
HAL Id: tel-00461306
https://theses.hal.science/tel-00461306

Submitted on 4 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Monitoring and Supervisory Control for Opacity
Properties
Jérémy Dubreil

To cite this version:
Jérémy Dubreil. Monitoring and Supervisory Control for Opacity Properties. Software Engineering
[cs.SE]. Université Rennes 1, 2009. English. �NNT : �. �tel-00461306�

https://theses.hal.science/tel-00461306
https://hal.archives-ouvertes.fr

No d’ordre : 3966 ANNÉE 2009

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

Ecole doctorale Matisse

présentée par

Jérémy Dubreil

préparée à l’unité de recherche IRISA (UMR 6074)
Institut de Recherche en Informatique et Systèmes Aléatoires

Composante universitaire : IFSIC

Monitoring and

Supervisory Control

for Opacity Properties

Thèse soutenue à Rennes

le 25 novembre 2009

devant le jury composé de :

Roland Groz

Professeur à l’institut polytechnique de Grenoble / pré-

sident du jury

Jean François Raskin

Professeur à l’Université Libre de Bruxelles / rapporteur

Yassine Lakhnech

Professeur à l’Université Joseph Fourier / rapporteur

Philippe Darondeau

Directeur de recherche à l’INRIA/ examinateur

Olivier H. Roux

Maître de conférences à l’IUT de Nantes / examinateur

Thierry Jéron

Directeur de recherche à l’INRIA/ directeur de thèse

Hervé Marchand

Chargé de recherche à l’INRIA/ co-directeur de thèse

2

Remerciements

Je tiens à remercier Yassine Lakhnech et Jean-François Raskin pour avoir rapporté mon

travail de thèse. Je remercie également Roland Groz pour avoir présidé ma soutenance de

thèse ainsi que Philippe Darondeau et Olivier H. Roux pour avoir examiné pour travail.

Je remercie aussi chaleureusement mes encadrants de thèse, Thierry Jéron et Hervé

Marchand pour leur disponibilité et leurs précieux conseils, distillées avec gentillesse et

bonne humeur au court de mon doctorat. Grand merci de nouveau à Philippe Daron-

deau qui, au fil de nos collaborations, a beaucoup influencé mon travail de thèse et plus

généralement ma vision du métier de chercheur.

Je voudrai remercier également l’ensemble de l’équipe VerTeCs. Il s’agit en effet d’une

équipe où l’ambiance est particulièrement bonne et au sein de laquelle j’ai apprécié travailler

pendant ces années de thèse.

3

4

Contents

1 Introduction 23

1.1 Summary of the Thesis . 28

1.2 Related Works . 32

1.3 Contributions . 36

2 Basic Notions 39

2.1 Sets and Relations . 39

2.1.1 Posets . 41

2.1.2 Lattices . 41

2.2 Labeled Transition Systems . 44

3 Information Flow and Opacity 51

3.1 Confidential Information and Notion of Attackers 51

3.2 Definition of Opacity . 53

3.3 Properties of Opacity . 56

3.3.1 Some General Properties of Opacity 57

3.3.2 Trace-based Observation Maps . 57

3.4 Conclusion . 60

4 Verifying and Monitoring Opacity 63

4.1 Determinization Based Procedure to Construct Sound Monitors 63

4.2 Complexity of Verifying Opacity on Finite Models 66

4.3 Monitoring Opacity Using Abstract Interpretation 68

4.3.1 Basics of Abstract Interpretation . 69

4.3.2 Construction of Monitors for Opacity 73

4.3.3 Static Computation of Vulnerabilities Combining Under and Over

Approximations . 77

4.4 Language Based Approach and Regular Abstractions 78

4.4.1 Monitor for the Attackers . 80

4.4.2 Diagnosing Information Flow . 81

4.5 Conclusion . 87

5

Contents

5 Supervisory Control to Enforce Opacity 89

5.1 The Supervisory Control Problem . 90

5.1.1 Language Based Approach for the Supervisory Control Problem . . . 91

5.1.2 The Fixpoint Iteration Techniques 93

5.1.3 The Safety Control Problem . 96

5.2 The Opacity Control Problem . 97

5.2.1 Characterization of the Solution . 98

5.2.2 An Operator for the Supremal Opaque Sublanguage 99

5.3 Computation of the Supremal Controller when Σa and Σo are Comparable . 101

5.3.1 The Case Σo ⊆ Σa . 101

5.3.2 The Case Σa ⊆ Σo . 102

5.4 Conclusion . 124

6 Dynamic Projections to Enforce Opacity 125

6.1 Maximum Cardinality Set for Static Projections 126

6.2 Opacity with Dynamic Projection . 127

6.3 Enforcing Opacity with Dynamic Projections 134

6.3.1 Reduction to a 2-player Safety Game 136

6.3.2 The Set of Valid Dynamic Projections 143

6.4 Conclusion . 146

7 Conclusion 149

6

Résumé des Travaux de Thèse

Nota bene: This an extended summary of the thesis. This part in french is mandatory

because the rest of the thesis is written in English.

Le développement des réseaux ouverts tels qu’Internet ou les réseaux mobiles a induit l’ex-

plosion du nombre de service proposés sur ces réseaux. Certain de ces services manipulent

des informations critiques qui doivent pas être corrompues de façon intentionnelle ou arriver

en possession d’entités malveillantes. Citons pour exemple les systèmes d’administration

électroniques, les systèmes de vote ou les bases de données d’information médicales. Dans

ce contexte, le développement de techniques fiables et efficaces pour certifier la sécurité

d’un système est essentiel. Afin d’étudier de tels algorithmes de certification, les propriétés

de sécurité sont généralement classifiées en trois catégories :

– l’intégrité ;

– la disponibilité ;

– la confidentialité.

Une politique de sécurité consiste en un ensemble de propriétés de sécurité, de différentes

catégories, qui doivent être conjointement satisfaites sur le système. Nous donnons quelques

explications sur chacune de ces catégories afin de situer dans quel cadre se place nos travaux

de thèse.

Les propriétés d’intégrité expriment l’idée qu’un attaquant ne peut exercer d’actions non

autorisées ou forcer le système à atteindre une configuration critique. Si l’on choisit comme

exemple un système de vote, le fait que personne ne puisse modifier le vote d’un autre

électeur est une propriété d’intégrité. Les contraintes d’intégrité sont donc généralement

exprimées par des propriétés de sûreté. Il existe néanmoins des propriétés d’intégrité qui ne

s’expriment pas par des propriétés de sûreté, notamment lorsqu’il est question d’intégrité

de l’information (voir [GMP92] pour plus de détails). Nous montrons dans cette thèse

comment vérifier qu’une propriété de sûreté est satisfaite et comment assurer une telle

propriété sur un système donné. Ces résultats s’appliqueront donc aux propriétés d’intégrité

qui peuvent être exprimées par des propriétés de sûreté.

Les propriétés de disponibilité expriment l’idée qu’un attaquant ne peut entraver le bon

comportement d’un système. En prenant de nouveau l’exemple d’un système de vote, un

7

Contents

attaquant ne peut empêcher un électeur de voter. Typiquement, les attaques de type déni

de service sont des violations de propriétés de disponibilité. Nous n’aborderons pas ici ce

type de propriétés.

Les propriétés de confidentialité sont celles qui nous intéressent plus particulièrement

dans cette thèse. Elles expriment l’idée qu’un attaquant ne peut acquérir d’information

secrète. Par exemple, un attaquant ne peut inférer le vote d’un autre électeur. Dans ce

document, nous allons considérer ces aspects de confidentialité avec la notion d’opacité.

Cette notion a été introduite dans [Maz04] et ensuite généralisée au cas des systèmes de

transitions dans [BKMR08].

La particularité des propriétés de confidentialité est qu’elles doivent être définies relati-

vement à la connaissance des attaquants potentiels. Nous expliquons maintenant cet aspect

avec un bref historique sur ce type de propriétés. Dans [BL73], les auteurs proposent une

formalisation des systèmes alors en place dans le secteur militaire afin de préserver la confi-

dentialité des informations. Ce modèle, connu sous les initiales BLP pour Bell et LaPadula,

repose sur la notion d’objet (des documents par exemple) et de sujet (personnes ou pro-

grammes). Les sujets exercent des actions de type lecture, écriture, création, destruction,

etc, sur ces objets. À chaque objet et chaque sujet est assigné un niveau de confidentialité,

par exemple confidentiel, publique, etc. La confidentialité de l’ensemble est alors assuré par

un contrôle d’accès qui interdit certain types d’opération. Par exemple, il est impossible

pour un sujet de niveau publique de lire un objet situé au niveau confidentiel, ou encore, il

est impossible pour un sujet de niveau confidentiel d’écrire dans un objet situé au niveau

publique. Cet ensemble de règles a pour but d’empêcher le flot d’information du niveau

confidentiel vers le niveau publique. Mais cette formalisation est limitée dans le sens où elle

ne permet pas de réellement prouver l’absence de flot d’information. En effet, si un sujet

A de niveau publique essaye d’écrire dans un fichier F au niveau confidentiel lorsque ce

fichier est inexistant, alors A observe un message d’erreur. Si ce fichier F existe, l’écriture

étant autorisé dans ce sens, A n’observe aucun message d’erreur. Ainsi, en collaboration

avec un sujet B situé au niveau confidentiel, pour qui la création et la destruction d’objet

est possible, le sujet B peut créer un canal de communication allant du niveau confidentiel

au niveau publique, contournant ainsi les mesures de protection.

Le modèle BLP se révèle donc insuffisant pour interdire certains flots d’information car il

ne permet pas de prendre en compte la capacité des sujets, potentiellement des attaquants,

à inférer de l’information en fonction de ce qu’ils observent et de ce qu’ils connaissent du

système. Pour palier à ce manque, Goguen et Meseguer proposent dans [GM82] une notion

plus précise, appelé non-interférence, exprimant l’absence de flot d’informations confiden-

tielles. Reprenant les dénominations utilisées plus haut, la propriété de non-interférence

est vérifiée si ce que font les sujets de niveau confidentiel n’a pas d’influence sur ce que

8

Contents

les sujets de niveau publique peuvent observer. On voit bien qu’avec une telle définition,

le cas de flot d’information exprimé plus haut disparaît. Cette notion a ensuite été l’ob-

jet de nombreux travaux depuis comme par exemple [FG93, RS99, FG01] dont le but est

de proposer différentes notions de non-interférence en utilisant le formalisme d’algèbre de

processus CSP. Dans ces travaux, chaque notion dépend des hypothèses qui sont faite sur

la capacité d’observation de l’attaquant et le type d’information secrète.

Dans [BKMR08], les auteurs étendent aux systèmes de transitions la propriété d’opa-

cité introduite dans [Maz04] dans le cadre des protocoles cryptographique modélisés par

des systèmmes de réecriture. Ils montrent alors que l’opacité est une propriété suffisam-

ment générale pour pouvoir exprimer un ensemble non-négligeable d’autres propriétés de

confidentialité telles que la non-interférence (SNNI) ou encore l’anonymat [SS96]. Cette

notion d’opacité est le point de départ de ce travail de thèse et est définie par rapport à

un attaquant qui a une pleine connaissance de la structure du système et qui en observe

partiellement les exécutions. Nous définissons maintenant la propriété d’opacité.

Définition de l’opacité

Considérons un alphabet d’événements Λ et un ensemble d’états S. Ces ensembles Λ et

S peuvent être infinis. L’ensemble des exécutions de la forme s0
λ1→ s1 . . . sn−1

λn→ sn qui

peuvent être construites à partir de Λ et S en alternant les états et les événements est noté

E(Λ, S) = S(ΛS)∗. Considérons un système critique modélisé par le LTS M = (Λ, S, δ, S0)

où S0 dénote les états initiaux et δ : Λ×S → P(S) est la fonction de transition. L’ensemble

des exécutions possibles de M est noté R(M) ⊆ E(Λ, S) et le langage généré par M est

noté L(M) = tr(R(M)) où tr est l’opérateur qui donne la trace d’une exécution, c’est à

dire la séquence d’événements apparaissant dans cette exécution.

L’information secrète est donnée par un prédicat φ défini sur l’ensemble E(Λ, S). Plus

précisément, l’occurrence d’un run de M qui satisfait le prédicat φ constitue l’information

qu’un attaquant ne doit pas pouvoir inférer. Considérons maintenant que l’observation

de l’attaquant est définie par une fonction obs : E(Λ, S) → O où O est l’ensemble des

observations possibles. L’architecture que nous considérons est représentée sur la figure 0.1

Système M Attaquant A
obs

Fig. 0.1: Architecture Générale pour l’opacité

On dit alors que le système M est φ-opaque pour obs si pour toute exécution de M qui

satisfait φ, il existe une autre exécution donnant la même observation et qui ne satisfait

9

Contents

pas le prédicat φ. En d’autre terme :

∀r ∈ R(M), r |= φ =⇒ ∃r′ ∈ obs−1(obs(r)) ∩R(M), r 6|= φ (0.1)

Dans ce cas, l’attaquant observant obs(r) ne pouvant deviner si r ou r′ a été exécuté, il ne

peut inférer si le prédicat φ a été satisfait par celle réellement exécutée par M .

Example 0.1 Considérons le LTS M représenté par la figure 0.2 avec Λ = {h, τ, a, b}.

L’attaquant n’observe pas les états, mais observe les événements a et b. Le prédicat φ

est satisfait pour les runs qui contiennent l’événement h. Sur cet example, le seul run

τ

h

a

a

b

Fig. 0.2: Un exemple de non opacité

qui explique l’observation b contient l’événement h. L’attaquant peut donc inférer pour

l’observation b que le prédicat φ est satisfait.

Nous allons nous intéresser dans la section suivante au problème de vérifier si un système

est opaque.

Vérification de l’opacité

Nous faisons pour cette partie quelques hypothèses supplémentaires sur la fonction d’ob-

servation et sur le type de prédicat φ. Tout d’abord, nous supposons que l’attaquant

observe un sous-ensemble Λa des événements de Λ. Nous définissons alors la projection

πa : Λ∗ → Λ∗
a qui enlève d’un mot de Λ∗ l’ensemble des événements qui n’appartiennent

pas à Λa, c’est à dire, ceux qui ne sont pas observable par l’attaquant. La fonction d’ob-

servation est alors donnée par la fonction pa : E(Λ, S) → Λ∗
a définie par pa = πa ◦ tr.

Ensuite, nous considérons le cas d’un prédicat φ défini par l’accessibilité d’un ensemble

d’état F (φ) ⊆ S.

Un moniteur pour φ est une fonction Γφ : Λ∗
a → {true, ?} qui détermine si la satisfaction

de φ par l’exécution courante de M peut être déterminée de façon sûre. Ainsi, le moniteur

Γφ doit être correct dans le sens où il ne donne pas de faux verdict. La notion de correction

10

Contents

peut se formaliser de la façon suivante :

∀r ∈ R(M), Γφ(pa(r)) = true =⇒ r |= φ (0.2)

Si un moniteur Γφ est correct et s’il existe un run r ∈ R(M) tel que Γφ(pa(r)) = true, alors

l’attaquant peut, sans connaître r, inférer à partir de obs(r) que le prédicat est satisfait

par r et ainsi inférer de l’information secrète.

On peut remarquer que le moniteur défini par O → {true, ?}, µ 7→ ? est correct mais

ne présente pas d’intérêt pour détecter si le prédicat φ est satisfait étant donnée une

observation. Nous cherchons alors à construire des moniteurs qui soient aussi complets par

rapport au prédicat. C’est à dire que ? est la seule valeur possible pour les runs qui ne

violent pas l’opacité :

∀r ∈ R(M), r 6|= φ =⇒ Γφ(pa(r)) = ? (0.3)

Dans ce cas, le problème de vérification de l’opacité se ramène au calcul d’un moniteur qui

soit à la fois correct et complet. En effet, si Γφ est à la fois correct et complet, alors en

combinant les expressions (0.2) et (0.3), nous obtenons :

∀r ∈ R(M), Γφ(pa(r)) = true ⇐⇒ ∀r′ ∈ obs−1(obs(r)) ∩R(M), r′ |= φ (0.4)

Nous allons voir dans la section suivante comment le calcul de tels moniteurs peut être

effectué.

Construction de moniteur pour l’opacité

La procédure de construction de moniteur que nous proposons dans cette thèse est basée

sur l’opération de déterminisation par sous-ensemble d’état. Cette opération s’appuie sur

les opérateurs :

– postM : P(Λ)→ P(S)→ P(S) qui donne pour chaque ensemble d’événements B ⊆ Λ

et chaque ensemble d’état X ⊆ S l’ensemble postM (B)(X) des états accessibles à

partir de X après l’occurrence d’un événement de B ;

– L’opérateur reachM : P(Λ)→ P(S)→ P(S) qui donne pour chaque B ⊆ Λ et chaque

X ⊆ S l’ensemble reachM (B)(X) des états accessibles à partir deX après l’occurrence

d’un nombre arbitraire mais fini d’événements de B. En d’autres termes, l’opérateur

reachM est défini par

reachM (B)(X) = lfp(Z 7→ X ∪ postM (B)(Z))

11

Contents

La déterminisation de M est alors définie par deta(M) = (Λa,P(S),∆, X0) où X0 =

reachM (Λua)(S0) avec Λua = Λ \ Λa et où la fonction de transition ∆a est définie par

∆a : Λa × P(S) → P(S)

σ, X 7→ reachM (Λua) ◦ postM ({σ})(X)
(0.5)

À partir de cette définition, on défini alors le moniteur :

Γφ : Λ∗
a → {true, ?}

ν 7→

{
true si ∆a(ν,X0) ⊆ F (φ)

? sinon

(0.6)

On montre alors que le moniteur Γφ est à la fois correct et complet. En d’autres termes, dé-

tecter des vulnérabilités pour l’opacité se ramène à un calcul d’accessibilité dans deta(M) :

Γ−1
φ (true) ∩ pa(R(M)) = L(deta(M), X0,P(F (φ)))

Verifier siM est φ-opaque est alors équivalent à vérifier si le langage L(deta(M), X0,P(F (φ)))

est vide.

Ainsi, si le LTS M est fini, c’est à dire si Λ et S sont finis, alors, le calcul de deta(M) et Γφ

est possible. On peut dans ce cas calculer de façon exacte l’ensemble des traces observées

qui révèlent le secret φ et le problème de vérification de l’opacité est alors décidable.

Plus précisément, nous prouvons que ce problème est PSPACE-complet. Pour cela, nous

explicitons le lien qui existe entre le problème d’universalité du language et l’opacité. Étant

donné un automate A sur l’alphabet Σ, on dit de cet automate qu’il est langage universel

si son langage accepté est Σ∗. Ce problème est connu pour être PSPACE-complet [SM73].

Nous montrons qu’une procédure pour résoudre le problème d’unversalité peut être adapté

pour résoudre le problème de vérification de l’opacité, ce qui montre ce dernier est PSPACE.

De plus, nous montrons qu’une procédure pour vérifier l’opacité permet aussi de résoudre

le problème d’universalité, ce qui montre que le problème est PSCPACE-hard et donc

PSPACE-complet.

Dans le reste de cette section, nous allons nous intéresser au cas où Λ et S ne sont pas

finis.

Détection de vulnérabilité

Nous proposons deux approches différentes pour détecter les cas de violation de l’opa-

cité. La première consiste à utiliser des techniques d’interprétation abstraite, [CC77a,

CC92a, CC92b], pour abstraire l’opérateur reachM et ainsi obtenir une approximation

12

Contents

de deta(M). Nous détaillons alors comment calculer un moniteur correct mais pas néces-

sairement complet à partir de cette approximation. La seconde approche consiste à utili-

ser une approximation régulière de M et à appliquer la théorie du diagnostic développée

dans [SSL+95, SLS+96, JMPC06].

Utilisation de techniques issue de l’interprétation abstraite

Dans le cas où Λ et S sont infinis, il y a deux obstacles au calcul de deta(M). Le premier

est que le LTS deta(M) peut être à branchement infini. Le second est que le calcul de

reachM (Λua), nécessaire pour calculer ∆a suivant (0.5), est basé sur un calcul de point

fixe dans le treillis P(S). Rien ne garantit à priori que ce calcul termine toujours en un

nombre fini d’itérations.

Nous allons donc contourner ces deux problèmes en utilisant des approximations. Tout

d’abord, pour obtenir un LTS à branchement fini, nous considérons une relation d’équi-

valence θ ⊆ Λ × Λ telle que l’ensemble des classes d’équivalences Σ♯ = {θ(λ) : λ ∈ Λ}

définie une partition finie de Λ. Cette partition est supposée respecter l’observabilité des

événements, c’est à dire :

∀λ ∈ Λ, λ ∈ Λa ⇐⇒ θ(λ) ⊆ Λa

On note alors Σ♯
a = θ(Λa) et Σ♯

ua = θ(Λua).

Afin d’approximer deta(M), il est nécessaire d’approximer l’operateur postM . Nous consi-

derons alors donnée une connexion de Galois

(P(S),⊆) −−−→←−−−
α♯

β♯

(Q♯,⊑♯)

où (Q♯,⊑♯) est un treillis de hauteur finie. À partir de là, on peut définir les approximations

supérieures correctes post♯M de postM et reach♯
M de reachM . C’est à dire que pour tout

B ⊆ Λ et pour tout X ⊆ S,

reachM (B)(X) ⊆ γ♯ ◦ reach♯
M (B) ◦ α♯(X)

Ces approximations sont alors toujours calculables. Ceci nous permet donc de calculer le

LTS det♯a(M) = (Σ♯
a, Q♯,∆♯

a, q
♯
0) définie par q♯

0 = α♯(X0) et

∆♯
a(σ, q) = reach♯

M (Σ♯
ua) ◦ post♯M ({σ})(q′)

Dans ce cas, on montre que ∆♯
a est une approximation supérieure correcte de ∆a. Suivant

13

Contents

la construction donnée en (0.6), on définit alors le moniteur :

Γ♯
φ : Σ♯

a
∗
→ {true, ?}

ν 7→

{
true si γ♯ ◦ ∆♯

a(θ∗(ν), q
♯
0) ⊆ F (φ)

? sinon

(0.7)

où la fonction θ∗ : Λ∗
a → Σ♯

a
∗

est définie inductivement par θ∗(ǫ) = ǫ et θ∗(νλ) = θ∗(ν)θ(λ).

Le moniteur Γ♯
φ est calculable car Q♯ est de hauteur finie. De plus, ce moniteur est cor-

rect, c’est à dire que pour r ∈ R(M), alors Γ♯
φ(pa(r)) = true implique que r |= φ. Par

contre, ce moniteur n’est pas nécessairement complet. Ce résultat permet néanmoins à un

attaquant de déduire de l’information confidentielle en approximant les comportements de

M . Ceci implique alors une méthode pour détecter des vulnérabilités de M dynamique-

ment, c’est à dire pendant l’exécution du système.

Étudions maintenant comment vérifier si M est φ-opaque pour pa et ceci statiquement,

c’est à dire sans exécuter le système. Il y a deux aspects qui dépendent des caractéristiques

de la propriété d’opacité qui nous empêchent d’utiliser directement le moniteur Γ♯
φ pour

certifier ou invalider statiquement l’opacité de M .

Premièrement, même dans le cas où le treillis Q♯ est fini, le moniteur Γ♯
φ n’étant pas

complet, il se peut que Γ♯
φ

−1
(true) ∩ pa(R(M)) = ∅ sans que le système ne soit opaque.

En d’autres termes, le fait de considérer une approximation supérieure fait perdre de la

précision quand à l’ensemble des exécutions compatibles avec une observation. Ainsi il se

peut que le verdict ? soit dû à des exécutions ne satisfaisait pas φ qui sont possibles d’après

det♯a(M) mais qui ne n’appartiennent pas à R(M).

Deuxièmement, l’ensemble des comportements de M étant inconnu à priori, il est n’est

pas toujours possible de décider si Γ♯
φ

−1
(true)∩pa(R(M)) 6= ∅ et donc d’invalider l’opacité

de cette façon. Il nous faut alors utiliser une sous-approximation de l’ensemble pa(R(M))

pour pouvoir exhiber une trace observée ν ∈ pa(R(M)) telle que Γ♯
φ(ν) = true. Dans

cette optique, nous supposons que |Q♯| <∞ et considérons un treillis fini Q♭ ainsi qu’une

connexion de Galois

(Q♭,⊑♭) −−−→←−−−
α♭

β♭

(P(S),⊆)

permettant de sous-approximer les ensembles d’états. Nous considérons une partie finie

Σ♭ ⊆ Λ de l’ensemble de événements de M , avec Σ♭
a = Λa ∩ Σ♭ et Σ♭

ua = Λua ∩ Σ♭. À

partir de cette connexion de Galois et de cet ensemble fini d’événements, nous calculons

une sous-approximation inférieure correcte det♭a(M) de deta(M) qui est un LTS fini tel que

L(det♭a(M)) ⊆ pa(R(M))∩Σ♭
a
∗
. Ainsi, nous pouvons faire le lien avec la sur-approximation

14

Contents

utilisée plus haut en utilisant le résultat :

∀r ∈ E(Λ, S), pa(r) ∈ Γ♯
M

−1
(true) ∩ L(det♭a(M)) =⇒ r ∈ R(M) ∧ r |= φ

Ainsi, le fait que Γ♯
M

−1
(true) ∩ L(det♭a(M)) 6= ∅ implique que le système M n’est pas

φ-opaque pour pa.

Ces travaux sont présentés en section 4.3 et ont été publiés en [Dub09].

Application du diagnostic avec des abstractions régulières

Nous considérons maintenant que l’alphabet d’événements de M est fini et nous notons

alors Σ cet ensemble d’événements. Nous ne faisons pas d’hypothèse sur l’ensemble des

états qui peut être infini. Ainsi, le langage de M n’est pas nécessairement régulier. Dans ce

contexte, nous supposons que le prédicat φ est défini par rapport à la trace générée par une

exécution. C’est à dire qu’il existe un langage L(φ) ⊆ Λ∗ tel que r |= φ si tr(r) ∈ L(φ). Nous

supposons aussi que ce langage L(φ) est régulier. Nous montrons que l’on peut considérer

le problème de vérification de l’opacité avec une approche basée sur les langages. Ainsi,

l’objectif est de détecter si certain mots de L(M) révèlent le secret.

L’approche présentée ici consiste à considérer une approximation régulière de M , c’est

à dire un LTS fini G tel L(M) ⊆ L(G). Dans ce cas, G étant fini, on peut calculer un

moniteur correcte pour détecter les cas de non-opacité à partir des traces observées de M .

Un attaquant peut alors inférer la satisfaction de φ à partir de G en s’appuyant sur le

résultat suivant :

∀µ ∈ πa(L(M)), ∅ (π−1
a (µ) ∩ L(G) ⊆ L(φ) =⇒ ∅ (π−1

a (µ) ∩ L(M) ⊆ L(φ)

Par contre, le résultat précédent ne peut pas être utilisé pour vérifier statiquement l’opacité

de M pour les mêmes raisons que dans le cas d’approximations basées sur des techniques

d’interprétation abstraite. Nous présentons alors une technique basée sur la théorie du diag-

nostic pour détecter en ligne l’occurrence des fuites d’informations. Nous étudions alors le

problème de définir et calculer un diagnostiqueurD dont le but est de détecter sous observa-

tion partielle l’ensemble des occurrences de fuite d’information. Pour cela, nous supposons

que le diagnostiqueur observe les événements de l’alphabet Σo ⊆ Σ. L’architecture que

nous considérons est représenté par la figure 0.3.

Étant donnée une propriété de sûreté ψ définie par le langage clos par préfixe L(ψ) ⊆ Σ∗,

un langage L est diagnosticable s’il existe une borne N telle que pour tout mot de L qui ne

satisfait pas ψ, il suffit d’attendre l’occurrence d’au plus N événements pour pouvoir, sous

15

Contents

Système M Attaquant ADiagnostiqueur D

Abstraction finie G

ΣaΣo

⊆

Fig. 0.3: Détections de vulnérabilités utilisant diagnostique et abstraction régulière

observation partielle, inférer de manière sûre le prédicat ψ n’est pas satisfait. Formellement :

∀w ∈ L ∩ L(¬ψ), ∀w′ ∈ w−1L, |w| ≥ N =⇒ π−1
o (πo(ww

′)) ∩ L ⊆ L(¬ψ)

Nous donnons ensuite une procédure pour vérifier la diagnosticabilité pour langage régulier

L et un prédicat ψ donné aussi par un langage régulier L(ψ). Nous montrons aussi que la

diagnosticabilité est préservé par l’inclusion, ce qui va nous permettre de conserver cette

propriété sur L(M) lorsqu’elle est vérifié sur l’abstraction L(G) de L(M).

À partir de l’abstraction G, nous pouvons alors définir le prédicat ψ par :

L(ψ) = L(M) \ ({w ∈ L(G) : π−1
a (πa(w)) ⊆ L(φ)} Σ∗)

The langage L(ψ) est l’ensemble des sequences de L(M) pour lesquelles le secret φ n’a pas

été révélé à l’attaquant utilisant un moniteur correct calculé à partir de G. Alors, le résultat

principal de cette section est : si le langage L(G) est diagnosticable pour ψ pour une borne

N , alors tous les cas de fuite d’information vont être détectées au plus N occurrences après

qu’elles se soient produites dans L(M).

Ces travaux sont présentés dans la section 4.4 et font suite aux publications [DJM07]

et [DJM09].

Assurer l’opacité sur un Système

Dans cette partie, nous étudions deux approches pour garantir la propriété d’opacité sur

le système M , supposé fini. Dans ce cas, on note Σ pour l’alphabet d’événements et Q sur

l’ensemble d’états, notant ainsi M = (Σ, Q, δ,Q0).

La première approche pour assurer l’opacité de M consiste à restreindre les compor-

tements du système à un sous ensemble de sorte que l’opacité soit vérifiée sur ce sous-

ensemble. Pour cela, nous utilisons la théorie du contrôle à la Ramadge et Wonham

[RW87, RW89] qui consiste à calculer un contrôleur C tel que la composition parallèle

C ‖ M soit opaque. La seconde approche consiste à modifier dynamiquement l’observa-

16

Contents

bilité des événements de M de façon à limiter la capacité de déduction de l’attaquant et

préserver le secret φ.

Synthèse de contrôleur pour assurer l’opacité

Nous supposons ici que l’attaquant observe les événements d’un sous-alphabet Λa ⊆ Λ,

et le prédicat φ est donné par un langage régulier L(φ). On peut alors suivre une approche

s’appuyant sur les langages et considérer la projection πa : Λ∗ → Λ∗
a. Dans ce cas, nous

supposons aussi que M est déterministe, c’est à dire M = (Σ, Q, δ, q0) avec δ qui est une

fonction partielle de Σ×Q dans Q.

L’objectif est ici de calculer un contrôleur C tel que le langage L(C ‖M) soit φ-opaque

pour πa. Ce contrôleur doit obéir à quelques contraintes. La première de ces contraintes est

que le contrôle s’exerce sous observation partielle, c’est à dire que le contrôleur n’observe

que les événements de l’alphabet Σo ⊆ Σ. Le contrôleur doit alors être tel que L(C) ⊆ Σ∗
o.

Nous supposons aussi que tous les événements de Σo ne peuvent être empêchés par contrôle.

De plus, nous cherchons un contrôleur qui soit le plus permissif possible, c’est à dire qu’il

ne restreint pas inutilement le comportement de M .

Nous appelons un langage contrôlé un sous langage de L(M) qui soit non-vide, clos

par préfixe, contrôlable et normal. Un sous-langage contrôlé est un langage qui peut être

obtenu par la composition C ‖M pour un contrôleur C observant les événements de Σo et

ne bloquant que l’occurrence des événements de Σc. Le problème peut donc être reformulé

de façon équivalente au calcul, lorsque celui-ci existe, d’un langage contrôlé K qui soit

maximal au sens de l’inclusion des langages.

Nous proposons une solution à ce problème lorsque les alphabets Σa et Σo sont compa-

rables, c’est à dire lorsque Σa ⊆ Σo ou Σo ⊆ Σa.

Dans un premier temps, nous étudions l’application d’une technique classique pour la

synthèse de contrôleur. Cette technique, dite de Ramadge et Wonham consiste à appliquer

alternativement l’opérateur Op, qui associe à un langage L le plus grand sous-langage

clos par préfixe de L qui soit φ-opaque pour πa, et l’opérateur CN , qui associe à un

langage L son plus grand sous sous-langage clos par préfixe, normal et contrôlable. L’idée

de l’algorithme est le suivant :

– Partant de L(M), le langage L1 = Op(L(M)) est opaque et clos par préfixe mais n’est

pas nécessairement normal et contrôlable.

– On applique alors à L1 l’opérateur CN pour obtenirK1 = CN(L1) = CN ◦ Op(L(M)).

Le langage K1 est normal et contrôlable mais l’opacité n’est pas nécessairement pré-

servé par l’opération.

– L’opérateur Op ◦ CN est monotone dans le treillis complet des sous-langages préfixe-

clos de L(M) et admet donc un plus grand point fixe.

17

Contents

– Ce point fixe gfp(Op ◦ CN) est le plus grand sous-langage contrôlé qui soit φ-opaque

pour πa.

Mais rien de garantie que ce point fixe termine toujours ni que le langage obtenu soit non-

vide et régulier. Nous présentons donc quelques conditions suffisantes pour que ce calcul de

point-fixe termine après un nombre fini d’itérations, ce qui implique aussi que le langage

obtenu est régulier car les opérateurs Op et CN préservent la régularité des langages. Nous

montrons que le calcul de point fixe termine lorsque Σo ⊆ Σa et Σa ⊆ Σc.

Example 0.2 Afin d’illustrer l’algorithme présenté ci-dessus, considérons le LTS M donné

par la figure 0.4. Nous supposons que Σa = {a, b, d, e}, Σo = {a, c1, c2, b, d, e}, (donc seul

l’événement τ est inobservable par le contrôleur) et Σc = {b, c1, c2, e}. Le prédicat φ est

défini par le langage régulier L(φ) = Σ∗hΣ∗. En observant d, l’attaquant est sûr que l’évé-

0 1 2 3

4 5

6 7 8 9 10

11

a

τ

c1

e

b

h

d

a c2

e

a

h

h

b

e

a

a

Fig. 0.4: Assurer l’opacité par contrôle (I)

nement h s’est produit et le secret est alors révélé. L’opérateur Op enlève donc du langage

du M l’événement d et tout ses suffixes, c’est à dire l’ensemble des mots donc le suffixe

appartient à da∗. Mais le language obtenu n’est pas contrôlable. Appliquer l’opérateur CN

revient à bloquer l’action c1 à l’état (1). Le LTS obtenu est donné par la figure 0.5(a).

Cependant, le secret peut encore être révélé à l’attaquant sur le langage obtenu, notam-

ment, si l’attaquant observe b. Ceci conduit à couper l’événement c2 à l’état (7). Le LTS

obtenu, représenté sur la figure 0.5(b) est à la fois opaque, contrôlable et normal. Nous

avons alors obtenu le plus grand langage controllé assurant la propriété d’opacité sur M .

Nous donnons aussi dans cette thèse un contre-exemple, dans le cas Σa ⊂ Σo, pour mon-

trer que le calcul de point fixe décrit plus haut ne termine pas toujours. Sous l’hypothèse

Σa ⊂ Σo, nous présentons alors une autre technique qui prends en compte plus précisément

les spécificités de la propriété d’opacité dans le calcul du langage contrôlé. Premièrement,

nous remarquons que l’on peut faire l’hypothèse Σo = Σ sans perdre de généralité. En

effet, étant donnée une solution pour le problème de contrôle à partir du langage projeté

18

Contents

0 1

6 7 8 9 10

11

a

τ

e

a c2

e

h

h

b

e

a

(a) Step 1

0 1

6 7

11

a

τ

e

a

e

h
e

(b) Step 2

Fig. 0.5: Assurer l’opacité par contrôle (II)

πo(L(M)), nous montrons comment retrouver le résultat pour le problème de contrôle ini-

tial dans le cas Σo ⊆ Σ. Sous cette hypothèse Σo = Σ, le problème de calculer le plus grand

sous-langage contrôlé qui soit opaque peut se voir de façon équivalente comme le calcul

d’une fonction de contrôle f : Σ∗ → P(Σ) maximal au sens de l’inclusion point à point et

telle que pour tout w ∈ Σ∗, Σuc ⊆ f(w) (avec Σuc = Σ \ Σc). Nous montrons alors que

cette fonction de contrôle ne dépend que de l’état de M et de l’estimé d’état de l’attaquant,

c’est à dire l’ensemble des états possiblement atteints compte-tenu de la trace observée.

Cette configuration constitué de l’estimé de l’attaquant et de l’état du système est donnée

par la fonction ζ : Σ∗ → P(Q)×Q. Il existe alors une fonction f̄ : P(Q)×Q→ Q telle que

f = f̄ ◦ ζ. Ce résultat implique que le plus grand sous-langage contrôlé assurant l’opacité

est régulier et induit aussi un algorithme pour son calcul effectif. En effet, nous remarquons

que si (e, q) = ζ(w), alors f̄(e, q) ⊆ δ(·, q)−1(Q). En d’autre terme, la fonction f̄ induit une

restriction de δ paramétrée par l’estimé e de l’attaquant. L’algorithme que nous proposons

consiste alors à considérer toutes les restrictions possibles de δ pour chaque estimé e ⊆ Q.

Ceci revient à considérer l’ensemble des fonctions d : P(Q) × Σ × Q telle que pour tout

e ⊆ Q, la fonction d(e, ·, ·) est définie et égal à δ seulement lorsque cette dernière est défi-

nie. Chaque fonction d définie un sous langage de M sur lequel on peut calculer les mots

qui révèlent de l’information secrète. Partant de la fonction d0 définie par d0(e, ·, ·) = δ,

on défini alors la suite définie par di+1 = α(di) où la fonction α enlève d’une fonction d

l’ensemble des transitions qui conduisent à une fuite d’information. Cette suite converge

avec un nombre fini d’itérations vers une fonction dN , et nous montrons alors que dN = f̄ .

Ainsi, connaissant la valeur de f̄ pour chaque configuration (e, q) ∈ P(Q) × Q, nous en

déduisons la valeur de f et par conséquent le plus grand sous-langage contrôlé K ⊆ L(M)

tel que K soit φ-opaque pour πa.

Ces travaux sont présentés au chapitre 5 et font suite aux publications [DDM08] et

[DDM09].

19

Contents

Masquage d’information par des projections dynamiques

Nous présentons dans cette section une technique qui consiste à modifier dynamiquement

l’observabilité des événements afin de préserver la propriété d’opacité. Cette technique a

été introduite dans [CT08] dans le cadre du diagnostique. Ces travaux sont présentés dans

le chapitre 6 et fait suite à la publication de [CDM09a]. Le problème est de trouver une pro-

jection dynamique πT assurant l’opacité d’un système fini M = (Σ, Q, δ,Q0), possiblement

non-déterministe par rapport à un prédicat φ défini par l’ensemble d’état F (φ) ⊆ Q.

Pour définir une telle projection, nous supposons que l’ensemble des événements obser-

vables Σa est partitionné entre les événements Σv qui peuvent être masqués si besoin, par

exemple les sorties du dystème, et les événements Σuv qui ne peuvent jamais être masqués,

par exemple les entrées de l’attaquant. Nous considérons ici que le choix de masquer ou

non un événement dépend de la trace observée par l’attaquant. Dans ce contexte, la notion

de choix d’observation est une fonction T : Σ∗
a → P(Σa) telle que pour tout µ ∈ Σ∗

a,

Σuv ⊆ T (µ)1. Cette notion de choix dynamique nous permet de définir celle de projec-

tion dynamique de façon inductive : étant donné un choix d’observation T , on défini la

projection πT par :

πT : Σ∗ → Σ∗
a

ǫ 7→ ǫ

wσ 7→

{
πT (w)σ si σ ∈ T (πT (w))

πT (w) sinon

Nous disons d’un choix d’observabilité qu’il est valide s’il défini une projection dynamique

qui assure l’opacité de φ sur M .

Afin de préserver au maximum le service fournit par le système, qui peut s’exprimer

comme une propriété sur les traces observées, il peut être intéressant de rechercher une

projection dynamique qui masque le moins possible d’événements de Σv. Malheureusement,

l’ensemble des choix d’observabilité valides n’est pas clos par union, ce qui implique qu’il

n’existe pas forcément un unique choix d’observabilité maximal par rapport à la relation

d’inclusion. Néanmoins, nous montrons que cet ensemble de choix dynamiques valides peut

être représenté de façon finie par l’arène (finie) d’un jeu de sûreté à deux joueurs. Pour

cela, nous définissons le jeu alternant suivant :

– Les actions du joueur 1 appartiennent à l’ensemble Υ1 = {t ⊆ Σa : Σuv ⊆ t} et les

états pour lesquels le joueur 1 a la main est S1 = P(Q) ;

– Les actions du joueur 2 appartiennent à l’ensemble Υ2 = Σa et ses états sont de la

forme S2 = S1 ×Υ1 ;

– l’arène du jeu est défini par le LTS fini H = (Υ1 ∪Υ2, S1 ∪S2, δH , Q0) où Q0 ∈ S1 est

1Cette contrainte est similaire à la notion de non-contrôlabilité.

20

Contents

l’état initial du jeu ;

– la fonction de transition δH induit le déroulement du jeu et est définie par :

– pour e ∈ S1 et t ∈ Υ1, δH(t, e) = (e, t) ∈ S2 ;

– pour (e, t) ∈ S2 et σ ∈ Υ2, si σ ∈ t et e′ = postM ({σ}) ◦ reachM (Σ \ t)(e) 6= ∅ alors

δH(σ, (e, t)) = e′ ∈ S1 et est indéfini dans les autres cas.

L’objectif du jeu est donné par rapport à l’ensemble d’état

Bad = {(e, t) ∈ S2 : reachM (Σ \ t)(e) ⊆ F (φ)}

Le joueur 2 cherche à atteindre un état de Bad et joue ainsi un jeu d’accessibilité. Le

joueur 1 cherche de son coté à éviter que le joueur 2 gagne, c’est à dire qu’il cherche à

jouer de façon à ce que les états de Bad ne soit pas atteints. Ce jeu de sûreté sur une arène

finie est déterminé d’après [Mar75], c’est à dire que soit le joueur 1, soit le joueur 2 a une

stratégie gagnante pour gagner (à partir de l’état initial).

À partir de ce jeu, nous montrons dans un premier temps qu’il existe une correspondance

bijective entre l’ensemble des choix d’observabilité et l’ensemble des stratégies du joueur 1.

Dans un second temps, nous montrons qu’un choix d’observabilité est valide si et seulement

si il définit une stratégie gagnante du joueur 1. Dans un troisième temps, nous montrons

que l’ensemble des stratégies gagnante du joueur 1 peut être calculé avec une complexité

polynomial en la taille de H (qui a lui une taille exponentielle en la taille de M).

