R. P. Feynman, There's plenty of room at the bottom [data storage], Journal of Microelectromechanical Systems, vol.1, issue.1, p.60, 1992.
DOI : 10.1109/84.128057

C. G. Fathman, An array of possibilities for the study of autoimmunity, Nature, vol.173, issue.7042, p.605, 2005.
DOI : 10.1016/S1535-6108(03)00086-2

M. Wautelet, Scaling laws in the macro-, micro- and nanoworlds, European Journal of Physics, vol.22, issue.6, p.601, 2001.
DOI : 10.1088/0143-0807/22/6/305

S. Y. Chou, Nanolithographically defined magnetic structures and quantum magnetic disk (invited), Journal of Applied Physics, vol.79, issue.8, p.6101, 1996.
DOI : 10.1063/1.362440

G. M. Whitesides, The 'right' size in nanobiotechnology, Nature Biotechnology, vol.21, issue.10, p.1161, 2003.
DOI : 10.1038/nbt872

G. L. Chiu and J. M. Shaw, Optical lithography: Introduction, IBM Journal of Research and Development, vol.41, issue.1.2, p.3, 1997.
DOI : 10.1147/rd.411.0003

A. Dodabalapur, Organic and polymer transistors for electronics, Materials Today, vol.9, issue.4, p.24, 2006.
DOI : 10.1016/S1369-7021(06)71444-4

R. V. Seidel, Sub-20 nm Short Channel Carbon Nanotube Transistors, Nano Letters, vol.5, issue.1, p.147, 2005.
DOI : 10.1021/nl048312d

S. N. Cha, Fabrication of a nanoelectromechanical switch using a suspended carbon nanotube, Applied Physics Letters, vol.86, issue.8, p.83105, 2005.
DOI : 10.1063/1.1868064

B. E. Saleh and M. C. Teich, Fundamentals of photonics, 1991.

Z. Popovic, R. Sprague, and G. Connell, Technique for monolithic fabrication of microlens arrays, Applied Optics, vol.27, issue.7, p.1281, 1988.
DOI : 10.1364/AO.27.001281

P. Ruther, Fabrication and characterization of microlenses realized by a modified LIGA process, Pure and Applied Optics: Journal of the European Optical Society Part A, vol.6, issue.6, p.643, 1997.
DOI : 10.1088/0963-9659/6/6/006

C. Croutxé-barghorn, O. Soppera, and D. J. Lougnot, Fabrication of microlenses by direct photo-induced crosslinking polymerization, Applied Surface Science, vol.168, issue.1-4, p.89, 2000.
DOI : 10.1016/S0169-4332(00)00597-3

K. Naessens, Direct writing of microlenses in polycarbonate with excimer laser ablation, Applied Optics, vol.42, issue.31, p.6349, 2003.
DOI : 10.1364/AO.42.006349

M. T. Gale, M. Rossi, and J. Pederson, Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists, Optical Engineering, vol.33, issue.11, p.3556, 1994.
DOI : 10.1117/12.179892

D. J. Hayes, Inkjet printing in the manufacture of electronics, photonics, and displays, Nanoscale Optics and Applications, p.94, 2002.
DOI : 10.1117/12.451029

V. Bardinal, Design and fabrication of polymer microlenses arrays for VCSELs using a cantilever based microsystem, Micro-Optics, VCSELs, and Photonic Interconnects II: Fabrication, Packaging, and Integration, p.618510, 2006.
DOI : 10.1117/12.662800

M. D. Ventra, S. Evoy, J. R. Helfin, and J. , Introduction to nanoscale science and technology, 2004.
DOI : 10.1007/b119185

M. C. Pirrung, How to Make a DNA Chip, Angewandte Chemie International Edition, vol.73, issue.8, p.1276, 2002.
DOI : 10.1002/1521-3773(20020415)41:8<1276::AID-ANIE1276>3.0.CO;2-2

M. Calleja, Highly sensitive polymer-based cantilever-sensors for DNA detection, Ultramicroscopy, vol.105, issue.1-4, p.215, 2005.
DOI : 10.1016/j.ultramic.2005.06.039

URL : http://hdl.handle.net/10261/25596

P. Guedon, Characterization and Optimization of a Real-Time, Parallel, Label-Free, Polypyrrole-Based DNA Sensor by Surface Plasmon Resonance Imaging, Analytical Chemistry, vol.72, issue.24, p.6003, 2000.
DOI : 10.1021/ac000122+

H. Sota, A Versatile Planar QCM-Based Sensor Design for Nonlabeling Biomolecule Detection, Analytical Chemistry, vol.74, issue.15, p.3592, 2002.
DOI : 10.1021/ac025526b

R. F. Ismagilov, Integrated Microfluidic Systems, Angewandte Chemie International Edition, vol.42, issue.35, p.4130, 2003.
DOI : 10.1002/anie.200301660

R. H. Liu, Self-Contained, Fully Integrated Biochip for Sample Preparation, Polymerase Chain Reaction Amplification, and DNA Microarray Detection, Analytical Chemistry, vol.76, issue.7, p.1824, 2004.
DOI : 10.1021/ac0353029

L. Feng, Super-Hydrophobic Surfaces: From Natural to Artificial, Advanced Materials, vol.14, issue.24, p.1857, 2002.
DOI : 10.1002/adma.200290020

