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Chapitre 1

Introduction

La théorie géométrique des groupes, développée au cours des vingt derniéres années, a permis grace
a lapplication de concepts de géométrie classique comme la courbure de résoudre de nombreux
problémes de théorie des groupes jusqu’alors abordés d’un point de vue combinatoire ou purement
algébrique. La représentation d’un groupe par un espace métrique permet ’apparition de notions
telles que la quasi-isométrie entre deux groupes, et de nouvelles classes de groupes comme celle
des groupes hyperboliques ou encore des groupes CAT(0). Les propriétés géométriques de 'espace
associé 4 un groupe, au-dela de leur intérét intrinséque, s’avérent étre profondément liées aux
propriétés algébriques classiques du groupe en question.

Plus récemment, cette approche géométrique s’est révélée particuliérement fructueuse pour
I’étude de questions empruntées a la logique, notamment & la théorie des modéles. Cette nouvelle
impulsion trouve ses fondements principalement dans les divers travaux effectués sur le probléme
de Tarski, notamment par Zlil Sela dans [Sel0T] ainsi que dans ses autres articles de la méme série
(voir aussi les travaux de Kharlampovich et Myasnikov [KMOG|). L’approche de Sela utilise de
maniére extensive la théorie de Bass-Serre sur les actions de groupes sur les arbres simpliciaux, la
théorie des décompositions JSJ, qui permet de décrire toutes les actions d’un groupe donné sur
un arbre simplicial, ainsi que la théorie de Rips, qui analyse des actions de groupes sur un arbre
réel. Les résultats obtenus révélent une corrélation significative entre les propriétés géométriques
d’un groupe et sa théorie du premier ordre : Sela montre par exemple qu'un groupe de type fini
élémentairement équivalent & un groupe hyperbolique sans torsion est lui méme hyperbolique sans
torsion (voir [Sel]).

Ce point de vue géométrique a donc permis de résoudre plusieurs problémes difficiles de théorie
des modéles. Les outils développées pour comprendre ces questions de logique ont considérable-
ment enrichi en retour la théorie géométrique des groupes. Par ailleurs, d’autres problémes qui
peuvent sembler extérieurs aux deux domaines ont pu étre résolus grace aux techniques déve-
loppées : on peut penser a 1’étude des groupes w-résiduellement libres, ou encore & la résolution
d’équations sur les groupes libres. Par exemple, Sela obtient dans [Sel01] une nouvelle preuve de
Pexistence d’un diagramme de Makanin-Razborov (le résultat original est obtenu par Razborov
dans [Raz83) et généralisé par Kharlampovich et Myasnikov dans [KM98]), diagramme qui permet
de classifier les homomorphismes d’un groupe de type fini dans un groupe libre. La nature géomé-
trique de la preuve lui permet ensuite dans [Sel| une généralisation du résultat aux morphismes
d’un groupe de type fini dans un groupe hyperbolique sans torsion. Ceci a encore été généralisé
par Groves aux groupes hyperboliques relativement & une collection de groupes abéliens libres
dans [Gro05].

Une notion de base de la théorie des modéles est celle de plongement élémentaire, qui décrit
comment une structure se plonge dans une autre, de maniére indiscernable pour la logique du
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2 CHAPITRE 1. INTRODUCTION

premier ordre. Dans cette thése, on s’intéresse aux groupes élémentairement plongés dans un
groupe hyperbolique sans torsion.

1.1 Plongements élémentaires

Poour une introduction rapide & la théorie des modéles, on pourra consulter [Chal. On appelle
langage des groupes ’ensemble de symboles

L= {:7(’)7—\7\/7/\7V’371,*7_1}U‘/,

ot V est un ensemble de variables infini dénombrable. On rappelle que le symbole V représente la
disjonction (« ou »), le symbole A la conjonction (« et »), et le symbole — la négation (« non»). Le
symbole 1 représentera I’élément unité du groupe,  est la loi de composition (mais on s’autorisera
a représenter le produit par la concaténation), et ~! permet d’exprimer l'inversion. Une formule
du premier ordre (ou formule élémentaire) dans le langage £ est une suite finie d’éléments
de £ qui constituent une formule mathématique « grammaticalement correcte ». Par la suite,
nous utiliserons fréquemment les symboles mathématiques usuels pour représenter une suite de
symboles de £, comme le symbole —, ou A — B représente B V —A.

On dit qu’une variable x apparaissant dans une formule du premier ordre est libre si elle n’est
précédée ni de Vo ni de Jz. Une formule du premier ordre ¢ est dite close (on dit aussi que ¢
est un énoncé) si aucune des variables apparaissant dans la formule n’est libre. Un groupe G
satisfait une formule close ¢ dans le langage £ si U'interprétation de la formule est vraie dans G.
On note alors G = ¢.

Exemple 1.1: Si ¢ est la formule VaVyx x y x x~
seulement s’il est abélien.

Lxy~! = 1, un groupe G satisfait ¢ si et

Définition 1.2 : (théorie élémentaire) Soit G un groupe. La théorie élémentaire de G dans L est
l’ensemble des formules closes du premier ordre dans L que G satisfait.

Il est important de remarquer que ’on ne peut quantifier que sur les éléments du groupe, et
pas sur les sous-parties, ni sur les entiers naturels.

Exemple 1.3: Pour exprimer qu’un groupe est sans torsion, on pourrait écrire la formule suivante
o0
Vo (z #£1) — /\(x” #1)
n=1

Cependant, celle-ci n’est pas une formule du premier ordre, puisque si on devait 1’écrire en
utilisant uniquement les symboles de £ (sans raccourcis), on aurait une formule infinie. De la
méme maniére, la formule

Ve (r #1) > VneN (2" #£1)
n’est pas une formule du premier ordre puisqu’on quantifie sur les entiers.

Définition 1.4 : (élémentairement équivalent) Deuz groupes G et G' sont élémentairement équi-
valents s’ils ont la méme théorie élémentaire dans le langage des groupes. On note alors G = G'.

Exemple 1.5: Soient G et G’ deux groupes élémentairement équivalents.
e Si G est abélien, G’ 'est aussi.

e Si GG est fini, G’ aussi, et ils ont le méme cardinal. En fait, ils sont isomorphes : la table de
multiplication de G peut étre exprimée par une formule du premier ordre, que G’ satisfait.
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e Si (G est sans torsion, G’ aussi. Bien que « étre sans torsion » ne peut pas étre exprimé par
une formule du premier ordre, mais peut étre exprimé par la famille infinie d’énoncés

Vo (z #1 — 2" # 1) }nen—qo}-
Si G est sans torsion, il satisfait chacune de ces formules, donc G’ aussi.

Exemple 1.6: Les groupes Z et Z? ne sont pas élémentairement équivalents. En effet, Z satisfait
JavyIz (y = 2%) V (y = 2%2),

qui exprime que dans Z, un élément est soit pair soit impair. Clairement, Z? ne satisfait pas cet
énoncé. On peut en fait montrer de cette facon que Z¥ = Z! si et seulement si k = .

On peut maintenant énoncer le probléme suivant :

Question 1: Supposons 1 < m < n. Les groupes libres de rang m et n sont-ils élémentairement
équivalents ?

Ce probléme, posé par le logicien Alfred Tarski dans les années 40, est connu sous le nom de
probléme de Tarski. Sela a répondu de maniére positive & cette question dans [Sel06]. Les travaux
de Kharlampovich et Myasnikov proposent une autre approche de ce probléme (voir [KMO06]).
Sela donne également une caractérisation de tous les groupes de type fini élémentairement équi-
valents aux groupes libres (voir Théoréme [[[TH]). Le lien avec la géométrie se manifeste de maniére
frappante dans le résultat suivant, qui est un corollaire de cette caractérisation :

Théoréme 1.7 : Le groupe fondamental d’une surface fermée de caractéristique d’Euler au plus
—2 est élémentairement équivalent a un groupe libre de type fini non abélien.

On peut s’intéresser dans le cadre des groupes libres a d’autre notions classiques de la théorie
des modéles, comme celle de sous-structure élémentaire.

Définition 1.8 : (plongement élémentaire) Soit G un groupe et soit H un sous-groupe de G.
On note Ly le langage des groupes L auquel on ajoute pour tout élément h de H une nouvelle
constante [h]. On dit que le plongement H C G est élémentaire, ou encore que H est un sous-
groupe élémentaire de G si pour tout énoncé du premier ordre ¢ dans le langage Ly, le sous-groupe
H satisfait ¢ si et seulement si G satisfait ¢. On note alors H <X G.

Remarquons que cette définition équivaut a dire que H et G sont élémentairement équivalents

dans le langage Ly, et donc entraine I’équivalence élémentaire classique (dans le langage £).

Exemple 1.9: Soit G un groupe et soit H un sous-groupe de G. Soit h un élément de H.
Considérons I’énoncé

on  V[[h],z] = 1.

C’est un énoncé du premier ordre dans le langage L. Le groupe H (respectivement () satisfait ¢y,
si et seulement si h appartient au centre Z(H) de H (respectivement Z(G) de G). En particulier,
si H =< G, on voit que h € Z(H) si et seulement si h € Z(G) et on en déduit Z(H) = HN Z(G).

Lorsque 'on s’intéresse & la théorie du premier ordre des groupes libres, la question suivante
est naturelle :

Question 2: Décrire les plongements élémentaires dans un groupe libre.
Pour montrer I’équivalence élémentaire des groupes libres de type fini, Sela montre en fait le

Théoréme 1.10 : [Sel06, Theorem 4] Soit i : Fy, — F,, le plongement canonique d’un groupe libre
a k générateurs dans un groupe libre a n générateurs pour 2 < k < n. Alors i est un plongement
élémentaire.
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Il est donc naturel de se demander si tous les plongements élémentaires dans un groupe libre
de type fini sont de cette forme, c’est-a-dire si un sous-groupe élémentaire d’un groupe libre est
nécessairement un facteur libre. Un premier résultat dans cette direction peut étre obtenu par des
arguments simples :

Lemme 1.11 : Soit H un sous-groupe élémentaire d'un groupe libre de type fini F. Alors H est
un rétract de F'.

Démonstration. Notons que H est un groupe libre. On choisit By = (hi, he,...) une base (qui
peut étre infinie) pour H, et (a1, as,...,a,) une base pour F'. Chacun des éléments h; s’exprime
par un mot w; en les éléments a;, on note h; = w;(ai,...,an).

On commence par montrer par contradiction que le rang de H est au plus n. Supposons que
By a au moins n + 1 éléments : en particulier, H s’écrit comme un produit libre H' x H”, on H'
est le sous-groupe librement engendré par hi,...,h,11 et H” peut étre trivial.

Considérons I’énoncé du premier ordre

n+1
¢:3Jwy... 2, /\ [hi] =wi(x1, ..., 20)
i=1
C’est un énoncé dans Ly, et il est satisfait par F' : en effet, il suffit de prendre comme « solution »
z; = a;. Comme H est un sous-groupe élémentaire de F, il satisfait également ¢. Ceci implique
Pexistence d’éléments by, ...b, de H tels que pour 1 <i<mn+1,on a h; = w;(b1,...,b,).

Soit B le sous-groupe de H engendré par by, ..., b,. Par le théoréme de Kurosh, B hérite une
décomposition en facteurs libres de la décomposition H = H' x H” | et I'un des facteurs de cette
décomposition héritée est BN H’. Or pour 1 < i < n+1, on sait que h; = w;(by,...,b,) est dans
B, donc BNH' = H'. Mais H’, qui est un groupe libre de rang n + 1, ne peut pas étre un facteur
libre de B qui est de rang au plus n : on a une contradiction. Le sous-groupe H est donc de rang
au plus n.

On considére maintenant 1’énoncé ¢’ donné par

k

Jxq ... 2y /\ [hi] = wi(x1, ..., 20),
i=1
ou k = Card(Bpg). Cet énoncé est satisfait par F, donc par H, et comme précédemment on
obtient des éléments by,...b, de H tels que pour tout 1 < <k, on a h; = w;(b1,...,by). Soit f
le morphisme G — H défini par f(a;) = b;. On a f(h;) = f(wi(a1,...,an)) = wi(bi,...,by) = h4,
donc f est une rétraction de F' sur H. [l

Ceci n’est pas suffisant pour montrer que H doit étre un facteur libre, mais on montrera le

Théoréme A : (Corollary [722) Un sous-groupe élémentairement plongé dans un groupe libre
de type fini est un facteur libre.

On obtiendra ce résultat comme corollaire du résultat principal de cette thése, qui répond &
la question un peu plus générale suivante :

Question 3: Décrire les plongements élémentaires dans un groupe hyperbolique sans torsion.
La description obtenue est donnée par le

Théoréme B : (Theorem [T]) Soit G un groupe hyperbolique sans torsion. Soit H un groupe
élémentairement plongé dans G. Alors G admet une structure de tour hyperbolique sur H.

Les tours hyperboliques sont des structures définies par Sela (qui les appelle « hyperbolic w-
residually free towers » ). Elles permettent de répondre & plusieurs questions de théorie des modeéles
sur les groupes libres et les groupes hyperboliques sans torsion. Ces structures font ’objet de la
section suivante.
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1.2 Tours hyperboliques

On donne la définition suivante :

Définition 1.12 : (tour hyperbolique) Soient G un groupe et H un sous-groupe de G. On dira
que G est une tour hyperbolique sur H s’il existe une suite finie G = G° > G' > ... >G™ > H
de sous-groupes de G tels que :

e pour tout k dans [0,m — 1], il existe une rétraction ry, : GF — G**1 telle que (G*, GF*1 ry)
est un étage hyperbolique.

o G =HxFxSi%...%S, ou F est un groupe libre (éventuellement trivial), p > 0, et chaque
S; est le groupe fondamental d’une surface fermée de caractéristique d’Euler au plus —2.

On n’a pas défini la notion d’étage hyperbolique, ceci sera fait dans la définition [CIl En
attendant, en voici un exemple :

Exemple 1.13: Soit G un groupe, et soit r : G — G’ une rétraction sur un sous-groupe de G.
Supposons que G admet un scindement au-dessus d’un sous-groupe cyclique infini C' de la forme
G = G x¢ S, ou S est le groupe fondamental d’une surface & une composante de bord, qui est
soit un tore percé, soit de caractéristique d’Euler au plus —2, et telle que le groupe fondamental
de l'unique composante de bord est C. Si de plus I'image r(S) de S par la rétraction est non
abélienne, alors (G, G’,r) est un étage de tour hyperbolique.

En général, S peut correspondre & une surface non connexe, & plusieurs composantes de bord.
On supposera alors que l'image du groupe fondamental de chaque composante a une image non
abélienne par la rétraction.

Exemple 1.14:

e Un groupe libre admet une structure de tour hyperbolique sur n’importe lequel de ses
facteurs libres.

e Le groupe fondamental d’une surface fermée de caractéristique d’Euler au plus —2 admet
une structure de tour hyperbolique sur 1. De méme, un produit libre de groupes de surfaces
fermées de caractéristique d’Euler au plus —2 est une tour hyperbolique sur 1, ou sur
n’importe lequel de ses facteurs libres.

e Soit % une surface fermée de caractéristique d’Euler au plus —2. Soit ¢ une courbe fermée
simple sur ¥ qui sépare 3 en deux sous-surfaces g et 1. On suppose que X est soit un
tore percé, soit de caractéristique d’Euler au plus —2. Considérons le graphe de groupes a
deux sommets de groupes 71 (X) et m1(Xo) respectivement. Ces deux sommets sont joints
par une aréte de groupe cyclique infini qui s’envoie dans m(X) isomorphiquement sur un
groupe cyclique maximal correspondant a 7y, et dans m1(Xo) isomorphiquement sur un
groupe de bord maximal. Alors, le groupe fondamental G de ce graphe de groupes est une
tour hyperbolique sur 7 (X). En effet, 71 (X) contient un sous-groupe isomorphe a 1 (2o),
Papplication r qui est 'identité sur 71 (X) et qui envoie m1(Xg) sur ce sous-groupe est bien
définie, et fait de (G, (X),r) un étage de tour hyperbolique (voir figure [LT]).

La structure de tour hyperbolique apparait dans plusieurs résultats de Sela. Par exemple, dans
sa résolution du probléme de Tarski, en plus de montrer que les groupes libres de type fini ont la
méme théorie élémentaire, Sela obtient une description des groupes de type fini qui ont la méme
théorie élémentaire qu’un groupe libre. Elle est donnée par le résultat suivant :

Théoréme 1.15 : [Sel06, Proposition 6] Soit G un groupe de type fini. Le groupe G est élé-
mentairement équivalent & un groupe libre de type fini non abélien si et seulement s’il admet une
structure de tour hyperbolique sur le groupe trivial.



6 CHAPITRE 1. INTRODUCTION
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FiGURE 1.1 — Un exemple de tour hyperbolique.

Dans [Sell, qui fait suite a sa résolution du probléme de Tarski, Sela généralise ses techniques
des groupes libres aux groupes hyperboliques sans torsion. Il définit, pour tout groupe hyperbo-
lique sans torsion I', un ensemble de sous-groupes deux & deux isomorphes, qu’il appelle des coeurs
élémentaires (elementary cores), sur lesquels le groupe admet une structure de tour hyperbolique.
Un cceur élémentaire H de I' est tel que I' n’admet pas de structure de tour hyperbolique sur
un sous-groupe propre de H. Alors la classe d’isomorphisme des coeurs d’un groupe hyperbolique
sans torsion I' détermine sa classe d’équivalence élémentaire, comme ’exprime le

Théoréme 1.16 : [Sel, Theorem 7.10] Soit T un groupe hyperbolique non abélien et sans torsion.
Si G est un groupe de type fini, G et I' sont élémentairement équivalents si et seulement si G est
hyperbolique sans torsion et les ceurs de G et ' sont isomorphes.

Sela montre également que si G est un groupe hyperbolique non abélien sans torsion qui n’est
pas libre, le cceur de G est un sous-groupe élémentaire de G. Le Théoréme B exprime que, comme
le coeur, tout sous-groupe élémentaire forme la base d’une structure de tour hyperbolique pour

G.

1.3 Structure de la preuve du théoréme B

Soit H un sous-groupe élémentaire d’un groupe hyperbolique sans torsion G. Pour montrer que G
admet une structure de tour hyperbolique sur H, il faut commencer par trouver I’étage supérieur
de la tour : on veut trouver une rétraction r de G' dans un sous-groupe G’ telle que (G, G’,r) est
un étage hyperbolique.

Pour ce faire, on utilise un résultat, implicite dans la preuve de la proposition 6 de [Sel06],
qui nous permet de construire une telle rétraction a partir d’un morphisme G — G qui respecte
certaines propriétés d’'une décomposition en graphe de groupes A de G. Cette décomposition
doit satisfaire certaines propriétés d’acylindricité, et certains de ses groupes de sommets sont
des groupes fondamentaux de surfaces & bord dont les sous-groupes de bord sont exactement les
groupes d’arétes adjacents. De tels sommets sont appelés sommets de type surface. Une décom-
position qui satisfait ces hypotheéses sera appelée décomposition de type JSJ, puisqu’en pratique,
on considérera la plupart du temps soit la décomposition JSJ (voir [RS97]), soit la décomposition
JSJ relative & un sous-groupe.

Le résultat qu’on utilise est donné par la proposition suivante, qui apparaitra sous une forme
légerement différente dans la proposition

Proposition C : Soit G un groupe hyperbolique non abélien sans torsion. Soit A une décom-
position de type JSJ de G. On suppose qu’il existe un morphisme f : G — G non injectif tel



1.3. STRUCTURE DE LA PREUVE DU THEOREME B 7

que

e si R est un groupe de sommet de A qui n’est pas de type surface, la restriction de f a R est
une congugaison par un €élément gr de G ;

e si S est un groupe de sommet de type surface de A, f(S) n’est pas abélien.

Alors il existe une rétraction r de G sur un sous-groupe G’, telle que (G,G’',r) est un étage
hyperbolique. De plus, si Ry est un groupe de sommet qui n’est pas de type surface, on peut
choisir v de telle maniere que Ry < G'.

Pour trouver ’étage supérieur d’une structure de tour hyperbolique pour G, il nous suffit donc
de montrer qu’un morphisme f : G — G satisfaisant les hypothéses de la proposition C existe.
C’est 1a qu’on utilisera la logique du premier ordre. Nous allons maintenant essayer d’indiquer
quelques éléments des deux étapes principales de la preuve : la preuve de la proposition C, et la
construction d’un morphisme qui satisfait les conditions de la proposition C.

1.3.1 Construction du morphisme f

Soit donc G un groupe hyperbolique non cyclique et sans torsion, et soit H un sous-groupe propre
de G dont l'inclusion dans G est élémentaire.

Supposons pour simplifier que G est librement indécomposable par rapport & H. On considére
A la décomposition JSJ de G par rapport & H. On supposera aussi que H est finiment engendré :
attention, ceci n’est pas nécessairement le cas & priori, et ’argument qu’on utilise dans le cas
des groupes libres ne se généralise pas ici. En fait, on obtiendra que H est finiment engendré
seulement comme conséquence du Théoréme B.

Si A est triviale, on n’a aucun espoir de trouver un morphisme f qui satisfait les hypothéses
de la proposition C : en effet, G lui-méme est un groupe de sommet qui n’est pas de type surface
donc f est simplement une conjugaison. Mais alors f est nécessairement injective. Heureusement,
on a le

Lemme 1.17 : La décomposition A n’est pas triviale.

On utilisera l’existence d’un ensemble de factorisation pour Hompy (G, G), décrit par le résultat
suivant :

Théoréme D : (cas particulier du Theorem [6.29) Soit G un groupe hyperbolique non abélien,
sans torsion et librement indécomposable par rapport & un sous-groupe H. Il existe un ensemble
fini de quotients propres {n1 : G — L1,...n; : G — Ly}, appelé ensemble de factorisation pour
Hompy (G, G), tel que tout morphisme non injectif G — G qui fize H se factorise par l'un de ces
quotients aprés précomposition par un automorphisme modulaire de G relativement o H.

Ce résultat est bien évidemment & rapprocher de I'existence d’un ensemble de factorisation
pour Hom(A, F,,), Pensemble des morphismes d’un groupe A de type fini dans un groupe libre (voir
proposition [6.9). Sela donne une preuve de ce résultat dans [Sel01]], qu’il généralise ensuite dans
[Sel] & la preuve de lexistence d’un ensemble de factorisation pour Hom(A4,T'), ou I" est un groupe
hyperbolique sans torsion (voir proposition [6.19). On montrera une version relative de ce résultat
(proposition [6:29)), c¢’est-a-dire I’existence d’un ensemble de factorisation pour Hompy (A, T') ou H
se plonge dans A et dans I'. Le théoréme D est un cas particulier de ce résultat dans le cas ou
A=T=4G.

Démonstration du lemmel[L.17 Fixons quelques notations. Soit h1, ..., h, une partie génératrice
pour H. On choisit également une présentation finie de G donnée par G = (g | L¢(g)) ou X¢
dénote un ensemble fini de mots en les éléments de g. Chaque h; est représenté par un mot h;(g).
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Si A est triviale, le groupe modulaire de G relativement & H est trivial également, donc le
théoréme D nous donne un ensemble fini de quotients propres 7; de G, tel que tout morphisme
non injectif de G dans G qui fixe H se factorise par 'un des 7;. On choisit pour chaque i un
élément non trivial v; de Ker(;). Chaque v; est représenté par un mot v;(g).

Notons maintenant que si ¢ est un morphisme de G dans H qui fixe H, il ne peut pas
étre injectif puisque H est un sous-groupe propre de G. Par ailleurs, comme c’est également un
morphisme de G dans G, il doit se factoriser par 'un des quotients 7);.

L’ensemble des morphismes G — H est en bijection avec ’ensemble des solutions de I’équation
Y (g) = 1 dans H : & une solution x est associé le morphisme ¢y qui envoie g sur x. L’image par
¢x d’un élément représenté par un mot w(g) est alors représentée par le mot w(x). On voit donc
que le morphisme ¢x fixe H si et seulement si on a h; = h;(x) pour tout i.

Comme tout morphisme de G dans H qui fixe H se factorise par 'un des quotients 7;, ’énoncé
du premier ordre sur Ly

n

Vx[Sa(x) = LA A\ [hi] = hi(x)] — \/vi(x) =1

=1

est satisfait par H.

Puisque H est plongé élémentairement dans G, cet énoncé doit également étre satisfait par
G. Mais prenons dans G la solution tautologique x = g. Elle satisfait I’équation Ys(g) = 1,
et on a par définition h; = h;(g) pour tout i. Cependant, aucun des mots v;(g) ne représente
I’élément neutre. C’est une contradiction : la décomposition JSJ de G relativement & H n’est pas
triviale. O

De la méme maniére, si A ne contient pas de sommets de type surface, un morphisme f qui
satisfait les hypothéses de la proposition C est un isomorphisme. La encore, on peut montrer
comme dans le preuve du lemme précédent que ce cas ne se produit pas.

Pour le cas général, on utilisera de méme ’existence d’un ensemble de factorisation pour
trouver un énoncé du premier ordre dans Ly satisfait par H. Cependant, lorsque le groupe
modulaire est suffisamment complexe, c’est-a-dire quand la décomposition JSJ comporte des
sommets de type surface, il est impossible d’exprimer l'existence d’un ensemble de factorisation
par une formule du premier ordre. L’énoncé qu’on considére exprime alors une affirmation plus
faible, et son interprétation dans G nous permettra de trouver un morphisme f : G — G qui
satisfait les conditions de la proposition C.

1.3.2 Preuve de la proposition C

On considére deux possibilités simples pour la décomposition A.

Exemple 1.18: Supposons que A est un graphe a deux sommets de groupes A et B qui ne sont
pas de type surface et & une aréte joignant ces deux sommets. Un morphisme f : G — G dont
la restriction & A et & B est une conjugaison par des éléments g4 et gp respectivement est un
automorphisme. Il est donc forcément injectif, et la proposition est trivialement vraie.

Exemple 1.19: Supposons maintenant que A est un graphe sur deux sommets v4 et vg et une
aréte les joignant. On suppose de plus que seul vg est de type surface, et on dénote A et S les
groupes de sommets de A et B respectivement. Soit f : G — G un morphisme qui satisfait les
conditions de la proposition C. On suppose de plus qu’aucun élément correspondant & une courbe
fermée simple sur la surface correspondant & S n’est dans le noyau de f. Quitte a conjuguer f,
on peut supposer que f est I'identité sur A.

On considére 'image de S par f. Si f(S) < A, alors f est une rétraction de G dans A, et on
voit ensuite aisément que (G, A, f) est un étage de tour hyperbolique.



1.4. CONTENU DE LA THESE 9

Si f(S) < S, en utilisant le fait que f ne tue aucun élément correspondant a une courbe fermée
simple, on peut montrer que f(S) doit étre un sous-groupe d’indice fini de S. Mais le rang de
f(S) est au plus égal au rang de S, or le rang d’un sous-groupe d’indice fini dans un groupe libre
de rang k est de rang au moins k, avec égalité si et seulement si l'indice est 1. On en déduit que
f(S) = S. Comme les groupes libres sont hopfien, f restreint & S est un isomorphisme. Donc f
est un isomorphisme, ce qui contredit sa non-injectivité.

Pour traiter le cas général, on note que S agit via f sur ’arbre simplicial correspondant & A :
il hérite donc d’'une décomposition en graphe de groupes, dont on peut montrer qu’elle est duale &
un ensemble de courbes fermées simples sur la surface ¥ correspondante. Ces courbes divisent %
en un nombre fini de sous-surfaces dont les groupes fondamentaux ont une image par f elliptique
pour A. Si une telle sous-surface 3 a pour groupe fondamental Sy, et si f(Sg) est un sous-groupe
non abélien de S, on peut appliquer un argument similaire & celui du paragraphe précédent pour
voir que Yo doit étre au moins aussi complexe que ¥ (pour une notion de complexité un peu plus
précise que le rang du groupe fondamental). Ceci n’est pas possible si ¥ est une sous-surface
propre de . On peut donc montrer que les groupes fondamentaux de toutes les sous-surfaces
obtenues sont envoyés par f dans un conjugué de A. Ceci permet finalement de voir que f est la
rétraction cherchée.

1.4 Contenu de la thése

Dans le chapitre[3 sont exposés quelques rappels sur la théorie de Bass-Serre, qui décrit les actions
de groupe sur des arbres simpliciaux. On rappellera aussi quelques propriétés élémentaires des
espaces métriques hyperboliques, et on définira la topologie de Gromov-Hausdorff. Les chapitres
[ Bl et [6] ont pour théme I’argument du raccourcissement et certaines de ses conséquences. Dans
le chapitre [ on donne diverses variantes de I’argument du raccourcissement, et on présente une
preuve de certains résultats de raccourcissement sur des suites de morphismes. Pour ce faire, on
utilise les résultats de raccourcissement sur des suites d’actions, dont la preuve est 'objet du
chapitre Bl Ces résultats nous permettent de montrer tout d’abord certaines propriétés de type
co-Hopf pour les groupes hyperboliques, puis l'existence d’ensembles de factorisations dans le
chapitre[d : 1a encore, on énonce les diverses versions de ce résultat (pour les morphismes vers les
groupes libres, vers les groupes hyperboliques sans torsion, relativement & un sous-groupe), qui
proviennent de diverses formes de l’argument du raccourcissement.

Dans le reste de la thése, on donne la preuve du Théoréme B : le chapitre [1 expose le résultat
qu’on prouve en utilisant la proposition C. Enfin, les chapitres 8 @let MQlsont consacrés & la preuve
de la proposition C.
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Chapter 2

Introduction in English

In the last decades, the apparition of geometric group theory has led to the resolution of many
problems in groups theory. The introduction of typically geometric concepts such as curvature, or
geodesics, has allowed to tackle questions that the traditional combinatorial or purely algebraic
approach had left unsolved. Representing a group by a metric space allows to define new notions
such as quasi-isometry between groups, and new classes of groups like that of hyperbolic or
CAT(0) groups. The geometric properties of the space associated to a group are of independent
interest, but have also proved to bear strong relation to the classical algebraic properties of the
group.

More recently, such a geometrical approach has proved particularly fruitful when applied to
questions borrowed from model theory. This new interaction finds its source mainly in the work
of Sela on Tarski’s problem, in [Sel01]-[Sel] (see also Kharlampovich and Myasnikov’s approach
in [KMOG6]). The results of Sela make an extensive use of Bass-Serre theory about actions on
simplicial trees, of the JSJ theory, which describes all such possible actions, and of Rips theory,
which analyses actions on real trees. Here again, the results highlight a deep connection between
the geometric properties of a group, and its first-order theory. For example, Sela shows that a
group which has the same first-order theory as a torsion-free hyperbolic group must be torsion-free
hyperbolic itself.

This geometric approach has thus been useful to solve several difficult model-theoretical ques-
tions, but has also considerably enriched the tools of geometric group theory. Moreover, some
problems which at first might seem unrelated to both areas have been resolved along the way,
such as the study of w-residually free groups, or the resolution of equations over free groups. For
example, Sela obtains in [Sel01] a new proof of the existence of a Makanin-Razborov diagram
(the original result was proved by Razborov in [Raz85|, and generalised by Kharlampovich and
Myasnikov in [KMO98]). Such a diagram classifies homomorphisms from a given finitely gener-
ated group into a free group. Because the proof is essentially geometric, it can be generalised
to torsion-free hyperbolic groups, whose geometry is close to that of free groups, so Sela gets in
[Sel] a Makanin-Razborov diagram for morphisms into a torsion-free hyperbolic group. Groves
generalises this result further to groups that are hyperbolic with respect to a collection of free

abelian groups in [Gro03].

One of the basic notions of model theory is that of an elementary embedding, which describes
how a structure embeds in another in a way which makes them indistinguishable for first-order
theory. The main purpose of this thesis is to study elementary embeddings in torsion-free hyper-
bolic group.

11
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2.1 Elementary embeddings
The language of groups is the following set of symbols
L={=1()V,AV,3, 1, uV

where V is an infinite countable set of variables. Recall that the symbol V represents disjunction
("or"), the symbol A conjunction ("and"), and the symbol — negation ("not"). The symbol 1
represents the unit element of the group, * is the multiplication (but we will mostly represent
product simply by concatenation), and ~! denotes the inverse. A first-order formula (or ele-
mentary formula) in the language £ is a finite sequence of elements of £ which constitutes a
"grammatically correct" mathematical formula. In the sequel, we will often use usual mathemat-
ical symbols to represent a finite set of elements of £, such as for example the symbol —, where
A — B represents BV —A.

A variable z which appears in a first-order formula is free if neither Va nor 3z appears before
it in the formula. A first-order formula ¢ is said to be closed (we will also say that ¢ is a
sentence) if none of the variables which appear in ¢ are free. A group G satisfies a sentence ¢
of the language L if the interpretation of the formula holds in G. We denote this by G = ¢.

1

Example 2.1: If ¢ is the formula Vo Vyz *y* 2~ xy~! = 1, a group G satisfies ¢ if and only if

it is abelian.

Definition 2.2: (elementary theory) Let G be a group. The elementary theory of G in L is the
set of closed first-order formulas over L satisfied by G.

It is important to note that quantification is allowed only on elements of the group. In
particular, it is not allowed on subsets of the group, nor on integers.

Example 2.3: To express the fact that a group is torsion-free, we might want to write the

following formula

Vo (z#£1) — (@ #1)

n=1

However, this is not a first-order formula, since if we rewrote it using only symbols of £ (without
short cuts), we would get an infinite formula. Similarly, the formula

Ve(x #1) > VneN (2" #£1)

is not a first-order formula, since we quantify on integers.

Definition 2.4: (elementary equivalent) Two groups G and G’ are elementary equivalent if they
have the same elementary theory in the language of groups. We denote this by G = G'.

Example 2.5: Let G and G’ two groups for which G = G'.
e If GG is abelian, so is G'.

e If G is finite, so is G/, and they have the same cardinality. In fact, they are isomorphic: the
multiplication table of G' can be expressed by a first-order formula, which is satisfied by G’.

e If G is torsion-free, so is G’. Indeed, even though ’being torsion-free’ cannot be expressed
by one first-order formula, it can be expressed by the following infinite family of sentences:

Ve [(z#1) - (@" # 1)]}7161\17{0}-

If G is torsion-free, it satisfies each one of these formulas, hence so does G'.
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Example 2.6: The groups Z and Z? are not elementary equivalent. Indeed, Z satisfies the
following sentence
JaVy3z (y = 22) V (y = 2%x)

which expresses that in Z, an element is either even or odd. Clearly, Z? does not satisfy this
sentence. It can be showed in this way that Z* = Z! if and only if k = [.

We can now state the following problem:
Question 4: Suppose that 1 < m < n. Are free groups of rank m and n elementary equivalent?

This question was asked by the logician Alfred Tarski around 1945, and is known as Tarski’s
problem. Sela answered it positively in [Sel06]. Kharlampovich and Myasnikov have another
approach to this problem (see [KMO0G]). Sela also gives a characterisation of all finitely gen-
erated groups which are elementary equivalent to non-abelian free groups (see Theorem [Z13).
The connection with geometry is striking in the following result, which is a corollary of this
characterisation:

Theorem 2.7: The fundamental group of a closed surface whose Euler characteristic is at most
—2 is elementary equivalent to a non-abelian free group.

It is natural to study in the context of free groups other classical notions of model theory,
such as that of elementary embedding.

Definition 2.8: (elementary embedding) Let G be a group, and let H be a subgroup of G. We
denote by L the language of groups L to which have been added for each element h of H a
new constant [h]. We say that the embedding H C G is elementary, or that H is an elementary
subgroup of G if for any first-order sentence ¢ in the language Ly, the subgroup H satisfies ¢ if
and only if G satisfies ¢. We denote this by H < G.

Note that this definition is equivalent to saying that H and G are elementary equivalent in
the language Lg, and thus implies standard elementary equivalence (in the language L£).
Example 2.9: Let G be a group, let H be a subgroup of G. Let h be an element of H. Consider
the following sentence

¢n 2 Vx[[h],z] =1

It is a first-order sentence in the language L. The group H (respectively G) satisfies ¢y, if and
only if h lies in the centre Z(H) of H (respectively Z(G) of G).

