E. Fait, Une explication de ceprobì eme, ainsi que des solutions adaptées, sont fournies dans, nous proposons trois indices différents, 2009.

. Bibliographie and . Aapm, Tissue inhomogeneity corrections for megavoltage photon beams, AAPM Report No, vol.85, 2004.

A. Ahnesjö, Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media, Medical Physics, vol.16, issue.4, pp.577-92, 1989.
DOI : 10.1118/1.596360

A. Ahnesjö, A. Ahnesjö, and M. Et-aspradakis, Dose calculations for external photon beams in radiotherapy, Physics in Medicine and Biology, vol.44, issue.11, pp.99-155, 1999.
DOI : 10.1088/0031-9155/44/11/201

. Ahnesjö, A pencil beam model for photon dose calculation, Medical Physics, vol.19, issue.2, pp.263-73, 1992.
DOI : 10.1118/1.596856

P. Andreo, Monte Carlo techniques in medical radiation physics, Physics in Medicine and Biology, vol.36, issue.7, pp.861-920, 1991.
DOI : 10.1088/0031-9155/36/7/001

. Bakai, A revision of the ??-evaluation concept for the comparison of dose distributions, Physics in Medicine and Biology, vol.48, issue.21, pp.3543-53, 2003.
DOI : 10.1088/0031-9155/48/21/006

A. W. Beavis, Is tomotherapy the future of IMRT?, The British Journal of Radiology, vol.77, issue.916, pp.285-295, 2004.
DOI : 10.1259/bjr/22666727

. Bjärngard, . Shackford, B. E. Bjärngard, and H. Et-shackford, Attenuation in high-energy x-ray beams, Medical Physics, vol.21, issue.7, pp.1069-73, 1994.
DOI : 10.1118/1.597349

S. Blake, Artificial neural network modelling of megavoltage photon dose distributions, Physics in Medicine and Biology, vol.49, issue.12, pp.2515-2541, 2004.
DOI : 10.1088/0031-9155/49/12/004

. Blanpain, B. Mercier-]-blanpain, and D. Et-mercier, The delta envelope: A technique for dose distribution comparison, Medical Physics, vol.60, issue.3, pp.797-808, 2009.
DOI : 10.1016/S0167-8140(01)00377-2

URL : https://hal.archives-ouvertes.fr/hal-00365312

. Blanpain, Calcul par réseaux de neurones de la dose déposée en radiothérapie par un faisceau fin dans un fantôme hétérogène, Schedae, pp.151-59, 2007.

. Blanpain, Procédé de calcul de doses déposées par un rayonnement ionisant, Brevet, 2009.

L. Blazy, Contrôle qualité des systèmes de planification dosimétrique des traitements en radiothérapie externe au moyen du code Monte-Carlo Penelope, Thèse de doctorat, 2007.

. Boyer, . Mok, A. Boyer, and E. Et-mok, A photon dose distribution model employing convolution calculations, Medical Physics, vol.12, issue.2, pp.169-77, 1985.
DOI : 10.1118/1.595772

J. Clarkson, A Note on Depth Doses in Fields of Irregular Shape, The British Journal of Radiology, vol.14, issue.164, pp.265-273, 1941.
DOI : 10.1259/0007-1285-14-164-265

J. R. Cunningham, Scatter-air ratios, Physics in Medicine and Biology, vol.17, issue.1, pp.42-51, 1972.
DOI : 10.1088/0031-9155/17/1/005

G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals, and Systems, vol.27, issue.4, pp.303-317, 1989.
DOI : 10.1007/BF02551274

C. De, Radiothérapie guidée par l'image : pourquoi, comment et résultats, Bulletin du Cancer, vol.96, pp.123-155, 2009.

. Drucker, Support vector regression machines, Advances in Neural Information Processing Systems 9, NIPS 1996, pp.155-61, 1997.

