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Abstract

M
odern telecommunication systems o�er services demanding very high transmission
rates. Channel identi�cation appears as a major concern in this context. Looking
forward better tradeo�s between the quality of information recovery and suitable
bit-rates, the use ofblind techniques is of great interest. Making use of the special

properties of the 4th-order output cumulants, this thesis introduces new statistical signal pro-
cessing tools with applications in radio-mobile communication systems. Exploiting the highly
symmetrical structure of the output cumulants, we address the blind channel identi�cation prob-
lem by introducing a multilinear model for the 4th-order out put cumulant tensor, based on the
Parallel Factor (Parafac) analysis. The components of the new tensor model have a Hankel
structure, in the SISO case. For (memoryless) MIMO channels, redundant tensor factors are
exploited in the estimation of the channel coe�cients.

In this context, we develop blind identi�cation algorithms based on a single-step least squares
(SS-LS) minimization problem. The proposed methods fully exploit the multilinear structure of
the cumulant tensor as well as its symmetries and redundancies, thus enabling us to avoid any
kind of pre-processing. Indeed, the SS-LS approach inducesa solution based on a sole optimiza-
tion procedure, without intermediate stages, contrary to the vast majority of methods found
in the literature. Using only the 4th-order cumulants, and exploiting the Virtual Array con-
cept, we treat the source localization problem in multiusersensor array processing. Exploiting
a particular arrangement of the cumulant tensor, an original contribution consists in providing
additional virtual sensors by improving the array resolution by means of an enhanced array
structure that commonly arises when using 6th-order statistics. We also consider the problem
of estimating the physical parameters of a multipath MIMO communication channel. Using a
fully blind approach, we �rst treat the multipath channel as a convolutive MIMO model and
propose a new technique to estimate its coe�cients. This non-parametric technique generalizes
the methods formerly proposed for the SISO and (memoryless)MIMO cases. Using a tensor
formalism to represent the multipath MIMO channel, we estimate the physical multipath pa-
rameters by means of a combined ALS-MUSIC technique based onsubspace algorithms. Finally,
we turn our attention to the problem of determining the order of FIR channels in the context of
MISO systems. We introduce a complete combined procedure for the detection and estimation
of frequency-selective MISO communication channels. The new algorithm successively detects
the signal sources, determines the order of their individual transmission channels and estimates
the associated channel coe�cients using a deationary approach.

Keywords : Blind channel identi�cation, channel order determination , multipath MIMO chan-
nel estimation, Parafac decomposition, source localization, tensors, wireless com-
munication systems.
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R�esum�e

L
es syst�emes de t�el�ecommunications modernes exigent desd�ebits de transmission tr�es
�elev�es. Dans ce cadre, le probl�eme d'identi�cation de canaux est un enjeu majeur.
L'utilisation de techniques aveugles est d'un grand int�er̂et pour avoir le meilleur compro-
mis entre un taux binaire ad�equat et la qualit�e de l'inform ation r�ecup�er�ee. En utilisant

les propri�et�es des cumulants d'ordre 4 des signaux de sortie du canal, cette th�ese introduit de
nouvelles m�ethodes de traitement du signal tensoriel avecdes applications pour les syst�emes de
communication radio-mobiles. En utilisant la structure sym�etrique des cumulants de sortie, nous
traitons le probl�eme de l'identi�cation aveugle de canaux en introduisant un mod�ele multilin�eaire
pour le tenseur des cumulants d'ordre 4, bas�e sur une d�ecomposition de type Parafac. Dans le
cas SISO, les composantes du mod�ele tensoriel ont une structure de Hankel. Dans le cas de
canaux MIMO instantan�es, la redondance des facteurs tensoriels est exploit�ee pour l'estimation
des coe�cients du canal.

Dans ce contexte, nous d�eveloppons des algorithmes d'identi�cation aveugle bas�es sur une
minimisation de type moindres carr�es �a pas unique (SS-LS). Les m�ethodes propos�ees exploitent
la structure multilin�eaire du tenseur de cumulants aussi bien que les relations de sym�etrie et de
redondance, ce qui permet d'�eviter toute sorte de traitement au pr�ealable. En e�et, l'approche
SS-LS induit une solution bas�ee sur une seule et unique proc�edure d'optimisation, sans les
�etapes interm�ediaires requises par la majorit�e des m�et hodes existant dans la litt�erature. En
exploitant seulement les cumulants d'ordre 4 et le concept de r�eseau virtuel, nous abordons aussi
le probl�eme de la localisation de sources dans le cadre d'unr�eseau d'antennes multiutilisateur.
Une contribution originale consiste �a augmenter le nombrede capteurs virtuels en exploitant
un arrangement particulier du tenseur de cumulants, de mani�ere �a am�eliorer la r�esolution du
r�eseau, dont la structure �equivaut �a celle qui est typiqu ement issue de l'utilisation des statistiques
d'ordre 6. Nous traitons par ailleurs le probl�eme de l'estimation des param�etres physiques d'un
canal de communication de type MIMO �a trajets multiples. Da ns un premier temps, nous
consid�erons le canal �a trajets multiples comme un mod�ele MIMO convolutif et proposons une
nouvelle technique d'estimation des coe�cients. Cette technique non-param�etrique g�en�eralise
les m�ethodes propos�ees dans les chapitres pr�ec�edents pour les cas SISO et MIMO instantan�e. En
repr�esentant le canal multi-trajet �a l'aide d'un formali sme tensoriel, les param�etres physiques
sont obtenus en utilisant une technique combin�ee de type ALS-MUSIC, bas�ee sur un algorithme
de sous-espaces. En�n, nous consid�erons le probl�eme de lad�etermination d'ordre de canaux de
type RIF, dans le contexte des syst�emes MISO. Nous introduisons une proc�edure compl�ete qui
combine la d�etection des signaux avec l'estimation des canaux de communication MISO s�electifs
en fr�equence. Ce nouvel algorithme, bas�e sur une technique de d�eation, est capable de d�etecter
successivement les sources, de d�eterminer l'ordre de chaque canal de transmission et d'estimer
les coe�cients associ�es.

Mots-cl�es : canaux MIMO �a trajets multiples, d�ecomposition Parafac, d�etermination dordre,
estimation de canaux, identi�cation aveugle de canaux, localisation de sources,
syst�emes de communication sans-�ls, tenseurs
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Resumo

O
s sistemas de telecomunica�c~oes atuais oferecem servios que demandam taxas de trans-
miss~ao muito elevadas. O problema da identi�ca�c~ao de canal aparece nesse contexto
com um problema da maior importância. O uso de t�ecnicas cegas tem sido de grande
interesse na busca por um melhor compromisso entre uma taxasbin�aria adequada e

a qualidade da informa�c~ao recuperada. Apoiando-se em propriedades especiais dos cumulantes
de 4a ordem dos sinais �a sa��da do canal, esta tese introduz novasferramentas de processamento
de sinais com aplica�c~oes em sistemas de comunica�c~ao r�adio-m�oveis. Explorando a estrutura
sim�etrica dos cumulantes de sa��da, o problema da identi�ca�c~ao cega de canais �e abordado a
partir de um modelo multilinear do tensor de cumulantes 4a ordem, baseado em uma decom-
posi�c~ao em fatores paralelos (Parafac). No caso SISO, os componentes do novo modelo tensorial
apresentam uma estrutura Hankel. No caso de canais MIMO sem mem�oria, a redundância dos
fatores tensoriais �e explorada na estima�c~ao dos coe�cientes dos canal.

Neste contexto, novos algoritmos de identi�ca�c~ao cega decanais s~ao desenvolvidos nesta tese
com base em um problema de otimiza�c~ao de m��nimos quadrados de passo �unico (SS-LS). Os
m�etodos propostos exploram plenamente a estrutura multilinear do tensor de cumulantes bem
como suas simetrias e redundâncias, evitando assim qualquer forma de pr�e-processamento. Com
efeito, a abordagem SS-LS induz uma solu�c~ao baseada em um �unico procedimento de mini-
miza�c~ao, sem etapas intermedi�arias, contrariamente aoque ocorre na maior parte dos m�etodos
existentes na literatura. Utilizando apenas os cumulantesde ordem 4 e explorando o con-
ceito de Arranjo Virtual, trata-se tamb�em o problema da loc aliza�c~ao de fontes, num contexto
multiusu�ario. Uma contribui�c~ao original consiste em aumentar o n�umero de sensores virtu-
ais com base em uma decomposi�c~ao particular do tensor de cumulantes, melhorando assim a
resolu�c~ao do arranjo, cuja estrutura �e tipicamente obtida quando se usa estat��sticas de ordem
6. Considera-se ainda a estima�c~ao dos parâmetros f��sicos de um canal de comunica�c~ao MIMO
com muti-percursos. Atrav�es de uma abordagem completamente cega, o canal multi-percurso �e
primeiramente tratado como um modelo convolutivo e uma novat�ecnica �e proposta para estimar
seus coe�cientes. Esta t�ecnica n~ao-param�etrica generaliza os m�etodos previamente propostos
para os casos SISO e MIMO (sem mem�oria). Fazendo uso de um formalismo tensorial para rep-
resentar o canal de multi-percursos MIMO, seus parâmetrosf��sicos podem ser obtidos atrav�es
de uma t�ecnica combinada de tipo ALS-MUSIC, baseada em um algoritmo de subespa�co. Por
�m, ser�a considerado o problema da determina�c~ao de ordemde canais FIR, particularmente no
caso de sistemas MISO. Um procedimento completo �e introduzido para a detec�c~ao e estima�c~ao
de canais de comunica�c~ao MISO seletivos em freq•uência.O novo algoritmo, baseado em uma
abordagem de dea�c~ao, detecta sucessivamente cada fontede sinal, determina a ordem de seu
canal de transmiss~ao individual e estima os coe�cientes associados.

Palavras-chave : canais de multi-percursos MIMO, decomposi�c~ao Parafac, determina�c~ao de or-
dem, estima�c~ao de canais, identi�ca�c~ao cega de canais,localiza�c~ao de fontes,
sistemas de de communica�c~ao sem-�o, tensores
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Introduction

P
arametric channel modelling and estimation are of primary importance in digital

telecommunication systems. The knowledge of the channel model can be used to

design equalizers to deconvolve the received signals. Channel identi�cation and equal-

ization consist in the retrieval of unknown information about the transmission channel

and source signals, respectively. In order to reach a desired quality of service, broadband wire-

less communication systems classically perform channel identi�cation and/or equalization using

pilot symbols, i.e. training sequences composed ofa priori known signals. This supervised ap-

proach introduces an overhead to the transmission system that may not be suitable for certain

radiocommunication systems since it reduces the e�ective transmission rate. On the other hand,

unsupervised (or \blind") approaches take only the output signals into account with possibly

somea priori hypothesis on the input signals.

Most of the known channel identi�cation algorithms assume the channel order (memory)

is known. This is not always necessarily true and any mismatch may have very costly conse-

quences. Actually, the order of the radio mobile channel is closely related to the delay spread

pro�le produced by the multipath propagation scenario. Long delay spread pro�les characterize

highly frequency-selective channels and introduce intersymbol interference (ISI) in the sampling

process. Typical e�ects of under- or over-estimating the channel order include bit error rate

(BER) oors, signal-to-noise ratio (SNR) penalties and numerical instabilities.

High-order statistics (HOS) have been an important research topic in diverse �elds includ-

ing data communication, speech and image processing and geophysical data processing. When

dealing with stationary complex input signals, the second-order statistics (SOS) may be unable

to keep the phase information of anonminimum phase system and the use of HOS is generally

mandatory for blindly identifying �nite impulse response ( FIR) channels, unless additional in-

formation about the input signal is known, such as the non-circularity property, for instance.

The high-order spectra have the ability to preserve both magnitude and (nonminimum-) phase

information. Moreover, it is well-known that all the cumula nt spectra of order greater than 2

vanish for Gaussian signals, which makes HOS-based identi�cation methods insensitive to an

additive Gaussian noise [1, 2].

A major problem treated in this thesis concerns the blind identi�cation of channel param-

eters, in the context of radiocommunication systems. Several relationships exist connecting

1
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high-order cumulants of a linear process to the parameters of its generating model. A vast

amount of papers can be found on this subject and numerous solutions have been proposed

for the identi�cation of linear autoregressive(AR), moving-average(MA) and ARMA models,

exploiting only the cumulants of output signals. In particu lar, Brillinger and Rosenblatt [ 3]

established the exact expressions for computing cumulantsin terms of the coe�cients of an FIR

system. The well-known C(q; k) solution proposed by Giannakis [4] requires very few statis-

tics but is quite sensitive to cumulant estimation errors. Other approaches include techniques

that use additional cumulant information yielding improve d solutions, such as the methods by

Mendel and Giannakis [5], Friedlander [6] and Comon [7], whose method is optimal in the total

least squares (TLS) sense. See also [8, 9, 10, 11] among others.

Since the introduction of the independent component analysis (ICA) concept in the seminal

paper by Comon [12], research e�orts have been spent for generalizing simultaneous diagonal-

ization criteria and establishing links with canonical tensor decompositions (c.f. [13, 14] and

references therein). For instance, in [15], De Lathauwer et. al reformulated the canonical decom-

position of high-order tensors as a simultaneous generalized Schur decomposition. The Parallel

Factor (Parafac) analysis of aP-dimensional tensor with rank F consists in the decomposition

of the tensor into a sum of F rank-one tensors, each one being written as an outer productof

P vectors [16]. In fact, output cumulants are multi-index objects having a symmetric tensor

representation [17] and the blind identi�cation of linear mixtures is closely r elated to the (simul-

taneous) diagonalization of cumulant tensors [18, 19]. In Chapter 1, we present a survey of the

main HOS concepts and properties; some algebraic tools and algorithms are also reviewed and

a synthetic presentation of the Parafac tensor decomposition is included along with the proposi-

tion of an extended version of the alternating least squares(ALS) algorithm for the estimation

of the Parafac components of tensors of any order.

The key-point in the use of the Parafac decomposition is its uniqueness property, which can

be ensured under simple conditions that are stated in the Kruskal Theorem [20]. Furthermore,

canonical tensor decompositions do not impose any kind of orthogonality constraints and the fac-

torization of tensors composed of high-order output cumulants has the advantage of avoiding the

so-calledprewhitening operation by fully exploiting the multidimensional nature of the cumulant

tensor. Moreover, the tensor rank is not bounded by the tensor dimensions as it is the case for

matrices, which conceptually allows for the blind identi�c ation of underdetermined mixtures.

A formal relationship between Parafac decomposition and simultaneous matrix diagonalization

has been established in [21] showing that the components of the tensor decomposition can be

obtained from a simultaneous matrix diagonalization by congruence transformation, leading to

weaker uniqueness conditions and yielding algorithms thatidentify a greater number of user

channels with a given number of receive antennas, but still proceeding with two computation

stages to recover the channel coe�cients [22], i.e. one needs to compute a unitary factor (spatial

pre-whitening) before extracting the channel coe�cients from an estimated matrix product.
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Our main focus in Chapter 2 is in exploiting the redundancies in the factors of the 4th-

order cumulant tensor decomposition by solving a single-step least-squares (SS-LS) problem,

under very mild assumptions. To this end, we treat the 4th-order cumulants as a Parafac tensor

with components having a particular Hankel structure. Intr oducing this new cumulant tensor

modeling enables us to develop an iterative blind identi�cation algorithm for the case of FIR

single-input single-output (SISO) communication channels. In this context, the proposed method

estimates the channel coe�cients by solving a sole minimization problem, contrary to previously

known techniques, thus avoiding classical pre-processingoperations. On the other hand, we also

treat the case of instantaneous (memoryless) multiple-input multiple-output (MIMO) mixtures

by extending our 4th-order cumulant Parafac tensor model and then introducing another impor-

tant contribution of this thesis, corresponding to a SS-LS algorithm for the blind identi�cation

of the MIMO channel coe�cients. In the FIR-SISO case, the SS-LS Parafac-based algorithm

represents a new tensor-based scheme for the blind estimation of the channel coe�cients. Al-

though the 4th-order cumulant symmetries have being exploited with a tensor formalism for a

long time [23, 24], the SS-LS approach also consists, to our knowledge, in the�rst contribution

proposing to improve the LS solution of the Parafac decomposition, in both SISO and MIMO

contexts, using the redundancies of the 4th-order cumulanttensor.

Mobile radiocommunication systems are often characterized by multipath propagation,

which introduces ISI, thus causing serious limitations in capacity and performance. In mul-

tiuser/multiantenna systems, this scenario can be represented by a convolutive MIMO channel

model, characterized by the multipath physical parameters(delays, attenuations, and angles of

departure and arrival). In this context, equalization algorithms generally make use of the chan-

nel coe�cients and the multipath parameters can be of interest for source localization purposes,

among other applications. In this thesis, we have been interested in estimating both the MIMO

channel coe�cients and the physical parameters describingthe multipath propagation scenario,

using a fully-blind two-stage approach. First, we extend the 4th-order output cumulant tensor

model for the convolutive MIMO channel case and, using a SS-LS algorithm, we perform a non-

parametric estimation of the channel coe�cients. This cumulant tensor model along with the

new blind identi�cation technique can be viewed as a generalization of the models and methods

proposed in Chapter 2 for the SISO and the instantaneous MIMO cases, hence consisting in a

major contribution of chapter 3. In a second stage, we introduce a tensor notation to represent

the structure of a convolutive multiuser radio channel, which allows us to identify the spatial

and temporal signatures of the channel by using a 3rd-order Parafac decomposition. Using an

ALS-based algorithm followed by a MUSIC-like search for themultipath parameters, we end

up with a new combined ALS-MUSIC technique that allows for the recovery of the physical

structure of the MIMO channel, as well as its coe�cients with out the ambiguities due to the

Parafac decomposition.

Actually, MUSIC-like algorithms play an important role in d etermining the location of signal
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sources in sensor array processing. In this context, direction �nding (DF) techniques have

been of particular interest for source separation and interference suppression (beamforming)

applications. We also treat this problem in chapter 3, where we come up with a new high-

resolution DF algorithm based on the 4th-order cumulants only. Exploiting the virtual antenna

array concept [25, 26], we show that we can get some additional virtual sensors using the

Khatri-Rao structure of an unbalanced arrangement of the cumulant tensor, thus providing

some additional free dimensions to the antenna array. Without resorting to 6th-order statistics,

our new source localization algorithm uses the SS-LS approach to estimate the extended virtual

array, allowing for resolution gains comparable to the 6-MUSIC algorithm [27] with cumulant

estimation burden equivalent to the 4-MUSIC algorithm [28, 29].

Finally, we turn our attention to the problem of determining the order of radiocommunication

channels in the context of multiple-input single-output (M ISO) systems, using only the 4th-order

cumulants of the output data sequence. Channel order estimation is a classic model selection

problem strongly related to determining the number of signals embedded in noisy observations

in narrow-band array processing. This is often referred to as the signal (or source) detection

problem [30, 31, 32]. A classical solution for the channel order selection problem relies on the

Sphericity Test [33], which is a well-known algorithm for estimating the number of parameters in

a model using the eigenvalues of a correlation matrix in order to determine test statistics. This

algorithm �nds several applications in the context of passive arrays, such as in [34, 35], where

an important modi�cation of the Sphericity Test has been proposed. This approach is based on

the sample correlation matrix, which is estimated from a �ni te number of output samples and

hence subject to statistical variations.

In chapter 4, we address the problem of channel order determination as a series of hypothesis

tests based on scalar statistics. Using the multivariate estimator of the 4th-order output cumu-

lants, we exploit the insensitiveness of a Chi-square test statistic with respect to the non-linearity

of a stochastic process. This property enables us to observethe amount of signal energy in the

representation space of the 4th-order cumulants and thereby deduce the order of a FIR-SISO

communication channel. Our approach leads to a new channel order detection method and we

provide a performance analysis along with a criterion to establish decision thresholds, according

to a desired level of statistical tolerance. Afterwards, wecome up with another major contribu-

tion of the chapter, which consists in introducing the concept of MISO channel nested detectors

based on a deation-type procedure using the 4th-order output cumulants. The nested detector

devices run combined algorithms that select the order and estimate the coe�cients associated

to the di�erent emitters composing the MISO channel. By treating successively shorter and

shorter channels, we can also determine the number of sources.
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Chapter contents and contributions

This thesis is fundamentally based on the following axis:

1. Blind channel identi�cation exploiting the symmetry pro perties of the 4th-order output

cumulants in a single LS minimization problem;

2. Source localization in multiuser narrowband array processing;

3. Structured channel parameter estimation in a multipath propagation scenario;

4. Channel order estimation and signal detection in the context of MISO channels.

The thesis is divided in four chapters, organized as follows:

Chapter 1: We present a survey on high-order statistics tools in Signal Processing. Some de�-

nitions and properties of HOS are introduced and reported tothe context of telecommunication

systems, including important relationships between higher-order cumulants and the parameters

of a linear system model. Useful linear algebraic tools and (simultaneous) matrix decomposi-

tions are discussed. Finally, we present a brief introduction to multilinear tensor decomposition

tools using a generalized formulation for tensors of any order and extending the ALS algorithm

to this general case. Uniqueness conditions are presented and the particular cases of 3rd- and

4th-order tensors are also discussed.

Chapter 2: New blind channel identi�cation algorithms are proposed exploiting 4th-order cu-

mulant redundancies in order to perform the cumulant tensordecomposition by solving a single

least squares minimization problem. We analyze the cumulant tensors in the convolutive SISO

as well as in the instantaneous MIMO cases and propose particular cumulant tensor models for

treating each case. Then, we propose Parafac-based SS-LS algorithms to estimate the channel

coe�cients. The algorithms, based on 4th-order cumulants only, are also able to treat certain

underdetermined mixtures. Known algorithms based on the joint-diagonalization technique are

also described and performance comparisons are provided bymeans of computer simulations to

assess the applicability of the proposed algorithms in bothSISO and MIMO cases.

Chapter 3: In this chapter, we are �rst interested in the problem of bli nd multiuser localization

in the context of multiple antenna array processing, under the far-�eld assumption, using only

the array output signals. Exploiting the Virtual Array conc ept, we propose a high-resolution

DF algorithm exploiting an unbalanced structure of the cumulant tensor, based on the estima-

tion of an array matrix formed from a double Khatri-Rao produ ct, using the SS-LS technique.

Then, we also treat the problem of estimating the physical parameters of a multipath MIMO

communication channel characterized by specular reections due to remote scatterers. A two-

stage approach is proposed: before extracting the physicalparameters of the multipath channel
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structure using a proposed ALS-MUSIC approach, we extend the 4th-order cumulant tensor

model to the case of a convolutive MIMO channel and estimate its coe�cients using a SS-LS

algorithm.

Chapter 4: This chapter treats the problem of estimating the channel order and detecting the

number of sources in a MISO channel. First, we propose a sequence of hypothesis tests for

selecting order of a FIR-SISO communication channel. Relying on some properties of the 4th-

order cumulant, we introduce a test variable that is sensitive to the non-linearity of a stochastic

process. Exploiting this property enables us to detect the channel order. We discuss the choice

of a decision criterion and propose a new algorithm for orderdetermination. In the context

of MISO channels, we introduce the concept of nested detectors that successively test for the

presence of shorter and shorter channels, determining their respective orders and estimating

their associated coe�cients using HOS-based blind identi�cation techniques.

The main original contributions of this thesis are listed below:

� Proposition of a generalized version of the ALS algorithm for the estimation of the Parafac

components of aPth-order tensor (section 1.3.2);

� De�nition of a tensor model for 4th-order output cumulants, in the FIR-SISO case, ad-

mitting a Parafac decomposition with components having a particular Hankel structure

(section 2.2);

� Development of a Parafac-based blind channel identi�cation (PBCI) algorithm using a

SS-LS approach (section2.3);

� Proposition of a Parafac-based blind (memoryless) MIMO channel identi�cation (PBMCI)

algorithm using the SS-LS approach to exploit the redundancies in the Parafac components

of the 4th-order output cumulant tensor (sections 2.4 and 2.5.2);

� De�nition of a 3rd-order tensor model of the 4th-order output cumulants and proposition

of a Parafac SS-LS algorithm for blind channel identi�cation in the memoryless MIMO

case (sections2.4 and 2.5.2);

� Derivation of a 3rd-order virtual array based on an unbalanced unfolding of the 4th-order

cumulant tensor structure; description of a method for estimating the VA using the SS-LS

approach (section3.2);

� Uni�cation of the 4th-order cumulant tensor models by means of a generalized tensor

formulation including the convolutive MIMO case, in which t he Parafac components have

a block-Hankel structure (section 3.3.1);
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� Development of a non-parametric Parafac-based SS-LS algorithm for the blind identi�ca-

tion of convolutive MIMO channels (section 3.4.1);

� Introduction of a Parafac tensor representation for the structured multipath MIMO chan-

nel model based on the parameters characterizing the signalpropagation (section 3.3.2);

� Realization of a combined ALS-MUSIC method for the estimation of the structured mul-

tipath MIMO channel parameters (section 3.4.2);

� Determination of a Chi-square test statistic based on the energy of the 4th-order cumulants

(section 4.1); proposition of a blind method for determining the order of a SISO channel

(section 4.1.2);

� Development of a combined blind procedure for signal detection, order determination and

channel identi�cation in the context of MISO channels (section 4.2);
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Chapter 1

Mathematical Tools

T
he telecommunications history dates back to the 19th century, when Samuel F. B. Morse

started telegraphic transmissions and Alexander Graham Bell invented the telephone.

Since then, the information technologies experimented dramatic developments and the

technological challenges changed a lot: ubiquitous access, powerful computation and high

transfer rates. The new world scenario created a very harmful environment to data transmissions,

especially in the wireless and mobile communication contexts. Dense urban agglomerations, hot

spot user areas, and high-speed transportation means are some of the factors causing the physical

phenomena responsible for signal deterioration. Actually, these phenomena lead to well-known

troubles of imperfect information recovery, known by the generic name ofinterference.

In multipath propagation environments, distorted frequency-response channels may cause

the energy of the electromagnetic pulses to spread in time thus corrupting adjacent pulses and

introducing inter-symbol interference (ISI). Wireless communication systems are known to face

several problems related to multipath propagation including ISI as a very severe performance

and capacity limiting factor. In order to suppress the e�ects of interference and assure the

information recovery at the receiver side, knowledge of thetransmission channel is necessary.

Several mathematical models have been developed in order totentatively predict the behavior

of real systems with the purpose of designing �ltering structures (equalizers) that compensates

or reduces the ISI.

In this context, second- and high-order statistics (HOS) appear as powerful signal process-

ing tools, playing a very important role in several applications that involve system information

recovery. However, second-order statistics (SOS) containno phase information and, as a conse-

quence, nonminimum phase signals cannot be correctly identi�ed by those techniques. On the

other hand, HOS of Gaussian signals are either zero (odd-ordered moments) or contain redun-

dant information. This is a remarkable information since measurement noise is often Gaussian

and many real-life signals have non-zero HOS. Several important papers on HOS have been

written since the Sixties, but it is from the Seventies that the subject starts to experience its

greatest growing of interest with applications involving di�erent contexts such as economics,

9
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speech, seismic data processing, plasma physics, control,optics and obviously, communications.

More recently, the introduction of the multiuser and multip le output communication systems

served as an application background to the new developmentsin the area. Section1 is a brief

tutorial on this subject, presenting the important de�niti ons, properties and some relationships

between high-order moments and cumulants.

Anyway, processing HOS data often implies implementing algebraic methods and generally

requires the use of numerical algorithms. Most of the engineering problems and physical applica-

tions make use of numerical methods, especially those associated with stability and perturbation

analysis. In particular, the eigenvalue problem for squarematrices is of crucial importance in

several domains of Signal Processing. As we will see in section 2, several matrix factorization

techniques play an important role in these scenarios and will be divided in two main strate-

gies [36]: diagonalization and triangularization . The former is classically solved by Jacobi-like

algorithms, still powerful and popular due to the high inherent parallelism. The latter one

is applicable to any (square) matrix and its classical implementations are based on QR-type

algorithms. In some domains, such as blind sources separation and system identi�cation, simul-

taneous matrix factorization tools are strongly desirable. Section 2 also discusses simultaneous

decomposition techniques that are suitable for processinglong data records sharing common

structure properties but di�ering in the individual inform ation contents.

On the other hand, multi-linear algebraic tools have been developed and applications in

multiuser systems using HOS are now a current research topic. In particular, the trilinear

Parallel Factor analysis (Parafac) has become very popularin the �elds of Psychometrics and

Chemometrics [37, 38] but it also has been widely used in Signal Processing applications (c.f. [39,

40, 41, 42, 43, 44] among others). The major importance of using Parafac is dueto its uniqueness

property, ensured under very mild conditions that have beenstated by Kruskal [20]. In section 3,

we present a synthetic review and some fundamental aspects of the Parafac decomposition, using

a general formulation for the case of aPth-order tensor. We also briey discuss the estimation

of Parafac components by describing the associated alternating least squares (ALS) algorithm.

1 High-order statistics

Moments and cumulants are descriptive constants of a probability distribution. In this section,

we present a global overview on the main aspects of HOS including de�nitions, properties and

important relationships.

