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ABSTRACT

Atomic flows are a geometric invariant of classical propositional proofs in deep inference.
In this thesis we use atomic flows to describe new normal forms of proofs, of which the
traditional normal forms are special cases, we also give several normalisation procedures for
obtaining the normal forms. We define, and use to present our results, a new deep-inference
formalism called the functorial calculus, which is more flexible than the traditional calculus
of structures. To our surprise we are able to 1) normalise proofs without looking at their
logical connectives or logical rules; and 2) normalise proofs in less than exponential time.
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Chapter 1

Introduction

Structural proof theory is the subdiscipline of logic that studies formal representation and
manipulation of mathematical proofs.

A language for representing proofs is called a formalism. Traditionally, formalisms are
variations of Gentzen’s natural deduction and sequent calculus [Gen69]. Essentially, a formal-
ism following Gentzen’s methodology represents a proof as a tree, obtained by recursively
breaking formulae apart at their main connective.

The rules by which proofs are constructed are called inference rules. A logic is represented
in a given formalism by a set of inference rules, called a logical system.

Deep inference [Gug07] is a methodology that allows generalisations of Gentzen’s for-
malisms. The standard deep-inference formalism, the calculus of structures, generalises the
sequent calculus by allowing deduction at any place in a formula, rather than restricting it to
the main connective. As a consequence, it is possible for all inference rules to be unary. In
other words, proofs are represented as lists of formulae rather than as trees of sequents.

In this thesis, a new deep-inference formalism, named the functorial calculus, is presented.
While, in the sequent calculus, the juxtaposition of two proofs denotes that they are com-
posed by a conjunction, in the functorial calculus, this horizontal composition is generalised
to allow both disjunctions and conjunctions. In other words, proofs are represented as di-
rected acyclic graphs of formulae rather than as trees of sequents.

The calculus of structures and the functorial calculus are closely related and translations
between the two are given. The relationship between the two formalisms is explored further
in [GGP10], where a generalisation, called open deduction, is presented. It is shown there
that a functorial calculus proof corresponds to an equivalence class of calculus of structures
proofs.

The functorial calculus was chosen for this thesis, rather than the calculus of structures,
for two reasons. Firstly, the smaller proofs and fewer arbitrary choices required by the func-
torial calculus simplifies the presentation of the results. Secondly, some of the results of this
thesis have been presented elsewhere in terms of the calculus of structures [GG08, BGGP10,
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GGS10], so using the functorial calculus illustrates the fact that the results are not tightly
coupled to a specific formalism.

The focus of this thesis is propositional classical logic. By exploiting the symmetry avail-
able in deep-inference, it is possible to represent propositional classical logic in a system
where every inference rule belongs to one of two kinds: atomic or linear [BT01].

An inference rule is linear if, for every instance of the rule, there is a one-to-one corre-
spondence between the atom occurrences in the premiss and the atom occurrences in the
conclusion. Linear inference rules increases the flexibility of proofs, as other inference rule
instances can in most cases trivially be permuted ‘through’ the linear ones.

The atomic inference rules are rules where only a given atom or its dual occur in every
instance. By replacing a generic inference rule with several atomic ones, the flexibility of
the proof is increased as the different atomic rules can be permuted independently from each
other.

The possibility, which is not present in the sequent calculus [Brü03b], of having only
linear and atomic inference rules allows representations of proofs which are extremely ‘mal-
leable’.

The first part of this thesis will introduce classical logic in the functorial calculus, show
the relationship between the functorial calculus and the calculus of structures, and present
some standard deep-inference results.

A formalism usually comes with a normalisation theory, i.e. a notion of normal form of
proofs as well as a procedure describing how to manipulate proofs in order to obtain their
normal form. In natural deduction a proof is in normal form if no ‘elimination rule’ follows
an ‘introduction rule’; and in the sequent calculus a proof is in normal form if it does not
contain the cut rule.

The cut rule, also known as modus ponens, is at the heart of proof theory. The cut rule
allows an auxiliary result to be proven only once, but used many times. When viewing proofs
as programs, the cut is the application of a function to an argument, and normalisation is
computation.

As in the sequent calculus, the cut rule is admissible from deep-inference proofs without
a premiss. In [Brü04], Brünnler presents a cut-elimination procedure for the calculus of
structures and studies the connection between proofs with and without cut in the calculus of
structures and in the sequent calculus.

The fact that the sequent calculus represent proofs as trees makes it inherently asymmet-
ric in the horizontal axis. This asymmetry is not present in the calculus of structures or the
functorial calculus. In fact, an asymmetry has to be enforced for the cut rule to be admissible.

The symmetry that is possible in deep-inference formalisms allows more notions of nor-
mal forms than just cut elimination. In particular, the dual of cut elimination also holds:
axioms can be eliminated from proofs of falsehood.

In this thesis a new notion of normal form of propositional classical logic proofs, called
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streamlining is introduced. Unlike cut or axiom elimination, streamlining applies to all deep-
inference proofs, and in the asymmetric case where cut or axiom elimination is applicable,
the notions coincide. Unlike normal forms based on the order of inference rule instances,
streamlining is invariant under rule permutations. Furthermore, streamlining is a largely
syntax independent notion, in the sense that it is not tied to a specific formalism, or a specific
logical system.

In order to describe the notion of streamlining and the related normal forms, we intro-
duce a proof invariant that we call atomic flows. Atomic flows are certain kinds of directed
acyclic graphs that capture the structural information of proofs. Intuitively, an atomic flow
is obtained from a proof by retaining the causal dependencies between creation, duplication
and destruction of atoms and discarding all information about logical connectives, units and
linear inference rules. A proof is streamlined if there is no path in its atomic flow from the
creation to the destruction of an atom.

The second part of this thesis is devoted to atomic flows, their relationship with proofs
and the definition of normal forms in terms of atomic flows.

Atomic flows were designed to describe normal form of proofs. However, it turns out
that atomic flows are also a very convenient tool for designing and arguing about normalisa-
tion procedures. In the third part of this thesis two kinds of normalisation procedures are
given. All the procedures are first presented in terms of atomic flows, before they are lifted
to derivations.

The global procedures work by making several copies of an entire atomic flow, ‘pruning’
each copy and ‘stitching’ them together. Three different global procedures are presented,
all producing derivations in the same normal form. It appears that there is great flexibility
in the design of the global procedures and there is a lot of room for future investigations,
especially with respect to complexity. We show that the global procedures can have less than
exponential cost. However, they are all inherently non-confluent.

Whereas the global procedures consider the whole atomic flow, the local procedures work
on one pair of adjacent vertices. These procedures are confluent, but their cost is inherently
exponential.

It is expected that propositional classical logic normalisation is inherently exponential
and non-confluent, and in fact we observe both these phenomena. However, they are sepa-
rated into two distinct phases, which can be studied independently. It is worth noting that
cut elimination is achieved with less than exponential cost.

The main contribution of this thesis is the use of atomic flows for arguing about normal-
isation. While it is true that all the results could be reformulated in terms of derivations, this
would only serve to obfuscate what is going on.

It should be noted that all the important properties of normalisation can be proven in
terms of atomic flows alone. In particular results about complexity, termination, confluence
and correctness can be proven without reference to derivations. The challenge in designing
normalisation procedures is finding the correct atomic flow transformation, verifying that a
transformation can be lifted to derivations is always straight forward.
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There are two reasons to consider flows to describe the essence of proofs from the point
of view of normalisation: Firstly, the flow of a proof determines how the proof can be
normalised. Secondly, isomorphisms between atomic flows are preserved by normalisation.
That is, the results of normalising two proofs with isomorphic atomic flows have isomorphic
atomic flows.

With respect to future work, two aspects of normalisation are especially relevant to this
thesis: bureaucracy and complexity.

The complexity of cut elimination in the sequent calculus is known to be exponential
[Sta78] and it is known that cut elimination has less than exponential cost in deep inference
[Jeř09], however no lower bound exists. Furthermore, this thesis presents normal forms for
which only exponential cost normalisation procedures are known. A possible direction of
future work is to establish atomic flows as a tool for studying complexity, and to discover
new normalisation procedures with lower complexity bounds.

The term bureaucracy was coined by Girard to denote arbitrary syntactic dependencies
in proofs. The presence of bureaucracy means that proofs that are ‘essentially the same’ do
not have a common canonical representation. Since all known formalisms have some degree
of bureaucracy, an important aspect of any normalisation procedures is how it behaves with
respect to bureaucracy. A desirable property is that, if two proofs are the same modulo
bureaucracy, they have the same normal forms modulo bureaucracy. For the procedures
presented in this thesis, this property always holds for notions of bureaucracy captured by
atomic flows. Hence, another possible direction of future work is to show what notions
of bureaucracy atomic flows capture and to adapt atomic flows to capture more notions of
bureaucracy.
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Part I

Derivations
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Chapter 2

Propositional Classical Logic

The traditional formalism in deep inference is the calculus of structures [Gug07].

The idea of a new formalism, named formalism A based on the calculus of structures,
but where derivations contain less bureaucracy, was proposed by Guglielmi in [Gug04], and
later Brünnler and Lengrand developed a term calculus around these ideas [BL05].

In this chapter I define a formalism based on the ideas of formalism A and call it (as
suggested by François Lamarche) the functorial calculus. The reason to introduce a new for-
malism is that it greatly simplifies the presentation of some of the more technical results in
this thesis (in particular Section 6.4.1 on page 65).

After presenting the functorial calculus we compare it briefly with the calculus of struc-
tures before we introduce the standard deductive system for classical logic in deep inference
and show some preliminary results.

We now define ‘formulae’ and ‘inference rules’, which are in common between both the
functorial calculus and the calculus of structures. Definitions 2.0.1 to 2.0.4 on pages 6–7 are
based on definitions given in [BG09]. The focus of this thesis is classical propositional logic,
and the following definitions reflect this. However, it is worth noting that the definitions can
be generalised to other units and connectives, if one wants to present other logics.

Definition 2.0.1. We define a set of formulae, denoted by α, β, γ , δ to be:

• atoms, denoted by a, b , c , d and ā, b̄ , c̄ , d̄ ;

• formula variables, denoted by A, B , C , D ;

• units f (false) and t (true); and

• the disjunction and conjunction of formulae α and β, denoted by [α ∨β] and (α ∧β),
respectively.

A formula is ground if it contains no variables. We usually omit external brackets of formulae,
and sometimes we omit dispensable brackets under associativity. We use ≡ to denote literal
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equality of formulae. The size |α| of a formula α is the number of unit, atom and variable
occurrences appearing in it. On the set of atoms there is an involution ·̄, called negation (i.e.,
·̄ is a bijection from the set of atoms to itself such that ¯̄a ≡ a); we require that ā 6≡ a for every
a; when both a and ā appear in a formula, we mean that atom a is mapped to by ā by ·̄. A
context is a formula where one hole { } appears in the place of a subformula; for example,
a ∨ (b ∧ { }) is a context; the generic context is denoted by ξ { }. The hole can be filled with
formulae; for example, if ξ { } ≡ b ∧ [{ } ∨ c], then ξ {a} ≡ b ∧ [a ∨ c], ξ {b} ≡ b ∧ [b ∨ c]
and ξ {a ∧ b} ≡ b ∧ [(a ∧ b ) ∨ c]. The size of ξ { } is defined as |ξ { }|= |ξ {a}|− 1.

Definition 2.0.2. A renaming is a map from the set of atoms to itself, and it is denoted by
{a1/b1,a2/b2, . . .}. A renaming of α by {a1/b1,a2/b2, . . .} is indicated by α{a1/b1,a2/b2, . . .}
and is obtained by simultaneously substituting every occurrence of ai in α by bi and ev-
ery occurrence of āi by b̄i ; for example, if α ≡ a ∧ [b ∨ (a ∧ [ā ∨ c])] then α{a/b̄ , b̄/c} ≡
b̄ ∧
�

c̄ ∨
�

b̄ ∧ [b ∨ c]
��

. A substitution is a map from the set of formula variables to the set
of formulae, denoted by {A1/β1,A2/β2, . . .}. An instance of α by {A1/β1,A2/β2, . . .} is in-
dicated by α{A1/β1,A2/β2, . . .} and is obtained by simultaneously substituting every occur-
rence of variable Ai in α by formula βi ; for example if α ≡ A∨ (b ∧ c) then α{A/

�

c ∧ b̄
�

} ≡
�

c ∧ b̄
�

∨ (b ∧ c).

Convention 2.0.3. By the above definition, formula variables will only be used to define
inference rules, and will never appear in derivations. However, when we perform normalisa-
tion we will sometimes single out atom occurrences (by decorating them) and substitute on
them as if they were formula variables.

Definition 2.0.4. An inference rule ρ is an expression
α

ρ−−−
β

, where the formulae α and β

are called premiss and conclusion, respectively. A (deductive) system is a finite set of infer-

ence rules. An inference rule instance
γ

ρ−−−
δ

of
α

ρ−−−
β

is such that γ and δ are ground, and γ ≡

α{a1/b1,a2/b2, . . .}{A1/β1,A2/β2, . . .} andδ ≡β{a1/b1,a2/b2, . . .}{A1/β1,A2/β2, . . .}, for
some renaming {a1/b1,a2/b2, . . .} and substiution {A1/β1,A2/β2, . . .}.

2.1 The Functorial Calculus

We now present the functorial calculus in the context of classical propositional logic and give
some basic results.

The intuition behind derivations in the functorial calculus is that we can compose deriva-
tions by the same connectives we can compose formulae.

Definition 2.1.1. Given a deductive system S , and formulae α andβ; a (functorial calculus)

derivation Ψ in S from α to β, denoted
α
Ψ





S
β

, is defined to be
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1. a formula: Ψ = α≡β;

2. a vertical composition:

Ψ =

α
Φ1







β′
ρ−−−
α′

Φ2







β

,

where
β′

ρ−−−
α′

is an instance of an inference rule from S , and
α

Φ1





S
β′

and
α′

Φ2





S
β

are deriva-

tions; or

3. a horizontal composition:

Ψ =
α1
Φ1







β1

∧
α2
Φ2







β2

or Ψ =
α1
Φ1







β1

∨
α2
Φ2







β2

,

where
α1
Φ1







β1

and
α2
Φ2







β2

are derivations, and α ≡ α1 ∨α2 and β ≡ β1 ∨β2, or α ≡ α1 ∧α2

and β≡β1 ∧β2, respectively.

A derivation with premiss t is, from now on, called a proof.

The size of a derivationΨ, denoted |Ψ|, is defined to be the sum of the size of the formulae
appearing in Ψ.

Convention 2.1.2. Given derivations
α1
Φ1







β1

,
α2
Φ2







β2

and
α3
Φ3







β3

, and inference rule instances
β1

ρ1 −−−
α2

and
β2

ρ2 −−−
α3

we consider



















α1
Φ1







β1
ρ1 −−−−−

α2
Φ2







β2



















ρ2 −−−−−−−−−−−−−
α3
Φ3







β3

and

α1
Φ1







β1
ρ1 −−−−−−−−−−−−−

















α2
Φ2







β2
ρ2 −−−−−
α3
Φ3







β3


















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to be equal, and we denote them both by

α1
Φ1







β1
ρ1 −−−
α2
Φ2







β2
ρ2 −−−
α3
Φ3







β3

.

Remark 2.1.3. If desireable, Convention 2.1.2 on the preceding page could be made redun-
dant by forcing associativity of horizontal composition in Definition 2.1.1 on page 7. The
only reason we did not do this was for the sake of brevity of the following results.

Lemma 2.1.4. Given a derivation
α
Φ







β
and a context ξ { }, a derivation

ξ {α}
Ψ







ξ {β}
, with size |Φ|+

|ξ { }|, can be constructed.

Proof. We proceed by structural induction on ξ { }. The base case, ξ { } ≡ { }, is trivial. For
the inductive case, let

ξ { } ≡ ξ ′{ } ∧ γ , ξ { } ≡ γ ∧ ξ ′{ } ,

ξ { } ≡ ξ ′{ } ∨ γ or ξ { } ≡ γ ∨ ξ ′{ } .

for some formula γ and a context ξ ′{ }. By the inductive hypothesis we can construct the

derivation
ξ ′{α}
Ψ′







ξ ′{β}
, so the result follows by case (3) of Definition 2.1.1 on page 7.

Notation 2.1.5. Given a derivation
α
Φ







β
and a context ξ { }, the derivation

ξ {α}







ξ {β}
constructed

in the proof of Lemma 2.1.4 is denoted ξ {Φ}.

Lemma 2.1.6. Given two derivations
α

Φ1







β
and

β
Φ2







γ
, a derivation

α
Ψ







γ
, with size |Φ1|+ |Φ2|− |β|,

can be constructed.

Proof. We argue by structural induction on Φ1

1. if Φ1 =β then Ψ=Φ2, with size |Φ1|+ |Φ2| − |β|;

9



2. if

Φ1 =

α
Φ′1







β′
ρ−−−
α′

Φ′′1







β

,

then, by the inductive hypothesis, we can construct
α′

Ψ′







γ
, with size

�

�

�Φ′′1
�

�

�+ |Φ2|−|β|, we

can then build

Ψ =

α
Φ′1







β′
ρ−−−
α′

Ψ′







γ

,

with size
�

�

�Φ′1
�

�

�+
�

�Ψ′
�

�=
�

�

�Φ′1
�

�

�+
�

�

�Φ′′1
�

�

�+ |Φ2| − |β|= |Φ1|+ |Φ2| − |β|;

3. if

Φ1 =
α1

Φ1,1







β1

∨
α2

Φ1,2







β2

or Φ1 =
α1

Φ1,1







β1

∧
α2

Φ1,2







β2

we argue by structural induction on Φ2:

(a) if Φ2 is a formula (resp., a vertical composition), the result follow by a symmetric
argument to case 1 (resp., 2) above.

(b) if

Φ2 =
β1

Φ2,1







γ1

∨
β2

Φ2,2







γ2

or Φ2 =
β1

Φ2,1







γ1

∧
β2

Φ2,2







γ2

then, by the first inductive hypothesis, we can construct

α1
Ψ1







γ1

and
α2
Ψ2







γ2

,

with size
�

�

�Φ1,1

�

�

�+
�

�

�Φ2,1

�

�

�−|β1| and
�

�

�Φ1,2

�

�

�+
�

�

�Φ2,2

�

�

�−|β2|, respectively, we can then

build

Ψ =
α1
Ψ1







γ1

∨
α2
Ψ2







γ2

or Ψ =
α1
Ψ1







γ1

∧
α2
Ψ2







γ2

with size |Ψ1|+ |Ψ2|=
�

�

�Φ1,1

�

�

�+
�

�

�Φ1,2

�

�

�+
�

�

�Φ2,1

�

�

�+
�

�

�Φ2,2

�

�

�−(|β1|+ |β2|) = |Φ1|+ |Φ2|−
|β|.
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Notation 2.1.7. Given derivations
α

Φ1







β
and

β
Φ2







γ
, the derivation

α
Ψ







γ
constructed in the proof

of Lemma 2.1.6 on page 9 is denoted:

α
Φ1







β
Φ2







γ

.

2.2 The Calculus of Structures

We now present the calculus of structures and in Theorem 2.2.2 and Theorem 2.2.6 on
page 13 we show that the functorial calculus and the calculus of structures polynomially
simulate each other.

The intuition behind derivations in the calculus of structures is that we rewrite formulae
by applying inference rules inside a context.