L. Zhang, Superhydrophobic Behavior of a Perfluoropolyether Lotus-Leaf-like Topography, Langmuir, vol.22, issue.20, p.8576, 2006.
DOI : 10.1021/la061400o

W. F. Liu and C. S. Chen, Engineering biomaterials to control cell function, Materials Today, vol.8, issue.12, p.28, 2005.
DOI : 10.1016/S1369-7021(05)71222-0

URL : http://doi.org/10.1016/s1369-7021(05)71222-0

C. M. Nelson, Vascular Endothelial-Cadherin Regulates Cytoskeletal Tension, Cell Spreading, and Focal Adhesions by Stimulating RhoA, Molecular Biology of the Cell, vol.15, issue.6, p.2943, 2004.
DOI : 10.1091/mbc.E03-10-0745

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC420116

C. M. Nelson, Emergent patterns of growth controlled by multicellular form and mechanics, Proceedings of the National Academy of Sciences, vol.102, issue.33, p.11594, 2005.
DOI : 10.1073/pnas.0502575102

M. Geissler and Y. Xia, Patterning: Principles and Some New Developments, Advanced Materials, vol.16, issue.15, p.1249, 2004.
DOI : 10.1002/adma.200400835

S. Wegscheider, Scanning near-field optical lithography, Thin Solid Films, vol.264, issue.2, p.264, 1995.
DOI : 10.1016/0040-6090(95)05818-4

A. Gölzhäuser, Nanoscale patterning of self-assembled monolayers with electrons, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.18, issue.6, p.3414, 2000.
DOI : 10.1116/1.1319711

S. Reyntjens and R. Puers, A review of focused ion beam applications in microsystem technology, Journal of Micromechanics and Microengineering, vol.11, issue.4, p.287, 2001.
DOI : 10.1088/0960-1317/11/4/301

S. Kondo, Surface modification mechanism of materials with scanning tunneling microscope, Journal of Applied Physics, vol.78, issue.1, p.155, 1995.
DOI : 10.1063/1.360733

G. Wittstock and W. Schuhmann, Formation and Imaging of Microscopic Enzymatically Active Spots on an Alkanethiolate-Covered Gold Electrode by Scanning Electrochemical Microscopy, Analytical Chemistry, vol.69, issue.24, p.5059, 1997.
DOI : 10.1021/ac970504o

D. M. Eigler and E. K. Schweizer, Positioning single atoms with a scanning tunnelling microscope, Nature, vol.344, issue.6266, p.524, 1990.
DOI : 10.1038/344524a0

S. Krämer, R. R. Fuierer, and C. B. Gorman, Scanning Probe Lithography Using Self-Assembled Monolayers, Chemical Reviews, vol.103, issue.11, p.4367, 2003.
DOI : 10.1021/cr020704m

P. Vettiger, The ???Millipede??????More than thousand tips for future AFM storage, IBM Journal of Research and Development, vol.44, issue.3, p.323, 2000.
DOI : 10.1147/rd.443.0323

U. Srinivasan, Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines, Journal of Microelectromechanical Systems, vol.7, issue.2, p.252, 1998.
DOI : 10.1109/84.679393

M. Achermann, Nanocrystal-Based Light-Emitting Diodes Utilizing High-Efficiency Nonradiative Energy Transfer for Color Conversion, Nano Letters, vol.6, issue.7, p.1396, 2006.
DOI : 10.1021/nl060392t

A. Kosiorek, Shadow Nanosphere Lithography:?? Simulation and Experiment, Nano Letters, vol.4, issue.7, p.1359, 2004.
DOI : 10.1021/nl049361t

C. L. Cheung, Fabrication of nanopillars by nanosphere lithography, Nanotechnology, vol.17, issue.5, p.1339, 2006.
DOI : 10.1088/0957-4484/17/5/028

M. Schena, Microarrays: biotechnology's discovery platform for functional genomics, Trends in Biotechnology, vol.16, issue.7, p.301, 1998.
DOI : 10.1016/S0167-7799(98)01219-0

C. Cojocaru, Complex oxide nanostructures by pulsed laser deposition through nanostencils, Applied Physics Letters, vol.86, issue.18, p.183107, 2005.
DOI : 10.1063/1.1923764

URL : http://infoscience.epfl.ch/record/58435

S. Egger, Dynamic Shadow Mask Technique:?? A Universal Tool for Nanoscience, Nano Letters, vol.5, issue.1, p.15, 2005.
DOI : 10.1021/nl0486822

M. A. Van-den and . Boogaart, Deep-ultraviolet???microelectromechanical systems stencils for high-throughput resistless patterning of mesoscopic structures, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.22, issue.6, p.3174, 2004.
DOI : 10.1116/1.1802931

Y. Xia and G. M. Whitesides, Soft Lithography, Angewandte Chemie International Edition, vol.37, issue.5, p.550, 1998.
DOI : 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Imprint of sub???25 nm vias and trenches in polymers, Applied Physics Letters, vol.67, issue.21, p.3114, 1995.
DOI : 10.1063/1.114851

S. Y. Chou, Sub-10 nm imprint lithography and applications, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.15, issue.6, p.2897, 1997.
DOI : 10.1116/1.589752

