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Hr <> ARERREPFIE, SFORREAFE—IE t B 2O6TKTE, SF(th )RR B LR
) tJm (9K . B — RPN B HE S R Fe o -
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Gij =_—e °
(0 N (1+1/w) >1 + (0o/z0) ® T/1D

ot N OIS XN ROEFARIC I T2 o A5 T IRREY B (05 2, w0 A
zo 73 I A B DX A ) R ) AR . SRS T R IR B0 S R 5 AR S
M FRIH 256 % 3 A 9O CATIAR IO A A (XA WL Figure 17) , WE T
E.Coli RecQ fift HEREER % XUk DNA FIfF4E R PE LA A2 RecQSP MR TEN & (1% 1751 Bk
FE DNA ISR KM, 2GR A “ B HOCHE AR eI, Tt
FBd, Rgd T — B HAT R AR R AR T I R A O R TR R S RYCR M
AL A BOC A S BER AR, JEH R — BB S 2, SR T s T Sy
WS PECAE S o LIk PR G AR B AN /N A 9 3 R R BE A A BF o, A
FCCS R EA SE I M4 K AT R RecQ LA AZE RecQSB it MR 11 ¥ B g S5 W vty
PEs
1) [/ FCCS FEAR MM E.Coli RecQ FEVERF 719X #E DNA fEEEZ 1
A SIS I i P AR ST O K AT B E.Coli RecQ fi# il (Xu et al., 2003) 1 AT 4,
H-KH FCCS HAAE K T-B, Wil E.Coli RecQ 5 I FIBEIE S NG ME . SZE6 HEA 5
PR : [EIFRICH Alexas488 L& TexasRed (X4 5¢ A (0 [ 1 %% DNA 1E E.Coli
RecQ il BEMGAE I 8 fift T AUBE, e 22 RO 4 BT ) B4 DNA . FCCS 2GRN R
B, SEATIRAH OC T ZE PR BE DNA XURE A SR 2 (1) 38 5 11 52 B B AR R A 3, 2 0L
WSS A RRE, DA G M 2k PRI I R B M o, ELARJRUE DL EE Y T11.2.2 v Figure 1
PAKCEE S T11.2.2 Y Figure 20 SER IR A — 2N, (B EER TR IED) LA Z %
N R R T BRI ) 44 Al E.Coli RecQ M B fe )e NG, W9t 45 &
Wl: 26— N4k, E.Coli RecQ & (AN HIMEH 7 X AWM 76 37
JERF RS T E.Coli RecQ 5 e 5 My M 22 0 2 K1 25 J5 0 7 e 1 g Jse vty 1k
(WLETF 11.2.2 1 Figure 3C) , IS 3 ZH DT AL v 6 25 i B2 U0 DNA Y
(BRI PR (WLEEY TIL.2.2 Y Figure 4) o Jt4h, DNA ML BRAER K B 2
SIS ORI U R R B, R o R B e s NS R 2 = R N T IH R R
R H R IEE “IRK” TGRSO B, ARE dE A T S EE DNA
AN PBE SRR AL IR WG E.Coli RecQ B FABRHIE S M % Pk (56, I EL A TN
Lj ik DNA 4548 (SSB) X} E.Coli RecQ & BRI S NG TE A SRR B (L=
111.2.2 1 Figure 7 55 Figure 8) o 45K AR R P IIANIE K (K fEIED 1)
FE T ANABE DNA il (<10b) 1] 3538 51 E.Coli RecQ H5 ARG R NTEPE . v
HAMNAEE DNA (32b; 45b) 24k E.Coli RecQ & AL S Ny E, %45 BENIE T K
B DNA X e 8 1 2 A SR SE AT, R ARRs e R 0 45 G I N AR R T R R
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MR TR IE SN 3% . AEZ IR N A5 PE T, DNA IR LA 2 52 0 i 25 1
XTI AR N, 22 T B A & P IR P e s K TR I BE, 14 AR
RENUE T — 20 I 4% A B 1A 9% 1 1) 2 S 2 e 1 I i 1R JEG A0 W D A FH 008 2
15 1 .

2) [P FCCS FEARHM RecQS5p AEVEMEE 1] L #f44E DNA £ “iBK” FEHE
RecQ KAk g Mg o) PR Rt AL A8 e YERS A MEH - fE AR, /04 5 F
RecQ fiftlilg, HH BLM, RecQ4 FI WRN e (1) 4% 5343 ) 2 $ 3 Bloom,
Rothmund-Thomson PL & Werner £55%E (Wang et al., 2003) o 451, ARE T ANK
RecQ5P fift el a1 B HAMASE DNA #E “iR-k” 3%k, R1I0CT RecQSP fift et
51 &K BHAMNAUEE DNA fE “1B K7 ILE I HAR R ANE 2 . AWK FCCS HoRAE
HRTNTB, BIASE RecQSB A fig iy £ AR i (g S TG Itk o SEB R BRAN R . 73
AFRICH Alexas488 DL f& TexasRed [175 642 (4 A1) H AN 4 DNA 7E RecQSP fiff lig i £
FAEFH N B H AT AU, e 2R e — 4 A2 [X0UE DNA. FCCS 2t % i,
PENCATIAR I T LR PRI B DNA XUEE “ 38K F2BE R38R 1M S B M a9, X1
B RTE R, OGS AH ¢ M 2 1R 4 1 1 00 2 dee ey i, AR BRI R TIL3.6
Figure 1A, & T SELFIEIXUE DNA B2 T RecQSP ik a 1 B S Mg 2k
I IFARAAY BTl A 1 R S5 P 4 BLAN RLBE DNA &5, fln T BANBEMIIE 2, M
M3 T EAMREE Ak “IRK” LR, AW T ARG N B ANREE DNA
RAE “IBK” FEEE (CJC RecQSB RER 1) , LAKAEAN N RecQSP MEER 14 1F F BANYLEE
DNA #E “iB-k” FEEE. WIFT45 R W] RecQ5p WM& AL kK HANASE DNA #E “iB
K7W, Hiz R NIEPES DNA JRPIEEKEJCC (LFY 1IL3.6 H Figure 3A. B.)
A IR il 2 LA RLE DNA BE “IRAK” PR R, BAREAMNREE DNA HIRHE
R FREE AT AR, (R AR TSN RecQSP B I R AR R (AL
FAT 11.3.6 H Figure 5) o M HST RecQ5B BEAR FI7EAF I % R X DNA (K4
ATy, AR RecQSB MEHE XY DNA 254 A8 ) A2 0% & il B 1 s m, 3 if B
E T A B N RO B AN AR DNA BE “IR K7 FREEAY RecQSP Mz H S HA
(R S NG PE OO 5T TIL3.6 F Figure 2) o ZWFS0IOKIN T 52N AA 2R oL B T IR
X HANREE DNA B “IBK” FEEEMIREmT, 250K AIE RecQSP M liE i A 111 H A
B DNA B “IB K7 WA B AT B AagibE

2545 [ E.Coli RecQ fAETFEREER X XUEE DNA [FARHENG I LA A2 RecQSP fiff e iy 2
PO P AN EE DNA EIR JGR PERE TR 0L, 9RRIIZOCAZBAN IOl HeR FCCS
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A S I RecQ el 8 111 IR B i Pk o HoAazk il A & AT R = 1 REVE 5 A
M

— AT mIRR I ERTE HIV iR 3365 5 A BRI N s MR o B 2 A
R 25O — AN RICER S, v L7 i 2¢ % (Fluorescence Polarisation) . il
b0 4 2 6 R 23 B T E 70 1 RVN, TEARRNR B PR SE P . BRI Al 4 5 D 3 A 7 2B )
Wt & —FiA I F-B (Lacowicz, 2006)
PG4 & RPN Figure 8 Pror: BT z MRS - P o't i x Sl A S IR
JF AL B9 1 3O JE R RSO, A8 y W AR 20, 2 Tn AU z B2 5 1) I
PN, 2 Iv A x RS WG, WD n) ek a e Xk

_ Im—1v

a =
In + 21Iv

FEVEW PR 23 1 FLor A BEALEY, T NS B A I R 2N, o ARG B4 4 T e
8o DRI G 1) S Ik ] A S - £E 1 1) JC KA HL 23 5 AN BE B s sl s 16 1
Pho R HMEE RO IR, P 1 P N RS TOEA X B, Bl Steady-State
Fluorescence Anisotropy.

AR RS GWARKMAY Beacon 2000 (PanVera, Madison, WI) 252 W £ HIV
INTERE G M R 1 5 IR Y) DNA &5 5 B b R aS i e O BB R AR AL . SERRE ] H AT HIV 9
B YR YER DNA JEY (5°-GTGTGGAAAATCTCTAGCAGT-3") , M 373 f-GT
Fea e HIV a5 5 Bm e T R ke e e O VI mi e 281 3% imehs et 1
PENE T, FITIIG EE B S HGRIVERTENE . HIV 8 85 85N B4 e 1k e A 1D
YERIZy PIAN LB 1) SRS E 45 & 2R M DNA JEY) L. 20 BRI B S N — A
25 R E IR N e BEE TR S B -DNA S5 (Y) afRlaind Aok
CX

y = L7 L 100
I max — T'ODN
Y rinax 5 ropn 73 MR IRBEG B -DNA 52514 DL A DNA JIRIISRAT B 7 WA {E . 2)
HIV i 138 G0 DNA JEY) 30 -GT JPAIPIFIE R o i B nT LS W 25 35 i 23
DNA #5215 3 DNA R IR IE N Bl 1% 24 3 -GT P2 HId #E 4 37 REiw
BULRE R 120 BREGAE S V3 P T DA ek B 288 28 Y (i B AR () B AR AR P e iy o o FH )
WL LI PIFN: a) KA 0.25%ZKFER) SDS 70 (1) NI 1] Py A 1k [ o B
TEAZ R AR Z A PSR AR ICH, 530 R AR T Ak P 1) 5 SR A% 1 IR DA R A #E 5 il
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37 v D) E I R T AR S G R AR I -GT JP 413X BB U AL IR B R (Fgine =
[GT]/[DNA]total) W] LLiliit N vH5 s

I'Ne — T
Fdinu =
I'NP — Idinu

U g B Faina 23 597N A 5 R AL L T OUE S SR AZ A IR 1) 96 Ml i A1 LA S A 4 5 il Ak
BA-GT UL HIRINFOCMIRAE . ABIFURA Eurogentee 22w kL5 I 5°-GT-3"F X%
HIRAHE SR rainee b) FESEI BNARMIIILRE A, SN AR R R BRI R 15 Ml Ak 2L
FISERAZ AT IR VA S AERE G g 3 0 D)3 R ™= A2 () 9 6 AR L HU-GT PRI IEA7 41 8
3-DNA 556 BEIN S Fana R R 0H5E:

ft=0—1
Fdinu =
T max — I'dinu

AP rmax R R NAETE T RS IREL, o oG 37 AL PEAE AT R
PGP A2 MM~ RS 222 HnTLodd FAGRE

In (1 — Fdinu )= —kobs X t

Kobs = Kchemistry /((kd,app /[ln] 0) + 1)

T kchemisty AN RIS N EL Koy app 222U 255 B0

ST PR O s, ARG T PR LA X HIV RS LA B HIV 85
fifg 2 AR PR BB AL B B (N1SSH DL G140S/QI48H) o %M 5T R R & 58 e i
PRATIEZA, Ly S b ) 7 M A= R DL 5848 7 HIV 324 Wi 2 11 DNA g5 6i& 1 DR 3
SAL IR TE . 45 ] N15S5SH, G140S, QI48H LLK G140S/Q148H & Fhak &Ml (45848
AR 2 5o HE G Wl B N PR P AR I RIAE T, AR R FE A i S AR SRR A [RIAE AR AN [ R 2
M2t Hrh Q148H FEASTEPMAEIEMIIG L T XN EE LY RAL BA f P25t
G140S WIFEIHETIRIPILTE: SR G140S/Q148H MU E AR A K B W s iy i 2 1k,
HLUE I R IO R AE R HIV 8. (HEFRRIE QI48H FAAAME T HEA
o FE RO I A TS 1, I SR PRt P EE ] TR R A HIRE ). A G140S KRR
DU BRI PT 2T, (HiZsAR i LTS B Q148H AR S 2 B Hlfe 1. X 5 AR AM RS
WS R —3: Bl G140S/Q148H W H KRR e Pk 52 22 1Y A A B 4 S g i s vk, (1
QI48H HIARMA B IZBE 1o ZGE FARUF R T ] 3059 - E I RAL $Udi i
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G RN SRR IE I G140S/Q148H W EE ARG . AR IER MK 2 NI15SH R4
&, QI148H 58745k AT W 5wt i RAL Juhth, SEmmdre 17 4y 300500 7 I RAL $t
515 250 S5 AR N I NS5 ACIHHE 2 1R PRI AR h Q148H A IHE % .

= TILIER IR ARTE K E T RSO R N A

WOCMEIENN,  (Photoluminescence decay) Rl E 5 FOCHFaAH R maL. R
SN B 0G5 Al XA 96 A3 B B [ B S 2 i B AR O A I I ) o S ¢
AR B s RN IG5 S NP AR, 78 DA AR A I N REREAE F b BA
Tz BN FH AT S

9 6 75 A W 5 1R J 3 L - — P Bl AR A S TR) S IBE 11 5% v BB R (- Time-Correlated
Single Photon Counting, TCSPC), i3t FERH — kot EE RN, T HUR
Jikh YRR, AR AR — ANk ot FEERIIES B AN B IR REOG
ORI AR 2% I3 Y 2 ] (R I B I TR], v BB S N & H G EOm s TRl s il AR B . 1%
BRI T )1 0 2 — B E R EAR AR & 7= e — AP i 2, X4 i ARER M & —
IOt . b TR OGO, 5 R A U B0 A Y TR G R )
1%. Mai-Tai 121 MR IR IR TR H Hy 25-100 PP~ 25— WK ikih, AT A3 F & e
AR =B BRI R ERIAS FISCER B — T ANE G B, 7E98 0 A dr bR A A
MBS 2 1) () T BEROR 22 0 A ek o 1IN TSP 34K, wIRE o AT S, XA
FERZIE AP RRAE “ IR RR ™ o X T2 th Ze otk A BRI th e A & o REAIE
b, A GHE . WS IR IER IR S - — N R — e L, %S5
B kg BB R ) A o I AE— AN il 2k L, e ) 2w D) 5 [R) - i 2R L2 1 e 4.
T B A AN RIS 8] 23 i (K400 5 P Al S ) — A A ol BT R AR R 3 gkt 42, 7 2 5 SR 2 () i
AR FH g — B B sk i 2k i vk, 2N S5 RS I TR) A
(11, 1) RN TANRDE Cos o) o FIHAR

<’t>= (O(.l-’tl-’CIJr(12-’520’[72)/((11-’[71+(120’U2)

A DMS B —AME, B IoE SONPI I i 75 d e 38 I 18] 75 1 SRR SR B it 26 V5 — A AH [7) 3
I R AT 75 215 ' 75 i IO AR o

AR I K FH 5L I3 WA DL A FH IR G BRI FUSE 56 % 5 i A3 MPA 4b
7t CdTe K ET mTOCRE. 00T 1 51 R AR ORI L AR A G R IS TR AH 9G 2¢
JCRERREE 2k, 2R mMERGUKE 7 R0 (ERZAHR 2 90K oo fRR K
MIBAAE AT — A/ NE(E . CdTe &1 R 9CAF A IEfE /) A AE 0.1ns, 1-3ns, 10-20ns B
40-50 ns. AL M 45 R ¥ 9% Fernadez-Agiielles >KFH 98 63 R B = A HiR1E CdSe 42K
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=T R ERF R P HGE I (Fernadez-Agiielles et al., 2007). B4k, TF57 45 BRI & S AR
R, HAO 0T A R pig . H A A AR SO TR 5806 TIOR T O T o W%
25t WSERRFEM R A KR, R, JUOKE T RSO miiig. FdRif
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B RAETOCILIRRE B LR ST EOR P I Y H 75 2 2 B0 23 B ek BB IR A . AOK B 0
T HLAr 0 I FE LR VR S i A AT A R R RE

g bpnid, BEEEGARMAIRIE, PRI HE 58 LU R b A FIAX S 1 1]
1, 2 ICI TR N VAL A dr B AN R, e o AT AR L
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Currently, we live in an era of technological revolutions which are among the most
important things that happen to humanity and would continue to impact our lives. During the past
century, many technological breakthroughs, such as emergence of new materials, the
developments in telecommunications...have constantly redefined the activities of our social
interactions. One of the most significant technological breakthroughs among them is photonics.
Since the demonstration of the first laser in 1960, the photonics has been greatly revolutionized.

Meanwhile, the life science began to show its tremendous impacts to our modern world. The
words like gene manipulation, cloning, genetic engineering, etc. have stumbled our daily
newspapers and have drawn the attentions to the exact biological systems. However, many
biological mechanisms are barely known to exist, let alone fully understood. Therefore, the
primary goals of current biological research are not only the identification, but also the precise
physico-chemical characterization of elementary processes at the level of individual proteins and
nucleic acids. To address these real-time quantifications in life systems, a new extension of
photonics which involves a fusion of photonics and biology has been proposed. It is termed as

BIOPHOTONICS.

Photonics Technology for
BioMedical Sciences

Bicimaging/Biosensing

Optical diagnostics

Light based therapies

Tissue engineering

Light manipulations of cells

Biomaterials for Photonics
Technology

Laser media

Optical communication channels
Optical signal processing

High capacity data storage

Figure 1 : Definition of Biophotonics.

The biophotonics has been defined as the fusion of photonics and biomedical sciences. The two

broad aspects of biophotonics are also identified. From (Prasad, 2003).
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Biophotonics is the exciting marriage of photonics and biology (Prasad, 2003). It deals with
interactions between light and biological matter. A general introduction to biophotonics is
illustrated in Figure 1. Research in field of biophotonic is addressing important issues in many
disciplines, such as life, medical and pharmaceutical sciences. Key fields of biophotonics include
optical diagnostics and therapy, photobiology and biophotonic materials.

New frontiers have been reached in this newly emerged interdisciplinary, which integrated
four major technologies: lasers, photonics, nanotechnology, and biotechnology. Fusion of these
technologies truly offers a new dimension for both diagnostics and therapy. An overview of
biophotonics for health care applications is presented in Figure 2. It illustrates the scope of
biophotonics through multidisciplinary comprehensive research and development possibilities,

and could offer tremendous opportunities for both biotechnology development and fundamental

research.
Bioimaging Optical Diagnostic Devices
+ 3D Imaging Diagnostics * Fl_ow Cytometry
+ Manophosphores # Biosensors
¢ Drug Tracking # Drug Characterization
+ Single Molecule Biofunction
Information Technology for
Data Analysis and Managemeant
+ Bioinformatics
+ Drug Discovery
+Medical Bracelet
Light-Guided/Activated Light-Based Devices
Therapies _
+ Photo-Dynamic Therapy _ + Medical Lasers
+ Nanomedicina/Nanoclinic Therapeutics + Artificial Vision
+ Drug Delivery + Tissue Engineering Welding
# Bicadhesives

Figure 2 : Illustration the multidisciplinary scope of biophotonics.

The comprehensive multidisciplinary scope of biophotonics for health care has been illustrated.

From (Prasad, 2003).
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In this case, biophotonics offers challenging opportunities for biomedical researches. Our
present study aims at understanding the fundamental principles of the light activation of
biomolecules, bioassemblies, and the subsequent photoinduced processes. Meanwhile, the
understanding of multiphoton processes by use of ultrashort laser pulses is a necessity to evaluate
time-resolved processes in living biological systems. This thesis encompasses the fundamentals
and various applications involving the integration of light, photonics and biology into

biophotonics. The description of future directions of research and development is also provided.
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INTRODUCTION
ON FLUORESCENCE
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In the early 19th century, biologists strove to characterize molecular interactions directly in
the intracellular environment (Bacia et.al., 2006). Biological macromolecules are inherently
heterogeneous, exhibiting different folded states, distinct conformations or varying stages during
typical biological process. Microscopy techniques using visible light are applicable to living
entities but are intrinsically limited by optical resolution. Recently, the growing importance of
fluorescence microscopy as a tool of investigation, analysis, control and diagnosis in the field of
biology has gained great attention of biologists due to (1) the extraordinary development of new
fluorescent molecular probes and (2) the development of improved low light level imaging
systems and confocal microscopy techniques, for example, the development and design of
detectors (e.g. avalanche photodiodes), light sources (e.g. laser diodes) and compact ultra-fast
electronic devices. Advanced fluorescence microscopes, including confocal fluorescence
microscopy, two-photon excitation fluorescence microscopy and near-field scanning optical
microscopy (NSOM), have been widely applied in biological studies.

In between, the single-molecule techniques nowadays represent practical methods for the
elucidation of the structural rearrangements of biological relevant macromolecules. Single-
molecule-sensitive techniques, such as fluorescence correlation spectroscopy (FCS) grants access
to processes on single molecule scale by extracting information from molecular dynamics, such
as diffusion, binding, enzymatic reactions and co-diffusion. As a result of various recent
advances, this technique shows promise even for intracellular applications. Another important
process that occur in the excited state is fluorescence resonance energy transfer (FRET), which
supports a wide range of different applications, including real-time monitoring of conformational
rearrangements (e.g. protein folding). In detail, the method of FCS could be used to determine the
translational diffusion coefficient for a single fluorescent species undergoing Brownian motion.
The application of FCS to monitor the fluorescence of fluorescently labeled proteins and nucleic
acids and to the fluorescent lipid probes in phospholipids bilayers has been widely reported
(Maiti et al., 1997; Kinjo et al., 1998; Fradin et al., 2003). However, if excited molecules can
rotate during the excited-state, the emitted fluorescence is partially depolarized and the rotational
motion of a fluorophores causes fluctuations in fluorescence intensity. In this case, we can obtain
information on the molecular motions, which depend on the size and the shape of molecules and
also on the fluidity of their microenvironment from the extent of fluorescence depolarization

(Deprez et al., 2004; Guiot et al., 2006).
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This chapter is focused on the principle and the diverse properties of advanced techniques in
fluorescence spectroscopy used in the following sections. Present chapter helps better
understanding of the essential role of fluorescence studies and its applications in biological
processes. Physical bases and the general characteristics of fluorescence emission process are
overviewed in the first part. The principles and instrumentations of steady-state fluorescence
anisotropy, time-resolved fluorescence anisotropy and the effect of rotational Brownian motion
are described in the second part. The theories of Fluorescence correlation spectroscopy for the
determination of translational diffusion and its instrumentation are overviewed in the third part.
Its dual-color variant, Fluorescence cross correlation spectroscopy (FCCS) would also be

discussed in this part.

I.1 General Definitions: Characteristics of fluorescence and
the fluorescence microscope

L.1.1 Photoluminescence process
Photoluminescence (PL) is a process in which a substance absorbs photons (electromagnetic

radiation) and then re-radiates photons. The efficiency of this process is characterized by the
quantum yield value which derives from the value between number of luminescence photons
versus absorbed photons. The possible processes are: photon absorption, internal conversion,
fluorescence, intersystem crossing, phosphorescence, delayed fluorescence and triplet-triplet
transitions which are convenient to be visualized through the Perrin-Jablonski diagram
(Lakowicz, 1983). Once a molecule is excited by absorbing one photon, it reaches a metastable
state and therefore it may returns to the ground state with emission of light, but many other
pathways for de-excitation are also possible (Figure 3): internal conversion (direct return to the
ground state without emission of fluorescence), intersystem crossing (possibly followed by
emission of phosphorescence), intramolecular charge transfer and conformational change. As
shown in Figure 3, The singlet electronic states are denoted as S, (fundamental electronic state),
Si, Sy, ... and the triplet states, T, T,, ... Vibrational levels are associated with each electronic
state. The vertical arrows corresponding to absorption start from the 0 (lowest) vibrational energy
level of Sy because the majority of molecules are in this level at room temperature. Absorption of

a photon can bring a molecule to one of the vibrational levels of S, S,, ...
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Emission of photons accompanying the S;—S, relaxation is called fluorescence. Apart
from a few exceptions (e.g. emission from S, in the case of azulene; simultaneous emission from
S; and S; in the case of indole in some solvents), fluorescence emission occurs from S; and
therefore its characteristics (spectrum, quantum yield, lifetime) do not dependent on the
excitation wavelength. It should be noted that emission of a photon is as fast as absorption of a
photon (=10"°s). However, excited molecule stays in the S, state for a certain time (a few tens of
picoseconds to a few hundreds of nanoseconds, depending on the type of molecule and the
medium) before emitting a photon or undergoing other de-excitation processes. Thus, after
excitation of a population of molecules by a very short pulse of light, the fluorescence intensity
decreases exponentially with a characteristic time, reflecting the average lifetime of the

molecules in the S; excited state.
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Figure 3 : Illustration of Perrin-Jablonski diagram.
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Perrin-Jablonski diagram and illustration of the relative positions of absorption, fluorescence and

phosphorescence spectra. From (Lakowicz, 1983).

Internal conversion is a non-radiative transition between two electronic states of the same
spin multiplicity. In solution, the absorption process is followed by a vibrational relaxation
towards the lowest vibrational level of the final electronic state. The excess vibrational energy
can be indeed transferred to the solvent during collisions of the excited molecule with the
surrounding solvent molecules.

Intersystem crossing is also a possible de-excitation process from S; toward the T; triplet
state. It is a non-radiative transition between two isoenergetic vibrational levels belonging to
electronic states of different multiplicities. Crossing between states of different multiplicity is in
principle forbidden, but spin-orbit coupling (e.g. coupling between the orbital magnetic moment
and the spin magnetic moment) can be large enough to make it possible. Generally speaking, it is
consisted of four phenomena: 1) Phosphorescence. In solution at room temperature, non-radiative
de-excitation from the triplet state T, is predominant over radiative de-excitation, the latter
phenomenon is called phosphorescence (Transition from T; to Sp). The phosphorescence
spectrum is located at wavelength higher than the fluorescence spectrum because the energy of
the lowest vibrational level of the triplet state T; is lower than that of the singlet state S;. The
phosphorescence lifetime is much longer than fluorescence lifetime, typically from micro to
milliseconds. 2) Thermally activated delayed fluorescence (Delayed fluorescence of E-type).
Reverse intersystem crossing T1—S; can occur when the energy difference between T; and S; is
small and when the lifetime of T, is long enough. This results in emission with the same spectral
distribution as normal fluorescence but with a much longer decay time constant because the
molecules stay in the triplet state before emitting from S; This fluorescence emission is thermally
activated; consequently, its efficiency increases with increasing temperature. 3) Triplet-triplet
annihilation (Delayed fluorescence of P-type). A collision between two molecules in the T, state
can provide enough energy to allow one of them to return to the S; state in concentrated
solutions. Such a triplet-triplet annihilation thus leads to a delayed fluorescence emission. The
decay time constant of the delayed fluorescence process is half the lifetime of the triplet state in
dilute solution, and the intensity has a characteristic quadratic dependence with excitation light

intensity. 4) Triplet-triplet transition. Once a molecule is excited and reaches triplet state T1, it
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can absorb another photon at a different wavelength because triplet-triplet transitions are spin
allowed. These transitions can be observed provided that the population of molecules in the

triplet state is large enough, which can be achieved by illumination with an intense pulse of light.

L.1.2 Steady-state characteristics of fluorescence emission

1.1.2.1 Emission and excitation spectra
The fluorescence emission spectrum reflects the distribution of the probability of the various

transitions from the lowest vibration level of S; to the various vibration levels of So. When a
system (be it a molecule or atom) absorbs a photon, it gains energy and enters an excited state.
One way for the system to relax is to emit a photon, thus losing its energy. When the emitted
photon has less energy than the absorbed photon, this energy difference is the Stokes shift
(Stokes, 1852; Lakowicz, 1983). Both absorption and radiation (emission) of energy are unique
characteristics of a particular molecular structure (Figure 4) in a given environment. Generally
speaking, there is a “mirror effect” between the fluorescent emission spectra and excitation
spectra, which is called mirror-image rule. Although often true, many exceptions to the mirror-
image rule occur because of the dissimilarity between the two spectres which could deviates the
existence of several molecular forms, and hence introduce the excitation and emission
wavelength differences.

Stokes shift has significant characteristics in practical research. If the Stokes shift is not far
enough, it would be difficult to separate the excitation wavelength and emission wavelength by
use of filters, and hence the fluorescent signal detection efficiency would be diminished. In
addition, emission spectrum could be distorted by re-absorption. This important parameter can
also provide information on the excited states. For instance, when the dipole moment of a
fluorescent molecule is higher in the excited state than in the ground state, the Stokes shift
increases with solvent polarity. In addition, fluorescence has another general property: that is
known as the same fluorescence emission spectrum is generally observed irrespective of the

excitation wavelength, which is denoted as Kasha’s rule (Kasha, 1950).
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Figure 4 : Illustration the Stokes shift.

Characteristics of the fluorescence excitation and emission spectra, which is termed as the stokes

shift. From (Lakowicz, 2006).
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I1.1.2.2 Lifetimes and quantum yields

Lifetimes and quantum yields are two important characteristics of fluorescence. The
fluorescence quantum yield Q is defined as the number of emitted photons relative to the number
of absorbed photons. The rate constants for the various excitation processes will be denoted as
follows: Ko: rate constant for radiative deactivation S;—So with emission of fluorescence. Here
the fluorescence emission processes is characterized by the probability of K = 1o"; K 1 overall
non-radiative rate constant, which is in sum of rate constant for internal conversion and rate
constant for intersystem crossing, collisional processes and other non-radiative processes .
Consider a dilute solution system in which the de-excitation processes resulting from
intermolecular interactions are not taken into account, the fluorescence species A whose
concentration is [f] (in mol L), a very short pulse of light at time 0 brings a certain number of
molecules A to the S, excited state by absorption of photons. These excited molecules then return
to Sy, either radiatively or non-radiatively, or undergo intersystem crossing. As in classical
chemical kinetics, the rate of disappearance of excited molecules is expressed by the following

differential equation:

df =
dt

= —(KO + Knr)f * (1.1.1

Integration of this equation yields the time evolution of the concentration of excited
molecules [f*]. Let Ir (which equals to [f*]) be the emitted fluorescence intensity at time t and I

(which equals to [f*]o) be the fluorescence intensity at time 0. Integration leads to

Ir(t) = Loexp (— ij (1.1.2)

TF
Where 15, the lifetime of excited state Sy, is given by

1
e kO + knr (1.1.3)
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The fluorescence decay time tr is one of the most important characteristics of a fluorescent
molecule because it defines the time window of observation of dynamic phenomena. As
illustrated by Valeur (Valeur, 2002), no accurate information on the rate of phenomena occurring
at time-scales shorter than about ©/100 (‘private life’ of the molecule) or longer than about 10t
(‘death’ of the molecule) can be obtained, whereas at intermediate times (‘public life’ of the
molecule) the time evolution of phenomena can be followed.

Over the whole duration of the decay, the relation between the number of emitted fluophores

(Nem) and fluorescence intensity Iy is given by
Nem = | Ir(t)dt = telo (1.1.4)
0

At time t = 0, the number of excited molecules equals to the number of absorbed photons

(Nab). In this case, the fluorescence intensity is defined as
Io=KoNuw (1.1.5)

The fluorescence quantum yield Q is the fraction of excited molecules that return to the
ground state Sy with emission of fluorescence photons. Using the radiative lifetime, as previously
defined in equation 1.3.3, the fluorescence quantum yield can also be written as:

_ N em TF

Na = . (I.1.6)

Q

In case of k, << ko, the fluorescence decay time is close to the radiative lifetime Ty,
therefore the fluorescence quantum yield which is close to 1.0. However, such proportionality
may not be valid if de-excitation pathways (ways that out of dynamic quenching and variation in
temperature) introduce interactions with other molecules. A typical case where the fluorescence
quantum yield is affected without any change in excited-state lifetime is the formation of a

ground-state complex that is non-fluorescent.

1.1.2.3 Fluorescence polarization and emission anisotropy
The theory for fluorescence anisotropy can be derived by consideration of a single molecule.

For most experiments the sample is excited with vertically polarized light and the electric vector

of the excitation light is oriented vertically. The intensity of the emission is measured through a
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polarizer. When the emission polarizer is oriented perpendicular to the direction of the polarized
excitation the observed intensity is called Iy. Likewise, when the polarizer is parallel to the
excitation the intensity is called Iy. The anisotropy, where Iy-Iy normalized by the total

fluorescence intensity (Iv+2Iy), is defined as:
Iv — In

r= — 1.1.7
Iv + 21In ( )

The polarization ratio in this process could be defined as:

po o lw (1.1.8)
Iv + In

The primary causes of fluorescence depolarization of an ensemble of molecules are:

1) photoselection process over randomly orientated molecules where the absorption and emission
transition moments are parallel. 2) non-parallel absorption and emission transition moments. 3)
Brownian rotation motion. In addition we have to mention the transfer of the excitation energy to
another molecule with different orientation. The detailed influences of the three primary
depolarization processes will be discussed in the following.

Most chromophores absorb light along a preferred direction (absorption transition moment)
depending on the electronic state. In contrast, the emission transition moment is the same
whatever the excited state reached by the molecule upon excitation, because of internal
conversion towards the first singlet state.

1) Photoselection process.

Light is an electromagnetic wave consisting of an electric field E and a magnetic field B
perpendicular both to each other and to the direction of propagation, and oscillating in phase. For
natural light, these fields have no preferential orientation, but for linearly polarized light, the
electric field oscillates along a given direction; the intermediate case corresponds to partially
polarized light. Thus, when a population of fluorophores (isotropic distribution) is illuminated by
a linearly polarized incident light, those whose transition moments are oriented in a direction
close to that of the electric vector of the incident beam are preferentially excited. This process
takes place in few femtoseconds and we may consider molecule in solution as immobile during

absorption. If the incident light is vertically polarized, the probability of excitation of a
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chromophore is proportional to the square of the scalar product, i.e. cos’a, a is defined as angle
between the absorption transition moment (M,) and the electric vector (E) of the incident light.
This probability is maximum when E is parallel to M of the molecule; it is zero when the E is

perpendicular. Therefore the distribution of the orientation of excited fluorophores is anisotropic,

and the emitted fluorescence is also anisotropic (Figure 5A,B).
Vertically *

\ N laesd ()
&%%& - @W !

POLARIZED DEPOLARIZED

Figure 5 : Illustration of principle of photoselection process.

A: Demonstration of molecules and its excitation dipole are randomly oriented in solution. After
being excited by vertically polarized light, the excited molecules are not randomly oriented.

B: In case of 0,y << 14, the emitted light of the fluorescent probe will be depolarized. However, if

Orot >> Tq, the emission will remain strongly polarized even though the presence of rotational
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motions. Ty is the fluorescence lifetime of the excited fluorescent probe; 6o is the rotational
correlation time 0 of the molecule that it is bound to.

From (Lakowicz, 2006).

Let assume a population of randomly orientated fluorophores before excitation without Brownian
motion. The absorption and emission transition moments are supposed parallel. Each single
molecule is oriented with angles o relative to the vertical axis and o relative to the horizontal

axis. , ,
Iv=1"cos” a
(I.1.9)

In = I’sin > a sin > ®

The population of excited molecules is oriented with values of ® from 0 to 2n with equal
probability. Hence we can eliminate the ® dependence in Equation 1.1.9 because the average

value over the random population of sin’w is 1/2, therefore,

Iu=1%sin * a x 5 (1.1.10)

Iv=1% cos’a

Using Equation I.1.7, one finds that

r= (3 cos > o — 1) 2 (L.1.11)

Taken into account the excitation probability cos’a., the fraction of molecules to the oriented
direction can be evaluated, therefore the average of cos’a over all excited molecules could be
calculated as 3/5. Using equation I.1.11, we obtain the maximum value of rp = 0.4 for a randomly
oriented population of molecules. Here the value 1y is the theoretical anisotropy in the absence of
any motion, which is defined as fundamental anisotropy. But in practice, the experimental value
usually ranges from 0.32 to 0.39 because of the fundamental and limiting anisotropy (Valeur,
1993).

2) In case of a population of randomly orientated fluorophores without Brownian motion
but with the absorption and emission transition moments non-parallel, the evaluated ry, values
should be changed. This situation can occur when excitation brings the fluorophores to an excited
state other than the first singlet state from which fluorescence is emitted. Let  be the angle

between the absorption and emission transition moments, and y be the angle between the planes
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of the absorption and emission transition moments (cos” y = 1/2 because of the fact that all
values of y are equiprobable), the fundamental anisotropy of a fluorophores is given by the

relation 1.1.12.

Therefore, the theoretical values of ry ranges from ro= 0.4 corresponds to an angle f = 0° (parallel
transition moments) and ro = -0.2 for B = 90° (perpendicular transition moments). It should be
noted that the fundamental anisotropy value is zero when B = 54.7°. When B exceeds 54.7° the
anisotropy becomes negative. Consequently, for any fluorophores randomly distributed in
solution, with one-photon excitation, the value of ro must be within the range from -0.2 to 0.4. For
two-photon excitation, the fluorophores interacts simultaneously with two photons, and each
interaction is proportional to cos’o (Lakowicz, 2006), hence the photo selection function
introduces cos’a. probability to calculate the anisotropies expected for collinear transitions, and
therefore for f = 0°, the expected fundamental anisotropy for two-photon excitation is 0.57.

3) Now we assume the molecules are not immobile but undergo Brownian motions. In
considering the effect of rotational Brownian motion, the anisotropy evaluation would be more
complicated. If excited molecules can rotate during the excited-state lifetime, the emitted
fluorescence is partially (or totally) depolarized. The preferred orientation of emitting molecules
resulting from photoselection at time zero is indeed gradually affected as a function of time by
the rotational Brownian motions. Let ® be the angle of the emission moment with the vertically
orientated polarizer at time t when the fluorescence photon is emitted. The projection of the
emission transition moment_E>on the three axes with a cylindric symmetry around the vertical
axis (Figure 6) yields the average over all molecules are given by:

v=1%cos’ o

I e (I.1.13)
In=1"sm” wosin” O
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Figure 6 : Relationship between anisotropy and the angle of emission.

System coordinates for characterizing the orientation of the emission transition moments. The
definitions of angles was demonstrated in this figure and relationship between anisotropy and the

angle of emission was illustrated.

From (Jean-Claude BROCHON, 2006, courses ENS-ECNU in Shanghai).
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In summary, the experimental anisotropy is a function of all depolarization process d;

defined as Soleillet law:

r=rox Pxdi=roxdixd:
= 0.4 x [(3<c0s 2 B>— 1)/2]>< [(3)<cos ? co>— 1)/2]

For a sepherical molecule, the Perrin Einstein relation for anisotropy due to Brownian

(1.1.14)

motion is expressed as:
r(t) = roexp( - t/6) (1.1.15)

Let D defined as the rotational diffusion coefficient of a spherical molecule, in the Perrin Einstein
equation, where 6 =1/6D, 0 is the rotational correlation time that describes how fast a molecule
tumbles in solution.

For global hydrated macromolecule 6 is related to the molecular weight of the molecule by
the relation:

nv _nM

0= o= X (v+h) (1.1.16)

Where 1 is the viscosity; T is the temperature in °K; R is the gas constant with the value of
R=8.31 x 10" erg/M °K; V is the volume of the rotating unit; v is the specific volume of the
protein and h is the hydration.

From the extent of fluorescence depolarization, we can obtain information on the molecular
motions which depend on the size and the shape of molecules, on and the fluidity of their
microenvironment.

In practice, the fluorescence anisotropy (FA) measurements are based on the assessment of
the rotational motions of species. FA can be considered as a “competition” between the molecular
motion and the lifetime of fluorophores in solution. If linear polarized light is used to excite an
ensemble of fluorophores only those fluorophores, aligned with the plane of polarization will be
excited. There are two scenarios for the emission: a) provided the fluorescence lifetime of the
excited fluorescent probe is long enough in comparison with the rotational correlation time 6 of
the molecule (t 4 >> 0 o), the molecule orientation will randomize in solution during the process
of emission and anisotropy can be accurately measured. b) if the fluorescence lifetime of the

fluorophore is much shorter than the rotational correlation time 0 (t f << 0 ), the rotation of the
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excited molecule will be small and the relaxation to an isotropic orientation cannot be detected,
therefore the anisotropy is not properly measured.

It is instructive to know the quantitative information that can be obtained only if the time-
scale of rotational motions is of the order of 20-40 times the excited-state lifetime t (Deprez et
al., 2000). No information can be obtained from emission anisotropy measurements if the
motions are too slow with respect to 1. In addition, a distinction should be made between free and
hindered rotation which are two typical processes in concerning of Brownian motion,
consequently special attention should be paid to anisotropic media such as lipid bilayers and

liquid crystals.

L.1.3 Time - resolved characteristics of fluorescence emission,
fluorescence lifetime

1.1.3.1 Steady-state and time-resolved fluorescence spectroscopy
Steady-state and time-resolved measurements are broadly considered as two primary

fluorescence measurement types. Steady-state measurement, the most common type, is that
performed with constant illumination and observation. In detail, the sample is illuminated with a
continuous beam of light, and the intensity or emission spectrum is recorded. A steady-state
observation is simply an average over time of the intensity decay of the sample. Equations I.1.17
and [.1.18 ( see Table 1, p38) can be used to illustrate how the lifetime were determined by use of
time-resolved fluorescence intensity measurement.

Table 1 displays such relationship in considering a fluorophores that displays a single decay
time (t) and a single rotational correlation time (0). The steady-state anisotropy <r> is given by

the average of r(t) over time:

[1(nd(o

< T >=

In this equation the denominator is present to normalize the anisotropy to be independent of
total intensity. In the numerator the anisotropy at any time t contributes to the steady-state
anisotropy according to the intensity at time t. substitution of equations 1.1.17, I.1.18, into 1.1.19
yields the well known Perrin equation in case of single exponential decay and single rotational

correlation time of the molecule:
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To

<TI >= m (I.1.20)

Using this equation, it is possible to calculate the rotational correlation time expected for

fluorophores in solvents or for labeled macromolecules from steady-state anisotropy value.

Table 1. Relationship between steady-state and time-resolved fluorescence measurements.

