. En, attendàattendà ce que p(n) croisse comme n d , c'est-` a-dire soit encadré par C 1 n d et C 2 n d , pour C 1 , C 2 deux constantes positives. La majoration est un résultat connu : c'est un théorème de Hansen et Robinson pour les pavages dits self-affine, qui s'´ enonce comme

. La-minoration-peutégalementpeutégalement-se-déduire-d-'un-résultat-de-solomyak, 4] : dans un pavage de substitution P sans période, il existe une constante C telle que si a et b sont deux amas de taille r de P qui sont un translatés l'un de l'autre (disons a = b + x avec x ? R d ), alors x ? Cr. Ainsi, les amas qui sont (( proches )) de a sont différents de a. Cela donne une borne inférieure sur la complexité. On donnera dans la suite de ce chapitre une preuve directe de l'encadrement de p pour un pavage de substitution. La preuve utilisera les propriétés d'invariance de la complexité par homéomorphisme bi-lipschitzien afin de simplifier leprobì eme, Cela dit, vol.66, issue.2

P. Si, alors on peut se restreindrè a des V i tels que pour tout i ? n, V i est un voisinage ouvert de x ientì erement inclus dans une arête de R n . De plus, si on note comme ci-dessus x i = (s i , s ? i , t), l'union des s n et des s ? n définit un mot fini de longueur n+1 centré en zéro

. Enfin, sont tous inclus dans des arêtes isométriquesisométriquesà [0, 1], chacun de ces intervalles définit I i de ]0, 1[. On appelle I leur intersection (finie) ; c'est un intervalle ouvert contenant t, Alors U (W, I) est une partie ouverte de ? inclue dans ? ?1 (V ), et contenant P

P. Si, la construction est similaire. On construit un sous-mot fini de m, lequel définit un voisinage W dans ? w

. Puis, dans [0, 1] (qui correspondent auxfì eches entrantes sur les graphes), et un certain nombre de voisinages de 0 dans [0, 1] (qui correspondent aux fì eches sortantes) On appelle I k tous les voisinages de 1 (avec i ? 1, n), et J k les voisinages de 0. On définit maintenant I comme l'intersection de tous les I k , et J comme celle de tous les J k . Finalement, on définit I ? = (J ? 1) ? I, qui est un voisinage de 0 dans R. Alors U (W, I ? ) est une partie ouverte de ? incluse dans ? ?1 (V ), et contenant P

L. Continuité-de-?-est-ainsi-montrée, Par compacité de ? w , il est automatique que ? est un homéomorphisme

]. J. Bibliographie1, I. F. Anderson, and . Putnam, Topological invariants for substitution tilings and their associated C * -algebras. Ergodic Theory Dynam, Systems, vol.18, issue.3, pp.509-537, 1998.

P. Arnoux, Sturmian sequences, Substitutions in dynamics, arithmetics and combinatorics, pp.143-198

P. Arnoux, V. Berthé, H. Ei, and S. Ito, Tilings, quasicrystals, discrete planes, generalized substitutions, and multidimensional continued fractions In Discrete models : combinatorics, computation, and geometry, Discrete Math. Theor. Comput. Sci. Proc., AA Maison Inform. Math. Discrèt. (MIMD), pp.59-078, 2001.

P. Arnoux, C. Mauduit, I. Shiokawa, J. Ichi, and . Tamura, Complexity of sequences defined by billiard in the cube, Bulletin de la Société mathématique de France, vol.122, issue.1, pp.1-12, 1994.
DOI : 10.24033/bsmf.2220

M. Baake, D. Lenz, and C. Richard, Pure Point Diffraction Implies Zero Entropy for Delone Sets with Uniform Cluster Frequencies, Letters in Mathematical Physics, vol.168, issue.1, pp.61-77, 2007.
DOI : 10.1007/s11005-007-0186-7

M. Barge, B. Diamond, J. Hunton, and L. Sadun, Cohomology of substitution tiling spaces. Prépublication, 2008.

Y. Baryshnikov, Complexity of trajectories in rectangular billiards, Communications in Mathematical Physics, vol.19, issue.No. 2, pp.43-56, 1995.
DOI : 10.1007/BF02099463

J. Bellissard, K-theory of C * -algebras in solid state physics In Statistical mechanics and field theory : mathematical aspects, de Lecture Notes in Phys, pp.99-156, 1985.