S. Y. Chou, C. Keimel, and J. Gu, Ultrafast and direct imprint of nanostructures in silicon, Nature, vol.186, issue.6891, p.835, 2002.
DOI : 10.1038/nature00792

Y. Xia and G. M. Whitesides, SOFT LITHOGRAPHY, Annual Review of Materials Science, vol.28, issue.1, p.153, 1998.
DOI : 10.1146/annurev.matsci.28.1.153

A. Bernard, Microcontact Printing of Proteins, Advanced Materials, vol.12, issue.14, p.1067, 2000.
DOI : 10.1002/1521-4095(200007)12:14<1067::AID-ADMA1067>3.0.CO;2-M

S. A. Lange, Microcontact Printing of DNA Molecules, Analytical Chemistry, vol.76, issue.6, p.1641, 2004.
DOI : 10.1021/ac035127w

J. A. Rogers and R. G. Nuzzo, Recent progress in soft lithography, Materials Today, vol.8, issue.2, p.50, 2005.
DOI : 10.1016/S1369-7021(05)00702-9

D. Juncker, Soft and rigid two-level microfluidic networks for patterning surfaces, Journal of Micromechanics and Microengineering, vol.11, issue.5, p.532, 2001.
DOI : 10.1088/0960-1317/11/5/314

J. D. Gerding, D. M. Willard, and A. Van-orden, Single-Feature Inking and Stamping:?? A Versatile Approach to Molecular Patterning, Journal of the American Chemical Society, vol.127, issue.4, p.1106, 2005.
DOI : 10.1021/ja045737t

A. Meister, Nanoscale dispensing of single ultrasmall droplets, 2004.

D. B. Hager and N. J. Dovichi, Behavior of Microscopic Liquid Droplets near A Strong Electrostatic Field: Droplet Electrospray, Analytical Chemistry, vol.66, issue.9, p.1593, 1994.
DOI : 10.1021/ac00081a040

B. J. Larson, S. D. Gillmor, and M. G. Lagally, Controlled deposition of picoliter amounts of fluid using an ultrasonically driven micropipette, Review of Scientific Instruments, vol.75, issue.4, p.832, 2004.
DOI : 10.1063/1.1688436

J. Zeleny, The Physical Review, p.69, 1914.

M. Yamashita and J. B. Fenn, Electrospray ion source. Another variation on the free-jet theme, The Journal of Physical Chemistry, vol.88, issue.20, p.4451, 1984.
DOI : 10.1021/j150664a002

O. Yogi, On-Demand Droplet Spotter for Preparing Pico- to Femtoliter Droplets on Surfaces, Analytical Chemistry, vol.73, issue.8, p.1896, 2001.
DOI : 10.1021/ac0012039

M. Brinkmann, Microfluidic design rules for capillary slot-based electrospray sources, Applied Physics Letters, vol.85, issue.11, p.2140, 2004.
DOI : 10.1063/1.1792381

URL : https://hal.archives-ouvertes.fr/hal-00140775

S. Arscott and D. Troadec, Electrospraying from nanofluidic capillary slot, Applied Physics Letters, vol.87, issue.13, p.134101, 2005.
DOI : 10.1063/1.2058223

URL : https://hal.archives-ouvertes.fr/hal-00125636

S. Arscott and D. Troadec, A nanofluidic emitter tip obtained by focused ion beam nanofabrication, Nanotechnology, vol.16, issue.10, p.2295, 2005.
DOI : 10.1088/0957-4484/16/10/052

URL : https://hal.archives-ouvertes.fr/hal-00125634

D. Sun, Near-Field Electrospinning, Nano Letters, vol.6, issue.4, p.839, 2006.
DOI : 10.1021/nl0602701

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.408.6483

N. Reis, C. Ainsley, and B. Derby, Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors, Journal of Applied Physics, vol.97, issue.9, p.94903, 2005.
DOI : 10.1063/1.1888026

J. Bharathan and Y. Yang, Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo, Applied Physics Letters, vol.72, issue.21, p.2660, 1998.
DOI : 10.1063/1.121090

P. Calvert, Inkjet Printing for Materials and Devices, Chemistry of Materials, vol.13, issue.10, p.3299, 2001.
DOI : 10.1021/cm0101632

B. De-gans, P. C. Duineveld, and U. S. Schubert, Inkjet Printing of Polymers: State of the Art and Future Developments, Advanced Materials, vol.16, issue.3, p.203, 2004.
DOI : 10.1002/adma.200300385

H. Lee, K. Chou, and K. Huang, Inkjet printing of nanosized silver colloids, Nanotechnology, vol.16, issue.10, p.2436, 2005.
DOI : 10.1088/0957-4484/16/10/074

T. Goldmann and J. S. Gonzalez, DNA-printing: utilization of a standard inkjet printer for the transfer of nucleic acids to solid supports, Journal of Biochemical and Biophysical Methods, vol.42, issue.3, p.105, 2000.
DOI : 10.1016/S0165-022X(99)00049-4

T. Xu, Inkjet printing of viable mammalian cells, Biomaterials, vol.26, issue.1, p.93, 2005.
DOI : 10.1016/j.biomaterials.2004.04.011

A. Bietsch, Rapid functionalization of cantilever array sensors by inkjet printing, Nanotechnology, vol.15, issue.8, p.873, 2004.
DOI : 10.1088/0957-4484/15/8/002

