. La-figure-7, 25 présente cette même mesure dans le cas de différentes tailles de réseaux complets unidirectionnels

V. S. Afraimovich, N. N. Verichev, and M. I. Rabinovich, Stochastic synchronization of oscillation in dissipative systems, Radiophysics and Quantum Electronics, vol.89, issue.No. 10, pp.795-802, 1986.
DOI : 10.1007/BF01034476

P. Arena, L. Fortuna, M. Frasca, L. Rosa, and M. , Locally active Hindmarsh???Rose neurons, Chaos, Solitons & Fractals, vol.27, issue.2, pp.405-412, 2006.
DOI : 10.1016/j.chaos.2005.04.064

M. A. Aziz-alaoui, Synchronization of chaos, Encyclopedia of mathematical physics, pp.213-226, 2006.

I. Belykh, V. Belykh, and M. Hasler, Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems, Physical Review E, vol.62, issue.5, pp.6332-6345, 2000.
DOI : 10.1103/PhysRevE.62.6332

I. Belykh, V. Belykh, K. Nevidin, and M. Hasler, Persistent clusters in lattices of coupled nonidentical chaotic systems, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.13, issue.1, pp.165-178, 2003.
DOI : 10.1063/1.1514202

V. Belykh, I. Belykh, and M. Hasler, Connection graph stability method for synchronized coupled chaotic systems, Physica D: Nonlinear Phenomena, vol.195, issue.1-2, pp.159-187, 2004.
DOI : 10.1016/j.physd.2004.03.012

I. Belykh, M. Hasler, M. Mauret, and H. Nijmeijer, SYNCHRONIZATION AND GRAPH TOPOLOGY, International Journal of Bifurcation and Chaos, vol.15, issue.11, pp.3423-3433, 2005.
DOI : 10.1142/S0218127405014143

I. Belykh, E. De-lange, and M. Hasler, Synchronization of Bursting Neurons: What Matters in the Network Topology, Physical Review Letters, vol.94, issue.18, p.188101, 2005.
DOI : 10.1103/PhysRevLett.94.188101

S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, The synchronization of chaotic systems, Physics Reports, vol.366, issue.1-2, pp.1-101, 2002.
DOI : 10.1016/S0370-1573(02)00137-0

P. Checco, M. Biey, M. Righero, and L. Kocarev, Synchronization and Bifurcation in Networks of Coupled Hindmarsh-Rose Neurons, Circuits and Systems, IEEE International Symposium, pp.1541-1544, 2007.

N. Corson and M. A. Aziz-alaoui, Asymptotic dynamics of the slow-fast Hindmarsh-Rose neuronal system, Dynamics of Continuous, Discrete and Impulsive Systemes, Series B : Applications and Algorithms, pp.535-549, 2009.

N. Corson, N. Verdière, and M. A. Aziz-alaoui, Hopf bifurcation of the slow-fast Hindmarsh-Rose system, sousmis à Nonlinear Analysis : Real World Applications, 2009.

N. Corson and M. A. Aziz-alaoui, Complex emergent properties in synchronized neuronal oscillations From System Complexity to Emergent Properties Understanding Complex Systems series, pp.243-259, 2009.

M. Dhamala, V. K. Jirsa, and M. Ding, Enhancement of Neural Synchrony by Time Delay, Physical Review Letters, vol.92, issue.7, pp.74104-74105, 2004.
DOI : 10.1103/PhysRevLett.92.074104

H. Dang-vu and C. Delcarte, Bifurcations et chaos, une introduction à la dynamique contemporaine avec des programmes en Pascal, 2000.

S. Deriviere and M. A. Aziz-alaoui, Estimation of attractors and Synchronization of Generalized Lorenz Systems, Dynamics of Continuous, Discrete and Impulsive Systems, pp.833-852, 2003.

L. X. Duan and L. Q. , Codimension-two bifurcation analysis in Hindmarsh-Rose model with two parameters, Chin. Phy. Lett, vol.22, pp.1325-1328, 2005.

A. Dutot, F. Guinand, D. Olivier, and Y. Pigné, GraphStream : A Tool for bridging the gap between Complex Systems and Dynamic Graphs, EPNACS : Emergent Properties in Natural and Artificial Complex Systems, 2007.