Il existe donc une projection dynamique assurant l’opacité de φ sur M si et seulement

si il existe une stratégie gagnante pour le joueur 1. L’ensemble des choix d’observabilité

valides est représenté par l’arène H = (Υ1 ∪Υ2, S1 ∪ S2, δH, Q0) où δH est obtenu à partir

de δH en éliminant toutes les actions du joueur 1 qui permettent au joueur 2 de gagner le

jeu, c’est à dire atteindre un état de Bad.

Ces travaux sont présentés au chapitre 6 et font suite à la publication de [CDM09a].

Conclusion

Dans cette thèse, nous présentons des méthodes de vérification de l’opacité basées sur

des techniques d’interprétation abstraite et sur l’application du diagnostique. Nous présen-

tons aussi des algorithmes de construction de système opaque qui s’appuient soit sur des

techniques de synthèse de contrôleur soit sur la notion de projection dynamique.

Nos travaux actuels portent premièrement sur une implémentation des techniques de

vérification de l’opacité et de détection de vulnérabilités. Un prototype implémentant les

calculs de moniteur et de vérification de la diagnosticabilité dans le cas fini a été développé.

L’objectif est alors de fusionner les approches présenter en section 4.3 et 4.4 afin de pouvoir

utiliser des techniques d’interprétation abstraite pour calculer des moniteurs dans le cas

21

Contents

de systèmes infinis.

Aussi, les travaux présentés aux chapitres 5 et 6 présentent de forte similitudes à la fois

dans la formalisation des deux problèmes et dans les solutions algorithmiques présentées.

Il serait donc intéressant de pouvoir les fusionner en un unique problème afin de voir si les

techniques de synthèse de contrôleur peuvent permettre d’étendre les techniques de calcul

de projections dynamiques à des choix d’observabilité qui dépendent des mots générés par

M et non plus seulement des traces observées par l’attaquant.

22

1 Introduction

Ensuring the confidentiality of critical information manipulated by computer systems has

become one of the most challenging objectives of modern hardware and software design.

Interconnected networks, like Internet or mobile phones, providing communication ser-

vices, decision taking facilities or access to information, are open by nature and therefore

vulnerable to malicious attackers. Moreover, the kind of services proposed through those

networks has changed during the past decade which has seen the emergence of services like

Internet banking, e-government, e-voting systems, medical information storage and even in

recent years remote surgery. Such services handle critical information that should neither

be corrupted nor leaked to unauthorized users. In practice, the level of security of an in-

formation system is often determined by the quantity of known and public vulnerabilities.

This approach, possibly forgetting vulnerabilities that are known only by a malicious group

of users, is not satisfying regarding the significant place of information technologies in such

critical sectors like medicine, e-government or finance. For example, large scale stealing of

medical records or massive modification of votes on e-voting systems can have dramatic

consequences. Then, there should be no security breaches on such infrastructures. Fur-

thermore, real security of systems is not sufficient alone. Indeed, even if a system happens

to be secure, it is also essential for the users to know that it is secure. In other words, the

guarantees about the security of a critical system can be part of the services it provides.

For example, an e-voting system based on Internet can be successfully deployed only if

the electors can trust that the system will not allow a particular candidate to influence

the outcome of an election. Therefore, an independent third party must be able to prove

that there cannot be frauds in the elections. This situation implies the development of

reliable methods for certifying the absence of security breaches on such critical systems.

Unfortunately, manual analysis can be very expensive, permeable to mistakes and require

a high level of expertise. Moreover, a manual analysis is often impossible to achieve in

practice for large infrastructures, especially when updates are regularly performed.

In this context, beside the large amount of work that has been done for several decades

in the domain of cryptography, see [MVO96], there has been a growing interest in the

application of formal methods to verify security properties. To cite only few of the works

in this domain, in [Low99] the author applies model-checking techniques to verify cryp-

tographic protocols. This permitted to discover some flaws in some widely deployed and

23

1 Introduction

long standing security protocols. In [AG99, BAF05], the authors develop a process al-

gebra framework such that some security properties, mostly information flow properties,

are verifiable. There have been also important contributions to the formal analysis and

enforcement of security properties based on monitoring techniques. Some notable works in

this area have been published in [Sch00] and later extend in [LBW05]. In these articles, the

authors consider automata that can stop or modify at runtime the behavior of a program

to enforce a security policy, mostly consisting in safety properties.

In order to automate the certification process, security requirements have been formal-

ized. The security properties that a critical system shall satisfy are generally classified into

three categories (see [Bis04] for a complete review):

• integrity ;

• availability ;

• confidentiality.

We will consider an e-voting system to give some examples about each category of property.

Integrity properties express that users cannot perform some actions they have not been

allowed to. For example, requiring from an e-voting system that votes cannot be modified or

deleted by a third party is a concern of integrity. In practice, integrity properties are often

given as safety properties, like for example “malicious users cannot remove protected files”.

But the term integrity can sometimes be used for integrity of information and then not

always expressible as safety properties. For example, consider that Alice wants to send the

message m to Bob using a flawed cryptographic protocol. Then, an attacker eavesdropping

the message m and sending the message m′, m′ 6= m to Bob will not violate any safety

property. Such integrity property can be formulated in terms of knowledge [GMP92]: “If

Alice knows that the message is m before the transmission (which is obvious in that case),

then Bob must know that this message is m once the transmission has terminated.”

Availability properties express that malicious users cannot disrupt the expected behavior

of a service. For example, requiring that every elector can vote is a concern of availability.

A Denial of Service attack is a malicious effort orchestrated to disrupt and make unavail-

able services such as online banks, credit card payment system as well as government or

political websites. Such security issues are typical concerns of availability. Intuitively,

some availability properties can be expressed by liveness. For example, if a user sends the

correct credit card information, then an online payment system must proceed to the money

transfer.

The last category of security properties is the confidentiality. It expresses that unau-

thorized users cannot acquire secret information. In an e-voting system, requiring that

24

no third party can infer the vote of an elector is a concern of confidentiality. For exam-

ple, consider the following voting scheme: Let M be a voting system where the values of

the votes have to remain confidential. The order of the voters is random but observable

whereas the values of the votes are not observable. Suppose that voting is stopped as soon

as the outcome of the election is certain. Then, one can infer the vote of the last voter and

such voting scheme is then insecure. Another scheme where the outcome of the election is

published once every elector has voted does not present the same flaw.

Finally, in the remainder of the thesis, we will call a security policy a set of security

properties that have to be simultaneously satisfied.

In opposition to a classical approach to ensure security by fixing exposed vulnerabilities,

formal certification is especially crucial in the context of confidentiality properties. Clearly,

if a service needs to keep some information secret, like the values of the votes or patient’s

data on an electronic health record system, then formal certification is essentially the only

way to obtain confidentiality guarantees since information flow attacks may not let any

sign that some secret information has leaked. Then, the occurrence of such attacks may

be hard to detect and the damages intricate to recover.

In the thesis, we will mostly focus on confidentiality with the notion of opacity [BKMR08].

We will investigate some techniques to verify, monitor and enforce opacity properties. We

will generally adapt to opacity some techniques that have been developed for safety prop-

erties. Then, to outline the specificities of opacity and to illustrate the techniques we

propose for opacity related problems, we will also recall how such techniques can solve

safety related ones. The presented results can therefore be applied to handle integrity

properties expressible as safety properties. Finally, the case of availability properties is not

investigated in this document.

We consider a critical system, whose behavior is modeled by a possibly infinite labeled

transition system, required to keep secret some confidential information against inquisitive

attackers. We assume that attackers are partially observing the executions of the system.

For example, attackers may observe the interactions, i.e. the inputs and outputs sent to

and received from the system. But we can also consider that timing information, power

consumption, or electromagnetic radiations are observable as long as they can be modeled

in an event based fashion. This partial observation is given as a function mapping the runs

of the system to a set of observations. For security analysis, it is also common to consider

that attackers may have a complete knowledge about the structure of the system. We

will make this assumption throughout the thesis. This would be realistic when analyzing

standardized protocols or software with sources publicly available. But, even in other cases,

it is reasonable to assume that attackers can always apply retro-engineering techniques to

acquire information about the ways a system works. Moreover, we will show that the most

25

1 Introduction

precise the knowledge of the attacker is, the most accurate its ability to infer information

will be. Then, considering an attacker having full information about the behavior of

the system is considering the worst situation from a security point of view. In other

words, conditions for systems confidentiality stated in this context will also hold in the less

restrictive cases where the attacker only has imprecise information about the system.

Confidentiality requirements express that unauthorized users, more simply called attack-

ers, should not be able to access secret information. For example, if an operating system

fails to protect a file storing the passwords, and users can directly open it, then the confi-

dentiality of the password is broken. This situation can be expressed as a safety property

but this formalization is generally too weak to really capture confidentiality requirements

as the following example illustrates.

Example 1.1 Consider the pseudo-program P :

int k = 0

int x = 0

k = random()

x = random()

while true

receive(m, A)

if (m+1) != k then

send(x+1, A)

else

send(0, A)

The value of k is secret. Knowing the code of P , a malicious user A can follow the strategy:

• choose a value, for example 5;

• send the message 5 to P (with the event receive(5, A));

• if the answer is 0, then A can deduce that the value of k is 6.

The attacker cannot directly read the value of k but can nevertheless infer this information

in some favorable cases.

In the situation of the previous example, we will say that there is an implicit flow of secret

information, i.e. the attacker is able to infer secret information without directly getting

26

it, but deducing it from what is observed. The notion of opacity, introduced in [Maz04]

and adapted to transition systems in [BKMR08], formalizes the ability of a system to keep

secret some critical information, assuming that attackers have a complete knowledge of

the structure of the system and partially observing its executions. Given a predicate over

the executions whose satisfaction is secret information, the predicate is opaque when for

every observation, there exists a run that is possible regarding this observation and which

does not satisfy the predicate. Then, an attacker observing the system cannot infer from

this (partial) observation that the current run of the system belongs to the secret. In

addition to the simplicity of its definition, the advantage of the notion of opacity is its

expressiveness since other classical notions of information flow properties like anonymity

or non-interference can be formalized as opacity problems [BKMR08].

To illustrate the notion of opacity, consider a program P to be an implementation of a

cryptographic primitive that needs to keep secret the value of some key k. This value is

randomly generated when P is initialized and is not modified during the execution of P .

Let the predicate φ be defined as the set of executions of P that are possible only when

the value of k is smaller than a given value v. If φ is not opaque on P , then for some

observation ν, the attacker knows that the current execution of P belongs to φ, and then

that 0 ≤ k ≤ v since every execution of P that can explain the observation ν belongs to φ.

In this example, the program P also leaks information if the attacker can infer the truth

of ¬φ, as it implies that v < k.

For another illustration, let M be a basic authorization service. The users send their

logins and passwords to M which reads from a database file pwd if the values match and

decides then whether to let users proceed to the next step. The file pwd is normally

protected, nobody can read its content, but in order to make the comparison, M enables

read access on pwd, compares the values and then disables read access. The attacker

wants to infer that pwd can be read to launch a print pwd command and steal all login

information. Therefore, consider the predicate that is true on the runs whose last state is

such that the password file is read accessible. If this predicate is opaque, then the attack

explained above have no certainty to succeed. We can see on this example, inspired from a

security issue on early UNIX systems, that the attacker is not interested in the information

“pwd is not read accessible“ which is likely to be the case most of the time during execution.

This case of attack also suggests that the attacker wants to know whether “the current run

executed by M satisfies φ” rather than “a run satisfying φ has been executed by M ”. In

the example, when the login is successful, the attacker knows that pwd has been, at some

time, read accessible but this is not useful information.

In this thesis, we will investigate several problems concerning opacity properties. In

the next section, we present the content of the thesis with an informal explanation of the

27

1 Introduction

different problems that have been investigated. We also give some of the intuitions behind

the proposed solutions.

1.1 Summary of the Thesis

In the chapter 2, we briefly introduce the models, notations and some general mathematical

results that are useful for the subsequent chapters. We emphasis on the notion of com-

plete lattice as we often need to prove the existence of fixpoints using the Knaster-Tarski

theorem. We also present the model of Labeled Transition System (LTS), as we consider

systems whose behavior can be modeled by LTSs, and present some classical operations

on LTSs like parallel composition, complementation, etc.

In chapter 3, we present the notion of opacity introduced in [BKMR08]. We show how this

notion of information flow can be deduced from the assumptions that are made about the

attacker. More precisely, we consider that the attacker is partially observing the system

M via an observation map associating each run of the system to an observation. These

attackers are supposedly trying to infer secret information on the basis of the observed

traces. As in [BKMR08], we consider that the secret is given as a predicate over the set

of possible runs of M , called secret predicate. More precisely, the secret information is

the occurrence of a run satisfying this secret predicate. Therefore, the attacker should

not infer from an observation that the current run of M satisfies the secret predicate. We

also consider that the attacker knows the semantics of M and then the set of runs that

can explain an observation, i.e. such that the occurrence of one of those runs will imply

this observation. In this context, we define the opacity of M with respect to the system

and the observation map as the existence, for every observation, of a run explaining this

observation and not satisfying the secret predicate. Thus, it is impossible for an inquisitive

attacker to infer the truth of the secret predicate as this attacker will always be confused

by the possibility that a run not satisfying the secret predicate can have been executed by

M .

Then, we present a set of basic results concerning the opacity property. Especially, we

consider two kinds of secret predicates: the ones that are true on runs reaching a certain

set of states, the state-based predicates, and the ones that are true on runs whose gen-

erated trace belongs to a given language, the trace-based predicates. We present how to

transform an opacity problem for a kind of predicate to the other. Thus, in the sequel, we

can consider the kind of predicate that is the most suitable to solve a particular problem.

In Chapter 4, we investigate the problem of verifying opacity in the context where a subset

of the events are observable by the attacker. The chapter 4 consists in three part.

28

1.1 Summary of the Thesis

First, we give an algorithm to solve the opacity verification problem that is based on the

determinization of M . This determinization procedure directly follows from the definition

of opacity. We present this algorithm in a general setting without considering its effective

computability, but we show that it allows to compute exactly the set of observed traces

such that some secret information is disclosed. For finite systems, the determinization

is always possible and then the opacity verification problem is decidable. Going further,

we show that the opacity verification problem is PSPACE-complete. We prove this by

establishing an equivalence between this problem and the language universality problem

for non-deterministic finite automaton.

Second, the procedure to verify opacity, based on the determinization of M , relies on

computing the fixpoint of the operator postM , defined from the transitions of M , and is

therefore not always effective for infinite state systems with an infinite set of events. For

the cases where this determinization is not possible, we consider an Abstract Interpre-

tation framework based on Galois connections to compute an overapproximation of the

determinization of M . Then, we show that it allows to infer secret information at runtime

on the basis of real observations of M . But we also show that, unlike the case of safety

properties, we cannot statically prove the opacity of M by considering this overapproxima-

tion framework. Indeed, it may happen that some run satisfying the secret predicate are

confused, by the partial observation, by a run, not satisfying the secret predicate, that is

generated by the overapproximation but which does not belong to the original semantics

of M . Thus, real cases of information flow may not be detected on the overapproximation.

On the other hand, an attacker cannot statically compute real attack scenarios from this

overapproximation as they cannot be distinguished from false alarms, i.e. observation that

are disclosing secret information regarding the overapproximation and that are in fact not

possible according to the original behavior of M . More precisely, when an observation pos-

sibly discloses secret information according to the overapproximation, the attacker needs

to know whether this observation can actually be generated by M to conclude that secret

information can be disclosed. However, even if proving the opacity is not possible using

overapproximations, we show how to statically prove in some cases the non-opacity of M

by computing observations disclosing the secret. This is achieved by solving a reachabil-

ity problem considering together an overapproximation and an underapproximation of M .

The underapproximation, also based on a Galois connection framework, is useful to prove

that some observations can effectively be generated by M . This provides a method to

automatically search for vulnerabilities and can be interesting for practical applications.

Third, we consider an alternative approach to certify the absence of information flow in

the case of possibly infinite state systems but with a finite alphabet of events. The lan-

guage of M is then not necessarily regular. In that case, we show how to define a monitor

29

1 Introduction

for the attacker when a regular abstraction G of the language of M is provided. As for

overapproximations based on Galois connections, the attacker cannot statically distinguish

false alarm from real attack scenario, but can disclose secret information at runtime on the

basis of real observations of M . In this context, as we cannot prove that no information

flow will occur in the future, we consider a monitor for the administrator, computed from

G, such that all occurrences of information flow will eventually be detected, at last after

the occurrence of N events after the attacker discloses the secret, where the bound N is

known a priori. For this, we extend the notion of diagnosability for discrete event systems

by considering the case when a regular abstraction of a possibly non-regular system is pro-

vided. Our main result consists in giving sufficient conditions on the abstraction G such

that all occurrences of information flow (on M) will be detected after a bounded delay.

In chapter 5, we investigate the problem of enforcing opacity on a given finite system M .

Considering, as in the previous chapter, that the attacker observes a subset of the events of

M , we want to enforce the opacity of a finite set of trace-based predicates by supervisory

control. The objective of supervisory control is to compute a controller C that is placed in

parallel with M such that the composition C ‖M satisfies a given property [RW87, RW89].

Such a controller only observes a subset of the events of M and can only prevent a subset

of these observable events to occur in M . We also search for a controller that is the least

restrictive possible. This imposes some constraints over the search space for controllers

enforcing the target property. A controlled language is a non-empty and prefix-closed

sublanguage of M satisfying the normality and controllability constraints, i.e. which can

be obtained by the parallel composition C ‖ M for a controller C. Classical results from

the Ramadge and Wonham theory state that searching for an optimal controller enforcing a

property can be reduced to the search for a controlled language satisfying this property that

is supremal with respect to the inclusion order relation. We follow an original approach to

present the Ramadge & Wonham supervisory control theory, with the objective to treat

the opacity control problem as a direct application. The Ramadge & Wonham theory

is often presented to implicitly treat trace properties and we extend the presentation to

properties on languages. For example, safety is a trace property but opacity and diagnosis

are typically not properties on single executions but are expressed in terms of opaque or

diagnosable languages.

We also present in a general setting a fixpoint iteration algorithm to compute, when

it exists, the supremal controlled language enforcing a given property, e.g safety, opacity

or liveness. This fixpoint computation is a classical technique to solve supervisory con-

trol problems and consists in applying first the operator giving the supremal sublanguage

satisfying the target property. But, as the outcome of this operator is not necessarily a

30

1.1 Summary of the Thesis

controlled sublanguage of M , i.e. which can be obtained by parallel composition with par-

tial observability and controllability constraints, we apply another operator to obtain its

supremal controlled sublanguage. As the two operators are monotone, their composition

is also monotone and, according to the Knaster-Tarski theorem, admits then a fixpoint

within the complete lattice of prefix-closed sublanguages of L(M). Starting from L(M),

when a fixpoint is reached, it corresponds to the supremal controlled sublanguage of L(M)

enforcing the property. In the literature, this method has been successfully applied to solve

supervisory control problems for example for safety, liveness or non-blocking properties.

At first, we search for sufficient conditions such that the fixpoint computation described

above provides a solution to the opacity control problem. These conditions rely on the

relationships between three sets of events: the ones observable by the controller, the ones

that are controllable and the ones that are observable by the attacker. We show that the

fixpoint iteration terminates when the controller observes less events than the attacker or

when all the events the attacker can observe can be disabled by control. But, we give

an example where the operator iteration technique does not reach a fixpoint after a finite

number of iterations. The rest of the chapter is then dedicated to present an alternative

approach to solve the opacity control problem. For this, we assume that the controller

observes more events than the attacker. In that case, we show that an algorithm to

compute the supremal controller when the controller observes all the events also induces

an algorithm for the more general situation where the controller is partially observing the

events, but still observes more events than the attacker. We therefore assume in the sequel

that the control is under total observation. Then, we show that some inherent aspects of

the opacity property imply that an optimal control preformed on M only depends on the

state of M and on the state estimate of the attacker, i.e. the set of states that are possibly

reached with respect to an observed trace. The main consequence of this property is the

regularity of the supremal controlled language enforcing the opacity on M , since it admits

then only finitely many residual languages. Based on this observation, we propose a “state-

based“ approach to solve the opacity control problem where the “states“ are configurations

consisting in the states of the system and the state estimates of the attacker. We finally

illustrate this algorithm with an example.

The case where the set of events observable by the attacker and the set of events observ-

able by the controller are not comparable is let for subsequent developments. In fact, the

proposed algorithms heavily depend on the fact that the controller observes more than the

attacker, or reciprocally, and thus cannot be easily extended to the general case.

The chapter 6 is also devoted to the opacity enforcement problem. But instead of restricting

the system into a subset of secure runs, the approach we follow in this chapter consists in

31

1 Introduction

modifying the observability of the events at runtime, in order to confuse the attacker and

prevent a finite set of secret predicates to be disclosed. This work is an application of the

dynamic observer techniques developed in [CT08], with the objective to minimize the set

of observable events (sensor activations) such that a diagnosability property is preserved.

In this chapter, we formulate the notion of dynamic projection which is an observation

map from the set of words generated by M to a set of observed traces. We consider in

this chapter that the observability depends on the traces observed by the attacker. An

observability choice maps every trace observed by the attacker to the set of events that

are observable after this trace. Then, given an observability choice, we define inductively

a dynamic projection which maps a word generated by M to the sequence of events of this

word that are observable regarding the observability choice.

In order to preserve the service provided by the system, one might search for a dynamic

projection hiding as few events as possible. Unfortunately, we show that the set of dynamic

projections enforcing the opacity on M is not closed under union. Therefore, there might

exist several optimal solutions that are not comparable. The service that the system is

expected to provide is generally expressed in terms of a combination a several kinds of

properties. For example, on an e-banking service, one cannot access the account of some-

one else, but in the same time, one should access its own account if sufficient information

concerning the identity is provided. Then, we can search for a dynamic projection enforcing

opacity that is supremal with respect to an availability property, for example minimizing

the average number of events between a request and an answer. Toward such subsequent

developments, we provide in this chapter an algorithm to compute a representation as a

finite LTS of the set of all valid dynamic projections, i.e. enforcing opacity. For this, we

reduce the problem of computing the set of valid dynamic projections to the problem of

computing the set of winning strategies in a safety 2-player game. This game is based on a

finite game LTS that is computed from M . As for the control, this game LTS is obtained

by showing that the choice of observability that is made to preserve opacity only depends

on the state of M and on the state estimate of the attacker. The definition of the game is

based on this idea.

In chapter 7, we conclude this thesis by giving a summary of the important aspects and

results of this thesis. We also give some possible directions for future works and some

perspectives for the techniques developed in this document.

1.2 Related Works

There have been numerous works about the certification of information flow sensitive sys-

tems and we cite only some of them here. Some notable early works have been done with

32

1.2 Related Works

the BLP security model in [BL73] which is a formalization of confidentiality policies that

were applied in the US military sector. In this article, the authors present a mathematical

model of a computer system with confidentiality constraints. This model consists in a set

of objects and a set of subjects performing actions on this objects, e.g. read, write, create,

delete, etc. The objects and subjects are classified into confidentiality levels ordered from

the least to the most confidential, for example:

public < unclassified < secret < top secret

The access control policy searches to enforce the confidentiality of the data by restricting

the possible actions. For example, it is not possible for a subject to read an object that

is at a higher level, or a subject cannot write to an object at a lower level. The objective

of this policy is to prevent data flow from higher levels, e.g. top secret, to lower levels,

e.g. public. But this model is not sufficient for formal certification as it does not allow to

prove the absence of information flow. In fact, a counterexample that appeared on the early

multi-user operating systems can be described as follows: a user from the public level tries

to write to a file F at a top secret level. If this file F does not exist, then the user receives

an error message and receives nothing when this file exists. Therefore, in collaboration

with another user at the top secret, it is possible to create a flow of information from

top secret to public and then bypassing the access control protections. This aspect led

some authors to give a more precise definition of information flow properties. Among them,

the authors of [GM82] introduced the notion of non-interference which can be stated as

follows: considering two security levels, high and low, and two agents, (users or programs),

one at each level, a system is non-interfering if what the high level agent does has no effect

on what the low level agent can see.

Several other information flow properties have been proposed after in the literature,

e.g. non-inference, separability, restrictiveness, etc, with the objective to model different

situations depending on the assumption that are made regarding the secret information

and the abilities of the attacker. In [Mcl94], the author proposes a framework to unify

these different notions of information flow, called possibilistic security properties in the

article. This framework is based on classifying these notions with respect to their properties

regarding the composition of systems. In [Aba98], the author investigate information flow

properties in the context of programming languages. This language-based approach to

information is a domain that has been widely investigated since then, with some influent

articles like [SM03]. The authors of [FG93] formalize this concept of non-interference using

the CSP process algebra. This work is later extended in [RS99] and in [FG00], the authors

present a taxonomy of the different notions of information flow using CSP.

In [Maz04], the author proposes to use the notion of opacity to unify different notions

of information flow in the context of cryptographic protocols modeled by rewriting rules.

33

1 Introduction

In [BKMR05] and later in [BKMR08], the authors adapt this notion of opacity to transi-

tion systems, which eases then the formal comparison between opacity and other notions

of information flow. Especially, they show that the problem of verifying some notions of

information flow like anonymity (strong or weak as defined in [SS96]) and strong non-

deterministic non-interference [FG00] can be formalized as particular instances of opac-

ity for suitable secrets predicates and observation maps. We will not investigate in the

present document how opacity can encode these other information properties. We refer

to [BKMR08] for a clean and complete comparison between opacity, anonymity, (trace-

based) non-interference and non-deducibility. Also, in [Dub09], we show that the opacity

property corresponds to the notion of knowledge following the possible worlds model of

epistemic logic [Hin62], where the underlying Kripke structure is the set of runs and the

equivalence relation is deduced from the observation map. This suggests then that opacity

should be expressive enough to formalize a significant set of information flow properties.

This work about epistemic logic and opacity is not presented in this document.

In the thesis, we follow two objectives: verifying the opacity property on a system, or

at least detect some counterexamples, and enforcing opacity on an insecure system. There

have been several publications investigating opacity verification problems. In [SH08], the

authors present a verification procedure for initial opacity which is a special case of opacity

where the secret predicates depend on the first state of the runs. In [AČZ06], the authors

investigate the verification problem for secrecy, which is actually the conjoint opacity of

a secret predicate and its negation. They show that secrecy cannot be expressed as a

µ-calculus formula over the traces of the system. In [AČC07], this problem is circum-

vented by defining temporal logics that are interpreted along the paths by agglomerating

states that are observationally equivalent. In chapter 4, we present a verification procedure

that is based on computing the determinization of M . The work presented in [AČC07]

seems to have similarities with temporal logics that are interpreted over the Kripke struc-

ture M ‖ det(M), where the state estimates of the attacker are given by the states of

det(M). A formal comparison between the two approaches is let for subsequent develop-

ments. Finally, we show that in the case of finite systems, the opacity verification problem

is equivalent to the language universality problem. Therefore, the techniques developed

in [DDMR08b, DDMR08a] should provide more efficient verification algorithms that the

determinization procedure presented in Chapter 4. We use an abstract interpretation

framework to investigate the opacity verification problem. This has already been inves-

tigated in [Mas05] for non-interference properties. In this thesis, the author investigates

sufficient conditions about the system and the abstractions (given as closure operators)

such that the non-interference is satisfied. We follow another approach in Chapter 4. We

chose the point of view of an attacker and study how an abstract interpretation frame-

34

1.2 Related Works

work can be applied to infer secret information. Our motivation for this approach is to

consider a system as secure as long as no security breach has yet been discovered. Indeed,

the search for sufficient condition for opacity may reject systems such that no computable

attack scenarios can be computed in practice. Our approach is therefore complementary

to the one of [Mas05].

Applying supervisory control to enforce confidentiality properties is an emerging field

of research. In [Ric06], the author adapts the decentralized supervisory control theory in

order to ensure the Chinese Wall Policy. In [CMR07a, CMR07b], the authors investigate

the control problem for non-interference properties. This work has later been extended

to timed systems in [BCLR09]. The opacity control problem has first been introduced

in [BBB+06] and later developed in [BBB+07]. In these articles, the authors consider

the case of several attackers, each of them trying to infer the truth of a secret predicate

(one predicate per attacker). They investigate the control problem with the hypothesis

that the controller observes all events and all events can be controlled. They provided

sufficient conditions for the existence and effective computability of a supremal controller

enforcing the opacity of all the secrets together. The objective of the chapter 5 is to extend

this work by releasing the assumptions that all the events are controllable and observable

by the controller. We consider in this chapter the case of one controller and a finite set

of secret predicates. Another work investigating the opacity control problem has been

published in [TO08]. In this article, the authors consider that all the events are observable

but are not all controllable. With some assumptions on the set of observable events of the

attacker and the controllable events, they show that the fixpoint computation of Ramadge

and Wonham provides the optimal solution to the opacity control problem. We will more

precisely compare this work with our approach in Chapter 5.

The work of chapters 5 and 6 also has some relationships with the earlier work done by

Schneider on security automata [Sch00], subsequently extended to edit automata in [LBW05].

The goal pursued in [Sch00] is to produce an interface automata that enforces a security

policy, consisting of integrity properties, represented by a prefix-closed language of safe

executions: the interface automaton rejects the inputs from the environment that would

lead the system to leave the subset of safe execution. In [LBW05], the author consider

several kinds of automata, called edit automata, classified with respected to their trans-

formational capabilities, e.g. halt system, remove actions, insert actions, etc. Then, they

give a set-theoretic characterization of the security policies that can be enforced by each

category of edit automata. These enforcement monitoring techniques have also been inves-

tigated in [FFM09]. In this paper, the authors give a classification of safety properties that

can be enforced by monitoring. They also provide an algorithm to compute an enforcing

monitor given an automaton accepting the safety property.

35

1 Introduction

There have also been some related works in the context of model-based testing for

security properties. In this context, some techniques have been developed to test access

control policy with partial specification [DFG+06]. In [MDJ09], the work presented in

Chapter 5 is applied to test the implementation of integrity and confidentiality policies.

In this paper, the test generation and selection is led by an ideal access control that is

computed from the specification.

Finally, as systems with confidentiality requirements often use randomization in order

to decrease the likelihood of information leakage, there have been some works considering

information flow properties in the context of probabilistic systems. In this direction, the

authors of [LM05] extend the notion of opacity to the case of probabilistic system. Also,

in [CPP08, BCP08], the authors consider security protocols as noisy channels and therefore

use techniques from information theory to analyze the quantity of secret information that

flow from the system to an attacker. A similar approach is considered in [Low02] using

CSP.

1.3 Contributions

In this section, we summarize the contributions of this thesis for each chapter.

In the first part of the chapter 4, in Section 4.3, we present how an abstract interpretation

framework based on Galois connection can be used to solve the opacity problem. We show

how an attacker can infer secret information on a possibly infinite system by abstract-

ing the states and the events of the system. We also show how to automatically detect

vulnerabilities by considering together underapproximations and overapproximations. The

possible applications of these techniques can be to automate the detection of security flaws

within programs. These results have been published in [Dub09]. In the second part of this

chapter, in Section 4.4, we present a new approach to certify the absence of information

leakage. In this section, we consider a regular abstraction G of the system and combine

opacity with diagnosis theory. We first show that it cannot be decided from an regular

abstraction if M is opaque or not, but we show that an attacker may infer secret informa-

tion from this abstraction on the basis of real observations of M . The purpose is to decide

whether the occurrences of information flow will eventually be detected by a monitor, from

an administrator point of view, also partially observing the system. For this, we extend the

diagnosability theory in the context of possibly infinite systems when a regular abstraction

is provided. This work extend the results of the publications of [DJM07] and [DJM09].

The theory presented in the chapter 4 has also been the occasion of the internship of Was-

sim Wehbi (ESIB, Lebanon) co-supervised with Hervé Marchand. The project consisted

in the development of a prototype of a tool to compute the sound monitor of Chapter 4

36

1.3 Contributions

and to verify the diagnosability of a safety property on an LTS. We have searched in this

internship to use the module system of OCaml to create a tool that can be easily extended

to different datatypes and different algorithms, e.g. backward analysis or forward analysis

for reachability.

The opacity control problem, treated in chapter 5, has not been much investigated in

the literature. Compared to [BBB+07] and [TO08], we consider the problem with more

general hypothesis regarding the observability of the events for the controller and the

attacker. In that case, we show that opacity is out of the scope of the classical Ramadge

and Wonham fixpoint iteration techniques. So we develop a new algorithmic approach

to solve the opacity control problem. We provide a solution when the alphabet of events

observable by the attacker and the ones observable by the controller are comparable. The

general case is let for subsequent developments. The complexity of the opacity control

problem is also not investigated here. Note also that we slightly generalize the Ramadge

and Wonham theory with the objective to enforce properties over languages, like opacity

or diagnosis, whereas it is usually presented to enforce trace properties. These results have

been published in [DDM08, DDM09]

In chapter 6, we follow a new approach to enforce opacity properties. The notion of

dynamic projections has been introduced in [CT08] for diagnosability enforcement. But as

the opacity and diagnosis are not comparable notions, new algorithms have been developed

for opacity. In [CT08], the solution to diagnosis enforcement is based on a reduction to a

safety 2-player game. We follow the same technique here but with a new game definition.

We also formalize more precisely than in [CT08], the notion of observer and dynamic

projections, and how they can be related to each other via the notion of observability

choice. This work have been published in [CDM09a]. We follow here a slightly different

presentation as we consider different assumptions about the observation abilities of the

attacker.

37

1 Introduction

38

2 Basic Notions

In this chapter, we will provide the notations and some basic results that will be used

throughout the thesis. We will present the labeled transition system model and some basic

associated model transformations. In the subsequent chapters, we will often formalize the

problems and provides solution expressed in terms of fixpoint computation. We then start

this section with the useful concepts of functions and operators within partially ordered

sets and lattices.

2.1 Sets and Relations

In this section, we present some notions and notations about sets and relations. This

presentation and the notations that we use troughout the thesis are inspired from [BS81].

Given two sets A and B, one denote by A × B = {(x, y) : x ∈ A, y ∈ B} the Cartesian

product of A and B. Given a set A, the powerset of A is denoted P(A) = {X ⊆ A}.

Definition 2.1 (Function) A function f from A to B, written f : A→ B is a subset of

A×B such that for each x ∈ A, there exists at most one y ∈ B with (x, y) ∈ f . We denote

such y by f(x). The set A is the domain of f and B its codomain.

We use the term partial function to emphasis that f(x) may be undefined for some x ∈ A.

We say that f is a total function, also called a map, when f(x) exists for every x ∈ A.

Given a subset X ⊆ A, f(X) = {f(x) : x ∈ X}. We say that f is injective if for all

x, x′ ∈ A, f(x) = f(x′) =⇒ x = x′ and surjective if for all y ∈ B, there exists x ∈ A

such that f(x) = y. The range of f is the set f(A) ⊆ B and f is surjective if and

only if B = f(A). Also, f is bijective when f is injective and surjective. For Y ⊆ B,

f−1(Y) = {x ∈ A : f(x) ∈ Y } which also defines a map f−1 : P(B) → P(A). For

f : A → B and g : B → C, the composition of g and f is the function g ◦ f : A → C

defined by g ◦ f(x) = g(f(x)).

In the sequel, we will often need to study iterations of functions. We denote by idA : A→

A the identity function defined for every x ∈ A by idA(x) = x. Let f : A→ A be a map.

The iterations of f are defined by f0 = idA and for n ∈ N, fn = fn−1 ◦ f . An element

x ∈ A is a fixpoint of f if f(x) = x. Finally, we say that a map f is idempotent if, f ◦ f = f .

39

2 Basic Notions

We will now give some definitions about relations. We briefly introduce equivalence

relations. In the thesis, we will regularly use results and constructions coming from lattice

theory, especially the theorem of Knaster-Tarski stating the existence and characterization

of least/greatest fixpoints. We then introduce in this section order relations, posets and

complete lattices.

Definition 2.2 (Relation) Let A be a set. A binary relation r over A is a subset of

A×A.

We say that this relation is

• reflexive if ∀x ∈ A, (x, x) ∈ r

• symmetric if ∀x, y ∈ A, (x, y) ∈ r ⇒ (y, x) ∈ r

• antisymmetric if ∀x, y ∈ A, (x, y) ∈ r ∧ (y, x) ∈ r ⇒ x = y

• transitive if ∀x, y, z ∈ A, (x, y) ∈ r ∧ (y, z) ∈ r ⇒ (x, z) ∈ r

Often in the thesis, we will use the notation r(x) for the set of elements of A that are

related to x. In other words, a relation r over A also defines a map r : A→ P(A).

Definition 2.3 (Equivalence relation) A relation θ over A is called an equivalence

relation if θ is reflexive, symmetric and transitive.

We use the notation x ∼θ y for (x, y) ∈ θ and θ(x) = {y ∈ s : y ∼θ x} for the equivalence

class of x. We will also use the notation [x]θ = θ(x) for the equivalence class. We denote

by A/θ = θ(A) = {θ(x) : x ∈ A} the quotient set of A by θ which is the set of equivalence

classes of A. We denote by Eq(A) the set of equivalence relations over A.

Theorem 2.1 (Quotient map) Given a surjective map f : A → B and an equivalence

relation θ such that (x, y) ∈ θ implies f(x) = f(y), then there exists a unique map fθ :

A/θ → B such that f = fθ ◦ θ. The map fθ is called the quotient map of f by θ.

Definition 2.4 (Equivalence kernel) Given a map f : A → B, the equivalence kernel

of f is the equivalence relation θf defined by (x, y) ∈ θf if f(x) = f(y).

Proposition 2.1 (Canonical quotient) Given a map f : A → B, the canonical quo-

tient map is the map can(f) : A/θf
→ f(A), obtained by applying theorem 2.1 with the

equivalence kernel θf . With this construction, the map can(f) is bijective.

40

2.1 Sets and Relations

2.1.1 Posets

Definition 2.5 (Order relation) A relation ⊑ over a set A is called an order relation

if ⊑ is reflexive, antisymmetric and transitive.

Classical examples of partial orders are ≤ over N, or ⊆ over P(A) for any set A. We note

x < y when x ⊑ y and x 6= y.

Definition 2.6 (Poset) If ⊑ is an order relation over A, then (A,⊑) is called a partially

ordered set, also often called a poset.

Given a map f : A→ A where (A,⊑) is a poset, we say that f is extensive if for all x ∈ A,

x ⊑ f(x) and that f is reductive if for all x ∈ A, f(x) ⊑ x.

Let (A,⊑a) and (B,⊑b) be two posets and f : A → B. The function f is monotone if

for all x, y ∈ A, f(x) ⊑b f(y) whenever x ⊑a y.

Definition 2.7 (Closure operator) Let (A,⊑) be a poset. Given a map ρ : L → L, ρ

is an upper closure operator over L if ρ is monotone, idempotent and extensive. Also, ρ

is a lower closure operator over L if ρ is monotone, idempotent and reductive.

Example 2.1 Given a set A and an equivalence relation θ ∈ Eq(A), the map f : P(A)→

P(A), X 7→ ∪θ(X) is an upper closure operator.

Definition 2.8 (Galois connections) Given two posets (A,⊑a) and (B,⊑b), two func-

tions α : A → B and γ : B → A establish a Galois connection between A and B, denoted

(A,⊑a) −−−→←−−−α

γ
(B,⊑b), when for all x ∈ A and y ∈ B,

α(x) ⊑b y ⇐⇒ x ⊑a γ(y)

In that case, both α and γ are monotone, the map γ ◦ α : A → A is extensive and

α ◦ γ : B → B is reductive.

A sequence {xi}i∈N of elements of A is an increasing chain if for all i ∈ N, xi ⊑ xi+1. We

say that the chain is strictly increasing if for all i ∈ N, xi < xi+1. For X ⊆ A and y ∈ A

we say that y is an upper bound (resp. lower bound) if for all x ∈ X, x ⊑ y (resp. y ⊑ x).

Also, y is a least upper bound, if for every other upper bound z, we have y ⊑ z. When

such a least upper bound exists, it is unique and denoted ⊔X. Similarly, ⊓X denotes the

greatest lower bound.

2.1.2 Lattices

We introduce now the notion of lattice and some important results associated to lattices.

41

2 Basic Notions

Definition 2.9 A partially ordered set (L,⊑) is called a complete lattice whenever ⊔X

and ⊓X exist for every X ⊆ L.

We directly define the notion of complete lattice as it is the only one that will be considered

in the document. In the following, the term lattice will implicitely mean complete lattice.

A lattice is often denoted by (L,⊑,⊓,⊔,⊥,⊤), where ⊤ = ⊔L and ⊥ = ⊓L denote

respectively the greatest and the least element of L.

Example 2.2 If A is a set, then (P(A),⊆,∩,∪, ∅, A), the set of subsets of A together with

the set inclusion for order relation, forms a complete lattice.

Example 2.3 If A is a set, then (Eq(A),⊆,∩,∨, {(x, x) : x ∈ A}, A×A) forms a complete

lattice where for Θ ⊆ Eq(A), ∨Θ is defined by: for all (x, y) ∈ A × A (x, y) ∈ ∨Θ when

there exists a finite sequence x0, x1, . . . xn ∈ A such that x0 = x, xn = y and for every

i, 0 ≤ i < n, there exists θ ∈ Θ such that (xi, xi+1) ∈ θ.

Example 2.4 The set of intervals of R, (I(R),⊆,∩,⊔, ∅,R), where for X ⊆ I(R), ⊔X =

[min({a : ∃b, [a, b] ∈ X}),max({b : ∃a, [a, b] ∈ X})], is a complete lattice.

The height of a lattice L, denoted height(L), is the maximum number of pairwise disjoint

elements in a chain on L. Typically, height(L) <∞ when |L| <∞.

Several times in this thesis, we will need to compute the upper bound of the set of

iterations of a function, i.e. the element ⊔{f i(x) : i ∈ N}. We formally define the needed

operation as follows.

Definition 2.10 Let (L,⊑,⊓,⊔,⊥,⊤) be a complete lattice. Given a map f : L→ L, we

define f↑ : L→ L by f↑(x) = ⊔{f i(x) : i ∈ N}. Similarly, f↓(x) = ⊓{f i(x) : i ∈ N}.

Note that f↑ is monotone whenever f is monotone. We will see now some conditions

under which f↑ can be effectively computed.

First, we present the notion of ω-continuity (or Scott continuity). Considering two

complete lattices (L1,⊑1,⊓1,⊔1,⊥1,⊤1), (L2,⊑2,⊓2,⊔2,⊥2,⊤2) and a map f : L1 → L2.

We say that f is ω-continuous if for every increasing chain {xi}i∈N over L1, f(⊔1{xi : i ∈

N}) = ⊔2{f(xi) : i ∈ N}.