Moments and cumulants

Let us consider a set ofk real random variables (r.v.) Z = f z1; : : : ; zkg with known joint

probability density function (p.d.f.), f
Z
(z1; : : : ; zk ), and a sequence ofk integer numbers
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(n1; n2; � � � ; nk ) such that n1 + n2 + � � � + nk = m. The mth-order moment of Z is de�ned as

M m;Z = E
�

zn1
1 zn2

2 : : : znk
k

	
; (1.1)

where E f�g stands for the expectation operator. The moments M m;Z de�ned in ( 1.1) can be

obtained as the coe�cients of the Taylor series expansion around the origin of the characteristic

function 
 Z(u), also known as themoments generating function, given as follows [45]:


 Z(u) ,
Z 1

�1
f

Z
(z1; : : : ; zk ) exp

�
j uT Z

�
dz1 : : : dzk

= E
n

exp
�

j uT Z
�o

; (1.2)

where u = ( u1 : : : uk )T . For complex random variables, we consider the joint distribution of

their real and imaginary parts, and the expressions given here become more complicated [46].

The second characteristic function, known as the cumulants generating function,

� Z(u), is then de�ned as the natural logarithm of the moments generating function, i.e.

� Z(u) = ln [
 Z(u)]. Thus, the mth-order cumulants of Z are obtained as the coe�cients of its

Taylor series expansion around the origin and they can be computed as the partial derivatives

of � Z(u):

cm;Z =
@m � Z(u)

@un1
1 : : : @unk

k
: (1.3)

Let us assume, without loss of generality, thatn1 = � � � = nk = 1 and thus m = k. Now,

denote by P(� )
i a partition of length � of the set I = f 1; : : : ; mg. The partition P(� )

i is an

unordered collection of � nonintersecting nonempty sets Pj such that
S �

j =1 Pj = I . Let P� be

the set containing all partitions of I with length � , so that Pj � P(� )
i � P � , 1 � � � m. Consider

the set P comprising all possible groups of partitionsP� of the set I , i.e. P = fP 1; : : : ; Pm g.

For instance, whenm = 3 we have I = f 1; 2; 3g and thus:

P1 =

(

f 1; 2; 3g
| {z }

P(1)
1

)

; P2 =

( �
f 1g; f 2; 3g

�

| {z }
P(2)

1

;
�

f 2g; f 1; 3g
�

| {z }
P(2)

2

;
�

f 3g; f 1; 2g
�

| {z }
P(2)

3

)

; P3 =

( �
f 1g; f 2g; f 3g

�

| {z }
P(3)

1

)

so that
P =

�
P1 ; P2 ; P3

�
=

( �
f 1; 2; 3g

�
;
�

f 1g; f 2; 3g
�

;
�

f 2g; f 1; 3g
�

;
�

f 3g; f 1; 2g
�

;
�

f 1g; f 2g; f 3g
� )

:

Using the above de�nitions, we can state the following formulas explicitly relating moments

to cumulants and vice-versa, respectively [2]:

cm;Z =
mX

� =1

(� 1)� � 1(� � 1)!
X

P( � )
i �P �

�Y

j =1

M m;ZP j
Pj � P(� )

i (1.4)

M m;Z =
mX

� =1

X

P( � )
i �P �

�Y

j =1

cm;ZP j
Pj � P(� )

i (1.5)
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where ZP j is a subset of Z = f z1; : : : ; zm g formed with the elements having indices in Pj .

From de�nition ( 1.1), we observe that if the variablesz1; : : : ; zm are independent with zero

mean (i.e. centered around the origin) thenall the odd-order moments are identically zero. From

(1.4), we note that this property can be extended to cumulants because, if m is odd then every

partition P(� )
i will always contain at least one subset Pj with an odd number of elements. That

is the reason why in so many situations we are constrained to use at least fourth-order statistics.

For centered independent processes, the expression for the4th-order cumulant reduces to

c4;Z = E f z1z2z3z4g � E f z1z2gE f z3z4g � E f z1z3gE f z2z4g � E f z1z4gE f z2z3g; (1.6)

with Z = f z1; z2; z3; z4g. For notational convenience, we de�ne the following convention, to be

used throughout the rest of this thesis:

cm;ZP , cum[zj 1 ; : : : ; zj m ] ; (1.7)

where P = f j 1; : : : ; j m g and the operator cum[�] stand for the mth-order joint cumulant of the

random variables zj 1 ; : : : ; zj m . Thus, considering a zero-mean random processf � (t)g, we have

M m; � = E

(
m� 1Y

i =0

� (t + t i )

)

(1.8)

Cm; � = cum
h
� (t + t0); � (t + t1); : : : ; � (t + tm� 1)

i
; (1.9)

where � = f � (t + t0); � (t + t1); : : : ; � (t + tm� 1)g and hence the involved r.v. are time-shifted

samples of the process� (t). Notice that, for stationary processes, themth-order statistics depend

only on the m � 1 time-lags � 1 = t1 � t0, : : :, � m� 1 = tm� 1 � t0. This allows us to introduce the

following notations:

M m;� (� 1; : : : ; � m� 1) = E

(

� (t)
m� 1Y

i =1

� (t + � i )

)

(1.10)

Cm;� (� 1; : : : ; � m� 1) = cum[� (t); � (t + � 1); : : : ; � (t + � m� 1)] (1.11)

where f � (t)g is a zero-mean stationary random process. Stationarity will be further discussed

later in this section.

Polyspectra

The polyspectrum of a stationary process� (t) is de�ned as the (m � 1)-dimensional discrete

Fourier Transform of the mth-order cumulant, i.e.

Sm;� (! 1; ! 2; : : : ; ! m� 1) ,
1X

� 1= �1

� � �
1X

� m � 1= �1

Cm;� (� 1; : : : ; � m� 1) � exp

 

� j
m� 1X

i =1

! i � i

!

(1.12)

where Cm;� (� 1; : : : ; � m� 1) is assumed to be absolutely summable. Form = 2, equation (1.12)

coincides with the classicpower spectrumS2;� (! ). When m = 3, we have the so-calledbispectrum

S3;� (! 1; ! 2), whereas form = 4 we get S4;� (! 1; ! 2; ! 3), named trispectrum.
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Next, we present a survey of the most important properties ofcumulants and polyspectra.

Further details and proofs to these properties can be easilyfound in the literature (c.f. [ 1, 2])

and will be omitted here.

1.1 Properties and comments

Due to some special properties, the use of cumulants yields advantages that may not necessarily

be exploited when dealing with moments. Consider a set ofk r.v. Z = f z1; : : : ; zkg and the

following properties hold for cumulants:

P1 Linearity :

cum[� 1z1; : : : ; � kzk ] = cum[z1; : : : ; zk ]
kY

i =1

� i ; (1.13)

where � i ; i = 1 ; : : : ; k are constants

P2 Additivity : If x0; y0 are mutually independent random variables, then

cum[x0 + y0; z1; : : : ; zk ] = cum[x0; z1; : : : ; zk ] + cum[y0; z1; : : : ; zk ] : (1.14)

P3 Symmetry: Let the set f n1; : : : ; nkg be any permutation of f 1; : : : ; kg. Then, it holds

cum[z1; : : : ; zk ] = cum[zn1 ; : : : ; znk ] (1.15)

P4 Independence: If any (nonempty) subset of Z is independent of the remaining r.v. in Z,

then

cum[z1; : : : ; zk ] = 0 : (1.16)

Comments and discussion

1. Stationarity : A stochastic processf � (t)g is said to be strictly stationary if the joint dis-

tribution of any set of random variables f � (t + t0); : : : ; � (t + tn� 1)g is independent of the

time t, for all n. In other words, all the moments of � (t) are time-invariant and depend

only on the di�erences between the time-lags� i = t i � t0, i 2 [1; n � 1]. In practice, it

is usual to deal with the weaker concept ofwide-sense stationarity (WSS), also known

as second-order stationarity, which only ensures the mean and the correlation function to

be independent of the observation instants. Recalling property P4, it follows that for a

stationary centered i.i.d. process themth-order cumulant is a multidimensional impulse

function, i.e.

cum[� (t); � (t + � 1); : : : ; � (t + � m� 1)] = cum[� m (t)] � (� 1) : : : � (� m� 1); (1.17)
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where � (�) stands for the Dirac's impulse function. We thus denote  m;� = cum[� m (t)]

and, assuming� (t) is zero-mean, we get

 2;� = cum
�
� 2(t)

�
= C2;� (0) = E

�
� 2(t)

	
; (1.18)

 3;� = cum
�
� 3(t)

�
= C3;� (0; 0) = E

�
� 3(t)

	
; (1.19)

 4;� = cum
�
� 4(t)

�
= C4;� (0; 0; 0) = E

�
� 4(t)

	
� 3E

�
� 2(t)

	 2
; (1.20)

where  2;� ,  3;� and  4;� stand respectively for thevariance, the skewnessand the kurtosis

of the random process� (t).

The skewnessmeasures the lack of symmetry in a given distribution. It equals zero for

symmetric (centered) distributions. A normalized version of the skewness is reported in

the literature as follows:

� 3;� =
C3;� (0; 0)

(C2;� (0))3=2
:

The kurtosis is a measure ofatness and, indirectly, of gaussianity. It equals zero for

Gaussian processes and has positive or negative value depending on whether the probability

density of the process is peaked (over-Gaussian) or at (under-Gaussian) with respect to

a normal distribution, respectively. A normalized version of the kurtosis is de�ned as

� 4;� =
C4;� (0; 0; 0)

(C2;� (0))2 :

2. Symmetries: In addition to properties P1 to P4, cumulants and polyspectra present several

symmetry properties. Using property P3, we notice from (1.11), that Cm;� (� 1; : : : ; � m� 1) =

Cm;� (� n1 ; : : : ; � nm � 1 ), where f n1; : : : ; nkg can be any permutation of the setf 1; : : : ; m � 1g.

Hence, there are (m� 1)! di�erent ways to order the time-lags � i yielding the same cumulant

value. In addition, notation ( 1.11) was de�ned with respect to the time-shift t0, using the

convention � i = t i � t0, i 2 [1; n � 1]. However, any other choice oft i , i 2 [1; n � 1],

should lead to the same result, giving usm additional ways to get the same cumulant. In

conclusion, mth-order cumulants de�ne a representation spaceC� 1 ����� � m � 1 in which the

function Cm;� (� 1; : : : ; � m� 1) has m(m � 1)! = m! regions of symmetry, each one containing

all the mth-order cumulant information and providing no additional information with

respect to the other regions. For instance, whenm = 3 each cumulant appears 3! = 6

times in the spaceR� 1 � � 2 , as illustrated in �g. 1.1. Each of these 6 regions of symmetry

in the plane � 1 � � 2 contains all the non-redundant 3rd-order information. For m = 4, the

spaceR� 1 � � 2 � � 3 is divided into 4! = 24 redundant regions of symmetry.

3. Cumulants of complex processes:The above formulas were stated for the case of real-valued
random processes. In the complex case, the random variablesmay be conjugated or not.
Starting from equation (1.11), where no conjugations were made, we can state several
de�nitions until reaching the one where all the variables are conjugated. Throughout the
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Figure 1.1: Regions of symmetry for the 3rd-order cumulantsin the plane � 1 � � 2.

rest of this work, except when otherwise stated, we will employ a particular de�nition 1 in
which the random variables are alternately conjugated, so that (1.11) becomes:

Cm;� (� 1; : : : ; � m � 1) =

(
cum[� � (t); � (t + � 1); : : : ; � � (t + � m � 2); � (t + � m � 1)] ; if m is even;

cum[� � (t); � (t + � 1); : : : ; � (t + � m � 2); � � (t + � m � 1)] ; if m is odd,
(1.21)

and, according to the above, m;� is denoted as follows:

 m;� = Cm;� (0; 0; : : : ; 0): (1.22)

4. Second-order moments and cumulants: using (1.21) and the relationship (1.4), second-

order moments and cumulants (m = 2) can be written as

M 2;� (� ) = E f � � (t)� (t + � )g = cum[� � (t); � (t + � )] = C2;� (� ); (1.23)

which is the autocorrelation function of � (t). We also de�ne

M (d)
2;� (� ) = E f � (t)� (t + � )g = cum[� (t); � (t + � )] = C(d)

2;� (� ); (1.24)

so that M (d)�
2;� (� ) = E f � � (t)� � (t + � )g = ( E f � (t)� (t + � )g)� = C(d)�

2;� (� ).

5. Fourth-order cumulants: For centered processes, whenm = 4, relation ( 1.4) reduces to

(1.6). Recalling � (t) is assumed zero-mean stationary, and using the notation (1.21), we

get the following:

C4;� (� 1; � 2; � 3) = cum[� � (t); � (t + � 1); � � (t + � 2); � (t + � 3)] (1.25)

= E f � � (t)� (t + � 1)� � (t + � 2)� (t + � 3)g �

E f � � (t)� (t + � 1)gE f � � (t + � 2)� (t + � 3)g �

E f � � (t)� � (t + � 2)gE f � (t + � 1)� (t + � 3)g �

E f � � (t)� (t + � 3)gE f � (t + � 1)� � (t + � 2)g

1 The use of this de�nition is motivated by the fact that for cer tain signals of interest fourth-order cumulants

are zero when an odd number of conjugated terms is taken into account.
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and consequently

C4;� (� 1; � 2; � 3) = M 4;� (� 1; � 2; � 3) � M 2;� (� 1)M 2;� (� 3 � � 2) � (1.26)

M (d) �

2;� (� 2)M (d)
2;� (� 3 � � 1) � M 2;� (� 3)M 2;� (� 1 � � 2):

Replacing � 1 = � 2 = � 3 = 0 in ( 1.26) we can re-write (1.20) as

 4;� = C4;� (0; 0; 0) = M 4;� (0; 0; 0) � 2M 2
2;� (0) �

�
�
�M

(d)
2;� (0)

�
�
�
2

= E
�

j� (t)j4
	

� 2E
�

j� (t)j2
	 2

�
�
�E

�
� 2(t)

	 �
�2

(1.27)

6. Gaussianity: Cumulants of any order greater than two of Gaussian processes arezero

[1, 2]. Hence, cumulants can be viewed as a measure of the distanceof a process from

gaussianity.

7. Circularity : Let us de�ne the complex-valued random vectorz = [ z1 : : : zk ]T . The vector

z is said to becircular if and only if


 z(e|� u) = 
 z(eu ); 8 �; | =
p

� 1; (1.28)

which means that the moments of the variablesz and e|� z are equal. The circularity of

a complex random variable can therefore be viewed as the invariance of its probability

density to a rotation of an angle � . In particular, for a scalar complex circular random

variable, it follows that moments and cumulants with a di�er ent number of conjugated

and non-conjugated terms are zero, e.g.E f zg = 0, E
�

z2
	

= 0, E
�

z2z�
	

= 0 and so on.

1.2 Estimation of moments and cumulants from real data

Practical applications of high-order statistics require the use of methods for estimating their

values from the available data. In this context, ergodicity2 is key assumption, allowing us to

estimate moments from �nite data sequences. Therefore, disposing of N data samples of a

centered random variable� (t), the simplest estimator of the mth-order moments of � (t) is given

as follows:

M̂ m;� (� 1; : : : ; � m� 1) =

8
>><

>>:

1
n2 � n1+1

n2P

n= n1

� � (t)� (t + � 1) � � � � � (t + � m� 2)� (t + � m� 1); if m is even;

1
n2 � n1+1

n2P

n= n1

� � (t)� (t + � 1) � � � � (t + � m� 2)� � (t + � m� 1); if m is odd,

(1.29)

wheren1 = max(0 ; � � 1; : : : ; � � m� 1) and n2 = min( N; N � � 1; : : : ; N � � m� 1). Let us also de�ne

M̂ (d)
m;� (� 1; : : : ; � m� 1) =

1
n2 � n1 + 1

n2X

n= n1

� (t)� (t + � 1) � � � � (t + � m� 1); 8 m 2 N� : (1.30)

2 Statistical expectations of ergodic processes coincide with their time averages
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Furthermore, in order to evaluate the performance of an estimator #̂ of a given deterministic

quantity #, the mean, variance and bias of the estimator are useful metrics, and we de�ne them

as follows, respectively:

� #̂ = E
n

#̂
o

(1.31)

� #̂ = E
� �

#̂ � � #̂

� 2
�

(1.32)

bias
�

#̂
�

= E
n

#̂
o

� # (1.33)

Taking # = M m;� (� 1; : : : ; � m� 1), we notice that the mth-order moment estimator de�ned in

(1.29) is non-biased, sinceE
n

M̂ m;� (� 1; : : : ; � m� 1)
o

= M m;� (� 1; : : : ; � m� 1). In addition, ( 1.29) is

also said to be a consistent estimator because

lim
N !1

� M̂ m;� (� 1 ;:::;� m � 1 ) = 0 : (1.34)

In this thesis, we are particularly interested in the case where m = 4. In order to estimate

4th-order cumulants, we �rst get the 2nd- and 4th-order moments estimates using (1.29) and

(1.30), which yields

8
>>>>>><

>>>>>>:

M̂ 4;� (� 1; � 2; � 3) = 1
n2 � n1+1

n2P

n= n1

� � (n)� (n + � 1)� � (n + � 2)� (n + � 3)

M̂ 2� (� ) = 1
n2 � n1+1

n2P

n= n1

� � (n)� (n + � )

M̂ 2�;d (� ) = 1
n2 � n1+1

n2P

n= n1

� (n)� (n + � );

(1.35)

and then Ĉ4;� (� 1; � 2; � 3) is obtained from the relationship (1.26). It is possible to show that

the cumulant estimator is biased, but its bias tends to zero as N tends to in�nity (c.f. [ 47] and

references therein). In addition, Ĉ4;� (� 1; � 2; � 3) is said to be a consistent estimator, since its

variance goes to zero asN goes to in�nity.

For polyspectra estimations, cumulant estimates must be obtained �rst and then converted

to the frequency-domain, using (1.12). Further information on cumulant and polyspectra esti-

mation can be found in [17, 48, 47].

2 Linear algebraic tools

In this section, we consider the computation of eigenvectors that simultaneously satisfy a number

of given matrices. This so-calledgeneralized eigenproblemconsists in the search for solutions

revealing the common eigenstructure of a set of symmetric matrices. This problemis of great

importance in the domain of blind source separation but we also �nd applications in the �eld of

system identi�cation and equalization.
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2.1 The symmetric-de�nite eigenvalue problem

Eigenanalysis is a basic algebraic tool in any domain of Signal Processing. The search for the

nontrivial solutions of the linear system Ax = � x gave rise to enormous developments since the

Jacobi's works in the middle of the 19th century [49]. In particular, computing the eigenvalues

of a matrix A consists in �nding the roots of the characteristic equation:

det (A � � I ) = 0 : (1.36)

However, in most of the cases, explicitly solving the characteristic equation is an ill-conditioned

problem that should be avoided. Moreover, if there exist solutions to (1.36), those are necessarily

iterative because there is no closed-form expression for the roots of a general polynomial of degree

n > 4. As a result, numerical solutions and stability issues have been strongly addressed in the

literature aiming an accurate and e�cient computation of ei genvalues and eigenvectors.

A straightforward solution to this problem consists in a Schur-type decomposition of the

square matrix A to the form A = QL T QH, whereQ is unitary 3 and L is lower triangular. Several

zero-introducing methods are reported in the literature for implementing this triangularization

strategy, including Householder, Givens and Gram-Schmidt[50, 49]. A special case occurs

when A is normal, i.e. it commutes with its conjugate-transpose (AA H = A HA ). A normal

matrix is unitarily diagonalizable i.e. there exists a unitary matrix Q such that QHAQ = � ,

where � is a diagonal matrix with the eigenvalues ofA composing its main diagonal. This

diagonalization approach is easily implemented by means of successive applications of unitary

similarity transformations.

Next, we briey discuss these two classes of techniques thatcope with the vast majority of the

cases concerned in signal processing applications. Notice, however, that the choice of an adequate

algorithm depends on a number of characteristics of the concerned matrix. In particular, some

features to be considered involve main properties (symmetric, unitary, Hermitian, etc), structure

(sparse, Toeplitz, etc) and type of elements (real or complex) among others.

Triangularization strategies

A valuable approach for computing the eigenvalues of a square matrix A 2 Cn� n consists in

reducing A to a triangular form by means of unitary similarity transfor mations. This solution

is based on theSchur's Unitary Triangularization Theorem , which states that there exists a

unitary n � n matrix Q such that QHAQ = L T is upper triangular. Since the determinant of

a triangular matrix equals the product of the diagonal entries, the eigenvalues ofA are given

by the diagonal elements ofL , i.e. � i = [ L ]ii . Furthermore, provided that A is full rank, the

columns of Q form an orthonormal basis for the column space ofA . Therefore, the Schur

decomposition can be viewed as a way to compute eigenvalues and eigenvectors ofA , as it is

shown in Appendix A.1.

3 A matrix Q 2 Cn � n is unitary i� QQ H = QHQ = I . As a result, if Q is unitary then QH = Q � 1 .
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Diagonalization strategies

Let � be unitarily similar to A , i.e. � = QHAQ , with Q unitary. If A is normal then also

is � , i.e. if AA H = A HA then �� H = � H� . On the other hand, Schur's Triangularization

Theorem says that a unitary Q exists for which � is upper triangular. Notice, however, that

a matrix that is both normal and upper triangular can only be d iagonal and hence, the Schur

factorization actually diagonalizesnormal matrices. Therefore, diagonalization techniques can

be used to determine the eigenstructure of a normal matrix. In particular, Hermitian matrices

(symmetric in the real case) often receive special attention since they have real eigenvalues.

Numerical solutions to this problem are known to be iterative and the idea is based on the

repeated application of unitary similarity transformatio ns so that matrix A is systematically

changed toward a diagonal form until reaching a tolerance level with respect to a certain criterion.

Such a criterion must be carefully de�ned in order to stop iteration at a point where A is close

enough to being diagonal. A classical measure of how much a matrix di�ers from being diagonal,

based on its non-diagonal values, is given in [50], as follows:

o� (A ) ,

0

B
B
@

nX

i =1

nX

j = 1
j 6= i

jaij j2

1

C
C
A

1=2

(1.37)

=
�

kA k2
F � k diag(A )k2

� 1=2
; (1.38)

where

kA kF ,

0

@
nX

i =1

nX

j =1

jaij j2

1

A

1=2

(1.39)

is the Frobenius norm of A , diag(A ) is the vector consisting of the diagonal elements ofA and

k � k stands for the Euclidean norm. Note that kA k2
F = Tr (AA H) and, since the trace of a

matrix is invariant under a similarity transformation, the following holds for any unitary n � n

matrix Q:

kA k2
F = Tr (AA H) = Tr (QHAA HQ) = Tr (QHAQQ HA HQ) = kQHAQ k2

F : (1.40)

Therefore, the Frobenius norm is also preserved under a similarity transformation. As a result,

we have the following relationship

kA k2
F = o�

�
QHAQ

� 2
+



 diag

�
QHAQ

� 



2
: (1.41)

Once the sum in the right-hand side of the above equation is constant it is straightforward to

conclude that minimizing the norm of the o�-diagonal terms i mplies maximizing the norm of

the diagonal elements and vice-versa.

Diagonalization methods appear among the earliest solutions for the eigenvalue problem and

have been formerly addressed by Jacobi, whose seminal ideasbecame classic and very attractive
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for application in parallel computing. In Appendix A.2, we describe the classical Jacobi method

for computing similarity transformations that make A closer and closer to being diagonal, in an

iterative procedure.

In the next section, we show that the simultaneous diagonalization of two symmetric matrices

is equivalent to a generalized eigenvalue problem. Under certain conditions, this problem can be

viewed as a generalization of theLower-Diagonal-Upper factorization (L�M T ) and it indicates

a link between the EVD techniques and the optimization methods [51, 52]. We will also show

how this problem can be extended to a set ofK symmetric matrices.

2.2 The generalized eigenvalue problem

Given a Hermitian matrix A 2 Cn� n and a Hermitian positive-de�nite matrix B 2 Cn� n , we

want to �nd a factor Q such that QHAQ and QHBQ are diagonaln � n matrices. We start by

looking for an intermediate transformation W 1, referred to as whitening transformation, such

that

W H
1 BW 1 = I : (1.42)

In the above equation,W 1 can be computed by several means including classical singular value

decomposition (SVD) or eigenvalue decomposition (EVD). Let, for instance, the EVD of B be

given by � HB� = � B , then

W 1 = �� � 1=2
B ; (1.43)

where � � 1=2
B is real sinceB is assumed Hermitian and positive-de�nite. However, we search a

factor Q that is supposed to diagonalize bothA and B , simultaneously. Hence, the whitening

transformation W 1 must also be applied to A , which yields A 1 = W H
1 AW 1. We can now

diagonalizeA 1 by computing a second transformationW 2, as follows,

W H
2 A 1W 2 = W H

2 W H
1 AW 1W 2 = � ; (1.44)

where W H
2 A 1W 2 = � is the EVD of A 1 with � being a diagonal matrix and W 2 a unitary

transformation (becauseA 1 is Hermitian). We conclude that Q = W 1W 2 jointly diagonalizes

both A and B , so that
(

QHAQ = �

QHBQ = I ;
(1.45)

where we have used the fact thatW 2 is unitary to obtain the latter equation. Furthermore,

QQ H = W 1W 2W H
2 W H

1 = W 1W H
1 and, from (1.43), we get W 1W H

1 = �� � 1
B � H, hence

QQ H = B � 1. Thus, we can handle (1.45) to get (BQ )QHAQ = ( BQ )� and it follows that

AQ = BQ� : (1.46)
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The above equation states a generalized eigenvalue problem[50]. The columns ofQ form a basis

of eigenvectors associated with the generalized eigenvalues, disposed at the diagonal entries of

� . Moreover, sinceB is nonsingular4, we have

B � 1AQ = Q� : (1.47)

Therefore, equation (1.47) shows that the diagonalizing factor Q exists and can be exactly

obtained from the EVD of B � 1A or, equivalently, from two consecutive matrix decompositions

as indicated by (1.43) and (1.44), avoiding matrix inversion. This problem is referred to as the

symmetric-de�nite generalized eigenproblemand a number of algorithms are available in the

literature to compute Q satisfying (1.45).

Simultaneous diagonalization

We have just considered the simultaneous diagonalization of two symmetric matrices (K = 2).

We now consider the general case whereK > 2. In other words, we search the nonsingular factor

Q that simultaneously diagonalizes a setA of symmetric matrices A (k) 2 Cn� n , k = 1 ; : : : ; K .

For K > 2, it does not necessarily exist a common set of eigenvectorsand Q is said to reveal the

average eigenstructureof the set A [53]. Existing numerical methods can be used to compute an

orthonormal basis Q = [ Q �1 � � � Q �n ] that approximately diagonalizes the matricesA (k) , as best

as possible, following a Jacobi-like approach. The idea behind these methods is to optimize a

cost function aiming to minimize the o�-diagonal elements of A (k) , so that all matrices in the set

A become systematically and simultaneously closer to being diagonal. A very straightforward

way to de�ne the cost function describing this criterion is as follows:

J(Q; A) ,
KX

k=1

o�
�

QHA (k)Q
�

(1.48)

where the operator o� (�) is given in (1.38) and the matrix Q that minimizes (1.48) is referred

to as joint diagonalizer of the set A [53].

From the previous section, recall that minimizing the norm of the o�-diagonal terms of a

matrix implies maximizing the norm of its diagonal elements, as suggested by (1.41). As a result,

computing a joint diagonalizer Q to the set A by minimizing ( 1.48) is equivalent to maximizing

the following criterion

J(Q; A) ,
KX

k=1



 diag

�
QHA (k)Q

� 



2
: (1.49)

4 If B is singular, the method discussed here can be applied by using a rank-reduction technique in such a way

that the �rst r B = rank (B ) < n columns of � (eigenvectors of B ) are used to form � r B and then (1.43) becomes

� r B diag(� 1 ; : : : ; � r B ) � 1=2 = W 1 2 Cn � r B . Thus, W 2 2 Cr B � r B and henceW 1W 2 = Q 2 Cn � r B . In this case,

(1.47) becomesB # AQ = Q� , where B # is the pseudo-inverse ofB de�ned as B # = � r B diag(� 1 ; : : : ; � r B ) � 1 � H
r B

so that BB # = B # B = � r B � H
r B

. This procedure is referred to as reduced-rank simultaneous diagonalization.
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For K = 1, the above problem corresponds to a simple matrix diagonalization and we can easily

compute Q using a classical Jacobi algorithm. The same holds forK = 2. For K > 2, however,

orthogonal similarity transformations might not be able to produceK perfectly diagonal matri-

ces. An extended version of the Jacobi diagonalization algorithm was proposed in [51, 52] for

performing an approximative joint diagonalization of the matrices in A by maximizing (1.49)

through the successive application of plane rotations (Givens rotations). The extended Jacobi

algorithm for approximative simultaneous diagonalization is described in AppendixA.2.

