«. En-témoigne-l-'arrivée-imminente-du and ». Ou-pic-de-huber, qui représente le moment où l'extraction d'hydrocarbures atteindra son maximum avant de décliner du fait de l'épuisement des réserves, 2009.

K. Alanne, A. Saari, V. Ismet-ugursal, and J. Good, The financial viability of an SOFC cogeneration system in single-family dwellings, Journal of Power Sources, vol.158, issue.1, p.403, 2006.
DOI : 10.1016/j.jpowsour.2005.08.054

P. Vernoux, M. Guillodo, J. Fouletier, and A. Hammou, Alternative anode material for gradual methane reforming in solid oxide fuel cells, Solid State Ionics, vol.135, issue.1-4, p.425, 2000.
DOI : 10.1016/S0167-2738(00)00390-8

J. M. Klein, M. Hénault, C. Roux, Y. Bultel, and S. Georges, Direct methane solid oxide fuel cell working by gradual internal steam reforming: Analysis of operation, Journal of Power Sources, vol.193, issue.1, p.331, 2009.
DOI : 10.1016/j.jpowsour.2008.11.122

URL : https://hal.archives-ouvertes.fr/hal-00417169

V. M. Janadhanan and O. Deutscmann, CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes, Journal of Power Sources, vol.162, issue.2, p.1192, 2006.
DOI : 10.1016/j.jpowsour.2006.08.017

E. S. Hecht, G. K. Gupta, H. Zhu, A. M. Dean, R. J. Kee et al., Methane reforming kinetics within a Ni???YSZ SOFC anode support, Applied Catalysis A: General, vol.295, issue.1, p.40, 2005.
DOI : 10.1016/j.apcata.2005.08.003

I. Yasuda and T. Ikita, Precise Determination of the Chemical Diffusion Coefficient of Calcium-Doped Lanthanum Chromites by Means of Electrical Conductivity Relaxation, Journal of The Electrochemical Society, vol.141, issue.5, p.1268, 1994.
DOI : 10.1149/1.2054908

J. Richter, P. Holtappels, T. Graule, T. Nakamura, and L. J. Gauckler, Materials design for perovskite SOFC cathodes, Monatshefte f??r Chemie - Chemical Monthly, vol.177, issue.137, p.985, 2009.
DOI : 10.1007/s00706-009-0153-3

M. Brown, S. Primdahl, and M. Mogensen, Structure/Performance Relations for Ni/Yttria-Stabilized Zirconia Anodes for Solid Oxide Fuel Cells, Journal of The Electrochemical Society, vol.147, issue.2, p.475, 2000.
DOI : 10.1149/1.1393220

W. G. Bessler, J. Warnatz, and D. G. Goodwin, The influence of equilibrium potential on the hydrogen oxidation kinetics of SOFC anodes, Solid State Ionics, vol.177, issue.39-40, p.3371, 2007.
DOI : 10.1016/j.ssi.2006.10.020

J. Rossmeisl and W. G. Bessler, Trends in catalytic activity for SOFC anode materials, Solid State Ionics, vol.178, issue.31-32, p.1694, 2008.
DOI : 10.1016/j.ssi.2007.10.016

M. Vogler, A. Bieberle-hütter, L. Gauckler, J. Warnatz, and W. G. Bessler, Modelling Study of Surface Reactions, Diffusion, and Spillover at a Ni/YSZ Patterned Anode, Journal of The Electrochemical Society, vol.156, issue.5, p.663, 2009.
DOI : 10.1149/1.3095477

M. D. Gross, J. M. Vohs, and R. J. Gorte, Recent progress in SOFC anodes for direct utilization of hydrocarbons, Journal of Materials Chemistry, vol.141, issue.30, p.3071, 2007.
DOI : 10.1016/j.ceramint.2006.03.012

K. Ahmed and K. Foger, Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells, Catalysis Today, vol.63, issue.2-4, p.479, 2000.
DOI : 10.1016/S0920-5861(00)00494-6

J. C. Fisher, H. Steven, and S. C. Chuang, Investigating the CH4 reaction pathway on a novel LSCF anode catalyst in the SOFC, Catalysis Communications, vol.10, issue.6, p.772, 2009.
DOI : 10.1016/j.catcom.2008.11.035

W. G. Bessler, S. Gewies, and M. Vogler, A new framework for physically based modeling of solid oxide fuel cells, Electrochimica Acta, vol.53, issue.4, p.1782, 2007.
DOI : 10.1016/j.electacta.2007.08.030

O. Costa-nunes, R. J. Gorte, and J. M. Vohs, Comparison of the performance of Cu???CeO2???YSZ and Ni???YSZ composite SOFC anodes with H2, CO, and syngas, Journal of Power Sources, vol.141, issue.2, p.241, 2005.
DOI : 10.1016/j.jpowsour.2004.09.022

S. Park, R. J. Gorte, and J. M. Vohs, Applications of heterogeneous catalysis in the direct oxidation of hydrocarbons in a solid-oxide fuel cell, Applied Catalysis A: General, vol.200, issue.1-2, p.55, 2000.
DOI : 10.1016/S0926-860X(00)00650-5

