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ireless Sensor Network (WSN) concept was introduced in 1994 for the first time, 

aiming at the military application. Then WSNs were considered in many civil 

applications and many academic and industrial researches were attracted in to WSN 

concept. The word “Smart Dust” was introduced in the University of California, an imaginary 

infinitesimal sensor node that can be suspended in air.  

This thesis is an attempt toward very small “Dust-Like” sensor node to be used eventually 

in a short range dense WSN. The planning of the thesis was performed as a co-supervision 

program between University of Tehran, Tehran, Iran and University of Joseph Fourier, 

Grenoble, France. Primary studies of the thesis started in University of Tehran and from 

2005-2006, the program was continued in the IMEP laboratory, MINATEC, Grenoble.  

The definition of the thesis is design of low-power fully integrated RF front end for a mm-

wave sensor node. Until now, all of the reported works in WSN context (in our knowledge) 

were in the frequencies limited to few GHz. For the first time, we introduced the use of mm-

wave band in WSN application, targeting the benefits of this band, specially higher network 

immunity and possibility of antenna-on-chip integration. To obtain low-cost sensor nodes, the 

STMicroelectronics 90nm Global Purpose (GP) process was considered and the related 

foundry design kit was provided. Since this thesis was the first attempt in this way, there were 

not any primary experiences, or guide lines or even predefined parameters and characteristics 

for the RF front end. Due to cost considerations and some other limitations, global purpose 

CMOS process was used, instead of RF CMOS process and this was source of many 

challenges in our work. Actually we were obliged to develop all of the required modeling and 

design procedure for passive elements, as well as the proper parasitic models for active 

devices.  

Actually the objective of this thesis was investigating the possibility of low-power fully 

integrated RF front end best performances that are achievable in mm-wave band, in 90nm 

CMOS technology. This thesis was the first work of mm-wave design in 90nm CMOS 

technology in the laboratory and hence our work could not be based on the available 

experiences. On the other hand our planning was to use bulk CMOS technology and we have 

not access to any pre-designed RF components. Consequently we were obliged to develop 

proper models for all of active devices and passive elements and tune the models using the 

foundry design kit, whenever it was possible.  

After developing the first versions of our MOS transistor and inductor model, we started 

the most crucial part of the receiver, i.e. low noise amplifier (LNA). In this way we designed a 

3-mW LNA in 2006 and we sent it to be fabricated by STMicroelectronics. We developed a 

simple design and optimization tool, written in MATLAB, composed of active devices and 

passive elements models, as well as a simple, but accurate Cascode LNA analyser and 

designer. After LNA, we studied the other main parts of the transceiver, i.e. VCO, mixer and 

power amplifier. In 2006 the layout of primary designs of VCO and mixer was completed. 

Until end of 2007, the next time I returned back to France to perform the measurements, we 

overviewed and modified our models and design tools and finally a complete LNA design 

tool, with proper GUI
1
 was developed. In the first version of our work, we used MoM 

                                                
1
 Graphical User Interface 
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electromagnetic simulator of ADS software in passive elements modeling. In the next 

versions, we developed our extraction process for passive elements, based on the full wave 

simulations in Ansoft HFSS.  

Since we developed all of our required passive elements as an individual library in the 

design kit, attached to the CADANCE environment, we could not use the standard layout 

control and check-up tools and unfortunately a mistake had occurred in the layout of input 

matching network of the LNA. Due to this mistake, measurement results showed some 

discrepancy with the simulation results, in some characteristics. However, when we 

introduced the same mistake in our post-layout simulation of our design tool, we obtained the 

results in very good agreement with the measurement results and this proved the accuracy of 

our models and design tool. In spite of the mistake, our LNA has acceptable performance, 

regarding its only 3-mW power consumption. In addition, the chip are of our LNA is a record, 

thanks to   the line-type inductors we have developed and used in our design. Finally, using 

the modified version of our design tool, we completed the LNA design and excellent 

performance was achieved, in comparison the reported works. Although the last designed 

LNA was not fabricated, it was simulated in post-layout simulation facility of our design tool, 

in conjunction with the foundry design tool, for which the accuracy was proved by 

measurement results. 