In particular, if H < G we see that h € Z(H) if and only if h € Z(G), we thus have
Z(H)=HnNZ(G).

When studying the first-order theory of free groups, the following question comes up naturally:
Question 5: Describe elementary embeddings in free groups.

In his proof of the elementary equivalence of free groups, Sela shows in fact the

Theorem 2.10: (Theorem 4 of [Sel06) Let i : Fy, — F,, be the canonical embedding of a free
group of rank k in the free group of rank n for 2 < k < n. Then i is an elementary embedding.

It is thus natural to ask if all the elementary embeddings in a free groups are of this type,
that is, whether an elementary subgroup of a free group is necessarily a free factor. A first step
in this direction is:

Lemma 2.11: Let H be an elementary subgroup of a finitely generated free group F'. Then H is
a retract of F.

Proof. Note that H is a free group. We chose By = (hi,he,...) a basis for H (it might be
infinite), and (a1, as,...,a,) a basis for F. Each element h; can be expressed by a word w; in
the elements a;, we write h; = w;(a1, ..., a,).
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Let us first see by contradiction that the rank of H is at most n. Suppose that By has at
least n + 1 elements: in particular, H can be written as a free product H' * H”, where H' is
the subgroup freely generated by hi,...h,+1 and H” is possibly trivial. Consider the following

first-order sentence
n+1

¢:3dxy... 2, /\ [hi] = wi(x1, ..., 20).
i=1
It is a sentence of Ly which is satisfied by F: indeed, we can take x; = a; as a "solution".
Since H is an elementary subgroup of F', it also satisfies ¢. This implies that there exist elements
b1,...by, of H such that for any 1 <i < n-+1, we have h; = w;(b1,...b,). Let B be the subgroup
of H generated by by,...b,. By Kurosh’s theorem, B inherits a free product decomposition
from H = H' x H”, in which one of the factors is BN H’. But for 1 < i < n + 1, we have
h; = w;i(by,...by) so h; € B. Thus BN H' = H' is a free group of rank n + 1, so it cannot be a
free factor of B whose rank is at most n: we get a contradiction. The subgroup H has rank at
most n.
We now consider the sentence ¢’ given by

k
dz1... .z /\(hﬂ = wi(T1,. .., Tn)-

i=1

where k = Card(Bpg). It is satisfied by F', thus it is satisfied by H and we get elements by, ... b,

of H such that for 1 <i < k, we have h; = w;(b1,...b,). Let f be the morphism G — H defined

by f(a;) = bj. We get f(h;) = f(wi(ai,...,an)) = wi(b1,...,bn) = h;, thus f is a retraction

from F to H. O
This is not enough to show that H must be a free factor, but we will see:

Theorem A: (Corollary[722) An elementary subgroup of a finitely generated free group is a free
factor.

This will be a corollary of the main result of the thesis, which answers the following question:
Question 6: Describe elementary embeddings in torsion-free hyperbolic groups.
The description we obtain is given by

Theorem B: (Theorem [74) Let G be a torsion-free hyperbolic group. Let H be a subgroup
elementarily embedded in G. Then G has a structure of hyperbolic tower over H.

Hyperbolic towers are structures defined by Sela (who calls them ’hyperbolic w-residually free
towers’). They appear in the answer to several questions about the first-order theory of free and
hyperbolic groups. They are the subject of the following section.

2.2 Hyperbolic towers

We give the following definition:

Definition 2.12: (hyperbolic tower) Let G be a group, and let H be a subgroup of G. We say
that G is a hyperbolic tower over H if there is a finite sequence G = G° > G' > ... > G™ > H
of subgroups of G such that:

e for any k in [0,m — 1], there is a retraction vy : GF¥ — GF*1 such that (G*,G**1 1) is a
hyperbolic floor.

o G =Hx«F xS *...%8, where F is a (possibly trivial) free group, p > 0, and each S; is
the fundamental group of a closed surface of Euler characteristic at most —2.
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Figure 2.1: An example of hyperbolic tower.

We have not defined hyperbolic floors yet, this will be done in definition [ZIl In the meantime,
let us give an example:

Example 2.13: Let G be a group, and let » : G — G’ be a retraction onto a subgroup of G.
Suppose that G has a splitting over an infinite cyclic subgroup C' of the form G = G’ x¢ S, where
S is the fundamental group of a surface with exactly one boundary component, which either is
a punctured torus, or has Euler characteristic at most —2, and such that the fundamental group
of the unique boundary component is C. If moreover the image r(S) of S by the retraction is
non-abelian, then (G,G’,r) is a hyperbolic floor.

In general, S might correspond to a disconnected surface, with several boundary components.
We will then assume that the image of the fundamental group of each connected component has
non-abelian image by the retraction.

Example 2.14:
e A free group has a structure of hyperbolic tower over each of its free factors.

e The fundamental group of a closed surface of Euler characteristic at most —2 has a structure
of hyperbolic tower over 1. Similarly, a free product of fundamental groups of surfaces of
Euler characteristic at most —2 is a hyperbolic tower over 1, and over each of its free factors.

e Let X be a closed surface of Euler characteristic at most —2. Let ~y be a simple closed
curve on Y which separates ¥ into two subsurfaces ¥y and ;. We assume that g is
either a punctured torus, or of Euler characteristic at most —2. Consider the graph of
group on two vertices of groups 71 (2) and 71 (X¢) respectively, joined by an edge of infinite
cyclic edge group, which injects in 7 (X) isomorphically onto a maximal cyclic subgroup
corresponding to 7o, and in m1 (Xg) isomorphically on a maximal boundary subgroup. Then,
the fundamental group G of this graph of groups is a hyperbolic tower over 1 (X). Indeed,
7m1(X) contains a subgroup isomorphic to w1 (Xg): the map r which restricts to the identity
on 71(X) and which sends 71 (2g) on this subgroup is well-defined, and makes (G, 7 (X2), )
a hyperbolic floor (see figure 2XT]).

Hyperbolic towers appear in several results of Sela. For example, in his solution to Tarski’s
problem, as well as showing that finitely generated free groups are all elementary equivalent, Sela
gives a description of finitely generated groups which have the same elementary theory as a free
group. It is given by the following result:

Theorem 2.15: (Proposition 6 [Sel06]) Let G be a finitely generated group. The group G is
elementary equivalent to a non-abelian finitely generated free group if and only if it admits a
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structure of hyperbolic tower over the trivial group.

In a paper which follows his resolution of Tarski’s [Sel|, Sela generalises his techniques from
free groups to torsion-free hyperbolic groups. Given a torsion-free hyperbolic group I', he defines
subgroups of I' called elementary cores, which are all isomorphic, and over which I" admits a
structure of hyperbolic tower. A core H of I' is such that I' is not a hyperbolic tower over any
proper subgroup of H. Then, the isomorphism class of the cores of a torsion-free hyperbolic group
I' determines its elementary equivalence class, so that we have

Theorem 2.16: (Theorem 7.10 in [Self) Let T be a non-abelian, torsion-free hyperbolic group. If
G is a finitely generated group, G and I' are elementary equivalent if and only if G is torsion-free
hyperbolic and the cores of G and I are isomorphic.

Sela shows also that if I" is a non-abelian torsion-free hyperbolic group which is not free, the
core of I' is an elementary subgroup of I'. Theorem B says that, as the core, any elementary
subgroup is the basis of a hyperbolic tower structure for I'.

2.3 Structure of the proof of theorem B

Let H be an elementary subgroup of a torsion-free hyperbolic group G. To show that G has a
structure of hyperbolic tower over H, we must first find the top floor of the tower. In other words,
we want to show that there is a retraction r from G to a subgroup G’ such that (G,G’,r) is a
hyperbolic floor.

To do this, we use a result which is implicit in the proof of proposition 6 of [Sel06], and
which enables us to build such a retraction from a morphism G — G which respects some
properties of a graph of groups decomposition A of G. This decomposition must satisfy some
conditions of acylindricity, and some of its vertices are fundamental groups of surfaces with
boundary whose boundary subgroups are exactly the adjacent edge groups. Such vertices are
called surface type vertices. A decomposition which satisfies these hypotheses will be called a
JSJ-like decomposition, since in fact most of the decompositions of this type that we consider will
be either JSJ decompositions (see [RS97]), or JSJ decompositions relative to a subgroup.

The result we use is given by the following proposition, which will appear in a slightly different
form in proposition

Proposition C: Let G be a non-abelian torsion-free hyperbolic group. Let A be a JSJ-like de-
composition of G. Suppose that there exists a non-injective morphism f: G — G such that

e if R is a vertex group of A which is not of surface type, the restriction of f to R is a
conjugation by an element gr of G;

e if S is a vertex group of A which is of surface type, f(S) is not abelian

Then there exists a retraction v from G onto a subgroup G', such that (G,G',r) is a hyperbolic
floor. Moreover, if Ry is a vertex group which is not of surface type, we can choose r such that
Ry <G.

Thus, to find the top floor of a hyperbolic tower structure for G, it is enough to show that
there exists a morphism which satisfies the hypotheses of proposition C. This is where we use
first-order logic. We will now give a few elements of the two main steps of the proof of Theorem
B: the proof of proposition C, and the construction of a morphism satisfying the conditions of
proposition C.
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2.3.1 Construction of the morphism f

Let thus G be a non-abelian torsion-free hyperbolic group, and let H be a proper subgroup of G
whose embedding in G is elementary.

Let us assume for the sake of simplicity that G is freely indecomposable with respect to H,
and consider A the JSJ decomposition of G with respect to H. We also assume that H is finitely
generated: this is not necessarily the case a priori, and the argument we gave in the case of
free groups does not generalise here. In fact, we will only get that H is finitely generated as a
consequence of Theorem B.

If A is trivial, there is no hope to find a morphism f which satisfies the hypotheses of propo-
sition C: indeed, G itself is a vertex group which is not of surface type, so f is just a conjugation.
But this means f has to be injective. Luckily, we have

Lemma 2.17: The decomposition A is not trivial.

To prove this, we use the existence of a factor set for Homy (G, G), described in the following
result:

Theorem D: (particular case of Theorem [6.29) Let G be a non-abelian torsion-free hyperbolic
group which is freely indecomposable with respect to a subgroup H. There is a finite set of proper
quotients 1 : G — Lyi,...n, : G — Ly, called a factor set for Hompy (G, G), such that any non-
injective morphism G — G fixing H factorises through one of these quotients after precomposition
by a modular automorphism of G relative to H.

This result is of course related to the existence of a factor set for Hom(A,F,,), the set of
morphisms from a finitely generated group A to a free group (see proposition [6.9]). Sela gives a
proof of this result in [Sel0T], that he then generalises in [Sel] to the proof of the existence of a
factor set for Hom(A,I"), where I" is a torsion-free hyperbolic group (see proposition [619). We
will show a relative version of this result (proposition [6.29), that is we will show the existence of
a factor set for Hompy (A,T") where H embeds both in A and in I'. Theorem D is the particular
case of this result when A =T = G.

Proof. Let us fix some notations. Let hq,...h, be a generating set for H. We also choose a finite
presentation of G given by G = (g | £¢(g)) where X denotes a finite set of words in the elements
of g. Each h; is represented by a word h;(g) in the elements g.

If A is trivial, the modular group of G relatively to H is trivial, so Theorem D gives us a finite
set of proper quotients 7; of GG, such that any non-injective morphism from G to G which fixes
H factorises through one of the maps n;. We pick for each ¢ a non-trivial element v; of Ker(n;).
Each v; is represented by a word v;(g).

Let us restrict ourselves to the set of morphisms G — H: it is in bijection with the set of
solutions of the equation X (g) =1 in H. To a solution x is associated the morphism ¢, which
sends g to x. The image by ¢x of an element represented by the word w(g) is then represented
by w(x). Thus we see that the morphism ¢ fixes H if and only if we have h; = h;(x) for all i.

Now remark that if ¢ is a morphism from G to H which fixes H, it cannot be injective since
H is a proper subgroup of G. On the other hand, it is also a morphism from G to G, so it must
factorise through one of the quotients n; and for some index i we have v;(x) = 1.

This tells us that the following sentence

n

Vx [Za(x)=1A /\|—hz-| =hi(x)| — \/vi(x) =1

i=1

is satisfied by H.
Since H is elementarily embedded in G, this sentence must also be satisfied by G. But take
in G the tautological solution x = g. It satisfies the equation X (g) = 1, and by definition, we
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have h; = h;(g) for all i. However, none of the words v;(g) represents the trivial word. This is a
contradiction, so the JSJ decomposition of G relative to H isn’t trivial. O

Similarly, if A does not contain surface type vertices, a morphism f which satisfies the hy-
potheses of proposition C is an isomorphism. We can show as in the previous lemma that this
case does not occur.

For the general case, we will also use the existence of a factor set to find a first-order sentence
on Ly satisfied by H. However, when the modular group is complex enough, namely when the
JSJ decomposition contains surface type vertices, it is impossible to express the existence of a
factor set by a first-order formula. The sentence we then consider expresses something weaker,
and its interpretation in G will give us a morphism f : G — G which satisfies the hypotheses of
proposition C.

2.3.2 Proof of Proposition C

We consider two simple cases for the decomposition A.

Example 2.18: Suppose that A is a graph of groups on two vertices which are not of surface
type, whose groups we denote by A and B, and with a single edge joining the two vertices. A
morphism f : G — G whose restriction to A and to B is a conjugation by elements g4 and gp
respectively is an automorphism. The proposition is trivially true.

Example 2.19: Suppose now that A is a graph on two vertices v4 and vg of groups A and
S, with vg of surface type, and a single edge joining the two vertices. Let f : G — G be a
morphism which satisfies the conditions of proposition C. We assume moreover that no element
corresponding to a simple closed curve on the surface corresponding to S is in the kernel of f.
Up to conjugating f, we may assume that f is the identity on A.

Consider the image of S by f. If f(S) < A, f is a retraction from G to A, and we see easily
that (G, A, f) is a hyperbolic floor.

If f(S) < S, using the fact that f does not kill elements corresponding to simple closed curves,
we can show that f(S) must be a finite index subgroup of S. But the rank of f(S) is at most
equal to the rank of S, and the rank of a finite index subgroup in a free group of rank % has rank
at least k, with equality if and only if the index is 1. We deduce that f(S) = S. Since free groups
are Hopfian, f restricted to S is an isomorphism. Thus f is an isomorphism, which contradicts
its non-injectivity.

To deal with the general case, note that S acts via f on the simplicial tree corresponding to A:
it inherits a graph of groups decomposition. We can show that this decomposition is dual to a set
of simple closed curves on the surface X. These curves divide X into a finite number of subsurfaces
whose fundamental groups have elliptic image for A. If such a subsurface ¥y has fundamental
group Sp, and if f(Sp) is a non-abelian subgroup of S, we can use an argument similar to the
one above to see that ¥y must be at least as complex as X (for a notion of complexity which is
slightly more complicated than the rank of the fundamental group). This is not possible if ¥y is
a proper subsurface of ¥. We can thus show that the fundamental groups of all the subsurfaces
are sent to a conjugate of A by f. This finally enables us to see that f is the retraction we were
looking for.

2.4 Content of the thesis

The first half of the thesis revolves around the shortening argument and some of its consequences.
We start in chapter Bl by recalling some basic notions about graphs of groups, hyperbolic metric
spaces and Gromov-Hausdorff topology. In chapter dl we state various versions of the shortening
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argument, and we present a proof of the shortening for a sequence of morphisms in the classical
and the relative case. To do so, we use the shortening result for a sequence of actions, whose
proof is the object of chapter Bl This enables us to show first some properties of Co-Hopf type
for hyperbolic groups, then the existence of factor sets in chapter [6F here again, we give different
versions of this result (for morphisms to free groups, to torsion-free hyperbolic groups, relatively
to a subgroup), which follow from the different versions of the shortening argument.

In the second half, we give the proof of Theorem B. Chapter [ exposes the result and proves
it using proposition C. Finally, the last three chapters are devoted to the proof of proposition C.
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Chapter 3

Basic notions

3.1 Actions on simplicial trees and graphs of groups

The notion of graph of groups can be seen as a generalisation of the notion of amalgamated
product. Similarly to amalgams, it enables us to understand the structure of a group, and to
reduce questions about a group to questions about a finite number of its subgroups. The theory
was developed by Jean-Pierre Serre and Hyman Bass, and the main reference is [Ser83]. In this
section, we define graphs of groups, and explain the correspondence between them and actions on
simplicial trees. We then define a few simple operations that can be applied to a graph of groups,
and that will be of use later.

Definition of a graph of groups. We will use the definitions and results of [Ser83] on graphs
of groups. Recall that a graph of groups A is given by

e an underlying oriented graph (that we also denote by A), with vertex set V(A) and edge set
E(A), which is endowed with

— an involution ~: E(A) — E(A) such that § # y;

— applications o : E(A) — V(A) and ¢ : E(A) — V(A) which associate to each edge its
endpoints, and such that for any e € E(A), we have o(e) = t(€);

e a collection of groups {G,},ev(a), and a collection of groups {Ge}eep(a), such that if
e € E(A), then G, = Gg;

e injective group morphisms i, : G — Gy for each e in E(A).

Pick a maximal subtree Ag in the graph underlying A. The fundamental group m(A) of
the graph of groups A is defined as the group generated by the groups G, for v € V(A) together
with the set {t. | e € E(A)}, with the following relations added:

o t. =1t. " for every edge e of A;
o t. =1 for every edge e of Ag;
o i.(g) = teic(g)t, !, for every edge e of A, and every element g of G..

Note that the isomorphism class of the fundamental group of A does not depend on the choice of
the maximal subtree Ao, which justifies the notation m (A).

21
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Graphs of groups and actions on trees. Suppose that a group G acts on a simplicial tree T’
without inversions, so that if an element of G stabilises an edge of T, it fixes it pointwise. Then
there is a graph of groups associated to this action, whose fundamental group is isomorphic to G.
Such an isomorphism can be built as follows.

We choose a fundamental domain Ty of the action of G on (the topological realisation) of T,
namely a connected subspace of T" which contains exactly one point in each orbit. If e is an edge
whose interior lies in Ty note that we must have o(e) € Ty or t(e) € Ty by connectedness. A
Bass-Serre element corresponding to e is an element v, of G such that

® 7. -o(e) €Ty if o(e) ¢ To;
o ol tle) €Ty if t(e) ¢ To;
e 1 otherwise.

Note that the definition implies that for any edge e of Ty, we have vz = v, L.

Suppose we chose a fundamental domain Ty, and for each edge e of T, a Bass-Serre element
ve for the action of G on T. Denote by 7 the projection T'— G\T. Consider the graph of groups
A with underlying graph G\T, given by

o Gr(e) = Stabg(e) for each edge e whose interior is in Tp,
o Gr(,) = Stabg(v) for each vertex v in Tp,

e if e is an edge whose interior lies in Tp, the map ir () : Gr(e) — Gr(i(e)) is given by g — g
if t(e) € Ty, and by g +— v, tgv. if t(e) ¢ Tp.

Théoreme 13 in [Ser83] tells us that the map from 71(A) to G defined by g — g for g € Gr(,),
and t. — 7, is an isomorphism. Note that the choice of a different fundamental domain, or of
different Bass-Serre elements, gives us a different isomorphism.

Conversely, the fundamental group G of a graph of groups A acts on a tree that we denote T},
the Bass-Serre tree corresponding to A, in such a way that the graph of groups associated
to this action is the original graph of groups A. We call vertex groups and edge groups of
A all the stabilisers of a vertex, respectively of an edge, of the tree T' associated to A. In other
words, the vertex groups of A are the conjugates in G of the groups G, for v in V(A), and the
edge groups of A are the conjugates in G of the groups G, for e in E(A).

If A is a graph of groups with fundamental group G, we say that A is a splitting for G. If all
the edge groups of A are cyclic, or abelian, we say that A is a cyclic splitting, respectively an
abelian splitting for G. If the underlying graph of A has only one edge, we call A a one edge
splitting for G: it gives for G a structure of amalgamated product (if A has two vertices) or of
HNN extension (if A has only one vertex).

Refining graphs of groups. Suppose we are given a minimal action of a group G on a tree
T (i.e. T has no proper G-invariant subtree), with corresponding graph of groups A. Let v be
a vertex of T, and suppose that the stabiliser G, of v has a minimal action on a tree T, with
corresponding graph of groups I'. Suppose moreover that for any edge e of T adjacent to v, the
stabiliser of e fixes a vertex v, in the action of G, on T,.

We build a new G-tree T" from T and T,,. To do this, replace v by T, attaching each adjacent
edge e to v.. Extend equivariantly to get T7”. There is a canonical action of G on T” that we call
the refinement of the action of G on T by the action of G, on Tr. It is minimal, and if the
original actions weren’t both trivial, it is non-trivial. We call the corresponding graph of group
the refinement of A by I'.
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Quotients of graphs of groups. Let A be a graph of group with fundamental group G.
Suppose that for each vertex v of A with corresponding group G,, we are given a surjective
morphism ¢, : G, — ¢,(G,), whose restriction to each i.(G.) contained in G, is injective.

We build a graph of groups A, from A as follows: for each vertex v of A, we replace the
corresponding vertex group G, by ¢,(G,), and for each edge e such that ¢(e) = v, we replace i,
by ¢y 0 i.. The fundamental group of A, is obtained by quotienting G' by the smallest normal
subgroup of G containing the kernels of all the ¢,. We call the graph of groups A, the quotient
of A by the maps (¢,),cv(a)-

Extending vertex automorphisms. Let A be a graph of groups with fundamental group G.
Let ¢, be an automorphism of the vertex group G, corresponding to some vertex v of A. Suppose
that for every edge e of A which is adjacent to v, there exists an element g. of G, such that on
ic(Ge), the map ¢, restricts to conjugation by g.. Then we can extend ¢, to an automorphism
of G. To see this, start by picking a maximal subtree of A. For any vertex w of A, if the path
between w and v in this maximal subtree ends by an edge e, define ¢ to be conjugation by g. on
G . Suppose now that t is the generating element corresponding to an edge f which is not in the
maximal subtree, with o(f) = w and t(f) = w’. Suppose that on G,, and G, respectively, we
defined ¢ as conjugation by some element g. and g, respectively. Then we set ¢(t) = g.tg,'. It
is straightforward to check that ¢ is well defined, and that it is an automorphism. We call this a
standard extension of ¢, to G. Such an element ¢ of Aut(G) is called a vertex automorphism
of G relative to A.

3.2 Hyperbolic metric spaces

The notion of hyperbolicity, originally related to curvature of Riemannian manifolds, was extended
to general metric spaces by Gromov. We give here several characterisations of hyperbolicity, as
well as some basic results. The references here are [GAIH90] and [CDP90].

Definition 3.1: (§-hyperbolic metric space) Let (X,d) be a geodesic metric space. A geodesic
triangle A(x,y,z) = [z,y]U[y, 2] U [z, 2] in X is said to be 6-thin if any point p of A(x,y, z) is in
the closed 0-neighbourhood of at least two faces. We say that (X,d) is §-hyperbolic if all geodesic
triangles are §-thin.

Given a geodesic triangle A(x,y,2) in a metric space, let T'(2',y’,2") be the unique tripod
whose endpoints z’,y’, 2z’ are at distances d(x,y) = d(2',y"), d(y,z) = d(y’,2') and d(z,2) =
d(2',2"). There exist a unique map pa : A(z,y,z) — T(2',y’, 2’) which restricts to an isometry
on each side of the triangle. The the following lemma gives us an equivalent definition for §-
hyperbolicity (see proposition 21 of chapter 2 of [GAIH90]).

Lemma 3.2: The geodesic metric space (X,d) is d-hyperbolic if and only if for any geodesic
triangle A(x,y, z) in X, and for any points z,z" of A(z,y, z) such that pa(z) = pa(z’), we have
d(z,2") <6.

The following lemma is an easy consequence of this characterisation.

Lemma 3.3: Let Z be a geodesic quadrilateral contained in X. There exists a simplicial tree
T(Z), and a map p : Z — T(Z), whose restriction to each side of the quadrilateral is an isometry,
and such that for any two points z,z" of Z we have

d(p(2),p(x"))) < d(z,2") < d(p(2),p(2")) + 20.

Remark that in the previous lemma, we may assume that the tree T'(Z) is spanned by the im-
ages u, v, w, x of the vertices of the geodesic quadrilateral. In such a tree, the following inequality
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holds:
d(u,v) + d(w, x) < max{d(u,w) + d(v, z);d(u, x) + d(v,w)}.

This suggests yet another characterisation of hyperbolicity, that is also found in [GAIH90]. It is
slightly more general in that it makes sense even if the spaces we consider are not geodesic. Note
the changes in the hyperbolicity constants.

Lemma 3.4: If (X,d) is a geodesic metric space such that for any four points v,w,y,z of X we
have
d(v, w) + d(y, z) < max{d(v,y) + d(w, 2),d(v, z) + d(w,y)} + 6

then (X, d) is 20-hyperbolic. Conversely, if X is d-hyperbolic then for any four points v,w,y, z of
X we have
d(v, w) + d(y, z) < max{d(v,y) + d(w, 2),d(v, z) + d(w,y)} + 46.

We will also need some properties of isometries f : X — X of a geodesic d-hyperbolic space
X. The following lemma will prove very useful.

Lemma 3.5: Let X be a geodesic d-hyperbolic space X. Let f : X — X be an isometry. Suppose
x and y are two points of X. Let t — v(t) be a geodesic parametrisation of a geodesic segment
[,y] for which v(=T) =z and v(T) = y.

Suppose that d(x, f(x)) + d(y, f(y)) < 2d(x,y) — 45. Then there exists a real number A\ such
that |\| < max{d(z, {(z)), d(y, (1)}, and for |t] < T — max{d(z, f(2)), d(y, f (y))}, we have

d(f (), v(t + \)) < 26 and d(f~ (v(t)),v(t — \)) < 26.

This lemma motivates the following definition

Definition 3.6: (quasitranslation) Let t — x(t) be a possibly infinite geodesic arc I in a geodesic
d-hyperbolic space X. We say that the map f: X — X acts as an n-translation of length A\ on a
subarc J of I if for any point x(t) of J, x(t + A) is defined and d(f(x(t)),x(t + ) < n.

Thus lemma B3 says that if a map f moves two points of X by a distance which is smaller than
the distance between them, it acts as a 2d-quasitranslation far from the endpoints of a geodesic
segment between these two points. Let us prove it.

Proof. Choose geodesic segments [z, f(z)] and [y, f(y)]. Consider the geodesic quadrilateral Z
formed by these segments together with [z, y] and f([z,y]).
We apply lemma B3] to get a simplicial tree T'(Z), and a map p : Z — T(Z). We have

d(p(z),p(f(z))) +d(p(y), p(f(y) < d(=, f(z))+dy, f(y))
< 2d(z,y) —40
= d(z,y) +d(f(2), f(y)) — 46
< d(p(z),p(y)) +d(p(f(x)),p(f(v)))

so the segments [p(x), p(f(z))] and [p(y),p(f(y))] do not intersect in T'(Z). Denote by m and m’
the points for which [m,m/] is the shortest path joining these two segments. Let a = d(p(z), m)
and b =d(p(f(z)),m), and let also o’ = d(p(y), m’) and b = d(p(f(y)), m’).

Ift € [T, T], the point f(v(t)) lies on [f(x), f(y)] at a distance ¢+ T of f(x) and T —t of f(y).
Thus its image by p lies at a distance t + 7T of p(f(x)), and T —t of p(f(y)). If t € [T +b,T —V'],
this implies that it lies in [m,m’]. In this case, its distance to p(z) ist —T —b+a. Let A =a —:
the point p(v(t + A)) lies in p([x, y]) at a distance t — T — b+ a of p(x), so it lies on [m,m’] and
we have p(f(v(t))) = p(v(t + N))). We get

A(f(u(t)), v(t + ) < 26.
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Note now that d(p(z),p(y)) = a+d(m,m’)+a’, and that d(p(f(2)), p(f(y))) = b+d(m, m’) +’
sothat \=a—b=0V—d. Ift' € [-T+a,T—adl],welett=t'—X: thent € [-T+b,T -] so
we have

d(o(t’ =), [T w(t)) = d(f(u(t’ = X)), 0(t')) = d(f(v(t)), v(t + X)) < 26.

Finally, note that a + b = d(p(x), p(f(z))) = d(x, f(z)). Thus a and b are at most d(z, f(z)),
and @’ and b’ are at most d(y, f(y)). This implies in particular that |A\| = |a — b| is bounded by
max{d(z, f(z)),d(z, f(x))}, and if |t| < T — max{d(z, f(x)),d(z, f(z))} we have t € [-T +b,T —
VIN[-T+a,T—d]so

A(F(u(t)),v(t + ) < 26 and d(f~L(v(t)),v(t — \)) < 20.
O

A geodesic hyperbolic metric space X can be compactified by the addition of a boundary 90X
(see chapter 2 of [CDP90]). The closure of a geodesic of X in X UdX intersects the boundary
in two points, called the points at infinity of this geodesic. We have (this is proposition 2.2 of

chapter 2 in [CDP90])

Lemma 3.7: Two geodesics which have the same points at infinity lie within 85 of each other.

Isometries of a hyperbolic metric space can be classified into three types: elliptic, parabolic
and hyperbolic. We will only be interested in the latter.

Definition 3.8: (hyperbolic isometry) An isometry f : X — X is hyperbolic if there exists a
point x in X for which the map from Z to X defined by n — f"(x) is a quasi-isometry.

It is easy to see that in this definition we can replace "there exists a point " by "for any point
2". The quasi-isometry n — f™(z) defines two points of the boundary, the limits lim,, o, f™(x)
and lim,,_,_, f™(z) that we denote by f(co) and f(—o0) respectively. We know that f can be
extended to a homeomorphism of the boundary 0X: it is clear that this extension fixes these two
points. It can be shown that f fixes exactly these two points on the boundary. Moreover, any
power of f also fixes f(—o0) and f(c0).

Definition 3.9: (axis of a hyperbolic isometry) We denote by Ax(f) the union of all the geodesics
t— x(t) of X such that limy_._ o, = f(—00) and lim;_,_, = f(—00).

Then Ax(f) is stabilised by f, and if k € Z, the axis Ax(f*) of f* is just Ax(f).

Definition 3.10: (translation length) If f : X — X is a hyperbolic isometry, its translation
length is tr(f) = inf e ax(p) d(z, f(2)).

Usually the translation length is defined as the infemum of d(z, f(z)) for x ranging over the
whole space X. However, in the few results we use, this definition is more convenient, and it can
be shown that it only differs from the usual translation length by a few §’s.

Lemma 3.11: If z € Ax(f), we have d(x, f(z)) < tr(f) + 160.

Proof. Suppose z lies on a geodesic L contained in Ax(f). Let y € Ax(f). The map k — f*(y)
is a quasi-isometry, and its image lies in a 8-neighbourhood of L by lemma B Thus if g is a
point of L such that d(yx, f*(y)) < 89, the map k — yy, is also a quasi-isometry. Thus there is
an integer k such that x € [yx, yr11], so that z lies at distance at most 8 of a geodesic segment
[f5(y), ff*1(y)]. Let z be a point of [f*(y), f*+1(y)] for which d(z,z) < 85. Note that

d(z, f(2)) < d(z, [ () +d(f W), F(2) = d(FF (), 2) + dl=z, [ ) = (), S5 ()
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since z lies on a geodesic segment between f*(y) and f*+1(y). Thus d(z, f(2)) < d(y, f(y)). Now
we have by the triangle inequality

d(z, f(x)) < 2d(z, 2) + d(z, f(2)) <160 + d(y, f(y))-
This holds for every point y of Ax(f), so the result holds. O

Lemma 3.12: Let f : X — X be a hyperbolic isometry. Then f acts as a 205-quasitranslation
of length tr(f) on any geodesic contained in Ax(f).

Proof. Suppose t — v(t) parametrises a geodesic in the axis of f, with lim;—._ ., v(t) = f(—00),
and lim;_,o v(t) = f(o0). Let T' € R such that 47 > 2tr(f) + 360.

We then let « and y be the points of Ax(f) given by x = v(—T) and y = v(T). We have
d(z, f(x)) +d(y, f(y)) < 2tr(f) + 326 by lemma BI1] so

d(z, f(x)) +d(y, f(y)) < AT — 46 = 2d(x,y) — 40.

Therefore we can apply lemma B3] to see that for |t| < T —tr(f) — 164, there is a real number
A so that we have
d(f(u(t)),v(t+N)) < 26.

Moreover, we know that
d(v(t), f(v(1)) — 20 < A < d(z, f(z))

so that tr(f) — 28 < |A\| < tr(f) + 160.
Finally we get d(f(v(t)),v(t +tr(f))) < 2§ + 185 < 200. This proves the claim. O

We show

Lemma 3.13: Let X be a geodesic d-hyperbolic space. If [ is a hyperbolic isometry X — X
with tr(f) > 126, for any point x of X, the midpoint m of a geodesic arc [z, f(z)] satisfies
d(m, Ax(f)) < 40.

Proof. Let T be a point of Ax(f) such that |d(z, Ax(f)) — d(x,Z)| < ¢. Note that then,

|d(f(z), Ax(f())) = d(f (=), f(2))| <.

A geodesic segment [Z, f(Z)] lies within 26 of Ax(f).

Consider a geodesic quadrilateral Z formed by {x,Z, f(Z), f(x)}. We apply lemma B3 to find
a simplicial tree T(Z) and a map p: Z — T(Z).

There are only two "combinatorial" possibilities for p(Z). Suppose first that p([z, f(z)]) and
p([Z, f(Z)]) intersect in a non-trivial segment [z, 2/]. Note then that

d(p(w), ) > d(w, Ax(f)) > d(z,7) — 6
so d(z,p(z)) < 26. We deduce

d(z,7) d(p(z),p(f(7))) — 20

d(z, f(z)) — 40
tr(f) — 46 > 86.

(A\VARAVARIY

This implies that p(m) € [z, 2']). Thus there exists a point y on [z, f(Z)] such that p(y) = p(m),
and this implies d(m, Ax(f)) < 44.
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If p([z, f(z)]) and p([Z, f(Z)]) do not intersect, there are points y and y" on [z, f(x)] and
[Z, f(Z)] respectively such that [p(y),p(y’)] is the path between them. Then

d(p(z), p(x)) < d(z,7) < d(z, Ax(f)) + 0 < d(z,y') + 30 < d(p(x),p(y')) + 56
so that d(p(z),p(y’)) < 56. Similarly, we can see that d(p(f(Z)),p(y’)) < 5. Thus

d(z, f(z)) < d(p(z), p(f(2))) + 26 < d(p(z),y") + d(y', p(f(Z))) + 26 < 126.

We will also need

Lemma 3.14: Let T" be a torsion-free hyperbolic group. Denote by X its Cayley graph with respect
to some generating set . For R > 0, there exists a constant Mp such that for any non-trivial
element g, the translation length of g™*% is at least R.

The proof follows that of proposition 3.1 in [Del96].

Proof. Denote by § a hyperbolicity constant for X, we can assume without loss of generality that
it is an integer. We fix an order on the generating set 3, and then order words in the elements
of ¥ lexicographically. We say that a geodesic L in X is special if for any two points g and ¢’ on
L, the word in X corresponding to the segment of L between g and ¢’ is minimal among words
representing g~ 'g’. It can be shown by following the proof of proposition 2.2 in chapter 2 of
[CDP90] that any two points on the boundary of X are joined by a least one special geodesic. If
we pick two points in the boundary of X, and two disjoint balls of radius 80 centred on a special
geodesic joining them, we see by lemma B.7] that any other special geodesic must pass through
both these balls. On the other hand, given any pair of points =,y in X, there is at most one
special geodesic containing both x and y. Thus the number of special geodesics joining any two
points on the boundary is bounded by |Bgs(X)|?.

