F. Angeli, G. Koumakis, M. C. Chen, S. Kumar, and J. G. Delinassios, Role of Stromal Fibroblasts in Cancer: Promoting or Impeding?, Tumor Biology, vol.30, issue.3, pp.109-120, 2009.
DOI : 10.1159/000218708

M. Sund and R. Kalluri, Tumor stroma derived biomarkers in cancer, Cancer and Metastasis Reviews, vol.204, issue.1-2, pp.177-183, 2009.
DOI : 10.1007/s10555-008-9175-2

G. A. Colditz, T. A. Sellers, and E. Trapido, Epidemiology ??? identifying the causes and preventability of cancer?, Nature Reviews Cancer, vol.84, issue.1, pp.75-83, 2006.
DOI : 10.1038/nrc1784

H. Iwasaki and T. Suda, Cancer stem cells and their niche, Cancer Science, vol.363, issue.7, pp.1166-1172, 2009.
DOI : 10.1111/j.1349-7006.2009.01177.x

S. Mittal, R. Mifflin, and D. W. Powell, Cancer Stem Cells: The Other Face of Janus, The American Journal of the Medical Sciences, vol.338, issue.2, pp.107-112, 2009.
DOI : 10.1097/MAJ.0b013e3181ad5865

R. Gangemi, Cancer Stem Cells: A New Paradigm for Understanding Tumor Growth and Progression and Drug Resistance, Current Medicinal Chemistry, vol.16, issue.14, pp.1688-1703, 2009.
DOI : 10.2174/092986709788186147

J. W. Vardiman, The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes, Blood, vol.114, issue.5, pp.937-951, 2009.
DOI : 10.1182/blood-2009-03-209262

V. P. Burke and J. M. Startzell, The Leukemias, Oral and Maxillofacial Surgery Clinics of North America, vol.20, issue.4, pp.597-608, 2008.
DOI : 10.1016/j.coms.2008.06.011

M. Ansari and M. Krajinovic, Pharmacogenomics of acute leukemia, Pharmacogenomics, vol.8, issue.7, pp.817-834, 2007.
DOI : 10.2217/14622416.8.7.817

A. Heerema-mckenney and D. A. Arber, Acute Myeloid Leukemia, Hematology/Oncology Clinics of North America, vol.23, issue.4, pp.633-654, 2009.
DOI : 10.1016/j.hoc.2009.04.003

F. Ravandi and S. O-'brien, Chronic Lymphoid Leukemias Other Than Chronic Lymphocytic Leukemia: Diagnosis and Treatment, Mayo Clinic Proceedings, vol.80, issue.12, pp.1660-1674, 2005.
DOI : 10.4065/80.12.1660

A. Tefferi and J. W. Vardiman, Classification and diagnosis of myeloproliferative neoplasms: The 2008 World Health Organization criteria and point-of-care diagnostic algorithms, Leukemia, vol.5, issue.1, pp.14-22, 2008.
DOI : 10.1038/sj.leu.2404955

S. Faderl, The biology of chronic myeloid leukemia, N Engl J Med, vol.341, issue.3, pp.164-172, 1999.

M. W. Deininger, J. M. Goldman, and J. V. Melo, The molecular biology of chronic myeloid leukemia, Blood, vol.96, issue.10, pp.3343-3356, 2000.

S. Wong and O. N. Witte, The BCR-ABL Story: Bench to Bedside and Back, Annual Review of Immunology, vol.22, issue.1, pp.247-306, 2004.
DOI : 10.1146/annurev.immunol.22.012703.104753

P. C. Nowell, Discovery of the Philadelphia chromosome: a personal perspective, Journal of Clinical Investigation, vol.117, issue.8, pp.2033-2035, 2007.
DOI : 10.1172/JCI31771

B. Calabretta and D. Perrotti, The biology of CML blast crisis, Blood, vol.103, issue.11, pp.4010-4022, 2004.
DOI : 10.1182/blood-2003-12-4111

J. V. Melo and D. J. Barnes, Chronic myeloid leukaemia as a model of disease evolution in human cancer, Nature Reviews Cancer, vol.19, issue.6, pp.441-453, 2007.
DOI : 10.1038/nrc2147

J. P. Radich, The Biology of CML Blast Crisis, Hematology, vol.2007, issue.1, pp.384-391, 2007.
DOI : 10.1182/asheducation-2007.1.384

J. W. Vardiman, +, American Journal of Clinical Pathology, vol.132, issue.2, pp.250-260, 2009.
DOI : 10.1309/AJCPUN89CXERVOVH

C. R. Bartram, Translocation of c-abl oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia, Nature, vol.8, issue.5940, pp.277-280, 1983.
DOI : 10.1016/0092-8674(77)90119-2

N. Heisterkamp, Localization of the c-abl oncogene adjacent to a translocation break point in chronic myelocytic leukaemia, Nature, vol.79, issue.5940, pp.239-242, 1983.
DOI : 10.1016/0042-6822(83)90473-7

J. Groffen, Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22, Cell, vol.36, issue.1, pp.93-99, 1984.
DOI : 10.1016/0092-8674(84)90077-1

R. A. Van-etten, Cycling, stressed-out and nervous: cellular functions of c-Abl, Trends in Cell Biology, vol.9, issue.5, pp.179-186, 1999.
DOI : 10.1016/S0962-8924(99)01549-4

S. Taagepera, Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase, Proceedings of the National Academy of Sciences, vol.95, issue.13, pp.7457-7462, 1998.
DOI : 10.1073/pnas.95.13.7457

O. Hantschel, A Myristoyl/Phosphotyrosine Switch Regulates c-Abl, Cell, vol.112, issue.6, pp.845-857, 2003.
DOI : 10.1016/S0092-8674(03)00191-0

B. Nagar, Structural Basis for the Autoinhibition of c-Abl Tyrosine Kinase, Cell, vol.112, issue.6, pp.859-871, 2003.
DOI : 10.1016/S0092-8674(03)00194-6

J. Y. Wang, Regulation of cell death by the Abl tyrosine kinase, Oncogene, vol.19, issue.49, pp.5643-5650, 2000.
DOI : 10.1038/sj.onc.1203878

C. L. Sawyers, J. Mclaughlin, A. Goga, M. Havlik, and O. Witte, The nuclear tyrosine kinase c-abl negatively regulates cell growth, Cell, vol.77, issue.1, pp.121-131, 1994.
DOI : 10.1016/0092-8674(94)90240-2

Z. M. Yuan, p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage, Nature, vol.399, issue.6738, pp.814-817, 1999.

M. Wetzler, Subcellular localization of Bcr, Abl, and Bcr-Abl proteins in normal and leukemic cells and correlation of expression with myeloid differentiation., Journal of Clinical Investigation, vol.92, issue.4
DOI : 10.1172/JCI116786

M. Wetzler, Cell cycle-related shifts in subcellular localization of BCR: association with mitotic chromosomes and with heterochromatin., Proceedings of the National Academy of Sciences, vol.92, issue.8, pp.3488-3492, 1995.
DOI : 10.1073/pnas.92.8.3488

J. R. Mcwhirter, D. L. Galasso, and J. Y. Wang, A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins., Molecular and Cellular Biology, vol.13, issue.12, pp.7587-7595, 1993.
DOI : 10.1128/MCB.13.12.7587

C. L. Sawyers, J. Mclaughlin, and O. N. Witte, Genetic requirement for Ras in the transformation of fibroblasts and hematopoietic cells by the Bcr-Abl oncogene, Journal of Experimental Medicine, vol.181, issue.1, pp.307-313, 1995.
DOI : 10.1084/jem.181.1.307

J. M. Goldman and J. V. Melo, Chronic Myeloid Leukemia ??? Advances in Biology and New Approaches to Treatment, New England Journal of Medicine, vol.349, issue.15, pp.1451-1464, 2003.
DOI : 10.1056/NEJMra020777

S. B. Marley and M. Y. Gordon, Chronic myeloid leukaemia: stem cell derived but progenitor cell driven, Clinical Science, vol.109, issue.1, pp.13-25, 2005.
DOI : 10.1042/CS20040336

A. M. Pendergast, BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein, Cell, vol.75, issue.1, pp.175-185, 1993.
DOI : 10.1016/S0092-8674(05)80094-7

T. Skorski, Negative regulation of p120GAP GTPase promoting activity by p210bcr/abl: implication for RAS-dependent Philadelphia chromosome positive cell growth, Journal of Experimental Medicine, vol.179, issue.6, pp.1855-1865, 1994.
DOI : 10.1084/jem.179.6.1855

L. S. Steelman, JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis, Leukemia, vol.18, issue.2, pp.189-218, 2004.
DOI : 10.1038/sj.leu.2403241

A. B. Raitano, J. R. Halpern, T. M. Hambuch, and C. L. Sawyers, The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation., Proceedings of the National Academy of Sciences, vol.92, issue.25, pp.11746-11750, 1995.
DOI : 10.1073/pnas.92.25.11746