R. C. Elson, A. I. Selverston, R. Huerta, N. F. Rulkov, M. I. Rabinovich et al., Synchronous behaviour of two coupled biological neurons, Phys.Rev.Lett, issue.25, pp.815692-5695, 1998.

J. Engel and T. A. Pedley, Epilepsy : A comprehensive textbook, Lippincott-Raven, 1975.

R. Fitzhugh, Impulses and Physiological States in Theoretical Models of Nerve Membrane, Biophysical Journal, vol.1, issue.6, pp.445-466, 1961.
DOI : 10.1016/S0006-3495(61)86902-6

J. P. Françoise, Oscillations en biologie, Analyse qualitative et Modèles Collection Mathématiques et Applications SMAI Springer, 2005.
DOI : 10.1007/3-540-37670-4

H. Freund, Motor unit and muscle activity in voluntary motor control, Physiol .Rev, vol.63, issue.2, pp.387-436, 1983.

H. Fujii and I. Tsuda, Itinerant Dynamics of Class I* Neurons Coupled by Gap Junctions, Lecture Notes in Computer Science, vol.3146, pp.140-160, 2004.
DOI : 10.1007/978-3-540-27862-7_8

H. Fujisaka and T. Yamada, Stability Theory of Synchronized Motion in Coupled-Oscillator Systems, Progress of Theoretical Physics, vol.69, issue.1, pp.32-47, 1983.
DOI : 10.1143/PTP.69.32

H. Fujisaka and T. Yamada, Stability theory of synchronized motion in coupled-oscillator systems III, Prog.Theor.Phys, vol.72, issue.5, pp.885-894, 1984.

J. M. Gonzalez-miranda, COMPLEX BIFURCATION STRUCTURES IN THE HINDMARSH???ROSE NEURON MODEL, International Journal of Bifurcation and Chaos, vol.17, issue.09, pp.3071-3083, 2007.
DOI : 10.1142/S0218127407018877

C. M. Gray, P. Konig, A. K. Engel, and W. Singer, Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties, Nature, vol.338, issue.6213, pp.334-337, 1989.
DOI : 10.1038/338334a0

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 2002.

J. Guckenheimer, J. H. Tien, and A. R. Willms, Bifurcations in the fast dynamics of neurons : Implications for bursting, pp.1-33, 2004.

B. D. Hassard and Y. H. Wan, Bifurcation formulae derived from center manifold theory, Journal of Mathematical Analysis and Applications, vol.63, issue.1, pp.297-312, 1978.
DOI : 10.1016/0022-247X(78)90120-8

B. D. Hassard, N. D. Kazarinoff, and Y. H. Wan, Theory and Applications of Hopf bifurcation, 1981.

J. F. Heagy, L. M. Pecora, and T. L. Carroll, Short Wavelength Bifurcations and Size Instabilities in Coupled Oscillator Systems, Physical Review Letters, vol.74, issue.21, pp.4185-4188, 1995.
DOI : 10.1103/PhysRevLett.74.4185

B. Hille, Ionic channels of excitable membranes, second edition, Sinauer associates inc, 1992.

J. L. Hindmarsh and R. M. Rose, A model of the nerve impulse using two first-order differential equations, Nature, vol.6, issue.5853, pp.162-164, 1982.
DOI : 10.1038/296162a0

J. L. Hindmarsh and R. M. Rose, A Model of Neuronal Bursting Using Three Coupled First Order Differential Equations, Proc. R. Sc. Lond. B221, pp.87-102, 1984.
DOI : 10.1098/rspb.1984.0024

J. Hindmarsh and P. Cornelius, The developpment of the Hindmarsh-Rose model for bursting, chapter 1, Bursting, The genesis of rythm in the nervous system, World Scientific, pp.2-18, 2005.

M. W. Hirsch, S. Smale, and R. L. Devaney, Differential Equations, Dynamical systems and an introduction to chaos, 2003.

R. Huerta, M. I. Rabinovich, H. D. Abarbanel, and M. Bazhenov, Spike-train bifurcation scaling in two coupled chaotic neurons, 43] Huygens C. (Hugenii), pp.2108-2110, 1973.
DOI : 10.1103/PhysRevE.55.R2108

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, vol.117, issue.4, pp.500-544, 1952.
DOI : 10.1113/jphysiol.1952.sp004764

G. Innocenti, A. Morelli, R. Genesio, and A. Torcini, Dynamical phases of the Hindmarsh-Rose neuronal model: Studies of the transition from bursting to spiking chaos, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.17, issue.4, pp.1-043128, 2007.
DOI : 10.1063/1.2818153

