Role of Stromal Fibroblasts in Cancer: Promoting or Impeding?, Tumor Biology, vol.30, issue.3, pp.109-120, 2009. ,
DOI : 10.1159/000218708
Tumor stroma derived biomarkers in cancer, Cancer and Metastasis Reviews, vol.204, issue.1-2, pp.177-183, 2009. ,
DOI : 10.1007/s10555-008-9175-2
Epidemiology ??? identifying the causes and preventability of cancer?, Nature Reviews Cancer, vol.84, issue.1, pp.75-83, 2006. ,
DOI : 10.1038/nrc1784
Cancer stem cells and their niche, Cancer Science, vol.363, issue.7, pp.1166-1172, 2009. ,
DOI : 10.1111/j.1349-7006.2009.01177.x
Cancer Stem Cells: The Other Face of Janus, The American Journal of the Medical Sciences, vol.338, issue.2, pp.107-112, 2009. ,
DOI : 10.1097/MAJ.0b013e3181ad5865
Cancer Stem Cells: A New Paradigm for Understanding Tumor Growth and Progression and Drug Resistance, Current Medicinal Chemistry, vol.16, issue.14, pp.1688-1703, 2009. ,
DOI : 10.2174/092986709788186147
The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes, Blood, vol.114, issue.5, pp.937-951, 2009. ,
DOI : 10.1182/blood-2009-03-209262
The Leukemias, Oral and Maxillofacial Surgery Clinics of North America, vol.20, issue.4, pp.597-608, 2008. ,
DOI : 10.1016/j.coms.2008.06.011
Pharmacogenomics of acute leukemia, Pharmacogenomics, vol.8, issue.7, pp.817-834, 2007. ,
DOI : 10.2217/14622416.8.7.817
Acute Myeloid Leukemia, Hematology/Oncology Clinics of North America, vol.23, issue.4, pp.633-654, 2009. ,
DOI : 10.1016/j.hoc.2009.04.003
Chronic Lymphoid Leukemias Other Than Chronic Lymphocytic Leukemia: Diagnosis and Treatment, Mayo Clinic Proceedings, vol.80, issue.12, pp.1660-1674, 2005. ,
DOI : 10.4065/80.12.1660
Classification and diagnosis of myeloproliferative neoplasms: The 2008 World Health Organization criteria and point-of-care diagnostic algorithms, Leukemia, vol.5, issue.1, pp.14-22, 2008. ,
DOI : 10.1038/sj.leu.2404955
The biology of chronic myeloid leukemia, N Engl J Med, vol.341, issue.3, pp.164-172, 1999. ,
The molecular biology of chronic myeloid leukemia, Blood, vol.96, issue.10, pp.3343-3356, 2000. ,
The BCR-ABL Story: Bench to Bedside and Back, Annual Review of Immunology, vol.22, issue.1, pp.247-306, 2004. ,
DOI : 10.1146/annurev.immunol.22.012703.104753
Discovery of the Philadelphia chromosome: a personal perspective, Journal of Clinical Investigation, vol.117, issue.8, pp.2033-2035, 2007. ,
DOI : 10.1172/JCI31771
The biology of CML blast crisis, Blood, vol.103, issue.11, pp.4010-4022, 2004. ,
DOI : 10.1182/blood-2003-12-4111
Chronic myeloid leukaemia as a model of disease evolution in human cancer, Nature Reviews Cancer, vol.19, issue.6, pp.441-453, 2007. ,
DOI : 10.1038/nrc2147
The Biology of CML Blast Crisis, Hematology, vol.2007, issue.1, pp.384-391, 2007. ,
DOI : 10.1182/asheducation-2007.1.384
+, American Journal of Clinical Pathology, vol.132, issue.2, pp.250-260, 2009. ,
DOI : 10.1309/AJCPUN89CXERVOVH
Translocation of c-abl oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia, Nature, vol.8, issue.5940, pp.277-280, 1983. ,
DOI : 10.1016/0092-8674(77)90119-2
Localization of the c-abl oncogene adjacent to a translocation break point in chronic myelocytic leukaemia, Nature, vol.79, issue.5940, pp.239-242, 1983. ,
DOI : 10.1016/0042-6822(83)90473-7
Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22, Cell, vol.36, issue.1, pp.93-99, 1984. ,
DOI : 10.1016/0092-8674(84)90077-1
Cycling, stressed-out and nervous: cellular functions of c-Abl, Trends in Cell Biology, vol.9, issue.5, pp.179-186, 1999. ,
DOI : 10.1016/S0962-8924(99)01549-4
Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase, Proceedings of the National Academy of Sciences, vol.95, issue.13, pp.7457-7462, 1998. ,
DOI : 10.1073/pnas.95.13.7457
A Myristoyl/Phosphotyrosine Switch Regulates c-Abl, Cell, vol.112, issue.6, pp.845-857, 2003. ,
DOI : 10.1016/S0092-8674(03)00191-0
Structural Basis for the Autoinhibition of c-Abl Tyrosine Kinase, Cell, vol.112, issue.6, pp.859-871, 2003. ,
DOI : 10.1016/S0092-8674(03)00194-6
Regulation of cell death by the Abl tyrosine kinase, Oncogene, vol.19, issue.49, pp.5643-5650, 2000. ,
DOI : 10.1038/sj.onc.1203878
The nuclear tyrosine kinase c-abl negatively regulates cell growth, Cell, vol.77, issue.1, pp.121-131, 1994. ,
DOI : 10.1016/0092-8674(94)90240-2
p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage, Nature, vol.399, issue.6738, pp.814-817, 1999. ,
Subcellular localization of Bcr, Abl, and Bcr-Abl proteins in normal and leukemic cells and correlation of expression with myeloid differentiation., Journal of Clinical Investigation, vol.92, issue.4 ,
DOI : 10.1172/JCI116786
Cell cycle-related shifts in subcellular localization of BCR: association with mitotic chromosomes and with heterochromatin., Proceedings of the National Academy of Sciences, vol.92, issue.8, pp.3488-3492, 1995. ,
DOI : 10.1073/pnas.92.8.3488
A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins., Molecular and Cellular Biology, vol.13, issue.12, pp.7587-7595, 1993. ,
DOI : 10.1128/MCB.13.12.7587
Genetic requirement for Ras in the transformation of fibroblasts and hematopoietic cells by the Bcr-Abl oncogene, Journal of Experimental Medicine, vol.181, issue.1, pp.307-313, 1995. ,
DOI : 10.1084/jem.181.1.307
Chronic Myeloid Leukemia ??? Advances in Biology and New Approaches to Treatment, New England Journal of Medicine, vol.349, issue.15, pp.1451-1464, 2003. ,
DOI : 10.1056/NEJMra020777
Chronic myeloid leukaemia: stem cell derived but progenitor cell driven, Clinical Science, vol.109, issue.1, pp.13-25, 2005. ,
DOI : 10.1042/CS20040336
BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein, Cell, vol.75, issue.1, pp.175-185, 1993. ,
DOI : 10.1016/S0092-8674(05)80094-7
Negative regulation of p120GAP GTPase promoting activity by p210bcr/abl: implication for RAS-dependent Philadelphia chromosome positive cell growth, Journal of Experimental Medicine, vol.179, issue.6, pp.1855-1865, 1994. ,
DOI : 10.1084/jem.179.6.1855
JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis, Leukemia, vol.18, issue.2, pp.189-218, 2004. ,
DOI : 10.1038/sj.leu.2403241
The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation., Proceedings of the National Academy of Sciences, vol.92, issue.25, pp.11746-11750, 1995. ,
DOI : 10.1073/pnas.92.25.11746
Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation., Proceedings of the National Academy of Sciences, vol.90, issue.18, pp.8319-8323, 1993. ,
DOI : 10.1073/pnas.90.18.8319
URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC47347/pdf
Cyclin D1 Expression Is Regulated Positively by the p42/p44MAPK and Negatively by the p38/HOGMAPK Pathway, Journal of Biological Chemistry, vol.271, issue.34, pp.20608-20616, 1996. ,
DOI : 10.1074/jbc.271.34.20608
Programmed cell death: alive and well in the new millennium, Trends in Cell Biology, vol.11, issue.12, pp.526-534, 2001. ,
DOI : 10.1016/S0962-8924(01)02173-0
Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies, Nature Cell Biology, vol.14, issue.12, pp.1348-1358, 2006. ,
DOI : 10.1073/pnas.0406837101
Cytochrome c: functions beyond respiration, Nature Reviews Molecular Cell Biology, vol.14, issue.7, pp.532-542, 2008. ,
DOI : 10.1038/nrm2434
Tumour cell survival signalling by the ERK1/2 pathway, Cell Death and Differentiation, vol.96, issue.3, pp.368-377, 2009. ,
DOI : 10.1074/jbc.M010384200
The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3' kinase pathway, Oncogene, vol.12, issue.4, pp.839-846, 1996. ,
Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells, Blood, vol.86, issue.2, pp.726-736, 1995. ,
BCR/ABL Regulation of PI-3 Kinase Activity, Leukemia & Lymphoma, vol.1226, issue.5-6, pp.473-476, 1996. ,
DOI : 10.1126/science.7701324
mTOR and cancer: insights into a complex relationship, Nature Reviews Cancer, vol.10, issue.9, pp.729-734, 2006. ,
DOI : 10.1038/nrc1974
Defining the Role of mTOR in Cancer, Cancer Cell, vol.12, issue.1, pp.9-22, 2007. ,
DOI : 10.1016/j.ccr.2007.05.008
Rictor, a novel binding partner of mTOR, defines a rapamycininsensitive and raptor-independent pathway that regulates the cytoskeleton, Curr Biol, p.58 ,
Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex, Science, vol.307, issue.5712, pp.1098-1101, 2005. ,
DOI : 10.1126/science.1106148
Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity, Genes & Development, vol.20, issue.20, pp.2820-2832, 2006. ,
DOI : 10.1101/gad.1461206
mSin1 Is Necessary for Akt/PKB Phosphorylation, and Its Isoforms Define Three Distinct mTORC2s, Current Biology, vol.16, issue.18, pp.1865-1870, 2006. ,
DOI : 10.1016/j.cub.2006.08.001
URL : http://doi.org/10.1016/j.cub.2006.08.001
mTOR Interacts with Raptor to Form a Nutrient-Sensitive Complex that Signals to the Cell Growth Machinery, Cell, vol.110, issue.2, pp.163-175, 2002. ,
DOI : 10.1016/S0092-8674(02)00808-5
Raptor, a binding partner of target of rapamycin, Biochemical and Biophysical Research Communications, vol.313, issue.2, pp.437-441, 2004. ,
DOI : 10.1016/j.bbrc.2003.07.018
Raptor, a Binding Partner of Target of Rapamycin (TOR), Mediates TOR Action, Cell, vol.110, issue.2, pp.177-189, 2002. ,
DOI : 10.1016/S0092-8674(02)00833-4
G??L, a Positive Regulator of the Rapamycin-Sensitive Pathway Required for the Nutrient-Sensitive Interaction between Raptor and mTOR, Molecular Cell, vol.11, issue.4, pp.895-904, 2003. ,
DOI : 10.1016/S1097-2765(03)00114-X
Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40, Nature Cell Biology, vol.126, issue.3, pp.316-323, 2007. ,
DOI : 10.1523/JNEUROSCI.5209-03.2004
PRAS40 Regulates mTORC1 Kinase Activity by Functioning as a Direct Inhibitor of Substrate Binding, Journal of Biological Chemistry, vol.282, issue.27, pp.20036-20044, 2007. ,
DOI : 10.1074/jbc.M702376200
Regulation of Proline-rich Akt Substrate of 40 kDa (PRAS40) Function by Mammalian Target of Rapamycin Complex 1 (mTORC1)-mediated Phosphorylation, Journal of Biological Chemistry, vol.283, issue.23, pp.15619-15627, 2008. ,
DOI : 10.1074/jbc.M800723200
When translation meets transformation: the mTOR story, Oncogene, vol.9, issue.48, pp.6423-6435, 2006. ,
DOI : 10.1038/sj.onc.1209887
The tor pathway: a target for cancer therapy, Nature Reviews Cancer, vol.4, issue.5, pp.335-348, 2004. ,
DOI : 10.1038/nrc1362
Dysregulation of the TSC-mTOR pathway in human disease, Nature Genetics, vol.96, issue.1, pp.19-24, 2005. ,
DOI : 10.1038/nrc1362
Synthesis of the translational apparatus is regulated at the translational level, European Journal of Biochemistry, vol.37, issue.21, pp.6321-6330, 2000. ,
DOI : 10.1046/j.1432-1327.2000.01719.x
S6K1-/-/S6K2-/- Mice Exhibit Perinatal Lethality and Rapamycin-Sensitive 5'-Terminal Oligopyrimidine mRNA Translation and Reveal a Mitogen-Activated Protein Kinase-Dependent S6 Kinase Pathway, Molecular and Cellular Biology, vol.24, issue.8, pp.3112-3124, 2004. ,
DOI : 10.1128/MCB.24.8.3112-3124.2004
Activation of the PI3K/mTOR pathway by BCR-ABL contributes to increased production of reactive oxygen species, Blood, vol.105, issue.4, pp.1717-1723, 2005. ,
DOI : 10.1182/blood-2004-03-0849
Genomic instability in myeloid malignancies: Increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair, Cancer Letters, vol.270, issue.1, pp.1-9, 2008. ,
DOI : 10.1016/j.canlet.2008.03.036
Akt Phosphorylation of BAD Couples Survival Signals to the Cell-Intrinsic Death Machinery, Cell, vol.91, issue.2, pp.231-241, 1997. ,
DOI : 10.1016/S0092-8674(00)80405-5
Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty, Journal of Leukocyte Biology, vol.73, issue.6, pp.689-701, 2003. ,
DOI : 10.1189/jlb.1202629
Dynamic FoxO transcription factors, Journal of Cell Science, vol.120, issue.15, pp.2479-2487, 2007. ,
DOI : 10.1242/jcs.001222
Re-evaluating AKT regulation: role of TOR complex 2 in tissue growth, Genes & Development, vol.21, issue.6, pp.632-637, 2007. ,
DOI : 10.1101/gad.416307
Decision making by p53: life, death and cancer, Cell Death and Differentiation, vol.10, issue.4, pp.431-442, 2003. ,
DOI : 10.1038/sj.cdd.4401183
New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway, Proceedings of the National Academy of Sciences, vol.96, issue.8, pp.4240-4245, 1999. ,
DOI : 10.1073/pnas.96.8.4240
Protein phosphatase 2A regulatory subunits and cancer, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1795, issue.1, pp.1-15, 2009. ,
DOI : 10.1016/j.bbcan.2008.05.005
The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein, Cancer Cell, vol.8, issue.5, pp.355-368, 2005. ,
DOI : 10.1016/j.ccr.2005.10.015
FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome???positive acute lymphocytic leukemia, Journal of Clinical Investigation, vol.117, issue.9, pp.2408-2421, 2007. ,
DOI : 10.1172/JCI31095DS1
PHLPP: A Phosphatase that Directly Dephosphorylates Akt, Promotes Apoptosis, and Suppresses Tumor Growth, Molecular Cell, vol.18, issue.1, pp.13-24, 2005. ,
DOI : 10.1016/j.molcel.2005.03.008
Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins, Science, vol.264, issue.5164, pp.1415-1421, 1994. ,