STATIC
TIME RESOLVED
< steady-state >

I(t)y=Tye ™™
Fluorescence I = Intensity 1= fluorescence lifetime

heret=1 => I=I/e [1.1.17)

r(t) =19 e 7

Anisotropy I = anisotropy 0 = rotational correlation time

here t =0 =>r=ry/e (I.1.18)

1.1.3.2 Interest of performing time-resolved fluorescence measurements
In considering the relationship between steady-state and time-resolved measurements, it

turns out that during the time averaging process, much of the molecular informations available
from fluorescence are lost. Generally, the more complex shape of anisotropy decay contains
information about the macromolecule shape and its possible flexibility. For time-resolved
measurements, the fluorescence of a sample is monitored as a function of time after excitation by
a flash of light. The time resolution can be obtained in a number of ways, depending on the
required sensitivity and time resolution: with fast detection electronics (nanoseconds and slower);
with a streak camera (picoseconds and slower); with optical gating (femtoseconds-nanoseconds)
Typically, nanosecond time-resolved measurement requires complex and expensive
instrumentation, while steady-state fluorescence measurements are simple. However, these more

complex time-resolved measurements are of greater value given the relationship between steady-
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state and time-resolved measurements. For example, 1) anisotropy decays of fluorescent
macromolecules are frequently more complex than a single exponential, because the precise
shape of the anisotropy decay contains information about the shape and possible flexibility of
macromolecule. Unfortunately, this shape information is lost during time averaging (equation
I.1.19) and irrespective of the form of r(t), equation I.1.19 yields a single rotational correlation
time value. Therefore, in practice, the information from r alone is not sufficient to reveal the
shape or flexibility of the molecule. In addition, in solution with a mixture of molecules of
different size but with the same lifetime, it is hard to analyse the complexity of the mixture of
those molecules only by measuring the steady-state anisotropy. However, in most cases, steady-
state fluorescence anisotropy is well suitable for monitoring molecular interactions providing the
anisotropy change is large enough, and to bring information on the stoichiometry of the
complexes. 2) The intensity decays also contain information that is lost during the averaging
process. Frequently, macromolecules can exist in more than a single conformation, and the decay
time for a bound probe may depend on conformation, because the given fluorophores can be in
different environment. The intensity decay could reveal two or more decay times, and thus reveal
the presence of several conformational states. The steady-state intensity will only reveal an
average intensity dependent on a weighted averaged of the decay times and consequently on the
relative contribution of the different conformations. 3) In the presence of energy transfer, the
intensity decay may reveal how acceptor is distributed in space around the donor. 4) Time-
resolved measurements reveal whether quenching is due to diffusion or to complex formation
with the ground-state fluorophores.

In summary, much of the molecular information content is available only by time-resolved
measurements in fluorescence. Hence these measurements are of great importance in

fluorophores related studies.

1.2 Fluorescence anisotropy and instrumental considerations

L.2.1 Steady-state fluorescence anisotropy: definition and principle
Steady-state anisotropy is the measured anisotropy when the incident light intensity is

constant. In a configuration where the exciting light is vertically polarized and the emitted
fluorescence is observed at right angles in a horizontal plane (Figure 7), the average anisotropy r

is expressed by using the general definition of an averaged quantity, with the total normalized
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fluorescence intensity. According to Equation I.1.7, the r value in relation with steady-state
anisotropy can be determined with a spectrofluorometer equipped with a polarizer. If the
fluorescence is detected through a monochromator instead of filter, it is not sufficient to keep the
excitation polarizer vertical and to measure fluorescence intensities in rotating the emission
polarizer because the transmission efficiency of a monochromator depends on the polarization of
the light which should be calibrated. For a horizontally polarized exciting light, the vertical
component (Iyy) and the horizontal component (Iyy) of the fluorescence detected through the
emission monochromator are different, although these components are equal before entering the
monochromator according to the Curie symmetry principle (Valeur, 1993). A G factor, defined as
G = Iyv/ Iyy, is the ratio of intensities measured through the monochromator. It deviates from 1
and can be used as a correcting factor for the determination of the ratio Iy/Iy, because it
represents the ratio of the sensitivities of the detection system for vertically and horizontally

polarized light:

=X (1.2.1)

Therefore, the determination of the emission anisotropy requires four intensity measurements:
Ivv, I vu, I uv and I gy (V: vertical; H: horizontal; the first subscript corresponds to the orientation
of the excitation polarizer and the second subscript to the emission polarizer) (Figure 8).
Equation 1.1.7 then becomes

Iw — G x Ivn

r = 2.
Ivw + 2G x Ivu (1.2.2)

The excitation polarization spectrum is obtained by recording the variations of Iyvy, I vy, I gy and
I gy and by calculating r(A) by means of Eq. [.2.2 with G = Iy / Igg. This factor should always be
determined since rotation of the prism emission polarizer can cause the focused image of the

fluorescence to change position, and therefore altering the effective sensitivity.
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Figure 7 : Configuration of the excitation and emission polarizers for observing a signal
proportional to the total fluorescence intensity.

In this figure, V represents vertical; H represents horizontal. The angles between each orientation

directions are indicated in figures. From (Valeur, 1993).
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L2.2 Time-resolved fluorescence anisotropy: definition and principle
It should be noted that detailed information are available from time-dependent anisotropy

data. The form of the anisotropy decay depends on the size, shape, and flexibility of the labelled
molecule. The measured decay can be compared with the decays calculated from various
molecular models.

Consider a diluted solution of a fluorophores. When a pulse of linearly polarized light of
appropriate wavelength passes through this sample, fluorophores with their absorption transition
vectors aligned parallel to the polarization plane of the light are preferentially excited (see
above). Those with vectors perpendicular are not excited at all. This leads to a biased population
of excited molecules, which tend to relax to a randomly oriented ensemble because of Brownian
rotational diffusion. Simultaneously, the initial excited population decays to the electronic ground
state by fluorescence and other processes. The polarization plane of the fluorescence photon is
determined by the actual orientation of the emission transition dipole of the molecule at the time
of emission: it is therefore well defined shortly after the onset of excitation, but becomes
increasingly random as time proceeds. The anisotropy, r, is related to the extent of this
randomization and r(t) is the kinetics of the process (Figure 8). Fluorescence anisotropy kinetics
cannot be recorded directly, but can be extracted from the decays of polarized emission
components. Thus the polarized intensity decays can be used to calculate the time-dependent

anisotropy

Iv(t) — G x Iu(t)
Iv(t) + 2G x In(t)

r(t) = 1.2.3)

where Iy(t) and Iy(t) are the polarized components parallel and perpendicular to the direction of
polarization of the incident light. The time-dependant anisotropy decays are then analyzed to
determine which model is most consistent with the data. The emission anisotropy can be
calculated from the experimental decays of the polarized components by means of equation 1.2.3,

but only if the decay times are much larger then the width of the excitation pulse.

42



Emission att >0 = one
photon detected
Vv .
o(t) Polarizer
Excitation at t=0 \Y;

\‘ Detector

Vertically polarized
Pulsed laser

d

Figure 8 : Configuration of the time-resolved anisotropy when excited the sample with pulsed
laser.

From (Valeur, 1993).

In summary, anisotropy decays can be measured using the time-domain (TD) or the

frequency-domain (FD) method, the latter is nowadays not so often used.

L.2.3 Instrumentation and design of pulse fluorometers

L.2.3.1 Single-photon timing technique

Nowadays, pulse fluorometry is the most popular technique for the determination of decay
parameters. Most instruments are based on the time-correlated single-photon counting (TCSPC)
method, better called as single-photon timing (SPT) method. The basic principle relies on the fact
that the probability of detecting a single photon at time t after an exciting pulse is proportional to
the fluorescence intensity at that time. After timing and recording the single photons following a
large number of exciting pulses, the fluorescence intensity decay curve is reconstructed. Figure 9
shows the schematic of a conventional single-photon counting. The excitation source can be

either a flash lamp, diode laser or a mode-locked laser. An electrical pulse associated with the
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optical excitation pulse is generated and routed to the start input of the electronic stopwatch (in
fact a time-to-amplitude converter, TAC). Meanwhile, the sample is excited by the laser pulse
and emits fluorescence. The optics is turned so that the photomultiplier detects the first single
fluorescence photon after each exciting pulse, if any. The very fast photomultiplier generated a
corresponding electrical pulse which is routed to the “stop” input of the TAC. The latter
generates an output pulse whose amplitude is directly proportional to the time interval between
the arrival of start and the stop pulses. The height analysis of this pulse is achieved by an
analogue-to-digital converter and a multi-channel analyzer (MCA), which increases by one and
the content of the memory channel corresponding to the digital value of the pulse height.
Therefore the times between excitation and emission are stored as a histogram. Providing only
one photon is detected per excitation pulse after a large number of excitation and detection
events, this histogram represents the waveform of the decay. Obviously, the larger the number of
events, the better is the accuracy of the decay curve. The SPT technique offers several
advantages: 1) high sensitivity explains; 2) outstanding dynamic range and linearity; 3) well-

defined statistics allowing proper weighting of each point in data analysis.

L.2.3.2 Instrumentation of anisotropy fluorometers
Classic time-resolved spectrofluorometer is illustrated in Figure 10. The excitation source is

of major importance. Lasers as excitation sources are of course much more efficient and versatile,
at the penalty of high cost. Mode-locked lasers can generate pulses over a broad wavelength
range. The pulse widths are in the picosecond or femtosecond range with a high repetition rate.
This rate must be limited to a few MHz in order to let the fluorescence of long lifetime sample
vanish before a new exciting pulse is generated.

Meanwhile, the time resolution of the instrument is governed not only by the excitation
pulse width but also by the electronics and the detector. During one cycle of measurement, the
TAC is not able to take into account any additional signal start and therefore a dead time is linked
to the start frequency. For this reason, it is better to collect the data in the reverse configuration:
the fluorescence pulse acts as the start pulse and the corresponding excitation pulse as the stop
pulse. In this way, only a small fraction of start pulses result in stop pulses and the collection
speed is better.

Microchannel plate photomultipliers are preferred to standard photomultipliers. They exhibit

fast time responses (around 25ps) and do not show a significant color wavelength effect.

44



With mode-locked lasers and microchanel plate photomultipliers, the total instrument

response in terms of measured pulse width is 40-70ps so that decay times as short as 10-20ps

could be measured.

Excitation at time t=0 T
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Figure 9 : Schematic diagram of a single-photon timing fluorometer.

In this figure, PD represents photodiode. From (Jean-Claude BROCHON, 2006, courses ENS-

ECNU in Shanghai).

Figure 10 : Instrumentation

of anisotropy fluorometer.

The figure inserted represents
a typical anisotropy decays

curve.
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1.2.4 Examples of application of fluorescence anisotropy in field of
biology

L.2.4.1 Biochemical application of steady-state fluorescence anisotropy
Steady-state anisotropy measurements are ideally suited for measuring the association and

disassociation of macromolecules. The suitability is due to the addictively law of anisotropy and
is also based on the fact that the anisotropy almost always changes in response to a change in
size, therefore in correlation time (see equation 1.1.18). In this case, the average anisotropy (r) is

given by
r= X fir (1.2.4)

Where r; is the anisotropy of the individual species and f; is the relative fluorescence molecules
respectively. Based on this equation, it is easy to determine the Kgq (Kg or Kgyp). Also, the
experiments are simplified by the independence of the anisotropy from the overall protein
concentrations.

Lukas et al. (1986) has illustrated the use of anisotropy to study protein binding by
calmodulin. One example is myosin light-chain kinase (MLCK). The amino acid (RS20)
sequence that binds to calmodulin contains a single tryptophan residue. Since calmodulin
contains only tyrosine, the peptide RS,y can be selectively observed by excitation at 295nm.
Upon addition of calmodulin the emission intensity at RS, increases and the emission shifts to
shorter wavelengths. These changes indicate a shielded environment for the tryptophan residue in
the complex. The anisotropy of RSy increases dramatically on addition of calmodulin which
could be used to determine the 1:1 binding stoichiometry.

In addition, Deprez et al. (2004) have studied the inhibition mechanism of HIV-integrase
(IN) by styrylquinoline derivatives, which was another example of anisotropy measurements. In
the presence of styrylquinoline derivatives, the steady-state fluorescence anisotropy was used to
assay their effects on the formation of IN-viral DNA complexes as well as on the 3’-processing
activities of IN-DNA complex. To determine the apparent Ky value, fluorescein-labeled DNA
was incubated with increasing concentrations of IN in reaction buffer. Sready-state anisotropy
was then recorded in a thermostated cell. The fraction saturation and the cooperative binding of
IN were calculated through anisotropy saturation. Results suggest that two inhibitor-binding

modes exist for styrylquinoline derivatives: the first one prevents the binding of the viral DNA
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and then the two subsequent reactions (i.e., 3’-processing and strand transfer), because the 1Cs
values obtained in activity and DNA-binding tests were similar. Whereas the second one prevents
the binding of target DNA, thus inhibiting strand transfer, because when using the preassembled
IN-preprocessed DNA complexes to assay the potency of stytylquinoline against the strand
transfer reaction, the inhibition occurred independently of 3’-processing even if the efficiency
was decreased by about 5- to 10-fold.

Because of the efficiency and simplicity of anisotropy measurement, the anisotropy could
be used to study reaction kinetics occurring within a second time scale. Xu et al. has reported the
use of anisotropy to observe the unwinding of double-helical DNA by helicase (Xu et al., 2003).
When measuring a fluorescein-labeled DNA in the presence of helicase, the anisotropy increases
immediately upon addition of helicase to the DNA, showing that the binding reaction occurs
rapidly. The anisotropy then remains constant because there is no source of energy to disrupt the
hydrogen bonded base pairs. Upon addition of ATP the anisotropy drops rapidly to a value lower
than the starting value. The final anisotropy is lower because the labeled single stranded DNA is
no longer bound to its complementary strand. The single-strand oligomer has a lower molecular
weight and is more flexible than the double-strand oligomer. These results show that anisotropy
measurements can be used to follow the kinetics of biochemical reactions on a relative rapid

timescale.

1.2.4.2 Biochemical application of time-resolved fluorescence anisotropy
We saw that time-resolved anisotropy decay measurements are practical to reveal the size,

shape and flexibility of the labeled molecule. It is a powerful method for investigating the
molecular motions via the determination of correlation times. Meanwhile, it is important to
understand the factors which affect the anisotropy decays. Nowadays, time-resolved fluorescence
anisotropy has been extensively employed in many studies of proteins in solution, including
folding reactions (Jones et al., 1995), interactions with ligands (Hauer et al., 1999), and self-
assembly properties (Brochon et al., 1993). Information about the oligomeric state of proteins
can also be obtained by determination the rotational correlation time (0). Deprez et al. have
investigated the self-assembly properties of HIV-1 integrase by time-resolved fluorescence
anisotropy using tryptophanyl residues as a probe (Deprez et al., 2000). They found that the HIV-
1 integrase monomer is the predominant form of integrase at a concentration of 0.2 um in the

presence of Mn", under conditions where integrase is highly active. Zn*" plays a role in the
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multimerization process, while Mn®‘and Mg®" have a tendency to dissociate high-order
multimeric forms. Furthermore, Mn*"and Mg®*" display differential effects on the dissociation and
also on the proper conformation of the monomer. On the other hand, detergents such as CHAPS
or NP-40 were found here to perturb the quaternary structure of integrase.

In general, for a spherical molecule the anisotropy is expected to decay with a single
rotational correlation time (6). However, anisotropy decays are usually multi-exponential, which
can be the result of numerous factors. Multi-exponential anisotropy decays are expected for non-
spherical fluorophores or proteins. The correlation times in the anisotropy decay are determined
by the rates of rotation about the various molecular axes. Malicka et al. has performed lifetime
distribution analysis to study the influence of leucine configuration in position 5 on changes of
the peptide chain of cyclic analogues of enkephalines containing a fluorescence donor and
acceptor in different solvents (Malicka et al., 2001). The configuration change of Leu5 in all the
analogues of enkephalins studied containing donor-acceptor pairs has no apparent influence on
Trp lifetime distributions. In contrast, there is a significant solvent effect on the shape of lifetime
distribution.

Moreover, anisotropy decays are also affected by the segmental flexibility of the
macromolecule. For instance, tryptophan anisotropy decays of proteins frequently display
correlation times that are too short to be due to rotational diffusion of the whole protein. These
components are usually due to independent motions of the tryptophan residue within the protein
or on the surface of the protein. The rates and amplitudes of tryptophan side-chain motions have
been used to study the nanosecond dynamics of proteins (Valeur, 1993).

Anisotropy decays of membrane-bound probes have been particularly informative, which
were illustrated in recent studies in vivo (Varma & Mayor, 1998). Membrane-bound probes often
display unusual behavior in which the anisotropies do not decay to zero. This occurs because
some probes do not rotate freely in membranes, at least not within the ns decay times of most
fluorophores. The extent of rotation is often limited by the anisotropic environment of a

membrane.

1.3 Fluorescence correlation spectroscopy

Current biological research is focused not only on the identification, but also on the precise
physico-chemical characterization of elementary processes on the level of individual proteins and

nucleic acids. Most technologies are difficult to track freely diffusing single molecules. Single-
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molecule detection (SMD) is a powerful technique because it avoids ensemble averaging and
allows single events to be observed. Therefore there is no need to synchronize a population of
molecule, which is technically difficult to be carried out in solution. However, SMD has its
limitations. In principle, the most stable fluorophores typically emit 10> to 10° photons prior to
irreversible photodestruction. Single molecules can only be observed for a brief period of time (1
second or less) which may be too short to observe many biochemical processes because of the
modest detection efficiency of optical systems and the need for high emissive rates for detection
of the emission over background. When the fluorophore is bleached the experiment must be
started again with a different molecule. In addition, SMD requires immobilization on a surface,
which can affect the functioning of the molecule and show its access to substrates or/and ligands
because of unstirred boundary layers near the surface. Accounted for those limitations of SMD,
fluorescence correlation spectroscopy (FCS) is first introduced and developed in the early 1970s
by Magde, Elson and Webb (Magde et al., 1972; Elson and Magde, 1974).

In this section, a general definition of the FCS technique is introduced, which would provide
information about the determination of molecular diffusion coefficients. Principles and biological

applications of this advanced technique would also be presented here.

1.3.1 Fluorescence correlation spectroscopy: definition

Fluorescence correlation spectroscopy (FCS) exploits fluorescence fluctuations induced by
low numbers of diffusing labelled particles in a very small volume in a confocal setup to analyze
their concentrations and mobilities. In contrast to other fluorescence techniques, the FCS does not
require surface immobilization and can be performed on molecules in solution. The observed
molecules are continuously replenished by diffusion into a small observed volume. FCS thus
allows continuous observation for long periods of time and does not require selection of specific
molecules for observation. The parameter of primary interest in FCS is not the emission intensity
itself, but rather time-dependent intensity fluctuations that are the result of some dynamic process,
typically translation diffusion into and out of a small volume defined by a focused laser beam and
a confocal aperture. In general, all physical parameters that give rise to fluctuations in the
fluorescence signal are accessible by FCS. It is, for example, rather straightforward to determine

local concentrations, diffusion coefficients or characteristic rate constants of inter- or intra-
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molecular reactions of fluorescently labelled biomolecules in the range of nanomolar
concentration.

A small volume of observation can be obtained by different techniques including confocal
microscopy, among them, the versatile technique FCS is a method based on observation of a
single molecule or few molecules (Figure 11). There is a burst of emitted photons due to multiple
excitation-emission cycles from the same fluorophores. Typically, the delay time ranges from 10
% to 10? ms. If the fluorophores diffuses rapidly out of the volume the photon burst is short lived.
If the fluorophores diffuses more slowly the photon burst displays a longer duration. Under
typical conditions the fluorophores does not undergo photo-bleaching during the time it remains
in the illuminated volume, but transitions to the triplet state frequently occur. By correlation
analysis of the time-dependant emission, one can determine the diffusion coefficient of the
fluorophores. In this case “time-dependent” refers to the actual time and not to a time delay or
time-dependent decay following pulsed excitation. FCS measurements are best performed when
observing a small number of fluorophores (< 10). In order to detect a small number of
fluorophores with a focused laser beam the sample needed to be dilute, typically near 1 nM.
Since the samples are diluted, the unwanted background due to fluorescent impurities and scatter
needed to be suppressed by effective filtering. Because of all these requirements, FCS was not
widely used before 1990. By the early 1990s, a number of technical breakthroughs made FCS a
practical technology, including confocal optics, high-efficiency avalanche photodiode (APD)
detectors that offer a quantum efficiency > 50% in the red range of the visible spectrum (a factor
that of five over of that of traditional photomultiplier), stable lasers, multiphoton excitation and
commercially available instruments (Qian and Elson, 1991; Koppel et al., 1994; Berland et al.,
1995). As a result there was a rapid increase in the application of FCS. In addition to translation
diffusion, intensity fluctuation can occur due to ligand-macromolecule dynamics, intersystem
crossing, internal macromolecule dynamics, rotational diffusion, and excited-state reactions. The
data are interpreted in terms of correlation functions. Different equations are needed to describe
each process, and usually two or more processes affect the data at the same time. It is also
necessary to account for the size and shape of the observed volume as well as the laser beam

profile.
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Figure 11 : The principle of FCS measurements.

Labelled particles diffuse through the detection volume, producing a fluctuating fluorescence
signal.

A: The inverse of the amplitude is proportional to the particle concentration.

B: The increase of the diffusion time is proportional to the particle size.

From (Jean-Claude BROCHON, 2006, courses ENS-ECNU in Shanghai).

30
Figure 12 :Illustrations of

20
the fluctuation about

an average ﬂuorescence

Joquinu uvyoyd

count at given time.

1000 1200 1400 1800 1800 From (Eigen and Rigler,
Time (ms) 1994).

51



1.3.2 Conceptual basis of Fluorescence correlation spectroscopy and
determination of diffusion constant
Principle in FCS function is quite simple: fluctuations in the fluorescence signal are

quantified by temporally autocorrelating the recorded intensity signal. Such fluctuation in a small
open region created by a focused laser beam arises from the motion of fluorescent species in and
out this region via translational diffusion or flow. Fluctuations can also arise from chemical
reactions accompanied by a change in fluorescence intensity: association and disassociation of a
complex; conformational transitions; photochemical reactions etc. Figure 12 (Thompson, 1991;
Eigen and Rigler, 1994; Webb, 2001)

The fluctuations d1g(t) of the fluorescence around the mean value <Ir >, defined as:
31r(t) = Ir(t) — (Ir) (1.3.1)

Which are analyzed in the form of an autocorrelation function g(t) which relates the fluorescence

intensity Ir (t) at time t to the fluorescence intensity I (t+7) at time t+t :

(2 = (Ie()Ir(t + 1)) _ TTe(0)Ie(t + T)dt
s <1F2(t)> [1r2(t)dt

1.3.2)
When combining equation [.3.1 and equation 1.3.2 together, the autocorrelation of the
fluorescence fluctuations is given by

(1) =14 (81r(t)31r(t + 1))
(1> (1))

(1.3.3)

In order to interpret the FCS data we need a theoretical model to describe the fluctuations.
Considering all the fluctuations arise only from changes in the local concentration changes dC
within the effective volume of the focal spot, in case of excitation by two-photon FCS, the

variation may be written as:
SIe(t) = [8Ie(r, t)dr oc [SC(r, t)Ie’(r)dr (1.3.4)

Here the Ig(r) represents the spatial distribution of the excitation energy with the maximum
amplitude Iy at time t, Ig(r) is the excitation intensity at each position r, and C(r,t) is the

distribution of fluorophores.
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Considering a Brownian diffusion system within only particles that are freely diffusing in
three dimensions with the diffusion coefficient Dt, the so-called number density autocorrelation

term can be calculated: (Elson 1974, So 1998)
' -3/2 — |r — r'|
(6C(r,1)oC(r', t + 1)) = (C)(4nDwt) ¥ exp | ——— (13.5)
Thereby, <6Ig(t) 8lg(t+1)> and <oC(r,t) oC(1’,t+1)> can be connected by equation:
(8Ir(1)8Ir(t + 1)) = o ® dr [dr'Ie* (r, )Ie* (r', )(8C(r, 1)C(r', t + 1))  (1.3.6)

If a three-dimensional Gaussian profile in the focal volume was assumed, the equation 1.3.2 could

be defined as:

. 2 -1/2
1 0
g(t) =1+ NS (1 + TLD] (1 + (2—0] TLDJ (1.3.7)

Where tp =0,*/8Dt is the characteristic time for diffusion in case of two-photon excitation, and

o and z, are the distance from the centre of the illuminated area in the x, y plane and x, z plane
respectively at which the detected fluorescence has dropped by a factor ¢®. N is the average
number of fluorescent particles in the excitation volume. It should be noted that in case of one
photon excitation, tp =0302/4Dt.

For spherical particle, Dt is inversely proportional to its hydrodynamic radius R according to

the Stokes-Einstein equation:
D = KT /6mn R (1.3.8)

Where K is the Boltzmann constant (1.38 * 10> J K'mol™), T is the temperature (K), and 1 is

the viscosity of the solution (Pas), the diameter of the particles can be calculated from tp.

1.3.3 Fluorescence cross-correlation spectroscopy: definition and
conceptual basis
Fluorescence cross-correlation spectroscopy (FCCS) is a dual-color variant of FCS. It can

monitor molecular interactions and enzymatic reactions as well as dynamic colocalization

(Kettling et al., 1998).
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When performing an autocorrelation analysis, one effectively compares a measured signal
with itself at some later time and looks for recurring patterns. In electronics it has been common
practice for decades to correlate two different signals and thus get a measure for the crosstalk. In
fact, cross-correlation analysis is just the straightforward way to generalize the method described
above. Looking out for common features of two independently measured signals, one not only
removes unwanted artifacts introduced by the detector, but also provides much higher detection
specificity. For FCCS, two spectrally distinct fluorophores are used to label two species in order
to study their interactions (Figure 13). If the differently labelled particles are bound to each other,
they diffuse together through the focal volume, i.e. in a synchronized way, inducing simultaneous
fluctuations of the fluorescence signals in the two colour channels and thus a positive cross-
correlation readout. Division of the cross-correlation amplitude by one of the autocorrelation
amplitudes is a direct measure of the degree of molecular binding or dynamic colocalization in
trafficking.

In contrast to the autocorrelation applications described above that focus mostly on
analysis of the functional form of the correlation curves, the most important parameter is now
simply the cross-correlation amplitude, and this amplitude is a direct measure for the
concentration of double-labelled particles diffusing through the focal volume. In principle, one
simply focuses on the occurrence of coincident fluctuations in the two emission channels,
induced by concerted motion of spectrally distinguishable labels. All kinds of reactions leading
either to a separation or an association of the two labelled species can thus be monitored. Under
ideal conditions (i.e. no crosstalk between the detectors), the amplitude of FCCS measurements is
zero unless double-labelled particles are present in the sample. This makes fast yes-or-no
decisions based on this parameter feasible.

The mathematical calculation of FCCS is extended by using both the blue F;(t) and the red
F;(t) signal either for the original F(t) or for the shifted copy F(t+n). For stationary samples, both
forward Gj; and backward Gj cross-correlation give the same result. As the cross-correlation

amplitude is directly proportional to the number of double-labelled molecules.

(8Fi(t)8Fi(t + 1))

O = O

(1.3.9)
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A correct evaluation of concentrations measured by cross-correlation requires good prior
knowledge of the system or a careful calibration procedure of the two basic parameters resulting

from FCS analysis, the effective volume element and the lateral characteristic residence time.
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Figure 13 : Principles of dual-color cross-correlation fluorescence spectroscopy.

The fluctuations in two spectral regions red (R) and blue (B) are recorded in separate channels.
Combining both single-channel setups in a two-channel apparatus, the two partially independent

signals can be compared, looking for common features (RB). From (Schwille, 2001).

1.3.4 Instrumentations and methods of FCS and FCCS

1.3.4.1 Two-photon excitation fluorescence microscopy
In conventional fluorescence spectroscopy, a fluorophores is excited by absorption of one

photon whose energy corresponds to the energy difference between a ground state and a excited
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state. Excitation is also possible by the simultaneous absorption of two photons of lower energy
(e.g. in longer wavelength) via a short-lived virtual state (Figure 14).

Two-photon excitation is a nonlinear process; there is a quadratic dependence of absorption
on excitation light intensity. The probability of two-photon absorption depends on both spatial
and temporal overlap of the incident photons. The cross-sections for two-photon absorption are
small. Consequently, only fluorophores located in a region of very large photon flux can be
excited. Mode-locked, high-peak power lasers like titanium-sapphire lasers can provide enough
intensity for two-photon excitation in microscopy.

Based on the quasi-simultaneous absorption of several long-wavelength photons,
multiphoton excitation (MPE) provides intrinsic spatial sectioning due to the higher order
dependence of the fluorescence on the excitation intensity. Figure 15 indicates that fluorescence
is no longer observed along the double cone of the focused incident light, but is emitted solely
from a small ellipsoidal region in the centres, where the intensity is sufficient for efficient
excitation. As scattering is reduced for longer wavelengths, it also offers larger penetration depths
in biological tissue. When combined two-photon excitation technique with FCS, MPE offers
advantages especially beneficial to intracellular measurements (Berland et al., 1995), such as
reduced autofluorescence and less photobleaching in off-focus areas. It also allows excitation of
intrinsic tryptophan fluorescence in the visible spectral range. Moreover, for cross-correlation
studies, two or more spectrally distinct dyes may be excited by a single laser line in automatically
overlapping excitation volumes, thereby significantly simplifying optical alignment (Heinze et al,
2000). This versatile technique can be extended also to autofluorescent proteins, and it has more

practical applications in vivo.
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Figure 14 : Schematic of two-photon excitation compared to one-photon excitation.

The dashed line represents the virtual state that mediates the absorption. From (Schwille
&Haustein, 2003).
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1.3.4.2 Instrumentation of FCS and FCCS

Most FCS instruments have been designed around optical microscopes. In recent years, two-
photon FCS has been successfully developed and it offers the advantage of three dimensional
resolutions (Chen et al., 2001). A typical optical configuration is shown in Figure 16. The
excitation volume is confined through two-photon excited laser. The size of excitation volume
depends on the magnification, numerical aperture and laser properties. The detector is a
photomultiplier or an avalanche photodiode operating in the analogy mode, or more often in
single-photon counting mode, and is connected to an amplifier. The autocorrelation function can
be instantaneously obtained from the analysis of the fluorescence intensity fluctuations by
hardware of a fast correlator. For the determination of rotational mobility, polarizer is introduced
in the excitation and/or emission path.

In general, the basic characteristics of FCCS setups (Figure 17) are the choice of laser lines,
dichroic mirror and filters. 1) An inverted microscope with attached confocal optics represents a
very convenient means to measure fluorescence fluctuations in a very small volume. 2) The
microscope lenses used in FCS should be of very high numerical aperture (at least 0.9) to
minimize the size of the focal volume and therefore maximize the fluctuation amplitude for a
given fluorophores concentration. The sample is generally present in aqueous solution and is
observed in an inverted microscope through a standard cover slide. 3) Previous FCCS
instrumentation uses two lasers typically: an argon laser for 488nm and a HeNe laser for 633nm.
The two lasers are aligned to the same confocal spot for simultaneous excitation of the two
fluorophores of different colors. However, bringing two laser beams to perfect and stable overlap
is often difficult. Thus, simple single laser line is preferable in FCCS which offers the advantage
to avoid the alignment of two excitation lasers for two-wavelength excitation into the same focal
spot. Presently, such single laser line FCCS has been achieved and been extensively used. 4) For
separating the excitation and emission wavelengths in FCS, usually dichroic beam splitters and
interference filters are used. For multi-wavelength lasers, the excitation wavelength is selected
with a suitable bandpass filter in the excitation pathway. 5) Detector is one of the most essential
components of the FCS device that registers the emitted photons with very high efficiency.
Recent avalanche photodiode detectors have a quantum yield of up to 70% at 600nm, with
typically dark count rate of 50cps or lower. The advances of these devices have greatly enhanced

the practicability of FCS, because very often count rates can be as low as a few hundred cps even
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with avalanche detectors. 6) The computation of the autocorrelation function (ACF) of the
fluorescent light intensity is central to the FCS experiment. Generally, the ACF is constructed
from the detected photon pulses by an electronic autocorrelator. Modern autocorrelator will allow
to measure the ACF simultaneously over a range of delay times of 10™s to >1000s, with a choice

of either auto- or cross-correlation mode.
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Figure 16 : Instrumentation of two-photon FCS.

FCS uses a confocal type of microscope setup. The resulting optically delimited detection volume
features a size of typically less than one femtoliter.

B &
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Figure 17 : Schematic setup of two-photon FCCS.

FCCS uses a confocal type of microscope setup. The laser light enters the objective from the back
and is focused in the sample and is separated from the excitation by the primary dichroic mirror.
The two spectrally distinct fluorophores are further separated by filters in front of the detector
APD. Signals are collected by correlator and analysed through computer.
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1.3.5 Example of application of FCS and FCCS in the field of biology

1.3.5.1 Biochemical application of two-photon FCS

The biological function of molecules depends not only on their structure, but also on their
mobility and dynamic properties, which are strongly influenced by the environment. The
technique FCS allows inherent averaging over a large number of single-molecule passages
through the measurement volume and thus is ideally suited to assess molecular movements,
transport and diffusion both in simple artificial systems and directly in living cells.

An ideal target for FCS is therefore molecular binding and aggregation. For example, the
individual diffusion characteristics allowed Diez et al. to determine the dissociation constant for
the F1b, complex of Escherichia coli ATP synthase and hence the Gibbs free energy of binding
(Diez et al., 2004). Borsch et al. monitored the conformational changes, provided the diffusion
coefficient is sufficiently altered by structural rearrangements, such as the 15% increase seen for
the F; part of the H'-ATPase upon nucleotide binding (Borsch et al., 1998). Shusterman et al.
reported the polymer-like dynamics and structural flexibility of large double-strand and single-
strand DNA can also be assessed and characterized in this manner (Shusterman et al., 2004).

Like other diffusion techniques, FCS exploits the specificity of fluorescent labeling with its
advantages in use much lower probe concentration and laser power. Depending on the properties
of the system of interest, FCS may be more convenient to apply or may provide information that
is inaccessible by other techniques. For example, FCS may be used for the precise determination
of diffusion coefficients of DNA molecules of different sizes in living cells, crowded solutions,
cytosol extracts and artificial actin networks (Dauty and Verkman, 2005). The results have
indicated that the actin cytoskeleton is the cause of obstructed diffusion. FCS can also provide
fast way to assess the binding of small molecules to membranes, as the free molecules can be
clearly distinguished from the membrane-bound molecules because they diffuse at least one order
of magnitude faster. Rusu et al, reported the ligand molecules are allowed to bind to liposomes or
to a large membrane sheet that is almost completely planar on the scale of the focus (Rusu et al.,
2004), that is, a supported lipid bilayer, a free-standing lipid bilayer of a giant unilamellar vesicle
or the plasma membrane of a live eukaryotic cell (Rigler and Elson, 2001).

Though technique of FCS has several advantages, the use of fluorescence autocorrelation
for binding analysis is limited to applications in which the binding events significantly and

specifically modify the diffusion of the labeled species. That is to say, the sensitivity of
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autocorrelation analysis is restricted. Otherwise, both binding partners need to be labeled and

cross-correlation (FCCS) is preferable.

1.3.5.2 Biochemical application of two-photon FCCS

To overcome these limitations for reactions of comparable weight, technique of FCCS was
established. This technique was first introduced by FEigen and Rigler and this concept was
experimentally demonstrated by monitoring the annealing kinetics of two differently labelled
ssDNA strands (Eigen and Rigler, 1994). Among the multitude of successful applications in vitro
are enzymatic cleavage (Kettling et al., 1998) and protein aggregation (Bieschke and Schwille,
1998).

The first experimentally realized dual-color FCCS was conducted by Schwille et al. with the
use of a confocal microscope setup with filters for spectral separation and avalanche photodiodes
for detection (Schwille et al., 1997). Synthetic DNA oligonucleotides labelled with a different
dye at each end were introduced as a test system, and the kinetics of oligonucleotide cleavage by
restriction endonucleases were monitored by FCCS (Kettling et al., 1998). An analogous,
protein-based FCCS assay was developed by Kohl et al., who engineered fusion proteins
consisting of a green and a red fluorescent protein and a peptide linker with a protease cleavage
site. Proteolytic assays were done on purified fusion proteins in solution first and then in the live
cell (Kohl et al., 2002).

Dual-color FCCS has also been applied to living cells to monitor the Ca*" dependent binding
of (CaM) (Kim et al., 2004). Calmodulin is a versatile intracellular Ca** sensor that binds to a
variety of effector molecules. Autocorrelation measurements of Alexa Fluor 633-labelled CaM
show that intracellular diffusion of the small CaM molecule (17KDa) is substantially more
hindered in conditions that promote binding (the addition of Ca*" and ATP) than in conditions of
low Ca®*" concentration. By doing FCCS measurements of Alexa Fluor 633-labelled CaM in
combination with enhanced gree fluorescent protein (eGFP)-labelled Ca**/CaM-dependent kinase
I (CaMK II), the binding of CaM to CaMK I as a target could be specifically monitored. For
quantitative analysis of the cross-correlation data in terms of binding degrees and dissociation
constants, a theoretical framework was developed that takes into account potential changes in
chromophore brightness upon binding and the binding stoichiometry of the binding of 1 CaM
molecules to a single CaMK Il oligomer (Kim et al., 2005).
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A different field of research in which FCCS provides a new perspective on cellular
processes is intracellular trafficking and endocytosis. In the first experiment for the applicability
of FCCS to living cells, the technique was used to follow the endocytic uptake of cholera toxin
(Bacia et al., 2002). Choleral holotoxin consists of an A subunit and a B subunit, which were
specifically labelled with a green dye and a red dye, respectively. A strong positive intracellular
cross-correlation signal was obtained from endocytic vesicles, but this was diminished in the
perinuclear region, where the pathways of the A and B subunits diverge. Moreover, by using
mixtures of differently labelled cargo, it was shown that positive cross-correlation serves as an
indicator of cotransport in small, rapidly moving endocytic entities on the order of 100nm in size.

In summary, fluorescence correlation spectroscopy has been proven to be a very versatile
technique for both in vivo and in vitro applications. Based on light irradiation only, it is
minimally invasive and thus extremely useful for investigating biological systems. As this
method is concerned with fluctuations around the thermodynamic equilibrium, no external stress
has to be applied to determine the relaxation parameters. The confocal setup guarantees high
spatial resolution, which is combined with its inherently high temporal resolution to render it
complementary to most other fluorescence techniques. A large number of parameters can be
determined by FCS and FCCS, among them not only the mobility constants and concentrations,
but also fast internal dynamics and photophysical processes. The accessible time-scale ranges
from several sub-microseconds to several hundred milliseconds. The observation of very slow
processes is limited by the finite photochemical lifetime of fluorohores, if they are exposed to

strong illumination intensities.
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Photobiology, which deals with the interaction of light with biological matter, forms the core
of biophotonics (Prasad, 2003). Macromolecules, although large as molecules, are still much
smaller than the wavelength of light. They could not be seen through direct observation by using
optical microscopes. Thought there was a breakthrough of biophysical detection methods in the
beginning of the twenty-first century (eg. X-ray crystallography; Nuclear magnetic resonance;
etc...), a number of questions related with the structure and dynamics of macromolecule in living
cell and their interactions could not be answered. To address these questions, femtosecond time
resolution has been achieved for the probing of fast kinetics by optical spectroscopy. Light
microscopy combined with fluorescence probes can also locate single molecules inside cells. Up
to the late 1970s, exciting new methods have been developed that allow the study of single
molecules. Present thesis will discuss the applications of some advanced methods related with
fluorescence spectroscopy in understanding the biological processes, aiming at proving the
feasibility of these methods in biological samples.

Firstly, dual-color fluorescence cross-correlation spectroscopy (FCCS) has been applied to
monitor the enzymatic kinetics of E.Coli RecQ helicase and that of the human Rec5f helicase.
When monitoring the unwinding activity of E.Coli RecQ helicase by use of two differently
labelled single-stranded DNA molecules, the unwinding kinetics can be interpreted directly as the
decrease of measured cross-correlation signal amplitude at time zero to that at a longer time scale
(over 120 min). Similarly, the strand annealing activity of human Rec5p helicase could also be
monitored by use of the same FCCS detection system. The only difference is in this case, the
stand annealing kinetics is interpreted as the increase of cross-correlation signal amplitude
because of the hybridisation process. After plotting the cross-correlation amplitude values versus
time, the kinetic rate parameter may be evaluated directly from these data.

Secondly, steady-state fluorescence anisotropy has been utilized to analyse the impact of the
two main Raltegravir resistance pathways (N155H and G140S/Q148H) on HIV viral replication
and the catalytic properties of recombinant INs. Both DNA-binding and catalytic parameters of
IN are determined by this steady-state anisotropy-based assay using the same sample. Briefly, IN
binding to Fluorescein-labeled DNA (double-stranded 21-mer ODN mimicking the U5 viral
DNA end) increases the steady-state anisotropy value (1), allowing the calculation of the fraction
of DNA sites bound to IN. This step can be recorded at 25°C. By shifting the temperature to

37°C, the activity dependent decrease in the r value allows quantification of the 3’-processing
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activity of IN. The ability of forming DNA/IN complex and the 3’-processing activity for both
wild-type IN and mutants IN are performed in this study using steady-state fluorescence
anisotropy.

Thirdly, time-resolved photoluminescence decay (PL) and spectrometer measurements are
conducted to characterize the fluorescent properties of MPA-capped CdTe quantum dots (QDs).
The PL properties of the self-assembled CdTe QDs covered by MPA layers are studied in
concerning with the size of nanoparticles and the environmental temperature. Maximum entropy

data analyse method is used in data processing.
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I1.1 Reagents and buffers

All chemicals were reagent grade, and all buffers were prepared in high quality deionized
water from a Milli-Q ultrapure water purification system (Millipore) having resistivity greater

than 18.2 megaohms.cm. The compositions for all the buffers are listed in the following:

I1.1.1 HIV integrase related buffers
I1.1.1.1 HIV-IN purification buffers

1L Buffer A:
Tris-HCI pHS (final concentration 50mM)

380uL 99% beta-mercaptoethanol (final concentration 4mM)
Distilled water was used to reach final volume of 1L, and the buffer prepared should be

filted by use of D=0.4um filter (Millipore) before the stockades.

S0mL 2M Imidazole:
10g Hydrochloride Imidazole

50mL Buffer A
Gentally vortexer and then filted by use of D=0.4pm filter (Millipore) before usage.

50mL Suspension Buffer:
0.5 mL 2M Imidazole solution

25mL Buffer A
Dissolved a pill of EDTA-free antiprotease (Roche) in the solution and then filted by use
of D=0.4um filter (Millipore).

20mL Elution Buffer:
10mM 2M Imidazole solution

10mL Buffer A
1 uL 1M ZnSOy (final concentration S0mM)
Filted by use of D=0.4um filter (Millipore)

2L Dialysis Buffer:
116.8g NaCl (final concentration 1M)
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800mL H,O

40mL HEPES pH?7 (final concentration 20mM)

200mL glycerol (final concentration 10%)

766 uL beta-mercaptoethanol (final concentration 4mM)
100 pL ZnSOy (final concentration 1M)

Distilled water was used to make a final volume of 2L.

I11.1.1.2 HIV-IN enzymatic reaction buffers

HIV-IN DNA-binding and 3’-processing buffer:
20mM Tris-HCI1 pH 7.2

1mM dithiothreitol
20mM NacCl
5mM MgCl,

The final volume of sample reaction was 200 pL.

I1.1.2 RecQ helicase related buffers
11.1.2.1 RecQ helicase purification buffers

50mL 2M Imidazole:
10g Hydrochloride Imidazole

50mL Buffer A
Gentally vortexer and then filted by use of D=0.4um filter (Millipore) before stock.

50mL Suspension Buffer:
0.5 mL 2M Imidazole

20mM Tris-HCI pH7.9

500mM NaCl

Dissolved a pill of EDTA-free antiprotease (Roche) in the solution and then filted by use
of D=0.4um filter (Millipore).