G. Pages, Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation., Proceedings of the National Academy of Sciences, vol.90, issue.18, pp.8319-8323, 1993.
DOI : 10.1073/pnas.90.18.8319

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC47347/pdf

J. N. Lavoie, G. L-'allemain, A. Brunet, R. Muller, and J. Pouyssegur, Cyclin D1 Expression Is Regulated Positively by the p42/p44MAPK and Negatively by the p38/HOGMAPK Pathway, Journal of Biological Chemistry, vol.271, issue.34, pp.20608-20616, 1996.
DOI : 10.1074/jbc.271.34.20608

S. H. Kaufmann and M. O. Hengartner, Programmed cell death: alive and well in the new millennium, Trends in Cell Biology, vol.11, issue.12, pp.526-534, 2001.
DOI : 10.1016/S0962-8924(01)02173-0

H. Kim, Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies, Nature Cell Biology, vol.14, issue.12, pp.1348-1358, 2006.
DOI : 10.1073/pnas.0406837101

Y. P. Ow, D. R. Green, Z. Hao, and T. W. Mak, Cytochrome c: functions beyond respiration, Nature Reviews Molecular Cell Biology, vol.14, issue.7, pp.532-542, 2008.
DOI : 10.1038/nrm2434

K. Balmanno and S. J. Cook, Tumour cell survival signalling by the ERK1/2 pathway, Cell Death and Differentiation, vol.96, issue.3, pp.368-377, 2009.
DOI : 10.1074/jbc.M010384200

M. Sattler, The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3' kinase pathway, Oncogene, vol.12, issue.4, pp.839-846, 1996.

T. Skorski, Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells, Blood, vol.86, issue.2, pp.726-736, 1995.

B. Calabretta and T. Skorski, BCR/ABL Regulation of PI-3 Kinase Activity, Leukemia & Lymphoma, vol.1226, issue.5-6, pp.473-476, 1996.
DOI : 10.1126/science.7701324

D. M. Sabatini, mTOR and cancer: insights into a complex relationship, Nature Reviews Cancer, vol.10, issue.9, pp.729-734, 2006.
DOI : 10.1038/nrc1974

D. A. Guertin and D. M. Sabatini, Defining the Role of mTOR in Cancer, Cancer Cell, vol.12, issue.1, pp.9-22, 2007.
DOI : 10.1016/j.ccr.2007.05.008

D. D. Sarbassov, Rictor, a novel binding partner of mTOR, defines a rapamycininsensitive and raptor-independent pathway that regulates the cytoskeleton, Curr Biol, p.58

D. D. Sarbassov, D. A. Guertin, S. M. Ali, and D. M. Sabatini, Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex, Science, vol.307, issue.5712, pp.1098-1101, 2005.
DOI : 10.1126/science.1106148

Q. Yang, K. Inoki, T. Ikenoue, and K. L. Guan, Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity, Genes & Development, vol.20, issue.20, pp.2820-2832, 2006.
DOI : 10.1101/gad.1461206

M. A. Frias, mSin1 Is Necessary for Akt/PKB Phosphorylation, and Its Isoforms Define Three Distinct mTORC2s, Current Biology, vol.16, issue.18, pp.1865-1870, 2006.
DOI : 10.1016/j.cub.2006.08.001

URL : http://doi.org/10.1016/j.cub.2006.08.001

D. H. Kim, mTOR Interacts with Raptor to Form a Nutrient-Sensitive Complex that Signals to the Cell Growth Machinery, Cell, vol.110, issue.2, pp.163-175, 2002.
DOI : 10.1016/S0092-8674(02)00808-5

K. Yonezawa, C. Tokunaga, N. Oshiro, and K. Yoshino, Raptor, a binding partner of target of rapamycin, Biochemical and Biophysical Research Communications, vol.313, issue.2, pp.437-441, 2004.
DOI : 10.1016/j.bbrc.2003.07.018

K. Hara, Raptor, a Binding Partner of Target of Rapamycin (TOR), Mediates TOR Action, Cell, vol.110, issue.2, pp.177-189, 2002.
DOI : 10.1016/S0092-8674(02)00833-4

D. H. Kim, G??L, a Positive Regulator of the Rapamycin-Sensitive Pathway Required for the Nutrient-Sensitive Interaction between Raptor and mTOR, Molecular Cell, vol.11, issue.4, pp.895-904, 2003.
DOI : 10.1016/S1097-2765(03)00114-X

V. Haar, E. Lee, S. I. Bandhakavi, S. Griffin, T. J. Kim et al., Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40, Nature Cell Biology, vol.126, issue.3, pp.316-323, 2007.
DOI : 10.1523/JNEUROSCI.5209-03.2004

L. Wang, T. E. Harris, R. A. Roth, J. C. Lawrence, and . Jr, PRAS40 Regulates mTORC1 Kinase Activity by Functioning as a Direct Inhibitor of Substrate Binding, Journal of Biological Chemistry, vol.282, issue.27, pp.20036-20044, 2007.
DOI : 10.1074/jbc.M702376200

L. Wang, T. E. Harris, J. C. Lawrence, and . Jr, Regulation of Proline-rich Akt Substrate of 40 kDa (PRAS40) Function by Mammalian Target of Rapamycin Complex 1 (mTORC1)-mediated Phosphorylation, Journal of Biological Chemistry, vol.283, issue.23, pp.15619-15627, 2008.
DOI : 10.1074/jbc.M800723200

J. Averous and C. G. Proud, When translation meets transformation: the mTOR story, Oncogene, vol.9, issue.48, pp.6423-6435, 2006.
DOI : 10.1038/sj.onc.1209887

M. A. Bjornsti and P. J. Houghton, The tor pathway: a target for cancer therapy, Nature Reviews Cancer, vol.4, issue.5, pp.335-348, 2004.
DOI : 10.1038/nrc1362

K. Inoki, M. N. Corradetti, and K. L. Guan, Dysregulation of the TSC-mTOR pathway in human disease, Nature Genetics, vol.96, issue.1, pp.19-24, 2005.
DOI : 10.1038/nrc1362

O. Meyuhas, Synthesis of the translational apparatus is regulated at the translational level, European Journal of Biochemistry, vol.37, issue.21, pp.6321-6330, 2000.
DOI : 10.1046/j.1432-1327.2000.01719.x

M. Pende, S6K1-/-/S6K2-/- Mice Exhibit Perinatal Lethality and Rapamycin-Sensitive 5'-Terminal Oligopyrimidine mRNA Translation and Reveal a Mitogen-Activated Protein Kinase-Dependent S6 Kinase Pathway, Molecular and Cellular Biology, vol.24, issue.8, pp.3112-3124, 2004.
DOI : 10.1128/MCB.24.8.3112-3124.2004

J. H. Kim, Activation of the PI3K/mTOR pathway by BCR-ABL contributes to increased production of reactive oxygen species, Blood, vol.105, issue.4, pp.1717-1723, 2005.
DOI : 10.1182/blood-2004-03-0849

A. Sallmyr, J. Fan, and F. V. Rassool, Genomic instability in myeloid malignancies: Increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair, Cancer Letters, vol.270, issue.1, pp.1-9, 2008.
DOI : 10.1016/j.canlet.2008.03.036

S. R. Datta, Akt Phosphorylation of BAD Couples Survival Signals to the Cell-Intrinsic Death Machinery, Cell, vol.91, issue.2, pp.231-241, 1997.
DOI : 10.1016/S0092-8674(00)80405-5

B. M. Burgering and R. H. Medema, Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty, Journal of Leukocyte Biology, vol.73, issue.6, pp.689-701, 2003.
DOI : 10.1189/jlb.1202629

H. Huang and D. J. Tindall, Dynamic FoxO transcription factors, Journal of Cell Science, vol.120, issue.15, pp.2479-2487, 2007.
DOI : 10.1242/jcs.001222

V. Hietakangas and S. M. Cohen, Re-evaluating AKT regulation: role of TOR complex 2 in tissue growth, Genes & Development, vol.21, issue.6, pp.632-637, 2007.
DOI : 10.1101/gad.416307

M. Oren, Decision making by p53: life, death and cancer, Cell Death and Differentiation, vol.10, issue.4, pp.431-442, 2003.
DOI : 10.1038/sj.cdd.4401183

L. C. Cantley and B. G. Neel, New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway, Proceedings of the National Academy of Sciences, vol.96, issue.8, pp.4240-4245, 1999.
DOI : 10.1073/pnas.96.8.4240

P. J. Eichhorn, M. P. Creyghton, and R. Bernards, Protein phosphatase 2A regulatory subunits and cancer, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1795, issue.1, pp.1-15, 2009.
DOI : 10.1016/j.bbcan.2008.05.005

P. Neviani, The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein, Cancer Cell, vol.8, issue.5, pp.355-368, 2005.
DOI : 10.1016/j.ccr.2005.10.015

P. Neviani, FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome???positive acute lymphocytic leukemia, Journal of Clinical Investigation, vol.117, issue.9, pp.2408-2421, 2007.
DOI : 10.1172/JCI31095DS1

