L. Jafarpour, S. P. Nolan, S. P. Adv-nolan, . Ed, H. Wiley-vch-clavier et al., (b) N-heterocyclic Carbenes in Synthesis (c) N-Heterocyclic Carbenes in Transition Metal Catalysis, Organomet. Chem. Annu. Rep. Prog. Chem., Sect B: Org. Chem. Annu. Rep. Prog. Chem., Sect B: Org. Chem, vol.46, issue.104, pp.181-222, 2001.

N. Marion, S. Díez-gonzález, and S. P. Nolan, N-Heterocyclic Carbenes as Organocatalysts, Angewandte Chemie International Edition, vol.8, issue.17, pp.2988-3000, 2007.
DOI : 10.1002/anie.200603380

L. A. Agrofoglio, E. Suhas, A. Farese, R. Condom, S. R. Challand et al., Acyclic, Carbocyclic and L-Nucleosides, Tetrahedron Curr. Med. Chem. C. Synthesis, vol.50, issue.8, pp.10611-10684, 1994.
DOI : 10.1007/978-94-007-0816-7

H. Cho, D. L. Bernard, R. W. Sidwell, E. R. Kern, and C. K. Chu, Synthesis of Cyclopentenyl Carbocyclic Nucleosides as Potential Antiviral Agents Against Orthopoxviruses and SARS, Journal of Medicinal Chemistry, vol.49, issue.3, pp.1140-1148, 2006.
DOI : 10.1021/jm0509750

R. Huisgen, (b) Huisgen, R. in " 1,3-Dipolar Cycloaddition Chemistry, Angew. Chem., Int. Ed. Engl, vol.55, issue.1, pp.565-598, 1963.

T. L. Gilchrist, G. E. Gymer, . Adv, . Heterocycl, K. T. Finley et al., Triazoles: 1,2,3 in " The Chemistry of Heterocyclic Compounds For therapeutic activities, see: (d) Buckle, D, J. Med. Chem. J. Med. Chem. Heterocycl. Commun. J. Med. Chem, vol.56, issue.43, pp.33-85, 1974.

W. G. Lewis, F. G. Magallon, V. V. Fokin, and M. G. Finn, Discovery and Characterization of Catalysts for Azide???Alkyne Cycloaddition by Fluorescence Quenching, Journal of the American Chemical Society, vol.126, issue.30, pp.9152-9153, 2004.
DOI : 10.1021/ja048425z

S. Quader, S. E. Boyd, I. D. Jenkins, and T. A. Houston, Multisite Modification of Neomycin B:?? Combined Mitsunobu and Click Chemistry Approach, The Journal of Organic Chemistry, vol.72, issue.6, pp.1962-1979, 2007.
DOI : 10.1021/jo0620967

C. A. Glaser, P. Siemsen, R. C. Livingston, and F. Diederich, 76 For the copper-catalyzed coupling of terminal alkynes (i.e. the Glaser reaction), see: (a) Glaser, C, Chem. Ber. Chem. Pharm. Angew. Chem., Int. Ed, vol.1869, issue.39, pp.422-429, 2000.

S. Schindler, A. G. Blackman, and W. B. Tolman, 77 For the reactions of copper(I) complexes with dioxygen, see: (a), Eur. J. Inorg. Chem. Structure and Bonding, vol.97, pp.2311-2326, 2000.

L. Feng, X. Zhang, Z. Yu, J. Wang, and . Gu, by Copper(I)-Catalyzed Cycloadditions, Chemistry of Materials, vol.14, issue.10, pp.4021-4022, 2002.
DOI : 10.1021/cm025532o

I. M. Kolthoff and J. Coetzeem, Polarography in Acetonitrile. II. Metal Ions Which Have Significantly Different Polarographic Properties in Acetonitrile and in Water. Anodic Waves. Voltammetry at Rotated Platinum Electrode, Journal of the American Chemical Society, vol.79, issue.8, pp.1852-1858, 1957.
DOI : 10.1021/ja01565a023

A. Krasinski, V. V. Fokin, and K. B. Sharpless, Direct Synthesis of 1,5-Disubstituted-4-magnesio-1,2,3-triazoles, Revisited, Organic Letters, vol.6, issue.8, pp.1237-1240, 2004.
DOI : 10.1021/ol0499203

D. Clercq and E. , (b) De Clercq, E.; Neyts, Antiviral Res J. Rev. Med. Virol. Antimicrob. Agents Chemother, vol.158, issue.52, pp.1-13, 2002.