J. Liu, B. D. Madsen, Z. Ji, and S. A. Barnett, A Fuel-Flexible Ceramic-Based Anode for Solid Oxide Fuel Cells, Electrochemical and Solid-State Letters, vol.5, issue.6, p.122, 2002.
DOI : 10.1149/1.1473258

H. Kim, C. Lu, W. L. Worrell, J. M. Vohs, and R. J. Gorte, Cu-Ni Cermet Anodes for Direct Oxidation of Methane in Solid-Oxide Fuel Cells, Journal of The Electrochemical Society, vol.149, issue.3, p.247, 2002.
DOI : 10.1149/1.1445170

O. Porat, C. Heremans, and H. L. Tuller, Phase Stability and Electrical Conductivity in Gd2Ti2O7-Gd2Mo2O7 Solid Solutions, Journal of the American Ceramic Society, vol.61, issue.12, p.2278, 1997.
DOI : 10.1111/j.1151-2916.1997.tb03118.x

H. Holtappels, F. W. Poulsen, and M. Mogensen, Electrical conductivities and chemical stabilities of mixed conducting pyrochlores for SOFC applications, Solid State Ionics, vol.135, issue.1-4, p.675, 2000.
DOI : 10.1016/S0167-2738(00)00379-9

H. Yokokawa, N. Sakai, T. Kawada, and M. Dokiya, Thermodynamic stabilities of perovskite oxides for electrodes and other electrochemical materials, Solid State Ionics, vol.52, issue.1-3, p.43, 1992.
DOI : 10.1016/0167-2738(92)90090-C

S. Hui and A. Petric, Electrical Properties of Yttrium-Doped Strontium Titanate under Reducing Conditions, Journal of The Electrochemical Society, vol.149, issue.1, p.1, 2002.
DOI : 10.1149/1.1420706

P. R. Slater, D. P. Fagg, and J. T. Irvine, Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells, Journal of Materials Chemistry, vol.7, issue.12, p.2495, 1997.
DOI : 10.1039/a702865b

P. Vernoux, M. Guillodo, J. Fouletier, and A. Hammou, Alternative anode material for gradual methane reforming in solid oxide fuel cells, Solid State Ionics, vol.135, issue.1-4, p.425, 2000.
DOI : 10.1016/S0167-2738(00)00390-8

Q. X. Fu, F. Tietz, and D. Stöver, La[sub 0.4]Sr[sub 0.6]Ti[sub 1???x]Mn[sub x]O[sub 3?????] Perovskites as Anode Materials for Solid Oxide Fuel Cells, Journal of The Electrochemical Society, vol.153, issue.4, p.74, 2006.
DOI : 10.1149/1.2170585

R. Mukundan, E. L. Brosha, and F. H. Garzon, Sulfur Tolerant Anodes for SOFCs, Electrochemical and Solid-State Letters, vol.7, issue.1, p.5, 2004.
DOI : 10.1149/1.1627452

D. Marrero-lopez, J. Peña-martinez, J. C. Ruiz-morales, M. C. Martin-sedeño, and P. Nuñez, High temperature phase transition in SOFC anodes based on Sr2MgMoO6?????, Journal of Solid State Chemistry, vol.182, issue.5, p.1027, 2009.
DOI : 10.1016/j.jssc.2009.01.018

Y. Matsuda, M. Karppinen, Y. Yamazaki, and H. Yamauchi, Oxygen-vacancy concentration in A2MgMoO6????? double-perovskite oxides, Journal of Solid State Chemistry, vol.182, issue.7, p.1713, 2009.
DOI : 10.1016/j.jssc.2009.04.016

R. Mukundan, E. L. Brosha, and F. H. Garzon, Sulfur Tolerant Anodes for SOFCs, Electrochemical and Solid-State Letters, vol.7, issue.1, p.5, 2004.
DOI : 10.1149/1.1627452

M. Mogensen, D. Lybye, N. Bonanos, P. V. Hendriksen, and F. W. Poulsen, Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides, Solid State Ionics, vol.174, issue.1-4, p.279, 2004.
DOI : 10.1016/j.ssi.2004.07.036

R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A, vol.32, issue.5, p.751, 1976.
DOI : 10.1107/S0567739476001551

L. Rimai and G. A. , Electron Paramagnetic Resonance of Trivalent Gadolinium Ions in Strontium and Barium Titanates, Physical Review, vol.127, issue.3, p.702, 1962.
DOI : 10.1103/PhysRev.127.702

G. Rupprecht, R. O. Bell, and B. D. Silverman, Nonlinearity and Microwave Losses in Cubic Strontium-Titanate, Physical Review, vol.123, issue.1, p.97, 1961.
DOI : 10.1103/PhysRev.123.97

R. O. Bell and G. Rupprecht, Elastic Constants of Strontium Titanate, Physical Review, vol.129, issue.1, p.90, 1963.
DOI : 10.1103/PhysRev.129.90

W. G. Nilsen and J. G. Skinner, Raman Spectrum of Strontium Titanate, The Journal of Chemical Physics, vol.48, issue.5, p.2240, 1968.
DOI : 10.1063/1.1669418