Second, we introduce the notion of least and greatest fixpoints. Given a complete lattice

(L,⊑,⊓,⊔,⊥,⊤) and a map f : L → L. An element x is a least fixpoint of f if x is a

fixpoint and is smaller that any other fixpoint of f . By antisymmetry, such fixpoint is

unique and denoted lfp(f). The greatest fixpoint is similarly defined and denoted gfp(f).

The following theorem states some condition for a given map to admit a least or a greatest

fixpoint.

42

2.1 Sets and Relations

Theorem 2.2 (Knaster-Tarski [Tar55]) Let (L,⊑,⊓,⊔,⊥,⊤) be a complete lattice and

f : L→ L.

• If f is monotone, then there exists a least and a greatest fixpoint of f .

• lfp(f) = ⊔{x ∈ L : f(x) ⊑ x} and gfp(f) = ⊓{x ∈ L : x ⊑ f(x)}.

• If f is also ω-continuous, then lfp(f) = ⊔{f i(⊥) : i ∈ N} and gfp(f) = ⊓{f i(⊤) :

i ∈ N}.

If height(A) < ∞, then there exists N ∈ N such that lfp(f) = fN (⊥). Similarly, the

greatest fixed point gfp(f) = fN (⊤) for some N ∈ N.

The previous theorem provides a way to compute f↑ that is detailed in the next propo-

sition.

Proposition 2.2 Let (L,⊑,⊓,⊔,⊥,⊤) be a complete lattice and f : L → L be monotone

and ω-continuous. Then, for all x ∈ L, f↑(x) = lfp(y 7→ x ⊔ f(y)).

Proof. Let x ∈ L and define y = ⊔{fn(x) : n ∈ N} and gx : L→ L, z 7→ x ⊔ f(z).

• y ⊑ gfp(g).

Indeed, define the increasing chain {yn}n∈N by yn = {fk(x) : k ≤ n}. Since, x ⊑

x⊔f(⊥), y0 ⊑ g(⊥). Also, if we assume that yn ⊑ g
n+1(⊥), then f(yn) ⊑ f(gn+1(⊥))

because f is monotone. So, x ⊔ f(yn) ⊑ x ⊔ f(gn+1(⊥)). But, {fk+1(x) : k ≤ n} ⊑

f(yn), so yn+1 ⊑ x ⊔ f(yn). Then, yn+1 ⊑ gn+2(⊥). Since f is monotone and

ω-continuous, then so is gx. Then, for all n ∈ N, yn ⊑ lfp(g). Finally, y ⊑ lfp(g).

• y is a fixpoint of g.

g(y) = g(⊔{fn(x) : n ∈ N})

= x ⊔ f(⊔{fn(x) : n ∈ N})

= x ⊔ (⊔{fn+1(x) : n ∈ N})(since f is ω-continuous)

= y

So we conclude that y = lfp(g). �

Finally, we define the notion of sublattice of a lattice.

Definition 2.11 (Sublattice) Let (L,⊑,⊓,⊔,⊥,⊤) be a lattice. A sublattice of L is a

subset H ⊆ L such that the operations ⊓ and ⊔ induce a lattice structure on H: for all

X ⊆ H, ⊓X ∈ H and ⊔X ∈ H.

43

2 Basic Notions

2.2 Labeled Transition Systems

In this section, we introduce the notation that will be used to represent a labeled transition

system M .

Let Λ be a possibly infinite set of labels representing the events of a system. The nota-

tions λ, λ′, . . . denote typical elements of Λ, called the alphabet of M . In this document,

we will use the notation Σ to emphasis when this alphabet of events is finite. The symbols

σ, σ′, . . . will then denote typical elements of Σ.

If A and B are two subsets of Λ, then AB = {λλ′ : λ ∈ A, λ′ ∈ B}. We denote

Λn = Λn−1Λ, assuming that Λ0 = {ǫ}, with ǫ being the empty word. Let Λ∗ = ∪n∈NΛn

denote the set of finite words over Λ. A set L of finite words over Λ, i.e. L ⊆ Λ∗, is called a

language over Λ. The concatenation of two words w = λ1λ2 . . . λn and w′ = λ′1λ
′
2 . . . λ

′
m is

the word ww′ = λ1λ2 . . . λnλ
′
1λ

′
2 . . . λ

′
m. This is extended to languages: given L,L′ ⊆ Λ∗,

LL′ = {ww′ : w ∈ L,w′ ∈ L′}.

For w ∈ Λ∗, |w| is called the length of w, i.e. the number of letters occurring in w. The

length of the empty word is zero and |ww′| = |w|+ |w′|.

Given two words w,w′ ∈ Λ∗, we say that w is a prefix of w′ if there exists w′′ ∈ Λ∗ such

that w′ = ww′′. Prefix is an order relation over Λ∗ and is also be denoted w ≤ w′. Let L

be a language over Λ, i.e. L ⊆ Λ∗. The set of prefixes of L is denoted pref(L) = {w ∈

Λ : ∃w′ ∈ L,w ≤ w′}. We will say that L is prefix-closed when L = pref(L) and that L is

extension-closed when L = LΛ∗.

Given a language L ⊆ Λ∗, the residuation is the inverse operation of the concatenation

and associates to each word of w ∈ Λ∗ the set of words w′ extending w in such a way that

ww′ remains in L. This language is denoted w−1L and is formally defined by the map

Λ∗ → P(Λ∗), w 7→ w−1L = {w′ ∈ Λ∗ : ww′ ∈ L}.

For a subset Λ′ ⊆ Λ, we will use the term projection for the map πΛ→Λ′ removing from

a word of Λ∗ all labels that are not in Λ′:

πΛ→Λ′ : Λ∗ → Λ′∗

ǫ 7→ ǫ

wλ 7→

{
πΛ→Λ′(w)λ if λ ∈ Λ′

πΛ→Λ′(w) otherwise

Let S be a possibly infinite set of labels representing the possible states, or configurations,

of a system M , with s, s′ ∈ S denoting the elements of S. For example, if a finite set of vari-

ables is used within a program P then S can represent all the possible valuations of these

variables in the semantics of P . Also, in the reminder of the document, the notation Q will

44

2.2 Labeled Transition Systems

be used to emphasis that the set of states is finite and q, q′, · · · will range for elements of Q.

A finite run (also called execution) is a sequence of the form:

r = s0
λ1→ s1

λ2→ s2 · · · sn−1
λn→ sn (2.1)

constructed by alternating states of S and events of Λ. The set of all finite runs which can

be constructed from Λ and S is denoted E(Λ, S) = S(ΛS)∗. The states of S are identified

in E(Λ, S) to the elements of {sǫ : s ∈ S}.

Example 2.5 A run is a discrete representation of the dynamic evolution of a process.

For example, we can model the journey to attend a conference in London as the sequence

of geographical positions and transportation information. Starting from Rennes we can

choose to take the train to go to Paris and then the plane to London:

Rennes
take the train
−→ Paris

take the plane
−→ London

Another possibility for the traveler can be to go to Paris by car. If the airport prevents any

plane to take off because of threatening weather forecasts, the traveller can then take the

train to London:

Rennes
take the car
−→ Paris

plane canceled
−→ Paris

take the train
−→ London

We remark that the traveler can always choose not to take the train and to go to Paris by

car but cannot choose that planes are not canceled. For the traveler, the event “take the

car” is controllable whereas “plane canceled’ is not. This notion will be formally defined in

Chapter 5 where it plays a central rôle in the possibility to enforce the security on a critical

system.

The operator tr : E(Λ, S)→ Λ∗ gives the trace of a run, i.e. the sequence of events occur-

ring in this run. For example, the trace of the run in (2.1) is the word tr(r) = λ0λ1λ2 ... λn.

The length of a run is defined by length(r) = |tr(r)|. For i ∈ N, we denote by r(i) the

state at position i in r. The operators fst(r) = r(0) and lst(r) = r(length(r)) denote re-

spectively the first and the last state of a run r. For r in (2.1), fst(r) = s0 and lst(r) = sn.

The concatenation of two runs r = s0
λ1→ s1

λ2→ s2 · · · sn−1
λn→ sn and r′ = s′0

λ′
1→ s1

λ′
2→

s2 · · · s
′
m−1

λ′
m→ s′m is defined when sn = s′0 and is the run r · r′ = s0

λ1→ s1 · · · sn−1
λn→

s′0
λ′
1→ s1 · · · s

′
m−1

λ′
m→ s′m. We say that r is a prefix of r′, denoted r ≤ r′, when there exists

45

2 Basic Notions

r′′ ∈ E(Λ, S) such that r′ = r · r′′. In that case, we also say that r′ is an extension of r.

The relation ≤ is an order relation over E(Λ, S).

The behavior of a system are modeled as a set of runs. To ease the representation of

this set, we will use the LTS model defined below.

Definition 2.12 An LTS is a quadruple M = (Λ, S, δ, S0) where:

• Λ is an alphabet of events;

• S is a set of states;

• δ : Λ× S → P(S) is the transition function;

• S0 ⊆ S are the initial states.

An LTS can be seen as a labeled directed graph where the vertices represent the states

and the edges the events.

Example 2.6 The graph depicted in Figure 2.1 represent an LTS where the alphabet of

events is Λ = {a, b} and the set of states is S = {s0, s1, s2, s3}. The initial state is the

singleton s0, i.e. every execution starts from s0. The fact that s2 ∈ δ(a, s0) means that

when the system starts, it can reach s2 when a occurs. This is pictured by an arc labeled a

from s0 to s2 in the graph.

s0

s1 s2

s3

b

a
a

a

b

b

Figure 2.1: An example of LTS

We say that the LTSM is deterministic if |S0| = 1 and for all λ ∈ Λ and s ∈ S, |δ(λ, s)| ≤ 1.

For example, the LTS of Figure 2.1 is not deterministic as δ(b, s2) = {s0, s3}. When

the LTS M is deterministic, the transition function can be given as a partial function

δ : Λ× S → S which can then be extended to sets of words δ : Λ∗ × S → S by δ(ǫ, s) = s

and δ(wλ, s) = δ(λ, δ(w, s)) for s ∈ S, w ∈ Λ∗ and λ ∈ Λ. In the sequel, it will often be

46

2.2 Labeled Transition Systems

implicit that such transition function of a deterministic LTS can be extended to words in

this way.

Let X,Y be two set of states of S.

• The set of executions of M starting from X and ending in Y is the set R(M,X, Y)

consisting of the set of runs r = s0
λ1→ s1

λ2→ s2 · · · sn−1
λn→ sn ∈ E(Λ, S) such that

s0 ∈ X, sn ∈ Y and for all i, 0 ≤ i < n, si+1 ∈ δ(λi, si).

• The set of executions ofM starting from states inX is denotedR(M,X) = R(M,X,S).

• Finally, we use the notations R(M) = R(M,S0), for the set of runs of M .

Remark 2.1 Following Theorem 2.2, R(M,X) can also be defined by R(M,X) = lfp(fX),

where the function

fX : P(E(Λ, S)) → P(E(Λ, S))

R 7→ X ∪ {r
λ
→ s : r ∈ R, λ ∈ Λ, s ∈ δ(λ, lst(r))}

is monotone on the complete lattice P(E(Λ, S)).

Similarly to the set of runs, we can define the language generated by an LTS.

• Let L(M,X, Y) = tr(R(M,X, Y)) denote the set of traces of runs from X to Y .

• Let L(M,X) = L(M,X,S) denote the language generated by M starting from X.

• Finally, let L(M) = L(M,S0, S) denote the language of M .

• For a language L ⊆ Λ∗. If L = L(M,S0, Y), we say that L is accepted by M and

the accepting states Y .

The notion of regular languages will play a central rôle in this thesis, and is defined below.

Definition 2.13 (Automaton) A (finite) automaton is a tuple G = (Σ, Q, δG, Q0, Qf)

where (Σ, Q, δG, Q0) is a finite LTS, i.e. Σ and Q are finite, with a set of accepting states

Qf ⊆ Q.

In the sequel, the acronym DFA will stand for Deterministic Finite Automaton.

Definition 2.14 (Regular language) Let Σ be a finite alphabet. A language L ⊆ Σ∗ is

regular if there exists an automaton G = (Σ, Q, δG, Q0, Qf) such that L(G,Q0, Qf) = L.

47

2 Basic Notions

We introduce now the notion of completeness which states that some events can always

occur in M . The complementation procedure gives a complete LTS from an incomplete

one.

Definition 2.15 (Completeness) Let Λ′ ⊆ Λ. We say that M is Λ′-complete when for

all λ ∈ Λ′, s ∈ S, δ(λ, s) 6= ∅. We say that M is complete when M is Λ-complete.

Definition 2.16 (Complementation) Given an LTS M = (Λ, S, δ, S0), the complemen-

tation of M is the LTS comp(M) = (Λ, S ∪ {q}, δc, S0) where q 6∈ S and:

δc : Λ× (S ∪ {q}) → P(S ∪ {q})

λ, s 7→

{
δ(λ, s) when not empty

{q} when δ(λ, s) = ∅ or s = q

The LTS comp(M) is such that L(comp(M)) = Λ∗ but preserves the languages accepted

in M , i.e. if F ⊆ S, L(comp(M), S0, F) = L(M,S0, F).

In practice, systems are often composed of several simpler sub-systems. In the context of

systems modeled by LTSs, we consider the parallel composition defined below, representing

the concurrent behavior of two or more LTS synchronizing on common events.

Definition 2.17 (Parallel composition) The parallel composition M1 ‖M2 = (Λ, S, δ, s0)

of two LTSs M1 = (Λ1, S1, δ1, s10) and M2 = (Λ2, S2, δ2, s20) is defined by:

• Λ = Λ1 ∪ Λ2 and S = S1 × S2

• s0 = (s10, s
2
0)

• δ : Λ× S → P(S) is defined by:

λ, (s1, s2) 7→





δ1(λ, s1)× δ
2(λ, s2) if λ ∈ Λ1 ∩ Λ2

{s1} × δ
2(λ, s2) if λ ∈ Λ1 \ Λ2

δ1(λ, s1)× {s2} if λ ∈ Λ2 \ Λ1

Now, let π1 = πΛ→Λ1 and π2 = πΛ→Λ2 to characterize the languages generated by the

parallel composition.

Proposition 2.3 Let M1, M2 and M as in Proposition 2.17, then

L(M) = π−1
1 (L(M1)) ∩ π−1

2 (L(M2))

Now, if F i ⊆ Si, i = 1, 2 and F = F 1 × F 2, then,

L(M,S0, F) = π−1
1 (L(M1, S1

0 , F
1)) ∩ π−1

2 (L(M2, S2
0 , F

2))

48

2.2 Labeled Transition Systems

We define now the operator postM which computes with postM (B)(X) the set of states

the system can access, starting from a state of X, after the occurrence of an event of B:

postM : P(Λ) → (P(S) → P(S))

B 7→ X 7→ ∪{δ(λ, s) : λ ∈ B, s ∈ X}

The operator reachM computes with reachM (B)(X) the set of states reachable by a run

starting inX and whose trace is a word overB. Formally, reachM (B)(X) = ∪{(postM (B))i(X) :

i ∈ N}, so applying Proposition 2.2, we can define reachM by:

reachM : P(Λ) → (P(S) → P(S))

B 7→ X 7→ lfp(Y 7→ X ∪ postM (B)(Y))

For every B ∈ P(Λ), the operator postM (B) is monotone on the complete lattice P(S), so

the operator reachM (B) is always defined according to Theorem 2.2.

In the thesis, we will often consider that only a subset Λo of the events of Λ can be observed

when a run is executed. Then, we will note the projection πo = πΛ→Λo and the observed

trace of a run is given by the observation map po defined by:

po : E(Λ, S) → Λ∗
o

r 7→ πo(tr(r))

In this context, the observable behavior, i.e. the set of observed traces, can be obtained

by the ǫ-closure procedure. For this definition, let Λuo = Λ \ Λo.

Definition 2.18 (ǫ-closure) If only the events of Λo are observable, the ǫ-closure of M

is the LTS ǫ(M) = (Λo, S, δǫ, X0) where X0 = reachM (Λuo)(S0) and

δǫ : Λo × S → S

λ, s 7→ reachM (Λuo) ◦ δ(λ, s)

49

2 Basic Notions

50

3 Information Flow and Opacity

In this chapter, we introduce the notion of opacity. We consider a system given as an LTS

M = (Λ, S, δ, S0) where the sets Λ and S can possibly be infinite. This allows the following

definitions to be general enough to apply our results to more specific models like process

algebras, Petri nets, Timed Automata, etc.

Opacity is a concept of information flow and this notion depends on the assumptions

that are made regarding the aptitudes of the attackers. We start this chapter by defining

the kind of information that should remain confidential and by giving some hypothesis

about the attackers that will hold for the rest of the thesis.

3.1 Confidential Information and Notion of Attackers

We start this section by discussing the kind of secret information that we expect to be

concealed. This is formalized with the notion of secret predicate defined below. Then,

we illustrate with some examples how the problem of inferring the truth of some secret

predicates under partial observation arises in the context of security.

Definition 3.1 A secret predicate φ is a predicate over E(Λ, S) such that the occurrence of

a run in M satisfying φ is an information that should remain confidential to unauthorized

users.

Example 3.1 Let V ar = {x1, x2, . . . , xm, k} be a finite set of variables used in a program

P implementing a cryptographic primitive. Let Dom(x) denote the domain of a variable x.

Suppose now that k is used to store the value of a cryptographic key. For such a system, it is

required that an attacker cannot acquire more precise information about the value of k than

its domain Dom(k). The set S = Dom(x0)×Dom(x1)×· · ·×Dom(xm)×Dom(k) is the set

of all possible configurations and Λ is a set of labels for the transitions. Let M denote the

execution graph of the program. Let v ∈ Dom(k) and consider F≤
v = {s ∈ S : value(k) ≤

v}, F>
v = S \ F≤

v . Consider the secret predicates φ≤v and φ>
v defined for r ∈ E(Λ, S) by

r |= φ≤v when lst(r) ∈ F≤
v and r |= φ>

v when lst(r) ∈ F>
v . Then, the attacker, partially

observing the system, should not be able to infer that an execution r ∈ R(M) is such

that r |= φ≤v since otherwise, the attacker knows the information “value(k) ≤ v”. In this

51

3 Information Flow and Opacity

example, it is also required that the predicate φ>
v does not leak to ensure the secrecy of

value(k).

Let A denote an attacker whose aim is to infer that the current run executed by M

satisfies φ. We understand A to be a machine, or a class of machines, and not a real

person. In that case we can precisely define its capabilities and knowledge. By consequence,

certifying that M preserves the confidentiality of φ depends on the considered model for

the attacker.

We suppose that the attacker has an imperfect information about what really happens

when a run is executed. This information is given by an observation map obs : E(Λ, S)→ O

where O is a set of possible observations and obs(r) is what the attacker observes when

a run r is executed by M . For example, the attacker can observe the values of a subset

of the set of variables. This defines a map S → Vo where Vo are the possible values of

the observable variables. Then, two configurations of S have the same image when the

values of the observable variables are the same. The resulting observation map is a map

obs : E(Λ, S)→ V ∗
o where the image of a run r is the sequence of the values of the observed

variables. Also, we can consider that a subset of the events are observable (e.g. the inputs

and the outputs) and then, the partial observation of a run will only depend on its trace.

Also, the observability of the events can dynamically evolve at runtime, as it will be the

case in Chapter 6.

We can sometimes model a partial observation based on observable variables, as sug-

gested above, in an event based fashion. For this reason, we will only consider in this thesis

observation maps that are trace-based, i.e. defined from a map π : Λ∗ → O by obs = π ◦ tr.

But, to ease the presentation, we will make assumptions about obs only when necessary.

System M Attacker A
obs

Figure 3.1: General architecture

The situation we consider is depicted in figure 3.1 where an inquisitive attacker wants

to infer whenever φ is satisfied by the run currently executed by M . Then, the objective

of the attacker is to compute a function γφ : R(M) → {true, ?} to decide the truth of φ.

But the attacker only partially observes the executions of M and therefore only accesses

to the outcomes of the map obs. In other words the function γφ must be such that there

exists another function Γφ such that γφ = Γφ ◦ obs. Finally, the objective of the attacker is

to compute such a function Γφ, called a monitor, associating to each observation a verdict

concerning the satisfaction of the predicate φ. This monitor must be sound in the sense

that it must provide sound verdicts regarding the satisfaction of φ on the runs of M . This

can be defined as follows

52

3.2 Definition of Opacity

Definition 3.2 (Sound monitor) A sound monitor for a predicate φ is a function Γφ :

O → {true, ?} providing sound verdicts, i.e. for all run r ∈ R(M),

Γφ(obs(r)) = true =⇒ r |= φ

Note that due to the partial observation, the other implication does not hold in general.

For example, the monitor mapping every observation to ? is sound regardless of the possible

satisfaction of φ by some runs of M .

We say that there is an information flow from the system to the attacker whenever for

some sound monitor Γφ and some run r ∈ R(M), Γφ(obs(r)) = true.

Example 3.2 We can model the behavior of the code of Example 1.1, by its control flow

graph M = (Λ, S, δ, S0) where:

• the set of events is Λ = Λa∪Λua with Λa = {receive(m, A) : m ∈ N}∪{send(m, A) :

m ∈ N} are observable events and Λua = {τ, k = random(), x = random()} are not

observable;

• the set of states S = N× N and S0 = {(0, 0)};

The observation obs : E(Λ, S) → Λ∗
a maps every run r to the sequence of receive(m, A)

and send(m, A), m ∈ N, occurring in this run. To formalize the situation presented on

the example 1.1, we can define the secret predicate φ by: r |= φ when lst(r) ∈ {6} × N.

The monitor for φ suggested in Example 1.1 is implemented by the automaton pictured in

the figure 3.2. This monitor is sound since the event send(0, A) is possible only when the

? ? true

receive(5, A)

send(m, A),m > 0

send(0, A)

Figure 3.2: Example of sound monitor

current run of M satisfies φ.

3.2 Definition of Opacity

We now make the additional assumption that the attackers may have a complete knowledge

about the semantics of M , i.e. the set of runs R(M). We define now the notion of opacity

which is based on this assumption. Intuitively, a secret predicate φ is opaque if no attacker,

even the ones with full knowledge of R(M), can ever infer from what is observed that the

current run of M satisfies φ.

53

3 Information Flow and Opacity

Definition 3.3 (Opacity [BKMR08]) A secret predicate φ is opaque on M for obs if

for all r ∈ R(M) such that r |= φ, there exists r′ ∈ R(M) such that obs(r) = obs(r′) and

r′ 6|= φ

We will also say that M is φ-opaque for obs when the opacity of φ is satisfied. If M is

φ-opaque for obs, then no attacker observing the outcomes of obs can infer whether φ is

satisfied on the runs of M . In other words, it is impossible to compute a sound monitor

Γφ such that Γφ(ν) = true for some ν ∈ obs(R(M)).

Theorem 3.1 The LTS M is φ-opaque for obs if and only if for every sound monitor Γφ

and every run r ∈ R(M), Γφ(obs(r)) 6= true.

Proof. Suppose that M is φ-opaque for obs and let r ∈ R(M). There are two possibilities:

1. if r 6|= φ, then Γφ(obs(r)) 6= true since Γφ is sound;

2. if r |= φ, then M being φ-opaque for obs, there exists another run r′ such that

obs(r′) = obs(r) and r′ 6|= φ. Since Γφ is sound, we must have Γφ(obs(r′)) = ?. So,

obs(r) = obs(r′) implies Γφ(obs(r)) = Γφ(obs(r′)) 6= true.

Finally, Γφ(obs(r)) 6= true.

For the other implication, an attacker with full knowledge of R(M) can define the

following monitor:

Γφ : O → {true, ?}

ν 7→

{
true when ∀r ∈ obs−1(ν) ∩R(M), r |= φ

? otherwise

So if M is not φ-opaque for obs then there exists r ∈ R(M) such that ∀r′ ∈ obs−1(obs(r))∩

R(M), r′ |= φ. Then Γφ(obs(r)) = true. �

Opacity is then a necessary and sufficient condition to avoid that an attacker knowing

R(M) can infer the truth of φ using sound monitors.

Example 3.3 Consider the LTS pictured in figure 3.3 where the attacker observes the

events a and b but not τ . The secret φ is satisfied on the runs ending in the square states

s3 or s5. If the run r = s0
τ
→ s2

b
→ s5 is executed, then, knowing the model M , the

attacker knows that the only possible runs explaining the observation b is r, ending in s5.

Then, the information “M is currently in a secret state” is disclosed for the observed trace

b. Note that if the attacker observes the trace a, the attacker cannot distinguish whether

s0
τ
→ s1

a
→ s3 or s0

τ
→ s2

a
→ s4 has been executed and cannot infer that the current state is

s3 or s4 and no secret information is disclosed.

54

3.2 Definition of Opacity

s0

s1 s2

s3 s4 s5

τ τ

a
a b

Figure 3.3: Simple example of non opacity

Next, we characterize the set of counterexamples to the opacity of φ, i.e. the set of runs

of M such that the secret predicate is disclosed.

Definition 3.4 The set of runs such that the secret predicate φ is disclosed is denoted:

Disclose(R(M), obs)(φ) = {r ∈ R(M) : ∀r′ ∈ obs−1(obs(r)) ∩R(M), r′ |= φ}

This definition provides another formulation of the φ-opacity of M as the absence of dis-

closing run:

Proposition 3.1 M is φ-opaque for obs ⇐⇒ Disclose(R(M), obs)(φ) = ∅.

For example, considering M and φ from the LTS of Example 3.3, Disclose(M,obs)(φ) =

{s0
τ
→ s2

b
→ s5} and M is therefore not φ-opaque for an attacker observing a and b.

We also formulate the set of counterexamples to opacity as follows. Denoting by Rφ

the elements of E(Λ, S) satisfying φ, the set obs−1(obs(R(M) \Rφ)) is the set of runs (of

E(Λ, S)) such that there exists at least one run of M with the same observation and not

satisfying φ. So removing this set from R(M), we obtain:

Disclose(R(M), obs)(φ) = R(M) \ obs−1(obs(R(M) \Rφ))

We characterize now the set of observed traces on the basis of which an attacker knowing

the model M can infer the truth of φ.

Definition 3.5 The set of observations such that the secret φ is disclosed is the set

DTraces(R(M), obs)(φ) = {obs(r) ∈ O : r ∈ Disclose(R(M), obs)(φ)}

The operator DTraces(R(M), obs)(·) will be useful in the sequel to prove that a model

transformation preserves the opacity property by stating that the set of observed traces

such that secret information is disclosed is an invariant of the transformation.

55

3 Information Flow and Opacity

We can see on the example 3.1, that the program is secure whenever both φ≤v and φ>
v

are opaque. More generally, it is common when confidentiality is required that several,

possibly interdependent, secret predicates have to be simultaneously opaque. To take this

aspect into account, the notion of opacity is generalized to several secret predicates.

Definition 3.6 (Multi-secret opacity) Given a finite set of secret predicates Φ. We say

that M is Φ-opaque for obs when for every secret predicate φ ∈ Φ, M is φ-opaque for obs.

Given a set of secret predicates Φ, the set of runs such that at least one secret is disclosed

is then given by:

Disclose(R(M), obs)(Φ) = ∪{Disclose(R(M), obs)(φ) : φ ∈ Φ}

For example, as suggested by the previous example, the notion of opacity can then

be used to define the notion of secrecy like in [AČZ06, TO08, Mas08, DGMD06], where

one considers the system to be unsafe when an attacker either knows that a confidential

predicate is satisfied or knows that the predicate is not satisfied. This notion of secrecy is

especially suitable to reason about the confidentiality of variables, as in Example 3.1. In

our context, the notion of secrecy of a predicate φ can be expressed as the conjoint opacity

of φ and ¬φ.

For a finite set of secret predicates Φ, the objective of an attacker with full knowledge

of the set R(M) is to compute the canonical monitor defined as follows.

Definition 3.7 Given a finite set Φ of secret predicates, the canonical monitor for Φ is

ΓΦ : O → P(Φ)

ν 7→ {φ ∈ Φ : ν ∈ DTraces(R(M), obs)(φ)}

Note that this definition of monitor does not correspond to the one introduced earlier

where the codomain was the set {true, ?}. In this case, as there is several predicates, we

replace the verdict true by the set of secret predicates whose truth can be inferred for the

given observed trace.

3.3 Properties of Opacity

We will study in this section some general aspects of the notion of opacity. We start this

section with some results that will be useful in the subsequent chapters.

56

3.3 Properties of Opacity

3.3.1 Some General Properties of Opacity

First, we state that if a predicate φ is more general than a predicate φ′, then an attacker

can infer truth of φ by inferring the truth of φ′. This can be useful, for example when

the predicate φ′ is an underapproximation of φ, then an attacker can state sound verdicts

about φ by considering φ′ instead of φ.

Proposition 3.2 If φ′ ⇒ φ, then Disclose(R(M), obs)(φ′) ⊆ Disclose(R(M), obs)(φ).

The next proposition formalizes that the most accurate the attacker is, the most likely is

the occurrence of information flow.

Proposition 3.3 If obs1 and obs2 are two observation maps such that for all r, r′ ∈ R(M),

obs1(r) = obs1(r
′) implies that obs2(r) = obs2(r

′), then

Disclose(R(M), obs2)(φ) ⊆ Disclose(R(M), obs1)(φ)

Proof. Let r ∈ Disclose(R(M), obs2)(φ) and r′ ∈ R(M) such that obs1(r′) = obs1(r).

Then obs2(r′) = obs2(r) and we know then that r′ |= φ since r ∈ Disclose(R(M), obs2)(φ).

So r ∈ Disclose(R(M), obs1)(φ). �

We will study now what are the effects of inclusion on the opacity property. We consider

systems represented by their semantics, i.e. their sets of runs. The next proposition will

have important consequences in Chapter 4 when we consider approximation techniques to

analyze opacity.

Proposition 3.4 Let R1 and R2 be two systems such that R1 ⊆ R2 ⊆ E(Λ, S) and φ be a

secret predicate. Then,

R1 ∩Disclose(R2, obs)(φ) ⊆ Disclose(R1, obs)(φ)

Proof. Let r ∈ R1∩Disclose(R2, obs)(φ). Let r′ ∈ R1 such that obs(r) = obs(r′). Then, r′

is also in R2 and as r ∈ Disclose(R2, obs)(φ), r′ |= φ. Finally r ∈ Disclose(R1, obs)(φ). �

3.3.2 Trace-based Observation Maps

One can imagine that the secret predicate φ is a temporal logic formula interpreted over

the runs of M where the valuation function for the atomic propositions is either based on

the set of states or on the set of events. For the techniques developed in this thesis to be

general enough, we consider two kinds of secret predicates: state-based and trace-based

ones, defined below.

57

3 Information Flow and Opacity

Definition 3.8 (State-based predicate) We say that the predicates of Φ are state-based

if they are defined by the reachability of certain states of S, i.e. there exists a map F : Φ→

P(S), φ 7→ F (φ) such that for all r ∈ E(Λ, S), r |= φ whenever lst(r) ∈ F (φ).

For example, the state-based predicate of Example 3.3 is defined by F (φ) = {s3, s5}.

Definition 3.9 (Trace-based predicate) We say that the predicates of Φ are trace-based

if there exists a map L : Φ → P(Λ∗), φ 7→ L(φ) such that for all r ∈ E(Λ, S), r |= φ

whenever tr(r) ∈ L(φ).

Example 3.4 Consider the deterministic LTS pictured in Figure 3.4, representing the

behavior of a vending machine for tea and coffee. A thief interested in stealing the money

contained in the machine wants to take the risk to break the machine only when it is

certain that the money box is full of cash. But the thief does not directly observe the

money box. This secret information can be modeled by the trace-based predicate φ defined

by L(φ) = Σ∗cashFullΣ∗.

CoinIn

isCashFull

cashFull

cashNotFull

CoinOut

Tea

teaEmpty

Coffee
coffeeEmpty

TeaOut

CoffeeOut

Figure 3.4: An insecure vending machine

Definition 3.10 (Regular predicate) When the alphabet of events Λ of M is finite, a

trace-based predicate φ such that L(φ) is a regular language will be called a regular secret

predicate.

58

3.3 Properties of Opacity

In the next chapters, we will make the assumption that the observation map obs is trace-

based, i.e. there exists a map π : Λ∗ → O such that obs = π ◦ tr. We give now some useful

results that are consequences of this assumption about obs.

Proposition 3.5 Let M and M ′ be two LTSs such that L(M) = L(M ′). If φ is a trace

based predicate, then DTraces(R(M), obs)(φ) = DTraces(R(M ′), obs)(φ).

Proof. Let ν ∈ DTraces(R(M), obs)(φ) and r′ ∈ obs−1(ν) ∩ R(M ′). As L(M) = L(M ′),

there exists r ∈ R(M) such that tr(r) = tr(r′). But in that case, obs(r) = π ◦ tr(r) = π ◦

tr(r′) = obs(r′). As obs(r) = ν and ν ∈ DTraces(R(M), obs)(φ), tr(r) ∈ L(φ). Finally,

tr(r′) ∈ L(φ) and ν ∈ DTraces(M ′, obs)(φ). The other inclusion holds by symmetry. �

In this context, we will use a language based approach for opacity problems. In order

to ease the presentation, especially in Section 4.4 and Chapter 5, we will denote the set of

counterexamples to φ-opacity byDisclose(L(M), π)(φ) instead ofDisclose(R(M), obs)(φ).

Similarly, we will denote by DTraces(L(M), π)(φ) the set of observed traces disclosing the

secret φ.

We will see that, with this assumption on obs, an opacity problem with trace-based

predicates can also be encoded by an opacity problem with states-based ones.

Let Φ = {φ1, φ2, . . . , φk} be a set of trace-based predicates over E(Λ, S). Suppose that

for each i ∈ {1, 2, . . . , k}, there exists a complete and deterministic LTS Ai = (Λ, Qi, δi, qi
0)

with Qi
f ⊆ Q

i such that L(φi) = L(Ai, q
i
0, Q

i
f).

Remark 3.1 Note that such an LTS Ai always exists. Indeed, a possibility is to let Qi =

Λ∗, qi
0 = ǫ, δi(λ,w) = wλ and Qi

f = L(φi), and complement the resulting LTS. But, in the

subsequent chapters, we will use the following results when φi is a regular predicate usually

given as a complete DFA Ai.

Define now SΦ = S ×Q1 ×Q2 × · · · ×Qk and MΦ = M ‖ A1 ‖ A2 ‖ · · · ‖ Ak. Given a

run r ∈ R(M),

r = s0
λ1→ s1

λ2→ s2 · · · sn−1
λn→ sn

there exists then a unique run r̃ ∈ R(MΦ):

r̃ = (s0, q
1
0, . . . , q

k
0)

λ1→ (s1, q
1
1, . . . , q

k
1) · · ·

λn→ (sn, q
1
n, . . . , q

k
n)

We define the state-based predicates Φ̃ = {φ̃i : 1 ≤ i ≤ k} by F (φ̃i) = {(s, q1, q2, . . . , qk) ∈

SΦ, q
i ∈ Qi

f}, and we obtain the following proposition:

Proposition 3.6 Let φ ∈ Φ. For all r ∈ R(M), r |= φ if and only if r̃ |= φ̃

59

3 Information Flow and Opacity

Proof. Follows directly the construction of MΦ where every Ai is complete and determin-

istic. �

Proposition 3.7 For all φ ∈ Φ, DTraces(R(M), obs)(φ) = DTraces(R(MΦ), obs)(φ̃).

Proof. Let ν ∈ obs(R(M)). First, we observe that

r ∈ obs−1(ν) ∩R(M) ⇐⇒ r̃ ∈ obs−1(ν) ∩R(MΦ)

Then,

ν ∈ DTraces(R(M), obs)(φ) ⇐⇒ ∀r ∈ obs−1(ν) ∩R(M), tr(r) ∈ L(φ)

⇐⇒ ∀r̃ ∈ obs−1(ν)R(MΦ), lst(r̃) ∈ F (φ)

⇐⇒ ν ∈ DTraces(MΦ, obs)(φ̃)

�

Then, the problem of verifying opacity for the trace-based predicate φ on M becomes

equivalent to the problem of verifying opacity for the state-based predicate φ̃ on MΦ.

The encoding can also be defined in the other direction. Let φ be a state-based secret

predicate. We define the trace-based predicate φt by L(φt) = L(M,S0, F (φ))\L(M,S0, S\

F (φ)).

Proposition 3.8 DTraces(R(M), obs)(φ) = DTraces(R(M), obs)(φt)

Proof. First, we note that for r ∈ R(M), tr(r) ∈ L(φt) if and only if for all r′ ∈ R(M)

such that tr(r′) = tr(r), lst(r′) ∈ F (φ). Now let ν ∈ DTraces(R(M), obs)(φ). Let

r ∈ obs−1(ν)∩R(M) and r′ ∈ R(M) such that tr(r′) = tr(r). Then, obs(r′) = π ◦ tr(r′) =

obs(r) = ν and so lst(r′) ∈ F (φ). So, tr(r) ∈ L(φt) and r |= φt. The other implication

follows directly the definition of L(φt). �

3.4 Conclusion

To summarize this chapter, we have presented how the problem of inferring the truth of

a predicate over the runs arises in security. Then we have defined the notion of opacity,

formalizing the impossibility of an attacker to infer such an information on the basis of

sound monitors. We have also characterized the set of counterexamples to opacity, with

the operator Disclose and the associated set of observation disclosing the truth of a secret

predicate with the operator Dtraces. Based on this operator DTraces, we have shown

60

3.4 Conclusion

that we can choose the kind of secret predicate, state-based or trace-based, that is the

most suitable to investigate a problem related to opacity.

In the next chapter, we will investigate the opacity verification problem for finite and

infinite systems. For this, we will follow two approaches, applying abstract interpretation

techniques and adapt the notion of diagnosis to the detection of information flow.

61

3 Information Flow and Opacity

62

4 Verifying and Monitoring Opacity

In this chapter, we consider an LTS M = (Λ, S, δ, S0) and a finite set of state-based secret

predicates Φ. The objective of an attacker is to observe traces of DTraces(R(M), obs)(φ)

to infer the truth of a predicate φ ∈ Φ. For this purpose, we will see how to construct the

sound monitors introduced in Definition 3.7 for the predicates Φ.

We make some assumptions about the observation map that will hold for the whole

chapter: we assume that the attacker only observes a subset Λa of the events of M and we

consider the corresponding map: πa = πΛ→Λa : Λ∗ → Λ∗
a as introduced in Chapter 2, and

pa : E(Λ, S)→ Λ∗
a defined by pa = πa ◦ tr. We denote Λua = Λ\Λa the set of unobservable

events.

First, we will investigate how to express DTraces(R(M), pa)(Φ) and the corresponding

monitor in a general setting, without constraints about the effective computability of the

needed operations like state reachability or determinization. In this chapter, we will first

investigate how an abstract interpretation framework based on Galois connections, like in

[CC77b, CC92a, GM04], can be applied to approximate the determinization of M . We also

study how to detect the existence of counterexample to opacity by considering a regular

abstraction of M and applying the diagnosis theory.

4.1 Determinization Based Procedure to Construct Sound

Monitors

We investigate in this section a method to exhibit attack scenarios, i.e. elements of the set

of observations DTraces(R(M), pa)(φ), for φ ∈ Φ. The problem we search to solve is the

following.

Problem 4.1

• Input: A possibility infinite LTS M = (Λ, S, δ, S0), a finite set of secret predicates

Φ and an attacker observing M through the projection pa : E(Λ, S)→ Λ∗
a.

• Problems:

– (A) Decide whether a trace ν ∈ pa(R(M)) observed from M belongs to DTraces(R(M), pa)(φ)

for some φ ∈ Φ, i.e. discloses the truth of φ.

63

4 Verifying and Monitoring Opacity

– (B) Decide whether DTraces(R(M), pa)(Φ) = ∅, i.e. whether M is Φ-opaque

for pa.

To solve Problem 4.1, we propose a method based on the operators postM and reachM

defined at the end of chapter 2. As there is no ambiguity in this chapter about the system

M , we will note post and reach instead of postM and reachM to simplify the notations.

We also assume that for all B ⊆ Λ, the operator post(B) is ω-continuous. In the sequel,

we will use the notation reachua : P(S)→ P(S) for reach(Λua) (recall that Λua = Λ\Λa).

Remark 4.1 The effective computation of reach may be impossible since the fixpoint com-

putation may not terminate. We will see in Section 4.3 how to circumvent this problem by

approximating the operator.

In order to compute DTraces(R(M), p)(φ) for every φ ∈ Φ, the first step consists in

computing the set of states that M may have reached when a trace is observed. This is

done by the subset construction for determinization defined below.

Definition 4.1 The determinization of M with respect to Λa gives the deterministic LTS

deta(M) = (Λa,P(S),∆a, X0) where the initial state X0 = reachua(S0) is the set of states

that are reachable when the attacker observes nothing (i.e. the empty trace ǫ) and the

transition function is defined by:

∆a : Λa × P(S) → P(S)

λ, X 7→ reachua ◦ post({λ})(X) when not empty

The transition function ∆a of the deterministic LTS deta(M) is extended to words accord-

ing to the definition of Section 2.2.

Example 4.1 Consider that M is the LTS of example 3.3 with Λa = {a, b}. Then,

deta(M) is the LTS depicted in figure 4.1.

{s0, s1, s2}

{s3, s4} {s5}

a b

Figure 4.1: Example of determinization

The next proposition provides a useful characterization of the outcomes of the map

∆a(· , X0) : Λ∗
a → P(S). Informally, ∆a(ν,X0) is the set of states the system may have

reached when the attacker observes ν.

64

4.1 Determinization Based Procedure to Construct Sound Monitors

Proposition 4.1 For all ν ∈ Λ∗
a,

∆a(ν,X0) = {s ∈ S : ∃r ∈ R(M), pa(r) = ν ∧ lst(r) = s}

Proof. For ν ∈ Λ∗
a, let Z(ν) = {s ∈ S : ∃r ∈ R(M), pa(r) = ν ∧ lst(r) = s}. It is

clear from the definition of ∆a that for all ν ∈ Λ∗
a, ∆a(ν,X0) ⊆ Z(ν). Let n ∈ N and

suppose that for all ν ∈ Λn
a , ∆a(ν,X0) = Z(ν). Now, let νλ ∈ Λn+1

a and s ∈ Z(νλ). There

exists r ∈ R(M) such that pa(r) = νλ and lst(r) = s. Let r1 be the longest prefix of r

such that pa(r1) = ν. Then we can write r = r1 · r2 with r2 = s1
λ
→ s2

u
→ s, u ∈ Λ∗

ua

and s1 ∈ Z(ν). So s ∈ ∆a(λ, {s1}) ⊆ ∆a(λ,Z(ν)). Since |ν| = n, ∆a(ν,X0) = Z(ν) so

s ∈ ∆a(λ,∆a(ν,X0)) = ∆a(νλ,X0). Finally ∆a(νλ,X0) = Z(νλ). The hypothesis also

holds for n = 0 since Z(ǫ) = reachua(S0) = X0 = ∆a(ǫ,X0) which proves the proposition

by induction. �

Corollary 4.1 If r ∈ R(M), then lst(r) ∈ ∆a(pa(r), X0).