Let now g be a non-trivial element of G. It is a known result (see Théoréme 3.3 and Théoréme
3.4 in chapter 9 of [CDP90|) that any non-trivial element of a hyperbolic group acts hyperbolically
on its Cayley graph. Thus g fixes two points on the boundary. The image by ¢ of a special geodesic
joining them must also be a special geodesic: g permutes the set of special geodesics. Thus if
M = |Bgs(X)|?!, we know that g’ fixes all the special geodesics. In particular, its restriction
to a special geodesic is a translation, of length at least 1 since the distance function has integer
values. Let Mp = M (R + 166): the element g7 restricted to a special geodesic is a translation
of length at least R + 166. We conclude by applying lemma 3111 O

3.3 Limits of metric spaces

In all this section, G is a group endowed with a finite generating set Xs. We want to define a
topology on a set of pointed metric G-spaces, and to give a criterion for a sequence in such a set
to admit a convergent subsequence. Then, we look at the particular case where the metric spaces
in the sequence are all hyperbolic, and we see under which conditions the limit is a real tree.

3.3.1 The Gromov-Hausdorff topology

Let A(G) be a set of pointed metric G-spaces, that is, metric spaces endowed with an action of
G by isometries. We want to define a topology on A(G) called the equivariant Gromov-Hausdorff
topology. It is a generalisation of the Gromov-Hausdorff topology on a set of compact metric

spaces (see [Pau88]).
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Definition 3.15: (e-approximation) Let (K, d), (K’',d’) be two compact metric spaces. Let € < 0.
An e-approzimation between K and K’ is a binary relation R C K x K' whose projections on K
and K' are surjective, and such that for x,y € X and 2.y’ € X', if xRz’ and yRy', then

|d($,y) - d/(m/ay/” <€

The Gromov-Hausdorff distance between two compact metric spaces is the infemum of the
set of e for which an e-approximation exists. This can be generalised to a topology on sets of
non-compact pointed metric spaces, where a sequence (X, x,,) converges to (X, z) if the Gromov
Hausdorff distance between the ball centred on z,, of radius n and the ball of radius n centred on
X tends to 0 as n tends to infinity. We want to further generalise this to metric spaces endowed
with an action of G.

Definition 3.16: (neighbourhoods N (G, K, €)) Let (X, z) be an element of A(G). Given a finite
subset K of X, a finite subset Gy of G, and € > 0, we say that an element (X', 2') of A(G) is in
N(Go, K,¢)(X,x) if there exists a finite subset K’ of X', and an e-approzimation R between K
and K' such that if y,z € K and y', 2’ € K', and if yRy', 2Rz, then for any element g of Gy

|d(yag : Z) - d/(y/vg ' Z/)| <e€

Definition 3.17: (equivariant Gromov-Hausdorff topology) The equivariant Gromov-Hausdorff
topology on A(G) is the topology generated by the neighbourhoods of the form N(Go, K, ¢€) for
(X, z) € A(G), for Gy a finite subset of G, for K a finite subset of X, and ¢ > 0.

3.3.2 Ultraproducts and limit of sequences

We want to give a sufficient condition on a sequence (X,,,x,) in A(G) to ensure that it contains
a convergent subsequence. To build a limit, we will need the following tools.

Definition 3.18: (filter) A filter F' on N is a non-empty subset of P(N) such that
e if AB€eF, then ANB € F;
e if Ac F and if AC B, then B € F.
Example 3.19:
e the principal filter over an element n of N is the set of all subsets of N which contain n;
o the Frechet filter is the set of all cofinite subset of N.

Definition 3.20: (ultrafilter) A filter is an ultrafilter if it is mazimal for inclusion.

Remark 3.21: A filter is an ultrafilter if and only if for each subset A of N, it contains exactly
one of A, N — A.

A principal filter is an ultrafilter. The Frechet filter isn’t an ultrafilter (it contains neither the
set of even numbers, nor the set of all odd numbers its complement).

By applying Zorn’s lemma, we can show that any filter is contained in an ultrafilter. Thus we
can enlarge the Frechet filter to an ultrafilter which is easily seen to be non-principal. Conversely,
any non-principal ultrafilter contains the Frechet filter.

Definition 3.22: (limits with respect to w) Let w be a non-principal ultrafilter. We say that the
sequence (Un)nen of real numbers tends to u with respect to w if for all € > 0, the set {n € N |
|up — u| < €} is in w. We denote this lim,, u,, = u.
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If a sequence of reals (un)neny tends to a limit u as n tends to infinity, then it tends to u
with respect to any non-principal ultrafilter w. If a sequence of reals (u,),cn is bounded, then
it admits a limit with respect to any non-principal ultrafilter w. In fact, if a sequence (uy,)nen is
bounded with respect to w, namely if there exists a constant M such that {n € N | u,, < M} lies
in w, then it tends to a limit with respect to w. If this is not the case, we say that wu, tends to oo
with respect to w.

Let (X,, zn)nen be a sequence of pointed metric spaces. Let w be a non-principal ultrafilter.
Define X, to be the set

{(Yn)nen € HpenXnl liugn Ay (T, Yn) < 00}
quotiented by the following equivalence relation:

(yn)neN ~ (Zn)nEN — {n € Nl Yn = Zn} cw.

We will usually denote (y,,) both the sequence and its class for ~. We choose (z,,) as a basepoint
for X .
Now for all (y,,), (zn) € X we set:

doo((Yn), (2n)) = 1i$ndn(yn, Zn)-

This limit exists since dy,(Yn, 2n) < dp(Yn, Tn) + dp(Tn, 2n), and both d,,(yn, z,) and d,,(z,, z,)
are bounded with respect to w by hypothesis. This defines a pseudometric on X,,. Denote by
(X, x,) the quotient of X, by the equivalence relation given by doo((yn), (2n)) = 0, and by d,,
the metric on X,. Again we abuse notations and denote the equivalence class of a point (y,) of
Xoo by (yn)-

Suppose now that each X,, is endowed with an action of G such that, for any element a of the
generating set Y, the sequence (d,, (2, a - Z,))nen is bounded with respect to w. Then for any
element (y,,) of X, and any element g = a; ...as with a; € X, we have

dn(mnag'yn) < dn(mnag'mn)+dn(g'mnvg'yn)
< E?:ldn(xna a; - xn) + dn(xna yn)
Thus the sequence d,, (2, g - yn) is bounded with respect to w, so the sequence (g - yn)nen defines

a point in X,,. It is straightforward to check that (g, (yn)n) — (9-yn) gives an action of the group
G on X, by isometries.

Definition 3.23: (ultraproduct of a sequence of G-spaces) Let (X, x,) be a sequence in A(G)
for which there exists a non-principal ultrafilter w, such that for any element g of the generating
set ¢, the sequence (dy(Tn, g - Tn))nen s bounded with respect to a non-principal ultrafilter w.
The space (X, x,) endowed with the action of G given by
(9, (Yn)n) = (9 Yn)
is called the ultraproduct of the G-spaces (X, x,) with respect to w.
Ultraproducts are natural limits for sequences of G-spaces.

Lemma 3.24: Let (X, z,)nen be a sequence in A(G). Let w be a non-principal ultrafilter such
that (X,,, x) is defined and lies in A(G). Then (X, x,,) lies in the closure of {(X,,xn) | n € N}
in A(G) with respect to the equivariant Gromov-Hausdorff topology.

Proof. Let g be an element of G, let y = (y,,) and z = (z,,) be points in X, and let ¢ > 0. We
get from the definition of d,, that the set A¢(g,y, 2) defined by

Ag,y,2) ={n €N | |dp(Yn, 9 2n) — du(y,g-2)| < €}
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lies in w.

For any finite subset Gy of G, any finite subset K of X, and any € > 0, the intersection
A¢(Go, K) of all the sets of the form A¢(g,y, z) for g in Gy and y, z in K is still in w, in particular
it is not empty. But (X,,,z,) lies in N(Go, K, €) precisely if n lies in A¢(g,y, z) for all g in Gy
and y, z in K. This proves the lemma. [l

Note that this lemma implies in particular that some subsequence of (X, x,)nen tends to
(Xu,2w). Thus, for a sequence (X, )nen to admit a convergent subsequence, it is enough
that there exist a non-principal ultrafilter w with respect to which the sequence d,,(z,, g - z,) is
bounded for every element g of 3. This boundedness condition might not be satisfied, but by
rescaling properly we can overcome this problem. For this, define

Definition 3.25: (length of an action) If (X, z) is a pointed G-space, we define the length of the
action to be
I(X,2z) = max d(z, g - x),
ISE]

the mazimal displacement of the basepoint by a generator.

If X is a space endowed with a metric d, and a a positive real, we denote by %X the metric
space whose underlying set is X, and whose metric is d/a.

Remark 3.26: Let (X,,,zn)nen be a sequence of G-spaces: if we rescale the metric on X,
by 1, = U(Xn,z,), the sequence (i(Xn,xn))neN satisfies the condition of boundedness which
ensures that the ultraproduct of the spaces T L(X,,x,) is defined with respect to any non-principal
wltrafilter w. Thus, up to rescaling by the action lengths, any sequence of metric G-spaces admits
a convergent subsequence. This trick will prove very useful in the sequel.

3.3.3 Limits of pointed hyperbolic G-spaces

We will be interested in limits of sequences of hyperbolic G-spaces. We get the following result
about the ultraproduct of path-connected hyperbolic spaces:

Lemma 3.27: Let w be a non-principal ultrafilter. Let (X, xn)nen be a sequence in A(G). If
each X, is a geodesic 0,-hyperbolic space, if lim,, 6,, = 0, and if (X, x,) is defined, it is a real
G-tree.

Proof. To see that X, is a real tree, it is enough to see that it is 0-hyperbolic and path connected.
For a proof of this, see for example Théoréme 4.1 in chapter 3 of [CDP90).

Recall the characterisation of hyperbolicity given by lemma B4l If (v,,), (w,), (Yn), (zn) € Xo,
we have:

dw((vn); (Wn)) + du((yn), (20)) = lim(dn (vn, wn) + dn(Yn, 1))

< lim(max{dn(vn, yn) + dn(wn, 2n), dn(vn, 20) + dn(Yn, wn)} + 26,)
(Wn, 2n)], hin[d (Uns 2n) + dp(Yn, wn)]} + 211m5
((wn), (2n)), duw((vn), (2n)) + du(( n),(wn))}

< max{lim[d,, (v, yn) + dn
d

= max{dy,((vn), (Yn)) + duw

which proves X,, is O-hyperbolic.

Let us see that X, is path connected. Let (v,) € X,,. We know that d,,(z,,v,) is bounded
with respect to w, in particular there exists a positive constant M such that the set A = {n |
dp (T, vn) < M} liesin w. If n € A, let ¢t — v,(t) for t € [0, M] be a 1-Lipschitz path from v, to
x, (it exists since X, is a geodesic metric space). If n ¢ A, let v, (t) be the constant path. Then
the map ¢ — (v, (t)) is continuous since the v,, are all 1-Lipschitz, and it is a path from (v,) to
() in X,. O



Chapter 4

Shortening argument

The shortening argument has many variants, of which we will present two. The classical result
asserts that, given a sequence of morphisms from a freely indecomposable group G to a torsion-
free hyperbolic group I', either we can ’shorten’ some of the morphisms in the sequence, or the
stable kernel is non-trivial (see Theorem 23]). The length of a morphism f : G — T" depends on
the choice of generating sets for G and I', and of a basepoint in the corresponding Cayley graph
of I'. It is the maximal displacement of this basepoint by the image of one of the generating
elements chosen for G. Then ’shortening’ a morphism f : G — T' is just precomposing it by an
automorphism o of G, in such a way that the length of f o o is strictly smaller than that of f.

We will also give a relative version of the shortening argument, in which the group G is only
assumed to be freely indecomposable relative to a subgroup H, but the morphisms in the sequence
are assumed to fix H in the limit (see Theorem [33). We call this type of results morphisms
shortening results.

In the proof of both the standard and the relative versions of the shortening argument for
morphisms, the first step is to construct from the given sequence of maps G — I' a sequence of
actions on d,,-hyperbolic spaces X, .

Definition 4.1: (action X [h] induced by a morphism) Let G and T be groups endowed with finite
generating sets S and Xp. If h : G — I is a morphism, G acts on T by (g,v) +— h(g)y. This
induces an action of G on the Cayley graph X of ' with respect to X, giving it a structure of
G-space that we denote by X [h].

We will see that given a sequence of morphisms h,, : G — I', by suitably rescaling the metric
on X[hy] and choosing the right basepoint, we get a sequence of actions on hyperbolic spaces
which converges to a non-trivial action on a real tree T'.

The second step is to prove an "action shortening result" (theorem and theorem
respectively), which tells us that if a sequence of actions on hyperbolic spaces converges to an
action on real tree satisfying certain conditions, we can shorten all but finitely many of the actions.
This action shortening result should be considered as the heart of the shortening argument; indeed
it can be used to prove results about sequences of action which do not necessarily come from
morphisms to a free or a hyperbolic group (see for example [Sel97al).

In this chapter, we prove the "morphism shortening results" using the "action shortening
results". In the first section, we explain how to get a sequence of actions converging to a real
tree from a sequence of morphisms G — I'. In the second and the third section, we state the
action shortening theorems and use them to prove the morphism shortening results in the classical
and the relative case respectively. The fourth section gives a result which is a straightforward
consequence of the shortening argument, and which we will use in the proof of the main result of
this thesis. The proof of the action shortening result is given in the next chapter.

31
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4.1 Limit of morphisms to a hyperbolic group

For this whole section, let G be a group endowed with a finite generating set X, and let I" be a
torsion-free hyperbolic group endowed with a finite generating set Xp. Denote by X the Cayley
graph of I" with respect to 3p.

This lemma gives the setting which we will consider in this section. Recall that in defini-
tion B2 the length of an action of G on a pointed metric space was defined as the minimal
displacement of the basepoint by an element of .

Lemma 4.2: Let h, : G — T be a sequence of morphisms. Suppose that there is a sequence
of basepoints x,, for the spaces X|[hy], and a non-principal ultrafilter w, for which the sequence
ln = UXhn], zn) tends to infinity with respect to w. Then the ultraproduct (X [h,w], x,) of the
spaces i(X[hn], Zn) is a real G-tree.

Proof. By remark the ultraproduct of the spaces i(X[hn],xn) is defined. Moreover, the
space X [hy] is 6-hyperbolic, so that i(X[hn],xn) is 0/l,,-hyperbolic. Now 4/l,, tends to 0 with
respect to w, so by lemma B27 the ultraproduct (X[h,w],z,) of the spaces %(X[hn],xn) is
defined, and is a real G-tree. (|

We want to study some properties of such a limit action. The proofs we give are inspired by
those found in [Pau97]. The following lemma will prove useful.

Lemma 4.3: Suppose we are in the setting described in [[.2 For any pair of points y,z of
(X[h,w],z,), we define D, as the set

{aba"'b™1 | a,b € G such that d(y,a-y),d(y,b-y),d(z,a-2),d(z,b-2) < d(y,z)/12}.

Let R be the cardinal of the ball of radius 80 in I’ (where T' is endowed with the word metric
associated to Xr). If y,z are points in (X[h,w],x,), and if Dy, is a finite subset of D,., the
cardinal of h,(Dj),) is bounded by R with respect to w.

Proof. Let y,z be points of X. Let A)_ be a finite set of pairs (a,b) of elements of G such that
d(y,a-y),d(y,b-y),d(z,a- z),d(z,b- z) < d(y,z)/12 and [a,b] € DY_. Let € < d(y,2)/20. There
is a set U in w such that for any n in U, there is an ¢ approximation between 7" and X, relative
to y, z, and to the elements of the pairs which lie in A27z. We can assume moreover that if n € U
and such that 2§,, < e. Fix an index n in U, and let y,, and z,, be some points approximating y
and z.

Note that d(y,z) < 10dn(Yn,2n)/9 50 20, < € < dn(Yn,2n)/9. Let (a,b) € AY . Suppose
one of hy,(a) or hy(b) is trivial: then h,(aba=1b~!) = 1. Since we want to bound the cardinal of
{hn([a,b]) | (a,b) € A)_}, we can ignore this case.

Consequently, the elements h,,(a) and h,, (b) act hyperbolically on X. Let [yn, 2] be a geodesic
segment, and let ¢ — w(t) be a geodesic parametrisation [—T,T] — [yn, 2n]. The elements h,,(a)
and h,(b) move y,, and z,, by a distance which is small compared to the distance between them.
More precisely, we have

dn(Yn,a-yn) < d(y,a-y) +e<d(y,2z)/10 + € < 3d(y, 2)/20 < dn(Yn, 2n)/6,

so in particular d,,(yn, a-yn) < dn(Yn, 2n) — 20,. Similarly we show that d,, (yn,b-yn), dn(2n, a-2y)
and d,,(zn,b - z,) are all smaller than 3d(y, z)/20, so that they are smaller than d,, (yn, 2,) — 20,,
and lemma 3.5 can be applied to the isometries given by a and b on X,,.

Thus, there exists reals A\, and Ay, with |Aq| < max{d, (yn, a-yn), dn(2n,a-zn)} < 3d(y,z)/20 <
T/3 and |\y| < T/3 such that a, b, a~! and b—! act as 24,,-quasitranslations of length \,, Ay, — A,
and —\, on the subsegment {w(t) | |t| < 2T/3} of [zn, yn)]-
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The idea is now that, up to a few d,,’s, @ and b commute on a subsegment of [y, z,], so their
commutator does not move the midpoint w(0) of [yn, z,] by more than R.

Since both [A,| and |\p| are less than T'/3, we can apply the inequality given in[B3lto t = —\p,
t=—Xp — Mg, and t = —\,. We deduce

dy (w(0),aba= b= - w(0)) 0),aba™" - w(—=Ap)) + 28,
0),ab-w(—Ag — \p)) + 40y,

dy (w(0)
dp (w(0)
dp(w(0),a - w(Xp — Ap — Ag)) + 66y,
dy (w(0)
dp (w(0)

VAN VAN VAN VAN

This shows that, for any n in U, the translates of w(0) under elements of h,, (D) all lie in the
ball of radius 86,,. Thus, there is a point w of X whose translates by the elements of hn(Dgz) lie
in a ball of radius 8§ around w. But the action of I' on its Cayley graph X is free and discrete,
and the cardinal of the set of elements translating a point of X by less than a constant C' is
bounded by the cardinal of the ball of radius C' in I" endowed with the word metric. This proves
the claim. (|

Definition 4.4: (stable kernel with respect to an ultrafilter) The stable kernel with respect to w
of a sequence of morphisms hy, : G — T is the set of elements g of G such that {n | h,(g9) = 1}
lies in w. We denote it by Kery,(hy,).

Suppose we are in the setting of lemma Then the stable kernel with respect to w acts
trivially on (X [h,w], z,). Indeed, denote by d,, the metric on i(X [hn], xn): we have d,, = dx,. /1.
For an element g in the stable kernel of (h,),en with respect to w, and for any point (y,) in
(X [h,w], xy,), the set of indices n for which the distance dy,(yn, g - yn) is zero lies in w. Thus we
have

do((yn) 9 - (yn)) = lim dn(yn, g - yn)) = 0.
We now show

Lemma 4.5: Suppose we are in the setting given by[{.2 The elements of G which stabilise a
non-trivial tripod of (X[h,w],z,) lie in the stable kernel of (hy)nen with respect to w.

Proof. Let a,b,c be points of X [h,w] which form a non-trivial tripod of centre e. Let g be an
element of G which fixes this tripod pointwise. Let ¢ < min{d(a,e),d(b,e),d(c,e)}/10. There is
an element U, of w such that if n € Uy, there is an e-approximation between X [h, w] and X,, with
respect to a, b, c and g.

Let n be in U,. Denote by ay,, by, ¢, the points approximating a, b, ¢, and let A(anbncy,) be a
geodesic triangle with vertices a,, by, ¢, in X,,.

Recall there is a unique map pa : A(apbpc,) — Y, where Y is the unique tripod whose
sides have the same lengths as the sides of A(a,b,c,), and the restriction of pa to each face
of A(anbpcy) is an isometry. Let x,, yn,, and z, be the points of [an,bs], [bn,cn] and [an, ¢;)
respectively such that pa(z,),pa(yn) and pa(z,) are all equal to the centre of the tripod Y. By
lemma B2 the diameter of {x,,, yn, 2} is less than d,,.

We have d,,(an, g an) < € and dy,(by, g - by) < € so far from its endpoints, the path g - [ay, by,]
by g lies in a 26,-neighbourhood of [a,, b,]. In particular, we get

dn(g * Ty [anabn]) < 2571

and we can find a point 2/, on [ay, b,] such that d(z!,, g x,) < 20,. Similarly, we can find points
yr, in [by, ¢,] for which d,,(y},,9 - yn) < 26, and z], in [ay, c,] such that d,,(2),, 9 - zn) < 2d,,. The
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diameter of {g - Zn, 9 - Yn,g - 2n} is less than ¢, so the diameter of {7, vy, , 2/} is at most 5d,.
Since z/,,y,, and 2!, lie on the three different faces of the triangle A(a,b,cy, ), their images by pa
cannot all lie on the same leg of the tripod Y. Thus they are 59,-close to the centre of Y, so that

d(pa(x)),pa(zs)) < 56, and we get
dn (g Ty Tp) < dp(Tp,2)) + dn (2, 9 T0) < d(pa()), pa(Tn)) + 6n + 26, < 8.

Thus any element of G fixing the tripod a, b, ¢ translates x,, by at most 8J,. But if g fixes
the tripod, all its powers do, therefore, the cardinal of the set {h,(¢*)}rez is bounded by the
cardinal of the ball of radius 89 in I" endowed with the word metric associated to Xr. Since it is
a subgroup of I', and since I is torsion-free, it must be trivial. Thus for every n in Uy, we have
hn(g) =1, and g lies in the stable kernel of (h,,),cn with respect to w. O

Recall that the elements of the stable kernel of (h,,)nen with respect to w act trivially on
X[h,w]. The following lemma gives a partial converse.

Lemma 4.6: Suppose we are in the setting described in[{.2

If (X[h,w],zy) isn’t a line, the kernel of the action of G on (X|h,w],x,) is precisely the stable
kernel of the sequence (hy)nen with respect to w.

If the stable kernel of the sequence (hp)nen with respect to w is trivial, and if (X[h,w],x,,) is
a line, then h, (G) is cyclic for all n.

Proof. Suppose that X [h,w] is not a line: it contains a non-trivial tripod, which is fixed by any
element which lies in the kernel of the action. But by lemma 3] elements of G fixing a tripod
in X[h,w] lie in the stable kernel of (h,,)nen with respect to w. The other inclusion has already
been proved.

Suppose now X [h,w] is a line L, and that I{(_erw(hn) = 1. Let Dg be a finite set of commutators
of G, and let Gy be a finite subset of G such that any element in Dy is a commutator of two
elements in Dy. The elements of G either fix a point of L, or they act by translation: denote by
M the maximum of their translation lengths. Let y, z be two points of L such that d(y, z) > 12M.
Note that Dy is a subset of the set D,. defined in lemma 3] so there is a set U in w such that
for any index n in U, the cardinal of h,(Dy) is bounded by the constant R(T"). However, there
exists also a set U’ in w such that for any index n in U’, the map h,, is injective on Dy. Since
U N U’ is not empty, we see that the cardinal of Dy is bounded by R(T"). This show that the set
of commutators of G is finite, so by lemma 1.A in [Pau97]|, G is virtually abelian. For any index
n, the image h,,(G) is virtually abelian. Since it is a subgroup of a torsion-free hyperbolic group,
it is in fact cyclic. Indeed, abelian groups in torsion-free hyperbolic groups are infinite cyclic, and
virtually cyclic torsion-free groups are cyclic (to see this, show first that the centre of a virtually
cyclic group must have finite index, then show that if the centre of a group has finite index, then
the derived subgroup must be finite). O

Finally, we have

Lemma 4.7: Suppose we are in the setting given by [{-.2 Suppose moreover that any virtually
abelian subgroup of G is abelian, and that the stable kernel of (hy,)nen with respect to w is trivial.
Then the pointwise stabiliser of an arc of (X [h,w],xy), is abelian.

Proof. Let [y, z] be an arc in X[h,w]. Let G be a finitely generated subgroup of Stab([y, z]),
and suppose that the set D of its commutators is infinite. Let Dg be a finite subset of D; with
|Do| > R(T).

Note that Dy lies in D,;., so by lemmaF3] there is a set U of w such that for any index n in
U, the set h,, (Do) has cardinal bounded by R(T"). The stable kernel of the sequence (h;,),en with
respect to w is trivial, so there exists a set U’ in w such that for n € U’, the map h,, is injective
on Dy. Since U NU’ is not empty, we get a contradiction.
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Thus G; has a finite set of commutators, so by lemma 1.A in [Pau97], G; is virtually abelian.
By hypothesis it is in fact abelian. Any finitely generated subgroup of Stab([z,y]) is abelian: it
must itself be abelian. O

4.2 Shortening morphisms in the classical case

4.2.1 Modular group

We start by defining a subgroup of the group of automorphisms Aut(G) of G called the modular
group. We need the following definitions.

Definition 4.8: (Dehn twist) Let G be a finitely generated group. Suppose A is a one edge
splitting for G, with edge group C, and let ¢ be an element in the centre of C. A Dehn twist about
¢ is an automorphism ¢ of G defined as follows:

1. If G = Ax¢c B, ¢ is the unique automorphism of G which is the identity on A, and conju-
gation by ¢ on B.

2. If G = Ax¢c, and t is a stable letter of this HNN extension, ¢ is the unique automorphism
of G which is the identity on A, and sends t to tc.

If A is a graph of groups decomposition of G, the Dehn twists of A are the Dehn twists associated
to one-edge splittings of G obtained from A by collapsing all its edges except one.

Definition 4.9: (generalised Dehn twist) Suppose G has a graph of groups decomposition A, and
let A be an abelian vertex group in this decomposition. Let Ai be the subgroup of A generated by
all the incident edge groups. Any automorphism of A which fizes Ay pointwise can be extended to
an automorphism of the whole group, which we call a generalised Dehn twist.

To define yet another type of automorphisms, we need

Definition 4.10: (maximal boundary subgroups, boundary subgroups, boundary elements) Let
Y be a surface with boundary. Denote by S its fundamental group (S is a free group).

To each boundary component of 2 corresponds a conjugacy class of mazimal cyclic subgroups
of S: we call such groups mazimal boundary subgroups. We will refer to generators of maximal
boundary subgroups as mazimal boundary elements. A non-trivial non-trivial subgroup of a maz-
imal boundary subgroup is a boundary subgroup, and non-trivial elements of such subgroups are
boundary elements.

Remark 4.11: The set of conjugacy classes of the maximal boundary subgroups is in bijection
with the set of connected components of the boundary of X.

Definition 4.12: (graph of groups with surfaces) A graph of groups with surfaces is a graph of
groups T together with a subset Vs of V(T') such that any vertex v in Vg satisfies:

e there are mo loops at v, i.e. no edges both of whose endpoints are v;

e there exists a compact connected surface with boundary ¥ which is not a disk, a Mdbius
band or a cylinder, and such that the vertex group G, is S = m(X);

e for each edge e such that t(e) = v, the injection i. : G. — G, maps G onto a mazimal
boundary subgroup of S;

o this induces a bijection between the set of edges t=1(v) and the set of conjugacy classes in
S of mazimal boundary subgroups of S;
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The vertices of Vg are called surface type vertices. A vertex of the tree Tr, whose projection in T’
is of surface type, is also said to be of surface type. The surfaces corresponding to surface type
vertices of I' are called the surfaces of T'.

Remark 4.13: Note that the choice of the set Vg is part of the structure: it does not necessarily
contain oll the vertices of A which satisfy the conditions listed above.

Definition 4.14: (surface type automorphism) Let G be a group which admits a decomposition
as a graph of groups with surfaces A, and let S be a surface type vertex group in this decomposi-
tion. An automorphism of S which restricts to conjugation by an element of S on each mazximal
boundary subgroups has a standard extension (recall section[31)) to an automorphism of the whole
group, which we call a surface type automorphism.

It is a famous result, proved first by Dehn and later independently by Lickorish ( see [Lic64]),
that if S is the fundamental group of an orientable surface with boundary, the group of auto-
morphisms of S which preserve the conjugacy class of boundary subgroups is generated by Dehn
twists of splittings of .S in which boundary subgroups are elliptic. Thus in the orientable case,

surface type automorphisms corresponding to .S are in the subgroup generated by Dehn twists of
G.

Definition 4.15: (modular group Mod(A) of a graph of groups A) Let G be a group which
admits a decomposition as a graph of group with surfaces A. The modular group Mod(A) of A is
the subgroup of Aut(G) generated by inner autormorphisms, Dehn twists, generalised Dehn twists,
and surface type automorphisms.

Definition 4.16: (abelian modular group Mod(G) of a group G) Let G be a finitely generated
group. We define the abelian modular group of G, denoted by Mod(G), to be the subgroup of
Aut(Q) generated by the modular groups of all the abelian splittings of G.

4.2.2 Action shortening result

Recall that in definition B:25] we defined the length of an action A of G on a pointed metric
space (X, z) to be the maximal displacement of the basepoint = by an element of the generating
set Y. If o is an automorphism of G, we denote A o o the action of G on (X,xz) given by
(g,2) — A(o(g),x), and we give

Definition 4.17: (short action) An action \ of a group G on a pointed space (X, x) is short if
for any element o of Mod(G), the length of X\ is at most the length of Ao o.

The action shortening result we want to state now is a slightly altered version of the one proved
by Rips and Sela (see [RS94] or [Sel97al). It asserts that, under the right set of conditions, if a
sequence A, of actions of a finitely generated freely indecomposable group G on pointed hyperbolic
spaces (X, x,) converges (in the equivariant Gromov Hausdorff topology) to an action A on a
real tree 7', then at most finitely many of the actions \,, are short.

There are various possible sets of hypotheses on the G-spaces X,, and on the limit G-tree
T for which some shortening result holds. The hypotheses on 7" should enable us to analyse it
using Rips theory, which decomposes real G-trees into simple building blocks of given types (see
Theorem 10.8 in [RS94], or Theorem 5.1 of [Gui08]). One of the conditions an action needs to
satisfy for Rips theory to apply is the following.

Definition 4.18: (superstable) An action on a real tree is said to be superstable if for any pair
of arcs J,I with J C I and Fix(I) # 1, we have Fix(I) = Fix(J).

In Theorem 10.8 of [RS94], Rips and Sela give the existence of a decomposition for a real tree
under a weaker condition, however Guirardel showed in [Gui08] that this stronger hypothesis is
necessary. To see that an action is superstable, we will use the following criterion.
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Lemma 4.19: If a group G acts on a real tree T in such a way that any subgroup fixing a tripod
is trivial, and any subgroup fixing an arc is abelian, then the action is superstable.

Proof. Indeed, let I = [a,b] and J = [c,d] be two non-trivial arcs of T with J C I. We clearly
have Fix(I) < Fix(J). If we do not have equality, there is an element g which lies in Fix(J) but
not in Fix(I) so without loss of generality g - b # b. We now want to see that Fix(I) must be
trivial. Let h € Fix(I), and note that g and h commute since they both fix J. We have h-a =a
and h-b = b since h € Stab(I), and h-(g-b) = gh-b = g-b. The element h fixes the tripod
formed by a, b and g - b, thus it must be trivial. O

Once we know that the limit tree can be decomposed by Rips’ analysis, we need to add some
conditions to deal with the different types of building blocks. We require for example that G be
freely indecomposable to ensure that there are no Levitt (or thin) components. To be able to deal
with axial components, the assumption that solvable subgroups are free abelian will prove useful.

As for the part of the shortening argument which deals with simplicial components of the
limit tree, they require some hypotheses on the G-spaces X,,. The hypotheses must be sufficient
to give some understanding of how an element which fixes an arc in the limit action acts on an
approximation of this arc in X,, for n large enough.

If the spaces X,, are trees, this is much easier to achieve, since isometries of trees are very
easily described. In this case, if an element fixes an arc I in the limit action, it is easy to see
that it must act in X, as a translation whose axis contains a segment approximating I. It will
be important to know that this translation is not trivial: a strong hypothesis which ensures this
is the assumption that the actions are all free, or that for each g in G, the action of g on X, is
free for n large enough. This will be satisfied if the spaces X,, are rescaling of spaces of the form
X[hy] for some sequence of morphisms h,, to a free group whose stable kernel is trivial. Such
a set of conditions is used to show that limit groups admit factors sets (see [Sel01], or [Wil06]).
Another possibility is to assume that the diameter of the fixed point set of an element is bounded
by d,,, with d,, tending to 0. This is the case if the X, are rescaled k-acylindrical G-trees for
example, as is used in [Sel97al.

If the spaces X, are not trees, but only J,-hyperbolic spaces, we have to be slightly more
careful. In [RS94], for example, the authors assume that all the actions are free, and that the
number of translates of a point p which are at a distance at most 104,, of p is bounded uniformly
in n and in p.

However, if we know that the actions ), are rescalings of actions of the form X[h,], where h,,
is a morphism into a é-hyperbolic group, the proof is greatly simplified. Indeed in this case, X,
is proper and geodesic, and for any element g of G which is not in the stable kernel, for n large
enough, the action of g on X, is hyperbolic. Moreover given a non-trivial element g of G, there
is a fixed power of g which has translation length greater than 124, in all the spaces X,, for n
large enough (recall lemma B.14), and this will also prove useful.

We can now state the action shortening theorem

Theorem 4.20: Let G be a torsion-free and freely indecomposable group, endowed with a finite
generating set Y. Suppose moreover that solvable subgroups of G are free abelian groups.

Let (X, xn)nen be a sequence of pointed proper and geodesic d,-hyperbolic metric space en-
dowed with actions A\, of G by isometries. Suppose that the sequence (X, Tn)nen converges to
a pointed real G-tree (T, x). Assume that any non-trivial arc stabiliser of T contains an element
which, for all n large enough, acts hyperbolically on X, , with translation length at least 126,. If
the action X of G on T satisfies:

1. X is non-trivial;

2. tripod stabilisers are trivial;
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3. pointwise arc stabilisers are abelian;
4. A is superstable;

then for n large enough, the actions A, are not short.

4.2.3 Morphism shortening result

Let I" be a torsion-free hyperbolic group endowed with a finite generating set Yp. Denote by X
its Cayley graph. In lemma [£2] we saw that if we choose basepoints properly, we can build from
a sequence of morphisms h,, : G — I" a sequence of G-spaces converging to a real G-tree. We now
want to find sufficient conditions on the morphisms h,, to ensure that the sequence and its limit
satisfy the hypotheses of the action shortening result we just saw.

We first need to choose basepoints for the spaces X [h,] so that the limit of our sequence of
G-spaces is a real tree endowed with a non-trivial action of G.

Definition 4.21: (minimal displacement, minimally displaced point) Let G, I" be groups endowed
with finite generating sets X and Xp respectively. Let h : G — T be a morphism. The minimal
displacement u[h] is the infemum of the function T — N given by

~1
T+ max |x™ h(s)x|sy-

Since the word metric is integer valued, this infemum is a minimum. The point where it is reached
is called the minimally displaced point of h, and denoted by x[h]. We will slightly abuse notations
and identify x[h] to the corresponding point of the Cayley graph X of T' with respect to Xr.

We have u[h] = maxsex,, dx (z[h], h(s) - z[h]), so the length of the action of G on (X[h], z[h])
is precisely the minimal displacement u[h] of h.

Definition 4.22: (short morphism) A morphism G — T is short if for any element o of Mod(G),
we have
pulh] < plho o]

In other words, the morphism & is short if and only if the action of G on (X[h], z[h]) is short.
We can then show

Proposition 4.23: Let G be a torsion-free group, endowed with a finite generating set X, all
of whose virtually abelian subgroups are abelian. Let T' be a torsion-free hyperbolic group endowed
with a finite generating set Y.

Let h,, : G — T be a sequence of pairwise non-conjugate morphisms, and suppose there is a
non-principal ultrafilter w for which Ker,,(hy) is trivial.

Then the ultraproduct of the spaces ﬁ(X[hn], x[hy]) with respect to w is defined, and it is
a real tree (T, x) which satisfies the conditions (1 to[f) in [[-20

Proof. To see that the ultraproduct of the spaces ﬁ(X [hn], z[hy]) with respect to w is well
defined and is a real tree, it is enough to show by remark 2] that p[h,] tends to infinity with

respect to w. Let h be a morphism G — I'. Note that for every g in ¥, we have
[z ] h(g)z[h]|se = dx (1,27 [h]h(g)x[h]) = dx (z[h], h(g)z[h]) < p[h].