T. Gao, F. Furnari, and A. C. Newton, PHLPP: A Phosphatase that Directly Dephosphorylates Akt, Promotes Apoptosis, and Suppresses Tumor Growth, Molecular Cell, vol.18, issue.1, pp.13-24, 2005.
DOI : 10.1016/j.molcel.2005.03.008

J. E. Darnell, . Jr, I. M. Kerr, and G. R. Stark, Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins, Science, vol.264, issue.5164, pp.1415-1421, 1994.
DOI : 10.1126/science.8197455

W. J. Leonard and J. J. Shea, JAKS AND STATS: Biological Implications, Annual Review of Immunology, vol.16, issue.1, pp.293-322, 1998.
DOI : 10.1146/annurev.immunol.16.1.293

S. Xie, Involvement of Jak2 tyrosine phosphorylation in Bcr???Abl transformation, Oncogene, vol.20, issue.43, pp.6188-6195, 2001.
DOI : 10.1038/sj.onc.1204834

S. Xie, H. Lin, T. Sun, and R. B. Arlinghaus, Jak2 is involved in c-Myc induction by Bcr-Abl, Oncogene, vol.21, issue.47, pp.7137-7146, 2002.
DOI : 10.1038/sj.onc.1205942

P. Coppo, BCR-ABL activates STAT3 via JAK and MEK pathways in human cells, British Journal of Haematology, vol.267, issue.2, pp.171-179, 2006.
DOI : 10.1038/sj.onc.1205152

T. Kisseleva, S. Bhattacharya, J. Braunstein, and C. W. Schindler, Signaling through the JAK/STAT pathway, recent advances and future challenges, Gene, vol.285, issue.1-2, pp.1-24, 2002.
DOI : 10.1016/S0378-1119(02)00398-0

Y. Wang, Adaptive secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF) mediates imatinib and nilotinib resistance in BCR/ABL+ progenitors via JAK-2/STAT-5 pathway activation, Blood, vol.109, issue.5, pp.2147-2155, 2007.
DOI : 10.1182/blood-2006-08-040022

J. Liu, BCR-ABL mutants spread resistance to non-mutated cells through a paracrine mechanism, Leukemia, vol.92, issue.4, pp.791-799, 2008.
DOI : 10.1158/1535-7163.MCT-06-0446

B. T. Kile and W. S. Alexander, The suppressors of cytokine signalling (SOCS), Cellular and Molecular Life Sciences, vol.58, issue.11, pp.1627-1635, 2001.
DOI : 10.1007/PL00000801

D. Sepulveda and P. , Socs1 binds to multiple signalling proteins and suppresses Steel factor-dependent proliferation, The EMBO Journal, vol.18, issue.4, pp.904-915, 1999.
DOI : 10.1093/emboj/18.4.904

A. Saudemont, Dormant Tumor Cells Develop Cross-Resistance to Apoptosis Induced by CTLs or Imatinib Mesylate via Methylation of Suppressor of Cytokine Signaling 1, Cancer Research, vol.67, issue.9, pp.4491-4498, 2007.
DOI : 10.1158/0008-5472.CAN-06-1627

E. K. Thomas, J. A. Cancelas, Y. Zheng, and D. A. Williams, Rac GTPases as key regulators of p210-BCR-ABL-dependent leukemogenesis, Leukemia, vol.105, issue.5, pp.898-904, 2008.
DOI : 10.1038/leu.2008.71

A. Gotoh, Tyrosine phosphorylation and activation of focal adhesion kinase (p125FAK) by BCR-ABL oncoprotein, Exp Hematol, vol.23, issue.11, pp.1153-1159, 1995.

Y. Le, FAK silencing inhibits leukemogenesis in BCR/ABL-transformed hematopoietic cells, American Journal of Hematology, vol.174, issue.5, pp.273-278, 2009.
DOI : 10.1002/ajh.21381

G. Bazzoni, N. Carlesso, J. D. Griffin, M. E. Hemler, and . Bcr, Bcr/Abl expression stimulates integrin function in hematopoietic cell lines., Journal of Clinical Investigation, vol.98, issue.2, pp.521-528, 1996.
DOI : 10.1172/JCI118820

R. Bhatia, J. B. Mccarthy, and C. M. Verfaillie, Interferon-alpha restores normal beta 1

C. M. Verfaillie, R. Bhatia, P. Browne, and N. S. Key, Interferon-?? restores ??1-integrin-dependent, collagen-mediated platelet aggregation in a patient with chronic myelogenous leukemia, Journal of Laboratory and Clinical Medicine, vol.131, issue.2, pp.163-169, 1998.
DOI : 10.1016/S0022-2143(98)90159-7

J. F. Geay, p210BCR-ABL inhibits SDF-1 Chemotactic Response via Alteration of CXCR4 Signaling and Down-regulation of CXCR4 Expression, Cancer Research, vol.65, issue.7, pp.2676-2683, 2005.
DOI : 10.1158/0008-5472.CAN-04-2152

Y. Y. Chen, M. Malik, B. E. Tomkowicz, R. G. Collman, and A. Ptasznik, BCR-ABL1 alters SDF-1??-mediated adhesive responses through the ??2 integrin LFA-1 in leukemia cells, Blood, vol.111, issue.10, pp.5182-5186, 2008.
DOI : 10.1182/blood-2007-10-117705

E. K. Thomas, Rac Guanosine Triphosphatases Represent Integrating Molecular Therapeutic Targets for BCR-ABL-Induced Myeloproliferative Disease, Cancer Cell, vol.12, issue.5, pp.467-478, 2007.
DOI : 10.1016/j.ccr.2007.10.015

M. S. Hayden and S. Ghosh, Signaling to NF-??B, Genes & Development, vol.18, issue.18, pp.2195-2224, 2004.
DOI : 10.1101/gad.1228704

J. Y. Reuther, G. W. Reuther, D. Cortez, A. M. Pendergast, A. S. Baldwin et al., A requirement for NF-kappa B activation in Bcr-Abl-mediated??transformation, Genes & Development, vol.12, issue.7, pp.968-981, 1998.
DOI : 10.1101/gad.12.7.968

D. Cilloni, The NF-??B pathway blockade by the IKK inhibitor PS1145 can overcome Imatinib resistance, Leukemia, vol.12, issue.1, pp.61-67, 2006.
DOI : 10.1016/S0065-230X(02)85003-5

H. M. Kantarjian, Chronic myelogenous leukemia in blast crisis, The American Journal of Medicine, vol.83, issue.3, pp.445-454, 1987.
DOI : 10.1016/0002-9343(87)90754-6

A. Majlis, Significance of cytogenetic clonal evolution in chronic myelogenous leukemia., Journal of Clinical Oncology, vol.14, issue.1, pp.196-203, 1996.
DOI : 10.1200/JCO.1996.14.1.196

J. H. Hoeijmakers, Genome maintenance mechanisms for preventing cancer, Nature, vol.411, issue.6835, pp.366-374, 2001.
DOI : 10.1038/35077232

C. J. Bakkenist and M. B. Kastan, DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation, Nature, vol.268, issue.6922, pp.499-506, 2003.
DOI : 10.1089/027245700429864

J. Dierov, R. Dierova, and M. Carroll, BCR/ABL translocates to the nucleus and disrupts an ATR-dependent intra-S phase checkpoint, Cancer Cell, vol.5, issue.3, pp.275-285, 2004.
DOI : 10.1016/S1535-6108(04)00056-X

D. Durocher, S. P. Jackson, and . Dna-pk, DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme?, Current Opinion in Cell Biology, vol.13, issue.2, pp.225-231, 2001.
DOI : 10.1016/S0955-0674(00)00201-5

E. Deutsch, BCR-ABL down-regulates the DNA repair protein DNA-PKcs, Blood, vol.97, issue.7
DOI : 10.1182/blood.V97.7.2084

E. Deutsch, Down-regulation of BRCA1 in BCR-ABL-expressing hematopoietic cells, Blood, vol.101, issue.11, pp.4583-4588, 2003.
DOI : 10.1182/blood-2002-10-3011

Y. Maru, T. Kobayashi, K. Tanaka, and M. Shibuya, BCR Binds to the Xeroderma Pigmentosum Group B Protein, Biochemical and Biophysical Research Communications, vol.260, issue.2, pp.309-312, 1999.
DOI : 10.1006/bbrc.1999.0822

Y. Canitrot, p210 BCR/ABL kinase regulates nucleotide excision repair (NER) and resistance to UV radiation, Blood, vol.102, issue.7, pp.210-2632, 2003.
DOI : 10.1182/blood-2002-10-3207

C. W. Greider and E. H. Blackburn, Identification of a specific telomere terminal transferase activity in tetrahymena extracts, Cell, vol.43, issue.2, pp.405-413, 1985.
DOI : 10.1016/0092-8674(85)90170-9

M. W. Drummond, Dysregulated expression of the major telomerase components in leukaemic stem cells, Leukemia, vol.19, issue.3, pp.381-389, 2005.
DOI : 10.1038/sj.leu.2403616

T. H. Brummendorf, Prognostic implications of differences in telomere length between normal and malignant cells from patients with chronic myeloid leukemia measured by flow cytometry, Blood, vol.95, issue.6, pp.1883-1890, 2000.