Using Proposition 4.1 and Corollary 4.1, it follows that:

Corollary 4.2 L(deta(M)) = pa(R(M)).

Next, we relate the set of observations such that the secret predicate is disclosed to the

reachability of certain states in the LTS deta(M).

Proposition 4.2 DTraces(R(M), pa)(φ) = L(deta(M), X0,P(F (φ))) for every φ ∈ Φ.

Proof. Let φ ∈ Φ. Let ν ∈ L(deta(M), X0,P(F (φ))). According to Corollary 4.1, for all r ∈

p−1
a (ν)∩R(M), lst(r) ∈ ∆a(ν,X0) ⊆ F (φ). This implies that ν ∈ DTraces(R(M), pa)(φ).

For the other inclusion, let ν ∈ DTraces(R(M), pa)(φ). Then, there exists r ∈ R(M) such

that pa(r) = ν so ν ∈ L(deta(M)) according to Corollary 4.2. Let s ∈ ∆a(ν,X0). Ac-

cording to Proposition 4.1, there exists r′ ∈ R(M) such that pa(r
′) = ν and s = lst(r′).

But, since ν ∈ DTraces(R(M), pa)(φ), we know that r′ |= φ i.e. s = lst(r′) ∈ F (φ). Then

∆a(ν,X0) ⊆ F (φ) and ν ∈ L(deta(M), X0,P(F (φ))). �

Those two propositions imply the following theorem which also implies the existence of an

algorithm for verifying opacity based on determinization and reachability analysis.

Theorem 4.1 The system M is Φ-opaque for pa if and only if for all φ ∈ Φ, the states

P(F (φ)) are not reachable in deta(M).

Proof. Follows from proposition 3.1 and 4.2. �

This theorem also allows to compute the canonical monitor from Definition 3.7 as follows.

65

4 Verifying and Monitoring Opacity

Proposition 4.3 Given a finite set Φ of secret predicates, the canonical monitor for Φ is

then given by:

ΓΦ : Λ∗
a → P(Φ)

ν 7→ {φ ∈ Φ : ∆a(ν,X0) ⊆ F (φ)}

4.2 Complexity of Verifying Opacity on Finite Models

If Λ and S are finite sets, deta(M) can always be computed. Then, DTraces(R(M), pa)(φ)

can be computed for every secret predicate φ ∈ Φ as well as the canonical monitor ΓΦ. As

a consequence, the problems 4.1 (A) and (B) are decidable for finite LTSs. More precisely,

we will see in this section that the opacity verification problem is PSPACE-complete. To

prove this, we will prove that the universality problem for NFA can be encoded as two

opacity verification problems and that a procedure to verify universality can be used to

verify opacity.

Let A = (Σ, Q, δA, Q0, Qf) be a finite and possibly non-deterministic automaton. We

say that A is language universal for Qf when L(A,Q0, Qf) = Σ∗. Deciding language

universality on an automaton A is known to be complete for PSPACE [SM73].

Suppose now that the attacker observes all the events of Σ. Then, the corresponding

observation map is the trace operator tr : E(Σ, Q) → Σ∗. We define the state-based

secret predicate φf over E(Σ, Q) by F (φf) = Q \Qf . Also, consider the LTS comp(A) =

(Σ, Q ∪ {q̃}, δc
A, Q0) where q̃ /∈ Q is the new added state following the construction of a

complete LTS of Definition 2.16. Define also the secret predicate φ̃ over E(Σ, Q ∪ {q̃}) by

F (φ̃) = {q̃}. With this construction, we obtain

Proposition 4.4 A is language universal for Qf if and only if A is φ-opaque for tr and

comp(A) is φ̃-opaque for tr.

Proof.

A universal ⇐⇒ L(A) = Σ∗ and L(A,Q0, Qf) = L(A)

⇐⇒ L(comp(A), Q0, Q) = L(comp(A)) and L(A,Q0, Qf) = L(A)

⇐⇒ ∀ρ̃ ∈ R(comp(A)), ∃ρ̃′ ∈ R(comp(A), Q0, Q), tr(ρ̃) = tr(ρ̃′)

and ∀ρf ∈ R(A), ∃ρ′f ∈ R(A,Q0, Qf), tr(ρf) = tr(ρ′f)

⇐⇒ comp(A) is φ̃-opaque for tr and A is φf -opaque for tr

�

Consider now given a procedure for solving universality problems. We will show now

that such a procedure can also be applied to verify opacity. Let φ ∈ Φ with F (φ) the

66

4.2 Complexity of Verifying Opacity on Finite Models

corresponding set of accepting states. Let A = (Λa, S ∪ {q}, δA, X0) = comp(ǫ(M)) fol-

lowing the notation of the definitions 2.16 and 2.18. Let the predicate φA be defined by

F (φA) = {q} ∪ F (φ).

Lemma 4.1 DTraces(R(M), pa)(φ) ⊆ DTraces(R(A), tr)(φA).

Proof. Let ν ∈ DTraces(R(M), pa)(φ) and ρ ∈ R(A) such that tr(ρ) = ν. If lst(ρ) = q,

then r |= φA. Suppose now that lst(ρ) ∈ S. Then, there exists a run r ∈ R(M) such that

pa(r) = tr(ρ) and lst(r) = lst(ρ). Then, pa(r) = ν so lst(r) ∈ F (φ) ⊆ F (φA) and then

lst(ρ) ∈ F (φA). Finally, ν ∈ DTraces(A, tr)(φA). �

Proposition 4.5 A is language universal for S \F (φ) implies that M is φ-opaque for pa.

Proof. As L(A) = Λ∗
a, applying Proposition 4.4, A is language universal for S∪{q}\F (φA)

if and only DTraces(A, tr)(φA) = ∅. As S \F (φ) = S ∪{q}\F (φA), applying Lemma 4.1,

the universality of A for S \ F (φ) implies that DTraces(R(M), pa)(φ) = ∅, i.e. that M is

φ-opaque for pa. �

Theorem 4.2 The problem 4.1 (B), i.e. the opacity verification problem, is PSPACE-

complete.

Proof. Assuming given a procedure to verify language universality, the computation of

ǫ(M) from M and then the computation of A = comp(ǫ(M)) can be done with a complex-

ity polynomial in the size of M . Applying the proposition 4.5 and repeating the operation

for each secret predicate φ ∈ Φ, we can encode the opacity problem as |Φ| universality

problems which proves that the problem 4.1 is in PSPACE. Finally, the proposition 4.4

proves its PSPACE-completeness. Indeed, as a procedure to solve the opacity verification

problem can be apply to solve universality, the opacity verification problem is therefore

PSPACE-hard. �

Corollary 4.3 Let M be a finite LTS and Φ be a finite set of regular trace-based secret

predicates, then the opacity verification problem is PSPACE-complete.

Proof. Given φ ∈ Φ, the product operation needed in Proposition 3.7 to obtain an equiva-

lent state-based predicate can be done with a polynomial complexity in the size of M and

the automaton accepting L(φ). �

67

4 Verifying and Monitoring Opacity

Remark 4.2 We have proposed an algorithm based on LTS determinization. But with

the link between opacity and the universality problem described above, we can expect that

a complete determinization procedure can be avoided, in some favorable situations, for

example by applying antichains techniques developed in [DDHR06, DDR06] for solving

the universality problem and therefore obtaining a more efficient algorithm for the opacity

verification problem on finite models.

4.3 Monitoring Opacity Using Abstract Interpretation

We consider now that the sets Λ and S are not necessarily finite. In that case, the fixed

point computations required for the map ∆a may not terminate. Then, the determinization

procedure used to verify opacity on finite models cannot be directly applied. Furthermore,

a reachability problem can easily be encoded as an opacity problem so it is clear that

opacity is not decidable for Turing machines [BKMR08]. In the same article, the authors

also give a non trivial proof that the problem 4.1 (B) is also not decidable for Petri nets.

There are usually two main approaches to circumvent undecidability limitations for

solving verification problems. The first one is to extend the expressiveness of the models,

starting from finite automata where opacity is decidable, in such a way that the opacity

problem remains decidable. A second approach is to consider approximation techniques to

address two goals:

• provide sound arguments that opacity holds but possibly failing at exhibiting coun-

terexamples when such arguments do not hold;

• from an attacker point of view, create sound monitors for detecting information flow

and possibly loosing the possibility to claim that opacity holds when no information

flow is detected.

In the thesis, we will not investigate classes of models, other that finite automata, where

opacity is decidable. We propose instead a general framework to reason about opacity

using approximation techniques. We will now try to motivate why an approach based on

approximation is interesting in the context of security analysis.

In [BKMR08], the authors introduced the notion of uo-opacity (for under/over-opacity)

to handle approximations. Given a secret predicate φ ∈ Φ, the notion of uo-opacity con-

sists in considering underapproximations and overapproximations of R(M) and φ. Then,

according to three relations relating R(M) and φ to their approximations, we can conclude

the φ-opacity for pa. The uo-opacity property then is a sufficient condition for opacity and

the authors applied this approach for verifying uo-opacity on Petri nets using coverability

graphs. But uo-opacity may fail to provide a counterexample for opacity when uo-opacity

68

4.3 Monitoring Opacity Using Abstract Interpretation

is not satisfied. Furthermore, there is no generic approach to prove the inclusion relations

of the uo-opacity. Here, we will focus on the detection of counterexamples, in order to take

into account the following remark.

Remark 4.3 Given an observed trace ν ∈ Λ∗
a, the secret φ is preserved for an attacker A

whenever

• A can prove that ν 6∈ DTraces(R(M), pa)(φ),

• or A cannot prove that ν ∈ DTraces(R(M), pa)(φ).

For example, the second case will be typically true whenever it cannot be decided whether

“ν ∈ DTraces(R(M), pa)(φ)”. But, also, an attacker reasoning by approximating the

behavior of M may not be able to infer secret information when the approximations are

not precise enough. In some cases, there might exist no approximation techniques with

a reasonable complexity which can help to prove whether ν ∈ DTraces(R(M), pa)(φ).

Therefore, the system may be considered as secure regarding the class of attackers related

to the approximation techniques. When either one of the two situations of Remark 4.3 is

true for every observation ν ∈ pa(R(M)), then the secret predicate φ is never disclosed.

Note that this is an important difference with safety conditions for example since a safety

property can be violated disregarding what an external observer can observe or infer.

We borrow some ideas from uo-opacity but we follow a different presentation in order to

connect the previous techniques for constructing monitors with an abstract interpretation

framework based on Galois connections [CC77a, CC92a, Mas08]. Following [GM04], we

place approximations as a part of the attacker’s model similarly to what is done when

considering models of attackers with limited computational resources for the verification of

cryptographic protocols. In this context, the decision problem ν ∈ DTraces(R(M), pa)(φ)

may be decidable but can be very expensive. If this holds for every observation, the system

can then be granted a certain level of confidentiality. We will not consider this aspect in

the thesis. The work presented below has been published in [Dub09].

4.3.1 Basics of Abstract Interpretation

Verification problems often involve least or greatest fixpoint computation, typically to

obtain the iterations of the operator post1 and check whether some configurations are

reachable. According to Theorem 2.2 (Knaster-Tarski), such fixpoint exists as soon the

iterated operator is monotone within a complete lattice. But, this fixpoint computation

may not terminate after a finite number of iterations. For example, we will see that

1more precisely post(Λ) with our definition of post

69

4 Verifying and Monitoring Opacity

the developments of the Chapter 5, about controller synthesis for opacity, address a non-

termination problem of a fixpoint computation over the lattice of the sublanguages of

L(M). We have seen in Chapter 2 that the computation of the least/greatest fixpoint

always terminates if the underlying lattice is of finite height for example. So the idea of

abstract interpretation is to approximate the fixpoint computation of an operator over a

complete lattice by computing the exact fixpoint of an abstract operator defined over a

lattice where fixpoint computations always terminate.

In this section, the objective is not to apply the general abstract interpretation theory

to the case of opacity properties but to investigate the specificities of opacity regard-

ing approximation techniques considering, as an example, a simple framework of abstract

interpretation based on Galois connections. The development of opacity analysis tech-

niques to more precise abstract interpretation techniques like the widening/narrowing ap-

proaches [CC77a, CC92a, CC92b] is not considered here.

We provide now the basic aspect of Galois connection based abstract interpretation.

One can refer to [Mas05] for a more complete presentation. The original lattice, where the

fixpoint computation problem arises, is denoted (C,⊑,⊓,⊔,⊥,⊤) and called the concrete

lattice (typically P(S)). The abstract lattice, denoted (A,⊑♯,⊓♯,⊔♯,⊥♯,⊤♯) represents an

abstract representation of the elements of C and we consider a Galois connection

(C,⊑) −−−→←−−−α
γ

(A,⊑♯)

relating C and A with the semantics: for x ∈ C, α(x), called the abstraction of x, is the

most precise approximation of x in A; for y ∈ A, γ(y), called the concretization of y, is the

greatest element of C that is approximated by y in C. Naturally, there is a loss of precision

by manipulating the values of C in A, in the sense that for every x ∈ C, x ⊑ γ ◦ α(x).

Also, for y ∈ A, α ◦ γ(y) ⊑ y. In other words, γ ◦ α is extensive whereas α ◦ γ is reductive.

Note that since (α, γ) defines a Galois connection, α(⊥) = ⊥♯.

Example 4.2 Suppose that we want to approximate the values of variables over the ratio-

nal numbers. Therefore the concrete lattice is P(Q). Consider the abstract lattice given by

the finite set

A = {∅} ∪ {[a, b] : a, b ∈ {−∞,−10,−9, . . . , 0, . . . , 9, 10,+∞}, a ≤ b, a < +∞, b > −∞}

We can define a Galois connection by γ([a, b]) = [a, b] and:

α : P(Q) → A

∅ 7→ ∅

X 7→ [a, b] where

70

4.3 Monitoring Opacity Using Abstract Interpretation

where a = −∞ if min(X) < −10, 10 if min(X) > 10 or min(X) otherwise; and b = −10

if max(X) < −10, +∞ if max(X) > 10 or max(X) otherwise.

Consider now a monotone operator op : C → C and the problem of computing lfp(op).

The following will also apply for the computation of gfp(op). In practice, the problem is

often to compute ⊔{f i(x) : i ∈ N}, where x ∈ C, and the operator op is then defined by

op(z) = x ⊔ f(z) following Proposition 2.2. The main idea of abstract interpretation is to

compute lfp(op♯) approximating lfp(op) by defining A such that the computation of lfp

is always possible. To this effect, we will suppose that the abstract lattice A is of finite

height.

Definition 4.2 (Sound approximation) Given a monotone operator op : C → C, a

sound approximation of op in A is an operator op♯ : A→ A such that for all x ∈ C,

op(x) ⊑ γ ◦ op♯ ◦ α(x)

The best sound approximation of op in A is op♯
best = α ◦ op ◦ γ. But, for complexity

reasons, it may sometimes be interesting to consider less precise abstractions of op.

Proposition 4.6 If A is of finite height, then lfp(op♯) is effectively computable and is a

sound approximation of lfp(op), i.e. lfp(op) ⊑ γ(lfp(op♯)).

Proof. First, we prove by induction that for all n ∈ N, opn(⊥) ⊑ γ ◦ op♯n(⊥♯). This is true

for n = 0, according to Definition 4.2. Suppose that this property holds for n ∈ N.

opn+1(⊥) = op(opn(⊥))

⊑ op(γ ◦ op♯n ◦ α(⊥)) since op is monotone

⊑ γ ◦ op♯ ◦ α ◦ γ ◦ op♯n(⊥♯) by definition 4.2

⊑ γ ◦ op♯n+1
(⊥♯) since α ◦ γ is reductive

Then, for all n ∈ N, opn(⊥) ⊑ γ ◦ op♯n(⊥♯). Applying Theorem 2.2, for all n ∈ N,

opn(⊥) ⊑ γ(lfp(op♯)) and then, again by Theorem 2.2, lfp(op) ⊑ γ(lfp(op♯)). �

Remark 4.4 A similar framework can be applied for underapproximation: the concrete

operator is defined over A where the fixpoint computations may be impossible and the lattice

C, for example of finite height, can be used to underapproximate fixpoints defined in A.

Verifying Safety Properties with Abstract Interpretation We will make a comparison

between opacity and safety properties, in order to outline the specificities of opacity re-

garding the application of approximation techniques.

71

4 Verifying and Monitoring Opacity

A safety property expresses that nothing goes wrong in a system [Lam77]. For example,

there is no division by zero during a program execution or, in a security context, malicious

users cannot remove protected files.

A safety property depends on a predicate ψ defined over E(Λ, S) such that if r ∈ E(Λ, S),

with r |= ¬ψ then for all r′ ∈ E(Λ, S) with r ≤ r′ then r′ |= ¬ψ. This expresses the

idea that if something bad happens on an execution of M , then it remains bad on every

subsequent executions. A system satisfies a safety property if every execution satisfies the

safe predicate:

Definition 4.3 (Safety) We say that a system M is ψ-safe when for all r ∈ R(M),

r |= ψ.

The construction of Proposition 3.7 can also be applied for trace-based safety predicate so

we consider in this chapter that the predicate ψ is state-based, i.e. there exists F (ψ) ⊆ S

s.t. r |= ψ if lst(r) ∈ F (ψ). The problem is then:

Problem 4.2 (Safety verification problem)

• Input: An LTS M = (Λ, S, δ, S0) and a state-based safe predicate ψ.

• Problem: Is M ψ-safe ?

Hence, we have to check whether for every r ∈ R(M), lst(r) ∈ F (ψ) which is done by

verifying whether (∪{post(Λ)i(S0) : i ∈ N}) ∩ F (ψ) = ∅. As post(Λ) is ω-continuous, we

can apply Proposition 2.2 and M is ψ-safe if and only if reach(Λ)(S0)∩F (ψ) is empty2. As

reach(Λ)(S0) may not be computable in P(S), we consider (Q♯,⊑♯,⊓♯,⊔♯,⊤♯,⊥♯) to be a

complete lattice of finite height whose elements are overapproximations of the sets of states

of S via a Galois connection (P(S),⊆) −−−→←−−−
α♯

γ♯

(Q♯,⊑♯). Then, α♯(∅) = ⊥♯. Define now the

operator op : Y 7→ S0 ∪ post(Λ)(Y) and let op♯ : Q♯ → Q♯ be a sound approximation of

op. We can effectively compute lfp(op♯) which implies the following proposition and by

consequence a practical technique to verify safety.

Proposition 4.7 γ(lfp(op♯)) ∩ F (ψ) = ∅ implies that M is ψ-safe.

Proof. Follows directly that lfp(op) ⊆ γ(lfp(op♯)). �

In this section, we will investigate the computation of the monitors suggested at the end

of the previous section 4.1 using the abstract interpretation techniques described above.

To compute such a monitor, the objective is to obtain an overapproximation of the map

∆a : Λ∗
a → P(S). As opacity depends on the attacker’s partial observation, which is event

based, we have to consider the iteration of post with respect to a particular subset of

events. For this, we will need to extend the framework presented above.
2Recall that reach(Λ)(S0) = lfp(Y 7→ S0 ∪ post(Λ)(Y)).

72

4.3 Monitoring Opacity Using Abstract Interpretation

More on Galois Connection Based Abstract Interpretation Let (C,⊑) −−−→←−−−α
γ

(A,⊑♯)

be an abstract interpretation framework as presented above. Given a monotone and ω-

continuous map f : C → C, we will see how to compute the closure operator f↑ : C → C,

x 7→ lfp(z 7→ x ⊔ f(z)) as defined in Chapter 23. This is provided by the following

proposition.

Proposition 4.8 If f ♯ is a sound approximation of f then f ♯↑ is a sound approximation

of f↑.

Proof. Let x ∈ C and define the map gx : C → C, z 7→ x ⊔ f(z). In that case,

f↑(x) = lfp(gx). Define for all y ∈ A, g♯
y : A → A, z 7→ y ⊔♯ f ♯(z). As γ ◦ α is

extensive, x ⊑ γ ◦ α(x). Also, for z ∈ C, f(z) ⊑ γ ◦ f ♯ ◦ α(z), since f ♯ is a sound

approximation of f . Then x ⊑ γ ◦ α(x) ⊔ γ ◦ f ♯ ◦ α(z) and f(z) ⊑ γ ◦ α(x) ⊔ γ ◦ f ♯ ◦ α(z)

so x ⊔ f(z) ⊑ γ ◦ α(x) ⊔ γ ◦ f ♯ ◦ α(z). Then, x ⊔ f(z) ⊑ γ(α(x) ⊔♯ f ♯(α(z))), i.e. gx(z) ⊑

γ ◦ g♯
α(x)

◦ α(z) and g♯
α(x) is a sound approximation of gx. So f↑(x) ⊑ γ ◦ f ♯↑ ◦ α(x). This

holds for every x ∈ C so f ♯↑ is a sound approximation of f↑. �

We will see now how this can be applied to the construction of sound monitors for opacity.

4.3.2 Construction of Monitors for Opacity

First, we remark that according to the definition of reach: for every B ⊆ Λ, reach(B) =

post(B)↑. So approximating post(B) will directly provide an approximation of reach(B)

by applying Proposition 4.8.

As we have done for the verification of safety properties, we consider an abstract lattice

(Q♯,⊑♯,⊓♯,⊔♯,⊤♯,⊥♯) representing sets of states and a Galois connection

(P(S),⊆) −−−→←−−−
α♯

γ♯

(Q♯,⊑♯)

For simplification, we consider here the best approximation of post(B) defined with re-

spect to this Galois connection but the results presented above can be adapted to other

approximations. Formally, let

post♯ : P(Λ) → (Q♯ → Q♯)

B 7→ α♯ ◦ post(B) ◦ γ♯

This implies that for all B ⊆ Λ and X ⊆ S:

post(B)(X) ⊆ γ♯ ◦ post♯(B) ◦ α♯(X)

3The approach is similar for f↓

73

4 Verifying and Monitoring Opacity

It means that the set of states that are reachable according to post are also reachable

according to the concretization of post♯ after abstracting the parameters. We suppose now

that for every B ⊆ Λ, post♯(B) is monotone and ω-continuous and we define the operator:

reach♯ : P(Λ) → (Q♯ → Q♯)

B 7→ post♯(B)↑

As Λ may be infinite, and then M infinitely branching, it might also be necessary to

approximate the set of labels, which can represent for example time information, com-

munications with a parameter ranging over an infinite domain like receive(m, A) and

send(m, A) of Example 1.1 or floating point values read from sensors. For this purpose,

let θ be an equivalence relation over Λ such that the quotient set Σ♯ def
= θ(Λ) is a finite

set of abstractions (equivalence classes) of the events of M . We suppose that θ refines the

partition induced by the partial observability: ∀λ ∈ Λ, θ(λ) ⊆ Λa or θ(λ) ⊆ Λua. We note

then Σ♯
a = θ(Λa) and Σ♯

ua = θ(Λua). The map θ is extended to words over Λ by θ(ǫ) = ǫ,

and for w ∈ Λ∗, λ ∈ Λ, θ(wλ) = θ(w)θ(λ).

Example 4.3 To apply this in the case of Example 1.1, it would be relevant to define θ

such that θ(send(0, A)) = {send(0, A)} and if m > 0, θ(send(m, A)) = {send(k, A) :

k > 0}.

Remark 4.5 Note that the approximation of the set of events can equivalently be defined in

terms of equivalence relation or in terms of Galois connection. Indeed, a Galois connection

based approach can be defined equivalently in terms of closure operator. And, given a set

A, there exists a lattice isomorphism between Eq(A) and the set of upper closure operators

over P(A) [Mas05].

Proposition 4.9 For all B ⊆ Λ and all X ⊆ S,

reach(B)(X) ⊆ γ♯ ◦ reach♯(∪θ(B)) ◦ α♯(X)

Proof. As reach♯(B) is a sound approximation of reach(B), reach(B)(X) ⊆ γ♯ ◦ reach♯(B) ◦

α♯(X). Also B ⊆ ∪θ(B) and reach♯ is monotonic since it is the least fixpoint of a mono-

tonic operator. The result follows. �

With these definitions, we can now compute an approximation of Deta(M). Similarly to

reachua, we define reach♯
ua = reach♯(Σ♯

ua). We define then the finite LTS det♯a(M) =

(Σ♯
a, Q♯,∆♯

a, q
♯
0) by q♯

0 = reach♯
ua ◦ α♯(S0), and

∆♯
a : Σ♯ ×Q♯ → Q♯

σ, q 7→ q′ if q′ = reach♯
ua ◦ post♯(σ)(q) 6= ⊥♯

74

4.3 Monitoring Opacity Using Abstract Interpretation

Note that q♯
0 is a sound approximation of X0 since X0 = reachua(S0) ⊆ γ♯ ◦ reach♯

ua ◦

α♯(S0) = γ♯(q♯
0), so α♯(X0) ⊑

♯ q♯
0. With this definition, the automaton det♯a(M) is an

abstraction of the automaton deta(M) defined in Definition 4.1, as demonstrated by the

following proposition.

Proposition 4.10 For all ν ∈ Λ∗
a and X ⊆ S, ∆a(ν,X) ⊆ γ♯ ◦ ∆♯

a(θ(ν), α♯(X)).

Proof. The operators post, reachua, post♯ and reach♯
ua are monotone. Let λ ∈ Λa and

X ⊆ S.

∆a(λ,X) = reachua ◦ post(λ)(X)

⊆ reachua ◦ γ♯ ◦ post♯(θ(λ)) ◦ α♯(X) because post♯ is sound

⊆ γ♯ ◦ reach♯
ua ◦ α♯ ◦ γ♯ ◦ post♯(θ(λ)) ◦ α♯(X) (Prop. 4.9)

⊆ γ♯ ◦ reach♯
ua ◦ post♯(θ(λ)) ◦ α♯(X)

⊆ γ♯ ◦ ∆♯
a(θ(λ), α♯(X))

Now, let ν = λ1λ2 ... λn ∈ Λ∗
a.

∆a(ν,X) = ∆a(λn, ·) ◦ ... ◦ ∆a(λ2, ·) ◦ ∆a(λ1, ·)(X)

⊆ ∆a(λn, ·) ◦ ... ◦ ∆a(λ2, ·) ◦ γ♯ ◦ ∆♯
a(θ(λ1), ·) ◦ α♯(X)

⊆ γ♯ ◦ ∆♯
a(θ(λn), ·) ◦ . . . ◦ α♯ ◦ γ♯ ◦ ∆♯

a(θ(λ1), ·) ◦ α♯(X)

⊆ γ♯ ◦ ∆♯
a(θ(λn), ·) ◦ ... ◦ ∆♯

a(θ(λ2), ·) ◦ ∆♯
a(θ(λ1), ·) ◦ α♯(X)

⊆ γ♯ ◦ ∆♯
a(θ(ν), α

♯(X))

�

The following lemma will be used to simplify the proofs of Proposition 4.10 and Theo-

rem 4.3.

Lemma 4.2 For all ν ∈ Λ∗
a, if ν ∈ pa(R(M)), then ∆a(ν,X0) ⊆ γ♯ ◦ ∆♯

a(θ(ν), q
♯
0) where

X0 = reachua(S0).

Proof. If ν ∈ pa(R(M)), then ∆a(ν,X0) is defined. Moreover, according to Proposi-

tion 4.10, ∆a(ν,X0) ⊆ γ♯ ◦ ∆♯
a(θ(ν), α♯(X0)). The operator ∆♯

a(θ(ν), ·) is monotone be-

cause post♯ and reach♯
ua are monotone. Then, α♯(X0) ⊑

♯ q♯
0 implies that ∆♯

a(θ(ν), α♯(X0)) ⊑
♯

∆♯
a(θ(ν), q

♯
0). Finally, ∆a(ν,X0) ⊆ γ

♯ ◦ ∆♯
a(θ(ν), q

♯
0). �

The following proposition details the way this approximation framework provides an ab-

straction of the set of observed traces.

75

4 Verifying and Monitoring Opacity

Corollary 4.4 For all ν ∈ L(deta(M)), θ(ν) ∈ L(det♯a(M)).

Proof. Following the definition of ∆a, ν ∈ L(deta(M)) if and only if ∆a(ν,X0) 6= ∅. Ac-

cording to Lemma 4.2, ∆♯
a(θ(ν), q

♯
0) 6= ⊥

♯ so θ(ν) ∈ L(det♯a(M)). �

We now define the set of accepting states of det♯a(M) given by the map:

F ♯ : Φ → Q♯

φ 7→ {q ∈ Q♯ : γ♯(q) ⊆ F (φ)}

We relate the words accepted by the automaton to the observed traces such that secret

information is disclosed:

Theorem 4.3 Given φ ∈ Φ, for all ν ∈ pa(R(M)) such that θ(ν) ∈ L(det♯a(M), q♯
0, F

♯(φ)),

we can deduce that ν ∈ DTraces(R(M), pa)(φ).

Proof. Let φ ∈ Φ. Let r ∈ R(M) such that pa(r) = ν. According to Corollary 4.2,

this implies that ∆a(ν,X0) 6= ∅. Suppose that θ(ν) ∈ L(det♯a(M), q♯
0, F

♯(φ)). In that

case, ∆♯
a(θ(ν), q

♯
0) ∈ F ♯(φ), which means that γ♯(∆♯

a(θ(ν), q
♯
0)) ⊆ F (φ). According to

Lemma 4.2, we obtain that ∆a(ν,X0) ⊆ F (φ). Finally, according to Proposition 4.2,

ν ∈ DTraces(R(M), pa)(φ). �

This result provides an effective methodology to monitor information flow as soon as the

Galois connection is given. Practically, the attacker observes a trace ν from M , computes

the word θ(ν) and when θ(ν) is accepted by det♯a(M), the attacker knows that φ is true on

the current run executed in M . This can be formalized by the following monitor:

Γ♯
Φ : Λ∗

a → P(Φ)

ν 7→ {φ ∈ Φ : ∆♯
a(θ(ν), q

♯
0) ∈ F

♯(φ)}

This monitor is sound according to Theorem 4.3. But of course, this monitor cannot

recognize all the traces of DTraces(R(M), pa)(Φ), i.e. there may exist ν in this set such

that ∆♯
a(θ(ν), q

♯
0) /∈ F

♯(φ).

Given a secret φ ∈ Φ, the set of observed traces such that this secret is disclosed contains

the set of traces ν ∈ pa(R(M)) such that θ(ν) reaches a state of F ♯(φ) in det♯
a(M). But,

a word µ ∈ L(det♯a(M), q♯
0, F

♯(φ)) cannot be exhibited as a proof of the non-opacity of φ.

The reason is that it cannot always be decided a priori that an element of the class of

events represented by µ (i.e. a trace ν such that θ(ν) = µ) exists in L(deta(M)). Also, on

opposition to the analysis of safety properties, we cannot conclude from L(det♯a, pa, φ) = ∅

that M is φ-opaque. In particular, it may happen that reasoning with a more precise

abstract interpretation framework allows an attacker to infer secret information.

76

4.3 Monitoring Opacity Using Abstract Interpretation

In the next section, we will see how considering underapproximation can help to statically

prove that a system is not opaque.

4.3.3 Static Computation of Vulnerabilities Combining Under and Over

Approximations

In this section, we will see how underapproximating the set of observed traces of M can

help to statically exhibit observed traces disclosing secret information. For this purpose,

let (Q♭,⊑♭,⊓♭,⊔♭,⊤♭,⊥♭) be a finite lattice representing an underapproximation of the sets

of states and let (Q♭,⊑♭) −−−→←−−−
γ♭

α♭

(P(S),⊆) be a Galois connection such that α♭ ◦ γ♭ = idQ♭ .

To underapproximate the observable events, we consider a finite subset Σ♭
a ⊆ Λa. Finally,

we consider the sound underapproximation post♭ of the operator post defined by:

post♭ : P(Λ) → (Q♭ → Q♭)

B 7→ α♭ ◦ post(B) ◦ γ♭

and define
reach♭ : P(Λ) → (Q♭ → Q♭)

B 7→ post♭(B)↑

We also denote by reach♭
ua the operator reach♭(Σ♭

ua). Similarly to det♯a(M), we define the

finite LTS det♭a = (Σ♭, Q♭,∆♭
a, q

♭
0) where q♭

0 = reach♭
ua ◦ α♭(S0) (note that q♭

0 ⊑
♭ α♭(X0)

this time) and

∆♭
a : Σ♭ ×Q♭ → Q♭

λ, q 7→ reach♭
ua ◦ post♭(λ)(q) if not ⊥♭

We show now how to relate this definition of det♭a(M) with L(deta(M)).

Proposition 4.11 For all ν ∈ Σ♭∗ and X ⊆ S, γ♭ ◦ ∆♭
a(ν, α

♭(X)) ⊆ ∆a(ν,X).

Proof. The proof is similar to the proof of Proposition 4.10. �

Let F ♭ = {q ∈ Q♭ : γ♭(q) 6= ∅}, the set of states of Q♭ such that their concretization is not

empty.

Corollary 4.5 L(det♭a(M), q♭
0, F

♭) ⊆ L(deta(M)).

Proof. Let ν ∈ L(det♭a(M), q♭
0, F

♭). Then γ♭ ◦ ∆♭
a(ν, q

♭
0) 6= ∅. Since q♭

0 ⊑
♭ α♭(X0), γ♭ ◦

∆♭
a(ν, α

♭(X0)) 6= ∅ by monotony. So, according to Proposition 4.11, ∆a(ν,X0) 6= ∅. We

conclude then that ν ∈ L(deta(M)). �

77

4 Verifying and Monitoring Opacity

Proposition 4.12 Let φ ∈ Φ. For all ν ∈ L(det♭a(M), q♭
0, F

♭), if θ(ν) ∈ L(det♯a(M), q♯
0, F

♯(φ)),

then ν ∈ DTraces(R(M), πa)(φ).

Proof. Follows Corollary 4.5 and Theorem 4.3. �

Now, in the context where both (Q♭,⊑♭) and (Q♯,⊑♯) are finite lattices, we can construct

the finite deterministic LTS G♭ = (Σ♭, Q♭×Q♯, δ♭, (q♭
0, q

♯
0)) where δ♭ is defined by δ♭(q♭, q♯) =

(∆♭
a(λ, q

♭),∆♯
a(θ(λ), q♯)). Then, the problem of computing attack scenarios, i.e. observed

traces such that the secret is disclosed, is reduced to a reachability problem. For this let

QG♭

f = {(q♭, q♯) ∈ Q♭ ×Q♯ : q♭ ∈ F ♭ ∧ q♯ ∈ F ♯(φ)}

Theorem 4.4 L(G♭, (q♭
0, q

♯
0), Q

G♭

f) ⊆ DTraces(R(M), pa)(φ).

Proof. Follows by applying Proposition 4.12. �

This theorem provides effective methods to statically generate information flow attacks

using abstract interpretation. In other words, it allows to provide negative answer to the

Problem 4.1 (B). A possible application of this result would be to automate the computa-

tion of vulnerabilities on critical software.

4.4 Language Based Approach and Regular Abstractions

In this section, we consider a system M where the set of events is a finite alphabet Σ.

We do not assume that the set of states is finite, so the language L(M) is not necessarily

regular. We consider in this section that the secret information is given by a finite set of

trace-based secret predicates Φ. As in the previous section, the attacker observes the events

Σa ⊆ Σ and we denote the projection by πa = πΣ→Σa . In this section, we will consider

provided a regular abstraction of M , i.e. a finite LTS G such that L(M) ⊆ L(G) and we

address two problems: first, we will see how an attacker can construct sound monitors

based on G; second, based on this abstraction G, we will see how a supervisor can detect

the occurrences of information flow using the diagnosis theory.

As the secret predicates are trace-based, we can follow a language based approach, thanks

to the following remark.

Remark 4.6 Given two sets of states S and S′ and two systems, represented by their

semantics, R ⊆ E(Λ, S) and R′ ⊆ E(Λ, S′) generating the same language, i.e. tr(R) =

tr(R′) ⊆ Σ∗. Then for all r ∈ R and all r′ ∈ R′,

tr(r) = tr(r′) =⇒ (r ∈ Disclose(R, pa)(φ) ⇐⇒ r ∈ Disclose(R′, p′a)(φ))

where pa : E(Λ, S)→ Σ∗
a, r 7→ πa ◦ tr(r) and p′a : E(Λ, S′)→ Σ∗

a is defined similarly.

78

4.4 Language Based Approach and Regular Abstractions

This also implies that

DTraces(R, pa)(φ) = DTraces(R′, pa)(φ)

Therefore, in the case of trace-based secret predicates, we can forget the states of M

and consider only its generated language. We will denote then Disclose(L, πa)(φ) ⊆ Σ∗

the set of counterexamples and DTraces(L, πa)(φ) instead of Disclose(R, pa)(φ) and

DTraces(R, pa)(φ) when L = tr(R).

We now give some useful results of language based opacity and apply them to investigate

the opacity problem with regular abstractions. We start by giving a language characteri-

zation of the set of counterexamples.

Proposition 4.13 Let L ⊆ Σ∗ be a prefix-closed language.

Disclose(L, πa)(φ) = L \ π−1
a (πa(L \ L(φ)))

Proof. π−1
a (πa(L \ L(φ))) is the set of words of L that are observationally equivalent to a

word of L that is not in L(φ). Then, when a word of L is not in this set, this word discloses

the secret. �

Also, Disclose(L, πa)(Φ) = L \ ∪{π−1
a (πa(L \ L(φ))) : φ ∈ Φ}. By consequence, when L is

regular, Disclose(L, πa)(Φ) and L \Disclose(L, πa)(Φ) are also regular.

The following proposition will be important for this section and also for the next chap-

ter. It shows the effect of language inclusion on opacity. The following proposition is a

reformulation in terms of languages of Proposition 3.4.

Proposition 4.14 If L1 and L2 are two languages such that L1 ⊆ L2, then

L1 ∩Disclose(L2, πa)(φ) ⊆ Disclose(L1, πa)(φ)

This proposition can also be reformulated in terms of observed traces.

Corollary 4.6 If L1 ⊆ L2,

πa(L1) ∩DTraces(L2, πa)(φ) ⊆ DTraces(L1, πa)(φ)

But we cannot say more about opacity and inclusion as the following remark points out.

Remark 4.7 In general, opacity is not preserved by inclusion. Consider the following

examples where Σa = {a, b}, Σua = {τ, h} and L(φ) = Σ∗hΣ∗. Each time, L1 ⊆ L2 on the

figures 4.2 and 4.3 displaying counterexamples.

79

4 Verifying and Monitoring Opacity

L1

τ

a

a

h

b

b

L2

τ

b

a

a

h

h

b

a

b

Figure 4.2: L1 is opaque but not L2

L1

a h b

L2

τ

a

a

h

b

b

Figure 4.3: L2 is opaque but not L1

This also implies that opacity is generally not preserved by intersection.

4.4.1 Monitor for the Attackers

We investigate now how to construct sound monitors for the attacker using regular ab-

stractions.

Problem 4.3

• Input: A system given as an LTS M over a finite alphabet of events Σ, a finite set

of regular predicates Φ and a regular abstraction G = (Σ, Q, δ, q0) of M , i.e. L(M) ⊆

L(G).

• Problem: Compute a sound monitor based on G.

Applying Proposition 3.7, we can assume without lost of generality that there exists a

map F : Φ→ P(Q) such that the predicates of Φ are also state-based over E(Σ, Q). Then,

we can apply the results of section 4.2 and compute the set DTraces(L(G), πa)(φ), for all

φ ∈ Φ. Now, applying Corollary 4.6, the attacker can construct a sound monitor based on

G, thanks to the fact that when the attacker observes a trace µ ∈ πa(L(M)),

µ ∈ DTraces(L(G), πa)(φ) =⇒ µ ∈ DTraces(L(M), πa)(φ)

80

4.4 Language Based Approach and Regular Abstractions

In such a case, the secret φ is disclosed. We retrieve a notion similar to the one presented

section 4.3.

In other words, the monitor constructed via the determinization of G is sound. But

naturally, and as it was the case in Section 4.3.2: some traces of L(M) revealing a secret

may not be discovered by this monitor and moreover, since the LTS M can be an infinite

state system, it may be impossible to decide a priori, i.e. without executing the system,

whether a given trace µ ∈ DTraces(L(G), πa)(φ) is a real observed trace of M . Then, for

the opacity verification problem, it may happen that the disclosing traces of G are false

alarms. As done at the end of Section 4.3, we can consider a regular underapproximation of

L(M) and then exhibit real observed traces disclosing the secret by applying Corollary 4.6.

But such an approach will not be complete either as we will not be able to decide anything

for traces that are not in the underapproximations.

4.4.2 Diagnosing Information Flow

In this section, we present an alternative solution to the combination of under and over-

approximations. These techniques, based on Diagnosis Theory, aim to certify on-line that

no information flow has occurred. We consider a supervisor D, called the diagnoser, also

partially observing the events of Σo ⊆ Σ via the projection πo = πΣ→Σo , and whose ob-

jective is to detect at runtime the existence of security breaches (see the architecture on

Figure 4.4). As this supervisor is partially observing, we will see that the techniques devel-

System M Attacker ADiagnoser D
ΣaΣo

Figure 4.4: Diagnosing information flow

oped for monitoring opacity can also be applied to this end. We will see that if we accept

that the occurrences of information can be detected after a delay, bounded and known a

priori, we can apply diagnosis theory [SSL+95, SLS+96, JMPC06, JMGL08] and provide

sufficient conditions about G such that every information flow is detected. The benefit of

this approach is to invalidate the security of M at runtime and, if applied for a sufficiently

long period, it will let aside, when they exist, the cases of information flow that are unlikely

to happen with a standard use of M (i.e. with a probability that can be neglected) and

then statistically granting the system a certain level of confidence in its security.

Basics of Diagnosis Theory The problem of diagnosis has been studied in the context of

discrete event systems by [SSL+95, SLS+96, DLT00, QK04] and the objective is to detect

failures in systems under partial observation. In these works, the failures are modeled by a

81

4 Verifying and Monitoring Opacity

subset of the events called the faulty events. The diagnosis theory has then be generalized

in [KJ04, JMPC06]. In [KJ04], the authors extend diagnosis techniques to detect the

validation of a subclass of LTL formulas. In [JMPC06], the authors develop diagnosis

techniques to detect the violation of trace-based safety property. In this last paper, in

order to model more realistic situations, the delays are defined over the length of observed

traces instead of the length of words. We give next a brief overview of the diagnosis theory

for safety properties before applying it to the detection of secret information flow.