Thus h has a conjugate which sends all the generators of G in the ball of radius p[h] in T'. There
are only finitely many such morphisms, so since the h,, are pairwise non-conjugate, p[h,] must
tend to infinity with respect to w.

Suppose that the action is trivial. If y = (y,) is a point in T = X[h,w], for every g in X¢
we have lim,, d,,(Yn, g - yn) = 0. Thus there exists A, in w such that, for any n in A,, we have
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dn(Yn, g+ yn) < 1/2. For nin (5 Ay, we have maxgexng dn(Yn, g - yn) < 1/2. By definition of
w[hy], we have

1
1
] e dx (wlhn], hn(g) - 2lhn])

> 1

This gives a contradiction. Thus the action of G on T is non-trivial.

By lemma 3], we see that elements fixing a non-trivial tripod must be trivial. Since G is
torsion-free, in fact the tripods stabilisers themselves are trivial. By lemma 7, the pointwise
stabiliser of a non-trivial arc is abelian. By remark [£.19, the action is also superstable. O

We can now show the morphisms shortening results. We define

Definition 4.24: (stable sequence, stable kernel) A sequence of morphisms h, : G — T" is said
to be stable if for any element g, either h,(g) is trivial for all but finitely many n, or hy(g) is
non-trivial for all but finitely many n. The stable kernel I&"(hn) of such a sequence is the set of
elements g of G for which the first alternative holds.

Equivalently, a sequence is stable if and only if its stable kernels with respect to any two
non-principal ultrafilters are equal.

Note that if G is finitely generated, any sequence of morphism h,, : G — I' contains a stable
subsequence. To see this, note that for any finite subset B of GG, we can extract a subsequence
of morphisms whose kernels all have the same intersection with B. Now let Bj, be an exhausting
sequence of finite subsets of G, and for each k, extract by induction a subsequence (h%), ey of
(hE=1),.en. The diagonal subsequence (h?),en is then stable.

Theorem 4.25: Let G be a torsion-free and freely indecomposable group, endowed with a finite
generating set Y. Suppose that virtually solvable subgroups of G are free abelian. Let T be a
torsion-free hyperbolic group endowed with a finite generating set Xr.

Let h,, : G — T be a stable sequence of non-injective short morphisms. Then the stable kernel
of (hp)nen is non-trivial.

Proof. Suppose by contradiction that Ker(h,,) is trivial. If the maps h,, belonged to finitely many
conjugacy classes, there would be only finitely many possibilities for the kernel of h,. Then h,,
would admit a subsequence all of whose terms have the same kernel. Since I&"(hn) = {1}, this
kernel would have to be trivial, which contradicts the non-injectivity of the maps h,,. Thus, up
to extracting a subsequence, the maps h,, are pairwise non-conjugate.

Let w be a non-principal ultrafilter. The stable kernel of (h,,),ecn with respect to w is trivial,
the morphisms are pairwise non-conjugate, and virtually abelian subgroups of G are solvable so
they are abelian by hypothesis. We can thus apply proposition [.23] to see that the ultraproduct
with respect to w of the spaces m(X[hn],m[hn]) is a pointed G-tree T, which satisfies the

conditions [ to [ in Thus some subsequence of (ﬁ(X[hn],m[hn]))neN converges to a

pointed G-tree T' which satisfies the conditions [l to d in

Let g be an non-trivial element of G which fixes an arc in T for all n large enough, h,(g)
is non-trivial, so by lemma 314} for all n large enough, A, (g"2%) has translation length at least
12§ in X [hy], so it has translation length at least 124,, in ﬁ(){[hn], x[hy]). The element g*12s
fixes the same arc as g, so the condition in about stabilisers of arcs holds.

We can thus apply Theorem to see that for all n large enough, the action of G on

ﬁ(X [hn], z[hy]) is not short. This contradicts the shortness of the maps h,. O
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If we restrict ourselves to injective maps we get

Theorem 4.26: Let G be a torsion-free and freely indecomposable group, endowed with a finite
generating set Y. Suppose that virtually solvable subgroups of G are free abelian. Let T be a
torsion-free hyperbolic group endowed with a finite generating set 3.
There ezists a finite set {i1,... i} of embeddings G — T such that for any embedding i :
G — T, there is an index j with 1 < j <1, an element v of I, and a modular automorphism o of
G such that
i = Conj () oijoo.

Proof. If this were not the case, there would be an infinite sequence of pairwise non-conjugate short
embeddings h, : G — I'. The stable kernel of such a sequence with respect to any ultrafilter w is
of course trivial. Up to extraction, and by proposition 23] the sequence (ﬁ(X [hn], 2[hn]) ) nen
converges to a pointed G-tree T which satisfies the conditions [l to @ in Theorem Thus for
n large enough, these actions are not short: this contradicts the shortness of the embeddings
I O

4.3 Shortening morphisms in the relative case

We will also use a relative version of the shortening argument. Here relative means that we fix a
subgroup H of a group G, and we ask that this subgroup fixes a point in the actions of GG on trees
(real or simplicial). Similarly, instead of asking G to be freely indecomposable, we require that it
be freely indecomposable relative to H (i.e. that no proper free factor of G' contains H). Apart
from a few modifications of the sort, the arguments are very similar to the non-relative case. The
main difference that should be noted lies in the proof of non-triviality of the limit action in the
proof of proposition 31l compared to that found in the proof of proposition

4.3.1 Action shortening result

We start by adapting our definition of the modular group.

Definition 4.27: (relative abelian modular group Mod g (G)) Let G be a finitely generated group,
and let H be a subgroup of G. Let A be a splitting of G as a graph of groups with surfaces for
which H is elliptic. The modular group Mody (A) of A relative to H is the subgroup of Mod(A)
containing all the automorphisms which fix H. The abelian modular group of G relative to H,
denoted Mody (G), is the subgroup of Aut(G) generated by the subgroups Mody (A), where A is
an abelian splitting of G in which H is elliptic.

Theorem (.20 generalises to

Theorem 4.28: Let G be a torsion-free group endowed with a finite generating set ¢, whose
solvable subgroups are free abelian. Let H be a subgroup of G, and assume G is freely indecom-
posable relative to H.

Let (X, Zn)nen be a sequence of proper and geodesic pointed 6, -hyperbolic spaces, endowed
with isometric actions \, of G by isometries.

Suppose that the sequence (X,,Tn)nen converges to a pointed real G-tree (T',x). Assume
that any non-trivial arc stabiliser of T contains an element which, for all n large enough, acts
hyperbolically on X,, with translation length at least 126,,. If the action A of G on T satisfies:

1. X is non-trivial;
2. tripod stabilisers are trivial;

3. pointwise arc stabilisers are abelian;
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4. A is superstable;
5. H fizes a point;

then for n large enough, the actions A\, are not short.

4.3.2 Morphism shortening result

Let G be a group endowed with a finite generating set 3. Let I' be a torsion-free hyperbolic
group endowed with a finite generating set . Denote by X the Cayley graph of I' with respect
to Xr. Let H be a subgroup of G, and fix an embedding of H in I' so that H is also a subgroup
of I,

Here again, we want to find sufficient conditions on a sequence of morphisms h,, : G — T,
so that we can build from it a sequence of actions which satisfies the hypotheses of the action
shortening result we just saw.

The main difference is that we need H to fix a point in the limit. This will affect our choice of
basepoint: we will not choose as a basepoint the minimally displaced point, but simply the point
e of X corresponding to the identity in I'. To make sure H fixes the basepoint in the limit, we
will require that the following condition hold.

Definition 4.29: (fixing H in the limit) We say that a sequence of morphisms h, : G — T fizes
H in the limit if for oll ¥ € N, for n large enough, h, is the identity on words of length less or
equal to r (i.e. on the finite set Bg(r) N H).

Remark 4.30: If H is non-abelian, and if (hy,)nen is a sequence of pairwise distinct maps which
fixes H in the limit, the maps h, are pairwise non-conjugate for n large enough. Indeed, let
ar,az € H such that [a1,a9) # 1. For all n greater than some constant ng, h,(a1) = a1 and
hn(a2) = ag so that if v is a non-trivial element of T, it cannot commute both with hy(a1) and
hn(a2) (recall that torsion-free hyperbolic groups are commutative-transitive). Thus without loss
of generality, Conj () o hy(a1) # a1, and Conj (vy) o hy, # h, for r > ng.

The following proposition expresses sufficient conditions on a sequence of morphisms h,, : G —
I" to enable us to apply Theorem [4.28

Proposition 4.31: Let G be a group endowed with a finite generating set Y whose virtually
abelian subgroups are abelian. Let T be a torsion-free hyperbolic group endowed with a finite
generating set Xp. Let H be a non-abelian subgroup of G with a fized embedding in T'.

Let h,, : G — T be a sequence of pairwise distinct morphisms which fives H in the limit, and

suppose that w is a non-principal ultrafilter such that I&"w(hn) 18 trivial.

Then the ultraproduct of the spaces m(X [hn], €) with respect to w is a real G-tree which

satisfies the conditions 1l to [d in [{-28

Proof. The fact that the h,, are pairwise distinct implies that the maps h,, send the elements of
Y outside balls of larger and larger radius. Recall that

Z(X[hn]ae) = grg%)é dX(eahn(g) : 6) = ;2%2 |hn(g)|2m

so the sequence [(X[hy],e) tends to infinity. By lemma A2 the ultraproduct of the spaces
m()( [hn], €) with respect to w is a pointed real G-tree T. We denote the basepoint of T'
also by e.

By lemma 35 subgroups of G fixing tripods are trivial, and as G is torsion-free, tripod
stabilisers are trivial. Lemma 7 implies that non-trivial arcs have trivial pointwise stabilisers.
By remark LT9] the action is superstable.
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For an element a of H, the image h,,(a) is constant and equal to a for n large enough, so

dy(e,a-€e) = liul}ldn(e,a-e)
= 1iu1)n(dx(e,hn(a) -e)/1(Xn,e))
= li£n|a|gF/Z(Xn,e) =0.

Thus H fixes the point e.
Suppose that e is a global fixed point: then for each g in ¥¢, the set A, of indices n for which
dn(e,g-e) < 1/2 lies in w. Thus for n € () cy, Ay, we have maxgex, dn(e,g-€) < 1/2. By

definition of I(X[hy],e) we have
max dn(e,g . e) — maXgesg dx (e, hn(g) ) e)

S 1(X[hn], €) =1

This is a contradiction, so e is not a global fixed point.

But now, if 7' did admit a global fixed point y, the non-trivial path between y and e would
be fixed by H. Since pointwise arc stabilisers are abelian and H isn’t, the action of G on T is
non-trivial. [l

The change in our choice of basepoint means that our definition of a short morphism must
also be slightly modified.

Definition 4.32: (short morphism with respect to H) A morphism h : G — I is short with
respect to H if for any element o of Mody (G), we have

d h(g)-e) < d h -e).
max dx (e, h(g) - €) < max dx(e,hoa(g) -e)
In other words, h is short with respect to H if the action of G on (X[h],e) is short. We can
now show the relative morphism shortening result.

Theorem 4.33: Let G be a torsion-free group, endowed with a finite generating set X . Suppose
that the virtually solvable subgroups of G are free abelian. Let T" be a torsion-free hyperbolic group
endowed with a finite generating set Xp. Let H be a non-abelian subgroup of G, with respect to
which G is freely indecomposable. Fiz an embedding of H in I" so that H is also a subgroup of T'.
Let h,, : G — T be a stable sequence of non-injective morphisms which fix H in the limit and
are short with respect to H. Then the stable kernel of (hy,)nen with respect to w is non-trivial.

Proof. Suppose by contradiction that Ker(h,) is trivial. If (h,)nen has a constant subsequence,
the maps in this subsequence must have trivial kernel, which contradicts their non-injectivity.
Thus, (hy)nen has no constant subsequence, so up to extracting, we may assume that the maps
h, are pairwise distinct.

By proposition 31l up to another extraction, (W(X [hn], €))nen tends to a real G-tree
T which satisfies conditions [ to Bl of Theorem

Moreover, if g is a non-trivial element fixing an arc of T, we know by lemma [3.14] that for all
n large enough, h,(g*12) has translation length at least 124.

Thus we can apply Theorem [£.28] which tells us that for n large enough, the action of G on
(X [hn)], ) is not short. This contradicts the shortness of the map h,, relative to H. O

Similarly to the non-relative case, we can also give a version for injective maps.

Theorem 4.34: Let G be a torsion-free group, endowed with a finite generating set X . Suppose
that virtually solvable subgroups of G are free abelian groups. Let H be a non-abelian subgroup
of G, with respect to which G is freely indecomposable. Let ' be a torsion-free hyperbolic group
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endowed with a finite generating set Xr. Fix an embedding of H in I so that H is a subgroup of
Ir.

There exists a finite set iy, ..., i, of embeddings G — I such that for any embeddingi : G — T’
which fizes H, there is an index j with 1 < j <1, and an element o of Mody (G) such that

L =1j00.

Remark 4.35: It looks like we get a much better result that in the non-relative case, since we
got rid of the conjugation. However recall that since H is non-abelian, if a map h fizes H, a
conjugate Conj (v) o h of h fizes H if and only if v = 1.

Proof. Suppose h,, : G — I is a sequence of pairwise distinct embeddings fixing H. It is stable
with a trivial stable kernel, so we can see by proposition [£-31] that a subsequence of the spaces
(m()([hn],e))n@\; tends to a real G-tree T which satisfies conditions [ to Bl of Theorem
Thus the action of G on (X[hy,],e) is not short for n large enough, so that h, is not short
relative to H.

This shows that there is only a finite number of distinct short embeddings G — TI', which

proves the result. O

4.4 The relative Co-Hopf property for hyperbolic groups

We will prove a result which is a direct consequence of the shortening argument. It expresses
the fact that torsion-free hyperbolic groups satisfy a relative co-Hopf property. Sela showed in
[Sel97D] that freely indecomposable hyperbolic groups are co-Hopfian, but the proof is actually
much harder than in the relative case.

Proposition 4.36: Let G be a torsion-free hyperbolic group. Let H be a non-abelian subgroup of
G relative to which G is freely indecomposable. If ¢ : G — G is injective and fizes H then it is
an isomorphism.

Proof. Suppose ¢ is a strict embedding: then ¢"(G) is a strictly decreasing sequence of subgroups
of G which are all isomorphic to G by isomorphisms fixing H.

The group G is torsion-free hyperbolic, so it satisfies all the hypotheses of proposition 34l
As a consequence, the number of subgroups of G isomorphic to G by isomorphisms fixing H is
finite. This is a contradiction. (|

Now we can actually get a stronger statement by using the following lemma, whose proof was
suggested by Vincent Guirardel.
Lemma 4.37: If a finitely generated group G is freely indecomposable relative to a subgroup H,
then H has a finitely generated subgroup Hy relative to which G is freely indecomposable.

Proof. Suppose G’ is a subgroup of G. Denote by T'(G’) the set of all simplicial G-trees T with
trivial edge stabilisers in which G’ fixes a vertex v,. Define

AG) = [ Stab(v-)
TET(G")

To each 7 in T(G’), we associate the corresponding free product decomposition of G. The
number of factors of such a decomposition is bounded, since G is finitely generated: let mg(G’)
be the maximal number of factors that such a decomposition can have. A decomposition with
mea(G') factors is clearly of the form

Ax By *...* DB,
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where By, ..., B, are freely indecomposable (possibly cyclic), and A contains G’ and is freely
indecomposable with respect to G'. Now A(G’) < A since this decomposition corresponds to a
tree 7 in T'(G") for which Stab(v,) = A. But A is freely indecomposable with respect to G’, thus
in any tree 7 of T'(G"), A fixes the vertex v,. Thus A = A(G’). Note that this implies that A(G")
is a free factor of G, and is freely indecomposable with respect to G’.

If G” < G', then T(G") C T(G"). This implies that A(G"”) < A(G"), and ma(G") < ma(G").
Moreover, if mg(G') = mag(G”), a maximal decomposition for G’ is also maximal for G”, thus
A(G") = A(@).

We can now prove the lemma. Let {hi, ho,...} be a generating set for H. Consider the
sequence of subgroups Hy, = (hq,...hg) of H. By the remarks above, the sequence (ma(Hy))r>0
is decreasing, and bounded below by 1. Thus it must stabilise, and by what we saw above, this
implies that the sequence A(H}) stabilises after some index ko. In particular Hy, < A(Hjy,) for all
k,so H < A(Hy,). But A(Hy,) is a free factor of G: since we assumed G freely indecomposable
with respect to H, we must have A(Hy,) = G, so G is freely indecomposable with respect to Hy, .

O

Proposition 4.38: Let G be a torsion-free hyperbolic group. Let H be a non-cyclic subgroup of
G. Suppose G freely indecomposable relative to H. There exists a finite subset Fy of H such that
if ¢ : G — G is an injective morphism which fizes Fy, then it is an isomorphism.

Proof. Just take Fy to be a generating set for the subgroup Hy given by lemma [£37 If ¢ fixes
Fy, it fixes Hy relative to which G is freely indecomposable. Thus we can apply proposition .36
to G with the subgroup Hy, to deduce that ¢ is an isomorphism. O



Chapter 5

Proof of the action shortening
Theorem

We will present a proof of theorem The strategy is as follows: we start by analysing the
G-tree T using Rips theory. Rips theory enables us, under certain hypotheses like superstability,
to analyse actions of finitely generated groups on real trees by decomposing such an action into
elementary building blocks (see [Sel97a] and [Gui08]). Then we produce for each type of blocks
an automorphism of G which will shorten all the paths of the form [x,w - z] which intersect one
of these blocks, where u is an element of the generating set.

The proof we give is based on the proof of Theorem 4.3 of [RS94], the fact that we are in
the relative case does not introduce particular difficulties. However we altered the presentation,
mainly when dealing with the discrete case, and in general we give a more detailed version
of the various arguments. We followed also the proof given in [Wil06], where the non-relative
version of the theorem is proved in the specific case where the actions come from a sequence of
homomorphisms into the free group.

5.1 Some examples of actions on real trees

Let us first give some classical examples of actions on real trees.

Example 5.1: (simplicial type) Let T be a real G-tree. Branching points in a real tree are points
whose complement has more than two connected components. If branching points are isolated,
we say that T is a simplicial G-tree, or that the action is of simplicial type.

Example 5.2: (axial type) Let T be a line, and let G act on T with dense orbits, in such a way
that the image of G in Isom(R) is finitely generated. We say that the action of G on T is of axial
type. We then have the following exact sequence for G:

1-K—G—H—1,

where K fixes T pointwise, and H is a finitely generated subgroup of Isom(R) of rank at least 2.

Example 5.3: (surface type) Consider a foliation F endowed with a transverse measure p on a
surface with boundary ¥, as defined in [FLP79] (see also [LP97] or section 1.7 of [Gui08]). For
x € X, let O, be the set of points y such that there is a path [z, y] which is contained in a leaf,
and which meets no singularity of the foliation. Suppose that for any point = of X, the set O, is
dense in ¥ (a foliation which satisfies this is called arational). The foliation F lifts to a foliation

45
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F of a universal cover 3 of X, and y induces a pseudometric on the set of leaves of F given by
d(w,y) = inf u(v)

where v ranges over all the paths in ¥ which lift to a path from z to y. Quotienting the space of
leaves by the equivalence relation induced by this pseudometric, we get a real tree T (see [MS91],
where laminations are used instead of foliations, or [LP97]). We then say that the action of the
fundamental group S of ¥ on T is of surface type. It is a result of [MS91] that such an action
is free if 3 has no boundary, and it can be generalised to show that in the case with boundary,
the action on the dual tree has trivial arc stabilisers, and that the only elliptic elements are the
boundary elements of S.

A way to get surfaces endowed with foliations is to give them a band complex structure over
an interval. To do so, we need the following definitions (see [BE95], or definition 2.2 of [Will).

Definition 5.4: (union of bands) Let I be an interval of the real line. Given a finite set of pairs
(I;, I}) of subintervals of I, and isometries 1b; : I, — I!, we can build a topological space Y by
gluing for each i the band I; x [0,1] to I via the isometries

I x{0} — I, Lix{1} — [
{(m) - and {(m) o (@)

Such a space Y is called a union of bands on I.

Definition 5.5: (union of bands of surface type) A union of bands Y on an interval I for which
all but finitely many points of I lie in exactly two bands is said to be of surface type.

Suppose Y is a union of bands of surface type. Topologically, Y is a surface with boundaries,
and its fundamental group is the free group generated by elements (g;)1<i<n corresponding to the
loops given by the various bands.

A band I; x [0, 1] is foliated by sets of the form {2} x [0, 1]. This foliation admits a standard
transverse measure, where the measure of a transverse arc « is the length of its projection on
the interval I;. The union of bands Y thus admits a natural measured foliation induced by this
foliation of the bands. Note that every boundary component of Y lies in some leaf of Y.

Definition 5.6: (complex of bands) The space X is said to be a complex of bands of surface type
with underlying union of bands Y if

e Y is a union of bands of surface type,
e X is obtained from'Y by gluing 2-cells along some of the boundary components of Y.

Note that X is also a surface with (possibly empty) boundary, and m; (X) is generated by the
elements g; corresponding to the bands of Y. The relations satisfied by these elements are words
w(g, - . - gn) formed by following the boundary of a 2-cell and reading out the name of the bands
whose boundary we follow. We call this presentation of 71 (X) the presentation associated to X.

Thus X is a surface endowed with a measured foliation. We denote by Tx the 71 (X)-tree
associated to the foliation on X as described in example We can choose a lift of I in the
universal cover (X, .7:'), it is transverse to F so this gives us an injection of I in Tx.

In fact, it can be shown that any arational foliation F on a surface with boundary > endowed
with a transverse measure p can be built in this way: ¥ admits a band complex structure X
whose natural measured foliation is homotopy equivalent to (F, ). Equivalently, for any surface
type action of S on a tree T, there is a band complex X such that 7" and Tx are isomorphic as
real S-trees.
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The idea of the proof is to pick on the surface an interval transverse to the foliation, and cut
along leaves which contain singular points of the foliation until we meet the chosen interval. If the
singular point was not contained in a boundary, we glue a 2-cell to the boundary thus created.

Note that by the description above, a structure of band complex X on ¥ gives us a presentation
for S.

Remark 5.7: Recall that the base interval I of the union of bands Y embeds in Tx. The gener-
ators of the presentation associated to the band complex structure X on P translate any point x
of I by a distance smaller than the length of the interval 1.

5.2 Graphs of actions

The notion of graph of actions allows us to describe the decomposition of a real G-tree into
various components. They were introduced by Levitt in [Lev94], but we present the slightly
different definition given in [Gui08]:

Definition 5.8: (graph of actions) Let G be a group. A graph of actions on R-trees is given by
g= (7’, (T’U)'UGV(T)J (pe)eeE(T)) where

1. 7 is a simplicial G-tree called the skeleton;
2. for each vertex v of T, T, is a real tree called the vertex tree;
3. for each edge e of T, pe is a point of Ty called the attaching point of e.
Moreover we require that the following equivariant properties be respected
1. G acts on the disjoint union of the trees T, in such a way that the map T, — v is equivariant;
2. for g € G and e € E(T), we have pg.c = g - Pe.

We associate to G the G-tree Tg obtained by quotienting the disjoint union of the T, by the
relations p. ~ ps. The trees T, inject in Tg, their images are called components of T, and still
denoted by T,.

We say that a G-tree T' splits as a graph of actions if T is isomorphic to Tg for some graph
of actions G.

Remark 5.9: The definition implies that T, is invariant under the action of the stabiliser G, of
v in T, and that p. is invariant under the action of the stabiliser G, of e in T.

The following result expresses, in a tree which splits as a graph of actions, the distance between
a point and one of its translates. It will prove very useful in the sequel.

Let G be a graph of actions, and let A, be the graph of groups corresponding to the action
of G on 7. Denote by 7 the quotient map 7 — G\7. Choosing a fundamental domain 7 in 7
and Bass-Serre elements t. for each edge e in 7y gives us an isomorphism between G and the
fundamental group of A,. According to this isomorphism, an element of G can be written as a
word in the elements ¢, and in the elements of the groups G,. Moreover, given a vertex m(v) of
A, we can always choose to represent g by a word of the form

gltelg2t€2 e tezgl+17

where the path formed by the edges w(eq1),...,m(e;) forms a loop based at 7(v), the element g;
lies in Go(r(e,)), the element g;y 1 lies in Gr(,y, and if 7(e;11) = 7(€;), the element g; is not trivial.
We call this the loop representation of g based at 7(v) (it depends on the choice of a fundamental
domain and Bass-Serre elements).
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Lemma 5.10: Let v be a vertex of our fundamental domain 19, and let x € T,. Let g be an
element of G, whose loop representation based at 7(v) with respect to our choice of fundamental
domain and Bass-Serre elements is gite, gate, - . . te,gi+1. Then the path [x,g(x)] is the concate-
nation of the following arcs

o Ip = [2,91 " pe,];
o [; = gite, ... gile, - [t;1 *Pe;s Gi+1 'p€i+1] fOT I<i< l;
o [} = gite, ... Gite, - [te_ll *Deys gl+1 Z‘]

so that we have in Tg

d(z,g-2) =d(@, g1 pe,) + S 1d(t " Pess i1 Perss) + At Deys G141 - ).

Proof. The concatenation of the arcs Iy, ..., I; forms a path between x and ¢ - x. To see that it
is indeed an arc, it is enough to show that there is no overlap. By the way we defined the loop
representation, no two non-trivial arcs I;, I; lie in the same component of T": there can be no
overlap. 0

5.3 Rips decomposition

We can now state the result of Rips theory we will need: it is essentially Theorem 3.1 of [Sel97a],
except we have replaced the stability assumption by that of superstability, and we assume that G
is torsion-free and freely indecomposable with respect to a subgroup H. We use the terminology
developed in [Gui08|, where Theorem 5.1 gives a generalisation of the result of Rips and Sela.
Thus the following result can be seen as a particular case of Theorem 5.1 of [Gui08].

Theorem 5.11: Let G be a finitely generated torsion-free group which is freely indecomposable
with respect to one of its subgroups H. Suppose G acts minimally, non-trivially, and superstably
on a real tree T by isometry. Suppose moreover that tripods are trivially stabilised, and that H fizes
a point of T. Then T has a decomposition as a graph of actions G = (7,(Ty)vev(s), (Pe)ecE(s))
where each vertex action is either

1. of simplicial type: T, is a simplicial G,-tree;
2. of surface type: T, is dual to an arational measured foliation on a surface with boundary;

3. of awial type: T, is a line, and the image of G, in Isom(T,) is a finitely generated group
which acts on it with dense orbits.

Note that the assumption of trivial tripod stabilisers implies in particular that if 7" is not a
line, the action is faithful.

Fix a generating set ¥ for G. To prove theorem [£.28] we need to find for all n large enough
an element o,, of Mody (G) such that the action A, o o, is shorter than A,,. For an element g of
the generating set, consider the path [z, ¢ - z] in the limit tree T'.

Suppose that we managed to find an element o of Mody(G) such that for all g in X, the
path [z,0(g) - 2] is strictly shorter than the path [z, g - z]. Then this will suffice, since for n large
enough, there will be an e-approximation between 7" and X,,, with ¢ smaller than the difference
of the lengths of [z, ¢ - 2] and [z,0(g) - ], thus d,,(zn,0(g) - 2n) < dn(xn, g - Ty).

We will see that we can find such a relative modular automorphism for paths [z, g - 2] which
intersect a surface or an axial type component (see Theorem [ 12 and Theorem [5.17). However, in
the case where there are paths of the form [z, g - ] which lie completely in simplicial components,
this will not be sufficient. For these, we will have to go to an approximation X,, of T’ (see Theorem
[(22)), and the shortening modular automorphism we use will depend on n.
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5.4 Surface case

The following theorem allows us to shorten paths that intersect a surface type component.

Theorem 5.12: Let G be a finitely generated group acting on a real tree T which admits a
decomposition as a graph of actions G = (7,(Ty)vev(r), (Pe)ecE(r))- Denote by Ag the graph of
groups corresponding to the action of G on 7. Let U be a finite subset of G. There exists an
element o of Mod(Ag) such that for any element u of U,

o if the geodesic segment [x,u - x| intersects some surface type components non-trivially, then

d(z,o(u) - z) < d(x,u - x);

e if not, o(u) = u.

Let us first show the following lemma, which in particular implies Theorem [5.12]in the special
case where the tree T' consists of exactly one surface component.

Lemma 5.13: Suppose that the fundamental group S of a surface with boundary X acts on a real
tree T by an action of surface type. Then for any finite subset V of S, for any point z of T and
for m > 0, there exists an automorphism ¢ of S which restricts to a conjugation on each boundary
subgroup, and such that for any element v of V,

d(z,¢(v) - 2) <1).

Before proving this, we define what we mean by a presentation of S as the fundamental group
of a surface with boundary, and when we consider two such presentation to be equivalent.

Definition 5.14: (surface presentation) Let S be the fundamental group of a surface with bound-
ary X. A surface presentation P of S is given by a tuple (k, R, B, h), where

e k is a positive integer;
e R and B are finite tuples of elements of Fy, = (a1,...ax), the free group of rank k;

e his a map {ai,...ar} — S whose extension to Fy, is surjective, has kernel normally gen-
erated by the elements of R, and sends the tuple B on a tuple of pairwise non-conjugate
mazximal boundary elements of S.

To an element g of S we can associate the word length |g|p of g in the presentation P.

We say that two surface presentations (k, R, B,h) and (k', R, B',1') of S are combinatorially
equivalent if k = k', R = R’ and B = B’. Then, there is a natural automorphism of S given by
sending h(a;) to h'(a;) for 1 <i < k. It is clear that this isomorphism restricts to a conjugation
on each boundary subgroup.

We can now prove lemma [5.13]

Proof. Let X be a structure of band complex for ¥ over an interval I and with underlying union
of bands Y, such that, as a real G tree, T'x is isomorphic to T'. Let n be the number of bands in
Y.

We want to show that we can modify X to get another band complex structure X’ for (X, F),
also of surface type, over a very small interval. This will give a presentation for S in which the
generators have small translation length by remark 5.7

Step 1: Consider the combinatorial equivalence classes of surface presentations of S for
which k <n+1, |R| <2(n+ 1), and the words in R and B have length at most 2(n +1). Let P
be a set containing exactly one representative for each of these classes: P is finite. Let

A =
ey lle)
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Step 2: Choose a lift of I into X such that the induced injection of I in Tx contains z. This
is possible since the foliation on X is arational, so the lifts of I in X intersect all the leaves. Let
J be a closed interval [a,b] of I whose interior contains z, and whose length is smaller than n/2A.

Each point of I is contained in at least two bands. Let D be the set of points contained in
more than two bands: a point of D lies in a boundary component of Y, and arationality implies
that it is the corner of exactly two bands. Conversely, if a point is the corner of a band, it is either
contained in D, or it is one of the boundary p or ¢ of I, which are also the corners of exactly two
bands. Thus D has cardinal at most 2(n — 1).

Let d € D. There is a unique point d’ of J contained in the leaf of d, and such that the path
joining d to d’ in that leaf lies entirely in the interior of Y: indeed, if not, there would be a path in
a leave between two boundary components of Y, which contradicts arationality. Now let (rq,77)
be the longest path in the leaf of a which contains a, lies entirely in the interior of Y, and does
not meet .J. The points r,, r/, are either points of J, or points of D. If r, or 1/ is a point d of D,
the leaf path [ry,7}] is contained in the leaf path [d, d’]. We define similarly ry, 7}.

We now modify the band complex. For each point d of D, we cut Y along the path [d,d'].
This enlarges the boundary component which contained d: if this component was the boundary
of a 2-cell, we enlarge the 2-cell too. If both r, and r/, lie in J, we also cut along the leaf path
[ra, 7], and glue a 2-cell along the boundary component thus created. We proceed similarly for
b. It is straightforward to see that this gives us a new structure of band complex X’ for 3, whose
canonical foliation is still homeomorphic to F. Moreover, the union of bands Y’ underlying X" is
based in J.

Step 3: We want to see that the presentation associated to X’ has at most n + 1 generators
and 2(n+1) relations of length at most 2(n+1). Suppose Y is composed of r bands. This implies
that the number of boundary components of Y’ is at most 2r since each side of a band lies in
exactly one boundary component. For the same reason, each boundary component is composed
by at most 2r sides of bands. Now r is at most n + 1: indeed, each point of D gives us a point
d’ contained in more than 2 bands of Y’, and both a and b might also give us such a point. But
each such point is a corner of exactly two bands, and each band has at most four such points as
corners. Since [D| < 2(n—1), we get 7 < n+1, and Y has at most 2(n+ 1) boundary components
which are composed each of at most 2(n + 1) sides of bands.

Step 4: This new structure of band complex gives us a presentation Py for G on at most
n + 1 generators, at most 2(n + 1) relations, and in which the relations and boundary elements
are represented by words of length at most 2(n + 1) in the generators. Moreover, by remark [5.7]
the generators of Py translate z by a distance less than the length of J, namely less than n/2A.
By Step 1, there is a presentation P of our set of representatives P which is combinatorially
equivalent to . This gives us an automorphism ¢y : S — S which sends any generator g of P
on a generator of Py. Thus d(z, ¢y (g) - z) < n/2A, so that if v € V| we have d(z, ¢y (v) - z) < 1.
This concludes the proof. O

Recall that a vertex automorphism of a group G with respect to a splitting A is a standard
extension of an automorphism of a vertex group of A to G.

The lemma we just proved is the key for dealing with paths of the form [z, ¢ - 2] which
intersect at least one surface type component non-trivially. However, the argument needs to be
completed, and caution is required, since a path can intersect several translates of a same surface
type component.

The following result shows that if we know how to shorten simultaneously a finite number of
paths that lie entirely in a surface component, then we can shorten paths which intersect non-
trivially a translate of this component. This will enable us to prove Theorem from lemma
In fact, it is more general, since it applies to any component in which orbits are dense: we
will also use it to deal with axial components.
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Lemma 5.15: Let T be a G-tree which admits a decomposition as a graph of actions G given by
(7, (Ty)vev(r), (Pe)ecE(r)). Denote by Ag the graph of groups corresponding to the action of G on
7. Let G - v be an orbit of vertices in T such that

1. the action of G, on T, has dense orbits ;

2. for any finite set V of elements of G, for any point z of T, and any positive n, there is
an automorphism ¢ of G, which restricts to a conjugation on each adjacent edge group, for
which d(z,¢(g) - z) < n for any element g in V.

Then for any finite subset U of G, and for any x € T, there exists a vertex automorphism T
of G relative to Ag such that for v € U, if [x,u - x| intersects a translate of T, non-trivially, we
have d(z,7(u) - x) < d(z,u - x), and if not, T(u) = u.

The key to prove lemma is to pick the right way of writing elements of G according to
the splitting Ag, i.e. to choose the right isomorphism between G and m1(Ag). This is precisely
what the following lemma does.

Lemma 5.16: Let T be a G-tree pointed by x which admits a decomposition as a graph of actions
G = (1, (Tv)vev(s); (Pe)eck(r)). Denote by m the quotient map T — G\7, and by v, the verter of
T such that x € T, .

Let v be a vertex in T such that the action of G, on T, has dense orbits. Suppose that the
path between v and v, starts with an edge e,, and does not meet any translates of v. Let z be the
point of T, closest to x. Let v > 0.

Let ¢ be an automorphism of G, whose restriction to any adjacent edge group G, is the
conjugation by an element a. of G, and assume that c., = 1.

There exists a fundamental domain 1o in T containing the vertices v, and v, and some Bass-
Serre elements t. in G for each edge e of 1o, such that for any e, f in 1y

o if w(e) is adjacent to w(v) then e is adjacent to v;
e if o(e) = o(f) =wv, and if p. and py are in the same orbit, then p. = py;
e if oe) = v, we have d(ce - pe,2) < v and if ©(t(e)) = 7(v), we have d(aet; ! - pe,2) < v;

e ifo(e) = v and p. is in the same orbit as z, then a. -p. = t, 1z, and if w(t(e)) = 7w(v) and
Pe is in the same orbit as z, then act; ' - pe, 2.

