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Abstract

odern telecommunication systems o er services demandingery high transmission

rates. Channel identi cation appears as a major concern in his context. Looking

forward better tradeo s between the quality of information recovery and suitable

bit-rates, the use ofblind techniques is of great interest. Making use of the special
properties of the 4th-order output cumulants, this thesis introduces new statistical signal pro-
cessing tools with applications in radio-mobile communicéion systems. Exploiting the highly
symmetrical structure of the output cumulants, we address e blind channel identi cation prob-
lem by introducing a multilinear model for the 4th-order out put cumulant tensor, based on the
Parallel Factor (Parafac) analysis. The components of the ew tensor model have a Hankel
structure, in the SISO case. For (memoryless) MIMO channelsredundant tensor factors are
exploited in the estimation of the channel coe cients.

In this context, we develop blind identi cation algorithms based on a single-step least squares
(SS-LS) minimization problem. The proposed methods fully &ploit the multilinear structure of
the cumulant tensor as well as its symmetries and redundaneis, thus enabling us to avoid any
kind of pre-processing. Indeed, the SS-LS approach inducessolution based on a sole optimiza-
tion procedure, without intermediate stages, contrary to the vast majority of methods found
in the literature. Using only the 4th-order cumulants, and exploiting the Virtual Array con-
cept, we treat the source localization problem in multiusersensor array processing. Exploiting
a particular arrangement of the cumulant tensor, an origind contribution consists in providing
additional virtual sensors by improving the array resolution by means of an enhanced array
structure that commonly arises when using 6th-order statisics. We also consider the problem
of estimating the physical parameters of a multipath MIMO communication channel. Using a
fully blind approach, we rst treat the multipath channel as a convolutive MIMO model and
propose a new technique to estimate its coe cients. This norparametric technique generalizes
the methods formerly proposed for the SISO and (memorylessMIMO cases. Using a tensor
formalism to represent the multipath MIMO channel, we estimate the physical multipath pa-
rameters by means of a combined ALS-MUSIC technigue based asubspace algorithms. Finally,
we turn our attention to the problem of determining the order of FIR channels in the context of
MISO systems. We introduce a complete combined procedure fdhe detection and estimation
of frequency-selective MISO communication channels. The ew algorithm successively detects
the signal sources, determines the order of their individuhtransmission channels and estimates
the associated channel coe cients using a de ationary appmoach.

Keywords : Blind channel identi cation, channel order determination , multipath MIMO chan-
nel estimation, Parafac decomposition, source localizatin, tensors, wireless com-
munication systems.
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Resune

es sysemes de tecommunications modernes exigent deskbits de transmission tes

elewes. Dans ce cadre, le probeme d'identi cation de canaux est un enjeu majeur.

L'utilisation de techniques aveugles est d'un grand inerét pour avoir le meilleur compro-

is entre un taux binaire acequat et la qualie de l'inform ation ecupeee. En utilisant

les proprees des cumulants d'ordre 4 des signaux de soite du canal, cette these introduit de
nouvelles methodes de traitement du signal tensoriel aveales applications pour les sysemes de
communication radio-mobiles. En utilisant la structure synetrique des cumulants de sortie, nous
traitons le probeme de l'identi cation aveugle de canaux en introduisant un mockele multilireaire
pour le tenseur des cumulants d'ordre 4, base sur une cecomosition de type Parafac. Dans le
cas SISO, les composantes du moctle tensoriel ont une struze de Hankel. Dans le cas de
canaux MIMO instantares, la redondance des facteurs tensiels est exploiee pour l'estimation
des coe cients du canal.

Dans ce contexte, nous ceveloppons des algorithmes d'idéircation aveugle bass sur une
minimisation de type moindres caresa pas unigue (SS-LS) Les nethodes proposes exploitent
la structure multilireaire du tenseur de cumulants aussi bien que les relations de synetrie et de
redondance, ce qui permet deviter toute sorte de traitement au pealable. En e et, I'approche
SS-LS induit une solution bage sur une seule et unique predure d'optimisation, sans les
etapes internediaires requises par la majorie des nmethodes existant dans la literature. En
exploitant seulement les cumulants d'ordre 4 et le concept d eseau virtuel, nous abordons aussi
le probkme de la localisation de sources dans le cadre d'ueseau d'antennes multiutilisateur.
Une contribution originale consiste a augmenter le nombrede capteurs virtuels en exploitant
un arrangement particulier du tenseur de cumulants, de maere a aneliorer la esolution du
eseau, dont la structureequivauta celle qui est typiqu ement issue de I'utilisation des statistiques
d'ordre 6. Nous traitons par ailleurs le probeme de I'estimation des paranetres physiques d'un
canal de communication de type MIMO a trajets multiples. Dans un premier temps, nous
consicerons le canala trajets multiples comme un mockle MIMO convolutif et proposons une
nouvelle technique d'estimation des coe cients. Cette tednique non-paranetrique greralise
les methodes proposes dans les chapitres pe@dents pur les cas SISO et MIMO instantare. En
repesentant le canal multi-trajeta l'aide d'un formali sme tensoriel, les parametres physiques
sont obtenus en utilisant une technique combiree de type ALS-MUSIC, base sur un algorithme
de sous-espaces. En n, nous consicerons le probeme de ldtermination d'ordre de canaux de
type RIF, dans le contexte des sysemes MISO. Nous introdusons une pro@dure compékte qui
combine la cetection des signaux avec l'estimation des caaux de communication MISO slectifs
en fequence. Ce nouvel algorithme, base sur une techniqe de & ation, est capable de cetecter
successivement les sources, de dceterminer 'ordre de chag canal de transmission et d'estimer
les coe cients assoces.

Mots-cés : canaux MIMOa trajets multiples, cecomposition Parafac, determination dordre,
estimation de canaux, identi cation aveugle de canaux, laglisation de sources,
sysemes de communication sans- Is, tenseurs
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Resumo

S sistemas de telecomunicacees atuais oferecem serviaeglemandam taxas de trans-

missao muito elevadas. O problema da identi cacao de caal aparece nesse contexto

com um problema da maior importancia. O uso de ecnicas cegs tem sido de grande

interesse na busca por um melhor compromisso entre uma taxdsraria adequada e
a qualidade da informeacao recuperada. Apoiando-se em ppriedades especiais dos cumulantes
de # ordem dos sinaisa sada do canal, esta tese introduz novagerramentas de processamento
de sinais com aplicacees em sistemas de comunicacaodm-noveis. Explorando a estrutura
sinetrica dos cumulantes de sada, o problema da identi cacao cega de canais e abordado a
partir de um modelo multilinear do tensor de cumulantes 4 ordem, baseado em uma decom-
postcao em fatores paralelos (Parafac). No caso SISO, osrmaponentes do novo modelo tensorial
apresentam uma estrutura Hankel. No caso de canais MIMO sem emoria, a redundancia dos
fatores tensoriaise explorada na estimacao dos coe cigtes dos canal.

Neste contexto, novos algoritmos de identi cacao cega deanais sao desenvolvidos nesta tese
com base em um problema de otimizacao de mnimos quadradode passo unico (SS-LS). Os
netodos propostos exploram plenamente a estrutura multiinear do tensor de cumulantes bem
como suas simetrias e redundancias, evitando assim qualguforma de pe-processamento. Com
efeito, a abordagem SS-LS induz uma solwcao baseada em uummico procedimento de mini-
mizecao, sem etapas intermedarias, contrariamente aogque ocorre na maior parte dos netodos
existentes na literatura. Utilizando apenas os cumulantesde ordem 4 e explorando o con-
ceito de Arranjo Virtual, trata-se tamkem o problema da loc alizacao de fontes, num contexto
multiuswario. Uma contribucao original consiste em aumentar o rumero de sensores Vvirtu-
ais com base em uma decompostcao particular do tensor de rwlantes, melhorando assim a
resolucao do arranjo, cuja estruturae tipicamente obtida quando se usa estatsticas de ordem
6. Considera-se ainda a estimacao dos parametros fsis de um canal de comunicacao MIMO
com muti-percursos. Atrawes de uma abordagem completameie cega, o canal multi-percursoe
primeiramente tratado como um modelo convolutivo e uma noveecnicae proposta para estimar
Seus coe cientes. Esta tcnica nao-paranetrica generiiza 0os netodos previamente propostos
para os casos SISO e MIMO (sem menoria). Fazendo uso de um fmalismo tensorial para rep-
resentar o canal de multi-percursos MIMO, seus parametrogsicos podem ser obtidos atrawes
de uma ecnica combinada de tipo ALS-MUSIC, baseada em um aoritmo de subespaco. Por
m, sel considerado o problema da determinacao de ordende canais FIR, particularmente no
caso de sistemas MISO. Um procedimento completoe introduzo para a detecao e estimacao
de canais de comunicacao MISO seletivos em freqse&nciaO novo algoritmo, baseado em uma
abordagem de de acao, detecta sucessivamente cada fontée sinal, determina a ordem de seu
canal de transmissao individual e estima os coe cientes asciados.

Palavras-chave : canais de multi-percursos MIMO, decompostcao Parafac, dterminacao de or-
dem, estimecao de canais, identi cacao cega de canaislocalizacao de fontes,
sistemas de de communicacao sem- o, tensores
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Introduction

arametric channel modelling and estimation are of primary mportance in digital
lecommunication systems. The knowledge of the channel nu®l can be used to
design equalizers to deconvolve the received signals. Chael identi cation and equal-
ization consist in the retrieval of unknown information about the transmission channel
and source signals, respectively. In order to reach a desidlequality of service, broadband wire-
less communication systems classically perform channel @hti cation and/or equalization using
pilot symbols, i.e. training sequences composed @ priori known signals. This supervised ap-
proach introduces an overhead to the transmission system tat may not be suitable for certain
radiocommunication systems since it reduces the e ective tansmission rate. On the other hand,
unsupervised (or \blind") approaches take only the output signals into account with possibly
somea priori hypothesis on the input signals.

Most of the known channel identi cation algorithms assume the channel order (memory)
is known. This is not always necessarily true and any mismate may have very costly conse-
quences. Actually, the order of the radio mobile channel is losely related to the delay spread
pro le produced by the multipath propagation scenario. Long delay spread pro les characterize
highly frequency-selective channels and introduce intesgmbol interference (I1SI) in the sampling
process. Typical e ects of under- or over-estimating the clannel order include bit error rate
(BER) oors, signal-to-noise ratio (SNR) penalties and numerical instabilities.

High-order statistics (HOS) have been an important researh topic in diverse elds includ-
ing data communication, speech and image processing and gawysical data processing. When
dealing with stationary complex input signals, the seconderder statistics (SOS) may be unable
to keep the phase information of anonminimum phase system and the use of HOS is generally
mandatory for blindly identifying nite impulse response ( FIR) channels, unless additional in-
formation about the input signal is known, such as the non-cicularity property, for instance.
The high-order spectra have the ability to preserve both magitude and (nonminimum-) phase
information. Moreover, it is well-known that all the cumula nt spectra of order greater than 2
vanish for Gaussian signals, which makes HOS-based identation methods insensitive to an
additive Gaussian noise 1, 2].

A major problem treated in this thesis concerns the blind identi cation of channel param-
eters, in the context of radiocommunication systems. Sevel relationships exist connecting

1
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high-order cumulants of a linear process to the parameters foits generating model. A vast
amount of papers can be found on this subject and numerous aaions have been proposed
for the identi cation of linear autoregressive(AR), moving-average(MA) and ARMA models,
exploiting only the cumulants of output signals. In particular, Brillinger and Rosenblatt [ 3]
established the exact expressions for computing cumulants terms of the coe cients of an FIR
system. The well-known C(q; k) solution proposed by Giannakis f] requires very few statis-
tics but is quite sensitive to cumulant estimation errors. Other approaches include techniques
that use additional cumulant information yielding improve d solutions, such as the methods by
Mendel and Giannakis p], Friedlander [6] and Comon [7], whose method is optimal in the total
least squares (TLS) sense. See als8, [9, 10, 11] among others.

Since the introduction of the independent component analys (ICA) concept in the seminal
paper by Comon [L2], research e orts have been spent for generalizing simultaeous diagonal-
ization criteria and establishing links with canonical tensor decompositions (c.f. 13, 14] and
references therein). For instance, in15], De Lathauwer et. al reformulated the canonical decom-
position of high-order tensors as a simultaneous generakzl Schur decomposition. The Parallel
Factor (Parafac) analysis of aP-dimensional tensor with rank F consists in the decompaosition
of the tensor into a sum of F rank-one tensors, each one being written as an outer produabf
P vectors [16]. In fact, output cumulants are multi-index objects having a symmetric tensor
representation [L7] and the blind identi cation of linear mixtures is closely r elated to the (simul-
taneous) diagonalization of cumulant tensors 18, 19]. In Chapter 1, we present a survey of the
main HOS concepts and properties; some algebraic tools andgorithms are also reviewed and
a synthetic presentation of the Parafac tensor decompositin is included along with the proposi-
tion of an extended version of the alternating least square¢ALS) algorithm for the estimation
of the Parafac components of tensors of any order.

The key-point in the use of the Parafac decomposition is its miqueness property, which can
be ensured under simple conditions that are stated in the Krskal Theorem R0]. Furthermore,
canonical tensor decompositions do not impose any kind of tlmogonality constraints and the fac-
torization of tensors composed of high-order output cumulats has the advantage of avoiding the
so-calledprewhitening operation by fully exploiting the multidimensional nature of the cumulant
tensor. Moreover, the tensor rank is not bounded by the tenspdimensions as it is the case for
matrices, which conceptually allows for the blind identi ¢ ation of underdetermined mixtures.
A formal relationship between Parafac decomposition and snultaneous matrix diagonalization
has been established ing1] showing that the components of the tensor decomposition ga be
obtained from a simultaneous matrix diagonalization by corgruence transformation, leading to
weaker uniqueness conditions and yielding algorithms thatidentify a greater number of user
channels with a given number of receive antennas, but still ppceeding with two computation
stages to recover the channel coe cients 22], i.e. one needs to compute a unitary factor (spatial
pre-whitening) before extracting the channel coe cients from an estimated matrix product.
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Our main focus in Chapter 2 is in exploiting the redundancies in the factors of the 4th-
order cumulant tensor decomposition by solving a single-&p least-squares (SS-LS) problem,
under very mild assumptions. To this end, we treat the 4th-order cumulants as a Parafac tensor
with components having a particular Hankel structure. Intr oducing this new cumulant tensor
modeling enables us to develop an iterative blind identi cdion algorithm for the case of FIR
single-input single-output (SISO) communication channes. In this context, the proposed method
estimates the channel coe cients by solving a sole minimizéion problem, contrary to previously
known techniques, thus avoiding classical pre-processingperations. On the other hand, we also
treat the case of instantaneous (memoryless) multiple-inpt multiple-output (MIMO) mixtures
by extending our 4th-order cumulant Parafac tensor model aml then introducing another impor-
tant contribution of this thesis, corresponding to a SS-LS dgorithm for the blind identi cation
of the MIMO channel coe cients. In the FIR-SISO case, the SSLS Parafac-based algorithm
represents a new tensor-based scheme for the blind estimati of the channel coe cients. Al-
though the 4th-order cumulant symmetries have being expldied with a tensor formalism for a
long time [23, 24], the SS-LS approach also consists, to our knowledge, in thest contribution
proposing to improve the LS solution of the Parafac decompagon, in both SISO and MIMO
contexts, using the redundancies of the 4th-order cumulantensor.

Mobile radiocommunication systems are often characterizé by multipath propagation,
which introduces IS, thus causing serious limitations in @pacity and performance. In mul-
tiuser/multiantenna systems, this scenario can be represated by a convolutive MIMO channel
model, characterized by the multipath physical parameters(delays, attenuations, and angles of
departure and arrival). In this context, equalization algorithms generally make use of the chan-
nel coe cients and the multipath parameters can be of interest for source localization purposes,
among other applications. In this thesis, we have been integsted in estimating both the MIMO
channel coe cients and the physical parameters describingthe multipath propagation scenario,
using a fully-blind two-stage approach. First, we extend the 4th-order output cumulant tensor
model for the convolutive MIMO channel case and, using a SS-& algorithm, we perform a non-
parametric estimation of the channel coe cients. This cumulant tensor model along with the
new blind identi cation technique can be viewed as a generatation of the models and methods
proposed in Chapter2 for the SISO and the instantaneous MIMO cases, hence consigg in a
major contribution of chapter 3. In a second stage, we introduce a tensor notation to represg
the structure of a convolutive multiuser radio channel, which allows us to identify the spatial
and temporal signatures of the channel by using a 3rd-order Brafac decomposition. Using an
ALS-based algorithm followed by a MUSIC-like search for themultipath parameters, we end
up with a new combined ALS-MUSIC technique that allows for the recovery of the physical
structure of the MIMO channel, as well as its coe cients with out the ambiguities due to the
Parafac decomposition.

Actually, MUSIC-like algorithms play an important role in d etermining the location of signal
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sources in sensor array processing. In this context, dire@n nding (DF) techniques have
been of particular interest for source separation and inteference suppression (beamforming)
applications. We also treat this problem in chapter 3, where we come up with a new high-
resolution DF algorithm based on the 4th-order cumulants ory. Exploiting the virtual antenna
array concept 25, 26], we show that we can get some additional virtual sensors usg the
Khatri-Rao structure of an unbalanced arrangement of the cumulant tensor, thus providing
some additional free dimensions to the antenna array. Withait resorting to 6th-order statistics,
our new source localization algorithm uses the SS-LS apprah to estimate the extended virtual
array, allowing for resolution gains comparable to the 6-MWSIC algorithm [27] with cumulant
estimation burden equivalent to the 4-MUSIC algorithm [28, 29].

Finally, we turn our attention to the problem of determining the order of radiocommunication
channels in the context of multiple-input single-output (M ISO) systems, using only the 4th-order
cumulants of the output data sequence. Channel order estint#on is a classic model selection
problem strongly related to determining the number of signds embedded in noisy observations
in narrow-band array processing. This is often referred to a the signal (or source) detection
problem [30, 31, 32]. A classical solution for the channel order selection prolem relies on the
Sphericity Test [33], which is a well-known algorithm for estimating the number of parameters in
a model using the eigenvalues of a correlation matrix in ordeto determine test statistics. This
algorithm nds several applications in the context of passive arrays, such as in 34, 35], where
an important modi cation of the Sphericity Test has been proposed. This approach is based on
the sample correlation matrix, which is estimated from a nite number of output samples and
hence subject to statistical variations.

In chapter 4, we address the problem of channel order determination as asies of hypothesis
tests based on scalar statistics. Using the multivariate esmator of the 4th-order output cumu-
lants, we exploit the insensitiveness of a Chi-square testtatistic with respect to the non-linearity
of a stochastic process. This property enables us to obsentbe amount of signal energy in the
representation space of the 4th-order cumulants and therep deduce the order of a FIR-SISO
communication channel. Our approach leads to a new channelrder detection method and we
provide a performance analysis along with a criterion to esablish decision thresholds, according
to a desired level of statistical tolerance. Afterwards, wecome up with another major contribu-
tion of the chapter, which consists in introducing the concet of MISO channel nested detectors
based on a de ation-type procedure using the 4th-order outpit cumulants. The nested detector
devices run combined algorithms that select the order and dsnate the coe cients associated
to the dierent emitters composing the MISO channel. By treating successively shorter and
shorter channels, we can also determine the number of sourse
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Chapter contents and contributions
This thesis is fundamentally based on the following axis:

1. Blind channel identi cation exploiting the symmetry pro perties of the 4th-order output
cumulants in a single LS minimization problem;

2. Source localization in multiuser narrowband array procesing;
3. Structured channel parameter estimation in a multipath propagation scenario;

4. Channel order estimation and signal detection in the congxt of MISO channels.

The thesis is divided in four chapters, organized as follows

Chapter 1: We present a survey on high-order statistics tools in SignBProcessing. Some de -
nitions and properties of HOS are introduced and reported tothe context of telecommunication
systems, including important relationships between highe-order cumulants and the parameters
of a linear system model. Useful linear algebraic tools andsjmultaneous) matrix decomposi-
tions are discussed. Finally, we present a brief introductbn to multilinear tensor decompaosition
tools using a generalized formulation for tensors of any orer and extending the ALS algorithm
to this general case. Uniqueness conditions are presenteahé the particular cases of 3rd- and
4th-order tensors are also discussed.

Chapter 2: New blind channel identi cation algorithms are proposed exploiting 4th-order cu-

mulant redundancies in order to perform the cumulant tensordecomposition by solving a single
least squares minimization problem. We analyze the cumulantensors in the convolutive SISO
as well as in the instantaneous MIMO cases and propose partidar cumulant tensor models for
treating each case. Then, we propose Parafac-based SS-L$@lithms to estimate the channel
coe cients. The algorithms, based on 4th-order cumulants aly, are also able to treat certain

underdetermined mixtures. Known algorithms based on the jant-diagonalization technique are
also described and performance comparisons are provided lgeans of computer simulations to
assess the applicability of the proposed algorithms in bothiSISO and MIMO cases.

Chapter 3: In this chapter, we are rst interested in the problem of bli nd multiuser localization

in the context of multiple antenna array processing, under te far- eld assumption, using only
the array output signals. Exploiting the Virtual Array conc ept, we propose a high-resolution
DF algorithm exploiting an unbalanced structure of the cumulant tensor, based on the estima-
tion of an array matrix formed from a double Khatri-Rao produ ct, using the SS-LS technique.
Then, we also treat the problem of estimating the physical paameters of a multipath MIMO

communication channel characterized by specular re ectios due to remote scatterers. A two-
stage approach is proposed: before extracting the physicadarameters of the multipath channel
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structure using a proposed ALS-MUSIC approach, we extend tke 4th-order cumulant tensor
model to the case of a convolutive MIMO channel and estimatets coe cients using a SS-LS
algorithm.

Chapter 4: This chapter treats the problem of estimating the channel ader and detecting the
number of sources in a MISO channel. First, we propose a sequee of hypothesis tests for
selecting order of a FIR-SISO communication channel. Relyig on some properties of the 4th-
order cumulant, we introduce a test variable that is sensitive to the non-linearity of a stochastic
process. Exploiting this property enables us to detect the bhannel order. We discuss the choice
of a decision criterion and propose a new algorithm for orderdetermination. In the context
of MISO channels, we introduce the concept of nested detects that successively test for the
presence of shorter and shorter channels, determining theirespective orders and estimating
their associated coe cients using HOS-based blind identi cation techniques.

The main original contributions of this thesis are listed bdow:

Proposition of a generalized version of the ALS algorithm fo the estimation of the Parafac
components of aPth-order tensor (section 1.3.2);

De nition of a tensor model for 4th-order output cumulants, in the FIR-SISO case, ad-
mitting a Parafac decomposition with components having a paticular Hankel structure
(section 2.2);

Development of a Parafac-based blind channel identi catim (PBCI) algorithm using a
SS-LS approach (sectior2.3);

Proposition of a Parafac-based blind (memoryless) MIMO chanel identi cation (PBMCI)
algorithm using the SS-LS approach to exploit the redundants in the Parafac components
of the 4th-order output cumulant tensor (sections 2.4 and 2.5.2);

De nition of a 3rd-order tensor model of the 4th-order output cumulants and proposition
of a Parafac SS-LS algorithm for blind channel identi cation in the memoryless MIMO
case (section2.4 and 2.5.2);

Derivation of a 3rd-order virtual array based on an unbalaned unfolding of the 4th-order
cumulant tensor structure; description of a method for estmating the VA using the SS-LS
approach (section3.2);

Uni cation of the 4th-order cumulant tensor models by means of a generalized tensor
formulation including the convolutive MIMO case, in which t he Parafac components have
a block-Hankel structure (section 3.3.1);
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Development of a non-parametric Parafac-based SS-LS algitiim for the blind identi ca-
tion of convolutive MIMO channels (section 3.4.1);

Introduction of a Parafac tensor representation for the structured multipath MIMO chan-
nel model based on the parameters characterizing the signgdropagation (section 3.3.2);

Realization of a combined ALS-MUSIC method for the estimation of the structured mul-
tipath MIMO channel parameters (section 3.4.2);

Determination of a Chi-square test statistic based on the errgy of the 4th-order cumulants
(section 4.1); proposition of a blind method for determining the order of a SISO channel
(section 4.1.2);

Development of a combined blind procedure for signal dete@n, order determination and
channel identi cation in the context of MISO channels (section 4.2);



INTRODUCTION



Chapter 1

Mathematical Tools

telecommunications history dates back to the 19th centuy, when Samuel F. B. Morse
started telegraphic transmissions and Alexander Graham Bk invented the telephone.
Since then, the information technologies experimented draatic developments and the
technological challenges changed a lot: ubiquitous accegsowerful computation and high
transfer rates. The new world scenario created a very harmfienvironment to data transmissions,
especially in the wireless and mobile communication contes. Dense urban agglomerations, hot
spot user areas, and high-speed transportation means arerse of the factors causing the physical
phenomena responsible for signal deterioration. Actuallythese phenomena lead to well-known
troubles of imperfect information recovery, known by the generic name ofinterference.

In multipath propagation environments, distorted frequency-response channels may cause
the energy of the electromagnetic pulses to spread in time this corrupting adjacent pulses and
introducing inter-symbol interference (ISI). Wireless canmunication systems are known to face
several problems related to multipath propagation including I1SI as a very severe performance
and capacity limiting factor. In order to suppress the e ects of interference and assure the
information recovery at the receiver side, knowledge of theransmission channel is necessary.
Several mathematical models have been developed in order tentatively predict the behavior
of real systems with the purpose of designing ltering strudures (equalizerg that compensates
or reduces the ISI.