Definition 2.2.1. Given a deductive system S , a set of formulae,F , and α and β fromF ;

a calculus of structures derivation Ψ in S from α to β, denoted
α
Ψ





S
β

, is defined to be

1. a formula: Ψ = α≡β; or

2. a vertical composition:

Ψ =

α
Φ1







ξ {β′}
ρ−−−−−−−−
ξ {α′}
Φ2







β

,

where
β′

ρ−−−
α′

is an instance of an inference rule fromS , and
α

Φ1





S
ξ {β′}

and
ξ {α′}
Φ2





S
β

are calculus

of structures derivations.

The size of a calculus of structures derivation Ψ, denoted |Ψ|, is defined to be the sum of the
size of the formulae appearing in Ψ.
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Theorem 2.2.2. A calculus of structures derivation
α
Φ







β
can be transformed into a functorial

calculus derivation
α
Ψ







β
such that |Ψ|¶ |Φ|.

Proof. We argue by structural induction on Φ. The base case is trivial; Φ = α ≡β=Ψ. For
the inductive case, consider the following calculus of structures derivation:

Φ =

α
Φ1







ξ {β′}
ρ−−−−−−−−
ξ {α′}
Φ2







β

.

By the inductive hypothesis, there are functorial calculus derivations
α

Ψ1







ξ {β′}
and

ξ {α′}
Ψ2







β
, such

that |Ψ1| ¶ |Φ1| and |Ψ2| ¶ |Φ2|. By Lemma 2.1.4 on page 9, there is a functorial calculus

derivation ξ

¨

β′
ρ−−−
α′

«

, with size |ξ { }| +
�

�α′
�

� +
�

�β′
�

�. By Lemma 2.1.6 on page 9, we can

combine the three functorial calculus derivations to create
α
Ψ







β
, with size |Ψ1|+ |Ψ2|+ |ξ { }|+

�

�β′
�

�+
�

�α′
�

�− |ξ { }|−
�

�β′
�

�− |ξ { }|−
�

�α′
�

�= |Ψ1|+ |Ψ2| − |ξ { }|¶ |Φ1|+ |Φ2|= |Φ|.

Example 2.2.3. Figure 4-1 on page 30 has three examples of calculus of structures derivations
transformed into functorial calculus derivations.

Lemma 2.2.4. Given a calculus of structures derivation
α
Φ







β
and a context ξ { }, a calculus of

structures derivation
ξ {α}
Ψ







ξ {β}
can be constructed, such that the number of inference rule instances

inΨ is the same as the number of inference rule instances in Φ, and the size of the largest formula
in Ψ is the sum of the largest formula in Φ and |ξ { }|.

Proof. The statements follows by structural induction on Φ.

Lemma 2.2.5. Given two calculus of structures derivations
α

Φ1







β
and

β
Φ2







γ
, a calculus of structures

derivation
α
Ψ







γ
can be constructed, such that the number of inference rule instances inΨ is the sum
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of the number of inference rule instances in Φ1 and Φ2 combined, and the largest formula inΨ is
the largest formula of Φ1 or the largest formula of Φ2.

Proof. The statement follows by structural induction on Φ1.

Theorem 2.2.6. A functorial calculus derivation
α
Φ







β
can be transformed into a calculus of struc-

tures derivation
α
Ψ







β
such that the size of Ψ depends at most quadratically on the size of Φ.

Proof. We first show how to construct Ψ: The base cases, when Φ is a formula or a vertical
composition, are trivial. For the inductive case, consider a conjunction of functorial calculus
derivations (the argument for the disjunction is similar):

Φ =
α1
Φ1







β1

∧
α2
Φ2







β2

.

By the inductive hypothesis and Lemma 2.2.4 on the preceding page there are calculus of
structures derivations

α1 ∧α1
Ψ1







β1 ∧α1

and
β1 ∧α2
Ψ2







β1 ∧β2

,

and by Lemma 2.2.5 there exists a calculus of structures derivation
α1 ∧α2
Ψ







β1 ∧β2

.

To find an upper bound on the size of Ψ, we observe that it depends at most linearly on
the number of inference rule instances in Ψ multiplied by the size of the largest formula in
Ψ. Furthermore, by the above Lemmata, the number of inference rules in Ψ is the same as
the number of inference rules in Φ and the size of the largest inference rule depends at most
linearly on the size of Φ, so the size of Ψ depends at most quadratically on the size of Φ.

The calculus of structures is now well developed for classical [Brü03a, Brü06a, Brü06d,
BT01, Brü06b], intuitionistic [Tiu06a], linear [Str02, Str03b], modal [Brü06c, GT07, Sto07]
and commutative/non-commutative logics [Gug07, Tiu06b, Str03a, Bru02, DG04, GS01,
GS02, GS09, Kah06, Kah07]. The basic proof complexity properties of the calculus of struc-
tures are known [BG09]. The calculus of structures promoted the discovery of a new class of
proof nets for classical and linear logic [LS05a, LS05b, LS06, SL04] (see also [Gui06]). There
exist implementations in Maude of deep-inference proof systems [Kah08].

13



2.3 System SKS

We now define the standard deductive system SKS for classical propositional logic in deep
inference [Brü03a, Brü06a, Brü06d, BT01]. For an excellent reference to previous work on
normalisation in SKS, see [Brü04]. Subsystems of SKS are used throughout this thesis.

The results presented in this section, with the exception of Theorem 2.3.14 on page 18,
are standard results which can be found in the literature. We include the proofs for complete-
ness and as means for giving examples of the functorial calculus.

Definition 2.3.1. System SKS is defined by the following structural inference rules:

t
ai↓ −−−−−

a ∨ ā

f
aw↓ −−−

a

a ∨ a
ac↓ −−−−−

a

a ∧ ā
ai↑ −−−−−

f

a
aw↑ −−−

t

a
ac↑ −−−−−

a ∧ a
,

the logical inference rules:

A∧ [B ∨C ]
s−−−−−−−−−−−−−−
(A∧B) ∨C

(A∧B) ∨ (C ∧D)
m−−−−−−−−−−−−−−−−−−−−−−
[A∨C ] ∧ [B ∨D]

,

and the invertible (logical) rules:

A∨B
=∨c −−−−−−

B ∨A

A∧B
=∧c −−−−−−

B ∧A

A∨ [B ∨C ]
=a↓ −−−−−−−−−−−−−−[A∨B] ∨C

(A∧B) ∧C
=a↑ −−−−−−−−−−−−−

A∧ (B ∧C )

A
=f↓ −−−−−

A∨ f

A
=t↓ −−−−−

A∧ t

t ∧A
=f↑ −−−−−

A

f ∨A
=t↑ −−−−−

A

f
=f∧↓ −−−−

f ∧ f

t
=t∨↓ −−−−

t ∨ t

t ∨ t
=f∧↑ −−−−

t

f ∧ f
=t∨↑ −−−−

f
.

The calculus of structures and system SKS were originally defined in terms of equiva-
lence classes of formulae, called ‘structures’, and without the above invertible logical rules.
However, we find it more convenient to use formulae instead, since it makes it simpler to
‘trace atom occurrences’, which we will see in Section 4.1 on page 28. We now show that the
two approaches are morally the same.

Definition 2.3.2. We define the relation= such that, given formulae α andβ, α=β if there

is a derivation
α
Φ





{=∨c,=∧c,=a↓,=a↑,=f↓,=t↓,=f↑,=t↑,=f∧↓,=t∨↓,=f∧↑,=t∨↑}
β

.

Notation 2.3.3. If α=β, we often write
α

=−−−
β

.
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Remark 2.3.4. By Notation 2.3.3 on the facing page and Lemma 2.1.4 on page 9, for any
formulae α and β and context ξ { } we have that α=β implies ξ {α}= ξ {β}.

Proposition 2.3.5. The relation = defined in Definition 2.3.2 on the facing page is an equiva-
lence relation.

It turns out that the equivalence class induced by = is the same as the structures used in
[Brü04].

Remark 2.3.6. If α=β, then (as remarked in [BG09]) there exists a derivation

α
Φ





{=∨c,=∧c,=a↓,=a↑,=f↓,=t↓,=f↑,=t↑,=f∧↓,=t∨↓,=f∧↑,=t∨↑}
β

whose size depends at most quadratically on the sum of the sizes of α and β.

Notation 2.3.7. When we work in (subsystems of) SKS, we often omit mentioning the
invertible rules. Given S be a subsystem of SKS, then, unless specified otherwise, when
we write S we mean S ∪ {=∨c,=∧c,=a ↓,=a ↑,=f↓,=t↓,=f↑,=t↑,=f∧↓,=t∨↓,=f∧↑,=t∨↑}.
Furthermore, if ρ ∈ SKS, and there is a derivation

α
=−−−
α′

ρ−−−
β′
=−−−
β

we sometimes write
α

ρ−−−
β

.

E.g., instead of the derivation
α ∨β

=∨c −−−−−−
β ∨α

∧ γ

=∧c −−−−−−−−−−−−−−−−
γ ∧ [β ∨α]

s−−−−−−−−−−−−−
(γ ∧β) ∨α

=∨c −−−−−−−−−−−−−−−−

α ∨
γ ∧β

=∧c −−−−−−
β ∧ γ

,

we write
[α ∨β] ∧ γ

s−−−−−−−−−−−−−
α ∨ (β ∧ γ )

.

See the proofs of Theorems 6.3.2 to 6.4.4 on pages 53–61 for more examples of implicit
equations.

We now give some standard results which will also serve as examples of system SKS and
the functorial calculus.
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Lemma 2.3.8. Given a context ξ { } and a formula α there exist derivations
α ∧ ξ {t}






{s}
ξ {α}

and

ξ {α}





{s}
ξ {f} ∨α

; both of whose size depend at most quadratically on the size of ξ {α}.

Proof. We show how to construct the first derivation, the second one can be done symmet-
rically. We argue by induction on the number of atom occurrences in ξ { }. The base case,
ξ { }= { }, is trivial and the inductive cases are:

α ∧
ξ {t}

=−−−−−−−−−−−
ξ ′{t} ∨β

s−−−−−−−−−−−−−−−−−−−−−−−





α ∧ ξ ′{t}
Ψ





{s}
ξ ′{α}

∨ β







=−−−−−−−−−−−−−−−−−−−−−−−
ξ {α}

and

α ∧ ξ {t}
=−−−−−−−−−−−−−−−−−−−−−−−−





α ∧ ξ ′{t}
Ψ′





{s}
ξ ′{α}

∧ β







=−−−−−−−−−−−−−−−−−−−−−−−−
ξ {α}

,

for some ξ ′{ } and β where β is not a unit and Ψ and Ψ′ exist by the inductive hypothesis.

Notation 2.3.9. We often write
α ∧ ξ {t}

ss↑ −−−−−−−−−−
ξ {α}

and
ξ {α}

ss↓ −−−−−−−−−−
ξ {f} ∨α

, instead of, respectively, the

derivations
α ∧ ξ {t}








ξ {α}
and

ξ {α}







ξ {f} ∨α
, as defined in the proof of Lemma 2.3.8. Instead of the

derivation
ζ {α}

ss↓ −−−−−−−−−−
ζ {f} ∨α

∧ ξ {t}
s−−−−−−−−−−−−−−−−−−−−−−−

ζ {f} ∨
α ∧ ξ {t}

ss↑ −−−−−−−−−−
ξ {α}

we write
ζ {α} ∧ ξ {t}

ss−−−−−−−−−−−−−−
ζ {f} ∨ ξ {α}

.

We now show a consequenc of the previous Lemma, which will be very useful in Subsec-
tion 6.4.1 on page 65.

Lemma 2.3.10. Given a formula α and an atom a, there exist derivations
a ∧α{a/t}






{ac↑,s}
α

and

α





{ac↓,s}
α{a/f} ∨ a

; both of whose size depend at most quadratically on the size of α.
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Proof. We show how to construct the first derivation, the second one can be done sym-
metrically. The result follows by induction on the number of occurrences of a in α, and
Lemma 2.3.8 on the preceding page. The base case is trivial. Let ξ { } be some context such
that, α= ξ {a}, then the inductive case is:

a
−−−−−
a ∧ a

∧ (ξ {a/t}){t}





{s}
a ∧ (ξ {a/t}){a}

.

For an example of the use of Lemma 2.3.10 on the facing page see Remark 2.3.16 on
page 19.

Lemma 2.3.11. Given a formula α, there exist derivations
f





{aw↓,s}
α

and
α





{aw↑,s}
t

; both of whose

size depend at most quadratically on the size of α.

Proof. We show how to construct the first derivation, the second one can be done symmetri-
cally. Let a1, . . . , an be the atoms appearing in α, then there exists a derivation

α{a1/f, . . . ,an/f}





{aw↓}
α

.

Since α{a1/f, . . . ,an/f} contains no atom occurrences, there exists a derivation

f





{=f↓,=t↓,=f∧↓,=t∨↓}
α{a1/f, . . . ,an/f}

or

f
=−−−−−−−−−−

f ∧ [t ∨ f]
s−−−−−−−−−−
(f ∧ t) ∨ t
=−−−−−−−−−−

t





{=f↓,=t↓,=f∧↓,=t∨↓}
α{a1/f, . . . ,an/f}

.

Lemma 2.3.12. Given a formula α, there exist derivations
α ∨α





{ac↓,m}
α

and
α





{ac↑,m}
α ∧α

; both of

whose size depend at most quadratically on the size of α.

Proof. We show how to construct the first derivation, the second one can be done symmet-
rically. We argue by induction on the size of α. We have to consider the following three base
cases

t ∨ t
=f∧↑ −−−−

t
,

f ∨ f
=t↑ −−−−

f
and

a ∨ a
−−−−−

a
,
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and two inductive cases:

(α ∧β) ∨ (α ∧β)
m−−−−−−−−−−−−−−−−−−−−−−−−−−−−
α ∨α





{ac↓,m}
α

∧
β ∨β





{ac↓,m}
β

and

[α ∨β] ∨ [α ∨β]
=−−−−−−−−−−−−−−−−−−−−−−−−−−−−
α ∨α





{ac↓,m}
α

∨
β ∨β





{ac↓,m}
β

.

Notation 2.3.13. In the non-atomic version of system SKS the derivations shown in the
proofs of Lemma 2.3.11 on the preceding page and Lemma 2.3.12 on the previous page cor-
respond to (co)weakening and (co)contractions, respectively. For this reason we sometimes

write the inference rules
f

w↓ −−−
α

,
α

w↑ −−−
t

,
α ∨α

c↓ −−−−−−
α

and
α

c↑ −−−−−−
α ∧α

instead of the derivations
f





{aw↓,s}
α

,

α





{aw↑,s}
t

,
α ∨α





{ac↓,m}
α

and
α





{ac↑,m}
α ∧α

, respectively.

To give an example of the notions defined so far, we now show a completeness proof of
system SKS.

Theorem 2.3.14. System SKS is complete for propositional classical logic.

Proof. Consider a tautology α. We show by induction on the number of atoms appearing in
α that there exists a proof of α in SKS. For the base case, let α consist only of units. Then,
since α is a tautology, we can build

t





{=f↓,=t↓,=f∧↓,=t∨↓}
α

.

For the inductive case, let α be a tautology containing instances of the atom a. We con-
sider two cases:

• if α does not contain an instance of ā, then α{a/f} is a tautology, so by the inductive
hypothesis we can build

t







α{a/f}





{aw↓}
α

;
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• otherwise, both α{a/t, ā/f} and α{a/f, ā/t} are tautologies, so by the inductive hypoth-
esis we can build

Φ =

t







α{a/t, ā/f}





{ai↓,aw↓}
α{a/[a ∨ ā]}






{ss↓}





α ∨

ā ∨ · · · ∨ ā





{ac↓}
ā







.

Using Φ and the inductive hypothesis we can build the desired derivation:

t







α{a/f, ā/t}





{aw↓}
α{ā/t}








α{ā/[α ∨ ā]}





{ss↓}
α ∨ · · · ∨α






c↓
α

.

Remark 2.3.15. Given any formulae α and β and any context ξ { }, then, by a construc-
tion similar to the one in the proof of Lemma 2.3.8 on page 16, we can build a derivation
ξ {α ∨β}






{s,=∨c,=∧c,=a↓}
ξ {α} ∨β

. If we use this derivation instead of the rule ss ↓ in the proof of Theo-

rem 2.3.14 on the preceding page, it follows that the system

{ai↓,ac↓,aw↓, s,m,=∨c,=∧c,=a ↓,=f↓,=t↓,=f∧↓,=t∨↓}

is complete for classical logic. This justifies the naming of the invertible rules, as the tradition
is in deep inference to label admissible rules with an ↑.

Remark 2.3.16. If we do not restrict ourselves to the downfragment of SKS, we can build a
more compact proof than what we do in Theorem 2.3.14 on the facing page, by using the

19



following as the inductive case:

t















t
−−−−−
a ∨ ā

∧ α{a/t, ā/f}
s−−−−−−−−−−−−−−−−−−−−−−−−
(a ∧α{a/t, ā/f}) ∨ ā

∧ α{a/f, ā/t}









s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−




a ∧

α{a/t, ā/f}





{aw↓}
α{a/t}












{ac↑,s}
α

∨






ā ∧

α{a/f, ā/t}





{aw↓}
α{ā/t}












{ac↑,s}
α

c↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
α

,

where we have used the derivations constructed in the proof of Lemma 2.3.10 on page 16.
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Part II

Atomic Flows
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Chapter 3

Atomic Flows

In this chapter we introduce the main tool used in this thesis, a geometric proof invariant
called ‘atomic flows’. An atomic flow is a directed graph obtained from a derivation by only
retaining information about the creation and destruction of atom occurrences. Notably, the
atomic flow of a derivation completely disregards all the logical relations and linear inference
rule instances; so, an atomic flow is not a derivation.

Atomic flows can be seen as either specialised Buss flow graphs [Bus91, Car97], or a vari-
ation of the kind of proof nets developed in [Str05, Str09], based on work done in [LS05b].
The only difference between atomic flows and these proof nets is that the proof nets im-
plement (co)associativity of (co)contraction and dinaturality of interaction and cut, while
atomic flows do not. For a more detailed comparison see [Str09]. Despite their similarities,
the motivation and use of atomic flows differ from that of proof nets.

We can think of atomic flows as composite diagrams that are freely generated from a set
of six elementary diagrams. Technically, atomic flows are special kinds of labelled directed
acyclic graphs, and the properties of their vertices are dictated by their labels, which we
define as follows.

Definition 3.0.1. We call the following six diagrams (atomic-flow) labels:

1 2 1

1 2

3

ai↓ or interaction aw↓ or weakening ac↓ or contraction

1 2 1

1 2

3

ai↑ or cut aw↑ or coweakening ac↑ or cocontraction

.