For other parts of the transceiver we studied and examined various possible designs. We 

investigate different topologies for VCO, mixer IF amplifier, power amplifier and base band 

circuits, using analysis and simulation. Analysis results showed that among various available 

VCO circuits, some of them are more preferable for ultra-low power applications. Power 

amplifier is the most challenging in low-power mm-wave transmitter, specially in CMOS 

technologies in which the passive elements have low quality factor and high loss. Trying to 

use high efficiency Class E power amplifiers, we developed novel design methodologies for 

this class of amplifiers. Unfortunately we encountered difficulties in driving the switches in 

few-mWs power amplifiers in mm-wave band and finally we used other solutions.  

After primary designing the transceiver blocks, we studied the transceiver architectures 

that are suitable for our application. In this way, the definition of the radio link and a simple 

communication protocol were necessary. Since we were not supplied by a high-level system 

design team, we defined the required parameters using our experience of transceiver deign, as 

well as our experience of achievable performance of transceiver sub circuits. We proposed 

sub-harmonic mixer topology in the receiver and power-oscillator solution in the transmitter. 

Performance of the transceiver was evaluated by circuit-level simulation of the transceiver 

sub-circuits is the first step, and then system-level behavioral simulation in MATLAB, in the 

second step. The designed transceiver is ultra-low power, in comparison with the reported 

mm-wave transceivers. 

The dissertation composed of six chapters, describing our research form device-level 

modeling to system level design. In Chapter a brief history of WSN development is presented. 

Structure of a sensor node in a typical WSN is described and main characteristics and 

requirements of a WSN are reviewed. Then the transceiver architectures are investigated and 

the main features of the transceivers in WSN are presented. Chapter II deals with the MOS 

transistor model. As mentioned, the foundry design kit available for our work was global 

purpose CMOS process and was not useful for our work. So we developed our MOS 

transistor model, not only to obtain a simple analytic model, but also a flexible model that can 

be integrated in our design tool. We developed our model with simple analysis of short-

channel MOS device and the model parameters were extracted and tuned in comparison with 

the simulation results in the foundry design kit. Passive elements and back-end parasitic 

effects have been described and modelled in Chapter III. In this chapter, we have described 

the novel line-type inductor structure and its lumped-element modeling basis. The developed 
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inductor model comprises the losses due to the eddy currents in the substrates, the phenomena 

that has not been considered in reported models (is not necessary) for transmission lines and 

coplanar wave guides. Accurate lumped-element models of RF pads, T-Junctions and 

transistor interconnections have been developed in this chapter and the model parameters 

have been calculated from full wave electro magnetic simulation. Lumped element models are 

very important in post layout simulation and make possible to capture the distributed effects 

in circuit simulators.  

Chapter IV has been dedicated for LNA design, optimization and measurement results. To 

achieve low power consumption, we chose single stage LNA. Then using our analysis and 

design methodology, we found that cascode topology is very well suited for our objectives: 

good noise figure, enough power gain and high reverse isolation in mm-wave band and hence 

good stability. The design and optimization method has been described. Post-layout 

simulation and measurement results have been presented and analyzed and have been 

compared with the reported works. Finally, in Chapter V we have exploited the experience 

obtained in the previous chapters, as well as the new suggestions in this chapter, to propose 

and design the structure of our transceiver. We have developed analysis guidelines to choose 

the proper VCO topology and even-harmonic mixer design and optimizations. The desinged 

transceiver has been simulated using system-level simulation in MATLAB and behavioral 

model of sub-blocks were obtained from simulation in the foundry design kit and post-layout 

simulation using our design tool. Finally, the conclusion of the thesis and some suggestions 

and propositions for future works, have been presented in Chapter VI.  
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Chapter IChapter IChapter IChapter I    

RF Front End in Wireless Sensor Networks 

I.1. Wireless Sensor Network Overview 

I.1.1. WSN History 

A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes, each 

node capable of sensing its environment, processing the acquired data and communication 

with other sensors. The design and implementation of a wireless sensor network requires 

confluence of many fields, including communication and RF technology, sampling 

technology, signal processing, networking, power management, embedded systems, 

information aggregation, and distributed computing [1]. 