A. Holý, C. K. Chu, and . Ed, Recent Advances in Nucleosides, Chemistry and Chemotherapy, pp.179-232, 1994.

M. Bingham, . Angew, and . Chem, (f) Gradillas, A.; Pérezruthenium catalysts such as those developed by Grubbs (55-57), 202 Hoveyda (59) 203 or Nolan (58) 204 (Figure 29) Among the several metal-based complexes enabling olefin metathesis transformations, ruthenium?benzylidene (56-58) precatalysts 202c,205 are the most widely used in light of their stability and their tolerance towards functionalised substrates. However, other pre-catalysts yielding the same active species, such as boomerang-type (59) pre-catalysts 203, Angew. Chem., Int. Ed, vol.118, issue.45, pp.2730-2736, 2006.

J. Huang, E. D. Stevens, S. P. Nolan, and J. L. Petersen, Olefin Metathesis-Active Ruthenium Complexes Bearing a Nucleophilic Carbene Ligand, Journal of the American Chemical Society, vol.121, issue.12, pp.2674-2678, 1999.
DOI : 10.1021/ja9831352

N. Holub and S. Blechert, Ring-Rearrangement Metathesis, Chemistry ??? An Asian Journal, vol.101, issue.9, pp.1064-1082, 2007.
DOI : 10.1002/asia.200700072

V. Dragutan and I. Dragutan, A resourceful new strategy in organic synthesis: Tandem and stepwise metathesis/non-metathesis catalytic processes, Journal of Organometallic Chemistry, vol.691, issue.24-25, pp.5129-5147, 2006.
DOI : 10.1016/j.jorganchem.2006.08.012

J. Org, . Cheme, J. Velcicky, A. Lanver, J. Lex et al., (f) Stambasky, J.; Kocovsky, P.; Hocek, M. Collection Symposium Series Pohl, R.; Kotora, M Org. Lett. A.V. Pure Appl. Chem, vol.61, issue.80, pp.7963-7966, 1996.

L. A. Agrofoglio, I. Gillaizeau, and Y. Saito, Palladium-Assisted Routes to Nucleosides, Chemical Reviews, vol.103, issue.5, pp.1875-1916, 2003.
DOI : 10.1021/cr010374q

D. Sinou, C. Moineau, M. K. Lakshman, and B. M. Trost, Recent Research Developments in Organic Chemistry, (d) Hocek, M. Nucleic Acids Symposium Series 2005, pp.1-7, 1999.

K. Sonogashira, Y. Tohda, N. Hagihara, S. Takahashi, Y. Kuroyama et al., Comprehensive Organic Synthesis, Tetrahedron Lett. Synthesis Synth. Commun, vol.238, issue.3, pp.4467-4470, 1975.

M. K. Lakshman, J. C. Keeler, J. H. Hilmer, and J. Q. Martin, -Aryl 2???-Deoxyadenosine Analogues, Journal of the American Chemical Society, vol.121, issue.25, pp.6090-6091, 1999.
DOI : 10.1021/ja9908671

URL : https://hal.archives-ouvertes.fr/hal-00886264

M. K. Lakshman, J. H. Hilmer, J. Q. Martin, J. C. Keeler, Y. Q. Dinh et al., Palladium Catalysis for the Synthesis of Hydrophobic C-6 and C-2 Aryl 2???-Deoxynucleosides. Comparison of C???C versus C???N Bond Formation as well as C-6 versus C-2 Reactivity, Journal of the American Chemical Society, vol.123, issue.32, pp.7779-7787, 2001.
DOI : 10.1021/ja0107172

P. Feiertag, M. Albert, U. Nettekoven, and F. Spindler, Asymmetric Homogeneous Hydrogenation of 2,5-Disubstituted Furans, Organic Letters, vol.8, issue.18, pp.4133-4135, 2006.
DOI : 10.1021/ol061681r