DOI : 10.1126/science.8197455
JAKS AND STATS: Biological Implications, Annual Review of Immunology, vol.16, issue.1, pp.293-322, 1998. ,
DOI : 10.1146/annurev.immunol.16.1.293
Involvement of Jak2 tyrosine phosphorylation in Bcr???Abl transformation, Oncogene, vol.20, issue.43, pp.6188-6195, 2001. ,
DOI : 10.1038/sj.onc.1204834
Jak2 is involved in c-Myc induction by Bcr-Abl, Oncogene, vol.21, issue.47, pp.7137-7146, 2002. ,
DOI : 10.1038/sj.onc.1205942
BCR-ABL activates STAT3 via JAK and MEK pathways in human cells, British Journal of Haematology, vol.267, issue.2, pp.171-179, 2006. ,
DOI : 10.1038/sj.onc.1205152
Signaling through the JAK/STAT pathway, recent advances and future challenges, Gene, vol.285, issue.1-2, pp.1-24, 2002. ,
DOI : 10.1016/S0378-1119(02)00398-0
Adaptive secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF) mediates imatinib and nilotinib resistance in BCR/ABL+ progenitors via JAK-2/STAT-5 pathway activation, Blood, vol.109, issue.5, pp.2147-2155, 2007. ,
DOI : 10.1182/blood-2006-08-040022
BCR-ABL mutants spread resistance to non-mutated cells through a paracrine mechanism, Leukemia, vol.92, issue.4, pp.791-799, 2008. ,
DOI : 10.1158/1535-7163.MCT-06-0446
The suppressors of cytokine signalling (SOCS), Cellular and Molecular Life Sciences, vol.58, issue.11, pp.1627-1635, 2001. ,
DOI : 10.1007/PL00000801
Socs1 binds to multiple signalling proteins and suppresses Steel factor-dependent proliferation, The EMBO Journal, vol.18, issue.4, pp.904-915, 1999. ,
DOI : 10.1093/emboj/18.4.904
Dormant Tumor Cells Develop Cross-Resistance to Apoptosis Induced by CTLs or Imatinib Mesylate via Methylation of Suppressor of Cytokine Signaling 1, Cancer Research, vol.67, issue.9, pp.4491-4498, 2007. ,
DOI : 10.1158/0008-5472.CAN-06-1627
Rac GTPases as key regulators of p210-BCR-ABL-dependent leukemogenesis, Leukemia, vol.105, issue.5, pp.898-904, 2008. ,
DOI : 10.1038/leu.2008.71
Tyrosine phosphorylation and activation of focal adhesion kinase (p125FAK) by BCR-ABL oncoprotein, Exp Hematol, vol.23, issue.11, pp.1153-1159, 1995. ,
FAK silencing inhibits leukemogenesis in BCR/ABL-transformed hematopoietic cells, American Journal of Hematology, vol.174, issue.5, pp.273-278, 2009. ,
DOI : 10.1002/ajh.21381
Bcr/Abl expression stimulates integrin function in hematopoietic cell lines., Journal of Clinical Investigation, vol.98, issue.2, pp.521-528, 1996. ,
DOI : 10.1172/JCI118820
Interferon-alpha restores normal beta 1 ,
Interferon-?? restores ??1-integrin-dependent, collagen-mediated platelet aggregation in a patient with chronic myelogenous leukemia, Journal of Laboratory and Clinical Medicine, vol.131, issue.2, pp.163-169, 1998. ,
DOI : 10.1016/S0022-2143(98)90159-7
p210BCR-ABL inhibits SDF-1 Chemotactic Response via Alteration of CXCR4 Signaling and Down-regulation of CXCR4 Expression, Cancer Research, vol.65, issue.7, pp.2676-2683, 2005. ,
DOI : 10.1158/0008-5472.CAN-04-2152
BCR-ABL1 alters SDF-1??-mediated adhesive responses through the ??2 integrin LFA-1 in leukemia cells, Blood, vol.111, issue.10, pp.5182-5186, 2008. ,
DOI : 10.1182/blood-2007-10-117705
Rac Guanosine Triphosphatases Represent Integrating Molecular Therapeutic Targets for BCR-ABL-Induced Myeloproliferative Disease, Cancer Cell, vol.12, issue.5, pp.467-478, 2007. ,
DOI : 10.1016/j.ccr.2007.10.015
Signaling to NF-??B, Genes & Development, vol.18, issue.18, pp.2195-2224, 2004. ,
DOI : 10.1101/gad.1228704
A requirement for NF-kappa B activation in Bcr-Abl-mediated??transformation, Genes & Development, vol.12, issue.7, pp.968-981, 1998. ,
DOI : 10.1101/gad.12.7.968
The NF-??B pathway blockade by the IKK inhibitor PS1145 can overcome Imatinib resistance, Leukemia, vol.12, issue.1, pp.61-67, 2006. ,
DOI : 10.1016/S0065-230X(02)85003-5
Chronic myelogenous leukemia in blast crisis, The American Journal of Medicine, vol.83, issue.3, pp.445-454, 1987. ,
DOI : 10.1016/0002-9343(87)90754-6
Significance of cytogenetic clonal evolution in chronic myelogenous leukemia., Journal of Clinical Oncology, vol.14, issue.1, pp.196-203, 1996. ,
DOI : 10.1200/JCO.1996.14.1.196
Genome maintenance mechanisms for preventing cancer, Nature, vol.411, issue.6835, pp.366-374, 2001. ,
DOI : 10.1038/35077232
DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation, Nature, vol.268, issue.6922, pp.499-506, 2003. ,
DOI : 10.1089/027245700429864
BCR/ABL translocates to the nucleus and disrupts an ATR-dependent intra-S phase checkpoint, Cancer Cell, vol.5, issue.3, pp.275-285, 2004. ,
DOI : 10.1016/S1535-6108(04)00056-X
DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme?, Current Opinion in Cell Biology, vol.13, issue.2, pp.225-231, 2001. ,
DOI : 10.1016/S0955-0674(00)00201-5
BCR-ABL down-regulates the DNA repair protein DNA-PKcs, Blood, vol.97, issue.7 ,
DOI : 10.1182/blood.V97.7.2084
Down-regulation of BRCA1 in BCR-ABL-expressing hematopoietic cells, Blood, vol.101, issue.11, pp.4583-4588, 2003. ,
DOI : 10.1182/blood-2002-10-3011
BCR Binds to the Xeroderma Pigmentosum Group B Protein, Biochemical and Biophysical Research Communications, vol.260, issue.2, pp.309-312, 1999. ,
DOI : 10.1006/bbrc.1999.0822
p210 BCR/ABL kinase regulates nucleotide excision repair (NER) and resistance to UV radiation, Blood, vol.102, issue.7, pp.210-2632, 2003. ,
DOI : 10.1182/blood-2002-10-3207
Identification of a specific telomere terminal transferase activity in tetrahymena extracts, Cell, vol.43, issue.2, pp.405-413, 1985. ,
DOI : 10.1016/0092-8674(85)90170-9
Dysregulated expression of the major telomerase components in leukaemic stem cells, Leukemia, vol.19, issue.3, pp.381-389, 2005. ,
DOI : 10.1038/sj.leu.2403616
Prognostic implications of differences in telomere length between normal and malignant cells from patients with chronic myeloid leukemia measured by flow cytometry, Blood, vol.95, issue.6, pp.1883-1890, 2000. ,
Telomere Dynamics and Genetic Instability in Disease Progression of Chronic Myeloid Leukemia, Leukemia and Lymphoma, vol.40, issue.1, pp.49-56, 2000. ,
DOI : 10.3109/10428190009054880
Telomerase activity and cytogenetic changes in chronic myeloid leukemia with disease progression, Leukemia, vol.11, issue.2, pp.190-194, 1997. ,
DOI : 10.1038/sj.leu.2400560
Oncogenic Abl and Src tyrosine kinases elicit the ubiquitin-dependent degradation of target proteins through a Ras-independent??pathway, Genes & Development, vol.12, issue.10, pp.1415-1424, 1998. ,
