I. Chapitre, différente selon la direction [001] et les directions {111} (voir figure IV.45) On passe ainsi d'un mode de croissance 2D (figure IV.33c) ` a un mode de croissance colonnaire (figure IV.33d) Nous observons aussi que les inclusions ont tendancè a se refermer avec l'´ epaisseur

2. La-forte-croissance and . Dans-le-plan, 27 (figure IV.23) permet d'expliquer ce phénomène. Par ailleurs, l'observation de la surface du cristal de la figure IV.33 révèle que la face (001) au sommet des colonnes est majoritairement rectangulaire (figure IV.34a) Lors de croissances colonnaires dans Si, le sommet des colonnes est majoritairement carré (figure IV.34b) Les quatre plans bordant la face (001) sont les quatre plans de la famille {111} Chaque face (111) de même polarité, silicium ou carbone est située de part et d'autre de la colonne. Afin d'identifier la polarité de chaque face (111), il est nécessaire de procéderprocéderà une attaque dans l'hydroxyde de potassium fondue (icì a 530°C) En raison desénergiesdesénergies de surface différentes entre les deux polarités, l'attaque sera sélective uniquement sur la polarité silicium. En d'autres termes, la révélation de défauts n'est possible que sur la face Si avec KOH. La vitesse d'attaque de la face C est supérieure mais n'est pas sélective, elle reste lisse (mais devient légèrement ondulée), Ainsi, après attaque dans KOH fondu, la face présentant des figures d'attaque sera la face silicium. La nature et la densité des défauts révélés seront détaillées dans le chapitre 5. La figure IV.35 montre la surface brute du cristal après 3 minutes dans KOHàKOHà 530°C

S. Les-croissances-spontanées-dans and S. , Al montrent que la stabilisation du polytype cubique est possible dans un solvant Si 0,60 Al 0,40à40à 1650°C avec des vitesses de croissance trèstrèsélevées (1,6 mm/h dans le plan (111) et 0,15 mm/h dans la direction [111]). L'anisotropie de croissance n'est pas aussi marquée que dans le cas de croissance spontanée dans Si 0,73 Ti 0, Cependant, nous observons un facettage de la couche et de nombreuses inclusions de solvants pour des croissances sur 3C- SiC(001). Ces inclusions apparaissent d` es 15 at% en aluminium

V. Figure, 31 ? Imagerie TEM haute résolution des premiers instants de croissance dans la couche VLS. Présence de nombreuses fautes d'empilement (notées SF) dans le plan

R. N. Hall, Electrical Contacts to Silicon Carbide, Journal of Applied Physics, vol.29, issue.6, p.914, 1958.
DOI : 10.1063/1.1723329

C. H. Carter, L. Tang, and R. F. , Davis, presented at the Fourth National Review Meeting on the Growth and Characterization of SiC, 1987.

T. Kimoto and H. Matsunami, Nucleation and step motion in chemical vapor deposition of SiC on 6H???SiC{0001} faces, Journal of Applied Physics, vol.76, issue.11, p.7322, 1994.
DOI : 10.1063/1.358021

R. C. Harris, Oxidation of 6H-? Silicon Carbide Platelets, Journal of the American Ceramic Society, vol.18, issue.7, p.7, 1975.
DOI : 10.1021/j100872a067

J. A. Costello and R. E. Tressler, Oxidation Kinetics of Silicon Carbide Crystals and Ceramics: I, In Dry Oxygen, Journal of the American Ceramic Society, vol.52, issue.1, p.674, 1986.
DOI : 10.1063/1.90771

M. Syvajarvi, R. Yakimova, and E. Janzen, Interfacial Properties in Liquid Phase Growth of SiC, Journal of The Electrochemical Society, vol.146, issue.4, p.1565, 1999.
DOI : 10.1149/1.1391805

R. Brander and R. Sutton, Solution grown SiC p-n junctions, Journal of Physics D: Applied Physics, vol.2, issue.3, p.309, 1969.
DOI : 10.1088/0022-3727/2/3/301

Y. Mokuno, A. Chayahara, and H. Yamada, Synthesis of large single crystal diamond plates by high rate homoepitaxial growth using microwave plasma CVD and lift-off process, Diamond and Related Materials, vol.17, issue.4-5, p.415, 2008.
DOI : 10.1016/j.diamond.2007.12.058