T. G. Kang and Y. Cho, A four-bit digital microinjector using microheater array for adjusting the ejected droplet volume, Journal of Microelectromechanical Systems, vol.14, issue.5, p.1031, 2005.
DOI : 10.1109/JMEMS.2005.851864

U. Demirci, Droplet-based photoresist deposition, Applied Physics Letters, vol.88, issue.14, p.144104, 2006.
DOI : 10.1063/1.2191087

U. Demirci and M. Toner, Direct etch method for microfludic channel and nanoheight post-fabrication by picoliter droplets, Applied Physics Letters, vol.88, issue.5, p.53117, 2006.
DOI : 10.1063/1.2170143

A. Bietsch, Inkjet Deposition of Alkanethiolate Monolayers and DNA Oligonucleotides on Gold:?? Evaluation of Spot Uniformity by Wet Etching, Langmuir, vol.20, issue.12, p.5119, 2004.
DOI : 10.1021/la049621m

J. A. Barron, Printing of protein microarrays via a capillary-free fluid jetting mechanism, PROTEOMICS, vol.81, issue.16, p.4138, 2005.
DOI : 10.1002/pmic.200401294

K. T. Rodolfa, Two-Component Graded Deposition of Biomolecules with a Double-Barreled Nanopipette, Angewandte Chemie International Edition, vol.77, issue.42, p.6854, 2005.
DOI : 10.1002/anie.200502338

K. T. Rodolfa, Nanoscale Pipetting for Controlled Chemistry in Small Arrayed Water Droplets Using a Double-Barrel Pipet, Nano Letters, vol.6, issue.2, p.252, 2006.
DOI : 10.1021/nl052215i

O. T. Guenat, Generic technological platform for microfabricating silicon nitride micro- and nanopipette arrays, Journal of Micromechanics and Microengineering, vol.15, issue.12, p.2372, 2005.
DOI : 10.1088/0960-1317/15/12/020

D. S. Ginger, H. Zhang, and C. A. Mirkin, The Evolution of Dip-Pen Nanolithography, Angewandte Chemie International Edition, vol.43, issue.1, p.30, 2004.
DOI : 10.1002/anie.200300608

M. Su, Locally Enhanced Relative Humidity for Scanning Probe Nanolithography, Langmuir, vol.21, issue.24, p.10902, 2005.
DOI : 10.1021/la051591f

R. D. Piner, "Dip-Pen" Nanolithography, Science, vol.283, issue.5402, p.661, 1999.
DOI : 10.1126/science.283.5402.661

S. Hong, J. Zhu, and C. A. Mirkin, Multiple Ink Nanolithography: Toward a Multiple-Pen Nano-Plotter, Science, vol.286, issue.5439, p.523, 1999.
DOI : 10.1126/science.286.5439.523

A. Ivanisevic and C. A. Mirkin, ???Dip-Pen??? Nanolithography on Semiconductor Surfaces, Journal of the American Chemical Society, vol.123, issue.32, p.7887, 2001.
DOI : 10.1021/ja010671c

L. M. Demers and C. A. Mirkin, Combinatorial Templates Generated by Dip-Pen Nanolithography for the Formation of Two-Dimensional Particle Arrays, Angewandte Chemie International Edition, vol.12, issue.16, p.3069, 2001.
DOI : 10.1002/1521-3773(20010817)40:16<3069::AID-ANIE3069>3.0.CO;2-J

X. Liu, Arrays of Magnetic Nanoparticles Patterned via ???Dip-Pen??? Nanolithography, Advanced Materials, vol.54, issue.3, p.231, 2002.
DOI : 10.1002/1521-4095(20020205)14:3<231::AID-ADMA231>3.0.CO;2-R

L. M. Demers, Orthogonal Assembly of Nanoparticle Building Blocks on Dip-Pen Nanolithographically Generated Templates of DNA, Angewandte Chemie International Edition, vol.67, issue.16, p.3071, 2001.
DOI : 10.1002/1521-3773(20010817)40:16<3071::AID-ANIE3071>3.0.CO;2-S

H. Zhang, Z. Li, and C. A. Mirkin, Dip-Pen Nanolithography-Based Methodology for Preparing Arrays of Nanostructures Functionalized with Oligonucleotides, Advanced Materials, vol.14, issue.20, p.1472, 2002.
DOI : 10.1002/1521-4095(20021016)14:20<1472::AID-ADMA1472>3.0.CO;2-E

H. Zhang, Biofunctionalized nanoarrays of inorganic structures prepared by dip-pen nanolithography, Nanotechnology, vol.14, issue.10, p.1113, 2003.
DOI : 10.1088/0957-4484/14/10/308

K. Lee, The Use of Nanoarrays for Highly Sensitive and Selective Detection of Human Immunodeficiency Virus Type 1 in Plasma, Nano Letters, vol.4, issue.10, p.1869, 2004.
DOI : 10.1021/nl049002y

J. Lim, Direct-Write Dip-Pen Nanolithography of Proteins on Modified Silicon Oxide Surfaces, Angewandte Chemie International Edition, vol.42, issue.20, p.2309, 2003.
DOI : 10.1002/anie.200351256