DOI : 10.1101/gad.12.10.1415
Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity., Genes & Development, vol.9, issue.21, pp.2569-2582, 1995. ,
DOI : 10.1101/gad.9.21.2569
BCR/ABL Directly Inhibits Expression of SHIP, an SH2-Containing Polyinositol-5-Phosphatase Involved in the Regulation of Hematopoiesis, Molecular and Cellular Biology, vol.19, issue.11, pp.7473-7480, 1999. ,
DOI : 10.1128/MCB.19.11.7473
Protein Tyrosine Phosphatase 1B Antagonizes Signalling by Oncoprotein Tyrosine Kinase p210 bcr-abl In Vivo, Molecular and Cellular Biology, vol.18, issue.5, pp.2965-2975, 1998. ,
DOI : 10.1128/MCB.18.5.2965
Protein tyrosine phosphatase PTP1B suppresses p210 bcr-abl-induced transformation of Rat-1 fibroblasts and promotes differentiation of K562 cells, Proceedings of the National Academy of Sciences, vol.95, issue.24, pp.95-14094, 1998. ,
DOI : 10.1073/pnas.95.24.14094
Inhibition of Phosphotyrosine Phosphatase 1B Causes Resistance in BCR-ABL-Positive Leukemia Cells to the ABL Kinase Inhibitor STI571, Clinical Cancer Research, vol.12, issue.7, pp.2025-2031, 2006. ,
DOI : 10.1158/1078-0432.CCR-04-2392
BCR-ABL induces the expression of Skp2 through the PI3K pathway to promote p27Kip1 degradation and proliferation of chronic myelogenous leukemia cells, Cancer Res, vol.65, issue.8, pp.3264-3272, 2005. ,
Treatment of chronic myelogenous leukemia ,
The role of interferon-alpha in the treatment of chronic myeloid leukemia, Cytokine & Growth Factor Reviews, vol.18, issue.5-6, pp.5-6, 2007. ,
DOI : 10.1016/j.cytogfr.2007.06.015
Allogeneic hematopoietic stem cell transplantation for chronic myeloid leukemia, Hematology/Oncology Clinics of North America, vol.18, issue.3, pp.685-702, 2004. ,
DOI : 10.1016/j.hoc.2004.03.013
Stem Cell Transplantation in Patients With Chronic Myelogenous Leukemia: When Should It Be Used?, Mayo Clinic Proceedings, vol.81, issue.3, pp.404-416 ,
DOI : 10.4065/81.3.404
Why do chronic myelogenous leukemia stem cells survive allogeneic stem cell transplantation or imatinib: does it really matter?, Leukemia & Lymphoma, vol.19, issue.1, pp.1-7, 2006. ,
DOI : 10.1073/pnas.0501870102
Autologous Stem Cell Transplantation in Chronic Myeloid Leukemia, Seminars in Hematology, vol.44, issue.4 ,
DOI : 10.1053/j.seminhematol.2007.08.003
Tyrosine kinase activity and transformation potency of bcr-abl oncogene products, Science, vol.247, issue.4946, pp.1079-1082, 1990. ,
DOI : 10.1126/science.2408149
-Positive Leukemia Cells, Leukemia & Lymphoma, vol.52, issue.1-2, pp.41-49, 1993. ,
DOI : 10.1016/0167-7799(93)90069-L
URL : https://hal.archives-ouvertes.fr/hal-00212212
Tyrphostin AG957, a tyrosine kinase inhibitor with anti-BCR/ABL tyrosine kinase activity restores ??1 integrin-mediated adhesion and inhibitory signaling in chronic myelogenous leukemia hematopoietic progenitors, Leukemia, vol.12, issue.11, pp.1708-1717, 1998. ,
DOI : 10.1038/sj.leu.2401193
4-(Phenylamino)pyrrolopyrimidines:?? Potent and Selective, ATP Site Directed Inhibitors of the EGF-Receptor Protein Tyrosine Kinase, Journal of Medicinal Chemistry, vol.39, issue.12, pp.2285-2292, 1996. ,
DOI : 10.1021/jm960118j
Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative, Cancer Res, vol.56, issue.1, pp.100-104, 1996. ,
Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr???Abl positive cells, Nature Medicine, vol.6, issue.5, pp.561-566, 1996. ,
DOI : 10.1038/376785a0
Imatinib mesylate--a new oral targeted therapy, N Engl J Med, vol.346, issue.9, pp.683-693, 2002. ,
Structural Mechanism for STI-571 Inhibition of Abelson Tyrosine Kinase, Science, vol.289, issue.5486, pp.1938-1942, 2000. ,
DOI : 10.1126/science.289.5486.1938
Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571), Cancer Res, vol.62, issue.15, pp.4236-4243, 2002. ,
Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia, Cancer Cell, vol.2, issue.2, pp.117-125, 2002. ,
DOI : 10.1016/S1535-6108(02)00096-X
Inhibition of the ABL Kinase Activity Blocks the Proliferation of BCR/ABL+Leukemic Cells and Induces Apoptosis, Blood Cells, Molecules, and Diseases, vol.23, issue.3, pp.380-394, 1997. ,
DOI : 10.1006/bcmd.1997.0155
CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins, Blood, vol.90, issue.12, pp.4947-4952, 1997. ,
Efficacy and Safety of a Specific Inhibitor of the BCR-ABL Tyrosine Kinase in Chronic Myeloid Leukemia, New England Journal of Medicine, vol.344, issue.14, pp.1031-1037, 2001. ,
DOI : 10.1056/NEJM200104053441401
Activity of a Specific Inhibitor of the BCR-ABL Tyrosine Kinase in the Blast Crisis of Chronic Myeloid Leukemia and Acute Lymphoblastic Leukemia with the Philadelphia Chromosome, New England Journal of Medicine, vol.344, issue.14, pp.1038-1042, 2001. ,
DOI : 10.1056/NEJM200104053441402
Effect of the Tyrosine Kinase Inhibitor STI571 in a Patient with a Metastatic Gastrointestinal Stromal Tumor, New England Journal of Medicine, vol.344, issue.14, pp.1052-1056, 2001. ,
DOI : 10.1056/NEJM200104053441404
Genes as a Therapeutic Target of Imatinib in Idiopathic Hypereosinophilic Syndrome, New England Journal of Medicine, vol.348, issue.13, pp.1201-1214, 2003. ,
DOI : 10.1056/NEJMoa025217
Imatinib-Induced Regression of AIDS-Related Kaposi's Sarcoma, Journal of Clinical Oncology, vol.23, issue.5, pp.982-989, 2005. ,
DOI : 10.1200/JCO.2005.06.079
The structure of the leukemia drug imatinib bound to human quinone reductase 2 (NQO2), BMC Structural Biology, vol.9, issue.1, 2009. ,
DOI : 10.1186/1472-6807-9-7
Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets, Blood, vol.110, issue.12, pp.4055-4063, 2007. ,
DOI : 10.1182/blood-2007-07-102061
NRH:quinone reductase 2: An enzyme of surprises and mysteries, Biochemical Pharmacology, vol.71, issue.1-2, pp.1-12, 2005. ,
DOI : 10.1016/j.bcp.2005.09.019
The stem cell factor???c-KIT pathway must be inhibited to enable apoptosis induced by BCR???ABL inhibitors in chronic myelogenous leukemia cells, Leukemia, vol.25, issue.4, pp.679-685, 2009. ,
DOI : 10.1056/NEJMoa055104
Imatinib Mesylate ??? Uncovering a Fast Track to Adaptive Immunity, New England Journal of Medicine, vol.354, issue.21, pp.2282-2284, 2006. ,
DOI : 10.1056/NEJMcibr061878
Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet, Blood, vol.108, issue.6, pp.1809-1820, 2006. ,
DOI : 10.1182/blood-2006-02-005686
Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results, Blood, vol.108, issue.1, pp.28-37, 2006. ,
DOI : 10.1182/blood-2006-01-0092