In this context, second- and high-order statistics (HOS) apear as powerful signal process-
ing tools, playing a very important role in several applications that involve system information
recovery. However, second-order statistics (SOS) containo phase information and, as a conse-
quence, nonminimum phase signals cannot be correctly idened by those techniques. On the
other hand, HOS of Gaussian signals are either zero (odd-oedted moments) or contain redun-
dant information. This is a remarkable information since measurement noise is often Gaussian
and many real-life signals have non-zero HOS. Several imptant papers on HOS have been
written since the Sixties, but it is from the Seventies that the subject starts to experience its
greatest growing of interest with applications involving di erent contexts such as economics,

9
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speech, seismic data processing, plasma physics, controptics and obviously, communications.

More recently, the introduction of the multiuser and multip le output communication systems

served as an application background to the new developmenti the area. Sectionl is a brief

tutorial on this subject, presenting the important de niti ons, properties and some relationships
between high-order moments and cumulants.

Anyway, processing HOS data often implies implementing algbraic methods and generally
requires the use of numerical algorithms. Most of the enginering problems and physical applica-
tions make use of numerical methods, especially those assated with stability and perturbation
analysis. In particular, the eigenvalue problem for squarematrices is of crucial importance in
several domains of Signal Processing. As we will see in samti 2, several matrix factorization
techniques play an important role in these scenarios and wlilbe divided in two main strate-
gies B6]: diagonalization and triangularization. The former is classically solved by Jacobi-like
algorithms, still powerful and popular due to the high inherent parallelism. The latter one
is applicable to any (square) matrix and its classical implenentations are based on QR-type
algorithms. In some domains, such as blind sources separati and system identi cation, simul-
taneous matrix factorization tools are strongly desirable Section 2 also discusses simultaneous
decomposition techniques that are suitable for processingong data records sharing common
structure properties but di ering in the individual inform ation contents.

On the other hand, multi-linear algebraic tools have been deeloped and applications in
multiuser systems using HOS are now a current research topic In particular, the trilinear
Parallel Factor analysis (Parafac) has become very populain the elds of Psychometrics and
Chemometrics B7, 38 but it also has been widely used in Signal Processing applitions (c.f. [39,
40, 41, 42, 43, 44] among others). The major importance of using Parafac is duo its uniqueness
property, ensured under very mild conditions that have beenstated by Kruskal [20]. In section 3,
we present a synthetic review and some fundamental aspectg the Parafac decomposition, using
a general formulation for the case of ath-order tensor. We also brie y discuss the estimation
of Parafac components by describing the associated altertiag least squares (ALS) algorithm.

1 High-order statistics

Moments and cumulants are descriptive constants of a probaitty distribution. In this section,
we present a global overview on the main aspects of HOS inclinlg de nitions, properties and
important relationships.

Moments and cumulants

Let us consider a set ofk real random variables (r.v.) Z = fz; :::;z¢g with known joint
probability density function (p.d.f.), fz(zl; ::1;2z), and a sequence ofk integer numbers
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(n1;ny; ;ng) such that ny + ny + + nx = m. The mth-order moment of Z is de ned as
Mmz=E z{'z0%2::: 0% ; (1.1)

where Efg stands for the expectation operator. The moments M,.z de ned in (1.1) can be
obtained as the coe cients of the Taylor series expansion aound the origin of the characteristic

function z(u), also known as themoments generating function given as follows #5]:
z 1
z(w) fz(zl; crz)exp ju'zZ dzgcoidze
o]
= E exp ju'z ; (1.2)

whereu = (uq ::: ux)'. For complex random variables, we consider the joint distrbution of
their real and imaginary parts, and the expressions given he become more complicated4g].
The second characteristic function, known as the cumulants generating function,
z(u), is then de ned as the natural logarithm of the moments generating function, i.e.
z(u) =In[ z(u)]. Thus, the mth-order cumulants of Z are obtained as the coe cients of its
Taylor series expansion around the origin and they can be coputed as the partial derivatives

of z(u):
onz= G2 0
Let us assume, without loss of generality, thatn; = = nx =1 and thus m = k. Now,
denote by Pi( ) a partition of length of the setl = fl1;:::;mg. The partition Pi( ) is an
unordered collection of nonintersecting nonempty sets P such that ;_, Pj = I . Let P be
the set containing all partitions of | with length , so that P, Pi( ) p , 1 m. Consider
the set P comprising all possible groups of partitionsP of the setl,i.e. P = fP1;:::;Pmg

For instance, whenm = 3 we have | = f1;2;3g and thus:
( ) ( ) ( )
P1= f1;22;3 ;o P2= fl1g;f2;3g ; f29;f1;39 ; f30;f1;29 ; P3= f1g;f29;f3g
o | ——3 | —2—} | —{z—} I {z

2 2 2, 3
pA PR PR P

}

1
P

so that ( )
P= P1;P2;P3 = f1,2,3g; fl1g;f2;3g9 ; f29;f1;3g ; f3g;f1;29 ; flg;f2g;f3g

Using the above de nitions, we can state the following formuas explicitly relating moments
to cumulants and vice-versa, respectively 7]:

xn 1 X Y 0)
emz= (1 “C 1 Mmz,  Pj P (1.4)
=1 pIp Q=1 :
X X Y 0)
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where Zp, is a subset of Z=fz,; ::: ;zmg formed with the elements having indices in R.

From de nition ( 1.1), we observe that if the variableszs; ::: ;z, are independent with zero
mean (i.e. centered around the origin) thenall the odd-order moments are identically zero From
(1.4), we note that this property can be extended to cumulants beause, ifm is odd then every
partition Pi( ) will always contain at least one subset R with an odd number of elements. That
is the reason why in so many situations we are constrained to se at least fourth-order statistics.
For centered independent processes, the expression for t¢h-order cumulant reduces to

Caz = Efz12523249 Efz1209Efz3249 Efz1239Efzp249 Efz1249EfZz230; (1.6)

with Z = f2zy;25;23;249. For notational convenience, we de ne the following convetion, to be
used throughout the rest of this thesis:

Cmizp,» CUM[Z,;: 557,15 .7
whereP = fjq1;:::;jmg and the operator cum] ] stand for the mth-order joint cumulant of the
random variables z;,;:::;z,, . Thus, considering a zero-mean random proceds (t)g, we have

(o1 )

M, = E (t+t) (2.8)
RO i
Cn. = cum (t+tg); (t+ty);iy (t+tm 1) ; (1.9)
where = f (t+ tg); (t+ ty);:::; (t+ ty 1)g and hence the involved r.v. are time-shifted
samples of the process(t). Notice that, for stationary processes, themth-order statistics depend
onlyonthem 1time-lags 1=1t1 to,:::;, m 1=1tm 1 to. This allows us to introduce the
following notations: ( )
ny 1
Mm (1525 m )= E (1) (t+ ) (1.10)
i=1
Cm: (1;5::5; m 1)=cum[ (t); (t+ 1);::0; (t+ m 1)l (1.11)

wheref (t)gis a zero-mean stationary random process. Stationarity wilbe further discussed
later in this section.

Polyspectra

The polyspectrum of a stationary process (t) is de ned as the (m 1)-dimensional discrete
Fourier Transform of the mth-order cumulant, i.e.

* * X1
Sm: (U1;l2;im 1), Cm; (1355 m 1) €xp | i (1.12)

coincides with the classigpower spectrumS,. (! ). When m = 3, we have the so-calledbispectrum
Ss. (! 1;! 2), whereas form = 4 we get Sz. (! 1;! 2;! 3), named trispectrum.
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Next, we present a survey of the most important properties ofcumulants and polyspectra.
Further details and proofs to these properties can be easilyound in the literature (c.f. [1, 2])
and will be omitted here.

1.1 Properties and comments

Due to some special properties, the use of cumulants yielddaantages that may not necessarily

following properties hold for cumulants:

P1 Linearity :

cum[ 1z3;:::; kzk] = cumizy; iz i (1.13)
where ;i =1;:::;k are constants

P2 Additivity : If Xq;Yo are mutually independent random variables, then

cumlzy; it ze] = cum(zn, ;i zn, ] (1.15)

P4 Independence If any (nonempty) subset of Z is independent of the remainirg r.v. in Z,
then
cumlzy;:::;z¢] =0: (1.16)

Comments and discussion

1. Stationarity : A stochastic processf (t)g is said to bestrictly stationary if the joint dis-

time t, for all n. In other words, all the moments of (t) are time-invariant and depend
only on the di erences between the time-lags ; = t; to, 1 2 [1;n 1]. In practice, it
is usual to deal with the weaker concept ofwide-sense stationarity (WSS), also known
as second-order stationarity, which only ensures the meanral the correlation function to
be independent of the observation instants. Recalling proprty P4, it follows that for a
stationary centered i.i.d. process themth-order cumulant is a multidimensional impulse
function, i.e.

cum[ (t); (t+ 1) (t+ m Dl=cum[ "] (2)::: (m 1); (1.17)
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where (') stands for the Dirac's impulse function. We thus denote . = cum[ "M(t)]
and, assuming (t) is zero-mean, we get

2 =cum 2(t) =Cyx (0)= E 2(t) ; (1.18)
5 =cum 3(t) = Cg (0;0)=E (1) ; (1.19)
5 =cum Yt) =Cs (0;00)=E *t) 3E ) 7 (1.20)

where ,. , 3 and 4 stand respectively for thevariance, the skewnessand the kurtosis
of the random process (t).

The skewnessmeasures the lack of symmetry in a given distribution. It equals zero for
symmetric (centered) distributions. A normalized version of the skewness is reported in

the literature as follows:
Csz (0;0) .

(Cz (0)%%
The kurtosis is a measure of athess and, indirectly, of gaussianity. It equals zero for
Gaussian processes and has positive or negative value depémy on whether the probability
density of the process is peaked (over-Gaussian) or at (undr-Gaussian) with respect to
a normal distribution, respectively. A normalized version of the kurtosis is de ned as

(Ca: (0)%

. Symmetries. In addition to properties P1 to P4, cumulants and polyspectra present several

Cm: (nyiitis ny 1), Wherefng;:::;nggcan be any permutation of the setf1;:::;m 1g.
Hence, there are (n  1)! di erent ways to order the time-lags  yielding the same cumulant
value. In addition, notation ( 1.11) was de ned with respect to the time-shift tg, using the
convention ; = t; tp, 1 2 [1;n 1]. However, any other choice oftj, i 2 [1;n 1],
should lead to the same result, giving usm additional ways to get the same cumulant. In
conclusion, mth-order cumulants de ne a representation spaceC ? m 1 in which the

all the mth-order cumulant information and providing no additional information with
respect to the other regions. For instance, wherm = 3 each cumulant appears 3! = 6
times in the spaceR * 2, as illustrated in g. 1.1 Each of these 6 regions of symmetry
in the plane ;  , contains all the non-redundant 3rd-order information. For m = 4, the
spaceR * 2 3 s divided into 4! = 24 redundant regions of symmetry.

. Cumulants of complex processesThe above formulas were stated for the case of real-valued

random processes. In the complex case, the random variablesay be conjugated or not.
Starting from equation (1.11), where no conjugations were made, we can state several
de nitions until reaching the one where all the variables are conjugated. Throughout the
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Figure 1.1: Regions of symmetry for the 3rd-order cumulantsin the plane ; .

rest of this work, except when otherwise stated, we will empby a particular de nition * in
which the random variables are alternately conjugated, so hat (1.11) becomes:

Co (13000 ) cum[ (t); (t+ 1);:::; (t+ m 2); (t+ m 1)]; if miseven,
mo b cum[ (t); (t+ 1);:i; (t+ m 2); (t+ m 1), if misodd,
(1.21)

and, according to the above, . is denoted as follows:
m: = Cm: (0;0;:::;0): (1.22)
4. Second-order moments and cumulants using (1.21) and the relationship (1.4), second-
order moments and cumulants (m = 2) can be written as
Mz, ()= Ef (1) (t+ )g=cum[ (t); (t+ )= Cz (); (1.23)
which is the autocorrelation function of (t). We also de ne
Mz ()= Ef (©) (t+ )g=cum[ (t); (t+ )= Cz (); (1.24)
sothat M ()= Ef (t) (t+ )g=(Ef (t) (t+ )g) = ().

5. Fourth-order cumulants: For centered processes, whem = 4, relation ( 1.4) reduces to
(1.6). Recalling (t) is assumed zero-mean stationary, and using the notation1.21), we
get the following:

Ca (1 25 3) cum[ (1); (t+ 1); (t+ 2); (t+ 3)] (1.25)
= Ef (1) (t+ 1) (t+ 2) (t+ 3)g

Ef (1) (t+ 1)gEf (t+ 2) (t+ 3)g

Ef () (t+ 29Ef (t+ 1) (t+ 3)9

Ef (1) (t+ 3)gEf (t+ 1) (t+ 2)g

! The use of this de nition is motivated by the fact that for cer tain signals of interest fourth-order cumulants

are zero when an odd number of conjugated terms is taken into account.
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and consequently

Ca (15 25 3) Ma, (15 25 3) Mz (1)M2 (3 2) (1.26)

Mé;d) ( 2)|V|2(;d)( 3 1) Mz (3)Mz (1 2
Replacing 1= 2= 3=0in (1.26 we can re-write (1.20) as

2
5 = Csz (0;0,0)= Mg (0;0,0) 2M2 (0) MS(0)

= Ej@mi* 2(j@®2% E 2t ° (1.27)

6. Gaussianity: Cumulants of any order greater than two of Gaussian processes areero
[1, 2]. Hence, cumulants can be viewed as a measure of the distanoé a process from
gaussianity.

7. Circularity : Let us de ne the complex-valued random vectorz = [z;:::z]". The vector
Z is said to becircular if and only if

ehu)y= ('), 85 | = P (1.28)
which means that the moments of the variablesz and el z are equal. The circularity of
a complex random variable can therefore be viewed as the inveance of its probability
density to a rotation of an angle . In particular, for a scalar complex circular random
variable, it follows that moments and cumulants with a di er ent number of conjugated
and non-conjugated terms are zero, e.gEfzg=0, E z2 =0, E z?z =0 and so on.

1.2 Estimation of moments and cumulants from real data

Practical applications of high-order statistics require the use of methods for estimating their
values from the available data. In this context, ergodicity? is key assumption, allowing us to
estimate moments from nite data sequences. Therefore, djgosing of N data samples of a
centered random variable (t), the simplest estimator of the mth-order moments of (t) is given
as follows:

S 1 P . .
2 N nitl (t) (t+ 1) (t+ m 2) (t+ m 1); if miseven;
Mm 1;"';m1—B ) "pot
© Ny N+l (t) (t+ 1) (t+ m2) (t+ m 1); if misodd,
n=nja
(1.29)
wheren; =max(0; 1;:::; m 1)and np =min( N;N 1,0 N m 1). Let us also de ne
1 Xz
MO (g m )= ——r (t) (t+ 1) (t+ m1); 8m2N: (1.30)
' no np+1 n=n,

2 statistical expectations of ergodic processes coincide wih their time averages
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Furthermore, in order to evaluate the performance of an estinator # of a given deterministic
quantity #, the mean, variance and bias of the estimator are useful meits, and we de ne them
as follows, respectively:

n o
p = E # (1.31)
2

p = E # (1.32)

n o
bias # = E # # (1.33)
Taking # = Mm: (1,515, "h 1), we notice that the mth-order moment estimator de ned in
(1.29 is non-biased sinceE I\'/Tm 1570 m 1) = Mm (1;:05 m 1). In addition, (1.29 is

also said to be a consistent estimator because

lim M (15 m 1) = 0: (1.34)

N1

In this thesis, we are particularly interested in the case wkere m = 4. In order to estimate
4th-order cumulants, we rst get the 2nd- and 4th-order moments estimates using (.29 and
(1.30, which yields

P2
% Mo (1520 9)= ot (D) (0+ 1) (n+ 2) (n+ 3)

pz n=ni
o ()= mder (M) () (1.35)
é Maa ()= mn:n (n) (n+);

and then 64; (1, 2; 3) is obtained from the relationship (1.26). It is possible to show that
the cumulant estimator is biased, but its bias tends to zero & N tends to in nity (c.f. [ 47] and
references therein). In addition, 64; ( 1; 2; 3) is said to be a consistent estimator, since its
variance goes to zero a®\ goes to in nity.

For polyspectra estimations, cumulant estimates must be otained rst and then converted
to the frequency-domain, using (L.12). Further information on cumulant and polyspectra esti-
mation can be found in [17, 48, 47].

2 Linear algebraic tools

In this section, we consider the computation of eigenvecta that simultaneously satisfy a number
of given matrices. This so-calledgeneralized eigenproblentonsists in the search for solutions
revealing the common eigenstructure of a set of symmetric matrices. This problemis of great
importance in the domain of blind source separation but we ato nd applications in the eld of
system identi cation and equalization.



18 CHAPTER 1. MATHEMATICAL TOOLS

2.1 The symmetric-de nite eigenvalue problem

Eigenanalysis is a basic algebraic tool in any domain of Sigal Processing. The search for the
nontrivial solutions of the linear system Ax = X gave rise to enormous developments since the
Jacobi's works in the middle of the 19th century 49]. In particular, computing the eigenvalues
of a matrix A consists in nding the roots of the characteristic equation:

det (A 1)=0: (1.36)

However, in most of the cases, explicitly solving the charaeristic equation is an ill-conditioned
problem that should be avoided. Moreover, if there exist saltions to (1.36), those are necessarily
iterative because there is no closed-form expression for ¢hroots of a general polynomial of degree
n> 4. As a result, numerical solutions and stability issues hag been strongly addressed in the
literature aiming an accurate and e cient computation of ei genvalues and eigenvectors.

A straightforward solution to this problem consists in a Schur-type decomposition of the
square matrix A to the form A = QL TQ", whereQ is unitary 2 and L is lower triangular. Several
zero-introducing methods are reported in the literature fa implementing this triangularization
strategy, including Householder, Givens and Gram-Schmidt[50, 49]. A special case occurs
when A is normal, i.e. it commutes with its conjugate-transpose @A 7 = AHA). A normal
matrix is unitarily diagonalizable i.e. there exists a unitary matrix Q such that Q"AQ =
where is a diagonal matrix with the eigenvalues of A composing its main diagonal. This
diagonalization approach is easily implemented by means of successive apgltions of unitary
similarity transformations.

Next, we brie y discuss these two classes of techniques thatope with the vast majority of the
cases concerned in signal processing applications. Notjdeowever, that the choice of an adequate
algorithm depends on a number of characteristics of the corerned matrix. In particular, some
features to be considered involve main properties (symmetc, unitary, Hermitian, etc), structure
(sparse, Toeplitz, etc) and type of elements (real or compbe) among others.

Triangularization strategies

A valuable approach for computing the eigenvalues of a squarmatrix A 2 C" " consists in
reducing A to a triangular form by means of unitary similarity transfor mations. This solution
is based on theSchur's Unitary Triangularization Theorem, which states that there exists a
unitary n n matrix Q such that Q"AQ = LT is upper triangular. Since the determinant of
a triangular matrix equals the product of the diagonal entries, the eigenvalues oA are given
by the diagonal elements ofL, i.e. ; = [L]i. Furthermore, provided that A is full rank, the
columns of Q form an orthonormal basis for the column space ofA. Therefore, the Schur
decomposition can be viewed as a way to compute eigenvaluesich eigenvectors ofA, as it is
shown in Appendix A.1.

S Amatrix Q 2 C" " is unitary i QQH=0Q"Q = 1. Asaresult, if Q is unitary then QH=0 &
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Diagonalization strategies

Let be unitarily similar to A, i.,e. = QMAQ, with Q unitary. If A is normal then also
is ,i.e. if AAH = AHA then H= H  On the other hand, Schur's Triangularization
Theorem says that a unitary Q exists for which  is upper triangular. Notice, however, that
a matrix that is both normal and upper triangular can only be diagonal and hence, the Schur
factorization actually diagonalizesnormal matrices. Therefore, diagonalization techniques an
be used to determine the eigenstructure of a normal matrix. h particular, Hermitian matrices
(symmetric in the real case) often receive special attentio since they have real eigenvalues.

Numerical solutions to this problem are known to be iterative and the idea is based on the
repeated application of unitary similarity transformatio ns so that matrix A is systematically
changed toward a diagonal form until reaching a tolerance leel with respect to a certain criterion.
Such a criterion must be carefully de ned in order to stop iteration at a point where A is close
enough to being diagonal. A classical measure of how much a rmix di ers from being diagonal,
based on its non-diagonal values, is given ing0], as follows:

0 1=
x oo o
o (A) , % JaijJ§ (1.37)
i=1 J =1
i6i
= KAKE k diag(A)K® (1.38)
where 0 1,5,
XX
kAke , @ jaj j°A (1.39)
i=1 j=1

is the Frobenius norm of A, diag(A) is the vector consisting of the diagonal elements oA and

k k stands for the Euclidean norm. Note that kAkE = Tr (AA ") and, since the trace of a
matrix is invariant under a similarity transformation, the following holds for any unitary n n

matrix Q:

kAKZ = Tr (AA M) = Tr (QHAA HQ) = Tr (QHAQQ "AMQ) = kQHAQ K2: (1.40)

Therefore, the Frobenius norm is also preserved under a sittairity transformation. As a result,
we have the following relationship

2 2
kAkZ =0 QM"AQ + diag Q"AQ : (1.41)

Once the sum in the right-hand side of the above equation is awstant it is straightforward to
conclude that minimizing the norm of the o -diagonal terms i mplies maximizing the norm of
the diagonal elements and vice-versa.

Diagonalization methods appear among the earliest solutins for the eigenvalue problem and
have been formerly addressed by Jacobi, whose seminal idelascame classic and very attractive
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for application in parallel computing. In Appendix A.2, we describe the classical Jacobi method
for computing similarity transformations that make A closer and closer to being diagonal, in an
iterative procedure.

In the next section, we show that the simultaneous diagonaliation of two symmetric matrices
is equivalent to a generalized eigenvalue problem. Under cain conditions, this problem can be
viewed as a generalization of thd_ower-Diagonal-Upper factorization (LM T) and it indicates
a link between the EVD techniques and the optimization methads [51, 52. We will also show
how this problem can be extended to a set oK symmetric matrices.

2.2 The generalized eigenvalue problem

Given a Hermitian matrix A 2 C" " and a Hermitian positive-de nite matrix B 2 C" ", we
want to nd a factor Q such that QHAQ and Q"BQ are diagonaln n matrices. We start by
looking for an intermediate transformation W 1, referred to aswhitening transformation, such
that

whBw | = 1I: (1.42)

In the above equation, W ; can be computed by several means including classical singulvalue
decomposition (SVD) or eigenvalue decomposition (EVD). L¢ for instance, the EVD of B be
givenby "B = g, then

wi= (1.43)
where Bl=2 is real sinceB is assumed Hermitian and positive-de nite. However, we se&h a
factor Q that is supposed to diagonalize bothA and B, simultaneously. Hence, the whitening
transformation W ; must also be applied to A, which yields A; = WAW ;. We can now
diagonalize A 1 by computing a second transformationW ,, as follows,

whaw,=whiwhaw w,= (1.44)

whereWEA Wo = is the EVD of A1 with being a diagonal matrix and W » a unitary
transformation (becauseA 1 is Hermitian). We conclude that Q = W ;W , jointly diagonalizes
both A and B, so that

HA -
QUAQ (1.45)
QfBQ = I;
where we have used the fact thatW , is unitary to obtain the latter equation. Furthermore,
QQM = w wowhwlt = wwh and, from (1.43, we get W W = gt 1, hence

QQHM =B 1 Thus, we can handle (.45 to get (BQ)Q"AQ =(BQ) and it follows that
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The above equation states a generalized eigenvalue problefs0]. The columns ofQ form a basis
of eigenvectors associated with the generalized eigenvas, disposed at the diagonal entries of
. Moreover, sinceB is nonsingular*, we have

B !AQ = Q : (1.47)

Therefore, equation (1.47) shows that the diagonalizing factor Q exists and can be exactly
obtained from the EVD of B 1A or, equivalently, from two consecutive matrix decompositons
as indicated by (1.43 and (1.44), avoiding matrix inversion. This problem is referred to asthe
symmetric-de nite generalized eigenproblemand a number of algorithms are available in the
literature to compute Q satisfying (1.45).

Simultaneous diagonalization

We have just considered the simultaneous diagonalization fotwo symmetric matrices (K = 2).
We now consider the general case whet¢ > 2. In other words, we search the nonsingular factor

For K > 2, it does not necessarily exist a common set of eigenvectoand Q is said to reveal the
average eigenstructureof the set A [53]. Existing humerical methods can be used to compute an
orthonormal basisQ =[Q 1  Q ] that approximately diagonalizes the matrices A (¥), as best
as possible, following a Jacobi-like approach. The idea bahd these methods is to optimize a
cost function aiming to minimize the o -diagonal elements of A ()| so that all matrices in the set
A become systematically and simultaneously closer to beingidgonal. A very straightforward
way to de ne the cost function describing this criterion is as follows:

J(Q;A), X o Q"AMQ (1.48)
k=1
where the operatoro () is given in (1.38 and the matrix Q that minimizes (1.48) is referred
to as joint diagonalizer of the set A [53].
From the previous section, recall that minimizing the norm of the o -diagonal terms of a
matrix implies maximizing the norm of its diagonal elements as suggested by 1.41). As a result,
computing a joint diagonalizer Q to the set A by minimizing (1.48) is equivalent to maximizing

the following criterion
X 2
J(Q:A), diag Q"A®Q (1.49)
k=1

4 If B is singular, the method discussed here can be applied by usim a rank-reduction technique in such a way

that the rst rp = rank (B) <n columns of (eigenvectors of B) are used to form , and then (1.43) becomes
o diag( 15011 rg) 2= W12 C" "8, Thus, W, 2 C'® "8 and henceW W, = Q 2 C" "8 . In this case,
(1.47) becomesB* AQ = Q ,whereB* is the pseudo-inverse ofB de nedas B* =, diag( 1;:::; r5) * ,HB

sothat BB* = B*B = |, ,"L . This procedure is referred to as reduced-rank simultaneous diagonalization.
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For K =1, the above problem corresponds to a simple matrix diagonbzation and we can easily
compute Q using a classical Jacobi algorithm. The same holds foK = 2. For K > 2, however,
orthogonal similarity transformations might not be able to produceK perfectly diagonal matri-
ces. An extended version of the Jacobi diagonalization algghm was proposed in 1, 52] for
performing an approximative joint diagonalization of the matrices in A by maximizing (1.49
through the successive application of plane rotations Givens rotations). The extended Jacobi
algorithm for approximative simultaneous diagonalization is described in AppendixA.2.