The history of WSN comes back to 1994, when DARPA funded the research projects, Low 

Power Wireless Integrated Micro-sensor (LWIM) and SensorIT at University of California 

[2], [3]. In 1998 Wireless Integrated Network Sensors (WINS) project was reported by 

University of California, Los Angeles, aiming at development of Micro-Electro-Mechanical 

Sensors (MEMS), efficient circuit design and self-organizing networking [4]. Then they 

biased toward military and environmental applications. PicoRadio was the other WSN 

project, reported in 2000, at University of California, Berkley, to support the assembly of an 

ad hoc wireless network of self-contained mesoscale, low-cost, low-energy sensor and 

monitor nodes [5], [6]. 

Advances in microelectronic devices and systems realized the design of very small sensor 

nodes, with capability of sensing, computing and communication. Such a small platform was 

referred to as motes. Then sensor networks were targeted to use of extremely low cost micro 

sensors that can be suspended in air. The first attempt in this way was the DARPA/UC 

Berkeley research project, named “Smart Dust”, in which 4mm
3
 nodes was fabricated [7], [8]. 

Actually the genesis of Smart Dust was a workshop at RAND in1992 in which a group of 

academics, military personnel, and futurists were chartered to explore how technology 

revolutions would change the battlefield of 2025 [9]. The other mote sensor nodes were 

MICA2 and TelosA, developed by CrossBow and MoteIV corporations [10], [11]. Today, 

based on recently the amazing growth of sub-miniature, low-cost and low-powered hardware, 

the wireless sensor network is strongly researched for the various applications [1], [12]-[15]. 

I.1.1. WSN Applications 

At a glance the application of WSN can be divided into two main category of civil and 

military applications. Industrial and manufacturing remote control, mechatronics and 

automation, distributed energy system control, emergency medical care, habitat monitoring , 

active volcano sensing , structural health monitoring, under ground mining, identification and 

personalization, aircraft health monitoring, environmental monitoring, environmental control 

in office buildings, robot control and guidance in automatic manufacturing, high security 

small homes, cultural property protection are examples of WSN civil applications[1], [16]- 

[22]. 

In disaster scene, use of WSN can greatly increase the rescue operation efficiency and 

rescue crew safety and can provide an intelligent rescue support framework [13], [18], [23]. In 

consumer electronic domain, WSN can form a warm atmosphere at home and boost the work 

efficiency in offices [24], [25]. 
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In military applications, the use of these networks can limit the need for personnel 

involvement in usually dangerous reconnaissance missions. In addition sensor networks can 

enable a more civic use of landmines by making them remotely controllable and target 

specific, in order to prevent harming civilians [18], [26]. In tactical communication, 

Surveillance, Recognition & tracking, On-site, unattended, high-precision and real-time 

observation over a vast area, in security, intrusion detection and criminal hunting, WSN has 

been considered to have a good potential [27], [28]. 

Regarding so vast applications for WSN, many works in recent years have addressed the 

cooperation of new WSN’s with existing networks, specially mobile ones, [29], [30]. 

I.1.2. WSN Structure and Specifications 

Among the existing networks, the Mobile Ad hoc Networks (MANETs) are more similar to 

the WSNs. However there are some essential differences between them [18]: 

Sensor nodes in a WSN can be several orders of magnitude higher than MANET. 

Sensor nodes in a WSN are much cheaper than the nods in  MANET. 

Power resource of a WSN node is more limited. 

WSN nodes have limited computational capability. 

WSN nodes are more prone to failures. 

The topology of a WSN varies more frequently than a MANET. 