J. Bellissard, R. Benedetti, and J. Gambaudo, Spaces of Tilings, Finite Telescopic Approximations and Gap-Labeling, Communications in Mathematical Physics, vol.261, issue.1, pp.1-41, 2006.
DOI : 10.1007/s00220-005-1445-z

J. Bellissard, A. Bovier, and J. Ghez, GAP LABELLING THEOREMS FOR ONE DIMENSIONAL DISCRETE SCHR??DINGER OPERATORS, Reviews in Mathematical Physics, vol.04, issue.01, pp.1-37, 1992.
DOI : 10.1142/S0129055X92000029

V. Berthé and L. Vuillon, Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences, Discrete Mathematics, vol.223, issue.1-3, pp.27-53, 2000.
DOI : 10.1016/S0012-365X(00)00039-X

J. Cassaigne, Special factors of sequences with linear subword complexity In Developments in language theory, II (Magdeburg, World Sci. Publ, pp.25-34, 1995.

J. Cassaigne, SUBWORD COMPLEXITY AND PERIODICITY IN TWO OR MORE DIMENSIONS, Developments In Language Theory, pp.14-21, 1999.
DOI : 10.1142/9789812792464_0002

A. Clark and L. Sadun, When size matters : subshifts and their related tiling spaces. Ergodic Theory Dynam, Systems, vol.23, issue.4, pp.1043-1057, 2003.

A. Connes, Géométrie non commutative, 1990.

A. Connes, Noncommutative geometry, 1994.
DOI : 10.4171/owr/2007/43

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.6447

J. Cuntz and W. Krieger, A class ofC *-algebras and topological Markov chains, Inventiones Mathematicae, vol.98, issue.3, pp.251-268, 1980.
DOI : 10.1007/BF01390048

N. G. De-bruijn, Algebraic theory of Penrose's nonperiodic tilings of the plane. I, II, Nederl. Akad. Wetensch. Indag. Math, vol.43, issue.1, pp.39-52, 1981.

F. Durand, B. Host, and C. Skau, Substitutional dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory and Dynamical Systems, vol.19, issue.4, pp.953-993, 1999.
DOI : 10.1017/S0143385799133947

URL : https://hal.archives-ouvertes.fr/hal-00304369

S. Eilenberg, Steenrod : Foundations of algebraic topology, 1952.

V. Elser and C. L. Henley, Crystal and quasicrystal structures in Al-Mn-Si alloys, Physical Review Letters, vol.55, issue.26, pp.2883-2886, 1985.
DOI : 10.1103/PhysRevLett.55.2883

C. Epifanio, M. Koskas, and F. Mignosi, On a conjecture on bidimensional words, Theoretical Computer Science, vol.299, issue.1-3, pp.123-150, 2003.
DOI : 10.1016/S0304-3975(01)00386-3

K. Falconer, Fractal geometry, Mathematical foundations and applications, 1990.

N. P. Fogg, Substitutions in dynamics, arithmetics and combinatorics, 2002.

A. Forrest, K-groups associated with substitution minimal systems, Israel Journal of Mathematics, vol.136, issue.1
DOI : 10.1007/BF02937330

A. Forrest, J. Hunton, and J. Kellendonk, Topological invariants for projection method patterns, Memoirs of the American Mathematical Society, vol.159, issue.758, p.120, 2002.
DOI : 10.1090/memo/0758