Least Squares equivalence

The criterion (1.49 for the simultaneous diagonalization of the setA is shown to be equivalent
to the following:

X 2

JQ;a= AW Q Q" (1.50)

k=1 F
Although the original proposition of Cardoso and Souloumia [51] was merely intuitive, the above
result, rst demonstrated by Wax [ 54], proves that joint diagonalization actually coincides with
a least squares problem and it is therefore optimal in that sase.

3 Multilinear algebraic tools

3.1 Parafac tensor decomposition

The Parallel Factor (Parafac) analysis of a Pth order tensor with rank F consists in the de-
composition of the tensor into a sum ofF rank-one tensors, each one being written as an outer
product of P vectors [16]. Let us consider thePth-order tensor T (P) of dimensionsl; ::: Ip
having the following F-component decomposition:

ti, ip = X afj; :::aiff) (1.51)

f=1

whereip 2 [1;1p], with p 2 [1;P]. The sum expressed in {.5]) is the scalar representation of the
Parafac decomposition of tensorT (P). The rank of a tensor is de ned as the minimum number
F of factors needed to decompose it in the form.51). The tensor T(P) can be written as the

sum of F outer products® involving P vectors, as follows:

X1 Xe
P) _ ) (e)
TP = 15|1:::|pei1 SR

i1=l ip =1
X

_ 1) (P).

= AY A®): (1.52)
f=1

5The outer product of two arrays A(P) 2 C't # P and B(?) 2 CIt # Jo consists of a tensor of orderP + Q

in which the element in position i1;i2;:::5ip;j1;j2;:::;j o equals the product @i, i, i p By g -
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(Ip)
Ip
ie. ei(:)p) =[0;:::;0;1;0;:::;0]" 2 R'» 1, with the nonzero element "1' placed at theipth entry.
In addition, the P matrices A(P) 2 C'» F p 2 [1;P], formed of the elementsai(fz, ip 2 [11p],
f 2 [1;F], contain all the tensor information and will be referred to as (canonical) Parafac

where the notation e; *, iy 2 [L;1,], p 2 [1; P], stands for theipth canonical basis vector ofR'»,

components. Thef th column of matrix A (P is de ned as follows:

AP X aPell”: f2[LF] (1.53)
ip=1
We de ne a d-dimensional slice of tensor T (°) as the set of elements obtained by freezin® d
of its P indexes and making thed other ones to vary in their respective ranges. As a result,
one-dimensional (1D) tensor slices can be viewed as vectors antivo-dimensional (2D) tensor
slices are matrices.

Establishing conditions to ensure unigueness of the Paratadecomposition is of major im-
portance. Uniqueness represents a great advantage of Paeaf over matrix decompositions,
since Parafac does not produce rotational ambiguities. In ddition, there are generally no or-
thogonality constraints such as in SVD, even in the symmetrc (Hermitian) case, where such
constraints also apply to EVD ©. In particular, the decomposition of a tensor T (P) with compo-

satisfying (1.52) is such that
AP = AP o 8p2[LP], (1.54)

where |, p 2 [1,P], are diagonal scaling matrices satisfying

\P
0= g (1.55)

p=1
and isanF F permutation matrix [ 55]. In other words, essential uniqueness means unique-
ness up to column scaling and permutation. A su cient uniqueness condition has been stated
by Kruskal in [ 20] for the case of a 3rd-order tensor. For a generiP th-order tensor, Sidiropoulos
and Bro extended the Kruskal Uniqueness Theorem as follows38]:

Theorem 1.1 The Parafac decomposition of aPth-order tensor with rank F > 1, is essentially

unique if
x
kA(p) 2F + ( P l), (156)

p=1
wherek, » stands for thek-rank of the Parafac componentA P p 2 [1;P].

% 1t is well known that the SVD of a (complex) matrix yields a fac torization of the type X = UDV H with D
diagonal and U and V unitary matrices. When dealing with Hermitian matrices, th is orthogonality constraint
also applies to EVD.
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The k-rank of an n  m matrix X equals the largest integerkx for which any set of kx
columns of X is independent. From this de nition, we notice that kx rx  min(n;m), where
rx = rank (X). Several authors have addressed the Parafac uniquenessagiiem and di erent
proofs have been given to the above theoren], 38, 56|. In addition, the Kruskal condition is
shown to be necessary foF =2 and F = 3 and, if Ky = ram, 8p 2 [1;P], then (1.56) is
also necessary foF =4 [38]. In the general case, some necessary uniqueness condisanclude
Kay 6 0, 8p 2 [1;P], which means that the Parafac componentsA (P should not have any
all-zero column B7]. Implications of this fact will be further discussed later in this section.

In section 3.2 below, we discuss the important issue of estimating Parafaccomponents.
Speci cally, we will introduce the basic principles for implementing the ALS algorithm under a
general framework. To this end, we need to express tensdf (°) using matrix representations.
In which follows, we derive a generalized formulation for the matrix representations of aP th-
order (Parafac) tensor allowing us to extend trilinear estimation algorithms to the order P.
Matrix representations are obtained by unfolding the tensor so that all the tensor elements
are placed in a 2D array. We de ne the Pth unfolded tensor representation of T(P) as a
(I1 1p 1) Ip matrix Ty, such that [Tpjlsi, = ti,::i, Where the row number is given

byr=(ia 1l Ip 1+(i2 DIz Ip 1+ :::4(ip 2 Dlp 1+ip 1.

Using the canonical basis vector notation, this is equivalat to write:

. X1 Xp C e sy
[P1 > 110 Sy DIy Ip 1+(i2 DIz Ip 1+ u+(ip 2 Dlp 1+ip 170
i1=l ip=l
X1 Xp T
| | | |
- tiliiiip ei(ll) ei(22) ei(PP 11) ei(PP) (157)
i1=1 ip=1
where we have used the fact thaiei(') ej(J) = eEi'J )1)J+j. Replacing (1.5]) in the above equation

and using de nition ( 1.53), we easily get:

X T
AD AP D AP

Trp)
f=1

AQ AP D A(P)T 2 clls e 1) Ip. (1.58)

The index P in T py is clearly associated with the Parafac component (P) | which is right-
multiplied by the Khatri-Rao product in the above equation. This notation suggests that A (P)
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For instance, whenp = 1 we have:
Ty= A® AP) AT 2 cliz 1e) 1. (1.59)
The general formulation is given as follows:
T = AP AP) A AP D APT po2p 1k (1.60)

Note that Ty 2 Cllpsr Ipl1 1p 1) Ip |n practice, in order to form the column [T ] we

jips
arrange the elementst;, ...j, by xing the index i, while varying the rst p 1 andthelastP p
indices in consecutive nested loops withp being the most inner one (fastest) andi; the most
outer one (slowest).

Finally, we remark that for each p 2 [1;P], there exist (P  1)! equivalent (but di erent)
ways to de ne a matrix denoted T ) (by permuting the P 1 indices of the Parafac components
in the multiple Khatri-Rao product of ( 1.60)). Actually, ( 1.60 is only one of these equivalent
formulations. For the sake of a uniform notation, throughout the rest of this thesis, we convention
to denote by T ; the matrix representation of tensor T (P) obtained from the unfolding procedure
above described, taking the order of the indices into accoun As a consequence, equationsl(58

to (1.60 hold. Any other notation will be disregarded.

Among many algorithms proposing a solution to estimate the &ctors of the Parafac decompo-
sition, the ALS algorithm is probably the most famous one. Inthe next section, we address this
subject under a general framework by describing an ALS algdthm that estimates the Parafac
components of apth-order tensor. We will also brie y discuss the particular cases ofP = 4 and
P =3, which yield quadrilinear and trilinear ALS algorithms, respectively. In chapter 2, we will
exploit the redundancies in the factors of the 4th-order cunulant tensor decomposition in the
minimization problem in order to develop new channel identication algorithms.

3.2 The Alternating Least Squares (ALS) algorithm

The main idea behind the ALS algorithm is to divide the parameters to be estimated into several
sets in order to facilitate the use of simpler estimation algrithms. Then, each set is estimated
by iteratively minimizing, in the least squares sense, a sigle cost function conditioned to the
previous estimates of the other parameters. The algorithm terates until no improvements
are observed (c.f. 8] and references therein). In fact, the ALS algorithm is shom to be
monotonically convergent, i.e. it can only improve or keep he same t of the model. Its main
drawbacks include slow convergence and possible convergento local minima due to inadequate
initializations. But these problems are more likely to occu in di cult cases ’.

" Situations with strongly correlated Parafac components or with too many components.
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Using the unfolded tensor representations de ned in the prgious section, with the general
formulation given in (1.60), we can de ne the following LS criteria:

1 1 T 2
(AP, Ty AP AP AR, AR AGT (161)

wherer stands for the iteration number and, for notational convenience, we have omitted the

The optimal LS solution to this problem is given by:

T .
Agp) = argT!gf p(A(p))g

#
AP+ AP) AD, AP D Tp P2I[LPI: (1.62)

The Generalized Parafac-ALS algorithm is summarized belowWe start with p = P by assuming

it does not always yield a good rst estimate [55].

Algorithm 1.1 (Generalized Parafac-ALS algorithm)

execute the steps below, starting withr = 1:

1. Using (1.62) with p= P, compute A", using the estimatesA® ;:::; AP D
from the preceding iteration, so that:

T_ AQ P 1 # .
Agp) - Ar 1 Ar 1 T[P]1

2. Forp=P 1;::::2 compute AP using the estimatesA |
. S 1 1
ously computed during the current iteration andlﬁﬁ )1; o ;AEp 1) from the pre-
ceding iteration, as follows:

#
APT = AP AP) AW AP Ty

3. For p = 1, take all the estimates previously computed in the currenttération
into account and get:

T #
AOT = A® AP Ty

4. Updater r +1 and repeat steps 1 to 4 until criterion (1.63) is satis ed.
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Classically, the estimation process is terminated when wean no longer observe signi cant
variations on either the parameters or the t of the model. According to [58], convergence of
t does not necessarily imply convergence of parameters, #hough this is usually the case in
practical situations. As suggested therein, in order to avad costly t calculations after each
iteration, the relative change in the value of the estimated parameters can also be indicative of
convergence. That is why we adopt, throughout the rest of thg thesis, except when otherwise
stated, the following stop criterion:

er) er 1) (1.63)
where
w AP A®
e(r) = 2 =5 (1.64)
p=1 r

F
and " is an arbitrary small positive constant.

Lastly, we note that the full-column rank property of the mul tiple Khatri-Rao product

A (pt1) AP AD A® D forall p2 [1;P], is a necessary condition for the uniqueness
of the Parafac decomposition §6]. It is also possible to show that satisfying the Kruskal con
dition implies satisfying this necessary full-column rank condition. In fact, it has been shown
in the context of 3rd-order tensors that, if the Kruskal condition is satis ed, then the terms
(AD AP (AD A®)and (A® A®) are full-column rank, provided that the k-ranks of
the Parafac components are nonzero5P]. This result is easily extendable to any orderP > 3
[60]. Consequently, asr increases, the multiple Khatri-Rao product in (1.62 is ensured to
converge to a full-column rank matrix for any p 2 [1; P], if the Kruskal condition is satis ed.

3.3 Particular cases
Fourth-order tensor

Let us consider a 4th-order tensorT ¥ of dimensionsl J K L with scalar representation

given from (1.51) as follows:
X
tij = aif b G dif ; (1.65)
f=1

where, for convenience of notation, we usedj , bt , G, and di , with i 2 [1;1], ] 2 [1;J], k2
[1;K]and | 2 [1;L], to denote the elements of the Parafac component& 2 C' F, B 2 CJ F,
C2CK FandD 2 ct F. Taking this notation into account and rewriting equations (1.58)
to (1.60 with P =4 (and P = 3), we easily obtain the unfolded tensor representations Bown
in Table 1.1, which summarizes the formul for the unfolded forms of the 4th- (and 3rd-) order
Parafac tensor.
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Table 1.1: Unfolded representations of 4th- and 3rd-order Rrafac tensors
Unfolded tensor

_ P=4 (dim.) P=3 (dim.)
representations
T (A B C)DT 1K L
T (D A B)CT wJ K (A B)CT 13 K
T (C D ABT kU J (C ABT kI J
T (B C D)AT JKL | (B C)AT Ik |

Uniqueness, up to column scaling and permutation, is ensudeunder the condition stated in
Theorem 1.1. Thus, we conclude from (.56) that, if

ka + kg + ke + kp  2F +3; (1.66)
then, any setfA;B; C;D g satisfying the equations in Table 1.1 is of the form
A=A ; ; B=B », ; C=C 3 ; and D=D 4 ; (1.67)

where is an F F permutation matrix and ,, p 2 [1;4], are diagonal scaling matrices
satisfying (1.55,i.e. 1 2 3 4= Ifg.

Quadrilinear Parafac-ALS (QALS) algorithm

Algorithm 1.2 (QALS algorithm)

Determine a threshold " > 0, initialize Ay, B and €, and compute the Parafac
components as follows, starting withr = 1:

#
1L.DB7= Ay By &1 Ty
#
2.87= DB, A 1 B 1 T
#

#
4, A;—r Cr 6r T[]_]:

1
98

5. Update r r + 1 and repeat the previous steps until (1.63) is satis ed.

Using the expressions in Tablel.l, we can easily obtain from (L.61) the LS criteria to be
minimized in order to estimate the four desired Parafac compnents. The Quadrilinear Parafac-
ALS algorithm, presented above, follows from Algorithm 1.1 straightforwardly. Each Parafac
component is updated with the three other ones xed to their most up-to-date estimated values.
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Third-order tensor

Originally proposed in the context of 3rd-order tensors, the Parafac decomposition of a tensor
T® of dimensionsl J K with scalar representation given as

X
tim = & by o« (1.68)
f=1

yields componentsA 2 C' F, B 2 C’ FandC 2 CX F, which are unique up to column scaling
and permutation, if (1.56) is satis ed, i.e.

ka + kg + kg 2(F +1): (1.69)

In this case, the unfolded representations off @), derived from equations (1.58) to (1.60 with
P = 3, are shown in Table 1.1. Hence, if (1.69 holds, then any setfA;B;Cg satisfying the
equations in Table 1.1 is of the form

A=A ;1 ; B=B , ; and C=C 3 ; (2.70)
where is an F F permutation matrix and ,, p 2 [1;3], are diagonal scaling matrices

satisfying 1 2 3= If.

Trilinear Parafac-ALS (TALS) algorithm

The idea behind the ALS algorithm is now straightforward. For the particular case of a third-
order tensor, the LS cost functions follow from (L.61) with P = 3 and the Trilinear Parafac-ALS
(TALS) algorithm can be summarized as follows:

Algorithm 1.3 (TALS algorithm)

Determine a threshold " > 0, initialize A and B, and compute the Parafac compo
nents as follows, starting withr = 1.:

#
#

#
3. A;r él’ Cr T[]_]:

4. Updater r +1 and repeat the previous steps until (1.63 is satis ed.
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4 Summary

In the rst part of this chapter, we presented a review of the main statistical tools used in
this thesis for applications in telecommunication systems We reviewed classical de nitions such
as moments, cumulants and polyspectra and several statistal properties have been discussed,
including stationarity and symmetry relationships. Since blind signal processing methods do
not generally assume any a priori knowledge about output stéistics, we also addressed the issue
of estimating cumulants from real data. Cumulants (of order higher than two) present special
properties that moments do not. In fact, those properties erble us to handle nonminimum-phase
channels using only the output (complex) signals. In additon, high-order output cumulants are
blind with respect to additive Gaussian noise. Computatioral burden may be a drawback, due
to the amounts of data required for satisfactory estimates.

Afterwards, we presented a description of some important ajebraic tools used throughout the
rest of this thesis. We rst treated the triangularization s trategies and then, more particularly,
we discussed the diagonalization methods for Hermitian maices using the classical Jacobi
algorithm, based on the application of successive plane rations. Motivated by applications in
blind source separation and blind system identi cation using HOS, we also studied techniques
for the approximative simultaneous factorization of seveal matrices sharing some properties but
di ering in individual information contents. In this conte xt, we described an extended version
of the Jacobi algorithm, which is shown to be optimal in the least squares sense.

Finally, we turned our attention to multilinear algebraic t ools of great interest in statistical
signal processing. In particular, we presented an overviewf the Parafac tensor decomposition,
which has been recently used for modeling communication sysms. We described the decompo-
sition of a genericP th-order tensor with rank F as the sum ofF rank-one tensors and discussed
the uniqueness issue by introducing the Kruskal Theorem andde ning the notion of k-rank.
Concerning the estimation of the Parafac components, we rdsited the well-known Alternating
Least Square algorithm by proposing a generalized procederfor estimating the components of
a tensor of any order.



Chapter 2

Blind Channel ldenti cation using
Tensor Decomposition

mmetry properties of fourth-order cumulants yield enormous redundancies in the com-
onents of the Parallel Factor (Parafac) decomposition of he cumulant tensors. In this
apter, we develop new blind channel identi cation algorithms that exploit those re-

undancies, performing the cumulant tensor decompositiorby solving a single-step (SS)
least squares (LS) problem. We start with a single-input sirgle-output (SISO) nite impulse
response (FIR) channel and then we extend the principle to a niltiple-input multiple-output
(MIMO) instantaneous mixture. Our solution is based on the 4th-order output cumulants only
and it is shown to hold for certain underdetermined mixtures, i.e. systems with more sources
than sensors. In the MIMO case, a simpli ed approach using a educed-order tensor is also
discussed. Computer simulations are provided to assess thmerformance of the proposed algo-
rithms in both SISO and MIMO cases, comparing them to other exsting solutions. Initialization
and convergence issues are also addressed.

As we have seen in the preceding chapter, several algorithn@opose solutions to t a Pth-
order Parafac model. The well-known Alternating Least Squaes (ALS) algorithm iteratively
minimizes, in an alternate way, P least squares (LS) cost functions. Our main focus in this
chapter is in exploiting the redundancies of the 4th-order eimulants in the Parafac decomposition
of the cumulant tensors. This allows us to propose new iterdte single-step least squares (SS-
LS) Parafac-based Blind Channel Identi cation (PBCI) algo rithms that have the advantage of
being based on the solution of a sole optimization problem, antrary to the methods described in
the literature. For that reason, SS-LS PBCI consists in a newscheme for the estimation of FIR
systems p1l, 62]. In addition, using the same underlying idea, under mild asumptions, we also
propose algorithms to treat the case of instantaneous MIMO hannelsp3, 64]. These techniques
are, to our knowledge, the rst to consider the cumulant redundancies in order to improve the
LS solution of the Parafac decomposition of the cumulant tersor.

In the sequel, we will be interested rst in recovering the impulse response of a complex

31
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FIR-SISO channel from the Parafac decomposition of a 3rd-ater tensor composed of 4th-order
output cumulants. Using the SS-LS approach, the permutation and scaling ambiguities intrinsic
to the Parafac decomposition are solved and the uniquenesssue is addressed[l, 62, 64]. After
that, we consider the problem of blind MIMO channel (mixture) identi cation in the context
of a multiuser system characterized by instantaneous complx channels. A quadrilinear ALS
solution is described based on the decomposition of a 4th-der tensor composed of 4th-order
spatial cumulants. A trilinear approach is also discussed ging a third-order tensor of 4th-order
cumulants. Then, we nally present a simplied SS-LS Parafac-based Blind MIMO Channel
Identi cation (PBMCI) algorithm. Although our main goal is not focused on underdetermined
mixtures, we make use of some tensor properties to show thatnder certain conditions our
algorithm is able to identify channels with more sources tha sensors. Computer simulations il-
lustrate the performance gains that our method provides wih respect to other existing solutions.
We also assess the algorithms performances by recoveringehnput signals using a minimum
mean squared error (MMSE) equalizer built from the estimated channel. In the MIMO case, a
semi-blind MMSE equalizer will be implemented, using a few pilot symbas.

This chapter is organized as follows: in sectior2, we introduce the signal model and de ne the
output cumulants as a tensor; in section3, we describe a joint-diagonalization based algorithm
and propose a Parafac-based algorithm to estimate the SISOhannel parameters based on a
SS-LS minimization procedure; we also discuss come connamis between the (simultaneous)
matrix diagonalization approach and our cumulant tensor decomposition; section4 introduces a
multiuser and multiantenna channel model and, in section5, we propose blind channel estimation
algorithms coping with the MIMO case; methods using joint-diagonalization techniques are
also described; sectior6 presents some computer simulation results to illustrate the proposed
methods; conclusions are drawn in sectior?, along with some perspectives.

1 Brief history of the HOS-based blind identi cation method S

Blind identi cation methods aim to determine an unknown mod el from the system output only.
Known applications range from data communications, beamfoming and echo cancelation to
image restoration, speech recognition and seismic applitans, among others. In which concerns
statistical techniques, second-order statistics (SOS) bsed methods usually require models with
multiple outputs, such as oversampled or multiantenna syséms.

On the other hand, it is well-known that cumulants of order higher than two can be viewed
as tensors with a highly symmetrical structure [L7]. Among the earliest works exploiting the
cumulant symmetries with a tensor formalism, Cardoso introduced the concept of eigenvalue
structure of 4th-order cumulant tensors [23, 24]. He used the uniqueness property of the cumu-
lant tensors as an advantage over singular value decomposgin (SVD), but prewhitening was
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needed. Later on, an extended Jacobi technique for approxiate simultaneous diagonalization
was proposed by Cardoso and Soloumiac irb]l]. This latter paper introduced the JADE al-
gorithm that uses second and 4th-order statistics to estim& an instantaneous multiple-input
multiple-output (MIMO) channel in the context of blind beam forming. The joint diagonaliza-
tion technique became very popular and has been used by Belobrani et al. to propose the
second-order blind identi cation (SOBI) algorithm [ 65], which uses a set of correlation matrices
to identify stationary sources with di erent spectral cont ents, also in the context of memoryless
MIMO channels. On the other hand, the fourth-order system identi cation (FOSI) algorithm
[66] treats single-input single output (SISO) FIR channels and also involves an a priori trans-
formation over the cumulant matrices, which is often a soure of increased complexity and
estimation errors.

During the last decade, several joint-diagonalization crieria have been introduced 3, 14].
Important modi cations of the technique proposed in [24] were provided by De Lathauwer et
al. in [67], resorting to joint diagonalization techniques. A link between the Parafac decomposi-
tion and the simultaneous matrix diagonalization approachhas been discussed ir2fl], leading to
algorithms subject to weaker uniqueness conditions. Thesileas gave rise to the FOOBI family
of algorithms [22], which are theoretically able to identify a greater number of user channels
for a given number of receive antennas. The FOOBI algorithmsexploit the Quadricovariance
matrix making use of its column-wise Kronecker structure. Aso using the joint diagonalization
approach, the ICAR algorithm proposed in [68] is based on the redundancies of the Quadrico-
variance structure to estimate the mixture matrix, but only in the overdetermined case, i.e. the
case of systems with more sensors than sources. The prinagpbehind the ICAR method [68]
has also been used in6@] and [70], resorting to 6th- and higher-order statistics, respectiely, in
order to include the case of underdetermined mixtures. The CAR and the FOOBI algorithms
will be further discussed in section5.1. These techniques, while avoiding prewhitening, still
break the problem into two optimization stages, which remahn necessary to extract the MIMO
channel coe cients from an initial estimate based on an eig@value decomposition (EVD).

Using the Parafac decomposition and exploiting the symmety properties of the 4th-order
cumulants, we eliminate the need for prewhitening in the SI® case and, in both SISO and
MIMO cases, we found solutions to the blind identi cation pr oblem by searching the minima of
a single LS cost function. In addition, the Parafac-based aproach allows us to treat the under-
determined case, although the uniqueness condition imposean upper bound on the number of
identi able sources. Actually, the blind identi cation of underdetermined mixtures has received
a special attention from the signal processing community uder di erent tensorial approaches
that include, among others, the decomposition ofgquantics in sums of powers of linear forms42];
the use of congruent transformation 0] exploiting the virtual array concept [ 25, 26]; and the
use of high-order derivatives of the multivariate characteistic function [ 71]. Besides, a frequency
domain framework for MIMO system identi cation using Paraf ac was introduced in [72] using
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HOS-based tensors. More recently, that approach was furthedeveloped and also included the
underdetermined case 73, 74, 60Q].