WSN nodes use normally a broadcasting paradigm, whereas MANET nodes use point-to-

point communication. 

The architecture of wireless sensor networks needs to accommodate three characteristics 

[16]: 

Scalability: Large-scale wireless sensor networks rely on thousands of tiny sensors to observe 

and influence the real world. These sensors do not necessarily need to be active at all 

times, so sensors can be dynamically added to or removed from the network. A durable 

and scalable architecture would allow responses to changes in the topology with a 

minimum of update messages being transmitted. 

Task Orientation: The sensor networks are always correlative with tasks at current stage. The 

tasks of wireless sensor networks range from the simplest data capturing and static-nodes 

to the most difficult data collecting, mobile-node sensor network. The sensor networks for 

different tasks behave totally differently sometimes. The software structure should be 

reasonably optimized and tailored, according to predefined task-set of each node, to be 

adapted to this distinction. 

Light Weight: The computing and storage capabilities of sensor nodes are very limited. 

Lightweight operations, such as data aggregation, reduced message size, and a piggyback 

acknowledgment mechanism, must be applied to the architecture. 

Traditionally, wireless sensor networks devices and corresponding network protocols are 

designed to handle a small amount of data and most sensor nodes can only sustain an effective 

data rate of tens of kilobytes/Sec [31]. However, with the increasing popularity of wireless 

sensor networks in a broad spectrum of applications, higher data transportation capability is in 

need. In particular, visual information (such as still image or video data) is very valuable in 

many applications. For instance, wireless devices with video camera can be used to provide 

video surveillance in battlefield network [32]. 

I.1.3. Sensor Node Structure 

Basic block diagram of a wireless sensor node has been shown in Fig. I-1 [9]. A complete 

node consists of many blocks, most of which can be integrated onto a single standard CMOS 

die. Energy storage (batteries, large capacitors, or inductors), energy scavenging, and some 

sensors will likely be off-chip components. The primary integrated blocks include a sensor 
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interface, memory, computation, power management, and an RF transceiver. Development of 

highly integrated sensor mote components started in the mid-1990s and resulted in multi-chip 

systems that could be assembled to create a mote. At UCLA, MEMS devices were combined 

with commercial CMOS chips that provided sensor control and readout as well as 

communication [9]. To minimize energy, passive optical communication was explored for 

early Smart Dust motes [33].  Fig. I-2 shows the sensor node fabricated as integration of 

CMOS and MEMS technology for early generations of Smart Dust, at University of 

California, Berkeley. This node comprises an bidirectional communication system with a 

MEMS optics chip containing a corner-cube retro-reflector on the large die, a CMOS 

application-specific integrated circuit (ASIC) for control on the 300 × 360 micron die, and a 

hearing aid battery for power. The total volume is 63 mm3. [8]. In the next generations highly 

integrated chips with a complete RF transceiver, microprocessor, ADC, and sensor interface 

have been reported [34], [35].  

Most of the blocks in Fig. I-1 can be implemented in standard CMOS process, suitable for 

mote sensor node [36], [37]. However still some parts like off-chip battery, a crystal timing 

element, and an RF antenna, should be off-chip, resulting in a complete package at the 

centimetre scale. As an example, a 4λ patch antenna in the size of 6.154 ×× 4mm
3
 has been 

designed for mote sensors, operating at 10GHz [38]. A 6.8mmOD x 1.2mm, 3V and a 

5.8mmOD x 1.6mm, l.5V rechargeable Mn-Li cells has been used in the first and second 

Smart Dust generations, respectively [39]. Fig. I-3 shows complete sensor nodes, with 

different possible levels of integration. While the cost, size, and power consumption of off-

the-shelf sensor nodes is far from optimal, a single-chip system may not be the most 

advantageous either and the most economical solution is likely to be a hybrid of integrated 

and assembled parts [9].  The device at the top of Fig. I-3 is the Mica sensor node [10] and the 

device at the bottom of Fig. I-3 represents a hypothetical 2-mm3 mote-on-a-chip combining 

cutting-edge process integration and circuit techniques.  In [34] a fully integrated 1V wireless 