W. Jauch and A. Palmer, ???Results from ??-ray diffraction, Physical Review B, vol.60, issue.5, p.2961, 1999.
DOI : 10.1103/PhysRevB.60.2961

G. Sorge and E. Hegenbarth, The Temperature Dependence of the Elastic Compliance s11E of SrTiO3 Single Crystals in the Temperature Range 20 to 45??K, physica status solidi (b), vol.155, issue.2, p.79, 1969.
DOI : 10.1002/pssb.19690330250

L. Bacq, E. Salinas, A. Pisch, C. Bernard, and A. , First-principles structural stability in the strontium???titanium???oxygen system, Philosophical Magazine, vol.86, issue.15, p.2283, 2006.
DOI : 10.1103/PhysRevB.70.165319

URL : https://hal.archives-ouvertes.fr/hal-00141068

H. Granicher and O. Jakits, ??ber die dielektrischen Eigenschaften und Phasenumwandlungen bei Mischkristallsystemen vom Perowskittyp, Il Nuovo Cimento, vol.23, issue.2, p.480, 1954.
DOI : 10.1007/BF02822319

H. P. Frederikse, W. R. Thurber, and W. R. Hosler, Electronic Transport in Strontium Titanate, Physical Review, vol.134, issue.2A, p.442, 1964.
DOI : 10.1103/PhysRev.134.A442

A. H. Kahn and A. J. Leyendecker, Electronic Energy Bands in Strontium Titanate, Physical Review, vol.135, issue.5A, p.1321, 1964.
DOI : 10.1103/PhysRev.135.A1321

O. N. Tufte and E. N. Stelzer, Piezoresistive Properties of Reduced Strontium Titanate, Physical Review, vol.141, issue.2, p.675, 1966.
DOI : 10.1103/PhysRev.141.675

O. N. Tufte and P. W. Chapman, Electron Mobility in Semiconducting Strontium Titanate, Physical Review, vol.155, issue.3, p.796, 1967.
DOI : 10.1103/PhysRev.155.796

V. E. Henrich and R. L. Kurtz, Intrinsic and defect surface states on single???crystal metal oxides, Journal of Vacuum Science and Technology, vol.18, issue.2, p.416, 1981.
DOI : 10.1116/1.570801

D. A. Maclean and J. E. Greedan, Crystal growth, electrical resistivity, and magnetic properties of lanthanum titanate and cerium titanate. Evidence for a metal-semiconductor transition, Inorganic Chemistry, vol.20, issue.4, p.1025, 1981.
DOI : 10.1021/ic50218a015

M. Eitel and J. E. Greedan, A high resolution neutron diffraction study of the perovskite LaTiO3, Journal of the Less Common Metals, vol.116, issue.1, p.95, 1986.
DOI : 10.1016/0022-5088(86)90220-1

S. Nanamatsu, M. Kimura, K. Doi, S. Matsushita, and N. Yamada, A new ferroelectric: La2Ti2o7, Ferroelectrics, vol.36, issue.5, p.511, 1974.
DOI : 10.1080/00150197408234143

K. Scheunemann and H. Mueller-buschbaum, Zur kristallstruktur von La2Ti2O7, Journal of Inorganic and Nuclear Chemistry, vol.37, issue.9, p.1879, 1975.
DOI : 10.1016/0022-1902(75)80906-7

J. Zaanen, G. A. Sawatzky, and J. W. Allen, Band gaps and electronic structure of transition-metal compounds, Physical Review Letters, vol.55, issue.4, p.418, 1985.
DOI : 10.1103/PhysRevLett.55.418

T. Arima, Y. Tokura, and J. B. Torrance, transition-metal oxides, Physical Review B, vol.48, issue.23, p.17006, 1993.
DOI : 10.1103/PhysRevB.48.17006

F. Lichtenberg, D. Widmer, J. G. Bednorz, T. Williams, and A. Reller, Phase diagram of LaTiO x : from 2D layered ferroelectric insulator to 3D weak ferromagnetic semiconductor, Zeitschrift f???r Physik B Condensed Matter, vol.14, issue.2, p.211, 1991.
DOI : 10.1007/BF01324328

C. W. Moeller, Magnetic Susceptibility of Titanium (III) in Lanthanum Titanium Oxides, The Journal of Chemical Physics, vol.27, issue.4, p.983, 1957.
DOI : 10.1063/1.1743913

J. P. Goral and J. E. Greedan, The magnetic structures of LaTiO3 and CeTiO3, Journal of Magnetism and Magnetic Materials, vol.37, issue.3, p.315, 1983.
DOI : 10.1016/0304-8853(83)90062-8

S. Hashimoto, L. Kindermann, F. W. Poulsen, and M. Mogensen, A study on the structural and electrical properties of lanthanum-doped strontium titanate prepared in air, Journal of Alloys and Compounds, vol.397, issue.1-2, p.245, 2005.
DOI : 10.1016/j.jallcom.2004.11.066

J. Bouwma, K. J. De-vries, and A. Burggraaf, Non-stoichiometry, defect structure, and dielectric relaxation in lanthana-substituted SrTiO3, Physica Status Solidi (a), vol.53, issue.1, p.281, 1976.
DOI : 10.1002/pssa.2210350130

