.14 -0.18 -0.04 -0.38
(b)

(a)

Figure 7.9 Walls with door openings. Case: width variation

7.6 EXPERIMENTAL ASSESSMENT

To verify the experimental effectiveness of the stiffness estimation method presented,
we tested the dynamic modes of one cantilever beam. The physical parameter of the

model, experimental test developed and its results are describes in section 4.4.

7.6.1 STUDY CASES AND ESTIMATION RESULTS
Consecutive damage was made to the beam, in order to evaluate the proposed

methodology. Cracks were made in the beam flanges. Cracks were localized in the

half of the section. Three study cases were established:

Case a: Initial undamaged beam (reference for evaluation of stiffness change)
Case b: Beam with damage in the 2" section

Case c: Beam with damage in the 2™ and 4" sections.

For each of the cases described above, free vibration tests were performed with
excitation in different coordinates, in order to obtain records and to choose those with
more quality and information. Dynamic properties were obtained for every case: The
mode shapes and frequencies for each study case are show in figures 7.12 to 7.14 and
table 7.15. Once the beam mass is estimated and the experimental data analyzed, a
linear system is formed (7.12). Solving the system, we obtain changes of stiffness for

every case in relation to the initial structure (case a).
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Table 7.16 shows the results of damage estimation in case b, and c. In each of the two

studied cases, damage and undamaged sections are identified with accuracy; in the

case of undamaged sections, the maximum error estimation is 3 %. In relation to

reference values (case a), the methodology, in the two studied cases, identifies with

precision the location of damaged sections as well as the variation of stiffness.

@4 (rad/s)

@y (rad/s) @3 (rad/s)

Undamaged
Case b
Case ¢

78.96 218.78
78.39 207.47
77.24 202.49

Table 7.15 Natural frequency from the free vibration test

14

os

—e—Casea
— - —Caseb
---A-- Casec

Figure 7.10 First mode shape from free vibration test

14

(o}

—e—Casea
— - -Caseb
---a---Casec

Figure 7.11 Second mode shape from free vibration test
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\ —e—Casea
—-a--Caseb
---a--- Casec

Figure 7.12 Third mode shape from free vibration test

Case b Case c
Section El{/El, El/El,
1 1.00 1.00
2 0.72 0.72
3 1.01 1.01
4 0.97 0.88
5 1.02 1.00

Table 7.16 Stiffness estimation changes of cantilever

7.7 CONCLUSION

The damage identification procedure for a cantilever structures was proposed. This
methodology requires a known mass matrix and two natural frequencies with their

corresponding mode shapes.

The stiffness identification procedure was illustrated with a numerical example of a
real chimney, achieving good precision for stiffness changes in each section under
different noise signal conditions. Also, the methodology of stiffness estimation was
applied in an experimental study of a steel cantilever beam. Damage was performed in
two sections of the beam. The method identified with precision the change of stiffness

as well as the damage location.

This approach can be applied in cantilever structures (chimneys, control towers,
grandstands roofs, etc.).The presented algorithm has the advantage that it only
requires the knowledge of two mode shapes with their respective frequencies (without
doing the measurement of rotational coordinates, which generally are difficult to

obtain). This implies that the proposed methodology is a powerful tool for the prompt
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decision about the future of this type of structure. This methodology has very wide
usage with little amount of experimental measurement which drastically reduces the
excessive costs and number of tests. Therefore, it is convenient to apply this approach

in order to identify structural cantilever typologies.

The results show that the quality of the damage identification is very more sensitive to
the perturbation of the mode shapes than that of frequencies. Multiple and severe
stiffness reductions affect the quality of the damage identification, for the Flexure
stiffness coefficients (EI) the results give a reasonable agreement between the damage
identified and damage assumed. But, the Shear coefficients (GA) had unacceptable
precision and major errors, and were not corrected. As expected a better adjustment of
the flexural coefficient than the shear coefficient, because of the chimney mainly

flexural behavior.

Influence of mass models and nonparametric mass normalization on structural

stiffness identification

The influence of the choice of initial mass model on the stiffness identification of

shear-wall buildings is discussed.

Four mass models with lumped masses at each floor level were investigated: (a)
diagonal mass matrix (MD), which assumes that the structural masses are lumped at
each floor level, (b) consistent mass matrix (MC) which models the structure as a
cantilever of which the components are plane beams with 3 DOF per node and a
consistent mass model imposed on each beam, (c) adjusted diagonal mass matrix
(MDA) derived by nonparametric normalization of the original diagonal matrix, and
(d) adjusted consistent mass matrix (MCA) obtained by adjustment of the consistent

mass matrix by applying the nonparametric normalization.