SoC that embeds not only a complete dual-band RF transceiver, but also a sensor interface for 

 

Fig. I-1. Basic block diagram of a wireless sensor node [9] 



Chapter II                                                MOS Transistor Modelling for MMW Circuits 

                                                                                                        4

signal acquisition, a RISC microcontroller and memory-based control unit, and a power-

management unit that can generate up to 2.4V for off-chip parts from a 1.0V to 1.6V AA 

battery, has been described. The RF front-end consists of two RX/TX channels targeting the 

433MHz (ISM) and the 868MHz (SRD) European bands. With a different input adaptation 

scheme, the US 915MHz can also be covered. The RX and TX are built according to a two-

step super-heterodyne architecture with LO frequencies set to 8/9 and 1/9 of the RF, and share 

a common PLL based on a 772MHz VCO and a division chain for the other LO signals. The 

VCO tank is built with two external high-Q inductors and an on-chip varactor. An integer-N 

synthesizer PLL uses a 12.8MHz quartz reference and allows the RF frequency to be adjusted 

with 12.5kHz steps. Scan Electron Micrograph (SEM) of the IC has been given in Fig. I-4. 

The IC has been implemented on standard digital 0.18µm CMOS and has a size of 3.5×4 

mm
2
, excluding the “bond-out” pad-ring. 

 

 

Fig. I-2. The mote sensor node fabricated as integration of CMOS and MEMS technology for early generations 

of Smart Dust, at University of California, Berkeley. [8] 

 

 

Fig. I-3. Complete sensor nodes, with different possible levels of integration [9] 
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Fig.I.4. SEM of the fully integrated sensor node, presented in [34] 

I.1.4. Security and Reliability in WSN 

Remote wireless sensor networks are vulnerable to malicious attacks. While wired and 

infrastructure-based wireless networks have mature intrusion detection systems and 

sophisticated firewalls to block these attacks, wireless sensor networks have only primitive 

defences. Different types of attacks and risks for a WSN have been studied [40]. Beside the 

performance perturbation, malicious attackers can easily target the battery supplies and reduce 

network lifetimes from years to days [31]. 

Reliability is another important issue in WSN’s. Information theoretic approach has been 

used to estimate the redundancy in a randomly deployed wireless sensor network and provide 

the Cramer-Rao bound on the error in estimating the redundancy in a wireless sensor network 

[41]. Simple source and channel codings, e.g.  LDPC
2
, have been suggested for WSN’s [42]. 

In AWGN
3
 channels   the LDPC performance is  very close to the Shannon capacity. Also, 

LDPCs have gained more attention because of its parallelizable, and can be suitable for VLSI 

implementations [43]. 

I.1.5. Power Source Limitation in WSN 

DC power source is the most critical section of a sensor node. Battery size determines the size 

and lifetime of a mote sensor node, consequently minimization of power consumption, not 

only maximizes the sensor life time, minimizes, but also minimizes its size [39]. 

Among the numerous technologies in terms of the materials used and chemistry and 

composition that can serve as the basis for rechargeable (or secondary) batteries, the Lithium 

ion (Li-ion) cells exhibit one of the highest energy densities among the commercially 

available types—i.e., specific energy density of 80–125 W h/kg (watt hour per kilogram) and 

volumetric energy of 200–450 W h/l (watt hour per litre). For instance, miniature Li-ion 

rechargeable battery sources as small as 0.08–0.155cc with capacity ratings of 3–25 mA h are 

readily available for biomedical implants. These batteries can also accommodate current 

pulses of 10–15 mA depending upon battery size, which makes them suitable for low power 

wireless devices [44]. Low-data-rate wireless sensor networks such as WiseNET are built 

                                                
2
 Low Data rate Parity-check Code 

3
 Additive White Gaussian Noise    
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with nodes that have to achieve from 2 to 7 years operating life on a 1.5V AA alkaline battery 

[34]. A AA battery contains roughly 250 uA-years of charge or about 12000 J. For some 

lithium chemistries, the internal leakage is low enough that supplying this charge as a current 

of 25 uA for a decade is possible while common alkaline chemistries have shorter lifetimes 

[9]. 