Least Squares equivalence

The criterion ( 1.49) for the simultaneous diagonalization of the setA is shown to be equivalent

to the following:

J (Q; A) =
KX

k=1



 A (k) � Q� kQH





2

F
: (1.50)

Although the original proposition of Cardoso and Souloumiac [51] was merely intuitive, the above

result, �rst demonstrated by Wax [ 54], proves that joint diagonalization actually coincides with

a least squares problem and it is therefore optimal in that sense.

3 Multilinear algebraic tools

3.1 Parafac tensor decomposition

The Parallel Factor (Parafac) analysis of a Pth order tensor with rank F consists in the de-

composition of the tensor into a sum ofF rank-one tensors, each one being written as an outer

product of P vectors [16]. Let us consider thePth-order tensor T (P ) of dimensionsI 1 � : : : � I P

having the following F -component decomposition:

t i 1 ::: i P =
FX

f =1

a(1)
i 1 f : : : a(P )

i P f (1.51)

whereip 2 [1; I p], with p 2 [1; P]. The sum expressed in (1.51) is the scalar representation of the

Parafac decomposition of tensorT (P ) . The rank of a tensor is de�ned as the minimum number

F of factors needed to decompose it in the form (1.51). The tensor T (P ) can be written as the

sum of F outer products5 involving P vectors, as follows:

T (P ) =
I 1X

i 1=1

� � �
I PX

i P =1

t i 1 ::: i P e(I 1)
i 1

� � � � � e(I P )
i P

=
FX

f =1

A (1)
�f � � � � � A (P )

�f ; (1.52)

5The outer product of two arrays A ( P ) 2 CI 1 � ::: � I P and B( Q ) 2 CJ 1 � ::: � J Q consists of a tensor of orderP + Q

in which the element in position i 1 ; i 2 ; : : : ; i P ; j 1 ; j 2 ; : : : ; j Q equals the product ai 1 i 2 ::: i P bj 1 j 2 ::: j Q .
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where the notation e(I p )
i p

, ip 2 [1; I p], p 2 [1; P], stands for the ipth canonical basis vector ofRI p ,

i.e. e(I p )
i p

= [0 ; : : : ; 0; 1; 0; : : : ; 0]T 2 RI p � 1, with the nonzero element `1' placed at theipth entry.

In addition, the P matrices A (p) 2 CI p � F , p 2 [1; P], formed of the elementsa(p)
i p f , ip 2 [1; I p],

f 2 [1; F ], contain all the tensor information and will be referred to as (canonical) Parafac

components. Thef th column of matrix A (p) is de�ned as follows:

A (p)
�f ,

I pX

i p =1

a(p)
i p f e(I p )

i p
; f 2 [1; F ]: (1.53)

We de�ne a d-dimensional slice of tensor T (P ) as the set of elements obtained by freezingP � d

of its P indexes and making thed other ones to vary in their respective ranges. As a result,

one-dimensional (1D) tensor slices can be viewed as vectors andtwo-dimensional (2D) tensor

slices are matrices.

Establishing conditions to ensure uniqueness of the Parafac decomposition is of major im-

portance. Uniqueness represents a great advantage of Parafac over matrix decompositions,

since Parafac does not produce rotational ambiguities. In addition, there are generally no or-

thogonality constraints such as in SVD, even in the symmetric (Hermitian) case, where such

constraints also apply to EVD 6. In particular, the decomposition of a tensor T (P ) with compo-

nents A (1) ; : : : ; A (P ) is said to beessentially uniqueif any other set of matricesf �A (1) ; : : : ; �A (P )g

satisfying (1.52) is such that

�A (p) = A (p) � p� ; 8 p 2 [1; P]; (1.54)

where � p, p 2 [1; P], are diagonal scaling matrices satisfying

PY

p=1

� p = I F (1.55)

and � is an F � F permutation matrix [ 55]. In other words, essential uniqueness means unique-

ness up to column scaling and permutation. A su�cient uniqueness condition has been stated

by Kruskal in [ 20] for the case of a 3rd-order tensor. For a genericPth-order tensor, Sidiropoulos

and Bro extended the Kruskal Uniqueness Theorem as follows [38]:

Theorem 1.1 The Parafac decomposition of aPth-order tensor with rank F > 1, is essentially

unique if
PX

p=1

kA ( p) � 2F + ( P � 1); (1.56)

where kA ( p) stands for the k-rank of the Parafac componentA (p) , p 2 [1; P].

6 It is well known that the SVD of a (complex) matrix yields a fac torization of the type X = UDV H, with D

diagonal and U and V unitary matrices. When dealing with Hermitian matrices, th is orthogonality constraint

also applies to EVD.
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The k-rank of an n � m matrix X equals the largest integerkX for which any set of kX

columns ofX is independent. From this de�nition, we notice that kX � rX � min(n; m), where

rX = rank (X ). Several authors have addressed the Parafac uniqueness problem and di�erent

proofs have been given to the above theorem [20, 38, 56]. In addition, the Kruskal condition is

shown to be necessary forF = 2 and F = 3 and, if kA ( p) = rA ( p) , 8 p 2 [1; P], then (1.56) is

also necessary forF = 4 [38]. In the general case, some necessary uniqueness conditions include

kA ( p) 6= 0, 8 p 2 [1; P], which means that the Parafac componentsA (p) should not have any

all-zero column [57]. Implications of this fact will be further discussed later in this section.

In section 3.2 below, we discuss the important issue of estimating Parafaccomponents.

Speci�cally, we will introduce the basic principles for implementing the ALS algorithm under a

general framework. To this end, we need to express tensorT (P ) using matrix representations.

In which follows, we derive a generalized formulation for the matrix representations of aPth-

order (Parafac) tensor allowing us to extend trilinear estimation algorithms to the order P.

Matrix representations are obtained by unfolding the tensor so that all the tensor elements

are placed in a 2D array. We de�ne the Pth unfolded tensor representation of T (P ) as a

(I 1 � � � I P � 1) � I P matrix T [P ], such that [T [P ]]r;i P = t i 1 ::: i P where the row number is given

by r = ( i1 � 1)I 2 � � � I P � 1 + ( i2 � 1)I 3 � � � I P � 1 + : : : + ( iP � 2 � 1)I P � 1 + iP � 1.

Using the canonical basis vector notation, this is equivalent to write:

T [P ] ,
I 1X

i 1=1

� � �
I PX

i P =1

t i 1 ::: i P e(I 1 ��� I P � 1)
(i 1 � 1)I 2 ��� I P � 1+( i 2 � 1)I 3 ��� I P � 1+ :::+( i P � 2 � 1)I P � 1+ i P � 1

e(I P )T

i P

=
I 1X

i 1=1

� � �
I PX

i P =1

t i 1 ::: i P

�
e(I 1 )

i 1
� e(I 2 )

i 2
� � � � � e(I P � 1 )

i P � 1

�
e(I P )T

i P
(1.57)

where we have used the fact thate(I )
i � e(J )

j = e(IJ )
(i � 1)J + j . Replacing (1.51) in the above equation

and using de�nition ( 1.53), we easily get:

T [P ] =
FX

f =1

�
A (1)

�f � � � � � A (P � 1)
�f

�
A (P )T

�f

=
�

A (1) � � � � � A (P � 1)
�

A (P )T 2 C(I 1 ��� I P � 1)� I P : (1.58)

The index P in T [P ] is clearly associated with the Parafac componentA (P ) , which is right-

multiplied by the Khatri-Rao product in the above equation. This notation suggests that A (P )

can be estimated fromT [P ], provided that initial estimates of A (1) ; : : : ; A (P � 1) are given. Ex-

tending the above reasoning, we can de�neP � 1 other unfolded tensor representations, denoted

T [p], p 2 [1; P � 1], which can be used to estimate the remaining componentsA (1) ; : : : ; A (P � 1) .
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For instance, whenp = 1 we have:

T [1] =
�

A (2) � � � � � A (P )
�

A (1)T
2 C(I 2 ��� I P )� I 1 : (1.59)

The general formulation is given as follows:

T [p] =
�

A (p+1) � � � � � A (P ) � A (1) � � � � � A (p� 1)
�

A (p)T ; p 2 [2; P � 1]: (1.60)

Note that T [p] 2 C(I p+1 ��� I P I 1 ��� I p� 1) � I p . In practice, in order to form the column [T [p]]�;i p , we

arrange the elementst i 1 ::: i P by �xing the index ip while varying the �rst p� 1 and the last P � p

indices in consecutive nested loops withiP being the most inner one (fastest) andi1 the most

outer one (slowest).

Finally, we remark that for each p 2 [1; P], there exist (P � 1)! equivalent (but di�erent)

ways to de�ne a matrix denoted T [p] (by permuting the P � 1 indices of the Parafac components

in the multiple Khatri-Rao product of ( 1.60)). Actually, ( 1.60) is only one of these equivalent

formulations. For the sake of a uniform notation, throughout the rest of this thesis, we convention

to denote by T [p] the matrix representation of tensor T (P ) obtained from the unfolding procedure

above described, taking the order of the indices into account. As a consequence, equations (1.58)

to (1.60) hold. Any other notation will be disregarded.

Among many algorithms proposing a solution to estimate the factors of the Parafac decompo-

sition, the ALS algorithm is probably the most famous one. In the next section, we address this

subject under a general framework by describing an ALS algorithm that estimates the Parafac

components of apth-order tensor. We will also briey discuss the particular cases ofP = 4 and

P = 3, which yield quadrilinear and trilinear ALS algorithms, respectively. In chapter 2, we will

exploit the redundancies in the factors of the 4th-order cumulant tensor decomposition in the

minimization problem in order to develop new channel identi�cation algorithms.

3.2 The Alternating Least Squares (ALS) algorithm

The main idea behind the ALS algorithm is to divide the parameters to be estimated into several

sets in order to facilitate the use of simpler estimation algorithms. Then, each set is estimated

by iteratively minimizing, in the least squares sense, a single cost function conditioned to the

previous estimates of the other parameters. The algorithm iterates until no improvements

are observed (c.f. [58] and references therein). In fact, the ALS algorithm is shown to be

monotonically convergent, i.e. it can only improve or keep the same �t of the model. Its main

drawbacks include slow convergence and possible convergence to local minima due to inadequate

initializations. But these problems are more likely to occur in di�cult cases 7.
7 Situations with strongly correlated Parafac components or with too many components.
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Using the unfolded tensor representations de�ned in the previous section, with the general

formulation given in ( 1.60), we can de�ne the following LS criteria:

 p(A (p) ) ,


 T [p] �

�
Â (p+1)

r � � � � Â (P )
r � Â (1)

r � 1 � � � � Â (p� 1)
r � 1

�
A (p)T





2

F
; (1.61)

where r stands for the iteration number and, for notational convenience, we have omitted the

dependence of p on Â (p+1)
r ; : : : ; Â (P )

r ; Â (1)
r � 1; : : : ; Â (p� 1)

r � 1 . Then, each Parafac componentA (p)
r ,

p 2 [1; P], can be estimated by minimizing the function  p(A (p) ), assuming that previous es-

timates of the Parafac componentsA (1) ; : : : ; A (p� 1) are available from the preceding iteration,

while estimates ofA (p+1) ; : : : ; A (P ) have been previously obtained during the current iteration.

The optimal LS solution to this problem is given by:

Â (p)T
r = arg min

A ( p)
f  p(A (p) )g

=
�

Â (p+1)
r � � � � Â (P )

r � Â (1)
r � 1 � � � � Â (p� 1)

r � 1

� #
T [p]; p 2 [1; P]: (1.62)

The Generalized Parafac-ALS algorithm is summarized below. We start with p = P by assuming

the initial guessesÂ (1)
0 ; : : : ; Â (P � 1)

0 are known. Random initialization can be a good choice, but

it does not always yield a good �rst estimate [55].

Algorithm 1.1 (Generalized Parafac-ALS algorithm)

Determine a threshold " > 0, initialize the Parafac componentsÂ (1)
0 ; : : : ; Â (P � 1)

0 and

execute the steps below, starting withr = 1:

1. Using (1.62) with p = P, compute Â (P )
r , using the estimatesÂ (1)

r � 1; : : : ; Â (P � 1)
r � 1

from the preceding iteration, so that:

Â (P )T
r =

�
Â (1)

r � 1 � � � � Â (P � 1)
r � 1

� #
T [P ];

2. For p = P � 1; : : : ; 2, compute Â (p)
r using the estimatesÂ (p+1)

r ; : : : ; Â (P )
r previ-

ously computed during the current iteration andÂ (1)
r � 1; : : : ; Â (p� 1)

r � 1 from the pre-

ceding iteration, as follows:

Â (p)T
r =

�
Â (p+1)

r � � � � Â (P )
r � Â (1)

r � 1 � � � � Â (p� 1)
r � 1

� #
T [p];

3. For p = 1 , take all the estimates previously computed in the current iteration

into account and get:

Â (1)T
r =

�
Â (2)

r � � � � Â (P )
r

� #
T [1];

4. Update r  r + 1 and repeat steps 1 to 4 until criterion (1.63) is satis�ed.
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Classically, the estimation process is terminated when we can no longer observe signi�cant

variations on either the parameters or the �t of the model. According to [58], convergence of

�t does not necessarily imply convergence of parameters, although this is usually the case in

practical situations. As suggested therein, in order to avoid costly �t calculations after each

iteration, the relative change in the value of the estimatedparameters can also be indicative of

convergence. That is why we adopt, throughout the rest of this thesis, except when otherwise

stated, the following stop criterion:
�
�
�e(r ) � e(r � 1)

�
�
� � "; (1.63)

where

e(r ) =
PX

p=1



 Â (p)

r � Â (p)
r � 1





2

F

 Â (p)

r





2

F

; (1.64)

and " is an arbitrary small positive constant.

Lastly, we note that the full-column rank property of the mul tiple Khatri-Rao product

A (p+1) � � � � A (P ) � A (1) � � � � A (p� 1) , for all p 2 [1; P], is a necessary condition for the uniqueness

of the Parafac decomposition [56]. It is also possible to show that satisfying the Kruskal con-

dition implies satisfying this necessary full-column rank condition. In fact, it has been shown

in the context of 3rd-order tensors that, if the Kruskal condition is satis�ed, then the terms

(A (1) � A (2) ), (A (1) � A (3) ) and (A (2) � A (3) ) are full-column rank, provided that the k-ranks of

the Parafac components are nonzero [59]. This result is easily extendable to any orderP > 3

[60]. Consequently, asr increases, the multiple Khatri-Rao product in (1.62) is ensured to

converge to a full-column rank matrix for any p 2 [1; P], if the Kruskal condition is satis�ed.

3.3 Particular cases

Fourth-order tensor

Let us consider a 4th-order tensorT (4) of dimensionsI � J � K � L with scalar representation

given from (1.51) as follows:

t ijkl =
FX

f =1

aif bjf ckf dlf ; (1.65)

where, for convenience of notation, we usedaif , bjf , ckf , and dlf , with i 2 [1; I ], j 2 [1; J ], k 2

[1; K ] and l 2 [1; L ], to denote the elements of the Parafac componentsA 2 CI � F , B 2 CJ � F ,

C 2 CK � F and D 2 CL � F . Taking this notation into account and rewriting equations (1.58)

to (1.60) with P = 4 (and P = 3), we easily obtain the unfolded tensor representations shown

in Table 1.1, which summarizes the formul� for the unfolded forms of the 4th- (and 3rd-) order

Parafac tensor.
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Table 1.1: Unfolded representations of 4th- and 3rd-order Parafac tensors
Unfolded tensor

representations
P = 4 (dim.) P = 3 (dim.)

T [4] (A � B � C)D T IJK � L

T [3] (D � A � B )CT LIJ � K (A � B )CT IJ � K

T [2] (C � D � A )B T KLI � J (C � A )B T KI � J

T [1] (B � C � D )A T JKL � I (B � C)A T JK � I

Uniqueness, up to column scaling and permutation, is ensured under the condition stated in

Theorem 1.1. Thus, we conclude from (1.56) that, if

kA + kB + kC + kD � 2F + 3 ; (1.66)

then, any set f �A ; �B ; �C; �D g satisfying the equations in Table 1.1 is of the form

�A = A� 1� ; �B = B� 2� ; �C = C� 3� ; and �D = D� 4� ; (1.67)

where � is an F � F permutation matrix and � p, p 2 [1; 4], are diagonal scaling matrices

satisfying (1.55), i.e. � 1� 2� 3� 4 = I F .

Quadrilinear Parafac-ALS (QALS) algorithm

Algorithm 1.2 (QALS algorithm)

Determine a threshold " > 0, initialize Â 0, B̂ 0 and Ĉ0 and compute the Parafac

components as follows, starting withr = 1:

1. D̂ T
r =

�
Â r � 1 � B̂ r � 1 � Ĉ r � 1

� #
T [4];

2. ĈT
r =

�
D̂ r � Â r � 1 � B̂ r � 1

� #
T [3];

3. B̂ T
r =

�
Ĉ r � D̂ r � Â r � 1

� #
T [2];

4. Â T
r =

�
B̂ r � Ĉ r � D̂ r

� #
T [1];

5. Update r  r + 1 and repeat the previous steps until (1.63) is satis�ed.

Using the expressions in Table1.1, we can easily obtain from (1.61) the LS criteria to be

minimized in order to estimate the four desired Parafac components. The Quadrilinear Parafac-

ALS algorithm, presented above, follows from Algorithm 1.1 straightforwardly. Each Parafac

component is updated with the three other ones �xed to their most up-to-date estimated values.
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Third-order tensor

Originally proposed in the context of 3rd-order tensors, the Parafac decomposition of a tensor

T (3) of dimensionsI � J � K with scalar representation given as

t ijkl =
FX

f =1

aif bjf ckf (1.68)

yields componentsA 2 CI � F , B 2 CJ � F and C 2 CK � F , which are unique up to column scaling

and permutation, if ( 1.56) is satis�ed, i.e.

kA + kB + kC � 2(F + 1) : (1.69)

In this case, the unfolded representations ofT (3) , derived from equations (1.58) to ( 1.60) with

P = 3, are shown in Table 1.1. Hence, if (1.69) holds, then any set f �A ; �B ; �Cg satisfying the

equations in Table 1.1 is of the form

�A = A� 1� ; �B = B� 2� ; and �C = C� 3� ; (1.70)

where � is an F � F permutation matrix and � p, p 2 [1; 3], are diagonal scaling matrices

satisfying � 1� 2� 3 = I F .

Trilinear Parafac-ALS (TALS) algorithm

The idea behind the ALS algorithm is now straightforward. For the particular case of a third-

order tensor, the LS cost functions follow from (1.61) with P = 3 and the Trilinear Parafac-ALS

(TALS) algorithm can be summarized as follows:

Algorithm 1.3 (TALS algorithm)

Determine a threshold " > 0, initialize Â 0 and B̂ 0 and compute the Parafac compo-

nents as follows, starting with r = 1:

1. ĈT
r =

�
Â r � 1 � B̂ r � 1

� #
T [3];

2. B̂ T
r =

�
Ĉ r � Â r � 1

� #
T [2];

3. Â T
r =

�
B̂ r � Ĉ r

� #
T [1];

4. Update r  r + 1 and repeat the previous steps until (1.63) is satis�ed.
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4 Summary

In the �rst part of this chapter, we presented a review of the main statistical tools used in

this thesis for applications in telecommunication systems. We reviewed classical de�nitions such

as moments, cumulants and polyspectra and several statistical properties have been discussed,

including stationarity and symmetry relationships. Since blind signal processing methods do

not generally assume any a priori knowledge about output statistics, we also addressed the issue

of estimating cumulants from real data. Cumulants (of order higher than two) present special

properties that moments do not. In fact, those properties enable us to handle nonminimum-phase

channels using only the output (complex) signals. In addition, high-order output cumulants are

blind with respect to additive Gaussian noise. Computational burden may be a drawback, due

to the amounts of data required for satisfactory estimates.

Afterwards, we presented a description of some important algebraic tools used throughout the

rest of this thesis. We �rst treated the triangularization s trategies and then, more particularly,

we discussed the diagonalization methods for Hermitian matrices using the classical Jacobi

algorithm, based on the application of successive plane rotations. Motivated by applications in

blind source separation and blind system identi�cation using HOS, we also studied techniques

for the approximative simultaneous factorization of several matrices sharing some properties but

di�ering in individual information contents. In this conte xt, we described an extended version

of the Jacobi algorithm, which is shown to be optimal in the least squares sense.

Finally, we turned our attention to multilinear algebraic t ools of great interest in statistical

signal processing. In particular, we presented an overviewof the Parafac tensor decomposition,

which has been recently used for modeling communication systems. We described the decompo-

sition of a genericPth-order tensor with rank F as the sum ofF rank-one tensors and discussed

the uniqueness issue by introducing the Kruskal Theorem andde�ning the notion of k-rank.

Concerning the estimation of the Parafac components, we revisited the well-known Alternating

Least Square algorithm by proposing a generalized procedure for estimating the components of

a tensor of any order.



Chapter 2

Blind Channel Identi�cation using

Tensor Decomposition

S
ymmetry properties of fourth-order cumulants yield enormous redundancies in the com-

ponents of the Parallel Factor (Parafac) decomposition of the cumulant tensors. In this

chapter, we develop new blind channel identi�cation algorithms that exploit those re-

dundancies, performing the cumulant tensor decompositionby solving a single-step (SS)

least squares (LS) problem. We start with a single-input single-output (SISO) �nite impulse

response (FIR) channel and then we extend the principle to a multiple-input multiple-output

(MIMO) instantaneous mixture. Our solution is based on the 4th-order output cumulants only

and it is shown to hold for certain underdetermined mixtures, i.e. systems with more sources

than sensors. In the MIMO case, a simpli�ed approach using a reduced-order tensor is also

discussed. Computer simulations are provided to assess theperformance of the proposed algo-

rithms in both SISO and MIMO cases, comparing them to other existing solutions. Initialization

and convergence issues are also addressed.

As we have seen in the preceding chapter, several algorithmspropose solutions to �t a Pth-

order Parafac model. The well-known Alternating Least Squares (ALS) algorithm iteratively

minimizes, in an alternate way, P least squares (LS) cost functions. Our main focus in this

chapter is in exploiting the redundancies of the 4th-order cumulants in the Parafac decomposition

of the cumulant tensors. This allows us to propose new iterative single-step least squares (SS-

LS) Parafac-based Blind Channel Identi�cation (PBCI) algo rithms that have the advantage of

being based on the solution of a sole optimization problem, contrary to the methods described in

the literature. For that reason, SS-LS PBCI consists in a newscheme for the estimation of FIR

systems [61, 62]. In addition, using the same underlying idea, under mild assumptions, we also

propose algorithms to treat the case of instantaneous MIMO channels[63, 64]. These techniques

are, to our knowledge, the �rst to consider the cumulant redundancies in order to improve the

LS solution of the Parafac decomposition of the cumulant tensor.

In the sequel, we will be interested �rst in recovering the impulse response of a complex

31



32 CHAPTER 2. PARAFAC-BASED BLIND CHANNEL IDENTIFICATION

FIR-SISO channel from the Parafac decomposition of a 3rd-order tensor composed of 4th-order

output cumulants. Using the SS-LS approach, the permutation and scaling ambiguities intrinsic

to the Parafac decomposition are solved and the uniqueness issue is addressed [61, 62, 64]. After

that, we consider the problem of blind MIMO channel (mixture ) identi�cation in the context

of a multiuser system characterized by instantaneous complex channels. A quadrilinear ALS

solution is described based on the decomposition of a 4th-order tensor composed of 4th-order

spatial cumulants. A trilinear approach is also discussed using a third-order tensor of 4th-order

cumulants. Then, we �nally present a simpli�ed SS-LS Parafac-based Blind MIMO Channel

Identi�cation (PBMCI) algorithm. Although our main goal is not focused on underdetermined

mixtures, we make use of some tensor properties to show that under certain conditions our

algorithm is able to identify channels with more sources than sensors. Computer simulations il-

lustrate the performance gains that our method provides with respect to other existing solutions.

We also assess the algorithms performances by recovering the input signals using a minimum

mean squared error (MMSE) equalizer built from the estimated channel. In the MIMO case, a

semi-blind MMSE equalizer will be implemented, using a few pilot symbols.

This chapter is organized as follows: in section2, we introduce the signal model and de�ne the

output cumulants as a tensor; in section3, we describe a joint-diagonalization based algorithm

and propose a Parafac-based algorithm to estimate the SISO channel parameters based on a

SS-LS minimization procedure; we also discuss come connections between the (simultaneous)

matrix diagonalization approach and our cumulant tensor decomposition; section4 introduces a

multiuser and multiantenna channel model and, in section5, we propose blind channel estimation

algorithms coping with the MIMO case; methods using joint-diagonalization techniques are

also described; section6 presents some computer simulation results to illustrate the proposed

methods; conclusions are drawn in section7, along with some perspectives.

1 Brief history of the HOS-based blind identi�cation method s

Blind identi�cation methods aim to determine an unknown mod el from the system output only.

Known applications range from data communications, beamforming and echo cancelation to

image restoration, speech recognition and seismic applications, among others. In which concerns

statistical techniques, second-order statistics (SOS) based methods usually require models with

multiple outputs, such as oversampled or multiantenna systems.

On the other hand, it is well-known that cumulants of order higher than two can be viewed

as tensors with a highly symmetrical structure [17]. Among the earliest works exploiting the

cumulant symmetries with a tensor formalism, Cardoso introduced the concept of eigenvalue

structure of 4th-order cumulant tensors [23, 24]. He used the uniqueness property of the cumu-

lant tensors as an advantage over singular value decomposition (SVD), but prewhitening was
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needed. Later on, an extended Jacobi technique for approximate simultaneous diagonalization

was proposed by Cardoso and Soloumiac in [51]. This latter paper introduced the JADE al-

gorithm that uses second and 4th-order statistics to estimate an instantaneous multiple-input

multiple-output (MIMO) channel in the context of blind beam forming. The joint diagonaliza-

tion technique became very popular and has been used by Belouchrani et al. to propose the

second-order blind identi�cation (SOBI) algorithm [ 65], which uses a set of correlation matrices

to identify stationary sources with di�erent spectral cont ents, also in the context of memoryless

MIMO channels. On the other hand, the fourth-order system identi�cation (FOSI) algorithm

[66] treats single-input single output (SISO) FIR channels and also involves an a priori trans-

formation over the cumulant matrices, which is often a source of increased complexity and

estimation errors.

During the last decade, several joint-diagonalization criteria have been introduced [13, 14].

Important modi�cations of the technique proposed in [24] were provided by De Lathauwer et

al. in [67], resorting to joint diagonalization techniques. A link between the Parafac decomposi-

tion and the simultaneous matrix diagonalization approachhas been discussed in [21], leading to

algorithms subject to weaker uniqueness conditions. Theseideas gave rise to the FOOBI family

of algorithms [22], which are theoretically able to identify a greater number of user channels

for a given number of receive antennas. The FOOBI algorithmsexploit the Quadricovariance

matrix making use of its column-wise Kronecker structure. Also using the joint diagonalization

approach, the ICAR algorithm proposed in [68] is based on the redundancies of the Quadrico-

variance structure to estimate the mixture matrix, but only in the overdetermined case, i.e. the

case of systems with more sensors than sources. The principle behind the ICAR method [68]

has also been used in [69] and [70], resorting to 6th- and higher-order statistics, respectively, in

order to include the case of underdetermined mixtures. The ICAR and the FOOBI algorithms

will be further discussed in section5.1. These techniques, while avoiding prewhitening, still

break the problem into two optimization stages, which remain necessary to extract the MIMO

channel coe�cients from an initial estimate based on an eigenvalue decomposition (EVD).

Using the Parafac decomposition and exploiting the symmetry properties of the 4th-order

cumulants, we eliminate the need for prewhitening in the SISO case and, in both SISO and

MIMO cases, we found solutions to the blind identi�cation pr oblem by searching the minima of

a single LS cost function. In addition, the Parafac-based approach allows us to treat the under-

determined case, although the uniqueness condition imposes an upper bound on the number of

identi�able sources. Actually, the blind identi�cation of underdetermined mixtures has received

a special attention from the signal processing community under di�erent tensorial approaches

that include, among others, the decomposition ofquantics in sums of powers of linear forms [42];

the use of congruent transformation [70] exploiting the virtual array concept [ 25, 26]; and the

use of high-order derivatives of the multivariate characteristic function [ 71]. Besides, a frequency

domain framework for MIMO system identi�cation using Paraf ac was introduced in [72] using
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HOS-based tensors. More recently, that approach was further developed and also included the

underdetermined case [73, 74, 60].

2 Single-user signal model and 4th-order output cumulants

Let us represent a FIR-SISO communication channel in which the output signal y(n), after

sampling at the symbol rate, is written as follows:

y(n) = x(n) + � (n);

x(n) =
LP

`=0
h(`)s(n � `);

(2.1)

with h(0) = 1 (which is equivalent to a simple unit-norm constraint ). Moreover, the following

assumptions hold:

A1 : The non-measurable, complex-valued, discrete input sequences(n) is stationary, ergodic,

independent and identically distributed (iid) with symmet ric distribution, zero-mean and

non-zero kurtosis 4;s.

A2 : The additive Gaussian noise sequence� (n), with zero-mean, unknown variance� 2
� and

unknown autocorrelation function, is assumed to be independent of the input signal s(n).