2 Single-user signal model and 4th-order output cumulants

Let us represent a FIR-SISO communication channel in which he output signal y(n), after
sampling at the symbol rate, is written as follows:

y(n) = x(n)+ (n);
R
x(n) = ) h()s(n ),

2.1)

with h(0) = 1 (which is equivalent to a simple unit-norm constraint ). Moreover, the following
assumptions hold:

Al : The non-measurable, complex-valued, discrete input sguences(n) is stationary, ergodic,
independent and identically distributed (iid) with symmet ric distribution, zero-mean and
non-zero kurtosis 4.

A2 : The additive Gaussian noise sequence(n), with zero-mean, unknown variance 2 and
unknown autocorrelation function, is assumed to be indepedent of the input signal s(n).

A3 : The complex coe cients h(*) represent the equivalent discrete channel impulse resp@e,
including the pulse shaping lter, the transmission channd and the receive lter.

A4 : The FIR lIter representing the channel is assumed to be caisal with memory L 6 0 and
no temporal sparsity, i.e.h(") 60, 8" 2 [0;L], and h(") = 0 otherwise.

From de nition ( 1.25), the 4th-order cumulants of the output signal y(n) are given as follows:

h i
Cay( 15 25 3), cum y (n);y(n+ 1);y (n+ 2)y(n+ 3) : (2.2)

Using the channel model 2.1), taking assumptions Al and A2 into account and making use of
the multilinearity property of cumulants, it can be shown th at (c.f. Appendix B):

b
Cay( 15 20 83)= 4s h ()h(C+ )h C+ 2)h(C + 3); (2.3)
=0

where 45 = C4:5(0; 0; 0), according to de nition ( 1.20. Based on @.3) and on assumption A4,
we note that:

Cay( 15 20 3)=0587] 1j;j 2;j 3j > L (2.4)
Hence, by taking the time-lags 1, 2 and 3 in the interval [ L;L], we consider all possible
nonzero values ofcsy ( 1; 2; 3). This choice yields a maximum redundancy information modé.
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Let us de ne the 3rd-order tensor C&Y) 2 C(L*1) (L+1) (L+1) "with scalar representation
givenbycjk =cy(i L 1) L Lk L 1)0jk 2[12L +1]. Using (2.3, in analogy
with (1.51), it is not di cult to show that tensor C®Y), depicted in g. 2.1a, can be written as
a sum ofL + 1 outer products, each one involving 3 vectors, so that

S
= 4 Hwui Ho; hQOH-wp (2.5)
"=0
with
K+
Hoai= h(C+p L 1)e@; (26)
p=1

where ei(') denotes theith canonical basis vector ofR'. The above equations can be easily
obtained from (1.52 and (1.53 with P = 3, taking the scalar representation of C®¥) into
account. Clearly, equation (2.5) represents the Parafac decomposition of the tenso€3Y), with
componentsA, B and C given as follows:

A=H; B=H and C= 4sHDiag(h); 2.7)

where Diag () denotes a diagonal matrix built from the entries of the vector argument and the
channel coe cient vector h is de ned as:

h i T
h= h@©):::h(L) 2ct™: (2.8)
The channel coe cient matrix H 2 C@L*D  (L*1) can be explicitly expressed as follows:
0 1
0 0 h(0)
" i 0 h@) h(L 1)
H, Hh = HyiHo:H iy = h(0)  h(1) h(L) (2.9)
h(L 1) h(L) 0
h(L) 0 0

where H( ) is an operator that builds a Hankel matrix from its vector ar gument, as shown
above.

3 Blind SISO channel identi cation algorithms

Due to the symmetric structure of the cumulant tensor C3Y), the Parafac decomposition given
in (2.5 can be obtained by means of a simultaneous diagonalizatiorof the cumulant tensor

(2D) slices, subject to a prior orthonormalization. The FOSI algorithm proposed in [66] adopts

this latter approach without using a tensor formulation. In this section, we present the FOSI
algorithm, highlighting that connection with the simultan eous diagonalization approach. After
that, we also present the SS-LS blind channel identi cationalgorithm and discuss the uniqueness
issue.
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L Ca ieLe1, oLl kL)

(a) (b)

Figure 2.1: (a) 3rd-order tensorC®Y) of 4th-order output cumulants; (b) frontal slices of tensor

By,

3.1 A Joint-diagonalization based approach

Joint diagonalization (JD) has been a reference tool in sigal processing, nding applications in
several elds including blind source separation, blind identi cation of quadratic models [ 75] and
source localization [f6]. The concept introduced in [51], in the context of blind beamforming,
gave rise to theJoint Approximate Diagonalization of Eigenmatrices (JADE) algorithm, which
exploits the assumption of statistical independence of thesources and utilizes extended Jacobi
techniques (c.f. AppendixA) over a set of 4th-order cumulant matrices p2]. This basic principle
has been shown to be very useful in applications using secorathd higher-order statistics [65, 66].

Let us de ne the frontal slices C 2 CeL*D  (L+D) "k 2 [1; 2L + 1], of the cumulant tensor
C®Y) as illustrated in g. 2.1(b). Taking the scalar representation Cjk into account, we have:

2}(+1 2}(+1 T
C . = Cljk ei(2L+:I_) ej(2L+l)
i=1 j=1
b
4s hOhC+k L 1H-HN
0
4sHDy ( YH™; k2[12L +1]; (2.10)

where D; () denotes a diagonal matrix built from the ith row of the matrix argument and we
have used the following de nition:

= HDiag(h ) 2 c®.*D L+, (2.11)
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Noticing from (2.11) that Dk ( )= Dk (H)D_+1 (H ), letus de ne the set of modi ed cumulant
matrices C,,, WC (WH 2 c(t*D) (L+1) 5o that from (2.10 we have:

Cx= 4sWH Dy(H)Disys (H) HPwH: (2.12)

Left- and right-multiplying the term Dy (H) by Dy +1 (H)and D +1 (H) L respectively, we end
up with
Ck=Q «Q; (2.13)

where = 4sDi(H)Dp+1 (H) ! and the transformation W 2 C(t*D) @L+D) s such that
Q=WH Dr+ (H) (2.14)

isa(L +1) (L +1)unitary matrix. Matrix W can be computed from the above equation by
noting that Q Q" = |, which leads to:

W 4sH DL (H)PHP wH =1, (2.15)

where j j denotes the element-wise absolute value. Using = L +1 in (2.10, we note that
C L= 4sHDL (H)j2 HH and henceW can be viewed as a whitening transformation that
decorrelates the elements of the cumulant matrixC | 1. A solution to this problem is given by
the inverse square-root of C | 41, as follows:

w=c = 2un (2.16)

where the matricesU 2 c@-*D) (t*1) gnd 2 c(t+D (L+D) represent the economy-sizeEVD
of C | +1. Although the source Kurtosis is assumed unknown, it must beensured to be positive
( 4:s > 0) due to the above square-root calculation. If this is not the case, then matrix C | 4+1
should be used instead.

The computation of matrix W is a very common operation in HOS-based methodssp, 77,
78], often referred to asprewhitening. However, it usually requires resorting to SOS and, even if
this is not the case, this additional stage is time-consumig and often responsible for increased
estimation errors [79, 80].

Noticing from (2.13 that Q is the matrix that simultaneously diagonalizes the set Cy,
k=1;:::;2L +1, it can be computed by maximizing the following cost function:
Z+1 2
JQ;0= diag Q"CyQ (2.17)

k=1
k6 L+1

1 The square-root of a given Hermitian matrix X is so that (X *2)(X *2)H = X . This operation presents an
orthonormal ambiguity since any matrix X 1“2 = X 12U s also a square-root of X if U is unitary.
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[54] and can be obtained using the joint-diagonalization algoithm ( A.2) described in Appendix
A based on the extended Jacobi technique. Finally, the chanrdecoe cient matrix is obtained
from (2.14) and (2.16), as follows:

H=w?Q=U ¥Q; (2.18)

up to trivial indeterminacies (column scaling and permutations).

In order to recover the channel coe cient vector from the estimated channel matrix H, we
need to get rid of the permutation ambiguity. Considering the structure of H, given in (2.9),
we note from (2.10 and (2.11) that C = H 1H" where = 1Diag([0;::: 0; 1]) is an
(L+1) (L +1) diagonal matrix, with 1 = 4sh(0)h (L). Thus, C 1 is a rank-1 matrix
and can be written asC 1= 1H L+ H HL+1. Using the column-permuted and scaled channel
matrix H, computed in (2.18), we denote by ;) the column of H that is a weighted version of
the (L + 1)th column of H, so that

H \(1) = \(1) H L+l; (2'19)

where - is a nonzero complex scalar factor. This allows us to writeC 1 = 1H - H H‘<1) :
with 1 = 4sh(0)h (L)] ‘(1)j 2 and we can conclude that’ ;) determines the position of the
only nonzero diagonal entry of matrix 1, which can be obtained from the set of equations
(2.13. Analogously, using (2.10 and (2.11) with k = 2L + 1, we can conclude thatC 5 41 is
also a rank-1 matrix and can be written from the 1st column of H. Denoting by "5 +1) the
column of H that is a weighted version of the 1st column ofH, we get

H = H 1; (2.20)

T@L+1) 2L+

sothat C 2141 = 2vaH -y, HH~(2L+1), with 2041 = ash(L)h (0)] .., | % where

‘eLsy 1S @ nonzero complex scalar factor. As a result, > +1) determines the position of

the sole nonzero diagonal element of 5 11, which can be obtained from @.13).

Considering the Hankel structure of H given in (2.9), equations (2.19 and (2.20 suggest
that the channel coe cient vector h can be recovered from theL +1 top elements of H -
and the L +1 bottom elements of H -, ., . These two solutions can be computed by means
of the FOSI algorithm, summarized below in Algorithm 2.1. A third channel estimate can be
obtained by averaging these solutions. Finally, we note th&in [66] the 4th-order cumulants
are computed with exclusively non-negative time-lags, i.e0 1; 2; 3 L or, equivalently,

L+1 ik 2L +1. Therefore, matrix dimensions are di erent from those shown here.
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Algorithm 2.1 (Fourth-Order System Identi cation)

1. Compute the EVD of & | ;1 and denote byU the (2L +1) 1 eigen-
vectors associated with theL + 1 largest eigenvalues, arranged in the
diagonal matrix ; Deduce the sign of 45 from the diagonal elements
of ; If the sign( 45) < 0, then use € |41 instead.

2. Estimate the orthonormalizing transformation W = 122yH and its
pseudo-inverseW # = U 122,

3. Compute the set of modi ed cumulant matricesCy , w e W H,
k=21;::::L;L +2;:::::2L+1;

corresponding diagonal matrices.

5. Take the diagonal elements of" ; and ", .1 and denote by ;) and
“(2L+1) the column number of their largest absolute values, respéetly;

6. From (2.18), compute the channel matrix estimate as? = W *# Q.

7. Determine two di erent channel estimates by taking theL + 1 top ele-

ments of A -, and theL +1 bottom elements ofAd -, ,, . Normalize

the two resulting vectors with respect to their correspondtig rst entries.

3.2 The Single-Step Least-Squares approach

Using the Parafac components expressed in2(7), the unfolded tensor representations ofCY),
with dimensions (2L +1)2 (2L + 1), can be written from the general formul ( 1.58), (1.59
and (1.60), as follows:

Cuy = asH H T (2.21)
Cy = a4sH HT (2.22)
Cpa =  as H HY, (2.23)

where is de ned in (2.11).

Equation (2.5) shows that the rank of tensor C3¥) equalsL + 1. Assumption A4 ensures
that L 1. Due to its Hankel structure, H is full-rank and then ka = kg = ry = L +1. Taking
assumption A4 into account, we deduce from 2.11) that kc = r = L + 1. From the Kruskal
uniqueness condition (.69, we conclude thatka + kg + kc =3L+3 2F +2=2L +4, which
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Table 2.1: Parafac formul for the 3rd-order tensor C3%)

Slicing direction 2D slices Unfolded representations
Horizontal Ci = 4sH Di(H) T Cyy= as H H T
Vertical Cj= 4s Dj(H)HT Cpy= 45 H HT
Frontal C k= 4sHD( )H"  Cpg= 45 H H™

is always true. Thus, any setf A ;B;Cg satisfying the Parafac decomposition of the cumulant
tensor C3Y) has the form (1.70), with components A, B and C given in (2.7).

Table 2.1 summarizes the Parafac decomposition of tenso€®Y), including the tensor un-
folded representations and the 2D slices obtained from thehree possible slicing directions.
Considering the unfolded matrices in the right column, traditional ALS algorithms can be used
to estimate the three Parafac components of23Y), leading to the matricesH and and then to
the channel parameters. However, we can improve the e cieng of the estimation procedure by
coupling both estimation steps, i.e. taking the relationstips between the channel coe cient vec-
tor h and the matricesH and into account, thus eliminating column scaling and permutation
ambiguities [61, 62, 64].

A new SS-LS PBCI algorithm

Next, we present a very useful property of the Khatri-Rao product and then we propose a
single-step least squares algorithm to estimate the channeoe cient vector h by means of the
previously described tensor decomposition.

Property 1

Let Z 2 C™ " be written asZ = XDiag(v) Y, where X 2 C™ 9'Y 2 C9 " and
v 2 C9 1 Then it holds:

veZ)=(Y"T X)v2c™ 1 (2.24)

In the above equation, vec( ) denotes thevectorization operator. Replacing @2.11) in (2.21),
matrix Cp1) can be written as follows:

Cuj= as(H H )Diag(h )HT:
Applying property ( 2.24) to the above equation, we get:

vedCp) = as(H H H)h: (2.25)
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Thus, the channel coe cient vector h can be obtained as the argument that minimizes the
following LS cost function

2
(h ;AT D), vedCry) 456 PV . (2.26)

by means of an iterative procedure, where3 is given as:
Gr V= AC D AC D AC D, (2.27)

Considering the structure of the channel matrixH given in (2.9), we denoteR " 1 = H(A D).
At each iteration r 1, we have:

A =argmin (h ;AT D); (2.28)

from which we get:

A = L16C Y vec Ccyy (2.29)

The algorithm is initialized with a Hankel matrix H© of which the rst column is
[0, A@TIT and the last row is [i® (L) 0f ], where A® = [1 vT]", v 2 C) is a Gaus-
sian random vector and Q) is an all-zero vector of dimensionL. The algorithm is stopped
when signi cant variations of the estimated parameters are no longer observed, i.e. when
je(r) e(r 1)j ", wheree(r)= kh( AT YK2=kAK2 and " is an arbitrary small positive
constant. Taking the model constraint h(0) = 1 into account, we normalize, at each iteration r,
the preceding estimateA(" 1 with respect to its rst entry A D (0), before using it to update
AT D from (2.9). Then, 6 Y is computed from (2.27) using A" Y. The normalization step
eliminates the scaling ambiguity and renders the solution ndependent from the source kurtosis.
Forcing the Hankel structure of H with the operator H( ) allows us to avoid column permuta-
tion in the estimated Parafac components. The Single-Step B Parafac-based Blind Channel

Identi cation (SS-PBCI) algorithm can be summarized as follows:

Algorithm 2.2 (Single-Step LS PBCI algorithm)

Determine a threshold" > 0 and initialize A© as described above.
For r 1, execute the steps below:

i (I’ 1) = 1 (r l) .
1. Use (2.9) to build A H & 1)(0)ﬁ 1
2. Using (2.27), compute G 1:

3. Compute the channel vector estimate af") = G D" vec Cy ;

4. Reiterate until je(r) e(r 1)ji2 ", e(r)= kA AT Dk=kA"k,
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According to the above discussion, the identi ability of th e channel coe cient vector A(")
depends on the unigueness of the LS solution2(29), which in turn depends on the full-rank
property of the double Khatri-Rao product de ned in ( 2.27). It is possible to show B0, 59
that satisfying the Kruskal condition implies the full-col umn rank property, which is actually a
necessary condition for the uniqueness of the Parafac decqrusition [56]. As a result, matrix
G 1 can be said to be full-column rank, which ensures the uniqueess of the proposed solution.

The SS-LS strategy ensures the Hankel structure oH at each iteration, taking advantage
of its full-rank property to make the tensor decomposition essentially unique and the channel
parameters estimation free from ambiguities. Furthermore one sole LS minimization is needed,
contrary to the classical trilinear ALS algorithm. For that reason, our method should also be
expected to increase convergence speed.

4  Multiuser channel model and 4th-order spatial cumulants

Let us consider an instantaneous MIMO channel withQ signal sources andV receive antennas.
The signals received at the front-end of the antenna array athe time-instant n are modeled as
a complex vectory(n) 2 CM, which is written as:

y(n) = Hs(n)+ (n); (2.30)

where the elements of the complex instantaneous mixing maix H 2 CM Q are the MIMO
channel coe cients hpq, i.e. [H]mq = hmq. The following assumptions hold:

B1 : The source signalssy(n) are stationary, ergodic and mutually independent with symmet-
ric distribution, zero-mean and non-zero kurtosis 4;s, = Cs:5,(0; 0; 0).

B2 : The vector (n) 2 CM 1! is the additive Gaussian noise at the output of the antenna
array. It is independent from the input signals and has unknavn spatial correlation.

B3 : The transmission channel is characterized by a Rayleighat fading propagation envi-
ronment, i.e. the channel coe cients hpy.q are complex constants with real and imaginary
parts driven from a continuous Gaussian distribution.

By blind channel (or mixture) identi cation, we understand the problem of estimating the
channel model coe cients with no a priori knowledge on the aray manifold, i.e. estimate the
column vectorsH 4, q 2 [1;Q], in an arbitrary order, up to a nonzero complex gain, using te
4th-order output statistics only. Actually, it is well-kno wn that solutions to the blind channel
identi cation problem only exist up to a column scaling and p ermutation indeterminacy.
Assumption B3 allows us to say that H is full-rank with probability one. Moreover, since
any combination of the columns of H can be viewed as another random matrix driven from a
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continuous distribution, H is also said to be full k-rank, i.e.ky = rg = min(M;Q) [41]. In
addition, although the source modulation schemes are genally known in a telecommunication
context, we do not make any constraints on the sign of the sowe Kurtoses 4;s,, contrary to
other known methods [70, 22].

We de ne the 4th-order spatial cumulants of the array outputs as follows:
h i
Cay(i;j k1), cum y; (n);y; (n); ye(n);yi(n) - (2.31)

Under the above mentioned assumptions, it is straightforwad to show that:

x
Cay(ijik; 1) = 4:54Nig Njg NkgNig (2.32)
g=1
Notice that the spatial cumulants de ned in ( 2.31) only exist for 1 i;j; k; | M. Let us de ne

the 4th-order tensor C4¥) 2 CM M M M ith scalar representation given by Ca.y (i;j; k; 1),
i.e. the element in position (; j; k; | ) can be written as in (2.32). Recalling the general formulation
(1.52) with P = 4, we can write C*¥) as a sum ofQ rank-1 tensors that can be written as outer
products involving four vectors, as follows:

X
C* = Hy Hgq Hy (asH o) (2.33)
o=1

P
wi = -1 Nm:g€m 7, q ; Q]. Equation (2.33 is the Parafac decomposition of tensor
thHg= M hmge®'), g2 [1Q]. Equation (2.33 is the Parafac d tion of t

Cc4Y) with the four Parafac components depending orH and being given by:
A=H; B=H; C=H and D=H 4 (2.34)

where 4s= Diag 45,5111 4sq -

Uniqueness

Notice from (2.33 that the rank of the 4th-order tensor C*¥) is Q. In addition, since H is
assumed to be full k-rank, we havekaw = Kae = Kae = Kaw = ra = min(M;Q). From
(1.66), we conclude that the Kruskal uniqueness condition reducs to

dry 2Q+3: (2.35)
We will consider the two following cases:

The MIMO channel is an overdetermined system, i.e.M Q. In this casery = Q and
(2.35 states that the Parafac decomposition of C*Y) is essentially unique ifQ  3=2,
i.e. Q > 1. There are no further constraints on the number of sensors.

The MIMO channel is an underdetermined system, i.eM < Q . In this casery = M and

hence equation .35 becomes 3
4M
Q 5 (2.36)
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Although equation (2.36) is not a necessary condition, it establishes an upper bounan
the number of sources we are guaranteed to identify using tesor C4¥). Under that condition,
c4Y) can be expressed as the sum @ rank-1 tensors, up to trivial permutation and scaling
ambiguities. In other words, the Parafac components ofC*Y) are written as in (1.67) with A,
B, C and D given by (2.34).

Reduced-order cumulant tensor

It is possible to reduce the 4th-order tensor de ned in .33 to a 3rd-order one by combining
the 3D slices of tensorC*Y). We can thus reduce the complexity of the above described tesor
decomposition. Let us freeze, without loss of generality, ie index k of the cumulant tensor
c4¥) and de ne the 3D tensors G 2 CM M M Replacing the scalar representation 2.32)
in the general formulation (1.52), with P = 3, we end up with

.
=1

Summing the above tensors for alk 2 [1; M ] we get
x W
g=1 k=1

. (2.38)

cBy) = X q(<3;Y) —
k=1
The 3rd-order tensor C&Y) 2 CM M M has a straightforward Parafac decomposition with the
following components:
A=H  ;B=H and C=H &s; (2.39)

where is a diagonal matrix given by:

b
=  Dyg(H): (2.40)
k=1
Note that ka = kg = ke = ry = min( M; Q) and the Kruskal uniqueness condition (.69
becomes By  2Q+2. This yields an upper bound on the number of identi able sources, which
is given by
Q 2 forM Q and

(2.41)
Q (BM 2)=2 forM <Q:

Under the above condition, the Parafac components o®Y) are written as in (1.70 with A, B
and C given in (2.39.
5 Blind MIMO channel identi cation algorithms

In this section, we propose two algorithms to estimate the irstantaneous MIMO mixing matrix,
up to column scaling and permutations. This is achieved by mans of a SS-LS minimization
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procedure, thanks to the symmetry properties of the 4th-orcer cumulant. The algorithms pro-
posed in the sequel utilize only one of the unfolded represéations of the cumulant tensors by
exploiting the relationships (2.34), or (2.39 in the case of the 3rd-order tensor. After that, we
present the procedures for estimating the Parafac compones of the cumulant tensors separately
by means of the classical trilinear and quadrilinear ALS-type algorithms, described in section
1.3.1

Other (non-ALS) algorithms have been reported in the literature to solve the canonical tensor
decomposition problem, notably by means of simultaneous @igonalization of matrices. In fact,
it has been shown in R1] that the canonical tensor components can be derived from aiswlta-
neous matrix diagonalization and, most importantly, this | eads to weaker uniqueness conditions.
Exploiting the symmetric structure of the quadricovariance matrix, the joint diagonalization
approach has been used in6B] and [22], giving rise o the ICAR and FOOBI algorithms, re-
spectively. While the FOOBI algorithms induce weaker unigueness conditions, allowing for the
identi cation of more sources than sensors, the ICAR appro@h only treats the overdetermined
case, by exploiting the redundancies in the 4th-order cumwnt. In order to include the case
of underdetermined mixtures, the underlying principle behnd the ICAR method has also been
applied to 6th- [69] and higher-order statistics [70].

Although avoiding prewhitening, both ICAR and FOOBI algori thms come up with solutions
that require going through two di erent optimization stage s in order to extract MIMO parame-
ters from an initial EVD-based estimate. The ICAR and FOOBI algorithms are brie y described
in the sequel. After that, the SS-LS approach is discussed ahan algorithm that minimizes one
single LS cost function is proposed, under very mild assumpons.

5.1 Joint-diagonalization based algorithms

Making use of the multilinearity property of the cumulants, several methods have been recently
proposed utilizing the JD technique to exploit the Hermitian structure of a certain representation
of the cumulant tensor [69, 70, 81, 68, 22]. In fact, from the scalar representation of C4Y) we
can form the matrix Q@) 2 CM? M? g that

h i
) — . (i k] )
Q G DM+ii (k DM +1 Cay(Bikil); (2.42)

from which, using (2.32), we easily get:

. H
QUM = H H 4 H H (2.43)

Since the source Kurtoses are assumed to be nonzérand the coe cients of H 2 CM Q are
driven from a complex continuous Gaussian distribution, the rank of Q) is ensured to be

2 Additionally, all the source Kurtoses are assumed to have equal sign. In the case of under-Gaussian sources
( 454 < 0, 892 [1;Q]), one should replaceQ“¥) by Q“¥).
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equal to the number of signal sources) [68]. Often referred to as the Quadricovariance matrix
[82, 83], Q“Y) admits the following (economy-size) EVD:

QY =yu M (2.44)

where the columns ofU 2 CM? Q are the eigenvectors ofQ“Y) associated with the Q largest
real-valued eigenvalues, arranged in the diagonal matrix 2 R? Q. From (2.44), we get:

)1:2

QUM =y 72 (2.45)

and, since the square root of a Hermitian matrix is unique up b a unitary factor W, we deduce
from (2.43 that

= =2
U 2= H H 2w (2.46)

The relationship (2.46) is the core equation for some recently proposed methods ppmsing
solutions to recover the channel coe cients by retrieving the unitary matrix W . This is the case
of the so-calledIndependent Component Analysis using the Redundancies irhé Quadricovari-
ance (ICAR) algorithm, which uses a JD approach in order to estimae W , exploiting symmetry
relationships of the 4th-order cumulants [B68]. Also using the JD technique, the Fourth-Order-
Only Blind Identi cation (FOOBI) algorithm exploits the rank-1 Kronecker structure intrinsic
to the columns on(“?Y)l:zW [22]. These methods are further discussed in the sequel.