A. H. Forrest, J. R. Hunton, and J. Kellendonk, Cohomology of Canonical Projection Tilings, Communications in Mathematical Physics, vol.226, issue.2, pp.289-322, 2002.
DOI : 10.1007/s002200200594

F. Gähler and J. Rhyner, Equivalence of the generalised grid and projection methods for the construction of quasiperiodic tilings, Journal of Physics A: Mathematical and General, vol.19, issue.2, pp.267-277, 1986.
DOI : 10.1088/0305-4470/19/2/020

M. Gardner, Mathematical Games, Scientific American, vol.236, issue.1, pp.110-121, 1977.
DOI : 10.1038/scientificamerican0177-110

T. Giordano, I. F. Putnam, and C. F. , Skau : Topological orbit equivalence and C * -crossed products, J. Reine Angew. Math, vol.469, pp.51-111, 1995.

R. H. Herman, I. F. Putnam, and C. F. Skau, ORDERED BRATTELI DIAGRAMS, DIMENSION GROUPS AND TOPOLOGICAL DYNAMICS, International Journal of Mathematics, vol.03, issue.06, pp.827-864, 1992.
DOI : 10.1142/S0129167X92000382

R. A. Horn and C. R. Johnson, Matrix analysis, 1985.

A. Julien, Complexity and cohomology for cut and projection tilings. Ergodic Theory Dynam. Systems, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00268785

A. Julien and J. Savinien, Transverse Laplacians for Substitution Tilings, Communications in Mathematical Physics, vol.6, issue.2, 2009.
DOI : 10.1007/s00220-010-1150-4

URL : https://hal.archives-ouvertes.fr/hal-00529788

J. Kellendonk, NONCOMMUTATIVE GEOMETRY OF TILINGS AND GAP LABELLING, Reviews in Mathematical Physics, vol.07, issue.07, pp.1133-1180, 1995.
DOI : 10.1142/S0129055X95000426

J. Kellendonk, The Local Structure of Tilings and Their Integer Group of Coinvariants, Communications in Mathematical Physics, vol.187, issue.1, pp.115-157, 1997.
DOI : 10.1007/s002200050131

J. Kellendonk and I. F. Putnam, Tilings, C * -algebras, and K-theory, Directions in mathematical quasicrystals, pp.177-206, 2000.

R. Kenyon, The construction of self-similar tilings, Geometric and Functional Analysis, vol.6, issue.3, pp.471-488, 1996.
DOI : 10.1007/BF02249260

J. C. Lagarias and P. A. , Pleasants : Repetitive delone sets and quasicrystals . Ergodic Theory and Dynamical Systems, pp.831-867, 2003.

J. Y. Lee and R. V. Moody, Pure Point Dynamical and Diffraction Spectra, Annales Henri Poincar??, vol.3, issue.5, pp.1003-1018, 2002.
DOI : 10.1007/s00023-002-8646-1

D. Lenz, Aperiodic Linearly Repetitive Delone Sets Are Densely Repetitive, Discrete and Computational Geometry, vol.31, issue.2, pp.323-326, 2004.
DOI : 10.1007/s00454-003-2903-z

URL : http://arxiv.org/abs/math/0208132

P. Michel, Stricte ergodicite d???ensembles minimaux de substitution, C. R. Acad. Sci. Paris Sér. A, vol.58, issue.2, pp.811-813, 1974.
DOI : 10.1090/S0002-9904-1952-09580-X

G. Michon, Les cantors réguliers, C. R. Acad. Sci. Paris Sér. I Math, vol.300, issue.19, pp.673-675, 1985.

M. Morse and G. A. Hedlund, Symbolic Dynamics, American Journal of Mathematics, vol.60, issue.4, pp.815-866, 1938.
DOI : 10.2307/2371264

M. Morse and G. A. Hedlund, Symbolic Dynamics II. Sturmian Trajectories, American Journal of Mathematics, vol.62, issue.1/4, pp.1-42, 1940.
DOI : 10.2307/2371431

P. S. Muhly, J. N. Renault, and D. P. Williams, Equivalence and isomorphism for groupoid C * -algebras, J. Operator Theory, vol.17, issue.1, pp.3-22, 1987.