J. Achard, High quality MPACVD diamond single crystal growth: high microwave power density regime, Journal of Physics D: Applied Physics, vol.40, issue.20, p.6175, 2007.
DOI : 10.1088/0022-3727/40/20/S04

A. A. Burk, Solid-State Electron, p.1459, 1999.

M. Shur, SiC materials and devices, p.161, 1998.

D. Young, J. Du, C. Zorman, and W. Ko, High-Temperature Single-Crystal 3C-SiC Capacitive Pressure Sensor, IEEE Sensors Journal, vol.4, issue.4, p.464, 2004.
DOI : 10.1109/JSEN.2004.830301

A. Schoner, M. Krieger, G. Pensl, M. Abe, and H. Nagasawa, Fabrication and Characterization of 3C-SiC-Based MOSFETs, Chemical Vapor Deposition, vol.36, issue.485, p.523, 2006.
DOI : 10.1002/cvde.200606467

A. Schoner, M. Krieger, G. Pensl, M. Abe, and H. Nagasawa, Fabrication and Characterization of 3C-SiC-Based MOSFETs, Chemical Vapor Deposition, vol.36, issue.485, p.523, 2006.
DOI : 10.1002/cvde.200606467

I. Garcon, ContributionàContributionà l'´ etude de la croissance de monocristaux de carbure de silicium par la méthode de Lely modifiée, Thèse de doctorat, 1995.

K. Chourou, ContributionàContributionà l'´ etude de la cristallogénèse du carbure de silicium SiC par sublimation, Thèse de doctorat, 1998.

C. Moulin, Elaboration de monocristaux de carbure de silicium pour l'´ electronique de puissance. Réduction de la densité de défauts, Thèse de doctorat, 2001.

G. Ferro, Mécanisme de croissance cristalline parépitaxieparépitaxie en phase vapeur du carbure de silicium cubique sur substrat de silicium orienté (100, Thèse de doctorat, 1997.

D. Chaussende, Techniques alternatives de cristallogénèse du carbure de silicium, Thèse de doctorat, 2000.

T. Chassagne, Croissance et maitrise de la contrainte dans le SiC cubique sur substrat silicium ou silicium sur oxyde (SOI), Thèse de doctorat, 2001.

C. Sartel, [38] J.Mézì ere, Modélisation et simulation numérique d'un réacteur CVD pour le dépot de couches minces de SiC, Thèse de doctorat, 2003.

L. Charpentier, Développement d'un procédé de croissance de carbure de silicium massif, Thèse de doctorat, 2003.

L. Latu-romain, Croissance de monocristaux massifs de carbure de silicium cubique, Thèse de doctorat, 2006.

C. Jacquier, Nouvelles approches de la croissancé epitaxiale de SiC : Transport chimique en phase vapeur (CVT) et techniquesàtechniquesà partir d'une phase liquide Al-Si, Thèse de doctorat, 2003.

M. Soueidan, Hétéroepitaxie du SiC cubique sur substrats SiC hexagonaux, Thèse de doctorat, 2006.

J. Eid, Croissance en solution et caractérisation de monocristaux de carbure de silicium cubique, Thèse de doctorat, 2007.

O. Kim-hak, Etude de la nucléation du SiC-3C sur substrats hexagonauxàhexagonauxà partir d'une phase liquide, Thèse de doctorat, 2009.

H. Nowotny, Zeolithische Alkaligermanate, Monatshefte f???r Chemie, vol.85, issue.3, p.558, 1954.
DOI : 10.1007/BF00902306

S. Nishizawa, T. Kato, and K. Arai, Effect of heat transfer on macroscopic and microscopic crystal quality in silicon carbide sublimation growth, Journal of Crystal Growth, vol.303, issue.1, p.342, 2007.
DOI : 10.1016/j.jcrysgro.2006.12.022

D. Chaussende, Control of the Supersaturation in the CF???PVT Process for the Growth of Silicon Carbide Crystals:??? Research and Applications, Crystal Growth & Design, vol.5, issue.4, pp.1539-1528, 2005.
DOI : 10.1021/cg050009i