The objective of diagnosis is to detect under partial observation the violation of a safety

predicate. As the negations of safety predicates are extension-closed, i.e. every extension

of a run violating a safety property also violates this safety property, the information

“the property ψ has been violated” is equivalent to “the property ψ is violated”4. Then,

detecting the violation of a safety property with a delay is acceptable as soon as this delay

is known a priori. The fact that such delay should be known a priori expresses that when

a safety property is possibly violated according to what has been observed, the diagnoser

only needs to wait a known amount of time to be sure whether the safety property has

been violated or not. We model the time passing by the length of the generated words and

the delay is given as a bound on the word’s length.

Remark 4.8 Note that our approach should gain in expressiveness with delays defined

by counting the events of a subset Σt ⊆ Σo where the events of Σt model for example

clock ticks, thus generalizing the approach of [JMPC06]. This aspect is let for subsequent

developments.

The next definition formalizes the concept of diagnosability for safety properties.

Definition 4.4 (Diagnosability) Given a trace-based safety predicate ψ, a prefix-closed

language L is ψ-diagnosable if there exists N ∈ N such that for all w ∈ L,

w ∈ L(¬ψ) =⇒ (∀w′ ∈ w−1L, |w′| ≥ N =⇒ ww′ ∈ Disclose(L, πo)(¬ψ))

We will say then that L is ψ-diagnosable with delay N when the delay is needed. Observe

that if L is ψ-diagnosable with delay N and N ≤ N ′, then L is ψ-diagnosable with

delay N ′. As the objective is to apply diagnosis techniques to reason about opacity using

regular abstractions, we investigate the effect of inclusion on diagnosability. The following

proposition shows that diagnosability is preserved by inclusion.

Proposition 4.15 Given a trace-based safety predicate ψ and two languages L1 and L2

such that L1 ⊆ L2. If L2 is ψ-diagnosable then L1 is ψ-diagnosable.

4Note that this is not true for opacity as a secret predicate can be true for a particular run and false on
its extensions.

82

4.4 Language Based Approach and Regular Abstractions

Proof. Suppose that L2 is ψ-diagnosable with delayN . Let w ∈ L1∩L(¬ψ) and w′ ∈ w−1L1

such that |w′| ≥ N . Then w ∈ L2 ∩ L(¬ψ) and w′ ∈ w−1L2. So |w′| ≥ N implies that

ww′ ∈ Disclose(L2, πo)(¬ψ). As ww′ ∈ L1, ww′ ∈ Disclose(L1, πo)(¬ψ) according to

Proposition 4.14. �

Remark 4.9 Note that diagnosability is not preserved by union. Indeed, consider the

alphabet Σ = {τ, f, x} with Σo = {x} and the safe predicate ψ defined by L(ψ) = Σ∗fΣ∗.

Then the two languages L1 and L2 depicted in figure 4.5 are both ψ-diagnosable, but the

language L1 ∪ L2 is not.

L1 L2

L1 ∪ L2

f x

τ

τ x

τ f
x

τ

τ
x

τ

Figure 4.5: Union does not preserve diagnosability

We will now investigate the diagnosability verification problem for regular and prefix-closed

languages and regular safety predicates. We can state the problem as follows.

Problem 4.4

• Input: A prefix closed and regular language L and a regular safety predicate ψ.

• Input: Is L ψ-diagnosable ?

To solve this problem, let H = L(¬ψ) ∩ (L \Disclose(L, πo)(¬ψ)). The language H is

the set of words (of Σ∗) such that ψ is violated but there exists at least one word of L with

the same observation and not violating ψ, thus preventing a diagnoser observing through

πo to infer that ψ is violated. We will show that L is ψ-diagnosable if and only if there is

no cycle within words of H. This language is regular as L and L(ψ) are regular. Then, let

A = (Σ, Q, δ, q0, Qf) be the minimal DFA accepting the language H5.

Lemma 4.3 L is not ψ-diagnosable if and only if

∀n ∈ N, ∃w ∈ H, ∃w′ ∈ w−1H, |w′| ≥ n (4.1)

5In that case, Q = {w−1H : w ∈ Σ∗} according to the classical construction of the minimal DFA based
on the Myhill-Nerode equivalence relation [Ner58].

83

4 Verifying and Monitoring Opacity

Proof. Suppose that L is not ψ-diagnosable. Writing the negation of Definition 4.4, we

obtain:

∀n ∈ N, ∃w ∈ L ∩ L(¬ψ), ∃w′ ∈ w−1L, |w′| ≥ N ∧ ww′ /∈ Disclose(L, πo)(¬ψ))

Now note that if we had w ∈ Disclose(L, πo)(¬ψ)), then we would also have ww′ ∈

Disclose(L, πo)(¬ψ)) as L(ψ) is prefix closed. So w ∈ (L∩L(¬ψ))\Disclose(L, πo)(¬ψ)) ⊆

H. Also, as w ∈ L(¬ψ), we also have ww′ ∈ L(¬ψ). Then w ∈ H and ww′ ∈ H and the

expression (4.1) follows. �

Note that this lemma is always true, even if L and L(ψ) are not regular. The following

lemma states that when the bound depends on the words violating ψ, then in the case of L

and L(ψ) regular, we can compute a global bound, that will apply for every faulty words,

and therefore imply the ψ-diagnosability of L.

Lemma 4.4 The language L is ψ-diagnosable if and only if

∀w ∈ H, ∃Nw ∈ N, ∀w′ ∈ w−1H, |w′| < Nw (4.2)

Proof. It is clear that (4.2) holds when L is ψ-diagnosable, by rewriting the negation of

(4.1) and inverting the first two quantifiers.

For the other implication, as L is regular, the language H is also regular so the minimal

DFA A as above accepting the language H exists and Q = {w−1H : w ∈ Σ∗} is finite.

Now note that in (4.2), Nw only depends on q = w−1H. Then, writing N(q) = Nw for

all w ∈ H, we can define N = max{N(q) : q ∈ Q}. Therefore, the language L is ψ-

diagnosable with delay N . �

Definition 4.5 (Accepting cycle) Given an automaton A = (Σ, Q, δ, q0, Qf), an ac-

cepting cycle is a run r ∈ R(A), r = q0
σ1→ q1

σ2→ · · ·
σn→ qn such that for some 0 ≤ i < n,

qi = qn, and for all j, i ≤ j ≤ n, qj ∈ Qf .

Deciding the existence of an accepting cycle in a finite automata can be done in polynomial

time [CLRS01]. The two lemmas above can now be applied to the diagnosability verification

problem via the following proposition.

Proposition 4.16 Given a regular and prefix-closed language L, L is ψ-diagnosable if and

only if there is no accepting cycle in A where A is the minimal DFA accepting the language

H = L(¬ψ) ∩ (L \Disclose(L, πo)(¬ψ)).

Proof.

84

4.4 Language Based Approach and Regular Abstractions

• Assume that there exists an accepting cycle r in A, with r = q0
w
→ qi

w′

→ qn and qi = qn

(i < n). Let N ∈ N. Then, w ∈ H and ww′ ∈ H. As qi = qn, w−1H = ww′−1H and

then w−1H = (ww′n)−1H for all n in N . As |w′| ≥ 1, |w′N | ≥ N and w′N ∈ w−1H.

Applying Lemma 4.3, L is not ψ-diagnosable.

• Suppose now that L is not ψ-diagnosable. Applying Lemma 4.4, the negation of (4.2)

is

∃w ∈ H, ∀n ∈ N, ∃w′ ∈ w−1H, |w′| ≥ n

which implies, choosing n = |Q|, that

∃w ∈ H, ∃w′ ∈ w−1H, |w′| ≥ |Q| (4.3)

If we let q = w−1H, then as |w′| ≥ |Q|, the run starting from q and generating the

word w′ in A must contain twice the same state. In other words, there exists q′ ∈ Q

such that r = q0
w
→ q

w1→ q′
w2→ q′ ∈ R(A) with w1w2 ≤ w

′ and |w2| ≥ 1. Also, w ∈ H

implies that q ∈ Qf . Note that L(ψ) being prefix-closed, ww1 ∈ Disclose(L, πo)(¬ψ)

would implies ww′ ∈ Disclose(L, πo)(¬ψ) and then ww′ /∈ H. So w1 ∈ w−1H

and therefore q′ ∈ Qf . The same argument holds for all u ≤ w2, implying that

δ(u, q′) ∈ Qf . So r is an accepting cycle in A.

�

So the proposition 4.16 implies the existence of a procedure to check that a regular and

prefix-closed language is diagnosable. Therefore, the problem 4.4 is decidable. We will see

now how to apply this techniques to the detection of information flow vulnerabilities using

regular abstractions.

Application to Information Flow We consider the situation depicted in figure 4.6. The

attacker still observes the events of Σa ⊆ Σ and searches to infer the truth of the trace-based

secret predicates of Φ using monitors based on the abstraction G of M . The supervisor D

observes the events of Σo ⊆ Σ and wants to infer, also on the basis of the abstraction G,

whether the attacker, reasoning using G, could disclose some secret of Φ. We will see next

how to apply the notion of diagnosability in the context of information flow. The problem

we consider is:

Problem 4.5

• Input: A system given as an LTS M over a finite alphabet of events Σ, a finite set

of regular predicates Φ and a regular abstraction G = (Σ, Q, δ, q0) of M , i.e. L(M) ⊆

L(G).

85

4 Verifying and Monitoring Opacity

System M Attacker ADiagnoser D

Abstraction G

ΣaΣo

⊆

Figure 4.6: Diagnosing information flow using abstractions

• Problem: Based on the abstraction G, compute a diagnoser D detecting every oc-

currence of secret information flow that may occur for an attacker reasonning from

G.

Given a set of regular secret predicates Φ, we can define the regular safety predicate ψ by

L(ψ) = Σ∗ \ (Disclose(L(G), πa)(Φ)Σ∗)

which consists in the set of words such that no secret information is disclosed to the

attacker via a sound monitor based on G. In other words, we obtain the set of safe words

by removing all the vulnerabilities revealed using G, following Proposition 4.14.

We can always verify whether L(G) is ψ-diagnosable since G is a finite LTS. As seen

with Proposition 4.15, if L(G) is diagnosable, then so is L(M).

But we are not exactly interested in the diagnosability of L(M) since deciding whether

a given word w ∈ L(M) belongs to Disclose(L(M), πo)(¬ψ) may be impossible. We need

for this a notion of diagnosability defined with respect to both L(G) and L(M) and this

is given by the following proposition.

Proposition 4.17 Let L(G) be a regular abstraction of L(M) and ψ be a regular safety

predicate. If L(G) is ψ-diagnosable, then there exists N ∈ N such that for all w ∈ L(M),

w ∈ L(¬ψ) =⇒ (∀w′ ∈ w−1L(M), |w′| ≥ N =⇒ ww′ ∈ Disclose(L(G), πo)(¬ψ))

(4.4)

Proof. Similar to Proposition 4.15. �

Let us now explain more the interest of Proposition 4.17 and suggest how it can be applied

to detect vulnerabilities. The set of words Disclose(L(G), πo)(Φ) can be a set of false

alarms but if some of them occur in L(M), then according to Proposition 4.14, they

correspond to real cases of information flow. Then, the objective of the diagnoser is to

detect whether the system M generates a word of Disclose(L(G), πo)(Φ). This is modeled

by the regular safety predicate ψ defined by L(ψ) = Σ∗ \ (Disclose(L(G), πo)(Φ)Σ∗) which

86

4.5 Conclusion

is violated whenever the attacker could, at some time during the execution ofM , infer secret

information. But, thanks to proposition 4.17, if L(G) is ψ-diagnosable, then all occurrence

of a real vulnerability revealed by G will eventually be detected by the diagnoser, after the

occurrence of at most N events. This can be formalized by the following theorem which

follows directly from Proposition 4.17.

Theorem 4.5 If L(G) is ψ-diagnosable, then there exists N ∈ N such that for every word

generated by M , i.e. w ∈ L(M), such that w ∈ Disclose(L(G), πa)(Φ),

∀w′ ∈ w−1L(M), |w′| > N =⇒ ww′ ∈ Disclose(L(G), πo)(¬ψ)

A practical application of this is to define a complete and deterministic automaton A,

accepting the language Disclose(L(G), πo)(¬ψ), applying the construction presented in

Section 4.1, and implement the composition A ‖ M . The system M can be considered as

secure as long as no execution of M generates a word accepted by A in A ‖M .

4.5 Conclusion

In this chapter, we investigate two approaches to solve the opacity verification problem

in the case of finite and infinite system. In the case of finite systems, we show that the

opacity verification problem is PSPACE-complete. But the opacity verification problem is

not decidable for infinite systems. For this case, we do not investigate sufficient conditions

for opacity, like in [BKMR08] with the notion of uo-opacity. We propose a complementary

approach as we focus on the detection of counterexamples to opacity, and more precisely

on the detection of observed traces such that secret information is disclosed. We show

how such a detection can be achieved on-line using a Galois connection based approach of

abstract interpretation. We also show that combining overapproximation with underap-

proximation can help to statically, i.e. off-line, compute some counterexamples to opacity.

We consider an other approach for the detection of counterexamples to opacity based on

regular abstractions using the diagnosis theory.

It would be interesting to implement the theory presented in Section 4.3 and see if it

can be applied to disclose secret information on programs written with a simple imperative

programming language for example. Also, as an abstract interpretation framework can also

be used to generate regular abstractions of a system, it would also be interesting to merge

the techniques presented in Section 4.3 and Section 4.4 and apply the notion of diagnosis

in this context. An other possible extension of this work of Section 4.4, can be to connect

it with regular abstraction techniques like [LJJ06, LJ07] where regular abstractions are

used to abstract the content of FIFO channels in communicating finite state machines.

87

4 Verifying and Monitoring Opacity

88

5 Supervisory Control to Enforce Opacity

In this chapter, we investigate the problem of computing a controller enforcing opacity

properties. We consider a system modeled a finite LTS M and confidential information

given by a finite set of regular secret predicates Φ. This set of predicates will be fixed for

the whole chapter, so opacity will implicitly mean opacity for the secret predicates Φ. As

for the previous chapter, the attacker observes the events of Σa ⊆ Σ with the projection

denoted πa = πΣ→Σa . As the secret predicates are trace-based, we will follow a language-

based approach to study this control problem. In this chapter, we present some results

about the existence and the effective computability of solutions to the opacity control

problem. The complexity aspects of this problem are not investigated.

According to Ramadge and Wonham [RW87, RW89], the aim of supervisory control

is to enforce a safety property on a transition system. This is achieved by computing

a controller, given as an LTS C such that the controlled system, given by the parallel

composition C ‖ M , does not violate the safety property. In order to model realistic

situations, the controller cannot prevent the occurrence of some of the events. These

events are called the uncontrollable events whereas the other ones are said controllable.

It is also assumed that the controller only observes a subset of the events of M . Then,

the control must then be performed under partial observation. This controller is generally

expected to be as permissible as possible, in the sense that no unnecessary restriction

should be imposed on the system. Other kinds of properties have been considered within

this framework like for example the non-blocking property which requires that the control

shall not prevent the system from eventually reaching some accepting states.

A potential application of supervisory control to enforce opacity is to automate some

aspects of the implementation of secure systems. We consider a design process where

the functional aspects are implemented first, for example by composing “off the shelf”

components implementing basic operations. Then, if the security policy consists in integrity

requirements, expressed by safety properties, and confidentiality requirements expressed by

opacity properties, we can apply the theory presented in Chapter 4 to check if the resulting

system meets these requirements. When this is not the case, we add an extra component,

the controller, enforcing the security policy. We only consider the case of finite models in

this chapter. The field of direct applications can be the design of some communications

protocols like for example the dining cryptographer protocol, where a faithful finite LTS

89

5 Supervisory Control to Enforce Opacity

model can be provided. Opacity being general enough to express anonymity constraints,

we expect that our approach can be applied to the design of such protocols. Also, like for

model-checking, systems on chip can be a good target for the application of this theory,

as there often exists a complete finite model of such systems. Then, for such practical

applications, we are especially interested here in finite state controllers. Possible extensions

of the following results to the case of infinite systems will be discussed in the conclusion of

this chapter.

In the next section, we briefly present the supervisory control theory of Ramadge and

Wonham (abbreviated R&W) and illustrate this theory by studying how to compute a

controller enforcing safety properties. Then, we investigate the opacity control problem

and show that the classical iteration of closure operators of R&W cannot always be applied

for opacity. We address this problem with a new algorithmic approach to compute the most

permissive controller enforcing opacity under the assumption that the alphabet of events

observable by the controller is comparable with the set of events observable by the attacker.

5.1 The Supervisory Control Problem

The Supervisory Control Theory is a language based theory whose objective is to restrict

the language generated by the system to a sublanguage satisfying a given property. We

present here this theory by following a presentation that will be more suitable for its

application to opacity. For a more complete presentation of supervisory control, the reader

is referred for example to [CL08].

Let Ω be a family of languages defined over Σ. This set of languages represents the

control objective, i.e. we search for a controller such that the controlled language is an

element of Ω. This control is performed by composing the system M with a controller C,

given as an LTS, such that L(C ‖M) belongs to Ω. Such a controller will be called a valid

controller for the objective Ω.

For example, if the objective is to enforce a trace-based safety predicate ψ defined by the

prefix-closed language L(ψ), then the objective is to compute a controller such that L(C ‖

M) ⊆ L(ψ), hence Ω = P(L(ψ)). If we want to enforce the liveness property on M , then

a language L belongs to Ω if for all w ∈ L and all runs r ∈ R(M) such that tr(r) = w, the

restriction L does not prevent the system to proceed, i.e. there exists σ ∈ w−1L such that

δ(σ, lst(r)) 6= ∅, where δ is the transition function of M . For the opacity control problem, Ω

is the set of opaque languages over Σ, i.e. Ω = {L ⊆ Σ∗ : Disclose(L, πa)(Φ) = ∅}. Finally,

if we want to enforce the diagnosability of a safety regular predicate ψ then, following the

definition of diagnosability 4.4, Ω is the set of languages L that are ψ-diagnosable.

The controller should also be as permissive as possible in the sense that no unnecessary

restriction should be imposed on M . In this context, we say that C is a supremal valid

90

5.1 The Supervisory Control Problem

controller if L(C ‖ M) ∈ Ω and for every other controller, C ′, if L(C ‖ M) (L(C ′ ‖ M)

then L(C ′ ‖M) 6∈ Ω.

We assume that the occurrence of some events of Σ cannot be prevented by control.

For example, if we want to enforce the confidentiality of data in an e-banking web service,

we cannot prevent an attacker to send login requests to the service as Internet is an open

network. All we can do is to deny access when no trustful guaranties, like a correct password

or a known IP address, are provided. Also, we can disable for example some other output

events of the web service to avoid data leakage towards an attacker eavesdropping the

network traffic. We denote then by Σuc this set of uncontrollable events and the controllable

ones are denoted Σc. Also, we can imagine that a controller, implemented beside the

web service, may not be aware of some action like internal database access for example.

This is modeled by assuming that only a subset Σo of the events of Σ are observable

by the controller, implying that the controller must be such that L(C) ⊆ Σ∗
o. Applying

Proposition 2.3, the language of M controlled by C is L(C ‖ M) = π−1
o (L(C)) ∩ L(M)

where πo = πΣ→Σo . This implies that the occurrence of the events of Σuo = Σ \Σo cannot

be prevented by the parallel composition. Therefore, Σuo ⊆ Σuc or, equivalently, Σc ⊆ Σo
1.

The search space for possible controls over M is then determined by the two subsets Σc

and Σo.

5.1.1 Language Based Approach for the Supervisory Control Problem

Following a language based approach and given a control objective Ω, the supervisory

control problem consists then in finding a supremal sublanguage K of L(M) such that K ∈

Ω and K = L(C ‖ M) for some controller C. The system M being finite, there will exist

a finite state controller C as soon as the language K is regular. Then, such a language K

must be non-empty (contains at least ǫ), prefix-closed and satisfy two additional properties

defined below.

First, given a controller C and a word w ∈ L(C ‖M), if for w′ ∈ L(M), πo(w) = πo(w
′),

then the word w′ also belongs to L(C ‖M) = π−1
o (L(C))∩L(M). Hence, for a sublanguage

K to be generated by controllingM under partial observation, K must be exactly recovered

from its projection πo(K) and L(M). This is formalized by the notion of normality.

Definition 5.1 (Normality [RW87]) A language K is normal w.r.t. L(M) and Σo if

π−1
o (πo(K)) ∩ L(M) ⊆ K.

Note that the union of an arbitrary number of normal languages is normal and this will be

important in the sequel. This implies that given L ⊆ L(M), there always exists a supremal

sublanguage K ⊆ L such that K is normal. Such a language K is given by the union of

all normal sublanguages of L.
1Note that in the R&W theory, it is generally not assumed that Σo and Σc are comparable

91

5 Supervisory Control to Enforce Opacity

Second, we have seen that the uncontrollable events cannot be disabled by control. This

means that for a language K, candidate to be a controlled sublanguage of L(M), for all

w ∈ K and all σ ∈ Σuc such that wσ ∈ L(M), we must also have wσ ∈ K since no

controller can disable this event σ. This is formalized by the notion of controllability.

Definition 5.2 (Controllability [RW87]) A language K ⊆ L(M) is controllable w.r.t

L(M) and Σc if KΣuc ∩ L(M) ⊆ K.

Note that the union of an arbitrary number of controllable languages is also controllable.

A controlled language is the outcome of the composition L(C ‖ M) where C is such that

L(C) ⊆ Σ∗
o and does not prevent the occurrence of uncontrollable events. Therefore, a

controlled language is a non-empty, prefix-closed, normal and controllable sublanguage of

L(M).

Proposition 5.1 If K is a controlled language, then Σ∗
uc ∩ L(M) ⊆ K. Moreover, Σ∗

uc ∩

L(M) is the least controlled language.

Proof. Let K0 = Σ∗
uc ∩ L(M) and let K be a controlled language. As K is non-empty

and prefix-closed, ǫ ∈ K. Then, if σ ∈ Σuc such that σ ∈ L(M), then σ ∈ K as K is

controllable. It follows by induction that K0 ⊆ K. To prove the normality, let w ∈ K0.

As Σc ⊆ Σo, [w]o ∩ L(M) ⊆ π−1
c (πc(w)) ∩ L(M) ⊆ K0. So K0 is normal. Since K0 is also

non-empty, prefix-closed, K0 is then the least controlled language included in L(M). �

In the sequel, we will need to compute the supremal controlled language included in a

sublanguage of L(M). The following proposition states necessary and sufficient conditions

for its existence.

Proposition 5.2 If L ⊆ L(M) then there exists a supremal controlled language K ⊆ L if

and only if Σ∗
uc ∩ L(M) ⊆ L.

Proof. Again, let K0 = Σ∗
uc ∩ L(M). Applying Proposition 5.1, if there exists a controlled

language K ⊆ L, then K0 ⊆ K ⊆ L. Now, let K be the set of all controlled languages

included in L. If K0 ⊆ L then K is not empty. Let K = ∪K. As prefix-closeness is also

closed under arbitrary union, this language K is then non-empty, prefix-closed, normal

and controllable and is then the supremal controlled language included in L. �

Remark 5.1 The set of regular languages over an alphabet Σ is closed under finite union

but not under arbitrary union. Indeed, let Σ = {a, b} and the family of languages {Ln}n∈N

92

5.1 The Supervisory Control Problem

defined by Ln = anbn. The language ∪{Ln : n ∈ N} has an infinite set of residual languages

and is therefore not regular. So, in the proof of Proposition 5.2, considering only regular

languages in K will not imply that K = ∪K is regular.

Will now use the same ideas than for the proof of Proposition 5.2 to establish sufficient

conditions for the existence of a supremal controlled language enforcing a property given

by a family of languages Ω.

Theorem 5.1 Let Ω be a control objective that we want to enforce on the system M . If

the family of languages Ω is closed under arbitrary union, then either there exists no con-

troller enforcing Ω or there exists a unique supremal prefix-closed, normal and controllable

sublanguage K ⊆ L(M) such that K ∈ Ω.

Proof. Let K be the set of controlled languages K ⊆ L(M) such that K ∈ Ω. If K is

empty, then there exists no controller enforcing the objective Ω. Suppose then that K 6= ∅

and let K† = ∪K. Then K† also belongs to Ω and we have seen that this language is

also prefix-closed, normal and controllable. Then, this language K† is the unique supremal

controlled language enforcing the objective Ω. �

According to this theorem, the fact that the language Σ∗
uc ∩ L(M) also belongs to Ω is

a sufficient condition for the existence of a controlled language enforcing the property Ω.

Indeed, it implies that the family of languages K is not empty as Σ∗
uc ∩ L(M) ∈ K. For

example, given a regular safety predicate ψ, the family of sublanguages of L(ψ) is closed

under union. Therefore there exists a supremal controller enforcing ψ if Σ∗
uc∩L(M) ⊆ L(ψ).

Also, it is clear that the family of languages enforcing the liveness of M is closed under

union. So it follows directly from Theorem 5.1 that if there exists a controlled sublanguage

of L(M) enforcing the liveness of M , there exists a supremal one. We will see in the

next section that this also holds for opacity. But this is not always true for every kind of

control objective. Indeed, according to Remark 4.9, the diagnosability is not preserved by

union. Hence, Theorem 5.1 cannot be applied to prove the existence of a unique supremal

controlled language that is diagnosable.

5.1.2 The Fixpoint Iteration Techniques

We will now present in a general framework the classical approach of R&W for solving

control problems, i.e. deciding the existence and computing the supremal controlled lan-

guage enforcing a given property as described above. This methodology consists in defining

closure operators mapping a regular language to its largest sublanguage satisfying a given

property, e.g. safety, liveness, controllability, etc. This closure operator must preserve

93

5 Supervisory Control to Enforce Opacity

regularity and prefix-closeness. Then, iterating this operator until a fixpoint is reached

gives the researched supremal controlled sublanguage.

We start by introducing the operator CN : P(L(M)) → P(L(M)) mapping a prefix-

closed language to its supremal normal and controllable sublanguage. Let L ⊆ L(M)

be a prefix-closed language and let G = (Σ, Q, δ, q0, Qf) be a finite automaton such that

L(G) = L(M) and L(G, q0, Qf) = L. We compute deto(G) = (Σo,P(Q),∆, X0, Bad)

where the set of accepting states Bad is defined by:

• defining first F = {X ⊆ P(Q) : X ∩ (Q \Qf) 6= ∅};

• and then, Bad = coreachdeto(G)(Σo \Σc)(F), the set of states of deto(G) such that a

sequence of uncontrollable events leads to a state of F .

Let L̃ = L(deto(G), X0,P(Q) \Bad). Then, we define CN(L) = L(M) ∩ π−1
o (L̃).

Proposition 5.3 The map CN : P(L(M)) → P(L(M)) is a lower closure operator over

the prefix-closed sublanguages of L(M). More precisely, given a prefix-closed language

L ⊆ L(M), CN(L) is the supremal normal and controllable sublanguage included in L.

The operator CN also preserves regularity.

Proof. Let H = CN(L).

• If L = L(G, q0, Qf) is prefix-closed then it follows from the definition of F that

L(deto(G), X0, F) is also prefix-closed. Then L̃ and H are prefix-closed. It is also

clear that H is regular as soon as L is regular.

• According to its definition, H is clearly normal.

• H is also controllable. Let w ∈ H and σ ∈ Σuc such that wσ ∈ L(M). If σ ∈ Σuo

then wσ ∈ H. Suppose now that σ ∈ Σo. Note that L̃(Σo \ Σc) ∩ πo(L(M)) ⊆ L̃ by

definition of Bad. So πo(w)σ ∈ L̃. As wσ ∈ L(M), it follows that wσ ∈ H.

• H contains every prefix-closed, normal and controllable sublanguage of L. Indeed

let L′ ⊆ L be a normal and controllable sublanguage of L. Let w ∈ L′ and let

µ = πo(w). Let w′ ∈ π−1
o (µ) ∩ L(M). As L′ is normal, w′ ∈ L′ ⊆ L and if q0

w′

→ q

is a run of G then q 6∈ Qf . So ∆(µ,X0) 6∈ F . L′ being also controllable, if u ∈ Σ∗
uc

such that wu ∈ L(M), then wu ∈ L′. Applying the same arguments as above of for

the word wu ∈ L′, ∆(πo(wu), X0) = ∆(πo(u),∆(µ,X0)) 6∈ F . So ∆(µ,X0) 6∈ Bad,

which means that µ ∈ L̃ and then w ∈ H.

The language H is then the supremal prefix-closed, normal and controllable sublanguage

of L. The operator CN is by consequence reductive, monotone and idempotent, i.e. is a

94

5.1 The Supervisory Control Problem

lower closure operator over the prefix-closed sublanguages of L(M). �

Suppose now that we want to enforce a property defined by Ω that is closed under

arbitrary union. Consider the set K of controlled sublanguages K ⊆ L(M) such that

K ∈ Ω. According to Theorem 5.1, if K 6= ∅, there exists a unique supremal controlled

language enforcing Ω, given by K† = ∪K. It remains to prove that this language K† is

effectively computable and regular.

For this, consider the operator P : P(L(M)) → P(L(M)) mapping a sublanguage L

to its supremal sublanguage K such that K ∈ Ω. We assume that this operator a lower

closure operator over the prefix-closed sublanguages of L(M) and preserves regularity.

Consider now the operator k = CN ◦ P . This operator is monotone within the complete

lattice of the prefix-closed sublanguages of L(M). So applying Theorem 2.2, k admits a

unique greatest fixpoint gfp(k). The language gfp(k) is also a fixpoint for P . Indeed,

P (gfp(k)) ⊆ gfp(k). But if P (gfp(k)) (gfp(k) was true then, as CN is reductive, we

would also have CN ◦ P (gfp(k)) (gfp(k), which is not possible. This also implies that

CN(gfp(k)) = CN ◦ P (gfp(k)) = gfp(k), so gfp(k) is also a fixpoint for CN2. This is

helpful to prove the following theorem.

Theorem 5.2 If the family of languages Ω is closed under arbitrary union, then the great-

est fixpoint gfp(k) is the supremal controlled sublanguage of L(M) enforcing Ω. i.e.

gfp(k) = K†

Proof. As gfp(k) is a fixpoint for CN and P , gfp(k) ∈ K and so gfp(k) ⊆ K†. For

the other inclusion, note that K† is a fixpoint for CN as K† is prefix-closed normal and

controllable. The language K† is also a fixpoint for P as K† ∈ Ω and is prefix-closed. So

K† is a fixpoint for k and then K† ⊆ gfp(k). �

Even though not presented in this way in the literature, this is the basis of the classical

R&W methodology for establishing a proof that a supremal controlled language enforcing

Ω can be effectively computed and is regular. When the family of target languages Ω is

closed under arbitrary union, this methodology consists then in defining an operator P

satisfying the property given above and iterating the computation of CN and P starting

from L(M) until a fixpoint is reached. If such a fixpoint is reached after a finite number of

iterations, then one obtains the supremal controlled language enforcing Ω and this language

is regular as CN and P are both preserving regularity.

This methodology is successfully applied in the context of centralized or distributed con-

2Note that this also implies that gfp(k) = gfp(P ◦ CN).

95

5 Supervisory Control to Enforce Opacity

trol to enforce different kinds of properties like for example, safety, liveness, non-blocking,

etc.

For an illustration, we now apply this methodology to the simple case of safety properties,

with the objective of enforcing integrity requirements in mind. In the next section, we apply

will this control framework to enforce opacity properties.

5.1.3 The Safety Control Problem

Suppose that a security policy consists in a set of integrity requirements given by a set

of regular safety predicates Ψ. The objective is then to compute a supremal controlled

sublanguage K ⊆ L(M), such that for every ψ′ ∈ Ψ, K ⊆ L(ψ′). So, we can without

lost of generality consider the case of only one regular safety predicate, defining ψ by

L(ψ) = ∩{L(ψ′) : ψ′ ∈ Ψ}3. The problem is then to compute, if existing, a controlled

language K enforcing ψ on M . The existence of such a controlled language is due to the

following proposition.

Proposition 5.4 There exists a supremal controlled sublanguage enforcing the safety of ψ

if and only if L(M) ∩ Σ∗
uc ⊆ L(ψ).

Proof. Let K0 = Σ∗
uc ∩ L(M). We have seen that K0 ⊆ L(ψ) is a sufficient condition as it

proves that the set of controlled languages enforcing the safety of ψ is not empty. Suppose

now that there exists a controlled language K enforcing ψ. We have seen that we must

have K0 ⊆ K. If K0 (L(ψ) then K (L(ψ) which contradicts the existence of such K.

So K0 ⊆ L(ψ) is a necessary condition. �

Assuming that L(M)∩Σ∗
uc ⊆ L(ψ), to apply the fixpoint computation presented above,

consider

Safe : P(L(M)) → P(L(M))

L 7→ L ∩ L(ψ)

It is clear that this operator maps every sublanguage of L(M) to its largest safe subset.

Also, if L is prefix-closed and regular, then so is Safe(L).

Proposition 5.5 CN ◦ Safe(L(M)) is the supremal controlled sublanguage of L(M) en-

forcing the safety property ψ.

Proof. Remark first that if L ⊆ L(ψ), then Safe(L) = L. Since the operators CN and

Safe are reductive and Safe(L(M)) ⊆ L(ψ), then iteration of CN ◦ Safe are actu-

ally the iteration of CN starting from Safe(L(M)). Finally, gfp(CN ◦ Safe) = CN ◦

3Note that this simplification is not possible for a set of secret predicates

96

5.2 The Opacity Control Problem

Safe(L(M)) since CN is idempotent. Applying Theorem 5.2 establishes the proposition.

�

Corollary 5.1 If L(M)∩Σ∗
uc ⊆ L(ψ), there exists a supremal controlled language enforc-

ing the safety predicate ψ and this language is effectively computable and regular.

Remark 5.2 Note that we can easily generalize this result. Indeed, one particularity of

the safety control problem is that the set of a safe languages is closed by inclusion.

Given a control objective Ω that is closed by inclusion and a closure operator P mapping

a language L to a language L′ ⊆ L such that L′ ∈ Ω, then CN ◦ P (L(M)) ∈ Ω and is

therefore a solution to the control problem. For example, according to Proposition 4.15,

the diagnosability is closed by inclusion. So, if Ω is the set of languages that are ψ-

diagnosable for a safety predicate ψ, then by defining such an operator P , we can obtain

with CN ◦ P (L(M)) a solution to the diagnosis control problem.

5.2 The Opacity Control Problem

In this section, our purpose is to solve the opacity control problem: computing a controller

C such that L(C ‖ M) is Φ-opaque for πa. To solve this problem, it is not sufficient

to remove from L(M) all the words disclosing a secret. Indeed, we have assumed in the

preceding chapter that the attacker knows the complete model of the system. In the

present context, the implemented model is actually C ‖ M , and we have seen with the

remark 4.7 that opacity may not be preserved by inclusion. More precisely, a controller

removing information flow vulnerabilities and their extensions, i.e. such that L(C ‖M) =

L(M) \ (Disclose(L(M), πa)(Φ)Σ∗), may fail to ensure the opacity of L(C ‖ M). The

following simple example illustrate this aspect.

Example 5.1 Consider the language of the LTS depicted in Figure 5.1 where the secret

predicate φ is defined by the set of words reaching the square states. Also, Σa = {a, b},

Σc = {c1, c2} and Σo = Σ = {a, b, c1, c2}. The set of disclosing words of L(M) is {ac1a}.

L(M) L(C̃ ‖M) L(C ‖M)

a

c1

c2

a

b

b

a c2 b a

Figure 5.1: Removing disclosing words may introduce new vulnerabilities

So the controller C̃ is such that L(C̃ ‖ M) is the supremal controlled language included

97

5 Supervisory Control to Enforce Opacity

in L(M) \ ({ac1a}Σ
∗). But we can see on the figure that this controller does not enforce

opacity as the words ac2b now disclose φ in L(C̃ ‖M). The solution for this opacity control

problem is the controller C disabling both c1 and c2 after observing a.

Thus, as we suppose that the attacker knows the obtained controlled language, the exact

control problem for opacity properties is to compute a supremal controller C such that the

obtained language L(C ‖M) is opaque.

5.2.1 Characterization of the Solution

Next, we give a set characterization of the solution to the opacity control problem and we

investigate the existence of a supremal solution to this problem. To do so, we denote by

Ω = {L ⊆ Σ∗ : Disclose(L, πa)(Φ) = ∅} the set of languages of P(Σ∗) that are Φ-opaque

for πa. We also consider the set

K = {K ⊆ L(M) : K is a controlled language and K ∈ Ω} (5.1)

the set of controlled sublanguages of L(M) that are Φ-opaque for πa. We also consider the

prefix-closed language

K† = ∪K (5.2)

We know that K† is prefix-closed, normal and controllable. The following proposition

entails that K† is also opaque.

Proposition 5.6 Let L be a language and let H be a family of opaque sublanguages of L,

then ∪H is also opaque.

Proof. Let φ ∈ Φ. Let H = ∪H and w ∈ H. There exists H ′ ∈ H such that w ∈ H ′. As

H ′ is opaque, there exists w′ ∈ H ′ \L(φ) such that πa(w
′) ∼a πa(w). So w′ ∈ H and then

w /∈ Disclose(H,πa)(φ). �

If K 6= ∅, the previous proposition entails the existence of a unique supremal language

K† ⊆ L(M) enforcing the Φ-opacity for the projection πa. We still have to examine whether

this language is regular (or at least, to exhibit sufficient conditions for its regularity) and

to provide an effective computation of this language. We can state this problem as follows.

Problem 5.1 (Opacity Control) With K† = ∪K as defined above with expressions (5.1)

and (5.2), to solve the opacity control problem, we need to:

1. decide whether K† 6= ∅;

98

5.2 The Opacity Control Problem

2. decide when K† is regular;

3. compute a finite LTS C such that L(C ‖M) = K†.

Like for the safety control problem, applying Proposition 5.2, we know that the opacity

of Σ∗
uc ∩ L(M) is a sufficient condition for the existence of a solution to Problem 5.1, i.e.

that K† 6= ∅, and this simply because K is then non-empty4. But, unlike for the safety

control problem, the opacity of Σ∗
uc ∩ L(M) is not a necessary condition for K† 6= ∅ as

illustrated by the following remark.

Remark 5.3 Consider the system M depicted in Figure 5.2 with Σ = {x, c, a}, Σa = {a}

and Σc = {c}. Let L(φ) = Σ∗xΣ∗. We see that L(M) ∩ Σ∗
uc is not opaque whereas L(M)

0

1

2

3

4

x

a

c

a

Figure 5.2: Unnecessary condition for the Opacity Control Problem

is opaque. Then K† = L(M)!

5.2.2 An Operator for the Supremal Opaque Sublanguage

In order to apply the R&W fixpoint computation to prove the regularity and effective

computability of K†, we now introduce the operator Op mapping a prefix-closed language

to its supremal opaque sublanguage. To solve Problem 5.1, we investigate how to apply

Theorem 5.2 and check whether the greatest fixpoint of CN ◦ Op can effectively be com-

puted.

Define the map
Op : P(Σ∗) → P(Σ∗)

L 7→ L \ (Disclose(L, πa)(Φ)Σ∗)

Note that Op preserves the regularity, i.e. if L is regular, Op(L) is also regular. In-

deed, we can also write Disclose(L, πa)(Φ) = ∪{L \ π−1
a (πa(L \ L(φ))) : φ ∈ Φ}, and

since the operations πa, π−1
a , \ and ∪ preserve the regularity, the language Op(L) =

4Recall that K is a set of non-empty languages

99

5 Supervisory Control to Enforce Opacity

L\(Disclose(L, πa)(Φ)Σ∗)) is also regular. The map Op also preserves the prefix-closeness

as it is obtained by removing disclosing words and all their extensions.

Given a prefix-closed language L, we will see now that Op(L) gives the supremal prefix-

closed and opaque sublanguage of L [BBB+07]. The following technical lemma states that

Op(L) is an union of equivalence classes of L for πa.

Lemma 5.1 For all w ∈ Op(L), [w]a ∩Op(L) = [w]a ∩ L.

Proof. Let w ∈ Op(L). First, [w]a ∩ Op(L) ⊆ [w]a ∩ L since Op(L) ⊆ L. Second, let

w′ ∈ [w]a ∩ L. Suppose that w′ ∈ Disclose(L, πa)(Φ)Σ∗. Then, there exists u′ ≤ w′ such

that u′ ∈ Disclose(L, πa)(φ) for one φ ∈ Φ. This can equivalently be reformulated as

πa(u
′) ∈ DTraces(L, πa)(φ). But there exists u ≤ w such that πa(u) = πa(u

′) and then

u′ ∈ Disclose(L, πa)(φ). So, w 6∈ Op(L) which is a contradiction. Hence, w′ ∈ [w]a∩Op(L),

and the lemma is then established. �

We show now that, as expected, the previous lemma implies that the language Op(L) is

opaque.

Lemma 5.2 For every language L ⊆ Σ∗, Op(L) is opaque.

Proof. Let w ∈ Op(L). If for all w′ ∈ [w]a ∩ Op(L), w′ ∈ L(φ) then this also holds for all

w′ ∈ [w]a ∩ L and then w ∈ Disclose(L, πa)(φ). This contradicts that w ∈ Op(L). We

conclude then that Op is opaque. �

Proposition 5.7 The map Op is a lower closure operator over the sublattice of prefix-

closed languages of P(Σ∗).

Proof. It is clear that Op is reductive, i.e. that Op(L) ⊆ L for all L ⊆ L(M). Ac-

cording to lemma 5.2, Op is idempotent since Disclose(Op(L), πa)(Φ) = ∅. As we have

already seen that Op preserves prefix-closeness, it remains to show that Op is monotone.

Let L1 ⊆ L2 be two prefix-closed languages. Let w ∈ Op(L1). Then w ∈ L2. Suppose

that there exists u ≤ w such that u ∈ Disclose(L2, πa)(φ) for one φ ∈ Φ. Then, as L1

is prefix closed and w also belongs to L1, u ∈ L1. So, according to Proposition 4.14,

u ∈ Disclose(L1, πa)(φ) which is not possible as w ∈ Op(L1). So, this implies that

w ∈ Op(L2). Then, Op(L1) ⊆ Op(L2) and then Op is monotone. We conclude that Op is

a lower closure operator over the set of prefix-closed languages of Σ∗. �

We will see now that the operator Op give the supremal prefix-closed and opaque sub-

language of a prefix-closed language L.

100

5.3 Computation of the Supremal Controller when Σa and Σo are Comparable

Proposition 5.8 Given a prefix-closed language L ⊆ Σ∗, Op(L) is the supremal opaque

sublanguage of L.

Proof. Let H be the union of all prefix-closed and opaque sublanguages of L. As Op(L)

is opaque and prefix-closed, Op(L) ⊆ H. Also H ⊆ L so Op(H) ⊆ Op(L) by monotony.

According to Proposition 5.6, H is opaque and prefix-closed as the union of prefix-closed

and opaque languages. Then, Op(H) = H and H ⊆ Op(L). Finally Op(L) = H. �

Note that Op(L) can be empty. In the case when Op(L(M)) = ∅, there is no way to

enforce opacity on M by control.