K. Ohyashiki, Telomere Dynamics and Genetic Instability in Disease Progression of Chronic Myeloid Leukemia, Leukemia and Lymphoma, vol.40, issue.1, pp.49-56, 2000.
DOI : 10.3109/10428190009054880

K. Ohyashiki, Telomerase activity and cytogenetic changes in chronic myeloid leukemia with disease progression, Leukemia, vol.11, issue.2, pp.190-194, 1997.
DOI : 10.1038/sj.leu.2400560

Z. Dai, Oncogenic Abl and Src tyrosine kinases elicit the ubiquitin-dependent degradation of target proteins through a Ras-independent??pathway, Genes & Development, vol.12, issue.10, pp.1415-1424, 1998.
DOI : 10.1101/gad.12.10.1415

Z. Dai and A. M. Pendergast, Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity., Genes & Development, vol.9, issue.21, pp.2569-2582, 1995.
DOI : 10.1101/gad.9.21.2569

M. Sattler, BCR/ABL Directly Inhibits Expression of SHIP, an SH2-Containing Polyinositol-5-Phosphatase Involved in the Regulation of Hematopoiesis, Molecular and Cellular Biology, vol.19, issue.11, pp.7473-7480, 1999.
DOI : 10.1128/MCB.19.11.7473

K. R. Lamontagne, . Jr, A. J. Flint, B. R. Franza, . Jr et al., Protein Tyrosine Phosphatase 1B Antagonizes Signalling by Oncoprotein Tyrosine Kinase p210 bcr-abl In Vivo, Molecular and Cellular Biology, vol.18, issue.5, pp.2965-2975, 1998.
DOI : 10.1128/MCB.18.5.2965

K. R. Lamontagne, . Jr, G. Hannon, and N. K. Tonks, Protein tyrosine phosphatase PTP1B suppresses p210 bcr-abl-induced transformation of Rat-1 fibroblasts and promotes differentiation of K562 cells, Proceedings of the National Academy of Sciences, vol.95, issue.24, pp.95-14094, 1998.
DOI : 10.1073/pnas.95.24.14094

N. Koyama, Inhibition of Phosphotyrosine Phosphatase 1B Causes Resistance in BCR-ABL-Positive Leukemia Cells to the ABL Kinase Inhibitor STI571, Clinical Cancer Research, vol.12, issue.7, pp.2025-2031, 2006.
DOI : 10.1158/1078-0432.CCR-04-2392

E. J. Andreu, BCR-ABL induces the expression of Skp2 through the PI3K pathway to promote p27Kip1 degradation and proliferation of chronic myelogenous leukemia cells, Cancer Res, vol.65, issue.8, pp.3264-3272, 2005.

S. Giralt, H. Kantarjian, and M. Talpaz, Treatment of chronic myelogenous leukemia

L. A. Kujawski and M. Talpaz, The role of interferon-alpha in the treatment of chronic myeloid leukemia, Cytokine & Growth Factor Reviews, vol.18, issue.5-6, pp.5-6, 2007.
DOI : 10.1016/j.cytogfr.2007.06.015

J. P. Radich, E. Olavarria, and J. F. Apperley, Allogeneic hematopoietic stem cell transplantation for chronic myeloid leukemia, Hematology/Oncology Clinics of North America, vol.18, issue.3, pp.685-702, 2004.
DOI : 10.1016/j.hoc.2004.03.013

M. J. Mauro and R. T. Maziarz, Stem Cell Transplantation in Patients With Chronic Myelogenous Leukemia: When Should It Be Used?, Mayo Clinic Proceedings, vol.81, issue.3, pp.404-416
DOI : 10.4065/81.3.404

J. Goldman and M. Gordon, Why do chronic myelogenous leukemia stem cells survive allogeneic stem cell transplantation or imatinib: does it really matter?, Leukemia & Lymphoma, vol.19, issue.1, pp.1-7, 2006.
DOI : 10.1073/pnas.0501870102

E. Olavarria, Autologous Stem Cell Transplantation in Chronic Myeloid Leukemia, Seminars in Hematology, vol.44, issue.4
DOI : 10.1053/j.seminhematol.2007.08.003

T. G. Lugo, A. M. Pendergast, A. J. Muller, and O. N. Witte, Tyrosine kinase activity and transformation potency of bcr-abl oncogene products, Science, vol.247, issue.4946, pp.1079-1082, 1990.
DOI : 10.1126/science.2408149

M. Okabe and M. Uehara, -Positive Leukemia Cells, Leukemia & Lymphoma, vol.52, issue.1-2, pp.41-49, 1993.
DOI : 10.1016/0167-7799(93)90069-L

URL : https://hal.archives-ouvertes.fr/hal-00212212

R. Bhatia, H. A. Munthe, and C. M. Verfaillie, Tyrphostin AG957, a tyrosine kinase inhibitor with anti-BCR/ABL tyrosine kinase activity restores ??1 integrin-mediated adhesion and inhibitory signaling in chronic myelogenous leukemia hematopoietic progenitors, Leukemia, vol.12, issue.11, pp.1708-1717, 1998.
DOI : 10.1038/sj.leu.2401193

P. M. Traxler, 4-(Phenylamino)pyrrolopyrimidines:?? Potent and Selective, ATP Site Directed Inhibitors of the EGF-Receptor Protein Tyrosine Kinase, Journal of Medicinal Chemistry, vol.39, issue.12, pp.2285-2292, 1996.
DOI : 10.1021/jm960118j

E. Buchdunger, Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative, Cancer Res, vol.56, issue.1, pp.100-104, 1996.

B. J. Druker, Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr???Abl positive cells, Nature Medicine, vol.6, issue.5, pp.561-566, 1996.
DOI : 10.1038/376785a0

D. G. Savage and K. H. Antman, Imatinib mesylate--a new oral targeted therapy, N Engl J Med, vol.346, issue.9, pp.683-693, 2002.

T. Schindler, Structural Mechanism for STI-571 Inhibition of Abelson Tyrosine Kinase, Science, vol.289, issue.5486, pp.1938-1942, 2000.
DOI : 10.1126/science.289.5486.1938

B. Nagar, Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571), Cancer Res, vol.62, issue.15, pp.4236-4243, 2002.

N. P. Shah, Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia, Cancer Cell, vol.2, issue.2, pp.117-125, 2002.
DOI : 10.1016/S1535-6108(02)00096-X

C. Gambacorti-passerini, Inhibition of the ABL Kinase Activity Blocks the Proliferation of BCR/ABL+Leukemic Cells and Induces Apoptosis, Blood Cells, Molecules, and Diseases, vol.23, issue.3, pp.380-394, 1997.
DOI : 10.1006/bcmd.1997.0155

M. Carroll, CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins, Blood, vol.90, issue.12, pp.4947-4952, 1997.

B. J. Druker, Efficacy and Safety of a Specific Inhibitor of the BCR-ABL Tyrosine Kinase in Chronic Myeloid Leukemia, New England Journal of Medicine, vol.344, issue.14, pp.1031-1037, 2001.
DOI : 10.1056/NEJM200104053441401

B. J. Druker, Activity of a Specific Inhibitor of the BCR-ABL Tyrosine Kinase in the Blast Crisis of Chronic Myeloid Leukemia and Acute Lymphoblastic Leukemia with the Philadelphia Chromosome, New England Journal of Medicine, vol.344, issue.14, pp.1038-1042, 2001.
DOI : 10.1056/NEJM200104053441402

H. Joensuu, Effect of the Tyrosine Kinase Inhibitor STI571 in a Patient with a Metastatic Gastrointestinal Stromal Tumor, New England Journal of Medicine, vol.344, issue.14, pp.1052-1056, 2001.
DOI : 10.1056/NEJM200104053441404

J. Cools, Genes as a Therapeutic Target of Imatinib in Idiopathic Hypereosinophilic Syndrome, New England Journal of Medicine, vol.348, issue.13, pp.1201-1214, 2003.
DOI : 10.1056/NEJMoa025217

H. B. Koon, Imatinib-Induced Regression of AIDS-Related Kaposi's Sarcoma, Journal of Clinical Oncology, vol.23, issue.5, pp.982-989, 2005.
DOI : 10.1200/JCO.2005.06.079

J. A. Winger, O. Hantschel, G. Superti-furga, and J. Kuriyan, The structure of the leukemia drug imatinib bound to human quinone reductase 2 (NQO2), BMC Structural Biology, vol.9, issue.1, 2009.
DOI : 10.1186/1472-6807-9-7

U. Rix, Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets, Blood, vol.110, issue.12, pp.4055-4063, 2007.
DOI : 10.1182/blood-2007-07-102061

F. Vella, G. Ferry, P. Delagrange, and J. A. Boutin, NRH:quinone reductase 2: An enzyme of surprises and mysteries, Biochemical Pharmacology, vol.71, issue.1-2, pp.1-12, 2005.
DOI : 10.1016/j.bcp.2005.09.019