Proof. We consider successively all the orbits of edges e of 7 such that o(e) = v. For such an
edge e, the point p, lies in T},. Note that if ¢/ = g- e for g € G,,, we have a. = ¢(g)aeg™!, and
Per = g Pe-

If there is an element g of G, such that g - p. = py for p; an edge that we already put in 7o,
we choose the edge ¢/ = ¢ - ¢ as a representative of the orbit of e in 79. Then the edge group
corresponding to €’ is the stabiliser of p.r = py, so it is the edge group corresponding to f. This
implies aer = iy, so that the condition d(aer - per, 2) < v is satisfied.

Suppose now p. is not in the orbit of any of the points py. Since the action of G, on T}, has
dense orbits, and since ¢ is an isomorphism, there is an element g of G, such that d(¢(g)ae pe, 2) <
v. But d(¢(g)ae - pe, 2) = d(aer - per, ), 80 we choose the edge ¢ - e as a representative of the orbit
of e in 79. If pe is in the orbit of z, we take g such that ¢(g)ae - pe = 2 so that aer - per = 2.

Denote by 7 the connected subset of 7 formed by all the edges we chose so far together with
a representative w’ for each orbit G - w where w is adjacent to v. Note that we have a,, - p., = z
so we may assume that e, lies in 7p. Thus we can extend 7, to a fundamental domain 79 which
contains v,.

There remains to choose Bass-Serre elements for the edges of 7p. If e is an edge in 7y with
t(e) = g-v, then g~ p, lies in T, so there is an element a of G, such that d(ag=! - p.,2) < v,
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and ag~!-p. =z if g7! - p. and z are in the same orbit. We choose t. = a;lga~! as a Bass-Serre

element for e. We extend this arbitrarily to a choice of Bass-Serre elements for all the edges of
T0- O

Let us prove lemma B.13

Proof. Lemma [510limplies in particular that in our graph of actions, a path of the form [z, g - z]
intersects finitely many components. Let thus e¢ be the minimal length, over all w in U, of the
intersection of a path of the form [z,u - z] with a translate of T,,. Denote by v, the vertex of T
such that x € T;,,. We may assume without loss of generality that the path between v, and v
does not go trough any translates of v.

Given a fundamental domain 7y which contains v, and a choice of Bass-Serre elements {t.}cer,
for the action of G on 7, denote by V the set of elements of G, which appear in the loop
representation of the elements u of U based at 7(v). The key remark is that this set is in fact
independent of the choice of fundamental domain and Bass-Serre elements. By hypothesis, there
is an automorphism ¢ of G, such that d(z,¢(g) - z) < €/8 for any non-trivial element g of V.
Moreover, the restriction of ¢ to each edge group G, adjacent to G, is a conjugation by some
element a,. of G,. Note that if e, is the first edge of the path between v and v, in 7, we may
assume e, = 1.

Let us now choose a fundamental domain 7y which contains v, and some Bass-Serre elements
{te}eer, for the action of G on 7 which satisfies the conclusions of 516 for v = €/16. This choice
gives us an isomorphism between G and 7 (Ag), so we get a loop representaton based at m(v) for
any element u of G as

U = gile, gate, - - - Gite, gi41

Recall that the path formed by the edges w(eq1),...,n(e;) forms a loop based at 7(v,), and that
9i € Go(r(e;))- We can extend ¢ to G by taking a standard extension corresponding to the elements
. and the choice of fundamental domain and Bass-Serre element we made. Note that then we
have

P(u) = gite,Gotes - - Gite,Glss
where g} = ot é(gi)ae, if gi € Gy, and g = g; if not.

According to lemma [510, the path [z, u - z] is the concatenation of the path Iy = [z, g1 - Pe, ],
of translates I1,...,I;_1 of paths of the form [t;1 “Pess Jit1 - Pesrr)s and of a translate I; of the
path [t;l “Deys Gi+1 - x). Each of these paths lies in a different component of the graph of actions
decomposition, we are interested in those that lie in translates of T,,. We have

d(x,u-x) = Zi_o|L]. (1)
By the triangle inequality we have
d(m, ¢(u) : 33) < d(m, gi 'p81) + Zé;%d(t;l 'peiagz/‘Jrl 'p8i+1) + d(te_ll *Peyrs gl/+1 : 33)

We now want to compare this inequality to (f), for this we compare the summands of the right
hand side to the lengths of the arcs I;:

e If I; is non-trivial and lies in a translate of T,, we have g;+1 € V, so we have g§+1 =
gt (gir1)ve,,, and d(z, ¢(giv1) - z) < €/8. We get

d(t;»l *Peis g£+1 'p5i+1) = d(aei te:l *Peis ¢(gi+1)a5i+l 'p€i+1)
< d(aeit;l 'pewz) + d(za ¢(gi+1) : Z) + d(Z, a€i+1p€i+1) < 6/4

But the length of I; is at least €, so we have

d(t;l 'peww(gﬂrl) 'p€i+1) < d(t;l *Pe;s Jit+1 'p€i+1) = |Il|
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e If 7; does not lie in a translate of T}, we have g;, | = gi1 so
d(t;l .peihg’g-‘rl 'p€i+1) = d(t;l *Peis Ji+1 'p€i+1) = |Il|

e If I; trivial and lies in a translate of T, we have t;l “Pe; = Git1Peir,- But since m(t(e;)) =
7(v), by the first point of lemma .16 t., = 1 and in fact p., = gi41 - Pe,.,. We see that pe,
and pe, ., are in the same orbit, so by the second point our choice of fundamental domain,
they are equal, so a., = ac,,, and we may assume g;11 = 1. We get

d(t;l .pei)gg—‘rl 'p8i+1) = d(t;l .pei)a;l (gi+1)a€i+1 'p€i+1)
d(t;l .pei7p€i+1)

Thus for 1 <i <1—1, we see that d(t;' - pe,, g}11  Pe,ry) < |I;| and the inequality is strict if and
only if I; is non-trivial and lies in a translate of T;,. Similarly, we can show that d(z, ¢} - pe,) < |I1]
and that d(t;1 “Des» gy - x) < |I111], and that these inequalities are strict if and only if I; and Ij4q
respectively are non-trivial and lie in a translate of 7,,. We get
da,é(w)-2) < TL| = d(e,u- )

and the inequality is strict if and only if at least one of the arcs I; is non-trivial and lies in a
translate of Ty,. Thus if [z, u - z] intersects non-trivially a translate of T, it is made shorter by ¢.

Now if [z,u - 2] does not intersect any translates of T, for 1 <4 <[+ 1 we have g, = g; so
¢(u) = u. This finishes the proof. O

We can now prove theorem B.12

Proof. Pick representatives T7,...T, for the orbits of surface type components. Denote their
stabilisers by Sy, ..., 5.

Lemma [5.13] tells us that the conditions of proposition [B.15] are satisfied. Thus, for each i, for
any finite set of elements U; of G, we can find ¢; such that if u € U; and [z, u - 2] intersects a
translate of T; non-trivially, we have d(z, ¢;(u) - x) < d(z,u - ), and if not, ¢;(u) = u. Apply this
successively to Uy = U,Us = ¢1(U1), ..., U, = ¢r—1(Ur_1), the automorphism ¢ = ¢, 0...0¢20¢;
satisfies the conclusion of the theorem. O

5.5 Axial Case

The theorem we need to deal with the axial case is very similar to that used for the surface case.

Theorem 5.17: Let G be a finitely generated group whose solvable subgroups are free abelian.
Suppose G acts on a real tree T with abelian pointwise arc stabilisers, and that T admits a
decomposition as a graph of actions G = (7,(Ty)vev(r), (Pe)ecE(r))- Denote by Ag the graph of
groups corresponding to the action of G on 7. Let U be a finite subset of G. There exists an
element o of Mod(Ag) such that for any element u of U,

e if the geodesic segment [z, u - x] intersects non-trivially some axial components, then

d(z,o(u) - z) < d(z,u - x);

e if not, o(u) = u.

We start by proving an analogue of 5.13]
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Lemma 5.18: Suppose that a finitely generated free abelian group A acts freely on a line Ly by
an action of axial type. Let V be a finite subset of A, let z be a point of Ty and let n > 0. There
exists an automorphism ¢ of A such that for any non-trivial element v of V,

d(z,¢(v) - 2) <1).

Proof. Choose a basis ay,...,a; for A. Let K be the maximal length of an element of V' with
respect to this basis. Suppose without loss of generality that the elements a; all translate Lg in
the same direction, and that the translation lengths are ordered as follows

tr(ar) < tr(ag) <...<tr(ag)

Since the action is free, the translation lengths are Z-independent. Thus for i > 1, there exists m;
such that 0 < tr(a;) — mitr(a;) < tr(aq). So if ¢ is the isomorphism which sends a; to a; — m;aq
and fixes a1, we get

tr(¢(a:)) < tr(¢(ar)) = tr(as).

We can repeat this until the translation lengths of all the elements a; are smaller than n/K. This
proves the result. O

Theorem [B.17 can now be proved.

Proof. Pick representatives 11, ... T, for the orbits of axial type components. Denote Gi,...G,
their stabilisers. Each G; is solvable, since it is an extension of a subgroup of Isom(R), which is
solvable, by a group fixing an arc of 7', which is abelian by hypothesis. By hypothesis on G, we
see that G is free abelian. We can thus write G; = A} @ A% where A} acts trivially and A% acts
freely on T;. By definition of an axial component, A¢ is finitely generated.

Now if V is a finite subset of elements of G;, let V} = Pai (Vi), the projection of V; on A%. By
lemma BI8 for any 1 > 0, and for any 2 € T}, there is an automorphism ¢; of A} such that for
all non-trivial element a of Vi, we have d(z, ¢;(a) - z) < 7. We can extend ¢; to G; by letting it
be the identity on Aj: we get an automorphism of G; which fixes all the edge groups adjacent to
the vertex of 7 corresponding to T;, and for any element v of V which does not lie in A}, we have
v =aw with a € A — {1} so d(z, ¢;(aw) - 2) = d(z, ¢i(a) - 2) < 7.

Thus, by lemma [B.T5) for each ¢, for any finite set of elements U; of G, we can find ¢; such
for any element u of U; for which [x,u - z] intersects a translate of T; non-trivially, we have
d(z, di(u) - ) < d(x,u-x), and if not, ¢;(u) = u. If we apply this successively to Uy = U, Uy =
o1(U1), ..., U = ¢r_1(U,_1), the automorphism ¢ = ¢, o ... 0 ¢y o ¢ satisfies the conclusion of
the theorem. O

5.6 Simplicial Case

We give the following definition.

Definition 5.19: (simplicial edge) Suppose T is a real G-tree, denote by T’ is minimal subtree.
We call simplicial edge of T any non-trivial arc [p, q] which lies in T', whose interior contains no
branching points in T', and which is fized pointwise by its stabiliser.

Let [p, ¢] be a simplicial edge in T" with stabiliser C.

Definition 5.20: (splitting induced by a simplicial edge) The group G admits a splitting T over
C. We call this the splitting induced by [p, q]

Denote by A and B the stabilisers of the connected components of 7" — | bec 9 (p, q) which
contain p and ¢ respectively. Then either I' is an amalgam of the form A xc B, or there exists ¢
in G such that B =tAt~! and I' is an HNN extension of the form Axc, with stable letter ¢.
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Remark 5.21: If [p,q| is a simplicial edge in T, any non-trivial subinterval of [p,q] is also a
simplicial edge of T, and it induces the same splitting as [p, q]. Indeed, since no branching points
lie on [p, q], the stabiliser of a non-trivial subarc is Stab([p, q]).

To take care of segments of the form [z, u - 2] which lie entirely in the simplicial part, we will
prove

Theorem 5.22: Let G be a finitely generated torsion-free group. Suppose (X,,Tp)nen S a
sequence of d,-hyperbolic G-spaces which converges to a pointed real G-tree (T,z) whose arc
stabilisers are abelian. Assume that in the stabiliser of any arc of T, there is an element which,
for all n large enough, acts hyperbolically on X,, with translation length at least 120,,. Denote by
T’ the minimal subtree of T.

Let y be the point in T' of T which lies closest to x, and let U be a finite subset of elements
of G. For all n large enough, there exists an automorphism ¢, of G, such that for any v in U,

d(z, ¢ (u) - ) = d(z,u - x);
and if the segment [y, u - y] contains a simplicial edge of T of the form [y, q], we have

with equality if and only if u fizes y.
Moreover, ¢, lies in the subgroup of Mod(G) generated by the subgroups of the form Mod(T),
where T is the splitting induced by a simplicial edge of T .

To prove Theorem [5.22] we need to understand distances d(z, g - ) in the real G-tree T'. Note
first that d(x,g- ) = 2d(x,y) + d(y, g - y) so we can restrict ourselves to understanding distances
d(y, g -y) in the minimal tree.

Let [y, ¢] be a simplicial edge in T', denote by T' the splitting induced by [y, ¢]. Our aim now
is to find a formula which expresses the distance d(y, g - y) in terms of the expression of g as a
word given by the splitting I'.

e If " is an amalgam A xc B, we can write any element g of G as
g = a1b1 . alblaH_l

where [ > 0 the elements a; lie in A, the elements b; lie in B, and they do not lie in C
except possibly a; and ajy1.

Then it is straightforward to show by induction that

+1 l
d(y,9-y) = Zd(y,ai ~y)+zd(y,b¢ “y). (5.1)

Moreover, for any b € B — C, we have d(y,b-y) = 2d(y,q) + d(g,b - q) so

I+1 l
d(y,g-y) =Y d(y,a;-y) +2ld(y,q) + >_ d(q,b: - q). (5.2)
i=1 i=1

e If I' is an HNN extension Axc, we can write any element g of G as
g=apt™ait™as...aqit"a;q

where the elements a; are in A but not in C, except possibly ag and a;41, and n; # 0 for
0<i<l. Letr=t"1-q.
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Ta
| e \ e .
ey /“'/' r;/y q:tnl.r‘\" Y
1 a1y +
a1t™asg -7 at"l - r

a1t™agt"? -y

Figure 5.1: HNN case: the path in T between y and (a1t agt™?) -y

We define for 0 < i <1

N _Jy it n;>0 o o if ny >0
p(z)—{r if n; <0 and p(z)—{y if n; <0

We also set p(l +1) =y.

It is fairly straightforward to see by induction (see figure[51)) that the path between T4 and
at"™ajyq .. ait™ai4 -y starts at a; - p(j) and that

d(y,9-y) =d(y,ao - p(0)) +d(Ta,t"ay ... ait"™ - y)

We deduce

! !
d(y,g-y) = dly,ao-p0))+ > dlp(i),t" - p(i)) + > _ d(p(i), air1 - pli + 1)) (5.3)
i=0 i=0
Note also that d(p(i), t" - p(i)) = d(y, t!™! - r), and that for & > 0 we have
d(y,t* - r) = kd(y. q) + (k — 1)d(r.y)
so if we let Ny = Y1 |ns], we have

d(y,g-y) = d(y,a0-p(0)) + Nyd(y,q) + (Ng — (I +1))d(r, y)

l
+Y_d(p(i), ais1 - p(i + 1)) (5.4)
i=0

With these result, we can show that the length of [y, g-y] in T does not change when we apply

a Dehn twist of the splitting I" to g.
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Lemma 5.23: Suppose T is a real G-tree with abelian arc stabilisers. Let [y, q] be a simplicial
edge in T, denote by T' the splitting induced by [y, q], and by A the stabiliser of the connected
component of T — Ugecg - (y,q) which contains y. If ¢ is a Dehn twist by some element ¢ of
Stab([y, q]), for any element g of G we have

d(y,g-y) =d(y,¢(9) - y)

Proof. Suppose first that the splitting induced by [y, ¢] is an amalgam A x¢ B. Let g € G, such
that g = a1by ... a;bja; 1 where [ > 0, the elements a; lie in A, the elements b; lie in B, and they
do not lie in C except possibly a; and a;41.

Then we have by equation 5.1

Ay, g-y) = 2L d(y, a; - y) + S, d(y, b; - y).

With respect to the splitting I, the element ¢(g) is represented by a1(cbic™as ... a;(chic a1,
SO

d(y. ¢(g) - y) = Stid(y, a; - y) + iy d(y, chic™" - y).
But for any b € B, we have d(y,cbc™! - y) = d(c™t -y, b=t - y) = d(y,b - y) since c fixes y. Thus
d(y, o(g) -y) = d(y,9 - y)-

Consider now the case where the induced splitting is an HNN extension. Let g be an element
of G, and choose a stable letter t. The element g can be written as g = apt™ a1t asg ... a;t" a4
where the elements a; are in A but not in C, except possibly for ap and a;41, and n; # 0 for
0 < < l. By equation we have

l l

d(y,g-y) = d(y, a0 - p(0) + D d(p(i),t" - p(i)) + Y d(p(i), ais1 - pli + 1)
=0 1=0

Now ¢(g) = ao(ct)™aq(ct)™ as ... a;(ct)™a;+1, and this expression gives us a way to represent
¢(g) in Axc with choice of stable letter u = ct. Thus equation 3] gives

l

l
d(y. #(9) - y) = d(y, ao - p(0)) + D d(p(i), (ct)™ - p(i) + D d(p(i), ai1 - pli + 1))
=0

i=0
Now d(y, (ct) - r) = d(y,t - r) since c fixes g =t - r, so d(y, d(g) - y) = d(y, g - y). O

We are interested in segments of the form [y, u - y| which lie entirely in simplicial components.
Such a segment must start with a simplicial edge of the form [y,q]. The following proposition
enables us to shorten all paths of the form [y, u - y] which start with a given simplicial edge [y, q].
To prove Theorem 522, we will apply it to all simplicial edges of the form [y, q].

Lemma 5.24: Let G be a finitely generated torsion-free group. Suppose (X, Tn)nen s a sequence
of 9 -hyperbolic G-spaces which converges to a pointed real G-tree (T,x). Denote by T’ the
minimal subtree of T, and by y the point of T' closest to T".

Let [y,q] be a simplicial edge of T whose stabiliser is non-trivial and abelian, and contains
an element which, for all n large enough, acts hyperbolically on X, with translation length at
least 126,,. Denote by T' the splitting induced by [y,q], and by A the stabiliser of the connected
components of T — UgeG g - (y,q) which contains y. Let V be a finite set of elements of G.

For any n large enough, there is a Dehn twist ¢, in Mod(T") such that for any g in V,

e if g € A, we have ¢,(g) = g;
L ifg ¢ A; we have dn(xna¢n(g) : xn) < dn(xnag . xn);
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To prove this we will use

Lemma 5.25: Let G be a finitely generated torsion-free group. Suppose (X,,, Tn)nen 1S a sequence
of 8n-hyperbolic G-spaces which converges to a pointed real G-tree (T, x). Let [y, q| be a simplicial
edge of T. Suppose that there exists a non-trivial element ¢ fizing [y, q], such that for n large
enough, ¢ acts hyperbolically on X,, with translation length at least 126,,. Denote by T' the
splitting induced by [y, q].

For any € > 0, for n large enough, if ¢, and y, approximate q and y in an e-approzimation
between T and X,, with respect to y,q and c, there exists an integer k,, such that

dn(yna Ckn : Qn) < Je.

Proof. Let € > 0. Fix n large enough so that ¢ acts hyperbolically on X,, with translation length
at least 124,,, and such that 124,, < ¢/3. Suppose that there exists an e-approximation between T
and X, with respect to y, ¢ and c. Denote by ¢,, and y,, the approximations of ¢ and y respectively.

Choose a geodesic L contained in Ax(c) (recall Ax(c) is the set of geodesics joining the points
of the boundary fixed by ¢), and a geodesic parametrisation ¢ — w(t) of L.

In T, the element c¢ fixes y and ¢, so d,,(yn, ¢ yn) < € and d,,(qn, ¢ ¢n) < €. By lemma B.I3]
the axis of ¢ is at a distance at most 44,, of the midpoints of [y, ¢-y,] and [g,, ¢- ¢,]. Thus these
midpoints are at a distance at most 126, of L, so that d,(y,, L) < ¢ and d,,(¢qn, L) < e. Without
loss of generality, we may assume that d,(g,,w(0)) < ¢, and that there is a positive real u such
that dy, (yn, w(u)) < e.

The elements of the form ¢* also acts hyperbolically on X,,, and their axis coincides with the
axis of ¢ since they fix the same points on the boundary. Let us consider their translation lengths
tr,(cF). For any point z of Ax,(c), we have d,(z,c" - z) < tr,(cF) + 165, by lemma BI1 But
the map Z — X given by k — c¥ - 2 is a quasi-isometry, so tr,,(c*) must tend to oo as k tends to
infinity.

On the other hand, dp,(w(u),c - w(uw)) < 2d,(Yn, w(w)) + dp(Yn, ¢ - yn) < 3e. Thus for k € Z,

we have

[tr (P =t ()] < fdn(w(w), - w(u)) — d(w(u), ¢ - w(w))| + 326,
< dn (¥ - w(u), M w(w))| + 326,
< Ae.

The sequence (tr,,(c*))ren tends to infinity, and the distance between two consecutive terms is at
most 4e, so there exists a positive integer k, such that |u — tr,(cF)| < 2e.
The element c*» acts as a 208,-quasitranslation of length tr(c*») on the geodesic t — w(t),
and we get
dp (w(trp (), ¢ - w(0)) < 206, < e.

But d, (w(u), w(tr, (")) = |u — tr,(c**)| < 2¢ and we deduce

A (Y - qn) < du(yn, w(w)) + dp(w(w), ™ -w(0) + dn(w(0), ¢n)
< dp(w(u), - w(0)) + 2€
< dp(w(u), wtr, (")) + dn(w(tr, (), F - w(0)) 4 2€
< be
This terminates the proof. O

We can now prove lemma [5.241

Proof. We consider separately the case where I is an amalgam, and the case where it is an HNN
extension.



5.6. SIMPLICIAL CASE 39

Amalgam case: Write each element g of V' according to this splitting as g = a1b1 ... aibja;41,
where [ > 1, the elements a; lie in A, the elements b; lie in B, and they do not lie in C except
possibly a; and a;4.

Let V4 and Vg be the finite sets of elements a; and b; respectively that appear in all such
decompositions. Let € be such that 0 < ¢ < d(y,q)/100. Let ¢ be the non-trivial element of C
given by the hypotheses.

Let n be large enough so that there exists an e-approximation R between T and X,, relative
to y,q and VUV, UV U{c}. By lemma [529] if n is large enough, there exists an integer k,
such that d, (yn,c* - ¢,) < Be.

Let g be an element of V' which does not lie in A. It admits a decomposition according to the
splitting T" given by g = a1b; ... ajbja;41, and I > 0 since g ¢ A. By equation 52 we have

+1 l
d(y,g-y) =Y d(y,a;-y)+>_d(q, b - q) + 21d(y, q)
=1 i=1

so by our e approximation, we get

+1 l
dn(ynag : yn) > Z dn(ynv g * yn) + Zdn(Qm bi - Qn) + 2ldn(yn, Qn) - (4l + 2)5 (5-5)
=1

i=1

Let ¢, be the Dehn twist about ¢*». The triangle inequality gives

+1 l
dn(yna ¢n(g) : yn) < Z dn(yna [ yn) + Z dn(yna cknbicikn : yn)
1=1 i=1

But for b € B — C', we have by the triangle inequality
(Y, b - yn) < dn(Yn, & - qn) + di (P g, b gn) + d (P - g, FrbeF )
= 10e+ dn(Qna b- Qn)-
We finally get

1 l
dn(yna Q; - yn) + Zdn(QTL; b; - Qn) + 10le

=1
n(Uns G- Yn) — 20dn (Yn, o) + (141 4 2)e

z,y)+d(Y, dn(9)-y), 50 dn(Tn, #(9) - Tn) > 2dn(Tn, yn)+

T

(]

.
Il

<

IS
—~ =

by equation5.5l Now d(z, ¢, (g)-z) = 2d
dn(Yn, g - yn) — 4e. We get

dn(mm ¢n(g) : xn) 2dn($na yn) + dn(yna ¢n(g) ’ yn)
2dn(xn7 yn) + dn(yna g- yn) - 2ldn(yna Qn) + (14l + 2)6
dn(Tn, g - Tn) — 2ldn(Yn, gn) + (141 + 6)e

dn(xnag : mn)

VAN VAN VAN VAN

since € < d(y,q)/100 < dy(yn, qn)/99 so (141 + 6)e < 2ld,,(yn, gn) (recall that [ > 0).

HNN case: Let us now consider the case where I' is an HNN extension. We choose a stable
letter ¢ such that ¢ € t- T4, and we write write each element g of V' as apt™a1t™ as ... at™ a1,
where the elements a; are in A but not in C, except possibly ag and a;41, and n; # 0 for 0 < i < [.
Denote by N, the integer 22:0 |n;|. Note that if g is not in A, we must have N, > 0.
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Let V4 be the finite set of elements a; that appear in all such decompositions for g ¢ A. Let ¢
be such that 0 < € < d(y,q)/100. Let n be large enough so that there exists an e-approximation
R between T and X, relative to y,q,7 =t~ - g and V U V4 U {t}. There exists an element c of
C such that for all n large enough, tr(c) > 126,,. Thus by lemma (23] for n large enough there
is an integer k,, such that d,,(y,,c* - ¢,) < 5e¢, where ¢, is a point approximating ¢ with respect
to R. Thus we have d, (yn, c*»t - 7,) < 6e.

Let g be an element of V', whose decomposition according to the splitting I' is given by
apt™ait™as . ..a;t™a;y 1. By equation 5.4l we have

l
d(y,g-y) = d(y, a0 - p(0)) + Y _ d(p(i), a1 - pli + 1)) + (Ng — 1 — D)d(r,y) + Nyd(y, q)
i=0
so by our e-approximation we get

l

dn(ynag ' yn) > dn(yn7 ap - pn(O)) + Zdn(ﬁn(z)a Q41 - pn(Z + 1))
=0
+(Ng =1 = 1)dn(rn, Yn) + Ngdn(Yn, qn) — 2Ny +2)e  (5.6)

Let ¢, be the Dehn twist about c*». We have by the triangle inequality

!
i=0
!
D dulpn i), (0" - 5 )
i=0
Note that d,,(p, (i), (1) - 5p(i)) = dp(yn, ()™ . 1,). By the triangle inequality, we have
for j >0

dy (Yn, (ck"t)j crn) < dp(Yn, cknt . Tn) + dn(ck“t T, (ck“t)j )
< dp(Yn, Ft ) + (G — Dy (rp, ot - 1y)
< jdn(yn, 1) + (G — 1)dn(rn, yn)
Thus we see that
l
dn(ym ¢n(g) : yn) < dn(yna agp - pn(o)) + Z dn(ﬁn(l)v Qi1 - pn(i + 1))
i=0

+(Ng —1- 1)dn(7’myn) + 6Ng€
< dn(ynag : yn) - Ngdn(ym qn) + (SNQ + 2)6

by equation[5.6l Now d(z, ¢, (g9)-2) = 2d(z,y)+d(y, ¢n(9)-y), 50 dp(Tn, (g)-2n) > 2dp (Tr, yn)+
dn(Yn, g - yn) — 4e. We get

dn(Tn, On(g) - Tn) < 2dn(Tn, Yn) + dn(Yns Onlg) - Yn) (5.7)
< 2dn(Tn,Yn) + dn(Yns 9 Yn) — Ngdn(Yn, qn) + (8Ng + 2)€ (5.8)
< dn(n, 9 2n) — Ngdn(Yn, qn) + (8Ng + 6)e (5.9)
< dp(Tn,g - xn) (5.10)

since € < d(y, ¢)/100 < dp(Yn, qn)/99 s0 (8Ny + 6)e < Nydp(Yn,qn) (recall N, > 0 since g ¢ A).
O
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We can now prove Theorem [5.22

Proof. There is a finite number of orbits of maximal (for inclusion) simplicial edges of the form
[y,q] in T: we choose some representatives [y, qi],...,[¥,qm]. These edges induce splittings
Iy,..., I, Each splitting I'; is of the form A; ¢, B; or A;*c,, where A; stabilises the con-
nected component of T' — UgEG g - (y,¢;) which contains y.

Ifge (AiN...NA,), we see that the path [y, ¢ - y] does not intersect any translates of the
edges [y, ¢;]. By lemma[5.24 for all n large enough, we can find a Dehn twist ¢! in Mod(I';) such
that for any g € U;

e if g € Ay, we have ¢},(9) = g;
o if g & Ay, we have dp,(n, 0L (9)  2n) < dp(Tpn, g - x0).

We apply lemma successively to the sets V. =UnN (A1 N...N A;_1), to find for any n
large enough a Dehn twist ¢!, in Mod(T;) such that for any g € U;

° ing (Alﬂ...ﬁAi),wehave (¢;O...O¢}l)(g):g;
o ifgd (A1 N...NA;), we have d,, (2, (¢}, 0...0¢L)(9) - Tn) < dp(Tpn, g - x0).

Finally we set ¢, = ¢™ o...o0¢L. If g € U is such that [y, g - y] contains a simplicial edge of
the form [y, g], we know that g ¢ (A1 N...N Ap), 50 dp(Tp, ¢rn(9) - Tn) < dn(Th, g - x0).
Since all the automorphisms ¢; are Dehn twists, by lemma [5.23] we see that for any g € G we

have d(y, ¢n(g) - y) = d(y,g - y) so

d(z, ¢n(g) - x) = 2d(z,y) + d(y, pn(g) - y) = 2d(x,y) + d(y,9 - y) = d(z, g - T).

5.7 Proof of the shortening Theorem
Putting all of the pieces together, we can now prove Theorem

Proof. Let T’ be the minimal subtree of the action of G on T'. Let y be the point of 7" such that
[, y] is the shortest path between x and T". Note that H fixes a point in 7".
If g is an element of G, we have

d(z,g-z) = 2d(x,y) +d(y,g-y)-

The action of g on T is non-trivial, so there is at least one elements gy in the generating set
Y, such that go -y # y. Moreover, if an element g of X fixes y, the distance d(x, g - x) is
strictly smaller than d(z, go - ), so that for n large enough, d,,(x,, g - x,) is strictly smaller than
dp,(xn, go - ). The maximal displacement of the basepoint is reached by a generator which does
not fix y. Therefore, we can assume that none of the elements of Y fix y.

The tree (T",y) satisfies the hypotheses of Theorem [B.IT] so it admits a graph of actions
G = (7,(Tv)vev () (Pe)ecr(r)) into surface, axial and simplicial components. Denote by Ag
the graph of groups corresponding to the action of G on 7. Denote by I'g the refinement of
Ag by the actions of the simplicial type vertices on their simplicial vertex trees. Note that
Mod(Ag) < Mod(T'g).

We apply proposition [512] to the set U = X, to get an element ¢5 of Mod(Ag) such that for
every g in X¢, we have d(y, ¢s(g) - y) < d(y,g - y), unless [y, g - y] does not intersect any surface
type components, in which case ¢;(g) = g.
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We then apply proposition B.I7 to the set U = ¢4(X¢), to get an element ¢, of Mod(Ag)

such that for every g in X, we have d(y, ¢o(¢s(9)) - v) < d(y, ps(g) - y), unless [y, ¢s(g) - y] does
not intersect any axial type components, in which case ¢, (¢s(g)) = ¢s(g)-
Thus

d(z, da(¢s(g)) - ) 2d(z, y) + d(y, ¢a(¢s(9)) - y)
< 2d(z,y) +d(y,9v)

= d(z,g-x)

unless [y, g - y] lies entirely in the simplicial part of 77, in which case ¢q(ds(g)) = g. Let § > 0
be smaller than d(z,g - x) — d(z, 9o (ds(g)) - ) for all the elements g of X such that [y, g - y]
intersects a surface or an axial component.

Let n be large enough so that there is a ¢§/2-approximation between X, and T relative to
0a(0s(X)), and so that proposition [5.22 applied to the set U” = ¢, 0 ¢s(X¢) gives us an element
¢n, of Mod(I'g) for which

b d($,¢n 0 ¢g © ¢s(g) $) = d(l‘, ¢q © (]55(9) $) for all g in Yg;

° dn(mnad)n o ¢a o (bs(g) . xn) < dn($n7¢a o ¢s(g) . $n) for all g such that [y;¢a o ¢s(g) : y]
contains a simplicial edge of the form [y, q].

Let ¢ = ¢y, 0 ¢4 © 5. Note that since H fixes a point in 7”, the modular group Mod(T'g) is a
subgroup of Mody (G). For g in X such that [y, g - y] intersects a surface or an axial component,
we have:

dn(xn7¢(g) xn) < d(xv(b(g) x)+5/2
= d(z,¢a 0 ds(g) - x) +6/2
< d(xz,g-x)—0/2
< dn(xnag'xn)~

If g is an element of ¢ such that [y, g - y] lies entirely in the simplicial part of 7", we have
a0 ds(g) = g, 80 [y, P © ds(g) - y] lies entirely in the simplicial part of 7”, hence must start with
a simplicial edge of T'. Therefore d,, (2, 9(g) - ) = dn(Tn, On © Pa © Gs(g) - ) < dp(Tpn, g - Ty).
This finishes the proof.

(I



Chapter 6

Factor sets

The results presented in this section form an essential step of the construction of a Makanin-
Razborov diagram, which analyses the set of morphisms Hom(G, T') from a given finitely generated
group G into a free group or into a hyperbolic group I' for example. We prove the existence of
a factor set for such morphisms, that is, we show that there is a finite number of morphisms
fis--., fm such that, up to precomposition by an automorphism, any element of Hom(G,T)
factors through one of the maps f;.

6.1 Case of free groups

Recall that a sequence of morphisms h,, : G — G’ is stable if for any element g of G, either h,(g)
is trivial for all but finitely many values of n, or h,(g) is non-trivial for all but finitely many
values of n. Recall also that the set of elements g whose image by h,, is almost everywhere trivial
is called the stable kernel of the sequence, and denoted by Ker(hy).

Definition 6.1: (limit of a stable sequence) The limit of a stable sequence h,, : G — G’ is the
group G/Ker(hy).

Definition 6.2: (limit group) A limit group L is the limit of a stable sequence of morphisms
from a finitely generated group G into a free group f, : G — F.

The following proposition lists some properties of limit groups that will be of use. All these
are elementary, and proved in lemma 1.4 of [Sel0I] or proposition 3.1 of [CGO3].

Proposition 6.3: Let L be a limit group.
e L is torsion-free;
o mazimal abelian subgroups of L are malnormal;
e a solvable subgroup of L is abelian;

e given two elements a,b in L either a and b commute, or they generate a free group of rank
2.

We will also use the following property, proved in [Sel0T].
Proposition 6.4: Limit groups are finitely presented.
This is a highly non-trivial fact. To show finite presentability of limit groups, Sela shows that

the class of limit groups coincides with that of constructible limit groups (see section 4 of [Sel01],

63



64 CHAPTER 6. FACTOR SETS

alternatively this proof is also written up in [Wil06] and [BE03]). Constructible limit groups are
easily seen to be finitely presented, hence the result.

It is also fairly straightforward to see that constructible groups have finitely generated abelian
subgroups, thus as a corollary we get

Proposition 6.5: Abelian subgroups of a limit group are finitely generated.
From this we can deduce in particular

Lemma 6.6: A virtually solvable subgroup of a limit group is free abelian.

Proof. We know by the third point of that solvable subgroups of limit groups are in fact
abelian. We just saw that abelian subgroups of limit groups are finitely generated. Thus virtually
solvable subgroups of a limit group are finitely generated, and have polynomial growth. This
implies in particular that a virtually solvable subgroup H cannot contain a free group of rank 2,
so by the fourth point of [63], any two elements of H must commute. Thus H is finitely generated
abelian, and since L is torsion free, it must in fact be free abelian. O

Definition 6.7: (shortening quotient) A shortening quotient of a group G is the limit of a stable
sequence of morphisms hy : G — F which are short in the sense of definition [{-22

Theorem says that if G satisfies some nice properties, and if the h,, are short and non-
injective, the limit group L is a proper quotient. Note that if G is both freely indecomposable
and non-cyclic, it cannot inject into a free group, so the non-injectivity of the h,, is automatically
satisfied. The following can thus be seen as yet another version of the shortening argument.

Theorem 6.8: Suppose G is a freely indecomposable, torsion-free and non-cyclic finitely gen-
erated group. Suppose moreover that its virtually solvable subgroups are free abelian. Then a
shortening quotient of G is a proper quotient.