The ICAR algorithm ( Albera et al. [68])

Using the ICAR concept, after the EVD of the Quadricovariance matrix, the channel coe cients
are estimated by means of two additional stages: computatio of W using the JD technigue and
subsequent estimation ofH from (H H ). This latter Khatri-Rao product can be written as:

1

H Di(H)
H H = : § : (2.47)

H Du (H)

_ iT
from which we readily deduce, using 2.45) and (2.46), that Q“¥)'™ = T W, where
each block n2CM Q@ m2 [1; M ], is given as follows:

m=H Dm(H) s2W" m2[LM] (2.48)

and shown to be full-rank. Let #m denote the pseudoinverse of the above de ned matrix,
ie. m=( " 1) ! H and dene the following set of M (M 1) matrices:

mi;my = ﬁwl myy 1 M6 my M (2.49)
so that, after some straightforward manipulations, we end (p with

mym; = WDm, (H) D, (H)W";, 1 myi6my M: (2.50)
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Due to (2.49, the ICAR approach is limited to treat only the overdetermi ned case Q M).
The above equation shows that the unitary factor W is a joint-diagonalizer of the M(M 1)
matrices m,.m, dened in (2.49. Thus, W can be approximately computed from the JD of
those matrices, using the extended Jacobi technique, by mes of the Algorithm A.2, described
in the Appendix A. However, we know from B5| that the solution W 4 of the JD problem is
unique only up to column permutations and scaling. Hence, bymultiplying the output of the
JD algorithm by any of the M Q blocks , de ned in (2.48) yields

1=2

mWo=H Dm(H) i (2.51)

where matrix is nonsingular and diagonal and is a permutation matrix. Otherwise, by
right-multiplying QU™ by W o, and using (2.45 and (2.46), we get an estimate of H H ),
up to the trivial indeterminacies, i.e.

QU™ Wo= H H 7 (2.52)

To obtain H from the above equation, note thatunvec H 4 H 9 M =H qHTq, which is a
rank-1 matrix, with  denoting the Kronecker product andunvec(x; n) being the unvectorization
operator, which builds from the vector x a matrix with n columns. As a result, by mapping the
qth column of Q(“?Y)lzzw0 intoa M M matrix Bg, the column H 4 can be obtained, up to a
scaling factor, as the eigenvector associated with the lamst eigenvalue ofB ;. This solution is
referred to as the ICAR3 algorithm, and is summarized below.

Algorithm 2.3 (ICAR algorithm)

1. Compute U 2 CM? Q and 2 RQ Q from the EVD of O®¥) as
in (2.44); Deduce the sign of the source Kurtoses from the diagond

elements of ; If it is negative, use Q®Y) instead.

2 =

2. Take the square-root of@“Y) as in (2.45), i.e. O@Y u =2

3. Deduce theM matrices ,, 2 CM Q| by taking for eachm 2 [1;M]
the rows(m 1)M +1 to mM of Q@2

4. Using (2.49), form the set of M (M 1) matrices m,:m,, for all
1 m6ém, M,;

5. Using Algorithm A.2 compute the matrix W , that simultaneously diag-
onalizes m,;m,, foralll m;6 my M;

6. Compute QY)W , and denote itsqth column bybg 2 CM* 1; De-
duce B = unvec(bg;M) 2 CM M for all g2 [1;Q];

7. Estimate the gth column A 4 of the mixture matrix as the eigenvecto
of B, associated with its largest eigenvalue, for alt 2 [1; Q].
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Other solutions to extract A from the matrix Q@YW , are reported in [68] but will not
be considered here. Finally, we note that extending the ICARconcept to 6th- or higher-order
statistics allows for treating some underdetermined casgswhich is the case of the BIRTH and
the BIOME algorithms, respectively [69, 70]. Since we limit our analyses to the methods using
4th-order statistics, these two latter algorithms will not be further discussed. In addition, the
FOBIUM algorithm [ 81] can be viewed as an extension to high orders of the classic80S-based
SOBI algorithm [65]. FOBIUM includes a 4th-order based prewhitening step and i is unable
to deal with sources that have similar trispectra, analogowsly to the SOBI algorithm, which is
theoretically insensitive to the presence of sources withhe same spectral densities. For that
reason, these algorithm will not be considered in this thes.

The FOOBI algorithm (  De Lathauwer et al. [22])

The FOOBI algorithm exploits the Khatri-Rao structure obta ined when we right multiply
Q(ﬁl;y)lz2 by W. The basic principle behind this method relies on a rank-1 d&ecting device,
which takes the form of a 4th-order tensor (X;Y)2 CM M M M yith scalar representation
given by h i
(X;Y)ijkI =X Y+ Vi X XYy YieXj, (2.53)
where X and Y are M M matrices. It has been shown in 22] that ( X;X) is an all-
zero tensor if and only if the rank of X is at most equal to one (see also24, 21]). Let
us denote by by the gth M2 1 column of Q¥¥'™ = U %2 and dene the Q Hermi-
tian matrices B4 = unvec(bg; M) 2 CM M g2 [1;Q]. Moreover, de ne the 4th-order tensors
Fuge=( BuiBg), 1 o & Q. Assuming that the tensorsFg,,q,, 1 h<q2 Q, are
linearly independent, it is possible to show that there exi$ Q real-valued linearly independent
symmetric matrices V42 R? Q, satisfying

XX h i

Vg  Fqe=0Mm v v m; (2.54)
Q=1 =1 q1:G2

and being simultaneously diagonalized byW , i.e. V4 = WD (W T, q 2 [L Q], with D real-
valued and diagonal. Therefore,W can be obtained from the JD of the linearly independent
symmetric matrices V g, by means of the extended Jacobi AlgorithmA.2.

Matrices V 4 can be computed from the set of equationsZ.54), which can be rewritten as:

Fvg= Oy4; where, (2.55)
h iT
Vq= [Vgluy 5 [Valoa: 2Vgluzs 2Vales; ii0 2Vglo 10 and (2.56)
h i
F= fiq 10 foo fuz fus 110 fg 10 2 CM° QQ D=2 (2.57)

where the vectorsfg,.q, 2 C¥ * 1 are the vectorized versions of the tensord=,.q,, given as follows:
h [ h i

fo.: = Fq. : 2.58
WR G M) DM24(k DM+ BT (2:58)
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The LS solution of the linear system @.55 is given by the Q right singular vectors
vq 2 RO D=2 1 agsociated with its smallest singular values ofF. These singular vectors are
then mapped into upper triangular matrices V 4 2 R? Q in the order suggested by 2.56), i.e.

[Val1 [vglo+1 [Vglo+2z i [vgleo 2 [vgleo 1
0 Vgl2 [Vgleo i [Vglso 4 [Vqlso 3
Vg= : : : : : (2.59)
0 0 0 i1t [vale 1 [Valo@ 3)=2
0 0 0 o 0 Volo
and we nally get
Vgt Vg
Vo= ———— (2.60)

Algorithm 2.4 (FOOBI algorithm)

1. Compute U 2 CM* Q and 2 R? Q from the EVD of @) as
in (2.44); Deduce the sign of the source Kurtoses from the diagong

elements of ; If it is negative, use Q®Y) instead.

2. Take the square-root of®@Y) as in (2.45), i.e. Q@™ = U 172, pe-
note by bg the gth column of ®@¥'™ and form Q Hermitian matrices
By = unvec(bg;M)2 CM M q2[L Q]

3. Using (2.53), form the 4th-order tensors Fg,.q, = ( Bg;Byg,), for all

1 ¢ @ Qand build vectorsfy.q, 2 CM* 1 as follows:
h [ h [
le;QZ FQ1;Q2

(i DM3+(] DM2+(k DM+I ikl

4. Form the matrix F 2 CM* QQ 1)=2 py concatenating the vectors
faqe forall 1 o o Q; Compute the Q right singular vectors
vq 2 RR(Q D=2 1 associated with the smallest singular values d;

5. From each vq, q 2 [1;Q], form a triangular matrix V42 R? @ as
indicated in (2.59); Compute Q matrices Vq=(Vq+ vg):z;

6. Using Algorithm A.2 compute the orthogonal matrixW that simultane-

denote its gth column byz, 2 CM* 1;

7. Form the Q matrices Zq = unvec(zq;M) 2 CM M g2 [1;Q]; Estimate
the gth column A q of the mixture matrix as the left singular vector of

Z, associated with the largest singular value, for alg 2 [1; Q].
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The matter of estimating H is addressed by exploiting the rank-1 structure that charaderizes
the columns of QY)W . Denote by z, 2 CM* 1 the qth column of Q“¥)'™W and build Q
matrices Zq = unvec(zg;M) 2 CM M g2 [1;Q]. SinceZ, are rank-1 matrices for allq 2 [1; Q],
the gth column of the mixture matrix H 4 can be estimated from the left singular vector ofZ,
associated with the largest singular value, for allq 2 [1;Q]. The above described method is
referred to as the FOOBI-1 algorithm. We note that a second FADBI-like algorithm has been
proposed in R2] based on a simultaneous o -diagonalization. Since both F@BI solutions have
demonstrated very similar performance, we will only consiér FOOBI-1 throughout the rest of
this chapter.

A major interest in the FOOBI algorithm relies on the conditi on ensuring the uniqueness of
its solution. In fact, assuming that the tensorsFg,.q,, 1 01 <g> Q are linearly independent
implies an upper bound on the number of identi able sources.However, linear independence of
the tensorsF g, .q, is claimed to be guaranteed under the following condition:

QQ 1) M3*M 1)%=2 (2.61)

which allows this algorithm for identifying, with a given nu mber of sensors, more sources than
the classical ALS approaches can deal with.

5.2 Single-step least squares PBMCI algorithms

The main idea behind the algorithms proposed in the sequel iso exploit the fact that all the
Parafac components of the cumulant tensors depend on the cimael matrix H. The parameter
estimation algorithms make use of only one among the unfoldk representations of the tensors
c4Y) and C8Y). According to the unfolding procedure introduced in sectio 1.3.1, using equation
(1.58 with P =4, and taking (2.34) into account, we get the following for C*¥):

Ciy’= H H H 4HT 2c" M (2.62)

The solution to the above is said to be unique if any matrix H satisfying (2.62) is such that
H=H , Where is a permutation matrix and  a diagonal matrix. A su cient uniqueness
condition for this decomposition has been given in 2.36. For C3Y), using (2.39, we get the
following from (1.58 with P = 3:

3y) _ 2 .
ch”_ H H 4H T 2cVM° M (2.63)

In practice, we composeC Ei];” by lling inits Ith column [ij];y)] 1, | 2 [1;M], with the elements

Cay(i;]; k; 1) by varying the indices i;j;k 2 [1;M] in nested loops with k being the innermost
one (fastest) andi the outermost one (slowest). For the 3rd-order tensor, we poceed likewise,
except for the index k, which is kept xed for each value in the interval [1; M]. Matrix C%y) is
then obtained by summing the M resulting matrices.
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4D SS-LS PBMCI algorithm

Equation (2.62 enables us to estimate the MIMO channel matrix by iteratively minimizing a
single LS cost function, which is written as follows:
(A H), kS (A, 1 A1 AL p) asHTKE: (2.64)

where r denotes the iteration number. The iterative minimization of (A, 1;H) yields the
following LS solution:

AT argng|in (A, 1;H)

= 42, Arg A pfelY (2.65)
where A is initialized as a complexM  Q Gaussian random matrix. In order to improve
estimation at iteration r 1, before computingf;, we normalize each column of the previous
estimate by its respective norm i.e. B, 1]1q [Ar 1]4=K[A 1]¢k. This normalization step
also renders the solution @.65 independent of the source Kurtosis matrix 4. The algorithm
is stopped whenje(r) e(r 1)j2 ", wheree(r)= kA, H, 1k=kHA k and " is an arbitrary
small positive constant.

4y)
[4]

, p=1;2;3, should lead to similar

Our developments in this section only considered the unfoldd matrix C

oy
p
results. The above described method will be referred to as t Single-Step LS Parafac-based

Blind MIMO Channel Identi cation (SS-LS PBMCI) algorithm [ 63, 64]. The SS-LS approach
can also be formulated from tensorC®Y) de ned in (2.37). This is discussed in the sequel.

, without loss

of generality. Using any other unfolded representationC

3D SS-LS PBMCI algorithm

The SS approach can also be formulated using tensdZ®Y) de ned in (2.37). Equation (2.63
yields the following LS cost function:

(A 5H), ke (A, 1 A1) 4" tHTKE: (2.66)

Iteratively minimizing ( 2.66) leads to:

3.
AT = 2" LA L A el (2.67)
Here again, A ¢ is initialized as a complexM  Q Gaussian random matrix and A, 1 is nor-
malized before computing the next estimatef ;. Due to this normalization step, the algorithm
is independent of the diagonal matrices 4.5 and "1, which do not need to be computed. We
will refer to this method as the 3D SS-LS PBMCI algorithm.
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5.3 Classical ALS-type PBMCI algorithms

Classical ALS-type algorithms can also be used to solve thelind MIMO channel identi cation
problem. In particular, the QALS and TALS algorithms described in section 1.3.3 provide
solutions to the Parafac decomposition of tensor€4Y) and C3Y), respectively. Methods utilizing
these algorithms are discussed in the sequel.

Quadrilinear ALS-PBMCI algorithm

The Parafac components ofC*Y) can be estimated from its unfolded tensor representations.
While Cg];y) has been given in £.62), matrices CE;‘];V), p = 1;2;3, can be straightforwardly
deduced from Table1.1 using (2.34). The unfolded representations of tensorC*Y) are explicitly
given in Table 2.2. A solution to this set of equations can be iteratively obtained by means of the
QALS algorithm described in section 1.3.3 (Algorithm 1.2). Denoting by r = 1 the iteration
at which convergence is reached, and taking the column scalg and permutation into account,

we can write:

Al = |q1 1
Ig1 = |qz 2

2.68
él = |q3 3 ( )
|51 = |114 4s 4

The channel estimatesA; and A3 can be obtained, up to the trivial ambiguities, by simple
conjugation of A; and € , respectively. Another solution is obtained by averagingA ; , B ,
Cl and D, . The above procedure will be referred to as the QuadrilinealiALS Parafac-based
Blind MIMO Channel Identi cation (QALS-PBMCI) algorithm.

The QALS algorithm does not exploit the interdependencies letween the Parafac compo-
nents. In spite of that, we can initialize it with a complex M Q Gaussian random matrix A ¢
and then deduceBg and €q using (2.34). After that, the Algorithm 1.2 starts by computing
Dy. The above described procedure will be referred to as the Quiilinear ALS Parafac-based
Blind MIMO Channel Identi cation (QALS-PBMCI) algorithm.

Trilinear ALS-PBMCI algorithm

A similar ALS approach can be implemented for decomposing th 3rd-order tensorC®Y) de ned
in (2.37), by means of the Trilinear Parafac-ALS (TALS) algorithm, d escribed in section1.3.3.
In this case, the unfolded tensor representations can be deded from Table 1.1 using (2.39 and
they are explicitly given in Table 2.2. The solution is iteratively obtained from the Algorithm

1.3, which can be initialized with a complexM  Q Gaussian random matrix A o, with B being
deduced from .39 and (2.40). After convergence of the algorithm, the Parafac componets of
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Table 2.2: Parafac formul for the 3rd- and 4th-order spatia | cumulant tensors
Unfolded tensor

_ P=4 P=3
representations
Cu H H H (H 497
C[3] (H 4;5) H H HH H H (H 4;s)T
C[2] H (H 4s) H HT (H 4s) H HT
Cuy H H (H %) HY H (H 4 H"
CB®Y) have the following form:
ALy = A, 1 ;
é(l ) = |q2 2 (269)
¢l = |q3 " 3 4s 3

from which we can deduce three channel matrix estimates, upd column scaling and permuta-
tions. Averaging these three estimates yields a fourth softion. This method will be called the
Trilinear ALS Parafac-based Blind MIMO Channel Identi cat ion (TALS-PBMCI) algorithm.

Column scaling and permutation indeterminacies, althoughnot explicitly solved by any of the
algorithms described in this section, do not represent a cotern in the context of blind mixture
identi cation, still allowing for the recovery of the sourc e signals in the overdetermined case.
Finally, in order to evaluate the capacity of the algorithms in terms of the bounds on the number
of identi able sources, we show in Table2.3 the theoretical maximum number of users that each
algorithm is capable to identify using a given number of recéve antennas (varying fromM =2
to M = 7). The bounds for the 4D SS-LS and the QALS algorithms are deived from (2.36),
while those for the 3D SS-LS and the TALS algorithms come from(2.41). The identi ability
condition of the FOOBI algorithm has been given in (2.61). The ICAR algorithm is omitted
since it is constrained to the overdetermined case@ < M ). In spite of the bounds stated in
Table 2.3, the tradeo between capacity and estimation performance ¢ these algorithms remains
an open issue and it will be addressed in the computer simuléns section.

Table 2.3: Identi ability conditions of MIMO channel ident i cation algorithms
M= 2 3 4 5 6 7

3D SS-LSand TALS | Q 2 35 6 8 9
4D SS-LS and QALS| Q 2 4 6 8 10 12
FOOBI Q 2 4 9 14 21 30
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6 Computer simulations

In this section, we present some computer simulation resudt in order to assess the performance
of the blind identi cation algorithms proposed in this chap ter. We will rst consider the case
of a SISO-FIR communication channel. We compare the perforrance of the proposed SS-LS
PBCI method with the results obtained using the well-known Fourth-Order System Identi cation
(FOSI) algorithm [ 66], which is based on a joint diagonalization technique. We ao compare
our method with an algebraic solution that is optimal in the t otal least squares (TLS) sense,
proposed in [7].

After that, we consider in section 6.2 a quasi-static MIMO scenario in which the propagation
channel is characterized by a Rayleigh at fading, so that the channel coe cients are drawn from
a continuous complex Gaussian distribution and assumed to & time-invariant within the dura-
tion of a time-slot consisting of N symbols. The QALS-PBMCI and TALS-PBMCI algorithms
are compared with the SS-LS approach. We also present a compaive study to illustrate how
the 4D SS-LS PBMCI algorithm performs with respect to some méhods reported in the liter-
ature. Finally, although our main interest is on mixture ide nti cation, we also provide results
concerning the recovery of the transmitted symbols using tle channel estimates obtained from
the proposed methods in both SISO and MIMO cases.

6.1 SISO channel identi cation

In the SISO case, the parametric channel estimation perforrance will be evaluated by means of
the normalized mean squared error (NMSE) of the estimator, omputed as follows:
awse 2 iy, hic. (2.70)
R _ khkz ° '

where R is the number of Monte Carlo simulations and ﬁfrli) is the channel estimate obtained
after convergence for therth simulation, assuming perfect knowledge of the channel maory L.
Except otherwise stated, 4th-order cumulants are estimatd usingN = 1000 output data samples
(length of one time-slot). For each Monte Carlo simulation, a di erent complex channel coef-
cient vector has been randomly generated in such a way that nnimum-phase, nonminimum-
phase as well as maximum-phase channels are allowed to occufFurthermore, we allow for
possibly sparse channels, i.e. channel having some coe aiés with very small magnitude, which
may lead to numerical instabilities. The results illustrated in the following curves represent the
average ofR = 200 Monte Carlo runs. The input signal is QPSK modulated. In which follows,
the results concerning the FOSI algorithm have been obtainé by averaging the two solutions
proposed in p6], as suggested by the authors.

In g. 2.2, the NMSE is plotted against signal-to-noise ratio (SNR) fa the SS-LS PBCI, FOSI
and TLS algorithms. The curves on the left-hand side show thathe SS-LS approach performs
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Figure 2.2: NMSE performance with QPSK modulation.

better than both, the FOSI algorithm and the TLS solution, fo r channels with memory L = 3.
The relative behavior of the algorithms shown in that gure has also been veried forL = 2
and L = 4. On the right-hand side of g. 2.2, we compare the results of SS-LS PBCI folL = 4
with those of the FOSI algorithm for L =2; 3 and 4. Note that the estimation errors obtained
with SS-LS PBCI for L =4 are smaller than those of FOSI forL =4 and L = 3. Furthermore,
for low SNR values, the performance provided by the SS-LS PBCalgorithm for channels with
L = 4 can be considered equivalent (or better) than those obtaned with FOSI for channels
with L = 2. We can therefore conclude that SS-LS PBCI is able to deal Wth more complicated
channel scenarii (larger delay spread) while providing beer performance than the other two

algorithms, especially in highly noisy situations.
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Figure 2.3: NMSE channel memory with SNR = 21dB.

In order to evaluate the e ect of the output data sequence lemyth used to estimate the
4th-order cumulants over the identi cation performance of the algorithms, we plot in g. 2.3
the NMSE against the channel memory forN = 1000 and N = 3000 output symbols, with
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Figure 2.4: Convergence analysis for SS-PBCI with three dierent initializations (SNR = 21dB).

SNR = 21dB. In a general manner, using SS-LS PBCI withN = 1000 yields better results than
using TLS or FOSI algorithms with N = 3000.

It is interesting to note that the number of iterations requi red for convergence of the SS-LS
PBCI algorithm can be reduced by initializing it with an alge braic solution such as the TLS
solution. In g. 2.4 we show the mean and median number of iterations needed for ngergence
of SS-LS PBCI with SNR = 21dB using three di erent initializa tions: 1) a Gaussian random
vector; 2) the TLS solution and 3) the C(q; k) solution [4]. Using both TLS and C(q;K) solu-
tions to initialize SS-LS PBCI decreases the number of iterdons in comparison with a random
initialization. Finally, it is worth to mention that the NMS E performance after convergence
remains unchanged, i.e. initialization only a ects convemgence speed.

Recovery of the input signal

Several equalization approaches exist to recover the inputlata sequence using the estimated
channel. The optimal solution in the minimum mean squared eror (MMSE) sense is given by
the Wiener solution [36]. The coe cient vector w, 2 CK*D 1 of the optimal equalizer is given
by:

Wo= THT + 214 lTHsd; (2.71)
where T is a (K +L+1) (K +1) Toeplitz matrix built from the channel coe cients, of
which the rst row is given by T;1 = [h(0) O ,] and the rst columnis T 1 =[hT 0f ,IT.
The vector sq 2 R(K*+L*1) 1 s given by [0:::;0;1;0:::::0]", where the only nonzero element
corresponds to thedth entry and d represents the equalization delay, which is usually taken s
d=(K+L+1)=2ifK+Lisoddord=(K +L+2)=2if K+ L is even B6]. The input signal
is recovered as follows:

X
8(n) = wo(K)y(n  Kk): (2.72)
k=0
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Figure 2.5: Symbol error rate (SER) performance in the SISO ase with QPSK modulation for
L =2 (left) and L = 3 (right).

In g. 2.5 we present the performance of SS-LS PBCI and FOSI algorithm in terms of
the symbol error rate (SER) for channels with L = 2 (left) and L = 3 (right) with a QPSK
modulated input signal. The dotted lines concern the resuls obtained with the optimal MMSE
equalizer assuming perfect knowledge of the channel coe eints. For a target SER of 10 2, with
L =2 (left), SS-LS PBCI provides a gain of about 5dB in SNR with respect to FOSI. ForL =3
(right), despite the expected performance loss of both algithms, this gain is around 7dB in
SNR for a target SER of 2 10 3.

6.2 MIMO channel identi cation

In this section, we assume aguasi-static Rayleigh at-fading transmission scenario where the
MIMO channel coe cients are drawn from a continuous complex Gaussian distribution and are
assumed to be time-invariant within the duration of a time-slot with length equal to N symbol
periods. At each time-slot, a new channel is randomly seleed. In which follows, the length of
the time-slot has been set toN = 1000 symbol periods and the output data samples received
in this interval are used to estimate the spatial cumulants. Our results are averaged over 300

time-slots.

Overdetermined mixtures

In order to evaluate the performance of the Parafac-based idd MIMO channel identi cation
algorithms in the overdetermined case 1 > Q ), we utilize the identi cation performance index
given in [84, 85], which is based on the matrix " = H*HA,;, where A},; is an estimate of
the channel matrix, up to column scaling and permutations, dtained after convergence for the
simulation r 2 [1;R]. Therefore, in the ideal caseA,; = H , and hence ' should take
the form of a scaled permutation matrix. The identi cation p erformance index is computed as
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Figure 2.6: Average identi cation performance index SNR.
follows:
20 _ 1 0 , 13
N lagl X R XX P
¢ "y, 54@ L 1A+ @ —Ho— 1A5; (2.73)
i maxj o2 p maxj o2
where :' are the entries of ', The identi cation performance index () equals zero if

its matrix argument has the exact structure of a scaled permtation matrix, and small values
indicate proximity to the desired solution. In our case, ( ') tends towards zero when the
channel estimate approximates the actual MIMO channel matix, up to column scaling and
permutation. Actually, the identi cation performance ind ex de ned in (2.73) is generally viewed
as a measure of the quality of source restoration, irrespete of the trivial indeterminacies,
indicating the global level of interference rejection at the output of a spatial Iter built from the
estimated channel coe cients. In the following gures, we plot the value in dB for the average
performance index, i.e. (ER) P R (™), whereR is the number of time-slots (Monte Carlo
simulations).

In a rst simulation experiment, we evaluate the PBMCI appro ach by comparing the pro-
posed algorithms 4D SS-LS and 3D SS-LS with their ALS-basedatinterparts (QALS and TALS
respectively). We obtained the plots in g. 2.6 using M = 3 antenna elements. These pictures
show the average identi cation performance index computedusing (2.73 in function of the SNR
for Q = 2 (left) and Q = 3 (right) QPSK modulated sources. Notice that the methods based
on 4th-order tensors (4D SS-LS and QALS) performed generall better than their 3rd-order
versions (3D SS-LS and TALS). As expected, increasing the maber of sources leads to worse
performance, but 4D SS-LS seems to be less a ected than the loér methods.