5.3 Computation of the Supremal Controller when Σa and Σo

are Comparable

In this section, we exhibit sufficient conditions such that the classical fixpoint computation

of R&W provides a solution to Problem 5.1. These conditions depend on the relations

between the set of controllable events Σc, the observable events Σo and the events of Σa

which are observable by the attacker. We show that the fixpoint computation of CN ◦ Op

terminates after a finite number of iteration when Σo ⊆ Σa and when Σa ⊆ Σc. But we

present an example of LTS, where Σa ⊆ Σo, such that the iterations of CN ◦ Op does not

terminate after a finite number of iterations.

Define now the operator

k = CN ◦ Op

According to the theory presented in section 5.1, the fixpoint iteration technique can be

applied and, as a direct application of Theorem 5.2, we obtain

gfp(k) = K†

As K 6= ∅ (since {ǫ} ∈ K), gfp(k) is non-empty. We next study the sufficient conditions

cited above under which gfp(k) is regular and can effectively be computed.

5.3.1 The Case Σo ⊆ Σa

With the assumption that Σo ⊆ Σa, the controller observes and controls only a part of

the events of the attacker5, meaning that the controller is less accurate than the attacker

5Recall Σc ⊆ Σo

101

5 Supervisory Control to Enforce Opacity

regarding the internal behavior of M . This is a sufficient condition to solve the control

problem by computing gfp(k).

Proposition 5.9 If Σo ⊆ Σa, then gfp(k) = k(L(M)). This language is then regular and

effectively computable.

Proof. Let L1 = Op(L(M)) and K1 = CN(L1) = k(L(M)). Consider w ∈ K1 ∩ L(φ).

As L1 is opaque, there exists w′ ∈ L1 such that w ∼a w
′ and w′ /∈ L(φ) As Σo ⊆ Σa and

w ∼a w
′, we get w ∼o w

′. Hence, K1 being normal, we also have w′ ∈ K1, which entails

that K1 is opaque. Hence, K1 = Op(L(M)). But K1 is also a fixpoint for CN and then

k(K1) = K1. So K1 = k(L(M)) = gfp(k). �

Applying Proposition 5.9, we solve the items (2) and (3) of Problem 5.1 together. The

construction of the operators CN and Op implicitly provides an LTS A such that L(A) =

k(L(M)). Then, C = deto(A) is a possible solution for the controller. But of course, this

approach may not be optimal. For example, if for a practical application, the number of

states of C is critical (one can think of an application to electronic), then, algorithms to

compute the minimal DFA accepting the language πo(k(L(M))) would be of interest.

5.3.2 The Case Σa ⊆ Σo

In the context Σa ⊆ Σo, we show that solving the Opacity Control Problem under the

assumption Σ = Σo (full observation) induces a solution of the Opacity Control Problem

to the general case Σa ⊆ Σo. We will apply this result to lighten the presentation for the

subsequent developments. Especially, the parameter Σo of the Opacity Control Problem

will therefore be eliminated in the rest of this chapter. This will also imply that every

sublanguage of L(M) will be normal, and then, the notion of normality will be forgotten.

To prove that we can simplify the control problem in such a way, define

K = F(Σ,L(M), Φ,Σc,Σo,Σa)

where K is the set specified with expression (5.1) to characterize the set of solutions to the

Opacity Control Problem. We similarly define the set

Ko = Fo(Σo, πo(L(M)), Φo,Σc,Σo,Σa)

where Φo is the set of regular secret predicates defined by

Φo = {φo defined by L(φo) = πo(L(φ)) \ πo(L(M) \ L(φ)), φ ∈ Φ}

102

5.3 Computation of the Supremal Controller when Σa and Σo are Comparable

Note that for φ ∈ Φ, L(φo) ⊆ πo(L(φ)). Intuitively, to define φo from φ, we use the fact

that Σa ⊆ Σo and remove from πo(L(φo)) the words (of Σ∗
o) that do not disclose the secret

regarding the projection πo. Indeed, according to Proposition 3.3, we already know that

such words will not disclose secret information for the projection πa. With this definition,

we will prove that L(φo) exactly encodes the information that we need to conceal on

πo(L(M)) to relate the set K and Ko.

Proposition 5.10 The Opacity Control Problem with the parameters (Σ, L(M), Φ, Σc,

Σo, Σa) is equivalent to the same problem with the parameters (Σo, πo(L(M)), Φo, Σc, Σo,

Σa).

To lighten the presentation and the proof of this proposition, we first establish three inter-

mediate lemmas.

Lemma 5.3 For all K ∈ K, πo(K) ∈ Ko.

Proof. K ⊆ L(M) ⇒ πo(K) ⊆ πo(L(M)), and πo also preserves the non-emptiness and

prefix-closeness.

We show that πo(K) is controllable w.r.t. πo(L(M)) and Σc. Let ν ∈ πo(K) and σ ∈

Σo\Σc such that νσ ∈ πo(L(M)). As L(M) is prefix-closed, ν = πo(w) for some w ∈ L(M)

such that wσ ∈ L(M). Let ν = πo(v) for some v ∈ K. Then πo(v) = πo(w). As K is

normal w.r.t. L(M) and Σo, w ∈ L(M) and v ∈ K implies w ∈ K. As wσ ∈ L(M) and

σ /∈ Σc, wσ ∈ K by controllability of K. Therefore, νσ ∈ πo(K) as required.

The projected language πo(K) is certainly normal w.r.t. πo(L(M)) and Σo, because

πo(K) ⊆ πo(L(M)) ⊆ Σ∗
o.

We show finally that πo(K) is opaque. Let φo ∈ Φo and ν ∈ L(φo) ∩ πo(K). Then

ν = πo(w) for some w ∈ K ⊆ L(M) and by definition of L(φo), w ∈ L(φ). As K is

opaque, πa(w) = πa(w
′) for some w′ ∈ K \ L(φ). Let ν ′ = πo(w

′). So ν ′ ∈ πo(K),

πa(ν) = πa(w) = πa(w
′) = πa(ν

′) and ν ′ /∈ L(φo) since w′ ∈ π−1
o (ν ′), w′ ∈ K ⊆ L(M), and

w′ /∈ L(φ). �

Lemma 5.4 If Ko ∈ Ko, then π−1
o (Ko) ∩ L(M) ∈ K.

Proof. Let K = π−1
o (Ko) ∩ L(M). Then K ⊆ L(M), K is prefix-closed because Ko and

L(M) are both prefix-closed, and K 6= ∅ because Ko is a non-empty subset of πo(L(M)).

We show that K is controllable w.r.t. L(M) and Σc. Let wσ ∈ L(M) with w ∈ K

and σ ∈ Σ \ Σc. If σ /∈ Σo, then wσ ∈ K because πo(wσ) = πo(w) ∈ Ko. Suppose now

that σ ∈ Σo. Then ν = πo(w) belongs to Ko, σ ∈ Σo \ Σc, and νσ ∈ πo(L(M)). As Ko

is controllable w.r.t. πo(L(M)) and Σc, νσ ∈ Ko. Therefore, wσ ∈ π−1
o (Ko), and since

wσ ∈ L(M), wσ ∈ K as required.

103

5 Supervisory Control to Enforce Opacity

It follows directly from the definition K = π−1
o (Ko)∩L(M) that K is normal w.r.t. L(M)

and Σo.

We show finally that K is opaque. Let φ ∈ Φ. Let w ∈ K ∩ L(φ) and let ν = πo(w).

Then ν ∈ Ko, hence π−1
o (ν) ∩ L(M) ⊆ K.

• If π−1
o (ν) ∩ L(M) is not included in L(φ), then πo(w) = πo(w

′) for some w′ ∈

π−1
o (ν) ∩ (K \ L(φ)). Thus πa(w

′) = πa(w) and w′ ∈ K \ L(φ).

• If π−1
o (ν) ∩ L(M) is included in L(φ), then ν ∈ L(φo) by definition of this set. As

Ko is φo-opaque for πa, πa(ν) = πa(ν
′) for some ν ′ ∈ Ko \ L(φo). By definition of

L(φo), ν ′ = πo(w
′) for some w′ ∈ L(M) \ L(φ). Now w′ ∈ π−1

o (ν ′) and ν ′ ∈ Ko,

hence π−1
o (ν ′) ∩ L(M) ⊆ K by definition of K. Therefore, w′ ∈ K \ L(φ). Finally,

πa(w
′) = πa(w) because πa(w) = πa(ν) = πa(ν

′) = πa(w
′).

�

And the last lemma, whose proof is straightforward.

Lemma 5.5 The maps πo and π−1
o (·) ∩ L(M) establish a Galois connection between the

sublanguages of L(M) and the sublanguages of πo(L(M)), with πo ◦ π−1
o (·) ∩ L(M) =

idπo(L(M)).

Note that both operations πo and π−1
o (·) ∩ L(M) are monotone as a consequence of

Lemma 5.5. We can now start the proof of Proposition 5.10.

Proof.(of Proposition 5.10) In view of Lemmas 5.3 and 5.4, K 6= ∅ if and only if Ko 6= ∅.

This implies the equivalence for the first item of Problem 5.1, i.e. the emptiness of the set

of controlled language enforcing opacity.

Moreover, applying Lemma 5.5, the following relations hold for all K ∈ K and Ko ∈ Ko,

• πo(K) ⊆ Ko ⇒ K ⊆ π−1
o (Ko) ∩ L(M)

• K ⊆ π−1
o (Ko) ∩ L(M)⇒ πo(K) ⊆ Ko

• K ⊆ π−1
o ◦ πo(K) ∩ L(M)

• Ko = πo(π
−1
o (Ko) ∩ L(M))

One deduces then the following. SinceKo
† = ∪Ko ∈ Ko, then for anyK ∈ K, πo(K) ⊆ Ko

†,

so K ⊆ π−1
o (Ko

†) ∩ L(M). Hence K† ⊆ π−1
o (Ko

†) ∩ L(M) and then πo(K
†) ⊆ K†

o .

Symmetrically, since K† = ∪K ∈ K then for any Ko ∈ Ko, π−1
o (Ko) ∩ L(M) ⊆ K† ⊆

π−1
o ◦ πo(K

†) ∩ L(M), so πo(π
−1
o (Ko) ∩ L(M)) = Ko ⊆ πo(K

†). Hence, K†
o ⊆ πo(K

†).

Finally, K†
o = πo(K

†).

104

5.3 Computation of the Supremal Controller when Σa and Σo are Comparable

This also implies that π−1
o (K†

o)∩L(M) = π−1
o (πo(K

†))∩L(M). As K† ⊆ π−1
o (πo(K

†))∩

L(M), it follows that K† = π−1
o (K†

o) ∩ L(M).

The fact that both operators πo(·) and π−1
o (·) ∩ L(M) preserve regular languages and

are effectively computable for regular languages concludes the proof for the equivalence of

items (2) and (3) of Problem 5.1. �

Based on Proposition 5.10, whenever Σa ⊆ Σo, we can reformulate the opacity control

problem in terms of the abstract system induced by the observation map πo (with the

ǫ-closure of M) and a new set of secret predicates Φo derived from Φ. Then, we can solve

the problem in this abstract setting, and lift up the solution K†
o to the original setting, as

K† = π−1
o (K†

o) ∩ L(M).

In the sequel, we assume that Σa ⊆ Σo, so applying Proposition 5.10, we can consider

without lost of generality that Σo = Σ. In that case, we will show that the existence of

the optimal controller can always be decided and that this controller is regular.

The fixpoint computation when Σa ⊆ Σc

We present now the case when Σa ⊆ Σc. This means that the controller can observe all

the events of the attacker and control them. With this assumption, we will prove that the

fixpoint computation terminates.

Proposition 5.11 If Σa ⊆ Σc, then gfp(k) = Op(L(M)).

Proof. We show that the prefix-closed language Op(L(M)) is controllable, which implies

that this language is a fixpoint for k6. Let w ∈ Op(L(M)) and σ /∈ Σc, such that wσ ∈

L(M). As Σa ⊆ Σc, σ /∈ Σa and then wσ ∈ [w]a ∩ L(M). According to Lemma 5.1,

wσ ∈ [w]a ∩Op(L(M)), and then wσ ∈ Op(L(M)). �

Remark 5.4 It is a good place to make a link with the work of [TO08] that has been made

in parallel of this thesis. In this article, the authors investigate the opacity control problem

under full observation. With the assumption

∀w,w′ ∈ L(M), ∀σ ∈ Σuc ∩ Σa, w ∼a w
′ ∧ wσ ∈ L(M) =⇒ w′σ ∈ L(M)

that is more general than Σa ⊆ Σc, they show that the fixpoint computation of CN ◦ Op

terminates after a finite number of iterations, which proves the regularity and the com-

putability of the supremal controlled language. Note also That, thanks to Proposition 5.10,

we can extend this work to the case Σa ⊆ Σo.

6Recall that there is no need to prove the normality in the case Σo = Σ

105

5 Supervisory Control to Enforce Opacity

A more general case: Σa and Σc not comparable

We have seen different situations where the fixpoint computation of CN ◦ Op provided a

solution to the opacity control problem. We will see that this methodology cannot always

be applied for opacity properties, which makes the opacity control problem out of the

scope of the classical R&W operator iteration techniques. We illustrate this point with a

counterexample.

Example 5.2 Consider the LTS M shown in Figure 5.3 where Σa = {a, b,X, Y }, Σua =

{c, u}, Σc = {c} and Σo = Σ. The transitions that are unobservable to the attacker are

pictured in gray and the controllable transitions with dashed arrows. The secret predicate

is such that L(φ) is the set of the sequences reaching the states represented with squares

in M . Let Ki = ki(L(M)) denote the language computed after i iterations of the operator

k = CN ◦ Op. The LTS deta(M) is depicted in Figure 5.4. Based on deta(M), we can see

0

1 2

6 7 8

5

3

9

4
a

c

b
Y

X

u

u

b c a

XY

Figure 5.3: A problematic LTS M

{0} {1, 2, 6} {0, 3, 7, 8}

{5}

{1, 2, 6, 9}

{4, 5}

a b

X

a

b

Y

X

Figure 5.4: The LTS deta(M)

that only the observed trace aX discloses the secret. The set of counterexamples to opacity

is then Disclose(L(M), πa)(φ) = π−1
a (aX) ∩ L(M) = {acX}. Therefore, Op(L(M)) =

106

5.3 Computation of the Supremal Controller when Σa and Σo are Comparable

L(M)\{acX}, so to restrict this language to a controllable sublanguage, we need to disable

the occurrence of the event c after the first a. We obtain then K1 = CN ◦ Op(L(M)). The

LTS that generates K1 is represented in Figure 5.5. In K1, the word acX has disappeared

01 11 0

1 2

6 7 8

5

3

9

4
a

u

a

c

b
Y

X

u

u

b c a

XY

Figure 5.5: The language K1

but doing so, we have introduced a new counterexample to opacity. Indeed, the word aubcY

now discloses the secret, which requires to disable the event c after aub. The resulting

language K2 is depicted in Figure 5.6. Now, the word aubuacX discloses the secret in K2.

01 1111

62 72

0

1 2

6 7 8

5

3

9

4
a

u

b

u

a

c

b
Y

X

u

u

b c a

XY

Figure 5.6: The language K2

We see on the figure 5.6 that by iterating the operator Op and CN , we will always retrieve

the same pattern on the right of the figure, after the states 0, 1, 2, On these iterations,

we will always be able to find a single word disclosing φ, alternatively finishing by acX

or bcY and ending at state 5. Even though the limit gfp(k) of this decreasing chain is

the regular language (aubu)∗, the fixpoint iteration produces then a strictly decreasing and

infinite sequence of languages Ki showing that the above fixpoint computation algorithm

does not terminate.

107

5 Supervisory Control to Enforce Opacity

As the classical R&W fixpoint iteration technique cannot always be applied for opacity,

we need to design a new algorithmic approach to solve the opacity control problem. The

fixpoint computation does not provide a solution because it fails to find good invariants

from the set of disclosing words. Indeed, we can remark on the example 5.2 that the words

with suffixes acX or bcY will always be problematic whereas the iterations of k only remove

prefixes of such words.

The algorithmic approach that we present in the sequel takes into account how the

knowledge of the attacker influences the way to control. More precisely, we show that this

control only depends on the state of the system and the set of states the system may have

reached from the point of view of the attacker7.

Regularity of the Supremal Controlled Language

Next, we analyze the influence of opacity on the control law, and we show that this control

law can be represented in a “state based” fashion. With this analysis, we will be able to

prove that the supremal controlled language is always regular under the assumption that

Σo = Σ (or equivalently Σo ⊆ Σ). This will also suggest a structure on which the controller

can effectively be computed.

In order to avoid considering the case when K = ∅, we now make some assumptions

about Φ and M . This will simplify the presentation in the rest of this chapter as the set

K will always be non-empty. We assume that:

1. ǫ /∈ L(φ) for all φ ∈ Φ;

2. the transitions starting from the initial states of M are controllable and observable

by the attacker.

With this assumptions, {ǫ} is non-empty, prefix-closed, controllable and normal. Also, {ǫ}

is opaque so {ǫ} ∈ K. Therefore K 6= ∅ and K† = ∪K is the unique supremal controlled

language enforcing the opacity on M .

Remark 5.5 This two assumptions can be made without lost of generality. Indeed, we

can consider a new state q′, a new event σ′ and replace M by a new LTS M ′ with initial

state q′ such that there is a transition labeled by σ′ from q′ to every initial state of M .

Then, we consider the opacity control problem for M ′, the set of regular secret predicates

Φ′ defined by L(φ′) = σ′L(φ) for every φ ∈ Φ and the new set of events Σ′
c = Σc∪{σ

′} (then

Σ′
o = Σo ∪ {σ

′}) and Σ′
a = Σa ∪ {σ

′}. Define K′ similarly to the expression (5.1). With

this construction, K ′ ∈ K′ if and only if σ′−1K ′ ∈ K which means that the problem 5.1(2)

and (3) are equivalent for M and M ′. Then K† = {ǫ} if and only if K = ∅.

7Intuitively, the state estimates from deta(M)

108

5.3 Computation of the Supremal Controller when Σa and Σo are Comparable

To simplify the notations, we will also note L0 = L(M) for the rest of this chapter. In

the sequel, it will also be easier to manipulate a deterministic LTS. Therefore, applying

Proposition 3.7, let G = (Σ, Q, δ, q0) be a deterministic LTS such that L(G) = L0 and for

all φ ∈ Φ, there exists F (φ) ⊆ Q such that for all w ∈ L(G),

δ(w, q0) ∈ F (φ) ⇐⇒ w ∈ L(φ)

According to the hypothesis given above, q0 /∈ F (φ), for all φ ∈ Φ and δ(·, q0)
−1(Q) ⊆

Σc ∩ Σa.

We reasoned until now upon the family K of all non-empty and prefix-closed sublanguages

K of L0 such that K is controllable and opaque. We will now replace K with a family

H of maps h : P(Q) × Q → P(Σ∗) each of them defining a doubly indexed collection of

languages h(e, q) ⊆ l(q), where l : Q→ P(Σ∗) is the map defined by q 7→ L(G, q,Q).

Definition 5.3 Let H be the family of maps h : P(Q)×Q→ P(Σ∗) such that the following

conditions are satisfied for all (e, q) ∈ P(Q)×Q:

1. h(e, q) is a prefix-closed and controllable sublanguage of l(q),

2. ∀φ ∈ Φ, ∀w ∈ h(e, q), ∃q′ ∈ e, ∃w′ ∈ h(e, q′), w ∼a w
′ ∧ δ(w′, q′) /∈ F (φ).

Intuitively, if a sequence w of a controlled language has reached the state q = δ(w, q0), and

the attacker thinks that G is in one of the states of e according to the observation πa(w)8,

then h(e, q) represents the set of future words accepted by the controlled language. The

second item of Definition 5.3 formalize the constraints such controlled language should

satisfy in these future words in order to enforce opacity.

Note that it is not required that the languages h(e, q) are regular. Also, to avoid dealing

with partial function, we assume that h(e, q) can be empty. In the case of empty languages,

the items (1) and (2) of Definition 5.3 are of course satisfied.

The set of maps H is partially ordered by pointwise inclusion of maps. Thus, h ≤ h′ if

h(e, q) ⊆ h′(e, q) for all e ∈ P(Q) and q ∈ Q. The following lemma states that this set of

maps is closed under arbitrary unions.

Lemma 5.6 If H′ is a set of maps such that H′ ⊆ H, then ∪H′ ∈ H.

Proof. The proof is similar to the one of Proposition 5.6. �

8We will see that e is in fact a condensed representation of such state estimates, consisting in the states
reached directly after the last observable events.

109

5 Supervisory Control to Enforce Opacity

Therefore, the set of maps H has a supremum that we denote by h† = ∪H. Also, from

Definition 5.3, it follows that K = {h({q0}, q0) : h ∈ H, h({q0}, q0) 6= ∅} and then that

K† = h†({q0}, q0).

Now let [w]†a = [w]a ∩K
† ∩ Σ∗Σa and define:

ζ : K† → P(Q)×Q

w 7→

{
({q0}, δ(w, q0)) if w ∈ Σ∗

ua

(δ([w]†a, q0), δ(w, q0)) otherwise

When a word w ∈ K† is generated by G, then the function ζ(w) = (e, q) gives the

knowledge of both parts, e for the attacker and q for the control, regarding the states

that G may have reached. Since the control is under full observation, the controller knows

exactly which state have been reached. The attacker is partially observing the events of

w, and then cannot know more that an estimated set of states that the system may have

reached, as for the determinization procedure of Definition 4.1. For technical reasons, we

do not consider state estimates as for the determinization, but a condensed version of this

state estimates which consists in the set of states the system may have reach directly after

the last observable event of Σa. The usual state estimates can be recovered from condensed

state estimates by computing the states reachable with events of Σua.

Based on this construction, we show that the supremal controlled language after w only

depends on the configuration ζ(w) ∈ P(Q) × Q. Formally, we show that the following

diagram is commutative:

K† r //

ζ

��

r(K†)

P(Q)×Q
h†

99
s

s
s

s
s

s
s

s
s

s

where r denotes the residuation function on K†, i.e. the map r : w 7→ w−1K†. If r = h† ◦ ζ,

then r being surjective, so is h†. This entails that |r(K†)| ≤ |P(Q) × Q| and then the

regularity of K† as there is only a finite number of residual languages. This also suggests

the algorithm for its effective construction, that will be presented in the next sections.

Theorem 5.3 If w ∈ K† and ζ(w) = (e, q), then w−1K† = h†(e, q). So the diagram above

is commutative:

r = h† ◦ ζ

The proof of Theorem 5.3 relies on two more definitions and lemmas.

110

5.3 Computation of the Supremal Controller when Σa and Σo are Comparable

Definition 5.4

Let h̃ : P(Q)×Q → P(Σ∗)

(e, q) 7→ ∪{w−1K† : w ∈ K† ∧ ζ(w) = (e, q)}

Lemma 5.7 h̃ ∈ H

Proof. Let (e, q) ∈ P(Q) × Q. If h̃(e, q) = ∅, then properties (1) and (2) are satisfied.

Suppose that h̃(e, q) 6= ∅. Then, h̃(e, q) is a union of prefix-closed and controllable sublan-

guages of lq(M) which implies property (1). For item (2), let φ ∈ Φ and u ∈ h̃(e, q). Then

wu ∈ K† for some w ∈ K† such that ζ(w) = (e, q). There exists v ∈ K† such that v ∼a wu

and δ(v, q0) 6∈ F (φ). If w ∈ Σ∗
ua then e = {q0}, v ∼a u and δ(v, q0) 6∈ F (φ). Otherwise,

we can write v = w′u′ with w′ ∈ [w]†a and u′ ∼a u. If we let q′ = δ(w′, q0) then q′ ∈ e,

u′ ∈ h̃(q′, e) and δ(u′, q′) = δ(w′u′, q0) 6∈ F (φ) which shows property (2). Therefore h̃ ∈ H.

�

Definition 5.5

Let [[·]] : H → P(Σ∗)

h 7→ ∪{w h(e, q) : w ∈ K† ∧ ζ(w) = (e, q)}

Lemma 5.8 For all h ∈ H, [[h]] ∈ K.

Proof. Let h ∈ H. We note first that K† ⊆ [[h]]. It is clear that [[h]] is a prefix-closed

and controllable sublanguage of L0. Let φ ∈ Φ and u ∈ [[h]]. Then u = wv with w ∈ K†,

ζ(w) = (e, q) and v ∈ h(e, q). Because h satisfies property (2), there must exist q′ ∈ e and

u′ ∈ h(e, q′) such that u′ ∼a u and δ(u′, q′) 6∈ F (φ). Also, there must exist w′ ∈ [w]†a such

that δ(w′, q0) = q′ by definition of ζ. So w′u′ ∼a wu and δ(w′u′, q0) = δ(u′, q′) 6∈ F (φ).

Finally [[h]] ∈ K and then [[h]] ⊆ K†. �

We can now come back to the proof of Theorem 5.3.

Proof.(of Theorem 5.3) Let w ∈ K† such that ζ(w) = (e, q). Clearly, w−1K† ⊆ h̃(e, q)

by definition of h̃. According to lemma 5.7, h̃(e, q) ⊆ h†(e, q) since h̃ ∈ H, so w−1K† ⊆

h†(e, q). Also, from definition 5.5, [[h†]] ⊆ K†. Since h† ∈ H from Lemma 5.8, h†(e, q) ⊆

w−1K†. Therefore, w−1K† = h†(e, q). �

Corollary 5.2 The language K† is regular.

111

5 Supervisory Control to Enforce Opacity

The corollary 5.2 shows that under the assumption Σa ⊆ Σo, the supremal controlled

language enforcing the opacity on M is always regular.

An Informal Presentation of the Constructions

In this section, we give an informal presentation of the proposed algorithm for solving

Problem 5.1.

We have seen with Theorem 5.3 that the residual languages w−1K† only depend on the

configurations ζ(w) = (e, q) where, intuitively, e represents the knowledge of the attacker

about the current state of G and q the one of the controller9. The first key idea of the

algorithm is: instead of computingK†, we only need to compute the set of events h†(e, q)∩Σ

as it is sufficient to recover K†. Indeed, let w ∈ K† such that ζ(w) = (e, q) and σ ∈ Σ.

Then, according to Theorem 5.3, σ ∈ w−1K† ⇐⇒ σ ∈ h†(e, q) ∩ Σ. We can iterate the

process for (wσ)−1K† and construct the language K† by induction.

The second key idea is: the set of events h†(e, q) ∩ Σ actually induce a restriction of

the transition function of G, i.e. we have h†(e, q) ∩ Σ ⊆ δ(·, q)−1(Q), and this restriction

only depends on the estimate e. In other words, if the attacker knows the state estimate

e ∈ P(Q), then the language h†(e, q), q ∈ Q induces the transition function Σ × Q → Q,

(σ, q) 7→ δ(σ, q) if σ ∈ h†(e, q)∩Σ or undefined otherwise. Then, assume that we know the

set of events h†(e, q)∩Σ for each (reachable) configuration (e, q), we can define the partial

function
d† : P(Q) → (Σ×Q → Q)

e 7→ σ, q 7→ δ(σ, q) if σ ∈ h†(e, q) ∩ Σ

Then, given such a partial function d†, we can construct an LTS A†, such that L(A†) =

K†. Indeed, let A† = (Σ,P(Q)×Q, δ†, ({q0}, q0)) where

δ† : Σ× (P(Q)×Q) → (P(Q)×Q)

σ, (e, q) 7→ (e′, d†(e)(σ, q)) where e′ =

{
e if σ /∈ Σa

d†(e)(Σ∗
uaσ, e) otherwise

To prove that L(A†) = K†, let ({q0}, q0)
w
→ (e, q) be a run of A†. By looking at the

definition of d†, it is clear that

δ†(·, (e, q))−1(P(Q)×Q) = h†(e, q) ∩ Σ = w−1K† ∩ Σ

By induction, we can prove that this implies

L(A†, (e, q),P(Q)×Q) = w−1K†

9Recall that the controller observes all Σ. In that case the state estimates are the states of G.

112

5.3 Computation of the Supremal Controller when Σa and Σo are Comparable

which, being true for every (e, q) ∈ P(Q)×Q, corresponds to the fact that L(A†) = K†.

Then, the problem of computingK† is replaced by the problem of computing the function

d†. To compute d†, we consider the set of functions d : P(Q) → (Σ × Q → Q) such that

each function d(e) represents a restriction of δ candidate to be d†. Given a restriction d

defined in such a way, we can compute the LTS Ad, defined like A† but for the function

d, generating the language Ld = L(Ad) ⊆ L0 induced by d. From this language Ld, we

will compute the set of controllable transitions (e, q)
σ
→ (e′, q′), where σ ∈ Σc, that must

be disabled to avoid secret information to be disclosed. This transition should then be

removed from d(e).

Based on this process, we define an operator α removing from a function d the last

controllable transition that must be disabled to avoid violating the opacity property with

respect to the states F (φ), φ ∈ Φ. Starting from the unrestricted function d0 : (e, σ, q) 7→

δ(σ, q), in which case Ld0
= L0, we iterate the operator α until the fixpoint D = gfp(d→

d0 ∩ α(d)) is reached. We know that such fixpoint will be reached as there is only finitely

many functions d. Then, we prove that D = d†, or more precisely that the obtained

language LD is the supremal controlled language enforcing opacity, i.e. LD = L(AD) = K†

which solves item (3) of Problem 5.1.

The Technical Development

We now present the algorithm informally described above. Throughout the section, d :

P(Q) → (Σ × Q → Q) denotes a partial function such that d(e)(σ, q) is either equal to

δ(σ, q) or undefined. The unrestricted function is given by d0 : e 7→ δ. We first present the

different definitions that are needed to compute the fixpoint D suggested above.

Definition 5.6 Given a function d : P(Q) → (Σ × Q → Q), we define inductively, for

each e ⊆ Q, d(e)(ǫ, q) = q and d(e)(σw, q) = d(e)(w, d(e)(σ, q)) for σ ∈ Σua and w 6= ǫ.

The language induced by d is given by the LTS Ad = (Σ,P(Q)×Q, δd, ({q0}, q0)), where

δd : Σ× (P(Q)×Q) → (P(Q)×Q)

σ, (e, q) 7→ (e′, d(e)(σ, q)) where e′ =

{
e if σ /∈ Σa

d(e)(Σ∗
uaσ, e) otherwise

The LTS Ad is deterministic and the transition function δd is extended to words in the

usual way. Finally let Ld = L(Ad).

Remark 5.6 Ld ⊆ L0 by definition of δd.

Remark 5.7 If d′ ⊆ d in the sense that d(e)(σ, q) is defined and equal to d′(e)(σ, q)

whenever the latter is defined, then for any w ∈ Σ∗, δd′(w, (e, q)) = (e′, q′) entails that

113

5 Supervisory Control to Enforce Opacity

δd(w, (e, q)) = (e′′, q′) for some e′′ ⊇ e′. Therefore,

d′ ⊆ d =⇒ Ld′ ⊆ Ld

The following three lemmas show that if a sequence of transitions (ei, qi)
σi→ (ei+1, qi+1),

i = 1 . . . n, is generated from (e1, q1) = (ẽ, q̃) using the transition map δd, then for each i,

d(ei+1)(Σ
∗
ua, ei+1) is the best estimate of the state qi = δ(σ1 . . . σi, q̃) that the attacker can

obtain from πa(σ1 . . . σi) and the knowledge that q̃ ∈ d(ẽ)(Σ∗
ua, ẽ).

Lemma 5.9 Let w,w′ ∈ Ld such that δd(w, (ẽ, q̃)) = (e, q) and δd(w
′, (ẽ, q̃)) = (e′, q′).

Then πa(w) = πa(w
′) =⇒ e = e′.

Proof. We use an induction on the length of πa(w). If this length is zero, i.e. w,w′ ∈

Σ∗
ua, then e = ẽ and e′ = ẽ by Definition 5.6, hence e = e′. Assume now that the

lemma holds when πa(w) has length n, and consider w,w′ ∈ Σ∗ with πa(w) = πa(w
′) ∈

Σn+1
a . Let w = w1σw2 and w′ = w′

1σw
′
2 such that πa(w1) = πa(w

′
1) ∈ Σn

a and σ ∈ Σa,

hence w2, w
′
2 ∈ Σ∗

ua. By the induction hypothesis, if we let δd(w1, (ẽ, q̃)) = (e1, q1) and

δd(w
′
1, (ẽ, q̃)) = (e′1, q

′
1), then e1 = e′1. By Definition 5.6, if we let δd(w1σ, (ẽ, q̃)) = (e2, q2)

and δd(w
′
1σ, (ẽ, q̃)) = (e′2, q

′
2) then e2 = d(e1)(Σ

∗
uaσ, e1) and e′2 = d(e′1)(Σ

∗
uaσ, e

′
1), hence

e2 = e′2. Now (e, q) = δd(w2, (e2, q2)) and (e′, q′) = δd(w
′
2, (e

′
2, q

′
2)). As w2, w

′
2 ∈ Σ∗

ua, by

Definition 5.6, e = e2 and e′ = e′2, hence e = e′. �

Lemma 5.10 If q̃ ∈ d(ẽ)(Σ∗
ua, ẽ), then δd(w, (ẽ, q̃)) = (e, q) implies q ∈ d(e)(Σ∗

ua, e).

Proof. If w = ǫ, then δd(w, (ẽ, q̃)) = (ẽ, q̃) and the property to show coincides with the

hypothesis about (ẽ, q̃). If w = w′σ with σ ∈ Σ, let δd(w′, (ẽ, q̃)) = (e′, q′). One may

assume by induction on words that q′ ∈ d(e′)(Σ∗
ua, e

′), thus q′ = d(e′)(w′′, q′′) for some

q′′ ∈ e′ and w′′ ∈ Σ∗
ua. Then q = d(e′)(σ, q′) = d(e′)(σ, d(e′)(w′′, q′′)) = d(e′)(w′′σ, q′′) ∈

d(e′)(Σ∗
uaσ, e

′). One proceeds by cases. Suppose that σ /∈ Σa, then δd(σ, (q
′, e′)) = (e, q)

entails e = e′ and the desired result follows from q ∈ d(e′)(Σ∗
ua, e

′). Suppose that σ ∈ Σa,

then δd(σ, (q
′, e′)) = (e, q) entails e = d(e′)(Σ∗

uaσ, e
′) and therefore q ∈ e. The desired

result follows from e ⊆ d(e)(Σ∗
ua, e). �

Lemma 5.11 If δd(w, ({q0}, q0)) = (e, q) and q′ ∈ d(e)(Σ∗
ua, e), then there exists w′ ∈ Ld

such that πa(w) = πa(w
′) and δd(w

′, ({q0}, q0)) = (e, q′).

Proof. We use an induction on the length of πa(w). Suppose that |πa(w)| = 0. By Defi-

nition 5.6, e = ({q0}), hence q′ = d({q0})(w
′, q0) for some w′ ∈ Σ∗

ua, and πa(w) = πa(w
′).

By Definition 5.6, δd(w′, ({q0}, q0)) = ({q0}, d({q0})(w
′, q0)) = (e, q′) as desired. Assume

114

5.3 Computation of the Supremal Controller when Σa and Σo are Comparable

now that the proposition holds when πa(w) has length n, and consider now w ∈ Σ∗

with πa(w) ∈ Σn+1
a . Let w = w1σw2 such that πa(w1) ∈ Σn

a and σ ∈ Σa, hence

w2 ∈ Σ∗
ua. Let δd(w1, ({q0}, q0)) = (e1, q1). By Definition 5.6, e = d(e1)(Σ

∗
uaσ, e1). As

q′ ∈ d(e)(Σ∗
ua, e), q

′ = d(e)(w′
2, q

′
2) for some q′2 ∈ e and w′

2 ∈ Σ∗
ua. As e = d(e1)(Σ

∗
uaσ, e1),

q′2 = d(e1)(w
′′
2σ, q

′
1) for some q′1 ∈ e1 and w′′

2 ∈ Σ∗
ua. As πa(w1) has length n, the in-

duction hypothesis applies to δd(w1, ({q0}, q0)) = (e1, q1) and to q′1 ∈ e1 ⊆ d(e1)(Σ
∗
ua, e1).

Therefore, δd(w′
1, ({q0}, q0)) = (e1, q

′
1) for some w′

1 such that πa(w1) = πa(w
′
1). Now

δd(w
′
1w

′′
2σ, ({q0}, q0)) = (d(e1)(e1,Σ

∗
uaσ), q′2) = (e, q′2), hence δd(w

′
1w

′′
2σw

′
2, ({q0}, q0)) =

(e, q′), establishing the lemma. �

We will now investigate which words in Ld actually disclose to the attacker the secret

predicates φ ∈ Φ defined by the accepting states F (φ) ⊆ Q. We show how one can remedy

these security failures. First, let us give a definition.

Definition 5.7 Given a partial function d : P(Q)→ (Σ×Q→ Q), let LE(d) = {e ⊆ Q :

e 6= ∅ ∧ ∃φ ∈ Φ, d(e)(Σ∗
ua, e) ⊆ F (φ)} be the associated set of loosing estimates, and for

any (e, q) ∈ P(Q)×Q such that q ∈ d(e)(Σ∗
ua, e), let

LT (d, (e, q)) = {w ∈ Σ∗ : δd(w, (e, q)) ∈ LE(d)×Q}

be the set of loosing words w.r.t. the state q, the attacker state estimate e and the restriction

d.

The subset of words in Ld that disclose the secret may now be recognized by the automaton

Ad (see Definition 5.6) equipped with the set of accepting states LE(d) × Q, as stated in

the following proposition.

Proposition 5.12 For any w ∈ Ld, [w]a ∩ Ld ⊆ L(φ) if and only if δd(w, ({q0}, q0)) ∈

LE(d)×Q.

Proof. Let w ∈ Ld such that [w]a ∩ Ld ⊆ L(φ). Let δd(w, ({q0}, q0)) = (e, q), and let

q′ ∈ d(e)(Σ∗
ua, e). By Lemma 5.11, (e, q′) = δd(w

′, ({q0}, q0)) for some w′ ∈ [w]a ∩ Ld. As

w′ ∈ [w]a and w′ ∈ Ld, we have w′ ∈ [w]a ∩ Ld ⊆ L(φ). As δ(w′, q0) = q′, it follows that

q′ ∈ F (φ). Therefore, e ∈ LE(d). To show the converse implication, let δd(w, ({q0}, q0)) =

(e, q) ∈ LE(d)×Q. Hence d(e)(Σ∗
ua, e) ⊆ F (φ) according to Definition 5.7. By Lemma 5.9,

for any w′ ∈ [w]a ∩ Ld, if we let q′ = δ(w′, q0) then δd(w
′, ({q0}, q0)) = (e, q′). By

Lemma 5.10, q′ ∈ d(e)(Σ∗
ua, e) ⊆ F (φ). Therefore, [w]a ∩ Ld ⊆ L(φ). �

Proposition 5.13 If (e, q) = δd(w, ({q0}, q0)), then

LT (d, (e, q)) = {w′ ∈ Σ∗ : ww′ ∈ Ld ∧ [ww′]a ∩ Ld ⊆ L(φ)}

115

5 Supervisory Control to Enforce Opacity

Proof. Let w′ ∈ LT (d, (e, q)), then by definition, δd(ww′, ({q0}, q0)) = (e′, q′) with e′ ∈

LE(d). By Proposition 5.12, [ww′]a ∩Ld ⊆ L(φ). To prove the converse inclusion relation,

consider w′ ∈ Σ∗ such that ww′ ∈ Ld and [ww′]a ∩ Ld ⊆ L(φ). Let δd(ww′, ({q0}, q0)) =

(e′, q′). By Proposition 5.12, δd(ww′, ({q0}, q0)) ∈ LE(d) × Q, hence e′ ∈ LE(d). Now

δd(ww
′, ({q0}, q0)) = δd(w

′, (e, q)), hence w′ ∈ LT (d, (e, q)). �

Proposition 5.13 proves that, if (e, q) = δd(w, ({q0}, q0)) for some trace w ∈ L0 and some

partial function d : P(Q) → Σ × Q → Q, then for any w′ ∈ LT (d, (e, q)), if an attacker

gets the state estimate e immediately after the trace w has been executed in G ‖ Ad, then

the attacker can infer from the projection πa(w
′) of the subsequent trace w′ executed in

G ‖ Ad that ww′ is in the secret set L(φ)10. More generally, even though the configuration

(e, q) may not be reachable in Ad, if w′ ∈ LT (d, (e, q)) and (e, q) = δd′(w, ({q0}, q0)) for

some d′ ⊆ d and w ∈ Σ∗, then w′ ∈ LT (d′, (e, q)).

Based on Proposition 5.13, we immediately have the following.

Corollary 5.3 If LT (d, (e, q)) = ∅ for every configuration (e, q) = δd(w, ({q0}, q0)) reached

in Ad, then Disclose(Ld, πa)(Φ) = ∅, i.e. Ld is opaque.

We have now in hands all elements needed to compute D : P(Q) → (Σ × Q → Q) such

that Disclose(LD, πa)(Φ) = ∅ and LD = K† is the largest controllable sublanguage of L0

with this property.

Next, we define the map α removing from a function d the transitions inducing a secret

predicate to be disclosed in Ad. This definition of α present some similarities with the

construction of the operator CN in Section 5.1.

Definition 5.8 Given d : P(Q)→ (Σ×Q→ Q), let α(d) ⊆ d be the partial function such

that

• α(d)(e)(σ, q) is undefined if σ ∈ Σc and LT (d, (e′, q′)) ∩ Σ∗
uc 6= ∅ for (e′, q′) =

δd(σ, (e, q)),

• α(d)(e)(σ, q) = d(e)(σ, q) otherwise.

It is important to note that deciding whether the set LT (d, (e′, q′)) ∩ Σ∗
uc is empty is a

reachability problem that can be checked on the finite automaton generated by the partial

transition map δd from the initial state (e′, q′).

Now, let the partial function D be defined by:

D = gfp(d→ d0 ∩ α(d))

10This also holds for the original system M since L(G) = L(M)

116

5.3 Computation of the Supremal Controller when Σa and Σo are Comparable

The partial function D is well defined since α(d) ⊆ d for all d and there exist only finitely

many partial functions d : P(Q) → (Σ × Q → Q). Note that L(d0) = L0. The following

proposition shows the controllability of the languages obtained by iterating α from d0.

Proposition 5.14 If Ld is controllable, then Lα(d) is also controllable.

Proof. Let w ∈ Lα(d) and σ ∈ Σuc such that wσ ∈ L0. Since Lα(d) ⊆ Ld, w ∈ Ld. As Ld

is controllable, then wσ ∈ Ld. If wσ ∈ Ld \ Lα(d), then we must have σ ∈ Σc according to

Definition 5.8, which is not possible. �

Let di = αi(d0), for i ∈ N. As the language Ld0
= L0 is controllable, the proposition 5.14

implies by induction that all the Ldi
, i ∈ N are controllable. This implies that:

Corollary 5.4 LD is controllable

The following two propositions show that the language LD is the largest controllable sub-

language of L0 such that K† is opaque.