URL : https://hal.archives-ouvertes.fr/hal-00118809

R. Muller, U. Kunecke, D. Queren, S. Sakwe, and P. Wellmann, Growth of Silicon Carbide Bulk Crystals with a Modified Physical Vapor Transport Technique, Chemical Vapor Deposition, vol.289, issue.356, p.557, 2006.
DOI : 10.1002/cvde.200606474

L. B. Griffiths and A. I. Mlavsky, Growth of ??-SiC Single Crystals from Chromium Solution, Journal of The Electrochemical Society, vol.111, issue.7, p.805, 1964.
DOI : 10.1149/1.2426257

K. Gillessen, W. Von, and . Munch, Growth of silicon carbide from liquid silicon by a travelling heater method, Journal of Crystal Growth, vol.19, issue.4, p.263, 1973.
DOI : 10.1016/0022-0248(73)90050-X

R. T. Yakimova and I. Y. Yanchev, On the transport kinetics of silicon carbide in the silicon-scandium-carbon system, Journal of Crystal Growth, vol.51, issue.2, p.223, 1981.
DOI : 10.1016/0022-0248(81)90305-5

M. Syvajarvi, R. Yakimova, L. Ivanov, and E. Janzen, Growth of 4H-SiC from liquid phase, Materials Science and Engineering: B, vol.46, issue.1-3, p.329, 1997.
DOI : 10.1016/S0921-5107(96)02001-6

M. Soueidan, Nucleation of 3C???SiC on 6H???SiC from a liquid phase, Acta Materialia, vol.55, issue.20, p.6873, 2007.
DOI : 10.1016/j.actamat.2007.08.046

N. Boutarek, M. Bonda, D. Chaussende, and R. Madar, Experimental investigation of different configurations for the seeded growth of SiC crystals via a VLS mechanism, Crystal Research and Technology, vol.28, issue.2, p.374, 2008.
DOI : 10.1002/crat.200711090

W. A. Tiller, Theoretical analysis of requirements for crystal growth from solution, Journal of Crystal Growth, vol.2, issue.2, p.69, 1968.
DOI : 10.1016/0022-0248(68)90045-6

W. E. Nelson, F. A. Halden, and A. Rosengreen, Growth and Properties of ?????SiC Single Crystals, Journal of Applied Physics, vol.37, issue.1, p.333, 1966.
DOI : 10.1063/1.1707837

R. W. Bartlett and G. W. Martin, Imperfections in Solution???Grown ?????Silicon Carbide Crystals, Journal of Applied Physics, vol.39, issue.5, p.2324, 1968.
DOI : 10.1063/1.1656553

S. Yamada, T. Kawal, and M. Kumagawa, Surface polarities of ??-Sic crystals with hexagonal pillar shape, Journal of Crystal Growth, vol.19, issue.1, p.74, 1973.
DOI : 10.1016/0022-0248(73)90083-3

T. Ujihara, Solution growth of high-quality 3C-SiC crystals, Journal of Crystal Growth, vol.310, issue.7-9, p.1438, 2008.
DOI : 10.1016/j.jcrysgro.2007.11.210

H. N. Jayatirtha, M. G. Spencer, C. Taylor, and W. Greg, Improvement in the growth rate of cubic silicon carbide bulk single crystals grown by the sublimation method, Journal of Crystal Growth, vol.174, issue.1-4, p.662, 1997.
DOI : 10.1016/S0022-0248(97)00038-9

K. Furukawa, Bulk Growth of Single-Crystal Cubic Silicon Carbide by Vacuum Sublimation Method, Japanese Journal of Applied Physics, vol.32, issue.Part 2, No. 5A, p.645, 1993.
DOI : 10.1143/JJAP.32.L645

H. Nagasawa, K. Yagi, T. Kawahara, and N. Hatta, Reducing Planar Defects in 3C???SiC, Chemical Vapor Deposition, vol.433, issue.436, p.502, 2006.
DOI : 10.1002/cvde.200506466

H. Kong, B. Jiang, J. Glass, G. Rozgonyi, and K. More, An examination of double positioning boundaries and interface misfit in beta???SiC films on alpha???SiC substrates, Journal of Applied Physics, vol.63, issue.8, p.2645, 1988.
DOI : 10.1063/1.341004

