High-order statistical methods for blind channel identification and source detection with applications to wireless communications

Résumé : Les systèmes de télécommunications modernes exigent des débits de transmission très élevés. Dans ce cadre, le problème d'identification de canaux est un enjeu majeur. L'utilisation de techniques aveugles est d'un grand intérêt pour avoir le meilleur compromis entre un taux binaire adéquat et la qualité de l'information récupérée. En utilisant les propriétés des cumulants d'ordre 4 des signaux de sortie du canal, cette thèse introduit de nouvelles méthodes de traitement du signal tensoriel avec des applications pour les systèmes de communication radio-mobiles. En utilisant la structure symétrique des cumulants de sortie, nous traitons le problème de l'identification aveugle de canaux en ntroduisant un modèle multilinéaire pour le tenseur des cumulants d'ordre 4, basé sur une décomposition de type Parafac. Dans le cas SISO, les composantes du modèle tensoriel ont une structure de Hankel. Dans le cas de canaux MIMO instantanés, la redondance des facteurs tensoriels est exploitée pour l'estimation des coefficients du canal. Dans ce contexte, nous développons des algorithmes d'identification aveugle basés sur une minimisation de type moindres carrés à pas unique (SS-LS). Les méthodes proposées exploitent la structure multilinéaire du tenseur de cumulants aussi bien que les relations de symétrie et de redondance, ce qui permet d'éviter toute sorte de traitement au préalable. En effet, l'approche SS-LS induit une solution basée sur une seule et unique procédure d'optimisation, sans les étapes intermédiaires requises par la majorité des méthodes existant dans la littérature. En exploitant seulement les cumulants d'ordre 4 et le concept de réseau virtuel, nous abordons aussi le problème de la localisation de sources dans le cadre d'un réseau d'antennes multiutilisateur. Une contribution originale consiste à augmenter le nombre de capteurs virtuels en exploitant un arrangement particulier du tenseur de cumulants, de manière à améliorer la résolution du réseau, dont la structure équivaut à celle qui est typiquement issue de l'utilisation des statistiques d'ordre 6. Nous traitons par ailleurs le problème de l'estimation des paramètres physiques d'un canal de communication de type MIMO à trajets multiples. Dans un premier temps, nous considérons le canal à trajets multiples comme un modèle MIMO convolutif et proposons une nouvelle technique d'estimation des coefficients. Cette technique non-paramétrique généralise les méthodes proposées dans les chapitres précédents pour les cas SISO et MIMO instantané. En représentant le canal multi-trajet à l'aide d'un formalisme tensoriel, les paramètres physiques sont obtenus en utilisant une technique combinée de type ALS-MUSIC, basée sur un algorithme de sous-espaces. Enfin, nous considérons le problème de la détermination d'ordre de canaux de type RIF, dans le contexte des systèmes MISO. Nous introduisons une procédure complète qui combine la détection des signaux avec l'estimation des canaux de communication MISO sélectifs en fréquence. Ce nouvel algorithme, basé sur une technique de déflation, est capable de détecter successivement les sources, de déterminer l'ordre de chaque canal de transmission et d'estimer les coefficients associés.
Type de document :
Thèse
Networking and Internet Architecture [cs.NI]. Université de Nice Sophia Antipolis, 2008. English
Liste complète des métadonnées

https://tel.archives-ouvertes.fr/tel-00460158
Contributeur : Estelle Nivault <>
Soumis le : vendredi 26 février 2010 - 13:46:43
Dernière modification le : vendredi 26 février 2010 - 17:25:26
Document(s) archivé(s) le : jeudi 18 octobre 2012 - 16:05:46

Fichier

CERFernandes2008.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : tel-00460158, version 1

Collections

Citation

Carlos Estêvao Rolim Fernandes. High-order statistical methods for blind channel identification and source detection with applications to wireless communications. Networking and Internet Architecture [cs.NI]. Université de Nice Sophia Antipolis, 2008. English. 〈tel-00460158〉

Partager

Métriques

Consultations de
la notice

267

Téléchargements du document

768