A3 : The complex coe�cients h(`) represent the equivalent discrete channel impulse response,

including the pulse shaping �lter, the transmission channel and the receive �lter.

A4 : The FIR �lter representing the channel is assumed to be causal with memory L 6= 0 and

no temporal sparsity, i.e. h(`) 6= 0, 8 ` 2 [0; L ], and h(`) = 0 otherwise.

From de�nition ( 1.25), the 4th-order cumulants of the output signal y(n) are given as follows:

c4;y (� 1; � 2; � 3) , cum
h
y� (n); y(n + � 1); y� (n + � 2); y(n + � 3)

i
: (2.2)

Using the channel model (2.1), taking assumptions A1 and A2 into account and making use of

the multilinearity property of cumulants, it can be shown th at (c.f. Appendix B):

c4;y (� 1; � 2; � 3) =  4;s

LX

`=0

h� (`)h(` + � 1)h� (` + � 2)h(` + � 3); (2.3)

where  4;s = c4;s(0; 0; 0), according to de�nition ( 1.20). Based on (2.3) and on assumption A4,

we note that:

c4;y (� 1; � 2; � 3) = 0 ; 8 j� 1j; j� 2j; j� 3j > L: (2.4)

Hence, by taking the time-lags � 1, � 2 and � 3 in the interval [ � L; L ], we consider all possible

nonzero values ofc4;y (� 1; � 2; � 3). This choice yields a maximum redundancy information model.
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Let us de�ne the 3rd-order tensor C(3;y) 2 C(2L +1) � (2L +1) � (2L +1) , with scalar representation

given by cijk = c4;y(i � L � 1; j � L � 1; k � L � 1), i; j; k 2 [1; 2L + 1]. Using (2.3), in analogy

with ( 1.51), it is not di�cult to show that tensor C(3;y) , depicted in �g. 2.1a, can be written as

a sum of L + 1 outer products, each one involving 3 vectors, so that

C(3;y) =  4;s

LX

`=0

H �`+1 � H �
�`+1 �

�
h� (`)H �`+1

�
; (2.5)

with

H �`+1 =
2L +1X

p=1

h(` + p � L � 1)e(2L +1)
p ; (2.6)

where e(I )
i denotes the i th canonical basis vector ofRI . The above equations can be easily

obtained from (1.52) and (1.53) with P = 3, taking the scalar representation of C(3;y) into

account. Clearly, equation (2.5) represents the Parafac decomposition of the tensorC(3;y) , with

componentsA , B and C given as follows:

A = H ; B = H � and C =  4;sH Diag (h � ) ; (2.7)

where Diag (�) denotes a diagonal matrix built from the entries of the vector argument and the

channel coe�cient vector h is de�ned as:

h =
h
h(0) : : : h(L )

i T
2 C(L +1) : (2.8)

The channel coe�cient matrix H 2 C(2L +1) � (L +1) can be explicitly expressed as follows:

H , H
�
h

�
=

h
H �1 H �2 : : : H �L +1

i
=

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

0 0 � � � h(0)
...

...
. . .

...

0 h(0) � � � h(L � 1)

h(0) h(1) � � � h(L )
...

...
. . .

...

h(L � 1) h(L ) � � � 0

h(L ) 0 � � � 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

(2.9)

where H( � ) is an operator that builds a Hankel matrix from its vector ar gument, as shown

above.

3 Blind SISO channel identi�cation algorithms

Due to the symmetric structure of the cumulant tensor C(3;y) , the Parafac decomposition given

in (2.5) can be obtained by means of a simultaneous diagonalizationof the cumulant tensor

(2D) slices, subject to a prior orthonormalization. The FOSI algorithm proposed in [66] adopts

this latter approach without using a tensor formulation. In this section, we present the FOSI

algorithm, highlighting that connection with the simultan eous diagonalization approach. After

that, we also present the SS-LS blind channel identi�cationalgorithm and discuss the uniqueness

issue.
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(a) (b)

Figure 2.1: (a) 3rd-order tensorC(3;y) of 4th-order output cumulants; (b) frontal slices of tensor

C(3;y) .

3.1 A Joint-diagonalization based approach

Joint diagonalization (JD) has been a reference tool in signal processing, �nding applications in

several �elds including blind source separation, blind identi�cation of quadratic models [ 75] and

source localization [76]. The concept introduced in [51], in the context of blind beamforming,

gave rise to theJoint Approximate Diagonalization of Eigenmatrices (JADE) algorithm, which

exploits the assumption of statistical independence of thesources and utilizes extended Jacobi

techniques (c.f. AppendixA) over a set of 4th-order cumulant matrices [52]. This basic principle

has been shown to be very useful in applications using secondand higher-order statistics [65, 66].

Let us de�ne the frontal slices C ��k 2 C(2L +1) � (2L +1) , k 2 [1; 2L + 1], of the cumulant tensor

C(3;y) as illustrated in �g. 2.1(b). Taking the scalar representation cijk into account, we have:

C ��k =
2L +1X

i =1

2L +1X

j =1

cijk e(2L +1)
i e(2L +1) T

j

=  4;s

LX

`=0

h� (`)h(` + k � L � 1)H �`H
H
�`

=  4;sH Dk (� ) H H; k 2 [1; 2L + 1] ; (2.10)

where D i (�) denotes a diagonal matrix built from the i th row of the matrix argument and we

have used the following de�nition:

� = H Diag (h � ) 2 C(2L +1) � (L +1) : (2.11)
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Noticing from ( 2.11) that Dk (� ) = Dk (H ) DL +1 (H � ), let us de�ne the set of modi�ed cumulant

matrices �C k , WC ��kW H 2 C(L +1) � (L +1) , so that from (2.10) we have:

�C k =  4;s WH
�

Dk (H ) DL +1 (H � )
�

H HW H: (2.12)

Left- and right-multiplying the term Dk (H ) by DL +1 (H ) and DL +1 (H )� 1, respectively, we end

up with
�C k = Q �� k QH; (2.13)

where �� k =  4;sDk (H ) DL +1 (H )� 1 and the transformation W 2 C(L +1) � (2L +1) is such that

Q = W H DL +1 (H ) (2.14)

is a (L + 1) � (L + 1) unitary matrix. Matrix W can be computed from the above equation by

noting that Q Q H = I , which leads to:

W
�

 4;sH jDL +1 (H ) j2 H H
�

W H = I ; (2.15)

where j � j denotes the element-wise absolute value. Usingk = L + 1 in ( 2.10), we note that

C ��L +1 =  4;sH jDL +1 (H ) j2 H H and henceW can be viewed as a whitening transformation that

decorrelates the elements of the cumulant matrixC ��L +1 . A solution to this problem is given by

the inverse square-root1 of C ��L +1 , as follows:

W = C � 1=2
��L +1 = � � 1=2 U H; (2.16)

where the matricesU 2 C(2L +1) � (L +1) and � 2 C(L +1) � (L +1) represent theeconomy-sizeEVD

of C ��L +1 . Although the source Kurtosis is assumed unknown, it must beensured to be positive

( 4;s > 0) due to the above square-root calculation. If this is not the case, then matrix� C ��L +1

should be used instead.

The computation of matrix W is a very common operation in HOS-based methods [65, 77,

78], often referred to asprewhitening. However, it usually requires resorting to SOS and, even if

this is not the case, this additional stage is time-consuming and often responsible for increased

estimation errors [79, 80].

Noticing from ( 2.13) that Q is the matrix that simultaneously diagonalizes the set �C k ,

k = 1 ; : : : ; 2L + 1, it can be computed by maximizing the following cost function:

J(Q; �C) =
2L +1X

k =1
k 6= L +1



 diag

�
QH �C kQ

� 



2
; (2.17)

1 The square-root of a given Hermitian matrix X is so that (X 1=2)(X 1=2)H = X . This operation presents an

orthonormal ambiguity since any matrix �X 1=2 = X 1=2U is also a square-root ofX if U is unitary.
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where �C= f �C1; : : : ; �CL ; �CL +2 ; : : : ; �C2L +1 g. This solution is shown to be optimal in the LS sense

[54] and can be obtained using the joint-diagonalization algorithm ( A.2) described in Appendix

A based on the extended Jacobi technique. Finally, the channel coe�cient matrix is obtained

from (2.14) and (2.16), as follows:

�H = W # Q = U � 1=2 Q; (2.18)

up to trivial indeterminacies (column scaling and permutations).

In order to recover the channel coe�cient vector from the estimated channel matrix �H , we

need to get rid of the permutation ambiguity. Considering the structure of H , given in (2.9),

we note from (2.10) and (2.11) that C ��1 = H � 1 H H, where � 1 = � 1Diag ([0; : : : 0; 1]) is an

(L + 1) � (L + 1) diagonal matrix, with � 1 =  4;s h(0) h� (L ). Thus, C ��1 is a rank-1 matrix

and can be written as C ��1 = � 1 H �L +1 H H
�L +1 . Using the column-permuted and scaled channel

matrix �H , computed in (2.18), we denote by ` (1) the column of �H that is a weighted version of

the (L + 1)th column of H , so that

�H �` (1)
= � ` (1)

H �L +1 ; (2.19)

where � ` (1)
is a nonzero complex scalar factor. This allows us to writeC ��1 = �� 1 �H �` (1)

�H H
�` (1)

,

with �� 1 =  4;s h(0) h� (L )j� ` (1)
j� 2, and we can conclude that` (1) determines the position of the

only nonzero diagonal entry of matrix �� 1, which can be obtained from the set of equations

(2.13). Analogously, using (2.10) and (2.11) with k = 2L + 1, we can conclude that C ��2L +1 is

also a rank-1 matrix and can be written from the 1st column of H . Denoting by ` (2L +1) the

column of �H that is a weighted version of the 1st column ofH , we get

�H �` (2 L +1)
= � ` (2 L +1)

H �1; (2.20)

so that C ��2L +1 = �� 2L +1 �H �` (2 L +1)
�H H

�` (2 L +1)
, with �� 2L +1 =  4;s h(L ) h� (0)j� ` (2 L +1)

j� 2, where

� ` (2 L +1)
is a nonzero complex scalar factor. As a result,̀ (2L +1) determines the position of

the sole nonzero diagonal element of�� 2L +1 , which can be obtained from (2.13).

Considering the Hankel structure of H given in (2.9), equations (2.19) and (2.20) suggest

that the channel coe�cient vector h can be recovered from theL + 1 top elements of �H �` (1)

and the L + 1 bottom elements of �H �` (2 L +1)
. These two solutions can be computed by means

of the FOSI algorithm, summarized below in Algorithm 2.1. A third channel estimate can be

obtained by averaging these solutions. Finally, we note that in [ 66] the 4th-order cumulants

are computed with exclusively non-negative time-lags, i.e. 0 � � 1; � 2; � 3 � L or, equivalently,

L + 1 � i; j; k � 2L + 1. Therefore, matrix dimensions are di�erent from those shown here.
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Algorithm 2.1 (Fourth-Order System Identi�cation)

1. Compute the EVD of Ĉ ��L +1 and denote byU the (2L + 1) � 1 eigen-

vectors associated with theL + 1 largest eigenvalues, arranged in the

diagonal matrix � ; Deduce the sign of 4;s from the diagonal elements

of � ; If the sign( 4;s) < 0, then use� Ĉ ��L +1 instead.

2. Estimate the orthonormalizing transformation Ŵ = � � 1=2U H and its

pseudo-inverseŴ # = U� 1=2.

3. Compute the set of modi�ed cumulant matrices �C k , W Ĉ ��kW H,

k = 1 ; : : : ; L; L + 2 ; : : : ; 2L + 1 ;

4. Using Algorithm A.2 compute a unitary matrix Q that simultaneously

diagonalizes �C = f �C1; : : : ; �CL ; �CL +2 ; : : : ; �C2L +1 g. Denote by ^� k the

corresponding diagonal matrices.

5. Take the diagonal elements of^� 1 and ^� 2L +1 and denote by` (1) and

` (2L +1) the column number of their largest absolute values, respectively;

6. From (2.18), compute the channel matrix estimate asĤ = W # Q.

7. Determine two di�erent channel estimates by taking theL + 1 top ele-

ments of Ĥ �` (1)
and the L + 1 bottom elements ofĤ �` (2 L +1)

. Normalize

the two resulting vectors with respect to their corresponding �rst entries.

3.2 The Single-Step Least-Squares approach

Using the Parafac components expressed in (2.7), the unfolded tensor representations ofC(3;y) ,

with dimensions (2L + 1) 2 � (2L + 1), can be written from the general formul� ( 1.58), (1.59)

and (1.60), as follows:

C [1] =  4;s

�
H � H �

�
� T (2.21)

C [2] =  4;s

�
H � � �

�
H T (2.22)

C [3] =  4;s

�
� � H

�
H H; (2.23)

where � is de�ned in (2.11).

Equation (2.5) shows that the rank of tensor C(3;y) equalsL + 1. Assumption A4 ensures

that L � 1. Due to its Hankel structure, H is full-rank and then kA = kB = rH = L +1. Taking

assumption A4 into account, we deduce from (2.11) that kC = r � = L + 1. From the Kruskal

uniqueness condition (1.69), we conclude that kA + kB + kC = 3L + 3 � 2F + 2 = 2 L + 4, which
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Table 2.1: Parafac formul� for the 3rd-order tensor C(3;y)

Slicing direction 2D slices Unfolded representations

Horizontal C i �� =  4;sH � D i (H ) � T C [1] =  4;s

�
H � H �

�
� T

Vertical C �j � =  4;s� D j (H � ) H T C [2] =  4;s

�
H � � �

�
H T

Frontal C ��k =  4;sH Dk (� ) H H C [3] =  4;s

�
� � H

�
H H

is always true. Thus, any set f �A ; �B ; �Cg satisfying the Parafac decomposition of the cumulant

tensor C(3;y) has the form (1.70), with components A , B and C given in (2.7).

Table 2.1 summarizes the Parafac decomposition of tensorC(3;y) , including the tensor un-

folded representations and the 2D slices obtained from the three possible slicing directions.

Considering the unfolded matrices in the right column, traditional ALS algorithms can be used

to estimate the three Parafac components ofC(3;y) , leading to the matricesH and � and then to

the channel parameters. However, we can improve the e�ciency of the estimation procedure by

coupling both estimation steps, i.e. taking the relationships between the channel coe�cient vec-

tor h and the matrices H and � into account, thus eliminating column scaling and permutation

ambiguities [61, 62, 64].

A new SS-LS PBCI algorithm

Next, we present a very useful property of the Khatri-Rao product and then we propose a

single-step least squares algorithm to estimate the channel coe�cient vector h by means of the

previously described tensor decomposition.

Property 1

Let Z 2 Cm� n be written as Z = X Diag (v) Y , where X 2 Cm� q, Y 2 Cq� n and

v 2 Cq� 1. Then it holds:

vec(Z) = ( Y T � X )v 2 Cmn � 1: (2.24)

In the above equation,vec(�) denotes thevectorization operator. Replacing (2.11) in ( 2.21),

matrix C [1] can be written as follows:

C [1] =  4;s(H � H � )Diag (h � ) H T :

Applying property ( 2.24) to the above equation, we get:

vec(C [1]) =  4;s(H � H � H � )h � : (2.25)
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Thus, the channel coe�cient vector h can be obtained as the argument that minimizes the

following LS cost function

 (h � ; ĥ (r � 1) ) ,


 vec(C [1]) �  4;sĜ (r � 1) h �





2

F
(2.26)

by means of an iterative procedure, whereĜ is given as:

Ĝ (r � 1) = Ĥ (r � 1) � Ĥ (r � 1) � Ĥ (r � 1)� : (2.27)

Considering the structure of the channel matrix H given in (2.9), we denoteĤ (r � 1) = H(ĥ (r � 1)).

At each iteration r � 1, we have:

ĥ (r ) = arg min  (h � ; ĥ (r � 1) ); (2.28)

from which we get:

ĥ (r )� =  � 1
4;s Ĝ (r � 1)#

vec
�
C [1]

�
: (2.29)

The algorithm is initialized with a Hankel matrix Ĥ (0) of which the �rst column is

[0T
(L ) ĥ (0)T ]T and the last row is [̂h(0) (L ) 0T

(L ) ], where ĥ (0) = [1 vT ]T , v 2 C(L ) is a Gaus-

sian random vector and 0(L ) is an all-zero vector of dimensionL . The algorithm is stopped

when signi�cant variations of the estimated parameters are no longer observed, i.e. when

je(r ) � e(r � 1)j � " , where e(r ) = kĥ (r ) � ĥ (r � 1)k2=kĥ (r )k2 and " is an arbitrary small positive

constant. Taking the model constraint h(0) = 1 into account, we normalize, at each iteration r ,

the preceding estimateĥ (r � 1) with respect to its �rst entry ĥ(r � 1) (0), before using it to update

Ĥ (r � 1) from (2.9). Then, Ĝ (r � 1) is computed from (2.27) using Ĥ (r � 1) . The normalization step

eliminates the scaling ambiguity and renders the solution independent from the source kurtosis.

Forcing the Hankel structure of H with the operator H (�) allows us to avoid column permuta-

tion in the estimated Parafac components. The Single-Step LS Parafac-based Blind Channel

Identi�cation (SS-PBCI) algorithm can be summarized as follows:

Algorithm 2.2 (Single-Step LS PBCI algorithm)

Determine a threshold " > 0 and initialize ĥ (0) as described above.

For r � 1, execute the steps below:

1. Use (2.9) to build Ĥ (r � 1) = H
�

1
ĥ( r � 1) (0)

ĥ (r � 1)
�

;

2. Using (2.27), compute Ĝ (r � 1) ;

3. Compute the channel vector estimate aŝh (r )� = Ĝ (r � 1)#
vec

�
C [1]

�
;

4. Reiterate until je(r ) � e(r � 1)j2 � " , e(r ) = kĥ (r ) � ĥ (r � 1)k=kĥ (r )k.
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According to the above discussion, the identi�ability of th e channel coe�cient vector ĥ (r )

depends on the uniqueness of the LS solution (2.29), which in turn depends on the full-rank

property of the double Khatri-Rao product de�ned in ( 2.27). It is possible to show [60, 59]

that satisfying the Kruskal condition implies the full-col umn rank property, which is actually a

necessary condition for the uniqueness of the Parafac decomposition [56]. As a result, matrix

Ĝ (r � 1) can be said to be full-column rank, which ensures the uniqueness of the proposed solution.

The SS-LS strategy ensures the Hankel structure ofH at each iteration, taking advantage

of its full-rank property to make the tensor decomposition essentially unique and the channel

parameters estimation free from ambiguities. Furthermore, one sole LS minimization is needed,

contrary to the classical trilinear ALS algorithm. For that reason, our method should also be

expected to increase convergence speed.

4 Multiuser channel model and 4th-order spatial cumulants

Let us consider an instantaneous MIMO channel withQ signal sources andM receive antennas.

The signals received at the front-end of the antenna array atthe time-instant n are modeled as

a complex vector y(n) 2 CM , which is written as:

y(n) = Hs(n) + � (n); (2.30)

where the elements of the complex instantaneous mixing matrix H 2 CM � Q are the MIMO

channel coe�cients hmq , i.e. [H ]mq = hmq . The following assumptions hold:

B1 : The source signalssq(n) are stationary, ergodic and mutually independent with symmet-

ric distribution, zero-mean and non-zero kurtosis 4;sq = c4;sq (0; 0; 0).

B2 : The vector � (n) 2 CM � 1 is the additive Gaussian noise at the output of the antenna

array. It is independent from the input signals and has unknown spatial correlation.

B3 : The transmission channel is characterized by a Rayleighat fading propagation envi-

ronment, i.e. the channel coe�cients hm;q are complex constants with real and imaginary

parts driven from a continuous Gaussian distribution.

By blind channel (or mixture) identi�cation, we understand the problem of estimating the

channel model coe�cients with no a priori knowledge on the array manifold, i.e. estimate the

column vectors H �q, q 2 [1; Q], in an arbitrary order, up to a nonzero complex gain, using the

4th-order output statistics only. Actually, it is well-kno wn that solutions to the blind channel

identi�cation problem only exist up to a column scaling and permutation indeterminacy.

Assumption B3 allows us to say that H is full-rank with probability one. Moreover, since

any combination of the columns ofH can be viewed as another random matrix driven from a
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continuous distribution, H is also said to be full k-rank, i.e. kH = rH = min( M; Q ) [41]. In

addition, although the source modulation schemes are generally known in a telecommunication

context, we do not make any constraints on the sign of the source Kurtoses 4;sq , contrary to

other known methods [70, 22].

We de�ne the 4th-order spatial cumulants of the array output s as follows:

C4;y(i; j; k; l ) , cum
h
y�

i (n); yj (n); y�
k (n); yl (n)

i
: (2.31)

Under the above mentioned assumptions, it is straightforward to show that:

C4;y(i; j; k; l ) =
QX

q=1

 4;sq h�
iqhjq h�

kqhlq; (2.32)

Notice that the spatial cumulants de�ned in ( 2.31) only exist for 1 � i; j; k; l � M . Let us de�ne

the 4th-order tensor C(4;y) 2 CM � M � M � M with scalar representation given by C4;y(i; j; k; l ),

i.e. the element in position (i; j; k; l ) can be written as in (2.32). Recalling the general formulation

(1.52) with P = 4, we can write C(4;y) as a sum ofQ rank-1 tensors that can be written as outer

products involving four vectors, as follows:

C(4;y) =
QX

q=1

H �
�q � H �q � H �

�q � ( 4;sq H �q); (2.33)

with H �q =
P M

m=1 hm;qe(M )
m , q 2 [1; Q]. Equation (2.33) is the Parafac decomposition of tensor

C(4;y) with the four Parafac components depending onH and being given by:

A = H � ; B = H ; C = H � and D = H� 4;s; (2.34)

where � 4;s = Diag
�
 4;s1 ; : : : ;  4;sQ

�
.

Uniqueness

Notice from (2.33) that the rank of the 4th-order tensor C(4;y) is Q. In addition, since H is

assumed to be full k-rank, we havekA (1) = kA (2) = kA (3) = kA (4) = rH = min( M; Q ). From

(1.66), we conclude that the Kruskal uniqueness condition reduces to

4rH � 2Q + 3 : (2.35)

We will consider the two following cases:

� The MIMO channel is an overdetermined system, i.e.M � Q. In this case rH = Q and

(2.35) states that the Parafac decomposition ofC(4;y) is essentially unique if Q � 3=2,

i.e. Q > 1. There are no further constraints on the number of sensors.

� The MIMO channel is an underdetermined system, i.e.M < Q . In this case rH = M and

hence equation (2.35) becomes

Q �
4M � 3

2
: (2.36)
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Although equation (2.36) is not a necessary condition, it establishes an upper boundon

the number of sources we are guaranteed to identify using tensor C(4;y) . Under that condition,

C(4;y) can be expressed as the sum ofQ rank-1 tensors, up to trivial permutation and scaling

ambiguities. In other words, the Parafac components ofC(4;y) are written as in (1.67) with A ,

B , C and D given by (2.34).

Reduced-order cumulant tensor

It is possible to reduce the 4th-order tensor de�ned in (2.33) to a 3rd-order one by combining

the 3D slices of tensorC(4;y) . We can thus reduce the complexity of the above described tensor

decomposition. Let us freeze, without loss of generality, the index k of the cumulant tensor

C(4;y) and de�ne the 3D tensors C(3;y)
k 2 CM � M � M . Replacing the scalar representation (2.32)

in the general formulation (1.52), with P = 3, we end up with

C(3;y)
k =

QX

q=1

H �
�q � H �q �

�
 4;sq h�

kqH �q
�

(2.37)

Summing the above tensors for allk 2 [1; M ] we get

C(3;y) =
MX

k=1

C(3;y)
k =

QX

q=1

H �
�q � H �q �

�
 4;sq H �q

MX

k=1

h�
kq

�
: (2.38)

The 3rd-order tensor C(3;y) 2 CM � M � M has a straightforward Parafac decomposition with the

following components:

A = H � ; B = H and C = H�� 4;s; (2.39)

where � is a diagonal matrix given by:

� =
MX

k=1

Dk (H � ) : (2.40)

Note that kA = kB = kC = rH = min( M; Q ) and the Kruskal uniqueness condition (1.69)

becomes 3rH � 2Q+2. This yields an upper bound on the number of identi�able sources, which

is given by (
Q � 2; for M � Q and

Q � (3M � 2)=2 for M < Q:
(2.41)

Under the above condition, the Parafac components ofC(3;y) are written as in (1.70) with A , B

and C given in (2.39).

5 Blind MIMO channel identi�cation algorithms

In this section, we propose two algorithms to estimate the instantaneous MIMO mixing matrix,

up to column scaling and permutations. This is achieved by means of a SS-LS minimization
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procedure, thanks to the symmetry properties of the 4th-order cumulant. The algorithms pro-

posed in the sequel utilize only one of the unfolded representations of the cumulant tensors by

exploiting the relationships (2.34), or (2.39) in the case of the 3rd-order tensor. After that, we

present the procedures for estimating the Parafac components of the cumulant tensors separately

by means of the classical trilinear and quadrilinear ALS-type algorithms, described in section

1.3.1.

Other (non-ALS) algorithms have been reported in the literature to solve the canonical tensor

decomposition problem, notably by means of simultaneous diagonalization of matrices. In fact,

it has been shown in [21] that the canonical tensor components can be derived from a simulta-

neous matrix diagonalization and, most importantly, this l eads to weaker uniqueness conditions.

Exploiting the symmetric structure of the quadricovariance matrix, the joint diagonalization

approach has been used in [68] and [22], giving rise o the ICAR and FOOBI algorithms, re-

spectively. While the FOOBI algorithms induce weaker uniqueness conditions, allowing for the

identi�cation of more sources than sensors, the ICAR approach only treats the overdetermined

case, by exploiting the redundancies in the 4th-order cumulant. In order to include the case

of underdetermined mixtures, the underlying principle behind the ICAR method has also been

applied to 6th- [69] and higher-order statistics [70].

Although avoiding prewhitening, both ICAR and FOOBI algori thms come up with solutions

that require going through two di�erent optimization stage s in order to extract MIMO parame-

ters from an initial EVD-based estimate. The ICAR and FOOBI a lgorithms are briey described

in the sequel. After that, the SS-LS approach is discussed and an algorithm that minimizes one

single LS cost function is proposed, under very mild assumptions.

5.1 Joint-diagonalization based algorithms

Making use of the multilinearity property of the cumulants, several methods have been recently

proposed utilizing the JD technique to exploit the Hermitian structure of a certain representation

of the cumulant tensor [69, 70, 81, 68, 22]. In fact, from the scalar representation of C(4;y) , we

can form the matrix Q (4;y) 2 CM 2 � M 2
, so that

h
Q (4;y)

i

(j � 1)M + i; (k� 1)M + l
= C4;y(i; j; k; l ); (2.42)

from which, using (2.32), we easily get:

Q (4;y) =
�

H � H �
�

� 4;s

�
H � H �

� H
: (2.43)

Since the source Kurtoses are assumed to be nonzero2 and the coe�cients of H 2 CM � Q are

driven from a complex continuous Gaussian distribution, the rank of Q (4;y) is ensured to be

2 Additionally, all the source Kurtoses are assumed to have equal sign. In the case of under-Gaussian sources

( 4;s q < 0, 8q 2 [1; Q]), one should replace Q (4 ;y ) by � Q (4 ;y ) .
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equal to the number of signal sourcesQ [68]. Often referred to as the Quadricovariance matrix

[82, 83], Q (4;y) admits the following (economy-size) EVD:

Q (4;y) = U�U H; (2.44)

where the columns ofU 2 CM 2 � Q are the eigenvectors ofQ (4;y) associated with the Q largest

real-valued eigenvalues, arranged in the diagonal matrix� 2 RQ� Q. From (2.44), we get:

Q (4;y)1=2
= U� 1=2; (2.45)

and, since the square root of a Hermitian matrix is unique up to a unitary factor W , we deduce

from (2.43) that

U� 1=2 =
�

H � H �
�

� 1=2
4;s W H: (2.46)

The relationship (2.46) is the core equation for some recently proposed methods proposing

solutions to recover the channel coe�cients by retrieving the unitary matrix W . This is the case

of the so-calledIndependent Component Analysis using the Redundancies in the Quadricovari-

ance (ICAR) algorithm, which uses a JD approach in order to estimate W , exploiting symmetry

relationships of the 4th-order cumulants [68]. Also using the JD technique, the Fourth-Order-

Only Blind Identi�cation (FOOBI) algorithm exploits the rank-1 Kronecker structure intrinsic

to the columns of Q (4;y)1=2
W [22]. These methods are further discussed in the sequel.

The ICAR algorithm ( Albera et al. [68])

Using the ICAR concept, after the EVD of the Quadricovariance matrix, the channel coe�cients

are estimated by means of two additional stages: computation of W using the JD technique and

subsequent estimation ofH from (H � H � ). This latter Khatri-Rao product can be written as:

�
H � H �

�
=

0

B
B
@

H � D1 (H )
...