2L Dialysis Buffer:
25mM Tris-HCI pH 7.5
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3mM MgCl,
500mM NacCl
2mM dithiothreitol

Distilled water was used to make a final volume of 2L.
I11.1.2.2 RecQ helicase enzymatic reaction buffers

E.Coli RecQQ DNA-binding buffer:
20mM HEPES pH 7.2

0.3mM dithiothreitol

40mM NaCl

ImM MgCl,

The final volume of sample reaction was 200 pL.

E.Coli RecQ DNA-unwinding buffer:
20mM HEPES pH 7.2

0.3mM dithiothreitol

40mM NaCl

ImM MgCl,

For unwinding, ATP (1 mM) is added to the final volume of 200 pL.

RecQ5p DNA strand annealing buffer:
20mM HEPES pH 7.2

1mM dithiothreitol
40mM NacCl
10mM MgCl,

The final volume of sample reaction was 200 pL.

11.2 Protein and oligonucleotides purification

I1.2.1 HIV integrase purification
HIV-IN (32 kDa) was purified under native conditions. The pET-15b-IN plasmid which

contains the cDNA encoding the HBX2 HIV integrase was used in present study. His-tagged

integrase protein was overexpressed in Escherichia coli BL21 (DE3) and get further purification
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under native conditions. Briefly, at an OD of 0.8, fusion protein expression was induced in
bacterial cultures by the addition of IPTG (1 mM). Cultures were further incubated for 3 h at 37
°C, after which cells were centrifuged. The cell pellet was resuspended in ice-cold buffer A [20
mM Tris-HCI (pH 8), 1 M NaCl, 4 mM B-mercaptoethanol, and 5 mM imidazole], treated with
lysozyme for 1 h on ice, and sonicated. After centrifugation (30 min at 10 000 rpm), the
supernatant was filtered (0.45 pm) and incubated for at least 2 h with Ni-NTA agarose beads
(Pharmacia). The beads were washed twice with 10 volumes of buffer A, 10 volumes of buffer A
plus 50 mM imidazole, and 10 volumes of buffer A plus 100 mM imidazole. His-tagged integrase
was then eluted with buffer A supplemented with 50 uM ZnSO4 and 1 M imidazole. The
integrase concentration was adjusted to 0.1 mg/mL in buffer A. The fusion protein was cleaved
using thrombin and dialyzed overnight against 20 mM Tris-HCI (pH 8), 1 M NaCl, and 4 mM f-
mercaptoethanol. After removal of biotinylated thrombin by incubation with streptavidin-agarose
magnetic beads (Novagen, Madison, WI), a second dialysis was performed for 2 h against 20 mM
Tris-HCI (pH 8), 1 M NaCl, 4 mM B-mercaptoethanol, and 20% (v/v) ethylene glycol. Fractions

were aliquoted and rapidly frozen in liquid nitrogen and stored at -80 °C.

11.2.2 RecQ helicase purification

11.2.2.1 E.coli RecQ helicase purification
His-tagged RecQ helicase was overexpressed in E. coli BL21 (DE3) and purified under

native conditions. Briefly, harvested cells were suspended in 30 ml of suspension buffer (20 mM
Tris-HCI, pH 7.9, 0.5 mM imidazole, 500 mM NaCl) and were lysed using a French pressure
cell. The lysate was then sonicated in order to shear DNA into small fragments. The lysate was
cleared by centrifugation at 7,000g for 30 min at 4 °C. The supernatant was applied to the column
charged with histidine binding resin (Novagen). The column was washed with 20 mM Tris-HCI
(pH 7.9) buffer containing 100 mM NaCl, 60 mM imidazole. The proteins bound to the column
were eluted stepwise using 20 mM Tris-HCI (pH 7.9) buffer containing 500 mM imidazole.
RecQ helicase-containing fractions, identified by both DNA-dependent ATP hydrolysis and
helicase activity assays, were pooled. The histidine tag was cleaved using biotinylated thrombin
during a dialysis step. The removal of biotinylated thrombin was accomplished using
streptavidin-agarose magnetic beads (Novagen, Madison, WI). RecQ helicase was further

purified by FPLC size exclusion chromatography (Superdex 200; Amersham Biosciences).
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Finally, ion exchange chromatography (DEAE Sephadex A-50) was used to remove the
contaminating DNA. The active fractions were pooled, dialyzed against storage buffer (25 mM
Tris-HCI, pH 7.5, 3 mM MgCl,, 500mM NaCl, 2 mM dithiothreitol), and stored at -80 °C. The
protein was pure as judged by Coomassie staining and electrospray mass spectrometry. Protein
concentration was determined spectrophotometrically using an extinction coefficient at 280 nm of

1.54x10* M em™.

11.2.2.2 RecQ5p helicase purification

The human RECQS5/ proteins were produced as C-terminal fusions with a self-cleaving
chitin-binding domain and purified as described under native conditions. The plasmids pET15b
containing RECQ5f genome was transformed into the Escherichia coli strain BL21- codonPlus
(Stratagene). The cells were grown to the midexponential phase (4s00 0f 0.5-0.6) at 37°C and the
protein expression was induced by 0.25 mM IPTG (isopropyl f-Dthiogalactoside) at 15°C for 18
h. The cells were lysed in buffer containing 50 mM Tris/HCI (pH 7.5), 500 mM NaCl, 0.1%
Triton X-100, 0.1 4M PMSF and 10% ethylene glycol. The cell lysate was clarified by
centrifugation (23000g for 45 min at 4°C) and the supernatant was applied to a 20 mL Ni*'-
column connected to an AKTA FPLC system. The bound proteins were eluted with a 400 mM
imidazole (volume = 300 mL). Fractions containing the proteins of interest were identified by
SDS/PAGE. Proteins were further purified using size-exclusion chromatography (Superdex 200,
Amersham). The active fractions were pooled, dialyzed against storage buffer (25 mM Tris-HCI,
pH 7.5, 3 mM MgCl,, 500mM NaCl, 2 mM dithiothreitol), and stored at -80 °C. The protein was

pure as judged by Coomassie staining and electrospray mass spectrometry.

11.2.3 Oligonucleotides purification and preparation

Unlabeled and fluorescently labeled oligonucleotides were purchased from Eurogentec
(Liege, Belgium) and further purified by electrophoresis on an 12 or 15% denaturing
acrylamide/urea gel for long (> 10-mer) or short (7- and 10-mer) oligonucleotides, respectively.
The DNA duplex substrates were prepared by mixing equimolar amounts of complementary
single-stranded (ss) strands in 20mM Hepes (pH 7.2), 40mM NaCl. The mixture was heated to

85°C for 5 min and annealing was allowed by slow cooling to 25°C.
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I1.3 Enzymatic activity measurements

11.3.1 Steady-state fluorescence based activity measurements

11.3.1.1 DNA-binding assay of HIV-IN

Steady-state anisotropy values were recorded on a Beacon 2000 instrument (PanVera,
Madison, WI), in a cell thermostatically held at 25°C for the DNA-binding step. Unless otherwise
stated, we studied the formation of IN-DNA complexes by incubating fluorescein- labeled
dsODNs with IN in 20 mM Tris (pH 7.2), 1 mM dithiothreitol, 20 mM NaCl, 5 mM MgCl, (the
sample volume was 200 pl). The fractional saturation function (Y) was calculated as follows,

shown in equation I1.3.1.

I — TODN
Y = ——x100 (1.3.1)

T max — TODN

where rmax and ropn are the anisotropies of IN-bound and free ODN, respectively (no significant

concomitant change in fluorescence intensity was observed).

11.3.1.2 HIV-IN 3’-processing assay
The HIV-IN was first incubated with fluorescein-labeled DNA substrates at 25°C. After the

DNA-binding step, the temperature was raised from 25 to 37 °C for monitoring the catalytic
process. The 3’-processing activity was assessed by quantifying the decrease in the anisotropy
value . Two independent methods were used for quantification as follows. (i) In fixed-time
experiments, the reaction was stopped by adding SDS (0.25% final), disrupting all the IN-DNA
complexes in the sample. In such experiments, the solution contained two fluorescent species: the
nonprocessed ODN and the fluorescein-labeled dinucleotide released by the cleavage reaction.
The fraction of dinucleotides released (Fdinu = [GT]/[DNA]total) is given by Equation 11.3.2,

'Ne — T
Fam = ——— (T1.3.2)

I'NP — Tdinu

where ryp and rgin, are the anisotropy values for pure solutions of non-processed dsODN and
dinucleotide, respectively (fluorescence did not change significantly during the reaction). We
used the 5°-GT-3°F dinucleotide (Eurogentec) to determine 74iny. (ii) In real-time conditions, an
additional fluorescent population corresponding to IN complexed with the unprocessed dsODN,

is present in the sample. In this case, Fgi,, was calculated as follows,
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Irt=0—17T
Faim = (T1.3.3)

T max — T'dinu

where rmax is the characteristic » value obtained for optimal activity, and 7, - is the » value
obtained at the end of the DNAbinding step (before the start of the reaction). The 3’-processing
activity obtained with Equations I1.3.2 and 11.3.3 is referred to as Activitysps and Activityreal-time,
respectively. Activityreartime Was not used if -y was higher than 0.22 (aggregation of IN on DNA
not negligible).

In the DNA/IN complex formation step, fluorescein-labeled dsSODN was incubated with
HIV-IN (varying concentrations) at 25°C in 20mM Tris buffer (pH 7.2) supplemented with 1 mM
dithiothreitol, 20 mM NaCl, and 5 mM MgCl,. The r values were recorded. Ar (= r - ropn) Was
plotted against competitor concentration to determine K;ap, (concentration of competitor
decreasing the initial Ar value by 50%). The subsequent 3’-processing catalytic reactions were
performed by increasing the temperature to 37°C. The fluorescein-labeled double-stranded 21-

mer ODN mimicking the U5 viral DNA end was adopted as the DNA substrates.

11.3.1.3 DNA-binding assay of RecQ helicase

Binding of RecQ helicase to DNA was analyzed by fluorescence polarization using a
Beacon fluorescence polarization spectrophotometer (PanVera). RecQ helicase in varied
concentration was added to a 150ul aliquot of 20mM HEPES, pH 7.4, 1mM MgCl,, 40mM NaCl,
0.3mM dithiothreitol containing 5 nM of Aleaxs488-labeled DNA (substrate with varied size
indicated in related manuscripts). Each sample was incubated for 5 min at 25 °C, after which
fluorescence polarization was measured. In order to ensure that the mixture had reached
equilibrium, the sample was further incubated for 30 min, and a second reading then was taken.
No significant change was observed between the two measurements, indicating that equilibrium

was reached.

11.3.2 Fluorescence cross-correlation measurements
Dual-color FCCS measurements were performed with two-photon excitation using a single

laser line on a home-built system (previously described in (Delelis et al., 2008) for the FCS
mode) using a 100-fs pulse 80-MHz mode-locked Mai Tai Ti:Sapphire tunable laser (Spectra
Physics, Mountain View, California, USA) and a Nikon TE2000 inverted microscope. Briefly,

before entering through the epifluorescence port of the microscope, the laser beam was expanded

74



with a two-lens afocal system to over-fill the back aperture of the objective (Nikon, Plan Apo,
100x, N.A. 1.4, oil immersion). The setup was optimized to obtain a diffraction-limited focal
spot. Measurements were typically carried out in a 50-uL solution dropped on a coverslip treated
with dimethyldichlorosilane. The fluorescence signal from Alexa488 (Al) and Texas Red (Te)
was collected by the same objective and separated from the excitation by a dichroic mirror
(Chroma 700DCSPXR). The output signal from the microscope was further filtered by a Chroma
E700SP-2p filter — to reject the residual excitation light — and splitted by a dichroic mirror
(Chroma 580dcxr). Additional filters (Chroma HQ510/50 and HQ630/60m-2p for Alexa488 and
Texas Red, respectively) were used to minimize cross-talk (Fig. 1B) and the splitted fluorescence
signal was focused on two avalanche photodiodes (Perkin Elmer LifeScience, SPCM-AQR-14
single-photon counting module with less than 90 dark-counts/sec), mounted at right angle. The
detectors were connected to a digital correlator (ALV 6000, ALV-GmbH, Langen, Germany) that
computes the normalized cross-correlation function gAl/Te(t) (or g(t)) of the two fluorescence

intensity fluctuations, according to equation I1.3.4:

_ (Io(t) e Ir(t + 1)) (IL.3.4)

Eame (D)= (IG(t))  {Ir(t))

where IG(t) and IR(t) are the number of detected fluorescence photons per time unit for green
(Alexa488) and red (Texas Red) channels, respectively. Assuming a 3D Gaussian distribution of
the excitation intensity, the cross-correlation function for a free Brownian diffusion process is

given by equation I1.3.5:

1 1

e (1) = ¢ - —— (IL.3.5)
(I+—)e I+ o —
Tp Zy Tp

where N is the mean number of doubly fluorescently labelled species in the excitation volume,

and 1p is the corresponding translational diffusion time. wo and z, are the lateral and axial
dimensions of the excitation volume, respectively. The calibration of the excitation volume was
done using a 5 nM water solution of Alexa Fluor 488 (succinimidyl ester; Molecular Probes,

Eugene, OR; diffusion coefficient, D = 426.3 pm?¥s at 21°C). The excitation wavelength was 780
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nm and the excitation power was 25 mW. Assuming a Gaussian beam shape and according to
equation I1.3.5 and tp = moz/SD, the lateral mg and axial zo dimensions were estimated to be 0.380
and 1.40 um, respectively.

The cross-correlation curves were fitted using a Levenberg-Marquardt nonlinear least-
squares fitting algorithm according to the analytical model (Equation I1.3.5) using Igor Software
(WaveMetrics). The excitation power was adjusted using a variable attenuator, consisting of an
achromatic half-wave plate and a polarizing beam splitter (Micro Controle Spectra Physics,
France). In the present study, we determined that an excitation power of 25 mW was suitable for
two-photon excitation of both Alexa488 and Texas Red (fluorescence intensities exhibited
quadratic dependences and tp values were constant as a function of the incident power below 30
mW. Photobleaching occurred principally above 30 mW). The optimal two-photon excitation
wavelength for the FCCS experiments using Alexa488 and Texas Red was found to be 780 nm.
Recording times were typically between 2.5 and 5 min (average of 5-10 cycles of 30 s). For all
experiments with doubly labelled (double-stranded) DNA substrates in the absence of ATP, the
amplitude of the cross-correlation function, g(0), was found to be consistent with the
autocorrelation amplitudes obtained for the two independent channels, confirming the absence of
singly labelled (single-stranded) DNA before the beginning of the reaction (data not shown). The
cross-correlation initial amplitude g(0) was measured at different concentration of short dsDNA
(doubly labelled) and found linearly decreasing with the substrate concentration till 5 nM.
Therefore we may reasonably assume that the dissociation of the doubly strand DNA in reaction
system is negligible with a concentration of 5 nM. In addition, Tm measurements to quantify
small amount of single stranded DNA of 13 nt length is rather difficult because of the very low
OD at 5 nM concentration. The decrease in the g(0) value was used to calculate the unwinding

activity as a function of time according to Equation 11.3.6:

[DNA]unwound _ g(o)tzo - g(o)t
[DNAJow — g(0),_, —2(0)..,.,

(1L.3.6)

with £©i=0 and €O corresponding to the cross-correlation amplitudes at the beginning (zero
time) and at the end (infinite time) of the reaction, respectively. When measuring the strand
annealing activity of human RecQ5p helicase, the increase in the g(0) value was used to calculate

the strand annealing activity as a function of time according to Equation I1.3.7:
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[DNA]annealed _ g(O)t - g(o)t:o
[DNAJow  g(0),,, —£(0),_,

(1IL.3.7)

with €= and 8@ corresponding to the cross-correlation amplitudes at the beginning (zero
time) and at the end (infinite time) of the reaction, respectively. The single-turnover rate constant,

Kobs, Was then calculated from: [DNA Junwound/annealed / [DNAJtota1 = 1 — eXp(-Kobst).

I11.3.3 Quantified maximum entropy method of time-resolved
fluorescence data (MEM)

The time-resolved emission was obtained using the time-correlated single photon counting
technique. The excitation light pulse source was a Ti-sapphire subpicosecond laser (Mai Tai
Spectra Physics, Mountain View, CA) associated with a second harmonic generator tuned at 420
nm. The repetition of the laser was set down to 4 Mhz. Fluorescence emission was detected
through a monochromator (SpectraPro 150, ARC, AA=15 nm) by a microchannel plate
photomultiplier (Hamamatsu R1564U-06) connected to an amplifier Phillips Scientific 6954
(gain 50). The excitation light pulse was triggered by a Hamamatsu photodiode (S4753). A time-
correlated single-photon counting card SPC-430 (Becker-Hickl GmbH, Berlin, Germany)
was used for the acquisition of both excitation light pulse and fluorescence emission. The
profile of the instrumental response of the laser pulse (30 ps) was recorded by detecting
the light scattered by a water solution. In case of two photon excitation, the
photomultiplier sensitivity does not allow the detection of excitation profile at 840nm. A
TAMRA solution was used as a reference assuming a lifetime of 1.75ns. The time scaling
was either 59.5ps per channel and 4096 channels were used. The fluorescence decay and
the instrumental response profile were alternatively collected during 10 and 120 s,
respectively. Routinely the total count of the decay reached 10-25 millions. In order to
insure a single-photon counting condition, the counting rate never exceeded 1% of the
laser excitation frequency to avoid pile-up effect, if necessary, a neutral density filter was used
to attenuate the excitation intensity. The microcuvette (3x3-mm suprasil cuvettes) was
thermostated with a Haake type-F3 circulating bath. The photoluminescence decay

parameters were analyzed by the quantified maximum entropy method (MEM).
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APPLICATION OF FCCS TO STUDY
THE ENZYMATIC KINETICS OF
RECQ HELICASE
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IIl.1 General introduction to the relationship between DNA
and helicases

I11.1.1 Structure and function of DNA

Genetic information is frequently carried in the linear sequence of nucleotides in DNA.
Generally speaking, a DNA molecule consists of two long polynucleotide chains composed of
four types of nucleotide subunits. Each of these chains is known as a DNA chain, or a DNA
strand. Hydrogen bonds between the base portions of the nucleotides hold the two chains together
(Figure 18). Nucleotides are composed of a five-carbon sugar to which is attached one or more
phosphate groups and a nitrogen-containing base. In the case of the nucleotides in DNA, the
sugar is deoxyribose attached to a single phosphate group, and the base may be either adenine
(A), cytosine (C), guanine (G), or thymine (T). The nucleotides are covalently linked together in
a chain through the sugars and phosphates, which thus form a “backbone” of alternating sugar-
phosphate-sugar-phosphate. The way in which the nucleotide subunits are lined together gives a
DNA strand a chemical polarity. If we think of each sugar as a block with a protruding knob (the
5" phosphate) on one side and a hole (the 3" hydroxyl) on the other (Figure 19), each completed
chain, formed by interlocking knobs with holes, will have all of its subunits lined up in the same
orientation. Moreover, the two ends of the chain will be easily distinguishable, as one has a hole
(the 3" hydroxyl) and the other a knob (the 5’ phosphate) at its terminus. This polarity in a DNA
chain is indicated by referring to one end as the 3 end and the other as the 5’ end.

The three-dimensional structure of DNA—the double helix—arises from the chemical and
structural features of its two polynucleotide chains. Because these two chains are held together by
hydrogen bonding between the bases on the different strands, all the bases are on the inside of the
double helix, and the sugar-phosphate backbones are on the outside (Figure 18). In each case, a
bulkier two-ring base (a purine) is paired with a single-ring base (a pyrimidine); A always pairs
with T, and G with C (Figure 18). This complementary base-pairing enables the base pairs to be
packed in the energetically most favorable arrangement in the interior of the double helix. In this
arrangement, each base pair is of similar width, thus holding the sugar-phosphate backbones an
equal distance apart along the DNA molecule. To maximize the efficiency of base-pair packing,
the two sugar-phosphate backbones wind around each other to form a double helix, with one
complete turn every ten base pairs. The members of each base pair can fit together within the

double helix only if the two strands of the helix are antiparallel—that is, only if the polarity of
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one strand is oriented opposite to that of the other strand (see Figure 18). A consequence of these
base-pairing requirements is that each strand of a DNA molecule contains a sequence of
nucleotides that is exactly complementary to the nucleotide sequence of its partner strand
(Alberts et al., 2000).
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Figure 18 : DNA and its building blocks.

DNA is made of four types of nucleotides A, C, G, and T. A DNA molecule is
composed of two DNA strands held together by hydrogen bonds between the
paired bases. The arrowheads at the ends of the DNA strands indicate the
polarities of the two strands, which run antiparallel to each other in the DNA
molecule. From (Alberts et al., 2000)
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II1.1.2 The function of helicase in cellular processes involved with
DNA

Many cellular processes, like DNA replication, transcription, translation, recombination,
DNA repair and ribosome biogenesis, involve the separation of nucleic acid strands. Helicases
are often utilized to separate strands of DNA double helix or a self-annealed RNA molecule using
the energy from ATP or GTP hydrolysis, a process characterized by the breaking of hydrogen
bonds between annealed nucleotide bases. The ATP or GTP indispensability has been proven in
many studies by use of the non-hydrolysable ATP analogues or ADP analysis (Gorbalenya &
Koonin, 1993; Gwack et al., 1999; Li et al., 2009). It is well known that, genes carry biological
information that must be copied accurately for transmission to the next generation each time a
cell divides to form two daughter cells. The DNA in genomes does not direct protein synthesis
itself, but instead uses RNA as an intermediary molecule. When the cell needs a particular
protein, the nucleotide sequence of the appropriate portion of the immensely long DNA molecule
in a chromosome is first copied into RNA (a process called transcription). It is these RNA copies
of segments of the DNA that are used directly as templates to direct the synthesis of the protein (a
process called translation). The flow of genetic information in cells is therefore from DNA to
RNA to protein.

All cells, from bacteria to humans, express their genetic information in this way-a principle
so fundamental that it is termed the central dogma of molecular biology. Take DNA replication
as an example. Prior to cell division, the DNA material in the original cell must be duplicated so
that after cell division, each new cell contains the full amount of DNA material. The process of
DNA duplication is usually called replication. Several enzymes and proteins are involved with
the replication of DNA (Lehninger et al., 1993). At a specific point, the double helix of DNA is
caused to unwind possibly in response to an initial synthesis of a short RNA strand using the
enzyme helicase. Proteins are available to hold the unwound DNA strands in position. Each
strand of DNA then serves as a template to guide the synthesis of its complementary strand of
DNA. DNA polymerase III is used to join the appropriate nucleotide units together. The
replication process is shown in Figure 19. It is so important that the cells duplicate the DNA
genetic material exactly, that the sequence of newly synthesized nucleotides is checked by two

different polymerase enzymes. The second enzyme can check for and actually correct any
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mistake of mismatched base pairs in the sequence. The mismatched nucleotides are hydrolyzed
and cut out and new correct ones are inserted.

In above DNA replication processes, the first and the foremost step are to unwind the double-
strand DNA at the replication fork so that DNA polymerase can replicate the DNA strands.
Specific enzymes, termed helicases, utilise the energy of ATP hydrolysis to power strand
separation. In this case, the Mg®" is an indispensable cofactor to control the ATP and RecQ
helicase interactions. Generally, helicase requires a covalently attached flanking 5’ or 3’ single-
stranded region of nucleic acid. There is a conformational change of helicase in the conversion of
the energy ATP/GTP to ADP/GDP in order to facilitate the movement of helicase along DNA
strand, and therefore to unwind the double-stranded DNA. The cooperative interactions are
predominantly induced through the specific interactions of the y phosphate and the ribose with
the protein. The binding of Mg®" cations seem to play a role in affecting the ADP and protein
interactions. Taking bacterial helicase PcrA as an example, it functions as a monomer and
comprises four domains (Al, A2, Bl and B2). Domain Al contains a P-loop NTPase fold, and
participates in ATP binding and hydrolysis. Domain B1 is homologous to domain A1 but lacks a
P-loop. Domain A2 and B2 have unique structures. From analysis of the PcrA helicase crystal
structures bound to nucleotide analog and appropriate double- and single-stranded DNA, the
inchworm moves PcrA helicase action mechanism was proposed. The PcrA enzyme translocates
in the 3’to 5° direction. When the helicase encounters a region of double-stranded DNA, it
continues to move along one strand and displaces the opposite DNA strand as it progresses.
Interactions with specific pockets on the helicase help destabilize the DNA duplex, aided by
ATP-induced conformational changes (Berg et al., 2006). Mg*" has a dual function in nucleotide-
helicase interactions. At low Mg®" concentration NTP binds stronger than ADP and the enzyme is
predominantly in the high ssDNA-affinity state. At higher (Mg”"), NTP binds weaker than NDP
and the helicase subunits can exist in alternating low- and high- affinity for RepA helicase.

Though most processes associated with DNA replication function to copy the genetic
message as faithfully as possible, several biochemical processes require the recombination of
genetic material between two DNA molecules. In genetic recombination, two daughter molecules
are formed by the exchange of genetic material between two parent molecules. DNA
recombination plays important roles in DNA replication, DNA repair, generating genetic

diversity, viral integration and also in genes manipulations. For example, in the bacteriophage T4
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life cycle, where the DNA replication, recombination and repair are tightly coupled, a
recombination-dependent replication mechanism occurs by conversion of recombination
intermediates into replication forks. Meanwhile, the T4 recombination-dependent replication is
closely related to recombinational repair. In this case, the bacteriophage T4 UvsW helicase
involves the branch migration and the removal of RNA from R-loops. It has been evidenced that
the T4 UvsW protein is a functional analog of the £.Coli RecG helicase, which displays ssDNA-
dependent ATPase activity. The T4 UvsW protein also acts as an RNA-DNA helicase because of
its ability to dissociate both DNA and RNA from R-loops during branch migration (Kelly et al.,
1997).

In addition of genetic information expression from DNA to RNA, the RNA synthesis and
processing also play an indispensable role in gene expression. In this case, RNA helicases are
necessary to participate in all biochemical steps involving RNA including transcription, splicing,
transport, translation and ribosome biogenesis. Biochemically, RNA helicases are capable of
binding and hydrolyzing NTP, mainly the ATP. The ATPase activity is an essential function of
RNA helicase, which is demonstrated to be the primary source of energy during pre-mRNA
splicing. The unwinding activity and the RNA-protein interaction disruption activities of RNA
helicases are also observed in recent studies. For example, the human hepatitis G virus NS3
protein has been proven to have DEXH motifs which are typical of the DEXH protein subfamily
of the DEAD box family. It possesses NTPase and RNA helicase activities which could displace
RNA or DNA duplexes in a 3’ to 5° direction. Furthermore, the oligonucleotide-stimulated
ATPase and helicase activities are sensitive to monovalent ions, which convinced the existence of
helicase motif VI of the Hepatitis G virus and the Hepatitis G virus NS3 proteins are necessary

for the RNA binding activity of these proteins (Gwack et al., 1999).
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Figure 19 : Schematic of DNA replication process.

One function of DNA helicase is to unwind the double-stranded DNA at
the replication fork so that DNA polymerase can replicate the DNA
strands. From (Lehninger et al., 1993)

111.1.3 Helicase characteristics and helicase deficiency diseases

111.1.3.1 Classification of helicases

Helicases are ubiquitous enzymes that unwind or transport double-strand nucleic acids

during replication, recombination, transcription and DNA repair. Functioned as molecular
motors, the helicases are essential to DNA and RNA metabolism. For the separation of the
duplex, they are usually considered as a motor translocates along strand of nucleic acid. Based on
the sequence homology, helicases were divided into five superfamilies (SFs) by Gorbalenya and
Koonin in 1993 (Gorbalenya & Koonin, 1993). Motif I and motif II exist amongst all five
superfamilies in which motif I is characterized by the sequence of GxxxxGK(T/S) and the
formation of a loop at N-terminal of protein, which mainly in charge of nucleotide binding

(Subramanya et al., 1996). Motif II also known as “walker B motif”, includes the sequence of
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DExx, which contributes to nucleotides hydrolysis. Subtle differences in motif II also resulted in
further grouping of the helicases into DExH box helicase and DEAD box helicase in SF1 and
SF2, respectively. Most of helicases discovered at present are members in SF1 or SF2 categories,
which contain all the seven characterized helicase motifs. The structure for the prototype in SF2
helicase family, E.Coli RecQ helicase , has been illustrated in Figure 20. The catalytic core of
E.Coli RecQ helicase contains one ATP binding site and another ssDNA binding site, which
preserve the unwinding activity for E.Coli RecQ helicase. SF3 and SF4 contain 3 helicase motifs
and 5 motifs, respectively. The helicases in SF5 group are characterized by the sequence

similarities to B-subunit of ATP synthase. (Table 2).

Table 2. Primary superfamilies of helicase. Based on the number of conserved motifs and motifs
sequence similarities, helicases are classified in five superfamilies.

Superfamily | Family Features

(SF)

SF1 Hel4, Tral, PcrA, UvrD, Dda, Pif ULS, Contain all seven helicase motifs
Senl, Rep, (+)RNA helicase virales, setx

SF2 RecQ, CI, UvrB, PriA, UL9, 18R, Ercc3, Contain all seven helicase motifs

SNF2, Rad3, elF-4A family DEAD, PRP
family DEAH, BRCA1, ATRx

SF3 Rep, 2C, Al 1, T ant, Contain 3 helicase motifs

SF4 DnaB Contain 5 helicase motifs;
unwind with DNA 5°to3’
polarity; usually forming
hexameric ring

SF5 Rho Sequence similar to B-subunit of
ATP sythase
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Figure 20 : Schematic illustration of E.Coli RecQ helicase structure.

A : Three conserved regions exist in the structure of E.Coli RecQ helicase, they are
helicase domain (~40 KDa), RecQ C-terminal domain (~19 KDa) and helicase-RNaseD-
C-terminal domains (~9 KDa). The catalytic core of E.Coli RecQ only contains the
helicase domain and the RecQ C-terminal domain, which posseses four sub-domains
labled in this figure by different colors (red; blue; yelloz and green).

B : In the helicase domains, the helicase motifs are colored in grey. Two indispensable
binding site are indicated in this figure.

From (Bernstein et al., 2003).
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II1.1.3.2 Helicase function schemes for DNA unbinding and translocation
During unwinding of dsDNA, and to translocate processively without dissociation from

DNA, the helicase must use at least two DNA-binding sites to keep contact with the DNA lattice;
one binds to ssDNA for translocation, whereas the other binds to dsDNA for DNA unwinding.
These two DNA binding sites may be located at different domains within a single polypeptide of
a monomer or be held by two different polypeptides within a dimer or an oligomer for providing
multiple DNA-binding sites.

Corresponding to the first possibility, the active “rolling” model (Figure 21A) requires that
the enzyme be oligomeric and at least dimeric. Each promoter possesses an identical DNA
binding site. Both sites could bind either ssDNA or dsDNA, and binding of ssDNA and dsDNA
cannot occur simultaneously in the same subunit. Binding of ATP leads to the enzyme interacting
alternatively with the ssDNA and dsDNA at the junction region. Furthermore, hydrolysis of ATP
destabilizes hydrogen bonds between the base pairs of the duplex. This model was originally
based on the observed allosteric effects of ATP and ADP on the ssDNA and dsDNA binding
properties of the Escherichia coli Rep dimer (Wong&Lohman, 1992). However, the crystal
structures of Rep helicase bound to ssDNA alone or bound to both ssDNA and ADP have
revealed that the protein remained monomeric; no protein-protein interactions were observed
(korolev et.al., 1997).

Corresponding to the second possibility, the “inchworm” model (Figure 21B) was proposed,
in which the helicase is assumed to possess two nonidentical DNA binding sites
(Yarranton&Gefter, 1979); the “leading” site binds both ssDNA and dsDNA and interacts with
the duplex to be unwound during successive unwinding cycles, whereas the “lagging” site
interacts only with ssDNA. The disruption of the dsDNA at the leading site and the translocation
of the enzyme are the result of conformational change of the enzyme modulated by binding and
hydrolysis of ATP. Recent crystal structures of complexes of PcrA helicase with a partial dsDNA
duplex substrate show that the ssDNA and dsDNA bind, respectively, on two domains of this
monomeric helicase (Velankar et.al., 1999). These data provided direct proof to support an
inchworm mechanism (Soultanas&Wigley, 2000).

An essential difference between the “inchworm” and “rolling” model is that an oligomer is
absolutely required for translocation and unwinding in the case of the rolling model, whereas a

monomeric form or any oligomeric form could function in the inchworm model. Thus, the
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knowledge of the oligomeric structure of a helicase is of fundamental concern in understanding

the mechanism by which the protein unwinds DNA. In detail, for E.Coli RecQ helicase, the

“inchworm” model is preferred; as to the human RecQ5p helicase, a model has been proposed by

Ren et al. (Ren et al., 2008) recently which involved with the role of the zinc-binding motif in the

functional combination of the “unwinding activity” and “strand annealing” activity.

Translocation

RNA Unwinding 3'-exonucleclytic Decay

Strand Release

L -

ATP Hydrolysis

ATP Bindang

ATP Hydrolysis

Figure 21 : Two potential mechanisms for RhiB-activated degradation of structure

RNA by the degradosome.

A: A model prompted by the active, rolling model for DNA unwinding and
translocation by the Rep DNA helicase. The Rne protein (beige oval) serves as a
scaffold to coordinate the action of the RhIB helicase (subunit I, green oval;
subunit II, purple oval) with PNPase (red circles). This allows single-stranded
RNA generated by the RNA helicase to be passed directly to the 3' exonuclease
PNPase (see text). The nucleotide-bound state of RhIB would result in a cycle of
conformational and RNA affinity changes that result in translocation, RNA
unwinding, and strand release/exonucleolytic degradation.

B: A second model based on the inchworm mechanism proposed for the PcrA
DNA helicase. In this case, RhIB acts as a monomeric protein (shown in green)
that can bind both single- and double-stranded RNA. Degradation of single-
stranded RNA by PNPase (red circles) takes place during the translocation step.
From (Wong and Lohman 1992; Korolev et al. 1997; Velanker et al. 1999).

88



I11.1.3.3 Helicases deficiency diseases

Several genetic human diseases are related to helicase dysfunctions. Such as helicase ATRx
(SF2) is related to alpha thalassemia X-linked Mental Retardation syndrome which characterized
by mental retardation and unique craniofacial features, alpha thalassemia. Similarly, BACHI
(SF2) is related to breast cancer and ERCC3 (SF2) and ERCC2 (SF2) to Xeroderma
pigmentosum B and D, which shows cutaneous hyperpigmentation in sun-exposed regions of the
body during the first months of life. ERCC6 (SF2) is associated with Cockayne syndrome, which
develops in infants between age 1 and 2 with clinic features such as poikiloderma, mental
retardation, pigmentary, retnopathy and hearing loss; FANCJ (SF2) and FANCM (SF2) are
known to related to Fanconi anemia, which patients are commonly associated with high
frequency of bone marrow failure, developmental abnormalities, and high risk of cancer,
particularly acute myelogenous leukaemia. Furthermore, SETX (SF1) is associated with
Amyotrophic lateral sclerosis, a neurodegenerative disease causing a progressive loss of motor
neurons (Uhring&Poterszman, 2006).

The most prominent helicase-related illnesses are Bloom’s syndrome (BS), Werner
syndrome (WS) and Rothmund-Thomson syndrome (RTS) and they all associated with the
dysfunction of RecQ family helicase- SF2. The common features of these three autosomal
recessive disorders are chromosomal abnormalities and predisposition of cancers. BS related
gene codes a protein named bloom protein (BLM). It’s the main subject of this thesis, which will
be discussed in detail hereafter. BS patients appear to be dwarfism with sun-sensitive erythma,
immunodeficiency, and sterility. Symptoms of WS are associated with premature ageing after
adolescence for example: graying and loss of hair, wrinkling and ulceration of skin, diabetes,
cataracts, osteoporosis, hypertension, and atherosclerosis (Martin, 1978; Salk et.al., 1985). WS
cells show higher frequency of chromosomal deletion, insertion, and translocation (Salk et.al.,
1981; Fukuchi et.al., 1989). Main phenotypes of RTS are abnormalities on skin and skeleton,
such as, skin hyperpigmentation, poikiloderma, congenital skeletal defects, and tendency of
asteosarcomas (Dick et.al., 1982; Varughese et.al., 1992; Drouin et.al., 1993).

WS and RTS are related to the dysfunction of two RecQ helicases WRN (Werner protein)
and RecQ4, repectively. Comparing to WS and BS, which displayed high correlations between
WRN and BLM gene mutations and the related syndromes, some RTS cases (about 34%) have no
obvious mutagenesis connection with RecQ4(Kital et al., 1999; Lindor et al., 2000; Wang et al.,
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2003). RecQ4 had no detectable helicase activity in vitro, but it was proved to have a DNA
dependent ATPase activity and RPA-inhibitable annealing activity (Macris et.al., 2006). Its
deficiency in cells results in mosaic trisomies and isochromosomes. In contrast, WRN and BLM
are all effective helicases on variable DNA substrates, including fork DNA, D-loop, holiday
junction and G-quadraplex DNA, in vitro (Brosh et al., 2002). WRN has a unique nuclease motif
at its N-terminal region as compared to other RecQ helicases in human which gives WRN a new
role as an exonuclease (Choudhary et al., 2004). Cooperation of the helicase activity and
exonuclease activity may facilitate the replication fork regression hence indicates its function in
resolving stalled replication forks (Machwe et al., 2005; Machwe et al., 2006; Machwe et al.,
2007). WRN’s association with telomere repeat binding factor 2 may also suggest its
involvement in alternative lengthening of telomeres (ALT) to maintain telomere length (Opresko
et al.,, 2002). The telomeric DNA contains hundreds of tandem repeats of a six-nucleotide
sequence. One of the strands is G rich at the 3° end, and it is slightly longer than the other strand.
In human beings, the repeating G-rich sequence is AGGGTT. The structure adopted by telomeres
has been proposed to form a loop-like structure in order to protect the end of the chromosome and
stabilized by specific telomere-binding proteins. This process is consistent with the phenotype of
WS, because the length of telomere is considered as an indicator of senescent process of animal.
Shortly speaking, several premature aging syndromes are associated with short telomeres, eg.
Werner syndrome, Friedreich’s ataxia and the chromosome X fragile syndrome. The genes that
have been mutated in these diseases all have roles in the repair of DNA damage. The dissociation
and association of the long terminal reversed sequence for telomerase can also induce severe
heart disease as well as cancer. Presently, the research on the clinical treatment of cancer has
drawn more attention on the repetition sequence on the telomerase enzyme.

At a cellular level these genetic disorders all reveal high levels of genomic instability. Such
molecular defects are readily studied in model organisms, and particularly in a genetic model like

yeast.

90



II1.2 E.Coli RecQ Helicase Unwinding Activity as Monitored
by Dual Color Fluorescence Correlation Spectroscopy

II1.2.1 Introduction

RecQ helicase belongs to the Superfamily 2 helicase, named for similarity to Escherichia
coli RecQ helicases. It plays an important role in maintenance of genome stability. They function
through unwinding paired DNA and translocating in the 3’to 5° direction (Bernstein & Keck.,
2003).

RecQ helicases are conserved between prokaryotes and eukaryotes, and a multi-gene family
exists in metazoan (Uhring&Poterszman, 2006). In prokaryotes RecQ is necessary for plasmid
recombination and DNA repair from UV-light induced DNA damage. In eukaryotes, replication
does not proceed normally in the absence of RecQ proteins, which also function in aging,
silencing, recombination and DNA repair (Machwe et.al., 2005). Three of human RecQ helicases,
WRN (Yu et.al., 1996), BLM (Ellis et.al., 1995), and RECQ4 (Kitao et.al., 1999), are associated
with human genetic diseases, Werner, Bloom, and Rothmund-Thomson syndromes, respectively.
These syndromes are characterized by premature ageing, graying and loss of hair, cancer, typell
diabetes, osteoporosis and atherosclerosis, all of which are diseases that are common at old age.
These diseases are associated with high incidence of chromosomal abnormalities, including
chromosome breaks, complex rearrangements, deletions and translocations, site specific
mutations and in particular sister chromatid exchanges that are believed to be caused by a high
level of somatic recombination.

To better understand how helicases unwind the duplex nucleic acids, the E.Coli RecQ,
which is highly conserved across a wide variety of organisms and is composed of 610 amino
acids, are chosen as the prototype helicase of this family. The proteins displays a 3°-5’ polarity in
DNA unwinding and can unwind diverse DNA substrates including DNA with 5°-3* overhangs,
nicked or forked DNA, and three- or four- way junctions as well as G4 DNA (a guanine-rich
parallel four-stranded DNA structure (Umezu et al., 1990; Wu & Maizels, 2001). The E.Coli
RecQ helicase bound to DNA with an apparent binding stoichiometry of 1 protein monomer/10
nucleotides and while destabilizing the hydrogen bonds between the complementary base pairs
by using the energy from the hydrolysis of nucleoside 5’-triphosphate, usually an ATP (Matson et
al., 1994; Lohman & Bjornson 1996). It has a single strong DNA binding site with a low
association constant at 25°C and both the single-stranded DNA and double-stranded DNA bind
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competitively to the same site. The intrinsic affinities are salt-dependent and the formation of
DNA-helicase complex is accompanied by a net release of 3-4 Na' ions (Dou et. al., 2004).

Nowadays, several continuous fluorometric helicase assays in real time have been developed
to measure the unwinding of duplex nucleic acids by helicase (Roman & Kowalczykowski, 1989;
Bjornson et al., 1994; Housten & Kodadek, 1994; Raney et al., 1994; Egglestone et al., 1996).
However, the detection sensibility and the ability to monitor the dynamic helicase unwinding
processes in real time are limited.

Dual-color FCCS has been considered as a promising fluorescent technique in monitoring
enzyme kinetics in dynamic process (Eigen & Rigler, 1994; Ulrich et al., 1998). It allows very
sensitive detection of molecular dissociations, which is based on the computation of the cross-
correlation of the fluctuations in the fluorescence emission of two spectrally distinct dyes that
label the two molecular dyes. Fluorescent fluctuations can be detected in a tiny volume at
nanomolar concentration. A maximum cross-correlation is measured for non-dissociated samples
for which the diffusion of both dyes through the excitation volume occurs simultaneously. Upon
dissociation the degree of cross-correlation decreases owing to the independent random passage
of the two dyes through the excitation volume. Some recent applications concern the use of the
method FCCS as rapid assay for kinetic reactions in homogeneous sample solutions (Kolterman
et al., 1998; Winkler et al., 1999).

Here, we report for the first time the successful use of the FCCS method to measure E.Coli
RecQ helicase DNA unwinding activities in real time under two enzymatic significant conditions:
single turnover condition (protein concentration>substrate concentration) and Michaelis-Menten
condition (substrate concentration>protein concentration). The cooperative DNA-binding mode
and the strong E.Coli RecQ helicase concentration-dependence of the single-turnover kinetic
constant were also studied. Influences of temperature (25°C; 37°C), the number of ss 3’-tails
present on the DNA substrate and the total length of the substrate on helicase unwinding
activities were monitored. The RecQ helicase binding ability to DNA substrates were also
discussed with that of ATP. In particular, comparison between the effects of Single strand
binding (SSB) proteins and the complementary ssDNA in varied size on E.Coli RecQ helicase

enzymatic kinetics was carried on in present study.