Strategies to overcome resistance to targeted protein kinase inhibitors, Nature Reviews Drug Discovery, vol.64, issue.12, pp.1001-1010, 2004. ,
DOI : 10.1038/35073673
Clinical Resistance to STI-571 Cancer Therapy Caused by BCR-ABL Gene Mutation or Amplification, Science, vol.293, issue.5531, pp.876-880, 2001. ,
DOI : 10.1126/science.1062538
Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance, Blood, vol.96, issue.3, pp.1070-1079, 2000. ,
High incidence of BCR-ABL kinase domain mutations and absence of mutations of the PDGFR and KIT activation loops in CML patients with secondary resistance to imatinib, The Hematology Journal, vol.5, issue.1, pp.55-60, 2004. ,
DOI : 10.1038/sj.thj.6200319
Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis, Blood, vol.102, issue.1, pp.276-283, 2003. ,
DOI : 10.1182/blood-2002-09-2896
Clinical resistance to the kinase inhibitor STI-571 in chronic myeloid leukemia by mutation of Tyr-253 in the Abl kinase domain P-loop, Proceedings of the National Academy of Sciences, vol.99, issue.16, pp.10700-10705, 2002. ,
DOI : 10.1073/pnas.162140299
High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance, Blood, vol.99, issue.9, pp.3472-3475, 2002. ,
DOI : 10.1182/blood.V99.9.3472
Several Bcr-Abl kinase domain mutants associated with imatinib mesylate resistance remain sensitive to imatinib, Blood, vol.101, issue.11, pp.4611-4614, 2003. ,
DOI : 10.1182/blood-2002-12-3659
High-sensitivity detection of BCR-ABL kinase domain mutations in imatinib-naive patients: correlation with clonal cytogenetic evolution but not response to therapy, Blood, vol.106, issue.6, pp.2128-2137, 2005. ,
DOI : 10.1182/blood-2005-03-1036
Mechanisms of Autoinhibition and STI-571/Imatinib Resistance Revealed by Mutagenesis of BCR-ABL, Cell, vol.112, issue.6, pp.831-843, 2003. ,
DOI : 10.1016/S0092-8674(03)00190-9
Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment, Blood, vol.100, issue.3, pp.1014-1018, 2002. ,
DOI : 10.1182/blood.V100.3.1014
A Mutation Conferring Resistance to Imatinib at the Time of Diagnosis of Chronic Myelogenous Leukemia, New England Journal of Medicine, vol.348, issue.22, pp.2265-2266, 2003. ,
DOI : 10.1056/NEJMc035089
The presence of a BCR-ABL mutant allele in CML does not always explain clinical resistance to imatinib, Leukemia, vol.101, issue.4, pp.658-663, 2006. ,
DOI : 10.1038/sj.leu.2404137
Mutations of the BCR-ABL-kinase domain occur in a minority of patients with stable complete cytogenetic response to imatinib, Leukemia, vol.107, issue.3, pp.489-493, 2007. ,
DOI : 10.1038/sj.leu.2404554
MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models, Blood, vol.101, issue.6, pp.2368-2373, 2003. ,
DOI : 10.1182/blood.V101.6.2368
Overexpression of P-glycoprotein in K562 cells does not confer resistance to the growth inhibitory effects of imatinib (STI571) in vitro, Blood, vol.102, issue.13, pp.4499-4503, 2003. ,
DOI : 10.1182/blood-2003-01-0083
Inhibition of MDR1 does not sensitize primitive chronic myeloid leukemia CD34+ cells to imatinib, Experimental Hematology, vol.37, issue.6, pp.692-700, 2009. ,
DOI : 10.1016/j.exphem.2009.02.006
Role of alpha1 Acid Glycoprotein in the In Vivo Resistance of Human BCR-ABL+ Leukemic Cells to the Abl Inhibitor STI571, Journal of the National Cancer Institute, vol.92, issue.20, pp.1641-1650, 2000. ,
DOI : 10.1093/jnci/92.20.1641
Alpha1 acid glycoprotein binds to imatinib (STI571) and substantially alters its pharmacokinetics in chronic myeloid leukemia patients, Clin Cancer Res, vol.9, issue.2, pp.625-632, 2003. ,
Quantification of Imatinib in Human Plasma by High-Performance Liquid Chromatography-Tandem Mass Spectrometry, Therapeutic Drug Monitoring, vol.27, issue.5, pp.634-640, 2005. ,
DOI : 10.1097/01.ftd.0000175973.71140.91
BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571, Blood, vol.101, issue.2, pp.690-698, 2003. ,
DOI : 10.1182/blood.V101.2.690
Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug-resistant, BCR-ABL1(+) leukemia cells, Nature Medicine, vol.56, issue.11, pp.1187-1189, 2004. ,
DOI : 10.1074/jbc.M209321200
BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks, Blood, vol.104, issue.12, pp.3746-3753, 2004. ,
DOI : 10.1182/blood-2004-05-1941
BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance, Blood, vol.108, issue.1, pp.319-327, 2006. ,
DOI : 10.1182/blood-2005-07-2815
BCR/ABL Inhibits Mismatch Repair to Protect from Apoptosis and Induce Point Mutations, Cancer Research, vol.68, issue.8, pp.2576-2580, 2008. ,
DOI : 10.1158/0008-5472.CAN-07-6858
BCR/ABL Regulates Mammalian RecA Homologs, Resulting in Drug Resistance, Molecular Cell, vol.8, issue.4, pp.795-806, 2001. ,
DOI : 10.1016/S1097-2765(01)00357-4
The B Cell Mutator AID Promotes B Lymphoid Blast Crisis and Drug Resistance in Chronic Myeloid Leukemia, Cancer Cell, vol.16, issue.3, pp.232-245, 2009. ,
DOI : 10.1016/j.ccr.2009.07.030
BCR-ABL promotes the frequency of mutagenic single-strand annealing DNA repair, Blood, vol.114, issue.9, pp.1813-1819, 2009. ,
DOI : 10.1182/blood-2008-07-172148
A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei, Cell, vol.71, issue.5, pp.865-873, 1992. ,
DOI : 10.1016/0092-8674(92)90561-P
DNA Methyltransferases Dnmt3a and Dnmt3b Are Essential for De Novo Methylation and Mammalian Development, Cell, vol.99, issue.3, pp.247-257, 1999. ,
DOI : 10.1016/S0092-8674(00)81656-6
Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia, Blood, vol.97, issue.5, p.197 ,
DOI : 10.1182/blood.V97.5.1172
and p16INK4a methylation status in chronic myelogenous leukemia, Leuk Lymphoma, vol.14, issue.4510, pp.15-19, 2004. ,
) CpG island in chronic myeloid leukemia, European Journal of Haematology, vol.23, issue.2, pp.119-123, 2009. ,
DOI : 10.1111/j.1600-0609.2008.01178.x
Identification of TopBP1 as a c-Abl-interacting Protein and a Repressor for c-Abl Expression, Journal of Biological Chemistry, vol.280, issue.32, pp.29374-29380, 2005. ,
DOI : 10.1074/jbc.M503016200
Genetic and Epigenetic Silencing of MicroRNA-203 Enhances ABL1 and BCR-ABL1 Oncogene??Expression, Cancer Cell, vol.13, issue.6, pp.496-506, 2008. ,
DOI : 10.1016/j.ccr.2008.04.018
Resistance to Imatinib Mesylate-induced apoptosis in acute lymphoblastic leukemia is associated with PTEN down-regulation due to promoter hypermethylation, Leukemia Research, vol.32, issue.5, pp.709-716, 2008. ,
DOI : 10.1016/j.leukres.2007.09.005
sFRP1 promoter methylation is associated with persistent Philadelphia chromosome in chronic myeloid leukemia, Leukemia Research, vol.33, issue.8, pp.1062-1067, 2009. ,