C. Howard and Z. Zhang, : a new orthorhombic structure solved from high-resolution diffraction in combination with group theoretical analysis, Journal of Physics: Condensed Matter, vol.15, issue.26, p.4543, 2003.
DOI : 10.1088/0953-8984/15/26/304

C. J. Howard, G. R. Lumpkin, R. I. Smith, and . Zhang, Crystal structures and phase transition in the system SrTiO3???La2/3TiO3, Journal of Solid State Chemistry, vol.177, issue.8, p.2726, 2004.
DOI : 10.1016/j.jssc.2004.04.018

B. F. Flandermeyer, A. K. Agarwal, H. U. Anderson, and M. M. Nasrallah, Oxidation-reduction behaviour of La-doped SrTiO3, Journal of Materials Science, vol.42, issue.8, p.2593, 1984.
DOI : 10.1007/BF00550814

S. A. Howard, J. K. Hau, and H. U. Anderson, as a function of oxygen partial pressure at 1400?????C, Journal of Applied Physics, vol.65, issue.4, p.1492, 1989.
DOI : 10.1063/1.342963

M. J. Escudero, J. T. Irvine, and L. Daza, Development of anode material based on La-substituted SrTiO3 perovskites doped with manganese and/or gallium for SOFC, Journal of Power Sources, vol.192, issue.1, p.43, 2009.
DOI : 10.1016/j.jpowsour.2008.11.132

Z. Zhang, G. R. Lumpkin, C. J. Howard, K. S. Knight, K. R. Whittle et al., Structures and phase diagram for the system CaTiO3???La2/3TiO3, Journal of Solid State Chemistry, vol.180, issue.3, p.1083, 2007.
DOI : 10.1016/j.jssc.2007.01.005

V. Vashook, L. Vasylechko, H. Ullmann, and U. Guth, Synthesis, crystal structure, oxygen stoichiometry, and electrical conductivity of La1???aCaaCr0.2Ti0.8O3?????, Solid State Ionics, vol.158, issue.3-4, p.317, 2003.
DOI : 10.1016/S0167-2738(02)00766-X

V. Vashook, L. Vasylechko, J. Zosel, and U. Guth, Synthesis, crystal structure, and transport properties of La1???xCaxCr0.5Ti0.5O3?????, Solid State Ionics, vol.159, issue.3-4, p.279, 2003.
DOI : 10.1016/S0167-2738(03)00103-6

P. R. Slater, D. P. Fagg, and J. T. Irvine, Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells, Journal of Materials Chemistry, vol.7, issue.12, p.2495, 1997.
DOI : 10.1039/a702865b

A. A. Ferreira, J. C. Abrantes, J. R. Jurado, and J. R. Frade, Oxygen stoichiometry of Sr0.97(Ti,Fe)O3????? materials, Solid State Ionics, vol.135, issue.1-4, p.761, 2000.
DOI : 10.1016/S0167-2738(00)00375-1

C. Y. Park, D. X. Huang, A. J. Jacobson, L. Hu, and C. A. Mims, Transport properties and phase stability of mixed conducting oxide membranes, Solid State Ionics, vol.177, issue.26-32, p.2227, 2006.
DOI : 10.1016/j.ssi.2006.02.042

S. Hui and A. Petric, Conductivity and stability of SrVO3 and mixed perovskites at low oxygen partial pressures, Solid State Ionics, vol.143, issue.3-4, p.275, 2001.
DOI : 10.1016/S0167-2738(01)00870-0

R. H. Buttner and E. N. Malsen, Structural parameters and electron difference density in BaTiO3, Acta Crystallographica Section B Structural Science, vol.48, issue.6, p.764, 1992.
DOI : 10.1107/S010876819200510X

H. Yoo and C. Song, Defect structure and chemical diffusion in BaTiO3?????, Solid State Ionics, vol.135, issue.1-4, p.619, 2000.
DOI : 10.1016/S0167-2738(00)00420-3

J. E. Sunstrom and S. M. Kauzlarich, Synthesis, magnetism, and electrical properties of lanthanum barium titanate (La1-xBaxTiO3) (0.0 .ltoreq. x .ltoreq. 0.5), Chemistry of Materials, vol.5, issue.10, p.1539, 1993.
DOI : 10.1021/cm00034a026

G. H. Jonker and E. E. Havinga, The influence of foreign ions on the crystal lattice of barium titanate, Materials Research Bulletin, vol.17, issue.3, p.345, 1982.
DOI : 10.1016/0025-5408(82)90083-6

D. Markovec, Z. Samardzija, U. Delalut, and D. Kolar, Defect Structure and Phase Relations of Highly Lanthanum-Doped Barium Titanate, Journal of the American Ceramic Society, vol.9, issue.1, p.2193, 1995.
DOI : 10.1111/j.1151-2916.1986.tb07345.x

O. Saburi, Properties of Semiconductive Barium Titanates, Journal of the Physical Society of Japan, vol.14, issue.9, p.1159, 1959.
DOI : 10.1143/JPSJ.14.1159

M. M. Nasrallah, H. U. Anderson, A. K. Agarwal, and B. F. Flandermeyer, Oxygen activity dependence of the defect structure of La-doped BaTiO3, Journal of Materials Science, vol.4, issue.10, p.3159, 1984.
DOI : 10.1007/BF00549799