Definition 3.0.2. An (atomic) flow is a tuple (V , E ,η, up, lo), such that:

1. V is a finite set of vertices, denoted by ν;

2. E is a finite set of edges, denoted by ε, ι or small numerals 1, 2, . . . ;
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3. η : V →{ai↓,ai↑,aw↓,aw↑,ac↓,ac↑}maps vertices to their labels;

4. up: E →V ∪{>} and lo: E →V ∪{⊥} are, respectively, the upper and lower maps, and
> and ⊥ are special vertices not belonging to V ; we define, for every ν ∈ V ∪ {>,⊥},
the set Lν = {ε | up(ε) = ν } of lower edges of ν, the set Uν = {ε | lo(ε) = ν } of upper
edges of ν, and the set Eν = Lν ∪Uν of edges of ν;

5. if |S | denotes the cardinality of set S, we have that

if η(ν) = ai↓ then |Lν |= 2 and |Uν |= 0,
if η(ν) = ai↑ then |Lν |= 0 and |Uν |= 2,

if η(ν) = aw↓ then |Lν |= 1 and |Uν |= 0,
if η(ν) = aw↑ then |Lν |= 0 and |Uν |= 1,
if η(ν) = ac↓ then |Lν |= 1 and |Uν |= 2,
if η(ν) = ac↑ then |Lν |= 2 and |Uν |= 1;

6. there is no sequence ε1, . . . , εh of edges of V such that up(εi ) = lo(εi+1 (mod h)), for
1¶ i ¶ h;

7. there is a polarity assignment π : E →{−,+} such that, for every ν ∈V ,

(a) if η(ν) ∈ {ac↓,ac↑} then π(Eν ) = {−} or π(Eν ) = {+};
(b) if η(ν) ∈ {ai↓,ai↑} then π(Eν ) = {−,+}.

Given an atomic flow φ, we say that the sets L> = {ε1, . . . ,εh} and U⊥ = {ι1, . . . , ιk} contain,
respectively, the upper and lower edges of φ.

Notation 3.0.3. We will use the letters φ and ψ, sometimes with standard additional deco-
rations, to denote atomic flows.

An atomic flow is a directed graph, whose edges are associated to atom occurrences in
derivations, and the direction of the edges corresponds to the up-down direction in a deriva-
tion. Vertices are associated to points in the derivation where atom occurrences are created
or destroyed, and the nature of each vertex is described by its label. Naturally, these graphs
are acyclic (condition 6). The two special vertices> and⊥ represent the top and bottom of a
derivation: we can consider > the vertex that creates all the atom occurrences in the premiss
and ⊥ the vertex that destroys all atom occurrences in the conclusion.

The polarity assignment condition (7) ensures that atoms in (co)contractions have the
same polarity, and those in interactions and cuts have dual polarities (as happens in deriva-
tions). Every atomic flow has 2n polarity assignments, where n is the number of connected
components in the graph. We should not be worried about the apparent complexity of
the polarity assignment condition: in fact, we could equivalently consider two sorts of
(co)contraction and (co)weakening labels, the negative and the positive ones, and ask for ver-
tices to be joined by respecting their polarities. This is clearly a locally checkable property,
much simpler than, for example, some global correctness criterion for proof nets.
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Notation 3.0.4. Letφ be a flow with upper edges ε= ε1, . . . ,εn and lower edges ι= ι1, . . . , ιm ,
we then represent it as

ε
1 · · ·

ε
n

φ

ι
1 · · ·

ι
m

or

ε

φ

ι

.

We sometimes use flow labels to indicate what kind of vertices a flow might contain. E.g., the
following flows

and ,

do not contain ai↓, ai↑, aw↓, aw↑ vertices, and in addition the flow to the right does not
contain ac↑ vertices.

In general, we represent atomic flows as directed-graph diagrams, except that the special
vertices> and⊥ are not shown, and the labels of the vertices are explicitly shown as graphical
elements. When we refer to the vertices of an atomic flow, we do not include > and ⊥.
Sometimes we identify vertices with their labels.

Example 3.0.5. Consider the flow

A= ({ ν1 , ν2 , ν3 },
{ 1 , 2 , 3 , 4 , 5 },
{ ν1 7→ ai↑ , ν2 7→ ac↑ , ν3 7→ ai↑ },
{ 1 7→ > , 2 7→ > , 3 7→ ν2 , 4 7→ ν2 , 5 7→ > },
{ 1 7→ ν1 , 2 7→ ν2 , 3 7→ ν1 , 4 7→ ν3 , 5 7→ ν3 }) ;

the following are three of its possible representations:

4

21 5

3

,
1 +

3 4

2 − + 5

and 3 4

2 +1 − 5 −

,

in the last two diagrams, we also indicated each of the two possible polarity assignments.
This flow has one cocontraction and two cointeraction vertices; it has three upper edges, 1, 2

and 5, and no lower edges.

Example 3.0.6. The flow

,

is obtained by juxtaposing (i.e., taking the disjoint union of):

• three edges,
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• a flow obtained by composing a cut vertex with a cocontraction vertex, and

• a flow obtained by composing an interaction vertex with a cut vertex.

Note that there are no cycles in the flow, and that we can find 32 different polarity assign-
ments, i.e., two for each of the five connected components of the flow.

Example 3.0.7. The following two diagrams are not atomic flows:

and .

The left one is not a flow because it contains a cycle, and the right one because there is no
possible polarity assignment.

Definition 3.0.8. Given two flows φ1 = (V1, E1,η1, up1, lo1) and φ2 = (V2, E2,η2, up2, lo2),
an isomorphism between φ1 and φ2 is a pair of functions ( fV , fE ), such that

• fV is a bijection from V1 to V2; and

• fE is a bijection from E1 to E2,

such that, for every ε in E1,

• for every ν in V1, up1(ε) = ν (resp., lo1(ε) = ν) if and only if up2( fE (ε)) = fV (ν) (resp.,
lo2( fE (ε)) = fV (ν)); and

• up1(ε) => (resp., lo1(ε) =⊥) if and only if up2( fE (ε)) => (resp., lo2( fE (ε)) =⊥).

Notation 3.0.9. We extend the double-line notation to collections of isomorphic flows. For
example, for n ¾ 0; ε= ε1, . . . ,εn ; ε′ = ε′1, . . . ,ε′n ; and ε′′ = ε′′1 , . . . ,ε′′n , the following diagrams
represent the same flow:

ε ε
′

ε
′′

and
ε

1
ε
′

1
ε
′′

1

· · ·

ε
n

ε
′

n
ε
′′

n

.

Notation 3.0.10. Given a flow
ε

φ

ι

,

and a flow ψ which is isomorphic to φ, whenever we write

ψ =

f (ε)

f (φ)

f (ι)

,

we mean that f is a given isomorphism between φ and ψ.
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Notation 3.0.11. Given a flow φ and a polarity assignment π for φ, whenever we write

+ φ or − φ ,

respectively, we mean that all the edges in φ have polarity assignment + or −, respectively. If
we label a flow with a polarity assignment it can not contain any interaction or cut vertices
duo to property 7 of Definition 3.0.2 on page 22.

Definition 3.0.12. Given a flow φ and a polarity assignment π for φ, the polarity assign-
ment π̄ for φ is defined to be, for every ε in φ:

π̄(ε) =

(

− if π(ε) = +,
+ otherwise.

3.1 Paths and Cycles

We now define the notions of ‘path’, ‘ai-path’ and ‘ai-cycle’ in atomic flows. Paths are se-
quences of adjacent edges that only ‘go down’ or only ‘go up’; ai-paths are formed by joining
paths at interaction or cointeraction vertices; ai-cycles are circular ai-paths.

Definition 3.1.1. Given an atomic flow (V , E ,η, up, lo) and ε1, . . . ,εh ∈ E such that, for
1 ¶ i < h, we have lo(εi ) = up(εi+1), up(ε1) = ν and lo(εh ) = ν

′, we say that ε1, . . . ,εh is a
path from ν to ν ′ and that εh , . . . ,ε1 is a path from ν ′ to ν; both paths have length h.

An ai-path from ν to ν ′ of length h is either a path from ν to ν ′ of length h or a sequence of
edges ε1, . . . ,εk ,εk+1, . . . ,εh such that εk 6= εk+1 and, for some ν ′′ ∈V with η(ν ′′) ∈ {ai↓,ai↑},
we have that ε1, . . . ,εk is an ai-path from ν to ν ′′ and εk+1, . . . ,εh is an ai-path from ν ′′ to ν ′.
An ai-path of length h is maximal if no ai-path containing its edges has length greater than
h. An ai-path from (resp., to) ν of length h is a maximal ai-path from (resp., to) ν if no ai-path
from (resp., to) ν containing its edges has length greater than h.

Example 3.1.2. The flow on the left has the ai-paths on the right, and the paths are marked
with an asterisk:

1

2 3

4

5

1∗

1, 2 2∗ 3∗

1, 2, 4 2, 4∗ 3, 4∗ 4∗

1, 2, 4, 5 2, 4, 5 3, 4, 5 4, 5 5∗

.

In addition, the flow has the paths and ai-paths obtained from the shown ones by inverting
the order of edges, for example 5, 4, 2, 1 is an ai-path. The ai-paths from the interaction vertex
are 1 and 2 and 2, 4 and 2, 4, 5; the ai-paths to the contraction vertex are 1, 2 and 2 and 3 and 4

and 5, 4. The maximal ai-paths are 1, 2, 4, 5 and 3, 4, 5 and their inverses. The maximal ai-paths
from the cointeraction vertex are 4, 2, 1 and 4, 3 and 5; the maximal ai-paths to the contraction
vertex are 1, 2 and 3 and 5, 4.
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3.2 Subflows

Definition 3.2.1. Given two flows φ1 = (V1, E1,η1, up1, lo1) and φ2 = (V2, E2,η2, up2, lo2),
we say that φ1 is a subflow of φ2, if

• V1 ⊂V2;

• E1 ⊂ E2;

• η1 = η2|V1
;

• for every ε in E1

up1(ε) =

(

up2(ε) if up2(ε) ∈V1,
> otherwise.

and

lo1(ε) =

(

lo2(ε) if lo2(ε) ∈V1,
⊥ otherwise.

; and

• if ν1 and ν2 are vertices in φ1, and there is a vertex ν ′ in φ2, such that there are paths
from ν1 to ν ′ and from ν ′ to ν2 in φ2, then ν ′ is a vertex in φ1.

Definition 3.2.2. Given two flows φ and ψ, such that φ is a subflow of ψ, we say that φ is
an isolated subflow of ψ if there is no path in ψ from a vertex in φ to > or ⊥.

Example 3.2.3. In the following flow, φ is an isolated subflow of ψ:

ψ =
φ .

For other examples of isolated subflows see Definition 6.2.1 on page 47 and Definition 6.4.1
on page 59.

Definition 3.2.4. Given two flows φ and ψ, such that φ is a subflow of ψ, we say that φ is
a connected component of ψ if, for any two polarity assignments π and π′ for ψ and for any
two edges ε and ε′ in φ, π(ε) =π(ε′) if and only if π′(ε) =π′(ε′).
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Chapter 4

Atomic Flows and Derivations

4.1 Extracting Flows from Derivations

We now define the mapping from derivations to flows. As we said, the idea is that struc-
tural rule instances map to the respective atomic-flow vertices, and the edges trace the atom
occurrences between rule instances.

Definition 4.1.1. Given a derivation Φ, we define the flow φ associated with Φ:

• if Φ is a unit, then φ is the empty flow;

• if Φ is an atom, then φ is a flow containing only the edge ε and no vertices; we say that
Φ is mapped to ε;

• if Φ = Ψ1 ∨Ψ2 or Φ = Ψ1 ∧Ψ2, and ψ1 and ψ2 are the flow associated with Ψ1 and Ψ2,
respectively, then φ is the disjoint union of ψ1 and ψ2; and

• if

Φ =

A
Φ1







A′
ρ−−−

B ′
Φ2







B

,

where ψ1 (resp., ψ2) is the flow associated with Ψ1 (resp., Ψ2), then φ is obtained by
modifying the disjoint union of φ1 and φ2 in the following way:

– if ρ is a structural inference rule, φ also contains a new vertex ν that is labelled
with the name of ρ. Furthermore, the lower (resp., upper) map of φ maps each
of the lower (resp., upper) edges of φ1 (resp., φ2) to ν; we say that ρ is mapped to
ν, and
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– if ρ is a linear inference rule, then the lower edges of φ1 are pairwise identified
with the upper edges of φ2 in such a way that an atom occurrence in the premiss
of ρ is mapped to the same edge as the corresponding atom occurrence in the
conclusion of ρ.

Remark 4.1.2. Given a derivation Φ, one can associate several atomic flows with it, because
we have to choose names for the vertices and edges. However, this is a rather trivial form
of non-determinism, since the position of atom occurrences and inference rule instances can
be located in a derivation without any ambiguity. Thus, given two atomic flows φ and φ′

associated with the same derivation Φ, there is a unique flow isomorphism between them
that makes the vertices correspond to their position in Φ. Furthermore, if φ is associated
with Φ and if α : φ′ → φ is an atomic flow isomorphism, then one can immediately turn
φ′ into an associated flow for Φ in the following way: for every atom occurrence a (resp.,
structural inference rule instance ρ) in Φ and edge ε (resp., vertex ν) in φ′, we let a (resp., ρ)
map to ε (resp., ν) if and only if a (resp., ρ) maps to α(ε) (resp., α(ρ)).

Remark 4.1.3. It should be noted that the mapping from atom occurrences (resp., rule in-
stances) in Φ to edges (resp., vertices) in φ is not uniquely defined. In other words, φ might
have non-trivial automorphisms. However, this will not cause us any problems in this thesis,
as in the cases where the mapping is ambiguous (Section 7.1), we only rely on its existence.

Example 4.1.4. The following flow has an automorphism that maps 1 to 2 and 2 to 1

1 2 ,

it can therefore be associated with the following derivation in two different ways

a
ac↑ −−−−−

a ∧ a
=−−−−−−−−−−−−−−−−−
(a ∧ a) ∨ (t ∧ f)

m−−−−−−−−−−−−−−−−−−
[a ∨ t] ∧ [a ∨ f]

s−−−−−−−−−−−−−−−−−−
a ∨ (t ∧ [a ∨ f])
=−−−−−−−−−−−−−−−−−

a ∨ a
ac↓ −−−−−

a

.

Example 4.1.5. Figure 4-1 on the next page has three examples of derivations and their as-
sociated flows, where colours are used to indicate the mapping from atom occurrences to
edges.

Definition 4.1.6. Given a derivation Φ with flow φ, and an atom a, the restriction of φ to a
is the largest subflow ψ of φ, such that every edge of ψ is mapped to from occurrences of a
or ā.
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t
ai↓ −−−−−

a ∨ ā
=−−−−−−−−−−−−−−−−
(a ∧ t) ∨ (t ∧ ā)

m−−−−−−−−−−−−−−−−−
[a ∨ t] ∧ [t ∨ ā]
=−−−−−−−−−−−−−−−−−
[a ∨ t] ∧ [ā ∨ t]

s−−−−−−−−−−−−−−−−−
([a ∨ t] ∧ ā) ∨ t
=−−−−−−−−−−−−−−−−−
(ā ∧ [a ∨ t]) ∨ t

s−−−−−−−−−−−−−−−−−
[(ā ∧ a) ∨ t] ∨ t
=−−−−−−−−−−−−−−−−−
(a ∧ ā) ∨ t

ai↑ −−−−−−−−−−−
f ∨ t
=−−−−

t

(a ∧ [ā ∨ t]) ∧ ā
ai↓ −−−−−−−−−−−−−−−−−−−−−−−−−
(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā
=−−−−−−−−−−−−−−−−−−−−−−−−−
(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā

s−−−−−−−−−−−−−−−−−−−−−−−−−
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓ −−−−−−−−−−−−−−−−−−−−−−−−−
[(a ∧ ā) ∨ a] ∧ ā

ai↑ −−−−−−−−−−−−−−−−−−
[f ∨ a] ∧ ā
=−−−−−−−−−−−

a ∧ ā
ac↑ −−−−−−−−−−−
(a ∧ a) ∧ ā
=−−−−−−−−−−−

a ∧ (a ∧ ā)
ai↑ −−−−−−−−−−−

a ∧ f

[a ∨ b] ∧ a
ac↑ −−−−−−−−−−−−−−−−−−
[(a ∧ a) ∨ b] ∧ a

ac↑ −−−−−−−−−−−−−−−−−−−−−−−−−
[(a ∧ a) ∨ (b ∧ b )] ∧ a

ac↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[(a ∧ a) ∨ (b ∧ b )] ∧ (a ∧ a)

m−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)
=−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t
−−−−−
a ∨ ā

m−−−−−−−−−−−−−−−−−
[a ∨ t] ∧ [t ∨ ā]

s−−−−−−−−−−−−−−−−−−−−−−−−








[a ∨ t] ∧ ā
s−−−−−−−−−−−

a ∧ ā
−−−−−

f
∨ t

∨ t



























a ∧
�

ā ∨
t

−−−−−
ā ∨ a

�

s−−−−−−−−−−−−−−−−−−−−−

a ∧
ā ∨ ā
−−−−−

ā
−−−−−−−−−−−

f

∨
a
−−−−−
a ∧ a

∧ ā



















=−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

a ∧
a ∧ ā
−−−−−

f

a
−−−−−
a ∧ a

∨
b

−−−−−−
b ∧ b

m−−−−−−−−−−−−−−−−−−−
[a ∨ b] ∧ [a ∨ b]

∧
a
−−−−−
a ∧ a

Figure 4-1: Examples of derivations in the calculus of structures (top row), their translation
into the functorial calculus (middle row), and the flows associated with the latter (bottom
row).
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Example 4.1.7. Consider the rightmost derivation and its associated flow in Figure 4-1 on
the facing page. The restriction of this flow to a is:

We now show that the process of association of a flow to a derivation is ‘surjective mod-
ulo renaming’, in the sense that every flow is associated with some derivation.

It should be noted that the following result relies on the fact that both the formula struc-
tures of the premiss and conclusion, as well as all units occuring in the derivation, are ignored
when extracting a flow. In particular, the derivation we construct in the following proof is
‘trivial’, in the sense that it proves true from true. An example of this kind of construction
can be seen in the first derivation of Figure 4-1 on the preceding page.

Theorem 4.1.8. Every atomic flow is associated with some derivation.

Proof. First, we show that, for any atom a and formula contexts ξ { } and ζ { }, there exists
a derivation

(ξ {t} ∧ ζ {a}) ∨ t





{s,m}
(ξ {a} ∧ ζ {f}) ∨ t

,

in other words we can ‘move’ the atom a from the context ξ { } to the context ζ { } by using
a derivation whose flow contains no vertices:

























ξ {t} ∧ ζ {a}
ss−−−−−−−−−−−−−−
ξ {a} ∨ ζ {f}

=−−−−−−−−−−−−−−−−−−−−−−−−−
(ξ {a} ∧ t) ∨ (t ∧ ζ {f})

m−−−−−−−−−−−−−−−−−−−−−−−−−−
[ξ {a} ∨ t] ∧ [t ∨ ζ {f}]
=−−−−−−−−−−−−−−−−−−−−−−−−−−
[ξ {a} ∨ t] ∧ [ζ {f} ∨ t]

s−−−−−−−−−−−−−−−−−−−−−−−−−−
([ξ {a} ∨ t] ∧ ζ {f}) ∨ t

∨ t

























=−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
�

ζ {f} ∧ [ξ {a} ∨ t]
s−−−−−−−−−−−−−−−−−−−−
(ζ {f} ∧ ξ {a}) ∨ t

∨ t

�

=−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(ξ {a} ∧ ζ {f}) ∨ t

.

This construction can be used repeatedly to build the derivation Ψ, for h ¾ 0:

�

ξ {t} · · · {t} ∧ ζ {a1} · · · {ah}
�

∨ t
Ψ





{s,m}
�

ξ {a1} · · · {ah} ∧ ζ {f} · · · {f}
�

∨ t
.