E. M. Izhikevich, Which Model to Use for Cortical Spiking Neurons?, IEEE Transactions on Neural Networks, vol.15, issue.5, pp.1063-1070, 2004.
DOI : 10.1109/TNN.2004.832719

E. M. Izhikevich, Dynamical systems in Neuroscience, 2007.

Y. Jiang and J. Sun, Si???lnikov homoclinic orbits in a new chaotic system, Chaos, Solitons & Fractals, vol.32, issue.1, pp.150-159, 2007.
DOI : 10.1016/j.chaos.2005.10.088

N. Kopell and G. B. Ermentrout, Mechanisms of phase-locking and frequancy control in pairs of coupled neural oscillators, " Handbook of Dynamical Systems, pp.3-54, 2002.

N. Koshita and J. C. Smith, Neuronal pacemaker for breathing visualized in vivo, Nature, vol.400, issue.6742, pp.360-363, 1997.
DOI : 10.1038/22540

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, vol.112, 2004.

J. Lü, T. Zhou, G. Chen, and S. Zhang, Local bifurcation of the Chen system, Int. J. Bif. Chaos, vol.12, pp.10-2257, 2002.

J. B. Macqueen, Some Methods for classification and Analysis of Multivariate Observations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, pp.281-297, 1967.

C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophysical Journal, vol.35, issue.1, pp.193-213, 1981.
DOI : 10.1016/S0006-3495(81)84782-0

J. Nagumo, S. Arimoto, and Y. S. , An Active Pulse Transmission Line Simulating Nerve Axon, Proceedings of the IRE, vol.50, issue.10, pp.2061-2070, 1962.
DOI : 10.1109/JRPROC.1962.288235

S. Nikolov, An alternative bifurcation analysis of the Rose???Hindmarsh model, Chaos, Solitons & Fractals, vol.23, issue.5, pp.1643-1649, 2005.
DOI : 10.1016/S0960-0779(04)00427-8

Z. Odibat, N. Corson, M. A. Aziz-alaoui, and C. Bertelle, SYNCHRONIZATION OF CHAOTIC FRACTIONAL-ORDER SYSTEMS VIA LINEAR CONTROL, International Journal of Bifurcation and Chaos, vol.20, issue.01, 2009.
DOI : 10.1142/S0218127410025429

URL : https://hal.archives-ouvertes.fr/hal-00430513

T. W. Oud, Synchronization in an ensemble of Hindmash-Rose oscillators : using the control-theory in neuroscience, report, 2004.

L. M. Pecora and T. L. Carrol, Synchronization in chaotic systems, Physical Review Letters, vol.64, issue.8, pp.821-824, 1990.
DOI : 10.1103/PhysRevLett.64.821

L. M. Pecora and T. L. Carrol, Master Stability Functions for Synchronized Coupled Systems, Physical Review Letters, vol.80, issue.10, pp.2109-2112, 1998.
DOI : 10.1103/PhysRevLett.80.2109

A. Raffone and C. Van-leeuwen, Dynamic synchronization and chaos in an associative neural network with multiple active memories, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.13, issue.3, pp.1-15, 2003.
DOI : 10.1063/1.1602211

R. M. Rose and J. L. Hindmarsh, A Model of a Thalamic Neuron, Proc. R. Sc. Lond. B225, pp.161-193, 1985.
DOI : 10.1098/rspb.1985.0057

N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. , Generalized synchronization of chaos in directionally coupled chaotic systems, Physical Review E, vol.51, issue.2, pp.980-994, 1995.
DOI : 10.1103/PhysRevE.51.980

X. Shi and Q. S. Lu, Complete synchronization of coupled Hindmarsh-Rose neurons with ring structure, Chineese Review Letter, vol.21, issue.9, pp.1695-1698, 2004.