111.2.2 Manuscript

This manuscript has been handed in to Journal of Biological Chemistry and it is under review.
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The RecQ family helicases catalyse the DNA
unwinding reaction in an ATP hydrolysis-
dependent manner. In this study, we
investigated the mechanism of DNA
unwinding by the Escherichia coli RecQ
helicase, using a new sensitive helicase assay
based on fluorescence cross-correlation
spectroscopy (FCCS) with two-photon
excitation. The FCCS-based assay allows the
measurement of unwinding activity under
both single- and multiple-turnover conditions,
without any limitation related to the size of
the DNA strands that constitute the DNA
substrate. We found that the monomeric
helicase is sufficient for performing
unwinding on short DNA substrates.
Nevertheless, using longer DNA substrates
under single-turnover conditions, we observed
an increase in the activity, originating from
multiple helicase monomers simultaneously
bound to the same DNA. This functional
cooperativity strongly depends on several
factors, including the DNA substrate length,
the number of single-stranded 3’-tails and the
temperature. Concerning the latter
parameter, a strong cooperativity was
observed at 37°C while only a modest or no
cooperativity was evidenced at 25°C,
regardless of the nature of the DNA substrate.
Consistently, the functional cooperativity was
found to be tightly coupled to a cooperative
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DNA-binding mode. Additionally, we show
that the cooperative binding of helicase to the
DNA substrate indirectly accounts for the
sigmoidal dependence of unwinding activity
on ATP concentration, which also occurs only
at 37°C but not at 25°C. Finally, we further
examined the influences of the spontaneous
DNA re-hybridization (following helicase
translocation) and the single-stranded DNA
binding property of helicase on the unwinding
activity as measured in the FCCS assay.

Helicases are molecular motor enzymes that
unwind and translocate along nucleic acids in an
ATP hydrolysis-dependent manner (1;2). RecQ
DNA helicase is a ubiquitous family of helicases
playing a key role in the maintenance of genome
stability in a wide range of organisms, from
bacteria to higher eukaryotes (for a review, see
(3)). These enzymes are involved in many DNA
metabolism processes such as recombination,
DNA replication and DNA repair. In humans,
defects in RecQ family helicases, encoded by the
blm, wrn and RecQ4 genes, give rise to Bloom,
Wermer and Rothmund-Thomson syndromes,
respectively,  characterized by  genomic
instability and cancer susceptibility. The
Escherichia coli RecQ helicase, the prototype
enzyme of this family, is involved in different
processes including homologous recombination
and double strand break repair mediated by the



RecF machinery (4), as well as suppression of
illegitimate recombination (5).

The structure-function relationship  of
helicases is difficult to understand at the
molecular level, since distinct protein

organizations can lead to similar activities. One
example is related to the oligomeric status of the
active helicase that strongly varies from one
helicase family to the other, i.e. hexameric rings
for  Escherichia coli DnaB and Rho,
bacteriophage T4 gp4l and T7 gp4 (6-12),
dimeric forms for Rep and UvrD helicases
(13;14), and monomeric for PcrA and RecQ
helicases (15-18). Despite extensive biochemical
and structural studies of Thelicases, the
mechanism of DNA unwinding remains obscure
and several enzymatic features of the RecQ
family helicases are not clearly understood. In
particular, the oligomeric status of the active E.
coli RecQ helicase is unclear since enzymologic
studies of the unwinding reaction — under pre-
steady-state conditions — strongly suggest a
monomeric active form (18), while a previous
study reports a sigmoidal dependence of the
unwinding activity on ATP concentration,
suggesting a multimeric active form (19). Other
difficulties in the interpretation of enzymatic
parameters are related to side phenomena that
strongly influence the measurement of helicase
activity such as: (i) the DNA re-hybridization
occurring after the unwinding process, (7i) the
ability of helicase to bind to the single-stranded
DNA product, reducing subsequent turnover.
The relative impact of these intrinsic properties
of either the DNA or the helicase molecule,
respectively, can be difficult to estimate,
depending on the method used for monitoring
the unwinding activity (20).

Fluorescence  correlation  spectroscopy
(FCS)' measures the translational diffusion of
molecules as the temporal behaviour of
fluorescence intensity fluctuations within a small
excitation  volume, described by  the
autocorrelation function (21-23). Nevertheless,
this approach, via the determination of the
diffusion coefficient, is not very sensitive in
measuring molecule interactions or dissociation
events when the two interacting entities have
similar molecular sizes. This main limitation can
be overcome by using dual-colour fluorescence
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cross-correlation spectroscopy (FCCS) which
monitors  the  cross-correlation  of  the
fluorescence fluctuations of the two interacting
species — labelled by spectrally distinct
fluorophores — and, then, quantifies the amount
of fluorescently double-labelled species. A
maximum  cross-correlation  amplitude s
obtained when the two molecular species diffuse
simultaneously and in a systematic manner
through the excitation volume, indicating a
physical interaction, while a decrease in this
amplitude accounts for an independent diffusion
due a dissociation event. This approach was
shown to be suitable for monitoring varying
enzymatic activities or processes such as
proteolysis (24), endonucleolytic cleavage by
restriction enzymes (25;26), DNA repair (27)
and DNA recombination (28).

Here, we describe the use of two-photon
excitation FCCS for monitoring the unwinding
activity of helicase. This assay is sensitive and
suitable for studying unwinding activity as it
allows real-time kinetic studies in the low
nanomolar range, is compatible with both single-
and multiple-turnover enzymatic conditions and
does not require separation of the single-stranded
(ss) DNA product from the double-stranded (ds)
DNA substrate by gel-electrophoresis. As
mentioned above, the cross-correlation of the
two fluorescence signals in FCCS is related to
the concomitant diffusion of the two
fluorescently labelled molecules. Thus, using
doubly labelled ds DNA substrates, a significant
decrease in the amplitude of the cross-correlation
function is expected upon unwinding activity,
originating from the physical separation of the
two DNA strands (the principle of the FCCS-
based helicase assay is indicated in Fig. 1A). In
contrast to the resonance energy transfer (FRET)
approach, FCCS is not sensitive to fluorophore
orientation and/or interfluorophore distance; the
loss of the cross-correlation signal is only
sensitive to the helicase-mediated strand
separation and not to other phenomena such as,
for instance, unrelated local motions of
fluorophores at the DNA ends that may also
influence the donor-acceptor distance. Recently,
an helicase assay based on fluorescence
anisotropy was described but real-time kinetic
studies suffered from difficulties inherent to



helicase binding to the ss DNA product (20).
Moreover, this assay was only compatible with
single-turnover conditions, ie. when enzyme
concentration is over DNA  substrate
concentration. The FCCS assay has no such
limitation since the basic principle is not simply
based on a difference in size between the
substrate and the reaction product but on the
extent of the concomitant diffusion of the two
DNA strands.

In this work, the unwinding activity of E.
Coli RecQ helicase was studied under both
single- and multiple-turnover conditions using
FCCS. We found that RecQ helicase monomers
can function cooperatively or non-cooperatively,
depending on several parameters, including the
length of the DNA substrate and the temperature
of the DNA-binding step. Remarkably, the
cooperative properties of helicase at the DNA-
binding level were found to be predictive of the
subsequent cooperative effects observed at the
catalytic level. We also demonstrate that the
cooperative dependence of the unwinding
activity on ATP concentration indirectly
originates from the cooperative DNA-binding
mode of RecQ helicase, reconciling apparent
contradictory results in the literature concerning
the possibility to have a monomeric active form
while the activity displays a strong cooperativity
on ATP concentration (Hill coefficient ~ 3),
previously interpreted as compelling evidence in
support of a multimeric active form (minimally
trimeric) (19). Altogether, our data indicate that
oligomerization is not a prerequisite for the
RecQ helicase activity, but, under specific
conditions, the cooperative assembly of the
helicase/DNA complex leads to the possibility
that multiple monomers may align along the
same DNA substrate and function in a
cooperative manner. Finally, we further
examined the influences of both the spontaneous
DNA re-hybridization — following helicase
translocation — and the ss DNA binding property
of helicase on the unwinding activity as
measured in our assay. To address these
questions, the effects of short ss oligonucleotides
and the single-stranded DNA-binding protein
(SSB) on the catalytic rate constant of RecQ
helicase were evaluated.
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EXPERIMENTAL PROCEDURES

RecQ  helicase  purification, SSB and
oligonucleotides- The E. coli RecQ helicase was
purified as previously described (20;29). The
SSB protein was purchased from Sigma.
Unlabelled and fluorescently labelled
oligonucleotides (Table I) were purchased from
Eurogentec (Liege, Belgium) and further purified
by electrophoresis on an 12 or 15% denaturing
acrylamide/urea gel for long (>10-mer) or short
(7- and 10-mer) oligonucleotides, respectively.
Double-stranded DNAs were obtained by mixing
equimolar amounts of complementary DNA
strands in 20 mM Hepes (pH 7.2), 100 mM
NaCl. The mixture was heated to 85°C for 5 min
and annealing was allowed by slow cooling to
25°C.

Fluorescence cross-correlation spectroscopy-
Dual-color FCCS measurements were performed
with two-photon excitation using a single laser
line on a home-built system (previously
described in (30) for the FCS mode) using a 100-
fs pulse 80-MHz mode-locked Mai Tai
Ti:Sapphire tunable laser (Spectra Physics,
Mountain View, California, USA) and a Nikon
TE2000 inverted microscope. Briefly, before
entering through the epifluorescence port of the
microscope, the laser beam was expanded with a
two-lens afocal system to over-fill the back
aperture of the objective (Nikon, Plan Apo,
100x, N.A. 1.4, oil immersion). The setup was
optimized to obtain a diffraction-limited focal
spot. Measurements were typically carried out in
a 50-pl solution dropped on a coverslip treated
with dimethyldichlorosilane. The fluorescence
signal from Alexa488 (Al) and Texas Red (Te)
was collected by the same objective and
separated from the excitation by a dichroic
mirror (Chroma 700DCSPXR). The output
signal from the microscope was further filtered
by a Chroma E700SP-2p filter — to reject the
residual excitation light — and split by a dichroic
mirror (Chroma 580dcxr). Additional filters
(Chroma HQS510/50 and HQ630/60m-2p for
Alexad488 and Texas Red, respectively) were
used to minimize cross-talk (Fig. 1B) and the
split fluorescence signal was focused on two
avalanche photodiodes (Perkin Elmer
LifeScience, SPCM-AQR-14  single-photon



counting module with less than 90 dark-
counts/sec), mounted at right angle. The
detectors were connected to a digital correlator
(ALV 6000, ALV-GmbH, Langen, Germany)
that computes the normalized cross-correlation
function gayre(t) (or g(tr)) of the two
fluorescence intensity fluctuations, according to
Equation 1:

_ (Io(t) o IR(t + 1))

= 1
(Ia(1)) * (IR(t)) @

gAl/Te (T)

where Ig(t) and Ix(t) are the number of detected
fluorescence photons per time unit for green
(Alexa488) and red (Texas Red) channels,
respectively. Assuming a 3D  Gaussian
distribution of the excitation intensity, the cross-
correlation function for a free Brownian
diffusion process is given by Equation 2:
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where N is the mean number of doubly
fluorescently labelled species in the excitation
volume, and tpis the corresponding translational
diffusion time. ®, and z, are the lateral and axial
dimensions of the excitation volume,
respectively. The calibration of the excitation
volume was done using a 5 nM water solution of
Alexa Fluor 488 (succinimidyl ester; Molecular
Probes, Eugene, OR; diffusion coefficient, D =
426.3 pm?/s at 21°C). The excitation wavelength
was 780 nm and the excitation power was 25
mW. Assuming a Gaussian beam shape and
according to Equation 2 and tp = ©,/8D, the
lateral m, and axial z, dimensions were estimated
to be 0.380 and 1.40 pm, respectively.

The  optimal  two-photon  excitation
wavelength for the FCCS experiments using
Alexa488 and Texas Red was found to be 780
nm. In the present study, we determined that an
excitation power of 25 mW was suitable for two-
photon excitation of both Alexa488 and Texas
Red (fluorescence intensities exhibited quadratic
dependences and tp values were constant as a
function of the incident power below 30 mW.
Photobleaching occurred principally above 30
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mW). The excitation power was adjusted using a
variable attenuator, consisting of an achromatic
half-wave plate and a polarizing beam splitter
(Micro Controle Spectra Physics, France).
Recording times were typically between 2.5 and
5 min (average of 5-10 cycles of 30 s). The
cross-correlation curves were fitted using a
Levenberg-Marquardt nonlinear least-squares
fitting algorithm according to the analytical
model (Equation 2) wusing Igor Software
(WaveMetrics). For all experiments with doubly
labelled ds DNA substrates in the absence of
ATP, the amplitude of the cross-correlation
function, g(0), was found to be consistent with
the autocorrelation amplitudes obtained for the
two independent channels, confirming the
absence of singly labelled ss DNA before the
beginning of the reaction (data not shown). The
decrease in the g(0) value was used to calculate
the unwinding activity as a function of time
according to Equation 3:

[DNA Junwound _ €(0),_o — £(0),
[DNAJow  g(0),_,— 2(0), .,

with g(0),_, and g(0), , corresponding to the

(®))

cross-correlation amplitudes at the beginning
(zero time) and at the end (infinite time) of the
reaction, respectively.

DNA unwinding assay- The RecQ helicase
unwinding activity was measured by dual-color
FCCS measurements (see above for the
description of the FCCS set-up) in 20 mM Hepes
(pH 7.2), 40 mM NaCl, 1 mM MgCl,, 0.3 mM
DTT (named reaction buffer). The concentration
of doubly labelled DNA substrate was typically
5 nM. The DNA-binding step (performed at
either T inging = 25°C or 37°C) corresponds to
the addition of RecQ helicase to the DNA
solution. The unwinding reaction was then
initiated by adding 1 mM ATP and recorded at
Teaction = 25°C (unless otherwise stated). For
multiple-turnover experiments ([DNA substrate]
> [RecQ helicase]), the varying concentrations of
total DNA substrate were obtained by mixing
doubly labelled DNA substrate (constant
concentration of 5 nM) with varying
concentrations of the corresponding unlabelled
DNA substrate.



DNA-binding assay: Steady-state fluorescence
anisotropy- The interaction between RecQ
helicase and Alexa488-labelled oligonucleotides
(either ds or ss) was detected by steady-state
fluorescence anisotropy using a Beacon 2000
instrument (PanVera, Madison, USA) (20;31-
33). To determine the apparent Ky value (Kgapp),
Alexa488-labelled DNA (5 nM) was incubated
with increasing concentrations of RecQ helicase
in 20 mM Hepes (pH 7.2), 40 mM NaCl, 1 mM
MgCl,, 0.3 mM DTT, and the steady-state
anisotropy (r) was then recorded. The fractional
saturation was calculated as (r-gee)/(Toound-Ttice)s
where Tyoung and rge. represent the bound and free
DNA anisotropy, respectively. The Hill
coefficient, fi, was calculated by directly fitting
the titration curve using the Hill function of the
origin 6.0 sofware. Kg,, represents the
concentration of RecQ helicase required to titrate
the DNA to half saturation.

RESULTS

First, we assessed whether the unwinding
activity of E. coli RecQ helicase lead to a
significant and measurable decrease in the cross-
correlation amplitude, gayre(0) (or g(0)), as
measured by FCCS, using ds DNA substrates
harbouring a ss DNA tail at each 3’-extremity
(Fig. 1C, left. Sequences and nomenclature are
reported in Table I). As seen in Fig. 2, when
RecQ helicase and doubly labelled DNA
substrate were mixed together, only addition of
ATP lead to a time-dependent decrease in the
g(0) value, demonstrating that the drop in the
cross-correlation amplitude is actually due to the
RecQ helicase-mediated unwinding of the DNA
substrate (compare Fig. 2A and 2B). However,
although the g(0),,, value was weak, it was

reproducibly different from 0 (about 0.02),
suggesting that this value accounts for the
crosstalk between the detection channels. Indeed,
the same amplitude value was obtained using
mixtures of non-complementary Alexa488- and
Texas Red-labelled oligonucleotides (data not
shown). The g(0),,, value was then further

considered in the calculation of the fraction of
unwound DNA (see Equation 3). The unwinding
kinetics was next studied as a function of the
DNA substrate size under both single- and
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multiple-turnover conditions. In the following
sections, the temperature of the DNA-binding
step (T pinding) Was either 25 or 37°C, and the
reaction temperature (Taction) Was 25°C, unless
otherwise specified.

Kinetic study under single-turnover conditions-
Typically, the time-dependent process described
in Fig. 2A was plotted and fitted by a single
exponential model (Fig. 3A) corresponding to a
single-turnover process, i.e. when enzyme is in
excess over DNA. A similar experimental design
was applied for studying the influences of both
parameters, (i) enzyme concentration and (ii) the
size of the DNA substrate, on the first-order
kinetic rate constant Kons (TCinging = 37°C;
TCeaction = 25°C). Interestingly, the kg, value
increased by increasing the DNA length (from
13- to 66-bp) and was found to be also
dependent on the enzyme concentration (Fig.
3B). This dependence was DNA size-dependent
and saturable, with for instance, a modest and
strong transition effects observed for 13- and 66-
bp substrates, respectively (Fig. 3B). The
stronger dependence of the first-order kinetic
rate constant on helicase concentration, observed
for longer DNA substrates, highly suggests
functional cooperativity between different
helicase molecules. Therefore, the stimulation of
the unwinding reaction by increasing the DNA
size, probably originates in the possibility that
multiple RecQ helicase monomers function
simultaneously on the same DNA substrate.

During the time-course of our study, we
observed that this cooperative behaviour was
also strongly affected by varying the temperature
of the DNA-binding step (before addition of
ATP). As shown in Fig. 3C for the 66-bp
substrate, the kg, value (T eaction = 25°C) was
much less dependent on helicase concentration
when the pre-incubation step was done at T pinging
= 25°C, compared to T°yinging = 37°C. We then
measured the helicase binding to DNA at two
temperatures, 25 and 37°C, using steady-state
fluorescence anisotropy (20;31;33). DNA-
binding isotherms for RecQ helicase clearly
show different DNA-binding mechanisms
depending on the temperature (Fig. 4A-D): A
cooperative DNA-binding mode was evidenced
at 37°C (only for DNA substrates > 13-mer),
while the cooperativity was much less at 25°C.



Moreover, the Hill coefficient increased as a
function of the DNA substrate size at 37°C,
while the DNA-binding remained almost non-
cooperative at 25°C, regardless of the DNA
substrate size (Fig. 4E). Altogether, our data
suggest a direct relationship between the
presence of the cooperative DNA-binding mode
during the pre-incubation step and the
subsequent dependence of the unwinding activity
on helicase concentration and DNA length.

We wondered whether the cooperative
behaviour could be influenced by the number of
ss/ds junctions (i.e. number of ss 3’-tails) in the
DNA substrate. We then tested the unwinding
activity using 45- or 66-bp DNA substrates,
containing either 0 (blunt), one or two ss/ds
junctions (see Fig. 1C, right). Using blunt DNA
substrates, no activity was detected (Fig. 5SA &
B). This result confirms that unwinding activity
of RecQ helicase occurs onto DNA substrates
containing at least one 3’ ss DNA flanking
region, while blunt-ended DNA substrates
display no or marginal unwinding activity,
according to previous studies (18;34;35).
Moreover, using both 45- and 66-bp DNA
substrates, the unwinding activity was
systematically less dependent on the enzyme
concentration when using one ss/ds junction-
containing compared to two ss/ds junctions-
containing DNA substrates (Fig. SA & B). The
cooperative DNA-binding properties were then
studied on these DNA substrates. Fig. SC shows
that the Hill coefficient significantly changed
with the number of ss 3’-tails, with a dramatic
change when comparing one ss/ds junction-
containing and two ss/ds junctions-containing
DNA substrates. Clearly, the cooperativity was
favoured by the presence of ss 3’-tails. This
occurred mainly at 37°C, while cooperative
effects were weaker at 25°C regardless of the
DNA substrate (consistent with results shown in
Fig. 4E). Altogether, our results suggest that the
cooperative DNA-binding mode and the strong
helicase concentration-dependence of the single-
turnover kinetic rate constant are two closely
related phenomena that account for the number
of active monomers simultaneously present on
the DNA substrate. In other words, the
cooperative DNA-binding mode is predictive of
the subsequent cooperative reaction mode, i.e.
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when at least two helicase monomers may
catalyse the unwinding reaction on the same
DNA molecule, in a synergistic /cooperative
manner. The corresponding assembly
mechanism directly depends on the number of ss
3’-tails present on the DNA substrate as well as
the total length of the substrate.

Kinetic  study  under  multiple-turnover
conditions- FCCS experiments were also
conducted for measuring the unwinding activity
under Michaelis-Menten conditions, i.e. with
excess of DNA substrate over enzyme
concentration. The concentration of total DNA
substrate was varied using mixtures of
labelled/unlabelled ds  DNAs  (constant
concentration of labelled ds DNA, 5 nM, and
varying concentrations of unlabelled ds DNA) as
fluorescence  fluctuation spectroscopy and
FCS/FCCS analysis are not compatible with high
concentrations of fluorescent entities in the
excitation volume. Results and corresponding
Eadie-Hofstee plots are shown in Fig. 6 for two
DNA substrates, 66-bp (Fig. 6A) and 22-bp (Fig.
6B). In contrast to the single-turnover rate
constant kg,s (measured under conditions of
excess enzyme over DNA substrate) which was
found to be strongly dependent on the DNA size,
no strong influence of the DNA size on the
multiple-turnover k. parameter was observed
(Keat22-mer = 0.126 min™ and Ky g6-mer = 0.110 min’
", confirming that only a high enzyme:DNA
ratio is compatible with a synergistic activity of
multiple helicase monomers on the same DNA
substrate.

Spontaneous re-hybridization after unwinding
decreases the apparent unwinding rate- We
next addressed quantitatively the influence of the
re-hybridization process occurring immediately
after DNA unwinding and helicase translocation
on the unwinding rate constant. This process
could underestimate the helicase activity as
monitored by FCCS, in particular for long DNA
substrates. The unwinding activity was then
measured by FCCS using the 66-bp DNA
substrate under single-turnover conditions, as
described above, except that increasing
concentrations of ss oligonucleotides (from 7 to
45 nucleotides) were added to the preformed
helicase/DNA  substrate complexes before
addition of ATP.



In Fig. 7A, all ss oligonucleotides
correspond to DNA sequences complementary to
one strand of the duplex region of the substrate
(see Table I). Two distinct effects were observed
depending on the size of the ss DNA. For short
ss DNAs (7- and 10-mer), the unwinding activity
was first stimulated for low concentrations of ss
DNA, with concentrations of about 100 nM to
reach the optimal activity. Beyond this critical
concentration, the unwinding activity was
inhibited. In contrast, only an inhibition effect
was observed using longer ss DNAs such as 32-
and 45-mer. Moreover, non-complementary 7-
and 10-mer sequences did not display any
stimulation phase (Fig. 7B). These results
indicate that the stimulation phase is due to
hybridization of short ss DNA to the unwound
complementary strand while the inhibition is
probably due to trapping effects, i.e. binding of
helicase to ss DNA. Indeed, the longer
complementary ss DNAs, 32- and 45-mer, with
higher affinities for helicase (Kgap, = 26 and 12
nM, respectively, Fig. 7C), mainly displayed
inhibition effects. In contrast, the affinities of
helicase for shorter ss DNAs, 7- and 10-mer,
were much lower (K., = 95 and 88 nM,
respectively, Fig. 7C) and thus, concentrations
up to 100 nM were not sufficient for trapping
helicase to an extent that substantially
counteracts the stimulating hybridization effect.
Therefore, no inhibition, but stimulation of the
unwinding rate occurs with such oligonucleotide
concentrations that favour the hybridization
process between the short oligonucleotide and
the newly unwound complementary strand over
the re-hybridization process between the two
unwound strands.

These effects of short ss oligonucleotides on
the unwinding activity were compared to the
effects of the SSB protein under similar
experimental conditions (Fig. 8A). A similar
stimulating effect on the single-turnover rate
constant (maximum 4-fold) was observed up to
150 nM SSB. The SSB-dependent stimulation of
activity can be interpreted by two distinct
mechanisms: (i) SSB prevents the re-
hybridization process in a similar manner to
short ss oligonucleotides since SSB strongly
inhibits annealing (36-39); (ii) SSB binds to the
ss DNA products and then increases the
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concentration of available helicase for catalysis.
Under single-turnover conditions, only the first
mechanism probably accounts for the stimulating
effect. As shown in Fig. 8B, the stimulating
effect was significantly higher under multiple-
turnover conditions (approximately 18-fold).
Thus, we hypothesize that, in this latter case,
both mechanisms contribute to the stimulation of
helicase activity. However, under both single-
and multiple-turnover conditions, we found that
high SSB concentrations (>150 nM) reduced
helicase activity, with a more pronounced effect
under single-turnover conditions. It was
previously shown that E. coli RecQ helicase
physically interacts with SSB (40;41). A related
stimulating effect of SSB on the unwinding
activity was also reported by the authors.
Nevertheless, the relative high Ky value
characterizing this interaction (6 uM), cannot
fully explain the stimulating effects we observed
under our experimental conditions (below 150
nM SSB). In contrast, this K4 value is more
compatible with a relationship between the
formation of helicase/SSB complexes and the
observed  inhibitory = effect for  SSB
concentrations above 150 nM. This is consistent
with the observation that the SSB-mediated
inhibition is more potent under single-turnover
conditions because, under multiple-turnover
conditions (i.e. excess of DNA over helicase), ss
DNA products may compete with RecQ helicase
for the binding to SSB.

DISCUSSION

In this study, we report that the FCCS
approach is particularly  well-suited for
monitoring the helicase activity. This approach
allowed us to study the unwinding activity of E.
coli RecQ helicase under both single- and
multiple-turnover  conditions.  Interestingly,
under the single-turnover condition, strong
functional cooperative effects were observed
depending on several factors, namely the total
length of DNA, the number of ss 3’-tails and the
temperature. The dependences of the single-
turnover kinetic rate constant on both the
helicase concentration and the size of the DNA
substrate suggest cooperative/synergistic effects,
compatible with simultaneous unwinding of the
same DNA substrate by multiple helicase



monomers.  Consequently, the  apparent
unwinding activity is highly stimulated by
increasing the DNA substrate length and by
using high helicase:DNA ratio. In accordance
with this statement, such a dependence on the
DNA size was not observed under multiple-
turnover conditions, i.e. using conditions of
DNA excess over helicase. Furthermore, we
observed a direct relationship between the
cooperative properties of helicase binding to
DNA and the subsequent cooperative effects at
the catalytic level. All above-mentioned factors
(DNA size, number of ss 3’-tails and
temperature) influence both the cooperative
DNA-binding mode and the functional
cooperativity. No cooperative DNA-binding was
evidenced in a recent study performed by Zhang
et al. at 25°C (18). To date, only a cooperative
response of E. coli RecQ helicase activity on
ATP was previously described — at 37°C — (19).
Here, we show that the E. coli RecQ helicase
behaves cooperatively only at 37°C and that the
cooperative DNA-binding mode of helicase at
this temperature fully accounts for the sigmoidal
response of the helicase activity on ATP
concentration (see below).

FCCS, as other fluorescence-based
methodologies (e.g. fluorescence anisotropy and
FRET), is a sensitive method that directly
measures the helicase activity without any
requirement of separation of the ss DNA product
from the ds DNA substrate by gel-
electrophoresis. Using steady-state fluorescence
anisotropy, the difference in size between the
helicase/ds DNA substrate complex and the
released fluorescently labelled strand is
measured (20). This means that the fluorescence
anisotropy approach is only compatible with
single-turnover conditions (to ensure initial
saturation of the DNA substrate). Additionally,
the decrease in the anisotropy, concomitant to
the unwinding activity, can be very low when
helicase remains bound to the labelled strand,
complicating analysis. However, this specific
problem was circumvented by authors by using a
short labelled strand (<13-mer) with lower
affinity for helicase (confirmed in Fig. 7C). In
contrast to fluorescence anisotropy, FCCS does
not measure a size change; it is only sensitive to
the concomitant diffusion of the two
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fluorescently labelled DNA strands, with a high
cross-correlation amplitude characterizing the
duplex molecule and a significant decrease in
this amplitude upon physical separation of the
two strands. Thus, there is no limitation related
to the size of the DNA strands that initially
constitute the DNA substrate.

It is important to note that the inherent
problem of the ss DNA-binding properties of
helicase, if no technically limiting when using
FCCS, strongly underestimates the unwinding
activity, especially under multiple-turnover
conditions. In fact, the binding of helicase to ss
DNA products competes with the binding to ds
DNA substrates, limiting activity. SSB partially
counteracts this effect and, consequently,
increases apparent catalytic activity (42).
Moreover, the other stimulating effect of SSB on
helicase activity, via inhibition of the
spontaneous re-annealing of unwound strands, is
probably common to both single- and multiple-
turnover catalytic modes. The participation of
the two mechanisms for stimulating helicase
activity under multiple-turnover conditions,
while only one is expected to be involved under
single-turnover conditions (re-annealing
inhibition), probably explains why SSB
stimulates DNA unwinding more efficiently
under multiple-turnover compared to single-
turnover conditions (Fig. 8). However, the nature
of the exact mechanism of SSB-mediated
stimulation is not clear so far since it was
recently described that SSB could also stimulate
E. coli RecQ helicase through a direct physical
SSB-RecQQ  helicase  interaction  (40;41).
However, taking into account the Ky value
characterizing this interaction (6 pM), it seems
unlikely that this interaction could be responsible
for the SSB-mediated stimulating effect
observed under our experimental conditions. The
apparent K, value characterizing the SSB-single-
stranded DNA interaction as measured by
fluorescence anisotropy (Kg.,, = 94 nM; Fig.
8C) is more compatible with the observed
stimulating effect below 150 nM SSB. In
contrast, one could reasonably imagine that the
inhibition ~ phase, observed for  SSB
concentrations above 150 nM, could be due, at
least partially, to the helicase/SSB interaction.
Another explanation could be that high SSB



concentrations may displace helicase from the
DNA substrate ss 3’-tails.

Short complementary ss oligonucleotides
(typically 7- or 10-mer) display similar
stimulating effects on helicase activity, i.e. by
minimizing spontaneous re-hybridization.
However, as found with SSB, this stimulation is
limited and rather modest as it is followed by a
marked inhibition phase, due to competitive
interactions detrimental for activity. In the case
of short ss oligonucleotides, this inhibition can
be easily explained by their significant affinities
for helicase (Kqapp 95 and 88 nM,
respectively). Indeed, longer ss oligonucleotides,
32- or 45-mer, with still higher affinities (K app <
25 nM), display only inhibition profiles. In
contrast to FRET, the cross-correlation signal in
FCCS is independent on the interfluorophore
distance and on the structural dynamics of the
attached fluorophores. FCCS is only sensitive to
the physical and complete separation of the two
DNA strands and, consequently, less sensitive to

early catalytic events. This suggests that
spontaneous re-hybridization could be more
problematic in FCCS compared to the
FRET/stopped-flow approach. Indeed, the

calculated processivity of 0.5-2.2 bp.s™, as
determined in this study by FCCS, is globally
consistent with other studies, 1-3 bp.s”
(19;20;29), but much less than the rate of 84
bp.s”, as determined recently by FRET/stopped-
flow (18). Thus, the stimulating effects of SSB
and ss short oligonucleotides can be qualified as
modest and only partially increase the apparent
unwinding rate.

We found that the DNA-binding of E. coli
RecQ helicase is characterized by a cooperative
DNA-binding mode at 37°C, but is essentially
non-cooperative at 25°C. Moreover, the
cooperativity coefficient continuously increases
as a function of the size of the DNA substrate
and strongly depends on the number of ss 3’-
tails; a high cooperativity index was obtained for
long DNA substrates harbouring two ss 3’-tails.
It was previously shown that the binding of
RecQ helicase to DNA is non-cooperative at
25°C using DNA substrates containing one ss 3’-
tail (18). The present results obtained under
similar conditions confirm this statement.
Altogether, our results highlight a different
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DNA-binding mode of E. coli RecQ helicase
depending on the temperature, suggesting a
specific protein conformation compatible with
cooperative assembly that occurs at 37°C but not
at 25°C. The cooperativity is strongly related to
the DNA size and the very low cooperativity
measured for the short DNA substrate (13-bp),
even at 37°C, is compatible with the binding size
of 9-10 nt — for a monomeric unit — previously
determined (18;43). As RecQ helicase is active
on short DNA substrates, although no
cooperativity is associated to such activity, we
conclude that the monomer is sufficient to ensure
DNA unwinding. However, increasing the length
of the DNA substrate favours the binding of
multiple catalytic entities and stimulates the
apparent unwinding activity. Such a functional
cooperativity, associated to a cooperative DNA-
binding mode, suggests that RecQ helicase
monomers can function in a concerted manner
on the same DNA molecule, resulting in a
substantial increase in the unwinding activity
when multiple monomers are simultaneously
bound to the DNA substrate. This property
appears to be common to several monomeric
helicases such as Hepatitis C virus helicase
(44;45), bacteriophage T4 Dda (46) and yeast
Piflp (47). Several models have been proposed
to explain the stimulating effect of activity
including the possibility that one monomer
helicase can  prevent spontaneous  re-
hybridization = behind  another = monomer
following its translocation. It is important to note
that no cooperativity was evidenced at the DNA-
binding level at least for two of these monomeric
helicases, i.e. Hepatitis C virus helicase (45) and
Dda (46). For E. coli RecQ helicase, we show
that the functional cooperativity correlates with
the presence of a cooperative DNA-binding
mode. In fact, all factors that modulate the Hill
coefficient characterizing the helicase/DNA
interaction, also influence the functional
cooperativity. The physical meaning of this
correlation remains to be elucidated. In
particular, the influence of the number of ss 3’-
tails on the cooperativity index is unclear. It was
previously suggested that RecQ helicase
preferentially binds to ss/ds DNA junctions (18).
In first approximation, such a preference could
explain the influence of the number of ss/ds
junctions on the cooperativity. Nevertheless, our



results indicate a synergistic effect of the
presence of the two 3’-OH ss tails, regardless the
length of the duplex DNA region (above 13-
mer). Moreover, the cooperativity increases
when the size of the duplex DNA region
increases, while all DNA substrates used were
characterized by identical ss tail lengths (already
shown to be an important parameter in
controlling the number of loaded helicases on the
DNA substrate (45)). Our results indicate that
the duplex region, not only the ss/ds DNA
junction, plays a key role in the cooperative
DNA-binding mode, although the elucidation of
the mechanism behind the cooperative effects
between the two 3’-tails requires further
investigations.

Interestingly, a previous study has described
a cooperative dependence (sigmoidal response)
of E. coli RecQ helicase on ATP concentration
(at 37°C), characterized by a Hill coefficient of
3.3, suggesting that helicase functions as an
allosteric ~ multimeric enzyme (minimally
trimeric and possibly hexameric) (19). This
finding is in apparent contradiction with others
studies showing that RecQ helicase functions as
a monomer (18;29). Moreover, one study
underlines that RecQ helicase binds DNA with
no cooperativity (18). It is worthy to note that in
the latter case, the study was performed at 25°C,
i.e. under condition where no cooperativity was
observed in our assays. In contrast, we found
that a significant cooperative DNA-binding
mode exists for RecQ helicase at 37°C. We now
address the possibility that the cooperative
behaviour of helicase activity on ATP
concentration is only apparent and originates in
the cooperative DNA-binding of helicase rather
than an allosteric transition. Equation 11 (see
appendix) shows that the helicase activity may
exhibit a cooperative response in ATP
concentration simply due to indirect cooperative
effects at the DNA-binding level, in absence of
any allosteric transition and higher-order
oligomeric organization, reconciling most of the
apparent contradictions in the literature. To
further investigate the relationship between the
cooperative DNA binding mode of helicase and
its cooperative behaviour for ATP dependence,
we measured the unwinding rate using varying
concentrations of ATP, at two temperatures: 25
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and 37°C. In accordance with our model, Fig. 9
shows a stronger cooperative behaviour at 37°C
compared to 25°C. The Hill coefficient at 37°C,
2.6 (Fig. 9A), is compatible with the Hill
coefficient characterizing the helicase/DNA
complex formation for a similar DNA length, 2.9
(Fig. 4A). The corresponding coefficients at
25°C were also consistent, 1.3 (Fig. 9A) and 1.4
(Fig. 4B), respectively. The slightly lower Hill
coefficient characterizing the response in ATP
concentration compared to the previously
published value (3.3 in (19)) could be due to the
nature of the DNA substrate used which is
shorter in our study. X-ray structure of the
catalytic core of E. coli RecQ helicase (named
RecQAC; 516 amino acids) shows a monomeric
protein (48), in total agreement with biochemical
and biophysical characterizations of the full-
length protein (610 amino acids) by time-
resolved fluorescence anisotropy and analytical
ultracentrifugation (29). Altogether, our results
indicate that RecQ helicase monomers bind
cooperatively to long DNA substrates and
cooperate for DNA unwinding, although the
catalytic unit is actually the monomeric form

which is functionally sufficient on short
substrates. Finally, this cooperative DNA-
binding mode accounts for the sigmoidal

response of helicase unwinding activity to ATP.



APPENDIX

Considering the DNA-binding step, helicase (H) can bind to DNA in either the free or the ATP-bound
form:

nH + DNA < DNAeH, nHeATP + DNA <~ DNAe (HeATP),
K, K,
n n
with K1 = [ONAIHTT @) andKo= [DNA][H e ATP] 5)
[DNAeH, ] [DNA o (H e ATP), ]

The conservation relationship for DNA substrate can be written as:
[DNA Jiotal = [DNA]+[DNA e H, ]+ [DNA o (H o ATP), ] (6)
ATP can bind to the DNA-free or the DNA-bound helicase:

H+ ATP < HeATP DNAeH, + nATP <> DNAe (HeATP),
K K,
° n
with Kz = [H][ATP] (7) and Ke= [DNA e H, J[ATP] ®)
[H e ATP] [DNA o (H e ATP), ]

Eq. 6 can be simplified because [DNA] — & under conditions compatible with cooperative DNA-
binding (excess of helicase over DNA):

[DNAJioal =[DNA o H, ]+ [DNA ¢ (He ATP),]  (9)

Eq. 8 and 9 can be rearranged as:

[DNAJoil =[DNA o (H ¢ ATP). ] (14—

TP]
The initial rate of DNA unwinding (v) is then given by:

L)

v K[DNAJtotal [ATP]™

(1)
K4 +[ATP]®
where k represents the catalytic rate constant.
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'The abbreviations used are: Al, Alexa488; ds, double-stranded; FCS, Fluorescence Correlation
Spectroscopy; FCCS, Fluorescence Cross-Correlation Spectroscopy; FRET, Fluorescence
Resonance Energy Transfer; ss, single-stranded; SSB, Single-Stranded DNA-Binding protein; Te,
Texas Red.

FIGURE LEGENDS

Fig. 1. Principle of the FCCS experiment for measuring the helicase activity- (A) The amplitude of
the cross-correlation function gayre(t) is maximum in the absence of any unwinding activity when
using double-stranded DNA substrates, doubly labelled with Alexa488 (Al) and Texas Red (Te). A
significant decrease in the gayre(t) amplitude is expected, concomitant to the occurrence of unwinding
activity. (B) Characteristic fluorescence emission spectra of Al-labelled (black line) and Te-labelled
(Grey line) oligonucleotides upon two-photon excitation (A = 780 nm). Emission spectra were
recorded separately with a home-built set-up using a SpectraPro-275 digital triple grating spectrograph
coupled to a liquid nitrogen cooled CCD detector (Princeton Instruments, Acton, Massachusetts). Fig.
1B also shows transmission profiles (dashed lines) of the dichroic mirror (Chroma 580dcxr) as well as
the two additional filters (Chroma HQ510/50 and HQ630/60m-2p for Al and Te, respectively). (C)
DNA substrates used in this study. Left, the DNA substrates harbor a duplex region of varying size
(from 13- to 66-bp) and two ss DNA 3’-tails (10-b). Right, two other versions of the 45- and 66-bp
DNA substrates were tested: The first one contains only one ss 3’-tail and the other one is blunt.
Details of sequences are reported in Table I. The names of DNAs are indicated in parentheses (see also
Table I for nomenclature).

Fig. 2. Relationship between the helicase unwinding activity and the decrease in the amplitude of
the cross-correlation function- Example of a reaction mixture containing 5 nM of doubly labelled 45-
bp DNA substrate (Pss«a/Qss«te) and 10 nM of E. coli RecQ helicase in the reaction buffer (see
Experimental procedures). The helicase/DNA complexes were formed at 37°C and further incubated
for 10 min. The temperature was then lowered to 25°C and the unwinding reaction was monitored
upon addition of 1 mM ATP (A) or equivalent volume of the reaction buffer without ATP (B).

Fig. 3. Single-turnover study of the unwinding reaction- (A) Example of time-course of the
unwinding reaction under single-turnover conditions corresponding to the 45-bp DNA substrate
(Pss+a/Qss+1e). DNA and E. coli RecQ helicases concentrations were 5 and 10 nM, respectively
(T®%indging = 37°C; T°raction = 25°C). The amount of unwound DNA was estimated according to the
cross-correlation function gayre(t) and Equation 3. The single-turnover rate constant, ks, was then
calculated from: [DNA Juawound/ [DNAJomr = 1 — exp(-Kobst). (B) kops = f([RecQ helicase]) for different
DNA substrate lengths. DNA concentration was 5 nM. Temperature of the DNA-binding step (before
addition of ATP) was T inging = 37°C (T°reaciion = 25°C). White circles, 66-bp (V7gxa/W7gsre); Black
circles, 45-bp (Pss«a/Qss+re); White squares, 22-bp (Hsp«ai/I30+1e); Black squares, 13-bp (Eaz«ar/Faszete).
(C) Influence of the pre-incubation temperature (corresponding to the DNA-binding step: White
circles, T indging = 37°C; Black circles, TCpinging = 25°C) on the subsequent reaction rate (measured at
T® reaction = 25°C). DNA concentration was 5 nM (66-bp substrate (V7g«ai/ W7grre)).
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Fig. 4. DNA-binding properties of the E. coli RecQ helicase- DNA-binding was performed in the
reaction buffer and measured by steady-state fluorescence anisotropy (see details in Experimental
procedures) at 25°C (black circles) or 37°C (black squares). All DNA substrates were singly labelled
with Alexa488: (A) 66-bp (V76*A1/Y76); (B) 45-bp (PSS*AI/RSS): (C) 22-bp (H32*A1/K32); (D) 13-bp
(E23¢a1/G23). (E) Hill coefficient as a function of the DNA substrate length at two temperatures: 25°C
(black circles) or 37°C (black squares).

Fig. 5. Influence of the number of single-stranded 3’-tails on the cooperative DNA-binding and
reaction modes- The study of kq,s = f([RecQ helicase)] (see experimental conditions in the legend of
Fig. 3B; T %inding = 37°C; Teaction = 25°C) was repeated by varying the number of ss 3’-tails for two
DNA substrate lengths: (A) 45-bp: black circles, two ss 3’-tails (Pss«a1/Qss+re); black squares, one ss
3’-tail (Psssal/Nys+re); White squares, blunt (Mys:a/Nys«re). (B) 66-bp: black circles, two ss 3’-tails
(V76:a/ Waeste); black squares, one ss 3’-tail (Vyg:a/ Tesrre); White squares, blunt (Sgexar/ Tegrre). (C) Hill
coefficients for the different DNA substrates at two temperatures: 25°C (black) or 37°C (white). DNA-
binding experiments were carried out as described in the legend of Fig. 4. The names of DNA
substrates are indicated in parentheses (see also Table I for nomenclature).