We can now prove the theorem by induction on the number of vertices of a given flow φ.
The cases where φ only has zero or one vertex are trivial. Let us then suppose that φ has
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more than one vertex; then φ can be considered as composed of two flows φ1 and φ2, each
with fewer vertices than φ, as follows:

φ =

φ
1

ε
1 · · ·

ε
h

φ
2

,

where h ¾ 0 (this can possibly be done in many different ways). By the inductive hypothesis,

there exist derivations
γ

Φ1







ζ {aε1
1 } · · · {a

εh
h
}

and
ξ {aε1

1 } · · · {a
εh
h
}

Φ2







δ
whose flows are, respectively, φ1

and φ2. Using these, we can build












ξ {t} · · · {t} ∧

γ
Φ1







ζ {aε1
1 } · · · {a

εh
h
}







∨ t







Ψ



















ξ {aε1
1 } · · · {a

εh
h
}

Φ2







δ
∧ ζ {f} · · · {f}







∨ t







,

whose flow is φ.

Remark 4.1.9. From Proposition 4.1.2 on page 29 and Theorem 4.1.8 on the previous page
we can conclude that: Given a derivation Φ and a flowφ, deciding ifφ is associated with Φ, is
equivalent to deciding if two flows are isomorphic. This will never be an issue in this thesis as
we all the flows we will consider are associated with the relevant derivations by construction.

Notation 4.1.10. Given a derivation Φ, an atom occurrence a in Φ and the flowφ of Φ, then,
whenever we write aε or aψ, we mean that there is a subflow ψ of φ containing the edge ε,
such that a is mapped to ε.

We will now see how this notation might be useful when selectively substituting for
atom occurrences. For example, let us suppose that we are given the following associated
derivation and flow:

Φ=



















(a ∧ f) ∨
�

a ∧
f
−−−
ā

�

m−−−−−−−−−−−−−−−−−−−−−
a ∨ a
−−−−−

a
∧

f ∨ ā
=−−−−−

ā
−−−−−−−−−−−−−−−

f

∨ ā



















and
1

.
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We can then distinguish between the three occurrences of ā that are mapped to edge 1 and
the one that is not, as in

Φ=



















(a ∧ f) ∨
�

a ∧
f
−−−
ā1

�

m−−−−−−−−−−−−−−−−−−−−−
a ∨ a
−−−−−

a
∧

f ∨ ā1
=−−−−−−

ā1
−−−−−−−−−−−−−−−−

f

∨ ā



















;

we can also substitute for these occurrences, for example by {ā1/f}; such a situation occurs
in the proof of Theorem 6.2.3 on page 48. Note that simply substituting f for ā1 would inval-
idate this derivation because it would break the cut and weakening instances; however, the
proof of Theorem 6.2.3 specifies how to fix the broken cut instance and Proposition 4.1.11
specifies how to fix the broken weakening.

We generalise this labelling mechanism to boxes. For example, we can use a different
representation of the flow of Φ to individuate two classes aφ and āφ of atom occurrences, as
follows:

Φ=





















(a ∧ f) ∨
 

a ∧
f
−−−
āφ

!

m−−−−−−−−−−−−−−−−−−−−−−
a ∨ a
−−−−−
aφ

∧
f ∨ āφ
=−−−−−−−

āφ
−−−−−−−−−−−−−−−−−

f

∨ āφ





















and φ .

This notation is used in Proposition 4.1.11, where we define how we can, in certain cases,
substitute formulae in place of atom occurrences. This technique is used in Theorem 6.1.3
on page 44, Theorem 6.2.3 on page 48 and Theorem 6.4.4 on page 61.

Proposition 4.1.11. Given a derivation
α
Φ





SKS

β
, let its associated flow have shape

φ ψ ,

such thatφ is a connected component whose edges are each associated with occurrences of the atom
a; then, for any formula γ , there exists a derivation

α{aφ/γ}
Ψ





SKS

β{aφ/γ}

whose associated flow is

f
1
(φ) fn (φ) ψ
· · ·
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where n is the number of atom occurrences in γ ; moreover, the size of Ψ depends linearly on the
size of Φ and quadratically on the size of γ .

Proof. We can proceed by structural induction on Φ. For every formula in Φ we substitute
aφ with γ . Since all the edges in φ are mapped to from a (and not ā), we know that all the
vertices in φ are mapped to from instances of ac↓, ac↑, aw↓ and aw↑. We substitute every
instance of ac↓, ac↑, aw↓ and aw↑where aφ appears, by c↓, c↑, w↓, w↑, respectively, with γ in
the place of aφ. The result then follows by Lemma 2.3.11 on page 17 and Lemma 2.3.12 on
page 17.

Notation 4.1.12. The derivation Ψ obtained in the proof of Proposition 4.1.11 on the pre-
ceding page is denoted Φ{aφ/γ}.

Remark 4.1.13. The notion of substitution can be extended to allowφ to contain interaction
and cut vertices, but we shall not need that in this thesis.

4.2 A Normal Form of Derivation

In this section we introduce the ai-decomposed form of a derivation. The reason for intro-
ducing this normal form is that we will often find it convenient to assume that interaction
instances appear at the top and cut instances appear at the bottom of a derivation. The impor-
tant features of this normal form is that a derivation can be transformed into ai-decomposed
form without changing its atomic flow, and without significantly changing its size.

Definition 4.2.1. Given two derivations

α
Φ







β
and Ψ =

�

t
−−−−−−−
a1 ∨ ā1

∧ · · · ∧
t

−−−−−−−−
an ∨ ān

∧ α

�






SKS\{ai↓,ai↑}


β ∨
bm ∧ b̄m−−−−−−−−−−

f
∨ · · · ∨

b1 ∧ b̄1−−−−−−−−
f





,

for some atoms a1, . . . ,an , b1, . . . , bm , such that Φ and Ψ have isomorphic flows, we say that
Ψ is an ai-decomposed form of Φ.

Convention 4.2.2. Given a derivation Φ and an ai-decomposed form of Φ:

�

t
−−−−−−−
a1 ∨ ā1

∧ · · · ∧
t

−−−−−−−−
an ∨ ān

∧
t

−−−−−−−
c1 ∨ c̄1

∧ · · · ∧
t

−−−−−−−
ck ∨ c̄k

∧ α

�






SKS\{ai↓,ai↑}


β ∨
dl ∧ d̄l−−−−−−−−

f
∨ · · · ∨

d1 ∧ d̄1−−−−−−−−
f

∨
bm ∧ b̄m−−−−−−−−−−

f
∨ · · · ∨

b1 ∧ b̄1−−−−−−−−
f





,
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we sometimes want to single out only some of the interaction or cut instances. We therefore
also call the following derivation an ai-decomposed form of Φ:

�

t
−−−−−−−
a1 ∨ ā1

∧ · · · ∧
t

−−−−−−−−
an ∨ ān

∧ α

�

=−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
�

[a1 ∨ ā1] ∧ · · · ∧
�

an ∨ ān
�

∧
t

−−−−−−−
c1 ∨ c̄1

∧ · · · ∧
t

−−−−−−−
ck ∨ c̄k

∧ α

�






SKS\{ai↓,ai↑}


β ∨
dl ∧ d̄l−−−−−−−−

f
∨ · · · ∨

d1 ∧ d̄1−−−−−−−−
f

∨
�

bm ∧ b̄m

�

∨ · · · ∨
�

b1 ∧ b̄1

�





=−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

β ∨
bm ∧ b̄m−−−−−−−−−−

f
∨ · · · ∨

b1 ∧ b̄1−−−−−−−−
f





.

Theorem 4.2.3. Given a derivation Φ, an ai-decomposed form of Φ whose size depends at most
cubically on the size of Φ can be constructed.

Proof. Using Lemma 2.3.8 on page 16 apply, from top-to-bottom and left-to-right, the fol-
lowing transformations to each of the interaction and cut instances in Φ:

α
Ψ







ξ

¨

t
−−−−−
a ∨ ā

«

Ψ′







β

→







t
−−−−−
a ∨ ā

∧
α
Ψ







ξ {t}







ss↑ −−−−−−−−−−−−−−−−−−−−−−
ξ [a ∨ ā]
Ψ′







β

and

α
Ψ







ξ

¨

a ∧ ā
−−−−−

f

«

Ψ′







β

→

α
Ψ







ξ (a ∧ ā)
ss↓ −−−−−−−−−−−−−−−−−−−−−





ξ {f}
Ψ′







β
∨

a ∧ ā
−−−−−

f







to obtain an ai-decomposed form of Φ. The size of the ai-decomposed form obtained in this
way depends at most cubically on the size of Φ, since, by Lemma 2.3.8 on page 16, each of
the transformations increase the size of the derivation at most quadratically and the number
of transformations is bounded by the size of Φ.

Remark 4.2.4. The only reason to insist on performing the transformations in the proof of
Theorem 4.2.3 in a certain order is to ensure that the resulting derivation is unique. The
uniqueness is useful in the following definition.

Definition 4.2.5. Given a derivation Φ, the ai-decomposed form of Φ obtained as described
in the proof of Theorem 4.2.3 is called the (canonical) ai-decomposed form of Φ.
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Chapter 5

Normal Forms

In this chapter we see the first use of atomic flows, namely to define normal forms of deriva-
tions. Traditionally, in Gentzen-style formalisms, a derivation in normal form is a cut-free
derivation. The notion of cut-freeness is a syntactic notion, which does not translate nicely
to the more general deep-inference formalisms.

In both Gentzen-style formalisms and deep-inference formalisms, the cut can be consid-
ered horizontal composition of two proofs. We make two observations: 1) deep-inference
formalisms are symmetric in the vertical axis, whereas Gentzen-style formalisms are not; and
2) in order for the cut to be admissible from deep-inference derivations the symmetry must
be broken, to correspond to the asymmetry of Gentzen-style formalisms. In particular, the
cut is only admissible from proofs and not derivations.

These observations prompted us to look for a generalisation of cut elimination that work
for all deep-inference derivations. Furthermore, since we are in the business of designing new
formalisms, we wanted normal forms based on geometric notions which would be as syntax
independent as possible.

We defined normal forms based on the causal dependency between structural inference
rule instances. Atomic flows contain (by design) exactly the information needed in order to
define normal forms in this way.

We call our generalisation of cut elimination streamlining and we describe it in terms
of atomic flows. Intuitively, if we consider identities and weakenings to be the ‘creators’ of
atom occurrences, and cuts and coweakening as the ‘destroyers’ of atom occurrences, then
an atomic flow is streamlined if no atom is first created and then destroyed. The shape of a
streamlined atomic flow is given in case (4) of Definition 5.0.1 on the next page.

The most challenging aspect of streamlining is the elimination of paths from interaction
to cut vertices. For this reason, we define the notion of a weakly streamlined atomic flow, in
case (3) of Definition 5.0.1. An atomic flow is weakly streamlined if it contains no path from
an interaction to a cut vertex. This is the topic of Chapter 6 on page 42.

A path can be eliminated by removing the edges that make up the path. However, we
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might imagine a situation where an edge belongs to two paths, one we want to eliminate
and one we want to keep. An atomic flow is in simple form, if this situation does not occur.
One approach to eliminating paths from a flow is to transform it into simple form and then
eliminating the edges connecting interaction and cut vertices.

Sometimes, the elimination of edges mapped to by an atom a might interfere with the
elimination of edges mapped to from the atom ā. For this reason, we find it convenient
to define special cases of simple form and weakly streamlined, where for every pair of dual
atoms the edges mapped to from one of them are ignored. These are cases (1) and (2) of
Definition 5.0.1.

In summary, the intuition behind each of the normal forms in Definition 5.0.1 is:

1. a flow is in simple form with respect to a given polarity assignment, if all the edes with
a positive polarity assignment can be partitioned into two classes, the ones that belong
to paths connecting interaction and cut vertices (the rightmost box markde with a + in
the below figure) and the ones that do not (the four leftmost boxes marked with + in
the below figure);

2. a flow is weakly streamlined with respect to a given polarity assignment, if there are
no edges with a possitive polarity assignment in paths from interaction cut to vertices;

3. a flow is weakly streamlined if it contains no paths from interaction to cut vertices;

4. a weakly streamlined flow is streamlined if it contains no paths from interaction (resp.,
cut) to coweakening (resp., weakening) vertices, or from weakening to coweakening
vertices;

5. a streamlined flow is super streamlined if it contains no paths from (co)weakening to
(co)contraction vertices; and

6. a super streamlined flow is hyper streamlined if it contains no path whose first edge is
an upper edge of a cocontraction vertex and last edge is the lower edge of a contraction
vertex.

Definition 5.0.1. An atomic flow is

1. in simple form with respect to the polarity assignment π if it can be represented as

+

+

+

+

+ − ;
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2. weakly streamlined with respect to the polarity assignment π if it can be represented as

+

+

+

+

− ;

3. weakly streamlined if it can be represented as

;

4. streamlined if it can be represented as

;

5. super streamlined if it can be represented as

; and

6. hyper streamlined if it can be represented as

.
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Definition 5.0.2. A derivation with associated flow φ is in simple form with respect to (the
atom) a, if π is a polarity assignment for φ, such that the edges in φ mapped to from oc-
currences of a have a positive polarity, and the restriction of φ to a is in simple form with
respect to π.

Definition 5.0.3. A derivation with associated flow φ is weakly streamlined (resp., stream-
lined, super streamlined and hyper streamlined) if φ is weakly streamlined (resp., streamlined,
super streamlined and hyper streamlined). The derivation is weakly streamlined with respect to
(the atom) a, if π is a polarity assignment for φ, such that the edges in φ mapped to from
occurrences of a have a positive polarity, and the restriction of φ to a is weakly streamlined
with respect to π.

Example 5.0.4. The first flow is weakly streamlined, the other two are hyper streamlined:

, and .

We now state some facts whose proofs are immediate from Definition 5.0.1 on page 37.

Proposition 5.0.5. Given a polarity assignment π, a flow that is weakly streamlined with
respect to both π and π̄ is weakly streamlined.

Proposition 5.0.6. A streamlined flow with no pair of upper (resp., lower) edges such that there
is an ai-path between them, contains no cut (resp., axiom) vertices.

The following proposition makes the connection between cut elimination and streamlin-
ing. We consider the special case of atomic flows of proofs, i.e., atomic flows without upper
edges, and observe that a streamlined proof is cut free and a hyper streamlined proof is a
proof in the system SKS \ {ai↑,ac↑,aw↑}.

Proposition 5.0.7. Given an atomic flow with no upper (resp., lower) edges, it can be represented
as

1.














resp.,















,

if it is streamlined;

2.














resp.,















,
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if it is super streamlined; and

3.














resp.,















,

if it is hyper streamlined.
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Part III

Normalisation
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Chapter 6

Global Reductions

In this and the next chapter we see the second use of atomic flows: Controlling normalisation
of derivations. Conventional wisdom teaches us that normalisation is a delicate process, and
that a careful design of inference rules is necessary in order to obtain it. Atomic flows were
designed to describe normal forms, by removing a lot of information about the inference
rules, it is therefore surprising that they contain enough information to design normalisation
procedures.

There are two kinds of flow reductions: global and local ones. Global reductions rewrites
the entire flow: normally, two or more slightly altered copies of a flow are connected together.
Local reductions substitutes a bounded subflow in a flow by another subflow that fits in the
context.

Alternatively, as suggested by François Lamarche, we could talk about external and in-
ternal instead of global and local reductions. This guides the intuition in the sense that the
global reductions never ‘look inside’ the flows they work on. The size of the flows being
copied is unbounded, however, the alterations to each of the copies are bounded, and it al-
ways happens at the ‘outside’ of the flow.

This chapter is dedicated to the most challenging part of normalisation: obtaining weakly
streamlined derivations through global reductions. The process is non-confluent, and at first
glance it increases the size of derivations exponentially. However, a second surprise was the
fact that we are able to design procedures for weakly streamlining which only grow deriva-
tions quasipolynomially.

We will define several ‘atomic flow reductions’ which can be combined in different ways
in order to obtain normalisation. Since we aim to produce derivations on normal forms,
and not only their atomic flows, we find it convenient to define operators on derivations in
terms of the flow reductions. It is important to note that we could have performed all the
procedures purely in terms of atomic flows. The final results about derivations would follow
from the ‘soundness’ of the flow reductions. We chose to be a bit more explicit and provide
the derivations directly.

Definition 6.0.1. An (atomic-flow) reduction R is a binary relation on the set of atomic flows,
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such that φ Rψ if

1. there is a one-to-one map, u, from the upper edges of φ to the upper edges of ψ;

2. there is a one-to-one map, l , from the lower edges of φ to the lower edges of ψ; and

3. for every polarity assignment π forφ, there is a polarity assignment π′ for ψ such that
π′(u(ε)) =π(ε) and π′(l (ι)) =π(ι), for any upper edge ε and any lower edge ι of φ′.

We call φ a redex and ψ a contractum of R.

Convention 6.0.2. Given a reduction R and two flowsφ andψ, such thatφ Rψ, we indicate
the bijections u and l by labeling the upper (resp., lower) edge u(ε) (resp., l (ε)) of ψ by ε, for
every upper (resp., lower) edge ε of φ.

It is important to notice the difference in notation, between the bijections between edges
belonging to isomorphic flows, and the bijections between upper and lower edges in a re-
dex/contractum pair. For an example of these two conventions being used simultaneously,
see Definition 6.1.1 on the next page.

Definition 6.0.3. A reduction R is sound if, for every φ and ψ, such that φ R ψ, and for
every derivation Φ with flow φ, there is a derivation Ψ with atomic flow ψ such that Φ and
Ψ have the same premiss and conclusion; in this case we write Φ RΨ.

Convention 6.0.4. We provide constructive soundness proofs for every reduction in this
chapter, so from now on, for any reduction R and derivation Φ, when we write Φ R Ψ, we
mean that Ψ is the derivation obtained form Φ in the soundness proof of R.

Remark 6.0.5. Alternatively, as suggested by François Lamarche, instead of saying that a
reduction is sound, we could say that it is liftable. The constructive soundness proofs which
we will see later on, then becomes liftings.

Convention 6.0.6. To avoid ambiguity in Definition 6.1.1 on the following page, Defini-
tion 6.2.1 on page 47, Definition 6.3.1 on page 53 and Definition 6.4.1 on page 59 we have
established the following convention: Let ε = ε1, . . . ,εn , ι = ι1, . . . , ιm , ε′ = ε′1, . . . ,ε′n and
ι′ = ι′1, . . . , ι′m , then, when we write

ε

f
1
(ε) · · · fk (ε)

and

ι

f
1
(ι) · · · fk (ι)

we mean
ε

1

f
1
(ε

1
) · · · fk (ε1

)

· · ·

εn

f
1
(εn ) · · · fk (εn )

and
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ε
1

f
1
(ε

1
) · · · fk (ε1

)

· · ·

εn

f
1
(εn ) · · · fk (εn )

,

respectively. In other words, edges are not connected in unexpected ways.

6.1 Simplifier

Consider a flow φ′ with polarity assignemnt π, such that φ is the subflow of φ′ containing
all the edges with a positive polarity assignment. We can observe that φ contains four types
of paths: 1) paths from > to ⊥; 2) paths from an interaction vertex to ⊥; 3) paths from >
to a cut vertex; and 4) paths from an interaction vertex to a cut vertex. We can turn φ′ into
simple form with respect toπ if we can make sure that no edge belongs to both a path of type
1) and a path of type 4). In the following reduction, we achieve this by making four copies of
φ each of which only contains one of the above types of paths.