Two buildings are considered as illustrations: a five-story building with one up to

three bays, and a ten-story building with one bay. The results obtained show that:
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e Mass models MDA and MCA provide the best results, with relative errors of
flexural stiffness (EI) and shear stiffness (GA/7) less than 15%. The MCA

mass model provides better stiffness identification.

e Mass models MD and MC provide acceptable results for the lower stories,

but the relative error becomes excessive for upper stories.

Nonparametric mass normalization based on dynamic data leads to a better stiffness
coefficient assessment for each floor. The absence of nonparametric mass

normalization leads to high error values for the estimation of stiffness coefficients.

In addition, it has been shown that the behavior of the proposed method with noise in

the modal signal is satisfactory.

Lateral stiffness identification of confined masonry structures

The stiffness identification method for shear wall buildings was applied to masonry
wall structures of three to five stories, obtaining results of good precision by means of

a simple and efficient process.

The principal conclusions that can be derived from the various applications of this
method reported in this paper can be summarized as follows:

1. As the same as the shear wall building case, special attention must be paid to
the mass model which provides the initial data for structural stiffness
identification. The theoretical models are not necessarily orthogonal to the
experimental modal values. In this work, a methodology is proposed for the
preliminary adjustment of the initial mass matrix.

2. The method proposed for identification of lateral stiffness is adequate for the
structures analyzed: masonry wall structures of three to five stories and one to
three bays. The results obtained were very close to values which can be
considered exact.

3. Wall openings for doors and windows (with geometries in common use) do

not affect the lateral stiffness identification.
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8. CONCLUSIONS AND FUTHER RESEARCH
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8.1 CONCLUSIONS

The goal of this study was to develop and validate in a numeric and experimental manner
methods of identification of damage in structures considering dynamic data. A
bibliographical study carried out showed that there is a lack of methods that use a
reduced level of experimental information and provide information of location of the
damage of the structure. In general, the methods that use reduced experimental
information or few sensors produce results or overall calculations of the damage in the
structure. Other types of methods required the measurement of various coordinates and
the support of detailed simulations in finite elements.
On the basis of knowledge of the forms of the matrixes of stiffness or flexibility,
identification methods for three specific types of structures were developed:

e Framed buildings.

e Structures composed of simply supported beams, specially designed bridges.

e Structures that can be simulated as a cantilever, with flexural and shear behavior.

These methodologies are unique because of the limited dynamic information required
(one or two modal forms with its corresponding frequency), obtaining as a result, the
value of the change of local stiffness of the structure (story or section).

The following is a summary of the conclusions for each method:

8.1.1 FRAMED BUILDINGS

Two identification procedures are proposed. They may be applied to framed buildings
with shear behavior to evaluate the structural damage in terms of stiffness reduction
values, as well as to determine the location of these stiffness variations. The
methodologies presented has an application limited to framed structures, and the
procedures described here have the advantage of using only a coordinate for floor and a

limited number of modes (1 or 2 according to the case).
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The numerical simulation demonstrated a reasonable agreement between the damage
estimated and damage assumed. The numerical results demonstrated that the method is
independent of the order of mode shape utilized. Also, it has been demonstrated that the
quality of the damage identification is very more sensitive to the perturbation of the mode
shapes than that of frequencies. However, the frequency is more stable that the mode
shape in real dynamic test. Important level errors in measured mode shapes would affect
the damage identification, so special attention would have to be paid to signal processing.
It is found that the damage identification is affected by damage severity of the structure.
For the large damage in any level, the quality of damage identification is dependent on
the mode shape utilized. When the severity of damage is high, the low mode shapes can

be used to identify the damage with best precision compared with high mode shapes.

Both methods are applied to an experimental model of a three-level framed building. The
undamaged structure is evaluated and three cases representing various damage conditions
are studied. Both identification methods proved adequate to identify the stiffness

reduction and damage location.

8.1.2 SIMPLY SUPPORTED BEAM

The damage identification procedure for a simply supported beam was proposed. This
methodology required a known mass matrix and two natural frequencies and their

corresponding mode shapes.

The damage identification procedure was illustrated with a numerical example of the real
bridge. The ratio El{/ El, was estimated with low relative errors. It has been shown that
the behavior of the proposed method with noise is satisfactory. The accuracy of the
damage identification depends on the noise level, which is generally quite good. The
quality of damage identification is independent of whether noise is localized in the
frequencies or mode shapes

The results show that the damage identification method is not affected by damage

164



severity or multiple damage sections of the structure. In all cases, the methodology
identifies with precision the location of the changes in stiffness as well as the variation of
stiffness.

The methodology of stiffness estimation was applied in an experimental study to a wide-
flanged I-beam. A progressive damage was made in three sections of the beam, which
corresponds to the three damage cases studied. In these three cases, the estimation

method identified with precision the change of stiffness as well as its location.