DOI : 10.1016/j.leukres.2008.11.013
X-Ray Structure of the Nucleosome Core Particle, Journal of Biomolecular Structure and Dynamics, vol.99, issue.6, pp.1033-1055, 1985. ,
DOI : 10.1080/07391102.1985.10507623
Histone modifications in transcriptional regulation, Current Opinion in Genetics & Development, vol.12, issue.2, pp.142-148, 2002. ,
DOI : 10.1016/S0959-437X(02)00279-4
Roles of histone acetyltransferases and deacetylases in gene regulation, BioEssays, vol.15, issue.8, pp.615-626, 1998. ,
DOI : 10.1002/(SICI)1521-1878(199808)20:8<615::AID-BIES4>3.0.CO;2-H
Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs, Cell, vol.58, issue.3, pp.499-507, 1989. ,
DOI : 10.1016/0092-8674(89)90430-3
Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex, Nature, vol.393, issue.6683, pp.386-389, 1998. ,
Frequency of Major Molecular Responses to Imatinib or Interferon Alfa plus Cytarabine in Newly Diagnosed Chronic Myeloid Leukemia, New England Journal of Medicine, vol.349, issue.15, pp.1423-1432, 2003. ,
DOI : 10.1056/NEJMoa030513
Imatinib Compared with Interferon and Low-Dose Cytarabine for Newly Diagnosed Chronic-Phase Chronic Myeloid Leukemia, New England Journal of Medicine, vol.348, issue.11, pp.994-1004, 2003. ,
DOI : 10.1056/NEJMoa022457
Quality of Life in Patients With Newly Diagnosed Chronic Phase Chronic Myeloid Leukemia on Imatinib Versus Interferon Alfa Plus Low-Dose Cytarabine: Results From the IRIS Study, Journal of Clinical Oncology, vol.21, issue.11, pp.2138-2146, 2003. ,
DOI : 10.1200/JCO.2003.12.154
Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro, Blood, vol.99, issue.1, pp.319-325, 2002. ,
DOI : 10.1182/blood.V99.1.319
Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies, Leukemia, vol.24, issue.5, pp.926-935, 2007. ,
DOI : 10.1038/sj.leu.2404609
Dose escalation of imatinib mesylate can overcome resistance to standard-dose therapy in patients with chronic myelogenous leukemia, Blood, vol.101, issue.2, pp.473-475, 2003. ,
DOI : 10.1182/blood-2002-05-1451
Comparison of imatinib 400 mg and 800 mg daily in the front-line treatment of high-risk, Philadelphia-positive chronic myeloid leukemia: a European LeukemiaNet Study, Blood, vol.113, issue.19, pp.4497-4504, 2009. ,
DOI : 10.1182/blood-2008-12-191254
Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl, Cancer Cell, vol.7, issue.2, pp.129-141, 2005. ,
DOI : 10.1016/j.ccr.2005.01.007
Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance, Blood, vol.110, issue.10, pp.3540-3546, 2007. ,
DOI : 10.1182/blood-2007-03-080689
Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is active in patients with imatinib-resistant or -intolerant accelerated-phase chronic myelogenous leukemia, Blood, vol.111, issue.4, pp.1834-1839, 2008. ,
DOI : 10.1182/blood-2007-04-083196
Nilotinib for the frontline treatment of Ph+ chronic myeloid leukemia, Blood, vol.114, issue.24, 2009. ,
DOI : 10.1182/blood-2009-07-232595
Mutations on Response to Nilotinib in Patients With Chronic Myeloid Leukemia in Chronic Phase, Journal of Clinical Oncology, vol.27, issue.25, pp.4204-4210, 2009. ,
DOI : 10.1200/JCO.2009.21.8230
Evidence that Resistance to Nilotinib May Be Due to BCR-ABL, Pgp, or Src Kinase Overexpression, Cancer Research, vol.68, issue.23, pp.9809-9816, 2008. ,
DOI : 10.1158/0008-5472.CAN-08-1008
Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells, Blood, vol.109, issue.9, pp.4016-4019, 2007. ,
DOI : 10.1182/blood-2006-11-057521
Overriding Imatinib Resistance with a Novel ABL Kinase Inhibitor, Science, vol.305, issue.5682, pp.399-401, 2004. ,
DOI : 10.1126/science.1099480
Dasatinib induces notable hematologic and cytogenetic responses in chronic-phase chronic myeloid leukemia after failure of imatinib therapy, Blood, vol.109, issue.6, pp.2303-2309, 2007. ,
DOI : 10.1182/blood-2006-09-047266
Dasatinib induces complete hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in blast crisis, Blood, vol.109, issue.8, pp.3207-3213, 2007. ,
DOI : 10.1182/blood-2006-09-046888
Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study, Blood, vol.110, issue.7, pp.2309-2315, 2007. ,
DOI : 10.1182/blood-2007-02-073528
Mutation May Be Associated With Resistance to Dasatinib in Philadelphia Chromosome???Positive Leukemia, Journal of Clinical Oncology, vol.24, issue.33 ,
DOI : 10.1200/JCO.2006.08.9128
Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction, Blood, vol.107, issue.11, pp.4532-4539, 2006. ,
DOI : 10.1182/blood-2005-07-2947
In vitro and In vivo Activity of SKI-606, a Novel Src-Abl Inhibitor, against Imatinib-Resistant Bcr-Abl+ Neoplastic Cells, Cancer Research, vol.66, issue.23, pp.11314-11322, 2006. ,
DOI : 10.1158/0008-5472.CAN-06-1199
Effective and selective inhibition of chronic myeloid leukemia primitive hematopoietic progenitors by the dual Src/Abl kinase inhibitor SKI-606, Blood, vol.111, issue.4, pp.2329-2338, 2008. ,
DOI : 10.1182/blood-2007-05-092056
Activity of Bosutinib, Dasatinib, and Nilotinib Against 18 Imatinib-Resistant BCR/ABL Mutants, Journal of Clinical Oncology, vol.27, issue.3, pp.469-471, 2009. ,
DOI : 10.1200/JCO.2008.19.8853
Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia, Nature Reviews Cancer, vol.108, issue.5, pp.345-356, 2007. ,
DOI : 10.1038/nrc2126
NS-187, a potent and selective dual Bcr-Abl/Lyn tyrosine kinase inhibitor, is a novel agent for imatinib-resistant leukemia, Blood, vol.106, issue.12, pp.3948-3954, 2005. ,
DOI : 10.1182/blood-2005-06-2209
A non-ATP-competitive inhibitor of BCR-ABL overrides imatinib resistance, Proceedings of the National Academy of Sciences, vol.102, issue.6, pp.1992-1997, 2005. ,
DOI : 10.1073/pnas.0408283102
MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation, Blood, vol.109, issue.2, pp.500-502, 2007. ,
DOI : 10.1182/blood-2006-05-025049
Simultaneous targeting of Aurora kinases and Bcr-Abl kinase by the small molecule inhibitor PHA-739358 is effective against imatinib-resistant BCR-ABL mutations including T315I, Blood, vol.111, issue.8, pp.4355-4364, 2008. ,
DOI : 10.1182/blood-2007-09-113175
SGX393 inhibits the CML mutant Bcr-AblT315I and preempts in vitro resistance when combined with nilotinib or dasatinib, Proceedings of the National Academy of Sciences, vol.105, issue.14, pp.5507-5512, 2008. ,
DOI : 10.1073/pnas.0800587105
Allosteric inhibitors of Bcr-abl???dependent cell proliferation, Nature Chemical Biology, vol.56, issue.2, pp.95-102, 2006. ,
DOI : 10.1038/nchembio760