Fig. 6. Multiple-turnover study of the unwinding reaction- Michaelis-Menten plots for two DNA
substrate lengths (inset, corresponding Eadie-Hofstee plots). (A) 66-bp substrate. (B) 22-bp substrate.
5 nM of doubly labelled DNA substrate (Vig:a/Wogrte of Hspxar/Izowre for the 66-bp or the 22-bp
substrate, respectively) were mixed with varying concentrations of the unlabelled version of the DNA
substrate (X76/Y76 or J3p/Ks, for the 66-bp or the 22-bp substrate, respectively), and pre-incubated at
T inding = 37°C with 10 nM of E. coli RecQ helicase in the reaction buffer. The temperature was then
lowered to 25°C and the unwinding reaction was initiated by adding 1 mM ATP (T°.action = 25°C).
The total concentration of DNA substrate ([S] = labelled + unlabelled) is reported on the x-axis.
Equilibrium and kinetic parameters are reported in the inset.

Fig. 7. Dual effect of complementary single-stranded oligonucleotides on the unwinding rate
constant- (A) The unwinding experiment was performed with the 66-bp DNA substrate (Vig«ar/ W7g+e)
in the presence of increasing concentrations of complementary ss oligonucleotides. DNA substrate and
E. coli RecQ helicase concentrations were 5 and 35 nM, respectively (T indging = 37°C; T reaction =
25°C). White squares, 7-mer (B;); Black squares, 10-mer (D,); Black circles, 32-mer (L;,); White
circles, 45-mer (Og5). (B) Control experiments with non-complementary random sequences. White
triangles, 7-mer (B’;); Black triangles, 10-mer (D’j). (C) Apparent Kd values characterizing the
interaction between RecQ helicase and ss oligonucleotides as a function of the oligonucleotide length.
Kaapp values were measured by steady-state fluorescence anisotropy using the following Alexa488-
labelled oligonucleotides: A7xai, Cioxal, H3pxa1 and Mys«4; for 7-, 10-, 32- and 45-mer, respectively.

Fig. 8. Comparative study of SSB effects on the unwinding activity of E. coli RecQ helicase under
single- and multiple-turnover conditions- The unwinding experiments were performed with the 66-bp
DNA substrate (V76:a/W7sste) in the presence of increasing concentrations of SSB. (A) Single-
turnover conditions (see experimental conditions in the legend of Fig. 7A). (B) Multiple-turnover
conditions (see experimental conditions in the legend of Fig. 6). (C) DNA-binding isotherms
(measured by fluorescence anisotropy) of SSB (at 25°C) using either ss DNA (V645 circles) or ds
DNA (V76:a/Y 76; triangles).

Fig. 9. Differential cooperative effects of ATP on the helicase unwinding activity as a function of
the temperature- The unwinding experiments were performed with the 66-bp DNA substrate (5 nM)
in the presence of 35 nM of E. coli RecQ helicase and increasing concentrations of ATP. (A) T pinging =
Toreaction =37°C. (B) Tobinding = Toreaction =25°C.
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TABLE 1. Nomenclature and sequences of oligonucleotides used in this study.

Name  Length Sequence’

Aseal 7  5-GTC AGT G -3’-AI

B, 7 5’- GTC AGT G -3

B’; 7 5’- CGT GAT G -3’

Cio*al 10 5°- TTA GTC AGT G -3’-Al

Dy 10 5-TTA GTC AGT G -3’

D’ 10 5-TTG CGT GAT A -3’

Eozea 23 5’- CAG ACT CCC TAG A AGTTAGGTT -3’-Al

Fozere 23 5°- TCT AGG GAG TCT G GATTGTTATT -3’-Te°

Gos 23 5°- TCT AGG GAG TCT G GATTGTTATT -3’

Hiouar 32 5°- AAT CCG TCG AGC AGA GTT AGG G AGTTAGGTT -3’-Al

| EPYE 32 5°-CCC TAA CTC TGC TCG ACG GAT T GATTGTTATT -3’-Te

J3 32 5°- AAT CCG TCG AGC AGA GTT AGG G AGTTAGGTT -3’

K, 32 5’- CCC TAA CTC TGC TCG ACG GAT T GATTGTTATT -3’

Ls, 32 5°- AAT CCG TCG AGC AGA GTT AGG AGA TCC CTC AG -3’

Mysa 45 5°- AGA TCC CTC AGA CCC TTT TAG TCA GTG TGG AAA ATC TCT AGC
AGT -3’ -Al

NisTe 45 5°- ACT GCT AGA GAT TTT CCA CAC TGA CTA AAA GGG TCT GAG GGA
TCT -3’-Te

Oys 45 5°- ACT GCT AGA GAT TTT CCA CAC TGA CTA AAA GGG TCT GAG GGA TCT -3’

Pssea 55 5°- AGA TCC CTC AGA CCC TTT TAG TCA GTG TGG AAA ATC TCT AGC AGT
AGTTAGGTT -3’-Al

Qss+1e 55 5°- ACT GCT AGA GAT TTT CCA CAC TGA CTA AAA GGG TCT GAG GGA TCT
GATTGTTATT -3°-Te

Rss 55 5°- ACT GCT AGA GAT TTT CCA CAC TGA CTA AAA GGG TCT GAG GGA TCT
GATTGTTATT -3’

Se6Al 66 5°- AAT CCG TCG AGC AGA GTT AGG AGA TCC CTC AGA CCC TTT TAG TCA
GTG TGG AAA ATC TCT AGC AGT -3’-Al

Tes*re 66 5°- ACT GCT AGA GAT TTT CCA CAC TGA CTA AAA GGG TCT GAG GGA TCT
CCT AAC TCT GCT CGA CGG ATT -3’-Te

Uss 66 5°- ACT GCT AGA GAT TTT CCA CAC TGA CTA AAA GGG TCT GAG GGA TCT
CCT AAC TCT GCT CGA CGG ATT -3’

A2 76 5°- AAT CCG TCG AGC AGA GTT AGG AGA TCC CTC AGA CCCTITTAGTCA
GTG TGG AAA ATC TCT AGC AGT AGTTAGGTT -3’-Al

Wisrte 76 5°- ACT GCT AGA GAT TTT CCA CAC TGA CTA AAA GGG TCT GAG GGA TCT
CCT AACTCT GCT CGA CGG ATT GATTGTTATT -3’-Te

X6 76 5°- AAT CCG TCG AGC AGA GTT AGG AGA TCC CTC AGA CCCTITTAGTCA
GTG TGG AAA ATC TCT AGC AGT AGTTAGGTT -3’

Y76 76 5°- ACT GCT AGA GAT TTT CCA CAC TGA CTA AAA GGG TCT GAG GGA TCT

CCT AAC TCT GCT CGA CGG ATT GATTGTTATT -3’

“Bases corresponding to non complementary ss 3’-tails are underlined; "Al: Alexas488; “Te: Texas Red.
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure b
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Figure 7
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Figure 8
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Figure 9
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1I1.2.3 Conclusion
It is convinced for the first time in our present study that the FCCS approach is

particularly well-suited for monitoring the unwinding activity of E. coli RecQ helicase. Based
on the principle of this advanced fluorescence technique, the helicase activity of E.Coli RecQ
enzyme was studied under both single- and multiple-turnover conditions.

Firstly, we have elucidated the interactions between helicase and its DNA substrates by
use of steady-state fluorescence anisotropy measurements. The thermodynamic characteristics
of the DNA binding ability for £.Coli RecQ helicase have been discussed. We showed that
the E. coli RecQ helicase behaves cooperatively only at 37°C, and no cooperative DNA-
binding for this enzyme was observed at 25°C. Such thermodynamic binding behaviour of E.
coli RecQ helicase was compared with that of ATP (Harmon & Kowalczykowski, 2001),
results revealed that the cooperative DNA-binding mode of helicase at 37°C fully accounts
for the sigmoidal response of the helicase activity on ATP concentration. Meanwhile, under
the single-turnover condition, strong cooperative effects were also observed depending on the
total length of DNA and the number of single-stranded 3’-tails, which helped us to understand
the relationship between the cooperative properties of helicase binding to DNA and the
subsequent cooperative effects at the catalytic level.

Subsequently, the enzymatic kinetics of E.coli RecQ helicase to unwind dsDNA
substrates was monitored by FCCS techniques. The strong dependencies of the single-
turnover kinetic rate constant on both the helicase concentration and the size of the DNA
substrate suggest cooperative/synergistic effects compatible with simultaneous unwinding
catalysis by several helicase monomers on the same DNA substrate under single-turnover
conditions. Consequently, the apparent unwinding activity was strongly stimulated by
increasing the length of the DNA substrate and by using high helicase:DNA ratio. This
observation was coincident with the RecQ helicase DNA binding behaviours, which had a
temperature and DNA size dependency. Indeed, such a dependency on the DNA size was not
observed under multiple-turnover conditions, i.e. when the DNA concentration was over the
helicase concentration.

Moreover, we addressed quantitatively the influence of the re-hybridization process
occurring immediately after DNA unwinding and helicase translocation on the unwinding rate
constant. This process could underestimate the helicase activity as monitored by FCCS, in
particular for long DNA substrates. It is important to note that the inherent problem of the
ssDNA-binding properties of helicase, if no technically limiting with FCCS, strongly

underestimates the unwinding activity, especially under multiple-turnover conditions. In fact,
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the binding of helicase to ssDNA products competes with the binding to dsSDNA substrates,
limiting activity. SSB partially counteracts this effect and increase apparent catalytic activity
(Roman et al., 1991). Furthermore, the stimulating effect of SSB on helicase activity via
inhibition of the spontaneous re-annealing of unwound strands is probably common to both
single- and multiple-turnover catalytic modes. The participation of the two mechanisms for
stimulating helicase activity under multiple-turnover conditions, while only one is expected to
be involved under single-turnover conditions (re-annealing inhibition), probably explains why
SSB increases helicase activity more efficiently under multiple-turnover compared to single-
turnover conditions. However, the exact mechanism of SSB-mediated stimulation is not clear
so far since it was recently described that SSB could also stimulate E. coli RecQ helicase
through a direct physical SSB-RecQ helicase interaction (Shereda et al., 2007; Shereda et al.,
2009). However, taking into account the Ky value (6 pM) characterizing this interaction, it
seems unlikely that this interaction could be responsible for the SSB-mediated stimulating
effect under our experimental conditions. The apparent Ky value characterizing the SSB-
single-stranded DNA interaction as measured by fluorescence anisotropy (Kgapp = 94 nM) is
more compatible with the observed stimulating effect below 150 nM SSB. In contrast, one
could imagine that the inhibition phase, observed for SSB concentrations above 150 nM,
could be due, partially, to this helicase/SSB interaction. Another reason to explain the
inhibition phase is that higher SSB concentrations may displace helicase from the DNA
substrate ss 3’-tails. Short complementary ss oligonucleotides (typically 7- or 10-mer) display
similar stimulating effects on helicase activity, i.e. by minimizing spontaneous re-
hybridization. However, as found with SSB, this stimulation is rather modest and followed by
a marked inhibition phase, due to competitive interactions. In the case of short ss
oligonucleotides, this inhibition can be easily explained by their significant affinities for
helicase (Kgapp = 95 and 88 nM, respectively). Indeed, longer ss oligonucleotides, 32- or 45-
mer, with still higher affinities (Kqapp < 25 nM), display only inhibition profiles. Thus, the
stimulating effects of SSB and ss short oligonucleotides can be qualified as modest and only
partially increase the apparent unwinding rate.

In conclusion, the FCCS technique is a sensitive method to directly measure the helicase
activity that does not require any separation of the single-stranded DNA product from the
double-stranded DNA substrate. It has several advantages when comparing with other
fluorescence-based methodologies (eg. fluorescence anisotropy and FRET), which makes the
technique promising in the real-time kinetic detections. FCCS is also characterized by its

sensitivity to the concomitant diffusion of the two fluorescently labelled DNA strands, with
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high cross-correlation amplitude characterizing the duplex molecule and a significant
decrease in this amplitude upon physical separation of the two strands, without any limitation
due to the size of the DNA strands that initially constitute the DNA substrate. Therefore, the
FCCS approach is particularly well-suited for monitoring the RecQ helicase enzymatic

activity.
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II1.3 Human RecQ5f Unwinding and Strand-Annealing
Activity as Monitored by Dual Color Fluorescence
Correlation Spectroscopy

II1.3.1 INTRODUCTION

Helicases are ubiquitous enzymes that play essential roles in nearly all DNA metabolic
processes, including DNA replication, recombination and repair (Gorbalenya & Koonin,
1993). In human, five RecQ homologs have been identified to date; they are RecQ1, BLM,
WRN, RecQ4 and RecQS5. Most of them are associated with severe autosomal recessive
diseases, notably, Bloom, Werner, and Rothmund-Thomson syndromes (Uhring&Poterszman,
2006). However, such an association has not been demonstrated for RecQ5.

The human RecQ5 exists in RecQ5a, RecQ5pB and RecQ5y three isoforms (Sekelsky et
al., 1999; Shimamoto et al., 2000). They are generated by differential splicing of RecQ5 gene.
RecQ5p is the only isoform proved to have helicase activity. In chicken DT40 cell line, single
depletion of RecQ5 has no effect on cell proliferation, cell death, chromosome stability, sister
chromatid exchanges (SCEs) frequency, sensitivity to methyl methane sulfonate (MMS),
mitomicin C (MMC) and ultraviolet (UV). In combination with BLM depletion, the RecQ5
depletion shows more severe effects than RecQ1 depletion on these factors. The SCEs
frequency of BLM/RecQS5 double depletion cells was higher than that of BLM single
depletion cells up to 22 folds after treatment of MMC (Wang et al., 2003; Otsuki et al., 2008).
Human RecQ5 can, in association with RPA, inhibit D-loop formation catalyzed by Rad51
(K133R) and accessory factor Hop2-Mnd1. This process is also ATP hydrolysis dependent.
This proved the involvement of RecQ5 in homologous recombination (HR) process for DNA
double strand breaks repair. Similar to BLM, RecQS5 can be in physical contact with Rad51
and interrupt the presynaptic filament assembly process to interfere the HR pathway at the
beginning step. However, RecQ5 cannot replace BLM to promote dHJ (double Holliday
junction) dissolution associated with TOPOIIla given that RecQS5 are physically associated
with TOPOIIla (Shimamoto et al., 2000).

At present, only RecQ5f has been biochemically characterized (Otsuki et al., 2008). It
possesses both DNA-unwinding and DNA-strand annealing activities. Moreover, ability to
promote strand exchange on forked DNA structures was also reported in RecQ5p (Kanagaraj
et al., 2006). However, the molecular mechanism that underlines the co-ordination of DNA-
unwinding and strand annealing activities of RecQ5f remains largely elusive. In addition, the

RecQ5a and RecQS5p proteins offer an attractive model system to characterize the enzymatic
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activities of a RecQ helicase domain in isolation and in association with other sub-domains on
the same poly peptide (Ren et al., 2008). This unique property allows us to take RecQ5f as a
model to address some unresolved questions with any DNA helicase. Though lots of
biochemical studies have been conducted to elucidate the biochemical function of RecQ5f3
helicase, the mechanism underlying its strand annealing activities remains unclear. Most of
the debates were focused on whether the RecQS5P helicase itself possesses the ability to
perform the strand annealing behaviour or just because of the binding of RecQ5f to the DNA
substrate which increases the proximity of two unwound single strand DNA and therefore
facilitate the strand annealing. In the latter case, no enzymatic activity was performed for
RecQ5p.

In present study, advanced fluorescence detection method FCCS was employed to
measure RecQ5p helicase ssDNA-binding, dsSDNA unwinding and ssDNA strand annealing
activities in real time. Temperature effects on ssDNA substrate strand annealing with and
without RecQ5p have been demonstrated, the £.Coli RecQ helicase was also used to as a
control, which would confirm whether RecQ5f helicase itself possesses the strand annealing
activity. The influences of indispensable co-factor, Mg*", on strand annealing activity were
also discussed here. Results in our present study could provide more knowledge to better

understand a DNA helicase with a definite intrinsic DNA-strand annealing function.

I111.3.2 MATERIALS AND METHODS

RecQS5p helicase purification and oligonucleotides- The human RecQ5p helicase was
produced as C-terminal fusions with a self-cleaving chitin-binding domain and purified as
described previously (Garcia et al., 2004). Unlabeled and fluorescently labeled
oligonucleotides (Figure 1C) were purchased from Eurogentec (Liege, Belgium) and further
purified by electrophoresis on a 12% denaturing acrylamide/urea gel for long (> 10-mer)
oligonucleotides. Double-stranded (ds) oligonucleotides were obtained by mixing equimolar
amounts of complementary single-stranded (ss) strands in 20mM Hepes (pH 7.2), 40mM
NaCl. The mixture was heated to 85°C for 5 min and annealing was allowed by slow cooling
to 25°C.

Fluorescence Cross-Correlation Spectroscopy- FCCS measurements were performed as
described in article I11.2.

DNA Binding assay: Steady-state Fluorescence Anisotropy- The interaction between
RecQ5p helicase and Alexa488-labeled oligonucleotides (either ds or ss) was detected by

steady-state fluorescence anisotropy using a Beacon 2000 instrument (PanVera, Madison,
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USA) (Guiot et al., 2006). To determine the apparent Ky value (Kg, app), Alexa488-labeled
DNA (5nM) was incubated with increasing concentrations of RecQ5p helicase in 20mM
Hepes (pH7.2), 50mM NaCl, 10mM MgCl,, ImM DTT, and the steady-state anisotropy (r)
was then recorded. The fraction saturation Y was calculated as (r-reee)/(Tbound-Tfree), Where
Thound aNd Tgee represent the bound and free DNA anisotropy, respectively. The temperature of
incubation was varied in a wide range (at 5°C; 10°C; 15°C; 25°C; 37°C). The Hill number, 1,
was calculated by directly fitting the titration curve using the Hill function of the origin6.0
software. Ky, app represents the concentration of RecQ5f helicase required to titrate the DNA
to half saturation.

DNA unwinding assay- The RecQ5p helicase unwinding activity was measured by dual-color
FCCS measurements (see above for the description of the FCCS set-up) in 20 mM Hepes (pH
7.2), 40 mM NaCl, 10 mM MgCl,, 0.3 mM DTT (named reaction buffer). The concentration
of doubly labelled DNA substrate was typically 5 nM. The DNA-binding step corresponding
to the addition of RecQ helicase to the DNA solution was performed at room temperature.
The unwinding reaction was then initiated by adding 2 mM ATP and recorded at Tcaction =
25°C (unless otherwise stated). The observed unwinding kinetic constant, Kops, was calculated

as illustrated in FCCS set-up in article I11.2.

DNA strand-annealing assay- The RecQ5p helicase DNA-annealing activity was measured
by dual-color FCCS measurements in the reaction buffer (20mM HEPES (pH 7.2), 50mM
NaCl, 10mM MgCl,, ImM DTT). The Alexas488-labeled single strand DNA at the final
concentration of 5 nM was added to reaction buffer. The DNA-annealing step (at 5°C; 10°C;
15°C; 25°C; 37°C) corresponds to the addition of RecQS5p helicase to the DNA solution.
Where required, ATP was also added to a final concentration of 2mM. After incubation of
proteins RecQ5p with Alexas488-labeled ssDNA at the indicated concentration, the reaction
was initiated by adding 5 nM TexasRed-labeled oligonucleotide which is partially
complementary to the Alexas488-labeled ssDNA. The auto strand annealing activity occurred
between the same DNA substrate without RecQ5B was monitored at the same temperatures.

The resulting DNA products were analyzed as described for the helicase reactions.

I11.3.3 RESULTS
3’-5° DNA helicase activities of RecQ5f

To understand the strand annealing activity of RecQ5p DNA helicase, we investigated
the strand separation ability of this protein under single-turnover process, where enzyme is in

excess over DNA. First we compared the unwinding activities of RecQ5f helicase by use of
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dsDNA substrates harbouring a ssDNA tail at each 3’-extremity (Fig.1B, left) and the blunt
dsDNA (Fig 1B, right). The influence of oligonucleotide length on RecQS5p helicase activity
was also studied (45-bp and 66-bp dsDNA). The results showed that RecQ5f efficiently
unwound a partial DNA duplex substrate regardless of the oligonucleotide length. Little
strand separation effects had been observed in this enzyme for blunt dsDNA (Figure 2), which
confirmed the preference for RecQ5p to single-stranded tailed dsDNA substrate. Next, the
effects of RecQS5B helicase concentration on DNA strand separation were studied by
incubating DNA substrates with 10 nM RecQ5p and 100nM RecQ5p enzyme respectively.
Two distinct phenomena were observed in this case, 1) at lower RecQ5p concentration
(10nM), the RecQS5p helicase activity was significantly inhibited for longer DNA substrate
(Figure 2A, 2C). With a first-order kinetic rate constant, Kops, of a value 0.040 min’! for 66-bp
partial double-stranded DNA in comparison with that of 0.109 min™ for 45-bp DNA substrate.
2) However, at higher RecQ5f concentration (100nM), an increased helicase activity for
RecQ5B was monitored for longer DNA substrate, with a value of 0.135 min" for 66-bp
dsDNA but 0.100 min™ for 45-bp dsDNA (Figure 2B, 2D). Altogether, our data suggested the
DNA substrate preference of RecQ5f helicase and showed a dose-dependent manner in
unwinding a partial DNA duplex.
RecQ5p possesses DNA strand-annealing activity

To better understand the dose-dependent manner of RecQS5[ helicase activity and to
directly analyze the putative ssDNA annealing activity of RecQ5f, we incubated different
concentrations of RecQ5fB with the two single-stranded 32mer or 76mer oligonucleotides
(each at 5 nM) that were used to prepare the 10 nucleotides 3’-ssDNA tailed DNA substrate
as shown by Li et al. (Li et al., 2009). Each 3’-end was labelled by the Alexas488 or
TexasRed respectively to allow strand annealing being monitored by the technique FCCS
described in Materials and Methods. The incubations and fluorescence cross-correlation
detections were carried on at 25°C. Principle of FCCS detection was illustrated in Figure 1A.
According to the FCCS results, when incubating DNA substrates with 200nM RecQ5f3
helicase, ~90% of the labelled ssDNA was annealed to its complement for both 22-bp and 66-
bp dsDNA (Figure 3A.B). When analysing the reaction kinetics using a fixed RecQ5f
concentration (200 nM), we observed that about 50% of the labelled oligonucleotide was
annealed in less than 5 min (Figure 3C). In contrast, such significant strand annealing
phenomena did not occur when replacing RecQ5p with 200nM E.Coli RecQ helicase (even
though there existed a slight annealing in the absence of RecQ5p helicase and in the presence

of E.Coli RecQ helicase). Moreover, no oligonucleotide length dependence had been
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observed when concerning the efficiency of RecQ5B-mediated strand annealing (Figure
3A.B). The enzymatic kinetics of RecQ5f annealing activity on 22-bp and 66-bp dsDNA
substrate was quite comparable.

Previous study reported that the RecQS5pP helicase requires Mg™" to catalyze DNA
unwinding (Garcia et al., 2004). Here, we try to test whether there was a similar co-factor
requirement for the strand annealing function. Firstly, we testified the Mg®" concentration-
dependent RecQ5B binding affinity to 32-nt ssDNA. Significant inhibition effects of Mg*"
concentration on the cooperativity of RecQ5p to ssDNA substrate were observed (Figure 4B).
This was explained by a continuously decreased steady-state anisotropy value at higher Mg*"
concentration. Next, we choose the most frequently used Mg”"™ concentration in recent strand
annealing studies, 10mM, as Mg”" treatment concentration in experimental group. The
RecQ5p annealing activity was monitored in presence and in absence of Mg”" to better
understand Mg®" influence for strand annealing function. As shown in Figure 4A, when
incubating 5SnM complementary 32-nt ssDNA with 200nM RecQ5f helicase with and without
Mg*", no great differences on RecQ5p strand annealing activity were observed between Mg®"
treatment and no Mg”" treatment group. This was best demonstrated the strand annealing
activity promoted by RecQ5p had no Mg**-dependence (even though a slight stimulation of
strand annealing activity at the 10mM Mg incubation). Results obtained here confirmed the
possibility that ssDNA annealing reaction promoted by RecQ5p has different Mg®" co-factor
requirements from those needed to support RecQ5p unwinding activity.

To gain further insight into the mechanism of RecQ5p-mediated DNA strand annealing,
we investigated the effects of temperature (varied at 5°C,10°C, 15°C, 25°C, 37°C) on the
DNA annealing kinetics. 200nM RecQ5f was incubated with two 3’-single-stranded 32mer
nucleotides (5 nM) at varied temperatures as indicated above. Quantitative analysis of the
FCCS measurements has shown that the DNA strand annealing kinetics of RecQ5p increased
as the increase of temperature (Figure SA). At the lowest incubation temperature (5°C), ~30%
of the labelled ssDNA was annealed to its complement for 22-bp dsDNA; this value increased
significantly for the incubation at 15°C with about 53% dsDNA formed, and at the highest
temperature (37°C), more than 95% labelled ssDNA was fully complemented to dsDNA.
When considering the same ssDNA substrate strand annealing kinetics without addition of
any RecQ5p helicase (Figure 5B), similar temperature dependence has also been observed.
However, the auto-annealing efficiency was much less significant than that observed by
incubating with RecQ5p. It was clearly indicated in Figure 5B that at the highest temperature

(37°C), only 40% dsDNA was formed and such kinetics was decreased as the decrease of
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temperature; and at the lowest temperature (5°C), just 7% dsDNA was formed. To see more
clearly the temperature influence on RecQS5p strand annealing activity, the percentage of
newly formed dsDNA was corrected by eliminating the effects of spontaneous annealing in
FCCS measurements. After being corrected by spontaneous annealing of ssDNA substrates, a
significant temperature-dependent effect could also be observed concerning dsDNA products
formed under experimental condition. These data further confirmed the possibility that
RecQ5p itself possesses a strand annealing activity.
ssDNA substrate binding affinity of RecQ5f

The observations that strand annealing activity of RecQ5p had temperature dependence
promote us to understand the single-stranded DNA binding behaviors of RecQS5f helicase
under different incubation temperatures. Existed studies had revealed the substrate preference
for different helicases at room temperature. Generally, DNA RecQ helicases have relative
abilities to stably bind DNA molecules, and moreover, they have the preference to the
different of DNA substrate forms (eg. Replication forks, bubble, D-loop, 3 branches junction,
holiday junction, double strand with flap and even G-quadruplex (G4) (Wang et al., 2003).
For example, E.Coli RecQ binds to and unwinds a large variety of duplex DNA substrates,
including ssDNA tailed and forked duplex molecules (Harmon & Kowalczykowski, 2001).
Sgsl1 also binds a number of oligonucleotide-based duplex DNA molecules in varied extents
(Bennett et al., 1999). However, the human WRN helicase has preference to the four-stranded
holiday junction (HJ) and it does not stably bind to other type of duplex DNA substrates even
though this enzyme could efficiently unwind all kinds of oligonucleotides (Broch et al.,
2002). It has been reported that RecQS5p possesses both DNA-unwinding and DNA-strand
annealing activities. It has the ability to promote strand exchange on forked DNA structures
and could unwind a wide variety of DNA substrates (Kanagaraj et al., 2006). In present study,
we try to characterize the physical interaction of RecQ5B with DNA molecules at different
temperatures to better understand the temperature dependence of RecQ5p strand annealing
activity. In practice, the cooperative DNA-binding properties were measured by Beacon2000
Instrument using 32-nt ssSDNA substrate singly labelled with Alexa488. Changes of steady-
state anisotropy values were recorded by incubating with different RecQ5f concentrations in
the absence of ATP with incubation temperatures varied among 5°C, 10°C, 15°C, 25°C, and
37°C. Detailed schematic illustration of this DNA substrate has been reported by Li et al. (Li
et al., 2009). Figure 6A-E show that RecQ5f had similar binding affinity to the same ssDNA
substrate at varied temperatures. The apparent affinity constants Kg a.pp, were 96.97 nM, 105

nM, 112.7 nM, 130.4 nM and 144.6 nM at 5°C,10°C, 15°C, 25°C, 37°C respectively. Clearly,
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the temperature has a weak effect on the cooperativity between RecQ5p helicase and ssDNA
substrate. In other words, the number of RecQS5P helicase present on the same ssDNA
substrate at varied incubation temperature would be comparable under present experimental
condition, therefore the observed temperature-dependent strand annealing activity of RecQ5f
helicase should be attributed to their inherent strand annealing ability. Such strand annealing

ability might increase at higher incubation temperatures.

111.3.4 DISCUSSION

Within the last decade, a plethora of research has implicated RecQ helicases as important
mediators of genomic stability maintenance by their cellular roles in pathways that deal with
replication stress and/or DNA damage (Sharma et al., 2005). Therefore, understanding the
cellular mechanisms by which RecQ helicase perform their vital functions has gained
prominence since the discovery that several premature aging diseases and cancers are
genetically linked to deficiencies in human RecQ helicases. Presently, most of the
understandings on the RecQ family molecular, cellular and genetic functions are related with
human WRN and BLM helicase, less is known about other members in human RecQ family,
including human RecQ5p helicase (Bennette et al., 1999; Opresko et al., 2002; Macris et al.,
2006). Previous studies about RecQS5 helicase have shown its ability to catalyze DNA
unwinding and strand annealing (Kanagaraj et al., 2006; Ren et al., 2008), however, no
experiment could confirm the annealing phenomena is attributed to strand annealing activity
of RecQ5 helicase itself or just because of the binding of RecQS5 helicase to both ssDNA
substrates which increases the proximity between the two complementary ssDNA and hence
intrigues the annealing phenomena.

As previously illustrated in our group, the technique FCCS is particularly well-suited to
characterize the helicase activity (Li et al., 2009). Here we applied the same FCCS approach
to monitor the strand annealing activity of human RecQS5f helicase. In particular, the
influence of temperature on the annealing efficiency on the same ssDNA substrate with and
without enzyme was compared. In principle, two separated complementary strands of nucleic
acids could spontaneously associate to form a double helix when the temperature is lowered
below the melting temperature (T,,), and the association ability should be higher at lower
temperature (Berg et al., 2006). Based on such DNA hybridization theory, we assumed that
under different incubation temperatures (5°C, 10°C, 15°C, 25°C, and 37°C), the spontaneous
annealing between complementary 32-nt ssDNA substrates, labeled respectively by

Alexas488 and TexasRed, should be less efficient at higher temperature. If this phenomenon
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could be observable in our study, the increased strand annealing on the same ssDNA substrate
at higher temperature by incubating with RecQ5p helicase should due to its inherent ability to
promote complementary strand pairing. However, opposite phenomenon has been observed
concerning spontaneous pairing in our study: the annealing behavior was more significant at
higher temperatures (see Fig. 5B). This could be explained by conditions used in present
FCCS measurement. It is well-known that one of the most significant advantages of FCCS
approach is their small laser-focused detection volume with only a few molecules could be
detected (Lakowicz, 2006). It means the concentration of the fluorophores needs to be in a
range when just a few molecules are present in the observed volume. In this case, there would
have more fluctuations in the small observation volume at higher temperatures, and hence the
possibility of complementary ssDNA to meet each other would increase as the increase of
incubation temperature, and consequently the spontaneous annealing efficiency increased.
Although the unexpected result was observed, we still measured the annealing behavior
between the same ssDNA substrates by incubation with 200nM RecQ5p. Results indicated a
temperature-dependent behaviour on strand annealing activities, and more importantly, the
strand pairing efficiency was significantly increased after the addition of RecQS5p helicase
(Fig. 5A). To eliminate the influence of spontaneous pairing on evaluation of RecQ5p
enzymatic functions, the percentage of rehybridization between complementary ssDNA
substrates after adding RecQS5B was corrected by Aannealing,% = annealing,%-recQsp —
annealing,%.recsp. Figure 5C clearly indicated the temperature dependence of strand
annealing activity that was induced by RecQS5p helicase after correction. The value can
provide a preliminary evidence for RecQ5p inherent annealing activity.

To better understand the temperature-dependent phenomenon of RecQ5p strand pairing,
the DNA substrate binding affinity for RecQS5B was also conducted. Similar binding
cooperativity for RecQ5f helicase on the same ssDNA substrate was observed at different
incubation temperatures (the value of Kgapp was quite comparable). It means that under
experimental conditions, there was similar number of RecQ5p helicase that could preferably
bind to the same ssDNA substrate regardless of the temperature. In combination with results
obtained in Figure 5, we can propose the possibility that the inherent strand-annealing activity
of RecQ5p helicase would be more efficient at higher temperatures. Existed studies about
helicase strand-pairing activity were all carried out with incubations at 25°C (Garcia et al.,
2004; Shara et al., 2005; Ren et al., 2008). Here is the first time that we correlated the strand
annealing activity with the temperature. Further studies would be carried out to better

understand the temperature influences on helicase strand annealing efficiency.
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Meanwhile, we also characterized RecQ5f strand annealing efficiency had no
dependence on oligonucleotide length, which is different with that in other human RecQ
family members. For example, Cheok et al. had reported in human BLM helicase, the
complementary 15mer oligonucleotides were not annealed to any detectable extent, while a
31mer pair could be annealed requiring a BLM concentration of more then 40 nM. Increasing
the oligonucleotide length to 50nt substantially increased the extent of annealing, particularly
in reactions containing a low BLM concentration (less than 20nM) (Cheok et al., 2005). The
T4 phage UvsW protein possesses different annealing ability which depends on the polarity
and complexity of the DNA substrates (Scott & Stephen, 2007). Nevertheless, a dsDNA
length-dependent behaviour for RecQ5p unwinding activity was demonstrated in our present
study, and this unwinding activity also shows a dose-dependent behaviour. In detail, for 3’-
ssDNA tailed dsDNA substrates, when incubated with 100nM RecQ5p helicases; the
unwinding kinetics was higher for 66-bp partial dSDNA than that of 45-bp partial dsDNA. But
when incubated with 10nM RecQ5p helicase, the unwinding activity for 66-bp partial dsDNA
was significantly inhibited. This could be explained by the spontaneous re-hybridization after
the unwinding process. Longer DNA substrate possesses higher possibility to have
spontaneous annealing, at low enzyme concentrations, few enzymes could bind to the
unwounded dsDNA to prevent the re-hybridization, and hence, the unwinding efficiency for
longer DNA substrate was inhibited. However, at higher protein concentration, there are more
redundant enzymes in reaction system which could specifically bind to wounded DNA
substrates to prevent spontaneous annealing and hence promote the helicase activity. Similar
results have been reported by Li et al. in monitoring the unwinding activity of E.Coli RecQ
helicase (Li et al., 2009). Unwinding results about RecQ5pB could also provide us some
knowledge to better understand their strand annealing activity. Figure 3 showed a dose-
dependence of RecQ5f helicase when performing strand pairing activity. In combination
these data with that of unwinding measurement, the inhibition effects for longer dsDNA
substrate at lower enzyme concentration could also be explained by the inherent annealing
kinetic which promote the re-hybridization between unwounded dsDNA and further inhibit
the unwinding rate. It should be noted that when comparing with the annealing effects of
RecQ5p and E.Coli RecQ helicase, only the incubation with RecQ5p could intrigued the
strand pairing; annealing efficiency in groups incubated with E.Coli RecQ helicase was quite
comparable with that had no enzyme. This may further confirm the inherent strand annealing
activity possessed only in RecQ5p. The exact mechanisms for RecQ5p helicase to perform

unwinding and strand pairing activity together need further studies.
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In addition, no Mg®" requirement was observed to perform RecQ5B-mediated strand
annealing activity, which is consistent with that of BLM helicase when performing annealing
activities (Cheok et al., 2005) and that of T4 phage UvsW helicase (Scott & Stephen, 2007).
To determine the DNA helicase activity of RecQ5p protein, we testified its ability to disrupt a
3’- ssDNA tailed partial duplex and comparing that with blunt dSDNA unwinding. Little
detectable unwinding activity was observed for blunt DNA regardless of the dsSDNA length.
For 3’-ssDNA tailed partial duplex, unwinding activity could be monitored and showed a
dsDNA-length dependence. This is consistent with results reported by others in observing
RecQ5p helicase activity (Garcia et al., 2004; Ren et al., 2008).

In conclusion, we monitored and proposed the human RecQS5 helicase has a novel
strand pairing capability in showing that RecQS5p promotes efficient annealing of
complementary ssDNA molecules in varied temperatures. This activity does not require Mg,
which is considered as the indispensable co-factors for RecQ5fB helicase function. No
substrate length-dependence has been observed in concerning with the annealing activity of
RecQ5B, but such length-dependence was observed in RecQ5B unwinding activity
monitoring. We proposed in this study that the strand pairing ability of RecQ5p is not a
simply non-specifically binding of enzyme to the two ssDNA molecules and then to bring
them into close proximity to facilitate spontaneous re-hybridization. It is the complicated
protein-protein interactions between RecQ5p which form large molecular weight complexes
and may promote ssDNA annealing by a model proposed by Ren et al., 2008 based on the
zinc-binding motif of RecQ DNA helicases (Ren et al., 2008). In contrast to the BLM strand
annealing manner which requires the multiple rings formed by binding to ssDNA of
oligomeric protein on their outer surface, the RecQS5p helicase could bind tightly to the
double-stranded part of the DNA substrate by zinc-binding motif and make RecQ5f undergo
large conformational fluctuation. Present study is only a preliminary work on elucidating the
inherent strand annealing activity of RecQ5p helicase. To better understand this annealing
behaviour of RecQ5B protein, further studies should be carried out focused on exact

mechanisms and co-factors using different RecQ5 mutants as experimental models.

I11.3.5 PROSPECTIVE

The enzymatic mechanisms under RecQS5p-mediated strand annealing are not fully
clarified yet and to answer the question of evidence that suggests RecQ5 should have
redundant functions with another RecQ helicase to maintain genomic stability still needs more

efforts. Another important issue to address is why RecQ helicases could catalyze two
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antagonistic reactions: DNA unwinding and ssDNA annealing. To better understand this,
further studies have to be conducted in the following aspects:

» To further compare the unwinding activity and the DNA strand annealing activity
of RecQ5p helicase in considering the co-factors effects (eg. ion concentration,
pH...etc).

» To study the effects of ATP and ATP analogues (eg.ATPyS, ADP) on the
RecQ5p helicase activity and strand annealing activity.

» Mutants of RecQ5p helicase would be adopted to study their helicase activity and
strand annealing activity.

» To propose the most possible models for the RecQ family helicase by

combination the helicase activity and strand annealing activity together.

I11.3.6 FIGURES AND LEGENDS

The nomenclature and sequences of oligonucleotides used in this study is the same as that
listed in Table I. at page 108.

Figure 1: Principle of the FCCS experiment for measuring the DNA strand annealing
activity- (A) The amplitude of the cross-correlation function gayre(t) is minimal in the
absence of any strand annealing activity when using two complementary single strand
(ss)DNA substrates, labelled respectively with Alexa488 (Al) and Texas Red (Te). A
significant increase in the gayre(t) amplitude is expected, concomitant to the occurrence of
annealing activity. (B) DNA substrates used in this study. The DNA substrates harbour a
duplex region of varying size (22- or 66-bp) and two single-stranded DNA 3’-tails (10-b).
Blunt dsDNA substrates used in measuring RecQ5p helicase unwinding activity are with the

size of 45-bp or 66-bp respectively.

Figure 2: DNA-unwinding properties of the human RecQSp helicase- DNA-unwinding
was performed in the reaction buffer in the presence of 2mM ATP using 5nM dsDNA
substrates possessing two ssDNA tails (Black circle) or using blunt DNA (Black triangle).
Human RecQS5p helicases concentrations were 10 and 100nM respectively. Time-course of
the unwinding reaction under single-turnover conditions were monitored by FCCS. The
amount of unwound DNA was estimated by the same way as illustrated in MATERIALS
AND METHODS (A) Time-course of the unwinding reaction for doubly labelled 3’-ssDNA
tailed (10-nt) 45-bp DNA substrate (Pss+a/Qss+te). RecQS5p concentration was 10nM; (B)
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Time-course of the unwinding reaction for doubly labelled 3’-ssDNA tailed (10-nt) 45-bp
DNA substrate (Pss«a1/Qss+te). RecQ5B concentration was 100nM; (C) Time-course of the
unwinding reaction for doubly labelled 3’-ssDNA tailed (10-nt) 66-bp DNA substrate
(V76xa1/W7s+1e). RecQS5P concentration was 10nM; (D) Time-course of the unwinding reaction
for doubly labelled 3’-ssDNA tailed (10-nt) 66-bp DNA substrate (V7e+a1/W7s+1e). RecQS5pB

concentration was 100nM.

Figure 3: Single-turnover study of the DNA strand annealing reaction- (A) 5nM two
complementary 32-nt ssDNA (Hs3a; and Ix3o1.) was incubated with RecQS5p helicases at
different concentrations. The amount of annealed DNA was estimated from the cross-
correlation function gayre(t) by: [DNAJanneated / [DNAJotal = £(0)—g(0)o / 2(0)+—g(0)o. The
single-turnover rate constant, ko,s, was then calculated from: [DNA Janneated / [DNA]iota = 1 —
exp(-Kobst). (B) 5SnM two complementary 76-nt sSDNA (V641 and Ws761e) Were incubated
with RecQ5p helicases at different concentrations. (C) 5nM two complementary 32-nt ssDNA
(H#3241 and Is3p1e) was incubated with 200nM RecQS5p helicases (black square) and that
incubated without any RecQ5p helicases (white square). Annealing activity by incubation the
same ssDNA substrates with 200nM E.Coli RecQ helicase was also monitored (Black
triangle). For all the experiments, the incubation temperature was maintained at 25°C. Black
circle, 20nM RecQ5f; White circle, 80nM RecQ5f; Black square, 140nM RecQ5f; White
square, 200nM RecQ5p; Black triangle, 300nM RecQS5p.

Figure 4: Influence of Mg2+ concentration on RecQSp helicases DNA binding and DNA
strand annealing activities- (A) 5SnM two complementary 32-nt ssDNA was incubated with
10 mM Mg*" (black circle) or without Mg®" (white circle) at 25°C. The reaction was initiated
by adding 200nM RecQ5p helicases, and the annealing activity was monitored by FCCS. (B)
5nM 32-nt ssDNA substrates singly labelled with Alexa488 was incubated with 200nM
RecQ5p at varied Mg concentration. DNA-binding reaction was performed in the reaction
buffer in the absence of ATP and measured by steady-state fluorescence anisotropy (see

details in Experimental procedures) at 25°C.

