Optimisation du Handover dans le protocole IPv6 mobile avec la méthode E-HCF

Abstract : Wireless networks are in full development because of the flexibility of their interfaces, which allow users to be easily connected to the Internet. Among various technologies of wireless networks, IEEE 802.11/Wi-Fi technology is becoming better known and more used to construct high speed wireless networks in areas with high concentration of users, such as airports, campuses or industrial sites. The passion for wireless networks and in particular for Wi-Fi networks has given rise to new uses of the Internet, such as moving in wireless networks while still being connected. In Wi-Fi networks, the user's movement may sometimes lead to a change of Access Points (APs) to the network. This fact is generally named the handover of layer 2 because this change involves only the first two layers of the OSI model. If the two APs are located in different networks, the change of AP would entail a change of network for the user. This situation is generally termed, the handover of layer 3 because the user should change his network and his IP address to maintain connection to the Internet. Therefore, this change intervenes on the network layer of the OSI model. The process of the handover of layer 2 is handled by the IEEE 802.11 standard and that of layer 3 is controlled by the Mobile IP protocol. The Mobile IP protocol is a protocol standardized by IETF, which allows users to change network, while maintaining their actual connection to the Internet. Consequently, users can connect to the Internet, while keep moving in Wi-Fi networks in control of the IEEE 802.11 standard and the Mobile IP protocol. However, the delay induced by these procedures of handover is too long. As such, this generally leads to the cut-off of current communications, hence impacting adversely on the qualitative requirements of real-time applications, such as video conferencing or voice over IP. Various proposals have been made to reduce the delay of handover procedures and to improve their performances. However, these proposals are either imperfect, or non-implementable because of their complexity. Based on the premise that Wi-Fi networks and access routers are already massively implanted in academia and in industry, we propose to add a new functionality, called E-HCF (Extended Handover Control Function) in routers, without modifying other network equipments. A router equipped with this functionality is called an E-HCF router. To reduce the delay of handover procedures, the E-HCF functionality allows a router to generate a topology of APs by using the neighbourhood graph theory and to maintain a pool of available IP addresses in its database. When a Mobile Node (MN) needs to change its AP, the E-HCF router may propose to the latter a list of potentially usable APs, which are selected and classified by an algorithm of selection and classification that we developed in the thesis. If the change of APs involves a change of network, the MN must change its IP address. In this case, the E-HCF router can assign a unique IP address to this MN. The MN can thus use this address without engaging in the process of Stateless Address Autoconfiguration or the procedure of Duplicate Address Detection. With this new E-HCF functionality, we can reduce the delay of handover procedures from a few seconds to one hundred milliseconds.
Document type :
Theses
Complete list of metadatas

Cited literature [54 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00462081
Contributor : Abes Star <>
Submitted on : Monday, March 8, 2010 - 3:06:13 PM
Last modification on : Wednesday, July 25, 2018 - 1:23:40 AM
Long-term archiving on : Friday, June 18, 2010 - 7:09:37 PM

File

2008PEST0011_0_0.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-00462081, version 1

Collections

Citation

Guozhi Wei. Optimisation du Handover dans le protocole IPv6 mobile avec la méthode E-HCF. Autre [cs.OH]. Université Paris-Est, 2008. Français. ⟨NNT : 2008PEST0011⟩. ⟨tel-00462081⟩

Share

Metrics

Record views

706

Files downloads

2160