F. Belloc, The stem cell factor???c-KIT pathway must be inhibited to enable apoptosis induced by BCR???ABL inhibitors in chronic myelogenous leukemia cells, Leukemia, vol.25, issue.4, pp.679-685, 2009.
DOI : 10.1056/NEJMoa055104

M. J. Smyth, Imatinib Mesylate ??? Uncovering a Fast Track to Adaptive Immunity, New England Journal of Medicine, vol.354, issue.21, pp.2282-2284, 2006.
DOI : 10.1056/NEJMcibr061878

M. Baccarani, Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet, Blood, vol.108, issue.6, pp.1809-1820, 2006.
DOI : 10.1182/blood-2006-02-005686

T. Hughes, Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results, Blood, vol.108, issue.1, pp.28-37, 2006.
DOI : 10.1182/blood-2006-01-0092

H. Daub, K. Specht, and A. Ullrich, Strategies to overcome resistance to targeted protein kinase inhibitors, Nature Reviews Drug Discovery, vol.64, issue.12, pp.1001-1010, 2004.
DOI : 10.1038/35073673

M. E. Gorre, Clinical Resistance to STI-571 Cancer Therapy Caused by BCR-ABL Gene Mutation or Amplification, Science, vol.293, issue.5531, pp.876-880, 2001.
DOI : 10.1126/science.1062538

F. X. Mahon, Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance, Blood, vol.96, issue.3, pp.1070-1079, 2000.

H. K. Al-ali, High incidence of BCR-ABL kinase domain mutations and absence of mutations of the PDGFR and KIT activation loops in CML patients with secondary resistance to imatinib, The Hematology Journal, vol.5, issue.1, pp.55-60, 2004.
DOI : 10.1038/sj.thj.6200319

S. Branford, Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis, Blood, vol.102, issue.1, pp.276-283, 2003.
DOI : 10.1182/blood-2002-09-2896

S. Roumiantsev, Clinical resistance to the kinase inhibitor STI-571 in chronic myeloid leukemia by mutation of Tyr-253 in the Abl kinase domain P-loop, Proceedings of the National Academy of Sciences, vol.99, issue.16, pp.10700-10705, 2002.
DOI : 10.1073/pnas.162140299

S. Branford, High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance, Blood, vol.99, issue.9, pp.3472-3475, 2002.
DOI : 10.1182/blood.V99.9.3472

A. S. Corbin, P. La-rosee, E. P. Stoffregen, B. J. Druker, and M. W. Deininger, Several Bcr-Abl kinase domain mutants associated with imatinib mesylate resistance remain sensitive to imatinib, Blood, vol.101, issue.11, pp.4611-4614, 2003.
DOI : 10.1182/blood-2002-12-3659

S. G. Willis, High-sensitivity detection of BCR-ABL kinase domain mutations in imatinib-naive patients: correlation with clonal cytogenetic evolution but not response to therapy, Blood, vol.106, issue.6, pp.2128-2137, 2005.
DOI : 10.1182/blood-2005-03-1036

M. Azam, R. R. Latek, and G. Q. Daley, Mechanisms of Autoinhibition and STI-571/Imatinib Resistance Revealed by Mutagenesis of BCR-ABL, Cell, vol.112, issue.6, pp.831-843, 2003.
DOI : 10.1016/S0092-8674(03)00190-9

C. Roche-lestienne, Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment, Blood, vol.100, issue.3, pp.1014-1018, 2002.
DOI : 10.1182/blood.V100.3.1014

C. Roche-lestienne, J. L. Lai, S. Darre, T. Facon, and C. Preudhomme, A Mutation Conferring Resistance to Imatinib at the Time of Diagnosis of Chronic Myelogenous Leukemia, New England Journal of Medicine, vol.348, issue.22, pp.2265-2266, 2003.
DOI : 10.1056/NEJMc035089

J. S. Khorashad, The presence of a BCR-ABL mutant allele in CML does not always explain clinical resistance to imatinib, Leukemia, vol.101, issue.4, pp.658-663, 2006.
DOI : 10.1038/sj.leu.2404137

D. W. Sherbenou, Mutations of the BCR-ABL-kinase domain occur in a minority of patients with stable complete cytogenetic response to imatinib, Leukemia, vol.107, issue.3, pp.489-493, 2007.
DOI : 10.1038/sj.leu.2404554

F. X. Mahon, MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models, Blood, vol.101, issue.6, pp.2368-2373, 2003.
DOI : 10.1182/blood.V101.6.2368

P. T. Ferrao, M. J. Frost, S. P. Siah, and L. K. Ashman, Overexpression of P-glycoprotein in K562 cells does not confer resistance to the growth inhibitory effects of imatinib (STI571) in vitro, Blood, vol.102, issue.13, pp.4499-4503, 2003.
DOI : 10.1182/blood-2003-01-0083

S. Hatziieremia, N. E. Jordanides, T. L. Holyoake, J. C. Mountford, and H. G. Jorgensen, Inhibition of MDR1 does not sensitize primitive chronic myeloid leukemia CD34+ cells to imatinib, Experimental Hematology, vol.37, issue.6, pp.692-700, 2009.
DOI : 10.1016/j.exphem.2009.02.006

C. Gambacorti-passerini, Role of alpha1 Acid Glycoprotein in the In Vivo Resistance of Human BCR-ABL+ Leukemic Cells to the Abl Inhibitor STI571, Journal of the National Cancer Institute, vol.92, issue.20, pp.1641-1650, 2000.
DOI : 10.1093/jnci/92.20.1641

C. Gambacorti-passerini, Alpha1 acid glycoprotein binds to imatinib (STI571) and substantially alters its pharmacokinetics in chronic myeloid leukemia patients, Clin Cancer Res, vol.9, issue.2, pp.625-632, 2003.

K. Titier, Quantification of Imatinib in Human Plasma by High-Performance Liquid Chromatography-Tandem Mass Spectrometry, Therapeutic Drug Monitoring, vol.27, issue.5, pp.634-640, 2005.
DOI : 10.1097/01.ftd.0000175973.71140.91

N. J. Donato, BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571, Blood, vol.101, issue.2, pp.690-698, 2003.
DOI : 10.1182/blood.V101.2.690

A. Ptasznik, Y. Nakata, A. Kalota, S. G. Emerson, and A. M. Gewirtz, Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug-resistant, BCR-ABL1(+) leukemia cells, Nature Medicine, vol.56, issue.11, pp.1187-1189, 2004.
DOI : 10.1074/jbc.M209321200

M. O. Nowicki, BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks, Blood, vol.104, issue.12, pp.3746-3753, 2004.
DOI : 10.1182/blood-2004-05-1941

M. Koptyra, BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance, Blood, vol.108, issue.1, pp.319-327, 2006.
DOI : 10.1182/blood-2005-07-2815

T. Stoklosa, BCR/ABL Inhibits Mismatch Repair to Protect from Apoptosis and Induce Point Mutations, Cancer Research, vol.68, issue.8, pp.2576-2580, 2008.
DOI : 10.1158/0008-5472.CAN-07-6858

A. Slupianek, BCR/ABL Regulates Mammalian RecA Homologs, Resulting in Drug Resistance, Molecular Cell, vol.8, issue.4, pp.795-806, 2001.
DOI : 10.1016/S1097-2765(01)00357-4

L. Klemm, The B Cell Mutator AID Promotes B Lymphoid Blast Crisis and Drug Resistance in Chronic Myeloid Leukemia, Cancer Cell, vol.16, issue.3, pp.232-245, 2009.
DOI : 10.1016/j.ccr.2009.07.030

M. S. Fernandes, BCR-ABL promotes the frequency of mutagenic single-strand annealing DNA repair, Blood, vol.114, issue.9, pp.1813-1819, 2009.
DOI : 10.1182/blood-2008-07-172148

H. Leonhardt, A. W. Page, H. U. Weier, and T. H. Bestor, A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei, Cell, vol.71, issue.5, pp.865-873, 1992.
DOI : 10.1016/0092-8674(92)90561-P

M. Okano, D. W. Bell, D. A. Haber, and E. Li, DNA Methyltransferases Dnmt3a and Dnmt3b Are Essential for De Novo Methylation and Mammalian Development, Cell, vol.99, issue.3, pp.247-257, 1999.
DOI : 10.1016/S0092-8674(00)81656-6

S. Mizuno, Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia, Blood, vol.97, issue.5, p.197
DOI : 10.1182/blood.V97.5.1172

S. Kusy, C. J. Larsen, and J. Roche, and p16INK4a methylation status in chronic myelogenous leukemia, Leuk Lymphoma, vol.14, issue.4510, pp.15-19, 2004.