D. F. Hennings, B. Schreinemacher, and H. Schreinemacher, High-permittivity dielectric ceramics with high endurance, Journal of the European Ceramic Society, vol.13, issue.1, p.81, 1994.
DOI : 10.1016/0955-2219(94)90062-0

O. Parkash, D. Kumar, R. K. Dwivedi, K. K. Srivastava, P. Singh et al., Effect of simultaneous substitution of La and Mn on dielectric behavior of barium titanate ceramic, Journal of Materials Science, vol.37, issue.11, p.5490, 2007.
DOI : 10.1007/s10853-006-0985-8

T. Shimura, K. Suzuki, and H. Iwahara, High temperature protonic conduction in Sr2TiO4-based ceramics with K2NiF4-type structure, Solid State Ionics, vol.104, issue.1-2, p.79, 1997.
DOI : 10.1016/S0167-2738(97)00394-9

S. E. Dann and M. T. Weller, Structure and Oxygen Stoichiometry in Sr3Co2O7-y (0.94 ??? y ??? 1.22), Journal of Solid State Chemistry, vol.115, issue.2, p.499, 1995.
DOI : 10.1006/jssc.1995.1165

W. Sugimoto, M. Shirata, M. Takemoto, S. Hayami, Y. Sugahara et al., Synthesis and structures of carrier doped titanates with the Ruddlesden???Popper structure (Sr0.95La0.05)n+1TinO3n+1 (n=1, 2), Solid State Ionics, vol.108, issue.1-4, p.315, 1998.
DOI : 10.1016/S0167-2738(98)00056-3

M. E. Bowden, D. A. Jefferson, and I. W. Brown, A new layered structure based on perovskite in the SrO???La2O3???TiO2 system, Journal of Solid State Chemistry, vol.119, issue.2, p.412, 1995.
DOI : 10.1016/0022-4596(95)80060-3

J. Rodriguez, Physica B 192 (1993) 55; J. Rodríguez-Carvajal, Recent Developments of the Program FULLPROF, Commission on Powder Diffraction, 2001.

P. M. Woodward, Octahedral Tilting in Perovskites. I. Geometrical Considerations, Acta Crystallographica Section B Structural Science, vol.53, issue.1, pp.32-43, 1997.
DOI : 10.1107/S0108768196010713

A. Varez, M. T. Fernandez-diaz, J. A. Alonso, and J. Sanz, Deduced from Powder Neutron Diffraction Experiments, Chemistry of Materials, vol.17, issue.9, pp.2404-2412, 2005.
DOI : 10.1021/cm047841f

S. Hashimoto, L. Kindermann, F. W. Poulsen, and M. Mogensen, A study on the structural and electrical properties of lanthanum-doped strontium titanate prepared in air, Journal of Alloys and Compounds, vol.397, issue.1-2, p.245, 2005.
DOI : 10.1016/j.jallcom.2004.11.066

S. A. Howard, J. K. Hau, and H. U. Anderson, as a function of oxygen partial pressure at 1400?????C, Journal of Applied Physics, vol.65, issue.4, p.1492, 1989.
DOI : 10.1063/1.342963

F. Lichtenberg, D. Widmer, J. G. Bednorz, T. Williams, and A. Reller, Phase diagram of LaTiO x : from 2D layered ferroelectric insulator to 3D weak ferromagnetic semiconductor, Zeitschrift f???r Physik B Condensed Matter, vol.14, issue.2, p.211, 1991.
DOI : 10.1007/BF01324328

M. Marezio, D. Tranqui, S. Lakkis, and C. Schlenker, single crystals: Electrical conductivity, magnetic susceptibility, specific heat, electron paramagnetic resonance, and structural aspects, Physical Review B, vol.16, issue.6, p.2811, 1977.
DOI : 10.1103/PhysRevB.16.2811

J. E. Sunstrom, I. , S. M. Kauzlarich, and P. Klavins, Synthesis, structure, and properties of lanthanum strontium titanate (La1-xSrxTiO3) (0 .ltoreq. x .ltoreq. 1), Chemistry of Materials, vol.4, issue.2, p.346, 1992.
DOI : 10.1021/cm00020a022

J. B. Goodenough, Metallic oxides, Progress in Solid State Chemistry, vol.5, p.145, 1975.
DOI : 10.1016/0079-6786(71)90018-5

Q. X. Fu, F. Tietz, and D. Stöver, La[sub 0.4]Sr[sub 0.6]Ti[sub 1???x]Mn[sub x]O[sub 3?????] Perovskites as Anode Materials for Solid Oxide Fuel Cells, Journal of The Electrochemical Society, vol.153, issue.4, p.74, 2006.
DOI : 10.1149/1.2170585

P. R. Slater, D. P. Fagg, and J. T. Irvine, Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells, Journal of Materials Chemistry, vol.7, issue.12, p.2495, 1997.
DOI : 10.1039/a702865b

R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A, vol.32, issue.5, p.751, 1976.
DOI : 10.1107/S0567739476001551