Figure 5: Influence of temperature on the DNA RecQS5p helicases strand annealing
reaction- (A) 5nM two complementary 32-nt ssDNA was incubated with 200nM RecQ5p
helicases at different incubation temperatures. The amount of annealed DNA was calculated
as previously mentioned. (B) 5SnM two complementary 32-nt ssDNA was incubated without

RecQ5p helicases. The DNA auto-strand-annealing activity was monitored by FCCS. (C) The
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influence of auto-strand annealing illustrated in Fig. 5B has been eliminated from the value
obtained in Fig. 5A by use of (% annealing: recqsp - % annealing. recqsp). For all the
experiments, the incubation temperature was maintained at 25°C. Black circle, 5°C; White

circle, 10°C; Black square, 15°C; White square, 25°C; Black triangle, 37°C.

Figure 6: DNA-binding properties of the human RecQSp helicase- DNA-binding was
performed in the reaction buffer in the absence of ATP and measured by steady-state
fluorescence anisotropy (see details in Experimental procedures) at varied incubation
temperatures, from 5°C to 37°C. 32-nt ssDNA substrates singly labelled with Alexa488 was
utilized in this assay: (A) incubation at 5°C; (B) incubation at 10°C; (C) incubation at 15°C;
(D) incubation at 25°C; (E) incubation at 37°C.
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Figure 3
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Figure 6
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IV.1 The basic biology of retroviruses

1V.1.1 Structural taxonomic for the family of retroviruses
Retroviruses have only become a common part of popular consciousness in the past

decade or two with the relatively recent emergence of HIV. They comprise a large and diverse
family of enveloped RNA viruses defined by common taxonomic denominators that include
structure, composition; and replicative properties (Coffin, 1996). It is broadly divided into two
categories- simple and complex- distinguishable by the organization of their genomes
(Murphy et al., 1994).

The viral genome is typically a dimmer of linear, positive-sense, single-stranded RNA
with each strand being 7 to 15 kilobases (kb) in length. All retroviruses contain three major
coding domains with information for virion proteins: gag, which directs the synthesis of
internal virion proteins that form the matrix, the capsid, and the nucleoprotein structures; pol,
which contains the information for the reverse transcriptase and integrase enzymes and
protease; and env, from which are derived the surface and transmembrane components of the
viral envelope protein. An additional, smaller, coding domain present in all retroviruses is
pro, which encodes the virion protease (Figure 22). Retroviruses are further divided into
seven groups defined by evolutionary relatedness, each with the taxonomic rank of genus
(Figure 23). Five of these groups represent retroviruses with oncogenic potential (formerly
referred to as oncoviruses), and the other two groups are the lentiviruses and the
spumaviruses. All oncogenic members except the human T-cell leukemia virus-bovine
leukemia virus (HTLV-BLV) genus are simple retroviruses. HTLV-BLV and the lentiviruses
and spumaviruses are complex. True retroviruses, whether exogenous or endogenous, tend to
cluster into four major groups. Their evolutionary limb lengths on the phylogenetic trees are

quite comparable (Table3).
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Tablel 3: Classification of Retroviruses

Genes Example Virion morphology” Genome
1. Avian sarcoma and Rous sarcoma virus | Central, spherical core | simple
leucosis viral group b “ C particles”
2. Mammalian B-tye Mouse mammary | Eccentric, spherical core | Simple
Viral group tumor virus “B prticles”
3. Murine leukemia- Moloney murine Central, spherical core | Simple
related viral group leukemia virus “ C particles”
4. Human T-cell leukemia- | Human T-cell Central, spherical core | complex
Bovine leukemia viral Leukemia virus
group
5. D-type viral group Mason-Pfizer Cylindrical core Simple
Monkey virus “ D particles”
6. Lentiviruses Human immuno- Cone-shaped core complex
Deficiency virus
7. Spumaviruses Human foamy virus | Central, spherical core | complex

a: Distinctive features seen in transmission electron micrographs.

b: Groups 1 through 5 are presently (and, hopefully, temporarily) designated by the
awkward descriptive terms listed in the table, awaiting the proposal of more succinct
appellations by the International Committee on taxonomy of viruses

1V.1.2 Replication cycle and pathology of HIV-virus

Human immunodeficiency viruses (HIV) are part of the lentivirus genus. It includes the
disease subtypes HIV-1 and HIV-2, the third and fourth human retoviruses are also
discovered in these years. Although the timescale is variable, HIV may lead to acquired
immune deficiency syndrome (AIDS) and depends upon numerous factors, including
treatment regimes; infections to which the person is exposed. Essentially, HIV attacks and
disables a group of cells in the immune system, the CD4 cells. These are necessary for
defending the person against cell mediated infections (Hooks and Gibbs, 1975). In present,
approximately 33.3 millions people in the world are living with HIV. Therefore, the biology
of HIV has been highly researched due to the pressing concerns of an HIV global pandemic
and push for vaccine and treatment development.

The human immune system is essentially composed of three branches, each of which has
a specific role in defending the body against bacterial and viral attack (Schwcizer et al.,
1995): the non-specific branch (eg. ear wax, gastric acid, saliva); the cell-mediated branch
(using various types of ‘T’ cells to attack organisms that enter cells); the humoral branch

(based on the action of antibodies). The HIV attacks and invades cells within the cell
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mediated branch of the immune system-specifically the CD4 (or T) cells, also nanophages.
Understanding the HIV life cycle and HIV replication has made it possible to develop the
medications we use to treat HIV and AIDS.

The process of HIV replication is illustrated in Figure 24, which explains what HIV
infection do to interrupt the normal cell life cycles (Venkatesh et al., 1991; Lochelt et al.,
1993). 1) Viral attachment: once in the body, HIV needs a host to help it reproduce. In case of
HIV, the host is the T-cell or CD4 cell. HIV seeks out CD4 cells and must attach to them by
way of a “lock and key” type system. 2) Viral fusion and penetration: once attached to the
cell, HIV injects proteins of its own into the cellular fluids (cytoplasm) of the T-cell. This
causes a fusion of the cell membrane to the outer envelope of the HIV. 3) The uncoating: in
order to use its genetic material (RNA) for reproduction, the protective coating surrounding
the RNA must be dissolved. 4) Reverse transcription: once in the cell, the single stranded
RNA of the HIV must be converted to the double stranded DNA. It accomplishes this with the
help of the enzyme-reverse transcriptase, which uses building blocks from the T-cell to help
change the HIV RNA to DNA. The DNA contains the genetic information needed for HIV
reproduction. 5) Integration: To use the cell to reproduce, it must integrate the newly formed
DNA into the cell nucleus. Enzyme named HIV integrase plays an indispensable role in HIV
integration process. 6) Viral latency: once integration has occurred, HIV must wait for more
protein building blocks to be formed by the cells or in other words, HIV is waiting for
materials it needs to complete the reproductive process. 7) Final assembly: after all the
materials are available, they must be cleavaged and assembled into new HIV. This process is
introduced by the enzyme-protease. 8) Budding: the final step of the viral life cycle is called
budding. With its genetic materials tucked away and a new outer coat made from the host
CD4 cell’s membrane, the newly formed HIV pinches off and enters into circulation, ready to

start the whole infection process again.
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Figure24 : Replication cyle

of HIV-1.

Principle replication
steps of HIV-1 and cell
are potentially inhibited
by commercial drug (a,
b, ¢, and e) or by drugs
in research (d and e).

a: Fusion inhibitors
block the enter of virus
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b: Inhibitor of reverse
transciptase block the
viral DNA synthesis.
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block the virus
maturation by inhibiting
viral proteolyses.

d and e: Inhibitor of
integrase  (IN). Two
types of inhibitors: d)
block the viral DNA 3’-
processing activity of
IN. e) block the viral
DNA strand transfer
activity of IN.

From (Pommier et al.,
2005)
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1V.1.3 Introduction to anti-retroviral treatments
In April 1997, World Health Organization (WHO) held an informal consultation on the

implications of antiretroviral treatments for HIV/AIDS, with the objective of providing policy
guidance on major issues relating to the use and provision of antiretroviral drugs. From that
moment on, studies have been focused on developing novel antiretroviral treatments. The
approach to antiretroviral therapy and the design of therapeutic regimens has been influenced
by several significant findings form studies on the pathogenesis of HIV infection (Moebes et
al., 1997; Erlwein et al, 1998; Wu et al., 1998). Since ongoing replication of HIV drives the
disease process, causing progressive immunological damage, an ideal target of antiretroviral
treatment is to obtain timely and sustained suppression of viral replication.

Medications for the treatment of infection by retroviruses, primarily HIV has been
termed as antiretroviral drugs (Rethwilm, 1995; Coffin, 1996). In the current treatments, there
are five groups of antiretroviral drugs, each of these groups attacks HIV in a different way
(Figure.24).

In the early anti-HIV treatments, the only drugs available for treating HIV infection
were nucleoside analogue reverse transcriptase inhibitors (NRTI). These drugs interfere with
the action of a specific HIV enzyme-reverse transcriptase (RT)-involved in the replication
cycle of HIV. The first anti-HIV drug, zidovudine (AZT), was discovered in the early 1980s
to possess the ability of suppressing HIV replication in the HIV-infected individuals.
Subsequently, four other NRTI- zalcitabin (ddc), didanosine (ddI), stavudine (D4T), and
lamivudine (3TC) has been discovered (Schliephake&Rethwilm, 1994).

In the year of 1990s, the non-nucleoside reverse transcriptase inhibitors (NNRTI) were
discovered and they are also antiretroviral medicines that prevent the HIV from multiplying
(Lochelt&fliile, 1996). To prevent the RT from converting RNA to DNA, the NNRTI
attaches itself to RT and in turn, HIV’s genetic material cannot be incorporated into the
healthy genetic material of the cell and hence prevents the cell from producing new virus.
Presently, four type of NNRTI have been discovered, they are efavirenz + tenofovir +
emtricitabine (EFV+TDF+FTC), delavirdine (DLV), efavirenz (EFV), and nevirapine (NVP).

HIV protease inhibitors (PIs) were first invented between 1989 and 1994, which were
used in the treatment of patients with AIDS and were considered the first breakthrough in
over a decade of AIDS research. Currently, there are five HIV Pls approved by FDA for the
treatment of HIV infection. They are saquinavir, ritonavir, indinavir, nelfinavir, and

amprenavir. These medications work at the final stage of viral replication and attempt to
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prevent HIV from making new copies of them by interfering with the HIV protease enzyme.
Consequently, the new copies of HIV are not able to infect new cells (Enssle et.al, 1996).

Fusion or entry inhibitors work by preventing HIV from entering healthy CD4cells in the
body. They work differently than many of the approved anti-HIV drugs, such as the PIs, the
NRTI and the NNRTI, which are active against HIV after it has infected a CD4 cell. Fusion
inhibitors work by attaching themselves to proteins on the surface of CD4 cells or proteins on
the surface of HIV to prevent the binding of HIV’s outer coat to the proteins on the surface of
CD4 cells. Two fusion inhibitors have been approved by the FDA. One named enfuvirtide
(T20), targeting the gp41 protein on HIV’s surface; and the other one named maraviroc that
targets the CCRS protein (Chang et al., 1989; Schlicht et al., 1989; Enssle et.al, 1996).

In the year of 2007, a member of a new class of antiretroviral drugs, named Raltegravir,
has been proved by FDA as a safe and effective drug for patients beginning treatments against
HIV. Raltegravir is a HIV integrase inhibitor with faster onset of action and fewer adverse
side effects. It inhibits the HIV integrase enzyme, which inserts the viral genome into the host
cell’s DNA by inhibiting essential strand-transfer activities of integrase. For example, the
MK-0518 is an integrase strand transfer inhibitor (InSTI) from the hydroxypyrimidinone
carboxamide class. It has demonstrated robust efficacy in treatment-experienced and
treatment-naive patients (Pommier et al, 2005).

To provide more effective treatment in preventing the replication of HIV, various agents
may be used together, particularly those that inhibit the early phase and the late phase.
Combined treatment would inhibit HIV replication in cells that have already been infected
and prevent infection of new cells (Svarovskaia et al., 2004; Emiliani et al., 2005; Cherepanov
et al., 2005; Rahman et al., 2006). When taken several antiretroviral drugs in combination, the
approach is known as highly active antiretroviral therapy (HAART). There are different
classes of antiretroviral drugs that act at different stages of the HIV life cycle. Based on the
phase of the retrovirus life-cycle that the drug inhibits, antiretroviral drugs are broadly
classified as following:

» Nucleoside and nucleotide reverse transcriptase inhibitors (NRTI), which inhibit
reverse transcription by being incorporated into the newly synthesized viral DNA
and preventing its further elongation.

» Non-nucleoside reverse transcriptase inhibitors (NNRTI), which inhibit reverse

transciptase directly by binding to the enzyme and interfering with its function.
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» Protease inhibitors (PIs) target viral assembly by inhibiting the activity of
protease, an enzyme used by HIV to cleave nascent proteins for final assembly of
new virons.

» Integrase inhibitors inhibit the enzyme integrase, which is responsible for
integration of viral DNA into the DNA of the infected cell. There are several
integrase inhibitors currently under clinical trial, and raltegravir became the first
to receive FDA approval in October 2007.

» Entry inhibitors (or fusion inhibitors) interfere with binding, fusion and entry of
HIV-1 to the host cell by blocking one of several targets. Maraviroc and
enfuvirtide are the two currently available agents in this class.

» Maturation inhibitors inhibit the last step in gag processing in which the viral
capsid polyprotein is cleaved, thereby blocking the conversion of the polyprotein
into the mature capsid protein (p24). Because these viral particles have a
defective core, the virions released consist mainly of non-infectious particles,
there are no drugs in this class currently available, though two are under
investigation, bevirimat and vivecon.

However, HIV is a smart virus. It has developed mechanisms to overcome the blocks
imposed by drug treatments. The life cycle of HIV can be as short as about 1.5 days from
viral entry into a cell, through replication, assembly, and release of additional viruses, to
infection of other cells (Coffin, 1996). They can produce several virus mutants which have a
natural selection and can enable them to slip past defenses such as the human immune system
and antiretroviral drugs. Through a microevolutionary process, HIV variants that are resistant
to the intended inhibition are able to replicate and reproduce more virus. Over time, in the
presence of drug, such as AZT, random mutations may develop and be selected for that allow
these variants to be resistant to the effects of AZT. These drug resistant variants have greater
fitness and can replicate in the patients even in the presence of the drug. Specifically,
mutations in RT develop in the presence of AZT. These variants allow HIV to continue to
replicate in human CD4 cells. HIV variants may only contain a single amino acid change in
the protein sequence to render an anti-HIV drug ineffective. Briefly, the more active copies of
the virus, the greater the possibilities that one resistant to antiretroviral drugs will be made, so
antiretroviral combination therapy defends against resistance by suppressing HIV replication
as much as possible.

In recent years, drug companies have worked together to combine these complex

regimens into simpler formulas, termed fixed dose combinations. For instance, two pills
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containing two or three medications each can be taken twice daily. This greatly increases the
ease with which they can be taken, which in turn increases adherence, and thus their
effectiveness over the long-term. Lack of adherence is a primary cause of resistance
development in medication-experienced patients. Patients able to adhere at this rate and
higher can maintain one regimen for up to a decade without developing resistance. This
greatly increases chances of long-term survival, as it leaves more drugs available to the

patient for longer periods of time.

1V.1.4 Structure and function of HIV-integrase

In the process of retroviruses replication, integration of viral DNA into host DNA is an
essential step in the replication cycle of HIV and other retroviruses (Coftin, 1996; Hindmars
& Leis, 1999). An infecting retrovirus introduces a large nucleoprotein complex into the
cytoplasm of the host cell. This complex, which is derived from the core of the infecting
viron, contains two copies of the viral RNA together with a number of viral proteins,
including reverse transcriptase and integrase (Wiskerchen & Muesing, 1995). Reverse
transcription of the viral RNA occurs within the complex to make a double stranded DNA
copy of the viral genome, the viral DNA substrate for integration. The viral DNA remains
associated with both viral and cellular proteins in a nucleoprotein complex termed the
preintegration complex (PIC). One constituent of the preintegration complex is the viral
integrase (IN) protein, the key player in the integration of the viral DNA into the host
genome. The other components of the preintegration complex that are transported to the
nucleus along with the viral DNA and IN, and their possible functions have not been clearly
clarified yet. The critical DNA cutting and joining events that integrate the viral DNA are
carried out by the integrase protein itself.

IN is an enzyme that is responsible for integration of the reverse-transcribed double-
stranded blunt-ended DNA into the host cell DNA. Biochemical studies have elucidated the
basic chemical mechanism of integration of IN, which catalyses two reactions (Figure 25): in
the first step of the integration process, two nucleotides are removed from each 3’ end of the
viral DNA, a reaction termed 3’ end processing. Cleavage then occurs to the 3’ side of a CA
dinucleotide which exposes the terminal 3° hydroxyl group that is to be joined to target DNA.
In the second step, DNA strand transfer, a pair of processed viral DNA ends is inserted in the
target DNA (Smolov et al., 2006). In case of HIV, the sites of integration on the two target
DNA strands are separated by five base pairs. Repair of this integration intermediate results in

a direct duplication of five base pairs flanking the integrated viral DNA. Such repair is not
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performed by IN but most likely by host proteins. There is little specificity for the sites of
integration in host DNA and insertion can occur at essentially any location.

Stereochemical analysis of the reaction pathway has demonstrated that both 3°-
processing and DNA strand transfer occur by a one-step transesterification mechanism
(Engelman et al., 1991). In vitro 3’-processing and strand transfer reaction of IN has been
widely carried out in recent years. A simplified in vitro system has proved to be invaluable for
dissecting the biochemical mechanism of DNA integration.

HIV-1 integrase is comprised of three domains (Figure 26) based on the susceptibility of
the linker regions to proteolysis (Engelman & Craigie, 1992), functional studies (Engelman &
Craigie, 1992; Engelman et al., 1993) and the structures of the domains, which have
individually determined by X-ray crystallography of NMR.

» The catalytic core domain contains the invariant triad of acidic residues, the D,
D-35- E motif (Rowland & Dyke, 1990; Engelman & Craigie, 1992), comprising
residues Asp 64, Asp 116 and Glu 152 in the case of HIV-1 integrase (Figure
26B). Mutagenesis of these residues and their counterparts in related retroviral
integrases abolish or severely diminish all catalytic activities in parallel. This
central domain is resistant to the proteolysis, and plays an essential role in fixing
the divalent ion Mn*" or Mg>", which is necessary to initiate the enzymatic
activity of HIV-INs. Currently, different catalytic core structures have been
obtained, which permits the tracing of the changes in flexible buckle
conformation as well as the positioning of the lateral chain of the residue Glu 52.

» The N-terminal domain of HIV-1 integrase contains a conserved pair of His and
Cys residues, a motif similar to the zinc-coordinating residues of zinc fingers.
Although this domain does indeed bind zinc (Leh et al., 2000), its structure is
totally different from that of zinc fingers. Since the sites of integration into target
DNA are relatively non-specific, it has been suggested that this domain may
interact with target DNA. Another role possibly involved in multimerization of
integrase.

» The C-terminal domain interacts with a sub-terminal region just inside the very
ends of the viral DNA end. The C-terminal domain of retroviral INs may
therefore play a similar role to that of the site-specific DNA binding domain of
transposases, which also recognize a sub-terminal sequence at the ends of the
transposon DNA. It also involved in the non-specific DNA-binding, and in

maintaining the stability of the IN/DNA complex.
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Strand transfer

>

Figure 25 : IN catalysed reactions in vivo: 3’-OH terminal is in red and the 5’ terminal

is in green

A : Viral DNA, sequence of att is in detail. The green arrowhead indicates CA
dinucleotide cleavage site in 3’-processing.

B : After 3’-processing, viral DNA possesses two 3’-OH terminals with free
dinucleotide GT.

C : After the translocation into host nucleus, IN facilitates the insertion of viral DNA
ends to the target DNA.

D : Integration on the two target DNA strands are separated by five base pairs.

E : Repair of this integration intermediate results in a direct duplication of five base
pairs flanking the integrated viral DNA. From (Pommier et al., 2005)
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Figure 26 : Domains structure of HIV-IN.

A: HIV-INs is composed of three domains. The core domain contains the catalytic site. A
triad of acidic residues, the D,D-35-E motif, play a key role in catalysis. The N-terminal
domain includes the conserved HHCC motif which binds zinc. The C-terminal domain is less
well conserved.

B: Illustration of HIV-IN catalytic core structure. The coordination of Mg2+ into catalytic
core is realized through the residue Asp 64 and Asp 116.

B: Illustration of the mutation residue site G140S and Q148H in the HIV-INs core structure.
From (Rowland & Dyke, 1990; Engelman & Craigie, 1992)
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Several IN-inhibitors have been identified at present and the classification of these
inhibitors is in accordance with their independent inhibition mechanisms. In general, IN-
inhibitors could be divided into three classes (Pommier et al., 2005): 1) IN binding inhibitor
(INBI); 2) IN strand transfer inhibitor (INSTI) and 3) inhibitors which could modify the
oligomeric state of IN. To date, only INSTI have been shown to have a potent antiviral
activity in vivo (Hazuda et al., 2000; DeJesus et al., 2006).

» PB-diketo acids (DKAs), acting as specific inhibitors of the strand-transfer step,
provided the first proof of principle for HIV-1 IN inhibitors as antiviral agents
followed by a series of metabolically stable compounds characterized by the
incorporation of the diketo acid moiety into more complex heterocyclic frames
(Figure 27). Among them, S-1360, L-870, 810 represent the first generation of IN
inhibitors that have entered clinical studies (Hazuda et al., 2000).

» Raltegravir (RAL) is a 1-N-alkyl-5-hydroxypyrimidinone, which is a structural
analogue of the DKAs class of compounds and shares their B-hydroxy-ketone
structural motif (Figure 27). This structural motif possesses metal-chelating
functions, and it is postulated that compounds bearing these functional groups
interact with divalent metals within the active site of HIV-1 integrase (Grinsztejn
et al., 2007). RAL and its related molecules inhibit the strand transfer process of
HIV-1 viral genomic DNA insertion and as a result are a referred to as INSTI.
RAL has shown to have a 50% inhibitory concentration (ICsg) of approximately
10 nM (Merck & Co. Inc, 2007). It has demonstrated activity against isolates
resistant to NRTIs and NNRTIs, and Pls and therefore RAL drug demonstrated a
rapid, potent and sustained antiretroviral effect in patients with advanced HIV-1
infection.

» Elvitegravir (EVG) is a dihydroquinoline carboxylic acid compound that, like
RAL, exhibits the active IN-inhibitor-confering B-hydroxy-ketone structural
motif (Figure 27). EVG is a specific inhibitor of the strand-transfer step of HIV
integration (DelJesus et al., 2006). This drug is active against HIV-1 and HIV-2,
has a ICyy of 1.2 nM in peripheral blood mononuclear cells (PBMCs) and a
serum-free antiviral ICsy of 0.2nM. EVG has also demonstrated activity against

1solates resistant to NRTIs and NNRTIs, and Pls.
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V.2 The GI40S mutation in HIV integrases from
raltegravir-resistant patients rescues catalytic defect due to
the resistance Q148H mutation

1IV.2.1 Introduction

Integrase inhibitors work by interfering with the enzyme integrase which is responsible
for HIV replication. HIV-IN is one of the three enzymes essential for viral replication, which
is responsible for integration of the reverse-transcribed double-stranded blunt-ended DNA
into the host cell DNA. Two reactions: 3’-end processing and strand transfer are involved in
IN catalyzed process. By interfering with IN, the IN inhibitors prevent HIV genetic material
from integrating into the host cell, thus stopping viral replication. In October 2007, the United
States Food and Drug Administration (FDA) approved the first drug in the integrase-inhibitor
class for the treatment of HIV-1 as part of combination antiretroviral therapy in treatment-
experienced patients, adding to the available chemotherapeutic agents for the effective
treatment of HIV/AIDS.

At present, only INSTI have been shown to have a potent antiviral activity in vivo
(Hazuda et al., 2000; Delesus et al., 2006). The most frequently used drug RAL, a drug of the
INSTI group, has already proven to be active when used with an optimized regimen in
patients infected with drug-resistant viruses. However, in clinical treatments, resistance
mutations are present in the IN gene of patients. According to the Merck Protocl 005 study
team, by studying 35 patients with integrase mutations during virologic failure on
raltegravirtOBR, two genetic pathways of mutations in the HIV-1 integrase gene were noted:
N155H or Q148K/R/H (Merck & Co. Inc, 2007). Both pathways were associated with RAL
resistance, with the Q148H pathway of mutations resulting in measurably larger reductions in
susceptibility (25-fold versus 10-fold for N155). The acquisition of N155 or Q148 mutations
were found to result in cross-resistance to structurally diverse integrase inhibitors and the
acquisition of additional mutations resulted in high-level resistance both in vitro and in vivo.
These mutations point directly to the catalytic site of HIV-1 integrase and the cross-resistance
exhibited by HIV-1 variants with N155 or Q148 mutations is therefore consistent with the
supposition that integrase inhibition takes place by affecting binding of the common
pharmacophore within the active catalytic site of HIV-1 integrase. In addition, in the presence
of elvitegravir during in vitro passage of wild-type HIV-1, two patterns of primary integrase
resistance- T661 and E92Q-were found to be the most commonly selected (Malet et al., 2008).
Focused on the exclusive Q148H/R/K, G140S/A or N155H mutations pathway during
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virologic failure in raltegravir treatment, Mouscadet and his colleagues have carried out a
detailed analysis of the molecular and structural effects of these mutations. Newly identified
omega-shaped hairpin containing Q148 residue in the integrase core domain has been
characterized, and they proved that these mutations greatly altered the specificity of DNA
recognition by integrase (Mouscadet et al., 2009). The resistance associated mutations to
integrase inhibitors and the degree of cross-resistance conferred by those mutations were also
studied by Goethals et al. They reported that the Q148R mutation is selected by both
raltegravir and elvitegravir and conferred resistance to a diverse panel of integrase inhibitors.
Additionally, mutations selected with elvitegravir (E92Q and T66I) conferred significant
resistance to many integrase inhibitors with a small reduction in susceptibility to raltegravir
(Goethals et al., 2008).

In present study, we investigated the impact of the two main genetic resistance pathways
(N155H and G140S/Q148H), on viral replication and the catalytic properties of recombinant
INs. Because according to the studies of Malet et al. (Malet et al., 2008), the N155 pathway
may shift to the Q148 pathway over time and the Q148H mutation occurs simultaneously with
G140S mutation in most cases. The effect of the G140S/Q148H double mutation was
particularly investigated here by constructing both the Q148H and G140S single mutants and
the double mutant. We also studied the effect of IN background (laboratory or patient) on the
properties of the enzymes. DNA-binding and catalytic properties of wild-type and RAL-

resistant INs were studied by use of steady-state fluorescence anisotropy-based assay.

1V.2.2 Manuscript

This manuscript has been published on « Nucleic Acids Research» vol. 37, No. 4, pp. 1193-
1201.
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ABSTRACT

Raltegravir (MK-0518) is the first integrase (IM]) inhib-
itor to be approved by the US FDA and is currently
used in clinical treatment of wviruses resistant to
other antiretroviral compounds. Virological failure
of Raltegravir treatment is associated with muta-
tions in the IN gene following two main distinct
genetic pathways involving either the N155% or G148
residue. Importantly, in most cases, an additional
mutation at the position G140 is associated with
the Q148 pathway. Here, we investigated the viral
DMA kinetics for mutants identified in Raltegravir-
resistant patients. We found that (i) integration is
impaired for Q148H when compared with the wild-
type, G1405 and G1405/Q148H mutants; and (i} the
N155H and G1405 mutations confer lower levels of
resistance than the Q148H mutation. We also char-
acterized the corresponding recombinant INs prop-
erfies. Enzymatic performances closely parallel
ex vivo studies. The Q148H mutation ‘freezes’ IN
into a catalytically inactive state. By contrast, the
conformational transition converting the inactive
torm inte an active form is rescued by the G1405/
Q148H double mutation. In conclusion, the Q148H
mutation is responsible for resistance to Raltegravir
whereas the G1405 mutation increases viral fitness
in the G1405/0148H context. Alogether, these
results account for the predominance of G1405/
2148H mutants in elinical trials using Raltegravir.

INTRODUCTION
Inicgrage (IM) inhibitors constituie 4 new class of anti-
retrovical  agents  blocking  HIV-1 IN  activity (1)

HIV-1 IM 15 one of the three enzymes essential for viral
replication. 1M 1= responsible for inicgration of the
reverse-iranscribed  douhle-strandad  blunt-ended DNA
o the host cell DNA and, s therefore an attractive
target for anti-HIW drugs, IN catalyses two reactions:
3end processing and sirand transfer (2). During 3-end
processing, the terminal GpT dinvclestides are cleaved
frown the ¥-end of each long terminal repeat (LTR), pro-
ducing CpA Y-hydrosyl ends. This reaction takes place
within a nucleoproicin complex known as the preiniegra-
tion complex (PIC). The PIC is then iransporied through
the nuclear pore into the nuclews, where strand transfes
oocurs, During this second siep, [N transfers both newly
exposed Veextremties of the viral DNA o the target
DYNA by a one-step transesterification reaction, resuliing
in full-site integration (3).

To daie, only iniegrase sirand transfer imhibitor
(IMNSTI have been shown to have a potent antiviral activ-
ity i owive [4.5). Raliegravie (RAL), a drug of the INSTI
group, was recently approved for therapeutic wse after
clinical assays demonstrated a rapid, potent and sustained
antirctroviral effect in patients with advanced HIV-1 infec-
tion (61, Becawse of its mechanism of action, this novel
antiviral agent (ARY) is lkely 1o be active against viruses
resistant 10 other class of antiretrovieal drogs such as
nuclenside reverse transcrptase inhibiiors (MRTL). non-
nuclenside reverse iranscriptase  inhibitors (NINRTI)
Provtease (P1) and entry inhihitors. Indesd, RAL has
already proven e be active when used with an opiimized
regimen in patients infected with drug-resistant viruses (6G).
However, resistance mutations are present in the 1IN gene
all patienis who fail o respond o BRAL drcatment.
Resisiance data from a clinical study at the Hospigal
Pitse-Salpéiriére show that resistance to RAL develops
mn two main pathways, either through mutaiions of the
155 or the QU4E residue (7). This stiudy also highlighis
twa important ehservations: (i) the N33 pathway mav
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shifi to the Q148 pathway over time. (i1} In mosi cases, the
OT48H mutation occurs simultaneously with the G405
mutation. The QH48H mutation may be present as a sin-
ghe mutation at the beginming ol the treatment. but the
(r1405% mutation appears after a few weeks of treatment.
Thus, the Q148 and G140 residues clearly play a key role
i the treatment falure on RAL. Ciher large-scale studies
have shown that the QI48 pathway 1= the most Irequently
cbserved of the two pathways in RAL freatment Fatlure
(8}, (Mhers mutations, such as the EY2 and E1570), have
alsn been descnbed (7).

We investigated the impact of the two main genetic
resistance pathways (MNI53H and G1405/Q048H). on
viral replication and the catalytic propertics of recombi-
nant IMs. In particular, we imvestigated the cifect ol the
Cr 140500148 H double mutation, by constructing both the
QT48H and Crl405 single mutants as well as the double
mutant. We also studied the effect of IMN background
(laboratory strain or patient) on the properiies of the
cnzymes. We found that the QN45H mutation caused resis-
tance to RAL when present alone, Howewer, this mutation
spvercly mpaired viral replication kinetics in additon to
the catalytic activity of the recombinant TN, The 1405
mutation did not confer strong resistance, but restored the
replication capability of the Q148H mutant. Accordingly.
the iw witro activity of the G 1405/ 148H mutant can reach
g wild-type level of activity while the single mutant (48H
cannot. Our kinetic study reveals that QT48H is a catalytic
mutant hlocked n an mactive conformation. The G405
mutation nduces a conformational transition compatible
with activity, Thus, the combination of thess two muta-
tions results in 2 virus that is both capable of replication
and highly resistant to RAL. Finally, we found that the
Cr 1405 00148H mutant was much more resistant than
the M155H mutant. These hndings are consisient with
the switch from the MNI155 to the Q148 pathway observed
after o few weeks of RAL treatment.

MATERIALS AND METHODS
Cells nml virnses

MT4 cells were cultured in BPMI 1640 containing 0%
fetal calf serum. 203T and Hela-P4 cells were cultured
in Dubeleco’s modified Eagle mediom  supplemented
with  10%  Fetal ecall serwm, 100 units  penicllingml
(Invitrogen], and 10 pg streptosnycin/ml (Invitrogen).
HIV-1 IM tautanis were generated as  previously
deseribed. Briefly, the feagrment cncoding 1N of the repli-
catisn-competent pNL43 virus was digested with Agel
and EcoRl, inserted into the Bleeseripd wector and IN
mutanis were obtained by mutagenesis (Quick change
mutagenesis  kit, Striagene). We stwdied the B9,
Gildis, Q143H, NI155H and G405/ Q148H mutations in
a pML43 background. The constructs were checked hy
sequencing and the fragment was then inserted into
pML4A3. HIV-1 virus stocks of all mutanis were prepared
by transfecting 293T cells. Treansfection assays were
carried out by the caloum phosphate methed. Yiral
supernatanis, 43 b posteiransfection,  were  filtered
through a (.45 pm-pore-sire-filter and frozen at =80°C,

HIV-1 p24™**F antigen contenis in viral supermatants were
determined by enzyme-linked immunosorbent  assay
{Perkin-Elmer Life Sciences).

HIY imfectivity assy

single-cycle titers of the virus were determined in HeLa-P4
cells, HeLa-P4 cells are Hela CDd LTE-Lacs cells in
which fee expression is induced by the HIY transactiva-
tor protein Tat, making it possible to guantity HIV-1
imfectivity precisely from o single ovcle of replication.
Cells were infected. in toplicate, in $-well plates, with
virus (equivalent of 3ng of p24®™® antigen). The single-
cycle titers of viruses were determined 48 h alter infection
by quantifving -galactosidase activity in P4 lysates in a
colorimetric assay (the CPRO assay) based on the cleay-
age of chlorophenal red-P-D-galactopyranoside (CPROH
by f-galactosidase. For 1Cs, determination, cells wers
imfected with wviruses and grown in the prescnoe of
mereasing  concentrations of RAL or the diketo-acid
L731-988, The 50% inhibitory concentration (1Cy) was
determined as  the drug concentration  giving 0%
inhibition  of  f-galactosidase  levels with respect  to
umtreated infected cells, Cell survival was also estimated
with a standard MTT (34, 5-dimethylihineol-2yl]-2,5
-thiphenvltetrazolum bromide) assay,

Viral imfections

MT4 cells were concentrated at 2 x 10°ml and infected
with viruses (50ng of p24%® antipen per 10" cells). When
required, cells were treated with S00nM RAL inbibitor
(Merck & Coj oor 25pM adovedine (AZT; Sigma)
before nfection. In the experiment with RAL, the
medium contaiming the drug was replaced every three
days (to maintain drug concentration). Al various tme
peints after mfection, one to 3 millon cells were harvested
and dry cell pellets were frozen at =80°C unil vse,

I3 A exbraction aml real-time PCH

Total eell DNA was extracted with o QlAamp blood
DNA mimikn (QIAGEN,  Courtaboeuf,  Framce),
Crugntifications of tetal HIV- DNA, 2LTR crcles and
imtegrated HIV-1 DNA were performed by real-time PCE
on a LightCyeler instrument (Roche Diagnostcs) using
the Gt point method provided in the LightCveler quantis
ficatbon software, version 3.5 (Roche Diagnostics) as pre-
viously described (9

Cell eguivalents were calouluted based on amphfication
of the Peglobin gene {two copies per dipload cell) with
commercially available matemals (Control Kit DNA;
Roche Diagnostics), 2-LTR circles, total and meegrated
HIV-1 DNA levels were determined and expressed as
copy numbers per 107 cells,

Charpcterizatbon of TN probein activity da witro

Twao IM sequences, F4 and Fi2, obtained in a clinical
study and corresponding to the TN seguences of a patient
helore and aler treatment with RAL, respectively, wene
expressad, as previously described (7 The F4 polymorph-
i=m consizts of eight mutations with respect 1o the
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‘laboratory” WT pNL43 IMN: K70, E11Ly, LIDIL KI1ZTR,
[135W, L2000, V2011, 12200, F12 harbors these mutations
together with the G1405/Q14E8H double mutation in the
F4 hackground. The introduction of the entire seguence of
the TN gene with the G408/ QI48H mutation from the
patient into the pMN LAY comtext did not result in a produc-
tive infection, =uggesting that other wviral protems of the
patient were required for efficient replication (data not
shown). The comprehension ol the potential infuences
al other viral proteins on viral replication is in progress
in our laboratory.

In parallel, the E920., Gl408, Q148H, N155H and
G408 QI4EH mutations were obtained by site-dirnected
mutagenesds from pET-15k, containing the WT saquesce,
The wild-type and mutant HIV-1 IMNs vsed for DRA-
binding and  3-processing  assays were  prosiuced o
Excherichio cofi BL21 (DEX) and purificd under non-
denatunng conditions as previously described (10},

Steady-state flworescence anisstropy-hased assay

Steady-state  fluorescence  anisotropy  values (r) were
recorded on o Bepconm 2000 Instrument  {Panvera,
Madison, Wl in a cell mamtained ai 25°C or 37°C
under thermostatie control. The principle underyving the
anisotropy-hased  assay was published  elsewhere  Ton
[ A-hbioding (11,02) and ¥-processang (13,143, respec-
tively. Briefly, IN binding 1o fuorescein-labeled DMA
idouble-strunded 21-mer oligonuekotde (ODDM) mimick-
ing the 175 viral DMA end) increases the v value, making it
possihle 1o calculate the fractional saturation function:
([DNATITN]IDMNAL) DMNA-binding step was recorded at
25°C, using ODMNs Huorescein-labeled at the 3-terminal
GT muclestide. The percentage of complexes was then
slculated aceording to

¥ — Hiype

DNAMIN (%) = a1 1

Faal Pz

Where P, and rg, are the ansotropy vilues characterizing
the free and bound oligonucleotides, respectively.

Following the DMA-hinding siep. the sample was then
shified o & permissive temperature for the recording of
V-processing activity (37°C)h As the Auorophore 15 linked
1o the released dinocleotide, 3-processing activity signifi-
cantly decreases the r value wiath respect to that for the
non-processed DNA. Adtivity can be calculated in fixed-
time  experiments, by disrupting  all the IN/DNA
compleses with 508 {0.23% final)l. The fraction of dinu-
cleotides released is given by

s r 1
TP T

F:Iillll

where ryp and iy, are the anisotropy values [or pure
selutions of nonsprocessed double-stranded QDN and
dinucleotide, respectively, The formation of IN/DMNA
compleses and the subscquent 3'-processing  reaction
wiere  performed by incubating Auorescein-labeled
ORMg (dobd) with IM in 20mbd Hepes pH 7.2, 1 mbd
dithipthreital,  30md  MNall  and  WmM MaCls.
Standard Y-processing and strand transfer activity 1esis
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hused on gel electrophoresis were performed as previously
described {10).

RESULTS
Ressistance of vical motants to BAL

Sequence analysis of chinical iselates obtained during RAL
treatment led to the wentification of varous mutations at
specific postions, Two main profiles were wentified, one
hased on the MI55H mutation and the other based on the
1405/ Q148H mutations, which seemed 1o be present
together in most cases, Alter RAL administration, only
mutations in the IN gene were observed (7).

We introduced TN mutations (i.e. MI155H or E920 or
1405/ Q145H ) inte a WT pML43 background. Two other
constructs with single Gl40% or QI48H mutations were
andlyzed in parallel. Levels of p24 production were deter-
mined 48 h after transfection. They were found 1o be sim-
ilar Tor all mutations (Figure 1A). We can therefore
conclude that these mutations do not significantly impair
virus assembly o the release step, Hela-Pd cells were then
infected for 48 h to stwdy the early replication step, The
mutations clearly had differential effeets on vical infectiv-
ity (Figure 1B), The two single mutations, N155H and
EQX), neither dissupi the early steps of replication
nor expression of integprated DNA, iz shown by the
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Figure 1. p24 and infectivity of 1IN mutant vireses. (A) Quanishction
of p24 praein, 98B aller teansfecisms oF Spp of exch virns DMA, (B)
Wiral by For WT amd oyulaniz, Viesl mlectiviny was deternzinesd
& snglecyke ropleaion sy wing Hela pd ondcator Gells amd
Imp of p24 amdigen For each viros, Cells were exposed 10 vieos dussing
43 h. Early steps of mliedions wene asssdax] by mreasring P-gabeios-
S actviry im (el exncads by the TPROG methel, For paseels A ard B,
The resuls &re expretsnd & peroestages ol the valie obbained o the
WT. The data showm are the means of thres independent expenments,
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corresponding f-galactosidase levels, which were similar
to the WT. Howewer, the QI4EH and (31406 mutations
significantly decreased wiral infectivity (3-fold and 2-fold
legs [l-galactosidase expression for QU48H and G405,
reapoctively, as compared with the WT level), prohably
bocause of a  defect in the integration  process.
Imerestingly, the combination of these fwo mutations in
the same virus resulted in levels of vieal infectivity similar
tor those of the W and much higher than obtained with
the QI48H and G1405 single mutations, These findings
suggest that these two point mutations ndividually
mmpair the virnl mfectivity but that their combination
resulis in & wild-tvpe level of infectivity.

We investigated the mechanism underlving the cilecis of

these mutations on resistance to RAL. by determining the
ICs, for cach IN mutant (Figure 2A) The ICs valuc
(10 ) obtained for the WT virus confirmed the potency
of RAL as an inhibitor of HIV-1. At 24 or 72h, no cylo-
toxic effects from the concentrations wsed in this experi-
et were ohserved in the MTT assay afier infection
(Figure 2H). GI405 and B9 mutants had slightly
higher 1Cs walues (Minb) than the WT. In sharp con-
trast, the M155H, Q148H and G408 O148H mutants had
much higher 1C values, at 130, 450 and =1000nM,

respectively, Thus, all the mutantz wdemtified in ¢lmical
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Figure 2. Resistance of 1M mutamts 1o BRAL. {A) Hela pd cells were
infiected, m inplicade, with 3ng of each virnes, i tke preseece of varioas
RAL concentraions F-Caladosdnse prodoction was quislifed by the
CPROG assay. Dhata Mrom a represeslative espermsent (pecimed three
imara is shewm, The 1 Wi detemmimad as the sandcesimation o BAL
inhibwling P-galsctosdise prodoction by 50% sl mesped 1o antrcksd
idected gxlls i) MITT as=ay. The MTT skay wes peclonsed 48 and
28 aler mwlection for all vicuses, For the WT amd (G408 48H
mntant, (ke assay was 11|.'r1'-.11'|||l.1_»:| with @nd whour 36pdd RAL,
Thez dia shown are dhe means of thres independens expenmenes,

trials wsing BAL were resistant to this compound, bui to
different extents. The same experiment was conducted
with the strand transfer imbibitor L731-988, a diketo
acid which, smilar 1o RAL, belongzs 1o the INSTI
group. The resistance profiles observed with this diug fol-
lowed the sume pattern as BAL {data net showny but
the values obtained were in low micomelar range for
L,731-985, rather than in the nanomelar range as scen
with RAL., Thus DKA. a well-characterized drug and
RAL, both of which share the samc mechanism of
action, probably bind 10 the same binding ste, inhibiting
the steand transfer reaction by interfering with the hinding
of target DNA 1o 1N,

FiWects of mutations on vical DA Toros dorcing replication

We investigated the effects of mutations during viral repli-
cation, by real-tme PCR (gPCR) analyss, on the different
viral nuclzic acid species {total virnl DNA, 2-LTR circles
and integrated viral DMNA)Y in cells infected with WT virus
or Tesistant mutants.