Energy scavenging and harvesting techniques, e.g. solar cells, have been proposed for 

sensor nodes [5]. Battery powered wireless sensor nodes can be recharged by harvesting 

energy from a solar cell [33] or a microwave Radio Frequency (RF) signal source [45]. In 

such nodes a wireless battery is used to convert wireless RF power into DC power.  In [46] an 

specially designed wireless battery or rectenna has been designed, operating at 2.45GHz and 

the power conversion efficiency of 52% has been achieved  for a 0dBm power level received 

by the antenna. 

Aside from battery technology, various power saving methods have been developed for 

WSN’s. Conventional power saving techniques have been investigated in [47] and [48]. 

Analytic models have been developed for analysis and optimization of power consumption in 

a WSN [49]. Power consumption in a WSN can be related to three levels of the network: 

Hardware, protocol and operating system [14]. In other reports this has been divided into 

Physical layer, Media Access layer (MAC) and Network layer [6]. 

Power Saving in Protocol level 

Medium access protocols which accommodate dynamic voltage and frequency scaling, as 

well as  dynamic or periodical sleeping, have been proposed for minimizing collusion, 

overhearing and idle listening [1]. Nodes synchronization in the network has important effect 

on the power consumption of the nodes. Conventionally used Reference Broadcasting 

Synchronization (RBS) in ad hoc networks, is not suitable for WSN’s. In RBS high volume of 

message packets to be propagated upon the network that waste the energy of the nodes. 

Consequently new synchronization techniques have been proposed for WSN’s [29]. Special 

clustering schemes  for efficient energy consumption and energy aware routing protocols have 

been developed [50]-[52]. Using Multi-hop access, instead of single-hop access, effectively 

reduces the energy cost per bit [6]. Different channel codings (modulation) have been 

investigated in [42]. Various researches have been performed on Mica2 WSN node to 

evaluate different protocols [53]. In [54] a MAC protocol with Slot Periodic Assignment for 

Reception (SPARE MAC) has been presented that limits the energy waste due to packet 

overhearing, packet over-emitting, and idle listening. SPARE MAC is a Time Division 

Multiple Access (TDMA) based scheme, which implements a distributed scheduling solution 

that assigns time slots to each sensor for data reception and shares such assignments with 

neighboring nodes. Package duplication and multi-path package reception problems have 

been investigated in [55] and a protocol named Receiver Based Forwarding (RBF) has been 

presented.  

I.1.5.1. Power Saving in Operating system level 

In operating system level Dynamic Power Management (DPM) has been investigated in [14] 

and the sentry-based power management has been addressed, in which the nodes are 

partitioned dynamically into two sets: sentries and non-sentries. The sentries provide 

sufficient coverage for monitoring and communication services and non-sentries nodes sleep 

for a designated period of time.  An application-driven power control has been proposed in 

[56] and three states: active, idle and sleep has been defined for nodes. 
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I.1.5.2. Power Saving in Hardware level 

In our opinion, power consumption reduction in physical layer is the most important issue in 

the power saving of a sensor node. Special design and integration techniques have been used 

for reducing the power consumption of sensor nodes [57]. To give the scenes about the power 

consumption in existing wireless sensor nodes, we investigate some available and reported 

ones. Some commercial IC’s have been presented by famous companies in the WSN domain 

[57]. CC2430 /2431 is a wireless sensor node, fabricated as fully integrated System-on-Chip 

(SoC) by Chipcon [58]. MC132121 series is another fully integrate sensor node, 

manufactured by Freescale Semiconductor company [59]. JNS121series are fully integrate 

wireless sensor nodes, presented by Janic company [60]. The main characteristics of these 

chips at the working frequency of 2.4GHz, have been tabulated in Table I-1 [57]. The 

interesting note in this table is that the power consumption in RX mode is more than that of 

TX mode. This also has been emphasised in [61], in which claimed that  50% of total power 

dissipation is in the transceiver, of which 80% is consumed in the receiver. Specifications of  

more RF chipsets, fabricated for WSN applications have been  presented in [57]. Crossbow 

Company has a wide variety of mote sensor nodes, all having the DC power consumptions 

about the values in Table. I.1 [10]. These sensor nodes have been used in many recent WSN 

researches [53]. 