D. Elwell and H. Scheel, Growth from high temperature solution, 1975.

P. Gornert and R. Hergt, Preparation and crystal imperfections of yttrium???iron garnet single crystals grown in flux melts by slowly cooling and gradient transport I. Striations, Physica Status Solidi (a), vol.13, issue.14, p.577, 1973.
DOI : 10.1002/pssa.2210200219

F. Durand and J. Duby, Carbon solubility in solid and liquid silicon???A review with reference to eutectic equilibrium, Journal of Phase Equilibria, vol.18, issue.6, p.61, 1999.
DOI : 10.1361/105497199770335956

O. Yamamoto, T. Sasamoto, and M. Inagaki, Antioxidation of carbon-carbon composites by SiC concentration gradient and zircon overcoating, Carbon, vol.33, issue.4, p.359, 1995.
DOI : 10.1016/0008-6223(94)00159-W

A. Favre, H. Fuzellier, and J. Suptil, An original way to investigate the siliconizing of carbon materials, Ceramics International, vol.29, issue.3, p.235, 2003.
DOI : 10.1016/S0272-8842(02)00110-4

S. Davis, D. Anthrop, and A. Searcy, Vapor Pressure of Silicon and the Dissociation Pressure of Silicon Carbide, The Journal of Chemical Physics, vol.34, issue.2, p.659, 1961.
DOI : 10.1063/1.1701004

A. Nesmeyanov, Vapor Pressure of the Chemical Elements, 1963.

M. Chesswas, B. Cockayne, D. Hurle, E. Jakeman, and J. Mullin, Mass and heat transfer in pressure-pulling systems, Journal of Crystal Growth, vol.11, issue.3, p.225, 1971.
DOI : 10.1016/0022-0248(71)90089-3

P. Peshev, V. Nikolov, and K. Iliev, Simulation studies of the hydrodynamics in high-temperature solutions for crystal growth by the TSSG method, Journal of Crystal Growth, vol.65, issue.1-3, p.173, 1983.
DOI : 10.1016/0022-0248(83)90050-7

G. Muller, Convection and inhomogenities in crystal growth from the melt, 1988.

D. W. Crunkleton and T. J. Anderson, A numerical study of flow and thermal fields in tilted Rayleigh???B??nard convection, International Communications in Heat and Mass Transfer, vol.33, issue.1, p.24, 2006.
DOI : 10.1016/j.icheatmasstransfer.2005.09.004

V. Nikolov, K. Iliev, and P. Peshev, Simulation studies of the hydrodynamics in high-temperature solutions for crystal growth. III. flow rates in the presence of free and forced convections proceeding in opposite directions, Materials Research Bulletin, vol.18, issue.7, p.889, 1983.
DOI : 10.1016/0025-5408(83)90068-5

V. Nikolov, K. Iliev, and P. Peshev, Simulation studies of the hydrodynamics in high-temperature solutions for crystal growth. IV. Flow rates in the presence of free and forced convections proceeding in the same direction, Materials Research Bulletin, vol.18, issue.12, p.1575, 1983.
DOI : 10.1016/0025-5408(83)90200-3

R. Touihri, H. B. Hadid, and D. Henry, On the onset of convective instabilities in cylindrical cavities heated from below. I. Pure thermal case, Physics of Fluids, vol.11, issue.8, p.2078, 1999.
DOI : 10.1063/1.870070

G. Muller, G. Neumann, and W. Weber, Natural convection in vertical Bridgman configurations, Journal of Crystal Growth, vol.70, issue.1-2, p.78, 1984.
DOI : 10.1016/0022-0248(84)90250-1

G. Neumann, Three-dimensional numerical simulation of buoyancy-driven convection in vertical cylinders heated from below, Journal of Fluid Mechanics, vol.26, issue.-1, p.559, 1990.
DOI : 10.1038/335202a0

R. Krishnamurti, Some further studies on the transition to turbulent convection, Journal of Fluid Mechanics, vol.44, issue.02, p.285, 1973.
DOI : 10.1063/1.1762379

F. Rosenberger and G. Muller, Interfacial transport in crystal growth, a parametric comparison of convective effects, Journal of Crystal Growth, vol.65, issue.1-3, p.91, 1983.
DOI : 10.1016/0022-0248(83)90043-X