S. Chung, Top-Down Meets Bottom-Up: Dip-Pen Nanolithography and DNA-Directed Assembly of Nanoscale Electrical Circuits, Small, vol.84, issue.439, p.64, 2005.
DOI : 10.1002/smll.200400005

K. Lee, J. Lim, and C. A. Mirkin, Protein Nanostructures Formed via Direct-Write Dip-Pen Nanolithography, Journal of the American Chemical Society, vol.125, issue.19, p.5588, 2003.
DOI : 10.1021/ja034236p

J. C. Garno, Precise Positioning of Nanoparticles on Surfaces Using Scanning Probe Lithography, Nano Letters, vol.3, issue.3, p.389, 2003.
DOI : 10.1021/nl025934v

M. Su, Moving beyond Molecules:?? Patterning Solid-State Features via Dip-Pen Nanolithography with Sol-Based Inks, Journal of the American Chemical Society, vol.124, issue.8, p.1560, 2002.
DOI : 10.1021/ja012502y

M. Su and V. P. Dravid, Colored ink dip-pen nanolithography, Applied Physics Letters, vol.80, issue.23, p.4434, 2002.
DOI : 10.1063/1.1483911

A. Noy, Fabrication of Luminescent Nanostructures and Polymer Nanowires Using Dip-Pen Nanolithography, Nano Letters, vol.2, issue.2, p.109, 2002.
DOI : 10.1021/nl010081c

Y. Li, B. W. Maynor, and J. Liu, Electrochemical AFM ???Dip-Pen??? Nanolithography, Journal of the American Chemical Society, vol.123, issue.9, p.2105, 2001.
DOI : 10.1021/ja005654m

G. Agarwal, R. R. Naik, and M. O. Stone, Immobilization of Histidine-Tagged Proteins on Nickel by Electrochemical Dip Pen Nanolithography, Journal of the American Chemical Society, vol.125, issue.24, p.7408, 2003.
DOI : 10.1021/ja029856p

Y. Cai and B. M. Ocko, Electro Pen Nanolithography, Journal of the American Chemical Society, vol.127, issue.46, p.16287, 2005.
DOI : 10.1021/ja054951u

P. E. Sheehan, Nanoscale deposition of solid inks via thermal dip pen nanolithography, Applied Physics Letters, vol.85, issue.9, p.1589, 2004.
DOI : 10.1063/1.1785860

B. A. Nelson, Direct deposition of continuous metal nanostructures by thermal dip-pen nanolithography, Applied Physics Letters, vol.88, issue.3, p.33104, 2006.
DOI : 10.1063/1.2164394

D. Bullen, Design, Fabrication, and Characterization of Thermally Actuated Probe Arrays for Dip Pen Nanolithography, Journal of Microelectromechanical Systems, vol.13, issue.4, p.594, 2004.
DOI : 10.1109/JMEMS.2004.828738

K. Salaita, Sub-100???nm, Centimeter-Scale, Parallel Dip-Pen Nanolithography, Small, vol.85, issue.79, p.940, 2005.
DOI : 10.1002/smll.200500202

J. R. Hampton, A. A. Dameron, and P. S. Weiss, Transport Rates Vary with Deposition Time in Dip-Pen Nanolithography, The Journal of Physical Chemistry B, vol.109, issue.49, p.23118, 2005.
DOI : 10.1021/jp055264s

X. Wang, Scanning Probe Contact Printing, Langmuir, vol.19, issue.21, p.8951, 2003.
DOI : 10.1021/la034858o

H. Zhang, Dip Pen Nanolithography Stamp Tip, Nano Letters, vol.4, issue.9, p.1649, 2004.
DOI : 10.1021/nl049185o

X. Wang and C. Liu, Multifunctional Probe Array for Nano Patterning and Imaging, Nano Letters, vol.5, issue.10, p.1867, 2005.
DOI : 10.1021/nl051016w

A. Lewis, Fountain pen nanochemistry: Atomic force control of chrome etching, Applied Physics Letters, vol.75, issue.17, p.2689, 1999.
DOI : 10.1063/1.125120

K. Lieberman, Multifunctional, micropipette based force cantilevers for scanned probe microscopy, Applied Physics Letters, vol.65, issue.5, p.648, 1994.
DOI : 10.1063/1.112259

H. Taha, Protein printing with an atomic force sensing nanofountainpen, Applied Physics Letters, vol.83, issue.5, p.1041, 2003.
DOI : 10.1063/1.1594844

M. Sokuler and L. A. Gheber, Nano Fountain Pen Manufacture of Polymer Lenses for Nano-biochip Applications, Nano Letters, vol.6, issue.4, p.848, 2006.
DOI : 10.1021/nl060323e

A. Meister, Nanodispenser for attoliter volume deposition using atomic force microscopy probes modified by focused-ion-beam milling, Applied Physics Letters, vol.85, issue.25, p.6260, 2004.
DOI : 10.1063/1.1842352

S. Deladi, Micromachined fountain pen for atomic force microscope-based nanopatterning, Applied Physics Letters, vol.85, issue.22, p.5361, 2004.
DOI : 10.1063/1.1823040

P. Belaubre, Fabrication of biological microarrays using microcantilevers, Applied Physics Letters, vol.82, issue.18, p.3122, 2003.
DOI : 10.1063/1.1565685