Proposition 5.15 LD is opaque.

Proof. Assume for contradiction that LD is not opaque. Then there exists w ∈ LD

such that [w]a ∩ LD ⊆ L(φ). By Proposition 5.12, w ∈ LT (D, ({q0}, q0)). We claim that

w ∈ Σ∗
uc. In order to establish this property, assume for contradiction that w = w1σw2 with

σ ∈ Σc and w2 ∈ Σ∗
uc. Let δD(w1, ({q0}, q0)) = (q1, e1) and δD(σ, (e1, q1)) = (e2, q2), then

by Proposition 5.13, w2 ∈ LT (D, (e2, q2)). As w2 ∈ Σ∗
uc, by Definition 5.8, α(D)(e1)(σ, q1)

is undefined. As D(e1)(σ, q1) = q2, it is impossible that D = α(D). It follows from this

contradiction that w ∈ Σ∗
uc. Recalling that LD ⊆ L0, we observe now that necessarily

w = ǫ, because w ∈ Σ∗
uc and δ(σ, q0) is undefined for all σ ∈ Σuc. Now [ǫ]a ∩ LD 6⊆ L(φ)

since it has been assumed that q0 /∈ F (φ), hence it is impossible that [w]a ∩ LD ⊆ L(φ).

It follows from this second contradiction that LD is opaque. �

Proposition 5.16 Let K be any controlled sublanguage of L0 such that K is opaque. Then

K ⊆ Ldi
for all i ∈ N.

Proof. In order to establish the proposition, we assume that K 6⊆ Ldi
for some i and we

search for a contradiction. As Ldi
⊇ Ldi+1

for all i ∈ N, we can moreover assume that i

is the least integer such that K 6⊆ Ldi
. As L0 = Ld0

, we have i 6= 0. Let w be a minimal

word w.r.t. the prefix order in K \ Ldi
. As Ldi

is prefix-closed, w 6= ǫ. Let w = w′σ with

σ ∈ Σ. As w has no strict prefix in K \ Ldi
, necessarily w′ ∈ K ∩ Ldi

. Thus, w′ ∈ Ldi
,

w′σ /∈ Ldi
, and w′σ ∈ Ldi−1

since w′σ = w ∈ K ⊆ Ldi−1
. By construction of the map

di = α(di−1), σ ∈ Σc and LT (di−1, (e, q)) ∩ Σ∗
uc 6= ∅ for (e, q) = δdi−1

(w′σ, ({q0}, q0)). By

117

5 Supervisory Control to Enforce Opacity

Proposition 5.13, there exists w′′ ∈ Σ∗
uc such that w′σw′′ ∈ Ldi−1

and [w′σw′′]a ∩ Ldi−1

is included in L(φ). Now w = w′σ is in K, w′σw′′ is in L0 because Ldi−1
⊆ L0, and

w′′ ∈ Σ∗
uc. As K is a controllable sublanguage of L0, it follows that w′σw′′ is in K. As

[w′σw′′]a ∩ Ldi−1
⊆ L(φ) and K ⊆ Ldi−1

by assumption on i, [w′σw′′]a ∩K is included in

L(φ). This contradicts the hypothesis that K is opaque. Therefore, the proposition has

been established. �

Theorem 5.4 LD is the supremal controlled sublanguage of L0 s.t. LD is opaque, i.e.

LD = K†

Proof. Follows directly Propositions 5.15 and 5.16. �

The Theorem 5.4 solves the Problem 5.1 as it shows the correctness of an algorithm to com-

pute the supremal controlled language enforcing the opacity of Φ on G, and by consequence

on M .

Illustration of the algorithm with an example

We new illustrate the algorithm above with a small example. For this, consider the LTS

of Figure 5.3 that we give again in figure 5.7. We keep the same hypothesis, i.e. Σa =

{a, b,X, Y }, Σua = {c, u}, Σc = {c} and Σo = Σ. The secret predicate is defined by the set

of the sequences that reach the state labeled by 5 in the figure. It is already patent from

0

1 2

6 7 8

5

3

9

4
a

c

b
Y

X

u

u

b c a

XY

Figure 5.7: G

the figure 5.7, that letting the transitions labeled by c at state (1) and (7) will lead the

secret to be disclosed. On this example, we will detail step by step the algorithm presented

above to prove that the supremal opaque controlled language of L0 = L(G) is (aubu)∗.

118

5.3 Computation of the Supremal Controller when Σa and Σo are Comparable

The first step consists in extracting from G the partial function d0. For this, we use

a property of the functions d that was implicit in the presentation of the algorithm: we

only need to define d(e) for the state that are reached in G by words of the form wσ with

w ∈ Σ∗
ua and σ ∈ Σa. Indeed, as soon as an event σ ∈ Σa occurs in G, the state estimate

e of the attacker is updated to the new one given by e′ = d(e)(σ, d(e)(Σ∗
ua, e)). Therefore,

d0 is given as follows:

d0({0})(a, 0) = 1

d0({1})(c, 1) = 2, d0({1})(u, 1) = 6

d0({1})(X, 2) = 5, d0({1})(b, 2) = 3, d0({1})(b, 6) = 7

d0({3})(Y, 3) = 4

d0({7})(c, 7) = 8), d0({7})(u, 7) = 0)

d0({7})(a, 0) = 1), d0({7})(a, 8) = 9), d0({7})(Y, 8) = 5)

d0({9})(X, 9) = 4

d0({3, 7})(c, 7) = 8), d0({3, 7})(u, 7) = 0)

d0({3, 7})(a, 0) = 1), d0({3, 7})(a, 8) = 9), d0({3, 7})(Y, 3) = 4), d0({3, 7})(Y, 8) = 5)

d0({1, 9})(c, 1) = 2), d0({1, 9})(u, 1) = 6)

d0({1, 9})(b, 2) = 3), d0({1, 9})(b, 6) = 7), d0({1, 9})(X, 2) = 5), d0({1, 9})(X, 9) = 4)

From d0, we can now derive the transition function δd0
and the automaton Ad0

depicted

in Figure 5.8. On the figure 5.8, we see that the state ({5}, 5) is such that the secret is

disclosed. Therefore, backtracking until the last controllable transition, we see that the

transition ({1}, 1)
c
→ ({1}, 2) need to be removed in Ad0

. According to the definition of

α, the function d1 = α(d0) is obtained by removing d0({1})(c, 1) = 2 from d0. We obtain

then the function d1, given by:

119

5 Supervisory Control to Enforce Opacity

{0}, 0 {1}, 1

{1}, 2

{1}, 6

{5}, 5

{3, 7}, 3

{3, 7}, 7

{3, 7}, 8

{4, 5}, 5 {1, 9}, 9

{4, 5}, 4

{3, 7}, 0 {1, 9}, 1

{1, 9}, 6

{1, 9}, 2

a

c

u

X

b

b

Y

c

u

a

Y

X

a
c

u

X

b

b

Figure 5.8: Ad0

120

5.3 Computation of the Supremal Controller when Σa and Σo are Comparable

d1({0})(a, 0) = 1

d1({1})(u, 1) = 6

d1({1})(b, 6) = 7

d1({3})(Y, 3) = 4

d1({7})(c, 7) = 8), d1({7})(u, 7) = 0)

d1({7})(a, 0) = 1), d1({7})(a, 8) = 9), d1({7})(Y, 8) = 5)

d1({9})(X, 9) = 4

d1({3, 7})(c, 7) = 8), d1({3, 7})(u, 7) = 0)

d1({3, 7})(a, 0) = 1), d1({3, 7})(a, 8) = 9), d1({3, 7})(Y, 3) = 4), d1({3, 7})(Y, 8) = 5)

d1({1, 9})(c, 1) = 2), d1({1, 9})(u, 1) = 6)

d1({1, 9})(b, 2) = 3), d1({1, 9})(b, 6) = 7), d1({1, 9})(X, 2) = 5), d1({1, 9})(X, 9) = 4)

Note that removing d0({1})(c, 1) = 2 from d0 also implies that d0({1})(X, 2) = 5 and

d0({1})(b, 2) = 3 have disappeared in d1 as the configuration ({1}, 2) is no more reachable.

From d1, we obtain the LTS Ad1
depicted in Figure 5.9.

Now, according to the LTS Ad1
, we need to remove the transition d1({7})(c, 7) = 8 to

121

5 Supervisory Control to Enforce Opacity

{0}, 0

{1}, 1

{1}, 6

{7}, 7

{7}, 8

{5}, 5

{7}, 0

{1, 9}, 9 {1, 9}, 1

{1, 9}, 2

{3, 7}, 3

{4, 5}, 4

{1, 9}, 6 {4, 5}, 5

{3, 7}, 0

{3, 7}, 8

{3, 7}, 7

a

u

b

c
u

Y

a a

X c

u

b

X

b

b

c

u

a

a Y

Figure 5.9: Ad1

122

5.3 Computation of the Supremal Controller when Σa and Σo are Comparable

obtain d2 = α(d1). Thus, the function d2 is obtained as follows:

d2({0})(a, 0) = 1

d2({1})(u, 1) = 6

d2({1})(b, 6) = 7

d2({3})(Y, 3) = 4

d2({7})(u, 7) = 0)

d2({7})(a, 0) = 1)

d2({9})(X, 9) = 4

d2({3, 7})(c, 7) = 8), d2({3, 7})(u, 7) = 0)

d2({3, 7})(a, 0) = 1), d2({3, 7})(a, 8) = 9), d2({3, 7})(Y, 3) = 4), d2({3, 7})(Y, 8) = 5)

d2({1, 9})(c, 1) = 2), d2({1, 9})(u, 1) = 6)

d2({1, 9})(b, 2) = 3), d2({1, 9})(b, 6) = 7), d2({1, 9})(X, 2) = 5), d2({1, 9})(X, 9) = 4)

The LTS Ad2
is depicted in Figure 5.10.

{0}, 0

{1}, 1

{1}, 6 {7}, 0

{7}, 7

a

u

b u

a

Figure 5.10: Ad2

We note that there is no loosing estimate in Ad2
. Therefore, α(d2) = d2 and thenD = d2.

We obtain finally that K† = Ld2
= L(Ad2

), i.e. K† = (aubu)∗.

123

5 Supervisory Control to Enforce Opacity

5.4 Conclusion

We consider in this chapter how to enforce opacity on a system modeled by a finite LTS.

For the case Σo ⊆ Σa, we proved solution to this problem based on the fixpoint iteration

technique of Ramadge and Wonham. For the case Σa ⊆ Σo, we give the example of a system

such that this fixpoint iteration does not terminate after a finite number of iterations. We

develop then an new technique to provide a solution to the opacity control problem in that

case.

In the literature, security problems usually arise in the context of infinite systems, includ-

ing for instance unbounded Petri nets. We provided solution to compute counterexample

to opacity in Chapter 4. We can imagine to apply this control technique on an abstraction

G of M , i.e. such that C ‖ G is opaque and then apply the controller C to M . Then

there is no guaranty that C ‖ M is opaque but can repeat the operation of computing

an abstraction G′ of C ‖ M and search for sufficient conditions such that this procedure

terminates, therefore increasing the confidence in the security of M .

124

6 Dynamic Projections to Enforce

Opacity

In the previous chapter, we presented how to enforce the opacity on a system by restricting

its behavior. In this chapter, we consider an alternative approach to enforce opacity on a

system M by computing a projection that dynamically changes the observability of events

in such a way that attackers cannot infer secret information from the observations. For

this purpose, we will develop the notion of dynamic projection and observer and consider

the architecture depicted in Figure 6.1. Such a dynamic projection, say π, is implemented

by an observer O added between the system and the user, taking as input the words

generated by M and sending the observed traces, i.e. the outcomes of π. Such an observer

O is a classical labeled transition system augmented by a map giving at each states of

O, the events that are observable next. The results presented in this chapter follow the

publication of [CDM09a].

System M Observer O Attacker A
w ∈ Σ∗ π(w)

Figure 6.1: Architecture with an observer between M and the attacker

Whereas possible applications that we have in mind for the supervisory control approach

were about automating the design of secure systems, possible applications that we imagine

for this work about dynamic projections is the correction of existing systems where concerns

of confidentiality are critical. Indeed, one of the advantages of dynamic projections is that

their implementation is not intrusive, in the sense that it does not alter the behavior of M

but only the observed traces. This implies that in the context of several and potentially

malicious users A1,A2, . . . ,An, we can implement several observers O1, O2, . . . , On, one

for each user, and no observer for one attacker will influence what the other attackers

can see and deduce from the system1. So, we can implement a dynamic projection that

strongly restricts the observable behavior, and thus the provided service, for unprivileged

users who shall not access critical information, and implement a more permissive one for

authorized users. We can imagine for example a web service with different observability

1For example, this is not true for the controller synthesis approach. See for example [BBB+07]

125

6 Dynamic Projections to Enforce Opacity

policies depending on the IP address of the users.

Given a finite LTS M and a finite set of state-based secret predicates Φ, we will develop

in this chapter the following aspects. First, for static projections, we consider in 6.1 the

optimization problem of computing a maximal set of observable events to ensure opacity

and show that this problem is PSPACE-complete. Second, we formalize the notion of

dynamic projection and the associated notion of observer. We show how to check opacity

when the dynamic projection is given by a finite observer. Finally, we give an algorithm to

compute the set of all dynamic projections enforcing opacity. We show that this problem

can be reduced to a safety 2-player game problem. Intuitively, the first player will play the

rôle of an observer and will decide which subset of event should remain observable after a

given trace. The second player will play the rôle of both the system and the attacker and

will decide what will be the next observable event among the ones Player 1 has last chosen

to render observable. The goal of Player 2 is thus to make the system evolve in the states

in which the attacker is sure that the secret is disclosed, whereas the goal of Player 1 is

opposite (he has to choose the successive sequences of sets of observable events in such a

way that the secret is never disclosed). It results from this reduction that the set of valid

dynamic projections (the ones enforcing opacity) can be finitely represented by a game

LTS. We also prove that this set can be computed in EXPTIME.

In the sequel, we will always consider opacity with respect to the set of state-based secret

predicates Φ, so the term opacity will implicitly stand for Φ-opacity.

6.1 Maximum Cardinality Set for Static Projections

In this section, we investigate the problem of computing the largest set of observable events

such that opacity is preserved. According to Proposition 3.3, if a secret is opaque w.r.t. to

a set of observable events Σa, it will still be opaque w.r.t. any subset of Σa (the less you

observe, the less accurate you are). It might be of interest to hide as few events as possible

from the attacker while still preserving opacity of a secret.

Assume that Φ is opaque on M w.r.t. Σa = ∅. This is true whenever Q\F (φ) 6= ∅ for all

φ ∈ Φ. This suggests an optimization problem which can be formulated as follows: What

is the maximum cardinality of the sets of observable events Σa ⊆ Σ such that the secret is

opaque ? More precisely:

Problem 6.1 (Maximum Number of Observable Events)

• Inputs: A finite LTS M = (Σ, Q, δ,Q0) and a natural number n ∈ N s.t. n ≤ |Σ|.

• Problems:

126

6.2 Opacity with Dynamic Projection

– (A) Is there any Σa ⊆ Σ with |Σa| = n, such that M is opaque w.r.t. Σa ?

– (B) If the answer to (A) is “yes”, find the maximum nmax such that there exists

Σa ⊆ Σ with M opaque w.r.t. Σa and |Σa| = nmax.

Note that we do not search directly for a supremal subset of observable events enforcing

opacity as this supremal subset may not be unique. The following theorem states that

this optimization problem is not harder than verifying opacity given a subset of observable

events.

Theorem 6.1 Problems 6.1 (A) and (B) are PSPACE-complete.

Proof. PSPACE-easiness follows Theorem 4.2 as we can guess a set Σa with |Σa| = n and

check in PSPACE whether M is opaque w.r.t. Σa. Thus Problem 6.1 (A) is in NPSPACE

and thus in PSPACE. PSPACE-hardness follows Proposition 4.4. Indeed, choosing n = |Σ|

and checking that M is opaque w.r.t. Σ which has been shown equivalent to the universality

problem in 4.2.

To solve Problem 6.1 (B) it suffices to proceed to an exhaustive search (for every subset

of Σ) and thus Problem 6.1 (B) is also in PSPACE. To check whether M is opaque w.r.t. Σ,

it suffices to solve Problem 6.1 (B) and then check whether nmax = |Σ|. So this problem

is also PSPACE-complete. �

6.2 Opacity with Dynamic Projection

We now present the notion of dynamic projection and study the opacity verification prob-

lem for this category of observation maps.

We have assumed in the two previous chapters that the observability of events was

given a priori as a projection (e.g. πΣ→Σa). We generalize this approach by studying the

notion of dynamic projections. Such projections can be encoded by means of observers

as introduced in [CT08] for the fault diagnosis problem. In this section, we introduce

the notion of dynamic projection and observers and we investigate the opacity verification

problem in this context.

A dynamic projection renders unobservable some events after a given observed trace (for

example, some outputs of the system) and we search for dynamic projections enforcing the

opacity on M . To illustrate the benefits of such projections, we consider the following

example:

Example 6.1 Consider the LTS M of Figure 6.2, with Σa = Σ = {a, b}. The secret is

given by the states represented by the squares i.e. F (φ) = {q2, q5}. The system M is

127

6 Dynamic Projections to Enforce Opacity

q0 q1 q2 q3

q4 q5 q6
b

a

a

b a
a,b

b

a

b
a,b

Figure 6.2: Illustration of Dynamic Projections

not opaque with respect to Σ since an attacker can disclose the secret φ for every observed

traces of b∗ab.

Now, if either Σa = {a} or Σa = {b}, then the system becomes opaque. Thus if we have

to define static sets of observable events, at least one event will have to be permanently

unobservable. But, we can be less restrictive by using a dynamic projection that will render

unobservable an event only when necessary. In this example, after observing b∗, the attacker

still knows that the system is in the initial state. However, if a subsequent “a” follows, then

the attacker should not be able to observe “b” as in this case the secret information is

disclosed. We can then design a dynamic projection defined as follows: at the beginning,

everything is observable; when an “a” occurs, the observer hides any subsequent occurrence

of “b” and permits only the observation of “a”. Once an “a” has been observed, the projection

releases its policy by letting both “a” and “b” be observable.

In this section, we define the notion of dynamic projection and present how the dynamic

projections can be encoded by observers as introduced in [CT08].

Dynamic Projections and Observers

An (observation-based) dynamic projection is a function that will decide whether to let an

event be observable according to the trace observed by the attacker. For this, we suppose

that the alphabet of events is partitioned into a set Σa of events that can be observable

(interactions, inputs/outputs) and internal events Σ \ Σa that are always unobservable.

The secret predicates being state based, the internal events are all playing a symmetrical

rôle in the following. Then, to simplify the notations, we assume for the rest of this

chapter that there is only one unobservable event τ ∈ Σ \ Σa. The alphabet of events is

then Σ = Σa ∪ {τ}. The set Σa is also partitioned into the set Σv ⊆ Σa of the events

that may become unobservable at runtime (e.g. the outputs of the system) and the set

Σuv = Σa \ Σv of the events that may not become unobservable to the attacker (e.g. the

input actions). To define dynamic projections as in Example 6.1, we first introduce the

notion of observability choice which is a mapping from the traces observed by the attacker

to the set of events of Σa that are observable after this trace. Then, the outcomes of the

128

6.2 Opacity with Dynamic Projection

observability choice always include the set Σuv.

Definition 6.1 (Observability Choice) An (observation-based) observability choice is

a mapping T : Σ∗
a → P(Σa) such that for all traces µ ∈ Σ∗

a, Σuv ⊆ T (µ).

Definition 6.2 (Dynamic Projection) An observability choice T uniquely defines an

(observation-based) dynamic projection by:

πT : Σ∗ → Σ∗
a

ǫ 7→ ǫ

wσ 7→

{
πT (w)σ if σ ∈ T (πT (w))

πT (w) otherwise

Assuming that the word w ∈ Σ∗ is generated by M and µ ∈ Σ∗
a has been observed by

the attacker i.e. µ = πT (w), then the events that are observable are the ones of T (µ).

In this case, the choice of this set does not change until an observable event occurs in

the system. Note that the static projections correspond to observability choices that are

constant mappings.

Example 6.2 The dynamic projection corresponding to the one introduced in Example 6.1

is induced by the observability choice T defined for µ ∈ b∗a by T (µ) = {a}, and T (µ) =

{a, b} for the other observed traces µ ∈ Σ∗ \ b∗a.

We denote by Obs the set of observability choices, i.e.

Obs = {T : Σ∗
a → P(Σa) : ∀µ ∈ Σ∗

a, Σuv ⊆ T (µ)}

and the set Obs† ⊆ Obs will represent the ones defining a dynamic projection enforcing

the opacity on M . The elements of Obs† will be called valid observability choices and their

associated projections will be called valid projections, i.e. if T ∈ Obs† and if r ∈ R(M),

an attacker cannot infer from the observed trace πT ◦ tr(r) whether lst(r) ∈ F (φ) for some

φ ∈ Φ.

Remark 6.1 We assume in this chapter that the observability depends on the trace ob-

served by the attacker. The techniques proposed below for the synthesis of dynamic pro-

jections rely on this assumption. In order to gain in generality, it would be interesting to

investigate the problem to other cases where observability depends on the runs, the gener-

ated traces or the last states of the runs for example. For such subsequent developments,

we will outline in the presentation where this assumption is necessary for the proposed

approach.

129

6 Dynamic Projections to Enforce Opacity

For an LTS M as above and a dynamic projection πT , πT (L(M)) is the set of observed

traces.

Definition 6.3 Given two different observability choices T and T ′, we say that T and T ′

are M -equivalent, denoted T ∼M T ′, whenever for all w ∈ L(M), πT (w) = πT ′(w).

The relation ∼M identifies two observability choices when they define projections that

agree on the words of L(M); they can disagree on other words in Σ∗ but since they will

not be generated by M , it will not make any difference from the point of view of the

attacker. In the sequel we will be interested in computing the interesting part of dynamic

projections given M by computing one observability choice in each class of Obs†/∼M
since

obviously, if T ∼M T ′, then T is valid if and only if T ′ is valid.

For this equivalence relation, we state a lemma that will be useful in the sequel to prove

that two observability choices are equivalent.

Lemma 6.1 Given T, T ′ ∈ Obs, T ∼M T ′ if and only if πT (L(M)) = πT ′(L(M)) and for

all µ ∈ πT (L(M)), T (µ) = T ′(µ).

Proof. We just need to remark that as the observability depends on the observed traces,

we can reformulate T from πT and for every µ ∈ πT (L(M)) by T (µ) = {σ ∈ Σ : ∀w ∈

π−1
T (µ), πT (wσ) = πT (w)σ}. �

In the sequel, we will be interested in checking that M is opaque for a given T and

to synthesize dynamic projections enforcing opacity. In Section 6.2, the projection was

the natural projection as in the previous chapters and verifying opacity was based on the

determinization procedure presented in Chapter 4. Here, we need to find a characterization

of these dynamic projections that can be used to check opacity or to enforce it. To do so, we

introduce the notion of (dynamic) observer [CT08] that will encode a dynamic projection

in terms of transition systems.

Definition 6.4 (Observer) An observer is a tuple O = (Σa, X, δo, x0, V) where (Σa, X,

δo, x0) is a complete and deterministic LTS with X being a (possibly infinite) set of states,

x0 ∈ X the initial state and δo : Σa×X → X the transition function (a total function). The

map V : X → P(Σa) specifies the set of events, with Σuv ⊆ V (x), that the observer keeps

observable at state x ∈ X. We require that for all x ∈ X and for all σ ∈ Σa, if σ /∈ V (x),

then δo(σ, x) = x, i.e. the observer does not change its state when an unobservable event

occurs.

The last assumption encodes the fact that the observability policy of the dynamic projec-

tions depends on the traces observed by the attacker and then cannot change as long as

no observable event occurs.

130

6.2 Opacity with Dynamic Projection

Remark 6.2 Assuming that the observer is at state x and an event σ occurs, it outputs σ

whenever σ ∈ V (x) and then proceeds to δo(σ, x). If σ /∈ V (x), then the observer outputs

nothing (ǫ) and remains at state x. An observer can then be interpreted as a special case

of functional transducer taking a string w ∈ Σ∗ as input, and producing the output which

corresponds to the sequence of events it has chosen to keep observable.

Example 6.3 Examples of observers are given in Figure 6.3, with Σ = Σa = {a, b}

1

V (1) = {a, b}

2

V (2) = {b}

3

V (3) = {a}

4

V (4) = {a, b}

a

b

b

a a, b

a

b

(a)

1

V (1) = {a, b}

2

V (2) = {a}

3

V (4) = {a, b}

b b a, b

a a

(b)

Figure 6.3: Examples of Observers

We now relate the notion of observer to the notion of observability choice.

Proposition 6.1 If O = (Σa, X, δo, x0, V) is an observer, we can define the observability

choice T by T (µ) = V (δo(µ, x0)).

Proof. We have then T : Σ∗
a → P(Σa) and Σuv ⊆ T (µ) for all µ ∈ Σ∗

a as Σuv ⊆ V (x) for

all x ∈ X. �

For an observer O, we will denote by T (O) the observability choice corresponding to the

construction given above.

Proposition 6.2 Given T ∈ Obs, we can construct an observer O such that T (O) = T .

This observer is given by O = (Σa,Σ
∗
a, δo, ǫ, T) where for µ ∈ Σ∗

a, σ ∈ Σa, δo(σ, µ) =

πT (µσ). Then O is an observer.

Proof. The structure (Σa,Σ
∗
a, δo, ǫ) is a complete and deterministic LTS by construction.

For a trace µ ∈ Σ∗
a and σ ∈ Σa, if σ 6∈ T (µ), then πT (µσ) = πT (µ) and then δo(σ, µ) = µ.

So O is an observer. �

Note that, like for automata and languages, there might exists several observers encoding

the same dynamic projection. For example, the observer depicted in Figure 6.3(b) is one

observer that encodes the dynamic projection described in Example 6.2. But, one can

131

6 Dynamic Projections to Enforce Opacity

consider other observers obtained by unfolding an arbitrary number of times the self-loops

in state 1 for example. Note also that the construction above is canonical in the sense

that two observability choices defining the same observer are equal. Finally, to mimic the

language theory terminology, we will say that T ∈ Obs is regular whenever there exists a

finite state observer O such that T (O) = T . Regular observability choices are the ones we

will be interested in for practical applications. We will therefore outline how such regular

observability choices can be obtained when presenting synthesis techniques for dynamic

projections enforcing opacity.

To summarize this part, we can state that with each observability choice T , we can asso-

ciate an observer O such that T = T (O). In other words, we can consider an observability

choice, a dynamic projection or one of its associated observers whenever one representation

is more convenient than the others.

Opacity and Dynamic Projections

A dynamic projection πT induced by T ∈ Obs enforces opacity on M if the attacker

cannot infer from the observed traces that a run of M reaches a state of F (φ) for some

φ ∈ Φ. Then, we should be able to compute the state estimates as for the construction of

chapter 4 and a secret φ will be disclosed when such a state estimate is completely included

in F (φ). But, for technical reasons that will appear in Section 6.3, we consider instead the

condensed state estimates as in Chapter 5. Then, we define EstimT mapping an observed

trace µ ∈ Σ∗
a to the set of states that the system reaches directly after the occurrence of

the last observed event of µ:

EstimT : Σ∗
a → P(Q)

ǫ 7→ Q0

µσ 7→ {q ∈ Q : ∃r ∈ R(M), r = q0
wσ
→ q ∧ πT (wσ) = µσ}

The following proposition gives an alternative formulation of EstimT , showing that it can

also be defined by induction.

Proposition 6.3 Given T ∈ Obs, for all µ ∈ Σ∗
a and all σ ∈ Σa, EstimT (µσ) =

postM ({σ}) ◦ reachM (Σ \ T (µ))(EstimT (µ)).

Proof. The proof, by induction on the length of µ, is similar to the proof on Proposition 4.1.

�

Based on the definition of Estim, we can express with the following proposition the set

of observed traces disclosing a secret.

132

6.2 Opacity with Dynamic Projection

Proposition 6.4 Let T ∈ Obs and φ ∈ Φ. Then,

DTraces(R(M), πT ◦ tr)(φ) = {µ ∈ Σ∗
a : reachM (Σ \ T (µ))(EstimT (µ)) ⊆ F (φ)}

Next, we will investigate how to verify whether DTraces(R(M), πT ◦ tr)(φ) = ∅, i.e. that

the dynamic projection πT enforces opacity.

Checking Opacity for Regular Projections

The problem we are going to address consists in checking whether a given regular dynamic

projection enforces opacity and we show that this problem is PSPACE-complete with

respect to the size of M and the observer. This problem is stated as follows:

Problem 6.2 (Dynamic Opacity Problem)

• Input: A finite LTS M = (Σ, Q, δ,Q0), a finite set of state-based secret predicates Φ

and a regular dynamic projection πT .

• Problem: Is M opaque for πT ?

Let O = (Σa, X, δo, x0, V) be an observer such that T (O) = T . At the beginning, we do not

need to assume that O is finite. We construct an LTS which represents what an attacker

will see under the dynamic choices of observable events made by T . This construction

simply replaces the events by the unobservable event τ when an event is not observable

according to T . To do so, we define the LTS

M ⊗O = (Σ, Q×X, (q0, x0), δM⊗O)

where δM⊗O is defined for each (q, x) ∈ Q×X by:

• if σ ∈ V (x) then δM⊗O(σ, (q, x)) = δ(σ, q)× {δo(σ, x)};

• δM⊗O(τ, (q, x)) =
(
∪σ∈Σ\V (x)δ(σ, q)

)
× {x}.

Then, we define the set of state-based predicates Φo over E(Σ, Q×X) by F (φo) = F (φ)×X

for each secret predicate φ ∈ Φ. Recall also that πa = πΣ→Σa . We can now state that this

transformation preserves the set of observations disclosing a secret.

Proposition 6.5 For all φ ∈ Φ,

DTraces(R(M), πT ◦ tr)(φ) = DTraces(R(M ⊗O), πa ◦ tr)(φo)

133

6 Dynamic Projections to Enforce Opacity

Proof. As O is complete and deterministic, we claim that for all r = q0
w
→ q ∈ R(M)

with πT (w) = µ, there exists a unique ro ∈ R(M ⊗ O), ro = (q0, x0)
u
→ (q, x) such that

πa(u) = µ. To prove this, we reason by induction on the length of w. Suppose that this

holds for all w ∈ Σn. Let r = q
w
→ q′

σ
→ q ∈ R(M) with µ = πT (w). Then, there

exists a unique ro = (q0, x0)
u
→ (q′, x′) ∈ R(M ⊗ O) such that πa(u) = µ. If σ /∈ V (x′),

then πT (wσ) = πT (w) = µ and ro = (q0, x0)
u
→ (q′, x′)

τ
→ (q, x′) is the candidate as

δo(σ, x
′) = x′ and πa(uτ) = πa(u) = µ. Now, if σ ∈ V (x′), then πT (wσ) = µσ and

ro = (q0, x0)
u
→ (q′, x′)

σ
→ (q, δo(σ, x

′)) is the candidate as V (x′) ⊆ Σa implies that σ ∈ Σa

and then πa(uσ) = µσ. Then, the proposition follows from the fact that q ∈ F (φ) if and

only if (q, x) ∈ F (φo). �

Applying this result, we can relate the opacity of M for πT with the Φo-opacity of M⊗O

for πa.

Corollary 6.1 The LTS M is Φ-opaque for πT if and only if M ⊗O is Φo-opaque for πa.

Note that we did not need to assume that O is a finite state observer to establish the

Proposition 6.5 and Corollary 6.1. By consequence this result holds for any kind of observer.

For verification purpose, assume now that O is a finite state observer. Then, applying

Corollary 6.1, we can state the following Theorem to solve Problem 6.2.

Theorem 6.2 For a regular dynamic projection, Problem 6.2 is PSPACE-complete.

Proof. Verifying that M ⊗ O is Φo-opaque is PSPACE-complete in the size of M ⊗ O

according to Theorem 4.2. Since computing M ⊗O is polynomial in the size of M and O,

the Theorem follows corollary 6.1. �

6.3 Enforcing Opacity with Dynamic Projections

We have seen in the previous section how to verify opacity for dynamic projections when

an observer encoding this projection was provided. In this section, we will be interested in

synthesizing dynamic projections enforcing opacity.

For the controller synthesis problem of chapter 5, the set of solutions, i.e. the set of

controlled languages enforcing opacity was closed under arbitrary union. This implied

the existence of a unique supremal solution and we presented algorithms to compute this

supremal solution. But, unfortunately, the following remark states that union does not

preserve the validity of the observability choices.

134

6.3 Enforcing Opacity with Dynamic Projections

Remark 6.3 The set of valid dynamic projections Obs† is not closed under union. Indeed,

consider the LTS M of Figure 6.4 where Σ = Σa = {a, b} and two state-based secret

predicates φ1 and φ2 defined by F (φ1) = {q1} and F (φ2) = {q2}. We define the two

observability choices T1 and T2 by

T1(ǫ) = {a} and T1(µ) = Σa if |µ| ≥ 1

T2(ǫ) = {b} and T2(µ) = Σa if |µ| ≥ 1

Then, both T1 and T2 define valid dynamic projections. Define now T = T1 ∪ T2. Then

T (µ) = Σa for all µ ∈ Σ∗
a and such an observability choice does not enforce the opacity on

M , i.e. T /∈ Obs†. For example, the run q0
a
→ q1 is the only run explaining the observed

trace a and the secret φ1 is then disclosed.

q0

q1

q2

a

b

a, b

a, b

Figure 6.4: The set Obs† is not closed by union

By consequence, we cannot obtain a supremal solution with respect to the order relation

defined by the inclusion over the maps of Obs. In this thesis, we do not present possible

order relations with realistic applications that will also imply the existence of a unique

supremal solution. As for the work on controller synthesis, a possible extension of this work

will be to enforce a security policy consisting for example in confidentiality and availability

requirements. Towards such subsequent developments, we propose in this chapter a method

to represent with a finite game the set of valid dynamic projections. The set of positional

strategies on this games will correspond to the set of regular observability choices enforcing

opacity. The problem we are interested in is stated as follows:

Problem 6.3 (Dynamic Projection Synthesis Problem)

• Input: A finite LTS M = (Σ, Q, δ,Q0) and a finite set Φ of state-based secret predi-

cates.

• Problems:

– (A): Decide whether the set of regular observability choices Obs† is empty ?

– (B): Compute the set of regular observability choices Obs†.

135

6 Dynamic Projections to Enforce Opacity

Remark 6.4 Our aim is actually to be able to generate at least one observer for each

representative of Obs†/∼M
, thus capturing all the interesting dynamic projections.

We start by giving the complexity of solving Problem 6.3 (A).

Proposition 6.6 The problem 6.3 (A) is PSPACE-complete.

Proof. Let the dynamic projection T0 defined by T0(µ) = Σuv for all µ ∈ Σ∗. The pro-

jection πT0
, always hiding the events of Σv, is then the most imprecise projection that

can be defined. Indeed, for T ∈ Obs and for all w,w′ ∈ Σ∗
a, πT (w) = πT (w′) implies

πT0
(w) = πT0

(w′). Then, according to Proposition 3.3, M is opaque for πT implies that

M is opaque for πT0
. So checking whether T0 ∈ Obs

† provides a necessary and sufficient

condition to the existence of a valid observability choice. Since checking whether M is

opaque with respect to T0 is PSPACE-complete according to Theorem 6.2, this is also the

complexity of Problem 6.3 (A). �

Note that T0 is regular as it can be encoded by a one state observer. So the opacity of

M for πT0
also implies that the set of regular observability choices of Obs† is not empty.

6.3.1 Reduction to a 2-player Safety Game

To solve Problem 6.3 (B), we reduce it to a safety 2-player game. Player 1 will play the rôle

of an observability choice and Player 2 the rôle of the system deciding what the attacker

observes. Assume that according to the attacker and the trace that have been observed, M

may have reached e = {q1, q2, . . . , qn} directly after the last observed event2. A round in

the game is: given such an estimate e, Player 1 chooses which letters should be observable

next i.e. a set t ⊆ Σa such that Σuv ⊆ t; then, it hands it over to Player 2 who picks up

an observable letter σ ∈ t; this determines a new set of states that M may have reached

directly after σ, and the turn is back to Player 1. The goals of the Players are defined by:

• The goal of Player 2 is to pick up a sequence of letters such that the set of states

that can be reached after this sequence and all subsequent unobservable trajectories

is included in one of the F (φ) for φ ∈ Φ. If Player 2 can do this, then the secret φ is

disclosed to the attacker. Player 2 thus plays a reachability game trying to enforce a

particular set of states, say Bad (i.e. the states in which the secret is disclosed).

• The goal of Player 1 is opposite. It must keep the game in a safe set of states where

the secret is not disclosed. Thus Player 1 plays a safety game trying to keep the

game in the complement set of Bad.

2We consider here the condensed state estimate, like in the construction of 5.3.2.

136

6.3 Enforcing Opacity with Dynamic Projections

Since we are playing a (finite) turn-based game, Player 2 has a strategy to enforce Bad iff

Player 1 has no strategy to keep the game in the complement set of Bad (turn-based finite

games are determined, consequence of [Mar75]).

We now formally define the 2-player game and show how to obtain a finite representation

of all the regular valid dynamic projections from this game. Let H = (Υ1 ∪ Υ2, S1 ∪

S2, δH , Q0) be a deterministic game LTS given by:

• Player 1 chooses a set of events to hide in Σv ⊆ Σa. Thus, the events of Player 1

are in the alphabet Υ1 = {t ⊆ Σa : Σuv ⊆ t} and Player 2 choses the next observed

event, therefore Υ2 = Σa;

• S1 = P(Q) is the set of Player 1 states and S2 = P(Q) × Υ1 the set of Player 2

states;

• the initial state of the game is the Player 1 state Q0, i.e. the set of initial states of

M ;

• the transition relation δH ⊆ (S1 ×Υ1 × S2) ∪ (S2 ×Υ2 × S1) is given by:

– Player 1 moves (choice of the observable events): if e ∈ S1, t ∈ Υ1, then

δH(t, e) = (e, t);

– Player 2 moves (choice of the next observed event): if (e, t) ∈ S2, σ ∈ t and

e′ = postM ({σ}) ◦ reachM (Σ \ t)(e) 6= ∅, then δH(σ, (e, t)) = e′.

The set of states Bad is defined by:

Bad = {(e, t) ∈ S2 : ∃φ ∈ Φ, reach(Σ \ t)(e) ⊆ F (φ)}

Remark 6.5 The fact that the observability choice depends on the trace observed by the

attacker is important for this definition of Bad. Indeed, when the attacker observes an

trace µ which brings the game is at state (e, t) (we will see later how is the connection

between µ and (e, t)), then the attacker knows which events are observable after µ, i.e. the

events of t. And this set will not change until an event of t, i.e. observable, occurs in M .

Therefore, the set reach(Σ\ t)(e) is exactly the set of states that M may have reached after

µ. If the observability choice depends on the word generated by M , then the computation

of this state estimate is more complicated as the attacker is not aware of all the changes in

the observability of events.

Let Ri(H), i = 1, 2 be the set of runs of H ending in a Player i state. A strategy for

Player i is a mapping fi : Ri(H)→ Υi that associates with each run ending in a Player i

137

6 Dynamic Projections to Enforce Opacity

state, the new choice of Player i. Given two strategies f1 and f2, the game H generates

the set of runs Outcome(f1, f2, H) combining the choices of Player 1 and Player 2 given

by f1 and f2. Let Outcome1(f1, H) = (∪f2
Outcome(f1, f2, H)) ∩ R1(H) denote the set

of runs ending in a Player 1 state which can be generated in the game when Player 1

plays f1 against all the possible strategies of Player 2. The set of runs Outcome2(f2, H)

is similarly defined. We can then identify two strategies when they differ only on runs

that are not reachable by playing these strategies. Then, for i = 1, 2, we say that two

strategies f, f ′ of Player i are equivalent with respect to the game automaton H, denoted

f ∼H f ′ if Outcomei(f,H) = Outcomei(f
′, H). Note that this implies that for all runs

ρ ∈ Outcomei(f,H), f(ρ) = f ′(ρ). Finally, we denote by Strati the set of strategies

(modulo ∼H) for Player i, i.e. Strati = {fi : Ri(H) 7→ Υi}/∼H
. For simplification, we will

identify, in the sequel the map of Ri → Υi and the elements of Strati. We will just need to

prove the equality of two strategies f, f ′ : Ri → Υi by Outcomei(f,H) = Outcomei(f
′, H).

The strategy f1 ∈ Strat1 is a winning strategy for Playing 1 in H for avoiding Bad if for

all f2 ∈ Strat2, no run of Outcome(f1, f2, H) contains a state of Bad. A winning strategy

for Player 2 is a strategy f2 ∈ Strat2 such that for every strategy f1 ∈ Strat1 of Player 1,

every run ρ ∈ Outcome(f1, f2, H) can be be extended to a run of Outcome(f1, f2, H)

reaching a state of Bad.

We have seen that with the game defined above, either Player 1 has a winning strategy

or Player 2 has a winning strategy. The purpose of defining this game is to show that

the set of valid observability choices Obs† corresponds to the set of winning strategies of

Player 1, thus solving Problem 6.3 (B) by obtaining a finite game LTS representing the set

Obs†.

Informal Presentation of the Reduction

We now give the general ideas of the construction presented below. The first step is to

establish a bijective correspondence between the set Obs of observability choices and the

set Strat1 of strategies of Player 1. Let us first define pi = πΥ→Υi
◦ tr, i = 1, 2, where

Υ = Υ1 ∪ Υ2. The maps pi project every run of R(H), to the sequence of events of Υi

occurring in the run. To establish such a correspondence, we associate every observability

choice to a strategy of Player 1 via the map α defined as follows.

Definition 6.5 The map α associates to each observability choice T ∈ Obs a strategy of

Player 1 which consists in playing the outcome of T according to the trace observed by the

attacker, i.e. the outcomes of the projection π2. Formally,

α : Obs → R1(H) → Υ1

T 7→ ρ 7→ T (p2(ρ))

138

6.3 Enforcing Opacity with Dynamic Projections

But, the definition of the game LTS H depends on the system M whereas the observ-

ability choices are given as maps from the whole set Σ∗
a and thus, a priori, independently

of H. We have to show that the game defined above faithfully represents the effects of

dynamic projections with respect to an inquisitive attacker trying to infer the truth of

some predicate of Φ on the runs of M . We show then that α establishes a correspondence

between the set of strategies of Player 1 and the set of observability choices modulo ∼M .