In g. 2.7, we show the mean number of iterations needed for convergeamf the four algo-
rithms when Q = 2 (left) and Q = 3 sources (right) with SNR = 21 dB. Although 4D SS-LS
takes generally more iterations to converge than QALS, the drmer one is a more attractive
option due to its smaller computational complexity, since it involves only one LS minimization
instead of four. Note that increasing the number of users fora given number of antennas con-
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Figure 2.8: Comparison with other algorithms.

siderably increases the number of iterations needed for theensor-based algorithms to converge.
As expected, the methods based on the 4th-order tensor conkge faster than those based on the
3rd-order one. Finally, we observe that the algorithms take more iterations to converge when
the number of antennas decreases, due to the loss of spatiaiversity.

In the sequel, we present some results comparing the SS-LS awach with some algorithms
reported in the literature. In particular, we confront the i denti cation performance obtained
with the 4D SS-LS PBMCI algorithm against the results provided by the classical JADE B1]
algorithm, the FOOBI [ 22] and the ICAR [68] methods. From g. 2.8, we note that the 4D
SS-LS PBMCI algorithm presents satisfactory results vis-avis of the other three methods. By
increasing the noise level, JADE's performance degrades dnbecomes worse than the other
methods for SNR values below 12dB. ForQ = 3 sources andM = 3 antennas, g. 2.8 (right)
shows that our approach performs better than the other teste algorithms. In conclusion, the
SS-LS approach seems to be a very interesting solution, esgelly when the number of users
increases and the noise level becomes important.
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Figure 2.9: SER vs. SNR in the MIMO case.

Finally, concerning the recovery of the source signals, wdlustrate in g. 2.9, the perfor-
mance of the 4D SS-LS PBMCI algorithm in terms of the average SR per user, forQ = 2
users (left) and Q = 3 users (right). The source symbols were recovered using @&emi-
blind MMSE lter W 2 C® M pbuilt from the estimated MIMO channel matrices, as follows:
W = ARAAH+ R ) 1 whereR is the estimated noise covariance matrix. In order to get rid
of the problem of scaling (phase) and permutation ambiguites, P pilot symbols have been used,
with P = 10 in the case ofQ = 2 users andP = 15 for Q = 3 users. The results are compared
with those obtained with the optimal MMSE receiver using perfect knowledge of the channel
coe cients. Note that, for Q = 2 users (left) as well as forQ = 3 users (right), the performance
of 4D SS-LS is quite close to the optimal MMSE reference. WithQ = 2 users, the average SER
performance has the same global behavior as witk) = 3 users, except for a vertical shift in the
curves, indicating an expected performance loss due to thencrease in the number of users.

Underdetermined mixtures

In order to evaluate the identi cation algorithms in the und erdetermined case, we will con-
sider a uniform linear antenna (ULA) array with M identical sensors, equally spaced of half a
wavelength, receiving signal fromQ narrow-band sources, assumed to be in the far- eld of the
antenna array, with azimuth angles given by ¢, q 2 [1;Q], and no elevation angle. The signals
are transmitted in the baseband with unit-variance using a QPSK modulation. The mixing

matrix coe cients are given by:
h i
H =¢ MBDosa m2[LM] g2 [LQ] (2.74)
m:q

where| = P ~ 1. The estimation accuracy is measured in terms of the NMSE, emputed as:

1
wse LK kKA HKE
R . kHKZ

r=1

(2.75)
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Figure 2.10: NMSE vs. SNR withN = 1000 symbols (left) and NMSE vs. Sample data length
with SNR=5dB (right).
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Figure 2.11: NMSE vs. SNR withN = 1000 symbols (left) and NMSE vs. Sample data length
with SNR=5dB (right).

whereR is the number of Monte Carlo simulations andA Erli) is the optimally ordered and scaled
channel estimate obtained after convergence for theth simulation. Our simulations include 300

Monte Carlo runs of each experiment. Firstly, we have usedV = 3 sensors andQ = 4 sources
with angles of arrival given by =55, o= 5, 3= 50 and 4 =25, respectively. The
curves in g. 2.10have been obtained withN = 1000 symbols for a SNR ranging from 0 to 30dB
(left) and with a SNR of 5dB with N varying from 400 to 5000 symbols (right). These results
show that 4D SS-LS algorithm gives better precision than FO@I, specially for low SNR levels.
Note from Table 2.3, that in this particular scenario (M =3, Q = 4) both methods have the

same bounds in terms of the maximum number of identi able souces.

For the next experiment, we usedM = 4 sensors and included an extra source with angle of
arrival given by 5= 25. In g. 2.11, we observe that FOOBI's performance with respect to
the 4D SS-LS algorithm is better, and their NMSE practically coincide for high SNR levels (left)
as well as for large sample sizes (right). Note from Table.3 that in this case (M =4, Q = 5),
FOOBI has weaker uniqueness conditions than the SS-LS appach and hence more freedom to
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Figure 2.12: Maximum SINR vs. SNR with N = 1000 symbols: Best (left) and worst (right)

cases.

treat additional sources.

The performance of the identi cation algorithms can also beassessed in terms of the quality
of the extraction of the Q independent components. To this end, we apply a spatial mateed lter
(SMF) built from the estimated channel coe cients as W = IQy 1A . A performance evaluation
criterion can be de ned as the maximum signal-to-interference-plus-noise ratio (SINR) per source
[25]. The SINR of each sourcey 2 [1; Q] at the ith separator output can be computed as follows:

2 JW|H|q qu.

SINRq(wi) = SwWHR qw;’
|

(2.76)
wherew; = [W];, §q is the variance of sourceg and R ¢ is the total noise plus interference
matrix for source g, corresponding toRy = E y(n)y"(n) in the absence of sourcey. The
maximum value of SINRy(w;) for all i 2 [1; Q] is indicative of the quality of restitution of source
g. In g. 2.12 we plot the results in function of the SNR level, for the soucesq=3 and q= 4,
which gave respectively the best and worst t with respect to the optimal SMF, which built
from the exact channel coe cients (dotted lines). We conclude that some sources can be better
recovered than others in spite of the global performance oftte separator.
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7 Summary

In this chapter, a new blind SISO channel identi cation algorithm has been presented based on
the Parafac decomposition of a 3rd-order tensor formed of 4t-order output cumulants. The
proposed PBCI algorithm relies on a SS-LS minimization prollem. The Parafac decompaosition
fully exploits the three-dimensional nature of the cumulart tensor and has the advantage of
avoiding any kind of pre-processing. Unigueness and convgence issues have been addressed.
Computer simulations show that our approach provides bette estimation performance than
both the TLS solution and the FOSI algorithm, which is based an a simultaneous matrix diag-
onalization. Furthermore, the convergence of the PBCI algoithm can be accelerated when it is
initialized with the TLS solution.

We have also addressed the problem of blind MIMO channel (miture) identi cation in
the context of a multiuser system characterized by instantaneous complex channels. We have
presented a simplied SS-LS MIMO channel identi cation algorithm based on the Parafac de-
composition of a 4th-order tensor composed of 4th-order syl output cumulants. Quadrilinear
and trilinear ALS solutions have been described and compackwith the SS-LS method. We have
established uniqueness conditions bounding the number ofienti able sources and showing that,
under certain conditions, our algorithm can identify underdetermined mixtures. Computer simu-
lations have been presented assessing the performance oétproposed algorithms and comparing
it with other MIMO channel identi cation algorithms, showi ng that the SS-LS approach is of
great interest in several practical situations.



64

CHAPTER 2. PARAFAC-BASED BLIND CHANNEL IDENTIFICATION



Chapter 3

Parafac-based methods for Array
Processing and Multipath Parameter
Estimation

igh -resolution subspace-based direction nding (DF) mettods, such as the well-
known MUSIC [86, 87] and ESPRIT [88] algorithms, have become very popular
in narrowband (NB) array processing. Exploiting the orthogonality between the
signal and noise subspaces, these methods based on the setorder statistics (SOS)
provide asymptotically in nite resolution and are very int eresting solutions for localizing multiple
sources when the spatial correlation of the additive noises known [89, 90, 91, 92, 93]. However,
the performance of SOS-based methods can be seriously déteated when dealing with several
sources with low signal-to-noise ratio (SNR) and small anglar separation using nite data
sample sequence9D, 92, 93] or in presence of spatial noise with unknown correlation faction
[94]. In addition, they can only treat overdetermined mixtures (more sensors than sources).

Source localization is a crucial aspect in sensor array pr@ssing. Determining the loca-
tion of signal emitters allows for the implementation of souce separation techniques as well as
beamforming for interference suppression. During the lastwo decades, the use of high-order
statistics (HOS) has been widely considered for the estimabn of the direction-of-arrival (DOA)
in the context of multiuser NB array processing. Several saltions to the source localization and
DF problems have been proposed for non-Gaussian signals leson the 4th-order cumulants of
the array output data [82, 95, 96]. Extensions of the MUSIC algorithm to the 4th- and higher
(even) orders gave rise to the 4-MUSIC 28, 97, 29] and, more recently, the 2 -MUSIC ( 2)
methods 27]. In addition to noise robustness, these methods o er bette resolution and allow
for an increased number of sources to be localized, includincertain underdetermined cases. Al-
though characterized by a higher variance 98], the HOS-based MUSIC-like algorithms increase
the number of virtual sensors and the e ective aperture of the receive antenna array at the

65
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cost of an increased complexity due to the estimation of the lgh-order statistical information
[99, 25, 26]. Other known 4th-order DF approaches include 82, 100, 101], among others.

In the rst part of this chapter, we treat the problem of blind multiuser localization in
the context of multiple antenna array processing. Assumingthat the sources are located at
the far- eld of the antenna array, our goal is to estimate sighal DOAs using only the array
output signals. Speci cally, we propose a new high-resolubn DF algorithm that arti cially adds
sensors to a virtual antenna array without resorting to statistics of order higher than fourth. In
fact, using the 4th-order cumulants only, the proposed metlod estimates the array matrix and,
exploiting the structure of the cumulant tensor, creates anenhanced virtual array that yields an
augmented observation space, thus providing additional dgrees of freedom to the antenna array
and allowing for improved resolution. Based on the singletgep least-squares (SS-LS) Parallel
Factor (Parafac) decomposition technique introduced in Chapter 2, the new source localization
algorithm exploits an array having a double Kronecker strudure, which commonly only arises
when using 6th-order statistics. However, since we do not red to estimate cumulants of order
higher than fourth, our approach keeps the variance of the cmulant estimators at a moderate
level, even for quite short output data sequences. Uniquerss and identi ability conditions will
be discussed in order to assess the capacity of the proposeechnique in terms of the maximum
number of resolvable sources. Computer simulations are puided to illustrate the performance
of the proposed method compared with the classical MUSIC apmaches.

On the other hand, in mobile radiocommunication contexts, sgnals are often transmitted
through multiple propagation paths, characterized by speailar re ections and scattering due
to physical objects placed in the environment. In such a mulipath propagation scenario, the
wavefronts may reach the receive array front-end with di erent delays, spreading the energy of
the signals over the time and corrupting temporally adjacer pulses. The so-called delay spread
pro le induces an altered channel impulse response thus yiding intersymbol interference (ISl),
which accounts for important capacity and performance limitations in wireless communication
systems. In order to ensure a correct information recoverywe may need to reduce or suppress
the e ects of ISI, which generally requires some knowledge k@out the transmission channel.
Classically estimated by using known sequences embedded ihe transmitted signals, the use
of channel coe cients allow for the application of several linear and nonlinear methods aiming
the recovery of the input symbols [L0Z]. However, such a supervisedt(ained) approach may be
very costly in the context of time-varying channels, even wken variations are slow.

Due to the (possibly) nonminimum phase property of the radio channel, the identi cation
problem has been often addressed using a HOS formulation, vdh gave rise to several non-
supervised plind) approaches b, 103 104]. Other blind HOS-based approaches include well-
known adaptive techniques that are intended to recover the tansmitted symbols without the
previous channel estimation stage 105, 106, 107, 10§. Since the pioneer paper by Tong et. al
[109], blind methods have also been proposed for the single usease based only on SOS, ex-
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ploiting subspace properties of multiple output channels orresponding to the di erent sensors
of an antenna array and/or to an oversampled output signal (factionally-spaced equalization)
[110 111, 112 113 114). See also 115 and references therein for the particular case of single-
input multiple-output (SIMO) channels. Still relying on th e oversampling of the channel output,
extensions of the subspace method to multiuser con guratioas have been developed inl[l6, 117
and SOS-based approaches using linear prediction have bepnoposed in 118 119.

Starting from section 3, we will focus on the problem of blind multipath channel parameter
estimation. Our approach includes two successive stages. &Vrst introduce a 4th-order output
cumulant tensor model for the convolutive MIMO channel case which is an important contri-
bution of this chapter as long as it generalizes the results lotained in Chapter 2 for the SISO
and the memoryless MIMO cases. After that, using the physichmultipath parameters to model
the channel coe cients, we introduce a 3rd-order Parafac tensor representation for the convo-
lutive multiuser radio channel. Using the proposed generated cumulant tensor framework, we
extend the SS-LS algorithm to the non-parametric estimatian of the convolutive MIMO chan-
nel coe cients. Uniqueness conditions show that the propogd algorithm copes with a exible
range of possible channel con gurations, each con guratio corresponding to a given number
of transmit and receive antennas and a xed channel memory. hen, an ALS-based algorithm
is used to estimate the spatial and temporal channel signattes using the estimated channel
coe cients. Finally, the multipath parameters are extract ed by means of subspace-based algo-
rithms, which enables us to recover the channel coe cients vithout the trivial indeterminacies
associated with the Parafac decomposition. This new parantec estimation procedure is also
an original contribution of this chapter and will be referred to as ALS-MUSIC algorithm.

The two-stage procedure introduced in this chapter for estinating the convolutive MIMO
channel and its multipath parameters is, to our knowledge, tie rst fully blind technique propos-
ing solution to the channel identi cation problem in a multi user radio-mobile context, making
use of the 4th-order cumulant symmetries in a single LS minination problem and exploiting
the multipath structure of the channel using a tensor formalism in both stages, without resorting
to oversampling.

The remaining of this chapter is organized as follows: in s¢ion 1, we formulate the array
output signal model along with the basic de nitions of signal and noise subspaces; we also dis-
cuss the Virtual Array concept and present a survey of classi MUSIC-like algorithms, including
the general formulation for the case of statistics of any eve order; in section 2 we derive a new
high-resolution DF algorithm exploiting the double Kronecker structure of the unfolded 4th-
order cumulant tensor; the SS-LS cumulant tensor decompoton approach is revisited and the
unigueness issue is addressed; in sectid@ we turn our attention to the problem of estimating
the multipath parameters of a MIMO channel; we start by intro ducing a general formulation for
the 4th-order output cumulant tensor model in the convolutive MIMO case and then we treat
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Figure 3.1: Linear antenna array and incoming signal.

the multiuser radio channel as a Parafac tensor formed fromts physical multipath parameters;
section 4 proposes combined algorithms for the blind identi cation of the convolutive multipath
MIMO channel in two stages: using rst a non-parametric 4th-order cumulant-based SS-LS
approach and then a parametric ALS-based algorithm that uss the previous estimation of the
channel coe cients; after that, the multipath parameters a re extracted by means of MUSIC-
like subspace-based algorithms that allow for the complet@econstruction of the MIMO channel
impulse responses without scaling ambiguities; nally, insection5, we provide computer simula-
tions illustrating the methods discussed throughout the chapter and assessing their performance
under di erent channel con gurations. Conclusions are drawn in section 6, along with some
future work perspectives.

1 The source localization problem in NB array processing

Let us consider a linear array of M identical NB sensors receiving the contributions of Q
zero-mean stationary sources, assumed to be placed at therfeld of the array. Denoting
by y(n) 2 CM 1 the vector of complex signals measured at the output of the atenna array, we
have:

y(n) sq(mal q; g+ ()
g=1

As(n)+ (n) (3.1)

where the vectors(n) 2 C? 1 is formed of the complex amplitudes of the source signalsq(n),
which are stationary, ergodic and mutually independent with symmetric distribution, zero-mean
and non-zero kurtosis s, = C4;5,(0;0;0), g 2 [1;Q], with azimuth and elevation angles given
by qand g, respectively, as illustrated in g. 3.1. Moreover, the signalssq(n) are assumed to
be independent of the additive Gaussian noise, which is arraged in the vector (n) 2 CM 1,
stationary with zero-mean and unknown spatial correlation Matrix A 2 CM Q represents
the spatial responses of the linear antenna array, concatexting the source steering vectors
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a( ¢ q) 2 CM 1 carrying the DOA information ( ¢ ) associated with each source 2 [1; Q].

The array matrix A can therefore be written as
h

i
A= a1 1)::a(q g 2CY 9 3.2)
where the mth element of vector a( o; ) corresponds to the response of the array elemenn

with respect to the sourceg. Assuming a planewave propagation with no coupling between
sensors 120, 121], we can write:

2 X m COS 4COS
am( g; q)=e><p| a3 (3.3)

where | = p_l and xn, is the distance of each array elemenim 2 [1;M] with respect to a
given reference sensor, assumed by convention to be the rsintenna, i.e.x; = 0. The signal
wavelength is given by = c=f., wheref is the carrier frequency and the constantc is the
propagation speed of the light. Due to @.3), A has a particular unit-modulus property and,
sincex; = 0, the directional matrix gets a all-one rst row, i.e. A; =[1;1;:::;1]. In the case
of Uniform Linear Antenna (ULA) arrays, the sensors are equdly spaced from each other along
the array axis and distanced of x with respect to adjacent sensors, so that 8.3) becomes as

follows:
|2 (m 1) xcos gcos q

am( g0 ) =exp (3.4)

In this case, the spatial response array matrixA has the following Vandermonde structure:

0 1
1 D 1
al( 1, 1) it a( ks k)
A = af( 1, 1) o af(k; k) : (3.5)
a' Mo roa Yk ok)

where the second row is the generating vector, from which thevhole matrix can be deduced.

1.1 Array output statistics

Considering the above mentioned assumptions, let us de nehe covariance matrix C@Y) 2
CM M sothat [C@W]j = Cay(isj), ii] 2{1;M], where the 2nd-order spatial cumulant of the
array output is de ned as Czy(i;j) , cum yi(n);y; (n) . From (3.1), we have:

n 0
E y(ny"(n)
= A AT+ C@) (3.6)

c@y)

where s = E s(n)s(n) andC@ ) = E (n) "(n) . From the assumption of mutually
independence of the sources, it follows that ,.s is a diagonal matrix with diagonal entries given
by the source variances, 25, = E jsq(n)j2 , 02 [1, Q]
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Moreover, by de ning the 4th-order tensor C*Y) 2 CM M M M ith scalar representation
given by Cay (i;J; k; 1), cumly; (n);y; (n);y,(n);yi(n)], we can build the Quadricovariance ma-
trix CE@¥) 2 CM* M as U] pw+i « yw+1 = Cay(iJik;1), yielding the structure given
below [82, 83:

cly) = A A 4s A A H; (3.7)
where 4s= Diag 4s,;:11; 45, and denotes the Khatri-Rao product.

Comparing (3.7) with ( 3.6), we note strong similarities in the structures of C4Y) and (the
noiseless part of)C?Y). While both are diagonal quadratic forms, the latter one is kuilt from
the source steering vectors, andC*Y) involves a column-wise Kronecker product of those vec-
tors. This structural analogy is the basic idea allowing for extending some array processing
methods based on SOS to the 4th-orderd2, 47]. In addition, since the above analysis only
evokes the linearity and the additivity properties of cumulants, it can be extended to statis-
tics of any (even) Ol‘dqji. In fact, complex-valued 2th-orde{ output cumulants, de ned as
Couy (i;:1r5i2 ), cum yi, (n);::zsyi (n)yy; L, (N);iiosy;, (n) 2, can always be repre-

sented by a Hermitian matrix cé¥ocm M , which admits the following decomposition:
. < . R - H
cl¥)i= A A s A A CO20L T (3.8)

where ;.5 = Diag 2:5,;:11; 2.5, and 2, isthe 2 th-order cumulant of the input signal
Sq(n). The notation X " stands for a multiple Khatri-Rao product involving a matrix X so that
X "= X X ::: X,where the Khatri-Rao product symbol appearsn 1 times. Throughout
the rest of this chapter, we omit the index °, choosing by convention™ = =2 when s even
and " =( +1)=2 for odd values of .

In practical applications, the channel statistics are not known at the array output and must
be estimated from the received data sequences, based on teegodicity assumption. Cumulant
estimation is an important issue and has been brie y discused in section1.1.2 of Chapter 1, in
the case of 4th-order cumulants. Exact expressions exist f@omputing the variance of cumulant
estimators of order 2 , generally involving very complicated calculations usingcumulants of order
up to 4 [48, 122, 17]. In this context, an important result shows that, for order s higher than
3, as the sample data length increases, the cumulant estimats tend to be Gaussian random
variables [3]. However, the convergence towards Gaussianity may be verglow, as increases.
Consequently, when dealing with HOS, the use of short samplelata sequences may lead to
signi cant errors with respect to the asymptotic results [98].

Signal and noise subspaces

Assuming that the sources are spaced far enough apart from eh other, we can consider that the
source steering vectorsa( o; ), 2 [1 Q], are mutually independent. Under this assumption,
the space spanned by these vectors is a subspace of thbservation spacewith M dimensions,
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which the received signal vectory (n) belongs to. Therefore, the column space of matribA , with
Q dimensions, will be referred to as thesignal subspacewhile its orthogonal complement, with
M  Q dimensions,M > Q , will be named the noise subspace

From (3.6) we conclude that the rank of C@Y) is ensured to be equal to the number of
sourcesQ if Q M. In this case, we notice that the signal subspace contains athe necessary
information for representing the transmitted signals. By projecting the observations on the
signal subspace, we can reduce the amount of noise withoutds of useful information M > Q ).
In addition, the number of sources is given by the dimension bthe signal subspace.

On the other hand, the rank of C*¥) equalsQ wheneverQ M?2. In fact, (3.7) suggests
that the observation space of the 4th-order cumulants, with M 2 dimensions, is spanned by
the Kronecker products of the received signal vectorsy(n) vy (n). In this case, the signal
subspace is de ned as the space spanned by the Kronecker procts of the steering vectors
a( o g0 a(q g with Qdimensions. Its orthogonal complement, withM 2 Q dimensions,
will be referred to as the noise subspace.

1.2 The Virtual Array concept

By replacing the received signal vectors by their Kroneckerproduct, we actually increase the
dimension of the observation space, thus allowing for a gréar number of separable sources
[123. To illustrate this principle, let us consider the Kronecker product a( ¢; o) a ( q; q)
and take the element in position (m; 1)M + my, with mq;my, 2 [1;M]. Using a ULA array,

we can write this element from (3.4), as follows:
h [

a(qo g0 a(q q ( am;( ¢ og)am,( g ¢

2
- exp | (my my) Xcos gqcos q . (3.9)

m1 1)M+my

The above equation clearly shows that the Kronecker productof the steering vectors results in
an augmented ULA array with virtual sensors (VS) placed at the array axis and distanced of
(m1 my) x with respect to the reference sensor, for almy;m, 2 [1;M]. Notice that the M
elements for whichm; = m», are located at the array origin and are said to be virtual sensrs
of multiplicity M. In the case of ULA arrays with space diversity only, the 2ndorder virtual
array (VA) de ned in ( 3.9) is shown to have 24 1 di erent VS, meaning it can deal with up
to 2M 2 independent sourcesd5]. In the general case, using an optimal array geometry, it is
possible to get uptoM?2 M +1 dierent VS [ 25].

The theory of Virtual Arrays has been introduced independerly in [ 99] and [123] using 4th-
order statistics. The concept has been further developed ij25] and [26], for the case of 4th-
and higher-order cumulants, respectively. However, some dsic results had already been given

in [124]. The steering vectors of a th-order VA are given as follows:
h [
a(qg o= alg o a(q q ; (3.10)
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where x " denotes a multiple Kronecker product involving a vector x so that
x "= x x i Xx,where the Kronecker product symbol appearsn 1 times. The index
" has been omitted from the left-hand side of 8.10) since we have chosen to take, by convention,
"= =2for evenand =( +1)=2when is odd.

One major interest in using high-order (HO) VAs is in exploiting the Kronecker structure
that naturally arises in the HOS representations. Despite he increased variance of the HOS
estimators, the HO VAs are known to provide gains in terms of esolution, which can be measured
by means of the spatial correlation between two sources. Letis consider the sourcesy and o,
with DOAs given by the angles ( ,; ) and ( ¢; ¢), respectively. The spatial correlation
coe cient of sources ¢z and ¢ is given by the normalized inner product of the steering vecbrs

a(q: glanda (g ) e

(3.11)

&(th; %), h a (o iqlei? (ol o)

a ( s Q1)Ha ( s Q1) a ( G Q2)Ha ( G Q2)

F1=2-

Notice that for any complex n 1 vectorsa, b, candd it holds: (a b )"(c d )= (a"c)(d"b);
we can thuswrite @ a )i = b ) =(a"b)(b"a) ', forall a;b 2 C" . Re-

placing this latter relationship into ( 3.11) and taking its modulus, we obtain:

ja( Q1; Q1)Ha( Q2; Q2)j
jal g5 glijal g )i

& (o) = ; (3.12)

from which it is straightforward to deduce that j& (t1; )] = j&(tn; p)j . Note that for = 1the
virtual steering vector de ned in ( 3.10 coincides with the actual array response vectoa( ¢; q)-
Thus, for an array with space diversity only, the spatial correlation coe cient of the  th-order
Virtual Array associated with a given direction ( ¢; o) only depends on and on the normalized
amplitude responsej&(q;0)j of the actual antenna array of M sensors, for each pair (g, q)-
Since 0 j &(qg;0)j 1, we conclude that for the direction ( o; o), the spatial correlation of
the HO VA decreases with , thus improving its angular resolution. This fact is illust rated in
g. 3.2 for a ULA array with 3 sensors spaced of=2, where we plot the antenna response of
the VAswith =1, =2and =3,toasourceat =5 (no elevation angle). The antenna
pattern is obtained from the inner products of the associatel steering vectors. Considering the
beamwidth (in degrees) at the point of 3dB attenuation of the main lobe for the DOA of 5 , we
observe gains of about 1% and 198 using the HO VAs with =2 and = 3, respectively,
with respect to the considered array ofM sensors ( = 1).