R. Verzicco and R. Camussi, Transitional regimes of low-Prandtl thermal convection in a cylindrical cell, Physics of Fluids, vol.9, issue.5, p.1287, 1997.
DOI : 10.1063/1.869244

J. Ristorcelli and J. Lumley, Instabilities, transition and turbulence in the Czochralski crystal melt, Journal of Crystal Growth, vol.116, issue.3-4, p.447, 1992.
DOI : 10.1016/0022-0248(92)90654-2

H. Scheel and E. Schulz-dubois, Flux growth of large crystals by accelerated crucible-rotation technique, Journal of Crystal Growth, vol.8, issue.3, p.304, 1971.
DOI : 10.1016/0022-0248(71)90078-9

J. Carruthers and K. Nassau, Nonmixing Cells due to Crucible Rotation during Czochralski Crystal Growth, Journal of Applied Physics, vol.39, issue.11, p.5205, 1968.
DOI : 10.1063/1.1655943

G. Muller and A. Ostrogorsky, Handbook of Crystal Growth, Growth Mechanism and Dynamics, vol.2, issue.2, 1993.

D. Vizman, J. Friedrich, and G. Mueller, 3D time-dependent numerical study of the influence of the melt flow on the interface shape in a silicon ingot casting process, Journal of Crystal Growth, vol.303, issue.1, p.231, 2007.
DOI : 10.1016/j.jcrysgro.2006.11.317

Y. Li, Three-dimensional thermocapillary-buoyancy flow in a shallow molten silicon pool with Cz configuration, International Journal of Heat and Mass Transfer, vol.48, issue.10, p.1952, 2005.
DOI : 10.1016/j.ijheatmasstransfer.2004.11.024

Y. Fautrelle, F. Debray, and J. Etay, Transfer Phenomena in MagnetoHydro- Dynamic and Electroconducting Flows, 1999.

W. W. Mullins and R. F. Sekerka, Stability of a Planar Interface During Solidification of a Dilute Binary Alloy, Journal of Applied Physics, vol.35, issue.2, p.444, 1964.
DOI : 10.1063/1.1713333

J. O. Connor, The Art and Science of Growing Crystals, 1966.

A. Bejan and A. Kraus, Heat transfer handbook, 2003.
DOI : 10.1002/9781118671627

A. V. Shishkin and A. S. Basin, Surface tension of liquid silicon, Theoretical Foundations of Chemical Engineering, vol.23, issue.5, p.660, 2004.
DOI : 10.1007/s11236-005-0043-2

Y. Du and J. C. Schuster, Experimental Investigation and Thermodynamic Calculation of the TitaniumSiliconCarbon System, Journal of the American Ceramic Society, vol.77, issue.6, p.197, 2000.
DOI : 10.1111/j.1151-2916.2000.tb01170.x

J. Viala, P. Fortier, and J. Bouix, Stable and metastable phase equilibria in the chemical interaction between aluminium and silicon carbide, Journal of Materials Science, vol.18, issue.3, p.1842, 1990.
DOI : 10.1007/BF01045395

H. Tsuchida, I. Kamata, and M. Nagano, Formation of basal plane Frank-type faults in 4H-SiC epitaxial growth, Journal of Crystal Growth, vol.310, issue.4, p.757, 2008.
DOI : 10.1016/j.jcrysgro.2007.11.156

T. Okada, T. Kimoto, K. Yamai, H. Matsunami, and F. Inoko, Crystallographic defects under device-killing surface faults in a homoepitaxially grown film of SiC, Materials Science and Engineering: A, vol.361, issue.1-2, p.67, 2003.
DOI : 10.1016/S0921-5093(03)00520-3

O. Dezellus, ContributionàContributionà l' ´ etude des mécanismes de mouillage réactif, Thèse de doctorat, 2000.

T. J. Whalen and A. T. Anderson, , and Carbon by Si and Binary Si Alloys, Journal of the American Ceramic Society, vol.110, issue.1, p.396, 1975.
DOI : 10.1063/1.1730236

V. L. Yupko and G. G. Gnesin, Wetting of silicon carbide by binary Si-Ti and Si-Cr alloys, Soviet Powder Metallurgy and Metal Ceramics, vol.40, issue.No. 7, p.59, 1972.
DOI : 10.1007/BF00790688