J. Xu, Microfabricated Quill-Type Surface Patterning Tools for the Creation of Biological Micro/Nano Arrays, Biomedical Microdevices, vol.6, issue.2, p.117, 2004.
DOI : 10.1023/B:BMMD.0000031748.13353.10

]. P. Belaubre, Cantilever-based microsystem for contact and non-contact deposition of picoliter biological samples, Sensors and Actuators A: Physical, vol.110, issue.1-3, pp.130-115, 1989.
DOI : 10.1016/j.sna.2003.09.024

J. Brugger, Microlever with combined integrated sensor/actuator functions for scanning force microscopy, Sensors and Actuators A: Physical, vol.43, issue.1-3, pp.339-3898, 1994.
DOI : 10.1016/0924-4247(93)00701-5

C. Quilliet and B. Berge, Electrowetting: a recent outbreak, Current Opinion in Colloid & Interface Science, vol.6, issue.1, p.34, 2001.
DOI : 10.1016/S1359-0294(00)00085-6

W. Satoh, M. Loughran, and H. Suzuki, Microfluidic transport based on direct electrowetting, Journal of Applied Physics, vol.96, issue.1, p.835, 2004.
DOI : 10.1063/1.1739528

T. B. Jones, K. Wang, and D. Yao, Frequency-Dependent Electromechanics of Aqueous Liquids:?? Electrowetting and Dielectrophoresis, Langmuir, vol.20, issue.7, p.2813, 2004.
DOI : 10.1021/la035982a

J. R. Hampton, A. A. Dameron, and P. S. Weiss, Double-Ink Dip-Pen Nanolithography Studies Elucidate Molecular Transport, Journal of the American Chemical Society, vol.128, issue.5, p.1648, 2006.
DOI : 10.1021/ja056369b

F. Walsh, A first course in Electrochemical Engineering, 1993.

M. Tortonese, Force sensors for scanning probe microscopy, 1993.

M. Tortonese, R. C. Barrett, and C. F. Quate, Atomic resolution with an atomic force microscope using piezoresistive detection, Applied Physics Letters, vol.62, issue.8, p.834, 1993.
DOI : 10.1063/1.108593

H. J. Verheijen and M. W. Prins, Reversible Electrowetting and Trapping of Charge:?? Model and Experiments, Langmuir, vol.15, issue.20, p.6616, 1999.
DOI : 10.1021/la990548n

A. S. Dimitrov and K. Nagayama, Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces, Langmuir, vol.12, issue.5, p.1303, 1996.
DOI : 10.1021/la9502251

B. G. Prevo and O. D. Velev, Controlled, Rapid Deposition of Structured Coatings from Micro- and Nanoparticle Suspensions, Langmuir, vol.20, issue.6, p.2099, 2004.
DOI : 10.1021/la035295j

R. Aveyard, Compression and Structure of Monolayers of Charged Latex Particles at Air/Water and Octane/Water Interfaces, Langmuir, vol.16, issue.4, p.1969, 2000.
DOI : 10.1021/la990887g

C. Hulteen and R. P. Duyne, Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.13, issue.3, p.1553, 1995.
DOI : 10.1116/1.579726

D. Qin, Fabrication of Ordered Two-Dimensional Arrays of Micro- and Nanoparticles Using Patterned Self-Assembled Monolayers as Templates, Advanced Materials, vol.11, issue.17, p.1433, 1999.
DOI : 10.1002/(SICI)1521-4095(199912)11:17<1433::AID-ADMA1433>3.0.CO;2-P

F. Juillerat, Fabrication of large-area ordered arrays of nanoparticles on patterned substrates, Nanotechnology, vol.16, issue.8, p.1311, 2005.
DOI : 10.1088/0957-4484/16/8/055

Y. Lu, Y. Yin, and Y. Xia, A Self-Assembly Approach to the Fabrication of Patterned, Two-Dimensional Arrays of Microlenses of Organic Polymers, Advanced Materials, vol.13, issue.1, p.34, 2001.
DOI : 10.1002/1521-4095(200101)13:1<34::AID-ADMA34>3.0.CO;2-1

K. Y. Suh, Solventless ordering of colloidal particles through application of patterned elastomeric stamps under pressure, Applied Physics Letters, vol.85, issue.13, p.2643, 2004.
DOI : 10.1063/1.1795362

K. B. Lee, Protein Nanoarrays Generated By Dip-Pen Nanolithography, Science, vol.295, issue.5560, p.1702, 2002.
DOI : 10.1126/science.1067172

J. Nam, C. S. Thaxton, and C. A. Mirkin, Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins, Science, vol.301, issue.5641, p.1884, 2003.
DOI : 10.1126/science.1088755

W. Stober, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, Journal of Colloid and Interface Science, vol.26, issue.1, p.62, 1968.
DOI : 10.1016/0021-9797(68)90272-5

A. Valsesia, Acid/base Micropatterned Devices for pH-Dependent Biosensors, Plasma Processes and Polymers, vol.252, issue.170, p.334, 2005.
DOI : 10.1002/ppap.200400058

M. M. Silvan, Ion-beam treatment of PEO; towards a physically stabilized anti-fouling film, Surface and Interface Analysis, vol.36, issue.8, p.733, 2004.
DOI : 10.1002/sia.1750