M. Mogensen, D. Lybye, N. Bonanos, P. V. Hendriksen, and F. W. Poulsen, Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides, Solid State Ionics, vol.174, issue.1-4, p.279, 2004.
DOI : 10.1016/j.ssi.2004.07.036

P. Singh, O. Parkash, and D. Kumar, Electrical conduction behavior of La and Mn substituted strontium titanate, Journal of Applied Physics, vol.99, issue.12, p.123704, 2006.
DOI : 10.1063/1.2204347

Q. X. Fu, F. Tietz, and D. Stöver, La[sub 0.4]Sr[sub 0.6]Ti[sub 1???x]Mn[sub x]O[sub 3?????] Perovskites as Anode Materials for Solid Oxide Fuel Cells, Journal of The Electrochemical Society, vol.153, issue.4, p.74, 2006.
DOI : 10.1149/1.2170585

C. S. Wright, R. I. Walton, D. Thompsett, and J. Fisher, Investigation of Hydrothermal Routes to Mixed-Metal Cerium Titanium Oxides and Metal Oxidation State Assignment Using XANES, Inorganic Chemistry, vol.43, issue.6, p.2189, 2004.
DOI : 10.1021/ic035211u

R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A, vol.32, issue.5, p.751, 1976.
DOI : 10.1107/S0567739476001551

R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A, vol.32, issue.5, p.751, 1976.
DOI : 10.1107/S0567739476001551

O. Saburi, Properties of Semiconductive Barium Titanates, Journal of the Physical Society of Japan, vol.14, issue.9, p.1159, 1959.
DOI : 10.1143/JPSJ.14.1159

M. M. Nasrallah, H. U. Anderson, A. K. Agarwal, and B. F. Flandermeyer, Oxygen activity dependence of the defect structure of La-doped BaTiO3, Journal of Materials Science, vol.4, issue.10, p.3159, 1984.
DOI : 10.1007/BF00549799

G. H. Jonker and E. E. Havinga, The influence of foreign ions on the crystal lattice of barium titanate, Materials Research Bulletin, vol.17, issue.3, p.345, 1982.
DOI : 10.1016/0025-5408(82)90083-6

A. S. Shaikh and R. W. Vest, Defect Structure and Dielectric Properties of Nd2O3-Modified BaTiO3, Journal of the American Ceramic Society, vol.42, issue.333, p.689, 1986.
DOI : 10.1111/j.1151-2916.1986.tb07472.x

X. Xu and G. E. Hilmas, Effects of Ba6Ti17O40 on the Dielectric Properties of Nb-Doped BaTiO3 Ceramics, Journal of the American Ceramic Society, vol.84, issue.9, p.2496, 2006.
DOI : 10.1016/0013-7944(91)90253-W

K. W. Kirby and B. A. Wechsler, Phase relations in the Barium Titanate-Titanium Oxide System, Journal of the American Ceramic Society, vol.60, issue.5, p.1841, 1991.
DOI : 10.1111/j.1151-2916.1988.tb07538.x

D. Markovec, Z. Samardzija, U. Delalut, and D. Kolar, Defect Structure and Phase Relations of Highly Lanthanum-Doped Barium Titanate, Journal of the American Ceramic Society, vol.9, issue.1, p.2193, 1995.
DOI : 10.1111/j.1151-2916.1986.tb07345.x

H. Beltran, B. Gomez, N. Maso, E. Condorcillo, P. Escribano et al., Electrical properties of ferroelectric BaTi2O5 and dielectric Ba6Ti17O40 ceramics, Journal of Applied Physics, vol.97, issue.8, p.84104, 2005.
DOI : 10.1063/1.1862766

O. Parkash, D. Kumar, R. K. Dwivedi, K. K. Srivastava, P. Singh et al., Effect of simultaneous substitution of La and Mn on dielectric behavior of barium titanate ceramic, Journal of Materials Science, vol.37, issue.11, p.5490, 2007.
DOI : 10.1007/s10853-006-0985-8

H. J. Hagemann and H. Ihring, annealed in oxygen and hydrogen, Physical Review B, vol.20, issue.9, p.3871, 1979.
DOI : 10.1103/PhysRevB.20.3871

N. Kuruta and M. Kuwabara, Semiconducting-Insulating Transition for Highly Donor-Dopod Barium Titanate Ceramics, Journal of the American Ceramic Society, vol.70, issue.5, p.1605, 1993.
DOI : 10.1111/j.1151-2916.1993.tb03947.x

A. Chen, Y. Zhi, J. Zhi, V. M. Ferreira, P. M. Vilarinho et al., Synthesis and characterization of Ba(Ti1???xCex)O3 ceramics, Journal of the European Ceramic Society, vol.17, issue.10, p.1217, 1997.
DOI : 10.1016/S0955-2219(96)00220-8

M. J. Escudero, J. T. Irvine, and L. Daza, Development of anode material based on La-substituted SrTiO3 perovskites doped with manganese and/or gallium for SOFC, Journal of Power Sources, vol.192, issue.1, p.43, 2009.
DOI : 10.1016/j.jpowsour.2008.11.132

R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A, vol.32, issue.5, p.751, 1976.
DOI : 10.1107/S0567739476001551