Efficacy of STI571, an abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents against bcr-abl-positive cells, Blood, vol.96, issue.9, pp.3195-3199, 2000. ,
Phase I/II trial of adding semisynthetic homoharringtonine in chronic myeloid leukemia patients who have achieved partial or complete cytogenetic response on imatinib, Cancer, vol.63, issue.9, pp.1850-1855, 2005. ,
DOI : 10.1002/cncr.20975
Phase I/II study of subcutaneous homoharringtonine in patients with chronic myeloid leukemia who have failed prior therapy, Cancer, vol.44, issue.2, pp.248-255, 2007. ,
DOI : 10.1002/cncr.22398
BCR-ABLT315I transcript disappearance in an imatinib-resistant CML patient treated with homoharringtonine: a new therapeutic challenge?, Leukemia, vol.93, issue.10, pp.2204-2206, 2007. ,
DOI : 10.1038/sj.leu.2403135
Interferon-?? or homoharringtonine as salvage treatment for chronic myeloid leukemia patients who acquire the T315I BCR-ABL mutation, Blood, vol.110, issue.7, pp.2779-2780, 2007. ,
DOI : 10.1182/blood-2007-06-094508
Geldanamycin and its analogue 17- allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts, Cancer Res, vol.61, issue.5, pp.1799-1804, 2001. ,
BCR-ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 245 ,
Synergistic activity of imatinib and 17-AAG in imatinib-resistant CML cells overexpressing BCR-ABL ??? Inhibition of P-glycoprotein function by 17-AAG, Leukemia, vol.62, issue.7, pp.1198-1206, 2005. ,
DOI : 10.2174/1568009033481813
BCR-ABL mediates arsenic trioxide-induced apoptosis independently of its aberrant kinase activity, Cancer Res, vol.60, issue.13, pp.3409-3413, 2000. ,
Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR, MRP, Bcl-2, or Bcl-x(L), Blood, vol.95, issue.3, pp.1014-1022, 2000. ,
Co-treatment with As2O3 enhances selective cytotoxic effects of STI-571 against Bcr-Abl-positive acute leukemia cells, Leukemia, vol.15, issue.5, pp.772-778, 2001. ,
DOI : 10.1038/sj.leu.2402104
PML targeting eradicates quiescent leukaemia-initiating cells, Nature, vol.84, issue.7198, pp.1072-1078, 2008. ,
DOI : 10.1038/nature07016
The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571, Blood, vol.102, issue.10, pp.3765-3774, 2003. ,
DOI : 10.1182/blood-2003-03-0737
The proteasome inhibitor PS-341 inhibits growth and induces apoptosis in Bcr/Abl-positive cell lines sensitive and resistant to imatinib mesylate, Haematologica, vol.88, issue.8, pp.853-863, 2003. ,
Bortezomib and flavopiridol interact synergistically to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib mesylate through both Bcr/Abl-dependent and -independent mechanisms, Blood, vol.104, issue.2, pp.509-518, 2004. ,
DOI : 10.1182/blood-2003-12-4121
Flavopiridol potentiates STI571-induced mitochondrial damage and apoptosis in BCR-ABL-positive human leukemia cells ,
Results of decitabine (5-aza-2?deoxycytidine) therapy in 130 patients with chronic myelogenous leukemia, Cancer, vol.10, issue.3, pp.522-528, 2003. ,
DOI : 10.1002/cncr.11543
Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2'-deoxycytidine (decitabine) in hematopoietic malignancies, Blood, vol.103, issue.5, pp.1635-1640, 2004. ,
DOI : 10.1182/blood-2003-03-0687
In vitro efficacy of combined treatment depends on the underlying mechanism of resistance in imatinib-resistant Bcr-Abl-positive cell lines, Blood, vol.103, issue.1 ,
DOI : 10.1182/blood-2003-04-1074
Phase II study of low-dose decitabine in combination with imatinib mesylate in patients with accelerated or myeloid blastic phase of chronic myelogenous leukemia, Cancer, vol.354, issue.5, pp.899-906, 2007. ,
DOI : 10.1002/cncr.22470
Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells, Blood, vol.101, issue.8, pp.3236-3239, 2003. ,
DOI : 10.1182/blood-2002-08-2675
Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and -resistant Bcr/Abl+ human myeloid leukemia cells, Cancer Res, vol.63, issue.9, pp.2118-2126, 2003. ,
Combined effects of novel tyrosine kinase inhibitor AMN107 and histone deacetylase inhibitor LBH589 against Bcr-Abl-expressing human leukemia cells, Blood, vol.108, issue.2, pp.645-652, 2006. ,
DOI : 10.1182/blood-2005-11-4639
Valproate enhances imatinib-induced growth arrest and apoptosis in chronic myeloid leukemia cells, Cancer, vol.17, issue.5, pp.1188-1196, 2006. ,
DOI : 10.1002/cncr.21725
Efficacy of the farnesyl transferase inhibitor R115777 in chronic myeloid leukemia and other hematologic malignancies, Blood, vol.101, issue.5, pp.1692-1697, 2003. ,
DOI : 10.1182/blood-2002-07-1973
Phase 1 study of tipifarnib in combination with imatinib for patients with chronic myelogenous leukemia in chronic phase after imatinib failure, Cancer, vol.19, issue.9, pp.2000-2006, 2007. ,
DOI : 10.1002/cncr.23006
Activity of the farnesyl protein transferase inhibitor SCH66336 against BCR/ABL-induced murine leukemia and primary cells from patients with chronic myeloid leukemia, Blood, vol.97, issue.5, pp.1404-1412, 2001. ,
DOI : 10.1182/blood.V97.5.1404
Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336, Blood, vol.100, issue.3, pp.1068-1071, 2002. ,
DOI : 10.1182/blood.V100.3.1068
Pilot study of lonafarnib, a farnesyl transferase inhibitor, in patients with chronic myeloid leukemia in the chronic or accelerated phase that is resistant or refractory to imatinib therapy, Cancer, vol.19, issue.2, pp.346-352, 2006. ,
DOI : 10.1002/cncr.21590
Lonafarnib reduces the resistance of primitive quiescent CML cells to imatinib mesylate in vitro, Leukemia, vol.1587, issue.7, pp.1184-1191, 2005. ,
DOI : 10.1182/blood-2003-03-0993
MEK1/2 inhibitors sensitize Bcr/Abl+ human leukemia cells to the dual Abl/Src inhibitor BMS-354/825, Blood, vol.109, issue.9, pp.4006-4015, 2007. ,
DOI : 10.1182/blood-2006-09-045039
Combination of imatinib with rapamycin or RAD001 acts synergistically only in Bcr-Abl-positive cells with moderate resistance to imatinib, Leukemia, vol.63, issue.10, pp.1835-1838, 2005. ,
DOI : 10.1182/blood-2004-06-2445
Identification of mTOR as a novel bifunctional target in chronic myeloid leukemia: dissection of growth-inhibitory and VEGF-suppressive effects of rapamycin in leukemic cells, The FASEB Journal, vol.19, issue.8, pp.960-962, 2005. ,
DOI : 10.1096/fj.04-1973fje
Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs, Proceedings of the National Academy of Sciences, vol.101, issue.9, pp.3130-3135, 2004. ,
DOI : 10.1073/pnas.0400063101
Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development, Leukemia, vol.10, issue.10, pp.1774-1782, 2005. ,