. Dyk, Commissioning and quality assurance of treatment planning computers, International Journal of Radiation Oncology*Biology*Physics, vol.26, issue.2, 1993.
DOI : 10.1016/0360-3016(93)90206-B

. Dyk, Tomotherapy : A " revolution " in radiation therapy, Physics in Canada, vol.58, pp.79-86, 2002.

. Emami, Tolerance of normal tissue to therapeutic irradiation, International Journal of Radiation Oncology*Biology*Physics, vol.21, issue.1, pp.109-131, 1991.
DOI : 10.1016/0360-3016(91)90171-Y

. Esch, Acceptance tests and quality control (QC) procedures for the clinical implementation of intensity modulated radiotherapy (IMRT) using inverse planning and the sliding window technique: experience from five radiotherapy departments, Radiotherapy and Oncology, vol.65, issue.1, pp.53-70, 2002.
DOI : 10.1016/S0167-8140(02)00174-3

. Fogliata, On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations, Physics in Medicine and Biology, vol.52, issue.5, pp.1363-85, 2007.
DOI : 10.1088/0031-9155/52/5/011

K. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Networks, vol.2, issue.3, pp.183-92, 1989.
DOI : 10.1016/0893-6080(89)90003-8

B. Habib, Etude numérique et expérimentale d'un système de planification de traitement pour la radiothérapie intégrant un calcul Monte Carlo applications aux hétérogénéités et petits faisceaux, Thèse de doctorat, 2009.

. Habib, Evaluation of PENFAST ??? A fast Monte Carlo code for dose calculations in photon and electron radiotherapy treatment planning, Physica Medica, vol.26, issue.1, 2009.
DOI : 10.1016/j.ejmp.2009.03.002

. Harms, A software tool for the quantitative evaluation of 3D dose calculation algorithms, Medical Physics, vol.22, issue.10, pp.1830-1866, 1998.
DOI : 10.1118/1.598363

. Hoban, Photon beam convolution using polyenergetic energy deposition kernels, Physics in Medicine and Biology, vol.39, issue.4, pp.669-85, 1994.
DOI : 10.1088/0031-9155/39/4/002

. Huizenga, . Storchi, H. Huizenga, and P. R. Et-storchi, Numerical calculation of energy deposition by broad high-energy electron beams, Physics in Medicine and Biology, vol.34, issue.10, pp.1371-96, 1989.
DOI : 10.1088/0031-9155/34/10/003

. Hunt, Evaluation of concave dose distributions created using an inverse planning system, International Journal of Radiation Oncology*Biology*Physics, vol.54, issue.3, pp.953-62, 2002.
DOI : 10.1016/S0360-3016(02)03004-3

. Imrt-collaborative-working and . Group, Intensity-modulated radiotherapy : current status and issues of interest, Int. J. Radiat. Oncol. Biol. Phys, vol.51, issue.4, pp.880-914, 2001.

. Janssen, Numerical calculation of energy deposition by high-energy electron beams: III. Three-dimensional heterogeneous media, Physics in Medicine and Biology, vol.39, issue.9, pp.1351-66, 1994.
DOI : 10.1088/0031-9155/39/9/004

. Jiang, On dose distribution comparison, Physics in Medicine and Biology, vol.51, issue.4, pp.759-76, 2006.
DOI : 10.1088/0031-9155/51/4/001

. Ju, Geometric interpretation of the ?? dose distribution comparison technique: Interpolation-free calculation, Medical Physics, vol.30, issue.3, pp.879-87, 2008.
DOI : 10.1118/1.1568978

. Kawrakow, 3D electron dose calculation using a Voxel based Monte Carlo algorithm (VMC), Medical Physics, vol.23, issue.4, pp.445-57, 1996.
DOI : 10.1118/1.597673

K. Et-hoban-]-keall, P. Et-hoban, and P. , A review of electron beam dose calculation algorithms, Australas. Phys. Eng. Sci. Med, vol.19, issue.3, pp.111-141, 1996.