Definition 6.1.1. We define the reduction→sf (where sf stands for simple form) as follows,
for any two flows φ and ψ that do not contain any interaction or cut vertices:

ε
1

ε
2

ε
3 ε

4

φ ψ

ι
1

ι
2

ι
3

ι
4

→sf

ε
1

f
1
(ε

1
) f

1
(ε

2
)

f
1
(φ)

f
1
(ι

1
) f

1
(ι

2
)

ι
1

f
2
(ε

1
) f

2
(ε

2
)

f
2
(φ)

f
2
(ι

1
) f

2
(ι

2
)

f
3
(ε

1
) f

3
(ε

2
)

f
3
(φ)

f
3
(ι

1
) f

3
(ι

2
)

f
4
(ε

1
) f

4
(ε

2
)

f
4
(φ)

f
4
(ι

1
) f

4
(ι

2
)

ε
4

g (ε
4
)g (ε

3
)

g (ψ)

g (ι
3
) g (ι

4
)

ι
4

.

Remark 6.1.2. The reduction→sf would still be sound if we removed the restriction on the
flows φ and ψ in Definition 6.1.1. However, such a reduction would no longer correspond
to the intuition described above.

Theorem 6.1.3. Reduction →sf is sound; moreover if Φ→sf Ψ, then the size of Ψ depends at
most polynomially on the size of Φ.

Proof. Let Φ be a derivation with flow φ′, such that φ′→sf ψ
′. We show that there exists a

derivation Ψ with flow ψ′ and with the same premiss and conclusion as Φ. In the following,
we refer to the figure in Definition 6.1.1.

Assume all the edges in φ are mapped to from occurrences of the atoms a1, . . . , an , and
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let
 

t
−−−−−−−−−
aφ1 ∨ āψ1

∧ · · · ∧
t

−−−−−−−−−
aφn ∨ āψn

∧ α

!

Φ′





{ai↓,ai↑}


β ∨
aφn ∧ āψn−−−−−−−−−

f
∨ · · · ∨ aφ1 ∧ āψ1−−−−−−−−−

f





,

be the ai-decomposed form of Φ.

We show several intermediate derivations which will be used to build Ψ. To make it
easier to verify the flow of Ψ, we will, through a slight misuse of notation, label the atom oc-
currences of the intermediate derivations to indicate what atomic flow each atom occurrence
will map to, once the derivations are combined to create Ψ.

Consider the substitution

σ = {aφ1 /([a
f1(φ)
1

∨ a f2(φ)
1 ] ∧ [a f3(φ)

1
∨ a f4(φ)

1 ]), . . . ,aφn /([a
f1(φ)
n

∨ a f2(φ)
n ] ∧ [a f3(φ)

n
∨ a f4(φ)

n ])} .

We can then obtain, by Proposition 4.1.11 on page 33, the derivation Φ′σ with flow

f
1
(ε

1
) f

1
(ε

2
)

f
1
(φ)

f
1
(ι

1
) f

1
(ι

2
)

f
2
(ε

1
) f

2
(ε

2
)

f
2
(φ)

f
2
(ι

1
) f

2
(ι

2
)

f
3
(ε

1
) f

3
(ε

2
)

f
3
(φ)

f
3
(ι

1
) f

3
(ι

2
)

f
4
(ε

1
) f

4
(ε

2
)

f
4
(φ)

f
4
(ι

1
) f

4
(ι

2
)

g (ε
3
) g (ε

4
)

g (ψ)

g (ι
3
) g (ι

4
)

.

For every 1¶ i ¶ n, there exist derivations

ai−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−


a f1(φ)
i

∨
f

−−−−−−
a f2(φ)

i



 ∧



a f3(φ)
i

∨
f

−−−−−−
a f4(φ)

i





and
a f1(φ)

i
∨ a f2(φ)

i−−−−−−−−−−−−−−−−
ai

∧





a f3(φ)
i−−−−−−
t

∨
a f4(φ)

i−−−−−−
t



 ,

which allow us to build
α

Ψ>







ασ
and

βσ
Ψ⊥







β
,

with flows

f
1
(ε

1
) f

3
(ε

1
) f

2
(ε

1
) f

4
(ε

1
) g (ε

4
)

and
f
1
(ι

1
) f

2
(ι

1
) f

3
(ι

1
) f

4
(ι

1
) g (ι

4
)

,

respectively. Furthermore, for every 1¶ i ¶ n, there exist derivations

Ψt,i =

t
−−−−−−−−−−−
a f2(φ)

i
∨ āi

∧
t

−−−−−−−−−−−
a f4(φ)

i
∨ āi

s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a f2(φ)

i
∧ [a f4(φ)

i
∨ āi]

s−−−−−−−−−−−−−−−−−−−−−−−
(a f2(φ)

i
∧ a f4(φ)

i ) ∨ āi

∨ āi

=−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 



f
−−−−−−
a f1(φ)

i

∨ a f2(φ)
i



 ∧





f
−−−−−−
a f3(φ)

i

∨ a f4(φ)
i





!

∨
āi ∨ āi−−−−−−−
ā g (ψ)

i
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and

Ψf,i =

 



a f1(φ)
i−−−−−−
t

∨
a f2(φ)

i−−−−−−
t



 ∧ [a f3(φ)
i

∨ a f4(φ)
i ]

!

∧
ā g (ψ)

i−−−−−−−
āi ∧ āi=−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−h

a f3(φ)
i

∨ a f4(φ)
i

i

∧ āi
s−−−−−−−−−−−−−−−−−−−−−−−−−
a f3(φ)

i
∨
�

a f4(φ)
i

∧ āi

� ∧ āi

s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a f3(φ)

i
∧ āi

−−−−−−−−−−−
f

∨
a f4(φ)

i
∧ āi

−−−−−−−−−−−
f

,

which allow us to build

Ψt =









t
Ψt,1








[aφ1 ∨ āψ1 ]σ
∧ · · · ∧

t
Ψt,n








[aφn ∨ āψn ]σ









and

Ψf =









(aφn ∧ āψn )σ
Ψf,n








f

∨ · · · ∨
(aφ1 ∧ āψ1 )σ
Ψf,1








f









,

with flows

f
1
(ε

2
) f

2
(ε

2
) g (ε

3
) f

4
(ε

2
) f

3
(ε

2
)

and
f
1
(ι

2
) f

2
(ι

2
) f

4
(ι

2
)g (ι

3
)f

3
(ι

2
)

,

respectively. Combining these derivations we can build

Ψ =

α
Ψt∧Ψ>








�h

aφ1 ∨ āφ1
i

∧ · · · ∧
h

aφn ∨ āφn
i

∧α
�

σ
Φ′σ








h

β ∨
�

aφn ∧ āψn
�

∨ · · · ∨
�

aφ1 ∧ āψ1
�i

σ
Ψ⊥∨Ψf








β

,

with the desired flow.

We know that the size of Φ′σ depends at most polynomially on the size of Φ by Theo-
rem 4.2.3 on page 35 and Proposition 4.1.11 on page 33, and it is straightforward to observe
that the sizes of Ψt, Ψ>, Ψf and Ψ⊥ depend at most linearly on the size of Φ, so the size of Ψ
depends at most polynomially on the size of Φ.

Definition 6.1.4. The Simplifier, Si, is an operator whose arguments are distinct and pairwise
non-dual atoms a1, . . . , an and a derivation Φ, with flow

φ ψ ,
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such that all the edges in φ are mapped to from occurrences of a1, . . . , an and no edges in
ψ are mapped to from occurrences of a1, . . . , an . We then define Si(Φ,a1, . . . ,an) to be such
that Φ →sf Si(Φ,a1, . . . ,an), where φ and ψ are the flows, by the same names, shown in
Definition 6.1.1 on page 44.

Proposition 6.1.5. Given distinct and pairwise non-dual atoms a1, . . . , an , and a derivation Φ,

1. Si(Φ,a1, . . . ,an) is in simple form with respect to a1, . . . , an ;

2. for any atom b , if Φ is weakly streamlined with respect to b , then Si(Φ,a1, . . . ,an) is
weakly streamlined with respect to b ; and

3. the size of Si(Φ,a1, . . . ,an) depends at most polynomially on the size of Φ.

Proof. In the following we refer to the figure in Definition 6.1.1 on page 44:

• by case (1) of Definition 5.0.1 on page 37;

• by studying the flows in Definition 6.1.1 we can observe that for every path from an
interaction vertex to a cut vertex in the atomic flow of Si(Φ,a1, . . . ,an)whose edges are
mapped to from occurrences of b , there is a path from an interaction vertex to a cut
vertex in the flow of Φ whose edges are mapped to from occurrences of b ; and

• by Theorem 6.1.3 on page 44.

6.2 Isolated Subflow Removal

Given a derivation Φ in simple form with respect to an atom a, the operator, ISR, defined
in this section produces a derivation with the same premiss and conclusion as Φ, which is
weakly streamlined with respect to a.

We will see later how a derivation containing occurrences of n atoms can be weakly
streamlined by two applications of Si and n applications of ISR. This is the most basic proce-
dure for obtaining a weakly streamlined derivation, in particular it only deals with one atom
at a time. In the following sections we will see how we can deal with several atoms in parallel.

The operator is defined in terms of the following flow reduction.

Definition 6.2.1. We define the reduction→is (where is stands for isolated subflow) as follows,
for any flow φ and any connected component ψ that does not contain interaction or cut
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vertices:

ε

φ ψ

ι

→is

f
1
(ε) f

2
(ε)

ε

f
1
(φ)

f
2
(φ)

f
1
(ι) f

2
(ι)

ι

,

where we call the evidenced interaction (resp., cut) vertex νai↓ (resp., νai↑).

Remark 6.2.2. The condition on the flow ψ in Definition 6.2.1 on the previous page ensures
that all the edges in ψ are mapped to from occurrences of the same atom. However, the
reduction would still be sound if, at the expense of a slightly more verbose soundness proof,
we relaxed the condition to say that there is a path from νai↓ to νai↑.

Theorem 6.2.3. Reduction →is is sound; moreover, if Φ →is Ψ, then the size of Ψ depends
polynomially on the size of Φ.

Proof. Let Φ be a derivation with flow φ′, such that φ′→is ψ
′. We show that there exists a

derivation Ψ with flow ψ′ and with the same premiss and conclusion as Φ. In the following,
we refer to the figure in Definition 6.2.1 on the preceding page.

Since ψ is connected, we assume, by Convention 4.2.2 on page 34, that the following
derivation is an ai-decomposed form of Φ:

 

t
−−−−−−−
aψ ∨ ā

∧ α

!

Φ′









β ∨
aψ ∧ ā
−−−−−−−

f





,

for some atom a and formulae α and β.

We obtain the two derivations Φt and Φf from Φ′ as follows:

Φt =
[t ∨ ā] ∧α

Φ′{aψ/t}







β ∨ ā
and Φf =

ā ∧α
Φ′{aψ/f}








β ∨ (f ∧ ā)
.

Since ψ is connected and contains no interaction or cut vertices, the mapping from all
the occurrences aψ to edges of ψ is surjective. Hence, we know that both derivation Φt and
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Φf have a flow isomorphic to φ. We combine Φt and Φf to get the desired derivation Ψ with
flow ψ′ and the same premiss and conclusion as Φ:

Ψ =

α
c↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
��

t ∨
f
−−−
ā

�

∧ α

�

Φt








β ∨ ā

∧ α

s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

β ∨

ā ∧α
Φf








�

β ∨

�

f ∧
ā
−−−
t

��

c↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
β

.

We know that the size of Φt and the size of Φf depend polynomially on the size of Φ by
Theorem 4.2.3 on page 35 and Proposition 4.1.11 on page 33, and that the size of Ψ depends
at most quadratically on the size of α and β by Lemma 2.3.12 on page 17, so the size of Ψ
depends polynomially on the size of Φ.

We now show the basic properties of →is. Namely, that the reduction does not create
any ‘new’ interaction or cut vertices, and that it does not create any ‘new’ paths between
interaction or > and cut or ⊥ vertices.

Lemma 6.2.4. In the following we refer to the names given in Definition 6.2.1 on page 47. Given
two flows φ and ψ, such that φ→is ψ then, given an interaction (resp., cut) vertex ν in ψ, there
is an interaction (resp., cut) vertex ν ′ in φ, such that

1. ν = f1(ν
′) or ν = f2(ν

′);

2. if there is a path from ν to ⊥ (resp., >), then there is a path from ν ′ to ⊥ (resp., >); and

3. if there is a cut (resp., interaction) vertex ν̂ in ψ, such that there is a path from ν to ν̂ , then
there is a cut (resp., interaction) vertex ν̂ ′ inφ, such that ν̂ = f1(ν̂

′) or ν̂ = f2(ν̂
′), or ν̂ ′ = νai↑

(resp., ν̂ ′ = νai↓); and there is a path from ν ′ to ν̂ ′.

Proof. We consider each case separately:

1. by definition;

2. any path from ν to⊥ (resp.,>) must contain an edge ε, such that, for some lower (resp.,
upper) edge ε′ of φ, f1(ε

′) = ε or f2(ε
′) = ε. Hence, there is a path from ν ′ to ⊥ (resp.,

>); and

3. we have to consider two cases:

• ν = f1(ν
′) and ν̂ = f1(ν̂

′), or ν = f2(ν
′) and ν̂ = f2(ν̂

′), then there is a path from ν ′

to ν̂ ′; or
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• ν = f1(ν
′) and ν̂ = f2(ν̂

′) (resp., ν = f2(ν
′) and ν̂ = f1(ν̂

′)),then there is a path from
ν ′ to νai↑ (resp., νai↓).

Definition 6.2.5. The Isolated Subflow Remover, ISR, is an operator whose arguments are an
atom a and a derivation Φ that is in simple form with respect to a. If Φ is weakly streamlined
with respect to a, then ISR(Φ,a) = Φ; otherwise, consider the following ai-decomposed form
of Φ:

 

t
−−−−−−−−
aψ
′
∨ ā

∧ · · · ∧
t

−−−−−−−−
aψ
′
∨ ā

∧ α

!

Φ′









β ∨
aψ
′
∧ ā

−−−−−−−−
f

∨ · · · ∨
aψ
′
∧ ā

−−−−−−−−
f





,

with flow
ε

φ′ ψ′

ι

,

where ψ′ is the juxtaposition of all the isolated subflows mapped to from occurrences of a in
Φ. Consider the derivation

Ψ =













t
−−−−−
a ∨ ā





{c↑}
[a ∨ ā] ∧ · · · ∧ [a ∨ ā]

∧ α













Φ′



















β ∨

(a ∧ ā) ∨ · · · ∨ (a ∧ ā)





{c↓}
a ∧ ā
−−−−−

f













,

with flow

ψ′′ =

ε

φ

φ′

ψ

ψ′

ι

.

We then define ISR(Φ,a) to be such thatΨ→is ISR(Φ,a), where φ and ψ are the flows, by the
same names, shown in Definition 6.2.1 on page 47.
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Proposition 6.2.6. Given an atom a and a derivation Φ that is in simple form with respect to
a,

1. ISR(Φ,a) is weakly streamlined with respect to a;

2. for any atom b ,

(a) if Φ is weakly streamlined with respect to b , then ISR(Φ,a) is weakly streamlined
with respect to b , and

(b) if b is not the dual of a and Φ is in simple form with respect to b , then ISR(Φ,a) is in
simple form with respect to b ; and

3. the size of ISR(Φ,a) depends polynomially on the size of Φ.

Proof. If Φ is weakly streamlined with respect to a, the result is trivial. Assume Φ is not
weakly streamlined with respect to a, and let φ, ψ, φ′, ψ′ and ψ′′ be the flows given in
Definition 6.2.5 on the preceding page, then

1. by definition there is no path in φ from an interaction to a cut vertex whose edges are
mapped to from instances of a. By Lemma 6.2.4 on page 49, we know that if there
is a path from an interaction to a cut vertex in the flow of ISR(Φ,a) whose edges are
mapped to from instances of a, then there must be a path from an interaction to a cut
vertex inφwhose edges are mapped to from instances a. Hence, the statement follows
by contradiction;

2. (a) if the flow of ISR(Φ,a) contains a path from an interaction vertex to a cut vertex
whose edges are mapped to from instances of b , then, by Lemma 6.2.4 on page 49,
there is a path from an interaction vertex to a cut vertex in φ, so also in φ′,
whose edges are mapped to from instances of b . Hence, the statement follows by
contradiction; and

(b) if there is an interaction (resp., cut) vertex ν and a cut (resp., interaction) vertex
ν̂ in the flow of ISR(Φ,a) such that there is a path from ν to ν̂ and a path from
ν to ⊥ (resp., >), both of whose edges are mapped to from instances of b , then,
by Lemma 6.2.4 on page 49, there is an interaction (resp., cut) vertex ν ′ and a cut
(resp., interaction) vertex ν̂ ′ in φ such that there is a path from ν to ν̂ and a path
from ν to ⊥ (resp., >), both of whose edges are mapped to from instances of b .
Furthermore, since we can assume that b is not a or ā, φ restricted to b equals
φ′ restricted to b . Hence, the statement follows by contradiction.

3. the statement follows by Theorem 6.2.3 on page 48.

We now give an example of an application of ISR. In particular we want to show its
inherent non-confluency.
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Example 6.2.7. Given a derivation Φ where the atoms a1 and a2 occur, such that the flow
associated with Φ is

φ
1

φ′
1

φ
2

φ′
2

ψ ,

and where all the edges in φ1 (resp., φ′1) are mapped to from a1 (resp., ā1) and all the edges in
φ2 (resp, φ′2) are mapped to from a2 (resp., ā2), and there are no edges in ψ that are mapped
to from a1 or a2, then the flow associated with ISR(ISR(Φ,a1),a2) is the following flow (where
indications of the different isomorphisms are left out):

φ
1

φ
1

φ
1

φ
1

φ
2

φ
2

φ
2

φ
2

ψ ψ ψ ψ .

We marked some edges in red to point out the fundamental difference between the subflow
containing φ1 and the subflow containing φ2. Note that, in order to improve readability, we
have removed a contraction and a cocontraction vertex from the subflow containing φ2, by
using weakening reductions. Weakening reductions are defined in Definition 7.0.8 on page 75.

6.3 Path Breaker

Given a derivation Φ and an atom a, the operator, PB, defined in this section produces a
derivation with the same premiss and conclusion as Φ, which is weakly streamlined with
respect to both a and ā. This operator is a strict improvement over ISR, since it does not
require the input derivation to be in simple form, and it deals with the dual atoms in parallel.
We will see later how a derivation containing n atoms can be weakly streamlined by n/2
applications of PB.

A variation of the results in this section is also presented in the paper Breaking Paths in
Atomic Flows for Classical Logic [GGS10], which was coauthored with Alessio Guglielmi and
Lutz Straßburger.
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The operator is defined in terms of the following flow reduction.

Definition 6.3.1. We define the reduction→pb (where pb stands for path breaker) as follows,
for any two flows φ and ψ:

ε ε
′

φ ψ

ι
′

ι

→pb

ι ι
′

ε ε
′

f
1
(ε)

f
1
(φ)

f
1
(ι)

g
1
(ε′)

g
1
(ψ)

g
1
(ι′)

f
2
(ε)

f
2
(φ)

f
2
(ι)

g
2
(ε′)

g
2
(ψ)

g
2
(ι′)

f
3
(ε)

f
3
(φ)

f
3
(ι)

g
3
(ε′)

g
3
(ψ)

g
3
(ι′)

,

where we call the evidenced interaction (resp., cut) vertex in the redex ν ′
ai↓ (resp., ν ′

ai↑) and the

evidenced interaction (resp., cut) vertex in the contractum νai↓ (resp., νai↑); and where there is
a path from ν ′

ai↓ to ν ′
ai↑.