1.3 MUSIC-like DF algorithms

In its basic form, the Multiple Signal Classi cation (MUSIC ) technique has been introduced to
provide asymptotically unbiased estimates of the parametes of multiple wavefronts arriving at
an antenna array [86, 87]. Exploiting the orthogonality between the signal and noise subspaces,
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Figure 3.2: Antenna pattern of di erent VAs for a ULA with 3 se nsors spaced of= 2.

the MUSIC algorithm aims to determine, among others, the nunber of signal sources, their
location (DOAs) and the cross-correlations among the direttonal waveforms.

2-MUSIC

The SOS-based MUSIC algorithm (so-called 2-MUSIC) algoribm is of particular interest: 1) in
the noiseless case, in which3/6) leads to C?Y) = A ,sA": 2) in the case of a spatially white
additive noise, whenC @ ) is proportional to the identity matrix, i.,e. C@ )=, Iy, with
being the noise variance. In this latter case, the smallestigenvalues ofC2Y) equal the noise
variance and the corresponding eigenvectors span the noiseibspace of the noiseless observation
space. The eigenvectors associated with the largest eigealues span the signal subspace and the
EVD of the estimated covariance matrix is shown to yield the maximum likelihood estimator of
the number of sources §7]. Implementations of the 2-MUSIC algorithm generally assume that
the additive noise is white andM > Q .

Taking the EVD of the Covariance matrix C@Y), we get:

céy=yu " (3.13)

where is a real-valuedM M diagonal matrix and U = [Us U,] 2 CM M s a unitary
matrix, with Ug2 CM QandU, 2 CM M Q corresponding to the signal and noise subspaces,

respectively. Taking (3.6) into account and noticing that U A = Om @) q.We can de ne the
following localization function:

P(; )= o (3.14)
w(; )HUn

where U, is chosen as the columns o) associated with theM  Q smallest eigenvalues and
the orthogonal projector w(; )2 CM ! has the form of the steering vectora( ; ) de ned in
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(3.3). The function P»(; ) clearly measures the orthogonality between the signal anchoise
subspaces for the source; the desired value of the orthogonal projector is the one maixnizing
(3.149) [82]. We can therefore conclude that the local maxima ofP,( ; ) are associated with the
DOAs of the Q source signals.

In practice, the algorithm must previously estimate the covariance matrix of the output
observations€ @) (the equations given in section1.2 of Chapter 1 can be used to this end) and
the localization function is built from the estimated noise subspacel ,. This approach provides
asymptotically in nite resolution because only the true array steering vectors associated to each
source strictly belong to the column space ofA. The main drawback is the limitation to treat
only overdetermined mixtures, since it can only localizeM 1 sources.

HO-MUSIC

As we have seen in sectiorl.1, the Quadricovariance matrix C4Y) has structural properties
very similar to those of the Covariance matrix C?Y), but involving the Kronecker products of
the source steering vectors. According to the VA concept disussed in sectionl.2, the Kronecker
structure of C4Y) yields an increased number of virtual antenna elements, tha allowing for the
localization of more sources than sensors, the amount of wth varies in function of the array
geometry. This is the main principle behind the extension ofthe MUSIC algorithm to the 4th-
(and higher-) orders B2, 47].
Let us consider the EVD of C4Y) | as follows:
h i h Iy

cél¥ = uUsu, Us Up (3.15)
where is a real-valued M2 M2 diagonal matrix and the columns of Us 2 CM* Q and
U, 2 CM? (M2 Q) correspond to the 4th-order signal and noise subspaces, abhed from the
eigenvectors associated with theQ largest and the M2  Q smallest eigenvalues ofC V), re-
spectively. Exploiting the orthogonality between the obsevation space and the noise subspace,
we de ne the following localization function:

Pa(; )= = 5 (3.16)

wo(; )HU,

wherewy(; )= a(; ) a(; ). The source DOA parameters (4, q) can be deduced from
the parameters of the orthogonal projectorswy(; ) 2 CM? 1 that maximize the 4th-order
localization function P4(; ), which in practice is built from the estimated noise subspae 0 ,,
obtained from the estimated cumulant matrix €®).

The 4-MUSIC algorithm has been introduced in B8, 97, 29| in the context of overdetermined
mixtures. The concept has been discussed i8] as well, including the case of more sources than
sensors. The principle underlying the 4-MUSIC algorithm mées use of two basic properties of
4th-order cumulants: the linearity and the additivity unde r linear independence. Since these
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properties hold for cumulants of any (even) order, the algoithmic formalism is easily extendable
to higher-order statistics. In fact, using the 2 th-order cumulant matrix C@%) de ned in (3.9),
it is straightforward to build a general localization function of the form:

P2 (; )= ! 5 (3.17)

w (; )HU,

where the orthogonal projectorw (; ) 2 CM 1 takes the form of (3.10 and U, is the
M (M Q) matrix that concatenates the eigenvectors ofC ? Y ) associated with itsM Q
smallest eigenvalues. Source DOAs can be found by searchifgy the local maxima of P, (; ).
See 7] for a survey on the 2 -MUSIC algorithms.

2 DF algorithms based on cumulant tensor decomposition

As we have seen in the preceding sections, HO-MUSIC-like abtgithms have the ability to make
use of the virtual antenna array that naturally arises from the HOS structure at the array
output. However, due to the high variance of the HO cumulant estimators, the use of nite
sample data yields considerable deviations with respect tasymptotic results. On the other
hand, exploiting additional sensors allows for improving esolution and capacity in terms of the
number of resolvable sources, at the cost of an increased cphaxity due to the estimation of
higher-order cumulants.

In this section, we propose a high-resolution DF algorithm hat creates a 3rd-order virtual
array, only exploiting the Kronecker structure of the 4th-order cumulant tensor. Our solution
is based on the single-step least-squares (SS-LS) Parafaeabmposition technique introduced in
Chapter 2, which exploits the symmetry properties of 4th-order output cumulants to perform
the Parafac decomposition of a cumulant tensor §3, 64]. This approach involves a channel
estimation stage prior to source localization, but it allows for an improved resolution due to
an enhanced VA, arti cially constructed from the estimated channel, without resorting to 6th-
order statistics. While keeping the cumulant estimation variance at a lower level compared with
the 2 -MUSIC algorithms, > 2, the proposed technique is robust to an additive Gaussian
noise with unknown spatial correlation, contrary to the 2-MUSIC method. In addition, for ULA
arrays, the SS-LS approach is shown to resolve as many souecas the 4-MUSIC algorithm.

Let us rewrite the scalar representation of the 4th-order tasor C4Y), de ned in section 1.1,

as follows:
.. ﬁ
Cay( k1) = 458 (g (g da( g dalq q (3.18)
g=1
for 1 i;j;k;l M and g 2 [1;Q], where the nonzero source Kurtoses 4s, are assumed

unknown. It follows from (3.18 that C*VY) is a 4th-order Parafac tensor with rank Q. Its
canonical components can be straightforwardly deduced andare all written in terms of the
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array matrix A and the diagonal Kurtosis matrix 4. (see section4 of Chapter 2)*. Let us now

de ne the unfolded tensor representationCyy; 2 CM® M 3s follows:
h i

Cpy = Cay(ijik;1); (3.19)

(G DM2+(k LM+
which can be easily shown to be written as follows (see the unfding procedure introduced in
section 3.1 of Chapter 1):

(A A A) 4A" (3.20)
A® L AN (3.21)

Cuy

where A® is the M3 Q 3rd-order VA matrix, dened as A® = A A A, with A being
de ned in (3.5).

2.1 The SS-LS Parafac algorithm

Using the unfolded tensor representationC ;, the SS-LS Parafac algorithm introduced in Chap-
ter 2 can be used to estimate the array matrixA , as well as the VA matrix A ©®) . The algorithm
iteratively minimizes a single LS cost function, given by:

A sA), cy A A A 4sAT ii (3.22)

in which r is the iteration number and k kg denotes the Frobenius norm. The iterative mini-
mization of (A, 1;A) yields the following LS solution:

At argmin (A; 1A)
#
= 4;%'&53)1 Cra; (3.23)

with

A$3)1=Ar 1 A Ao (3.24)
Note that we only have to initialize Ao. In fact, at each iteration r 1, we deduceA 53)1 from
(3.24) and then, we compute A, from (3.23.

Iterative LS algorithms are known to be very sensitive to theinitialization of the parameters
[58]. Exploiting the unit-modulus property of the array steeri ng matrix, the following modi -
cation of the algorithmic procedure is expected to improve onvergence. After initializing A o
with an M Q matrix drawn from a (complex) Gaussian distribution, perform the following:

At each iteration r 1, before computingA ;, divide each entry of the preceding estimate
by its own magnitude, i.e.

[A r 1]m
[Ar Im — L =ma ;
o [A r 1]mq

! This result can also be obtained from the general formulatio ns (1.52) and (1.53), introduced in Chapter 1,
with P =4.
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Normalize each column by its rst-row element:

[Ar 1]q
[Ar 1] q P
[Ar l]lq
DeduceAEa ; from (3.24) and compute the array matrix estimate at iteration r as follows:
h . in
A APl cy - (3.25)

Notice that, due to the normalization step, the computation of A, becomes independent of
the source Kurtosis matrix 4. The algorithm is stopped whenje(r) e(r 1)j> ", where
e(r)= kA, A, 1ke=kA ke and" is an arbitrary small positive constant.

2.2 Uniqueness and identi ability

Due to the Vandermonde structure of the array matrix, given in (3.5), and assuming the signal
sources are not closely located, matridA can be shown to be full k-rank 125, so thatka = ra =
min(M; Q). In this case, the Kruskal Theorem (1.56) yieldsQ (4M 3)=2, forM < Q , leading
to the following general su cient conditions for the unique ness of the Parafac decomposition of
tensor C4Y):

2 Q 2M 2 (3.26)

Although (3.26) is not a necessary condition, it establishes an upper boundn the number of
guaranteed resolvable sources. This bound limits the numlreof sources that we can treat using
the 3rd-order VA matrix A ®) | regardless of the number of virtual sensors.

In the case of a ULA array with M sensors, the number of di erent virtual sensors associated
with the th-order VA is shown to be equalto (M 1)+1 [26]. In this context, the 3rd-order
VA matrix A® admits a maximum capacity of 3M 3 sources. However, since the SS-LS
approach is bounded by the uniqueness condition3.26), we can never charge the VA with more
than 2M 2 sources, so that its noise subspace has at leadt free dimensions (i.e. linearly
independent basis vectors). Moreover, when using amM -element ULA array, the capacity of
the 4-MUSIC algorithm is associated with the number of VS sesors of a 2nd-order VA, which
coincides with the upper bound of the SS-LS approach. Howevg if 4-MUSIC operates with
maximal capacity, the noise subspace of the 2nd-order VA hasnly one free dimension.

DOA estimation

The source DOAs can be recovered from the VA matrixA ) by using a 6th-order MUSIC-like
localization function Pg(; ), such as de ned in (3.17) with =3, i.e.

Pe(; )= . (3.27)

ws(; )HU,
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wherews(; ) = a(; ) a(; ) a(; ), with a(; ) dened in (3.3, and U, is a
M3 (M3 Q) matrix representing the noise subspace and formed of the fe singular vec-
tors of A® associated with its M3 Q smallest singular values.

The source DOA parameters (4; ¢) can be recovered from the parameters of the orthogonal
projectorswa(; )2 CM 1 leading to the local maxima of the 6th-order localization function
Ps(; ), de nedin (3.27).

3 Multipath MIMO channel modeling

Let us consider a multiple-input multiple-output (MIMO) wi reless communication system with
Q transmit and M receive sensors disposed both in ULA arrays, with sensors aped of half
wavelength. The transmit antenna array is assumed to be plaed at the far- eld of the receive
array and the transmission is subject to specular multipathpropagation due to remote scatterers,
as illustrated in g. 3.3, so that the channel between each transmit and receive antara can be
represented by a superposition oK plane waves, associated with di erent scatterers, located
far apart each other. The location of each scatterer determies the angles #«;"' k) and ( «; «)
de ning the directions of departure (DOD) and arrival of the kth path with respect to the
transmit and receive arrays, respectively. For notational simplicity, we assume that the antenna
arrays and the scatterers are approximately coplanar so thaithe elevation angles' ¢ and
approach zero and will therefore be omitted in the sequel. Tk transmitted signals are assumed
to be narrowband with respect to the array aperture so that the signals over thekth path are
subject to the a single attenuation factor , and achieve the same relative propagation delay,
equal to k. In order to capture all the incoming delayed signals, we utize a known real-valued
pulse shape lter g(*), with nite temporal support equal to L + 1 symbol periods, so that
g(’) =0, for * 2 [0;L]. We also assume that the multipath delay spread pro le is nite with a
known maximum path delay mnax that is larger than the inverse of the coherence bandwidth so
that the channel can be viewed as a frequency-selective MIMOnodel. Finally, the channel is
stationary over the length of the observation interval.

The received signal at the output of the array elementm, sampled at the symbol rate, can
be written as follows:

XX b
Ym(n) = kad#dam( k) 9C  Wsg(n )+ m(n) (3.28)
g=1 k=1 =0
XX
= Pmg()Sq(n )+ m(n); m2[LM]; (3.29)
og=1 "=0

where the channel coe cient hmq (") has been de ned as follows:

X
hmg (") caQ#)am( Ko Wi 8 2[0L]; (3.30)
k=1
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Figure 3.3: Multipath propagation scenario.

and hmq (") = 0 elsewhere, with | being the complex fading gain associated with thekth path
and ag(#k) and anm ( ) denoting the spatial responses of the transmit and receivarray elements
g and m, respectively, with respect to the kth path, with DOD equal to #x and DOA given by
the angle . The non-measurable complex-valued discrete input signalsq(n) are stationary,
ergodic and mutually independent with symmetric distribut ion, zero-mean and non-zero kurtosis

454 = Ca:5,(0;0;0). The additive noise m(n) at the receive array output is assumed Gaussian
and independent from the input signals, with zero-mean and nknown spatial correlation.

Let us write the channel coecients hyg(') in a vector form, so that

h(MD () =[hmg(); 11 hmg(C + L)]T. By stacking the row-vectors h{(Ma) ()T for all m 2 [1;M],
we can build the following matrices:
h i T
H@C) =  hA®ACY 1o pfMaey 2 cM LD (3.31)
0 1
% hig(")  hig( +1) it hyg(C + L)
hmg(") hmg(C +1) it hmg(" + L)

~

Note that for ~ = 0, matrix H(®(0) contains the impulse responses of the channels linkinght
transmit antenna q with each receive antennam 2 [1; M ]. Hence, by concatenatingH (9 (0) for

all q 2 [1; Q], we can de ne a channel matrixH 2 CM Q(*1) | that can be written as
h i
H, H®©) ::: HQ(0) ; (3.32)

and contains all the channel impulse responses characteng the M Q MIMO system. Finally,
by stacking temporally shifted versions ofH (9 (0), we can de ne a matrix H (@ 2 cM @L+1) (L+1)
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for each transmit antenna q 2 [1; Q], as follows:
1
H@( L)

H@ H (@ (0) ; (3.33)

H (@ (L)

where each block-row of sizé! (L + 1) canbewrittenas H(®@(+ ), with ~=0, ~2[ L;L].
Recalling that hymq(") =0, 8 2 [0;L], we notice from (3.33 and (3.3 that matrix H(@ has a

block-Hankel structure, since

0 1
0 20 0 hy(0) i hgg(L+ )
H (@ ‘)=%E VU R : §; for © 0 and  (3.34)
0 ::: 0 huq(0) ::: hmg(L+ )
0 h ( hig(L) O 0 !
1q 11 hyg o
H@ > % ; Lo §; for ° O (3.35)
th( ) it hmg(L) O ::: O

By concatenating H (9, for all q2 [1; Q], we de ne the matrix H 2 CM L+ Q(L+1) '35 follows:

h i

which, due to (3.34) and (3.35), has the following structure:

0 1

0 1 [] [] []
H(l)( L) H(Z)( L) HQ( L) : : , .

N ) [ [

HO (0) H(Z)(O) H (Q)(0) = |:| |:| coe I:l

: - : ] ] =[]
H“)(L) H@(L) HQ(L) : A
[] [] [

Notice that the (L + 1)th block-row of size M Q(L +1) of matrix H corresponds to
matrix H de ned in (3.32). Thus, it is possible to deduceH from the block-columns H (9(0)
of matrix H. To this end, we rst build H(® by stacking the time-shifted versionsH (@ ( "),
forall "~ 2[ L;L], as suggested by 3.33. Then, we obtain H by concatenating the resulting

matrices H (9 for all q2 [1; Q], as indicated in (3.36).
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3.1 A Space-Time 4th-order cumulant tensor model

The space-time (ST) 4th-order output cumulants are de ned as follows?:

) ama (1 12513) , cum v (N); Yo (N + 11); Y, (N + 12); Ymg (N + 1) (3.37)

and, due to the linearity and additivity properties of cumul ants, considering the assumption of
Gaussian noise, we can write:
" X X . . . .
Ahomama(11i121) = 4y hinyC) hmagC + 10 NinggC + 12) MimggC + 13); - (3:38)
g=1 "=0
where 45, = cum s4(n); Sq(N); Sq(N);Sq(N) , M1;M2;mMg;my 2 [LM] and jlaj;jloj;jlsj L.
Let us denoteips1 = (Up  1)M + mpsg, with up = lIp+ L +1, for all p2 [1;3], and de ne

Ci(fi;zyi)su LAy ama(l1:12;13), where iy = mq. Then, usingf = (g 1)(L +1)+ ° +1, equa-
tion (3.38) yields:
4yy) X
Cilizisia = iyt Byt Cigf it (3.39)
f=1

whereF = Q(L + 1) and we have performed the following substitutions:

8
% A, f

bt

GCisf

iaf

450 Nmig(); Mi=i12 [EM];

PmoqC +11); m22 [LM] 112[ LiL] @22 [LM(2L +1)];
P+ 12 me2 [LM] 122 LiLL iz2 [LM (2L +1)];
hmaq(C + 13); ms2 [L,M]; 132 L;L]; i42[1;M(2L +1)]:

(3.40)

From (3.39), we note that Ci(fi;;'i)m can be viewed as the scalar representation of a 4th-order tesor
c4Y) with rank equal to Q(L +1), which admits a Parafac decomposition with components gven

by the matrices A 2 CM Q(t*1) and B;C;D 2 CM@L+D) Q(L+1) ' of which the elements are
given in (3.40. Tensor C*Y) has one dimension equal tM and three other equal dimensions of

sizeM (2L + 1). Using the canonical basis vector notation, matrix A can be written as follows:

x M

T
A = ailf el(:'LVl)e]EF)
f=1i1=1
X W .
~ L+1
g=1 =0 my=1

where ei(') denotes the ith canonical basis vector of R' and we have used the fact that

o = g(19)

J (i 13+ From the above equation, we conclude that

e

A=H 45 2CM QL. (3.42)

2 Notice that, due to the assumption of stationarity of the inp ut signals, all the output statistics only depend
on the di erences between the considered time-shifts. As a result, only three temporal indices are needed in
de nition ( 3.37).
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whereH has been dened in @8.32 and 4s= Diag 45,511 45, 1SaQ(L+1) Q(L+1)
diagonal matrix, with 4.5, = 45,/ L+1. Similarly, matrix B can be represented as follows:
X: M ()’)(L+1) T
5 - 0.1 e ef”
f=1 io=1
XX X W T
. 2L+1 L+1
B = hmaoC +12) el el ef® eV (3.43)

g=1 "=0 I1= L m2=1
and we note that:
B=H 2 CM (2L +1) Q(L+1); (3_44)

where H is the block-Hankel matrix de ned in ( 3.36). From (3.40), it is now straightforward to
deduce that

H 2 cM@L+) QL+D). (3.45)
H 2 CM@L+1) Q(L+1). (3.46)

D

Comments on the space-time cumulant tensor formulation

It is interesting to compare the above described cumulant tesor C*Y), with the formulations
introduced in Chapter 2 for the convolutive SISO and instantaneous MIMO cases (se@ns 2 and
4, respectively). Notice that whenM = Q =1, with L 1, the signal model 3.29 corresponds
to the output of a purely temporal SISO channel represented i a single FIR lter. In this case,
using (3.36), H reduces to the Hankel channel matrix given in @.9), while from (3.32, we note
that H becomes the channel coe cient vectorh™, de ned in (2.8). In the convolutive SISO
case, the 4th-order cumulant de nition given in (3.37) is equivalent to (2.2) and tensor C4Y)
becomes the 3rd-order tensor de ned in 2.5).

On the other hand, considering the memoryless caseL(= 0) with Q > 1 and M > 1, the
signal model 3.29 can be viewed as the output of an instantaneous MIMO channel Indeed,
using (3.36 and (3.32, we note that the expression forH coincides with H in this case, and
both are equivalent to the channel coe cient matrix used in (2.30). Under these conditions, the
4th-order cumulants de ned in (3.37) take the form of (2.31) and tensor C*¥) is equivalent to
the purely spatial cumulant tensor de ned in (2.33), with four identical dimensions of sizeM .

In conclusion, the space-time cumulant tensoiC*¥) can be viewed as a generalized cumulant
tensor model that includes the convolutive SISO Q =1, M =1, L 1) and the instantaneous
MIMO (Q > 1, M > 1,L =0) as particular cases.

Unigueness conditions

A su cient uniqueness condition for the Parafac decomposition of the cumulant tensor C4¥)
can be derived from the Kruskal Theorem, introduced in sectbn 3.1 of Chapter 1. Due
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to its block-Hankel structure, H is ensured to be full k-rank, and thus ky = ry =
min(M (2L +1);Q(L +1)). Assuming that the specular re ectors are located far apart each
other, and remote to both the transmit and receive arrays, wecan consider that the in-
coming signals are spatially distinguishable. Further, asuming that there is at least one
path delay  that is not a multiple of the symbol period3, we can ensure thathmq(") 6 O,
8" 2 [0;L]. Under these conditions, matrix H is also guaranteed to be full k-rank, and hence
ky = ryg = min( M; Q(L +1)). Under these assumptions, the Kruskal uniqueness theem yields:

3ky + ky 2F +3; (3.47)
whereF = Q(L +1), and it follows that:
3min M(2L +1);Q(L +1) +min M;Q(L +1) 2Q(L+1)+3: (3.48)
AssumingL 1, the following cases can be considered:

1. M Q(L +1), which implies M (2L +1) Q(L +1).

In this case, 3.48 becomes (L +1) 3, which is satised forall Q 1
andL 1, so that uniqueness is ensured for all

1 Q L 1 (3.49)

L+1’
2. M<Q(L+1)and M(2L +1) Q(L +1).

In this case, (3.49 yields Q(L +1)+ M 3, which is always satis ed with
Q 1,M 1landL 1, i.e.the uniqueness condition is guaranteed when:

Mo M(L+1).
L+1 L+1

M 1 L 1 (3.50)

3. M(2L +1) <Q (L + 1), which implies M <Q (L +1).

In this case, 3.48 gives M (2L +1)+ M 2Q(L +1) + 3, which is satis ed

when
M (2L +1)

L+1

2M@BL+2) 3

2(L +1) ’ (3.51)

<Q

Putting together equations (3.49) to (3.51), it follows that the uniqueness of the Parafac decom-
position of C*¥) is guaranteed under the following general su cient condition:

JM@3L +2) 3

20 +1) M 1 L 1L (3.52)

Q

When L =0, we have a memoryless MIMO channel and the caset and 2 correspond toQ M
and Q = M, respectively. In such cases,3.49 is satis ed provided that2 Q M. Case3

3 This assumption is due to the frequency-selective nature of the channel. In the case of a at-fading channel,
this assumption is not necessary and we should useL = 0.
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corresponds to a strictly underdetermined mixture (Q > M ), and yields the following uniqueness

condition:

am 3
5

which coincides, as it should be expected, with the uniquerss condition stated in (2.36) for

instantaneous MIMO mixtures in the underdetermined case;

2 Q L =0; (3.53)

The uniqueness conditions for the Parafac decomposition dhe generalized cumulant tensor
c4Y) are summarized in Table3.1 for some values oM and L. Note that the rst row ( L = 0)
corresponds to the instantaneous MIMO case, while the rst @lumn (M = 1) corresponds to
the purely temporal case, without spatial diversity. In thi s latter case, we notice that when
L > 1, unigueness is ensured fo 2, which enables us to identify convolutive multiple-input
single-output (MISO) channels with up to 2 signal sources.

Table 3.1: Uniqueness conditions for the Parafac decompdgin of C4Y).