K. Et-hoban-]-keall, P. Et-hoban, and P. , Super-Monte Carlo: A 3-D electron beam dose calculation algorithm, Medical Physics, vol.23, issue.12, pp.2023-2057, 1996.
DOI : 10.1118/1.597842

. Keall, The effect of dose calculation uncertainty on the evaluation of radiotherapy plans, Medical Physics, vol.21, issue.3, pp.478-84, 2000.
DOI : 10.1118/1.598916

. Knoos, Limitations of a pencil beam approach to photon dose calculations in lung tissue, Physics in Medicine and Biology, vol.40, issue.9, pp.1411-1431, 1995.
DOI : 10.1088/0031-9155/40/9/002

. Kooy, . Rashid, H. M. Kooy, and H. Et-rashid, A three-dimensional electron pencil-beam algorithm, Physics in Medicine and Biology, vol.34, issue.2, pp.229-243, 1989.
DOI : 10.1088/0031-9155/34/2/007

. Korevaar, Accuracy of the phase space evolution dose calculation model for clinical 25 MeV electron beams, Physics in Medicine and Biology, vol.45, issue.10, pp.2931-2976, 2000.
DOI : 10.1088/0031-9155/45/10/314

E. Lartigau, La radiothérapie oncologique : Concepts, techniques et applications cliniques, 2009.

. Lefkopoulos, Pr??sent et??avenir de??la??radioth??rapie guid??e par??l'image (IGRT) et??ses??applications possibles dans??le??traitement des??cancers bronchiques, Cancer/Radioth??rapie, vol.11, issue.1-2, pp.23-31, 2007.
DOI : 10.1016/j.canrad.2006.10.001

. Liu, Correcting kernel tilting and hardening in convolution/superposition dose calculations for clinical divergent and polychromatic photon beams, Med. Phys, vol.24, pp.1729-1770, 1997.

. Low, A technique for the quantitative evaluation of dose distributions, Medical Physics, vol.23, issue.5, pp.656-61, 1998.
DOI : 10.1118/1.598248

. Mackie, A convolution method of calculating dose for 15-MV x rays, Medical Physics, vol.12, issue.2, pp.188-96, 1985.
DOI : 10.1118/1.595774

S. Martin, Utilisation d'atlas anatomiques et de modèles déformables pour la segmentation de la prostate en IRM, Thèse de doctorat, 2008.

. Mathieu, Calculations of dose distributions using a neural network model, Physics in Medicine and Biology, vol.50, issue.5, pp.1019-1047, 2005.
DOI : 10.1088/0031-9155/50/5/024

URL : https://hal.archives-ouvertes.fr/hal-00426148

Y. Menguy, Optimisation quadratique et géométrique de pro-bì emes de dosimétrie inverse, Thèse de doctorat, 1996.

. Metcalfe, Beam hardening of 10 MV radiotherapy X-rays: analysis using a convolution/superposition method, Physics in Medicine and Biology, vol.35, issue.11, pp.1533-1582, 1990.
DOI : 10.1088/0031-9155/35/11/008

M. , C. Mohan, R. Et-chui, and C. , Use of fast fourier transforms in calculating dose distributions for irregularly shaped fields for three-dimensional treatment planning, Med. Phys, vol.14, pp.70-77, 1987.

. Mohan, Differential pencil beam dose computation model for photons, Medical Physics, vol.13, issue.1, pp.64-73, 1986.
DOI : 10.1118/1.595924

. Moran, A dosegradient analysis tool for imrt qa, J. Appl. Clin. Med. Phys, vol.6, pp.62-73, 2005.

S. Nelms, B. E. Nelms, and J. A. Et-simon, A survey on planar IMRT QA analysis, Journal of Applied Clinical Medical Physics, vol.6, issue.4, pp.76-90, 2007.
DOI : 10.1120/jacmp.v8i3.2448

[. Connor and J. E. , The density scaling theorem applied to lateral electronic equilibrium, Medical Physics, vol.11, issue.5, pp.678-80, 1984.
DOI : 10.1118/1.595551

. Papanikolaou, Investigation of the convolution method for polyenergetic spectra, Medical Physics, vol.20, issue.5, pp.1327-1363, 1993.
DOI : 10.1118/1.597154

. Salvat, Penelope-2006, a code system for monte carlo simulation of electron and photon transport, NEA 6222, pp.92-64, 2006.