We want to show the following result:

Proposition 6.9: Let G be a non-cyclic and freely indecomposable finitely generated group. There
exist a finite set of limit groups which are proper quotients of G such that any morphism f from
G to a free group F factors through one of the corresponding quotient maps after precomposition
by a modular automorphism.

Definition 6.10: (factor set) Such a finite set of quotients is called a factor set for Hom(G, ).

To do this, we introduce a partial order relation on the shortening quotients of G: suppose
L1, Ly are shortening quotients with quotient maps n; : G — L;, for i = 1,2. We say that L1 < Lo
if the map n; factors through 7, i.e. if there exists a map v : Lo — L; such that n; = v ons.
This amounts to saying that Ker(nz) C Ker(n;).

We now show that every shortening quotient is smaller than a maximal shortening quotient
for this order relation, and that there is only a finite number of maximal shortening quotient.

Proposition 6.11: Let G be a non-cyclic and freely indecomposable finitely generated group.
Every shortening quotient of G is smaller than a maximal shortening quotient.

Proof. We will of course apply Zorn’s lemma, for this we need to show that every totally ordered
set of shortening quotients has an upper bound.

Assume without loss of generality that the totally ordered set of shortening quotients is infinite.
It contains a strictly increasing sequence Q1 < Q2 < Q3... of shortening quotients of G, with
corresponding maps 7, : G — @, such that 7, minimises the set Ker(n) N Bg(n). The kernel of
any quotient 1 : G — @ in our totally ordered set contains Ker(n) N Bg(n). Suppose we can find
an upper bound 7. : G — Qo for this sequence. If g is an element of Ker(n ), then g € Ker(n,)
for all indices n, thus g € Ker(m,)). But for any quotient n : G — @ in our ordered set,
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Ker(mg)) N Ba(l(g)) is contained Ker(n). Thus it is enough to show that any ordered sequence
of shortening quotient has an upper bound.

Each @, is the limit of a sequence of short morphisms A : G — F (since G is finitely generated
we can assume the group F is the same for all n). By extracting carefully from each sequence (h}');,
we can moreover assume that for each ¢ € N, for any word w in G of length at most ¢, h?"(w) = 1
if and only if 7,,(w) = 1. Consider the diagonal sequence of short morphisms h? : G — F. Extract
a stable subsequence (which we still denote h;) Denote by @ the limit group which is the limit

of this sequence, and by 7 the quotient map. It is a shortening quotient since all the maps h? are
short.

Now @, as a limit group, is finitely presented. Thus for j large enough, all the elements of the
kernel of 7) are mapped to 1 by hJ, that is, if n(w) = 1, then n;(w) = hj(w) = 1. Thus Q; < Q
for j large enough, so this holds for all j. This terminates the proof. O

Proposition 6.12: There is only a finite number of maximal shortening quotient.

Proof. Assume (M,,),en is an infinite sequence of maximal shortening quotients of G. Each M,
is the limit of a sequence (hl');en of short morphisms G — F which we choose again to ensure
that the kernels of A} and 7, coincide on words of length less than or equal to i. Extract from
the diagonal sequence of morphisms h? a stable subsequence (still denoted hj) Let M be the
shortening quotient of G' limit of this sequence, 7 the corresponding quotient map.

As M is finitely presented, and the sequence hg- is stable, for j large enough h; maps all the

elements of the kernel of n to 1. As h; agrees with 77; on words of length less than or equal to 7,
for j large enough 7); sends all the elements of the kernel of 77 to 1, in other words M is a quotient
of M. But M, is maximal, so M is equivalent to M;. Since this holds for all j large enough, the
quotients M; cannot be all distinct.

O

We can now prove proposition

Proof. By [612, G has a finite set Mj,... M, of maximal shortening quotients of G with corre-
sponding quotient maps 71, ... 7.

If G is not a limit group, a shortening quotient of G must be a proper quotient since a
shortening quotient is in particular a limit group.

If G is a limit group, it is torsion-free and its virtually solvable subgroups are free abelian by
Thus by proposition [6.8] its shortening quotients are proper quotients

In both cases the surjective maps 71, ... 7, are not injective. Let f be a morphism G — F. Let
o € Mod(G) be such that f = f o ¢ is short. The limit of the sequence f, f,... is a shortening
quotient @ of G, with quotient map 7. Note that f factors through 7. By proposition B.11] 7
factors through one of the n;. But this implies f factors through 7;, thus proving the claim. O

6.2 Case of torsion-free hyperbolic groups

Let I" be a torsion-free hyperbolic group finitely generated by a set X.

Definition 6.13: (I'-limit group, strict I-limit group) A T'-limit group L is the limit of a stable
sequence of morphisms from a finitely generated group G into I'. If moreover the morphisms are
pairwise non-conjugate, we say that L is a strict T'-limit group.

Remark 6.14: A U-limit group L is either a strict U'-limit group or a finitely generated subgroup
of I'. Indeed, from the sequence of morphisms which defines it, we can extract either a subsequence
of non-conjugate morphisms, or a subsequence of pairwise conjugate morphisms, and L is still
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the limit of this subsequence. In the first case L is a strict I'-limit group, in the second case L is
isomorphic to the subgroup of I' image of any of the morphisms.

At this point, what we did in the free case was to state the result that limit groups are finitely
presented. This is not necessarily true in the case of I'-limit group, indeed I' may have finitely
generated subgroups that are not finitely presented.

However it is true that a chain of strict epimorphisms between I'-limit groups stabilises. Note
that this would be obvious if we knew them to be finitely presented. The proof requires heavy
construction, in particular the ’shortening procedure’, and can be found in Sela and as Theorem
5.2 in [Gro03] (here Groves treats relatively hyperbolic groups, of which hyperbolic groups are an
instance).

Theorem 6.15: Let L1, Lo,... be a sequence of I'-limit groups and mi,m2,... a sequence of
epimorphisms such that m; : L; — L;y1. Then all but finitely many of the m; are isomorphisms.

Sela also gets as a by-product of the proof of this theorem the following proposition:

Proposition 6.16: If L is a U-limit group obtained as the limit of a sequence of morphisms
hy : G — T, then a subsequence of the h,, factors through L.

We now proceed as in the free limit group case to define shortening quotients.

Definition 6.17: (shortening quotient) Let L be a I'-limit group obtained as the limit of a se-
quence of morphisms h,, : G — . If the h,, are short and non-injective we call the limit group
obtained a shortening quotient.

Here again, the shortening argument [A.23] gives

Proposition 6.18: Let G be a torsion-free freely indecomposable finitely generated non-cyclic
group in which every virtually solvable subgroup is free abelian. If L is a shortening quotient of
G it is a proper quotient of G.

We want to show the following result:

Proposition 6.19: Let G be a torsion-free, freely indecomposable, finitely generated and mon-
cyclic group. Suppose that every virtually solvable subgroup of G is free abelian. There exists a
finite set of U-limit groups which are proper quotients of G such that any non-injective morphism
f from G to T factors through one of the corresponding quotient maps after precomposition by a
modular automorphism.

Remark 6.20: Note that in this case we need to rule out injective morphisms which obviously do
not factor through proper quotients. In the free group case, this was not necessary as no injection
can exist from a freely indecomposable non-cyclic group into a free group.

Here again we introduce the same partial order relation on the shortening quotients of G, and
proceed to show that every shortening quotient is under a maximal shortening quotient, and that
these are in finite number. The proofs differ slightly from the free case, because we do not have
finite presentation of I'-limit groups. However the result given by proposition [6.16]is enough.

Proposition 6.21: Let G be a finitely generated group. FEvery shortening quotient of G is smaller
than a maximal shortening quotient.

Proof. As in the proof of 11l we can see that it is enough to show that an infinite countable
totally ordered set of shortening quotients has an upper bound. Let thus (Q,)nen be a set of
shortening quotients, with quotient maps 7,,. Each @, is the limit of a stable sequence (h;‘) jeN, we
may assume that the kernels of 47 and 7, coincide on words of length at most j. Let n: G — @) be
the limit of (a stable subsequence of) the diagonal sequence (h!"),en: it is a shortening quotient.
We may assume after further extraction that the kernels of  and A} coincide on words of length
at most n. Thus the kernels of 7 and 7,, coincide on words of length at most n so that 7 is the
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limit of the sequence (7, )nen. By proposition [6.16] for n large enough 7, factors through 7. Thus
Q@ < Q. This terminates the proof. O

Proposition 6.22: There is only a finite number of maximal shortening quotient.

Proof. Assume (M,,),cn is an infinite sequence of distinct maximal shortening quotients of G with
quotient map 7,,. Each M, is the limit of a sequence (h;»‘)je ~ of non-injective short morphisms
G — F which we choose to ensure that the kernels of the maps h} and 7, agree on words of
length at most j.

As in the proof of B21] let n : G — M be the limit of (a stable subsequence of) the diagonal
sequence (h!'),en, and see that we may assume that for n large enough, 7, factors through 7.
Since the M, are maximal, we have M = M, for all n large enough, which contradicts the
assumption that the maximal quotients M,, are pairwise distinct. O

We can now prove proposition [6.19]

Proof. Let My, ... M, be the maximal proper shortening quotients of G with corresponding quo-
tient maps 71, . .. 7, (there are finitely many of them by[6.22). Let f be a non-injective morphism
G — F. Let 0 € Mod(G) be such that f = f oo is short. The sequence f, f,... gives in the limit
a proper shortening quotient @ of G, with quotient map 7. Note that f factors through 7. By
proposition BZT], 7 factors through one of the n;. But this implies f factors through the same 7;,
thus proving the claim. O

6.3 Relative results

Finally we will show a relative version of proposition [6.19] as well as a ’partial relative version’.
We proceed in a similar manner, here the only difference is that we will use the relative version
of the shortening argument

Let T" be a hyperbolic torsion-free group with generating set 3.

Definition 6.23: (relative I'-limit group) Let G be a finitely generated group, let H be a subgroup
of G, with a fized embedding into I'. A I'-limit group relative to H is the limit of a stable sequence
(hn)nen of homomorphisms G — T which fizes H in the limit (recall definition[{-29). If moreover
the homomorphisms h,, are pairwise non-conjugate, we say that L is a strict T'-limit group relative
to H.

Remark 6.24: As in the non-relative case, we can see that a U'-limit group relative to H is either
a strict U-limit group relative to H, or a subgroup of I' which contains H.

A T-limit group relative to H is in particular a I'-limit group, thus we know that a decreasing
sequence of I'-limit groups relative to H stabilises.

Definition 6.25: (relative shortening quotient) Let L be a T'-limit group relative to H obtained
as the limit of a sequence of morphisms h,, : G — T'. If the h, are short relative to H (recall
definition [{-32) and non-injective we say that L is a shortening quotient relative to H.

The relative shortening argument gives

Proposition 6.26: Let G be a finitely generated torsion-free group in which every virtually solv-
able subgroup is free abelian. Let H be a non-abelian subgroup of G with respect to which G is
freely indecomposable. Fix an embedding H — T'. A shortening quotient of G relative to H is a
proper quotient of G.
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Again, we introduce a partial order relation on the shortening quotients of G, and proceed to
show that every shortening quotient is under a maximal shortening quotient, and that these are
in finite number. The proofs are exactly the same as in the non-relative case, up to checking that
the sequences we get do fix H in the limit. We get

Proposition 6.27: Every shortening quotient of G relative to H is smaller than a mazimal
shortening quotient relative to H.

Proposition 6.28: There is only a finite number of mazimal shortening quotient of G relative
to H.

As in the previous sections, this enables us to prove

Proposition 6.29: Let G be a finitely generated group in which every virtually solvable subgroup
is free abelian. Let H be a non-abelian subgroup of G with respect to which G is freely indecompos-
able. Fiz an embedding H — I'. There exists a finite set of proper I'-limit quotients of G relative
to H such that any non-injective morphism h from G to I which fizes H factors through one of
the corresponding quotient maps after precomposition by an element of Mod g (G).

But in fact we can prove a slightly more general result

Proposition 6.30: Let G be a finitely generated group in which every virtually solvable subgroup
is free abelian. Let H be a non-abelian subgroup of G with respect to which G is freely indecom-
posable. Fiz an embedding H — T'. There exists a finite set of proper U-limit quotients of G
relative to H, and a finite subset Hy of H such that any non-injective morphism h from G to T’
which fixes Hy factors through one of the corresponding quotient maps after precomposition by an
element of Mod g (G).

Proof. Let Ly, ... L, be the maximal shortening quotients of G relative to H with corresponding
quotient maps 71, ...7, (there are finitely many of them by [6.28). Suppose there exists no such
Hy. Then we can produce a sequence h, : G — I' of non-injective morphisms which are short
relative to H, fix H in the limit, and such that none of the maps h,, factors through any of the
7n;. From this sequence extract a stable sequence, which converges to a shortening quotient ) of
G relative to H.

This quotient () is under one of the maximal shortening quotients L; so that the quotient map
7 : G — @ factors through n;. Now by proposition [6.16, an infinity of the h,, factor through ,
and thus through n;. This is a contradiction, and we have completed the proof. O

Now recall that Theorem M.38] tells us that if G is a torsion-free hyperbolic group freely
indecomposable with respect to a subgroup H, an injective morphism G — G which fixes a large
enough subset of H has to be surjective. Thus we get as an immediate corollary

Corollary 6.31: Let G be a torsion-free hyperbolic group, and let H be a non-abelian subgroup
of G with respect to which G is freely indecomposable. There exist a finite set of proper quotients
of G, and a finite subset Hy of H such that any non-surjective morphism h : G — G which fizes
Hy factors through one of these quotients after precomposition by an element of Mody (G).



Chapter 7

Elementary embeddings in a
hyperbolic group

7.1 Hyperbolic towers and statement of the main result

The surfaces we consider are always compact and connected. We define hyperbolic towers.
Definition 7.1: (hyperbolic floor) Consider a triple (G,G’,r) where G is a group, G' is a sub-

group of G, and r is a retraction from G onto G'. We say that (G,G',r) is a hyperbolic floor if
there exists a non-trivial decomposition A of G as a graph of groups with surfaces (recall definition

[#-12) such that:

e the graph of groups A has exactly one vertex w which is not of surface type, and its vertex
group is G';

e cvery edge of A is adjacent to w;
e the endpoints of an edge are distinct;

e for each vertex v distinct from w, the image of G, by the retraction r is non-abelian.

Definition 7.2: (hyperbolic tower) Let G be a group, let H be a subgroup of G. We say that G
is a hyperbolic tower based on H if there exists a finite sequence G = G° > G > ... >G™ > H
of subgroups of G where:

e for each k in [0,m — 1], there ewists a retraction 1, : G* — G**1 such that the triple
(G*F,G*L 1) is a hyperbolic floor.

e G =HxF xS %...%xS, where F is a (possibly trivial) free group, p > 0, and each S;
is the fundamental group of a closed and connected surface of Euler characteristic at most
9.

’

Remark 7.3: If G is a hyperbolic tower over a subgroup H, and G’ is a hyperbolic tower over
a subgroup H', then G x G’ is a hyperbolic tower over H « H'. If G is a hyperbolic tower over a
subgroup G’, and G’ is a hyperbolic tower over a subgroup H, then G is a hyperbolic tower over
H.

We can now state our main theorem.

Theorem 7.4: Let G be a torsion-free hyperbolic group. Let H — G be an elementary embedding.
Then G is a hyperbolic tower based on H.

This implies in particular that H is finitely generated, and a retract of G.

69
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7.2 JSJ-like decompositions and preretractions

To prove Theorem [T4] we need to construct successive retractions from subgroups of G to proper
subgroups until we get to H. The strategy will be to build, by the mean of first-order sentences,
some maps that we will call preretractions: their properties will allow us to build the retractions
we need. These preretractions are associated to a specific type of graphs of groups.

7.2.1 JSJ-like decomposition

Definition 7.5: (JSJ-like decomposition) Let A be a graph of groups with surfaces whose edge
groups are infinite cyclic. Let A be the fundamental group of A. Call Z type vertices the vertices
of A which are not of surface type and have infinite cyclic vertex group, and rigid type vertices
the other non surface type vertices. We say that A is a cyclic JSJ-like decomposition of A if:

1. an edge is adjacent to at most one surface type vertex, and to at most one Z type vertex;

2. (strong 2-acylindricity) if a non-trivial element of A stabilises two distinct edges of Ty, they
are adjacent and their common endpoint is the lift of a Z type vertez.

Remark 7.6: These conditions imply in particular that two distinct vertices have distinct vertex
groups.

Remark 7.7: Let A be a cyclic JSJ-like decomposition of a group A. If C is the edge group of
an edge e which connects two vertices which are not of Z type, then C is maximal abelian in A.
Indeed if ¢ is a non-trivial element of C, and if v commutes with c, then c fizes the edge v -e. By
strong 2-acylindricity, ¢ does not fix any edges other than e, so v -e = e, and thus v € C.

We will also say that a vertex in the tree T is of type Z or rigid according to the type of its
image by the quotient map Th — A.

Remark 7.8: Note that a rigid type vertex group in a JSJ-like decomposition might admit some
splittings over Z compatible with A, so is not rigid in the usual sense of the term.

Definition 7.9: (subgroups with disjoint conjugacy classes) We say that two subgroups of A have
disjoint conjugacy classes if no non-trivial element of one of the subgroups has a conjugate in the
other.

Remark 7.10: Given a strongly 2-acylindrical graph of groups decomposition A of a group A,
consider two edge stabilisers G1 and Gy of the tree Ty. Denote by e; and es the projection in A
of the edges they stabilise. We claim that Gy and G4 have disjoint conjugacy classes unless either
e1 = e, or e and ez are adjacent to a common Z type verter. This is an easy consequence of
strong 2-acylindricity.

7.2.2 JSJ decompositions

A JSJ decomposition A of a group G is a decomposition as a graph of groups which encodes all
possible splittings of the group G over a given class £ of subgroups. The standard reference for
the case where G is finitely generated and one ended are Rips and Sela in [RS97], see also [DS99]
and [FPOG].

In the sequel, we will use the JSJ decomposition in the case where G is torsion-free hyperbolic
and freely indecomposable (respectively freely indecomposable with respect to a subgroup H),
and & is the class of cyclic groups. We call such a decomposition a cyclic JSJ decomposition of
G (respectively a relative cyclic JSJ decomposition with respect to H).

In both these casee, a cyclic JSJ decomposition A of G is a graph of groups with surfaces.
Moreover, we can see from Theorem 7.1 in [RS97] that for any other decomposition I' of G as a
graph of groups with surfaces and cyclic edge groups we have:
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(i) non surface type vertex groups of A are elliptic in T’
(ii) edge groups of A are elliptic in I';
(iii) surface type vertex groups of I' are contained in a surface type vertex group of A.

We will need two properties of such a cyclic (relative) JSJ decomposition A: the first, explained
in the following remark, is that we may assume that it is a JSJ-like decomposition. The second
is that its vertex groups are 'preserved’ under modular automorphisms, namely that an element
of Mod(G) (respectively Mody (G)) restricts to a conjugation on non surface type vertex groups
of A, and sends surface type vertex groups of A isomorphically on conjugates of themselves: this
will be the object of lemma [.121

Remark 7.11:

e Let G be a torsion-free hyperbolic group. Suppose G is freely indecomposable. Let A be
the JSJ decomposition of G given by Theorem 7.1 of [RS97]. Then we may assume A is
JSJ-like.

Let g be a non-trivial primitive element of G, and denote T, the sublree whose edges have
stabilisers lying in (g). We claim that the translates of Ty are all disjoint. Indeed, suppose
that there is an edge e which lies both in Ty and in h - T, for some element h of G. This
implies that some power g7 of g fizes e, and that e = h - e’ for some edge ¢’ in T,. Since
e’ is fized by some power gF of g, we get that e is also fixred by hg®"h='. Edge stabilisers
are abelian, so [¢7, hg"h™1] = 1. Now in torsion-free hyperbolic groups, mazimal abelian
subgroups are malnormal, so h is also a power of g, and Ty = h-T,;. We now remove in T'
the interior of all the edges of Ty, add a vertexr v, and edges from each vertex of Ty to the
new vertex vy. Since the translates of T, are disjoint, we can do this equivariantly. It is
then fairly straightforward to see that the modified decomposition still satisfies the properties
(i), (ii) and (iii) above, and is strongly 2-acylindrical.

e Let G be a torsion-free hyperbolic group which is freely indecomposable with respect to a
subgroup H. Let A be the cyclic relative JSJ decomposition of G with respect to H given by
Théoreme 4.1 of [Pau03]. Similarly, we can assume that A is a cyclic JSJ-like decomposition.

The following lemma describes the other property of cyclic JSJ and relative cyclic JSJ of a
hyperbolic group that we will need. It is a consequence of the universal properties of the JSJ
decomposition, i.e. of the fact that it describes any cyclic splitting of the group.

Lemma 7.12: Let G be a torsion-free hyperbolic group which is freely indecomposable. Denote
by A its cyclic JSJ decomposition, as given by Theorem 7.1 of [RS97]. An element of Mod(G)
restricts to conjugation on each non surface type vertex group of A, and sends surface type vertex
groups isomorphically on conjugates of themselves.

Similarly, suppose G is a torsion-free hyperbolic group which is freely indecomposable with
respect to a subgroup H. Let A denote its cyclic relative JSJ decomposition with respect to H.
An element of Mod g (G) restricts to conjugation on each non surface type vertex group of A, and
sends surface type vertex groups isomorphically on conjugates of themselves.

Proof. Let I' be a decomposition of G as a graph of groups with surfaces with cyclic edge sta-
bilisers.

Let S be a surface type vertex group of the cyclic JSJ decomposition A. The boundary
elements of S stabilise edges of A, thus by property (ii) above, they stabilise vertices of I'. Since
S acts faithfully on I' in such a way that its boundary elements are elliptic, and with cyclic edge
stabilisers, by lemma I11.2.6 of it inherits a decomposition I's which is dual to a set of
non boundary parallel simple closed curves on the corresponding surface, such that there is an
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equivariant injective simplicial map ¢ : Tr, — Tr. In particular, every vertex group of I'g is
elliptic in T.

Let Sy be a vertex group of I's. If Sy lies in a surface type vertex group S’ of I, we claim
that Sy = S’. Indeed, by property (iii) above, S’ lies in a surface type vertex group of A. If this
group is not S, this means Sy stabilise an edge of A, so that it is a boundary subgroup of S. But
this contradicts the fact that the simple closed curves are not boundary parallel. Thus S’ is a
subgroup of S. On the other hand, the injectivity of the map ¢ shows that S NS’ = Sy. This
proves the claim. If Sy lies in a non surface type vertex group of I', by definition of the modular
group, a modular automorphism restricts to conjugation on Sj.

Now we see that in both cases, a modular automorphism o of I" sends Sy isomorphically on a
conjugate of itself. Since the graph of groups I'g is connected, and its edge groups are non-trivial,
this implies that ¢ sends S isomorphically on a conjugate of itself.

Consider now the case of a non surface type vertex group R of A: by property (i) above, it is
elliptic in T'. If R lies in a non surface type vertex group R’ of ', the restriction of any element
of Mod(T") to R/, and thus to R, is just a conjugation. Suppose on the other hand that R lies in
a surface type vertex group Si of I'. By part (iii) of Theorem 7.1 of [RS97], Sg itself lies in a
surface type vertex group S of A. But by our argument above, boundary subgroups of S are sent
on conjugates by modular automorphisms. O

7.2.3 Preretractions

Preretractions are maps that preserve some of the structure of a JSJ-like decomposition. We need
to define them as maps A — G where A is a subgroup of G.

Definition 7.13: (preretraction) Let G be a torsion-free hyperbolic group. Let A be a subgroup
of G, and A a JSJ-like decomposition of A. A map A — G is a preretraction with respect to A if
its restriction to each mon surface type vertex group A, of A is just conjugation by some element
gv of G, and if surface type vertex groups have non-abelian images.

Remark 7.14: The definition of a JSJ-like decomposition implies that the restriction of a pre-
retraction to an edge group is just conjugation by an element of G. Indeed by condition [ of
definition [7.3, every edge group is contained in at least one non surface type vertex group.

In the next two sections, we will prove Theorem [[4] using two results about preretractions.
The last two chapters of this thesis are devoted to their proofs: they are both intermediate steps
in the proof of proposition 6 of [Sel06] but are not explicitly stated there. The first is given by

Proposition 7.15: Let A be a torsion-free hyperbolic group. Let A be a cyclic JSJ-like decom-
position of A. Assume that there exists a non-injective preretraction A — A with respect to A.
Then there exists a subgroup A’ of A, and a retraction v from A to A’, such that (A, A',r) is a
hyperbolic floor. Moreover, given a rigid type vertex group Ry of A, we can choose r such that Ry
is in the image of r.

The second proposition is needed to complete the induction step in the construction of our
hyperbolic tower.

Proposition 7.16: Let G be a torsion-free hyperbolic group. Let A be a group which admits a
JSJ-like decomposition A. Suppose G’ is a subgroup of G containing A such that either G’ is a
free factor of G, or G' is a retract of G by a retraction r : G — G’ which makes (G,G',r) a
hyperbolic floor. If there exists a non-injective preretraction A — G with respect to A, then there
exists a mnon-injective preretraction A — G’ with respect to A.
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7.3 Using first order to build preretractions

Suppose H is a subgroup elementarily embedded in a torsion-free hyperbolic group G. To show
that G admits a structure of hyperbolic tower over H, we will start by decomposing G in free
factors relatively to H. That is, we will write G = A* By ... * By, where the groups B; are freely
indecomposable (possibly infinite cyclic) and A is freely indecomposable with respect to H. We
call such a decomposition a Grushko decomposition of G relative to H.

If we can show that A admits a structure of hyperbolic tower over H, and that the groups B;
admit a structure of hyperbolic tower over 1, we will be done by remark The idea is thus
to produce non-injective preretractions A — A and B; — B;, in order to be able to apply the
propositions and get the top floor of a hyperbolic tower decomposition. But for this, it is
enough by proposition [.16 to build non-injective preretractions A — G and B; — G. This is
what the following two propositions will enable us to do. In fact they are slightly more general.
This greater generality is required for the induction step, when we will build further floors of our
hyperbolic towers.

The heart of the proof of Theorem [[.4]is contained in proposition and proposition [[.21]
The idea is that by expressing the existence of a factor set in first-order logic, we can prove the
existence of a non-injective preretraction.

We will use the following definition

Definition 7.17: (A-related morphisms) Let A be a group which admits a JSJ-like decomposition
A. We say two morphisms f and f' from A to a group G are A-related if

e for each mon surface type vertex group R of A, there exists an element ug such that f’
restricted to R is Conj (ug) o f;

e cach surface type vertex group of A that has non-abelian image by f also has non-abelian
image by .

Remark 7.18: Note that if A is a subgroup of G, a map f: A — G is A-related to the embedding
A — G if and only if it is a preretraction.

The following lemma shows that relatedness can be expressed in first-order logic.

Lemma 7.19: Let A be a group finitely generated by a tuple a. Suppose A admits a JSJ-like
decomposition A. There exists a formula Rel(x,y) such that for any pair of morphisms f and f’
from A to G, the formula Rel(f(a), f'(a)) is satisfied by G if and only if f and f' are A-related.

Proof. We introduce some notation. Denote by Ry, ... R, the non surface type vertex groups of
A, and by 51, ... 955 its surface type vertex groups. For 1 < p < r, choose a finite generating set
p, for Ry, and for 1 < ¢ < s, choose a finite generating set o, for S,. We take the convention to
denote tuples by bold font, and to denote by I(x) the cardinality of the tuple x.

The elements of o}, and p, can be represented by words in the elements a, we denote these
by o, = ,(a) and p, = p,(a) respectively.

Two maps f and f’ satisfy the condition on the rigid type vertex groups of A if and only if

ks
Juy ... up /\ {f'(p,) =upf(p,)u,'}.
p=1

To express the abelianity of a subgroup generated by a tuple z = (z1,...,2!®), we can use
p y group g Yy p ) , )

the formula Ab(z) : A, ; {[z%,27] = 1}. Thus the non-abelianity condition about the image by f
and f’ of surface type vertex groups of A can also be expressed by

/\ {=Ab(f(o,)) = ~Ab(f'(cy))}.
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But now, if w is an element of A which can be represented by a word w(a), its image by the
morphism extending a — x is represented by w(x).
Thus if f:a — x and f': a — y, the formula Rel(x,y) with free variables x,y given by

S

N {=Ab(E(x)) — ~Ab(a,(y))}

q=1

Juq ... up /\ {p,(y) = uppp(x)upl}] A

is satisfied by G if and only if f and f’" are A-related.

We can now prove the two key propositions.

Proposition 7.20: Suppose that G is a non-cyclic torsion-free hyperbolic group, and let H be a
subgroup elementarily embedded in G. Suppose A is a hyperbolic subgroup of G which properly
contains H, and which is freely indecomposable relative to H. Let A be the cyclic JSJ decompo-
sition of A relative to H. Then there exists a non-injective preretraction A — G with respect to

A.

Proof. Corollary applied to A tells us that there exist a finite subset Hy of H, and a finite
family of proper quotients n; : A — L; for j € [1,m], such that any non-surjective morphism
0 : A — A which fixes Hy factors through one of the quotients 7; after precomposition by an
element of Mod gy (A).

A morphism 6 : A — H can be seen as a non-surjective morphism A — A since we assumed
H # A. Thus any morphism 0 : A — H which fixes Hy factors through one of the quotients 7;
after precomposition by an element 7 of Mod (A).

We will give a weaker form of this statement, in order to be able to express it as a first order
sentence satisfied by H. Indeed, since we cannot express the modular group with first order logic,
we have to lose some information.

For each [l in [1,m], we fix an element v; in the kernel of n; : A — @;. Let A be the cyclic JSJ
decomposition of A relative to H. By lemmal[T12] elements of Mod g (A) restrict to a conjugation
on non-surface type vertex groups of A, and send surface type vertex groups isomorphically on
conjugates of themselves.

Thus, if 6 is a morphism A — H, and if 7 € Mod g (A), the restriction of the map 8’ = 6ot
to each rigid type vertex group coincides with 6 up to conjugation, and if the image by 0 of a
surface type vertex group S of A is non-abelian, so is the image of S by #’. This says exactly that
0 and 0’ are A-related.

This implies that the following statement holds:

Statement 1: For any morphism 0 : A — H which fizes Hy, there exists a morphism ¢’ : A — H
such that 8 and 0" are A-related, and there exists j in [1,m] such that 6'(v;) = 1.

Let us now see that this statement can be expressed by a first order sentence in the language
L which is satisfied by H.

The group A is hyperbolic, we choose a finite presentation (a | £ 4(a)). If an I(a)-tuple x in H
satisfies 3 4(x) = 1, the map A — H which sends a to x is a morphism. Conversely, any morphism
A — H comes from a solution to the system of equations X 4(x) = 1 in H. The elements v; can
be represented by words 7;(a); and for each h in Hy, the element h can be represented by a word
h(a).

Recall that the language Ly is defined as the language of groups to which we have added a
constant symbol [h] for each h in H. To express that the morphism corresponding to the tuple
x fixes the finite subset Hy of H, we can thus write

A {Th] =h(x)}.

heHy
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To express that the morphism corresponding to the tuple x sends one of the elements v; to 1,
we can write

Finally consider the sentence (}) over Ly given by

Vx )=1A /\ h] = h(x —>3y[§73A(y):]/\Relxy l\/ ]

he€Hy

We claim that the interpretation of the first-order formula (1) on H is exactly Statement [I]
80 it is true on H. To see this, let us interpret (1) on H. The formula in the square brackets on
the first line of (1) says that the [(x)-tuple x satisfies 3(x) = 1, so that the map x — a extends
to a morphism 6 : A — H. Moreover, for each h in Hy, we have h = h(x) = 0(h), so 0 fixes Hy
(recall that the interpretation of the constant [h] on H is just the element h). The next part of
the formula says that there exists a I(y)-tuple y satisfying X(y) = 1, and whose corresponding
morphism 6’ : A — H is related to 6. Finally the formula in the last square brackets says that
for at least one value of I, we have 7;(y) = ¢'(1;) = 1. That is, at least one of the elements v; is
in the kernel of §’. This proves the claim.

The formula () is therefore satisfied by G. Recall that it can be interpreted on G: the symbols
we added to the language of groups are constants [h] for each element h of H, and H < G so
we just interpret [h] by h. If we take the ’tautological solution’ a to the equation X 4(x) = 1, it
satisfies the formula in the first square brackets: indeed, ¥ 4(a) = 1, and for each h € F', we have
h = h(a) by definition of h. Thus we get a tuple y such that a — y extends to a morphism p,
which is A-related to the morphism a +— a. Since it sends one of the elements v; to 1, it is not
injective. But the morphism a — a is just the embedding A — G, so by remark[TI8, p: A — G
is a non-injective preretraction. O

We now show the second key result.

Proposition 7.21: Suppose that G is a torsion-free hyperbolic group, and that H is a subgroup
elementarily embedded in G which is also a retract of G. Let B be a freely indecomposable hyper-
bolic subgroup of G which is neither cyclic nor a closed surface group of Euler characteristic at
most —2. Let A be the cyclic JSJ decomposition of B.

Suppose that no non-trivial element of B is conjugate in G to an element of H. Then there
exists a non-injective preretraction B — G with respect to A.

Proof. Assume first that B is not the fundamental group of the closed surface of Euler character-
istic —1. We choose a presentation < b | £(b) > for B. Let A be the cyclic JSJ decomposition
of B.

Let y : B— Li,...,nm : B — L, be the proper quotients of B given by proposition
Again we choose elements vy, ... vy, of B such that v; is in the kernel of n;.

Proposition tells us that any non-injective map from B to G factors through one of the
quotients n; after precomposition by an element of Mod(B). Note that a map 6 : B — H can be
seen as a map B — G, so the previous statement remains true if we replace B — G by B — H.

We want to find a sufficient condition for non-injectivity of a map B — H that is expressible
in first-order. Proposition £34] applied to B with H = 1, tells us that there exist a finite set
i1, . ..1¢ of embeddings of B in G such that for any embedding i : B — G, there exists an element
o of Mod(B), an integer k in [1,¢] and an element g of G such that

i(z) = gir(o(x))g~ ! forall z € B
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Remark that if 7 is an embedding of B in H, we can apply the retraction r : G — H given
by the hypotheses to both sides, and note that ¢ is an isomorphism, to get that there exists an
element 7 of Mod(B), an integer k in [1,¢] and an element g of G such that for all z in B,

r(g™i(r(@)r(g) = r(ic(@))

By lemma [C.12], the map on the left hand side is A-related to i. So if 7 is an embedding
B — H, there exists a map i’ which is A-related to i, and which satisfies i/(b) = r(ix(b)) for
some k.

Let 6 : B — H. Counsider the following statement about 6, that we denote S(0).

S(6): Suppose that 0’ : B — H is a morphism which is A-related to 6. Then for any integer k in
[1,t], we have 0'(b) # r(ix(b)).

From the previous paragraph, if S(6) holds, then # isn’t an embedding: it is a sufficient
condition for a map not to be an embedding.

Again by lemmal[7.12] if 6 is a morphism B — H, and if 7 € Mod(B), the maps ¢/ = 6 o7 and
0 are A-related. So the following statement is true.

Statement 2: If 0 : B — H is a morphism such that S(0) holds, then there exists a morphism
0" : B — H andl in [1,m] such that 6 and 0" are A-related, and 0" (v;) = 1.

This is the statement we want to express by a first-order formula. Let us first try to see that
S(6) can be expressed by a first order formula on the variables 6(b). Consider the following first
order formula v (x) with free variable the I(b)-tuple x:

[E5(x) = 1] AVz [E5(z) = 1 ARel(z, x)| — l/\ 7 # (r(z‘k(b))]] :
k=1

This is a first order formula in the language £g. Thus the constant [r(ix(b))] is interpreted
in both H and G simply by the element r(ig(b)) (which is indeed an element of H).

Let x be a I(b)-tuple in H. It is straightforward to see that the formula (x) is satisfied by
H if and only if the map 6 : b — x is a morphism for which the statement S(#) holds. So if 1(x)
is satisfied by H, the map 6 : b — x is a non-injective morphism B — H.