X. Shi and Q. S. Lu, Firing patterns and complete synchronization of coupled Hindmarsh-Rose neurons, pp.77-85, 2005.

A. L. Shilnikov and N. F. Rulkov, ORIGIN OF CHAOS IN A TWO-DIMENSIONAL MAP MODELING SPIKING-BURSTING NEURAL ACTIVITY, International Journal of Bifurcation and Chaos, vol.13, issue.11, pp.3325-3340, 2003.
DOI : 10.1142/S0218127403008521

W. Singer and C. M. Gray, Visual Feature Integration and the Temporal Correlation Hypothesis, Annual Review of Neuroscience, vol.18, issue.1, pp.555-586, 1995.
DOI : 10.1146/annurev.ne.18.030195.003011

W. Singer, Striving for coherence, Nature, vol.397, issue.6718, pp.391-393, 1999.
DOI : 10.1038/17021

E. Steur, Parameter estimation in Hindmarsh-Rose neurons, report, 2006.

M. Stopfer, S. Bhagavan, B. H. Smith, and G. Laurent, Impaired odour descriminination on desynchronization of odour-encoding neural assemblies, Nature, issue.6, pp.390-70, 1997.

P. Steinmetz, A. Roy, P. J. Fitzgerald, S. S. Hsiao, K. O. Johnson et al., Attention modulates synchronized neuronal firing in primate somatosensory cortex, Nature, vol.80, issue.6774, pp.187-190, 2000.
DOI : 10.1038/35004588

E. A. Stern, D. Jaeger, and C. J. Wilson, Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo, Nature, vol.394, issue.6692, pp.475-478, 1998.
DOI : 10.1038/28848

I. Tsuda, H. Fujii, S. Tadokoro, T. Yasuoka, and Y. Yamaguti, CHAOTIC ITINERANCY AS A MECHANISM OF IRREGULAR CHANGES BETWEEN SYNCHRONIZATION AND DESYNCHRONIZATION IN A NEURAL NETWORK, Journal of Integrative Neuroscience, vol.03, issue.02, pp.159-182, 2004.
DOI : 10.1142/S021963520400049X

S. Tsuji, T. Ueta, H. Kawakami, H. Fujii, and K. Aihara, BIFURCATIONS IN TWO-DIMENSIONAL HINDMARSH???ROSE TYPE MODEL, International Journal of Bifurcation and Chaos, vol.17, issue.03, pp.985-998, 2007.
DOI : 10.1142/S0218127407017707

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, 1996.

H. X. Wang, Q. S. Lu, and Q. Y. Wang, Complete synchronization in coupled chaotic HR neurons with symmetric coupling schemes, Chineese Review Letter, vol.22, issue.9, pp.2173-2175, 2005.

Q. Wang and Y. Chen, Generalized Q???S (lag, anticipated and complete) synchronization in modified Chua???s circuit and Hindmarsh???Rose systems, Applied Mathematics and Computation, vol.181, issue.1, pp.48-56, 2006.
DOI : 10.1016/j.amc.2006.01.017

G. P. Williams, Chaos Theory Tamed, 1997.

C. Wu and L. Chua, On a conjecture regarding the synchronization in an array of linearly coupled dynamical systems, IEEE Transactions on Circuits and Systems I Fundamental theory and Applications, vol.43, pp.161-165, 1996.

Y. Wu, J. Xu, D. He, and D. J. Earn, Generalized synchronization induced by noise and parameter mismatching in Hindmarsh???Rose neurons, Chaos, Solitons & Fractals, vol.23, issue.5, pp.1605-1611, 2005.
DOI : 10.1016/S0960-0779(04)00403-5

T. Yamada and H. Fujisaka, Stability Theory of Synchronized Motion in Coupled-Oscillator Systems. II: The Mapping Approach, Progress of Theoretical Physics, vol.70, issue.5, pp.1240-1248, 1983.
DOI : 10.1143/PTP.70.1240

H. Yu and J. Peng, Chaotic synchronization and control in nonlinear-coupled Hindmarsh???Rose neural systems, Chaos, Solitons & Fractals, vol.29, issue.2, pp.342-348, 2006.
DOI : 10.1016/j.chaos.2005.08.075

T. Zhou, G. Chen, and Q. Yang, Constructing a new chaotic system based on the S??ilnikov criterion, Chaos, Solitons & Fractals, vol.19, issue.4, pp.985-993, 2004.
DOI : 10.1016/S0960-0779(03)00251-0

X. Zhou, Y. Wu, Y. Li, and Z. Wei, Hopf bifurcation analysis of the Liu system, Hopf bifurcation of the Liu system, pp.1385-1391, 2008.
DOI : 10.1016/j.chaos.2006.09.008

). Lyapunov-(-fonction, 111 M Méthode Connection-graph-stability108 Méthode Master-stability-function