H � DM (H )

1

C
C
A ; (2.47)

from which we readily deduce, using (2.45) and (2.46), that Q (4;y)1=2
=

h

 T

1 � � � 
 T
M

i T
, where

each block
 m 2 CM � Q, m 2 [1; M ], is given as follows:


 m = H � Dm (H ) � 1=2
4;s W H; m 2 [1; M ]; (2.48)

and shown to be full-rank. Let 
 #
m denote the pseudoinverse of the above de�ned matrix,

i.e. 
 #
m = ( 
 H

m 
 m )� 1
 H
m , and de�ne the following set of M (M � 1) matrices:

� m1 ;m2 = 
 #
m1


 m2 ; 1 � m1 6= m2 � M; (2.49)

so that, after some straightforward manipulations, we end up with

� m1 ;m2 = W Dm1 (H ) Dm2 (H ) W H; 1 � m1 6= m2 � M: (2.50)
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Due to (2.49), the ICAR approach is limited to treat only the overdetermi ned case (Q � M ).

The above equation shows that the unitary factor W is a joint-diagonalizer of the M (M � 1)

matrices � m1 ;m2 de�ned in ( 2.49). Thus, W can be approximately computed from the JD of

those matrices, using the extended Jacobi technique, by means of the Algorithm A.2, described

in the Appendix A. However, we know from [65] that the solution W o of the JD problem is

unique only up to column permutations and scaling. Hence, bymultiplying the output of the

JD algorithm by any of the M � Q blocks 
 m de�ned in ( 2.48) yields


 mW o = H � Dm (H ) � 1=2
4;s �� (2.51)

where matrix � is nonsingular and diagonal and� is a permutation matrix. Otherwise, by

right-multiplying Q (4;y)1=2
by W o, and using (2.45) and (2.46), we get an estimate of (H � H � ),

up to the trivial indeterminacies, i.e.

Q (4;y)1=2
W o =

�
H � H �

�
� 1=2

4;s �� : (2.52)

To obtain H from the above equation, note that unvec
�
H �q 
 H �

�q; M
�

= H �
�qH T

�q, which is a

rank-1 matrix, with 
 denoting the Kronecker product andunvec(x; n) being the unvectorization

operator, which builds from the vector x a matrix with n columns. As a result, by mapping the

qth column of Q (4;y)1=2
W o into a M � M matrix B q, the column H �q can be obtained, up to a

scaling factor, as the eigenvector associated with the largest eigenvalue ofB �
q. This solution is

referred to as the ICAR3 algorithm, and is summarized below.

Algorithm 2.3 (ICAR algorithm)

1. Compute U 2 CM 2 � Q and � 2 RQ� Q from the EVD of Q̂ (4;y) as

in ( 2.44); Deduce the sign of the source Kurtoses from the diagonal

elements of� ; If it is negative, use � Q̂ (4;y) instead.

2. Take the square-root ofQ̂ (4;y) as in (2.45), i.e. Q̂ (4;y)1=2
= U� 1=2;

3. Deduce theM matrices 
 m 2 CM � Q, by taking for each m 2 [1; M ]

the rows (m � 1)M + 1 to mM of Q̂ (4;y)1=2
;

4. Using (2.49), form the set of M (M � 1) matrices � m1 ;m2 , for all

1 � m1 6= m2 � M ;

5. Using Algorithm A.2 compute the matrix W o that simultaneously diag-

onalizes � m1 ;m2 , for all 1 � m1 6= m2 � M ;

6. Compute Q (4;y)1=2
W o and denote itsqth column by bq 2 CM 2 � 1; De-

duce B q = unvec(bq; M ) 2 CM � M for all q 2 [1; Q];

7. Estimate the qth column Ĥ �q of the mixture matrix as the eigenvector

of B �
q associated with its largest eigenvalue, for allq 2 [1; Q].
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Other solutions to extract Ĥ from the matrix Q (4;y)1=2
W o are reported in [68] but will not

be considered here. Finally, we note that extending the ICARconcept to 6th- or higher-order

statistics allows for treating some underdetermined cases, which is the case of the BIRTH and

the BIOME algorithms, respectively [69, 70]. Since we limit our analyses to the methods using

4th-order statistics, these two latter algorithms will not be further discussed. In addition, the

FOBIUM algorithm [ 81] can be viewed as an extension to high orders of the classicalSOS-based

SOBI algorithm [65]. FOBIUM includes a 4th-order based prewhitening step and it is unable

to deal with sources that have similar trispectra, analogously to the SOBI algorithm, which is

theoretically insensitive to the presence of sources with the same spectral densities. For that

reason, these algorithm will not be considered in this thesis.

The FOOBI algorithm ( De Lathauwer et al. [22])

The FOOBI algorithm exploits the Khatri-Rao structure obta ined when we right multiply

Q (4;y)1=2
by W . The basic principle behind this method relies on a rank-1 detecting device,

which takes the form of a 4th-order tensor �( X ; Y ) 2 CM � M � M � M with scalar representation

given by h
�( X ; Y )

i

ijkl
= X ij Y �

kl + Y ij X �
kl � X ik Y �

jl � Y ik X �
jl ; (2.53)

where X and Y are M � M matrices. It has been shown in [22] that �( X ; X ) is an all-

zero tensor if and only if the rank of X is at most equal to one (see also [24, 21]). Let

us denote by bq the qth M 2 � 1 column of Q (4;y)1=2
= U� 1=2 and de�ne the Q Hermi-

tian matrices B q = unvec(bq; M ) 2 CM � M , q 2 [1; Q]. Moreover, de�ne the 4th-order tensors

Fq1 ;q2 = �( B q1 ; B q2 ), 1 � q1 � q2 � Q. Assuming that the tensors Fq1 ;q2 , 1 � q1 < q2 � Q, are

linearly independent, it is possible to show that there exist Q real-valued linearly independent

symmetric matrices V q 2 RQ� Q, satisfying

QX

q1=1

QX

q2=1

h
V q

i

q1 ;q2

Fq1 ;q2 = 0M � M � M � M ; (2.54)

and being simultaneously diagonalized byW , i.e. V q = WD qW T , q 2 [1; Q], with D q real-

valued and diagonal. Therefore,W can be obtained from the JD of the linearly independent

symmetric matrices V q, by means of the extended Jacobi AlgorithmA.2.

Matrices V q can be computed from the set of equations (2.54), which can be rewritten as:

Fv q = 0M 4 ; where, (2.55)

vq =
h
[V q]1;1; : : : ; [V q]Q;Q ; 2[V q]1;2; 2[V q]1;3; : : : ; 2[V q]Q� 1;Q

i T
; and (2.56)

F =
h
f1;1 : : : fQ;Q f1;2 f1;3 : : : fQ� 1;Q

i
2 CM 4 � Q(Q� 1)=2; (2.57)

where the vectorsfq1 ;q2 2 CM 4 � 1 are thevectorizedversions of the tensorsFq1 ;q2 , given as follows:
h
fq1 ;q2

i

(i � 1)M 3+( j � 1)M 2+( k� 1)M + l
=

h
Fq1 ;q2

i

ijkl
: (2.58)
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The LS solution of the linear system (2.55) is given by the Q right singular vectors
vq 2 RQ(Q� 1)=2� 1 associated with its smallest singular values ofF. These singular vectors are
then mapped into upper triangular matrices �V q 2 RQ� Q in the order suggested by (2.56), i.e.

�V q =

0

B
B
B
B
B
B
B
@

[vq]1 [vq]Q+1 [vq]Q+2 : : : [vq]2Q� 2 [vq]2Q� 1

0 [vq]2 [vq]2Q : : : [vq]3Q� 4 [vq]3Q� 3

...
...

...
. . .

...
...

0 0 0 : : : [vq]Q� 1 [vq]Q(Q� 3)=2

0 0 0 : : : 0 [vq]Q

1

C
C
C
C
C
C
C
A

(2.59)

and we �nally get

V q =

�
�V q + �V T

q

�

2
: (2.60)

Algorithm 2.4 (FOOBI algorithm)

1. Compute U 2 CM 2 � Q and � 2 RQ� Q from the EVD of Q̂ (4;y) as

in ( 2.44); Deduce the sign of the source Kurtoses from the diagonal

elements of� ; If it is negative, use � Q̂ (4;y) instead.

2. Take the square-root ofQ̂ (4;y) as in (2.45), i.e. Q̂ (4;y)1=2
= U� 1=2; De-

note by bq the qth column of Q̂ (4;y)1=2
and form Q Hermitian matrices

B q = unvec(bq; M ) 2 CM � M , q 2 [1; Q];

3. Using (2.53), form the 4th-order tensors Fq1 ;q2 = �( B q1 ; B q2 ), for all

1 � q1 � q2 � Q and build vectorsfq1 ;q2 2 CM 4 � 1 as follows:

h
fq1 ;q2

i

(i � 1)M 3+( j � 1)M 2+( k� 1)M + l
=

h
Fq1 ;q2

i

ijkl
:

4. Form the matrix F 2 CM 4 � Q(Q� 1)=2 by concatenating the vectors

fq1 ;q2 for all 1 � q1 � q2 � Q; Compute the Q right singular vectors

vq 2 RQ(Q� 1)=2� 1 associated with the smallest singular values ofF;

5. From each vq, q 2 [1; Q], form a triangular matrix �V q 2 RQ� Q as

indicated in (2.59); Compute Q matrices V q = ( �V q + �V T
q )=2;

6. Using Algorithm A.2 compute the orthogonal matrixW that simultane-

ously diagonalizes the setV q, q = 1 ; : : : ; Q; Compute Q (4;y)1=2
W and

denote its qth column by zq 2 CM 2 � 1;

7. Form the Q matrices Zq = unvec(zq; M ) 2 CM � M , q 2 [1; Q]; Estimate

the qth column Ĥ �q of the mixture matrix as the left singular vector of

Z �
q associated with the largest singular value, for allq 2 [1; Q].
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The matter of estimating H is addressed by exploiting the rank-1 structure that characterizes

the columns of Q (4;y)1=2
W . Denote by zq 2 CM 2 � 1 the qth column of Q (4;y)1=2

W and build Q

matrices Zq = unvec(zq; M ) 2 CM � M , q 2 [1; Q]. SinceZq are rank-1 matrices for all q 2 [1; Q],

the qth column of the mixture matrix Ĥ �q can be estimated from the left singular vector ofZ �
q

associated with the largest singular value, for allq 2 [1; Q]. The above described method is

referred to as the FOOBI-1 algorithm. We note that a second FOOBI-like algorithm has been

proposed in [22] based on a simultaneous o�-diagonalization. Since both FOOBI solutions have

demonstrated very similar performance, we will only consider FOOBI-1 throughout the rest of

this chapter.

A major interest in the FOOBI algorithm relies on the conditi on ensuring the uniqueness of

its solution. In fact, assuming that the tensors Fq1 ;q2 , 1 � q1 < q2 � Q are linearly independent

implies an upper bound on the number of identi�able sources.However, linear independence of

the tensorsFq1 ;q2 is claimed to be guaranteed under the following condition:

Q(Q � 1) � M 2(M � 1)2=2; (2.61)

which allows this algorithm for identifying, with a given nu mber of sensors, more sources than

the classical ALS approaches can deal with.

5.2 Single-step least squares PBMCI algorithms

The main idea behind the algorithms proposed in the sequel isto exploit the fact that all the

Parafac components of the cumulant tensors depend on the channel matrix H . The parameter

estimation algorithms make use of only one among the unfolded representations of the tensors

C(4;y) and C(3;y) . According to the unfolding procedure introduced in section 1.3.1, using equation

(1.58) with P = 4, and taking ( 2.34) into account, we get the following for C(4;y) :

C (4;y)
[4] =

�
H � � H � H �

�
� 4;sH T 2 CM 3 � M : (2.62)

The solution to the above is said to be unique if any matrix �H satisfying (2.62) is such that
�H = H�� , where � is a permutation matrix and � a diagonal matrix. A su�cient uniqueness

condition for this decomposition has been given in (2.36). For C(3;y) , using (2.39), we get the

following from (1.58) with P = 3:

C (3;y)
[3] =

�
H � � H

�
� 4;s�H T 2 CM 2 � M : (2.63)

In practice, we composeC (4;y)
[4] by �lling in its l th column [C (4;y)

[4] ]�l , l 2 [1; M ], with the elements

C4;y(i; j; k; l ) by varying the indices i; j; k 2 [1; M ] in nested loops with k being the innermost

one (fastest) and i the outermost one (slowest). For the 3rd-order tensor, we proceed likewise,

except for the index k, which is kept �xed for each value in the interval [1; M ]. Matrix C (3;y)
[3] is

then obtained by summing the M resulting matrices.
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4D SS-LS PBMCI algorithm

Equation (2.62) enables us to estimate the MIMO channel matrix by iteratively minimizing a

single LS cost function, which is written as follows:

 (Ĥ r � 1; H ) , kC (4;y)
[4] � (Ĥ �

r � 1 � Ĥ r � 1 � Ĥ �
r � 1)� 4;sH T k2

F : (2.64)

where r denotes the iteration number. The iterative minimization of  (Ĥ r � 1; H ) yields the

following LS solution:

Ĥ T
r , arg min

H
 (Ĥ r � 1; H )

= � � 1
4;s(Ĥ �

r � 1 � Ĥ r � 1 � Ĥ �
r � 1)# C (4;y)

[4] (2.65)

where Ĥ 0 is initialized as a complex M � Q Gaussian random matrix. In order to improve

estimation at iteration r � 1, before computingĤ r , we normalize each column of the previous

estimate by its respective norm i.e. [̂H r � 1]�q  [Ĥ r � 1]�q=k[Ĥ r � 1]�qk. This normalization step

also renders the solution (2.65) independent of the source Kurtosis matrix � 4;s. The algorithm

is stopped whenje(r ) � e(r � 1)j2 � " , where e(r ) = kĤ r � Ĥ r � 1k=kĤ r k and " is an arbitrary

small positive constant.

Our developments in this section only considered the unfolded matrix C (4;y)
[4] , without loss

of generality. Using any other unfolded representationC (4;y)
[p] , p = 1 ; 2; 3, should lead to similar

results. The above described method will be referred to as the Single-Step LS Parafac-based

Blind MIMO Channel Identi�cation (SS-LS PBMCI) algorithm [ 63, 64]. The SS-LS approach

can also be formulated from tensorC(3;y) de�ned in ( 2.37). This is discussed in the sequel.

3D SS-LS PBMCI algorithm

The SS approach can also be formulated using tensorC(3;y) de�ned in ( 2.37). Equation ( 2.63)

yields the following LS cost function:

 (Ĥ r � 1; H ) , kC (3;y)
[3] � (Ĥ �

r � 1 � Ĥ r � 1)� 4;s ^� r � 1H T k2
F : (2.66)

Iteratively minimizing ( 2.66) leads to:

Ĥ T
r = � � 1

4;s
^� � 1

r � 1(Ĥ �
r � 1 � Ĥ r � 1)# C (3;y)

[3] : (2.67)

Here again, Ĥ 0 is initialized as a complex M � Q Gaussian random matrix and Ĥ r � 1 is nor-

malized before computing the next estimateĤ r . Due to this normalization step, the algorithm

is independent of the diagonal matrices� 4;s and ^� r � 1, which do not need to be computed. We

will refer to this method as the 3D SS-LS PBMCI algorithm.
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5.3 Classical ALS-type PBMCI algorithms

Classical ALS-type algorithms can also be used to solve the blind MIMO channel identi�cation

problem. In particular, the QALS and TALS algorithms descri bed in section 1.3.3 provide

solutions to the Parafac decomposition of tensorsC(4;y) and C(3;y) , respectively. Methods utilizing

these algorithms are discussed in the sequel.

Quadrilinear ALS-PBMCI algorithm

The Parafac components ofC(4;y) can be estimated from its unfolded tensor representations.

While C (4;y)
[4] has been given in (2.62), matrices C (4;y)

[p] , p = 1 ; 2; 3, can be straightforwardly

deduced from Table1.1 using (2.34). The unfolded representations of tensorC(4;y) are explicitly

given in Table 2.2. A solution to this set of equations can be iteratively obtained by means of the

QALS algorithm described in section 1.3.3 (Algorithm 1.2). Denoting by r = 1 the iteration

at which convergence is reached, and taking the column scaling and permutation into account,

we can write:

Â 1 = Ĥ �
1� 1� ;

B̂ 1 = Ĥ 2� 2� ;

Ĉ1 = Ĥ �
3� 3� ;

D̂ 1 = Ĥ 4� 4;s� 4� :

(2.68)

The channel estimatesĤ 1 and Ĥ 3 can be obtained, up to the trivial ambiguities, by simple

conjugation of Â 1 and Ĉ1 , respectively. Another solution is obtained by averagingÂ �
1 , B̂ 1 ,

Ĉ �
1 and D̂ 1 . The above procedure will be referred to as the QuadrilinearALS Parafac-based

Blind MIMO Channel Identi�cation (QALS-PBMCI) algorithm.

The QALS algorithm does not exploit the interdependencies between the Parafac compo-

nents. In spite of that, we can initialize it with a complex M � Q Gaussian random matrix Â 0

and then deduceB̂ 0 and Ĉ0 using (2.34). After that, the Algorithm 1.2 starts by computing

D̂ 0. The above described procedure will be referred to as the Quadrilinear ALS Parafac-based

Blind MIMO Channel Identi�cation (QALS-PBMCI) algorithm.

Trilinear ALS-PBMCI algorithm

A similar ALS approach can be implemented for decomposing the 3rd-order tensorC(3;y) de�ned

in (2.37), by means of the Trilinear Parafac-ALS (TALS) algorithm, d escribed in section1.3.3.

In this case, the unfolded tensor representations can be deduced from Table 1.1 using (2.39) and

they are explicitly given in Table 2.2. The solution is iteratively obtained from the Algorithm

1.3, which can be initialized with a complex M � Q Gaussian random matrix Â 0, with B̂ 0 being

deduced from (2.39) and (2.40). After convergence of the algorithm, the Parafac components of
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Table 2.2: Parafac formul� for the 3rd- and 4th-order spatia l cumulant tensors

Unfolded tensor

representations
P = 4 P = 3

C [4]

�
H � � H � H �

�
(H� 4;s)T

C [3]

�
(H� 4;s) � H � � H

�
H H

�
H � � H

�
(H�� 4;s)T

C [2]

�
H � � (H� 4;s) � H �

�
H T

�
(H�� 4;s) � H �

�
H T

C [1]

�
H � H � � (H� 4;s)

�
H H

�
H � (H�� 4;s)

�
H H

C(3;y) have the following form:

Â (1 ) = Ĥ �
1� 1� ;

B̂ (1 ) = Ĥ 2� 2� ;

Ĉ (1 ) = Ĥ 3 ^� 3� 4;s� 3� ;

(2.69)

from which we can deduce three channel matrix estimates, up to column scaling and permuta-

tions. Averaging these three estimates yields a fourth solution. This method will be called the

Trilinear ALS Parafac-based Blind MIMO Channel Identi�cat ion (TALS-PBMCI) algorithm.

Column scaling and permutation indeterminacies, althoughnot explicitly solved by any of the

algorithms described in this section, do not represent a concern in the context of blind mixture

identi�cation, still allowing for the recovery of the sourc e signals in the overdetermined case.

Finally, in order to evaluate the capacity of the algorithms in terms of the bounds on the number

of identi�able sources, we show in Table2.3 the theoretical maximum number of users that each

algorithm is capable to identify using a given number of receive antennas (varying from M = 2

to M = 7). The bounds for the 4D SS-LS and the QALS algorithms are derived from (2.36),

while those for the 3D SS-LS and the TALS algorithms come from(2.41). The identi�ability

condition of the FOOBI algorithm has been given in (2.61). The ICAR algorithm is omitted

since it is constrained to the overdetermined case (Q < M ). In spite of the bounds stated in

Table 2.3, the tradeo� between capacity and estimation performance of these algorithms remains

an open issue and it will be addressed in the computer simulations section.

Table 2.3: Identi�ability conditions of MIMO channel ident i�cation algorithms

M = 2 3 4 5 6 7

3D SS-LS and TALS Q � 2 3 5 6 8 9

4D SS-LS and QALS Q � 2 4 6 8 10 12

FOOBI Q � 2 4 9 14 21 30
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6 Computer simulations

In this section, we present some computer simulation results in order to assess the performance

of the blind identi�cation algorithms proposed in this chap ter. We will �rst consider the case

of a SISO-FIR communication channel. We compare the performance of the proposed SS-LS

PBCI method with the results obtained using the well-known Fourth-Order System Identi�cation

(FOSI) algorithm [ 66], which is based on a joint diagonalization technique. We also compare

our method with an algebraic solution that is optimal in the t otal least squares (TLS) sense,

proposed in [7].

After that, we consider in section 6.2 a quasi-static MIMO scenario in which the propagation

channel is characterized by a Rayleigh at fading, so that the channel coe�cients are drawn from

a continuous complex Gaussian distribution and assumed to be time-invariant within the dura-

tion of a time-slot consisting of N symbols. The QALS-PBMCI and TALS-PBMCI algorithms

are compared with the SS-LS approach. We also present a comparative study to illustrate how

the 4D SS-LS PBMCI algorithm performs with respect to some methods reported in the liter-

ature. Finally, although our main interest is on mixture ide nti�cation, we also provide results

concerning the recovery of the transmitted symbols using the channel estimates obtained from

the proposed methods in both SISO and MIMO cases.

6.1 SISO channel identi�cation

In the SISO case, the parametric channel estimation performance will be evaluated by means of

the normalized mean squared error (NMSE) of the estimator, computed as follows:

NMSE=
1
R

RX

r =1

kĥ (1 )
hr i � hk2

khk2 ; (2.70)

where R is the number of Monte Carlo simulations and ĥ (1 )
hr i is the channel estimate obtained

after convergence for ther th simulation, assuming perfect knowledge of the channel memory L .

Except otherwise stated, 4th-order cumulants are estimated usingN = 1000 output data samples

(length of one time-slot). For each Monte Carlo simulation, a di�erent complex channel coef-

�cient vector has been randomly generated in such a way that minimum-phase, nonminimum-

phase as well as maximum-phase channels are allowed to occur. Furthermore, we allow for

possibly sparse channels, i.e. channel having some coe�cients with very small magnitude, which

may lead to numerical instabilities. The results illustrat ed in the following curves represent the

average ofR = 200 Monte Carlo runs. The input signal is QPSK modulated. In which follows,

the results concerning the FOSI algorithm have been obtained by averaging the two solutions

proposed in [66], as suggested by the authors.

In �g. 2.2, the NMSE is plotted against signal-to-noise ratio (SNR) for the SS-LS PBCI, FOSI

and TLS algorithms. The curves on the left-hand side show that the SS-LS approach performs
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Figure 2.2: NMSE performance with QPSK modulation.

better than both, the FOSI algorithm and the TLS solution, fo r channels with memory L = 3.

The relative behavior of the algorithms shown in that �gure h as also been veri�ed forL = 2

and L = 4. On the right-hand side of �g. 2.2, we compare the results of SS-LS PBCI forL = 4

with those of the FOSI algorithm for L = 2 ; 3 and 4. Note that the estimation errors obtained

with SS-LS PBCI for L = 4 are smaller than those of FOSI for L = 4 and L = 3. Furthermore,

for low SNR values, the performance provided by the SS-LS PBCI algorithm for channels with

L = 4 can be considered equivalent (or better) than those obtained with FOSI for channels

with L = 2. We can therefore conclude that SS-LS PBCI is able to deal with more complicated

channel scenarii (larger delay spread) while providing better performance than the other two

algorithms, especially in highly noisy situations.
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Figure 2.3: NMSE � channel memory with SNR = 21dB.

In order to evaluate the e�ect of the output data sequence length used to estimate the

4th-order cumulants over the identi�cation performance of the algorithms, we plot in �g. 2.3

the NMSE against the channel memory forN = 1000 and N = 3000 output symbols, with
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Figure 2.4: Convergence analysis for SS-PBCI with three di�erent initializations (SNR = 21dB).

SNR = 21dB. In a general manner, using SS-LS PBCI withN = 1000 yields better results than

using TLS or FOSI algorithms with N = 3000.

It is interesting to note that the number of iterations requi red for convergence of the SS-LS

PBCI algorithm can be reduced by initializing it with an alge braic solution such as the TLS

solution. In �g. 2.4 we show the mean and median number of iterations needed for convergence

of SS-LS PBCI with SNR = 21dB using three di�erent initializa tions: 1) a Gaussian random

vector; 2) the TLS solution and 3) the C(q; k) solution [4]. Using both TLS and C(q; k) solu-

tions to initialize SS-LS PBCI decreases the number of iterations in comparison with a random

initialization. Finally, it is worth to mention that the NMS E performance after convergence

remains unchanged, i.e. initialization only a�ects convergence speed.

Recovery of the input signal

Several equalization approaches exist to recover the inputdata sequence using the estimated

channel. The optimal solution in the minimum mean squared error (MMSE) sense is given by

the Wiener solution [36]. The coe�cient vector wo 2 C(K +1) � 1 of the optimal equalizer is given

by:

wo =
�

T HT + � 2
� I (L +1)

� � 1
T Hsd; (2.71)

where T is a (K + L + 1) � (K + 1) Toeplitz matrix built from the channel coe�cients, of

which the �rst row is given by T 1� = [ h(0) 0T
K � 1] and the �rst column is T �1 = [ hT 0T

K � 1]T .

The vector sd 2 R(K + L +1) � 1 is given by [0; : : : ; 0; 1; 0; : : : ; 0]T , where the only nonzero element

corresponds to thedth entry and d represents the equalization delay, which is usually taken as

d = ( K + L + 1) =2 if K + L is odd or d = ( K + L + 2) =2 if K + L is even [36]. The input signal

is recovered as follows:

ŝ(n) =
KX

k=0

wo(k)y(n � k): (2.72)
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Figure 2.5: Symbol error rate (SER) performance in the SISO case with QPSK modulation for

L = 2 (left) and L = 3 (right).

In �g. 2.5, we present the performance of SS-LS PBCI and FOSI algorithms in terms of

the symbol error rate (SER) for channels with L = 2 (left) and L = 3 (right) with a QPSK

modulated input signal. The dotted lines concern the results obtained with the optimal MMSE

equalizer assuming perfect knowledge of the channel coe�cients. For a target SER of 10� 3, with

L = 2 (left), SS-LS PBCI provides a gain of about 5dB in SNR with respect to FOSI. For L = 3

(right), despite the expected performance loss of both algorithms, this gain is around 7dB in

SNR for a target SER of 2� 10� 3.

6.2 MIMO channel identi�cation

In this section, we assume aquasi-static Rayleigh at-fading transmission scenario where the

MIMO channel coe�cients are drawn from a continuous complex Gaussian distribution and are

assumed to be time-invariant within the duration of a time-slot with length equal to N symbol

periods. At each time-slot, a new channel is randomly selected. In which follows, the length of

the time-slot has been set toN = 1000 symbol periods and the output data samples received

in this interval are used to estimate the spatial cumulants. Our results are averaged over 300

time-slots.

Overdetermined mixtures

In order to evaluate the performance of the Parafac-based blind MIMO channel identi�cation

algorithms in the overdetermined case (M > Q ), we utilize the identi�cation performance index

given in [84, 85], which is based on the matrix � hr i = H # Ĥ hr i , where Ĥ hr i is an estimate of

the channel matrix, up to column scaling and permutations, obtained after convergence for the

simulation r 2 [1; R]. Therefore, in the ideal caseĤ hr i = H�� , and hence� hr i should take

the form of a scaled permutation matrix. The identi�cation p erformance index is computed as
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Figure 2.6: Average identi�cation performance index � SNR.

follows:

� (� hr i ) ,
1
2

2

4

0

@
X
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� X

j

j� hpi
i;j j2

max` j� hr i
i;` j2

�
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X
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� X

i

j� hr i
i;j j2

max` j� hr i
`;j j2

�
� 1

1

A

3

5 ; (2.73)

where � hr i
i;j are the entries of � hr i . The identi�cation performance index � (�) equals zero if

its matrix argument has the exact structure of a scaled permutation matrix, and small values

indicate proximity to the desired solution. In our case, � (� hr i ) tends towards zero when the

channel estimate approximates the actual MIMO channel matrix, up to column scaling and

permutation. Actually, the identi�cation performance ind ex de�ned in (2.73) is generally viewed

as a measure of the quality of source restoration, irrespective of the trivial indeterminacies,

indicating the global level of interference rejection at the output of a spatial �lter built from the

estimated channel coe�cients. In the following �gures, we plot the value in dB for the average

performance index, i.e. (1=R)
P R

r =1 � (� hr i ), where R is the number of time-slots (Monte Carlo

simulations).

In a �rst simulation experiment, we evaluate the PBMCI appro ach by comparing the pro-

posed algorithms 4D SS-LS and 3D SS-LS with their ALS-based counterparts (QALS and TALS

respectively). We obtained the plots in �g. 2.6 using M = 3 antenna elements. These pictures

show the average identi�cation performance index computedusing (2.73) in function of the SNR

for Q = 2 (left) and Q = 3 (right) QPSK modulated sources. Notice that the methods based

on 4th-order tensors (4D SS-LS and QALS) performed generally better than their 3rd-order

versions (3D SS-LS and TALS). As expected, increasing the number of sources leads to worse

performance, but 4D SS-LS seems to be less a�ected than the other methods.