Although power dissipation for commercially available sensor motes is in the range of few 

tens of mA, such DC power is very high for Smart Dust projects. The desired average DC 

power consumption is below 100uW [5]. Such value may be achievable, if laser 

communication is used in a very simple sensor node [36], [33]. However in the case of to 

days low power radio communication technology, and for a complicated digital processor this 

seems to be an oxymoron.  

Power dissipation in hardware level is divided into three sections: Analog and digital 

circuits, RF circuits and ADC converters. It is well known that the RF section consumes a 

largest amount of the energy in a low power communication system [57]. For the first ADC 

circuits, designed for the first generations of smart Dust, the reported specs were 360 PJ/S 

(Pico-Jules per sample) with the sampling rate of 100KS/Sec and 8-bit samples that is 

equivalent to the DC power of 3.6mW in full speed working. For the next generations of this 
 

TABLE I-1 

Specifications of 3 fabricated chips for WSN applications [57]. 
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project the reported specs were 31 PJ/S with the sampling rate of 100KS/Sec and 8-bit 

samples in 0.25um CMOS process, that is equivalent to the DC power of 0.3 mW in full 

speed working. The DC power consumption of 0.26 mW has been reported in [6] for the 

processor section of a typical WSN node. In the fully integrated sensor node reported in [34], 

fabricated in 0.18um CMOS, the processor has two modes of operation: 32 KHz and 6.4 

MHz. The required DC power is 60uA/MIPS, that is equal to less than 0.38 mW, in worst 

case. However the RX power consumption in this work is 2.1 mA with 1~1.6 V supply and 

the TX power is 27.6 or 32.3 mA, depending on the working frequency. The energy costs of 

different operations in a typical sensor node have been listed in Table I-2 [9]. However using 

new technologies, sub-mW CMOS transceivers have been emerged. More details of DC 

power consumption in RF sections will be given in the next section. 

I.2. Transmitter and Receiver in WSN 
As we mentioned earlier, a significant part of DC power in a sensor node is consumed by the 

transceiver. Consequently special attention should be paid for design and optimization of the 

RF parts.  Here we present a preliminary discussion and the details analysis will be presented 

in Chapter V. Power consumption of the RF front end in a WSN node can be minimized in 

three levels: Protocol level, Structure level and circuit level. 

The highest level is the protocol considerations. Note that the network protocol affects the 

total power consumption of the network, in two ways. One is the network-related issues, as 

pointed in the previous sections and the other is its direct influence on the transceiver. 

Parameters such as working frequency, modulation scheme and the transmitted signal nature 

are given by the protocol and directly affect the structure and power efficiency of the 

transceiver. As we explained, WSN’s are inherently low data rate systems and hence low-data 

rate UWB
4
 protocols may be useful for WSN’s. Such protocols can be considered under the 

IEEE 802.15.4a standard [62]. Many works have been reported to implement UWB 

transceivers for WSN’s [61], [63]-[67], however in [61] suggested that this standard is not 

sufficient for WSN applications. Most interest in WSN is very simple modulations, such as 

OOK
5
, BFSK

6
 and PPM

7
 [68]-[72]. 

The second level is the structure of the transceiver. Historically used heterodyne 

transceivers, Low-IF transceivers and Zero-IF (Direct Conversion) transceivers are possible 

choices for WSN applications [9], [34]. In addition, special transceiver architectures have 

been presented for low data rate UWB applications [62], [64], [73]. In recent years special 

 
TABLE I-2 

The energy costs of different operations in a typical sensor node [9]. 