R. Aoun, J. Renaud, P. H. Dixneuf, and C. Bruneau, Concomitant Monoreduction and Hydrogenation of Unsaturated Cyclic Imides to Lactams Catalyzed by Ruthenium Compounds, Angewandte Chemie International Edition, vol.125, issue.13, pp.2021-2023, 2005.
DOI : 10.1002/anie.200462996

P. Børsting, K. E. Nielsen, and P. Nielsen, Stabilisation of a nucleic acid three-way junction by an oligonucleotide containing a single 2???-C to 3???-O-phosphate butylene linkage prepared by a tandem RCM-hydrogenation method, Organic & Biomolecular Chemistry, vol.97, issue.11, pp.2183-2190, 2005.
DOI : 10.1039/b502720a

R. Connor and H. Adkins, HYDROGENOLYSIS OF OXYGENATED ORGANIC COMPOUNDS, Journal of the American Chemical Society, vol.54, issue.12, pp.4678-4690, 1932.
DOI : 10.1021/ja01351a026

T. W. Greene and P. G. Wuts, Protective Groups in Organic Synthesis, 1999.
DOI : 10.1002/0471220574

D. J. Porter, J. A. Harrington, M. R. Almond, G. T. Lowen, and T. Spector, (R)-5-Fluoro-5,6-dihydrouracil: Kinetics of oxidation by dihydropyrimidine dehydrogenase and hydrolysis by dihydropyrimidine aminohydrolase, Biochemical Pharmacology, vol.48, issue.4, pp.775-779, 1994.
DOI : 10.1016/0006-2952(94)90056-6

R. Duschinsky, E. Pleven, and C. Heidelberger, THE SYNTHESIS OF 5-FLUOROPYRIMIDINES, Journal of the American Chemical Society, vol.79, issue.16, pp.4559-4560, 1957.
DOI : 10.1021/ja01573a087

A. L. Lafrate and J. A. Katzenellenbogen, Improved Chemical Syntheses of 5,6-Dihydro-5-fluorouracil, The Journal of Organic Chemistry, vol.72, issue.22, pp.8573-8576, 2007.
DOI : 10.1021/jo071255z

A. A. Braga, G. Ujaque, and F. Maseras, Computational Modeling for Homogeneous and Enzymatic Catalysis, pp.109-130, 2008.

. Moreover, NHC ligands provide stabilization of the low-coordinated catalytically active Pd 0

Y. Ben-david, D. Milstein, and G. Lohmer, ) complexes proposed by Beller, 290 a number of well-defined structures such as dimer, 291 allyl, 292 cinnamyl, 293 pyridine (PEPPSI), 294 or acac (acetylacetonate) 295 have been investigated and these complexes exhibit 289 (a) Portnoy, Since the first phosphine-free monocarbenepalladium, pp.4734-4735, 1993.

N. M. Scott, S. P. Nolan, S. P. Nolan, . Ed, D. J. Wiley-vch-nielsen et al., N-heterocyclic Carbenes in Synthesis N-heterocyclic Carbenes in Synthesis, pp.55-70, 2006.

M. S. Viciu, R. A. Kelly, E. D. Stevens, F. Naud, M. Studer et al., -Heterocyclic Carbene (NHC) Palladacycle Complexes, Organic Letters, vol.5, issue.9, pp.1479-1482, 2003.
DOI : 10.1021/ol034264c

URL : https://hal.archives-ouvertes.fr/hal-00185614

O. Navarro, R. A. Kelly, and S. P. Iii-;-nolan, A General Method for the Suzuki???Miyaura Cross-Coupling of Sterically Hindered Aryl Chlorides:?? Synthesis of Di- and Tri-ortho-substituted Biaryls in 2-Propanol at Room Temperature, Journal of the American Chemical Society, vol.125, issue.52, pp.16194-16195, 2003.
DOI : 10.1021/ja038631r

O. Navarro, N. Marion, Y. Oonishi, R. A. Kelly, and S. P. Iii-;-nolan, -Heterocyclic Carbene???Palladacycle Complex, The Journal of Organic Chemistry, vol.71, issue.2, pp.685-692, 2006.
DOI : 10.1021/jo0521201