For this, we show with Proposition 6.7 that two observability choices T, T ′ ∈ Obs define the

same strategy if and only if the induced dynamic projections agree on the words generated

by M , i.e.

Outcome1(α(T), H) = Outcome1(α(T ′), H) ⇐⇒ T ∼M T ′

In that case, the relation ∼M corresponds exactly to the equivalence kernel from Defini-

tion 2.4. So, applying the proposition 2.1, the canonical quotient map can(α) is such that

the following diagram is commutative:

Obs
α //

[·]∼M
��

Strat1

Obs/∼M

can(α)

99
s

s
s

s
s

s
s

s
s

s

We also know from Proposition 2.1 that the map can(α) : Obs/∼M
→ α(Obs) is injective.

Then we need to show that α is surjective. For this, we define the map β associating each

strategy of Player 1 to a (partial) function Σ∗
a → P(Σa). For this, given a strategy f , we

show that for each µ ∈ Σ∗
a, there exists at most one run ρ ∈ Outcome1(f,H) such that

π2(ρ) = µ. When such a run exists, we denote it by ρf,µ. Using this, we can define the

map β as follows.

Definition 6.6 The map β associates to each strategy f ∈ Start1 an observability choice

defined by the moves of f for the observed traces of π2(Outcome1(f,H)) and by Σa other-

wise.
β : Strat1 → Σ∗

a → P(Σa)

f 7→ µ 7→

{
f(ρf,µ) when ρf,µ exists

Σa otherwise

We show with Lemma 6.3 that with this definition of β, α ◦ β = idStrat1 , i.e. that

we retrieve exactly the strategy f by applying α to the partial function β(f). Then,

this implies that α is surjective, and by consequence that can(α) establishes a bijective

correspondence between Obs/∼M
and Strat1.

The second step is to show, with Proposition 6.10, that an observability choice defines,

by applying α, a winning strategy on H if and only if this observability choice is valid. This

139

6 Dynamic Projections to Enforce Opacity

establishes then a bijective correspondence between the set of valid observability choices

(modulo ∼M) and the set of winning strategies on H.

Finally, the last step is to show that the set of winning strategies of Player 1 can be

represented by restricting the arena H to safe moves, i.e. to moves that prevent Player 2

to win the game.

Technical Developments

We will now more formally present the construction discussed above. We start with a

technical lemma that will be useful to define the map β.

Lemma 6.2 Given a strategy f ∈ Strat1, for all µ ∈ Σ∗, there exists at most one run

ρ ∈ Outcome1(f,H) such that p2(ρ) = µ.

Proof. For a run ρ ∈ Outcome1(f,H) with lst(ρ) = e, the strategy f uniquely defines the

next state (e, t) where t = f(ρ). Also, The LTS H being deterministic, given σ ∈ Σa, there

is at most one run ρ′ such that p2(ρ
′) = p2(ρ)σ and this run is ρ t

→ (e, t)
σ
→ δH(σ, (e, t))

which exists if δH(σ, (e, t)) is defined. The proof follows by induction. �

This lemma proves that the construction of β from Definition 6.6 is effectively possible.

We directly apply this lemma to prove that α ◦ β = idStrat1 , which implies that α, from

Definition 6.5 is a surjective map, i.e. that every strategy of Player 1 is the image by α of

an observability choice.

Lemma 6.3 For all f ∈ Strat1, α ◦ β(f) = f .

Proof. Let f ∈ Strat1. Then,

α ◦ β(f)(ρ) = α(β(f))(ρ)

= β(f)(p2(ρ)) by definition of α

= f(ρ) by definition of β as ρ is the only run

of Outcome1(f,H) with trace p2(ρ) (Lemma 6.2)

The lemma is then established. �

We show now that two observability choices define the same strategy of Player 1 if and

only if the induced dynamic projections agree on the words of L(M). The first lemma

states that the game preserves the (condensed) state estimates.

140

6.3 Enforcing Opacity with Dynamic Projections

Lemma 6.4 Given T ∈ Obs, for all ρ ∈ Outcome1(α(T), H),

lst(ρ) = EstimT (p2(ρ))

Proof. We prove this by induction on |p2(ρ)|. If |p2(ρ)| = 0, then ρ = Q0 = EstimT (ǫ).

Suppose now that the lemma holds if |p2(ρ)| = n and let ρ′ = ρ
t
→ (e, q)

σ
→ e′ ∈

Outcome1(α(T), H). We have then e = EstimT (µ) where µ = p2(ρ). According to

the definition of α, t = T (µ). According to the definition of δH ,

e′ = postM ({σ}) ◦ reachM (Σ \ t)(e)

= postM ({σ}) ◦ reachM (Σ \ T (µ))(EstimT (µ))

= EstimT (µσ) according to Proposition 6.3

which establishes the lemma. �

This result implies that the observed traces generated by the game, the outcomes of π2,

are also traces observed by the attacker. We show next that the game exactly generates

the observed traces of πT (L(M)).

Lemma 6.5 Given T ∈ Obs, p2(Outcome1(α(T), H)) = πT (L(M)).

Proof. As EstimT (µ) 6= ∅ implies µ ∈ πT (L(M)), it follows from Lemma 6.4 that

p2(Outcome1(α(T), H)) ⊆ πT (L(M)). We prove the other inclusion by induction on the

length of µ ∈ πT (L(M)). If µ = ǫ, EstimT (ǫ) = Q0 ∈ Outcome1(α(T), H). Suppose

that for all µ ∈ Σn
a ∩ πT (L(M)), µ ∈ p2(Outcome1(α(T), H)), and let σ ∈ Σa such that

µσ ∈ πT (L(M)). By hypothesis, there exists a run ρ ∈ Outcome1(α(T), H) such that

p2(ρ) = µ. Then, let e = lst(ρ). As µσ ∈ πT (L(M)), σ ∈ T (µ) and EstimT (µσ) 6= ∅.

According to Lemma 6.4 e = EstimT (µ). Then, e′ = postM ({σ}) ◦ reachM (Σ\T (µ))(e) =

EstimT (µσ) 6= ∅. So δH(σ, (e, T (µ))) is defined and ρ′ = ρ
T (µ)
→ (e, T (µ))

σ
→ e′ ∈

Outcome1(α(T), H). As p2(ρ
′) = µσ, the lemma is established. �

We will now use these two lemmas above to prove that computing the quotient of α by

∼M provides the canonical quotient map of α. In other words, two observability choices

inducing dynamic projections which agree on the words generated by M , will define, via

α, the same strategy of Player 1.

Proposition 6.7 Given T, T ′ ∈ Obs,

T ∼M T ′ ⇐⇒ Outcome1(α(T), H) = Outcome1(α(T ′), H)

141

6 Dynamic Projections to Enforce Opacity

Proof. Suppose that T ∼M T ′. We show that Outcome1(α(T), H) = Outcome1(α(T ′), H)

by induction on the length of the runs. Suppose that this holds if |p2(ρ)| = n and let

ρ′ = ρ
t
→ (e, t)

σ
→ e′ ∈ Outcome1(α(T), H). Then, t ∈ α(T)(ρ) = T (p2(ρ)). According

to Lemma 6.5, p2(ρ) ∈ πT (L(M)). Then, following Lemma 6.1, T (p2(ρ)) = T ′(p2(ρ)) =

α(T ′)(ρ). So t ∈ α(T ′)(ρ) and ρ′ ∈ Outcome1(α(T ′), H). The base case ρ = ǫ is trivial. As

T and T ′ play a symmetrical rôle, we obtain Outcome1(α(T), H) = Outcome1(α(T ′), H).

Suppose now that T and T ′ are such that Outcome1(α(T), H) = Outcome1(α(T ′), H).

Then πT (L(M)) = p2(Outcome1(α(T), H)) = p2(Outcome1(α(T ′), H)) = πT ′(L(M)). Ac-

cording to Lemma 6.1, it remains to show that for all µ ∈ πT (L(M)), T (µ) 6= T ′(µ). To

raise a contradiction, suppose that for some µ ∈ πT (L(M)), T (µ) 6= T ′(µ). Then, we

can find ρ ∈ Outcome1(α(T), H) such that p2(ρ) = µ. As µ ∈ p2(Outcome1(α(T ′), H)),

applying Lemma 6.2, ρ is also the unique run in Outcome1(α(T ′), H) such that p2(ρ) = µ.

Then α(T)(ρ) = T (µ) 6= T ′(µ) = α(T ′)(ρ). Let e = lst(ρ) and t ∈ α(T)(ρ) \ α(T ′)(ρ) (or

t ∈ α(T ′)(ρ) \α(T)(ρ), the rest of the proof is symmetrical w.r.t T and T ′). Then, if σ ∈ t

such that e′ = δ(σ, (e, t)), ρ t
→ (e, t)

σ
→ e′ ∈ Outcome1(α(T), H) \ Outcome1(α(T ′), H).

So Outcome1(α(T), H) 6= Outcome1(α(T ′), H) which is a contradiction. Then, we must

have T (µ) = T ′(µ) for all µ ∈ πT (L(M)). Finally, T ∼M T ′. �

Proposition 6.8 The quotient map can(α) is a bijective correspondence between the set

of observability choices (modulo ∼M) and the set of strategies of Player 1.

Proof. Following Propositions 2.1 and 6.7, the map

can(α) : Obs/∼M
→ Strat1

[T]∼M
7→ α(T)

is such that α = can(α) ◦ [·]∼M
. Furthermore, this map is also injective. As α ◦ β =

idStrat1 , the map α is surjective. So can(α) is also surjective and establishes then a bijec-

tion between Obs/∼M
and Strat1. �

We can now establish a link between the winning strategies of Player 1 and the dynamic

projections enforcing opacity.

Proposition 6.9 Given T ∈ Obs, T ∈ Obs† if and only if α(T) is a winning strategy for

Player 1 in H.

Proof. Assume that T ∈ Obs† and let ρ ∈ Outcome1(α(T), H) with e = lst(ρ) and

µ = p2(ρ). Then, according to Lemma 6.4, e = EstimT (µ). Since T is a valid observability

142

6.3 Enforcing Opacity with Dynamic Projections

choice, for all φ ∈ Φ, reachM (Σ \ T (µ))(e) 6⊆ F (φ); so (e, T (µ)) /∈ Bad. This implies that

α(T) is a winning strategy.

For the other implication, assume that T /∈ Obs†. This means that there exists φ ∈ Φ

and a trace µ ∈ πT (L(M)) such that reachM (Σ \ T (µ))(EstimT (µ)) ⊆ F (φ). Since

µ ∈ πT (L(M)), then according to Lemmas 6.5 and 6.2, there exists a unique run ρ ∈

Outcome1(α(T), H) such that p2(ρ) = µ. Let e = lst(ρ) = EstimT (µ) ∈ Bad. Then

T (µ) is the only move that Player 1 can play after ρ following the strategy α(T) and

(e, T (µ)) ∈ Bad so α(T) is not a winning strategy. �

Theorem 6.3 The map can(α) establishes a bijective correspondence between the set of

valid observability choices (modulo ∼M) and the set of winning strategies of Player 1 in

H.

So, based on this Theorem, we will see how to represent the set of winning strategies of

Player 1 which will provide a finite representation of the set of valid dynamic projections.

6.3.2 The Set of Valid Dynamic Projections

We will now see how to represent the set of valid dynamic projections and also how to

exhibit regular projections.

Theorem 6.4 The set of valid observability choices (modulo ∼M) can be represented by a

finite automaton.

Proof. As H is a turn-based 2-player game under full observation, we can compute the

set of winning strategies that are based on H (see [Tho95]). It is defined as follows:

Let us first compute the set of winning states of the game for player 1. For this, let

Good = (S1 ∪ S2) \ Bad be the set of safe states of H. To solve this 2-player game, we

define the Cpre operator by:

Cpre(X) = {e ∈ S1 : ∃t ∈ Υ1, δH(t, e) ∈ X}

∪ {(e, t) ∈ S2 : ∀σ ∈ t, δH(σ, (e, t)) ∈ X}

The operator Cpre is monotone on the lattice P(S1∪S2). Then, by computing the greatest

fixpoint gfp(X 7→ Good ∩Cpre(X)), we obtain the set Win = ∩iCpre
i(Good) of winning

states of the game for Player 1 [Tho95]. As the set of states is finite, this computation

terminates. If the initial state of the game belongs to Win = ∩iCpre
i(Good), then there

is a strategy for Player 1 to win.

Consider now the following finite LTS H derived from H and defined by H = (Υ1 ∪Υ2,

Win, δH, Q0), where δH is the restriction of δH to the states Win, i.e. δH is undefined

143

6 Dynamic Projections to Enforce Opacity

whenever δH is undefined or the image is a state outside Win. Now, f is a winning strat-

egy for Player 1 w.r.t. H and Bad if and only if for any run ρ ∈ R1(H), the move f(ρ)

follows the restriction δH, namely, every move defined by f is a move of H. Now, from

Theorem 6.3, given a winning strategy f , we can define a valid observability choice which

is encoded by f and H. �

Remark 6.6 Note that, according to Theorem 6.3 and Proposition 6.6, the opacity of M

for the static projection πΣ→Σuv is also a necessary and sufficient condition for the existence

of a winning strategy for Player 1.

The previous theorem states that H can be used to generate any observer. We will

see with the next proposition how to define a regular observability choice considering a

state-based winning strategy.

Proposition 6.10 Given a winning strategy f ∈ Strat1 that is state based, we can define

a finite state observer encoding the corresponding valid dynamic projection.

Proof. If f is state-based, then there exists a map f̄ : S1 → Υ1 such that for all run

ρ ∈ R1(H), f(ρ) = f̄ ◦ lst(ρ). Then, the corresponding observability choice can be imple-

mented by the observer O = (Σa, S1 ∪ {xnew}, δo, Q0, V) where for e ∈ S1, δo(σ, e) = e′ if

e′ = δH(σ, (e, f̄(e))) is defined and δo(σ, e) = xnew otherwise. We complete the definition

of δo by δo(σ, xnew) = xnew. Also, V is defined by V (e) = f̄(e) and V (xnew) = Σa. �

Finally, we can now state an upper bound for the complexity of Problem 6.3. Indeed,

an immediate corollary of Theorem 6.4 is the following:

Corollary 6.2 Problem 6.3 (B) is in EXPTIME.

Proof. Computing the winning states and H on turn-based games can be done in linear

time in the size of the game. As H has size exponential in the size of M and Σa, the

algorithm we provide to solve Problem 6.3 is in EXPTIME. �

We do not investigate in this thesis whether Problem 6.3 is EXPTIME-complete. This

question remains open.

Example 6.4 To illustrate this section, we consider the following small example. The

system is depicted by the LTS in Figure 6.5(a) with Σ = Σa = Σv = {a, b}. The secret

predicate φ is defined by F (φ) = {2}. Figure 6.5(b) represents the associated game au-

tomaton. The states of Player 1 are represented by circles whereas the ones of Player 2

are represented by squares. The only state of Bad is the state ({2}, {a, b}) (bottom left) as

144

6.3 Enforcing Opacity with Dynamic Projections

1 2

(a): the automaton M

x1

V (x1) = {a}

x2

V (x2) = {a, b}

(c): an observer

{1, 2}, {a}

{1}, {a}

{1}

{1, 2}{1}, {b} {1, 2}, {b}

{1, 2}, {a, b}

{2}, {a} {2}, {b}

{1}, {a, b} {2}{2}, {a, b}

(b): The game automaton

{a}
{b}

{a, b}

{a}
{b}

{a, b}

{a}

{b}

{a, b}

a

b

a, b

a
b

a, b

a

b

a, b

a

b

a

b b

a

a, b

Figure 6.5: Example of a game automaton

145

6 Dynamic Projections to Enforce Opacity

reachM (∅)({2}) = {2} ⊆ F (φ). The set of winning strategies of Player 1 is obtained when

Player 1 does not play {a, b} in state ({2}). This corresponds effectively to what we can

observe on the LTS; if the attacker knows that the system has reached the state {2} after

an observed trace such that both a and b are observable next, then he knows for sure that

the system is at state {2} and the secret is disclosed.

To obtain the game LTS H, it is then sufficient to remove the state ({2}, {a, b}) and

therefore the move of Player 1 {a, b} at state ({2}).

Note, as it is patent from M , if the observability choice consists in hiding either a or b

at the beginning (i.e. for the trace ǫ), then the attacker will never be able to infer from the

subsequent observed traces that the system is at state (1) or (2). An example of such an

observer encoding a valid observability choice is depicted in figure 6.5(c).

6.4 Conclusion

In this chapter, we have investigated the synthesis of opaque systems when the observability

of events can change over time. In the context of static observers, where the observability

of events is fixed a priori, we provided an algorithm to compute a maximal subalphabet of

observable events ensuring opacity. We also show that this problem is PSPACE-complete.

Then, we considered the case where the observability of events can be modified at run-

time. We defined a model of dynamic projection based on the notion of observability

choice, determining whether an event is observable after a given observed trace, and im-

plemented by mean of observers which is a classical LTS augmented with observability

information. We formulated the notion of valid observability choice, i.e which induces a

dynamic projection enforcing opacity. We proved that verifying the validity of a regular

observability choice, i.e. encoded by a finite state observer, is PSPACE-complete. We

provided a method to compute the set of all valid observability choices by computing the

set of winning strategies in a turn-based safety two-player game and demonstrated in that

case that the set of all valid observability choices can be finitely represented. We have

shown that this representation can be computed in exponential time w.r.t the size of the

system.

In this chapter, we assumed that the observers can change the set of observable events

only after an observable event has occurred. It would be interesting to investigate also the

case where this decision depends on the word executed by the system. The case where the

observability choices depend on the state of the system should also be considered.

Finally, we only gave a finite representation of all the dynamic projections enforcing

opacity. A natural continuation of this work would be to search for a dynamic pro-

jection enforcing opacity that is optimal with respect to some criteria. For example,

in [CDM09a, CDM09b], we proposed a solution which consists in defining cost functions

146

6.4 Conclusion

over the number of observable events that need to be hidden. This permitted to select

an optimal dynamic projection minimizing this cost. But is is not clear that such cost

functions correspond to some optimization requirement that we can encounter for practi-

cal applications. In order to define a meaningful order relation over this set of dynamic

projections, it would be interesting to investigate more availability requirements. Based

on our game representation, an objective would be to select a dynamic projection ensuring

the best quality of service, for example minimizing the number of unanswered requests.

147

6 Dynamic Projections to Enforce Opacity

148

7 Conclusion

In this thesis, we investigate two different kinds of problems related to the notion of opacity.

The first one is to verify whether a given system satisfies opacity. We prove that this

problem is PSPACE-complete for finite systems. For infinite systems, we consider provided

an abstract interpretation framework based on Galois connections. In this context, we

present how to derive sound monitors allowing an attacker to infer secret information at

runtime. We also show how to combine overapproximations and underapproximations to

detect confidentiality vulnerabilities on a possibly infinite system. The second approach

is to certify opacity on an infinite system when a regular abstraction of its language is

provided. In that case, we present sufficient conditions regarding this abstraction to certify

at runtime that no violation of opacity (i.e. no flow of secret information) has occurred.

The second objective is opacity enforcement and we present two approaches to solve this

problem. The first one consists in restricting the system in order to confine its behavior to

a secure subset. This is achieved by applying the supervisory control theory and computing

a most permissive finite controller which, implemented in parallel with the system, enforces

opacity. The second one consists in modifying the observability of the events in order to

confuse the attacker and to prevent him from inferring the truth of a secret predicate. We

have shown that this problem can be reduced to the computation of winning strategies in

a safety 2-player game.

The work presented in this thesis suggest several other problems that should be interesting

to investigate.

First, it would be interesting to implement the analysis techniques presented in chapter 4

to study their applicability to real systems. A possible direction for such an implementation

can be to use the abstract domains library APRON [JM09].

Second, we can remark that in the game presented in Chapter 6, the computation of

winning strategies, and then dynamic projections, is mostly based on the operators postM
and reachM . In chapter 4, we present an method to compute sound monitors that is based

on approximating theses operators postM and reachM . Therefore, it would be interesting

to consider the problem of computing dynamic projections in the case of infinite systems,

provided as in Section 4.3 an abstraction interpretation framework to overapproximate and

underapproximate the state estimates of the attacker.

149

7 Conclusion

Third, as already suggested in the presentation of the reduction to a game in Chapter 6,

the proposed game reduction technique relies on the assumption that the observability

choice depends on the traces observed by the attacker. It would be interesting to study

other situations where the observability depends for example on the words executed by the

system. Also, in aspect oriented programing, the purpose it is improve the modularity of

different aspects of a program, e.g. functionality, performance, security, etc. These aspects,

e.g. logging strategies, timeout periods, are defined independently and later combined

into a single program. This combination is based on joint points that are special generic

instruction verifying if some properties are satisfied in order to proceed. Therefore, it would

interesting to also investigate observability choices that depend on the last state of a run

and connect the resulting techniques with the join points of aspect oriented programming.

Fourth, in Chapter 5, we provide a solution to the opacity control with the assumption

that the set of events observable by the controller, Σo, and the ones observable by the

attacker, Σa, are comparable. But there can be practical situations where this two sets

are not comparable. It is therefore essential, in order to provide a complete theory for the

opacity control problem, to also provide a solution to this general case where Σo and Σa

are not comparable.

Finally, the most interesting extension of this thesis would be to investigate the opacity

enforcement techniques presented in Chapters 5 and 6 in the context of probabilistic mod-

els. Indeed, with the notion of opacity, the attacker cannot infer that a secret predicate

is satisfied on the basis of an observation if there exists at least one run explaining this

observation which is not satisfying this predicate. But it may happen that the set of runs

compatible with an observation and not satisfying a secret predicate may have a very low

probability to have been executed. It that case, the attacker can for example infer the

truth of a secret predicate with a very low probability of error. Therefore, the system can-

not be considered as secure, even if the opacity property is not violated. In this direction,

the authors of [LM05] extend the notion of opacity to the case of probabilistic system.

Another approach that seems promising to treat this problem is to apply the methods

developed in [CPP08, BCP08] which consists in considering the system as an information

channel between the secret predicates and the attacker. A possible solution, opposite to

the classical concern of information theory, can then be to decrease at most as possible the

quality of this channel.

150

List of Figures

0.1 Architecture Générale pour l’opacité . 9

0.2 Un exemple de non opacité . 10

0.3 Détections de vulnérabilités utilisant diagnostique et abstraction régulière . 16

0.4 Assurer l’opacité par contrôle (I) . 18

0.5 Assurer l’opacité par contrôle (II) . 19

2.1 An example of LTS . 46

3.1 General architecture . 52

3.2 Example of sound monitor . 53

3.3 Simple example of non opacity . 55

3.4 An insecure vending machine . 58

4.1 Example of determinization . 64

4.2 L1 is opaque but not L2 . 80

4.3 L2 is opaque but not L1 . 80

4.4 Diagnosing information flow . 81

4.5 Union does not preserve diagnosability . 83

4.6 Diagnosing information flow using abstractions 86

5.1 Removing disclosing words may introduce new vulnerabilities 97

5.2 Unnecessary condition for the Opacity Control Problem 99

5.3 A problematic LTS M . 106

5.4 The LTS deta(M) . 106

5.5 The language K1 . 107

5.6 The language K2 . 107

5.7 G . 118

5.8 Ad0
. 120

5.9 Ad1
. 122

5.10 Ad2
. 123

6.1 Architecture with an observer between M and the attacker 125

6.2 Illustration of Dynamic Projections . 128

151

List of Figures

6.3 Examples of Observers . 131

6.4 The set Obs† is not closed by union . 135

6.5 Example of a game automaton . 145

152

Bibliography

[Aba98] Martín Abadi. Protection in programming-language translations. In In Pro-

ceedings of the 25th International Colloquium on Automata, Languages and

Programming, page 868–883. Springer-Verlag, 1998.

[AČC07] Rajeev Alur, Pavol Černý, and Swarat Chaudhuri. Model checking on trees

with path equivalences. In TACAS 2007, page 664–678. Springer, 2007.

[AČZ06] Rajeev Alur, Pavol Černý, and Steve Zdancewic. Preserving secrecy under re-

finement. In ICALP ’06: Proceedings (Part II) of the 33rd International Col-

loquium on Automata, Languages and Programming, page 107–118. Springer,

2006.

[AG99] Martin Abadi and Andrew D. Gordon. A calculus for cryptographic protocols:

The spi calculus. Information and Computation, 148:36–47, 1999.

[BAF05] Bruno Blanchet, Martín Abadi, and Cédric Fournet. Automated Verification

of Selected Equivalences for Security Protocols. In 20th IEEE Symposium on

Logic in Computer Science (LICS 2005), page 331–340, Chicago, IL, June

2005. IEEE Computer Society.

[BBB+06] Eric Badouel, Marek A. Bednarczyk, Andrzej M. Borzyszkowski, Benoît

Caillaud, and Philippe Darondeau. Concurrent secrets. In S. Lafortune,

F. Lin, and D. Tilbury, editors, 8th Workshop on Discrete Event Systems,

WODES’06, Ann Arbor, Michigan, USA, July 2006.

[BBB+07] Eric Badouel, Marek A. Bednarczyk, Andrzej M. Borzyszkowski, Benoît Cail-

laud, and Philippe Darondeau. Concurrent secrets. Discrete Event Dynamic

Systems, 17:425–446, December 2007.

[BCLR09] Gilles Benattar, Franck Cassez, Didier Lime, and Olivier H. Roux. Synthesis

of Non-Interferent Timed Systems. In Proc. of the 7th Int. Conf. on Formal

Modeling and Analysis of Timed Systems (FORMATS’09), Lecture Notes in

Computer Science, Budapest, Hungary, September 2009. Copyright Springer.

153

Bibliography

[BCP08] Christelle Braun, Konstantinos Chatzikokolakis, and Catuscia Palamidessi.

Compositional methods for information-hiding. In FOSSACS’08, Lecture

Notes in Computer Science 4962, page 443–457. Springer, 2008.

[Bis04] Matt Bishop. Introduction to computer security. Addison-Wesley Profes-

sional, 2004.

[BKMR05] Jeremy Bryans, Maciej Koutny, Laurent Mazaré, and Peter Y. A. Ryan. Opac-

ity generalised to transition systems. In Theo Dimitrakos, Fabio Martinelli,

Peter Y. A. Ryan, and Steve A. Schneider, editors, Revised Selected Papers

of the 3rd International Workshop on Formal Aspects in Security and Trust

(FAST’05), volume 3866 of Lecture Notes in Computer Science, page 81–95,

Newcastle upon Tyne, UK, 2005. Springer.

[BKMR08] Jeremy Bryans, Maciej Koutny, Laurent Mazaré, and Peter Y. A. Ryan. Opac-

ity generalised to transition systems. International Journal of Information

Security, 7(6):421–435, 2008.

[BL73] David D.E. Bell and Leonard J. La Padula. Secure computer system: Math-

ematical foundations. Technical Report 2547, MITRE, March 1973.

[BS81] Stanley Burris and H. P. Sankappanavar. A Course in Universal Algebra.

Springer-Verlag Graduate Texts in Mathematics, the millennium edition edi-

tion, 1981. Link to PDF.

[CC77a] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice

model for static analysis of programs by construction or approximation of fix-

points. In Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, page 238–252, Los An-

geles, California, 1977. ACM Press, New York, NY.

[CC77b] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice

model for static analysis of programs by construction or approximation of

fixpoints. In 4th ACM Symposium on Principles of Programming Languages,

POPL’77, Los Angeles, January 1977.

[CC92a] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks.

Journal of Logic and Computation, 2(4):511–547, August 1992.

[CC92b] Patrick Cousot and Radhia Cousot. Comparing the Galois connection and

widening/narrowing approaches to abstract interpretation, invited paper. In

M. Bruynooghe and M. Wirsing, editors, Proceedings of the International

154

http://www.math.uwaterloo.ca/~snburris/htdocs/UALG/univ-algebra.pdf

Bibliography

Workshop Programming Language Implementation and Logic Programming,

PLILP ’92,, Leuven, Belgium, 13–17 August 1992, Lecture Notes in Computer

Science 631, page 269–295. Springer-Verlag, Berlin, Germany, 1992.

[CDM09a] Franck Cassez, Jérémy Dubreil, and Hervé Marchand. Dynamic observers

for the synthesis of opaque systems. In 7th International Symposium on

Automated Technology for Verification and Analysis (ATVA’09), Macao SAR,

China, October 2009.

[CDM09b] Franck Cassez, Jérémy Dubreil, and Hervé Marchand. Dynamic observers for

the synthesis of opaque systems. Technical Report 1930, IRISA, May 2009.

An extended version of the paper of ATVA’09.

[CL08] Christos G. Cassandras and Stéphane Lafortune. Introduction to Discrete

Event Systems. Springer, 2008.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms. The MIT Press, 2nd revised edition edition,

September 2001.

[CMR07a] Franck Cassez, John Mullins, and Olivier H. Roux. Synthesis of non-

interferent distributed systems. In 4th Int. Conf. on Mathematical Methods,

Models and Architectures for Computer Network Security (MMM-ACNS’07),

January 2007.

[CMR07b] Franck Cassez, John Mullins, and Olivier H. Roux. Synthesis of non-

interferent systems. In 4th Int. Conf. on Mathematical Methods, Models and

Architectures for Computer Network Security (MMM-ACNS’07), volume 1

of Lecture Notes in Computer Science Series: Communications in Computer

and Inform. Science, page 307–321. Copyright Springer, September 2007.

[CPP08] Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Prakash Panan-

gaden. Anonymity protocols as noisy channels. Inf. Comput., 206(2-

4):378–401, 2008.

[CT08] Franck Cassez and Stavros Tripakis. Fault diagnosis with static or dynamic

diagnosers. Fundamenta Informaticae, 88:497–540, 2008.

[DDHR06] Martin De Wulf, Laurent Doyen, Thomas A. Henzinger, and Jean-François

Raskin. Antichains: A new algorithm for checking universality of finite au-

tomata. In Proceedings of CAV 2006: Computer-Aided Verification, Lecture

Notes in Computer Science 4144, page 17–30. Springer-Verlag, 2006.

155

Bibliography

[DDM08] Jérémy Dubreil, Philippe Darondeau, and Hervé Marchand. Opacity Enforc-

ing Control Synthesis. In B. Lennartson, M. Fabian, K. Akesson, A. Giua,

and R. Kumar, editors, Proceedings of the 9th International Workshop on

Discrete Event Systems (WODES’08), page 28–35, Göteborg, Sweden, May

2008. IEEE.

[DDM09] Jérémy Dubreil, Philippe Darondeau, and Hervé Marchand. Supervisory con-

trol for opacity. IEEE Transactions on Automatic Control, 2009. To appear.

[DDMR08a] Martin De Wulf, Laurent Doyen, Nicolas Maquet, and Jean-François Raskin.

Alaska: Antichains for logic, automata and symbolic kripke structures anal-

ysis. In ATVA: Automated Technology for Verification and Analysis, Lecture

Notes in Computer Science. Springer-Verlag, 2008.

[DDMR08b] Martin De Wulf, Laurent Doyen, Nicolas Maquet, and Jean-François Raskin.

Antichains: Alternative algorithms for ltl satisfiability and model-checking. In

TACAS: Tools and Algorithms for the Construction and Analysis of Systems,

Lecture Notes in Computer Science 4963, page 63–77. Springer-Verlag, 2008.

[DDR06] Martin De Wulf, Laurent Doyen, and Jean-François Raskin. A lattice theory

for solving games of imperfect information. In Proceedings of HSCC 2006:

Hybrid Systems—Computation and Control, Lecture Notes in Computer Sci-

ence 3927, page 153–168. Springer-Verlag, 2006.

[DFG+06] Vianney Darmaillacq, Jean-Claude Fernandez, Roland Groz, Laurent

Mounier, and Jean-Luc Richier. Test generation for network security rules.

In TestCom 2006, volume 3964 of LNCS, 2006.

[DGMD06] Mila Dalla Preda, Roberto Giacobazzi, Matias Madou, and Koen De Boss-

chere. Opaque predicates detection by abstract interpretation. In Proc. of the

11th International Conference on Algebraic Methodology and Software Tech-

nology (AMAST ’06), volume 4019 of Lecture Notes in Computer Science,

page 81–95. Springer-Verlag, 2006.

[DJM07] Jérémy Dubreil, Thierry Jéron, and Hervé Marchand. Construction de moni-

teurs pour la surveillance de propriétés de sécurité. In 6ème Colloque Fran-

cophone sur la Modélisation des Systèmes Réactifs (MSR’07), Lyon, France,

October 2007.

[DJM09] Jérémy Dubreil, Thierry Jéron, and Hervé Marchand. Monitoring confiden-

tiality by diagnosis techniques. In Proceedings of the 10th European Control

Conference (ECC’09), Budapest, Hungary, August 2009.

156

Bibliography

[DLT00] Rami Debouk, Stéphane Lafortune, and Demosthenis Teneketzis. Coordi-

nated decentralized protocols for failure diagnosis of discrete event systems.

Discrete Event Dynamic Systems, 10(1-2):33–86, 2000.

[Dub09] Jérémy Dubreil. Opacity and abstraction. In Proceedings of the First In-

ternational Workshop on Abstractions for Petri Nets and Other Models of

Concurrency (APNOC’09), Paris, France, June 2009.

[FFM09] Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. Enforcement

monitoring wrt. the safety-progress classification of properties. In SAC, page

593–600, 2009.

[FG93] Riccardo Focardi and Roberto Gorrieri. An information flow security property

for CCS. In Proceedings of Second North American Process Algebra Workshop,

1993.

[FG00] Riccardo Focardi and Roberto Gorrieri. Classification of security properties:

Information flow. In Foundations of Security Analysis and Design, LNCS No

2171, page 331–396, 2000.

[FG01] Riccardo Focardi and Roberto Gorrieri. Classification of security properties

(part I: Information flow). In Riccardo Focardi and Roberto Gorrieri, edi-

tors, Foundations of Security Analysis and Design I: FOSAD 2000 Tutorial

Lectures, volume 2171 of Lecture Notes in Computer Science, page 331–396,

Heidelberg, 2001. Springer-Verlag.

[GM82] Joseph A. Goguen and José Meseguer. Security policies and security mod-

els. In 1982 Berkeley Conference on Computer Security, page 11–20. IEEE

Computer Society, April 1982.

[GM04] Roberto Giacobazzi and Isabella Mastroeni. Abstract non-interference: pa-

rameterizing non-interference by abstract interpretation. In POPL ’04: Pro-

ceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, page 186–197. ACM, 2004.

[GMP92] Janice I. Glasgow, Glenn H. MacEwen, and Prakash Panangaden. A logic

for reasoning about security. ACM Transactions on Computer Systems,

10(3):226–264, 1992.

[Hin62] Jaakko Hintikka. Knowledge and Belief. Cornell university Press, 1962.

157

Bibliography

[JM09] Bertrand Jeannet and Antoine Miné. Apron: A library of numerical ab-

stract domains for static analysis. In Proceedings of CAV 2009: Computer-

Aided Verification, Lecture Notes in Computer Science 5643, page 661–667.

Springer, 2009.

[JMGL08] Thierry Jéron, Hervé Marchand, Sahika Genc, and Stéphane Lafortune. Pre-

dictability of sequence patterns in discrete event systems. In IFAC World

Congress, Seoul, Korea, July 2008.

[JMPC06] Thierry Jéron, Hervé Marchand, Sophie Pinchinat, and Marie-Odile Cordier.

Supervision patterns in discrete event systems diagnosis. In Workshop on

Discrete Event Systems, WODES’06, Ann-Arbor (MI, USA), July 2006.

[KJ04] Ratnesh Kumar and Shengbing Jiang. Failure diagnosis of discrete event

systems with linear-time temporal logic specifications. IEEE Transactions

on Automatic Control, 49(6):934–945, 2004.

[Lam77] L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans.

Softw. Eng., 3(2):125–143, 1977.

[LBW05] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: Enforcement

mechanisms for run-time security policies. International Journal of Informa-

tion Security, 4(1–2):2–16, February 2005.

[LJ07] Tristan Le Gall and Bertrand Jeannet. Lattice automata: a representation of

languages over an infinite alphabet, and some applications to verification. In

The 14th International Static Analysis Symposium, SAS 2007, number 4634

in LNCS, page 52–68, Kongens Lyngby, Denmark, August 2007.

[LJJ06] Tristan Le Gall, Bertrand Jeannet, and Thierry Jéron. Verification of com-

munication protocols using abstract interpretation of fifo queues. In Michael

Johnson and Varmo Vene, editors, 11th International Conference on Algebraic

Methodology and Software Technology, AMAST ’06, Kuressaare, Estonia, vol-

ume 4019 of LNCS, page 204–219. Springer-Verlag, July 2006.

[LM05] Yassine Lakhnech and Laurent Mazaré. Probabilistic opacity for a passive

adversary and its application to chaum’s voting scheme. Technical Report

TR-2005-4, Verimag, Centre Équation, 38610 Gières, February 2005.

[Low99] Gavin Lowe. Towards a completeness result for model checking of security

protocols. Journal of Computer Security, 7(2-3):89–146, 1999.

158

Bibliography

[Low02] Gavin Lowe. Quantifying information flow. In 15th IEEE Computer Secu-

rity Foundations Workshop (CSFW-15 2002), 24-26 June 2002, Cape Breton,

Nova Scotia, Canada, pages 18–31. IEEE Computer Society, 2002.

[Mar75] Donald A. Martin. Borel determinacy. Annals of Mathematics,

102(2):363–371, 1975.

[Mas05] Isabella Mastroeni. Abstract Non-Interference: An Abstract Interpretation-

based approach to Secure Information Flow. PhD thesis, Università di Verona,

Italy, March 2005.

[Mas08] Isabella Mastroeni. Deriving bisimulations by simplifying partitions. In

Nineth International Conference on Verification, Model Checking and Ab-

stract Interpretation (VMCAI’08), volume 4905 of Lecture Notes in Computer

Science, page 157–171. Springer-Verlag, 2008.

[Maz04] Laurent Mazaré. Using unification for opacity properties. In Proceedings of the

4th IFIP WG1.7 Workshop on Issues in the Theory of Security (WITS’04),

page 165–176, Barcelona (Spain), 2004.

[Mcl94] John Mclean. A general theory of composition for trace sets closed under

selective interleaving functions. In In Proc. IEEE Symposium on Security

and Privacy, page 79–93, 1994.

[MDJ09] Hervé Marchand, Jérémy Dubreil, and Thierry Jéron. Automatic testing of

access control for security properties. In TestCom’09, 2009.

[MVO96] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook

of Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1996.

[Ner58] Anil Nerode. Linear automaton transformations. Proc. AMS, 9:541–544,

1958.

[QK04] Wenbin Qiu and Ratnesh Kumar. Decentralized failure diagnosis of discrete

event systems. In WODES’04, 2004.

[Ric06] S. Laurie Ricker. A question of access: decentralized control and commu-

nication strategies for security policies. In 8th International Workshop on

Discrete Event Systems, page 58 – 63, June 2006.

[RS99] Peter Y.A. Ryan and Steve A. Schneider. Process algebra and non-

interference. In Journal of Computer Security, page 214–227, 1999.

159

Bibliography

[RW87] Peter J. Ramadge and W. Murray Wonham. Supervisory control of a class

of discrete event processes. SIAM J. Control Optim., 25(1):206–230, January

1987.

[RW89] Peter J. Ramadge and W. Murray Wonham. The control of discrete event

systems. Proceedings of the IEEE; Special issue on Dynamics of Discrete

Event Systems, 77(1):81–98, 1989.

[Sch00] Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst.

Secur., 3(1):30–50, 2000.

[SH08] Anooshiravan Saboori and Christoforos N. Hadjicostis. Verification of the

Initial-State opacity in Security Applications of DES. In B. Lennartson,

M. Fabian, K. Akesson, A. Giua, and R. Kumar, editors, Proceedings of the

9th International Workshop on Discrete Event Systems (WODES’08), Göte-

borg, Sweden, May 2008. IEEE.

[SLS+96] Mera Sampath, Stéphane Lafortune, Kasim Sinaamohideen, Demosthenis

Teneketzis, and Raja Sengupta. Failure diagnosis using discrete event models.

IEEE Transactions on Control System Technology, 1996.

[SM73] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring expo-

nential time: Preliminary report. In STOC, page 1–9, 1973.

[SM03] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow

security. IEEE Journal on Selected Areas in Communications, 21:2003, 2003.

[SS96] Steve A. Schneider and Abraham Sidiropoulos. Csp and anonymity. In

In European Symposium on Research in Computer Security, page 198–218.

Springer-Verlag, 1996.

[SSL+95] Mera Sampath, Raja Sengupta, Stéphane Lafortune, Kasim Sinaamohideen,

and Demosthenis Teneketzis. Diagnosability of discrete event systems. IEEE

Transactions on Automatic Control, 1995.

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.

Pacific Journal of Mathematics, 5:285–309, 1955.

[Tho95] Wolfgang Thomas. On the synthesis of strategies in infinite games. In

Proc. 12th Annual Symposium on Theoretical Aspects of Computer Science

(STACS’95), volume 900, page 1–13. Springer, 1995. Invited talk.

160

Bibliography

[TO08] Shigemasa Takai and Yusuke Oka. A formula for the supremal controllable

and opaque sublanguage arising in supervisory control. SICE Journal of

Control, Measurement, and System Integration, 1(4):307–312, March 2008.

161

	Introduction
	Summary of the Thesis
	Related Works
	Contributions

	Basic Notions
	Sets and Relations
	Posets
	Lattices

	Labeled Transition Systems

	Information Flow and Opacity
	Confidential Information and Notion of Attackers
	Definition of Opacity
	Properties of Opacity
	Some General Properties of Opacity
	Trace-based Observation Maps

	Conclusion

	Verifying and Monitoring Opacity
	Determinization Based Procedure to Construct Sound Monitors
	Complexity of Verifying Opacity on Finite Models
	Monitoring Opacity Using Abstract Interpretation
	Basics of Abstract Interpretation
	Construction of Monitors for Opacity
	Static Computation of Vulnerabilities Combining Under and Over Approximations

	Language Based Approach and Regular Abstractions
	Monitor for the Attackers
	Diagnosing Information Flow

	Conclusion

	Supervisory Control to Enforce Opacity
	The Supervisory Control Problem
	Language Based Approach for the Supervisory Control Problem
	The Fixpoint Iteration Techniques
	The Safety Control Problem

	The Opacity Control Problem
	Characterization of the Solution
	An Operator for the Supremal Opaque Sublanguage

	Computation of the Supremal Controller when a and o are Comparable
	The Case o a
	The Case a o

	Conclusion

	Dynamic Projections to Enforce Opacity
	Maximum Cardinality Set for Static Projections
	Opacity with Dynamic Projection
	Enforcing Opacity with Dynamic Projections
	Reduction to a 2-player Safety Game
	The Set of Valid Dynamic Projections

	Conclusion

	Conclusion