Total viral DNA synthesis during the first 24 h afier
infizetion was similar for all mutanis studied, and the kinet-
ics of DMA syathesis were similar 10 those of the WT
(Figure 3A), Furthermeore, for all mutant and W viruses,
DHNA synthesis peaked 10h alter nfection, as typacally
reported in such studies (15}, indicating that none of the
mutations significantly atfected the timing of the reverse
transcripiion step. As a control, no viral DMA synthesis
wing detected with the WT in the presence of 25 pM AZLT.
We performed the same experiment for the WT and the
Cil 405/ Q45 H mutant in the presence of S00nM RAL
(o concentration 50 tmes higher than the 1Csy value
tor the WTL Vieal DMA synthesis levels were similar in
the presence and absence of RAL for both the WT and the
CGrl405/ 0 45H  mutant  (Figure 3A), confirming the
absence of RAL aeffect an the reverse transcription siep.

We quantified wotal viral DMNA synthesis at a Bater time
point 1o assess the ability of mutants 1o replicate in
infected cells, gPCR guantfication showed the kinetics
of total viral DINA accomulation to be similar for the
WT and all mutants, with the exception of the (143H
virus, lor which smaller amount of viral DNA wers
detected, i.e. 5 and 10-fold less than for the WT virus,
30 and 64 h after infection, respectively, The apparent dis-
crepancy betwesn [{-Gal assays and integration guantifi-
cation of the G105 mutant will be further discuss in the
next section, For WT infection in the presence of RAL,
only a faint wiral DA signal was detected afier the
reverse transcription step: viral DMA, was reduced by
10- and 100-Fold, 3% and &4 h after infection, respectively,
when compared with WT infection in the absence of RAL,
dersomsteating the efficacy of thiz compound for Blocking
viral rephcation. In shirp contrast, RAL had only a
shight effect on the DNA synthesis of the G1405/Q148H
mutant (DMA  synthesis was reduced by 1.2-fold at
64 b afier infection), confirming the strong resistance of
this double mutant. Moreover, Figure 3B clearly shows
the better fitness of G408/ QI48H in comparison 1o the
simgle-mutant Q148H.
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Figore 4 p24 prodisction, Vieal pariecles redeasad n the supormatant
were ditermuned 28 and T2h aller infecties by queantilicaison ol the
P24 protein dsee Materials and methoads section). The data shown arme
i mesing al Tour udependent evpenments,

Both eficient IN inhibitors and mutations in the cata-
Ivtic teiad DDasE of 1IN have been reported 1o cause a
decrease in the amount of integrated DDNA, with a con-
comitant increase of 2-LTR arcles (16,17), sugpesting that
2-LTR circles mobecules results from a delect in the inte-
gration process. We then analyzed the kinetics of 2-LTR
accumulation and guantified inlegrated viral DMNA, o
obtain greater nsight nte the effects of the mutatbions
and of RAL on the integration process (Figure 30
and [¥. The percentages of 2-LTR circles and integrated
DMNA wiral forms are shown in Figure 3E. Again, our
resulis clearly demonstrate that the OQI48H mutant was
more strongly affected than other mutants, as shown by
the significant decrease in the amount of integrated DNA
forms and the simultancous accumulation of 2-LTR cir-
cles. A qualitatively simnilar bul more pronounced effect
wits ohserved with the WT in the presence of RAL, Mo
integrated DMA was detected, despite the senstvity of the
qPCR approach (9), demonstrating the efficiency of RAL
as an inhibitor of the integration process. Remarkably,
RAL had only a small effect on the levels of 2-LTR circles
and integrated forms with the GLAOSQI4EH double
mutant {Figure 3E). Figure 3F shows the correlation
betwesn accumulation of the episomic viral genome and
the decreass in the amount of integrated DMA. This cor-
relation supports the idea that the sccomulation of 2-LTR
cireles results principally from an integration defect

We assayed the supernatant of infected cells for the
presence of wiral particles, by guantifving p24 48 and
72 h alter inlection, to determine whether viral production
wias compatible with the amount of integrated DMNAL
Consitent with the guantification resulls abtained for
the different DNA forms (Figure 3), only the production
of p2d by the WT in the presence of BAL and by the
OQ148H mutant was severely impaired {p24 production
decreased by 253- and 6-fold, respectively) (Figure 4).
Figure 4 alzo confirms the mesistance of G1405/Q048H
s shown by the lonited effect of RAL on the p24 produc-
tion of the double mutant. The viral particles obtained
from all I mutants were infectious {data not shown).

Thus, IN mutations have no crucial consequences for
the dynamics of viral replication, except the lor the Q148H
ruutant, which displayed high levels of 2-LTR circle accu-
mulation related 10 an integration defect. Theretore, the
gsimilar profile of this mutant as compared 10 mutants of
the catalytic trind strongly suggests a defect of IN at the
catalvtic level (18). We then studied the effcct of the
Q148H and/or GI408 mutations on 3-processing and
strand fransfer activities using recombinant proteins.

L3 1 4kS rescwes the catalytic defect due to the
(¥ 148H mutation

The GI405/0Q148H double mutation 15 one of the main
profiles identified in patients resistant o RAL. These
mutations seem to appear simultancously or over a very
cshor pericd of time in paticnts treated with this com-
pound. We investigated the role of the G40 and QI48
residucs in the resistance, by producing recombinant 1Ms
harkoring cither the G405 or the QI48H mutation, and
the GI1405/Q148H dowble mutant. In parallel, we also
obtained recombinant proteing encoding the entire 1IN
sequence, a5 found in patients with the double G405
CHA8H mimtation.

A plot of ¥-processing activity (corresponding 1o 3 of
incubation at 370 as a Tunction of [N conceniration
gave a characteristic bell-shaped curve, with activity peak-
img at a concentration of about JaM, for both WT [N,
expressad in ML-43 context (Figure 3A, leflt panel) or in
pratients contexl belore RAL treatment (Figure 54, nght
panel) in sccordance with previous resalts (13,14) Under
the same conditions, the activities of the Q148H, G1405
and G405/ Q148H were severely  mmpaired, with the
degree of impairment as follows: QI48H = = G405,
CHAEH = G405 < WT (Figure 310 11 1= amportant o
neste that both profeins, W and G408/ Q148H, in the
patient background displaved stronger activity than INs
in the NL-43 context. We are currently mvestigating the
effects of the polymorphism on intrinsic TW actvity.

As the increase in the IN concentration did not com-
pensate for the defect in V-processing activity of the
rnutanis (i.e. increasing the concentrations of muian pro-
teins did mod result in wald-type levels of activity, as shown
im Figure 3A), the defect was probably not because of a
decrease in the overall affinity for the DDNA substrate,
being instead due 1o a catalytic detect. Accordingly, quan-
tification of IN-DMNA complexes by stcady state aniso-
tropy {Figure 5B, indicated that complex Formation was
not altered by any type of mutation. Our activity data
after 3h of incubation highlight some  discrepancics
hetwesn f ovitre and ex e results, particularly for the
Grl405/ 01458 H double mutant virus, which replicated as
well a5 the WT virus, despite the lower activity of the
corresponding recombinant T,

To understand this apparent discrepancy, we next siud-
e the entire 3-processing kinetics of WT and mutanis.
Interestingly, the kinetics of processing for the G 1408 and
Cild0s QldazH, althoush delayed in time as compared to
the WT {2 = 20.8h for mutants, £ = 4.1 h for WT),
showed that these two muotants were ahle 1o reach WT
lewels of activity (Figure 500 Again, this result was
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Figure & Comparative sindy of the DMNA-bisding and catalytic propenies of sdkd-ivpe amd RAL-resistant [Ne (A) ¥ -Processing activity—adter 31 h

of incubstion ar 17T

as a fancton of 1N conceniration. ¥-Processing activites were quaniified as describad i Materials and methods section,

wsing & 21-mer RMNA subsirate (£ 08, with Mgl as a colacior (Wb in 2ok Hepes (pH 7.2), 1 mM DFTT amd Womdd MNacCl, () DNA hinding
of wikd-type and mutant [Ms, The DNA-binding step was nesessed by stesdy-siae Nsorescence ansotroqy ae described in Materak and methods
secticn, Experimeminl conditions were similar 19 those describead n &, 1N and TPNA were incahated topether for 15 min before reconding stemdy-seane
amisatropy. (0 Kingtics of ¥Ysprocessing lor the different proteins. IN concentration was 30 nkd. The same symhols were used in panels &, B and C:
(opem sguare) wildstype ML43; {filled squans) G 12050 128H NWL-43; (filled triangle) Q128H WL-43: jopen irangle) G408 ML (open circle) wilds
type patient; |filled circle) G108 Q148H patient. Strand transfer producis are depicted [middle panel). The percentages of strand transfer (sbown
besides the gely were obinimed after the nomanlizalion by the Y-processing aotivity.

independent of the context (NL-43 ar patients) (compare
left and right pancls). The sigmoidal nature of the kinetics
abserved strongly suggests that TN must undergo a con-
formational transition to shiflt from a catalyvtically inactive
state to an active state (IM'<IN™). ¥-Processing sctivity
as analyeed by gel-clecirophoresis with standard proce-
dures (100 gave similar results (data not shown).
Morcover, quantification of the product of the strand
transfer reaction indicated that, under conditions in
which the ¥-processing levels of the G405 0Q148H
reached the WT levels, the yields of strand transfer are
sipilar for the WT and the double mutant. In fact, after
normalization by the 3-processing activity, we found that
the steand eansfer efficiency was 6.5%, 2.2% and 5.5%
for WT, QI48H and Gl40501458H mutanis, respectively
(Frgure 500, In contrast to G140% and G405 48H, the
gingle mutant QI45H appeams o be more severely
impaired than the other muotanis, with a 3-processing
activity increasing only slightly 1o 35%., after up to 50h
ol incubation, with concomitant decrease in the %ic]rl afl
atrand transfer (Figure 50 Most likely, the TN'ssIN®
transition aceounts Mor the slow single tern-over rate com-
atant characterizing IN (12). The effect of the Ql48H
mutation which steongly mnpairs this transition is reversed
by adding the Gl405 mutation. These two resadues belong
1o the catalviic koop 140149, the Aexibility of which was
previously described 1o e essential Dor activity (19,200
The Q143 residwe was shown 1o be esential to establish
specific contacts with viral DMNA (21,23, Our resulis,

showing that overall affinity of the IN-DMA complex
was not infwenced by the Q-=H mutation at this position,
do nod exclude a line repositioning of the catalytic loop
redative to the viral IDMA end, leading to a non-competent
catalytic complex. Interestingly, two other mutations of
the catalvtie loop (Cel49A and GI49AGL40A) display
sitnilar post DMNA-binding defects (200, The residue
(3140 participates in catalytic leop hinge formation and
its mudation could restore specific contacts compaitble
with catalyzis between the loop of the double mutant
and the wvical DNA end, Smoolation and molecular
dynamics (M) stubies on the cialvtic loop of 1IN 15
under progression in our laboratory, We have [ound
that the Q148 resdue belongs to o fl-shaped harpm
(144-148) that con move in a gate-lke manner toward
the active ste as a rigid body, The Gldf residue is not
directly mvolved in the Aexibility of the catalytic loop bt
plays a critical robz in conteolling the overall motion of the
loop and finally in controlling its precise positoning rela-
tive o the phosphodiester bound 1o be eleaved (fn Silico
sty suggests that raltegravie-resistant mutations modily
the DMNA recognition properties of HIV-1 Tnfegrase’ by
Tchertanov ef @, Third International Conference on
Retroviral Integrase; September 14-18, 2008).

DISCUSSION

To date, only INSTI= have been shown to be true inhibi-
tors of HIV-1 IDXNA  imtegration. These  compounds
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spectbically imhibit strand transfer and target the pre-
integration complex in vivoe. RAL {or MK-0518) is a
member of the INSTI family. This IN inbibator was the
first 10 be approved by the FDXA for the treatment of
AIDS, RAL 15 generally well tolersted although 2 recent
study suggested an association between RAL and chabsdo-
myerlysis (230 1 is currently undergoing late-stage clinkal
trials with patienis infected with multdrog-resistant HIY-
1 viruses, However, several mulations oceur very rapadly,
within 11 weeks of beginning tresiiment. These mutations
are E920}, M133H and the GLAGSQI4EH double muta-
ticrin, which seems to appear preferentially (8).

Iin this repeart, we analyzed the effect of mutations iniro-
duction in both the viral context and in the recombinant
I, focusing our stwdies on the double mutant, Cur data
dernonstrate that cach mutation deseribed conferred resis-
tance, but the extent of that resistance differed between
mutations, The Gl408Q148H douhle mutation confers
stromg resistance 1o the drug and viral replication levels
gimpilar to those of the WT virus. Imponantly, the G1405
displays weak resistance (1T = 30050} while the QI48H
is strongly resistant o BRAL (IC;; = 7T00nM). Taken
together, ithese data suggest that resistance resulis prnci-
pally Irom the QU48H mutation. In the viral context, all
mutants, including (1405, displaved replication kinetics
similar 1o those to the WT virus, with the exception of the
O148H mutant which is characterized by a slower kinetic.
Consistently, all mutants are weakly impaired n the syn-
thesis of viral DMA a2 well a5 m thelr propensty 1o inte-
grate their genome and consequently 1o produce viral
particles with the netable exception of the QI48H
mutant, Its itegration efficiency 1= 7-fold less i compar-
son te the W, These data demonstrate that, in the cose
of the GI4SQI48H double mutant, the resistance to
KAL 15 due tee the QI48H and that the G405 mutation
rescues the mtegration deficiency and thus the kinetic of
replication.

It i3 important to note that PGal assays osing the
HeLa-P4 cells suggests that the GI4058 matant was
impaired in the viral integration process, in accordance
with results of Makahara e of. (24). However, we Tound
that the integration efficiency of the G L4405 was similar (o
those found for the WT and GI1405/0Q148H double
rmutant. To date, the reason of such discrepancy is not
clear but the tvpe of cells used for integration guantifica-
tion could be crucial in modulating the mutation mpact,
capecially in the case of the GI405% mutation. Indesd,
Makahara ef al. (24) have f'ound that the viral replication
wis delayed in Jurkat cells but not m PBMC cells. Such a
diffcrential response ol the (1405 mutation depending on
the cellular context could account for the lack of correla-
tion botwesn P-0aal assays {(Figure 1) and iniegration
quantification {Figure 3)

These data were confirmed by iR vitrs activity experi-
ments. We abserved that G1405/Q048H 1IN, although
kinetically affected as compared to the WT 1N, displaved
W lewels of activity of the imcubation tims was inereased
i(kinetic mutant), The QI48H IN was much more severely
mmpaired and cannot reach the WT level of activity
(thermodynamic mutant), Chur actpaty data—at long indcu-
bation  time—highlight & cormelation baeiween @R vitro

petivity of IN and wviral replication. MNewvertheless, the
slower kinetic of cither GL40S or GL4G5/0148H, as scen
i wireo, had no effect on the replication cycle of corre-
sponding viruses. [t i3 possible that the slow conlorma-
tromal transition involving the flexibality of the catalyiic
loop (see Kesuliz section) may not be kinetically lmiting
in the PIC context due to interactions with protein part-
ners. Taken together, we hypothesized that the Q148H
mutation primarily confers resistance o RAL. However,
this mutation scvercly impaired wiral replication. The
G405 mmotation counteracted this detrimental effect for
the virus and ocrenssd viral fitness, These data clearly
pecount for the high frequency of the G1405/Q0148H
rutant in clinical trials. It s important to note that the
Q148H R single mutation may occur & weeks afler start-
ing RAL treatment. However, 8-10 wecks later, the
Cil 405 mutation 15 also detected in patients, Our data of
the eompensation of the Q148H replication efficiency by
the G1405 explain why very rapedly after the sdminizira-
tion of RAL, the GI4S/QI42H mutant s detected. In
addition, our data demonstrate that the Q148H mutant
is rmore resistant to RAL in companson to the M155H
routant. This observation explains why the N155 pathway
often switched to the Q148 pathway. 11 i3 imporiant o
note that, during the course of our stedy, simalar results
were ohtained by MNakahara er of, (241, The authors have
studied the Q148K /R and (1405 mutations as well as the
Crl405/ 0148k and GI405/0148K  double  mutants.
Mutants QI4EK R displayed reduced wviral fitness what-
ever the cell ling siudied (PBMC or Jurkat cells), In the
cage of the G1405 mutant, the vical fitness is only delaved
in Jurkat cells. In aceordance with our results, Nakahara
er ol have shown that the G108 mutation rescues the
fitmess of the QU4EK R mutant. Taken together, resulis
from Makabara & of and our study show that the
G405 mutation rescues the ability of the QI4EH/K/R
tapianis o replicaie in cells while mutation of the 48
residue is responsible for the resistance to the drug. Mote
that the discrepancy concerning the nature of the muta-
tion (K. R in the Makahara's experiments and H in our
study] is only apparent since resistance mutation were not
obtained against the same anti-IN compound: 5-1360 and
SR -304735 were used by Makahara o of, while, in this
study, we vsed RAL

The development of strand transfer-specific inhibi-
tor classes 35 an important achievernent for the 1IN
drug design. However, continued drug development 15
required as the ability of HIV 1o replicate under therapou-
tie pressurg wall undouwbiedly lead to the emergence of
IM drug-resistant viral strains characterized by compara-
hle fitness to WT such as the dowble muotant GIl405/
45H.

Tao prevent From the appearance of cross-resistance,
other sites of 1M must be targeted as already done for
the development of BT inhibitors, For example, sites
responsible for the ohigomenzation of IMN or/and interac-
tions with cellular partners as LEDGEF constitute good
candidates. The combination of several IN inhibitors in
optitmal regimen will wndoubiedly bead to optimal trear-
tnent For patients.
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1V.2.3 Conclusion

Present study has successfully monitored the DNA-binding and 3’-processing activities
of wild-type and mutants of HIV-INs in real-time by use of steady-state anisotropy
measurements. RAL (or MK-0518) is a member of the INSTI family, which could specifically
inhibit strand transfer and target the preintegration complex in vivo. It is the fist integrase
inhibitor to be approved by the US FDA and is currently used in clinical treatment of viruses
resistant to other antiretroviral compounds. Currently it is undergoing late-stage clinical trials
with patients infected with multidrug-resistant HIV-1 viruses. However, several mutations
occur very rapidly, within 11 weeks of beginning treatment. They are primarily E92Q, N155H
and the G140S/Q148H double mutation, which seems to appear preferentially (Miller et al.,
2008).

In this study, two main genetic resistance pathways (N155H and G140S/Q148H) were
investigated in both the viral context and in the recombinant IN. In particular, the effects of
double mutation G140S/Q148H were studied by constructing both the Q148H and G140S
single mutants and the double mutant. Results indicated that each mutation described
conferred resistance, but the extent of that resistance differed between mutations. The Q148H
mutation caused strong resistance to RAL when present alone, while the G140S displays
week resistance. Importantly, the G140S/Q148H double mutation confers strong resistance to
the drug and viral replication levels similar to that of wild-type virus. However, this mutation
of Q148H severely impaired viral replication kinetic in addition to the catalytic activity of the
recombinant IN. The G140S mutation did not confer strong resistance but restored the
replication capability of the Q148H mutant. Accordingly, in vitro, the activity of the
G140S/Q148H mutant is able to reach a wild-type level of activity but not the single mutant
Q148H. Our kinetic study also reveals that Q148H is a catalytic mutant blocked in an inactive
conformation. It is highly possible due to the G140S mutation could induce a conformational
transition compatible with activity. Thus, the combination of these two mutations results in a
virus that is both able to replicate and highly resistant to RAL. Taken together, we
hypothesized that the Q148H mutation primarily confers resistance to RAL, however, this
mutation severely impaired viral replication. The G140S mutation counteracted this
detrimental effect for the virus and increased viral fitness. Such compensation of the Q148H
replication efficiency by G140S explains why rapidly after the administration of RAL, the
G140S/Q148H mutant is detected. In addition, our data demonstrate that the Q148H mutant is
more resistant to RAL in comparison to the N155H mutant, which explains why the N155

pathway often switched to the Q148 pathway.
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The development of effective inhibitors of HIV replication targeted to indispensable
replication enzymes has demonstrated the potential effectiveness of antiviral therapy for the
treatment of AIDS. Drugs targeted to integrase would be a valuable complement to reverse
transcriptase and protease inhibitors. Therefore, the development of strand transfer-specific
inhibitor classes is an important achievement for the IN drug design. However, continued
drug development is required as the ability of HIV to replicate under therapeutic pressure will
undoubtedly lead to the emergence of IN drug-resistant viral strains characterized by
comparable fitness to wild-type such as the double mutant G140S/Q148H. To prevent from
the appearance of cross-resistance, other sites of IN must be targeted and the combination of
several IN inhibitors in optimal regimen will undoubtedly lead to optimal treatment for

patients.
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Fluorescence as a detection modality is used in a very diverse manner within the life
science industry. At present, the nanotechnology field is undergoing phenomenal growth and
the fusion of nanoscience and nanotechnology into biomedical research has brought in a true
revolution that is broadly impacting biotechnology. To promote this fusion, it is clear that a
wide variety of standards materials are likely to be required, to cater for different spectral
regions or different sample formats. Although the existing fluorescence standards have been
improved a lot, it is clear that the available coverage is patchy. For example, though the small
organic fluorophores are commercially available presently, most of them are of less
photostability and displaying some photobleaching especially in use of high illumination
intensities fluorescence microscopy. This chapter describes the power of nanochemistry to
produce the various nanoparticles and tailor their structures and functions for biomedical
applications. The semiconductor nanoparticles known as Quantum dots, whose luminescence
wavelength is dependent on the size and the nature of the semiconductors, would be
discussed. The use of nanoparticles for optical bioimaging, optical diagnostics, and light-

guided and activated therapy would also be evaluated.

V.1 General introduction to the semiconductor nanoparticles

V.1.1 Definition of quantum dots

During the past decade, advances in synthesis and biofunctionalization of colloidal
semiconductor nanocrystals have generated an increasingly widespread interest among
investigators in the fields of biology and medicine. These nanometer-sized crystalline
particles, also called quantum dots (QDs), are composed of periodic groups of II-VI (e.g.,
CdSe, CdS, CdTe ...) or III-V (e.g., InP, InAs ...) or IV- VI (e.g., PbSe ...) materials. They
are robust fluorescence emitters with size-dependent emission wavelengths (Figure 28). These
semiconductor materials are characterized by different bulk band gap energies. The range
emission wavelength is 400 to 1350 nm, with size varying from 2 to 9.5 nm (Bruchez et.al.,

1998; Tsay et.al., 2004; Yu et.al., 2004).
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In the early 1980s, the quantum yields of QDs were quite low because of the chemical
and photochemical instability as well as the heterogeneous size distribution of nanoparticles
(Kuczynski et al., 1983; Weller et.al., 1984; Ramsden and Gratzel, 1984). Such disadvantages
were improved by coating the QDs core with a material that has higher bandgap. The bandgap
of a semiconductor is the energy of the longest-wavelength absorption. Emission of light from
bulk semiconductors is achieved by generating electron-hole pairs or excitons. When the
electron and hole recombine, a photon of light is emitted. Excitons can be generated
electrically or optically. The energy (wavelength) of the emitted photon is determined by the
bulk properties of the material. The exciton has a characteristic dimension known as the Bohr
radius; for example, in cadmium selenide the radius is 11.2 nm. If a nanocrystal is smaller
than this radius, the “quantum confinement” of the exciton increases, which means that the
wavelength of the emitted photon is strongly dependent on the size of the nanocrystal. The
energy of the excited state also depends on the material. The use of higher bandgap shell
confines the excited state to the centre of the particle. This prevents interactions with the
surface (oxidization, chemical reactions ...). This shell can be designed carefully to obtain
quantum yields close to 90% (Reiss et.al., 2002); this step also enhances the photostability of
QDs by several orders of magnitude relative to conventional dyes (Sukhanova et.al., 2004).

The typical schematics of QDs were shown in Figure 29. Inorganic QDs are consisted of

a cadmium selenide (CdSe) core by coating with several layers of zinc sulphide (ZnS) shell
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which has a higher bandgap than CdSe. This shell confines the excited state to the centre of
the particle to improve the chemical and photochemical stability of QDs. In order to use the
nanoparticles in biological systems they need to be water soluble, which is accomplished with

a polymer or silica layer. This layer is then used to attach proteins or nucleic acids.

Figure 29 : Schematic of a core-
shell QDs with a biologically

compatible surface.
QDs are inorganic fluorophores and

consist of a cadmium selenide (CdSe)
core with several layers of a thick zinc
sulfide (ZnS) shell to improve quantum
yield and photostability. To provide
speficity of binding, QDs are conjugated
with antibody molecules (blue) by using
avidin (purple) or protein A (green) as
linkers.

From (Jyoti & Sanford, 2004)
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Figure 30 : Illustration of fluorescence decay.

The fluorescence decay demonstration of an organic dye-Alexas488 and CdTe quantum dot

with mercaptopropionic acid as a stabilizer.
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V.1.2 Spectral properties of quantum dots

Nanocrystals have properties very different from those of organic fluorophores due to
their fundamentally different mechanism of fluorescence. Colloidal semiconductor QDs are
single crystals a few nanometers in diameter whose size and shape can be precisely controlled
by the duration, temperature, and ligand molecules used in synthesis (Alivisatos, 1996). The
key features of nanocrystals, particularly with regard to biological applications, are
summarized as following:

» Stability. Being composed of simple inorganic compounds, nanocrystals are typically
very stable. Those with outer shells are particularly resistant to photochemical
damage. Because of their minus size, a colloidal suspension of nanocrystals is
generally stable and will not precipitate over time. Neither they cannot be sedimented
by centrifugation (Reiss et.al., 2002).

» Emission spectrum. The emission spectra of homogeneously sized ODs are about
twofold more narrow than typical fluorophores (Gerion et.al., 2003).The emission
wavelength of a nanocrystal depends on its size and therefore it is tuneable.
Additionally, the QDs do not display the long-wavelength tail common to all
fluorophore which might interfere with the use of multiple fluorophores for imaging or
multi-analyte measurements. Generally the emission spectra of the ODs are roughly
symmetrical on the wavelength scale and lack the “red tail”. Therefore QDs are ideal
to be used for optical bar codes for multiplexed fluorescence measurements.

» Excitation spectrum. An important spectral property of QDs is their broad excitation
spectrum (Gerion et.al., 2003). This has advantage that nanocrystals can be excited at
any wavelength shorter than the emission peak. It further means that a mixture of
nanocrystals with different emission peaks may be excited efficiently by light of a
single wavelength, which facilitates simultaneous detection, imaging or quantification
for practical multiplex assays. Nanocrystals also emit very bright fluorescence,
because they have a high excitation cross section and can also have high quantum
yields. Furthermore, it is possible to achieve a large difference between excitation and
emission wavelengths, which means that it is much easier to separate the excitation
and emission light and reduce background due to scattering (Bruchez et.al., 2003).

» Fluorescence lifetime. Nanocrystals have a moderately long fluorescence lifetime in
the range of tens of nanoseconds, which is significantly longer than for organic dyes

(1-5 ns) or cellular autofluorescence (2-3 ns) as shown in Figure 30. This permits their
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fluorescence to be distinguished from other sources of fluorescence in a fluorescence
lifetime experiment. For example, Dahan et al., 2001, used time gated imaging to
distinguish nancrystal fluorescence from a background of cellular autofluorescence.

» Surface chemistry. Nanocrystals may be prepared with a wide variety of surface
chemistries by exchanging the capping groups. Different QDs solubilization strategies
have been devised over the past few years including ligand exchange with simple
thiol-containing molecules or more sophisticated ones such as oligomeric phosphines,
dendrons, and peptides (Chan and Nie, 1998; Pinaud et al., 2004); encapsulation by a
layer of amphiphilic diblock or triblock copolymers or in silica shells, phospholipids
micelles, polymer beads, polymer shells (Bruchez et al., 1998; Osaki et al., 2004); and
combinations of layers of different molecules conferring the required colloidal

stability to QDs (Mattoussi et al., 2000; Sukhanova et al., 2004)

V.1.3 Solubilization and biological applications of quantum dots

V.1.3.1 Biocompatibility of quantum dots

Unique QDs properties in comparison with traditional organic dyes, including size-and
composition-tunable emission, broad absorption cross sections, narrow emission spectra, wide
absorption profiles, and excellent photostability, make it as a potential candidate in biological
applications (Dabbousi et al., 1997; Lim et al., 2003). The core and core-shell of QDs
synthesized as described are only soluble in nonpolar solvents because of their hydrophobic
surface layer. For QDs to be useful probes for examination of biological specimens, the
surface must be hydrophilic. During the past 20 years, most studies were focused on the
quantum confinement effect and potential applications in optoelectronics of QDs. There have
been no breakthroughs before 1998 when highly luminescent QDs were made water-soluble
and became biocompatible by surface modification and bioconjugation (Jaiswal et al., 2003;
Goldman et al., 2004).

Generally, to make QDs be solubilized in aqueous buffers, their hydrophobic surface
ligands must be replaced by amphiphilic ones. Several solubilization strategies have been
proposed over the past few years, including

» Ligand exchange with simple thiol-containing molecules (Chan and Nie, 1998; Pathak

et al., 2001). The principle is based on the exchange of hydrophobic surfactant
molecules with bifunctional molecules, which are hydrophilic on one side and

hydrophobic on the other side. Most often, thiols are used as anchoring groups on the
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ZnS surface and carboxyl groups are used as the hydrophilic ends. More sophisticated
ones such as oligomeric phosphines (Kim and Bawendi, 2003), dendrons (Guo et al.,
2003), and peptides (Pinaud et al., 2004) were also proposed. In this case, the long-
term stability of the QDs depends on the bond between thiol- and ZnS which is not
strong enough. Therefore, the water solubility of the core-shelled QDs capped in
mercaptocarbonic acids is limited.

Encapsulation by a layer of amphiphilic diblock (Wu, 2003) or triblock copolyers
(Gao et al., 2004) or in silica shells (Bruchez et al., 1998; Gerion et al., 2001). For
surface silanization, the primary step of the process involves exchanging the surface
ligand with thiol-derived silane so that the trimethoxysilane groups can be cross-linked
by the formation of siloxane bonds. During further silica shell growth, other types of
silanes can be added to render a different charge and provide functional groups on the
surface. Because the silica shells are highly cross-linked, silanized QDs are extremely
stable. However, this method is more laborious and the silica shell may eventually be
hydrolyzed, its application in biological field is limited.

Combinations of layers of different molecules conferring the required colloidal
stability to QDs (Gaponik et al., 2002; Sukhanova et al., 2004). Instead of exchanging
the hydrophobic surfactant, the particles in this case are coated with a cross-linked
amphiphilic polymer. The hydrophobic tails of the polymer intercalate with the
surfactant molecules and the hydrophilic groups stick out to ensure water solubility of
the particle. Nevertheless, the final size of the particles after coating is rather large, for
CdSe/ZnS QDs, the diameter is between 19 and 25 nm (Pellegrino et al., 2004), which
would place restrictions on many biological applications. Other approaches, such as
coating the QDs with phospholipids micelles (Dubertret et al., 2002), polymer beads
(Gao et al., 2002), polymer shells (Pellegrino et al., 2004) or amphiphilic
polysaccharides (Osaki et al., 2004) were also adopted.

Recent developments include a promising water-based synthesis method that yields
particles that emit from the visible to the near infra-red (NIR) spectrum and are
intrinsically water-soluble, however it needs further tests of these particles in
biological environments. Presently, large number of potential surface attachment
groups can be used to “graft” different functionalities to individual QDs, resulting in
multipotent probes. The production of biologically synthesized QDs consisting of
CdSe cores coated by natural peptides led us to investigate the peptide-coating

approach for the surface modification of QDs. Peptides have the advantage of being
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easily customized, and with correct choice of sequence, a single-step surfactant
exchange can yield all necessary functions: 1) protect the core/shell structure and
maintain the original QDs photophysics, 2) solublize QDs, 3) provide a biological
interface, and 4) allow the incorporation of multiple functions. The resulting particles
have the excellent colloidal properties, photophysics and biocompatibility, which can
easily be tailored or provide additional functionalities. Such functionalities can be
improved by molecular evolution, a strategy that has proven extremely powerful for

the recognition, synthesis and self-assembly of nanocrystals (Whaley et al., 2000).

V.1.3.2 Potentials of QDots as fluorescent probes in biology

Over the past few years, application of QDs in most biotechnological fields that use
fluorescence has been tested, including DNA array technology, and immunofluorescence
assays (Alivisatos, 2004). Meanwhile, in field of cell and animal biology, QDs have been
widely utilized for biological imaging and for sensitive multicolour assays of biomolecules in
vitro. It should be noted a key issue in biomedical applications is the potential toxicity of the
quantum dots. Their constituents contain many toxic components, cadmium usually being the
most significant. However, the exact toxic mechanisms for QDs in living-cell research have
not been well elucidated yet. Anyway, the techniques for using QDs to labelling proteins and
cells, and for carrying out long-term live cell imaging has recently drawn great attentions of

biologists and will be described below.

Specific labelling of cells and tissues
Labelling in vivo requires a high degree of specificity because of the abundance of

background biomolecules that can generate false positives. Cellular labelling using organic
dyes and fluorescent proteins has had great success (Stephen et al., 2001), nevertheless,
traditional fluorophores suffer from several problems, such as photo-bleaching, spectral cross-
talking and narrow excitation. QDs has the potential to overcome these problems. As
demonstrated by Wu et al., (Wu et al., 2003), the QDs labelled cells are brighter and more
resistant to photo-bleaching. In fact, organic dyes are often photo bleached and fade by > 90%
in less than one minute, whereas the QDs are stable for more than 30 minutes under identical
experimental conditions. This result suggests that multi-color QDs could be used to determine
the quantitative profiles of molecular targets for single normal or diseased cells. The first
attempts to use QDs to labelling proteins in cells employed QDs conjugated to transferrin

(Goldman et al., 2002) or phalloidin, an actin-binding molecule (Bruchez, 1998). To label live
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cells with transferrin-conjugated QDs, the cells required overnight incubation with the
conjugates. By contrast, an incubation of only a few minutes is sufficient for the endocytosis
of transferrin-conjugated to organic dyes (Mayor et al., 1993), which indicates either the poor
affinity of the QDs conjugate for the transferrin receptor or its non-specific uptake. Thus these
early studies lacked the efficacy and specificity of labelling that are requisite for using QDs
bioconjugates for live cell studies. These limitations have been overcome by the development
of QDs that have superior stability in an aqueous environment and improved surface coatings
that minimize non-specific binding to the cell surface and the extracellular matrix, and by
using bioconjugation approaches such as avidin-biotin, antibody-antigen and ligand-receptor
interactions that provide a high specificity of labelling in fixed and live cells (Dahan et al.,
2003; Wu et al., 2003; Lidke et al., 2004).

Generally, QDs tend to be brighter than organic dyes because of the compounded effects
of extinction coefficient that are an order of magnitude larger than those of most dyes (Ballou
et al., 2004), comparable quantum yield and similar emission saturation levels. The
development of these live cell approaches has allowed several groups to use QDs for labelling
proteins in live cells, where equally high levels of specificity have been achieved.

The most interesting property of QDs for cell and tissue labelling is immunolabeling
owing to their robust optical properties. QDs conjugated to specific pepetides and antibodies
could provide specific labelling of tissues in vivo (Akerman et al., 2002), as well as specific
labelling of live bacteria and protist cells (Kloepfer et al., 2003). Such fluorescence
immunolabelling is widely used in cell biology to probing structure and locating signal
transduction-related molecules. Recently, investigators have performed a variety of
experiments in which the QDs have been used to localize molecules in cells and tissues, both
in live and fixed speciments. Kaul and his colleagues reported immunofluorescence labeling
of the heat shock 70 protein, mortalin, using QDs to show different staining patterns in normal
and transformed cells (Kaul et al., 2003). Meanwhile, Tokumasu and Dvorak have taken
advantage of the high photostability of QDs and were able to collect 40 consecutive optical
sections using confocal microscopy and generated a 3-D reconstructed, high-resolution image
of the membrane domain band 3 in erythrocytes (Tokumasu and Dvorak, 2003). Minet and his
colleagues examined breast tumor cells, using QDs to label membrane glycoproteins to study
heat stress effect (Minet et al., 2004). In addition to specific biomolecular labeling of cells,
various generalized approaches are also available for tagging cells with single-color or several
different-color QDs (Jaiswal et al., 2003). The specificity and ease of labeling cells with QDs

have made it a widely accessible and practical application.
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Suitability for cell tracking
Research of signalling pathways between and within cells also relies heavily on the

brightness and sensitivity of fluorophores. Because of the stability and multicolor emission of
QDs, such nanoparticles inside cells are particularly useful for cell tracking to study cell
division and metastasis. ODs could act as a unique marker for tracking cancer cells in vivo
during metastasis — a critical issue in the development of effective cancer therapies. Rosenthal
et al. reported using serotonin-linked QDs to target the neurotransmitter receptor on the cell
surface (Rosenthal et al., 2002). The QDs probes not only recognized and labelled serotonin-
specific neurotranmitters on cell membranes, but also inhibited the serotonin transportation in
a dose-dependent manner. Although one to two orders of magnitude less potent at inhibiting
the receptor than free serotonin, the behaviour of QDs conjugates was similar to that of free
serotonin, making QDs a valuable probe for exploring the serotonin transportation
mechanism.

Simon and coworkers have taken advantages of QDs and the high resolution of
fluorescence after they reported using QDs to simultaneously track different populations of
cells in lung tissue (Voura et al., 2004). They combined QDs and emission spectrum scanning
multiphoton microscopy to develop a means to study extravasations in vivo. The mixture cell
culture of two populations of B16F10 cells staining with different QDs (510nm or 570nm
emission) did not result in the cells labelled with two colors because of cell division. To
examine the cell metastasis in a natural tissue environment, Simon and coworkers injected
this mixed population into the tail vein of mouse, extracted and fixed lung tissues, and then
used emission-scanning microscopy to distinguish both populations of cells in the whole
tissue sample. This elegant example indicates that the use of emission spectrum scanning
microscopy my enables simultaneously tracking several different QDs-tagged populations of
cells in the same animal.

Other signalling pathways, such as erbB/HER receptor-mediated signal transduction,
have also been examined using QDs (Lidke et al., 2004). Epidermal growth factor (EGF)
conjugated to QDs is still capable of binding to and activating its receptor, the erbB1 receptor,
which triggers internalization of both EGF-QDs and its receptor via endocytosis. In this case,
examination of single QDs enabled discovery of a retrograde transport process in which the
EGF-QDs, after binding to the filopodium of the cell, moves toward the cell body at a
velocity of 10nm/s. Owing to the photostability of QDs, EGF-QDs binding and internalization

kinetics were obtained, the latter being the rate-limiting process. Such quantitative
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understanding of the transduction mechanism is essential for receptor-targeted therapeutics.
QDs will be a valuable reagent for this kind of investigation.

Suitability for long-term imaging and multicolor in vivo imaging
Organic fluorophores are susceptible to photodamage and to metabolic and chemical

degradation, making it difficult to tag cells for long periods. One substitution to surmount this
problem is to use genetically encoded organic fluorophores, for example, the fluorescent
proteins, which are continuously made and replenished in the cell. However, these
fluorophores require up to one day or longer periods for expression after their introduction
into cells, which give rise to several pitfalls in field of biology. In addition, the phenomena of
photobleaching happened during continuous imaging for fluorescent proteins can cause the
similar delays in long-term imaging.

Such limitations can be overcome by the use of QDs, which are resistant to photodamage
(Jaiswal et al., 2003; Wu et al., 2003), degradation by enzymes in live cells (Jaiswal et al.,
2003) and chemical damage (Voura et al., 2004). Thus, QDs have facilitated the monitoring
of molecules in live cells for several hours (Dahan et al., 2003; Lidke et al., 2004), and
monitoring cell fate during either a week of growth (Hoshino et al., 2004) or the whole
developmental period of an organism (Dubertret et al., 2002; Jaiswal et al., 2003). Colloidal
semiconductor nanocrystals have a two-photon cross-section that is two to three orders of
magnitude greater than organic dyes (Larson et al., 2003). Therefore, multiphoton microscopy
enables the imaging of structures deep within biological tissues with minimum
photobleaching and photodamage. The ability to read out many signals simultaneously
through the use of multiple, non-overlapping, emission spectra, with a single excitation
wavelength is enabling cellular interactions to be examined during development, metastasis,
and non-invasive surgeries to be carried out in a way that has have not been feasible without
QDs.

Larson et al., in 2003 (Larson et al., 2003) has achieved the live animal imaging using
QDs fluorescence with multiphoton microscopy. The property of multiplexing for QDs makes
them good candidates for biological applications. After being intravenously injected into
mice, the QDs were detectable through intact skin at the base of the dermis (~100 micron)
using an excitation wavelength of 900nm. To optimize the conditions of in vivo experiments,
Ballou et al, tested QDs with different polymer coating in vivo using various imaging
techniques, including light and electron microscopy on tissue sections, and non-invasive

whole-body fluorescence imaging. These QDs maintained their fluorescence even after four
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months in vivo. Therefore, using QDs as in vivo probes has a great potential for cancer
studies, drug delivery, and non-invasive whole-body imaging.

Furthemore, QDs have facilitated the simultaneous imaging of at least five populations
of live cells, each labelled with different colored QDs (Voura et al., 2004). If combinations of
different QDs are used to tag cells, then an ability to resolve five colors will enable the
resolution of 36 populations of cells. This potential has been recently realized to generate ten
unique codes using five different-color QDs (Matteakis et al., 2004). Nowadays, use of QDs
offers a significant advantage for studies requiring the simultaneous imaging of multiple
fluorophores. This approach has facilitated in vivo imaging not only in mice (Larson et al.,
2003), but also in big animals such as pigs (Kim et al., 2004).