Theorem 6.3.2. Reduction →pb is sound; moreover, if Φ →pb Ψ, then the size of Ψ depends
polynomially on the size of Φ.

Proof. Let Φ be a derivation with flow φ′, such that φ′→pb ψ
′. We show that there exists a

derivation Ψ with flow ψ′ and with the same premiss and conclusion as Φ. In the following,
we refer to the figure in Definition 6.3.1.

Since the evidenced interaction and cut vertices belong to the same connected compo-
nent, we assume, by Convention 4.2.2 on page 34, that the following derivation is an ai-
decomposed form of Φ:

 

t
−−−−−−−−−
aφ ∨ āψ

∧ α

!

Φ′









β ∨
aφ ∧ āψ
−−−−−−−−−

f





,

for some atom a and formulae α and β.
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We combine three copies of Φ′ to obtain the desired derivation Ψ with flow ψ′ and the
same premiss and conclusion as Φ:

Ψ =

α
c↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

t
−−−−−−−−−−−−−−−−
a f1(φ) ∨ ā g1(ψ)

∧ α

!

Φ′









β ∨

 

a f1(φ)
−−−−−−

t
∧ ā g1(ψ)

!



∧
α

c↑ −−−−−−
α ∧α

s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

















β ∨

 



f
−−−−−−
a f2(φ)

∨ ā g2(ψ)



 ∧ α

!

Φ′









β ∨

 

a f2(φ) ∧
ā g2(ψ)
−−−−−−−

t

!





















∧ α

s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

β ∨β
c↓ −−−−−−−

β
∨

 

a f3(φ) ∨
f

−−−−−−−
ā g3(ψ)



 ∧ α

!

Φ′









β ∨
a f3(φ) ∧ ā g3(ψ)
−−−−−−−−−−−−−−−−

f





c↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
β

.

We know that the size of Φ′ depends at most cubically on the size of Φ by
Theorem 4.2.3 on page 35, and that the size of Ψ depends at most quadratically on the size
of α and β by Lemma 2.3.12 on page 17, so Ψ depends polynomially on the size of Φ.

We now show the basic properties of→pb. Namely, that the reduction does not create any
‘new’ interaction or cut vertices, that it does not create any ‘new’ paths between interaction
or > and cut or ⊥ vertices, and that it breaks all the paths between the evidenced interaction
and cut vertices.

Lemma 6.3.3. In the following we refer to the names given in Definition 6.3.1 on the previous
page. Given two flows φ and ψ, such that φ→pb ψ, then, given an interaction (resp., cut) vertex
ν in ψ, there is an interaction (resp., cut) vertex ν ′ in φ, such that

1. for some 1 ¶ i ¶ 3, ν = fi (ν
′) or ν = gi (ν

′), or ν = νai↓ and ν ′ = ν ′
ai↓ (resp., ν = νai↑ and

ν ′ = ν ′
ai↑);

2. if there is a path from ν to ⊥ (resp., >) in ψ, then there is a path from ν ′ to ⊥ (resp., >) in
φ;

3. if there is a cut (resp., interaction) vertex ν̂ in ψ, such that there is a path from ν to ν̂ in ψ,
then there is a cut (resp., interaction) vertex ν̂ ′ inφ, such that, for some 1¶ i ¶ 3, ν̂ = fi (ν̂

′)
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or ν̂ = gi (ν̂
′), or ν̂ = νai↑ and ν̂ ′ = ν ′

ai↑ (resp., ν̂ = νai↓ and ν̂ ′ = ν ′
ai↓); and there is a path from

ν ′ to ν̂ ′ in φ; and

4. there is no path from νai↓ to νai↑.

Proof. We consider each case separately:

1. by definition;

2. any path from ν to ⊥ (resp., >) in ψmust contain an edge ε, such that, for some lower
(resp., upper) edge ε′ of φ and some 1¶ i ¶ 3, fi (ε

′) = ε or gi (ε
′) = ε. Hence, there is

a path from ν ′ to ⊥ (resp., >) in φ;

3. we have to consider two cases:

(a) for some 1 ¶ i ¶ 3, ν = fi (ν
′) and ν̂ = fi (ν̂

′), or ν = gi (ν
′) and ν̂ = gi (ν̂

′), then
there is a path from ν ′ to ν̂ ′ in φ, or

(b) ν = g1(ν
′) and ν̂ = g2(ν̂

′), or ν = f2(ν
′) and ν̂ = f3(ν̂

′) (resp., ν = g2(ν
′) and

ν̂ = g1(ν̂
′), or ν = f3(ν

′) and ν̂ = f2(ν̂
′)), then there is a path from ν ′ to ν ′

ai↑ (resp.,

ν ′
ai↓) in φ; and

4. in Definition 6.3.1 we have coloured the edges that might occur in paths from νai↓ in
red and paths that might occur in path to νai↑ in green. Since the red and the green
edges never coincide, there can be no paths from νai↓ to νai↑.

Definition 6.3.4. The Path Breaker, PB, is an operator whose arguments are an atom a and
a derivation Φ. If Φ is weakly streamlined with respect to both a and ā, then PB(Φ,a) = Φ;
otherwise, consider the following ai-decomposed form of Φ:

 

t
−−−−−−−
aψ ∨ ā

∧ · · · ∧
t

−−−−−−−
aψ ∨ ā

∧ α

!

Φ′









β ∨
aψ ∧ ā
−−−−−−−

f
∨ · · · ∨

aψ ∧ ā
−−−−−−−

f





,

with flow

φ′′ =

ε ε
′

φ′ ψ′

ι
′

ι

,
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such that occurrences of a do not appear in an interaction or cut instance in Φ′. Consider the
derivation

Ψ =













t
−−−−−
a ∨ ā





{c↑}
[a ∨ ā] ∧ · · · ∧ [a ∨ ā]

∧ α













Φ′



















β ∨

(a ∧ ā) ∨ · · · ∨ (a ∧ ā)





{c↓}
a ∧ ā
−−−−−

f













,

with flow

ψ′′ =

ε ε
′

φ′ ψ′

ι ι
′

φ ψ

.

We then define PB(Φ,a) to be such thatΨ→pb PB(Φ,a), where φ and ψ are the flows, by the
same names, shown in Definition 6.3.1 on page 53.

Proposition 6.3.5. Given an atom a and a derivation Φ,

1. PB(Φ,a) is weakly streamlined with respect to both a and ā;

2. for any atom b , if Φ is weakly streamlined with respect to b , then PB(Φ,a) is weakly
streamlined with respect to b ; and

3. the size of PB(Φ,a) depends polynomially on the size of Φ.

Proof. If Φ is weakly streamlined with respect to both a and ā, the result is trivial. Assume Φ
is not weakly streamlined with respect to both a and ā, and letφ,ψ,φ′,ψ′,φ′′ andψ′′ be the
flows given in Definition 6.3.4 on the previous page and let νai↓ (resp., νai↑) be the evidenced
interaction (resp., cut) vertex in ψ′′, then

1. by Definition 6.3.4 all the paths from an interaction (resp., cut) vertex whose edges are
mapped to from instances of a or ā must start from νai↓ (resp., νai↑). The statement
then follows by Lemma 6.3.3 on page 54;

2. if the flow of PB(Φ,a) contains a path from an interaction vertex to a cut vertex whose
edges are mapped to from instances of b , then, by Lemma 6.3.3, there is a path from
an interaction to a cut vertex in φ or ψ, so also in φ′ or ψ′, whose edges are mapped
to from instances of b . Hence, the statement follows by contradiction; and
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3. the statement follows by Theorem 6.3.2 on page 53.

We now give an example of an application of PB. In particular we want to show its
inherent non-confluency.

Example 6.3.6. Given a derivation Φ where the atoms a1 and a2 occur, such that the flow
associated with Φ is

φ
1

φ
2

ψ ,

and where all the edges in φ1 are mapped to from a1 and ā1, and all the edges in φ2 are
mapped to from a2 and ā2, and there are no edges in ψ that are mapped to from a1 or a2,
then the flow associated with PB(PB(Φ,a1),a2) is the following flow (where indications of
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the different isomorphisms are left out):

φ
1

φ
1

φ
1

φ
1

φ
1

φ
1

φ
1

φ
1

φ
1

φ
2

φ
2

φ
2

φ
2

φ
2

φ
2

φ
2

φ
2

φ
2

ψ ψ ψ ψ ψ ψ ψ ψ ψ

.

We marked some edges in red to point out the fundamental difference between the subflows
containing φ1 and the subflows containing φ2.
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6.4 Multiple Isolated Subflows Removal

With the operator ISR we can produce weakly streamilend derivations with respect to one
atom at a time, with the operator PB we can produce weakly streamlined derivations with
respect to two dual atoms in parallel. In this section we see an operator, MISRn , for every
n > 0, which is a generalisation of ISR, that can produce a weakly streamlined derivation
with respect to n number of atoms in parallel, as long as they are pairwise non-dual.

We will see later how a derivation containing 2n atoms can be weakly streamlined by
two applications of Si and two applications of MISRn .

The results of this section, restricted to proofs, is also presented in the paper A Quasi-
polynomial Cut-Elimination Procedure in Deep Inference via Atomic Flows and Threshold For-
mulae [BGGP10], which was coauthored with Alessio Guglielmi, Paola Bruscoli and Michel
Parigot.

The operator is defined in terms of the following flow reduction. Unlike the flow re-
ductions of the preceding sections, we present here a reduction which depends on several
parameters. It is important to note that these parameters are independent of the derivation
to which we later apply the operator. In order to perform streamlining on an arbitrary num-
ber of atoms in parallel, we need find a class of atomic flows, ηk , which are used as a sort
of sharing mechanism. We are at this stage not able to describe the flows ηk without rely-
ing on their corresponding derivations. For this reason, it might help the understanding of
Definition 6.4.1 to refer to the derivation given in the proof of Theorem 6.4.4 on page 61.

In Subsection 6.4.1 on page 65, we present one possible combination of valid parameters,
which yields quasipolynomial (i.e. nO(log n)) streamlining. We conjecture that by finding
different parameters we will be able to obtain more efficient versions of this reduction. In
particular, we hope to be able to obtain polynomial streamlining.

Definition 6.4.1. For every n > 0, given

• atoms a1, . . . , an ;

• an N > 0;

• for 0¶ k ¶N , formulae γk ,1, . . . , γk ,n , such that

– γ0,1 = · · ·= γ0,n = t, and

– γN ,1 = · · ·= γN ,n = f; and

• for 1¶ k ¶N , a derivation

Γk =

�

a1 ∧ γk−1,1

�

∨ · · · ∨
�

an ∧ γk−1,n

�






SKS\{ai↓,ai↑}
�

a1 ∨ γk ,1

�

∧ · · · ∧
�

an ∨ γk ,n

�

,
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let, for 1¶ k ¶N , ηk be the flow of Γk , and let

µk =
f1,1(ψ1)

· · ·

f1,l1
(ψ1)
· · ·

fn,1(ψn )
· · ·

fn,ln
(ψn ) ,

where, for 1 ¶ i ¶ n, li is the number of atom occurrences in γk ,i , we define the reduction
→misn

(where mis stands for multiple isolated subflows) as follows, for any flow φ and any
connected components ψ1, . . . , ψn that do not contain interaction or cut vertices:

ε

· · ·

φ ψ
1

· · ·

ψ
n

· · ·

ι

→misn

ε

f
1
(ε)

· · ·

f
1
(φ)

f
1
(ι)

η
1

f
2
(ε)

f
2
(φ)

f
2
(ι)

µ
1

η
2

.

.

.

ηN−1

fN (ε)

fN (φ)

fN (ι)

µN−1

ηN

fN+1
(ε)

fN+1
(φ)

· · ·

fN+1
(ι)

ι

,

where we call the evidenced interaction (resp., cut) vertices νai↓,1, . . . , νai↓,n (resp., νai↑,1, . . . ,
νai↑,n).

Remark 6.4.2. The reduction→misn
is denoted as if it only depends on n, this is a misuse of

notation, and we will take it for granted that we also have the other parameters whenever we
write→misn

.
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Remark 6.4.3. If N = 1 and Γ1 =
a1 ∧ t
=−−−−−−

a1 ∨ f
, then→mis1

=→is.

Theorem 6.4.4. For every n > 0, reduction→misn
is sound; moreover, if Φ→misn

Ψ, then the
size of Ψ depends linearly on N, polynomially on the size of Φ and at most polynomially on
max{|Γ1|, . . . , |ΓN |}.

Proof. Let Φ be a derivation with flow φ′, such that φ′→misn
ψ′. We show that there exists a

derivation Ψ with flow ψ′ and with the same premiss and conclusion as Φ. In the following,
we refer to the figures in Definition 6.4.1 on page 59.

Since each of ψ1, . . . , ψn is connected, we assume, by Convention 4.2.2 on page 34, that
the following derivation is an ai-decomposed form of Φ:

t
−−−−−−−−−
a1 ∨ āψ1

1

∧
t

−−−−−−−−−−
an ∨ āψn

n

∧ α

Φ′







β ∨
a1 ∧ āψ1

1−−−−−−−−−
f

∨
an ∧ āψn

n−−−−−−−−−−
f

,

for some atoms a1, . . . , an (that, without loss of generality, we assume coincide with the
atoms given in Definition 6.4.1 on page 59) and formulae α and β.

For every 0¶ k ¶N , we obtain the derivation Φk from Φ′ as follows:

Φk =

�

a1 ∨ γk ,1

�

∧ · · · ∧
�

an ∨ γk ,n

�

∧α

Φ′{āψ1
1 /γk ,1,...,āψn

n /γk ,n}







�

β ∨
�

a1 ∧ γk ,1

�

∨ · · · ∨
�

an ∧ γk ,n

��

Since each of ψ1, . . . , ψn is a connected component and contains no interaction or cut ver-
tices, the mapping from occurrences of āψi

i to edges of ψi is surjective. Hence, we know that
Φk has flow

· · ·

fi (φ) µk−1

· · ·

.

We combine Φ0, . . . , ΦN , Γ1, . . . , ΓN to get the desired derivationΨwith flowψ′ and the same
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premiss and conclusion as Φ:

α
c↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
��

f
−−−
a1

∨ t

�

∧ · · · ∧
�

f
−−−
an

∨ t

�

∧ α

�

Φ0












β ∨

(a1 ∧ t) ∨ · · · ∨ (an ∧ t)
Γ1







[a1 ∨ γ1,1] ∧ · · · ∧ [an ∨ γ1,n]







∧
α

c↑ −−−−−−
α ∧α

s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−













β ∨

[a1 ∨ γ1,1] ∧ · · · ∧ [an ∨ γ1,n] ∧α
Φ1












β ∨

(a1 ∧ γ1,1) ∨ · · · ∨ (an ∧ γ1,n)
Γ2







[a1 ∨ γ2,1] ∧ · · · ∧ [an ∨ γ2,n]





















∧
α

c↑ −−−−−−
α ∧α

s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
...

s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−













β ∨β
c↓ −−−−−−−

β
∨

[a1 ∨ γN−1,1] ∧ · · · ∧ [an ∨ γN−1,n] ∧α
ΦN−1













β ∨

(a1 ∧ γN−1,1) ∨ · · · ∨ (an ∧ γN−1,n)
ΓN







[a1 ∨ f] ∧ · · · ∧ [an ∨ f]





















∧ α

s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

β ∨β
c↓ −−−−−−−

β
∨

[a1 ∨ f] ∧ · · · ∧
�

an ∨ f
�

∧α
ΦN







�

β ∨

�

a1−−−
t
∧ f

�

∨ · · · ∨
�

an−−−
t
∧ f

��

c↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
β

.

Since max{
�

�

�γ0,1

�

�

�, . . . ,
�

�

�γN ,n

�

�

�} is less than or equal to max{|Γ1|, . . . , |ΓN |}, we know that the size

of Φ0, . . . , ΦN depend at most cubically on the size of Φ and at most quadratically on the
size of max{|Γ1|, . . . , |ΓN |} by Theorem 4.2.3 on page 35 and Proposition 4.1.11 on page 33,
and that the size of Ψ depends at most cubically on the size of α and β by Lemma 2.3.12 on
page 17, so the size of Ψ depends linearly on N , polynomially on the size of Φ and at most
polynomially on the size of max{|Γ1|, . . . , |ΓN |}.

We now show the basic properties of→mis. Namely, that the reduction does not create
any ‘new’ interaction or cut vertices, and that it does not create any ‘new’ paths between
interaction or > and cut or ⊥ vertices.

Lemma 6.4.5. In the following we refer to the names given in Definition 6.4.1 on page 59.
Given two flows φ and ψ and an n > 0, such that φ→misn

ψ then, given an interaction (resp.,
cut) vertex ν in ψ, there is an interaction (resp., cut) vertex ν ′ in φ, such that

1. for some 1¶ i ¶N + 1, ν = fi (ν
′);

2. if there is a path from ν to ⊥ (resp., >), then there is a path from ν ′ to ⊥ (resp., >); and
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3. if there is a cut (resp., interaction) vertex ν̂ in ψ, such that there is a path from ν to ν̂ , then
there is a cut (resp., interaction) vertex ν̂ ′ inφ, such that, for some 1¶ i ¶N+1, ν̂ = fi (ν̂

′),
or, for some 1¶ i ¶ n, ν̂ ′ = νai↑,i (resp., ν̂ ′ = νai↓,i ); and there is a path from ν ′ to ν̂ ′.

Proof. We consider each case separately:

1. the statement follows by definition;

2. any path from ν to⊥ (resp.,>) must contain an edge ε, such that, for some lower (resp.,
upper) edge ε′ of φ and some 1¶ i ¶N + 1, fi (ε

′) = ε. Hence, there is a path from ν ′

to ⊥ (resp., >); and

3. we have to consider two cases:

(a) for some 1¶ i ¶N +1, ν = fi (ν
′) and ν̂ = fi (ν̂

′), then there is a path from ν ′ to ν̂ ′;
or

(b) for some 1 ¶ i < j ¶ N + 1, ν = fi (ν
′) and ν̂ = f j (ν̂

′) (resp., ν = f j (ν
′) and

ν̂ = fi (ν̂
′)), then, for some 1¶ i ¶ n, there is a path from ν ′ to νai↑,i (resp., νai↑,i ).

Definition 6.4.6. For every n > 0, given the atoms, formulae and derivations described in
Definition 6.4.1 on page 59, the Multiple Isolated Subflow Remover, MISRn , is an operator
whose arguments are atoms a1, . . . , an (that, without loss of generality, we assume coin-
cide with the atoms given in Definition 6.4.1), and a derivation Φ that is in simple form
with respect to a1, . . . , an . If n = 1 and Φ is weakly streamlined with respect to a1, then
MISR1(Φ,a1) = Φ; if n > 1 and, for some 1¶ i ¶ n, Φ is weakly streamlined with respect to
ai , then MISRn(Φ,a1, . . . ,an) =MISRn−1(Φ,a1, . . . ,ai−1,ai+1, . . . ,an); otherwise, consider the
following ai-decomposed form of Φ:

 

t
−−−−−−−−−
aψ1

1
∨ ā1

∧ · · · ∧
t

−−−−−−−−−
aψ1

1
∨ ā1

∧ · · · ∧
t

−−−−−−−−−−
aψn

n ∨ ān

∧ · · · ∧
t

−−−−−−−−−−
aψn

n ∨ ān

∧ α

!