DOI : 10.1182/blood-2004-07-2967
Glucocorticoid-induced leucine zipper (GILZ): a new important mediator of glucocorticoid action, The FASEB Journal, vol.23, issue.11, 2009. ,
DOI : 10.1096/fj.09-134684
Depletion of Pleckstrin Homology Domain Leucine-rich Repeat Protein Phosphatases 1 and 2 by Bcr-Abl Promotes Chronic Myelogenous Leukemia Cell Proliferation through Continuous Phosphorylation of Akt Isoforms, Journal of Biological Chemistry, vol.284, issue.33, pp.22155-22165, 2009. ,
DOI : 10.1074/jbc.M808182200
Genomewide screening of DNA copy number changes in chronic myelogenous leukemia with the use of high-resolution array-based comparative genomic hybridization, Genes, Chromosomes and Cancer, vol.114, issue.5, pp.482-494, 2006. ,
DOI : 10.1002/gcc.20303
Genomic profile of chronic myelogenous leukemia: Imbalances associated with disease progression, Genes, Chromosomes and Cancer, vol.167, issue.11, pp.1039-1050, 2007. ,
DOI : 10.1002/gcc.20487
Multiple sub-microscopic genomic lesions are a universal feature of chronic myeloid leukaemia at diagnosis, Leukemia, vol.63, issue.9, pp.1806-1807, 2008. ,
DOI : 10.1073/pnas.152171299
Structural variants: changing the landscape of chromosomes and design of disease studies, Human Molecular Genetics, vol.15, issue.90001, pp.57-66, 2006. ,
DOI : 10.1093/hmg/ddl057
Gene expression changes associated with progression and response in chronic myeloid leukemia, Proceedings of the National Academy of Sciences, vol.103, issue.8, pp.2794-2799, 2006. ,
DOI : 10.1073/pnas.0510423103
The preferentially expressed antigen in melanoma (PRAME) inhibits myeloid differentiation in normal hematopoietic and leukemic progenitor cells, Blood, vol.114, issue.15, pp.3299-3308, 2009. ,
DOI : 10.1182/blood-2008-07-170282
Copy number variation of beta-defensins and relevance to disease, Cytogenetic and Genome Research, vol.123, issue.1-4 ,
DOI : 10.1159/000184702
Persistence of chromosomal abnormalities additional to the Philadelphia chromosome after Philadelphia chromosome disappearance during imatinib therapy for chronic myeloid leukemia, Haematologica, vol.92, issue.4, pp.564-565, 2007. ,
DOI : 10.3324/haematol.10783
Rac1 Function Is Required for Src-induced Transformation: EVIDENCE OF A ROLE FOR TIAM1 AND VAV2 IN RAC ACTIVATION BY SRC, Journal of Biological Chemistry, vol.278, issue.36, pp.34339-34346, 2003. ,
DOI : 10.1074/jbc.M302960200
Accessory factor???bZIP???DNA interactions, Current Opinion in Chemical Biology, vol.2, issue.1, pp.18-23, 1998. ,
DOI : 10.1016/S1367-5931(98)80031-8
Glucocorticoid-Induced Leucine Zipper Inhibits the Raf-Extracellular Signal-Regulated Kinase Pathway by Binding to Raf-1, Molecular and Cellular Biology, vol.22, issue.22, pp.7929-7941, 2002. ,
DOI : 10.1128/MCB.22.22.7929-7941.2002
GILZ mediates the antiproliferative activity of glucocorticoids by negative regulation of Ras signaling, Journal of Clinical Investigation, vol.117, issue.6, pp.1605-1615, 2007. ,
DOI : 10.1172/JCI30724DS1
Modulation of T-cell activation by the glucocorticoid-induced leucine zipper factor via inhibition of nuclear factor kappaB, Blood, vol.98, issue.3, pp.743-753, 2001. ,
DOI : 10.1182/blood.V98.3.743
Inhibition of AP-1 by the Glucocorticoid-inducible Protein GILZ, Journal of Biological Chemistry, vol.276, issue.31, pp.29603-29610, 2001. ,
DOI : 10.1074/jbc.M101522200
Glucocorticoid-induced leucine zipper (GILZ)/NF-??B interaction: role of GILZ homo-dimerization and C-terminal domain, Nucleic Acids Research, vol.35, issue.2, pp.517-528, 2007. ,
DOI : 10.1093/nar/gkl1080
A New Dexamethasone-Induced Gene of the Leucine Zipper Family Protects T Lymphocytes from TCR/CD3-Activated Cell Death, Immunity, vol.7, issue.6, pp.803-812, 1997. ,
DOI : 10.1016/S1074-7613(00)80398-2
GILZ, a new target for the transcription factor FoxO3, protects T lymphocytes from interleukin-2 withdrawal-induced apoptosis, Blood, vol.104, issue.1, pp.215-223, 2004. ,
DOI : 10.1182/blood-2003-12-4295
Decrease of Bcl-xL and augmentation of thymocyte apoptosis in GILZ overexpressing transgenic mice, Blood, vol.104, issue.13, pp.4134-4141, 2004. ,
DOI : 10.1182/blood-2004-03-0920
Inhibited cell death, NF-??B activity and increased IL-10 in TCR-triggered thymocytes of transgenic mice overexpressing the glucocorticoid-induced protein GILZ, International Immunopharmacology, vol.6, issue.7, pp.1126-1134, 2006. ,
DOI : 10.1016/j.intimp.2006.02.001
Bim and Bad mediate imatinib-induced killing of Bcr/Abl+ leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic, Proceedings of the National Academy of Sciences, vol.103, issue.40, pp.14907-14912, 2006. ,
DOI : 10.1073/pnas.0606176103
Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members, Cancer Cell, vol.9, issue.5, pp.351-365, 2006. ,
DOI : 10.1016/j.ccr.2006.03.027
Hsp70 associates with Rictor and is required for mTORC2 formation and activity, Biochemical and Biophysical Research Communications, vol.372, issue.4, pp.578-583, 2008. ,
DOI : 10.1016/j.bbrc.2008.05.086
The TSC1-TSC2 Complex Is Required for Proper Activation of mTOR Complex 2, Molecular and Cellular Biology, vol.28, issue.12, pp.4104-4115, 2008. ,
DOI : 10.1128/MCB.00289-08
Direct transcriptional regulation of Bim by FoxO3a mediates STI571-induced apoptosis in Bcr-Abl-expressing cells, Oncogene, vol.24, issue.14, pp.2317-2329, 2005. ,
DOI : 10.1038/sj.onc.1208421
A glucocorticoid-induced leucine-zipper protein, GILZ, inhibits adipogenesis of mesenchymal cells, EMBO reports, vol.9, issue.4, pp.374-380, 2003. ,
DOI : 10.1038/sj.embor.embor805
PHLPP and a Second Isoform, PHLPP2, Differentially Attenuate the Amplitude of Akt Signaling by Regulating Distinct Akt Isoforms, Molecular Cell, vol.25, issue.6, pp.917-931, 2007. ,
DOI : 10.1016/j.molcel.2007.02.017
PHLiPPing the switch on Akt and protein kinase C signaling, Trends in Endocrinology & Metabolism, vol.19, issue.6, pp.223-230, 2008. ,
DOI : 10.1016/j.tem.2008.04.001
The Phosphatase PHLPP Controls the Cellular Levels of Protein Kinase C, Journal of Biological Chemistry, vol.283, issue.10, pp.6300-6311, 2008. ,
DOI : 10.1074/jbc.M707319200
Bcr-Abl Regulates Protein Kinase C?? (PKC??) Transcription via an Elk1 Site in the PKC?? Promoter, Journal of Biological Chemistry, vol.279, issue.10, pp.9400-9408, 2004. ,
DOI : 10.1074/jbc.M312840200
{beta}-TrCP-mediated ubiquitination and degradation of PHLPP1 is negatively regulated by Akt, Mol Cell Biol, 2009. ,