J. Qian, ) CpG island in chronic myeloid leukemia, European Journal of Haematology, vol.23, issue.2, pp.119-123, 2009.
DOI : 10.1111/j.1600-0609.2008.01178.x

L. Zeng, Y. Hu, and B. Li, Identification of TopBP1 as a c-Abl-interacting Protein and a Repressor for c-Abl Expression, Journal of Biological Chemistry, vol.280, issue.32, pp.29374-29380, 2005.
DOI : 10.1074/jbc.M503016200

M. J. Bueno, Genetic and Epigenetic Silencing of MicroRNA-203 Enhances ABL1 and BCR-ABL1 Oncogene??Expression, Cancer Cell, vol.13, issue.6, pp.496-506, 2008.
DOI : 10.1016/j.ccr.2008.04.018

C. Montiel-duarte, Resistance to Imatinib Mesylate-induced apoptosis in acute lymphoblastic leukemia is associated with PTEN down-regulation due to promoter hypermethylation, Leukemia Research, vol.32, issue.5, pp.709-716, 2008.
DOI : 10.1016/j.leukres.2007.09.005

M. Pehlivan, Z. Sercan, and H. O. Sercan, sFRP1 promoter methylation is associated with persistent Philadelphia chromosome in chronic myeloid leukemia, Leukemia Research, vol.33, issue.8, pp.1062-1067, 2009.
DOI : 10.1016/j.leukres.2008.11.013

E. C. Uberbacher and G. J. Bunick, X-Ray Structure of the Nucleosome Core Particle, Journal of Biomolecular Structure and Dynamics, vol.99, issue.6, pp.1033-1055, 1985.
DOI : 10.1080/07391102.1985.10507623

S. L. Berger, Histone modifications in transcriptional regulation, Current Opinion in Genetics & Development, vol.12, issue.2, pp.142-148, 2002.
DOI : 10.1016/S0959-437X(02)00279-4

M. H. Kuo and C. D. Allis, Roles of histone acetyltransferases and deacetylases in gene regulation, BioEssays, vol.15, issue.8, pp.615-626, 1998.
DOI : 10.1002/(SICI)1521-1878(199808)20:8<615::AID-BIES4>3.0.CO;2-H

R. R. Meehan, J. D. Lewis, S. Mckay, E. L. Kleiner, and A. P. Bird, Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs, Cell, vol.58, issue.3, pp.499-507, 1989.
DOI : 10.1016/0092-8674(89)90430-3

X. Nan, Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex, Nature, vol.393, issue.6683, pp.386-389, 1998.

T. P. Hughes, Frequency of Major Molecular Responses to Imatinib or Interferon Alfa plus Cytarabine in Newly Diagnosed Chronic Myeloid Leukemia, New England Journal of Medicine, vol.349, issue.15, pp.1423-1432, 2003.
DOI : 10.1056/NEJMoa030513

O. 'brien and S. G. , Imatinib Compared with Interferon and Low-Dose Cytarabine for Newly Diagnosed Chronic-Phase Chronic Myeloid Leukemia, New England Journal of Medicine, vol.348, issue.11, pp.994-1004, 2003.
DOI : 10.1056/NEJMoa022457

E. A. Hahn, Quality of Life in Patients With Newly Diagnosed Chronic Phase Chronic Myeloid Leukemia on Imatinib Versus Interferon Alfa Plus Low-Dose Cytarabine: Results From the IRIS Study, Journal of Clinical Oncology, vol.21, issue.11, pp.2138-2146, 2003.
DOI : 10.1200/JCO.2003.12.154

S. M. Graham, Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro, Blood, vol.99, issue.1, pp.319-325, 2002.
DOI : 10.1182/blood.V99.1.319

X. Jiang, Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies, Leukemia, vol.24, issue.5, pp.926-935, 2007.
DOI : 10.1038/sj.leu.2404609

H. M. Kantarjian, Dose escalation of imatinib mesylate can overcome resistance to standard-dose therapy in patients with chronic myelogenous leukemia, Blood, vol.101, issue.2, pp.473-475, 2003.
DOI : 10.1182/blood-2002-05-1451

M. Baccarani, Comparison of imatinib 400 mg and 800 mg daily in the front-line treatment of high-risk, Philadelphia-positive chronic myeloid leukemia: a European LeukemiaNet Study, Blood, vol.113, issue.19, pp.4497-4504, 2009.
DOI : 10.1182/blood-2008-12-191254

E. Weisberg, Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl, Cancer Cell, vol.7, issue.2, pp.129-141, 2005.
DOI : 10.1016/j.ccr.2005.01.007

H. M. Kantarjian, Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance, Blood, vol.110, issue.10, pp.3540-3546, 2007.
DOI : 10.1182/blood-2007-03-080689

P. Le-coutre, Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is active in patients with imatinib-resistant or -intolerant accelerated-phase chronic myelogenous leukemia, Blood, vol.111, issue.4, pp.1834-1839, 2008.
DOI : 10.1182/blood-2007-04-083196

G. Rosti, Nilotinib for the frontline treatment of Ph+ chronic myeloid leukemia, Blood, vol.114, issue.24, 2009.
DOI : 10.1182/blood-2009-07-232595

T. Hughes, Mutations on Response to Nilotinib in Patients With Chronic Myeloid Leukemia in Chronic Phase, Journal of Clinical Oncology, vol.27, issue.25, pp.4204-4210, 2009.
DOI : 10.1200/JCO.2009.21.8230

F. X. Mahon, Evidence that Resistance to Nilotinib May Be Due to BCR-ABL, Pgp, or Src Kinase Overexpression, Cancer Research, vol.68, issue.23, pp.9809-9816, 2008.
DOI : 10.1158/0008-5472.CAN-08-1008

H. G. Jorgensen, E. K. Allan, N. E. Jordanides, J. C. Mountford, and T. L. Holyoake, Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells, Blood, vol.109, issue.9, pp.4016-4019, 2007.
DOI : 10.1182/blood-2006-11-057521

N. P. Shah, Overriding Imatinib Resistance with a Novel ABL Kinase Inhibitor, Science, vol.305, issue.5682, pp.399-401, 2004.
DOI : 10.1126/science.1099480

A. Hochhaus, Dasatinib induces notable hematologic and cytogenetic responses in chronic-phase chronic myeloid leukemia after failure of imatinib therapy, Blood, vol.109, issue.6, pp.2303-2309, 2007.
DOI : 10.1182/blood-2006-09-047266

J. Cortes, Dasatinib induces complete hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in blast crisis, Blood, vol.109, issue.8, pp.3207-3213, 2007.
DOI : 10.1182/blood-2006-09-046888

O. Ottmann, Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study, Blood, vol.110, issue.7, pp.2309-2315, 2007.
DOI : 10.1182/blood-2007-02-073528

S. Soverini, Mutation May Be Associated With Resistance to Dasatinib in Philadelphia Chromosome???Positive Leukemia, Journal of Clinical Oncology, vol.24, issue.33
DOI : 10.1200/JCO.2006.08.9128

M. Copland, Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction, Blood, vol.107, issue.11, pp.4532-4539, 2006.
DOI : 10.1182/blood-2005-07-2947

M. Puttini, In vitro and In vivo Activity of SKI-606, a Novel Src-Abl Inhibitor, against Imatinib-Resistant Bcr-Abl+ Neoplastic Cells, Cancer Research, vol.66, issue.23, pp.11314-11322, 2006.
DOI : 10.1158/0008-5472.CAN-06-1199

H. Konig, T. L. Holyoake, and R. Bhatia, Effective and selective inhibition of chronic myeloid leukemia primitive hematopoietic progenitors by the dual Src/Abl kinase inhibitor SKI-606, Blood, vol.111, issue.4, pp.2329-2338, 2008.
DOI : 10.1182/blood-2007-05-092056

S. Redaelli, Activity of Bosutinib, Dasatinib, and Nilotinib Against 18 Imatinib-Resistant BCR/ABL Mutants, Journal of Clinical Oncology, vol.27, issue.3, pp.469-471, 2009.
DOI : 10.1200/JCO.2008.19.8853

E. Weisberg, P. W. Manley, S. W. Cowan-jacob, A. Hochhaus, and J. D. Griffin, Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia, Nature Reviews Cancer, vol.108, issue.5, pp.345-356, 2007.
DOI : 10.1038/nrc2126

S. Kimura, NS-187, a potent and selective dual Bcr-Abl/Lyn tyrosine kinase inhibitor, is a novel agent for imatinib-resistant leukemia, Blood, vol.106, issue.12, pp.3948-3954, 2005.
DOI : 10.1182/blood-2005-06-2209

K. Gumireddy, A non-ATP-competitive inhibitor of BCR-ABL overrides imatinib resistance, Proceedings of the National Academy of Sciences, vol.102, issue.6, pp.1992-1997, 2005.
DOI : 10.1073/pnas.0408283102

F. J. Giles, MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation, Blood, vol.109, issue.2, pp.500-502, 2007.
DOI : 10.1182/blood-2006-05-025049

A. Gontarewicz, Simultaneous targeting of Aurora kinases and Bcr-Abl kinase by the small molecule inhibitor PHA-739358 is effective against imatinib-resistant BCR-ABL mutations including T315I, Blood, vol.111, issue.8, pp.4355-4364, 2008.
DOI : 10.1182/blood-2007-09-113175

O. Hare and T. , SGX393 inhibits the CML mutant Bcr-AblT315I and preempts in vitro resistance when combined with nilotinib or dasatinib, Proceedings of the National Academy of Sciences, vol.105, issue.14, pp.5507-5512, 2008.
DOI : 10.1073/pnas.0800587105

F. J. Adrian, Allosteric inhibitors of Bcr-abl???dependent cell proliferation, Nature Chemical Biology, vol.56, issue.2, pp.95-102, 2006.
DOI : 10.1038/nchembio760

J. T. Thiesing, S. Ohno-jones, K. S. Kolibaba, and B. J. Druker, Efficacy of STI571, an abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents against bcr-abl-positive cells, Blood, vol.96, issue.9, pp.3195-3199, 2000.