G. J. Mccarthy, W. B. White, and R. Roy, Phase Equilibria in the 1375oC Isotherm of the System Sr-Ti-O, Journal of the American Ceramic Society, vol.25, issue.10, p.463, 1969.
DOI : 10.1063/1.1727962

M. E. Bowden, D. A. Jefferson, and I. W. Brown, A new layered structure based on perovskite in the SrO???La2O3???TiO2 system, Journal of Solid State Chemistry, vol.119, issue.2, p.412, 1995.
DOI : 10.1016/0022-4596(95)80060-3

W. Sugimoto, M. Shirata, M. Takemoto, S. Hayami, Y. Sugahara et al., Synthesis and structures of carrier doped titanates with the Ruddlesden???Popper structure (Sr0.95La0.05)n+1TinO3n+1 (n=1, 2), Solid State Ionics, vol.108, issue.1-4, p.315, 1998.
DOI : 10.1016/S0167-2738(98)00056-3

J. F. Mitchell, J. E. Millburn, M. Medarde, S. Short, and J. D. Jorgensen, Sr3Mn2O7: Mn4+Parent Compound of then=2 Layered CMR Manganites, Journal of Solid State Chemistry, vol.141, issue.2, p.599, 1998.
DOI : 10.1006/jssc.1998.8026

M. E. Bowden, D. A. Jefferson, and I. W. Brown, A new layered structure based on perovskite in the SrO???La2O3???TiO2 system, Journal of Solid State Chemistry, vol.119, issue.2, p.412, 1995.
DOI : 10.1016/0022-4596(95)80060-3

D. Pelloquin, J. Hadermann, M. Giot, V. Caignaert, C. Michel et al., and Its Topotactic Derivatives, Chemistry of Materials, vol.16, issue.9, p.1715, 2004.
DOI : 10.1021/cm030351n

D. Pelloquin, N. Barrier, D. Flahaut, V. Caignaert, and A. Maignan, = 2 and 3 Members:?? Structural and Magnetic Behavior versus Temperature, Chemistry of Materials, vol.17, issue.4, p.773, 2005.
DOI : 10.1021/cm048447k

J. M. Klein, Y. Bultel, S. Georges, and M. Pons, Modeling of a SOFC fuelled by methane: From direct internal reforming to gradual internal reforming, Chemical Engineering Science, vol.62, issue.6, p.1636, 2007.
DOI : 10.1016/j.ces.2006.11.034

URL : https://hal.archives-ouvertes.fr/hal-00196340

J. M. Klein, M. Hénault, C. Roux, Y. Bultel, and S. Georges, Direct methane solid oxide fuel cell working by gradual internal steam reforming: Analysis of operation, Journal of Power Sources, vol.193, issue.1, p.331, 2009.
DOI : 10.1016/j.jpowsour.2008.11.122

URL : https://hal.archives-ouvertes.fr/hal-00417169

J. Liu, B. D. Madsen, Z. Ji, and S. A. Barnett, A Fuel-Flexible Ceramic-Based Anode for Solid Oxide Fuel Cells, Electrochemical and Solid-State Letters, vol.5, issue.6, p.122, 2002.
DOI : 10.1149/1.1473258

P. R. Slater, D. P. Fagg, and J. T. Irvine, Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells, Journal of Materials Chemistry, vol.7, issue.12, p.2495, 1997.
DOI : 10.1039/a702865b

N. Hosseinpour, A. A. Khodadadi, Y. Mortazavi, and A. Bazyari, Nano-ceria???zirconia promoter effects on enhanced coke combustion and oxidation of CO formed in regeneration of silica???alumina coked during cracking of triisopropylbenzene, Applied Catalysis A: General, vol.353, issue.2, p.271, 2009.
DOI : 10.1016/j.apcata.2008.10.051

A. Trovarelli, Catalysis Review, Sciences Engineering, vol.38, p.439, 1996.

J. R. Mawdsley and T. R. Krause, Rare earth-first-row transition metal perovskites as catalysts for the autothermal reforming of hydrocarbon fuels to generate hydrogen???, Applied Catalysis A: General, vol.334, issue.1-2, p.311, 2008.
DOI : 10.1016/j.apcata.2007.10.018

S. Hashimoto, L. Kindermann, F. W. Poulsen, and M. Mogensen, A study on the structural and electrical properties of lanthanum-doped strontium titanate prepared in air, Journal of Alloys and Compounds, vol.397, issue.1-2, p.245, 2005.
DOI : 10.1016/j.jallcom.2004.11.066

M. D. Gross, J. M. Vohs, and R. J. Gorte, Recent progress in SOFC anodes for direct utilization of hydrocarbons, Journal of Materials Chemistry, vol.141, issue.30, p.3071, 2007.
DOI : 10.1016/j.ceramint.2006.03.012

M. D. Gross, J. M. Vohs, and R. J. Gorte, An Examination of SOFC Anode Functional Layers Based on Ceria in YSZ, Journal of The Electrochemical Society, vol.154, issue.7, p.694, 2007.
DOI : 10.1149/1.2736647