In �g. 2.7, we show the mean number of iterations needed for convergence of the four algo-

rithms when Q = 2 (left) and Q = 3 sources (right) with SNR = 21 dB. Although 4D SS-LS

takes generally more iterations to converge than QALS, the former one is a more attractive

option due to its smaller computational complexity, since it involves only one LS minimization

instead of four. Note that increasing the number of users fora given number of antennas con-
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Figure 2.7: Mean number of iterations for convergence with SNR = 21dB.
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Figure 2.8: Comparison with other algorithms.

siderably increases the number of iterations needed for thetensor-based algorithms to converge.

As expected, the methods based on the 4th-order tensor converge faster than those based on the

3rd-order one. Finally, we observe that the algorithms takemore iterations to converge when

the number of antennas decreases, due to the loss of spatial diversity.

In the sequel, we present some results comparing the SS-LS approach with some algorithms

reported in the literature. In particular, we confront the i denti�cation performance obtained

with the 4D SS-LS PBMCI algorithm against the results provided by the classical JADE [51]

algorithm, the FOOBI [ 22] and the ICAR [68] methods. From �g. 2.8, we note that the 4D

SS-LS PBMCI algorithm presents satisfactory results vis-a-vis of the other three methods. By

increasing the noise level, JADE's performance degrades and becomes worse than the other

methods for SNR values below 12dB. ForQ = 3 sources andM = 3 antennas, �g. 2.8 (right)

shows that our approach performs better than the other tested algorithms. In conclusion, the

SS-LS approach seems to be a very interesting solution, especially when the number of users

increases and the noise level becomes important.
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Figure 2.9: SER vs. SNR in the MIMO case.

Finally, concerning the recovery of the source signals, we illustrate in �g. 2.9, the perfor-

mance of the 4D SS-LS PBMCI algorithm in terms of the average SER per user, for Q = 2

users (left) and Q = 3 users (right). The source symbols were recovered using asemi-

blind MMSE �lter W 2 CQ� M built from the estimated MIMO channel matrices, as follows:

W = Ĥ H(Ĥ Ĥ H + R̂ � )� 1, whereR̂ � is the estimated noise covariance matrix. In order to get rid

of the problem of scaling (phase) and permutation ambiguities,P pilot symbols have been used,

with P = 10 in the case ofQ = 2 users and P = 15 for Q = 3 users. The results are compared

with those obtained with the optimal MMSE receiver using perfect knowledge of the channel

coe�cients. Note that, for Q = 2 users (left) as well as forQ = 3 users (right), the performance

of 4D SS-LS is quite close to the optimal MMSE reference. WithQ = 2 users, the average SER

performance has the same global behavior as withQ = 3 users, except for a vertical shift in the

curves, indicating an expected performance loss due to the increase in the number of users.

Underdetermined mixtures

In order to evaluate the identi�cation algorithms in the und erdetermined case, we will con-

sider a uniform linear antenna (ULA) array with M identical sensors, equally spaced of half a

wavelength, receiving signal fromQ narrow-band sources, assumed to be in the far-�eld of the

antenna array, with azimuth angles given by � q, q 2 [1; Q], and no elevation angle. The signals

are transmitted in the baseband with unit-variance using a QPSK modulation. The mixing

matrix coe�cients are given by:
h
H

i

m;q
= e| � (m� 1) cos� q ; m 2 [1; M ]; q 2 [1; Q]; (2.74)

where | =
p

� 1. The estimation accuracy is measured in terms of the NMSE, computed as:

NMSE=
1
R

RX

r =1

kĤ (1 )
hr i � H k2

F

kH k2
F

; (2.75)
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Figure 2.10: NMSE vs. SNR with N = 1000 symbols (left) and NMSE vs. Sample data length

with SNR=5dB (right).
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Figure 2.11: NMSE vs. SNR with N = 1000 symbols (left) and NMSE vs. Sample data length

with SNR=5dB (right).

whereR is the number of Monte Carlo simulations andĤ (1 )
hr i is the optimally ordered and scaled

channel estimate obtained after convergence for ther th simulation. Our simulations include 300

Monte Carlo runs of each experiment. Firstly, we have usedM = 3 sensors andQ = 4 sources

with angles of arrival given by � 1 = 55 � , � 2 = � 5� , � 3 = � 50� and � 4 = 25 � , respectively. The

curves in �g. 2.10have been obtained withN = 1000 symbols for a SNR ranging from 0 to 30dB

(left) and with a SNR of 5dB with N varying from 400 to 5000 symbols (right). These results

show that 4D SS-LS algorithm gives better precision than FOOBI, specially for low SNR levels.

Note from Table 2.3, that in this particular scenario ( M = 3, Q = 4) both methods have the

same bounds in terms of the maximum number of identi�able sources.

For the next experiment, we usedM = 4 sensors and included an extra source with angle of

arrival given by � 5 = � 25� . In �g. 2.11, we observe that FOOBI's performance with respect to

the 4D SS-LS algorithm is better, and their NMSE practically coincide for high SNR levels (left)

as well as for large sample sizes (right). Note from Table2.3 that in this case (M = 4, Q = 5),

FOOBI has weaker uniqueness conditions than the SS-LS approach and hence more freedom to
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Figure 2.12: Maximum SINR vs. SNR with N = 1000 symbols: Best (left) and worst (right)

cases.

treat additional sources.

The performance of the identi�cation algorithms can also beassessed in terms of the quality

of the extraction of the Q independent components. To this end, we apply a spatial matched �lter

(SMF) built from the estimated channel coe�cients as W = R̂ � 1
y Ĥ . A performance evaluation

criterion can be de�ned as the maximum signal-to-interference-plus-noise ratio (SINR) per source

[25]. The SINR of each sourceq 2 [1; Q] at the i th separator output can be computed as follows:

SINRq(w i ) = � 2
sq

jw H
i Ĥ �qj2

w H
i R �q w i

; (2.76)

where w i = [ W ]�i , � 2
sq

is the variance of sourceq and R �q is the total noise plus interference

matrix for source q, corresponding to R y = E
�

y(n)yH(n)
	

in the absence of sourceq. The

maximum value of SINRq(w i ) for all i 2 [1; Q] is indicative of the quality of restitution of source

q. In �g. 2.12, we plot the results in function of the SNR level, for the sourcesq = 3 and q = 4,

which gave respectively the best and worst �t with respect to the optimal SMF, which built

from the exact channel coe�cients (dotted lines). We conclude that some sources can be better

recovered than others in spite of the global performance of the separator.
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7 Summary

In this chapter, a new blind SISO channel identi�cation algorithm has been presented based on

the Parafac decomposition of a 3rd-order tensor formed of 4th-order output cumulants. The

proposed PBCI algorithm relies on a SS-LS minimization problem. The Parafac decomposition

fully exploits the three-dimensional nature of the cumulant tensor and has the advantage of

avoiding any kind of pre-processing. Uniqueness and convergence issues have been addressed.

Computer simulations show that our approach provides better estimation performance than

both the TLS solution and the FOSI algorithm, which is based on a simultaneous matrix diag-

onalization. Furthermore, the convergence of the PBCI algorithm can be accelerated when it is

initialized with the TLS solution.

We have also addressed the problem of blind MIMO channel (mixture) identi�cation in

the context of a multiuser system characterized by instantaneous complex channels. We have

presented a simpli�ed SS-LS MIMO channel identi�cation algorithm based on the Parafac de-

composition of a 4th-order tensor composed of 4th-order spatial output cumulants. Quadrilinear

and trilinear ALS solutions have been described and compared with the SS-LS method. We have

established uniqueness conditions bounding the number of identi�able sources and showing that,

under certain conditions, our algorithm can identify underdetermined mixtures. Computer simu-

lations have been presented assessing the performance of the proposed algorithms and comparing

it with other MIMO channel identi�cation algorithms, showi ng that the SS-LS approach is of

great interest in several practical situations.



64 CHAPTER 2. PARAFAC-BASED BLIND CHANNEL IDENTIFICATION



Chapter 3

Parafac-based methods for Array

Processing and Multipath Parameter

Estimation

H
igh -resolution subspace-based direction �nding (DF) methods, such as the well-

known MUSIC [86, 87] and ESPRIT [88] algorithms, have become very popular

in narrowband (NB) array processing. Exploiting the orthogonality between the

signal and noise subspaces, these methods based on the second-order statistics (SOS)

provide asymptotically in�nite resolution and are very int eresting solutions for localizing multiple

sources when the spatial correlation of the additive noise is known [89, 90, 91, 92, 93]. However,

the performance of SOS-based methods can be seriously deteriorated when dealing with several

sources with low signal-to-noise ratio (SNR) and small angular separation using �nite data

sample sequences [90, 92, 93] or in presence of spatial noise with unknown correlation function

[94]. In addition, they can only treat overdetermined mixtures (more sensors than sources).

Source localization is a crucial aspect in sensor array processing. Determining the loca-

tion of signal emitters allows for the implementation of source separation techniques as well as

beamforming for interference suppression. During the lasttwo decades, the use of high-order

statistics (HOS) has been widely considered for the estimation of the direction-of-arrival (DOA)

in the context of multiuser NB array processing. Several solutions to the source localization and

DF problems have been proposed for non-Gaussian signals based on the 4th-order cumulants of

the array output data [ 82, 95, 96]. Extensions of the MUSIC algorithm to the 4th- and higher

(even) orders gave rise to the 4-MUSIC [28, 97, 29] and, more recently, the 2� -MUSIC ( � � 2)

methods [27]. In addition to noise robustness, these methods o�er better resolution and allow

for an increased number of sources to be localized, including certain underdetermined cases. Al-

though characterized by a higher variance [98], the HOS-based MUSIC-like algorithms increase

the number of virtual sensors and the e�ective aperture of the receive antenna array at the

65
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cost of an increased complexity due to the estimation of the high-order statistical information

[99, 25, 26]. Other known 4th-order DF approaches include [82, 100, 101], among others.

In the �rst part of this chapter, we treat the problem of blind multiuser localization in

the context of multiple antenna array processing. Assumingthat the sources are located at

the far-�eld of the antenna array, our goal is to estimate signal DOAs using only the array

output signals. Speci�cally, we propose a new high-resolution DF algorithm that arti�cially adds

sensors to a virtual antenna array without resorting to statistics of order higher than fourth. In

fact, using the 4th-order cumulants only, the proposed method estimates the array matrix and,

exploiting the structure of the cumulant tensor, creates anenhanced virtual array that yields an

augmented observation space, thus providing additional degrees of freedom to the antenna array

and allowing for improved resolution. Based on the single-step least-squares (SS-LS) Parallel

Factor (Parafac) decomposition technique introduced in Chapter 2, the new source localization

algorithm exploits an array having a double Kronecker structure, which commonly only arises

when using 6th-order statistics. However, since we do not need to estimate cumulants of order

higher than fourth, our approach keeps the variance of the cumulant estimators at a moderate

level, even for quite short output data sequences. Uniqueness and identi�ability conditions will

be discussed in order to assess the capacity of the proposed technique in terms of the maximum

number of resolvable sources. Computer simulations are provided to illustrate the performance

of the proposed method compared with the classical MUSIC approaches.

On the other hand, in mobile radiocommunication contexts, signals are often transmitted

through multiple propagation paths, characterized by specular reections and scattering due

to physical objects placed in the environment. In such a multipath propagation scenario, the

wavefronts may reach the receive array front-end with di�erent delays, spreading the energy of

the signals over the time and corrupting temporally adjacent pulses. The so-called delay spread

pro�le induces an altered channel impulse response thus yielding intersymbol interference (ISI),

which accounts for important capacity and performance limitations in wireless communication

systems. In order to ensure a correct information recovery,we may need to reduce or suppress

the e�ects of ISI, which generally requires some knowledge about the transmission channel.

Classically estimated by using known sequences embedded inthe transmitted signals, the use

of channel coe�cients allow for the application of several linear and nonlinear methods aiming

the recovery of the input symbols [102]. However, such a supervised (trained ) approach may be

very costly in the context of time-varying channels, even when variations are slow.

Due to the (possibly) nonminimum phase property of the radio channel, the identi�cation

problem has been often addressed using a HOS formulation, which gave rise to several non-

supervised (blind) approaches [5, 103, 104]. Other blind HOS-based approaches include well-

known adaptive techniques that are intended to recover the transmitted symbols without the

previous channel estimation stage [105, 106, 107, 108]. Since the pioneer paper by Tong et. al

[109], blind methods have also been proposed for the single user case based only on SOS, ex-
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ploiting subspace properties of multiple output channels corresponding to the di�erent sensors

of an antenna array and/or to an oversampled output signal (fractionally-spaced equalization)

[110, 111, 112, 113, 114]. See also [115] and references therein for the particular case of single-

input multiple-output (SIMO) channels. Still relying on th e oversampling of the channel output,

extensions of the subspace method to multiuser con�gurations have been developed in [116, 117]

and SOS-based approaches using linear prediction have beenproposed in [118, 119].

Starting from section 3, we will focus on the problem of blind multipath channel parameter

estimation. Our approach includes two successive stages. We �rst introduce a 4th-order output

cumulant tensor model for the convolutive MIMO channel case, which is an important contri-

bution of this chapter as long as it generalizes the results obtained in Chapter 2 for the SISO

and the memoryless MIMO cases. After that, using the physical multipath parameters to model

the channel coe�cients, we introduce a 3rd-order Parafac tensor representation for the convo-

lutive multiuser radio channel. Using the proposed generalized cumulant tensor framework, we

extend the SS-LS algorithm to the non-parametric estimation of the convolutive MIMO chan-

nel coe�cients. Uniqueness conditions show that the proposed algorithm copes with a exible

range of possible channel con�gurations, each con�guration corresponding to a given number

of transmit and receive antennas and a �xed channel memory. Then, an ALS-based algorithm

is used to estimate the spatial and temporal channel signatures using the estimated channel

coe�cients. Finally, the multipath parameters are extract ed by means of subspace-based algo-

rithms, which enables us to recover the channel coe�cients without the trivial indeterminacies

associated with the Parafac decomposition. This new parametric estimation procedure is also

an original contribution of this chapter and will be referred to as ALS-MUSIC algorithm.

The two-stage procedure introduced in this chapter for estimating the convolutive MIMO

channel and its multipath parameters is, to our knowledge, the �rst fully blind technique propos-

ing solution to the channel identi�cation problem in a multi user radio-mobile context, making

use of the 4th-order cumulant symmetries in a single LS minimization problem and exploiting

the multipath structure of the channel using a tensor formalism in both stages, without resorting

to oversampling.

The remaining of this chapter is organized as follows: in section 1, we formulate the array

output signal model along with the basic de�nitions of signal and noise subspaces; we also dis-

cuss the Virtual Array concept and present a survey of classic MUSIC-like algorithms, including

the general formulation for the case of statistics of any even order; in section 2 we derive a new

high-resolution DF algorithm exploiting the double Kronecker structure of the unfolded 4th-

order cumulant tensor; the SS-LS cumulant tensor decomposition approach is revisited and the

uniqueness issue is addressed; in section3, we turn our attention to the problem of estimating

the multipath parameters of a MIMO channel; we start by intro ducing a general formulation for

the 4th-order output cumulant tensor model in the convoluti ve MIMO case and then we treat
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Figure 3.1: Linear antenna array and incoming signal.

the multiuser radio channel as a Parafac tensor formed from its physical multipath parameters;

section 4 proposes combined algorithms for the blind identi�cation of the convolutive multipath

MIMO channel in two stages: using �rst a non-parametric 4th-order cumulant-based SS-LS

approach and then a parametric ALS-based algorithm that uses the previous estimation of the

channel coe�cients; after that, the multipath parameters a re extracted by means of MUSIC-

like subspace-based algorithms that allow for the completereconstruction of the MIMO channel

impulse responses without scaling ambiguities; �nally, insection 5, we provide computer simula-

tions illustrating the methods discussed throughout the chapter and assessing their performance

under di�erent channel con�gurations. Conclusions are drawn in section 6, along with some

future work perspectives.

1 The source localization problem in NB array processing

Let us consider a linear array of M identical NB sensors receiving the contributions of Q

zero-mean stationary sources, assumed to be placed at the far-�eld of the array. Denoting

by y(n) 2 CM � 1 the vector of complex signals measured at the output of the antenna array, we

have:

y(n) =
QX

q=1

sq(n)a(� q; � q) + � (n)

= As (n) + � (n) (3.1)

where the vector s(n) 2 CQ� 1 is formed of the complex amplitudes of the source signalssq(n),

which are stationary, ergodic and mutually independent with symmetric distribution, zero-mean

and non-zero kurtosis 4;sq = c4;sq (0; 0; 0), q 2 [1; Q], with azimuth and elevation angles given

by � q and � q, respectively, as illustrated in �g. 3.1. Moreover, the signalssq(n) are assumed to

be independent of the additive Gaussian noise, which is arranged in the vector � (n) 2 CM � 1,

stationary with zero-mean and unknown spatial correlation. Matrix A 2 CM � Q represents

the spatial responses of the linear antenna array, concatenating the source steering vectors
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a(� q; � q) 2 CM � 1, carrying the DOA information ( � q; � q) associated with each sourceq 2 [1; Q].

The array matrix A can therefore be written as

A =
h
a(� 1; � 1) : : : a(� Q ; � Q)

i
2 CM � Q; (3.2)

where the mth element of vector a(� q; � q) corresponds to the response of the array elementm

with respect to the source q. Assuming a planewave propagation with no coupling between

sensors [120, 121], we can write:

am (� q; � q) = exp
�

| 2 � x m cos� q cos� q

�

�
; (3.3)

where | =
p

� 1 and xm is the distance of each array elementm 2 [1; M ] with respect to a

given reference sensor, assumed by convention to be the �rstantenna, i.e. x1 = 0. The signal

wavelength � is given by � = c=fc, where f c is the carrier frequency and the constantc is the

propagation speed of the light. Due to (3.3), A has a particular unit-modulus property and,

since x1 = 0, the directional matrix gets a all-one �rst row, i.e. A 1� = [1 ; 1; : : : ; 1]. In the case

of Uniform Linear Antenna (ULA) arrays, the sensors are equally spaced from each other along

the array axis and distanced of � x with respect to adjacent sensors, so that (3.3) becomes as

follows:

am (� q; � q) = exp
�

| 2 � (m � 1)� x cos� q cos� q

�

�
: (3.4)

In this case, the spatial response array matrixA has the following Vandermonde structure:

A =

0

B
B
B
B
B
B
B
B
@

1 : : : 1

a1(� 1; � 1) : : : a1(� K ; � K )

a2
1 (� 1; � 1) : : : a2

1 (� K ; � K )
...

. . .
...

aM � 1
1 (� 1; � 1) : : : aM � 1

1 (� K ; � K )

1

C
C
C
C
C
C
C
C
A

; (3.5)

where the second row is the generating vector, from which thewhole matrix can be deduced.

1.1 Array output statistics

Considering the above mentioned assumptions, let us de�ne the covariance matrix C (2;y) 2

CM � M , so that [C (2;y) ]i;j = C2;y(i; j ), i; j 2 [1; M ], where the 2nd-order spatial cumulant of the

array output is de�ned as C2;y(i; j ) , cum
h
yi (n); y�

j (n)
i
. From (3.1), we have:

C (2;y) = E
n

y(n)yH(n)
o

= A� 2;sA H + C (2;� ) (3.6)

where � 2;s = E
�

s(n)sH(n)
	

and C (2;� ) = E
�

� (n)� H(n)
	

. From the assumption of mutually

independence of the sources, it follows that� 2;s is a diagonal matrix with diagonal entries given

by the source variances, 2;sq = E
�

jsq(n)j2
	

, q 2 [1; Q].
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Moreover, by de�ning the 4th-order tensor C(4;y) 2 CM � M � M � M with scalar representation

given by C4;y (i; j; k; l ) , cum[y�
i (n); yj (n); y�

k (n); yl (n)], we can build the Quadricovariance ma-

trix C (4;y) 2 CM 2 � M 2
, as [C (4;y) ](j � 1)M + i; (k� 1)M + l = C4;y (i; j; k; l ), yielding the structure given

below [82, 83]:

C (4;y) =
�

A � A �
�

� 4;s

�
A � A �

� H
; (3.7)

where � 4;s = Diag
�
 4;s1 ; : : : ;  4;sQ

�
and � denotes the Khatri-Rao product.

Comparing (3.7) with ( 3.6), we note strong similarities in the structures of C (4;y) and (the

noiseless part of)C (2;y) . While both are diagonal quadratic forms, the latter one is built from

the source steering vectors, andC (4;y) involves a column-wise Kronecker product of those vec-

tors. This structural analogy is the basic idea allowing for extending some array processing

methods based on SOS to the 4th-order [82, 47]. In addition, since the above analysis only

evokes the linearity and the additivity properties of cumulants, it can be extended to statis-

tics of any (even) order. In fact, complex-valued 2� th-order output cumulants, de�ned as

C2�;y (i1; : : : ; i2� ) , cum
h
yi 1 (n); : : : ; yi � (n); y�

i � +1
(n); : : : ; y�

i 2�
(n)

i
, � � 2, can always be repre-

sented by a Hermitian matrix C (2�;y )
` 2 CM � � M �

, which admits the following decomposition:

C (2�;y )
` =

�
A � ` � A � � � � `

�
� 2�;s

�
A � ` � A � � � � `

� H
; ` 2 [1; � ]; (3.8)

where � 2�;s = Diag
�
 2�;s 1 ; : : : ;  2�;s Q

�
and  2�;s q is the 2� th-order cumulant of the input signal

sq(n). The notation X � n stands for a multiple Khatri-Rao product involving a matrix X so that

X � n = X � X � : : : � X , where the Khatri-Rao product symbol � appearsn � 1 times. Throughout

the rest of this chapter, we omit the index `, choosing by convention` = �= 2 when � is even

and ` = ( � + 1) =2 for odd values of� .

In practical applications, the channel statistics are not known at the array output and must

be estimated from the received data sequences, based on theergodicity assumption. Cumulant

estimation is an important issue and has been briey discussed in section1.1.2 of Chapter 1, in

the case of 4th-order cumulants. Exact expressions exist for computing the variance of cumulant

estimators of order 2� , generally involving very complicated calculations usingcumulants of order

up to 4� [48, 122, 17]. In this context, an important result shows that, for order s higher than

3, as the sample data length increases, the cumulant estimators tend to be Gaussian random

variables [3]. However, the convergence towards Gaussianity may be veryslow, as� increases.

Consequently, when dealing with HOS, the use of short sampledata sequences may lead to

signi�cant errors with respect to the asymptotic results [98].

Signal and noise subspaces

Assuming that the sources are spaced far enough apart from each other, we can consider that the

source steering vectorsa(� q; � q), q 2 [1; Q], are mutually independent. Under this assumption,

the space spanned by these vectors is a subspace of theobservation space, with M dimensions,
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which the received signal vectory(n) belongs to. Therefore, the column space of matrixA , with

Q dimensions, will be referred to as thesignal subspace, while its orthogonal complement, with

M � Q dimensions,M > Q , will be named the noise subspace.

From (3.6) we conclude that the rank of C (2;y) is ensured to be equal to the number of

sourcesQ if Q � M . In this case, we notice that the signal subspace contains all the necessary

information for representing the transmitted signals. By projecting the observations on the

signal subspace, we can reduce the amount of noise without loss of useful information (M > Q ).

In addition, the number of sources is given by the dimension of the signal subspace.

On the other hand, the rank of C (4;y) equals Q wheneverQ � M 2. In fact, ( 3.7) suggests

that the observation space of the 4th-order cumulants, with M 2 dimensions, is spanned by

the Kronecker products of the received signal vectorsy(n) 
 y � (n). In this case, the signal

subspace is de�ned as the space spanned by the Kronecker products of the steering vectors

a(� q; � q) 
 a� (� q; � q), with Q dimensions. Its orthogonal complement, withM 2 � Q dimensions,

will be referred to as the noise subspace.

1.2 The Virtual Array concept

By replacing the received signal vectors by their Kroneckerproduct, we actually increase the

dimension of the observation space, thus allowing for a greater number of separable sources

[123]. To illustrate this principle, let us consider the Kronecker product a(� q; � q) 
 a� (� q; � q)

and take the element in position (m1 � 1)M + m2, with m1; m2 2 [1; M ]. Using a ULA array,

we can write this element from (3.4), as follows:
h
a(� q; � q) 
 a� (� q; � q)

i

(m1 � 1)M + m2

= am1 (� q; � q) a�
m2

(� q; � q)

= exp
�

| 2 � (m1 � m2)� x cos� q cos� q

�

�
: (3.9)

The above equation clearly shows that the Kronecker productof the steering vectors results in

an augmented ULA array with virtual sensors (VS) placed at the array axis and distanced of

(m1 � m2)� x with respect to the reference sensor, for allm1; m2 2 [1; M ]. Notice that the M

elements for whichm1 = m2 are located at the array origin and are said to be virtual sensors

of multiplicity M . In the case of ULA arrays with space diversity only, the 2nd-order virtual

array (VA) de�ned in ( 3.9) is shown to have 2M � 1 di�erent VS, meaning it can deal with up

to 2M � 2 independent sources [25]. In the general case, using an optimal array geometry, it is

possible to get up toM 2 � M + 1 di�erent VS [ 25].

The theory of Virtual Arrays has been introduced independently in [ 99] and [123] using 4th-

order statistics. The concept has been further developed in[25] and [26], for the case of 4th-

and higher-order cumulants, respectively. However, some basic results had already been given

in [124]. The steering vectors of a� th-order VA are given as follows:

a� (� q; � q) =
h
a(� q; � q)
 ` 
 a� (� q; � q)
 � � `

i
; (3.10)
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where x 
 n denotes a multiple Kronecker product involving a vector x so that

x 
 n = x 
 x 
 : : : 
 x , where the Kronecker product symbol
 appearsn � 1 times. The index

` has been omitted from the left-hand side of (3.10) since we have chosen to take, by convention,

` = �= 2 for � even and` = ( � + 1) =2 when � is odd.

One major interest in using high-order (HO) VAs is in exploit ing the Kronecker structure

that naturally arises in the HOS representations. Despite the increased variance of the HOS

estimators, the HO VAs are known to provide gains in terms of resolution, which can be measured

by means of the spatial correlation between two sources. Letus consider the sourcesq1 and q2,

with DOAs given by the angles (� q1 ; � q1 ) and (� q2 ; � q2 ), respectively. The spatial correlation

coe�cient of sources q1 and q2 is given by the normalized inner product of the steering vectors

a� (� q1 ; � q1 ) and a� (� q2 ; � q2 ), i.e.

&� (q1; q2) ,
a� (� q1 ; � q1 )Ha� (� q2 ; � q2 )

h
a� (� q1 ; � q1 )Ha� (� q1 ; � q1 )

i 1=2h
a� (� q2 ; � q2 )Ha� (� q2 ; � q2 )

i 1=2
: (3.11)

Notice that for any complex n � 1 vectorsa, b, c and d it holds: (a
 b � )H(c
 d � ) = ( aHc)(dHb);

we can thus write (a
 ` 
 a� 
 � � `
)H(b 
 ` 
 b � 
 � � `

) = ( aHb)` (bHa)� � ` , for all a; b 2 Cn� 1. Re-

placing this latter relationship into ( 3.11) and taking its modulus, we obtain:

�
�
�&� (q1; q2)

�
�
� =

�
ja(� q1 ; � q1 )Ha(� q2 ; � q2 )j
ja(� q1 ; � q1 )j ja(� q2 ; � q2 )j

� �

; (3.12)

from which it is straightforward to deduce that j&� (q1; q2)j = j&1(q1; q2)j� . Note that for � = 1 the

virtual steering vector de�ned in ( 3.10) coincides with the actual array response vectora(� q; � q).

Thus, for an array with space diversity only, the spatial correlation coe�cient of the � th-order

Virtual Array associated with a given direction ( � 0; � 0) only depends on� and on the normalized

amplitude responsej&1(q;0)j of the actual antenna array of M sensors, for each pair (� q; � q).

Since 0 � j &1(q;0)j � 1, we conclude that for the direction (� 0; � 0), the spatial correlation of

the HO VA decreases with � , thus improving its angular resolution. This fact is illust rated in

�g. 3.2 for a ULA array with 3 sensors spaced of�= 2, where we plot the antenna response of

the VAs with � = 1, � = 2 and � = 3, to a source at � 0 = 5 � (no elevation angle). The antenna

pattern is obtained from the inner products of the associated steering vectors. Considering the

beamwidth (in degrees) at the point of 3dB attenuation of the main lobe for the DOA of 5� , we

observe gains of about 13:5� and 19:8� using the HO VAs with � = 2 and � = 3, respectively,

with respect to the considered array ofM sensors (� = 1).