L. M. Lacroix, Tuneable rough surfaces: A new approach for elaboration of superhydrophobic films, Surface Science, vol.592, issue.1-3, p.182, 2005.
DOI : 10.1016/j.susc.2005.07.006

M. Akram, M. C. Stuart, and D. K. Wong, Direct application strategy to immobilise a thioctic acid self-assembled monolayer on a gold electrode, Analytica Chimica Acta, vol.504, issue.2, p.243, 2004.
DOI : 10.1016/j.aca.2003.10.039

J. Park and J. Moon, Control of Colloidal Particle Deposit Patterns within Picoliter Droplets Ejected by Ink-Jet Printing, Langmuir, vol.22, issue.8, p.3506, 2006.
DOI : 10.1021/la053450j

M. Schnall-levin, E. Lauga, and M. P. Brenner, Self-Assembly of Spherical Particles on an Evaporating Sessile Droplet, Langmuir, vol.22, issue.10, p.4547, 2006.
DOI : 10.1021/la052921z

Y. Masuda, T. Itoh, and K. Koumoto, Self-Assembly and Micropatterning of Spherical-Particle Assemblies, Advanced Materials, vol.12, issue.7, p.841, 2005.
DOI : 10.1002/adma.200400576

A. B. Frazier and M. G. Allen, Metallic microstructures fabricated using photosensitive polyimide electroplating molds, Journal of Microelectromechanical Systems, vol.2, issue.2, p.87, 1993.
DOI : 10.1109/84.232605

J. D. Madden and I. W. Hunter, Three-dimensional microfabrication by localized electrochemical deposition, Journal of Microelectromechanical Systems, vol.5, issue.1, p.24, 1996.
DOI : 10.1109/84.485212

J. C. Lin, Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating, Journal of Micromechanics and Microengineering, vol.15, issue.12, p.2405, 2005.
DOI : 10.1088/0960-1317/15/12/024

R. A. Said, Localized electro-deposition (LED): the march toward process development, Nanotechnology, vol.15, issue.10, p.649, 2004.
DOI : 10.1088/0957-4484/15/10/025

J. D. Whitaker, J. B. Nelson, and D. T. Schwartz, Electrochemical printing: software reconfigurable electrochemical microfabrication, Journal of Micromechanics and Microengineering, vol.15, issue.8, p.1498, 2005.
DOI : 10.1088/0960-1317/15/8/017

J. B. Nelson and D. T. Schwartz, characterization using an electrochemical quartz crystal microbalance, Journal of Micromechanics and Microengineering, vol.15, issue.12, p.2479, 2005.
DOI : 10.1088/0960-1317/15/12/033

A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2001.

A. B. Frazier and M. G. Allen, Uses of electroplated aluminum for the development of microstructures and micromachining processes, Journal of Microelectromechanical Systems, vol.6, issue.2, p.91, 1997.
DOI : 10.1109/84.585786

N. L. Rosi and C. A. Mirkin, Nanostructures in Biodiagnostics, Chemical Reviews, vol.105, issue.4, p.1547, 2005.
DOI : 10.1021/cr030067f

T. Kraus, Closing the Gap Between Self-Assembly and Microsystems Using Self-Assembly, Transfer, and Integration of Particles, Advanced Materials, vol.19, issue.20, p.2438, 2005.
DOI : 10.1002/adma.200501171

T. Livache, Electroconducting polymers for the construction of DNA or peptide arrays on silicon chips, Biosensors and Bioelectronics, vol.13, issue.6, p.629, 1998.
DOI : 10.1016/S0956-5663(98)00018-9

T. Livache, Polypyrrole electrospotting for the construction of oligonucleotide arrays compatible with a surface plasmon resonance hybridization detection, Synthetic Metals, vol.121, issue.1-3, p.1443, 2001.
DOI : 10.1016/S0379-6779(00)01238-8

T. Livache, Preparation of a DNA matrix via an electrqchemically directed copolymerization of pyrrole and oligonucleotides bearing a pyrrole group, Nucleic Acids Research, vol.22, issue.15, p.2915, 1994.
DOI : 10.1093/nar/22.15.2915

T. Livache, H. Bazin, and G. Mathis, Conducting polymers on microelectronic devices as tools for biological analyses, Clinica Chimica Acta, vol.278, issue.2, p.171, 1998.
DOI : 10.1016/S0009-8981(98)00143-0

B. J. Hwang, R. Santhanam, and Y. L. Lin, Nucleation and growth mechanism of electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic graphite, Electrochimica Acta, vol.46, issue.18, p.2843, 2001.
DOI : 10.1016/S0013-4686(01)00495-9

L. Grosjean, A polypyrrole protein microarray for antibody???antigen interaction studies using a label-free detection process, Analytical Biochemistry, vol.347, issue.2, p.193, 2005.
DOI : 10.1016/j.ab.2005.09.033

URL : https://hal.archives-ouvertes.fr/inserm-00144353

R. P. Ried, 6-MHz 2-N/m piezoresistive atomic-force microscope cantilevers with INCISIVE tips, Journal of Microelectromechanical Systems, vol.6, issue.4, p.294, 1997.
DOI : 10.1109/84.650125

G. Hashiguchi, DNA Manipulation and Retrieval from an Aqueous Solution with Micromachined Nanotweezers, Analytical Chemistry, vol.75, issue.17, p.4347, 2003.
DOI : 10.1021/ac034501p

A. Meister, Nanodispenser for attoliter volume deposition using atomic force microscopy probes modified by focused-ion-beam milling, Applied Physics Letters, vol.85, issue.25, p.6260, 2004.
DOI : 10.1063/1.1842352

T. Leïchlé, M. Manso-silvan, P. Belaubre, A. Valsesia, G. Ceccone et al., Publication List List of Publications Part of the work presented in this thesis has contributed to the following publicationsNanostructuring surfaces with conjugated silica colloids deposited using silicon-based microcantilevers, Journal papers ? Nanotechnology, issue.4, pp.16-525, 2005.