In summary, colloidal QDs are robust and very stable light emitters and they can be
broadly seperated simply through size variation. Recently, there has been a development of a
wide range of methods for bio-conjugating colloidal quantum dots in diverse areas of
application: cell labelling, cell tracking, in vivo imaging, DNA detection and multiplexed
beads. The use of QDs as biological probes has got significant advances. They will not
replace the well-established fluorophores or fluorescent protein-fusion technologies, but will
complement them for applications needing better photostability, near-infrared emission, or
single-molecule sensitivity over long time scales. Before QDs can find wider use in biological
research, several improvements must be made, including alterations of the surface properties
that affect their stability in cellular environments, and developing methods for their delivery
and efficient targeting in cells, without altering their properties. Although there is much that
we still need to understand about these little wonders, it is likely that they will soon become a

standard tool for biological applications.
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V.2 Multi-exponential Photoluminescence Decay of CdTe
Quantum Dots upon One and Two Photon Excitation

V.2.1 INTRODUCTION

In the coming decade, the ability to sense and detect the state of biological systems and
living organisms optically, electrically and magnetically will be radically transformed by
developments in materials physics and chemistry. The emerging ability to control the patterns
of matter on the nanometer length scale can be expected to lead to entirely new types of
biological sensors. These new systems will be capable of sensing at the single-molecule level
in living cells, and capable of parallel integration for detection of multiple signals, enabling a
diversity of simultaneous experiments, as well as better crosschecks and controls (Prasad,
2003). Semiconductor QDs with dimensions on the length scale of a few nanometers provide
a nearly zero-dimensional system, where carrier confinement occurs in all spatial directions.
Such quantum confinement results in the changes of the density of states for both electrons
and photons and the mechanisms of electron-hole recombination. The QDs are expected to
exhibit high luminescence yield and thermal stability in considering their optical properties,
which are mainly due to their d-like density of states and strong quantum confinement
(Lacowiscz, 2006). Generally, the refractive index and nonlinear optical properties of
semiconductor QDs change significantly compared to those of bulk. Compared with the
traditional organic fluorophores, semiconductor QDs have the advantages of size and
composition tunable photoluminescence (PL), higher quantum efficiency (QE), exceptional
photostability and narrow emissions with a broad excitation band. Their novel optical
properties make the QDs have considerable applications in photo-electronic devices such as
optical switches and lasers (Prasad, 2003). For biological applications, QDs can be coupled to
biological molecules such as proteins and DNA, which make the colloidal semiconductor
water soluble and can be used as biomedical fluorescence labels for investigating
biomolecular interactions and developing high-sensitivity detection and imaging. One
important concern in these applications is the dynamic properties of luminescence from QDs,
which not only help to gain fundamental insight into the charge carrier properties but also
provide information to improve the luminescence yield. In addition, QDs display a cross
section efficiency for two photon absorption and Gopper-Mayer coefficient are of two order
of magnitude greater than common organic dye (West & Halas, 2003).

In this study, time-resolved photoluminescence decay and spectrometer measurements

have been conducted on the mercaptopropionic acid (MPA) capped CdTe QDs, the
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recombination dynamics of colloidal CdTe QDs have been studied. The principle of PL decay
measurements is based on the technique of time-correlated single-photon counting (TCSPC).
The time-resolved PL, using the kinetics of electron-hole recombination as a probe, gives
direct information on the luminescence decay mechanism. Most of the previous studies of PL
kinetics referred to average lifetime (Shu et al., 2007). The radiative lifetime of
photoluminescence is generally supposed to be dominated by a biexponential distribution,
consisting of a fast component (~ several nanoseconds) and a slow component (~ tens of
nanoseconds) at room temperature (Sanz et al., 2008).

In our present study, we found that the PL decay detected at the maxima of the ground
state transition, were fitted to a multiple exponential function. Maximum entropy data analyse
method was adopted in present study, which is based on the principle that the probability
distribution of components that maximizes the information entropy is the true probability
distribution with respect to the testable information prescribed. The size dependence and
temperature dependence of the time-resolved PL properties of the self-assembled CdTe QDs
covered by MPA layers were investigated in present study. The influences of the environment
in term of pH have also been studied. The absorption spectra were measured with a double-
beam spectrometer with a resolution of 0.2nm. For PL measurements, the mode-locked Maitai
Ti:Sapphire tunable laser with 100fs pulse and the power of 80HZ was used to compare the
PL decay under one-photon and two-photon excitation conditions. The origins of the fast and
slow decays of PL in colloidal CdTe QDs were studied here, and the potential applications for
this series of MPA-coated CdTe QDs in biological systems would be discussed.

V.2.2 MATERIALS AND METHODS
Preparation of CdTe QDs- The quantum dots used in present study was synthesized by the

group of Professor Ren Ji-cun at college of Chemistry and Chemical Engineering at Shanghai
Jiaotong University at China. The chemicals used were of analytical grade or above. Milli-Q
water (Millipore, USA) was used in the preparation of QDs. Cd precursor solutions were
prepared by mixing a solution of CdCI2 (1.25 x 10-3 M) with mercaptopropionic acid (MPA)
solution, and were adjusted to pH 8-9 with 1 M NaOH. This solution was deaerated with N2.
Under vigorous stirring, oxygen-free NaHTe or NaHSe solution prepared according to the
method proposed firstly by Klayman and Griffin (Klayman & Griffin, 1973; Zhang et al.,
2003) was injected. The molar ratio of mixture solution was heated to 99-100 °C and refluxed

to different time for controlling the size of QDs.
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Preparation of core/shell QDs- The core/shell CdSe/CdS QDs were prepared using a
microwave irradiation method similar to that reported by Li and his colleagues (Li et al.,
2005). Water-soluble CdSe QDs were prepared according to the method elucidated in above
and were served as the seeds. Then it was placed into a program-controlled microwave
digestion furnace (WX-3000, Shanghai Yi-Yao Instruments, Shanghai, China) and heated by
microwave irradiation for 60 min at 140 °C. With irradiation of microwave, MPA gradually
released sulfide ions into aqueous solution, which leads to the formation of core/shell
structure. The As-prepared products were precipitated with 2-propanol to remove free Cd2+
and MPA as the approach described by Li et al. (Li et al., 2006). The quantum yield of CdTe
QDs was up to 50%.

Cary Eclipse Fluorescence Spectrophotometer- The UV-vis absorption and emission spectra
were recorded on Varian (Cary Eclipse) fluorescence spectrophotometers. The excitation and
emission power was adjustable according to the intensity of fluorescence emitted by
nanoparticles. When recording the emission spectra, the excitation and emission slits were
Snm and 2.5nm respectively, and changed to 2.5:5 when recording the excitation spectra. The
3x3-mm suprasil microcuvettes were adopted in present study. All the spectra were recorded
at room temperature.

Photoluminence decay measurements- The time-resolved emission was obtained using the
time-correlated single photon counting technique. The excitation light pulse source was a Ti-
sapphire subpicosecond laser (Mai Tai, Spectra Physics, Mountain View, CA) associated with
a second harmonic generator tuned at 420 nm. The repetition of the laser was set down to 4
Mhz. Fluorescence emission was detected through a monochromator (SpectraPro 150, ARC,
A)A=15 nm) by a microchannel plate photomultiplier (Hamamatsu R1564U-06) connected to
an amplifier Phillips Scientific 6954 (gain 50). The excitation light pulse was triggered by a
Hamamatsu photodiode (S4753). A time-correlated single-photon counting card SPC-430
(Becker-Hickl GmbH, Berlin, Germany) was used for the acquisition of both excitation and
fluorescence emission light pulse. The profile of the instrumental response of the laser pulse
(30 ps) was recorded by detecting the light scattered by a water solution. In case of two
photon excitation, the photomultiplier sensitivity does not allow the detection of excitation
profile at 840nm. A TAMRA solution was used as a reference assuming a lifetime of 1.75ns.
The time scaling was 59.5ps per channel and 4096 channels were used. The fluorescence
decay and the instrumental response profile were alternatively collected during 120 and 10s,
respectively. Routinely the total count of the decay reached 10-25 millions. In order to insure

a single-photon counting condition, the counting rate never exceeded 1% of the laser
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excitation frequency to avoid pile-up effect, if necessary, a neutral density filter was used to
attenuate the excitation intensity. The microcuvette (3x3-mm suprasil cuvettes) was
thermostated with a Haake type-F3 circulating bath.

Analysis and interpretation of data- Analysis of the fluorescence intensity decay I(t) was
performed using the PULSES program (MaxEnt Solutions Ltd, Cambrige, U.K.) based on the
Quantified Maximum Entropy Method, QMEM (Livesey and Brochon, 1987; Brochon,

1994).Fluorescence decay data were fitted to a sum of discrete exponentials:

1(6) = 2 h, (7, exp(~t/7,) (1)

which approximates the continuous distribution of exponentials. The distribution of
fluorescence lifetime probabilities 4;(7;) is proportional to the number of fluoresceing
“centres”. In case of single organic fluorophores in solution, it is proportional to €i/Mi] /tn,i,
where i , Mi and n,i are the molar absorption coefficient, the molar concentration and the
natural lifetime of species i respectively. In case of multichromophore ‘“centres” as in
quantum dots, we assume that 4i(z;) corresponds to the density of emitting atoms at a distance
Ri of the surface.

Maximum Entropy- Maximum Entropy is an optimal criterion for reconstructing lifetime
distribution h(tr) from imperfect data. The general formulation of the entropy for a

fluorescence kinetics is only dependent of h(7) :

S = [ h(t)-m(t)-h(7) log&dr (2)
m(7)

In this expression, m is a measure, usually taken to be flat in logarithmic space, which
quantifies the relative importance of the various "pixels". S measures the deviation of the
distribution h(t)from this measure, attaining its global maximum of zero when h(t)is equal to
m(t). Because S is maximized by distributions which are as close as possible to the uniform
and featureless (in log. space) measure m, maximum entropy uniquely gives the most
probable reconstruction: there must be evidence in the data for any structure seen in a
maximum entropy reconstruction. Suitably normalized, S is also minus the information
content of h(t), so that maximum entropy affords a uniquely comprehensible reconstruction,
having only that minimum of information which is required to fit the data.

The program set up a statistic which measures the misfit between the actual (noisy) data
Dy and the calculated data Ty which would be observed (in the absence of noise) if the actual

distribution were correctly represented by the particular numbers #;.
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It is usual to use the normalized chi-squared value as a fit statistic.

€)

where oy is the standard deviation of the k™ datum. On average, each datum should lie about
one standard deviation from its calculated value, so that the normalized residuals should have
unit variance and %2 should be close to unity.However, very many distributions remain which
can fit an incomplete or noisy data set to the correct precision and very close value of 2, each
of which is consistent with the data, and most of which tend to be alarmingly irregular. The
maximum entropy principle is appropriate to distinguish among these in a consistent way.
One selects that single consistent distribution h(t) which has greatest entropy (or, more
strictly, greatest generalized cross-entropy) leading to the best posterior probability
distribution. Statistics from a Gaussian approximation around this optimum solution allows
calculating error bars on some parameters of interest: peak surface, peak width and peak
position (Gull, 1989; Skilling, 1991). In general, the distribution being sought is represented
by set of "pixels" numbers 4; (i=1,2,...N) proportional to the numbers of fluorescing centres
with decay time ;. These numbers are to be inferred from the observed data Dy (k=1, 2, ... M).
It is clear that the digitalization of the fluorescence decay in M data points (in linear space) as
well as the lifetime domain in N points may influence the final shape of the recovered lifetime
distribution. Therefore we choose to use a large value of N, particularly if the lifetime domain
to explore spans over several decades.

In the recovered distribution of discrete lifetime peaks, the centre t; of a single resolved
peak ranging from I"™ lifetime to m™ lifetime is defined as:

7, =§hi(ri)ri/§hi(ri) 4

i=l
and its corresponding relative contribution ¢; to the decay is:

c; = IA mh,.(z'i)/ lihi(ri) (5)

On the contrary to lt_l;e "histolr_ilc" maximum entropy method (Livesey et al. 1987), the
quantified method does not use anymore the y” statistic criteria as a second selector to select
the "best distribution" of a family of solutions but the most probable of a complete family of
possible solutions. It ends with a complete probability distribution of solutions surrounding

the maximum entropy possible value taking into account a Gaussian noise on data. This

allows error bars to be calculated (Gull, 1989; Skilling, 1991).
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In practice, 300 equally spaced values on the [ logscale, between 0.05ns and 200ns were
used. Since we have no prior information about the number, positions and relative importance
of lifetimes before running the data analysis, all 300 lifetimes have the same prior probability
and the program starts with a flat distribution. After a data noise estimate, the program
iterates down the entropy trajectory in optimizing the posterior inference. A termination
criteria is in action when the computed probability family of solution appears to be
sufficiently close to correct i.e. the optimal probability is reached indicating that the algorithm

should be stopped (Skilling, 1989; Gull, 1989).

V.2.3 RESULTS
The hydrodynamic diameters of MPA-coated CdTe QDs have been measured using

Fluorescence Correlation Spectroscopy (Dong et al., 2006) and ranges from 2.0 to 5.5 nm.
Individual CdTe QDs display non-blinking behavior and rather good stability in aqueous
solution (He et al., 2006).
Displacement of emission spectra depends on the quantum dots size

Cary Eclipse fluorescence spectrophotometer was used in present study to measure the
emission spectra of QDs in a varied size. Our emission spectra exhibit a dependence on the
QDs size: the intensity maxima of emission bands are shifted toward longer wavelengths
when the QDs size is increased. As an example, Figure 1A,B presented the absorption and
emission spectra for 2.4 and 4.9nm size QDs respectively. It was clearly noticed that the
excitonic absorption peaks were centered at 527 and 627 nm for 2.4 and 4.9 nm diameter
nanoparticles, respectively. The emission peaks were also shifted from 550 to 650 nm to the
direction of longer wavelength. The result is a consequence of quantum size confinement. In
addtion, for QDs with a diameter of 2.1 nm, two observable emission peaks were found in
present study with the primary one at 526nm and the minus one at 612 nm. PL decay analysis
was carried out afterward to better understand such abnormal emission spectra. In
combinasion the emission and absorption spectra for all the QDs, a significant size-
dependence for the spectra displacement was observed (Figure 4).
Photoluminescence decay depends on the quantum dots size

The PL decays of CdTe quantum dots in water at 20°C upon 2PE do not correspond to
single or double exponential kinetics but can be fitted by a sum of five exponentials. There is
no evidence for a broad continuous distribution of lifetime in any sample. However the time-
resolved PL is clearly changing with the size of the nanoparticle, as shown in Figure 2 the

decay becomes faster as the size of the particle decreases. Similar result was already obtained
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by research group of Rogach (Rogach et al., 2007) without detailed analyses of the PL decays.
The corresponding parameters of our data analysis are given in Table 1. Except the shortest
lifetime (t1) all other four lifetimes and their corresponding relative contributions are
changing with the size, notably the long component. The two longest components t4 and 15
and their relative amplitudes increase with size. On the contrary, the intermediate lifetime 12
and 13 decrease. On the whole, the average lifetime increases linearly with the size of the
nanocrystal as show in Figure 3. However there is no good linearity between size and increase
of long lifetime t4 and t5. Since there is a relationship between the size and the
corresponding fluorescence emission of QDs, PL decays were measured through the emission
band. For the four largest particles under study there is no difference, within the present
measurement and analysis accuracies, in PL decay through their emission peak band (data not
shown). Nevertheless emission spectrum of small QDs, either CdSe or CdTe, displays a small
shoulder at longer wavelength. For example, the small particle of 2.1 nm displays such a
shoulder (Figure 4). The measurements of PL decay at 515 nm and 612nm corresponding to
the “blue” part in the main emission peak and to the shoulder respectively, evidently
displayed different decays (Figure5 and Table 2). Again except t1, all lifetimes are larger at
longer wavelength. We may reasonably assume that the shoulder corresponds to a very small
amount of larger particles or aggregates.

Obviously, the origin of multiexponential PL decays in colloidal CdTe QDs remains an
open question. First, people do not know clearly whether the recombines supposed to obey to
a first order kinetics. Second, migration of charge toward the surface corresponding to a non
radiative process is not well understood. Third, heterogeneity of the particle surface and
symmetry in the particle shape (even without the size heterogeneity itself) are supposed to
play a role in the complexity of the PL decay. It is already known that surface defects play an
important role in the de-excitation, which may partly explained results in our study for small
QDs. In previous studies, related PL decay measurement of QDs suffered from technical
limitations. If the decay span is limited, the long lifetime correspond are not enough taken into
account and therefore the average lifetime was estimated at a shorter value. Otherwise, the
lack of accuracy in measuring PL decay (either low counting statistics or poor time
resolutions) results in missing the detection of short lifetime and therefore in overestimation
of the average lifetime. Taking advantage of the accuracy of TCSPC measurement over a
large time domain and the powerful capability of the MEM of data analysis we detect a rather

complex kinetics of CdTe quantum dots.
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PL decays upon one and two photon excitation

Next, we conducted the PL decay measurements for the series of MPA-capped CdTe
QDs (diameters varied from 2.1 to 5.5) under both one-photon and two-photon exciations.
Results indicated that there is no marked difference in PL decays of CdTe QDs coated with
mercaptopropionic acid in water upon one or two photon excitation as illustrated in Figure
6A. Only a slight difference appears on the smallest particle of 2.1nm in diameter (Figure
6B), with the PL decay profile under two-photon excitation displaying shorter lifetime in
comparison with that under one-photon excitation. This small PL decay difference for QDs in
diameter of 2.1 nm could be attributed to the abnormal emission spectra obtained through
fluorescence spectrophotometer. Altogether these data, we can conclude the excitation mode
(one-photon and two-photon excitation) had no significant influence on particle lifetime
distribution during the PL decay measurements.

Influence of the environment on the PL decay

PL lifetime is a key parameter for fluorescent QDs in use for FRET measurement in
aqueous medium, particularly in biology. Because of the large surface-to-volume ratio of
QDs, their quantum efficiency is sensitive to surface states, especially in the case of colloidal
QDs passivated with organic ligands. It was reported (Zhang et al., 2008a) that the acidic
environment would cause the detachment of surface ligands from the semiconductor core,
which would destroy the passivation of QDs and cause the formation of surface defects.
These surface defects would enhance the nonradiative decay, thus leading to the reduction of
PL quantum efficiency and shortening of PL lifetimes. Recently, the PL lifetimes have been
measured of thiol-capped CdTe QDs in some water solution at different pH (Zhang et al
2008b) and in biological medium (Zhang et al., 2009) but only average lifetimes were
reported. The authors demonstrated the strong influence of the environment on quantum
efficiency, and a lifetime was found to be 80 ns at pH 7 and 18ns at pH 3. Addition of Lysine
at neutral pH causes a drop in the lifetime to 63ns. As reported previously (Diaz et al. 1999;
Susha et al. 2006), electronic couplings of ions with the electrons in the conduction band of
excited semiconductor QDs would create nonradiative pathways for the recombination of
photoexcited charge carriers.

For comparison, the PL lifetimes of the largest QD (4.9nm) in aqueous solutions with
different pH (from 2.85-9.2) were measured at 20°C in our study. Data were illustrated in
Table 3. Surprisingly, the PL decays of CdTe QDs in aqueous solution containing 50mM Tris
can be satisfactorily fitted by only a sum of three exponential at pH 7 and 9 and by a sum of 4

and 5 exponentials at acidic pH, 5.5 and 2.85 respectively. At all pH measurement groups,
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the relative contribution of a long lifetime, close to 60ns, remains almost constant as well as
the contribution of lifetimes smaller than 0.6 ns. At acidic pH the short component was split
into two lifetimes of lower value indicating an increase of the role of non radiative processes.
We notice that the long lifetime 15 is close to the single lifetime value previously obtained by
Zhang et al. but we did not detect a decrease of the average lifetime with pH.
Influence of temperature on PL decay

The temperature adopted in present study to evaluate its influence on PL decay of CdTe
quantum dots in aqueous solution was limited to those used commonly in use for biological
studies. An example of variation of PL decay parameters is shown in Figure 7 and Table 4.
The temperature has a limited effect on the average lifetime. The shortest lifetimes and their
relative contributions are not markly affected by temperature only the long components play a
major role in the change of the decay profile. Similar results have been obtained for larger

particles (data not shown).

V.2.4 DISCUSSION AND CONCLUSION

In this study, we reported the time-resolved photoluminescence transients of MPA-
capped CdTe nanoparticles in aqueous solutions. According to the results, there is no sensible
difference in PL emission in water upon one or two photon excitation, which confirmed the
feasibility in our present study using two-photon excited measurement.

The size-dependent emission spectra displacement was observed in present study. Similar
phenomenon has been observed in previous report where the dynamics of thioglycolic acid-
capped CdTe nanoparticles were studied (Sanz et al., 2008). The spectra properties for 3.1nm
and 3.6nm thioglycolic acid-capped CdTe QDs were studied by Sanz and others, they found
that the intensity maxima of absorption and emission bands are shifted toward shorter
wavelengths when the QD size is decreased. This finding is consistant with our present study
in considering of MPA-capped CdTe nanoparticles. These global Stokes shifts could be
explained either in terms of strong electron-photon interaction of by the presence of localized
states (surface and/or defect) involved in the band-edge emission.

It has been confirmed that the PL decay are also dependent on the size of QDs. Previous
report on luminescence properties of thiol-capped CdTe QDs in water shows that an increase
in particle size drastically reduces the short component and a single-exponential decay
yielding a fluorescence lifetime of 145ns has been recorded for MPA-cappd CdTe QDs
(diameter ~6nm) (Rogach et al., 2007). This observation is explained in terms of stabilized

Te-related traps relative to the valence band position of the CdTe nanoparticles. Here we
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observed multi-exponential decays for the MPA-capped CdTe QDs with a diameter varied
from 2.Inm to 5.5nm. We observed that except the shortest lifetime (t1) all other four
lifetimes and their corresponding relative contributions are changing with the size, notably the
long component. On the whole, the average lifetime increases linearly with the size of the
nanocrystal as show in Figure 3. The shortest component is assigned to radiatvie depopulation
due to band-edge recombination of to e-h recombination at the surface (El-Sayed, 2004). The
two longest components t4 and 15 and their relative amplitudes increase with size. On the
contrary, the intermediate lifetime 12 and 13 decrease. This result agrees with that observed
using different capping agents, such as thiol-capped CdTe (Sanz et al., 2008). However, it
does not agree with the report by Rogach and his colleague, which shows an increase in the ns
lifetime with the size of the particle, and where longer lifetimes, up to 145ns, have been
observed (Rogach et al., 2007). These differences reflect the effect of a small experimental-
condition change in the preparation of larger nanoparticles, and which controls
thermodynamics and kinetics of growth. In our case, rate constants of non-radiative processes
due to deep traps increase with the size of the QDs.
In practice, the long average lifetime displayed in water soluble CdTe QDs made them
a proper candidate for FRET experiment in biology. Nevertheless reducing particle size to
make it comparable to protein dimension, leads to low average lifetime. Whatever the size,
the PL kinetics remains complex making the interpretation of FRET data difficult as it has
already shown with CdSe QDs involved as energy transfer donor to an organic dye (Fernadez-
Agiielles et al., 2007). The PL kinetics is strongly dependent of the solvent molecules which
interact with the surface of the QDs. Our results also show that amine salt make the PL decay
much slower and less complex than in pure water whatever the pH is between 3 and 9. Leitao
and his colleagues have studied the influence of environmental pH on the multiway
chemometric decomposition of excitation emission matrices for fluorescence of CdTe QDs
(Leitao et al., 2008). They described the pH-induced fluorescent intensity variations of QDs
and clarified the pH of the media where the QDs are dispersed affects critically their
fluorescence properties. Such pH-induced influence was confirmed in our present study by
measuring the PL decay. Under practical applications where quenching or enhancement of
fluorescence is being measured, the pH-induced variations can be observed by PL decay
assays concerning lifetime changes with pH, which is more reliable for measurements
concerning fluorescence intensity.
Furthermore, we proposed that the PL decays of CdTe QDs are not sensitive to

temperature commonly used in biological studies in this study. Existed studies related with
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temperature effects were most focused on the extreme temperature. For example, Lee and his
group member have reported the decay of PL intensity for colloidal CdSe/ZnS QDs. They
declare that at 9K, PL decay curve can be best fitted by a biexponential function, indicating a
fast component (~1ns) and a slow component (~6.3ns). As the increase of temperature, from
9K to 300K, the slow component remains constant, however, the fast component decreased as
the increase of temperature (Lee et al., 2005). In combination our present study with that have
been reported, we suggest that the different components consisting in PL decay process

involve the recombination of the delocalized carriers and the localized carriers respectively.

V.2.5 PROSPECTIVE

Present study only generally characterized the fluorescence properties of MPA-capped
QDs nanoparticles. The improved synthesis of water-stable QDs, the biological applications
of biocompatible QDs, and the mathematic model are still need to be progressed. In detail, the
following aspects would be taken more attention:

» Further chemical studies to test different passivation molecules and surface treatments
in order to improve PL kinetics.

» Establishing the model for recombination kinetics in nanoparticle where thousands of
atoms are involved in the charge migration and the shape smoothness.

» Setting up new theoretical kinetics models which can fit the data as well as a sum of
many exponentials.

» Improving the conjugation of QDs to specific biomolecules

» Introducing the QDs into the research in biological domain

V.2.6 FIGURES AND LEGENDS

Figure 1: Illlustration of size-dependent absorption and emission spectra of MPA-capped
CdTe ODs — Room temperature UV-vis absorption and Eclips emission spectra of a neutral
aqueous solution of CdTe nanoparticles was observed. (A) QDs with a diameter of 2.4nm; (B)
QDs with a diameter of 4.9nm. The red line stands for absorption spectra; Black line stands

for emission spectra
Figure 2: lllustration of MPA-capped CdTe QDs size-dependent Photoluminescence decay—

(A) The PL decay profiles of colloidal CdTe/MPA QDs with the size of diameter varied from

2.1nm to 5.5nm was monitored at room temperature under two-photon excitation. (B) two-
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photon excited lifetime distribution for the same QDs. Corresponding data analysis was

carried out by Maximum Entropy Method.

Figure 3: Illustration of size-dependent average lifetime for MPA-capped CdTe QDs with a
diameter of 2.1nm- Measurments were carried out under two-photon excitation at room
temperature.

Figure 4: Emission spectra for MPA-capped CdTe QDs with a diameter of 2.1nm— This

small partical displays two shoulder with the big one at 526nm and the small one at 612 nm.

Figure 5: Photoluminescence decay measurements for MPA-capped CdTe QDs s with a
diameter of 2.Inm — The measurement was carried under two-photon excitation with the
emission wavelength at 515nm and 612nm respectively. The PL decay profile was totally

different under 1-PE and 2-PE for the same QDs.

Figure 6: Illustration of PL decay profile for MPA-capped CdTe QDs under 1-PE and 2-PE
conditions— (A) QDs with a diameter of 3.0nm; (B) QDs with a diameter of 2.1nm.

Figure 7: Illustration of temperature-dependent effects for MPA-capped CdTe QDs with a
diameter of 2.Inm— The measurements were carried under two-photon excitation at the
temperature 5°C, 20°C and 33°C respectively. (A) The PL decay profiles of colloidal
CdTe/MPA QDs. (B) two-photon excited lifetime distribution for the same QDs.

Corresponding data analysis was carried out by Maximum Entropy Method.

Table 1: ps-ns emission decays of MPA-capped CdTe nanoparticles in water at different
wavelength of observation— Values of time constants (1j) and normalized (to 100) relative
contribution to the decay (cj) was illustrated by fitting from the Equ.4 and Equ.5 respectively.

Multi-exponential fitting was processed here.

Table 2: ps-ns emission decays of MPA-capped CdTe nanoparticles in diameter of 2.1nm
under 2-PE- Values of time constants (tj) and normalized (to 100) relative contribution to the
decay (cj) was illustrated by fitting from the Equ.4 and Equ.5 respectively. Multi-exponential

fitting was processed here.
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Table 3: Environment influences on the ps-ns emission decays of MPA-capped CdTe
nanoparticles in water— Values of time constants (t1j) and normalized (to 100) relative
contribution to the decay (cj) was illustrated by fitting from the Equ.4 and Equ.5 respectively.

Multi-exponential fitting was processed here. The QDs with the size of 2.7nm was used here.

Table 4: Temperature-dependent effects on the ps-ns emission decays of MPA-capped
CdTe nanoparticles in water— Values of time constants (tj) and normalized (to 100) relative
contribution to the decay (cj) was illustrated by fitting from the Equ.4 and Equ.5 respectively.

Multi-exponential fitting was processed here. The QDs with a size of 2.1nm was used here.
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Figure 3
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Figure 5
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Figure 7
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TABLE 1:

QD Diameter | Agmi T1 C1 ) () T3 C3
(nm) (mm) | (ms) | (%) | (ms) | (%) | (ms) | (%)
2.1 515 | 0.096 | 664 | 1.203 8.6 | 3.282 9.5
2.4 550 | 0.096 | 649 | 1.199 | 13.2 | 3.029 6.4
2.7 585 | 0.091 | 54.6 | 0.725 5.5 2.034 | 149
4.5 632 | 0.097 | 543 | 0.600 | 2.4 1.868 | 16.8
4.9 650 | 0.100 | 50.8 - --- 1.399 | 248
QD Diameter | Agny; T4 C4 Ts Cs <> chi2
(nm) (mm) | (ms) | (%) | (ms) | (%) | (ns)
2.1 515 {10.890| 9.0 |21.090| 4.8 3.160 | 1.355
2.4 550 | 14940 | 9.3 |33.860| 6.2 3910 | 1.185
2.7 585 | 17.120 | 10.8 | 35410 | 14.2 | 7.280 | 1.212
4.5 632 | 18.790 | 7.3 |43.370| 19.2 | 10.070 | 1.026
4.9 650 | 19.620| 4.7 |50930| --- |11.370]1.053
TABLE 2:
AEmi T (V1 T2 C2 T3 c3
(nm) (ns) (%) (ns) (%) (ns) (%)
515 0.096 66.4 1.203 8.6 3.282 9.5
612 0.101 57.1 1.428 21.5 4.209 4.8
AEmi T4 4 Ts Cs <t> chi2
(nm) (ns) (%) (ns) (%) (ns)
515 10.890 9.0 21.090 4.8 3.160 1.355
612 15.250 10.3 42.880 6.4 4.870 1.053
TABLE 3:
T1 Cq T2 C T3 C3
PH | ) | ) | @) | m) | @) | ()
2.85 0.06 314 0.216 6.0 3.036 5.4
5.53 - - 0.469 5.1 6.155 11.0
7.00 - - 0.504 4.9 - ---
9.20 - - 0.549 4.6 - ---
T4 C4 Ts Cs <T> chi2
PH | ) | ) | @) | % | 9
2.85 20.080 10.7 60.340 46.4 30.390 1.104
5.53 21.250 6.4 59.290 42.1 26.610 1.241
7.00 18.880 6.8 59.720 44.6 28.190 1.359
9.20 15.580 5.6 58.670 48.7 29.680 1.233
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TABLE 4:

Temperature T1 C1 T, C2 T3 c3
O (ns) (%) (ns) (%) (ns) (%)
5.0 0.128 71.8 1.326 7.6 2.693 94
20.0 0.096 66.4 1.203 8.6 3.282 9.5
33.0 0.050 75.6 1.143 12.6 4.484 3.7

Temperature T4 (W Ts Cs <t> .
°C) ms) | %) | @) | %) | (s | M2
5.0 13.140 6.7 27.020 32 2.840 1.814
20.0 10.890 9.0 21.090 4.8 3.160 1.355
33.0 11.560 4.6 19.650 2.5 1.790 1.869
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In present study, a variety of fluorescence detection approaches, including steady-state
fluorescence anisotropy; fluorescence cross-correlation spectroscopy (FCCS); time-resolved
fluorescence measurements, have been adopted to understand the fundamental principles of
the light activation of biomolecules, bioassemblies, and the subsequent photoinduced
processes. This thesis encompasses the fundamentals and various applications involving the
integration of light, photonics and biology into biophotonics.

In the first part, the FCCS technique has been applied to monitor the enzymatic kinetics
of RecQ helicase. The principle was based on the sensitivity of FCCS technique to the
concomitant diffusion of the two fluorescently labelled DNA strands, with high cross-
correlation amplitude characterizing the duplex molecule and a significant decrease in this
amplitude upon physical separation of the two strands, without any limitation due to the size
of the DNA strands that initially constitute the DNA substrate. Under the guidance of FCCS
approach, the E.Coli RecQ helicase DNA unwinding activity and human RecQ5f helicase
strand annealing activity have been studied.

» We found that the DNA-binding of E. coli RecQ helicase is characterized by a
cooperative DNA-binding mode at 37°C, but essentially non-cooperative at 25°C. Our
results highlight a different DNA-binding mode of E. coli RecQ helicase depending on
the temperature, suggesting a specific protein conformation compatible with
cooperative assembly that occurs at 37°C but not at 25°C. The thermodynamic DNA
binding behaviour of RecQ helicase is compared with that of ATP concentration.
Moreover, the extent of cooperativity for E. coli RecQ protein to DNA substrates is
strongly related to the DNA size and there is the absence of cooperativity for the short
DNA substrate (13-mer), even at 37°C, which is in total agreement with the binding
size of 9-10 nt — for a monomeric unit — as previously determined (Zhang et al., 2006).
We also revealed a synergistic effect of the presence of the two 3’-OH ss tails for all
DNA lengths above 13-mer, and the cooperativity increases when the size of the
duplex DNA region increases which indicate that the duplex region, not only the ss/ds
DNA junction, plays a key role in the cooperative DNA-binding mode. We further
examined the influences of the spontaneous DNA re-hybridization- following helicase
translocation- and the single-stranded DNA binding property of helicase on the
unwinding activity. To address these questions, the effects of complementary ssDNA
and that of SSB protein were studied. Results indicate the influence for ssDNA and
SSB protein on E. coli RecQ helicase is quite comparable. The stimulation effect of

SSB on helicase activity via inhibition of the spontaneous re-annealing of unwound
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strands is probably common to both single- and multiple- turnover catalytic modes.
And at higher SSB concentrations, the helicase may be displaced from the DNA
substrate ss3’-tails, which further explained the inhibition effects of SSB above the
150nM (Kgapp = 94nM) should be attributed to the helicase/SSB interaction. Similarly,
short complementary single strand oligonucleotides (typically 7- or 10-mer) display
comparable stimulation effects on helicase activity with that of SSB was observed in
present study. Such stimulation effects of SSB and as short oligonucleotides can be
qualified as modest and only partially increase the apparent unwinding rate.

» When concerning about the RecQ5p helicase DNA-binding and strand annealing
activities, the influence of temperature on the annealing efficiency on the same DNA
substrate with and without enzyme was compared. The DNA substrate binding activity
of RecQ5p was also conducted to further evaluate the enzyme annealing activity. We
have characterized RecQS5p strand annealing efficiency had no dependence on
oligonucleotide length, which is different with that in other human RecQ family
members. Moreover, we found that RecQ5p possesses higher strand annealing activity
at higher incubation temperatures, however, the related ssDNA binding affinity for
RecQ5p decreases as the increase of the temperature (Figure 2, I11.2). Furthermore, the
strand annealing activity of RecQ5p is quite comparable on the 22-bp dsDNA and the
66-bp ssDNA, which confirmed that there is no DNA length and polarity dependence
for RecQ5p helicase in case of strand annealing activity. In addition, the temperature
dependence for RecQ5p annealing activity may suggests that the mechanism by which
RecQS5p promotes ssDNA annealing is not for non-specifically binding of enzyme to
the two ssDNA molecules and hence increase the proximity via protein-to-protein
interactions. It reflects the innate RecQ5p-mediated annealing. No Mg”" requirement
was observed to perform RecQ5B-mediated strand annealing activity, which is
consistent with that of BLM helicase when performing annealing activities (Cheok et
al., 2005) and that of T4 phage UvsW helicase (Scott & Stephen, 2007). Results in our
present study would definitely provide more knowledge on understanding the intrinsic
DNA-strand annealing function for DNA helicases.

Therefore, the FCCS approach is particularly well-suited for monitoring the RecQ

helicase enzymatic activity.

In the second part, steady-state fluorescence anisotropy was recorded by Beacon 2000

instrument to analyse impact of the two main raltegravir resistance pathways (N155H and
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G140S/Q148H) on HIV viral replication and the catalytic properties of recombinant INs. In
particular, the effect of the G140S/Q148H double mutation was investigated by constructing
both the Q148H and G140S single mutants as well as the double mutant. We also studied the
effect of IN background (laboratory strain or patient) on the properties of the enzymes.

» Present study has successfully monitored the DNA-binding and 3’-processing
activities of wild-type and mutants of HIV-INs in real-time. Results indicated that
each mutation described conferred resistance, but the extent of that resistance differed
between mutations. The Q148H mutation caused strong resistance to RAL when
present alone, while the G140S displays week resistance. Importantly, the
G140S/Q148H double mutation confers strong resistance to the drug and viral
replication levels similar to that of wild-type virus. However, this mutation of Q148H
severely impaired viral replication kinetic in addition to the catalytic activity of the
recombinant IN. The G140S mutation did not confer strong resistance but restored the
replication capability of the Q148H mutant. Accordingly, in vitro, the activity of the
G140S/Q148H mutant is able to reach a wild-type level of activity but not the single
mutant Q148H. Our kinetic study also reveals that Q148H is a catalytic mutant
blocked in an inactive conformation. The G140S mutation induces a conformational
transition compatible with activity. Thus, the combination of these two mutations
results in a virus that is both able to replicate and highly resistant to RAL. Taken
together, we hypothesized that the Q148H mutation primarily confers resistance to
RAL, however, this mutation severely impaired viral replication. It is most likely that
the G140S mutation counteracted this detrimental effect for the virus and increased
viral fitness. Such compensation of the Q148H replication efficiency by G140S
explains why rapidly after the administration of RAL, the G140S/Q148H mutant is
detected. Finally, our data demonstrate that the Q148H mutant is more resistant to
RAL in comparison to the N155H mutant, which explains why the N155 pathway
often switched to the Q148 pathway.

In the third part, time-resolved photoluminescence decay and spectrometer
measurements have been conducted on the MPA capped CdTe QDs. The size dependence and
temperature dependence of the time-resolved PL properties of the self-assembled CdTe QDs
covered by MPA layers were investigated. The principle of PL decay measurements is based
on the technique of TCSPC. The time-resolved PL, using the kinetics of electron-hole
recombination as a probe, gives direct information on the luminescence decay mechanism.

The radiative lifetime of photoluminescence is generally dominated by a biexponential
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distribution, consisting of a fast component (~ several nanoseconds) and a slow component (~
tens of nanoseconds) at room temperature. The PL decay detected at the maxima of the
ground state transition, and the PL decay profiles of QDs were fitted to a multiple exponential
function. Maximum entropy data analyse method was used in data processing.
» The hydrodynamic diameters of MPA-coated CdTe QDs has been measured using
FCS technique (Dong et al., 2006) and ranges from 2.0 to 5.5 nm. Individual CdTe
Qds display non-blinking behaviour and rather good stability in aqueous solutin (He et
al., 2006). Spectrometer measurements indicate that the emission spectra of the
smallest CdTe quantum dots displays a shoulder at long wavelength where the PL
decay is slower than in the main peak. The PL decay of CdTe QDs analyses yields
lifetime distribution with peaks arising around 0.1ns, 1-3ns, 10-20ns and 40-50 ns.
Similar results have been obtained with coated CdSe QDs in use for FRET
measurements (Fernadez-Agiielles et al., 2007). Moreover, we found that the larger is
the size of QDs, the slower is the PL decay. In small particles the relative contribution
of fast component is greater than in large QD. The decays of CdTe QDs are very
similar upon one or two photon excitation. Only a minor difference has been detected
in the smallest particle. In addition, the PL decay of QDs was faster at higher
temperature, which would be attributed to the increasing contribution of the smallest
lifetime peak. Therefore, the QDs emission kinetics is rather complex and it is clearly
depending on the particle size. The use of QDs for FRET experiment is therefore
complicated by the multiple lifetime behaviour. The influence of surface charge of
QDs on PL kinetics will be further investigated.

In conclusion, the applications of fluorescence-based techniques in biological fields have
broadened our knowledge on biological macromolecules and their interactions. Present thesis
has successfully realized the use of several fluorescence-based detection techniques in
monitoring enzymatic kinetics and characterizing the fluorescence properties of nanoparticles.
We convinced the fact that the fluorescence detection is highly sensitive and has more
advantages (eg. low expense and less difficulty) when comparing with the traditional
radioactive tracers presently used in most biochemical measurements. In the future, the need
for better, minimally invasive diagnostic tools and more specialized instrumentation to answer
highly specific biological questions would definitely trigger an avalanche in the fluorescence-

based technique development.
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RESUME

Ce mémoire présente la mise en place des techniques de fluorescence en milieu biologique pour
mieux comprendre le principe des interactions entre macromolécules biologiques ainsi que leurs
mécanismes catalytiques. Dans ce contexte, nous avons appliqué trois méthodes d’analyse de la
fluorescence.

Une premicre technique d’analyse dynamique, la spectroscopie de cross-corrélation de
fluorescence, basée sur des mesures en micro-volume et sur une faible concentration moléculaire, a
essentiellement été appliquée a étudier D’activité hélicase en mesurant la corrélation croisée des
fluctuations de fluorescence entre deux molécules d’ADN complémentaires. En particulier, I’activité
d’hélicase de la protéine E.Coli RecQ et 1’activité d’annealing pour la protéine RecQ5p humaine ont
été étudiées. Les performances de la technique FCCS pour appréhender I’é¢tude des activités
enzymatiques de la famille des hélicases RecQ ont été validées par nos résultats.

Une deuxiéme technique d’analyse dynamique qui nous permet de mesurer 1’anisotropie de
fluorescence statique a été appliquée pour comprendre I’effet de deux voies de résistances au
Raltégravir (N155H et G140S/Q148H) sur la réplication virale du virus VIH-1 et sur les propriétés
enzymatiques de l’intégrase du VIH (INs). Les applications de cette technique nous ont permis de
démontrer la mutation Q148H joue un role prépondérant pour la résistance au Raltegravir, tandis que
la mutation G140S augmente la fitness virale dans le contexte de la double mutation G140S/Q148H.

Une troisieme technique d’analyse dynamique, le déclin de la photo luminosité résolue en temps
de la fluorescence, a été appliquée a caractériser les propriétés de fluorescence de nanocristaux de
CdTe couronnés par MPA. Cette approche a confirmé les avantages des nanocristaux et leurs
applications pour le marquage de fluorescence.

En conclusion, ce mémoire inclus les principes et les applications variées des techniques de
fluorescence qui sont engagées a intégrer la domaine différente (lumiére, photoniques et biologie) dans
la méme domaine biophotonique.

ABSTRACT

This thesis presents the applications of fluorescence detection approaches in understanding the
fundamental principles of the light activation of biomolecules, bioassemblies, and their catalytic
mechanisms. In this context, three frequently used fluorescent methods have been discussed.

The first technique, the fluorescence cross-correlation spectroscopy, based on measurements in
micro-volumes with weak molecular concentration, has been essentially applied to monitor the cross-
correlation of the fluorescence fluctuations of the two complementary DNA strands. In particular, the
helicase activity of E.Coli RecQ enzyme and the strand annealing activity of human RecQ5p helicase
have been monitored. Results proved that the FCCS approach is particularly well-suited for
monitoring the RecQ helicase enzymatic activity.

The second technique, the fluorescence steady-state anisotropy measurements, has been adopted
to analyse impact of the two main Raltegravir resistance pathways (N155H and G140S/Q148H) on
HIV viral replication and the catalytic properties of recombinant integrase (INs). Results demonstrated
the Q148H mutation is responsible for predominant resistance to Raltegravir whereas the G140S
mutation increases viral fitness in the context of double mutant G140S/Q148H.

The third technique, the time-resolved photoluminescence decay measurement, has been
conducted to characterise the fluorescent properties of MPA capped CdTe quantum dots (QDs).
Results confirmed the advantages of QDs and their promising applications in fluorescent labelling.

In conclusion, this thesis encompasses the fundamentals and various applications involving the
integration of light, photonics and biology into biophotonics.