M 1 2 3 4 5 6 7 8
L=0 maxQ - 2 4 8§ 10 12 14
L=1 maxQ 1 4 6 11 14 16 19
L=2 maxQ 2 4 7 10 12 15 18 20
L=3 maxQ 2 5 7 10 13 16 18 21
L=4 maxQ 2 5 8 10 13 16 19 22

3.2 Parafac modeling of the multipath MIMO channel

The introduction of the propagation channel structure in the signal model @3.28 allows us
to model the multipath transmission as a specular channel wh multiple planar wavefronts,
each one being characterized by an attenuation, a propagatn delay and a spatial signature,
associated with the angles of departure and arrival. Using sch a parametric model, the blind
identi cation problem reduces the estimation of these multipath parameters. This allows us
to exploit some prior information about the structure of the wireless channel, which is often
available in radiocommunication contexts, such as the knowedge of pulse shape Iter and the
transmit and receive array manifolds.
Considering the parametric multipath channel model (3.30), let us de ne:
8
% [Arlnk = am( «); m2[LM]
Arlge = a(); 92 [LQ]
E [Gli1=9C ks " 2[0LI:
- [bly K k2[1K];

(3.54)
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and
F = GDiag(b) 2 c(t*D K. (3.55)

where A, 2 CM K A2 CR K G 2 clt*D) K gndb 2 CX 1. Notice that the channel
coe cients hmq(') de ned in equation (3.30 can be viewed as the scalar representation of a
3rd-order tensor H 2 CM Q (L+1) that admits a Parafac decomposition with rank K and
components given byAz, A; and F. This model assumes that the channel is stationary over
the interval of one time-slot and H can be viewed as a particularization of the tensor channel
model proposed in 126], where a block-fading channel has been considered yieldjna Parafac
tensor properly formed by combining the signals received ding multiple time-slots. In that
case, training sequences have been used to separate the silgnfrom the channel information.

Uniqueness conditions

The spatial signature matrices A and A; have a Vandermonde structure, as shown in 3.5),
and can be written as follows:

0 1 0 1
1 L 1 1 1
a1 R aK a'y oo akk
Ag = a? i a2 . Aq = af  ooal ; (3.56)
al b oMt al ! al !

where we have dened @ = € € « and a)y = e %k from (3.4), considering transmit and re-
ceive ULA arrays with sensors spaced of half wavelength andmelevation angle. In this context,
assuming that the incoming signals are spatially distingushable is equivalent to have generating
vectors of Ay and A, with distinct nonzero elements, i.e. &, 6ay, 60 and a'y, 6a'y, 60,
for all ky 8 ky 2 [1;K]. Under this condition, it has been shown in [L25 that a Vandermonde
matrix is full k-rank and, therefore: ka, = ray =min(M;K ) and kKa; = ra; =min( Q;K).

In addition, the pulse shape lter g(*) is known and, due to the frequency-selective nature
of the channel, we have assumed that there is at least one pattielay  that is not a multiple of
the symbol period. This allows us to ensure thatg" ) 60, 8" 2 [0;L];k 2 [1;K]. Moreover,
the path delays are distinct ¢, 6 ,, 8ky 8 ky, and a Rayleigh fading is assumed so that the
gains  are modeled as a complex random variable with independent e# and imaginary parts
driven from a continuous Gaussian distribution. Under thes conditions, matrix F = G Diag (b)
is also ensured to be full k-rank, and hencé&g = rg = min(L +1;K).

Using the Kruskal Theorem, we derive a su cient condition for the uniqueness of the Parafac
decomposition of the 3rd-order tensorH, as follows:

kAR + kAT + kg 2K +2 (3.57)
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and hence
min(M;K)+min( Q;K)+min(L+1;K) 2K +2: (3.58)

When M >K ,Q>K andL +1 > K , the above condition yields K 2, meaning that in
this case at least two delayed signals must be collected at threceive lters. In the SISO case
(M = Q = 1), the unigqueness condition is not satis ed, as it should be expected, since the
channel lacks of information in the spatial domain.

4 Blind identi cation of multipath MIMO channels

By characterizing the transmission channel in terms of its nultipath parameters (attenuations,
propagation delays and spatial signatures), the identi cation of the MIMO channel becomes
equivalent to the estimation of these propagation parametes. In this section, we propose a
two-stage approach for estimating the multipath MIMO channel. Firstly, in section 4.1, we use
a non-parametric model to blindly identify the convolutive channel coe cients. This stage is
based on a SS-LS algorithm and can be viewed as a generalizati of the blind identi cation
methods introduced in Chapter 2. After that, in section 4.2, we propose to recover the multipath
channel parameters by means of an ALS-based algorithm expiting the specular structure of
the channel model.

4.1 A non-parametric Parafac-based SS-LS algorithm

Let us denotel = M (2L + 1). The 4th-order tensor C*¥) 2 CM I I | "with scalar representa-

tion given by (3.39), can be unfolded in the form of matrix Cq; 2 C'* M so that
h i
— @y .
=coY 3.59
W io apnze(is pivigin izl (3.59)

foralli; 2 [L;M]andiy;iz;is 2 [1;1]. From the above de nition, and using (3.39), it is easy to
note that Cy= B C D AT, and hence, using equations3.42) to (3.46), we end up with:

Ciy= H H H gH™ (3.60)
From (3.60), we can de ne the following iterative LS cost function:
2
@ ;A), Cy M M, B AT o (3.61)

wherer is the iteration number and A = H 45, according to (3.42). Minimizing ( 3.61) yields:

Al

arg mgn (Ijifr 1, H)

B B, B #C[l]: (3.62)

The Kruskal Theorem ensures uniqueness up to column scalingnd permutation ambiguities.
Therefore, under the conditions stated in section3.1, the Parafac decomposition of tensorC4Y)



4. BLIND IDENTIFICATION OF MULTIPATH MIMO CHANNELS 87

is subject to these trivial indeterminacies, so that any maticesH and H satisfying (3.60) are
suchthat H = H ; andH = H , , where 1, ,areQ(L+1) Q(L+1) diagonal
matrices and is a permutation matrix. Exploiting the block-Hankel struc ture of H, given
in (3.36), we can avoid intra-block permutations, thus reducing the permutation ambiguity to
block-column permutations. In practice, before computing the iteration r 1 using (3.62),
matrix 1 r 1 is built from Ihr 1, as follows:

1. DeducethQ)l(O), g2 [1;Q], from the columns of/5§r 1, as follows:
@ h i
RP.0= A d@ sy 0 A dgue

2. For eachq 2 [1;Q], build the matrices R ( "), for all ~ 2 [ L;L], by shifting the
columns oflhgq)l(O), as indicated in (3.34) and (3.35);

3. From (3.33), build B(?_, q2 [1;Q], by stacking (P ( "), forall ~2[ L;LJ;

4. Obtain M, ; by concatenating (% for all q2 [1;Q], as indicated in (3.36).

The algorithm is initialized with a M Q(L + 1) Gaussian random matrix R,. The itera-
tions are stopped whenje(r) e(r 1)j2 ", wheree(r)= kB, B, 1k2=kM kZ and" is an
arbitrary small positive constant.

4.2 Parametric estimation of multipath MIMO channels

In this section, we propose an ALS-based algorithm to jointy estimate the multipath propagation
delays and the angles of departure and arrival. This approdt is based on the Parafac modeling
of the multipath MIMO channel presented in section 3.2, and assumes a prior estimation of the
channel coe cients by means of a blind technique such as the S-LS algorithm introduced in
the previous section.

Let us consider the 3rd-order tensorH 2 C2 M (L*1) "with scalar representation given by
(3.30 and Parafac components given by the matricesA;, Az and F, de ned in (3.55 and
(3.56). Taking g2 [1;,Q], m2 [1;M] and " 2 [O;L], we de ne three unfolded representations of

H, as follows: 8

E [H [1]]‘M +m;q = hmq(‘);
Halm yorgar = hmg(); (3.63)
Hilg s+ +1:m = Dmg();

where Hyy 2 CM*D Q H 2 cOM (4*D) and Hg 2 CR*D M From (3.30), using the
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canonical basis vector notation and de nitions (3.55 and (3.56), we can write:

R P PR . L+l M T
Hu = hma(') €577 et e
=1 tﬁzl‘:O I
R P . L+l P M P T
= Lo kaC we? M am( el & el
=1
(3.64)
and hence
Hp= F Ag AT: (3.65)
After similar manipulations with H, and H 3}, we get:
Hizp= Ar A; FT; (3.66)
Hig= Ar F AL (3.67)
Equations (3.65 to (3.67) allow us to write the following iterative cost functions:
2
1(AEC DAL D)= Hy FOD AT D AT (3.68)
2
o(F AL VAT = HE AP OATET (3.69)
2
3(AR;/5§$');|5(”)= H g AQ) p) AT F; (3.70)
wherer is the iteration number. The LS solution of these equations $ given by
T #
RO = BC D AT D THy, (3.71)
#
FOT = AT D AD Ty, (3.72)
T #
A'(?r) = Agr) ﬁ(r) H[3], (373)

where F© and A(RO) can be initialized as Gaussian random matrices or using somprevious
knowledge about the multipath parameters, if available (eg. DOAs for Ag))). The algorithm
is stopped whenje(r) e(r 1)j2 ", where" is an arbitrary small positive constant and the
estimation error e(r) for the iteration r 1 is given bye(r) = ei(r) + ex(r) + e3(r), where

AD AC D NG o peon ?
e(r) = . E. ee(r) = —F e(r)= ————F (3.74)
RY A Foo
F F F
Subspace-based algorithms for multipath parameter extrac tion

We now describe speci ¢ techniques for extracting the multpath channel parameters from the
estimatesA; = A" A, = A1) and £ = £, obtained after the convergence of the algorithm.
Exploiting the known transmit and receive array manifolds as well as the knowledge of the
pulse shape lIter, we build orthogonal projectors based on he signal subspace structure. In
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the sequel, we describe three subspace techniques for thetiggtion of DOAs, DODs and path
delays, based on MUSIC-like localization functions

Let us start with the case M > K and denote by 0, 2 CM (M K) the matrix formed
from the left singular vectors of A, associated with its M K null singular values. De ne
Wm( )= € (M 1cos znd build a column-vector w( ) 2 CM 1. For each given value of ,
the orthogonal projector w( ) reproduces the column-wise structure of 8.56. The DOAs
associated with each pathk 2 [1;K], can be obtained as the arguments yielding theK local
minima of the localization function P,( ), de ned in ( 3.14). For the caseM K, a generalized
localization function P, ( ) has been de ned in 3.17), where the orthogonal projectorw ()
takes the form of a multiple Kronecker product, as indicatedin (3.10 and U, 2 cM (M K)
is obtained from the left singular vectors associated with he M K null singular values of
the th-order virtual array Ag ). Using ULA arrays, this technique allows us for estimating
upto (M 1) multipath DOAs [ 26]. Finally, note that the DODs #, k 2 [1;K] can also be
estimated using the above described technique, witfQ replacingM and A ; instead of A ..

Similarly, path delays can also be extracted from the estiméed matrix F using the orthog-
onality between signal and noise subspaces. Exploiting th&nowledge of the real-valued pulse
shape lter g(*), we can construct orthogonal projectorsw( ) 2 Ct*D) 1 | +1 >K , so that
w-( )= o T+1), "2 [LL+1], foral 2 [0; max], where max is a known upper bound
of the path delays. Taking the SVD of £, we build 0, 2 C(t*1) (L+1 K) with the left singular
vectors associated with theL +1 K null singular values and nd the path delays , k 2 [1;K],
as the arguments yielding the K local minima of P( ). A straightforward extension of the
technique for the caseL +1 K is possible by utilizing an augmented matrix F() = £ | and
a corresponding projectorw ( )= w( ) . Forinstance, with =2, matrix F@ = F F has
(L +1)2 rows, of whichL(L +1)=2 are repeated. HenceF©@ can be easily shown to have rank
equal torap =min(1;K ), wherel = (L + 1)? L(L+1)=2=(L+1)(L +2)=2, which is the
number of distinct rows, meaning that we can estimate the dehys of up tol 1 paths, provided
that L+1 K 1.

We also notice that, under the Kruskal condition (3.58), the Parafac decomposition of the
3rd-order tensorH is ensured to be unique up to column scaling and permutationswhich means
that any matrices A, Ag and F, satisfying equations 3.65) to (3.67), are of the following form:

8

E Ar = A ¢

3 Ar = Ar & (3-75)
- F = F ¢ ;

where is a permutation matrix and ;, z, ¢ are complex diagonal scaling matrices sat-
isfying 1 s ¢ = Ik. Due to their Vandermonde structure shown in (3.56), the spatial array

response matricesA; and Ay, have an all-one rst row. This property allows us to get rid of



90 CHAPTER 3. ARRAY PROCESSING AND MULTIPATH PARAMETER ESTIMA  TION

the diagonal scaling ambiguities. By taking the rst row of A;, we build the diagonal matrix

+ =Dy A; and, using 3.759, we have ; =D1(A; + )= TD1(A;)  ,whereD;()
denotes the diagonal matrix built from the ith row of the matrix argument. Since D1 (A1) = Ik,
weget ; = T ; . Analogous manipulations yield r = Dy A = T . It follows
that ; == T ! = .1 whichis also a diagonal matrix. Note that the above procedue
leaves the column permutation unchecked.

Let us now denote byAr, A; and G the parameter matrices reconstructed from the es-

timated DOAs (%), DODs (#) and path delays (%), according to (3.54), for all k 2 [LK].
Recalling that F = GDiag(b), we are able to estimate the attenuation vector B, as follows:

B=dag G*F".'; L+1 K; (3.76)

where the matrix Ie, obtained after the convergence of the ALS-based algorithmis an estimate

of F and " ! is computed as” 1= ", ", where ", = D1(A;) and "« = D1(Ar) represent
the estimates of ; and g, respectively. The operatordiag( ) forms a column-vector from the

diagonal elements of the matrix argument.

At last, we remark that the remaining column permutation, al though not resolvable, is not
relevant in the present context. However, in order to compleely characterize the multipath
channel, we need to indicate the correspondences linking thparameters associated with a given
path k 2 [1;K], i.e. given the estimates”y,, #, and “k,, which values ofk;, ko and ks, are
associated with thekth path. In other words, we need to nd ki, ko and ks, for eachk 2 [1;K],
so that [Ax]k,, [A+], and [G]k, are scaled versions off .1k, [R+]« and [F], respectively. In
practice, we solve this problem using the normalized inner ppduct, so that

_ - [ARITIAR] _ : [A-1HTIA ]«
k=g KIAR] kKA R] Kk ke =arg min KAT] ukKkAT]kk
and
_ . [GILIFI« .
ks =arg I KIG] ukK[E] ck k2K

The attenuation vector B can only be estimated from @.76) after reordering the columns of G,
as explained above, in order to keep the same permutation as.

5 Simulation results

In this section, we present computer simulation results aining to illustrate the use and assess
the performance of the techniques discussed throughout tlsichapter. First, in the context of a
at fading channel and using a ULA receive array, we simulatea radio propagation scenario for
the application of direction nding algorithms. The SS-LS approach, proposed in sectior2, will
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be used to estimate the signal DOAs from a 3rd-order virtual aray. Performance comparisons
will be provided using the 2-, 4- and 6-MUSIC algorithms B6, 127, 27].

After that, we will simulate a multipath radio propagation ¢ hannel with multiple transmit
and receive antennas, both using ULA arrays. In this context we will be rst interested in
estimating the coe cients of the convolutive Iters repres enting the connections between each
transmit and receive antenna. To this end, the generalized th-order cumulant tensor described
in section 3.1 will be decomposed by means of the SS-LS algorithm proposed section4.1. Then,
starting from the estimated channel model, we recover the satial and temporal signatures of
the MIMO channel using the Parafac-based algorithm proposd in section 4.2. Finally, we
extract the multipath channel parameters (DOAs, DODs, path delays and attenuations) using
the subspace-based methods also described in sectidt?.

Direction nding algorithms for array processing

In which follows, we evaluate the performance of the method mpposed in section2 in terms of
the quality of DOA estimation. We will use the root mean-squared error (RMSE) performance
criterion, de ned for each sourceq as follows R7]:

v
u
P 1 x Ahri 2
RMSE(Q), * = q g 5 92[LQJ (3.77)
r=1
where R is the number of Monte Carlo simulations and '\5” is the estimation of ¢ for the

simulation r. The DOA estimates “5”, g 2 [1;Q], are deduced from the angle arguments of

the orthogonal projectorsw ( ) leading to the local maxima of the corresponding localizaion
function P, ( ). Local maxima can be obtained by searching the critical pants, i.e. where
the rst derivative is zero, with a negative second derivative. In this context, an estimate
“5”, g 2 [1;Q], is said to be aberrant if 1=P, ('\5”) is greater than a certain threshold. For
the simulations performed in this section, we adopted the viue of 0.1 for this threshold, as
suggested by 26, 27]. Aberrant estimates can also happen when the algorithm canot resolve
all the sources. In this case, the number of local maxima of th localization function is smaller
than Q. In the following results, the probability of having aberrant estimates has been omitted,
since only negligible values have been attained.

We rst simulated the case of a ULA array with M = 3 narrowband sensors spaced of
=2, receiving Q = 4 sources with azimuth angles given by ; = 55, ,= 25, 3=5,
4 =50 , and no elevation angle. The array output signals are corruged by additive Gaussian
and spatially white noise. The curves in g. 3.4 show, for several values of SNR, the RMSE
for the worst (left) and the best (right) estimated sources. In order to evaluate the impact of
cumulant estimation errors on the tested algorithms, we shw in g. 3.5the maximal (left) and
minimal (right) RMSE as a function of the sample data length, for a xed SNR value of 15dB.
In this case, the SS-LS and the 4-MUSIC algorithms operate v their maximal capacity in
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Figure 3.4: Maximal (left) and minimal (right) RMSE as a func tion of the SNR.
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Figure 3.5: Maximal (left) and minimal (right) RMSE as a func tion of the sample data length.

terms of the number of sources. By exploiting the larger noie subspace of the 3rd-order virtual
array, the SS-LS approach provides better results than the MUSIC algorithm, using the same
output statistics. In this scenario, the 6-MUSIC algorithm is not at its identi ability bound
and, in the worst case (curves at left), it gives better resuls than the other techniques, at the
cost of having to estimate 6th-order cumulants.

By adding a fourth sensor M = 4) to the antenna array (with =2 spacing), we set up
another simulation scenario with Q = 5 sources. In this case, the additional source arrives from
the direction s = 20 , with no elevation angle. In g. 3.6, we show the maximal (left) and
minimal (right) RMSE as a function of the SNR, for N = 1000. These curves demonstrate that
the three algorithms achieve better performance, with verysimilar results when the VAs do not
operate with maximal capacity. In g. 3.7, the results for the worst (left) and the best (right)
estimated sources are given for several values of the samptata length, with a xed SNR of
15dB. In this case, the 6-MUSIC algorithm does not yield any roticeable advantage.
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Figure 3.7: Maximal (left) and minimal (right) RMSE as a func tion of the sample data length.

We have also tested the algorithms in presence of Gaussian is@ with unknown spatial
correlation. In this case, we used a= 2-spaced 3-element ULA array receivingQ = 2 sources
with DOAs given by ;=5 and , =50 , respectively. Since this is an overdetermined case,
we used the SS-LS approach to estimate the user DOAs from bottthe 3rd-order virtual array
A® ( =3) and the estimated array matrix A (= 1). The additive Gaussian noise has been
modeled so that its spatial correlation matrix is given by [R Jj = 21" 1 i;j 2 [L;M], where

2 is the noise variance per antenna and is the spatial correlation coe cient of the noise. In
g. 3.8, we compare our results with the 2- and 4-MUSIC algorithms ughg N = 1000 output
symbols, with a SNR of 5dB, for di erent values of the noise sgtial correlation. Note that, for
=1l aswellas for =3, the SS-LS approach performed very closely to the 4-MUSIGlgorithm,
showing good robustness with respect to spatially colored oise, as it should be expected. The
2-MUSIC algorithm, on the other hand, degrades as increases, since the SOS are not able to
handle an additive noise with unknown spatial correlation.
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Figure 3.9: Antenna pattern obtained from the 3rd- and 2nd-ader VAs for a ULA with 4 sensors.

Finally, we illustrate the resolution gains in terms of beamwidth provided by the 3rd-order VA
used in the SS-LS approach with respect to the 2nd-order VA usd by the 4-MUSIC algorithm.
In g. 3.9 we show, for a ULA with 4 sensors spaced of= 2, the array response of the 3rd-
and 2nd-order VAs for a source arriving from direction o =5 (left) and o= 25 (right).
These curves have been obtained from the magnitude of the irar product of the VA steering
vectors, computed as shown in 8.11). In both cases, for a 3dB attenuation, the beamwidth of
the estimated 3rd-order VA (SS-LS) in the given direction is narrower than the one obtained
with 4-MUSIC. In practice, this latter one is computed from t he eigenvector of€ “¥) associated
with its largest eigenvalue. We usedN = 1000 output symbols with additive white Gaussian
noise at a SNR level of 10dB. The gain in terms of the beamwidtHor an attenuation of 3dB is
about 8 for the curves at left and 3 for the gure at right.
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Multipath MIMO channel estimation

Let us consider aQ-sensor transmit and an M -sensor receive ULA arrays located far apart
each other, transmitting signals over a multipath specular radio channel such as de ned in
(3.28. The multipath channel is characterized by K remote scatterers each one determining
a set of physical parameters (k;#«; k; k), according to the model (3.28. In which follows,
we will be rst interested in the non-parametric representation of the multipath channel and
in estimating the channel impulse response coe cientshyg (") of the convolutive MIMO model,
up to a scaling factor and a permutation on the order of the transmit antennas. After that,
exploiting the physical model given in (3.30), we make use of the ALS-based algorithm described
in section 4.2 to estimate the spatial and temporal channel signatures ancextract the multipath
parameters by means of subspace-based techniques.

Non-parametric estimation of convolutive MIMO channel
In order to assess the quality of the non-parametric MIMO chanel estimation, we will use the
normalized mean squared error (NMSE) performance criterio®, de ned as:

xR .
NMSE % NMSE (q); (3.78)

r=1g=1

whereR is the number of Monte Carlo simulations and NMSE (q) = rr21i[rl1Q] Efil)(q) and
(o3} ;

@ kKRiW©) HEO©OKE
i 3 kH (9 (0)k2 ’

(3.79)

with Ihffil)(O) being the quth M (L + 1) block of the estimated matrix A,,;, obtained from
(3.62 after convergence of the simulationr, assuming that ﬁﬁfil)
with respect to H(9(0), de ned in ( 3.31).

The following simulation results have been obtained with syithesized 4th-order output cu-

(0) has been optimally scaled

mulant data. In order to reproduce the e ects of the additive Gaussian noise corrupting the
output signals and to emulate the errors due to cumulant estination from nite-length output
data sequences, we have modeled the 4th-order output cumut&as follows:

@[l] = C[l] + gE + 2 (3.80)

whereCy; 2 CM *2L+D)°® M s the true output cumulant matrix computed from ( 3.60), while E
and  are complex random matrices of the same size &;; and elements driven from standard
Gaussian distributions. In this context, g represents the variance of the 4th-order cumulant

4 Note that the NMSE is used only for performance evaluation pu rposes, since its computation involves the
knowledge of the true channel coe cients.
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estimators and 2 amounts to the additive noise power and is computed in such a ay to ensure
a given SNR level, given as follows:

KC (11K
SNR = —UI°F .

=4 . .81
K ZE ks (3:81)

In our simulations we have used the xed value 2 = 0:01 whereas the SNR has been taken in
the range of 5 to 35dB. The curves shown in the sequel have beeabtained from the average of
R =100 Monte Carlo simulations.
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Figure 3.10: NMSE vs. SNR for channel con guration A with L = 1.
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Figure 3.11: NMSE vs. SNR for channel con guration B with L = 2.

Two sets of channel con guration parameters have been condered and are described in
Table 3.2. In g. 3.10 we show the NMSE performance of the SS-LS algorithm foM = 5 (left)
and M = 4 (right) receive antennas, under the channel con guration A (K = 2 multipath),
using a pulse shape lter of orderL = 1 (note that max < Ts in this case). By increasing the
number of transmit antennas from Q = 1 to Q = 2, the channels become more complex and
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Figure 3.12: NMSE vs. SNR for channel con guration A with L = 1.

the curves clearly show an identi cation performance loss de to the co-channel interference. In
g. 3.11, we show similar results obtained under the channel con guation B, in which multipath
propagation is characterized byK = 3 rays. In this case, Ts < max < 2Ts and we useL = 2.
Again, the curves show worse results folQ = 2, as it should be expected, and a performance
degradation can also be observed with respect to the case &f = 1. In both gures, 3.10 and
3.11, comparing the left and right graphs, we notice an improvemeat due to addition of a receive
antenna for a given value ofQ. Finally, in g. 3.12 we included the case ofQ = 3 transmit
antennas under channel con guration A, with L =1 and M = 6 receive antennas. The curves
show that the SS-LS algorithm correctly identi ed the MIMO c¢ hannel coe cients in this case,

in spite of the performance loss.

Table 3.2: Channel con guration parameters.

Con guration A Con guration B
Number of paths 2 3
DOAs 1=40, = 30 1=50, = 5, 3= 45
DODs #:=50 ,#,= 5 #1=45 ,#,= 35,#3= 10
Path delays’ 1=0:3Ts, »=0:85T5 1=0:35Tg, »=0:8Ts, 3=1:4Tg

Y Ts stands for the symbol period.

Subspace-based algorithms for multipath parameter extriion
In the sequel, we will be interested in estimating the physial multipath parameters of the MIMO
channel using the combined ALS-MUSIC algorithm proposed insection 4.2. In this section,
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