@. T. Leïchlé, L. Nicu, E. Descamps, B. Corso, P. Mailley et al., Copper electrodeposition localized in picoliter droplets using microcantilever arrays, Applied Physics Letters, vol.88, issue.25, p.254108, 2006.
DOI : 10.1063/1.2214181

@. T. Leïchlé, D. Saya, J. Pourciel, F. Mathieu, L. Nicu et al., Liquid loading of silicon-based cantilevers using electrowetting actuation for microspotting applications, Sensors and Actuators A: Physical, vol.132, issue.2, p.590, 2006.
DOI : 10.1016/j.sna.2006.02.054

@. T. Leïchlé, D. Saya, J. Pourciel, F. Mathieu, C. Bergaud et al., A closedloop MEMS-based spotter integrating position sensors with nanometric precision for the control of droplet uniformity, IEEE NTC Review on Advances in Micro Nano, and Molecular Systems, vol.1, p.337, 2006.

@. A. Valsesia, T. Leïchlé, L. Lacroix, L. Nicu, F. Bretagnol et al., Deposition of Nanobead Hexagonal Crystals Using Silicon Microcantilevers, Small, vol.88, issue.12, p.1444, 2006.
DOI : 10.1002/smll.200600248

@. D. Saya, T. Leïchlé, J. Pourciel, C. Bergaud, and L. Nicu, Collective fabrication of an in-plane silicon nanotip for parallel femtoliter droplet deposition, Journal of Micromechanics and Microengineering, vol.17, issue.1, 2007.
DOI : 10.1088/0960-1317/17/1/N01

@. L. Tanguy, T. Leïchlé, and L. Nicu, Dynamic spreading of a liquid finger driven by electrowetting: Theory and experimental validation, Journal of Applied Physics, vol.101, issue.4, 2007.
DOI : 10.1063/1.2654683

@. E. Descamps, T. Leïchlé, B. Corso, S. Laurent, P. Mailley et al., Fabrication of Oligonucleotide Chips by Using Parallel Cantilever-Based Electrochemical Deposition in Picoliter Volumes, Advanced Materials, vol.22, issue.14, 2007.
DOI : 10.1002/adma.200602152

@. T. Conference-papers, D. Leïchlé, P. Saya, J. Belaubre, F. Pourciel et al., Liquid loading of silicon-based cantilevers using electrowetting actuation for microspotting applications, Proceedings of the 13 th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers'05)

@. P. Belaubre, J. Pourciel, D. Saya, T. Leïchlé, F. Mathieu et al., First step towards a fully automated trim control for liquid deposition device at the microscale using piezoresistive cantilevers row, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05., pp.5-9, 2005.
DOI : 10.1109/SENSOR.2005.1496500

@. T. Leïchlé, D. Saya, J. Pourciel, F. Mathieu, C. Bergaud et al., A closedloop MEMS-based spotter integrating position sensors with nanometric precision for the control of droplet uniformity, Proceedings of the 1 st IEEE International Conference on Nano/Micro Engineering and Molecular Systems, pp.18-21, 2006.

@. V. Bardinal, E. Daran, C. Vergnenègre, T. Leïchlé, Y. Segui et al., Design and fabrication of polymer microlenses arrays for VCSELs using a cantilever based microsystem, Micro-Optics, VCSELs, and Photonic Interconnects II: Fabrication, Packaging, and Integration, p.618510, 2006.
DOI : 10.1117/12.662800

@. L. Tanguy, T. Leïchlé, and L. Nicu, Theoretical considerations for continuous electrowetting in U-shaped channels, th International Meeting on Electrowetting, 2006.

@. D. Saya, T. Leïchlé, J. Pourciel, C. Bergaud, and L. Nicu, Collective fabrication of an in-plane silicon nanotip for parallel femtoliter droplet deposition, Proceedings of the 32 nd International Conference on Micro-and Nano-Engineering (MNE'06), p.47, 2006.
DOI : 10.1088/0960-1317/17/1/N01

@. T. Leïchlé, E. Descamps, B. Corso, S. Laurent, P. Mailley et al., MEMS-based picoliter electrochemical cell array for the fabrication of oligonucleotide chips, Proceedings of the 10 th International conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS), pp.5-9, 2006.

@. N. Berthet, T. Leïchlé, E. Trévisiol, J. Pourciel, D. Saya et al., Spot-in-spot" hybridization of oligonucleotides deposited on a glass slide by a microcantilever-based device, Proceedings of the 10 th International conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS), pp.5-9