C. Oguey, M. Duneau, and A. Katz, A geometrical approach of quasiperiodic tilings, Communications in Mathematical Physics, vol.304, issue.II, pp.99-118, 1988.
DOI : 10.1007/BF01218479

N. Ormes and C. Radin, Sadun : A homeomorphism invariant for substitution tiling spaces, Geometriae Dedicata, vol.90, issue.1, pp.153-182, 2002.
DOI : 10.1023/A:1014942402919

J. C. Pearson and J. V. Bellissard, Noncommutative Riemannian geometry and diffusion on ultrametric Cantor sets, Journal of Noncommutative Geometry, vol.3, issue.3, pp.447-481, 2009.
DOI : 10.4171/JNCG/43

R. Penrose, Pentaplexity A Class of Non-Periodic Tilings of the Plane, The Mathematical Intelligencer, vol.10, issue.7/8, pp.32-3780, 1979.
DOI : 10.1007/BF03024384

A. Quas and L. Zamboni, Periodicity and local complexity, Theoretical Computer Science, vol.319, issue.1-3, pp.229-240, 2004.
DOI : 10.1016/j.tcs.2004.02.026

M. Queffélec, Substitution dynamical systems?spectral analysis, de Lecture Notes in Mathematics, 1987.

C. Radin, Space tilings and substitutions, Geometriae Dedicata, vol.42, issue.2, pp.257-264, 1995.
DOI : 10.1007/BF01266317

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.1040

E. A. Robinson and J. , Symbolic dynamics and tilings of R d, Symbolic dynamics and its applications de Proc. Sympos, pp.81-119, 2004.

L. Sadun, Tiling spaces are inverse limits, Journal of Mathematical Physics, vol.44, issue.11, pp.5410-5414, 2003.
DOI : 10.1063/1.1613041

L. Sadun and R. F. Williams, Tiling spaces are Cantor set fiber bundles. Ergodic Theory Dynam, Systems, vol.23, issue.1, pp.307-316, 2003.

M. Schlottmann, Cut-and-project sets in locally compact Abelian groups, Quasicrystals and discrete geometry, pp.247-264, 1995.
DOI : 10.1090/fim/010/09

D. Shechtman, I. Blech, D. Gratias, and J. W. , Metallic Phase with Long-Range Orientational Order and No Translational Symmetry, Physical Review Letters, vol.53, issue.20, pp.1951-1953, 1984.
DOI : 10.1103/PhysRevLett.53.1951

A. Siegel, Th??or??me des trois longueurs et suites sturmiennes : mots d'agencement des longueurs, Acta Arithmetica, vol.97, issue.3, pp.195-210, 2001.
DOI : 10.4064/aa97-3-1

J. E. Socolar, Simple octagonal and dodecagonal quasicrystals, Physical Review B, vol.39, issue.15, pp.10519-10551, 1989.
DOI : 10.1103/PhysRevB.39.10519

B. Solomyak, Dynamics of self-similar tilings. Ergodic Theory Dynam, Systems, vol.17, issue.3, pp.695-738, 1997.

B. Solomyak, Nonperiodicity implies unique composition for self-similar translationally finite Tilings, Discrete & Computational Geometry, vol.42, issue.2, pp.265-279, 1998.
DOI : 10.1007/PL00009386

A. Van-elst, GAP-LABELLING THEOREMS FOR SCHR??DINGER OPERATORS ON THE SQUARE AND CUBIC LATTICE, Reviews in Mathematical Physics, vol.06, issue.02, pp.319-342, 1994.
DOI : 10.1142/S0129055X94000158

L. Vuillon, Local configurations in a discrete plane, Bull. Belg. Math. Soc. Simon Stevin, vol.6, issue.4, pp.625-636, 1999.