O. Dezellus, S. Jacques, F. Hodaj, and N. Eustathopoulos, Wetting and infiltration of carbon by liquid silicon, Journal of Materials Science, vol.32, issue.165, p.2307, 2005.
DOI : 10.1007/s10853-005-1950-7

P. Rudolph, Theoretical and technological aspects of crystal growth, 1998.

S. Sakwe, R. Muller, and P. Wellmann, Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC, Journal of Crystal Growth, vol.289, issue.2, p.520, 2006.
DOI : 10.1016/j.jcrysgro.2005.11.096

M. Soueidan, G. Ferro, J. Dazord, Y. Monteil, and G. Younes, Surface preparation of -SiC for the epitaxial growth of 3C???SiC, Journal of Crystal Growth, vol.275, issue.1-2, p.1011, 2005.
DOI : 10.1016/j.jcrysgro.2004.11.164

N. Ohtani, Step bunching behaviour on the {0001} surface of hexagonal SiC, Journal of Crystal Growth, vol.210, issue.4, p.613, 2000.
DOI : 10.1016/S0022-0248(99)00877-5

H. Scheel and D. Elwell, Stability and Stirring in Crystal Growth from High-Temperature Solutions, Journal of The Electrochemical Society, vol.120, issue.6, p.818, 1973.
DOI : 10.1149/1.2403569

W. V. Enckevort, R. J. Van-rosmalen, H. Klapper, and W. Van-der-linden, Growth phenomena of KDP crystals in relation to the internal structure, Journal of Crystal Growth, vol.60, issue.1, p.67, 1982.
DOI : 10.1016/0022-0248(82)90173-7

F. Silva, Single crystal CVD diamond growth strategy by the use of a 3D geometrical model: Growth on (113) oriented substrates, Diamond and Related Materials, vol.17, issue.7-10, p.1067, 2008.
DOI : 10.1016/j.diamond.2008.01.006

T. Kimoto, A. Itoh, H. Matsunami, and T. Okano, Step bunching mechanism in chemical vapor deposition of 6H??? and 4H???SiC{0001}, Journal of Applied Physics, vol.81, issue.8, p.3494, 1997.
DOI : 10.1063/1.365048

R. L. Schwoebel and E. J. Shipsey, Step Motion on Crystal Surfaces, Journal of Applied Physics, vol.37, issue.10, p.3682, 1966.
DOI : 10.1063/1.1707904

A. E. Nikolaev, V. A. Ivantsov, S. V. Rendakova, M. N. Blashenkov, and V. A. Dmitriev, SiC liquid-phase epitaxy on patterned substrates, Journal of Crystal Growth, vol.166, issue.1-4, p.607, 1996.
DOI : 10.1016/0022-0248(95)00566-8

M. Syvajarvi, R. Yakimova, and E. Janzen, Step-bunching in SiC epitaxy: anisotropy and influence of growth temperature, Journal of Crystal Growth, vol.236, issue.1-3, p.297, 2002.
DOI : 10.1016/S0022-0248(01)02331-4

U. Lindefelt, H. Iwata, S. Oberg, and P. Briddon, supercell method, Physical Review B, vol.67, issue.15, p.155204, 2003.
DOI : 10.1103/PhysRevB.67.155204

P. Kackell, J. Furthmuller, and F. Bechstedt, study, Physical Review B, vol.58, issue.3, p.1326, 1998.
DOI : 10.1103/PhysRevB.58.1326

S. Nakashima and H. Harima, Raman Investigation of SiC Polytypes, physica status solidi (a), vol.13, issue.1, p.39, 1997.
DOI : 10.1002/1521-396X(199707)162:1<39::AID-PSSA39>3.0.CO;2-L

S. Nakashima, H. Katahama, Y. Nakakura, and A. Mitsuishi, Relative Raman intensities of the folded modes in SiC polytypes, Physical Review B, vol.33, issue.8, p.5721, 1986.
DOI : 10.1103/PhysRevB.33.5721

P. J. Wellmann, Optical mapping of aluminum doped p-type SiC wafers, physica status solidi (a), vol.389, issue.393, p.598, 2005.
DOI : 10.1002/pssa.200460436