D. Marin, Phase I/II trial of adding semisynthetic homoharringtonine in chronic myeloid leukemia patients who have achieved partial or complete cytogenetic response on imatinib, Cancer, vol.63, issue.9, pp.1850-1855, 2005.
DOI : 10.1002/cncr.20975

A. Quintas-cardama, Phase I/II study of subcutaneous homoharringtonine in patients with chronic myeloid leukemia who have failed prior therapy, Cancer, vol.44, issue.2, pp.248-255, 2007.
DOI : 10.1002/cncr.22398

L. Legros, BCR-ABLT315I transcript disappearance in an imatinib-resistant CML patient treated with homoharringtonine: a new therapeutic challenge?, Leukemia, vol.93, issue.10, pp.2204-2206, 2007.
DOI : 10.1038/sj.leu.2403135

H. De-lavallade, Interferon-?? or homoharringtonine as salvage treatment for chronic myeloid leukemia patients who acquire the T315I BCR-ABL mutation, Blood, vol.110, issue.7, pp.2779-2780, 2007.
DOI : 10.1182/blood-2007-06-094508

R. Nimmanapalli, E. O-'bryan, and K. Bhalla, Geldanamycin and its analogue 17- allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts, Cancer Res, vol.61, issue.5, pp.1799-1804, 2001.

M. E. Gorre, K. Ellwood-yen, G. Chiosis, N. Rosen, and C. L. Sawyers, BCR-ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 245

A. Radujkovic, Synergistic activity of imatinib and 17-AAG in imatinib-resistant CML cells overexpressing BCR-ABL ??? Inhibition of P-glycoprotein function by 17-AAG, Leukemia, vol.62, issue.7, pp.1198-1206, 2005.
DOI : 10.2174/1568009033481813

E. Puccetti, BCR-ABL mediates arsenic trioxide-induced apoptosis independently of its aberrant kinase activity, Cancer Res, vol.60, issue.13, pp.3409-3413, 2000.

C. Perkins, C. N. Kim, G. Fang, and K. N. Bhalla, Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR, MRP, Bcl-2, or Bcl-x(L), Blood, vol.95, issue.3, pp.1014-1022, 2000.

M. Porosnicu, Co-treatment with As2O3 enhances selective cytotoxic effects of STI-571 against Bcr-Abl-positive acute leukemia cells, Leukemia, vol.15, issue.5, pp.772-778, 2001.
DOI : 10.1038/sj.leu.2402104

K. Ito, PML targeting eradicates quiescent leukaemia-initiating cells, Nature, vol.84, issue.7198, pp.1072-1078, 2008.
DOI : 10.1038/nature07016

C. Yu, The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571, Blood, vol.102, issue.10, pp.3765-3774, 2003.
DOI : 10.1182/blood-2003-03-0737

S. Gatto, The proteasome inhibitor PS-341 inhibits growth and induces apoptosis in Bcr/Abl-positive cell lines sensitive and resistant to imatinib mesylate, Haematologica, vol.88, issue.8, pp.853-863, 2003.

Y. Dai, M. Rahmani, X. Y. Pei, P. Dent, and S. Grant, Bortezomib and flavopiridol interact synergistically to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib mesylate through both Bcr/Abl-dependent and -independent mechanisms, Blood, vol.104, issue.2, pp.509-518, 2004.
DOI : 10.1182/blood-2003-12-4121

C. Yu, G. Krystal, P. Dent, and S. Grant, Flavopiridol potentiates STI571-induced mitochondrial damage and apoptosis in BCR-ABL-positive human leukemia cells

H. M. Kantarjian, Results of decitabine (5-aza-2?deoxycytidine) therapy in 130 patients with chronic myelogenous leukemia, Cancer, vol.10, issue.3, pp.522-528, 2003.
DOI : 10.1002/cncr.11543

J. P. Issa, Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2'-deoxycytidine (decitabine) in hematopoietic malignancies, Blood, vol.103, issue.5, pp.1635-1640, 2004.
DOI : 10.1182/blood-2003-03-0687

L. Rosee and P. , In vitro efficacy of combined treatment depends on the underlying mechanism of resistance in imatinib-resistant Bcr-Abl-positive cell lines, Blood, vol.103, issue.1
DOI : 10.1182/blood-2003-04-1074

Y. Oki, Phase II study of low-dose decitabine in combination with imatinib mesylate in patients with accelerated or myeloid blastic phase of chronic myelogenous leukemia, Cancer, vol.354, issue.5, pp.899-906, 2007.
DOI : 10.1002/cncr.22470

R. Nimmanapalli, L. Fuino, C. Stobaugh, V. Richon, and K. Bhalla, Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells, Blood, vol.101, issue.8, pp.3236-3239, 2003.
DOI : 10.1182/blood-2002-08-2675

C. Yu, Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and -resistant Bcr/Abl+ human myeloid leukemia cells, Cancer Res, vol.63, issue.9, pp.2118-2126, 2003.

W. Fiskus, Combined effects of novel tyrosine kinase inhibitor AMN107 and histone deacetylase inhibitor LBH589 against Bcr-Abl-expressing human leukemia cells, Blood, vol.108, issue.2, pp.645-652, 2006.
DOI : 10.1182/blood-2005-11-4639

A. Morotti, Valproate enhances imatinib-induced growth arrest and apoptosis in chronic myeloid leukemia cells, Cancer, vol.17, issue.5, pp.1188-1196, 2006.
DOI : 10.1002/cncr.21725

J. Cortes, Efficacy of the farnesyl transferase inhibitor R115777 in chronic myeloid leukemia and other hematologic malignancies, Blood, vol.101, issue.5, pp.1692-1697, 2003.
DOI : 10.1182/blood-2002-07-1973

J. Cortes, Phase 1 study of tipifarnib in combination with imatinib for patients with chronic myelogenous leukemia in chronic phase after imatinib failure, Cancer, vol.19, issue.9, pp.2000-2006, 2007.
DOI : 10.1002/cncr.23006

D. G. Peters, Activity of the farnesyl protein transferase inhibitor SCH66336 against BCR/ABL-induced murine leukemia and primary cells from patients with chronic myeloid leukemia, Blood, vol.97, issue.5, pp.1404-1412, 2001.
DOI : 10.1182/blood.V97.5.1404

R. R. Hoover, F. X. Mahon, J. V. Melo, and G. Q. Daley, Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336, Blood, vol.100, issue.3, pp.1068-1071, 2002.
DOI : 10.1182/blood.V100.3.1068

G. Borthakur, Pilot study of lonafarnib, a farnesyl transferase inhibitor, in patients with chronic myeloid leukemia in the chronic or accelerated phase that is resistant or refractory to imatinib therapy, Cancer, vol.19, issue.2, pp.346-352, 2006.
DOI : 10.1002/cncr.21590

H. G. Jorgensen, Lonafarnib reduces the resistance of primitive quiescent CML cells to imatinib mesylate in vitro, Leukemia, vol.1587, issue.7, pp.1184-1191, 2005.
DOI : 10.1182/blood-2003-03-0993

T. K. Nguyen, M. Rahmani, H. Harada, P. Dent, and S. Grant, MEK1/2 inhibitors sensitize Bcr/Abl+ human leukemia cells to the dual Abl/Src inhibitor BMS-354/825, Blood, vol.109, issue.9, pp.4006-4015, 2007.
DOI : 10.1182/blood-2006-09-045039

J. Dengler, N. Von-bubnoff, T. Decker, C. Peschel, and J. Duyster, Combination of imatinib with rapamycin or RAD001 acts synergistically only in Bcr-Abl-positive cells with moderate resistance to imatinib, Leukemia, vol.63, issue.10, pp.1835-1838, 2005.
DOI : 10.1182/blood-2004-06-2445

M. Mayerhofer, Identification of mTOR as a novel bifunctional target in chronic myeloid leukemia: dissection of growth-inhibitory and VEGF-suppressive effects of rapamycin in leukemic cells, The FASEB Journal, vol.19, issue.8, pp.960-962, 2005.
DOI : 10.1096/fj.04-1973fje

M. G. Mohi, Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs, Proceedings of the National Academy of Sciences, vol.101, issue.9, pp.3130-3135, 2004.
DOI : 10.1073/pnas.0400063101

A. Burchert, Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development, Leukemia, vol.10, issue.10, pp.1774-1782, 2005.
DOI : 10.1182/blood-2004-07-2967