We can now write the first order sentence (f7)

l
Vxip(x) — Ty [Ep(y) =1 A Rel(x,y) A |\/ 7(y) =1

j=1

Just as we saw that () expressed Statement [[lin [220, we can see that the first order formula
(1) on H expresses Statement [2] so it is satisfied by H.

As H is elementarily embedded in G, the formula (1) is also satisfied by G. As in the proof
of [[20, we can apply it to the tautological solution b of ¥ p(x) = 1. To see that G = v (b),
note first that by our hypotheses, the JSJ decomposition of B admits at least one non-surface
type vertex group. A map p: B — G which is A-related to the embedding b +— b restricts to
conjugation on the non-surface type vertex groups of B, thus it cannot have image in H since no
element of B can be conjugated into H by an element of G. This implies in particular that for
all k, the I(b)-tuple p(b) is distinct from the tuple r(ix(b)).

The second part of the sentence () thus gives a morphism B — G which is A-related to the
embedding B — G and kills one of the elements v;: it is a non-injective preretraction.

In the case where B is the fundamental group of the non-orientable surface of Euler charac-
teristic —1, we can follow the same proof if we consider the JSJ of B to consist of a single rigid
vertex, and that Mod(B) is trivial. Indeed, the group of automorphisms of B is finite, so if we
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replace the finite list (7;); by the finite list (9; 0 7); rcaut(B), the conclusion of GBI still hold with
our new definition of the modular group. Similarly, the existence of a finite set of embeddings up
to conjugation holds. O

7.4 Proof of the main result

We can now prove Theorem [[.4

Proof. Let us first treat the case where G is infinite cyclic, generated by an element g. Any
subgroup of G is of the form H = (¢"). Now G satisfies the formula Jz{z™ = [¢"]}, which
expresses that g admits an m-th root in G. This is a formula over Ly which is true on H if
and only if g has an m-th root in H, that is if and only if H = G. Thus if G is cyclic, its only
elementarily embedded subgroup is itself, and the theorem is trivial.

So assume that G is a non-cyclic torsion-free hyperbolic group, and let H be a subgroup
elementarily embedded in G. Note that H is necessarily non-abelian as it is elementary equivalent
to G.

We will first show that G admits a structure of hyperbolic tower over a group G’ whose
Grushko decomposition relative to H is of the form G’ = H « B} ... BL. Set G° = G. We will
define by induction a finite sequence G = G° > G' > ... > G" of subgroups of G, such that H is
a free factor of GV, and G™ has a structure of hyperbolic floor over G™*! for each m up to N.

Assume G™ is defined, and write the Grushko decomposition of G, relative to H as

G" =A"*B"x...x B

where A™ is the factor containing H. If A™ = H we are done, so assume A™ # H.

Note that A™ is freely indecomposable relative to H. Denote by A the cyclic JSJ of A™
relative to H. Note also that A™ is a retract of G, so it is a quasiconvex subgroup of G, and thus
it is hyperbolic.

All the hypotheses of proposition [[.20/for A = A™ are satisfied, so we can apply it to get a non-
injective preretraction A”™ — G with respect to A. We now apply proposition successively
to the floors of the hyperbolic tower formed by G over A™ to get a non-injective preretraction
A™ — A™ with respect to A. Finally by proposition [T13] we get a retraction r : A™ — A" on a
proper subgroup of A™ such that (A™, A", r) is a floor of a hyperbolic tower and the rigid group
of A which contains H is in AJ'. Now define G™*! by

GmH:AgL*B{”*...*B;”.

Since A™ has a structure of hyperbolic floor over Af?, by remark[7.3] the group G™ has a structure
of hyperbolic floor over G™*+! as required.

As each G™*! is a strict retract of G™, and since the groups G™ are all subgroups of G, they
are G-limit groups. Thus by proposition the sequence is finite. At the end of this process,
we get a group GV in which H is a free factor, and such that G is built as a hyperbolic tower
based on GV.

If all the other factors of the Grushko decomposition of GV relative to H are surface groups
or free groups, we are done. So assume that there is a factor B which is neither free nor a closed
surface group. Note that as a retract of G, the group G¥ is hyperbolic, so as a free factor of G¥,
the group B is itself hyperbolic. We will now show that B has a structure of hyperbolic tower
over 1.

Any two conjugates of H and B in G intersect trivially, since they are free factors in G'V.
But since GV is a retract of G, any two conjugates of H and B in G must also intersect trivially.
Hence the conditions of [[.2T] are satisfied by B: by applying it, we get a non-injective preretraction
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B — G. We apply [[.16 iteratively to get a non-injective preretraction B — B, which by
gives us a retraction r : B — B’ such that (B, B’,r) is a hyperbolic floor.

Note that since B’ is a retract of G, the number of factors in its Grushko decomposition
is bounded above by the rank of G. If any of the factors of the Grushko decomposition of
B’ are neither free nor surface, we can repeat the process above. This terminates, as before,
because the groups involved are G-limit groups and because the number of factors in the Grushko
decomposition of our groups is bounded. We finally get that B is a hyperbolic tower over 1.

Thus all the factors of GV distinct from H are hyperbolic towers over 1. By remark [3, the
group GV is a hyperbolic tower over H. To conclude, apply once more remark [Z3] to see that G
is a hyperbolic tower over H. [l

7.5 The special case of free groups

In the special case where our hyperbolic group is free, Theorem [[.4] together with Theorem 4 in
[Sel06] gives

Corollary 7.22: Let F be a finitely generated free group, let H be a subgroup of H. The embed-
ding of H in F is elementary if and only if H is a free factor of F.

Proof. Suppose that H is an elementary subgroup of F'. By proposition [[4] F' has a structure
of hyperbolic tower over H. If the tower has at least one floor, there exists a subgroup F” of F,
and a retraction r : F — F’ so that H < F’, and (F, F’,r) is a hyperbolic floor built by adding a
(possibly disconnected) surface 3. Let 71, ... 7. be generators of pairwise non-conjugate maximal
boundary subgroups of S = m1(X). We know, from the standard presentation of a surface group
with boundary, that the product of the elements ~; is equal to a product of commutators and
squares. Both F' and F’ being free groups, lemma 4.1 in [BF] tells us that there is a decomposition
of F/ as Z x F", where Z is an infinite cyclic group, such that one of these boundary subgroups
generators, say 71, is a generator of Z, and all the other boundary subgroups generators ~; are in
conjugates of F”'. Now let o : F' — Z/2Z be the map which kills F”" and the squares in Z. The
image of 1 by aor is the generator of Z/2Z, and for i # 1, the image of ~; is trivial. However,
the image of squares and commutators are sent to 1 by « o r, this is a contradiction. This shows
that the only structure of hyperbolic tower that a free group can have over one of its subgroup
is a trivial one, where the subgroup is a free factor of the free group. Thus H is a free factor of
F. Conversely, if H is a free factor of F', its embedding into F' is elementary by Theorem 4 of

[Selog). O



Chapter 8

A property of JSJ-like
decompositions

To complete the proof of [[4] we now need to prove proposition and This will be done
in the last chapter, using the results that we will expose in this chapter and the next.

This section aims to show that if a preretraction G — G relative to some cyclic JSJ-like
decomposition of G satisfies some strong injectivity conditions on the vertex groups, it must be
an isomorphism. Recall that a preretraction A — A with respect to a JSJ-like decomposition A
of A is a map whose restriction to each non surface type vertex group is a conjugation, and which
sends surface type vertex groups on non-abelian images.

Proposition 8.1: Let G be a torsion-free hyperbolic group, and let A a cyclic JSJ-like decompo-
sition of G. Let 0 : G — G be a preretraction with respect to A, which sends surface type vertex
groups of A isomorphically to conjugates of themselves. Then 6 is an isomorphism.

Proof. First note that if G is cyclic, the only JSJ-like decomposition it admits is the trivial one,
for which the result is immediate. We may thus assume that G is not cyclic.

Denote by T' the Bass-Serre tree T corresponding to A. To prove the proposition, we will
construct a bijective simplicial map 7 : T'— T, such that j is equivariant with respect to € in the
following sense:

Vg € G, Vv e V(T)a ](g ’ ’U) = 9(9) ](’U)

For an edge e and a vertex v of T, the stabilisers of e and v in the standard action of G on T
are denoted by G. and G, respectively.

1. Construction of the map j on vertices. By hypothesis, for each vertex v of T', there
is an element g, of G such that 0(G,) = g,Gug, . We set the image of v by j to be g, - v. Its
stabiliser is exactly 6(G,), and by remark [[.6 distinct vertices have distinct stabilisers, so this
property defines j(v) uniquely. Thus the image of g - v by j is the unique vertex whose stabiliser
is 0(9)0(G,)0(g~ "), namely 6(g) - j(v), and the map v — j(v) is equivariant. Note that j(v) is in
the orbit of v, and thus is of the same type. Note also that G,y = 0(G,) ~ G..

2. The map v — j(v) can be extended to a simplicial map j : T — T. We need to
check that adjacent vertices are sent on adjacent vertices. Suppose v, w adjacent, without loss of
generality G, is not a surface type vertex group. The intersection G, N G, is an infinite cyclic
group. On G,, the map 6 is just conjugation by the element g, of G, so if we let C' := (G, NGy,),
the group C' is infinite cyclic. Moreover, C' is contained in 6(G,) N 6(G,). This means that
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j(v),j(w) are fixed by C, thus are at a distance at most 2. We will first show that it cannot be
2, then that it cannot be 0.

e Assume the distance is 2. The vertex u between j(v) and j(w) is a Z type vertex, which
implies in particular that j(v) and j(w), and thus v and w, are not Z type vertex. Note
that since G, N Gy, is a subgroup of G,, and since 6 on G, is just conjugation by g,, we
have C' = 0(G, N Gy) = gu(Gy NGyt < guGuwgy !, so it fixes the vertex g, - w. This
vertex is at a distance 1 from j(v), thus it is distinct from j(v) and from j(w). Its stabiliser
is not cyclic, thus it is distinct from u. Hence we get a situation where C' stabilises points
j(w) and g - w which are at a distance 3 of each other. This is a contradiction.

e Assume now j(v) = j(w). Thus v and w are in the same orbit (in particular they must

be of rigid type, since they are adjacent). Let a € G be such that w = a-v. We have
Gw = aGya~t. We see that 6(a) € 0(G,), since j(v) = j(w) = j(a-v) = (a) - j(v) and the
stabiliser of j(v) is 8(G,). Thus there exists a’ € G, such that 6(a’) = 6(a).
Let Cy := G, NGy, i.e. C is the stabiliser of the edge e between v and w. Let Cy < G, be
such that C; = aCya~'. Let ¢; generate C1, and ¢y := a~'cia generate Cy. Note that by
remark [(77] C7 is maximal abelian in G since it is the stabiliser of an edge which connects
two rigid vertices. Now 0(cz) = 0(a=1)0(c1)0(a) so that O(cy) = 6(a’~Lc1a’). By injectivity
of @ on Gy, co = @’ 'cia’. Thus a’a~' commutes with ¢;, so it must be in C; and thus in
G,. But ¢’ € G, so we deduce a € G, and G,, = aG,a~! = G,. Since distinct vertices
have distinct stabilisers, we get a contradiction.

Thus we can extend v +— j(v) to a simplicial map j: T — T.

3. Injectivity of j. It is enough to show that there are no foldings, i.e. that no two edges
adjacent to a same vertex are sent to the same edge by j. Suppose that two vertices w,w’ of T
are adjacent to a vertex v, and that the edges e = [v,w] and ¢’ = [v,w'] are sent on a same image
by j. Let g. be a generator of the stabiliser G of e, and g, a generator of the stabiliser G of ¢’.

First it is clear that G, and G, must be conjugate since j(w) = j(w'), so w and w’ are in
the same orbit. Let v € G such that w' = v - w. Note that v & G..

Let us see that v must be a Z type vertex. We know that the stabiliser of j(e) contains 6(g.)
and 0(ger), so that 0([ge, ger]) = 1. As 0 is injective on G, the elements g. and g, of G, commute.
Thus they have a common power which fixes both e and €’: by strong 2-acylindricity, v is a Z
type vertex. This implies that w, w’, and j(w) are not type Z vertices.

Remark that 6(v) - j(w) = j(y-w) = j(w') = j(w). Thus O(y) stabilises j(w), hence it lies in
0(Gyw). We can thus pick an element a of G, such that 6(a) = 0(y).

Let g be an element of G, which stabilise both e and €’: then g is both in G, and in 7G,,v~*.
Let ¢’ € G, be such that g = yg’y~'. We have

0lg) = 6(7)0(g)6(v )
— 8(0)9(g)0(a) = Blagla").

Since @ is injective on G,,, we deduce that ¢ = ag’a™" so ¢ = v 'gy = a~'ga. This shows

[ya=1,g] = 1, so va~! preserves the set Fix(g) of fixed point of g. But Fix(g) has diameter 2
and is centred on v, so ya~! fixes v, and ya~! € G,. Now a was chosen so that 6(y) = 6(a), so
O(ya~') = 1. By injectivity of 6 on G, we get v = a. This is a contradiction since v is not in
G, but a is.

4. Injectivity of 8. We have proved that j is injective, and this implies that 6 is injective: if
g is a non-trivial element of G, there exists € T such that g -« # x. Thus j(g - z) # j(z), so
0(g) - j(x) # j(x) and 6(g) is non-trivial.
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5. Surjectivity of j. We prove this by showing that if a vertex v is in the image of j, all the
edges adjacent to v are also in the image. Suppose v is in the image of j, there exists ¢* in G
such that j(g” - v) = v. Pick eq,..., e, some representatives of the orbits of edges adjacent to v.
The image e}, of gV - e, by j must be adjacent to v.

We claim that if e;, and e; lie in different orbits, so do e}, and €]. Indeed, if €} and €] are in the
same orbit, there exists « in G, such that a - €], = ¢]. Since the action has no inversions, o must
fix v. As v is in the image of j, its stabiliser is in the image of 6 so there exists a € G such that
6(a) = . Thus 6(a) - j(g* - ex) = j(g" - 1), so by equivariance of j we get j(ag” - ex) = j(g" - e1).
By injectivity of j this means e, and e; are in the same orbit: this proves the claim. Thus the
edges e}, form a system of representative of the orbits of edges adjacent to v.

Now let e be an edge adjacent to v: there is an edge e, which is in the orbit of e, thus
there is an element 8 € G such that §- e} = e. Since the action has no inversions, § must
fix v. We know G, is in the image of 6 so there exists b € G such that 8(b) = (. Thus
J(b- (9" er)) =0(b)-j(g"-ex) = B-€) =e,so eis in the image of j. Hence all the vertices which
neighbour v are in the image of j. This local surjectivity condition implies global surjectivity of
j-

6. Surjectivity of §. Let g € G and let v be a vertex of T" with non-cyclic stabiliser. By
surjectivity of j there exists w such that j(w) = v, and w’ such that j(w') = g -v. Clearly w and
w’ are in the same orbit. Thus there exists h € G such that G = hG,h~'. We see that

gGvg_l = Gg~v = G(Gw/) = o(h)H(Gw)H(h_l) = o(h)Gvg(h_l)

We get G, = g '0(h)G,0(h)~1g. Thus G, stabilises both v and g='6(h) - v. Since G, is not
cyclic, v =g~ 10(h) - v so g~ 10(h) € G,. Since we know that G, is in the image of 6, we get that
g is in the image of 6.

We proved that 6 is bijective, this terminates the proof. O
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Chapter 9

Non-pinching maps and the finite
index property

In this chapter, we study morphisms f : A — G, where G admits a decomposition as a graph
of groups with surfaces I, first in the case where A is the fundamental group of a surface with
boundary ¥, then more generally if A is the fundamental group of a graph of groups with surfaces
A, or a free product of such groups. One of the aims is to give conditions under which any surface
type vertex of I' intersects the image of the morphism f either in a boundary subgroup, or in a
subgroup of finite index. This is what we call the finite index property. One of the assumptions
we will need is that the map f is non-pinching, that is, that its kernel does not contain elements
corresponding to simple closed curves on Y or on the surfaces of A. We will also see that under
the right hypotheses, if a surface type vertex group S of T' intersects f(A) with finite index, it
must contain the image of the fundamental group of a subsurface of a surface ¥/ of A. We will
also show that this implies that the complexity of the surface ¥’ is greater than that of the surface
¥ corresponding to S.

9.1 Surfaces with boundary

We first restrict ourselves to the case where A is the fundamental group of a surface with boundary.

9.1.1 Surfaces acting on simplicial trees

Let us first give a useful lemma to understand actions of fundamental groups of surfaces with
boundary on simplicial trees. For this, we need the following definitions.

Definition 9.1: (essential curves, elements corresponding to an essential curve, essential tubular
neighbourhood) An essential curve v on a surface with boundary ¥ is the free homotopy class of
a non-contractible, two-sided, and non-boundary parallel simple closed curve .

To an essential curve v corresponds a conjugacy class of infinite cyclic subgroups of the fun-
damental group of X, we call their generators the elements corresponding to .

The simple closed curve vy has an open neighbourhood which is homeomorphic to an annulus,
we call such a neighbourhood a tubular neighbourhood of v. Given a set of essential curves C,
a tubular neighbourhood C, of C is the union of disjoint tubular neighbourhoods, one for each
essential curve in C.

Definition 9.2: (graph of groups A(3,C) dual to a set of curves) Let X be a surface with bound-
ary, and let C be a set of essential curves on X. By the Van Kampen lemma, S admits a splitting
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A(X,C) whose edge groups are the infinite cyclic groups generated by elements corresponding to
the curves of C, and whose vertex groups are the fundamental groups of the connected components
of the complement in X of a tubular neighbourhood C, of C. An edge corresponding to a curve
v joins two vertices corresponding to connected components 1 and Yo if there is a path in X
between X1 and Yo which intersects only one component of C,, the one corresponding to v. We
call A(X,C) the graph dual to the set of curves C, and the corresponding tree Tc is called the tree
dual to C.

Finally we define

Definition 9.3: (minimal equivariant map) Let G be a group which acts on simplicial trees T
and T'. An equivariant map t : T — T’ is said to be minimal if it sends vertices on vertices, if
every edge is sent on the unique path between the images of its endpoints, and if for any vertex
v of T whose stabiliser also stabilises an edge e adjacent to t(v), no open neighbourhood of v has
image contained in e.

The following lemma is a particular case of theorem II1.2.6 in [MS84].

Lemma 9.4: Suppose that the fundamental group S of a surface with boundary ¥ acts on a
simplicial tree T, in such a way that the boundary subgroups are elliptic. Then there exists a
system C of essential curves on X, and a minimal equivariant map t : Te — T.

Note that the map t is not necessarily simplicial.

Remark 9.5: The cyclic subgroups of S corresponding to curves in C stabilise edges of T. If C, is
a tubular neighbourhood of C, the fundamental groups of connected components of the complement
of Co are vertex groups of A(X,C), thus they are elliptic in T

The proof of this lemma is essentially the first part of the proof of theorem III1.2.6 in [MS84].
Since we do not claim that the equivariant map is injective, we do not need to assume that the
stabilisers in S of the edges of T" are cyclic.

The idea of the proof is to construct an equivariant simplicial map f from a universal cover of
3 to the tree T, then to look at the lift by f of midpoints of edges of T'. The map can be built in
such a way that the lifts by f give by the covering map non-null homotopic simple closed curves.
We take for C the homotopy classes of these simple closed curves. Since some of the curves might
be in the same homotopy class, we lose the simpliciality of the map f.

9.1.2 Non-pinching maps and the finite index property

Definition 9.6: (non-pinching) Let ¥ be a surface with boundary, and let S be its fundamental
group. A morphism f : S — G is said to be non-pinching with respect to % if its kernel does
not contain any element corresponding to an essential curve lying on X, and if it is injective on
boundary subgroups.

The following lemma is a crucial ingredient of the proof of proposition

Lemma 9.7: Let S and S’ be the fundamental groups of surfaces with boundary ¥ and X'. Let
f:S — 5" be a non-pinching map which sends boundary subgroups of S into boundary subgroups
of S, If f(S) is not contained in a boundary subgroup of S’, then it is a subgroup of finite index
of S,

To prove it, we will use

Lemma 9.8: Let QQ be the fundamental group of a surface with boundary =. If Qo is a finitely
generated infinite index subgroup of Q, it is of the form

Cix..xCpx F
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where F' is a (possibly trivial) free group, each of the groups C; is a boundary subgroup of Q,
and any boundary element of Q) contained in Qo can be conjugated in one of the groups C; by an
element of Q.

Proof. By Theorem 2.1 in [Sco78|, there exists a finite covering p : Z; — =, and a subsurface
Zp of =1, such that Qo is the image by the injection p. of the fundamental group of =y. Let
@1 = m1(Z1). The covering is finite, so Z; is compact, (1 is of finite index in @, and the
boundary elements of Q1 are exactly the boundary elements of @) contained in 1. Since Qg is of
infinite index in @, it must be of infinite index in (1. Thus Z( is a proper subsurface of =, and
thus at least one of its boundary components ~y is not a boundary component of Z;. This implies
the lemma. O

We can now prove lemma 0.7

Proof. Suppose f(S) has infinite index in S’. Then it admits a free product decomposition
Cyp % ...%x Cp + F as given by lemma @8 in which m > 1 since boundary elements of S are
sent to boundary elements of S’. Since f(S) is not contained in a boundary subgroup of S,
this decomposition contains at least two factors, so the corresponding minimal f(S)-tree Ty with
trivial edge stabilisers is not reduced to a point. The group S acts via f on Tj, the tree T is
minimal for this action, and boundary subgroups of S are sent to boundary subgroups of S’, thus
they lie in conjugates of the factors C; and they are elliptic in Tp. By lemma [0.4] we get a set of
essential simple closed curves on ¥ whose corresponding elements stabilise edges of Ty via f, i.e.
have trivial image by f. This contradicts the fact that f is non-pinching on X. O

9.1.3 Complexities

We will denote by rk(F') the rank of a finitely generated free group F'.

Definition 9.9: (topological complexity) Let ¥ be a surface with boundary, denote by S its
fundamental group. The topological complexity k(X) of ¥ is the pair (rk(S), —n), where n is
the number of boundary components of X.. We order topological complexities by the lexicographic
order.

We will give a lemma which shows in particular that if we have a non-pinching morphism as
above between the fundamental groups of surfaces with boundary ¥ and ¥’ then the complexity
of ¥ is at least the complexity of X'

Lemma 9.10: Let S and S’ be the fundamental groups of surfaces with boundary ¥ and X', If
f:8 — S is a map which sends boundary subgroups of S into boundary subgroups of S’, and
such that f(S) is a subgroup of finite index of S’, then

k(Z) > k(X);
and if we have equality, f is an isomorphism.

Proof. A subgroup of finite index in a finitely generated free group of rank n is a free group
of rank at least n, with equality if and only if the index is 1. Thus rk(S’) < rk(f(S)) with
equality if and only if f is surjective. Now rk(f(S)) < rk(S), and since free groups are Hopfian,
we have equality if and only if f is injective. Thus rk(S’) < rk(S), with equality if and only
if f is an isomorphism. If this is the case, f sends non-conjugate boundary subgroups of S to
non-conjugate boundary subgroups of S’, so that ¥’ has at least as many boundary component
as 2. Thus k(X) < k(X). O
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9.2 Graphs of groups with surfaces

We now want to generalise the previous sections from the case where A is fundamental group of
a surface with boundary to the case where A is the fundamental group of a graph of groups with
surfaces.

9.2.1 Elliptic refinements of graphs of groups with surfaces

Let A and G be fundamental groups of graphs of groups with surfaces A and T" respectively. Let
f+ A — G be a morphism which sends edge groups and non surface type vertex groups of A into
non surface type vertex groups of I'.

Each surface type vertex group S of A corresponding to a surface 3 acts on the tree Tp
corresponding to I' via the map f, and boundary subgroups of S are elliptic in this action. By
lemma [3.4] we get a set of essential curves C*(X) on ¥. We can then refine the graph of groups A
by the graph of groups A(X,C* (X)) dual to the set of curves CT(X) (recall definition [@.2). Every
vertex group of the refined graph of groups A™ thus obtained is elliptic in the action of A on Tt
via f. Denote by C* the union of all the sets C*(X).

Definition 9.11: (elliptic refinement of a graph of group) We call the graph of groups A+ built
as above an elliptic refinement of A relative to f and T, given by the set of curves CT.

Remark 9.12: There is a map t+ : Th+ — Tr which sends vertices on vertices, is f-equivariant
and minimal. This an easy consequence of the fact that all the vertex groups of AT have image
by f elliptic in Tr.

9.2.2 Non-pinching maps on graphs of groups with surfaces

Definition 9.13: (non-pinching with respect to a graph of groups with surfaces) Let A be a graph
of groups with surfaces. We say that a morphism f : w1 (A) — G is non-pinching with respect to
A if the restriction of f to each surface type vertex group of A is non-pinching.

Setting. For the rest of section @21 A; and A are groups which admit decompositions A; and
A as a graph of groups with surfaces whose edge groups are infinite cyclic. Also, f: Ay — Ais a
morphism which sends non surface type vertex groups and edge groups of A; injectively into non
surface type vertex groups and edge groups of A respectively.

By the previous section, we can define an elliptic refinement A of A; with respect to f and A.
We then know that there exists a minimal f-equivariant map ¢ : TAT — Tx. In the case where
f is non-pinching with respect to A, the next lemma gives us necessary and sufficient conditions
on a surface type vertex of T for it to lie in the image of t™.

Lemma 9.14: Suppose we are in the setting above. If f is non-pinching with respect to A1, for
any surface type vertex v of T with stabiliser S the following are equivalent

(i) v lies in the image of Tys by tr;
(ii) there is a conjugate of a surface type vertex group St of A] whose image by f lies in S;

(iii) there is a conjugate of a surface type vertex group St of A whose image by f is a subgroup
of finite index of S;

(iv) the intersection of S with the image of A1 by [ is not contained in a boundary subgroup of
S.
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Proof. The fact that f is non-pinching on A1, and injective on its edge groups implies that it is
also non-pinching on A} and injective on its edge groups.

(1) = (i9): If w is a non surface type vertex of T\+ with non-abelian stabiliser R, then f is
injective on R so f(R) is non-abelian, thus it stabilises exactly one vertex in Tx. But f(R) lies
in a non surface type vertex group of A, so tT(w) # v.

Suppose now that w is a non surface type vertex w of TAT with abelian stabiliser Z. By

minimality, either the image of the star of w intersects at least two edges adjacent to t*(w), or
f(Z) properly contains all the edge group of the unique edge on which the star of w is sent. In
the first case, note that the image of the star of w is stabilised by a non-trivial element, so by
1-acylindricity next to surface type vertices, ¢ (w) is not of surface type. In the second case,
note that edge groups adjacent to surface type vertices are maximal cyclic in the surface group,
so t*(w) can not be of surface type.

Finally, if e is an edge of TA1+, the image of its interior is stabilised by a non-trivial element,
thus it does not contain any surface type vertices by 1-acylindricity next to surface type vertices
and by minimality of ¢¥.

Thus we see that if a surface type vertex with stabiliser S is in the image of t*, it means that
it is the image of some surface type vertex of TAT with stabiliser ST. Thus f(S*) < S as claimed.

(ii) = (di7): The map f sends edge groups of Tyt to edge groups of Ty, thus boundary
subgroups of ST are sent to boundary subgroups of S. Moreover, by minimality of t* and 1-
acylindricity next to surface type vertices, f(ST) is not contained in a boundary subgroup of S.
By lemma [0.7], this means that f(S™) has finite index in S.

(#i7) = (iv): This is clear.

(iv) = (i): If v lies outside of t+(TA1+), the intersection between f(A;) and S stabilises both
v and t+(TAj)> thus it stabilises the non-trivial path between them. Thus it stabilises one of the
edges adjacent to v, which implies that it is contained in a boundary subgroup of S. O

9.2.3 Surface complexity of graphs of groups

Definition 9.15: (complexity of a set of surfaces, surface complexity of a graph of groups with
surfaces) Let S = {X; | 1 <1 <} be a set of surfaces with boundary, and recall that k(X;) denotes
the topological complexity of X;. The complexity K (S) is the finite sequence (k(X;))1<i<i of the
complezities of surfaces of S arranged in decreasing order.

We order the complezities of sets of surfaces lexicographically, that is

E(S1) .. k(S) < k() .. k()

if {0 | k(%) # k(2));1 < <min{l,I'}} is non-empty, has minimum j, and k(3;) < k(X}); or if
the set is empty and 1 < I'.

If A is a graph of groups with surfaces, its surface complexity is the complexity of its set of
surfaces.

Lemma 9.16: If CT is not empty, the surface complezity of an elliptic refinement A} of a graph
of groups A1 is strictly smaller than that of A;.

Proof. Let ¥ be a surface of A; with fundamental group S. The vertex corresponding to X in
A, is replaced by the graph of groups A(X,C%) to build A]. Thus, showing that the surfaces of
A(X,CT) have complexity strictly smaller than that of X is enough to prove the lemma.

The rank of S is given by 1 — x(X), where y is the Euler characteristic. Suppose C* contains
a single curve which lies on Y. If it separates X into two subsurfaces >; and X5, we have

X(2) = x(X1) + x(22)
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Since the curves are not boundary parallel, ¥; and 35 have strictly negative Euler characteristic,
or one of he subsurfaces, without loss of generality X5, is a Mobius band. In the first case, the
characteristic of »; and X9 are strictly bigger than that of . In the second case, 3; has the
same Euler characteristic as X, but one extra boundary component. Thus the complexities of ¥
and Yo are always strictly smaller than that of 3. If the curve is not separating, A(X,CT) has
a unique surface type vertex, whose corresponding surface has Euler characteristic equal to that
of ¥, but which has two additional boundary components. Its complexity is therefore strictly
smaller than that of 3. If more than one curve lies on 3, we proceed by induction. O

The following lemma gives us a relation between the surface complexities of graphs of groups
A1 and A when the map f: A; — A is non-pinching.

Lemma 9.17: If f is non-pinching with respect to Ay, and if t* : TAT — Ty is surjective, the
surface complexity of A1 is greater than or equal to that of A.

Proof. Each surface type vertex lies in the image of t*, so by lemma [@.14] for each surface type
vertex group S of A there is a surface type vertex group S* of A such that f(S*) has finite index
in a conjugate of S. By lemma [0.I0, the complexity of the surface corresponding to ST is thus
greater than that of the surface corresponding to S. In this way, to each surface of A corresponds
a surface of Af whose complexity is greater, and this correspondence gives an injection from the
set of surfaces of A to the set of surfaces of A{". This implies that the surface complexity of A is
smaller than that of A], which in turn is smaller than that of A; by lemma .16, O

9.3 Finite index property for free products

We now want to prove a proposition that should be thought of as a generalisation of lemma
in the case where instead of a morphism from A; to A, we have a map from a free product
Aj x...x A to A. We will see that up to conjugation on these free factors, we still control which
surface type vertex groups of A intersect the image of a non-pinching map in a subgroup bigger
than a boundary subgroup.

Proposition 9.18: Let Ay,..., A; be groups which admit JSJ-like decompositions A1, ..., A; and
let A be a graph of groups with surfaces with fundamental group A. Assume that K(A;) < K(A).

Suppose h : Ay x...x Ay — A is a map which sends non surface type vertex groups and edge
groups of the graphs of groups A; injectively into non surface type vertex groups and edge groups
of A respectively, and such that the maps h|a, are non-pinching with respect to the graphs A;. For
each i with 1 <1i <1, let A;." be an elliptic refinement of A; with respect to h|a, and A.

Then there exists a_map h: A« ... % Ay — A such that B|Ai coincides with h|a, up to
conjugation, such that h(Ay ... x A;) = h(A1) * ... x h(A;), and such that for any surface type
vertex group S of A, the following are equivalent:

(i) The intersection of S with h(Ay % ... A}) is not contained in a boundary subgroup of S.

(i) There is a conjugate of a surface type vertex group St of one of the graphs of groups A
whose image by h has finite index in S.

To prove this we will need the following lemmas.

Lemma 9.19: Let G be a finitely generated group, and let T be a minimal irreducible G-tree. If
7 and 7' are proper subtrees of T, for any integer D, there is a translate of 7' by an element of
G which lies at a distance at least D of T.
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Proof. By lemme 4.3 in [Pau89], the hypotheses allow us, for any two distinct vertices v and w of
T, to find an element of G which is hyperbolic in the action of G on T, and whose axis contains
the path between v and w.

Suppose first that the smallest tree 79 containing 7 U 7’ is a proper subtree of 7. Let K be
a connected component of the complement of 75 in 7', and let u be the vertex of T such that
K N7 = {u}. By minimality and irreducibility of the action, K is not a line, so we can find
points v and w in such a component such that the tripod formed by v, w, and u is non-trivial.
We pick a hyperbolic element g whose axis contains the path between v and w. The projection
of 7 and 7/ on the axis of g is reduced to a point. Thus g - 7/ is at distance greater than D of 7.

If on the other hand, 79 = T, we pick vertices v, w of the tree which are in 7/ but not in 7, and
in 7 but not in 7’ respectively. Now 7 lies in the connected component of T'— {v} containing w
and 7’ lies in the connected component of T'— {w} containing v. Thus the intersection 7 N7’ lies
in the connected component of T'— {v, w} containing the arc between v and w. Pick a hyperbolic
element whose axis contains the path between v and w. By applying a suitable power of this
element we can translate 7/ away from 7. [l

Lemma 9.20: Let G be a finitely generated group, and let T be a k-acylindrical minimal G-tree.
Suppose Gy and G are subgroups of G which generate G, and whose minimal subtrees Ty and Ts
in T lie at a distance at least 2k + 3 from each other. If v is a vertex which lies in T

o cither Stab(v) stabilises an edge adjacent to v;

e or v lies in a translate of T; by an element of G, and in this case Stab(v) stabilises this
translate.

Remark 9.21: If the hypotheses hold, we have G = G1 * G2. Indeed, the minimal tree T of G is
the union of translates of Ty, translates of Ty, and translates of the path between them. Since the
path between them has length greater than k + 1, it is trivially stabilised.

Proof. Denote by D the path joining 77 to T5. The tree 7 is the union of translates of T3, T5 and
D by elements of G. Let T; for i = 1,2 be the set of points whose distance to T} is at most k + 1:
note that T1 and T2 are dlSJOlHt Denote by D the subsegment of D which joins T1 and T2 Let
B1 be the complement in 7 — T of the connected component containing the interior of D and
let Bs be the complement in 7 — Ty of the connected component containing the interior of D

By k-acylindricity, an element of (G1 sends points of D of TQ and of B, into Bi, and an
element of G5 sends points of D, of Ty and of B; into Bs.

If v € D, its image by a non-trivial element of G lies in By U Bs, thus Stab(v) N G is trivial.
If v € T} and g-v =wv then g € G1: indeed, otherwise we can see that g-v € By. Thus if v € Ty,
the stabiliser of v also stabilises T3, and if v € T — T, the stabiliser of v also stabilises the path
between v and 77, so it stabilises an edge adjacent to v. We get a similar result if v € Ty. If v
lies in a translate g - D of D, or in a translate g- T; of T, we apply the results above to g~ ! - v.

This is enough to conclude. O

We can now prove proposition [@.18]

Proof. We prove by induction on the number of factors [ that the result holds, and that moreover
we can require that the map h is such that the minimal subtree of h(A1 % ...k Ay) in Ty is a
proper subtree.

For | = 1, if we take i = h the result holds by @14l Since we assumed that K (A;) < K(A),
the minimal subtree of h(A;) does not cover T by lemma [0.T7

Suppose by induction that for [ = n — 1, the induction hypothesis holds. Let h be a map
Aj x...x A, — A which satisfies all the hypotheses. The induction hypothesis gives us a map
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h from Ay x...% A,_1 to A such that h 4, coincides with h|a, up to conjugation for i < n, and
such that the minimal subtree 77 of G1 = h(A; % ... x A,,_1) is a proper subtree of T}.

Consider the minimal tree of h(A,): since we assumed K(A,) < K(A), by lemma 017 it is
also a proper subtree of T\. Thus by lemma [.19] it has a translate 75 by an element « of A
which lies at a distance at least 7 of 7. Extend h to A, by setting |4, = Conj (a)ohl|a,. Then
T5 is the minimal subtree of Ga = h(A,,). ) .