1.3 MUSIC-like DF algorithms

In its basic form, the Multiple Signal Classi�cation (MUSIC ) technique has been introduced to

provide asymptotically unbiased estimates of the parameters of multiple wavefronts arriving at

an antenna array [86, 87]. Exploiting the orthogonality between the signal and noise subspaces,
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Figure 3.2: Antenna pattern of di�erent VAs for a ULA with 3 se nsors spaced of�= 2.

the MUSIC algorithm aims to determine, among others, the number of signal sources, their

location (DOAs) and the cross-correlations among the directional waveforms.

2-MUSIC

The SOS-based MUSIC algorithm (so-called 2-MUSIC) algorithm is of particular interest: 1) in

the noiseless case, in which (3.6) leads to C (2;y) = A� 2;sA H; 2) in the case of a spatially white

additive noise, whenC (2;� ) is proportional to the identity matrix, i.e. C (2;� ) =  2;� I M , with  2;�

being the noise variance. In this latter case, the smallest eigenvalues ofC (2;y) equal the noise

variance and the corresponding eigenvectors span the noisesubspace of the noiseless observation

space. The eigenvectors associated with the largest eigenvalues span the signal subspace and the

EVD of the estimated covariance matrix is shown to yield the maximum likelihood estimator of

the number of sources [87]. Implementations of the 2-MUSIC algorithm generally assume that

the additive noise is white and M > Q .

Taking the EVD of the Covariance matrix C (2;y) , we get:

C (2;y) = U�U H (3.13)

where � is a real-valued M � M diagonal matrix and U = [ U s U n ] 2 CM � M is a unitary

matrix, with U s 2 CM � Q and U n 2 CM � M � Q corresponding to the signal and noise subspaces,

respectively. Taking (3.6) into account and noticing that U T
n A = 0(M � Q)� Q , we can de�ne the

following localization function:

P2(�; � ) =
1



 w(�; � )HU n





2 ; (3.14)

where U n is chosen as the columns ofU associated with the M � Q smallest eigenvalues and

the orthogonal projector w(�; � ) 2 CM � 1 has the form of the steering vectora(�; � ) de�ned in
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(3.3). The function P2(�; � ) clearly measures the orthogonality between the signal andnoise

subspaces for the sourceq; the desired value of the orthogonal projector is the one maximizing

(3.14) [82]. We can therefore conclude that the local maxima ofP2(�; � ) are associated with the

DOAs of the Q source signals.

In practice, the algorithm must previously estimate the covariance matrix of the output

observationsĈ (2;y) (the equations given in section1.2 of Chapter 1 can be used to this end) and

the localization function is built from the estimated noise subspaceÛ n . This approach provides

asymptotically in�nite resolution because only the true ar ray steering vectors associated to each

source strictly belong to the column space ofA . The main drawback is the limitation to treat

only overdetermined mixtures, since it can only localizeM � 1 sources.

HO-MUSIC

As we have seen in section1.1, the Quadricovariance matrix C (4;y) has structural properties

very similar to those of the Covariance matrix C (2;y) , but involving the Kronecker products of

the source steering vectors. According to the VA concept discussed in section1.2, the Kronecker

structure of C (4;y) yields an increased number of virtual antenna elements, thus allowing for the

localization of more sources than sensors, the amount of which varies in function of the array

geometry. This is the main principle behind the extension ofthe MUSIC algorithm to the 4th-

(and higher-) orders [82, 47].

Let us consider the EVD of C (4;y) , as follows:

C (4;y) =
h
U s U n

i
�

h
U s U n

i H
(3.15)

where � is a real-valued M 2 � M 2 diagonal matrix and the columns of U s 2 CM 2 � Q and

U n 2 CM 2 � (M 2 � Q) correspond to the 4th-order signal and noise subspaces, obtained from the

eigenvectors associated with theQ largest and the M 2 � Q smallest eigenvalues ofC (4;y) , re-

spectively. Exploiting the orthogonality between the observation space and the noise subspace,

we de�ne the following localization function:

P4(�; � ) =
1



 w2(�; � )H U n





2 ; (3.16)

where w2(�; � ) = a(�; � ) 
 a� (�; � ). The source DOA parameters (� q; � q) can be deduced from

the parameters of the orthogonal projectorsw2(�; � ) 2 CM 2 � 1 that maximize the 4th-order

localization function P4(�; � ), which in practice is built from the estimated noise subspace Û n ,

obtained from the estimated cumulant matrix Ĉ (4;y) .

The 4-MUSIC algorithm has been introduced in [28, 97, 29] in the context of overdetermined

mixtures. The concept has been discussed in [82] as well, including the case of more sources than

sensors. The principle underlying the 4-MUSIC algorithm makes use of two basic properties of

4th-order cumulants: the linearity and the additivity unde r linear independence. Since these
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properties hold for cumulants of any (even) order, the algorithmic formalism is easily extendable

to higher-order statistics. In fact, using the 2� th-order cumulant matrix C (2�;y ) de�ned in ( 3.8),

it is straightforward to build a general localization funct ion of the form:

P2� (�; � ) =
1



 w � (�; � )H U n





2 ; (3.17)

where the orthogonal projector w � (�; � ) 2 CM � � 1 takes the form of (3.10) and U n is the

M � � (M � � Q) matrix that concatenates the eigenvectors ofC (2�;y ) associated with itsM � � Q

smallest eigenvalues. Source DOAs can be found by searchingfor the local maxima of P2� (�; � ).

See [27] for a survey on the 2� -MUSIC algorithms.

2 DF algorithms based on cumulant tensor decomposition

As we have seen in the preceding sections, HO-MUSIC-like algorithms have the ability to make

use of the virtual antenna array that naturally arises from t he HOS structure at the array

output. However, due to the high variance of the HO cumulant estimators, the use of �nite

sample data yields considerable deviations with respect toasymptotic results. On the other

hand, exploiting additional sensors allows for improving resolution and capacity in terms of the

number of resolvable sources, at the cost of an increased complexity due to the estimation of

higher-order cumulants.

In this section, we propose a high-resolution DF algorithm that creates a 3rd-order virtual

array, only exploiting the Kronecker structure of the 4th-order cumulant tensor. Our solution

is based on the single-step least-squares (SS-LS) Parafac decomposition technique introduced in

Chapter 2, which exploits the symmetry properties of 4th-order output cumulants to perform

the Parafac decomposition of a cumulant tensor [63, 64]. This approach involves a channel

estimation stage prior to source localization, but it allows for an improved resolution due to

an enhanced VA, arti�cially constructed from the estimated channel, without resorting to 6th-

order statistics. While keeping the cumulant estimation variance at a lower level compared with

the 2� -MUSIC algorithms, � > 2, the proposed technique is robust to an additive Gaussian

noise with unknown spatial correlation, contrary to the 2-MUSIC method. In addition, for ULA

arrays, the SS-LS approach is shown to resolve as many sources as the 4-MUSIC algorithm.

Let us rewrite the scalar representation of the 4th-order tensor C(4;y) , de�ned in section 1.1,

as follows:

C4;y(i; j; k; l ) =
QX

q=1

 4;sq a�
i (� q; � q) aj (� q; � q) a�

k (� q; � q) al (� q; � q) (3.18)

for 1 � i; j; k; l � M and q 2 [1; Q], where the nonzero source Kurtoses 4;sq are assumed

unknown. It follows from ( 3.18) that C(4;y) is a 4th-order Parafac tensor with rank Q. Its

canonical components can be straightforwardly deduced andare all written in terms of the
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array matrix A and the diagonal Kurtosis matrix � 4;s (see section4 of Chapter 2)1. Let us now

de�ne the unfolded tensor representationC [1] 2 CM 3 � M , as follows:
h
C [1]

i

(j � 1)M 2+( k� 1)M + l; i
= C4;y (i; j; k; l ); (3.19)

which can be easily shown to be written as follows (see the unfolding procedure introduced in

section 3.1 of Chapter 1):

C [1] = ( A � A � � A ) � 4;sA H (3.20)

= A (3) � 4;s A H (3.21)

where A (3) is the M 3 � Q 3rd-order VA matrix, de�ned as A (3) = A � A � � A , with A being

de�ned in ( 3.5).

2.1 The SS-LS Parafac algorithm

Using the unfolded tensor representationC [1], the SS-LS Parafac algorithm introduced in Chap-

ter 2 can be used to estimate the array matrixA , as well as the VA matrix A (3) . The algorithm

iteratively minimizes a single LS cost function, given by:

 (Â r � 1; A ) ,


 C [1] �

�
Â r � 1 � Â �

r � 1 � Â r � 1

�
� 4;s A H





2

F
; (3.22)

in which r is the iteration number and k � kF denotes the Frobenius norm. The iterative mini-

mization of  (Â r � 1; A ) yields the following LS solution:

Â H
r , arg min

A
 (Â r � 1; A )

= � � 1
4;s Â (3) #

r � 1 C [1]; (3.23)

with

Â (3)
r � 1 = Â r � 1 � Â �

r � 1 � Â r � 1: (3.24)

Note that we only have to initialize Â 0. In fact, at each iteration r � 1, we deduceÂ (3)
r � 1 from

(3.24) and then, we computeÂ r from (3.23).

Iterative LS algorithms are known to be very sensitive to theinitialization of the parameters

[58]. Exploiting the unit-modulus property of the array steeri ng matrix, the following modi�-

cation of the algorithmic procedure is expected to improve convergence. After initializing Â 0

with an M � Q matrix drawn from a (complex) Gaussian distribution, perform the following:

At each iteration r � 1, before computingÂ r , divide each entry of the preceding estimate

by its own magnitude, i.e.

[Â r � 1]mq  
[Â r � 1]mq�

�
� [Â r � 1]mq

�
�
�

;

1 This result can also be obtained from the general formulatio ns (1.52) and (1.53), introduced in Chapter 1,

with P = 4.
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Normalize each column by its �rst-row element:

[Â r � 1]�q  
[Â r � 1]�q
[Â r � 1]1 q

;

DeduceÂ (3)
r � 1 from (3.24) and compute the array matrix estimate at iteration r as follows:

Â r  
h
Â (3) #

r � 1 C [1]

i H
: (3.25)

Notice that, due to the normalization step, the computation of Â r becomes independent of

the source Kurtosis matrix � 4;s. The algorithm is stopped when je(r ) � e(r � 1)j2 � " , where

e(r ) = kÂ r � Â r � 1kF =kÂ r kF and " is an arbitrary small positive constant.

2.2 Uniqueness and identi�ability

Due to the Vandermonde structure of the array matrix, given in (3.5), and assuming the signal

sources are not closely located, matrixA can be shown to be full k-rank [125], so that kA = rA =

min(M; Q ). In this case, the Kruskal Theorem (1.56) yields Q � (4M � 3)=2, for M < Q , leading

to the following general su�cient conditions for the unique ness of the Parafac decomposition of

tensor C(4;y) :

2 � Q � 2M � 2: (3.26)

Although ( 3.26) is not a necessary condition, it establishes an upper boundon the number of

guaranteed resolvable sources. This bound limits the number of sources that we can treat using

the 3rd-order VA matrix A (3) , regardless of the number of virtual sensors.

In the case of a ULA array with M sensors, the number of di�erent virtual sensors associated

with the � th-order VA is shown to be equal to � (M � 1) + 1 [26]. In this context, the 3rd-order

VA matrix A (3) admits a maximum capacity of 3M � 3 sources. However, since the SS-LS

approach is bounded by the uniqueness condition (3.26), we can never charge the VA with more

than 2M � 2 sources, so that its noise subspace has at leastM free dimensions (i.e. linearly

independent basis vectors). Moreover, when using anM -element ULA array, the capacity of

the 4-MUSIC algorithm is associated with the number of VS sensors of a 2nd-order VA, which

coincides with the upper bound of the SS-LS approach. However, if 4-MUSIC operates with

maximal capacity, the noise subspace of the 2nd-order VA hasonly one free dimension.

DOA estimation

The source DOAs can be recovered from the VA matrixA (3) by using a 6th-order MUSIC-like

localization function P6(�; � ), such as de�ned in (3.17) with � = 3, i.e.

P6(�; � ) =
1



 w3(�; � )H U n





2 ; (3.27)
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where w3(�; � ) = a(�; � ) 
 a� (�; � ) 
 a(�; � ), with a(�; � ) de�ned in ( 3.3), and U n is a

M 3 � (M 3 � Q) matrix representing the noise subspace and formed of the left singular vec-

tors of A (3) associated with its M 3 � Q smallest singular values.

The source DOA parameters (� q; � q) can be recovered from the parameters of the orthogonal

projectors w3(�; � ) 2 CM 3 � 1 leading to the local maxima of the 6th-order localization function

P6(�; � ), de�ned in ( 3.27).

3 Multipath MIMO channel modeling

Let us consider a multiple-input multiple-output (MIMO) wi reless communication system with

Q transmit and M receive sensors disposed both in ULA arrays, with sensors spaced of half

wavelength. The transmit antenna array is assumed to be placed at the far-�eld of the receive

array and the transmission is subject to specular multipathpropagation due to remote scatterers,

as illustrated in �g. 3.3, so that the channel between each transmit and receive antenna can be

represented by a superposition ofK plane waves, associated with di�erent scatterers, located

far apart each other. The location of each scatterer determines the angles (#k ; ' k ) and (� k ; � k )

de�ning the directions of departure (DOD) and arrival of the kth path with respect to the

transmit and receive arrays, respectively. For notationalsimplicity, we assume that the antenna

arrays and the scatterers are approximately coplanar so that the elevation angles ' k and � k

approach zero and will therefore be omitted in the sequel. The transmitted signals are assumed

to be narrowband with respect to the array aperture so that the signals over thekth path are

subject to the a single attenuation factor � k , and achieve the same relative propagation delay,

equal to � k . In order to capture all the incoming delayed signals, we utilize a known real-valued

pulse shape �lter g(`), with �nite temporal support equal to L + 1 symbol periods, so that

g(`) = 0, for ` =2 [0; L ]. We also assume that the multipath delay spread pro�le is �nite with a

known maximum path delay � max that is larger than the inverse of the coherence bandwidth so

that the channel can be viewed as a frequency-selective MIMOmodel. Finally, the channel is

stationary over the length of the observation interval.

The received signal at the output of the array elementm, sampled at the symbol rate, can

be written as follows:

ym (n) =
QX

q=1

KX

k=1

� k a0
q(#k ) am (� k )

LX

`=0

g(` � � k) sq(n � `) + � m (n) (3.28)

=
QX

q=1

LX

`=0

hmq (`) sq(n � `) + � m (n); m 2 [1; M ]; (3.29)

where the channel coe�cient hmq (`) has been de�ned as follows:

hmq (`) ,
KX

k=1

� k a0
q(#k ) am (� k) g(` � � k); 8 ` 2 [0; L ]; (3.30)
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Figure 3.3: Multipath propagation scenario.

and hmq (`) = 0 elsewhere, with � k being the complex fading gain associated with thekth path

and a0
q(#k ) and am (� k ) denoting the spatial responses of the transmit and receivearray elements

q and m, respectively, with respect to the kth path, with DOD equal to #k and DOA given by

the angle � k . The non-measurable complex-valued discrete input signals sq(n) are stationary,

ergodic and mutually independent with symmetric distribut ion, zero-mean and non-zero kurtosis

 4;sq = c4;sq (0; 0; 0). The additive noise � m (n) at the receive array output is assumed Gaussian

and independent from the input signals, with zero-mean and unknown spatial correlation.

Let us write the channel coe�cients hmq (`) in a vector form, so that

h (m;q) (`) = [ hmq (`); : : : ; hmq (` + L)]T . By stacking the row-vectorsh (m;q) (`)T for all m 2 [1; M ],

we can build the following matrices:

H (q) (`) =
h
h (1;q) (`) : : : h (M;q )(`)

i T
2 CM � (L +1) (3.31)

=

0

B
B
@

h1q(`) h1q(` + 1) : : : h1q(` + L)
...

...
. . .

...

hMq (`) hMq (` + 1) : : : hMq (` + L)

1

C
C
A

Note that for ` = 0, matrix H (q) (0) contains the impulse responses of the channels linking the

transmit antenna q with each receive antennam 2 [1; M ]. Hence, by concatenatingH (q) (0) for

all q 2 [1; Q], we can de�ne a channel matrix H 2 CM � Q(L +1) , that can be written as

H ,
h
H (1) (0) : : : H (Q)(0)

i
; (3.32)

and contains all the channel impulse responses characterizing the M � Q MIMO system. Finally,

by stacking temporally shifted versions ofH (q) (0), we can de�ne a matrix H (q) 2 CM (2L +1) � (L +1)
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for each transmit antenna q 2 [1; Q], as follows:

H (q) ,

0

B
B
B
B
B
B
B
B
@

H (q)(� L )
...

H (q) (0)
...

H (q) (L )

1

C
C
C
C
C
C
C
C
A

; (3.33)

where each block-row of sizeM � (L + 1) can be written as H (q) (`+� `), with ` = 0, � ` 2 [� L; L ].

Recalling that hmq (`) = 0, 8 ` =2 [0; L ], we notice from (3.33) and (3.31) that matrix H (q) has a

block-Hankel structure, since

H (q) (� `) =

0

B
B
@

0 : : : 0 h1q(0) : : : h1q(L + � `)
...

. . .
...

...
. . .

...

0 : : : 0 hMq (0) : : : hMq (L + � `)

1

C
C
A ; for � ` � 0 and (3.34)

H (q) (� `) =

0

B
B
@

h1q(� `) : : : h1q(L ) 0 : : : 0
...

. . .
...

...
. . .

...

hMq (� `) : : : hMq (L ) 0 : : : 0

1

C
C
A ; for � ` � 0: (3.35)

By concatenating H (q) , for all q 2 [1; Q], we de�ne the matrix H 2 CM (2L +1) � Q(L +1) , as follows:

H ,
h
H (1) : : : H (Q)

i T
; (3.36)

which, due to (3.34) and (3.35), has the following structure:

H =

0

B
B
B
B
B
B
B
B
@

H (1) (� L ) H (2) (� L ) � � � H (Q)(� L )
...

...
. . .

...

H (1) (0) H (2) (0) � � � H (Q)(0)
...

...
. . .

...

H (1) (L ) H (2) (L ) � � � H (Q)(L )

1

C
C
C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

: : :
...

...
. . .

...

: : :

: : :

: : :
...

...
. . .

...

: : :

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

Notice that the ( L + 1)th block-row of size M � Q(L + 1) of matrix H corresponds to

matrix H de�ned in ( 3.32). Thus, it is possible to deduceH from the block-columns H (q) (0)

of matrix H . To this end, we �rst build H (q) by stacking the time-shifted versions H (q)(� `),

for all � ` 2 [� L; L ], as suggested by (3.33). Then, we obtain H by concatenating the resulting

matrices H (q) for all q 2 [1; Q], as indicated in (3.36).
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3.1 A Space-Time 4th-order cumulant tensor model

The space-time (ST) 4th-order output cumulants are de�ned as follows2:

c(4;y)
m1 m2m3m4

(l1; l2; l3) , cum
�
y�

m1
(n); ym2 (n + l1); y�

m3
(n + l2); ym4 (n + l3)

�
; (3.37)

and, due to the linearity and additivity properties of cumul ants, considering the assumption of

Gaussian noise, we can write:

c(4;y)
m1m2m3m4

(l1; l2; l3) =
QX

q=1

 4;sq

LX

`=0

h�
m1q(`) hm2 q(` + l1) h�

m3 q(` + l2) hm4 q(` + l3); (3.38)

where  4;sq = cum
�
s�

q(n); sq(n); s�
q(n); sq(n)

�
, m1; m2; m3; m4 2 [1; M ] and jl1j; jl2j; jl3j � L .

Let us denote ip+1 = ( up � 1)M + mp+1 , with up = lp + L + 1, for all p 2 [1; 3], and de�ne

C(4;y)
i 1 i 2 i 3 i 4

, c(4;y)
m1 m2m3m4 (l1; l2; l3), where i1 = m1. Then, using f = ( q � 1)(L + 1) + ` + 1, equa-

tion ( 3.38) yields:

C(4;y)
i 1 i 2 i 3 i 4

=
FX

f =1

ai 1 f bi 2 f ci 3 f di 4 f ; (3.39)

where F = Q(L + 1) and we have performed the following substitutions:
8
>>>>><

>>>>>:

ai 1 f =  4;sq h�
m1q(`); m1 = i1 2 [1; M ];

bi 2 f = hm2q(` + l1); m2 2 [1; M ]; l1 2 [� L; L ]; i2 2 [1; M (2L + 1)] ;

ci 3 f = h�
m3q(` + l2); m3 2 [1; M ]; l2 2 [� L; L ]; i3 2 [1; M (2L + 1)] ;

di 4 f = hm4q(` + l3); m4 2 [1; M ]; l3 2 [� L; L ]; i4 2 [1; M (2L + 1)] :

(3.40)

From (3.39), we note that C(4;y)
i 1 i 2 i 3 i 4

can be viewed as the scalar representation of a 4th-order tensor

C(4;y) with rank equal to Q(L +1), which admits a Parafac decomposition with components given

by the matrices A 2 CM � Q(L +1) and B ; C; D 2 CM (2L +1) � Q(L +1) , of which the elements are

given in (3.40). Tensor C(4;y) has one dimension equal toM and three other equal dimensions of

sizeM (2L + 1). Using the canonical basis vector notation, matrix A can be written as follows:

A =
FX

f =1

MX

i 1=1

ai 1 f e(M )
i 1

e(F )T

f

A =
QX

q=1

LX

`=0

MX

m1=1

 4;sq h�
m1q(`) e(M )

m1

�
e(Q)

q � e(L +1)
`+1

� T
; (3.41)

where e(I )
i denotes the i th canonical basis vector of RI and we have used the fact that

e(I )
i � e(J )

j = e(IJ )
(i � 1)J + j . From the above equation, we conclude that

A = H � � 4;s 2 CM � Q(L +1) ; (3.42)

2 Notice that, due to the assumption of stationarity of the inp ut signals, all the output statistics only depend

on the di�erences between the considered time-shifts. As a result, only three temporal indices are needed in

de�nition ( 3.37).
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whereH has been de�ned in (3.32) and � 4;s = Diag
�
� 4;s1 ; : : : ; � 4;sQ

�
is a Q(L + 1) � Q(L + 1)

diagonal matrix, with � 4;sq =  4;sq I L +1 . Similarly, matrix B can be represented as follows:

B =
FX

f =1

M (2L +1)X

i 2=1

bi 2 f e(M )
i 2

e(F )T

f

B =
QX

q=1

LX

`=0

LX

l1= � L

MX

m2=1

hm2 q(` + l1)
�

e(2L +1)
l1+ L +1 � e(M )

m2

� �
e(Q)

q � e(L +1)
`+1

� T
; (3.43)

and we note that:

B = H 2 CM (2L +1) � Q(L +1) ; (3.44)

whereH is the block-Hankel matrix de�ned in ( 3.36). From ( 3.40), it is now straightforward to

deduce that

C = H � 2 CM (2L +1) � Q(L +1) ; (3.45)

D = H 2 CM (2L +1) � Q(L +1) : (3.46)

Comments on the space-time cumulant tensor formulation

It is interesting to compare the above described cumulant tensor C(4;y) , with the formulations

introduced in Chapter 2 for the convolutive SISO and instantaneous MIMO cases (sections 2 and

4, respectively). Notice that when M = Q = 1, with L � 1, the signal model (3.29) corresponds

to the output of a purely temporal SISO channel represented by a single FIR �lter. In this case,

using (3.36), H reduces to the Hankel channel matrix given in (2.9), while from (3.32), we note

that H becomes the channel coe�cient vector hT , de�ned in ( 2.8). In the convolutive SISO

case, the 4th-order cumulant de�nition given in (3.37) is equivalent to (2.2) and tensor C(4;y)

becomes the 3rd-order tensor de�ned in (2.5).

On the other hand, considering the memoryless case (L = 0) with Q > 1 and M > 1, the

signal model (3.29) can be viewed as the output of an instantaneous MIMO channel. Indeed,

using (3.36) and (3.32), we note that the expression forH coincides with H in this case, and

both are equivalent to the channel coe�cient matrix used in ( 2.30). Under these conditions, the

4th-order cumulants de�ned in (3.37) take the form of (2.31) and tensor C(4;y) is equivalent to

the purely spatial cumulant tensor de�ned in ( 2.33), with four identical dimensions of sizeM .

In conclusion, the space-time cumulant tensorC(4;y) can be viewed as a generalized cumulant

tensor model that includes the convolutive SISO (Q = 1, M = 1, L � 1) and the instantaneous

MIMO ( Q > 1, M > 1, L = 0) as particular cases.

Uniqueness conditions

A su�cient uniqueness condition for the Parafac decomposition of the cumulant tensor C(4;y)

can be derived from the Kruskal Theorem, introduced in section 3.1 of Chapter 1. Due
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to its block-Hankel structure, H is ensured to be full k-rank, and thus kH = rH =

min(M (2L + 1) ; Q(L + 1)). Assuming that the specular reectors are located far apart each

other, and remote to both the transmit and receive arrays, we can consider that the in-

coming signals are spatially distinguishable. Further, assuming that there is at least one

path delay � k that is not a multiple of the symbol period 3, we can ensure thathmq (`) 6= 0,

8 ` 2 [0; L ]. Under these conditions, matrix H is also guaranteed to be full k-rank, and hence

kH = rH = min( M; Q (L +1)). Under these assumptions, the Kruskal uniqueness theorem yields:

3kH + kH � 2F + 3 ; (3.47)

where F = Q(L + 1), and it follows that:

3 min
�

M (2L + 1) ; Q(L + 1)
�

+ min
�

M; Q (L + 1)
�

� 2Q(L + 1) + 3 : (3.48)

Assuming L � 1, the following cases can be considered:

1. M � Q(L + 1), which implies M (2L + 1) � Q(L + 1).

In this case, (3.48) becomes 2Q(L + 1) � 3, which is satis�ed for all Q � 1

and L � 1, so that uniqueness is ensured for all

1 � Q �
M

L + 1
; L � 1; (3.49)

2. M < Q (L + 1) and M (2L + 1) � Q(L + 1).

In this case, (3.48) yields Q(L + 1) + M � 3, which is always satis�ed with

Q � 1, M � 1 and L � 1, i.e. the uniqueness condition is guaranteed when:

M
L + 1

< Q �
M (2L + 1)

L + 1
; M � 1; L � 1; (3.50)

3. M (2L + 1) < Q (L + 1), which implies M < Q (L + 1).

In this case, (3.48) gives 3M (2L + 1) + M � 2Q(L + 1) + 3, which is satis�ed

when
M (2L + 1)

L + 1
< Q �

2M (3L + 2) � 3
2(L + 1)

; (3.51)

Putting together equations (3.49) to ( 3.51), it follows that the uniqueness of the Parafac decom-

position of C(4;y) is guaranteed under the following general su�cient condition:

Q �
2M (3L + 2) � 3

2(L + 1)
M � 1; L � 1: (3.52)

When L = 0, we have a memoryless MIMO channel and the cases1 and 2 correspond toQ � M

and Q = M , respectively. In such cases, (3.48) is satis�ed provided that 2 � Q � M . Case3

3 This assumption is due to the frequency-selective nature of the channel. In the case of a at-fading channel,

this assumption is not necessary and we should useL = 0.
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corresponds to a strictly underdetermined mixture (Q > M ), and yields the following uniqueness

condition:

2 � Q �
4M � 3

2
; L = 0 ; (3.53)

which coincides, as it should be expected, with the uniqueness condition stated in (2.36) for

instantaneous MIMO mixtures in the underdetermined case;

The uniqueness conditions for the Parafac decomposition ofthe generalized cumulant tensor

C(4;y) are summarized in Table3.1 for some values ofM and L . Note that the �rst row ( L = 0)

corresponds to the instantaneous MIMO case, while the �rst column (M = 1) corresponds to

the purely temporal case, without spatial diversity. In thi s latter case, we notice that when

L > 1, uniqueness is ensured forQ � 2, which enables us to identify convolutive multiple-input

single-output (MISO) channels with up to 2 signal sources.

Table 3.1: Uniqueness conditions for the Parafac decomposition of C(4;y) .

M 1 2 3 4 5 6 7 8

L = 0 max Q - 2 4 6 8 10 12 14

L = 1 max Q 1 4 6 9 11 14 16 19

L = 2 max Q 2 4 7 10 12 15 18 20

L = 3 max Q 2 5 7 10 13 16 18 21

L = 4 max Q 2 5 8 10 13 16 19 22

3.2 Parafac modeling of the multipath MIMO channel

The introduction of the propagation channel structure in th e signal model (3.28) allows us

to model the multipath transmission as a specular channel with multiple planar wavefronts,

each one being characterized by an attenuation, a propagation delay and a spatial signature,

associated with the angles of departure and arrival. Using such a parametric model, the blind

identi�cation problem reduces the estimation of these multipath parameters. This allows us

to exploit some prior information about the structure of the wireless channel, which is often

available in radiocommunication contexts, such as the knowledge of pulse shape �lter and the

transmit and receive array manifolds.