URL : https://hal.archives-ouvertes.fr/hal-00386442

H. Yugami, S. Nakashima, and A. Mitsuishi, Characterization of the free???carrier concentrations in doped ?????SiC crystals by Raman scattering, Journal of Applied Physics, vol.61, issue.1, p.354, 1987.
DOI : 10.1063/1.338830

M. Katsuno, N. Ohtani, J. Takahashi, H. Yashiro, and M. Kanaya, Mechanism of Molten KOH Etching of SiC Single Crystals: Comparative Study with Thermal Oxidation, Japanese Journal of Applied Physics, vol.38, issue.Part 1, No. 8, p.4661, 1999.
DOI : 10.1143/JJAP.38.4661

E. Polychroniadis, M. Syvajarvi, R. Yakimova, and J. Stoemenos, Microstructural characterization of very thick freestanding 3C-SiC wafers, Journal of Crystal Growth, vol.263, issue.1-4, p.68, 2004.
DOI : 10.1016/j.jcrysgro.2003.10.092

A. Boulle, X-ray diffuse scattering from stacking faults in thick 3C-SiC single crystals, Applied Physics Letters, vol.89, issue.9, p.91902, 2006.
DOI : 10.1063/1.2338787

URL : https://hal.archives-ouvertes.fr/hal-00394392

C. Balloud, Méthodes de caractérisation optique de SiC, Thèse de doctorat, 2005.

S. N. Gorin and L. M. Ivanova, Cubic Silicon Carbide (3C-SiC): Structure and Properties of Single Crystals Grown by Thermal Decomposition of Methyl Trichlorosilane in Hydrogen, physica status solidi (b), vol.202, issue.1, p.221, 1997.
DOI : 10.1002/1521-3951(199707)202:1<221::AID-PSSB221>3.0.CO;2-L

D. Larkin, SiC Dopant Incorporation Control Using Site-Competition CVD, physica status solidi (b), vol.202, issue.1, p.305, 1997.
DOI : 10.1002/1521-3951(199707)202:1<305::AID-PSSB305>3.0.CO;2-9

L. Patrick and W. Choyke, -Type Cubic SiC, Physical Review, vol.186, issue.3, p.775, 1969.
DOI : 10.1103/PhysRev.186.775

URL : https://hal.archives-ouvertes.fr/in2p3-00509098

G. Ferro, Communication priv?Alpriv? priv?Al'e

K. Kojima, S. Kuroda, H. Okumura, and K. Arai, Influence of lattice polarity of nitrogen and aluminum doping on 4H-SiC epitaxial layer, Microelectronic Engineering, vol.83, issue.1, p.79, 2006.
DOI : 10.1016/j.mee.2005.10.030

U. S. Ram, M. Dubey, and G. Singh, Growth of unusual silicon carbide polytypes by island formation, Journal of Applied Crystallography, vol.7, issue.6, p.515, 1974.
DOI : 10.1107/S0021889874010363

A. Samant, M. Hong, and P. Pirouz, The Relationship between Activation Parameters and Dislocation Glide in 4H-SiC Single Crystals, physica status solidi (b), vol.3, issue.1, p.75, 2000.
DOI : 10.1002/1521-3951(200011)222:1<75::AID-PSSB75>3.0.CO;2-0

D. Olego, M. Cardona, and P. Vogl, -SiC, Physical Review B, vol.25, issue.6, p.3878, 1982.
DOI : 10.1103/PhysRevB.25.3878

URL : https://hal.archives-ouvertes.fr/jpa-00221274

R. W. Bartlett, W. E. Nelson, and F. A. Halden, Influence of Carbon Transport Kinetics on Solution Growth of ??-Silicon Carbide Crystals, Journal of The Electrochemical Society, vol.114, issue.11, p.1149, 1967.
DOI : 10.1149/1.2426435

R. I. Scace and G. A. Slack, Solubility of Carbon in Silicon and Germanium, The Journal of Chemical Physics, vol.30, issue.6, p.1551, 1959.
DOI : 10.1063/1.1730236

R. Pampuch, E. Walasek, and J. Bia-loskorski, Reaction mechanism in carbon-liquid silicon systems at elevated temperatures, Ceramics International, vol.12, issue.2, p.99, 1986.
DOI : 10.1016/0272-8842(86)90023-4