. Salvat, Practical aspects of Monte Carlo simulation of charged particle transport: Mixed algorithms and variance reduction techniques, Radiation and Environmental Biophysics, vol.38, issue.1, p.1522, 1999.
DOI : 10.1007/s004110050133

. Schaffner, Dose calculation models for proton treatment planning using a dynamic beam delivery system: an attempt to include density heterogeneity effects in the analytical dose calculation, Physics in Medicine and Biology, vol.44, issue.1, pp.27-41, 1999.
DOI : 10.1088/0031-9155/44/1/004

. Tillikainen, A 3D pencil-beam-based superposition algorithm for photon dose calculation in heterogeneous media, Physics in Medicine and Biology, vol.53, issue.14, pp.3821-3860, 2008.
DOI : 10.1088/0031-9155/53/14/008

. Ulmer, A 3D photon superposition/convolution algorithm and its foundation on results of Monte Carlo calculations, Physics in Medicine and Biology, vol.50, issue.8, pp.1767-90, 2005.
DOI : 10.1088/0031-9155/50/8/010

. Vanderstraeten, Accuracy of patient dose calculation for lung IMRT: A comparison of Monte Carlo, convolution/superposition, and pencil beam computations, Medical Physics, vol.50, issue.9, pp.3149-58, 2006.
DOI : 10.1118/1.2241992

V. Vapnik, The Nature of Statistical Learning Theory, 1995.

. Vasseur, Dose calculations using artificial neural networks: A feasibility study for photon beams, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.266, issue.7, pp.1085-93, 2008.
DOI : 10.1016/j.nimb.2008.01.072

URL : https://hal.archives-ouvertes.fr/hal-00426185

. Venselaar, Tolerances for the accuracy of photon beam dose calculations of treatment planning systems, Radiotherapy and Oncology, vol.60, issue.2, pp.191-201, 2001.
DOI : 10.1016/S0167-8140(01)00377-2

W. Et-leaver-]-washington, C. Et-leaver, and D. , Principles and Practice of Radiation Therapy, 2009.

S. Webb, The physical basis of IMRT and inverse planning, The British Journal of Radiology, vol.76, issue.910, pp.678-89, 2003.
DOI : 10.1259/bjr/65676879

. Wendling, A fast algorithm for gamma evaluation in 3D, Medical Physics, vol.65, issue.5, pp.1647-54, 2007.
DOI : 10.1016/j.ijrobp.2006.04.031

. Wong, . Purdy, J. Wong, and J. Et-purdy, On methods of inhomogeneity corrections for photon transport, Medical Physics, vol.17, issue.5, pp.807-821, 1990.
DOI : 10.1118/1.596555

. Wong, Effect of small inhomogeneities on dose in a cobalt-60 beam, Medical Physics, vol.8, issue.6, pp.783-91, 1981.
DOI : 10.1118/1.594855

. Wu, . Zhu, X. Wu, and Y. Et-zhu, A neural network regression model for relative dose computation, Physics in Medicine and Biology, vol.45, issue.4, pp.913-935, 2000.
DOI : 10.1088/0031-9155/45/4/307

I. B. En-revue, D. Blanpain, and . Mercier, The delta envelope : A technique for dose distribution comparison, Med. Phys, vol.36, issue.3, pp.797-808, 2009.

B. Brevet, D. Blanpain, J. Mercier, B. Barthe, D. Blanpain et al., Procédé de calcul de doses déposées par un rayonnement ionisant. Brevet CEA n?0954870 Dépôt le 15, pp.151-59, 2007.