Q. X. Fu, F. Tietz, and D. Stöver, La[sub 0.4]Sr[sub 0.6]Ti[sub 1???x]Mn[sub x]O[sub 3?????] Perovskites as Anode Materials for Solid Oxide Fuel Cells, Journal of The Electrochemical Society, vol.153, issue.4, p.74, 2006.
DOI : 10.1149/1.2170585

M. J. Escudero, J. T. Irvine, and L. Daza, Development of anode material based on La-substituted SrTiO3 perovskites doped with manganese and/or gallium for SOFC, Journal of Power Sources, vol.192, issue.1, p.43, 2009.
DOI : 10.1016/j.jpowsour.2008.11.132

P. Singh, O. Parkash, and D. Kumar, Electrical conduction behavior of La and Mn substituted strontium titanate, Journal of Applied Physics, vol.99, issue.12, p.123704, 2006.
DOI : 10.1063/1.2204347

J. B. Goodenough, Metallic oxides, Progress in Solid State Chemistry, vol.5, pp.145-399, 1971.
DOI : 10.1016/0079-6786(71)90018-5

D. A. Mc-lean and J. E. Greedan, Crystal growth, electrical resistivity, and magnetic properties of lanthanum titanate and cerium titanate. Evidence for a metal-semiconductor transition, Inorganic Chemistry, vol.20, issue.4, p.1025, 1981.
DOI : 10.1021/ic50218a015

H. Beltran, E. Condorcillo, P. Escribano, D. C. Sinclair, and A. R. West, Insulating Properties of Lanthanum-Doped BaTiO3 Ceramics Prepared by Low-Temperature Synthesis, Journal of the American Ceramic Society, vol.81, issue.7, p.2132, 2004.
DOI : 10.1111/j.1151-2916.2004.tb06370.x

P. J. Panteix, I. Julien, P. Abélard, and D. Bernache-assollant, Influence of porosity on the electrical properties of La9.33(SiO4)6O2 oxyapatite, Ceramics International, vol.34, issue.7, p.1579, 2008.
DOI : 10.1016/j.ceramint.2007.05.004

URL : https://hal.archives-ouvertes.fr/emse-00446330

M. J. Escudero, J. T. Irvine, and L. Daza, Development of anode material based on La-substituted SrTiO3 perovskites doped with manganese and/or gallium for SOFC, Journal of Power Sources, vol.192, issue.1, p.43, 2009.
DOI : 10.1016/j.jpowsour.2008.11.132

Q. X. Fu, F. Tietz, and D. Stöver, La[sub 0.4]Sr[sub 0.6]Ti[sub 1???x]Mn[sub x]O[sub 3?????] Perovskites as Anode Materials for Solid Oxide Fuel Cells, Journal of The Electrochemical Society, vol.153, issue.4, p.74, 2006.
DOI : 10.1149/1.2170585

S. W. Tao and J. T. Irvine, Synthesis and Characterization of (La[sub 0.75]Sr[sub 0.25])Cr[sub 0.5]Mn[sub 0.5]O[sub 3?????], a Redox-Stable, Efficient Perovskite Anode for SOFCs, Journal of The Electrochemical Society, vol.151, issue.2, p.252, 2004.
DOI : 10.1149/1.1639161

M. D. Gross, J. M. Vohs, and R. J. Gorte, Recent progress in SOFC anodes for direct utilization of hydrocarbons, Journal of Materials Chemistry, vol.141, issue.30, p.3071, 2007.
DOI : 10.1016/j.ceramint.2006.03.012

M. D. Gross, J. M. Vohs, and R. J. Gorte, An Examination of SOFC Anode Functional Layers Based on Ceria in YSZ, Journal of The Electrochemical Society, vol.154, issue.7, p.694, 2007.
DOI : 10.1149/1.2736647

M. Brown, S. Primdahl, and M. Mogensen, Structure/Performance Relations for Ni/Yttria-Stabilized Zirconia Anodes for Solid Oxide Fuel Cells, Journal of The Electrochemical Society, vol.147, issue.2, p.475, 2000.
DOI : 10.1149/1.1393220

M. Vogler, A. Bieberle-hütter, L. Gauckler, J. Warnatz, and W. G. Bessler, Modelling Study of Surface Reactions, Diffusion, and Spillover at a Ni/YSZ Patterned Anode, Journal of The Electrochemical Society, vol.156, issue.5, p.663, 2009.
DOI : 10.1149/1.3095477

Q. X. Fu, F. Tietz, P. Lersch, and D. Stöver, Evaluation of Sr- and Mn-substituted LaAlO3 as potential SOFC anode materials, Solid State Ionics, vol.177, issue.11-12, p.1059, 2006.
DOI : 10.1016/j.ssi.2006.02.053

1. Ar, Ce)O 2 1773K/24h air 3D Multi-phasé LCST415-R La 3.5 Ce 0.5 SrTi 5 O 17+? 1673K, 2%) 3D Monophasé LCST-ox La 0.23 Sr 0.67 TiO 3+? +2%) 2D Multi-phasé LCST415-ox La 3.5 Ce 0.5 SrTi 5 O 17+? 1773K/24h air 2D Multi-phasé RRPP Sr 3 Ti 2 O 7 1773K/24h air 2D Monophasé RRPPL La 0.1 Sr 2.9 Ti 2 O 7 1773K