Operation Lowest Energy Published Commercially Available 

(off-the-shelf) 

8-Bit Analog-to-Digital 

Conversion 

0.031 nJ 13.5 nJ 

8-Bit Microprocessor 

Instruction 

0.012 nJ 0.20 nJ 

Compute an 8-Bit, 1024 

point FFT 

80 nJ ----- 

Transmit and Receive one 8-

Bit sample via RF at up to 20 

m Range 

32 nJ 2500 nJ 

                                                
4
 Ultra Wide Band  

5 On - Off Keying  
6
 Binary Frequency Shift Keying 

7
 Pulse Position Modulation 
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simple transceiver structures have been developed for WSN applications [68], [70], [74]-[76]. 

Various structures will be compared in Chapter V. 

The third level is the various circuits used in the transceiver. In recent years many circuits 

have been designed to be used in WSN transceivers. Some propose MEMS or other special 

technologies to achieve very low power [77], [78] and some other have emphasis on bulk 

CMOS technology [79], [80]. The technologies other than CMOS also have been considered 

in design of Class E power amplifiers for WSN’s [81]. 

I.3. Transceiver Specifications 
In this section we briefly describe the given specification for the transceiver we have designed 

and the semiconductor technology we have used in our work. 

I.3.1. Semiconductor Technology Issues 

Until 1990 few experts believed that CMOS will be a credible RF technology. In 1980 first 

CMOS RF application emerged: A broadcasting FM radio in 2 um CMOS, however the 

performance is not acceptable [82]. Then during only one decade, CMOS technology was the 

best candidate for many below-10GHz RF applications. Generally specking, the speed of 

analog CMOS circuits climbs by roughly one order of magnitude every ten years. For 

example, the first 1.4-GHz MOS voltage-controlled oscillator (VCO) was reported in 1988, 

the first 10-GHz CMOS oscillator in 1999 , and the first 104-GHz CMOS VCO in 2004 [83].  

Today, fT of CMOS transistors has passed 100GHz and CMOS technology experiences the 

millimeter wave designs. VCO in 114 GHz and LNA in up to 80GHz in 0.13um bulk CMOS 

have been reported in 2007 [84], [85]. Fig. I-5 shows the outlook of CMOS technology, 

implying that in the recent decade near-THz circuits will be emerged [82]. 

We will use STMicroelectronics 90 nm Global Purpose (GP) process in our work. The 

related foundry design we have used in our work supports only the digital design and hence 

all of the high frequency issues have been modelled and added specially for our work. 

Modelling of passive and even active devices have been done individually, using the foundry 

design kit as the reference. The layout for all the passive devices (except for the Resistors and 

MIM capacitors ) and active devices (except for MOS transistor core) required in our work, 

have been designed individually, using the foundry Design Rule manual (DRM) data. Special 

attention has been paid to comply with the density design rule checks. The details will be 

given in Chapters II and III. 

 

 

Fig. I-5. The outlook of modern CMOS technology [82]. 
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Our design and optimization has been done in our design tools, we have developed 

specially for our work. However verifying simulations have been done using the foundry 

design kit attached to the CADENCE software, using the Spectre RF circuit simulator, 

Virtuse Layout Editor, Diva Layout Versus Schematic (LVS) check and Calibre extraction 

tool. 

I.3.2. Transceiver Specifications in Our Work 

The unlicensed 57-64 GHz was opened as ISM
8
 band for new short range, high data rate 

communications [86]. The ultimate objective of our project is to use this band in Smart Dust 

wireless sensor network. Using this band, the wireless sensor network  will benefit the smaller 

sensor nodes and higher security. However many problems related to such high frequency 

must be solved. Our work has been defined to be done in 30GHz band, as a bridge to the ISM 

60GHz band. Since our work is the preliminary step of the final project, other specification 

are not given and we will go toward the best possible results. 
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