_ Note that the group G generated by G1 = h(A; *...* A,_1) and Gy = h(A,) is precisely
h(Ay % ...x A,), we denote its minimal subtree by 7 and we apply lemma 0200 By remark 0211
R(Ay % ... % Ay) =h(Ay % ... % Ay_1) * h(A,) so by induction hypothesis we get

h(Ay % ...x Ap) = h(A1) *...xh(A)).

Moreover, 7 is properly contained in T, since the points which lie on the path between 77 and
T, are branching points in Ty, but not in 7.

Now let v be a surface type vertex of T, and denote by S its stabiliser. If v lies outside of 7,
the intersection S N A(A; * ... * Ay) stabilises both v and 7, thus it is contained in a boundary
subgroup of S. We may thus assume that v lies in 7. By lemma [0:20, either S N iL(Al k...ox Ay)
is contained in the stabiliser of an edge adjacent to v, in which case we are done, or v lies in a
translate of T or T5.

If v lies in T} itself, lemma [@:20 also tells us that the stabiliser of v by G, i.e. the intersection
SN iL(Al % ...x A,), is contained in the stabiliser Gy of Tj, namely iL(Al % ...% A,_1). By
induction hypothesis we have two possibilities: either the intersection S N iL(Al % ...k Ap_q) lies
in a boundary subgroup of S, but then so does the intersection S N iL(Al %...% Ap); or there is a
conjugate of a surface type vertex group ST of one of the graphs A;" for i < n — 1 whose image
by h lies in the stabiliser of v.

If v lies in T itself, lemma also tells us that the intersection S N B(Al ...k Ap) is
contained in h(A,). Then, by lemma @.I4, there is a conjugate of surface type vertex group S
of A} whose image by h lies in the stabiliser of v. ~

Finally, if v lies in a translate of 77 or T» by an element « of h(A; x...* A,), we apply the
results above to the vertex a~! -v. This is enough to prove the result. O



Chapter 10

From preretractions to hyperbolic
floors

In this chapter, we prove proposition and proposition From the existence of a non-
injective preretraction f : A — A, proposition deduces the existence of a retraction r which
makes (A,r(A),r) a hyperbolic floor, and from the existence of a non-injective preretraction
A — @, proposition deduces the existence of a preretraction from A to a retract of G. In
both proofs, the idea is to modify f into the retraction r.

The previous chapter showed that for a non-pinching map, we control what happens to surface
type vertices: it will thus be useful to work with non-pinching maps. The first section of this
chapter explains how to factor a preretraction f: A — G as f’ o p, where f’ is non-pinching with
respect to some free factors of p(A). This will be done by letting p kill elements corresponding
to simple closed curves which lie in the kernel of f.

In the second section, we worry about the non-abelianity of the image of surface groups, and
give a criterion which will enable us later to guarantee that it is still satisfied despite all the
transformations we will make f undergo.

In the third section, we define a complexity on the set of non-injective preretractions A — A.
Note that this set contains f, so is non-empty by hypothesis. We then proceed to study a maximal
element, and we will see how we can build from it a retraction A — A’ which makes (4, A’,r) a
hyperbolic floor, thus proving proposition

The fourth section finally gives a proof of proposition [.I6l It should be noted that the third
and the fourth section are independent.

10.1 Pinching a set of curves

Let A be the fundamental group of a graph of group with surfaces A which has infinite cyclic
edge groups. Let C be a set of essential curves on the surfaces of A. Let N(C) be the subgroup of
A normally generated by the elements corresponding to the curves of C.

Definition 10.1: (pinching map) We denote by pc the quotient map A — A/N(C), and we call
it the pinching map of A by C.

Denote by pe of A the quotient decomposition, namely the decomposition obtained from A by
replacing each vertex group by its image by pe (not that pe is injective on edge groups of A).

Let us now build a decomposition as a graph of groups with surfaces for pc(A). For this, we
will refine pe(A) by decompositions of the groups pe(.S). For each surface type vertex group S of
A with corresponding surface 3, consider the graph of groups dual to the set of essential curves

91
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Figure 10.1: The pinching of A by C.

of C which lie on 3. We denote it by A(X,C). We get a graph of group decomposition I'(X, C)
for pc(S) by replacing each vertex and edge group of A(X,C) by its image by pc.

A vertex group Sy of A(X,C) is the fundamental group of a subsurface ¥y of ¥. The image
of Sp by pc is the fundamental group of the surface obtained by gluing discs to the boundary
components of ¥y corresponding to curves of C. Note thus that if all the boundary components of
Yo correspond to curves of C, the image of Sy by pc¢ is the fundamental group of a closed surface.
Then, we call the corresponding vertex of I'(X,C) an interior vertex.

Refine the graph of groups pc(A) by replacing each surface type vertex with corresponding
surface ¥ by the graph of groups I'(X, C) (see figure [I0.T)).

Definition 10.2: (pinching of a graph of groups) We call the graph of groups Ac thus obtained
the pinching of A by C.

Let us see that this graph of groups decomposition gives us a decomposition of pc(A) as a free
product. Remove from Ac all the interior of edges of the graphs I'(2,C) as well as the interior
vertices: denote by Aq,...,A; the various connected components. They are subgraphs of groups
of A¢, and they admit a natural structure of graph of groups with surfaces whose surface type
vertices are exactly the vertices which belong to one of the subgraphs I'(X,C). Call Ay,..., 4
their fundamental groups.

Remark 10.3: The graphs of groups A; are JSJ-like decompositions.

Lemma 10.4: IfC is not empty, the complexity of the set containing all the surfaces of the graphs
of groups A; is strictly smaller than the complexity of the set of surfaces of A.

Proof. As in the proof of lemmal[0.16 it is enough to see that in the graph of groups I'(X, C) which
replaces the vertex corresponding to X, all the surfaces have complexity smaller than that of X.
But the surfaces of I'(X,C) are obtained from surfaces of A(X,C) by gluing discs to boundary
components, which strictly decreases the Euler characteristic, and thus the complexity. We saw in
the proof of that if at least one curve of C lies on X, the surfaces of A(3,C) have complexity
strictly smaller than that of 3. This terminates the proof. O
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Remark that if we collapse the edges of the subgraphs A; in A, the graph of groups we get
has trivial edges stabilisers. Picking a maximal subtree in it, and choosing a lift in the pc(A)-tree
corresponding to this graph of group gives us an identification of the groups A; to subgroups of
pc(A), and a free product decomposition of pc(A) of the form

pe(A) = (Ar s x A) « (S1%...xSp) % (Z1%...% Z;) )

where the groups S; are fundamental groups of closed surfaces which are not spheres, correspond-
ing to interior vertices of the graphs of groups I'(3,C), and each group Zj, is the infinite cyclic
subgroup of p¢(A) corresponding to an edge lying outside the maximal subtree.

Definition 10.5: (pinching decomposition of pc(A)) We call the free product decomposition ()
a pinching decomposition of pc(A) with respect to C.

Note that different choices of maximal subtree and different lifts in the pc(A)-tree give us
different pinching decompositions of pc(A).
Finally, we will use the following notations

Ac = Apx...x A
Re = (Si*...%x8p)«(Z1*...%2Z,).

Some of the vertex groups of the graphs of groups A; which have been scarcely modified by
the map p¢ will play a particular role in the third section. They are given by

Definition 10.6: (intact surface type vertex of A;) Let X be a surface of A, and let S be the
corresponding vertex group. Suppose that the graph of groups I'(X,C) is a tree of groups, all of
whose vertex groups except one are trivial or isomorphic to Z/27. The exceptional vertex group
So is conjugate to a surface type vertex group of one of the graphs of groups A;. We call such a
surface type vertex of A; an intact surface type vertex, and the corresponding surface is called an
intact surface of A;.

We said that our strategy was to factor the non-injective preretraction f as f = f’ o p, where
the map f’ is non-pinching with respect to a suitable graph of groups. The map p should thus
be the quotient of A by a maximal set of elements coming from simple closed curves killed by
f- Note that if f is injective on edge groups, no element corresponding to a boundary parallel
simple closed curve lies in the kernel of f. To make this precise, we give

Definition 10.7: (essential curves killed by f) Let A be the fundamental group of a graph of
groups with surfaces A, whose edge groups are infinite cyclic. Let f : A — G be a map which is
injective on edge groups.

Consider systems of two-sided non-homotopic non boundary parallel simple closed curves on
the surfaces of A whose corresponding elements in A are in the kernel of f. For each curve in
such a set, we say that the corresponding essential curve is killed by f.

If the system of simple closed curves we chose is mazximal for inclusion among all such systems,
the associated set of free homotopy classes is called a maximal set of essential curves of A killed

by f.

Remark 10.8: In the setting of definition I, if C is a maximal set of essential curves killed
by f, the map f factors as f' o pc, and f'|a, is non-pinching with respect to A;.

10.2 Non-abelianity of surfaces

This criterion will prove very useful in the proofs of propositions [[.15 and [Z.16l It will imply that
if we have a map ¢ from A¢ to a torsion-free hyperbolic group G, as long as intact surface type
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vertex groups are not sent to abelian images, we can extend g to a map from pe(A) = A¢ x Re to
G whose composition with pe sends all the surface type vertex groups of A to non-abelian images.

Lemma 10.9: Let A be a group which admits a JSJ-like decomposition A. Let C be a set of
essential curves on the surfaces of A. Choose a pinching decomposition of pc(A). Suppose g is a
map from Ay x...x Ay to a torsion-free hyperbolic group G such that

e ¢ is injective on edge groups of the graphs A;,

e if two edge groups of some of the graphs A; have disjoint conjugacy classes in Ac, their
images by g have disjoint conjugacy classes in G;

e the images by g of intact surface type vertex groups are non-abelian.

Then there exists a finite union Uy of infinite cyclic subgroups of G such that for any map 7 :
(Si#...x8p)x(Z1%...xZyg) — G, if for all k, and for all j such that S; is not a projective plane,
the images 7(S;) and 7(Zy) are not contained in U,, then the map (g * 7)o pc : A — G sends
surface type vertex groups of A on non-abelian images.

Proof. Let 3 be a surface of A, denote by S the corresponding surface type vertex group, and by
vg the corresponding vertex of A.

If I'(X%,C) is a tree of groups, all of whose vertex groups except one are fundamental groups of
spheres and projective planes, then p¢(S) contains an intact surface type vertex group @;. The
image of @; by ¢ is non-abelian, so the image of S by (g * 7) o pc is non-abelian regardless of the
choice of 7. We may now assume that I'(X, C) is not a tree all of whose vertex groups except one
are trivial or Z/27.

Suppose that S has two maximal boundary subgroups By and By whose conjugacy classes are
disjoint in A. The edges adjacent to vs corresponding to By and Bs are not adjacent to a same
Z type vertex. Thus the groups pc(Bi1) and pe(Bs) stabilise two edges which are not adjacent
to a same Z type vertex. If these two edges lie in the same A;, by remark [.10 they have edge
groups whose conjugacy classes are disjoint in pc(A) since A; is a JSJ-like decomposition. If they
lie in distinct graphs A;, the corresponding edge groups lie in conjugates of distinct free factors
of pc(A), so they also have disjoint conjugacy classes. By our second assumption on g, regardless
on the choice of the map 7, the image of S by (g * 7) o p¢ contains two cyclic subgroups whose
conjugacy classes are disjoint. In particular it is not cyclic, and thus it is non-abelian since it lies
in G which is torsion-free hyperbolic.

We may thus assume by remark [Z.T0 that all the edges adjacent to vs in A are adjacent to a
common Z-type vertex. This implies that all the edges in A¢ adjacent to the subgraph I'(3, C)
are adjacent to a same vertex wyz, whose group is infinite cyclic. Let z be a generator of the group
corresponding to wyz.

Suppose first that X has at least two boundary components, with corresponding boundary
subgroups B; and Bs. Recall that in the graph of groups A(X,C), the groups B; and Bs are
elliptic, thus their images pc(B1) and pe(Bsz) stabilise vertices wy and wq of I'(3,C). There is a
(possibly trivial) path in I'(X,C) joining the two vertices wy and wsy. This path, together with
the two edges joining w; and ws to wz gives a loop in the graph of groups A¢, that can be chosen
to contain exactly one edge which is not in the maximal subtree we chose to define our pinching
decomposition. Thus, up to replacing S by a conjugate, pc(S) contains z and tzt~!, where t is a
generator of one of the factors Z; of the pinching decomposition of pc. If 7(¢) does not lie in the
maximal cyclic subgroup Cj() containing g(z), then (g+7)(z) and (g 7)(tzt~") do not commute
in G, so (g * 7)o pc(S) is not abelian.

Suppose now X has only one boundary component. Then either T'(X,C) is not a tree of
groups, or it contains an interior vertex whose group is the fundamental group of a closed surface
of positive genus. Up to replacing S by a conjugate, we see that pc(S) contains both z and either
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one of the factors Z;, or one of the factors S; of the pinching decomposition. If the image of this
factor by 7 lies outside of the maximal cyclic subgroup Cy () containing g(z), the image of S by
(g % T) o pc is not abelian. O

Note that we have

Lemma 10.10: If G is a torsion-free hyperbolic group, a non-cyclic subgroup G’ of G is not
contained in a finite union of cyclic groups.

Proof. Cyclic subgroups of G are quasiconvex, so such a reunion U has growth in G at most
linear (that is, the size of the set Bg(n) NU grows linearly with n). Since G’ is torsion-free and
non-abelian, its growth is non-linear, thus the size of the set Bg(n) NG’ grows faster than any
linear function. (I

Remark 10.11: If G is torsion-free hyperbolic, if g : Ac — G sends intact surface type vertex
groups on non-abelian images, is injective on edge groups of A;, and preserves disjointness of
conjugacy classes of edge groups, and if g(Ay * ... A;) is not cyclic, we can always find a map
T (Six.. xSp)x(Z1x...xZy) — g(A1*...xA;) such that the map (gx7)opc : Ac — g(A1*...xA;)
sends surface type vertex groups on non-abelian images.

The following lemma shows in particular that if a preretraction f : A — G factors as [’ o p¢
where C is a maximal set of essential curves killed by f, and G is torsion-free hyperbolic, then
intact surface type vertex groups have non-abelian images by f’, so f’ satisfies the conditions of
lemma,

Lemma 10.12: Let f : A — G be a morphism which sends surface type vertex groups of A onto
non-abelian images, and is injective on edge groups. Let C be a mazimal set of essential curves
killed by f, so that [ factors as [’ o pc. Suppose G is torsion-free hyperbolic.

If S is a surface type vertex group corresponding to an intact surface > of A;, and if A(X,CT)
is a graph of group decomposition dual to a set of essential curves CT on X, there is at least one
vertez group of A(X,CT) whose image by f' is non-abelian.

Proof. We show first that f’(S) is non-abelian. The group S is the unique infinite vertex group
of one of the graph of groups of the form I'(X¢, C) for some surface 3o of A, and we know that the
graph underlying I'(3, C) is a tree of groups. Since G is torsion-free, the image by f’ of the other
finite vertex groups of I'(3¢,C) are trivial, so that the image of the fundamental group pc(So) of
I'(2,C) by f’ is exactly the image of S by f’: we have f(So) = f'(pc(So)) = f'(S). Now since Sy
is a surface type vertex group of A, its image by f is non-abelian, which proves the claim.
Suppose now all the vertex groups of A(X,CT) have abelian image by f’ (thus infinite cyclic
since G is hyperbolic). Since f’ is non-pinching with respect to A;, the edge groups of A(X,C™T)
are sent injectively into G' by f’. This gives a graph of group decomposition of f'(.S) all of whose
vertex and edge groups are infinite cyclic, so f'(S) is a generalised Baumslag-Solitar group. In a
generalised Baumslag-Solitar group, the commensurator of an elliptic element is the whole group
(see for example [For02]). But in a torsion-free hyperbolic group, commensurators of elements
are cyclic groups. This contradicts the non-abelianity of f/(S), thus at least one of the vertex
groups of A(X,CT) has non-abelian image by f’. O

10.3 Maximal preretractions
For the rest of this section, we let A be a torsion-free hyperbolic group which admits a cyclic

JSJ-like decomposition A, and we assume that there exists at least one non-injective preretraction
A — A with respect to A.
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Definition 10.13: (set L(f)) If f : A — A is a preretraction, we denote by L(f) the set of
surfaces of A such that for at least one of the corresponding vertex groups S, the intersection
f(A)N S is not contained in a boundary subgroup of S.

Consider the set of tuples (f,C,C™) for which
e fis a non-injective preretraction A — A;

e Cis a maximal set of curves on the surfaces of A killed by f, so that there exists f’ : pc(A) —
A with f = f" o pe;

e C* is a set of essential curves on the surfaces of the graph of groups A; obtained in the
pinching of A by C, such that C* gives elliptic refinements A} of each A; relatively to f’
and A.

We say that an element (f,C,CT) is greater than another element (g,D,DT) if C strictly
contains D, or if they are equal and C* strictly contains DT, or if they too are equal, and L(f)
is contained in L(g) (note the inversion).

A preretraction f for which there exists C and CT such that (f,C,CT) is a maximal element
in our set is called a maximal non-injective preretraction. Such an element must exist, indeed,
the set of non-injective preretractions is not empty, the cardinal of a set of essential curves on a
finite set of surfaces is bounded, and the set L(f) is a subset of the finite set of surfaces of A.

For the rest of this section, we let f : A — A be a maximal non-injective preretraction for the
sets of curves C and C*. Build the pinching of A by C, a pinching decomposition of pc(A), and
elliptic refinements A} of the graphs of groups A; given by C*. By remark @12 we have minimal
equivariant maps t; : Ty+ — Th.

A very important prolperty of such a maximal element is given by

Lemma 10.14: For any surface X of A, the following are equivalent:

(1) ¥ L(f);

(ii) one of the surface type vertex v of Ta corresponding to 3 lies in the image of one of the
maps t:r c Ty — Ty

(iii) for one of the surface type vertex group S corresponding to X, there is a surface type vertex
group ST of one of the elliptic refinements A such that f'(ST) is a subgroup of finite index
S.

Proof. The equivalence between (i7) and (7i%) is given by lemma @14l It is clear that (i4¢) implies
(7). Let us show that the converse is true.

If m = 1, there is only one component A, the result is given by lemma 0.T4

If m > 2, C is not empty, and by lemma [[0.4] the surface complexity of each of the graph of
groups A; is smaller than the surface complexity of A. Consider the map h = f'|a, : Ar*.. xA,; —
A. The hypotheses of lemma 0.18 are satisfied, so we can find a map h: Ay *...* A,, — A such
that h|a, coincides with f’|4, up to conjugation, and if S is a surface type vertex group of A
whose intersection with iL(Al % ...% Aj) is not contained in a boundary subgroup of S, then a
conjugate of S contains with finite index the image of a surface type vertex group S* of one of
the graphs of groups A;". We also know that h(A; *...* A,,) is the free product of the h(4;), so
in particular it is not abelian since we assumed m > 2.

By lemma [I0.12] the map f’ sends intact surface type vertex groups of the graph of groups
A; to non-abelian images. The image by h of an intact surface type vertex group S of one of
the graphs A; is just a conjugate of f(S), so it is also non-abelian. Thus by remark [0.1T] there
exists a map 7 : Re — h(Aj*...xA;) such that the map F = (hx 7)o pc sends surface type vertex
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groups of A to non-abelian images. We now want to see that (F,C,C™") is a maximal non-injective
preretraction.

It is easy to check that F' restricts to a conjugation on each non surface type vertex group of
A, so that F is a preretraction. The map F factors through pc, so F' is in fact a non-injective
preretraction, and the curves of C are killed by F. By maximality of f, we see that C is a maximal
set of curves killed by F'. The map f’ sends elements corresponding to curves of C* to edge groups
of A, thus so does the map h. Similarly, by maximality of f, the curves C* must give elliptic
refinements of the graph of groups A; with respect to (h*7) and A.

Now, let S be a surface type vertex group of A whose corresponding surface is in L(F'). Its
intersection with F(A) = h(A; * ... * A;) is not contained in a boundary subgroup, so by our
choice of h, there is a surface type vertex group ST of one of the graphs of groups A;r such that
iL(S*) is a subgroup of finite index of S. But on A;, the maps hand f’ coincide up to conjugation:
thus f/(ST) is a subgroup of finite index of some conjugate of S. We have shown that to any
surface ¥ which lies in L(F") corresponds a group S which admits as a subgroup of finite index
the image by f’ of a surface type vertex group S* of A;.".

This implies first that L(F) C L(f). By maximality of f, we see that this must in fact be an
equality. But then if ¥ is in L(f), it is also in L(F'), so there is a group S with corresponding
surface ¥ which admits as a subgroup of finite index the image by f’ of a surface type vertex
group St of A: we see that (#ii) must hold. O

From this we deduce in particular

Lemma 10.15: The set L(f) does not contain all the surfaces of A.

Proof. Suppose that L(f) contains all the surfaces of A. By lemma [I0I4 for every surface X
of A, there exists a surface type vertex group ST of one of the graphs of groups A} such that
f(ST) is a subgroup of finite index of one a surface type vertex group S corresponding to .
Moreover, f’ sends boundary subgroups of ST to boundary subgroups of S. By lemma [0.10, the
complexity of the surface ¥ T corresponding to ST is greater than or equal to that of X, and if
we have equality, f’|s+ is an isomorphism onto S. This implies that the complexity of the set
of all the surfaces of the Aj is greater than the surface complexity of A. But lemma [0.16] shows
that the set of all the surfaces of the A} has complexity smaller than the set of surfaces of the
A;, which in turn has complexity smaller than the surface complexity of A by lemma [[0.4l Thus
these complexities are all equal, which implies that the sets C and CT are empty, and that each
surface type vertex group of A is sent isomorphically onto a surface type vertex group of A by f,
non-conjugate surface type vertex groups being sent to non-conjugate surface type vertex group.

Thus some power of f sends each surface type vertex group of A isomorphically on a conjugate
of itself, and restricts to conjugation on each non surface type vertex group. By proposition Bl
it is an isomorphism. This contradicts the non-injectivity of f. [l

We now want to define applications P(f, k) : A — A which we call pseudo-powers of f. Indeed,
we need to iterate f, but we want the result to still be a preretraction, this is why we cannot take
simply the powers of f since they might send surface type vertex groups onto abelian images.

We define P(f, k) by induction as follows. Let P(f,1) = f. If P(f,k — 1) is defined, and is a
maximal preretraction A — A we consider the map P(f,k—1) o (f'|a.) : Ac — A.

Lemma 10.16: The map P(f,k—1)o(f'|a,) sends intact surface type vertex groups of the graphs
of groups A; to non-abelian images.

Proof. If S is an intact surface type vertex of one of the graphs of groups A; with corresponding
surface 3, it inherits a decomposition A(X,CT) from the elliptic refinement A}. We know by
lemma [[0.12 that there is at least one of the vertex groups Sp of A(X,CT) whose image by f’ is
non-abelian. If f/(Sp) lies in a non-surface type vertex group of A, the preretraction P(f, k — 1)
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is injective on f’(Sy), so P(f,k — 1) o f'(S) is non-abelian. If f/(Sy) lies in a surface type vertex
group S of A, it must be with finite index by lemma 0.7 since f’ is non-pinching on ¥ and sends
boundary elements on edge groups of A. Now P(f,k—1)o f/(Sp) is a subgroup of finite index of
P(f,k—1)(S1), which is non-abelian since P(f, k — 1) is a preretraction. Thus P(f,k—1)o f'(S)
is non-abelian. (|

We will now build P(f, k). Since A is non-abelian and torsion-free hyperbolic, A admits at
least one non-abelian vertex group: if it is a non surface type vertex group, P(f,k — 1) sends
it injectively into A so its image is non-abelian, and if it is a surface vertex group its image by
P(f,k —1) is non-abelian by definition of a preretraction. This shows that P(f,k — 1)(A) is not
cyclic. We can thus apply remark I0IT to P(f,k — 1) o f’| 4., this tells us we can find a map
7:Re — P(f,k —1)(A) such that the map

P(f.k) =[(P(f.k—1)o f'lac) * ] o pc

sends surface type vertex groups on non-abelian images. Let us now see that P(f, k) is a maximal
non-injective preretraction. It is easy to see that P(f, k) sends non surface type vertex groups
on conjugates of themselves, so is in fact a preretraction. If C is empty, f' = f so P(f, k) is not
injective since f is not injective.

Since P(f,k) factors through p¢, it kills the curves in C, so by maximality of P(f, k — 1) the
set C is a maximal set of essential curves killed by P(f, k). Similarly since P(f, k — 1) conjugates
edge groups, P(f,k — 1) o f’| 4. sends elements corresponding to curves of CT to edge groups of
A, so by maximality of P(f, k — 1), the set CT is a maximal set of essential curves that give an
elliptic refinement of the graphs of groups A; with respect to P(f,k — 1) o f'|a, and A. Finally,
the image of P(f, k) is contained in the image of P(f,k — 1), so L(P(f,k)) C L(P(f,k—1)), and
by maximality of P(f,k — 1) this is in fact an equality. Thus P(f, k) is a maximal non-injective
preretraction.

Using pseudo-powers, we can now show

Lemma 10.17: If f is a non-injective preretraction, it sends each surface type vertex group
corresponding to a surface of L(f) isomorphically onto another surface group corresponding to a

surface of L(f).

Proof. We have just seen that P(f,2) is also a maximal preretraction, for the same sets C and
C*. Thus P(f,2) factors through pc, we write P(f,2) = [P(f,2)]’ o pc. Recall that P(f,2) =
[(fof)*7]opc sothat [P(f,2)]'|a. = fof. Let X be a surface of L(f).

Since L(f) = L(P(f,2)), and using lemma [[0.14], we see that there is a group S with corre-
sponding surface Y, and a surface type vertex group S+ of A for some i, such that f o f/(ST)
is a subgroup of finite index of S. Consider f/(S*): it is elliptic in A since the A} are elliptic
refinements relative to both f’ and [P(f,2)]'.

It cannot lie in a non surface type vertex group of A, since these are sent to conjugates of
themselves by f. Thus it lies in a surface type vertex group S; of A, and by lemma 0.7 it is a
subgroup of finite index of S;. This implies in particular that the surface corresponding to S; is
in L(f).

Now f(S1) contains a subgroup of finite index, namely f(f’(S™)), which is elliptic in Tx: thus
f(Sy) itself is elliptic. Thus it lies in a vertex stabiliser of T, which must in fact be S. Since
F(f(ST)) has finite index in S, so does f(S1). By lemma @10 the complexity of the surface
31 corresponding to S; is greater than that of the surface ¥ corresponding to S, and if we have
equality, f|s, is an isomorphism onto S.

Thus to each surface ¥ in L(f) corresponds a surface X7 in L(f) whose complexity is greater,
and such that any group S; corresponding to ¥; has image by f lying in a group S corresponding
to 3. In particular, the map ¥ — X is injective. Since it is a map L(f) — L(f), it is a bijection,
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thus for any surface X of L(f), we must have k(X) = k(X21). This implies that f sends each surface
type vertex group whose surface is in L(f) isomorphically onto a surface type vertex group whose
surface is in L(f). O

Remark 10.18: The previous lemma implies that some pseudo-power P(f, k) of the map f sends
surface type vertex groups whose corresponding surface is in L(f) isomorphically onto conjugates
of themselves. Thus, there exists a mazimal non-injective preretraction f which sends surface type
vertex groups corresponding to surfaces of L(f) isomorphically onto conjugates of themselves.

10.4 Proof of Proposition

Again, A is a torsion-free hyperbolic group which admits a cyclic JSJ-like decomposition A, and
we assume that there exists at least one non-injective preretraction A — A with respect to A.
We let f be a maximal non-injective preretraction which sends surface type vertex groups whose
corresponding surface are in L(f) isomorphically onto conjugates of themselves, as is given by
remark [T0.18

Consider the complement in A of the set containing surface type vertices corresponding to
surfaces which do not lie in L(f), as well as the open edges adjacent to these vertices. Its
connected components I'y, ..., I, are subgraphs of groups of A, we denote their fundamental
groups by Hy, ..., Hy,.

Call I' the graph of groups with surfaces obtained by collapsing in A all the edges of the
subgraphs I';. If we choose a maximal subtree in ', as well as a lift to the corresponding tree Tr,
we identify the groups H; to subgroups of A. Given a preferred non-surface type vertex Ry, we
can do this in such a way that Ry lies in one of the subgroups H;. The subgroup of A generated
by Hi,...,H,, will be our retract A’.

Note that Tr is bipartite, in the sense that any edge has one end whose vertex group is a
conjugate of one of the subgroups H;, and one end whose stabiliser is a surface type vertex group
of A whose corresponding surface is not in L(f).

Lemma 10.19: The map f sends each H; isomorphically onto a conjugate of itself.

Proof. A vertex group of I'; is either a non-surface type vertex group, or a surface type vertex
group whose conjugacy class is in L(f): in both cases, it is sent isomorphically on a conjugate of
itself in A by f. Now any two adjacent vertex groups G, and G,, of I'; intersect in a non-trivial
edge group, and since f is injective on edge groups, the intersection f(G,) N f(G,) contains a
non-trivial element. If f(G,) = g,Gug, ' and f(Gw) = guGuwgy', the intersection g,H;g, ' N
gwHigy,! contains f(G,) N f(Gy), so in particular it is non-trivial: again by bipartism of I' and
l-acylindricity near surface type vertices, we deduce that g,H;g, ' = gwH;g,' so that g 'g,
is in H;, and f(G,) and f(G,) lie in the same conjugate of H;. Thus, f|g, composed by the
conjugation by g, ! restricts to a conjugation by an element of H; on non-surface type vertex
groups of I';, and sends surface type vertex groups isomorphically on conjugates of themselves by
an element of H;.

As fundamental groups of subgraphs of groups of A, the groups H; are quasiconvex in A, thus
they are hyperbolic. Note also that the decomposition I'; is a JSJ-like decomposition for H;. We
can now apply proposition Bl to conclude that f|g, composed with the conjugation by g, ! is an
isomorphism H; — H;. Thus f itself sends each H; isomorphically onto a conjugate of itself: the
claim is proved. O

Recall we chose a pinching decomposition of pc(A4), and we let f’ be such that f = f' o pc.
Recall also that the set CT gave us elliptic refinements A} for each A; with respect to f’ and A.

Lemma 10.20: For each j, the image f'(A;) lies in a conjugate of one of the subgroups H;.
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Proof. For each A;r, we have a minimal equivariant map t;r : Ty+ — Tx. By lemma [[0.14] the
J

image of t;r contains none of the vertices corresponding to surfaces which are not in L(f). Since
t;‘(TA;r) is connected, this implies that the image of A; by f lies in a conjugate of one of the
subgroups H;. O

Fix an index ¢. It is straightforward to see that pc(H;) lies in a conjugate of one of the
subgroups A;,. We just saw that H; is sent isomorphically onto a conjugate of itself by f, thus
A;, must be sent to a conjugate of H; by f’. In particular, the application ¢ — j; is injective.
Conversely, each A; contains a conjugate of one of the pc(H;). Up to renumbering, we may thus
assume that pe(H;) is contained in a conjugate of A;.

Lemma 10.21: The group A’ generated by Hx, ..., H,, is the free product Hy * ... * H,,.

Proof. Recall that the group Ac¢ generated by the groups A; is in fact the free product of the
groups A;. Since the A; form a free product in pc(A), the group pe(A’) generated by the subgroups
pm; is in fact the free product of the subgroups pc(H;). Since pe is injective on H;, this means
that the H; themselves form a free product. O

Note that since the list L(f) does not contain all the surfaces of A, the group A’ is a proper
subgroup of A.

We now want to understand the image of f’|4.. For each i, we have f'(4;) = giHigi_l. The
image of A¢ by f’ is generated by these conjugates of the subgroups H;. It acts on the tree 1T
corresponding to I'. A surface type vertex group S of I' corresponds to a surface which does not
lie in L(f), so it intersects f’(A¢) at most in a boundary subgroup. Thus, in the action of f’(A¢),
the corresponding vertex has cyclic stabiliser, and if it is not trivial, it stabilises an adjacent edge.
This edge is unique by l-acylindricity of surface type vertices, so by collapsing all such edges, we
see that

f/(Ac) = 91H191—1 *92H2g2_1 * ...*nglgl_l.

Let § be the map which restricts on giHigjl to conjugation by g;l. The map f’ sends intact
surface type vertex groups to non-abelian images by remark [I0.12] hence so does 3o f’ since (3 is
an isomorphism between nglgfl S nglgl_1 and Hy *...x Hj.

If I > 1, then Hy *...% Hj is clearly non-cyclic. But if [ = 1, the image of A by f is contained
in Hy, so H; is not abelian. Thus, by lemma [[011] we can find a map 7 : Re — B(f'(4c)) =
Hy*...xH; such that the map F' = [(So f')*7]opc sends surface type vertex groups to non-abelian
images. Moreover, it is easy to see that the map F' sends each subgroup H,; isomorphically on
itself.

Thus the restriction  of F' to A’ = Hy *...* H,, is an isomorphism A" — A’. Finally, the
map 0! o F is a retraction » from A to A’, which sends surface type vertex groups of I' to
non-abelian images. Now A admits a graph of groups decomposition with one non-surface type
vertex v stabilised by A’, the other vertices being stabilised by surface type vertex groups of T,
and edges joining these to v. Thus (A, A’,r) is a hyperbolic floor. This terminates the proof of
proposition

10.5 Proof of Proposition [7.16

Let A be a group which admits a JSJ-like decomposition A. Suppose G’ is a subgroup of G
containing A such that either G’ is a free factor of G, or G’ is a retract of G by a retraction
r: G — G’ which makes (G,G’,r) a hyperbolic floor.

Denote by r : G — G’ the retraction which is the trivial map on R if G = G’ * R, and
the retraction of the hyperbolic floor structure in the second case. Let I' be the graph of group
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corresponding to the free product G’ x R in the first case, and the graph of groups decomposition
associated to the hyperbolic floor structure in the second case.

Let f : A — G be the preretraction given by the hypotheses. Choose a maximal system C
of essential curves killed by f on the surfaces of A. Let f’ be such that f = f’ o pc. Build the
pinching of A by C, and choose a pinching decomposition of pc(A). Choose also a maximal system
of essential curves C* which gives an elliptic refinement A} for each A;, with respect to f’ and T.

Lemma 10.22: The map ro f’| 4. sends intact surface type vertex groups of the A; to non-abelian
1Mages.

Proof. Let S be an intact surface type vertex group of A;. It inherits a decomposition A(X,CT)
from the refinement A

If we are in the case where G = G’ x R, the set of curves of CT lying on the surface X
corresponding to S is empty. Indeed, elements corresponding to curves of C* are sent to edge
groups of I by f’, but edge groups of I' are trivial and f’ is non-pinching with respect to A; so
there can be no curves of C™ on 3. Thus f/(9) is elliptic in I'. Since boundary subgroups of S are
sent to non-trivial subgroups of a conjugate of A, f/(S) lies in a conjugate of G', and by lemma
[[0.12 it is non-abelian. Thus its image by r is non-abelian.

Let us now assume we are in the case where (G, r(G), r) is a hyperbolic floor. By lemma [T0.12]
the image of at least one of the vertex groups ST of A(3,C") has non-abelian image by f’. If
J/(ST) lies in a conjugate of G’, its image by r is clearly non-abelian. If f/(S™) lies in one of the
surface type vertex groups Sy of T, it is a subgroup of finite index of S; by lemma Now
this means 7(f/(S1)) is a finite index subgroup of 7(S71), which is not abelian by definition of a
hyperbolic floor. Hence it is itself non-abelian. O

Note that G’ contains A, so that it isn’t cyclic. Now we can apply remark [0 to 7 o f/| 4.,
to get a map 7 : Re — G’ such that the map [(r o f’|¢) * 7] o pc sends surface type vertex groups
of A on non-abelian images. It is easy to see that this map restricts to conjugation on each non
surface type vertex group of A. This shows precisely that it is a preretraction A — G’. If C is not
empty, pc is not injective, thus so is [(r o f/|¢) * 7] 0 pc. If C is empty, [(r o f'|c) * 7] o pc is just
r o f so it is also non-injective. This terminates the proof of proposition [.16]
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