URL : https://hal.archives-ouvertes.fr/hal-00908683

M. Palucki, J. P. Wolfe, and S. L. Buchwald, Palladium-Catalyzed Intermolecular Carbon???Oxygen Bond Formation:?? A New Synthesis of Aryl Ethers, Journal of the American Chemical Society, vol.119, issue.14, pp.3395-3396, 1997.
DOI : 10.1021/ja9640152

C. H. Burgos, T. E. Barder, X. Huang, and S. L. Buchwald, Significantly Improved Method for the Pd-Catalyzed Coupling of Phenols with Aryl Halides: Understanding Ligand Effects, Angewandte Chemie International Edition, vol.125, issue.26, pp.4321-4326, 2006.
DOI : 10.1002/anie.200601253

W. A. Herrmann and M. Prinz, Applied homogeneous catalysis with organometallic compounds, pp.1119-1130, 2002.

. I. Chem and F. Sato, Handbook of Organopalladium Chemistry for Organic Synthesis, pp.3715-3717, 1999.

H. Lindlar, . Helv, A. Chim-molnár, A. Sárkány, and M. Varga, General methods All reactions were performed under an inert atmosphere of argon or nitrogen using standard high-vacuum or Schlenk techniques or in an MBraun glovebox containing less than 1 ppm oxygen and water. Solvents were distilled from appropriate drying agents or were dispensed from a solvent purification system from Innovative Technology, other anhydrous solvents were purchased from Aldrich and degassed prior to use by purging with dry argon and were kept over molecular sieves, Acta J. Mol. Catal. A-Chem, vol.356, issue.173, pp.446-450, 1952.

. ?m, GC-MS spectra were recorded on GC MS Agilent 5973 equipped with a Electronic Ionization chamber (E.I) HRMS analyses were performed by the Mass Spectrometry Facility of the Institute of Chemical Research of Catalonia (ICIQ) in Tarragona (Spain) Elemental analyses were performed at the Universidad Complutense de Madrid. The CIF files of crystal structures 107 and 108 have been deposited with the CCDC, CCDC- 688389 and 688388, respectively Copies of the data can be obtained free of charge on applications to CCDC, p.12

C. Ch, CH(CH 3 ) 2 ), CH, CH(CH 3 ) 2 ), 27.2 (CH 3 , CH(CH 3 ) 2 ) CH(CH 3 ) 2 ) CH(CH 3 ) 2 ) CH(CH 3 ) 2 ) CH(CH 3 ) 2 )

2. Hz and H. Ar, CDCl 3 ) ? 7, NMR: (400 MHz, p.8386

. Ml, The reaction mixture was then dissolved in 30 mL of EtOAc and washed once with a 01N HCl solution (20 mL) After adjusting the pH to 5 with a 3N NaOH solution, the aqueous phase was extracted six times with EtOAc. Subsequent flash chromatography on silica gel (EtOAc

. Ml, The reaction mixture was then dissolved in 30 mL of EtOAc and washed once with a 01N HCl solution (20 mL) After adjusting the pH to 5 with a 3N NaOH solution, the aqueous phase was extracted six times with EtOAc. Subsequent flash chromatography on silica gel (EtOAc

1. Ddd and J. =. , CDCl 3 ) ? 8, NMR: (400 MHz, pp.41-732

3. Ar, 81 (s, 3H, O-CH 3

2. Hz and H. Ar, CDCl 3 ) ? 7, NMR: (400 MHz, p.22

. Hz, 23 (s, 3H, CH 3 ), 1.58-1.50 (m, 4H

F. Nmr, CDCl 3 ) ? -113, 376 MHz

H. Ar, CDCl 3 ) ? 7.65 (dd, 3 J(H,H) = 8.0 Hz, NMR: (400 MHz, pp.7-46

2. , J. =. 4h, and H. Ar, CDCl 3 ) ? 7, NMR: (400 MHz, pp.4-82

2. , J. =. 4h, and H. Ar, CDCl 3 ) ? 7, NMR: (400 MHz, pp.4-78

2. , J. =. 3h, and H. Ar, CDCl 3 ) ? 10.66 (bs, NMR: (400 MHz, p.67

2. Ar, 3. , and H. Ar, CDCl 3 ) ? 7, NMR: (400 MHz, pp.35-42

J. Broggi, H. Kumamoto, S. Berteina-raboin, S. P. Nolan, and L. A. Agrofoglio, Click Azide-Alkyne Cycloaddition for the Synthesis of D-(-)-1,4-Disubstituted Triazolo-Carbanucleosides, European Journal of Organic Chemistry, vol.18, issue.12, pp.1880-1888, 2009.
DOI : 10.1002/ejoc.200801124