E. Ayroldi and C. Riccardi, Glucocorticoid-induced leucine zipper (GILZ): a new important mediator of glucocorticoid action, The FASEB Journal, vol.23, issue.11, 2009.
DOI : 10.1096/fj.09-134684

I. Hirano, Depletion of Pleckstrin Homology Domain Leucine-rich Repeat Protein Phosphatases 1 and 2 by Bcr-Abl Promotes Chronic Myelogenous Leukemia Cell Proliferation through Continuous Phosphorylation of Akt Isoforms, Journal of Biological Chemistry, vol.284, issue.33, pp.22155-22165, 2009.
DOI : 10.1074/jbc.M808182200

N. Hosoya, Genomewide screening of DNA copy number changes in chronic myelogenous leukemia with the use of high-resolution array-based comparative genomic hybridization, Genes, Chromosomes and Cancer, vol.114, issue.5, pp.482-494, 2006.
DOI : 10.1002/gcc.20303

D. Brazma, Genomic profile of chronic myelogenous leukemia: Imbalances associated with disease progression, Genes, Chromosomes and Cancer, vol.167, issue.11, pp.1039-1050, 2007.
DOI : 10.1002/gcc.20487

J. S. Khorashad, Multiple sub-microscopic genomic lesions are a universal feature of chronic myeloid leukaemia at diagnosis, Leukemia, vol.63, issue.9, pp.1806-1807, 2008.
DOI : 10.1073/pnas.152171299

L. Feuk, C. R. Marshall, R. F. Wintle, and S. W. Scherer, Structural variants: changing the landscape of chromosomes and design of disease studies, Human Molecular Genetics, vol.15, issue.90001, pp.57-66, 2006.
DOI : 10.1093/hmg/ddl057

J. P. Radich, Gene expression changes associated with progression and response in chronic myeloid leukemia, Proceedings of the National Academy of Sciences, vol.103, issue.8, pp.2794-2799, 2006.
DOI : 10.1073/pnas.0510423103

V. G. Oehler, The preferentially expressed antigen in melanoma (PRAME) inhibits myeloid differentiation in normal hematopoietic and leukemic progenitor cells, Blood, vol.114, issue.15, pp.3299-3308, 2009.
DOI : 10.1182/blood-2008-07-170282

E. J. Hollox, Copy number variation of beta-defensins and relevance to disease, Cytogenetic and Genome Research, vol.123, issue.1-4
DOI : 10.1159/000184702

A. Zaccaria, Persistence of chromosomal abnormalities additional to the Philadelphia chromosome after Philadelphia chromosome disappearance during imatinib therapy for chronic myeloid leukemia, Haematologica, vol.92, issue.4, pp.564-565, 2007.
DOI : 10.3324/haematol.10783

J. M. Servitja, M. J. Marinissen, A. Sodhi, X. R. Bustelo, and J. S. Gutkind, Rac1 Function Is Required for Src-induced Transformation: EVIDENCE OF A ROLE FOR TIAM1 AND VAV2 IN RAC ACTIVATION BY SRC, Journal of Biological Chemistry, vol.278, issue.36, pp.34339-34346, 2003.
DOI : 10.1074/jbc.M302960200

A. M. Baranger, Accessory factor???bZIP???DNA interactions, Current Opinion in Chemical Biology, vol.2, issue.1, pp.18-23, 1998.
DOI : 10.1016/S1367-5931(98)80031-8

E. Ayroldi, Glucocorticoid-Induced Leucine Zipper Inhibits the Raf-Extracellular Signal-Regulated Kinase Pathway by Binding to Raf-1, Molecular and Cellular Biology, vol.22, issue.22, pp.7929-7941, 2002.
DOI : 10.1128/MCB.22.22.7929-7941.2002

E. Ayroldi, GILZ mediates the antiproliferative activity of glucocorticoids by negative regulation of Ras signaling, Journal of Clinical Investigation, vol.117, issue.6, pp.1605-1615, 2007.
DOI : 10.1172/JCI30724DS1

E. Ayroldi, Modulation of T-cell activation by the glucocorticoid-induced leucine zipper factor via inhibition of nuclear factor kappaB, Blood, vol.98, issue.3, pp.743-753, 2001.
DOI : 10.1182/blood.V98.3.743

P. R. Mittelstadt and J. D. Ashwell, Inhibition of AP-1 by the Glucocorticoid-inducible Protein GILZ, Journal of Biological Chemistry, vol.276, issue.31, pp.29603-29610, 2001.
DOI : 10.1074/jbc.M101522200

D. Marco and B. , Glucocorticoid-induced leucine zipper (GILZ)/NF-??B interaction: role of GILZ homo-dimerization and C-terminal domain, Nucleic Acids Research, vol.35, issue.2, pp.517-528, 2007.
DOI : 10.1093/nar/gkl1080

D. 'adamio and F. , A New Dexamethasone-Induced Gene of the Leucine Zipper Family Protects T Lymphocytes from TCR/CD3-Activated Cell Death, Immunity, vol.7, issue.6, pp.803-812, 1997.
DOI : 10.1016/S1074-7613(00)80398-2

M. L. Asselin-labat, GILZ, a new target for the transcription factor FoxO3, protects T lymphocytes from interleukin-2 withdrawal-induced apoptosis, Blood, vol.104, issue.1, pp.215-223, 2004.
DOI : 10.1182/blood-2003-12-4295

D. V. Delfino, M. Agostini, S. Spinicelli, P. Vito, and C. Riccardi, Decrease of Bcl-xL and augmentation of thymocyte apoptosis in GILZ overexpressing transgenic mice, Blood, vol.104, issue.13, pp.4134-4141, 2004.
DOI : 10.1182/blood-2004-03-0920

D. V. Delfino, M. Agostini, S. Spinicelli, C. Vacca, and C. Riccardi, Inhibited cell death, NF-??B activity and increased IL-10 in TCR-triggered thymocytes of transgenic mice overexpressing the glucocorticoid-induced protein GILZ, International Immunopharmacology, vol.6, issue.7, pp.1126-1134, 2006.
DOI : 10.1016/j.intimp.2006.02.001

J. Kuroda, Bim and Bad mediate imatinib-induced killing of Bcr/Abl+ leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic, Proceedings of the National Academy of Sciences, vol.103, issue.40, pp.14907-14912, 2006.
DOI : 10.1073/pnas.0606176103

M. Certo, Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members, Cancer Cell, vol.9, issue.5, pp.351-365, 2006.
DOI : 10.1016/j.ccr.2006.03.027

J. Martin, J. Masri, A. Bernath, R. N. Nishimura, and J. Gera, Hsp70 associates with Rictor and is required for mTORC2 formation and activity, Biochemical and Biophysical Research Communications, vol.372, issue.4, pp.578-583, 2008.
DOI : 10.1016/j.bbrc.2008.05.086

J. Huang, C. C. Dibble, M. Matsuzaki, and B. D. Manning, The TSC1-TSC2 Complex Is Required for Proper Activation of mTOR Complex 2, Molecular and Cellular Biology, vol.28, issue.12, pp.4104-4115, 2008.
DOI : 10.1128/MCB.00289-08

A. Essafi, Direct transcriptional regulation of Bim by FoxO3a mediates STI571-induced apoptosis in Bcr-Abl-expressing cells, Oncogene, vol.24, issue.14, pp.2317-2329, 2005.
DOI : 10.1038/sj.onc.1208421

X. Shi, A glucocorticoid-induced leucine-zipper protein, GILZ, inhibits adipogenesis of mesenchymal cells, EMBO reports, vol.9, issue.4, pp.374-380, 2003.
DOI : 10.1038/sj.embor.embor805

J. Brognard, E. Sierecki, T. Gao, and A. C. Newton, PHLPP and a Second Isoform, PHLPP2, Differentially Attenuate the Amplitude of Akt Signaling by Regulating Distinct Akt Isoforms, Molecular Cell, vol.25, issue.6, pp.917-931, 2007.
DOI : 10.1016/j.molcel.2007.02.017

J. Brognard and A. C. Newton, PHLiPPing the switch on Akt and protein kinase C signaling, Trends in Endocrinology & Metabolism, vol.19, issue.6, pp.223-230, 2008.
DOI : 10.1016/j.tem.2008.04.001

T. Gao, J. Brognard, and A. C. Newton, The Phosphatase PHLPP Controls the Cellular Levels of Protein Kinase C, Journal of Biological Chemistry, vol.283, issue.10, pp.6300-6311, 2008.
DOI : 10.1074/jbc.M707319200

W. C. Gustafson, Bcr-Abl Regulates Protein Kinase C?? (PKC??) Transcription via an Elk1 Site in the PKC?? Promoter, Journal of Biological Chemistry, vol.279, issue.10, pp.9400-9408, 2004.
DOI : 10.1074/jbc.M312840200

X. Li, J. Liu, and T. Gao, {beta}-TrCP-mediated ubiquitination and degradation of PHLPP1 is negatively regulated by Akt, Mol Cell Biol, 2009.