Considering the parametric multipath channel model (3.30), let us de�ne:

8
>>>>><

>>>>>:

[A R ]m;k = am (� k); m 2 [1; M ]

[A T ]q;k = a0
q(#k ); q 2 [1; Q]

[G]`+1 ; k = g(` � � k); ` 2 [0; L ]:

[b]k = � k k 2 [1; K ];

(3.54)
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and

F = GDiag (b) 2 C(L +1) � K ; (3.55)

where A R 2 CM � K , A T 2 CQ� K , G 2 C(L +1) � K and b 2 CK � 1. Notice that the channel

coe�cients hmq (`) de�ned in equation ( 3.30) can be viewed as the scalar representation of a

3rd-order tensor H 2 CM � Q� (L +1) that admits a Parafac decomposition with rank K and

components given byA R , A T and F. This model assumes that the channel is stationary over

the interval of one time-slot and H can be viewed as a particularization of the tensor channel

model proposed in [126], where a block-fading channel has been considered yielding a Parafac

tensor properly formed by combining the signals received during multiple time-slots. In that

case, training sequences have been used to separate the signals from the channel information.

Uniqueness conditions

The spatial signature matrices A R and A T have a Vandermonde structure, as shown in (3.5),
and can be written as follows:

A R =

0

B
B
B
B
B
B
B
@

1 : : : 1

a1 : : : aK

a2
1 : : : a2

K
...

. . .
...

aM � 1
1 : : : aM � 1

K

1

C
C
C
C
C
C
C
A

; A T =

0

B
B
B
B
B
B
B
@

1 : : : 1

a'1 : : : a'K
a' 2

1 : : : a' 2
K

...
. . .

...

a' Q� 1
1 : : : a' Q� 1

K

1

C
C
C
C
C
C
C
A

; (3.56)

where we have de�ned ak = e| � cos� k and a'k = e| � cos#k from (3.4), considering transmit and re-

ceive ULA arrays with sensors spaced of half wavelength and no elevation angle. In this context,

assuming that the incoming signals are spatially distinguishable is equivalent to have generating

vectors of A R and A T with distinct nonzero elements, i.e. ak1 6= a k2 6= 0 and a'k1 6= a' k2 6= 0,

for all k1 6= k2 2 [1; K ]. Under this condition, it has been shown in [125] that a Vandermonde

matrix is full k-rank and, therefore: kA R = rA R = min( M; K ) and kA T = rA T = min( Q; K ).

In addition, the pulse shape �lter g(`) is known and, due to the frequency-selective nature

of the channel, we have assumed that there is at least one pathdelay � k that is not a multiple of

the symbol period. This allows us to ensure thatg(` � � k ) 6= 0, 8 ` 2 [0; L ]; k 2 [1; K ]. Moreover,

the path delays are distinct � k1 6= � k2 , 8 k1 6= k2, and a Rayleigh fading is assumed so that the

gains � k are modeled as a complex random variable with independent real and imaginary parts

driven from a continuous Gaussian distribution. Under these conditions, matrix F = GDiag (b)

is also ensured to be full k-rank, and hencekF = rF = min( L + 1 ; K ).

Using the Kruskal Theorem, we derive a su�cient condition fo r the uniqueness of the Parafac

decomposition of the 3rd-order tensorH , as follows:

kA R + kA T + kF � 2K + 2 (3.57)
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and hence

min(M; K ) + min( Q; K ) + min( L + 1 ; K ) � 2K + 2 : (3.58)

When M > K , Q > K and L + 1 > K , the above condition yields K � 2, meaning that in

this case at least two delayed signals must be collected at the receive �lters. In the SISO case

(M = Q = 1), the uniqueness condition is not satis�ed, as it should be expected, since the

channel lacks of information in the spatial domain.

4 Blind identi�cation of multipath MIMO channels

By characterizing the transmission channel in terms of its multipath parameters (attenuations,

propagation delays and spatial signatures), the identi�cation of the MIMO channel becomes

equivalent to the estimation of these propagation parameters. In this section, we propose a

two-stage approach for estimating the multipath MIMO channel. Firstly, in section 4.1, we use

a non-parametric model to blindly identify the convolutive channel coe�cients. This stage is

based on a SS-LS algorithm and can be viewed as a generalization of the blind identi�cation

methods introduced in Chapter 2. After that, in section 4.2, we propose to recover the multipath

channel parameters by means of an ALS-based algorithm exploiting the specular structure of

the channel model.

4.1 A non-parametric Parafac-based SS-LS algorithm

Let us denote I = M (2L + 1). The 4th-order tensor C(4;y) 2 CM � I � I � I , with scalar representa-

tion given by (3.39), can be unfolded in the form of matrix C [1] 2 CI 3 � M , so that
h
C [1]

i

(i 2 � 1)I 2+( i 3 � 1)I + i 4 ; i 1

= C(4;y)
i 1 i 2 i 3 i 4

; (3.59)

for all i1 2 [1; M ] and i2; i3; i4 2 [1; I ]. From the above de�nition, and using (3.39), it is easy to

note that C [1] =
�

B � C � D
�

A T , and hence, using equations (3.42) to ( 3.46), we end up with:

C [1] =
�

H � H � � H
�

� 4;s H H: (3.60)

From (3.60), we can de�ne the following iterative LS cost function:

 ( bH r � 1; A ) ,


 C [1] �

�
bH r � 1 � bH

�
r � 1 � bH r � 1

�
A T





2

F
; (3.61)

wherer is the iteration number and A = H � � 4;s, according to (3.42). Minimizing ( 3.61) yields:

Â T
r = arg min

H
 ( bH r � 1; H )

=
�

bH r � 1 � bH
�
r � 1 � bH r � 1

� #
C [1]: (3.62)

The Kruskal Theorem ensures uniqueness up to column scalingand permutation ambiguities.

Therefore, under the conditions stated in section3.1, the Parafac decomposition of tensorC(4;y)
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is subject to these trivial indeterminacies, so that any matrices �H and �H satisfying (3.60) are

such that �H = H � 1� and �H = H� 2� , where � 1, � 2 are Q(L + 1) � Q(L + 1) diagonal

matrices and � is a permutation matrix. Exploiting the block-Hankel struc ture of H , given

in (3.36), we can avoid intra-block permutations, thus reducing the permutation ambiguity to

block-column permutations. In practice, before computing the iteration r � 1 using (3.62),

matrix bH r � 1 is built from bH r � 1, as follows:

1. Deduce bH (q)
r � 1(0), q 2 [1; Q], from the columns of Â �

r � 1, as follows:

bH (q)
r � 1(0) =

h
[Â �

r � 1]� (q� 1)(L +1)+1 : : : [Â �
r � 1]� q(L +1)

i
;

2. For each q 2 [1; Q], build the matrices bH (q)
r � 1(� `), for all � ` 2 [� L; L ], by shifting the

columns of bH (q)
r � 1(0), as indicated in (3.34) and (3.35);

3. From (3.33), build bH (q)
r � 1, q 2 [1; Q], by stacking bH (q)

r � 1(� `), for all � ` 2 [� L; L ];

4. Obtain bH r � 1 by concatenating bH (q)
r � 1 for all q 2 [1; Q], as indicated in (3.36).

The algorithm is initialized with a M � Q(L + 1) Gaussian random matrix bH 0. The itera-

tions are stopped whenje(r ) � e(r � 1)j2 � " , where e(r ) = k bH r � bH r � 1k2
F =k bH r k2

F and " is an

arbitrary small positive constant.

4.2 Parametric estimation of multipath MIMO channels

In this section, we propose an ALS-based algorithm to jointly estimate the multipath propagation

delays and the angles of departure and arrival. This approach is based on the Parafac modeling

of the multipath MIMO channel presented in section 3.2, and assumes a prior estimation of the

channel coe�cients by means of a blind technique such as the SS-LS algorithm introduced in

the previous section.

Let us consider the 3rd-order tensorH 2 CQ� M � (L +1) , with scalar representation given by

(3.30) and Parafac components given by the matricesA T , A R and F, de�ned in ( 3.55) and

(3.56). Taking q 2 [1; Q], m 2 [1; M ] and ` 2 [0; L ], we de�ne three unfolded representations of

H , as follows:
8
>><

>>:

[H [1]]`M + m; q = hmq (`);

[H [2]](m� 1)Q+ q; `+1 = hmq (`);

[H [3]](q� 1)(L +1)+ `+1 ; m = hmq (`);

(3.63)

where H [1] 2 CM (L +1) � Q, H [2] 2 CQM � (L +1) and H [3] 2 CQ(L +1) � M . From (3.30), using the
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canonical basis vector notation and de�nitions (3.55) and (3.56), we can write:

H [1] =
QP

q=1

MP

m=1

LP

`=0
hmq (`)

�
e(L +1)

`+1 � e(M )
m

�
e(Q)T

q

=
KP

k=1

h� P L
`=0 � kg(` � � k)e(L +1)

`+1

�
�

� P M
m=1 am (� k )e(M )

m

�i � P Q
q=1 a0

q(#k )e(Q)
q

� T
;

(3.64)

and hence

H [1] =
�

F � A R

�
A T

T : (3.65)

After similar manipulations with H [2] and H [3], we get:

H [2] =
�

A R � A T

�
FT ; (3.66)

H [3] =
�

A T � F
�

A T
R : (3.67)

Equations (3.65) to ( 3.67) allow us to write the following iterative cost functions:

 1(A T ; F̂ (r � 1) ; Â (r � 1)
R ) =



 H [1] �

�
F̂ (r � 1) � A (r � 1)

R

�
A T

T





2

F
; (3.68)

 2(F ; Â (r � 1)
R ; Â (r )

T ) =


 H [2] �

�
Â (r � 1)

R � Â (r )
T

�
FT





2

F
; (3.69)

 3(A R ; Â (r )
T ; F̂ (r ) ) =



 H [3] �

�
Â (r )

T � F̂ (r )
�

A T
R





2

F
; (3.70)

where r is the iteration number. The LS solution of these equations is given by

Â (r )T
T =

�
F̂ (r � 1) � A (r � 1)

R

� #
H [1]; (3.71)

F̂ (r )T =
�

Â (r � 1)
R � Â (r )

T

� #
H [2]; (3.72)

Â (r )T
R =

�
Â (r )

T � F̂ (r )
� #

H [3]; (3.73)

where F̂ (0) and A (0)
R can be initialized as Gaussian random matrices or using someprevious

knowledge about the multipath parameters, if available (e.g. DOAs for A (0)
R ). The algorithm

is stopped whenje(r ) � e(r � 1)j2 � " , where " is an arbitrary small positive constant and the
estimation error e(r ) for the iteration r � 1 is given by e(r ) = e1(r ) + e2(r ) + e3(r ), where

e1(r ) =



 Â ( r )

T � Â ( r � 1)
T





2

F

 Â ( r )

T





2

F

; e2(r ) =



 Â ( r )

R � Â ( r � 1)
R





2

F

 Â ( r )

R





2

F

; e3(r ) =



 F̂ ( r ) � F̂ ( r � 1)





2

F

 F̂ ( r � 1)





2

F

: (3.74)

Subspace-based algorithms for multipath parameter extrac tion

We now describe speci�c techniques for extracting the multipath channel parameters from the

estimatesÂ T = Â (r )
T , Â R = Â (r )

R and F̂ = F̂ (r ) , obtained after the convergence of the algorithm.

Exploiting the known transmit and receive array manifolds as well as the knowledge of the

pulse shape �lter, we build orthogonal projectors based on the signal subspace structure. In
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the sequel, we describe three subspace techniques for the estimation of DOAs, DODs and path

delays, based on MUSIC-like localization functions

Let us start with the case M > K and denote by Û n 2 CM � (M � K ) the matrix formed

from the left singular vectors of Â R associated with its M � K null singular values. De�ne

wm (� ) = e| � (m� 1) cos� and build a column-vector w(� ) 2 CM � 1. For each given value of� ,

the orthogonal projector w(� ) reproduces the column-wise structure of (3.56). The DOAs � k

associated with each pathk 2 [1; K ], can be obtained as the arguments yielding theK local

minima of the localization function P2(� ), de�ned in ( 3.14). For the caseM � K , a generalized

localization function P2� (� ) has been de�ned in (3.17), where the orthogonal projector w � (� )

takes the form of a multiple Kronecker product, as indicated in (3.10) and U n 2 CM � � (M � � K )

is obtained from the left singular vectors associated with the M � � K null singular values of

the � th-order virtual array Â (� )
R . Using ULA arrays, this technique allows us for estimating

up to � (M � 1) multipath DOAs [ 26]. Finally, note that the DODs #k , k 2 [1; K ] can also be

estimated using the above described technique, withQ replacing M and Â T instead of Â R .

Similarly, path delays can also be extracted from the estimated matrix F̂ using the orthog-

onality between signal and noise subspaces. Exploiting theknowledge of the real-valued pulse

shape �lter g(`), we can construct orthogonal projectorsw(� ) 2 C(L +1) � 1, L + 1 > K , so that

w` (� ) = g(� � ` + 1), ` 2 [1; L + 1], for all � 2 [0; � max ], where � max is a known upper bound

of the path delays. Taking the SVD of F̂ , we build Û n 2 C(L +1) � (L +1 � K ) with the left singular

vectors associated with theL +1 � K null singular values and �nd the path delays � k , k 2 [1; K ],

as the arguments yielding the K local minima of P2(� ). A straightforward extension of the

technique for the caseL + 1 � K is possible by utilizing an augmented matrix F̂ (� ) = F̂ � � , and

a corresponding projectorw � (� ) = w(� )
 � . For instance, with � = 2, matrix F̂ (2) = F̂ � F̂ has

(L + 1) 2 rows, of which L(L + 1) =2 are repeated. Hence,̂F (2) can be easily shown to have rank

equal to r F̂ (2) = min( I; K ), where I = ( L + 1) 2 � L (L + 1) =2 = ( L + 1)( L + 2) =2, which is the

number of distinct rows, meaning that we can estimate the delays of up to I � 1 paths, provided

that L + 1 � K � I � 1.

We also notice that, under the Kruskal condition (3.58), the Parafac decomposition of the

3rd-order tensorH is ensured to be unique up to column scaling and permutations, which means

that any matrices �A T , �A R and �F, satisfying equations (3.65) to ( 3.67), are of the following form:
8
>><

>>:

�A T = A T � T � ;
�A R = A R � R � ;
�F = F� F � ;

(3.75)

where � is a permutation matrix and � T , � R , � F are complex diagonal scaling matrices sat-

isfying � T � R � F = I K . Due to their Vandermonde structure shown in (3.56), the spatial array

response matrices,A T and A R , have an all-one �rst row. This property allows us to get rid of
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the diagonal scaling ambiguities. By taking the �rst row of �A T , we build the diagonal matrix
�� T = D1

� �A T

�
and, using (3.75), we have �� T = D1 (A T � T � ) = � T D1 (A T ) � T � , where D i (�)

denotes the diagonal matrix built from the i th row of the matrix argument. Since D1 (A T ) = I K ,

we get �� T = � T � T � . Analogous manipulations yield �� R = D1
� �A R

�
= � T � R � . It follows

that �� T
�� R = � T � � 1

F � = �� � 1
F , which is also a diagonal matrix. Note that the above procedure

leaves the column permutation unchecked.

Let us now denote by �A R , �A T and �G the parameter matrices reconstructed from the es-

timated DOAs ( �̂ k), DODs (#̂k) and path delays (�̂ k), according to (3.54), for all k 2 [1; K ].

Recalling that F = GDiag (b), we are able to estimate the attenuation vector bb, as follows:

bb = diag
�

�G # F̂ �̂ � 1
F

�
; L + 1 � K; (3.76)

where the matrix F̂ , obtained after the convergence of the ALS-based algorithm, is an estimate

of �F and �̂ � 1
F is computed as�̂ � 1

F = �̂ T �̂ R , where �̂ T = D1(Â T ) and �̂ R = D1(Â R ) represent

the estimates of �� T and �� R , respectively. The operatordiag(�) forms a column-vector from the

diagonal elements of the matrix argument.

At last, we remark that the remaining column permutation, al though not resolvable, is not
relevant in the present context. However, in order to completely characterize the multipath
channel, we need to indicate the correspondences linking the parameters associated with a given
path k 2 [1; K ], i.e. given the estimates�̂ k1 , #̂k2 and �̂ k3 , which values of k1, k2 and k3, are
associated with thekth path. In other words, we need to �nd k1, k2 and k3, for eachk 2 [1; K ],
so that [ �A R ]�k1 , [ �A T ]�k2 and [ �G]�k3 are scaled versions of [̂A R ]�k , [Â T ]�k and [F̂ ]�k , respectively. In
practice, we solve this problem using the normalized inner product, so that

k1 = arg min
u2 [1;K ]

�
�
�
�
�
1 �

[ �A R ]H�u [Â R ]�k
k[ �A R ]�u k k[Â R ]�k k

�
�
�
�
�
; k2 = arg min

u2 [1;K ]

�
�
�
�
�
1 �

[ �A T ]H�u [Â T ]�k
k[ �A T ]�u k k[Â T ]�k k

�
�
�
�
�
;

and

k3 = arg min
u2 [1;K ]

�
�
�
�
�
1 �

[ �G ]T�u [F̂ ]�k
k[ �G]�u k k[F̂ ]�k k

�
�
�
�
�
; 8 k 2 [1; K ]:

The attenuation vector bb can only be estimated from (3.76) after reordering the columns of �G,

as explained above, in order to keep the same permutation aŝF.

5 Simulation results

In this section, we present computer simulation results aiming to illustrate the use and assess

the performance of the techniques discussed throughout this chapter. First, in the context of a

at fading channel and using a ULA receive array, we simulatea radio propagation scenario for

the application of direction �nding algorithms. The SS-LS approach, proposed in section2, will



5. SIMULATION RESULTS 91

be used to estimate the signal DOAs from a 3rd-order virtual array. Performance comparisons

will be provided using the 2-, 4- and 6-MUSIC algorithms [86, 127, 27].

After that, we will simulate a multipath radio propagation c hannel with multiple transmit

and receive antennas, both using ULA arrays. In this context, we will be �rst interested in

estimating the coe�cients of the convolutive �lters repres enting the connections between each

transmit and receive antenna. To this end, the generalized 4th-order cumulant tensor described

in section 3.1will be decomposed by means of the SS-LS algorithm proposed in section4.1. Then,

starting from the estimated channel model, we recover the spatial and temporal signatures of

the MIMO channel using the Parafac-based algorithm proposed in section 4.2. Finally, we

extract the multipath channel parameters (DOAs, DODs, path delays and attenuations) using

the subspace-based methods also described in section4.2.

Direction �nding algorithms for array processing

In which follows, we evaluate the performance of the method proposed in section2 in terms of

the quality of DOA estimation. We will use the root mean-squared error (RMSE) performance

criterion, de�ned for each sourceq as follows [27]:

RMSE(q) ,

vu
u
t 1

R

RX

r =1

�
�
� �̂

hr i
q � � q

�
�
�
2
; q 2 [1; Q]; (3.77)

where R is the number of Monte Carlo simulations and �̂ hr i
q is the estimation of � q for the

simulation r . The DOA estimates �̂ hr i
q , q 2 [1; Q], are deduced from the angle arguments of

the orthogonal projectors w � (� ) leading to the local maxima of the corresponding localization

function P2� (� ). Local maxima can be obtained by searching the critical points, i.e. where

the �rst derivative is zero, with a negative second derivative. In this context, an estimate

�̂ hr i
q , q 2 [1; Q], is said to be aberrant if 1=P2� (�̂ hr i

q ) is greater than a certain threshold. For

the simulations performed in this section, we adopted the value of 0:1 for this threshold, as

suggested by [26, 27]. Aberrant estimates can also happen when the algorithm cannot resolve

all the sources. In this case, the number of local maxima of the localization function is smaller

than Q. In the following results, the probability of having aberrant estimates has been omitted,

since only negligible values have been attained.

We �rst simulated the case of a ULA array with M = 3 narrowband sensors spaced of

�= 2, receiving Q = 4 sources with azimuth angles given by� 1 = � 55� , � 2 = � 25� , � 3 = 5 � ,

� 4 = 50 � , and no elevation angle. The array output signals are corrupted by additive Gaussian

and spatially white noise. The curves in �g. 3.4 show, for several values of SNR, the RMSE

for the worst (left) and the best (right) estimated sources. In order to evaluate the impact of

cumulant estimation errors on the tested algorithms, we show in �g. 3.5 the maximal (left) and

minimal (right) RMSE as a function of the sample data length, for a �xed SNR value of 15dB.

In this case, the SS-LS and the 4-MUSIC algorithms operate with their maximal capacity in
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Figure 3.4: Maximal (left) and minimal (right) RMSE as a func tion of the SNR.
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Figure 3.5: Maximal (left) and minimal (right) RMSE as a func tion of the sample data length.

terms of the number of sources. By exploiting the larger noise subspace of the 3rd-order virtual

array, the SS-LS approach provides better results than the 4-MUSIC algorithm, using the same

output statistics. In this scenario, the 6-MUSIC algorithm is not at its identi�ability bound

and, in the worst case (curves at left), it gives better results than the other techniques, at the

cost of having to estimate 6th-order cumulants.

By adding a fourth sensor (M = 4) to the antenna array (with �= 2 spacing), we set up

another simulation scenario with Q = 5 sources. In this case, the additional source arrives from

the direction � 5 = 20 � , with no elevation angle. In �g. 3.6, we show the maximal (left) and

minimal (right) RMSE as a function of the SNR, for N = 1000. These curves demonstrate that

the three algorithms achieve better performance, with verysimilar results when the VAs do not

operate with maximal capacity. In �g. 3.7, the results for the worst (left) and the best (right)

estimated sources are given for several values of the sampledata length, with a �xed SNR of

15dB. In this case, the 6-MUSIC algorithm does not yield any noticeable advantage.
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Figure 3.6: Maximal (left) and minimal (right) RMSE as a func tion of the SNR.
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Figure 3.7: Maximal (left) and minimal (right) RMSE as a func tion of the sample data length.

We have also tested the algorithms in presence of Gaussian noise with unknown spatial

correlation. In this case, we used a�= 2-spaced 3-element ULA array receivingQ = 2 sources

with DOAs given by � 1 = 5 � and � 2 = 50 � , respectively. Since this is an overdetermined case,

we used the SS-LS approach to estimate the user DOAs from both, the 3rd-order virtual array

Â (3) (� = 3) and the estimated array matrix Â (� = 1). The additive Gaussian noise has been

modeled so that its spatial correlation matrix is given by [R � ]ij = � 2
� � j i � j j, i; j 2 [1; M ], where

� 2
� is the noise variance per antenna and� is the spatial correlation coe�cient of the noise. In

�g. 3.8, we compare our results with the 2- and 4-MUSIC algorithms using N = 1000 output

symbols, with a SNR of 5dB, for di�erent values of the noise spatial correlation. Note that, for

� = 1 as well as for� = 3, the SS-LS approach performed very closely to the 4-MUSICalgorithm,

showing good robustness with respect to spatially colored noise, as it should be expected. The

2-MUSIC algorithm, on the other hand, degrades as� increases, since the SOS are not able to

handle an additive noise with unknown spatial correlation.
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Figure 3.8: Maximal RMSE vs. noise spatial correlation (N = 1000 and SNR=5dB).
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Figure 3.9: Antenna pattern obtained from the 3rd- and 2nd-order VAs for a ULA with 4 sensors.

Finally, we illustrate the resolution gains in terms of beamwidth provided by the 3rd-order VA

used in the SS-LS approach with respect to the 2nd-order VA used by the 4-MUSIC algorithm.

In �g. 3.9 we show, for a ULA with 4 sensors spaced of�= 2, the array response of the 3rd-

and 2nd-order VAs for a source arriving from direction � 0 = 5 � (left) and � 0 = � 25� (right).

These curves have been obtained from the magnitude of the inner product of the VA steering

vectors, computed as shown in (3.11). In both cases, for a 3dB attenuation, the beamwidth of

the estimated 3rd-order VA (SS-LS) in the given direction is narrower than the one obtained

with 4-MUSIC. In practice, this latter one is computed from t he eigenvector ofĈ (4;y) associated

with its largest eigenvalue. We usedN = 1000 output symbols with additive white Gaussian

noise at a SNR level of 10dB. The gain in terms of the beamwidthfor an attenuation of 3dB is

about 8� for the curves at left and 3� for the �gure at right.
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Multipath MIMO channel estimation

Let us consider a Q-sensor transmit and an M -sensor receive ULA arrays located far apart

each other, transmitting signals over a multipath specular radio channel such as de�ned in

(3.28). The multipath channel is characterized by K remote scatterers each one determining

a set of physical parameters (� k ; #k ; � k ; � k ), according to the model (3.28). In which follows,

we will be �rst interested in the non-parametric representation of the multipath channel and

in estimating the channel impulse response coe�cientshmq(`) of the convolutive MIMO model,

up to a scaling factor and a permutation on the order of the transmit antennas. After that,

exploiting the physical model given in (3.30), we make use of the ALS-based algorithm described

in section 4.2 to estimate the spatial and temporal channel signatures andextract the multipath

parameters by means of subspace-based techniques.

Non-parametric estimation of convolutive MIMO channel

In order to assess the quality of the non-parametric MIMO channel estimation, we will use the

normalized mean squared error (NMSE) performance criterion4, de�ned as:

NMSE=
1
R

RX

r =1

QX

q=1

NMSEhr i (q); (3.78)

where R is the number of Monte Carlo simulations andNMSEhr i (q) = min
q12 [1;Q]

�
� (q1 )

hr i (q)
�

and

� (q1)
hr i (q) =

k bH (q1 )
hr i (0) � H (q) (0)k2

F

kH (q) (0)k2
F

; (3.79)

with bH (q1 )
hr i (0) being the q1th M � (L + 1) block of the estimated matrix Â hr i , obtained from

(3.62) after convergence of the simulationr , assuming that Ĥ (q1)
hr i (0) has been optimally scaled

with respect to H (q) (0), de�ned in ( 3.31).

The following simulation results have been obtained with synthesized 4th-order output cu-

mulant data. In order to reproduce the e�ects of the additive Gaussian noise corrupting the

output signals and to emulate the errors due to cumulant estimation from �nite-length output

data sequences, we have modeled the 4th-order output cumulant as follows:

bC [1] = C [1] + � 2
eE + � 2

� � (3.80)

whereC [1] 2 CM 3(2L +1) 3 � M is the true output cumulant matrix computed from ( 3.60), while E

and � are complex random matrices of the same size asC [1] and elements driven from standard

Gaussian distributions. In this context, � 2
e represents the variance of the 4th-order cumulant

4 Note that the NMSE is used only for performance evaluation pu rposes, since its computation involves the

knowledge of the true channel coe�cients.
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estimators and � 2
� amounts to the additive noise power and is computed in such a way to ensure

a given SNR level, given as follows:

SNR =
kC [1]kF

k� 2
1E1kF

: (3.81)

In our simulations we have used the �xed value� 2
e = 0 :01 whereas the SNR has been taken in

the range of 5 to 35dB. The curves shown in the sequel have beenobtained from the average of

R = 100 Monte Carlo simulations.
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Figure 3.10: NMSE vs. SNR for channel con�guration A with L = 1.
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Figure 3.11: NMSE vs. SNR for channel con�guration B with L = 2.

Two sets of channel con�guration parameters have been considered and are described in

Table 3.2. In �g. 3.10, we show the NMSE performance of the SS-LS algorithm forM = 5 (left)

and M = 4 (right) receive antennas, under the channel con�guration A (K = 2 multipath),

using a pulse shape �lter of orderL = 1 (note that � max < T s in this case). By increasing the

number of transmit antennas from Q = 1 to Q = 2, the channels become more complex and
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Figure 3.12: NMSE vs. SNR for channel con�guration A with L = 1.

the curves clearly show an identi�cation performance loss due to the co-channel interference. In

�g. 3.11, we show similar results obtained under the channel con�guration B, in which multipath

propagation is characterized byK = 3 rays. In this case, Ts < � max < 2Ts and we useL = 2.

Again, the curves show worse results forQ = 2, as it should be expected, and a performance

degradation can also be observed with respect to the case ofL = 1. In both �gures, 3.10 and

3.11, comparing the left and right graphs, we notice an improvement due to addition of a receive

antenna for a given value ofQ. Finally, in �g. 3.12, we included the case ofQ = 3 transmit

antennas under channel con�guration A, with L = 1 and M = 6 receive antennas. The curves

show that the SS-LS algorithm correctly identi�ed the MIMO c hannel coe�cients in this case,

in spite of the performance loss.

Table 3.2: Channel con�guration parameters.

Con�guration A Con�guration B

Number of paths 2 3

DOAs � 1 = 40 � , � 2 = � 30� � 1 = 50 � , � 2 = � 5� , � 3 = � 45�

DODs #1 = 50 � , #2 = � 5� #1 = 45 � , #2 = � 35� , #3 = � 10�

Path delaysy � 1 = 0 :3Ts, � 2 = 0 :85Ts � 1 = 0 :35Ts, � 2 = 0 :8Ts, � 3 = 1 :4Ts

y Ts stands for the symbol period.

Subspace-based algorithms for multipath parameter extraction

In the sequel, we will be interested in estimating the physical multipath parameters of the MIMO

channel using the combined ALS-MUSIC algorithm proposed insection 4.2. In this section,
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