Φ′









β ∨
aψn

n ∧ ān−−−−−−−−−−
f

∨ · · · ∨ aψn
n ∧ ān−−−−−−−−−−

f
∨ · · · ∨ aψ1

1
∧ ā1−−−−−−−−−
f

∨ · · · ∨ aψ1
1
∧ ā1−−−−−−−−−
f





,

with flow
ε

· · ·

φ′ ψ′
1
· · ·

ψ′
n

· · ·

ι

,
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where, for 1 ¶ i ¶ n, ψi is the juxtaposition of all the isolated subflows mapped to from
occurrences of ai in Φ. Consider the derivation

Ψ =













t
−−−−−−−
a1 ∨ ā1





{c↑}
[a1 ∨ ā1] ∧ · · · ∧ [a1 ∨ ā1]

∧ · · · ∧

t
−−−−−−−−
an ∨ ān






{c↑}
�

an ∨ ān
�

∧ · · · ∧
�

an ∨ ān
�

∧ α













Φ′



















β ∨

�

an ∧ ān
�

∨ · · · ∨
�

an ∧ ān
�






{c↓}
an ∧ ān−−−−−−−−

f

∨ · · · ∨

(a1 ∧ ā1) ∨ · · · ∨ (a1 ∧ ā1)





{c↓}
a1 ∧ ā1−−−−−−−

f













,

with flow

ψ′′ =

ε

· · ·

φ′

· · ·

ψ′
1

· · ·
ψ′

n

ι

φ ψ
1

ψ
n

.

We then define MISRn(Φ,a1, . . . ,an) to be such that Ψ →mis MISRn(Φ,a1, . . . ,an), where φ,
ψ1, . . . , ψn are the flows, by the same names, shown in Definition 6.4.1 on page 59.

Proposition 6.4.7. Given the atoms, formulae and derivations described in Definition 6.4.1 on
page 59, and atoms a1, . . . , an and a derivation Φ that is in simple form with respect to a1, . . . ,
an ,

1. MISRn(Φ,a1, . . . ,an) is weakly streamlined with respect to a1, . . . , an ;

2. for any atom b ,

(a) if Φ is weakly streamlined with respect to b , then MISRn(Φ,a1, . . . ,an) is weakly
streamlined with respect to b , and

(b) if b is not the dual of any of a1, . . . , an and Φ is in simple form with respect to b , then
MISRn(Φ,a1, . . . ,an) is in simple form with respect to b ; and

3. the size of MISRn(Φ,a1, . . . ,an) depends linearly on N, polynomially on the size of Φ, and
at most polynomially on max{|Γ1|, . . . , |ΓN |}.

Proof. If Φ is weakly streamlined with respect to some atom from a1, . . . , an , the result
follows by induction. Assume Φ is not weakly streamlined with respect to any atom from a1,
. . . , an , and let φ, ψ1, . . . , ψn , φ′, ψ′1, . . . , ψ′n and ψ′′ be the flows given in Definition 6.4.6
on the previous page, then

64



1. by definition there is no path in φ from an interaction to a cut vertex whose edges
are mapped to from instances of one of a1, . . . , an . By Lemma 6.4.5 on page 62,
we know that if there is a path from an interaction to a cut vertex in the flow of
MISRn(Φ,a1, . . . ,an) whose edges are mapped to from instances of one of a1, . . . , an ,
then there must be a path from an interaction to a cut vertex in φ whose edges are
mapped to from instances of one of a1, . . . , an . Hence, the statement follows by con-
tradiction;

2. (a) if the flow of MISRn(Φ,a1, . . . ,an) contains a path from an interaction vertex to a
cut vertex whose edges are mapped to from b , then, by Lemma 6.4.5, there is a
path from an interaction vertex to a cut vertex in φ, so also in φ′, whose edges
are mapped to from b . Hence, the statement follows by contradiction; and

(b) if there is an interaction (reps., cut) vertex ν and a cut (resp., interaction) vertex
ν̂ in the flow of MISRn(Φ,a1, . . . ,an) such that there is a path from ν to ν̂ and a
path from ν to ⊥ (resp., >), both of whose edges are mapped to from b , then,
by Lemma 6.4.5, there is an interaction (resp., cut) vertex ν ′ and a cut (resp.,
interaction) vertex ν̂ ′ in φ such that there is a path from ν to ν̂ and a path from ν
to ⊥ (resp., >), both of whose edges are mapped to from b . Furthermore, since
we can assume that b is not any of a1, . . . , an or their duals, φ restricted to b
equals φ′ restricted to b . Hence, the statement follows by contradiction.

3. the statement follows by Theorem 6.4.4 on page 61.

Remark 6.4.8. Given the atoms, formulae and derivations described in Definition 6.4.1 on
page 59, we can prove by induction on k, that, for every 1¶ i ¶ n and every 0¶ k ¶N , the
formula γk ,i is

• true if at least k of the atoms a1, . . . , ai−1, ai+1, . . . , an are true; and

• false if at least N − k of the atoms a1, . . . , ai−1, ai+1, . . . , an are false.

It follows by contradiction that N ¾ n. Furthermore, if N = n, we know that γk ,i is true
if and only if at least k of the atoms a1, . . . , ai−1, ai+1, . . . , an are true. This makes γk ,i a
threshold formula, as we will see in the next section.

6.4.1 Threshold Formulae

Recently, Jeřábek showed that cut-free SKS proofs can be constructed in quasipolynomial
time from SKS proofs with cut [Jeř09]. This is a very surprising result because received wis-
dom suggests that cut elimination requires exponential-time normalisation, as is the case in
Gentzen proof systems. Jeřábek obtained his result by relying on a construction over thresh-
old functions by Atserias, Galesi and Pudlák, in the monotone sequent calculus [AGP02].
We note that the monotone sequent calculus specifies a weaker logic than propositional logic
because negation is not freely applicable.
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The technique that Jeřábek adopts is indirect because normalisation is performed over
proofs in the sequent calculus, which are, in turn, related to deep-inference ones by polyno-
mial simulations, originally studied in [Brü06b].

In [BGGP10], we demonstrated again Jeřábek’s result, still by adopting, essentially, the
Atserias-Galesi-Pudlák technique, and we improved on that as follows:

1. we significantly simplified the technicalities associated with the use of threshold func-
tions, in particular the formulae and derivations that we adopted were simpler than
those in [AGP02];

2. our cut-elimination procedure was direct, i.e., it is internal to system SKS.

In this section I generalise those results in the following two ways:

1. they are extended from cut elimination to streamlining;

2. we observe, in Remark 6.4.8 on the previous page, a criterion on the kind of formulae
we need to make the procedure work, which does not necessarily restrict us to thresh-
old formulae.

As Atserias, Galesi and Pudlák argue, there is no apparent reason for this normalisation
problem not to be polynomial. The difficulty in obtaining polynomiality resides in finding
a suitable class of derivations as described in Remark 6.4.8 on the preceding page.

We present here the main construction of this section, i.e., a class of derivations Γ that
adhere to the condition of Definition 6.4.1 on page 59. The complexity of the Γ derivations
dominates the complexity of the streamlined proof, and is due to the complexity of certain
threshold formulae, on which the Γ derivations are based. The Γ derivations are constructed
in Definition 6.4.16 on page 70; this directly leads to Theorem 6.4.17 on page 71, which states
a crucial property of the Γ derivations and which is the main result of this section.

Threshold formulae realise boolean threshold functions, which are defined as boolean
functions that are true if and only if at least k of n inputs are true (see [Weg87] for a thorough
reference on threshold functions).

There are several ways of encoding threshold functions into formulae, and the problem
is to find, among them, an encoding that allows us to obtain Theorem 6.4.17 on page 71.
Efficiently obtaining the property stated in Theorem 6.4.17 crucially depends also on the
proof system we adopt.

In the following, n (resp., n) denotes the maximum (resp., minimum) integer x such that
x ¶ n/2 (resp., x ¾ n/2). The reason for this notation will become clear in Definition 6.4.9
on the next page. We will need to split the n atoms a1, . . . , an into the n atoms a1, . . . , an and
the n atoms an+1, . . . , an . It is important to notice that, for any n, n+ n = n.

The following class of threshold formulae, which we found to work for system SKS, is a
simplification of the one adopted in [AGP02].
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We now define a class of operators θn
k
, which takes n atoms as arguments and returns a

formula that is true if and only if at least k of the inputs are true.

Definition 6.4.9. For every n > 0 and k ¾ 0, we define the operator θn
k

inductively as
follows:

θn
k (a1, . . . ,an) =































t if k = 0
f if k > n
a1 if n = k = 1
∨

i+ j=k
0¶i¶n
0¶ j¶n

�

θ
n
i (a1, . . . ,an) ∧ θ

n
j (an+1, . . . ,an)

�

otherwise.

For any n atoms a1, . . . , an , we call θn
k
(a1, . . . ,an) the threshold formula at level k (with respect

to a1, . . . , an).

See, in Figure 6-1 on the following page, some examples of threshold formulae.

The formulae for threshold functions adopted in [AGP02] correspond, for each choice of
k and n, to

∨

i¾k θ
n
i (a1, . . . ,an). We presume that [AGP02] employs these more complicated

formulae because the formalism adopted there, the sequent calculus, is less flexible than deep
inference, requiring more information in threshold formulae in order to construct suitable
derivations.

The size of the threshold formulae dominates the cost of the normalisation procedure,
so, we evaluate their size. We leave as an exercise the proof of the following proposition.

Proposition 6.4.10. For any n > 0 and k ¾ 0,
�

�

�θn
k
(a1, . . . ,an)

�

�

�¶
�

�

�θn
n+1(a1, . . . ,an)

�

�

�.

Lemma 6.4.11. The size of θn
n+1(a1, . . . ,an) is nO(log n).

Proof. Observe that
�

�

�θn
k
(a1, . . . ,an)

�

�

�¶
�

�

�θn+1
k
(a1, . . . ,an+1)

�

�

�. Consider:
�

�

�θn
n+1(a1, . . . ,an)

�

�

�=
∑

i+ j=n+1
0¶i¶n
0¶ j¶n

��

�

�θ
n
i (a1, . . . ,an)

�

�

�+
�

�

�θn
j (an+1, . . . ,an)

�

�

�

�

¶
∑

i+ j=n+1
0¶i , j¶n

��

�

�θn
i (a1, . . . ,an)

�

�

�+
�

�

�θn
j (a1, . . . ,an)

�

�

�

�

¶ 2(n+ 1)
�

�

�

�

θn
(n)+1(a1, . . . ,an)

�

�

�

�

,

(6.1)

where we use Proposition 6.4.10. Let h = 2/ log 3
2 , then we show that, for any n > 0, we have

�

�

�θn
n+1(a1, . . . ,an)

�

�

�¶ nh log n . We reason by induction on n; the case n = 1 trivially holds. For

n > 1, we have that 2(n+ 1)¶ n2, n ¶ n and n ¶ 2
3 n, so by the inequality (6.1), we have

�

�

�θn
n+1(a1, . . . ,an)

�

�

�¶ 2(n+ 1)nh log n

¶ n2nh log( 23 n) = nh log n−h log 3
2+2 = nh log n .
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θ2
0(a, b ) ≡ t ,

θ2
1(a, b ) ≡ (θ1

1(a) ∧ θ
1
0(b )) ∨ (θ

1
0(a) ∧ θ

1
1(b ))≡ (a ∧ t) ∨ (t ∧ b )

= a ∨ b ,

θ2
2(a, b ) ≡ θ1

1(a) ∧ θ
1
1(b )

≡ a ∧ b ,

θ3
0(a, b , c) ≡ t ,

θ3
1(a, b , c) ≡ (θ1

1(a) ∧ θ
2
0(b , c)) ∨ (θ1

0(a) ∧ θ
2
1(b , c))≡ (a ∧ t) ∨ (t ∧ [(b ∧ t) ∨ (t ∧ c)])

= a ∨ b ∨ c ,

θ3
2(a, b , c) ≡ (θ1

1(a) ∧ θ
2
1(b , c)) ∨ (θ1

0(a) ∧ θ
2
2(b , c))

= (a ∧ [b ∨ c]) ∨ (b ∧ c) ,

θ3
3(a, b , c) ≡ θ1

1(a) ∧ θ
2
2(b , c)≡ (a ∧ (b ∧ c))

= a ∧ b ∧ c ,

θ5
0(a, b , c , d , e) ≡ t ,

θ5
1(a, b , c , d , e) ≡ (θ2

1(a, b ) ∧ θ3
0(c , d , e)) ∨ (θ2

0(a, b ) ∧ θ3
1(c , d , e))

= a ∨ b ∨ c ∨ d ∨ e ,

θ5
2(a, b , c , d , e) ≡ (θ2

2(a, b ) ∧ θ3
0(c , d , e)) ∨ (θ2

1(a, b ) ∧ θ3
1(c , d , e)) ∨ (θ2

0(a, b ) ∧ θ3
2(c , d , e))

= (a ∧ b ) ∨ ([a ∨ b] ∧ [c ∨ d ∨ e]) ∨ (c ∧ [d ∨ e]) ∨ (d ∧ e) ,

θ5
3(a, b , c , d , e) ≡ (θ2

2(a, b ) ∧ θ3
1(c , d , e)) ∨ (θ2

1(a, b ) ∧ θ3
2(c , d , e)) ∨ (θ2

0(a, b ) ∧ θ3
3(c , d , e))

= (a ∧ b ∧ [c ∨ d ∨ e]) ∨ ([a ∨ b] ∧ [(c ∧ [d ∨ e]) ∨ (d ∧ e)]) ∨ (c ∧ d ∧ e) ,

θ5
4(a, b , c , d , e) ≡ (θ2

2(a, b ) ∧ θ3
2(c , d , e)) ∨ (θ2

1(a, b ) ∧ θ3
3(c , d , e))

= (a ∧ b ∧ [(c ∧ [d ∨ e]) ∨ (d ∧ e)]) ∨ ([a ∨ b] ∧ c ∧ d ∧ e) ,

θ5
5(a, b , c , d , e) ≡ θ2

2(a, b ) ∧ θ3
3(c , d , e)

= a ∧ b ∧ c ∧ d ∧ e ,

θ5
6(a, b , c , d , e) ≡ f .

Figure 6-1: Examples of threshold formulae.
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Theorem 6.4.12. For any k ¾ 0 the size of θn
k
(a1, . . . ,an) is nO(log n).

Proof. It immediately follows from Proposition 6.4.10 on page 67 and Lemma 6.4.11 on
page 67.

Remark 6.4.13. Given n > 1 and distinct atoms a1, . . . , an . For 0¶ k ¶ n and 1¶ l ¶ n, the
following derivation is well defined:

θ
n
n(a1, . . . ,an){al/f} ∧ θn

k
(an+1, . . . ,an)

w↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f

=
a1 ∧ · · · ∧ al−1 ∧ al+1 ∧ · · · ∧ an ∧ θ

n
k
(an+1, . . . ,an)

w↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t

∧ f .

Analogously, for 0¶ k ¶ n and n+ 1¶ l ¶ n, we can define the following derivation:

θ
n
k
(a1, . . . ,an) ∧ θ

n
n
(an+1, . . . ,an){al/f}

w↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f

=
θ

n
k
(a1, . . . ,an) ∧ an+1 ∧ · · · ∧ al−1 ∧ al+1 ∧ · · · ∧ an

w↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t

∧ f .

Both classes of derivations are used in Definition 6.4.14.

The only reason why we require atoms to be distinct is to avoid certain technical prob-
lems with substitutions. The same situation occurs in Definitions 6.4.14 and 6.4.16 on the
following page.

Definition 6.4.14. Consider n > 0, distinct atoms a1, . . . , an .

• For n > 1 and 1¶ l ¶ n, we define the derivations Υn
k ,l
(a1, . . . ,an) and ∆n

k ,l
(a1, . . . ,an)

as follows:

Υn
k ,l (a1, . . . ,an) =



































(θn
n(a1, . . . ,an)){al/f} ∧ θn

k−n
(an+1, . . . ,an)

w↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f

if n ¶ k ¶ n and l ¶ n

θ
n
k−n
(a1, . . . ,an) ∧ (θ

n
n
(an+1, . . . ,an)){al/f}

w↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f

if n ¶ k ¶ n and n < l

f otherwise

and

∆n
k ,l (a1, . . . ,an) =



































f
w↓ −−−−−−−−−−−−−−−−−−−−
θn

k
(an+1, . . . ,an)

if 0< k ¶ n and l ¶ n

f
w↓ −−−−−−−−−−−−−−−−
θ

n
k
(a1, . . . ,an)

if 0< k ¶ n and n < l

f otherwise

.

• For k ¾ 0 and 1¶ l ¶ n, we define the derivations Γn
k ,l
(a1, . . . ,an), recursively on n, as

follows:
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– Γ1
0,1(a1) = t;

– for k > 0, Γ1
k ,1
(a1) = f;

– for k > n, Γn
k ,l
(a1, . . . ,an) = f;

– for n > 1, k ¶ n and l ¶ n, let Γn
k ,l
(a1, . . . ,an) be

∨

i+ j=k
0¶i<n
0¶ j¶n

�

Γ
n
i ,l
(a1, . . . ,an) ∧ θ

n
j (an+1, . . . ,an)

�

∨Υn
k ,l (a1, . . . ,an) ∨∆n

k+1,l (a1, . . . ,an)

– for n > 1, k ¶ n and n < l , let Γn
k ,l
(a1, . . . ,an) be

∨

i+ j=k
0¶i¶n
0¶ j<n

�

θ
n
i (a1, . . . ,an) ∧ Γn

j ,l−n(an+1, . . . ,an)
�

∨Υn
k ,l (a1, . . . ,an) ∨∆n

k+1,l (a1, . . . ,an) .

Theorem 6.4.15. For any n > 0, k ¾ 0 and 1¶ l ¶ n, the derivation Γn
k ,l
(a1, . . . ,an) has shape

θn
k
(a1, . . . ,an){al/f}






{aw↓,aw↑}
θn

k+1
(a1, . . . ,an){al/t}

,

and
�

�

�Γn
k ,l
(a1, . . . ,an)

�

�

� is nO(log n).

Proof. The shape of Γn
k ,l
(a1, . . . ,an) can be verified by inspecting Definition 6.4.14 on the

previous page. For example, this is the case when n > 1 and l ¶ n ¶ k < n:

θn
k
(a1, . . . ,an){al/f}

Γn
k ,l
(a1,...,an)








θn
k+1
(a1, . . . ,an){al/t}

=
∨

i+ j=k
0¶i<p
0¶ j¶q









θp
i (a1, . . . ,ap ){al/f}

Γ
p
i ,l
(a1,...,ap )








θp
i+1(a1, . . . ,ap ){al/t}

∧ θq
j (ap+1, . . . ,an)









∨

∨
(θp

p (a1, . . . ,ap )){al/f} ∧ θq
k−p
(ap+1, . . . ,an)

w↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f

∨
f

w↓ −−−−−−−−−−−−−−−−−−−−−−−
θq

k+1
(ap+1, . . . ,an)

.

General (co)weakening rule instances can be replaced by their atomic counterparts due to
Lemma 2.3.11 on page 17. The size bound on Γn

k ,l
(a1, . . . ,an) follows from Proposition 4.1.11

on page 33 and Theorem 6.4.12 on the preceding page.