This approach can be applied not only to the simply supported beams but also to the
simply supported girder bridges. An important advantage of this approach is that it needs
only a small number of mode shapes and simple dynamic tests. This method required
only unidirectional coordinates; it does not require rotational coordinates and refined FE
models. Therefore, it is very convenient to apply this approach to identify damage in

simply supported girder bridges or beams.

8.1.3 CANTILEVER STRUCTURES

The damage identification procedure for a cantilever structure was proposed. This
methodology requires a known mass matrix and two natural frequencies with their

corresponding mode shapes.

The stiffness identification procedure was illustrated with a numerical example of a real
chimney, achieving good precision for changes in stiffness in each section under different
noise signal conditions. Also, the methodology of stiffness estimation was applied in an
experimental study of a steel cantilever beam. Damage was made in two sections of the
beam. The method identified with precision the change in stiffness as well as the damage
location.

The results show that the quality of the damage identification is very sensitive to the

perturbation of the mode shapes than that of frequencies. Multiple and severe stiffness
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reductions affect the quality of the damage identification; with respect to the Flexure
stiffness coefficients (El), the results give a reasonable agreement between the damage
identified and damage assumed. But, the shear coefficients (GA) showed unacceptable
precision and major errors and were not corrected. As expected, a better adjustment was
made using the flexural coefficient than that using the shear coefficient, which is mainly
attributed mainly to the flexural behavior of the chimney.

This approach can be applied to cantilever structures (chimneys, control towers,
grandstands roofs, etc.). An important advantage of this approach is the need of only two
mode shapes and simple dynamic tests. This method requires only unidirectional
coordinates; it does not require rotational coordinates and refined FE models. Therefore,

it is convenient to apply this approach in order to identify structural cantilever typologies.

8.1.3.1 Influence of the mass model on stiffness determination

The influence of choice of mass model on the stiffness identification was investigated.

Four mass models with lumped masses at each floor level are investigated: (a) Diagonal
Mass matrix (MD), which assumes that the structural masses are lumped at each floor
level; (b) Consistent Mass matrix (MC), which models the structure as a cantilever whose
components are plane beams with 3 DOF per node and a consistent mass model is
imposed to each beam; (c¢) Adjusted Diagonal Mass Matrix (MDA) derived by
nonparametric normalization from the original diagonal matrix; and (d) Adjusted
Consistent Mass Matrix (MCA) obtained from the adjustment of the Consistent Mass

Matrix after the nonparametric normalization is applied.

Two buildings are considered as illustration: a 5-storey building with 1-3 bays and a 10-
storey building with 1 bay. The results show that:

e Mass models MDA and MCA provide the best results as the relative errors on the
flexural stiffness (£7) or the shear stiffness (GA/y) remain lesser than 15%. The MCA

mass model provides better stiffness identification.
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e Mass models MD and MC provide acceptable results for the first lower stories;

however, the relative error is high for upper stories.

Mass nonparametric normalization based on dynamic data leads to better stiffness
coefficients assessment for each floor. The absence of mass nonparametric normalization

leads to high error values for the estimation of stiffness coefficients.

Also, it has been showed that the behavior of the proposed method with noise in the

modal signal is satisfactory.

8.1.3.2 Stiffness identification of confined masonry
The stiffness identification method was applied to masonry wall structures of 3-5 storey,

obtaining results of a good precision and indicating a simple and efficient process.

The principal observations derived from the different applications of this method

performed in this study are summarized:

e As the same as the shear wall building case, we propose the previous adjustment of
the initial mass matrix.

e The method proposed to identify the lateral stiffness is adequate for the structures
analyzed: masonry wall structures of 3-5 storeys and of 1-3 bays. The results
obtained were very close to those considered as exact.

e The wall opening of doors or windows (with common use geometry) does not affect

the lateral stiffness identification.

8.2 FUTHER RESEARCH

The methods of estimation of the stiffness developed have shown that the noise in the
measurements represents a variable that can impact, in a great manner, the quality of the
results. This makes us review and enhance the process of gathering and treatment of the

signal in order to reduce its maximum experimental and numeric error input.

The methods of identification suggested in this study were validated through numerical

and experimental applications, obtaining results that, satisfactorily, relate the changes in
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stiffness proposed to the ones forecasted. The next challenge is to apply them to real

structures, particularly, to carry out processes of structural identification in the following

structures:
e Real framed building;
e A bridge with simply supported beams;
e An industrial chimney or a control tower of an airport;
e Confined masonry structure or building of reinforced concrete walls;
Each test must undergo an evaluation to determine the influence of the iteration soil-

structure and rotational displacement.
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