J. Broggi, N. Joubert, S. Díez-gonzález, S. Berteina-raboin, T. Zevaco et al., Synthesis of (??)-1,2,3-triazolo-3???-deoxy-4???-hydroxymethyl carbanucleosides via ???click??? cycloaddition, Tetrahedron, vol.65, issue.6, pp.1162-1170, 2009.
DOI : 10.1016/j.tet.2008.11.065

J. Broggi, H. Clavier, and S. P. Nolan, ChemInform Abstract: N-Heterocyclic Carbenes (NHCs) Containing N-C-Palladacycle Complexes: Synthesis and Reactivity in Aryl Amination Reactions., ChemInform, vol.27, issue.11, pp.5525-5531, 2008.
DOI : 10.1002/chin.200911074

J. Broggi, S. Díez-gonzález, J. L. Petersen, S. Berteina-raboin, S. P. Nolan et al., Study of copper(I) catalysts for the synthesis of carbanucleosides via azidealkyne 1,3-dipolar cycloaddition, Synthesis, pp.141-148, 2008.

H. Kumamoto, D. Topalis, J. Broggi, U. Pradère, V. Roy et al., Preparation of acyclo nucleoside phosphonate analogues based on cross-metathesis, Tetrahedron, vol.64, issue.16, pp.3517-3526, 2008.
DOI : 10.1016/j.tet.2008.01.140

L. A. Agrofoglio, F. Amblard, J. Broggi, and E. Garnier, Recent insigth into the synthesis of the 'non-classical' O-or N-heterocyclic bases of nucleosides" in Modern Approaches to the Synthesis of O-and N-Heterocycles, 2007.

J. Broggi, N. Joubert, V. Aucagne, T. Zevaco, S. Berteina-raboin et al., Study of Different Copper (I) Catalysts for the ???Click Chemistry??? Approach to Carbanucleosides, Nucleosides, Nucleotides and Nucleic Acids, vol.26, issue.6-7, pp.779-783, 2007.
DOI : 10.1021/ja0471525

URL : https://hal.archives-ouvertes.fr/hal-00275217

J. Broggi, N. Joubert, V. Aucagne, S. Berteina-raboin, S. Diez-gonzalez et al., Alkyne-Azide Click Chemistry Mediated Carbanucleosides Synthesis, Nucleosides, Nucleotides and Nucleic Acids, vol.1, issue.10-12, pp.1391-1394, 2007.
DOI : 10.1021/ja0471525

S. P. Nolan, Palladacycle complexes containing saturated N-heterocyclic carbene (NHC): Synthesis and reactivity in C-N cross coupling reactions, Poster Communications 1 -2nd EuChems Chemistry Congress -Torino, 2008.

?. Xvii-international-roundtable, . Bern, ?. Switzerland, and V. Aucagne, Alkyne ?Azide Click Chemistry Mediated Carbanucleosides Synthesis, Broggi, J. ; Joubert, N Berteina-Raboin, S, 2006.

?. Xvii-international-roundtable, . Bern, ?. Switzerland, and V. Aucagne, Study of Different Copper(I) Catalysts for the Click Chemistry Approach to Carbanucleosides, Broggi, J. ; Joubert, N Berteina-Raboin, S, 2006.

I. Sycocal, . Mézière-en-brenne, and ?. France, Développement et Applications de la Chimie, 2006.

. Ème-journée-régionale-de-la-chimie and . Sfc-?-toulon, Conjugués Peptide-AZT et Peptide-MP-AZT : un nouveau concept de Prodrogues, 2005.

E. Enfin and . Vue, obtenir des outils efficaces utilisables en synthèse nucléosidique, nous avons développés des nouveaux complexes au palladium portant un ligand CNH et testé leurs réactivités dans des réactions de

. Nucléoside-carbocyclique, Contribution of N-Heterocyclic Carbene-Containing Catalysts in the Nucleoside Chemistry