70



Definition 6.4.16. Consider n > 0, distinct atoms a1, . . . , an . For k ¾ 0, we define the
derivation Γn

k
(a1, . . . ,an) to be:

























a1 ∧

θn
k
(a1, . . . ,an){a1/f}

Γn
k ,1
(a1,...,an)








θn
k+1
(a1, . . . ,an){a1/t}














{ac↑,s}
θn

k+1
(a1, . . . ,an)

∨ · · · ∨









an ∧

θn
k
(a1, . . . ,an){an/f}

Γn
k ,n
(a1,...,an)








θn
k+1
(a1, . . . ,an){an/t}














{ac↑,s}
θn

k+1
(a1, . . . ,an)






















{c↓}
θn

k+1
(a1, . . . ,an)





{c↑}








θn
k+1
(a1, . . . ,an)





{ac↓,s}
�

a1 ∨ θn
k+1
(a1, . . . ,an){a1/f}

�

∧ · · · ∧
θn

k+1
(a1, . . . ,an)





{ac↓,s}
�

an ∨ θn
k+1
(a1, . . . ,an){an/f}

�









,

where we use the derivations constructed in the proof of Lemma 2.3.10 on page 16.

Theorem 6.4.17. For any n > 0 and k ¾ 0, the derivation Γn
k
(a1, . . . ,an) has shape

�

a1 ∧ θ
n
k
(a1, . . . ,an){a1/f}

�

∨ · · · ∨
�

an ∧ θ
n
k
(a1, . . . ,an){an/f}

�






SKS\{ai↓,ai↑}
�

a1 ∨ θ
n
k+1
(a1, . . . ,an){a1/f}

�

∧ · · · ∧
�

an ∨ θ
n
k+1
(a1, . . . ,an){an/f}

�

,

and
�

�

�Γn
k
(a1, . . . ,an)

�

�

� is nO(log n).

Definition 6.4.18. For every n > 0, we define

• the reduction→qmisn
(where qmis stands for quasipolynomial multiple isolated subflows);

and

• and the operator the Quasipolynomial Multiple Isolated Subflows Remover, QMISRn ,

to be special cases of→misn
and MISRn , respectively, such that, given atoms (a1, . . . ,an),

• N = n;

• for 0¶ k ¶ n and 1¶ i ¶ n, γk ,i = (θ
n
k
(a1, . . . ,an)){ai/f}; and

• for 1¶ k ¶ n, Γk = Γn
k
(a1, . . . ,an).

Theorem 6.4.19. For every n > 0,→qmisn
is sound; moreover, if Φ→qmisn

Ψ, then the size of
Ψ depends polynomially on the size of Φ and quasipolynomially on n.

Proof. The result follows by Theorem 6.4.4 on page 61, Definition 6.4.9 on page 67 and
Theorem 6.4.17.
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Proposition 6.4.20. Given atoms a1, . . . , an and a derivation Φ that is in simple form with
respect to a1, . . . , an ,

1. QMISRn(Φ,a1, . . . ,an) is weakly streamlined with respect to a1, . . . , an ;

2. for any atom b ,

(a) if Φ is weakly streamlined with respect to b , then QMISRn(Φ,a1, . . . ,an) is weakly
streamlined with respect to b , and

(b) if b is not the dual of any of a1, . . . , an and Φ is in simple form with respect to b , then
QMISRn(Φ,a1, . . . ,an) is in simple form with respect to b ; and

3. the size of QMISRn(Φ,a1, . . . ,an) depends polynomially on the size of Φ, and quasipolyno-
mially on n.

Proof. The statements follow by Proposition 6.4.7 on page 64 and Theorem 6.4.17 on the
preceding page.
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Chapter 7

Local Reductions

In this chapter, we see local transformations, which are based on reduction rules. It is con-
venient to classify reduction rules into those for weakening and those for contraction. After
seeing flow reductions and tying them with derivations, in Section 7.1 on page 75, we explore
some of their basic properties, in the two short Sections 7.2 on page 77 and 7.3 on page 78.

Definition 7.0.1. In Figure 7-1 on the following page, we define graphical expressions of the
kind r : φ′→ψ′, where r is a name and φ′ and ψ′ are flows.

Example 7.0.2. The ‘reduction’ on the left, when used inside a larger flow, might create a
situation as on the right:

→

+

+ +

+

→

+ ?

+

,

where the graph at the right is not an atomic flow, for lack of a polarity assignment.

This prompts us to define reduction rules for atomic flows as follows.

Definition 7.0.3. An (atomic-flow) reduction rule r from flow φ′ to flow ψ′ is a quadruple
(φ′,ψ′, f , g ) such that:

1. f is a one-to-one map from the upper edges of φ′ to the upper edges of ψ′,

2. g is a one-to-one map from the lower edges of φ′ to the lower edges of ψ′,

3. for every polarity assignment π for φ′, there is a polarity assignment π′ for ψ′ such
that π′( f (ε)) =π(ε) and π′(g (ε′)) =π(ε′), for any upper edge ε and any lower edge ε′

of φ′;

we define reduction rules with graphical expressions r : φ′→ψ′, where f and g are indicated
by labelling edges. For every reduction rule r : φ′ → ψ′, the reduction→r is defined, such
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w↓-c↓ : 1

2
→ 1,2 c↑-w↑ :

2

1

→ 1,2

w↓-i↑ : 1 → 1 i↓-w↑ : 1 → 1

w↓-w↑ : 1 →

w↓-c↑ :
1 2

→
1 2

c↓-w↑ :
1 2

→

1 2

c↓-i↑ :
31 2

→

31 2

i↓-c↑ :
31 2

→

31 2

c↓-c↑ :

1 2

3 4

→

1 2

3 4

Figure 7-1: Atomic-flow reduction rules.

thatφ→r ψ if and only ifφ′ appears as a subflow inφ and we obtain ψ by replacingφ′ with
ψ′ in φ, while respecting the correspondence of edges; we call this operation a reduction by
r .

Remark 7.0.4. The condition on polarity assignments for a reduction rule r guarantees that
the ψ in φ→r ψ is a proper atomic flow, if φ is one.

Remark 7.0.5. Because of the condition on polarity assignments for reduction rules, two
distinct connected components in a flow cannot be connected by a reduction. To see that
this is impossible, consider the following ‘reduction rule’, which violates the condition on
polarity assignments:

→ .

For this ‘reduction rule’ there exist both valid (left) and invalid (right) polarity assignments:

+ − → + − + + → + ? .

It is immediate to check:

Proposition 7.0.6. The graphical expressions in Figure 7-1 are atomic-flow reduction rules.

Definition 7.0.7. A finite set of reduction rules is a flow rewriting system. For every flow
rewriting system F = {r1, . . . , rh} we define→F =→r1

∪· · · ∪→rh
. The reflexive transitive

closure of→F is denoted by→?
F . Given a set of atomic flows S, we say that a flow rewriting

system F is terminating on S if there is no infinite chain φ1→F φ2→F · · · , for every φ1 ∈ S;
if F is terminating on the set of atomic flows, we say that it is terminating. We say that the
flow φ is normal for flow rewriting system F if there is no flow ψ such that φ→F ψ.
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Definition 7.0.8. The following flow rewriting system is called w:

{ w↓-c↓ , c↑-w↑ , w↓-i↑ , i↓-w↑ , w↓-w↑ , w↓-c↑ , c↓-w↑ } .

Definition 7.0.9. The following flow rewriting system is called c:

{ c↓-i↑ , i↓-c↑ , c↓-c↑ } .

Maximal ai-paths provide for a measure when dealing with the termination of c.

Remark 7.0.10. A simple inspection to the reduction rules of c convinces us that reducing by
c does not change the number and length of the maximal ai-paths of a flow. The same holds
for the maximal ai-paths to or from vertices that are not involved in a given reduction.

We now state two propositions whose proofs are immediate from the appropriate defini-
tions:

Proposition 7.0.11. Given a weakly-streamlined flow φ, if φ →?
w
ψ and ψ is normal for w,

then ψ is super streamlined.

Proposition 7.0.12. Given a super-streamlined flow φ, if φ→?
c
ψ and ψ is normal for c, then

ψ is hyper streamlined.

7.1 Soundness

Definition 7.1.1. A reduction rule r is sound if→r is sound.

The proof of the following theorem is essentially contained in Figure 7-2 on the following
page and Figure 7-3 on page 77.

Theorem 7.1.2. The reduction rules w↓-c↓, w↓-i↑, w↓-w↑, w↓-c↑, c↓-i↑, c↓-c↑, c↑-w↑, i↓-w↑, c↓-w↑
and i↓-c↑ are sound.

Proof. For r ∈ {w↓-c↓,w↓-i↑,w↓-w↑,w↓-c↑,c↓-i↑,c↓-c↑} and r : φ′→ψ′ as in the left columns
of Figures 7-2 on the following page and 7-3 on page 77, for every φ and ψ such that φ→r ψ
and for every Φ with flow φ, the right columns of the tables provide reductions Φ →r Ψ,
where Ψ has flow ψ, as follows. If Φ′→r Ψ

′ is the reduction provided by the table, then

Φ=

α
Ψ1







α′

Φ′







β′

Ψ2







β

and Ψ=

α
Ψ1







α′

Ψ′







β′

Ψ2







β

.

We can deal with the remaining rules by employing dual derivations to the ones shown.
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w↓-c↓ : 1

2
→ 1,2

ξ

¨

f
−−−
a3

«

Φ







ζ

¨

a3 ∨ a1
−−−−−−−−

a2

«

→w↓-c↓

ξ {f}
Φ{a3/f}








ζ

¨

f ∨ a1,2
=−−−−−−−−

a1,2

«

w↓-i↑ : 1 → 1

ξ

¨

f
−−−
a2

«

Φ







ζ

¨

a2 ∧ ā1
−−−−−−−−

f

«

→w↓-i↑

ξ {f}
Φ{a2/f}








ζ







f ∧
ā1
−−−
t

=−−−−−−−
f







w↓-w↑ : 1 →

ξ

¨

f
−−−
a1

«

Φ







ζ

¨

a1
−−−
t

«

→w↓-w↑

ξ {f}
Φ{a1/f}








ζ















f
=−−−−−−−−−−

f ∧ [f ∨ t]
s−−−−−−−−−−
(f ∧ f) ∨ t
=−−−−−−−−−−

t















w↓-c↑ :
1 2

→
1 2

ξ

¨

f
−−−
a3

«

Φ







ζ

¨

a3
−−−−−−−−
a1 ∧ a2

«

→w↓-c↑

ξ {f}
Φ{a3/f}








ζ







f
=−−−−−−−−−−

f
−−−
a1
∧

f
−−−
a2







Figure 7-2: ‘Downwards’ reduction rules for weakening and their soundness.
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c↓-i↑ :
31 2

→

31 2

ξ

¨

a1 ∨ a2
−−−−−−−−

a4

«

Φ







ζ

¨

a4 ∧ ā3
−−−−−−−−

f

«

→c↓-i↑

ξ
�

a1 ∨ a2	

Φ{a4/[a1∨a2]}







ζ



















































�

�

a1 ∨ a2� ∧
ā3
−−−−−
ā ∧ ā

�

=−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−













ā ∧
�

a2 ∨ a1�

s−−−−−−−−−−−−−−−−−−−−
�

ā ∧ a2
−−−−−−

f
∨ a1

�

=−−−−−−−−−−−−−−−−−
a1

∧ ā















−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f



















































c↓-c↑ :

1 2

3 4

→

1 2

3 4

ξ

¨

a1 ∨ a2
−−−−−−−−

a5

«

Φ







ζ

¨

a5
−−−−−−−−
a3 ∧ a4

«

→c↓-c↑

ξ
�

a1 ∨ a2	

Φ{a5/[a1∨a2]}







ζ















�

a1
−−−−−
a ∧ a

∨
a2
−−−−−
a ∧ a

�

m−−−−−−−−−−−−−−−−−−−
�

a ∨ a
−−−−−
a3

∧
a ∨ a
−−−−−
a4

�















Figure 7-3: ‘Downwards’ reduction rules for contraction and their soundness.

Remark 7.1.3. The previous soundness theorem only depends on the switch and medial rules
for the reductions in Figure 7-3. Any system obtained from SKS by replacing s and m with
linear rules that can derive them would support a soundness theorem like the one above,
for the same reduction rules. For example, we could think of replacing s with the rule
[α ∨β] ∧ [γ ∨δ]

s′ −−−−−−−−−−−−−−−−−−−−−
(α ∧ γ ) ∨ [β ∨δ]

, from which s is derivable.

7.2 Termination and Confluence

Theorem 7.2.1. Flow rewriting system w is terminating.

Proof. At every reduction, the number of edges decreases.

Remark 7.2.2. Flow rewriting system c is not terminating:

→
c

→
c

→
c
· · · .

We see that if a contraction vertex belongs to an ai-cycle, reductions by c make it ‘bounce’ in
the ai-cycle and create a trail; while bouncing, the vertex alternates between contraction and
cocontraction.
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Theorem 7.2.3. Flow rewriting system c is terminating on the set of cycle-free flows.

Proof. Let φ be a cycle-free flow. We associate to each contraction (resp., cocontraction)
vertex ν its rank rν =

∑

pi∈Iν
hi , where Iν is the set of all maximal ai-paths pi = ε

i
1, . . . ,εi

hi

from ν, such that εi
1 is the lower (resp., upper) edge of ν (so, the rank of a vertex is the sum

of the lengths of certain maximal ai-paths from it). Note that every (co)contraction vertex
has non-zero rank. We prove that a reduction of φ by c decreases the sum of the ranks of
the (co)contraction vertices of φ. First note that the rank of the vertices not involved in the
reduction step stays the same (see Remark 7.0.10 on page 75). We then need to show that the
sum of the ranks decreases for the vertices involved. There are three cases, depending on the
reduction rule:

c↓-i↑: a contraction vertex ν is replaced by a cocontraction vertex ν ′, and rν ′ = rν − n, where
n > 0 is the number of maximal ai-paths from ν whose first edge is the lower edge of ν;

i↓-c↑: this is dual to the previous case;

c↓-c↑: a contraction vertex ν and a cocontraction vertex ν ′ are replaced by two contraction
vertices ν1 and ν2 and two cocontraction vertices ν ′1 and ν ′2; we have rν1

+ rν2
= rν − n,

where n > 0 is the number of maximal ai-paths from ν whose first edge is the lower
edge of ν ; analogously, we have rν ′1

+ rν ′2
= rν ′ − n′, where n′ > 0 is the number of

maximal ai-paths from ν ′ whose first edge is the upper edge of ν ′.

Conjecture 7.2.4. Flow rewriting system w∪ c is ‘confluent’.

Remark 7.2.5. It seems straightforward to verify the statement by checking each critical pair
of w∪ c. However, as pointed out by François Lamarche, this is not enough. It is not imme-
diate how the edges and vertices added to an atomic flow by a reduction should be named.
We know that if the flows ψ and ψ′ are both normal forms of the flow φ, with respect to
w∪c, then there exists an isomorphism between them. However, due to non-trivial automor-
phisms in ψ and ψ′ this isomorphism might not be unique, and we lack a way to construct
an isomorphism in a uniform way. This problem will be the focus of future research.

Remark 7.2.6. Notice that, by Remark 4.1.3 on page 29, the mapping from a redex in a flow to
the corresponding inference rule instances in a derivation might not be unique. This means
that a chain of reductions of flows does not uniquely determine the order of the reductions
of derivations. However, once we have a notion of confluence of the local reductions, it will
follow that the normal form of derivation is unique.

7.3 Complexity

Proposition 7.3.1. Given a derivation Φ, there exists a derivation Ψ, such that Φ→?
w
Ψ, Ψ is

normal for w and the size of Ψ depends at most linearly on the size of Φ.
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Proof. The number of reductions used to arrive at Ψ is bound by the number of edges in the
flow of Φ, so by the size of Φ. Furthermore, each reductions shown in Figure 7-2 on page 76
grows the derivation by at most a constant. Hence, the size ofΨ depends at most linearly on
the size of Φ.

Remark 7.3.2. Normalising by c can blow the size of flows exponentially, in particular in a
situation like the following (noted by Lutz Straßburger):

.

.

.
→
⋆

c

.

.

.

.

.

.

.

.

.

.

.

.
.

In fact, if there are n couples of cocontraction/contraction vertices like the two shown above
on the left, then there are 2n maximal ai-paths, and their number (and length) is conserved
by→?

c
(see Remark 7.0.10 on page 75). Exactly one ai-path passes through each edge in the

middle portion of the flow on the right. It follows that normalising derivations by c can also
blow their size exponentially.
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Chapter 8

Main Result

We now present the main result of this thesis: Three procedures for obtaining weakly stream-
lined derivations. Corollaries of the main results are: cut elimination, super-streamlining and
hyper-streamlining.

Theorem 8.0.1. Given a derivation Φ and distinct and pairwise non-dual atoms a1, . . . , an ,
such that a1, . . . , an and their duals are all the atoms appearing in Φ,

1. let
Φ′ = ISR(. . . ISR(Si(Φ,a1, . . . ,an),a1), . . . ,an) and

Φ′′ = ISR(. . . ISR(Si(Φ′, ā1, . . . , ān), ā1), . . . , ān) ,

then

(a) Φ′′ is weakly streamlined, and

(b) the size of Φ′′ depends at most exponentially on the size of Φ;

2. let Φ′ = PB(. . .PB(Φ,a1), . . . ,an), then

(a) Φ′ is weakly streamlined, and

(b) the size of Φ′ depends at most exponentially on the size of Φ; and

3. let
Φ′ =QMISR(Si(Φ,a1, . . . ,an),a1, . . . ,an) and

Φ′′ =QMISR(Si(Φ′, ā1, . . . , ān), ā1, . . . , ān) ,

then

(a) Φ′′ is weakly streamlined, and

(b) the size of Φ′′ depends at most quasipolynomially on the size of Φ.

Proof. The statements follow by Proposition 6.1.5 on page 47, Proposition 6.2.6 on page 51,
Proposition 6.3.5 on page 56 and Proposition 6.4.20 on page 72.
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Corollary 8.0.2. Given a derivation (resp., proof ) Φ, there exists a super-streamlined derivation
(resp., cut-free proof )Ψwith the same premiss and conclusion as Φ, such that the size of Ψ depends
at most quasipolynomially on the size of Φ.

Proof. The result follows by Theorem 8.0.1 on the preceding page, Proposition 7.0.11 on
page 75, Theorem 7.1.2 on page 75 and Proposition 7.3.1 on page 78.

Corollary 8.0.3. Given a derivation Φ, there exists a hyper-streamlined derivation Ψ with the
same premiss and conclusion as Φ.

Proof. The result follows by Theorem 8.0.1 on the preceding page, Proposition 7.0.11 on
page 75, Proposition 7.0.12 on page 75, Theorem 7.1.2 on page 75 and Proposition 7.3.1 on
page 78.
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ai-decomposed form, 34
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atomic flow, see flow
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negation, 7
renaming, 7
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vertical composition, 11
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horizontal composition, 8
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flow, 22
associated with derivation, 28
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vertices, 22

flow rewriting system, 74
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invertible, 14
logical, 14
premiss, 7
structural, 14

Isolated Subflow Remover
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Multiple Isolated Subflows Remover
operator, 63
reduction, 60

path, 26
length, 26

Path Breaker
operator, 55
reduction, 53

Quasipolynomial Multiple Isolated Subflows
Remover

operator, 71
reduction, 71

reduction, 42
by rule, 74
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sound, 75
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simple form
derivation

with respect to atom, 39
flow, 37

Simplifier
operator, 46
reduction, 44

streamlined, 38
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isolated, 27

substitution, 7
system, 7

threshold formula, 65, 67
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