Skip to Main content Skip to Navigation
Theses

Términalité, Désingularisations et Applications Birationnelles Toriques

Abstract : In this thesis, we obtain sufficient conditions for terminality of toric varieties of arbitrary dimension generalizing known results in dimension 3 and 4. We classify the Q-factorial, terminal, Gorenstein toric varieties of dimension 4 which admit G-desingularization. An algebraic variety X obtained by the weighted blowing-up of a regular invariant point of a toric Fano variety of dimension n and Picard's number equal to 1 is described by two vectors in Z^n . In terms of these vectors we describe the nef cone and classify the elementary contractions of X in the Mori's sense. In the case where the Fano variety is a projective space, we present some families of examples where X is terminal.
Document type :
Theses
Complete list of metadatas

Cited literature [27 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00456381
Contributor : Leandro Colau Merlo <>
Submitted on : Sunday, February 14, 2010 - 10:32:31 PM
Last modification on : Friday, November 6, 2020 - 4:11:12 AM
Long-term archiving on: : Thursday, October 18, 2012 - 3:06:36 PM

Identifiers

  • HAL Id : tel-00456381, version 1

Collections

INSMI | UJF | UGA

Citation

Leandro Colau Merlo. Términalité, Désingularisations et Applications Birationnelles Toriques. Mathématiques [math]. Université Joseph-Fourier - Grenoble I, 2009. Français. ⟨tel-00456381⟩

Share

Metrics

Record views

382

Files downloads

139